WorldWideScience

Sample records for wind tunnel construction

  1. Materials and construction techniques for cryogenic wind tunnel facilities for instruction/research use

    Science.gov (United States)

    Morse, S. F.; Roper, A. T.

    1975-01-01

    The results of the cryogenic wind tunnel program conducted at NASA Langley Research Center are presented to provide a starting point for the design of an instructional/research wind tunnel facility. The advantages of the cryogenic concept are discussed, and operating envelopes for a representative facility are presented to indicate the range and mode of operation. Special attention is given to the design, construction and materials problems peculiar to cryogenic wind tunnels. The control system for operation of a cryogenic tunnel is considered, and a portion of a linearized mathematical model is developed for determining the tunnel dynamic characteristics.

  2. Study and evaluation of ferro-cement for use in wind tunnel construction

    Science.gov (United States)

    Larsen, H. J., Jr. (Compiler)

    1972-01-01

    The structural suitability and cost effectiveness of ferro-cement for large subsonic wind tunnel structures is investigated. This investigation was carried out in the following four main categories: (1) a state-of-the-art survey into the uses, properties, and costs of ferro-cement; (2) an evaluation of those ferro-cement properties critical to construction of large, subsonic wind tunnels, which have not been adequately established to date; (3) a laboratory testing program to determine preliminary values for those properties; and (4) a study to establish cost factors for ferro-cement as related to a preliminary construction scheme for a nacelle and shroud unit.

  3. Pre-deformation Analysis on Construction of Special-shaped Thin-walled Concrete Acoustic Wind Tunnel Structure

    Directory of Open Access Journals (Sweden)

    Li Boping

    2015-01-01

    Full Text Available Structural deformation of special-shaped thin-walled concrete acoustic wind tunnel under self-weight effect can not cater for requirements of high flatness and smoothness of moulding surface. Therefore pre-deformation analysis is carried out on construction of wind tunnel structure. Threshold is utilized to choose equivalent cross-section for the plane needing pre-deformation construction to do analysis. Analysis results show that design specifications of reinforced concrete is feasible for pre-deformation analysis on equivalent plane model under self-weight effect. Present construction on pre-camber wind tunnel according to deflection under self-weight effect also achieves the desired design requirements. Construction technology of arc-shaped erection template which controls mid-span pre-camber value keeps features of simple construction and high accuracy

  4. Microsystem Aeromechanics Wind Tunnel

    Data.gov (United States)

    Federal Laboratory Consortium — The Microsystem Aeromechanics Wind Tunnel advances the study of fundamental flow physics relevant to micro air vehicle (MAV) flight and assesses vehicle performance...

  5. Wind Tunnel Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This ARDEC facility consists of subsonic, transonic, and supersonic wind tunnels to acquire aerodynamic data. Full-scale and sub-scale models of munitions are fitted...

  6. INCAS TRISONIC WIND TUNNEL

    Directory of Open Access Journals (Sweden)

    Florin MUNTEANU

    2009-09-01

    Full Text Available The 1.2 m x 1.2 m Trisonic Blowdown Wind Tunnel is the largest of the experimental facilities at the National Institute for Aerospace Research - I.N.C.A.S. "Elie Carafoli", Bucharest, Romania. The tunnel has been designed by the Canadian company DSMA (now AIOLOS and since its commissioning in 1978 has performed high speed aerodynamic tests for more than 120 projects of aircraft, missiles and other objects among which the twin jet fighter IAR-93, the jet trainer IAR-99, the MIG-21 Lancer, the Polish jet fighter YRYDA and others. In the last years the wind tunnel has been used mostly for experimental research in European projects such as UFAST. The high flow quality parameters and the wide range of testing capabilities ensure the competitivity of the tunnel at an international level.

  7. INCAS SUBSONIC WIND TUNNEL

    Directory of Open Access Journals (Sweden)

    Corneliu STOICA

    2009-09-01

    Full Text Available The INCAS Subsonic Wind Tunnel is a closed circuit, continuous, atmospheric pressure facility with a maximum speed of 110 m/s. The test section is octagonal ,of 2.5 m wide, 2.0 m high and 4 m long. The tunnel is powered by a 1200 kW, air cooled variable speed DC motor which drives a 12 blade, 3.5 m diameter fan and is equipped with a six component pyramidal type external mechanical balance with a 700 Kgf maximum lift capacity.The angle of attack range is between -45º and +45º while the yaw angle range is between -140º and +216º .The data acquisition system has been modified recently to allow the recording of all test data on a PC - type computer using LABVIEW and a PXI – type chassis containing specialized data acquisition modules.The tunnel is equipped with a variable frequency electrical supply system for powered models and a 10 bar compressed air supply for pneumatic flow control applications.In the recent years the subsonic wind tunnel has been intensively used for tests within several European projects (AVERT, CESAR and others.

  8. Climatic wind tunnel for wind engineering tasks

    Czech Academy of Sciences Publication Activity Database

    Kuznetsov, Sergeii; Pospíšil, Stanislav; Král, Radomil

    2015-01-01

    Roč. 112, 2-B (2015), s. 303-316 ISSN 1897-628X R&D Projects: GA ČR(CZ) GA14-12892S Keywords : climatic tunnel * wind tunnel * atmospheric boundary layer * flow resistance * wind tunnel contraction Subject RIV: JM - Building Engineering https://suw.biblos.pk.edu.pl/resources/i5/i6/i6/i7/i6/r56676/KuznetsovS_ClimaticWind.pdf

  9. Flatback airfoil wind tunnel experiment.

    Energy Technology Data Exchange (ETDEWEB)

    Mayda, Edward A. (University of California, Davis, CA); van Dam, C.P. (University of California, Davis, CA); Chao, David D. (University of California, Davis, CA); Berg, Dale E.

    2008-04-01

    A computational fluid dynamics study of thick wind turbine section shapes in the test section of the UC Davis wind tunnel at a chord Reynolds number of one million is presented. The goals of this study are to validate standard wind tunnel wall corrections for high solid blockage conditions and to reaffirm the favorable effect of a blunt trailing edge or flatback on the performance characteristics of a representative thick airfoil shape prior to building the wind tunnel models and conducting the experiment. The numerical simulations prove the standard wind tunnel corrections to be largely valid for the proposed test of 40% maximum thickness to chord ratio airfoils at a solid blockage ratio of 10%. Comparison of the computed lift characteristics of a sharp trailing edge baseline airfoil and derived flatback airfoils reaffirms the earlier observed trend of reduced sensitivity to surface contamination with increasing trailing edge thickness.

  10. Role of Wind Tunnels in Aircraft Design

    Indian Academy of Sciences (India)

    large wind tunnels simulating the actual flight conditions as nearly as possible. Often, several wind tunnels ... wind tunnel tests can be 'scaled' to the actual velocity and actual body size using suitable scaling laws. A typical wind tunnel consists ofa test section ... tion and control positions. Some of this instrumentation like six.

  11. Wind Tunnel Measurements at LM Wind Power

    DEFF Research Database (Denmark)

    Bertagnolio, Franck

    2012-01-01

    This section presents the results obtained during the experimental campaign that was conducted in the wind tunnel at LM Wind Power in Lunderskov from August 16th to 26th, 2010. The goal of this study is to validate the so-called TNO trailing edge noise model through measurements of the boundary...... layer turbulence characteristics and the far-field noise generated by the acoustic scattering of the turbulent boundary layer vorticies as they convect past the trailing edge. This campaign was conducted with a NACA0015 airfoil section that was placed in the wind tunnel section. It is equipped with high...

  12. Wind tunnel tests of biodegradable fugitive dust suppressants being considered to reduce soil erosion by wind at radioactive waste construction sites

    International Nuclear Information System (INIS)

    Ligotke, M.W.; Dennis, G.W.; Bushaw, L.L.

    1993-10-01

    Wind tunnel tests were performed of three fugitive dust control agents derived from potato and sugar beet products. These materials are being considered for use as dust suppressants to reduce the potential for transport of radioactive materials by wind from radioactive waste construction and remediation sites. Soil and dust control agent type, solution concentrations, application quantities, aging (or drying) conditions, surface disturbance, and wind and saltating sand eolian erosive stresses were selected and controlled to simulate application and exposure of excavated soil surfaces in the field. A description of the tests, results, conclusions, and recommendations are presented in this report. The results of this study indicate that all three dust control agents can protect exposed soil surfaces from extreme eolian stresses. It is also clear that the interaction and performance of each agent with various soil types may differ dramatically. Thus, soils similar to that received from ML should be best protected by high concentration (∼2.5%) solutions of potato starch at low water application levels (∼1 to 2 L/m 2 ). Because the effectiveness of PS on this soil type is degraded after a moderate amount of simulated rainfall, other options or additives should be considered if surfaces are to be protected for long intervals or during periods of intermittent rainfall and hot, windy conditions. On the other hand, XDCA should be considered when excavating sandy soils. It should be noted, however, that because the Hanford soil test results are based on a small number of tests, it would be prudent to perform additional tests prior to selecting a fugitive dust control agent for use at the Hanford Site. While fermented potato waste was not the best fixative used on either soil, it did perform reasonably well on both soil types (better than XDCA on Idaho soil and better than PS on Hanford soil)

  13. Wind tunnel tests of biodegradable fugitive dust suppressants being considered to reduce soil erosion by wind at radioactive waste construction sites

    Energy Technology Data Exchange (ETDEWEB)

    Ligotke, M.W.; Dennis, G.W.; Bushaw, L.L.

    1993-10-01

    Wind tunnel tests were performed of three fugitive dust control agents derived from potato and sugar beet products. These materials are being considered for use as dust suppressants to reduce the potential for transport of radioactive materials by wind from radioactive waste construction and remediation sites. Soil and dust control agent type, solution concentrations, application quantities, aging (or drying) conditions, surface disturbance, and wind and saltating sand eolian erosive stresses were selected and controlled to simulate application and exposure of excavated soil surfaces in the field. A description of the tests, results, conclusions, and recommendations are presented in this report. The results of this study indicate that all three dust control agents can protect exposed soil surfaces from extreme eolian stresses. It is also clear that the interaction and performance of each agent with various soil types may differ dramatically. Thus, soils similar to that received from ML should be best protected by high concentration ({approximately}2.5%) solutions of potato starch at low water application levels ({approximately}1 to 2 L/m{sup 2}). Because the effectiveness of PS on this soil type is degraded after a moderate amount of simulated rainfall, other options or additives should be considered if surfaces are to be protected for long intervals or during periods of intermittent rainfall and hot, windy conditions. On the other hand, XDCA should be considered when excavating sandy soils. It should be noted, however, that because the Hanford soil test results are based on a small number of tests, it would be prudent to perform additional tests prior to selecting a fugitive dust control agent for use at the Hanford Site. While fermented potato waste was not the best fixative used on either soil, it did perform reasonably well on both soil types (better than XDCA on Idaho soil and better than PS on Hanford soil).

  14. Wind Tunnel for Aerodynamic Development Testing

    OpenAIRE

    E. T. L. Cöuras Ford; V. A. C. Vale; J. U. L. Mendes; F. A. Ribeiro

    2015-01-01

    The study of the aerodynamics related to the improvement in the acting of airplanes and automobiles with the objective of being reduced the effect of the attrition of the air on structures, providing larger speeds and smaller consumption of fuel. The application of the knowledge of the aerodynamics not more limits to the aeronautical and automobile industries. Therefore, this research aims to design and construction of a wind tunnel to perform aerodynamic analysis in bodi...

  15. RITD – Wind tunnel testing

    Science.gov (United States)

    Haukka, Harri; Harri, Ari-Matti; Aleksashkin, Sergei; Koryanov, Valeri; Schmidt, Walter; Heilimo, Jyri; Finchenko, Valeri; Martynov, Maxim; Ponomarenko, Andrey; Kazakovtsev, Victor; Arruego, Ignazio

    2015-04-01

    An atmospheric re-entry and descent and landing system (EDLS) concept based on inflatable hypersonic decelerator techniques is highly promising for the Earth re-entry missions. We developed such EDLS for the Earth re-entry utilizing a concept that was originally developed for Mars. This EU-funded project is called RITD - Re-entry: Inflatable Technology Development - and it was to assess the bene¬fits of this technology when deploying small payloads from low Earth orbits to the surface of the Earth with modest costs. The principal goal was to assess and develope a preliminary EDLS design for the entire relevant range of aerodynamic regimes expected to be encountered in Earth's atmosphere during entry, descent and landing. The RITD entry and descent system utilizes an inflatable hypersonic decelerator. Development of such system requires a combination of wind tunnel tests and numerical simulations. This included wind tunnel tests both in transsonic and subsonic regimes. The principal aim of the wind tunnel tests was the determination of the RITD damping factors in the Earth atmosphere and recalculation of the results for the case of the vehicle descent in the Mars atmosphere. The RITD mock-up model used in the tests was in scale of 1:15 of the real-size vehicle as the dimensions were (midsection) diameter of 74.2 mm and length of 42 mm. For wind tunnel testing purposes the frontal part of the mock-up model body was manufactured by using a PolyJet 3D printing technology based on the light curing of liquid resin. The tail part of the mock-up model body was manufactured of M1 grade copper. The structure of the mock-up model placed th center of gravity in the same position as that of the real-size RITD. The wind tunnel test program included the defining of the damping factor at seven values of Mach numbers 0.85; 0.95; 1.10; 1.20; 1.25; 1.30 and 1.55 with the angle of attack ranging from 0 degree to 40 degrees with the step of 5 degrees. The damping characteristics of

  16. Automated Boundary Conditions for Wind Tunnel Simulations

    Science.gov (United States)

    Carlson, Jan-Renee

    2018-01-01

    Computational fluid dynamic (CFD) simulations of models tested in wind tunnels require a high level of fidelity and accuracy particularly for the purposes of CFD validation efforts. Considerable effort is required to ensure the proper characterization of both the physical geometry of the wind tunnel and recreating the correct flow conditions inside the wind tunnel. The typical trial-and-error effort used for determining the boundary condition values for a particular tunnel configuration are time and computer resource intensive. This paper describes a method for calculating and updating the back pressure boundary condition in wind tunnel simulations by using a proportional-integral-derivative controller. The controller methodology and equations are discussed, and simulations using the controller to set a tunnel Mach number in the NASA Langley 14- by 22-Foot Subsonic Tunnel are demonstrated.

  17. The Beginner's Guide to Wind Tunnels with TunnelSim and TunnelSys

    Science.gov (United States)

    Benson, Thomas J.; Galica, Carol A.; Vila, Anthony J.

    2010-01-01

    The Beginner's Guide to Wind Tunnels is a Web-based, on-line textbook that explains and demonstrates the history, physics, and mathematics involved with wind tunnels and wind tunnel testing. The Web site contains several interactive computer programs to demonstrate scientific principles. TunnelSim is an interactive, educational computer program that demonstrates basic wind tunnel design and operation. TunnelSim is a Java (Sun Microsystems Inc.) applet that solves the continuity and Bernoulli equations to determine the velocity and pressure throughout a tunnel design. TunnelSys is a group of Java applications that mimic wind tunnel testing techniques. Using TunnelSys, a team of students designs, tests, and post-processes the data for a virtual, low speed, and aircraft wing.

  18. Role of Wind Tunnels in Aircraft Design

    Indian Academy of Sciences (India)

    Wind tunnel is an aerodynamic test facility. It is mostly used to study flow patterns around bodies and measure aerodynamic forces on them. The bodies (called models) are usually scaled down but geometrically similar versions of bodies of interest like an airplane or an automobile. The results from wind tunnel tests can be ...

  19. Computational Wind Tunnel: A Design Tool for Rotorcraft, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Rotorcraft engineers traditionally use the wind tunnel to evaluate and finalize designs. Insufficient correlation between wind tunnel results and flight tests, have...

  20. Computational Wind Tunnel: A Design Tool for Rotorcraft Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Rotorcraft engineers traditionally use the wind tunnel to evaluate and finalize designs. Insufficient correlation between wind tunnel results and flight tests, have...

  1. Rudolf Hermann, wind tunnels and aerodynamics

    Science.gov (United States)

    Lundquist, Charles A.; Coleman, Anne M.

    2008-04-01

    Rudolf Hermann was born on December 15, 1904 in Leipzig, Germany. He studied at the University of Leipzig and at the Aachen Institute of Technology. His involvement with wind tunnels began in 1934 when Professor Carl Wieselsberger engaged him to work at Aachen on the development of a supersonic wind tunnel. On January 6, 1936, Dr. Wernher von Braun visited Dr. Hermann to arrange for use of the Aachen supersonic wind tunnel for Army problems. On April 1, 1937, Dr. Hermann became Director of the Supersonic Wind Tunnel at the Army installation at Peenemunde. Results from the Aachen and Peenemunde wind tunnels were crucial in achieving aerodynamic stability for the A-4 rocket, later designated as the V-2. Plans to build a Mach 10 'hypersonic' wind tunnel facility at Kochel were accelerated after the Allied air raid on Peenemunde on August 17, 1943. Dr. Hermann was director of the new facility. Ignoring destruction orders from Hitler as WWII approached an end in Europe, Dr. Hermann and his associates hid documents and preserved wind tunnel components that were acquired by the advancing American forces. Dr. Hermann became a consultant to the Air Force at its Wright Field in November 1945. In 1951, he was named professor of Aeronautical Engineering at the University of Minnesota. In 1962, Dr. Hermann became the first Director of the Research Institute at the University of Alabama in Huntsville (UAH), a position he held until he retired in 1970.

  2. A century of wind tunnels since Eiffel

    Science.gov (United States)

    Chanetz, Bruno

    2017-08-01

    Fly higher, faster, preserve the life of test pilots and passengers, many challenges faced by man since the dawn of the twentieth century, with aviation pioneers. Contemporary of the first aerial exploits, wind tunnels, artificially recreating conditions encountered during the flight, have powerfully contributed to the progress of aeronautics. But the use of wind tunnels is not limited to aviation. The research for better performance, coupled with concern for energy saving, encourages manufacturers of ground vehicles to perform aerodynamic tests. Buildings and bridge structures are also concerned. This article deals principally with the wind tunnels built at ONERA during the last century. Somme wind tunnels outside ONERA, even outside France, are also evocated when their characteristics do not exist at ONERA.

  3. 7 x 10 Foot Wind Tunnel

    Data.gov (United States)

    Federal Laboratory Consortium — This wind tunnel is used for basic and applied research in aeromechanics on advanced and unique technology rotorcraft. It supports research on advanced concepts and...

  4. Low Speed Wind Tunnel Facility (LSWTF)

    Data.gov (United States)

    Federal Laboratory Consortium — Description: This facility consists of a large-scale, low-speed open-loop induction wind tunnel which has been modified to house a linear turbine cascade. A 125-hp...

  5. Wind tunnel tests of a free yawing downwind wind turbine

    NARCIS (Netherlands)

    Verelst, D.R.S.; Larsen, T.J.; Van Wingerden, J.W.

    2014-01-01

    This research paper presents preliminary results on a behavioural study of a free yawing downwind wind turbine. A series of wind tunnel tests was performed at the TU Delft Open Jet Facility with a three bladed downwind wind turbine and a rotor radius of 0.8 meters. The setup includes an off the

  6. Wind tunnel tests of tent halls of different shape

    Directory of Open Access Journals (Sweden)

    Porowska Agnieszka

    2017-01-01

    Full Text Available Aerodynamic investigations of wind pressure distribution on the surfaces of models of tent halls were carried out in the boundary layer wind tunnel at the Cracow University of Technology. Four types of objects of different shapes and construction were tested. Although tent halls are significantly vulnerable with respect to the wind action, there is no information about pressure distribution on objects of such type in standards, codes and normalization documents. Obtained results indicate that it is necessary to take into account different configurations of wind action while designing of the analysed structures.

  7. Wind Tunnel Testing of Active Control System for Bridges

    DEFF Research Database (Denmark)

    Hansen, Henriette I.; Thoft-Christensen, Palle

    This paper describes preparation of wind tunnel testing of the principle of using flaps to control the motion of suspension bridges. The experiment will take place at the Instituto Superior Technico Lisbon, Portugal. The bridge section model is constructed of foam with an aluminium frame. The flaps...

  8. A tilting wind tunnel for fire behavior studies

    Science.gov (United States)

    David R. Weise

    1994-01-01

    The combined effects of wind velocity and slope on wildland fire behavior can be studied in the laboratory using a tilting wind tunnel. The tilting wind tunnel requires a commercially available fan to induce wind and can be positioned to simulate heading and backing fires spreading up and down slope. The tunnel is portable and can be disassembled for transport using a...

  9. Wind Tunnel Measurements at LM Wind Power

    DEFF Research Database (Denmark)

    Bertagnolio, Franck

    2012-01-01

    The optimization of airfoil profiles specifically designed for wind turbine application was initiated in the late 80’s [67, 68, 30, 15]. The first attempts to reduce airfoil noise for wind turbines made use of airfoil trailing edge serration. Themodification of airfoil shapes targeted at noise...... reduction is more recent. An important effort was produced in this direction within the SIROCCO project. This latter work involved measurements on full size wind turbines and showed that trailing edge serration may proved a viable solution for mitigating wind turbine noise though it has not been implemented...... on commercial wind turbine yet. It should be mentioned here that the attenuation of turbulent inflow noise using wavy leading edge has recently been investigated [55], but this technique has still to be further validated for practical applications. In this paper, it is proposed to optimize an airfoil which...

  10. Toward an Integrated Optical Data System for Wind Tunnel Testing

    National Research Council Canada - National Science Library

    Ruyten, Wim

    1999-01-01

    ...) of the test article in a wind tunnel test. The theory for such P&A determinations is developed and applied to data from a recent pressure sensitive paint test in AEDC's 16 ft transonic wind tunnel...

  11. Wind tunnel tests of a free yawing downwind wind turbine

    DEFF Research Database (Denmark)

    Verelst, David Robert; Larsen, Torben J.; van Wingerden, J.W.

    2012-01-01

    During February and April 2012 a series of wind tunnel tests were performed at the TU Delft Open Jet Facility (OJF) with a three bladed downwind wind turbine and a rotor radius of 0.8 meters. The setup includes an off the shelf three bladed hub, nacelle and generator on which relatively flexible ...... in free yawing conditions. Further, the effect of the tower shadow passage on the blade flapwise strain measurement is evaluated. Finally, data from the experiment is compared with preliminary simulations using DTU Wind Energy's aeroelastic simulation program HAWC2.......During February and April 2012 a series of wind tunnel tests were performed at the TU Delft Open Jet Facility (OJF) with a three bladed downwind wind turbine and a rotor radius of 0.8 meters. The setup includes an off the shelf three bladed hub, nacelle and generator on which relatively flexible...

  12. Continuous supersonic plasma wind tunnel

    DEFF Research Database (Denmark)

    Andersen, S.A.; Jensen, Vagn Orla; Nielsen, P.

    1969-01-01

    The normal magnetic field configuration of a Q device has been modified to obtain a 'magnetic Laval nozzle'. Continuous supersonic plasma 'winds' are obtained with Mach numbers ~3. The magnetic nozzle appears well suited for the study of the interaction of supersonic plasma 'winds' with either...

  13. Wind Tunnel Measurements at Virginia Tech

    DEFF Research Database (Denmark)

    Fischer, Andreas; Bertagnolio, Franck

    2012-01-01

    In this section, the wind tunnel configuration used for aerodynamic and aeroacoustic measurement is described. Then, the validation of the method for evaluating far-field noise from surface microphones as described in Section 5 is presented. Finally, the design concept proposed in Section 6 is ve...

  14. Role of Wind Tunnels in Aircraft Design

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 8; Issue 1. Role of Wind Tunnels in Aircraft Design. S P Govinda Raju. General Article Volume 8 Issue 1 January 2003 pp 72-76. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/008/01/0072-0076. Keywords.

  15. Wind tunnel tests of a free yawing downwind wind turbine

    DEFF Research Database (Denmark)

    Verelst, David Robert; Larsen, Torben J.; van Wingerden, Jan-Willem

    2014-01-01

    . The discussed test cases show that the turbine is stable while operating in free yawing conditions. Further, the effect of the tower shadow passage on the blade flapwise strain measurement is evaluated. Finally, data from the experiment is compared with preliminary simulations using DTU Wind Energy......This research paper presents preliminary results on a behavioural study of a free yawing downwind wind turbine. A series of wind tunnel tests was performed at the TU Delft Open Jet Facility with a three bladed downwind wind turbine and a rotor radius of 0.8 meters. The setup includes an off...

  16. Wind Tunnel Modeling Of Wind Flow Over Complex Terrain

    Science.gov (United States)

    Banks, D.; Cochran, B.

    2010-12-01

    This presentation will describe the finding of an atmospheric boundary layer (ABL) wind tunnel study conducted as part of the Bolund Experiment. This experiment was sponsored by Risø DTU (National Laboratory for Sustainable Energy, Technical University of Denmark) during the fall of 2009 to enable a blind comparison of various air flow models in an attempt to validate their performance in predicting airflow over complex terrain. Bohlund hill sits 12 m above the water level at the end of a narrow isthmus. The island features a steep escarpment on one side, over which the airflow can be expected to separate. The island was equipped with several anemometer towers, and the approach flow over the water was well characterized. This study was one of only two only physical model studies included in the blind model comparison, the other being a water plume study. The remainder were computational fluid dynamics (CFD) simulations, including both RANS and LES. Physical modeling of air flow over topographical features has been used since the middle of the 20th century, and the methods required are well understood and well documented. Several books have been written describing how to properly perform ABL wind tunnel studies, including ASCE manual of engineering practice 67. Boundary layer wind tunnel tests are the only modelling method deemed acceptable in ASCE 7-10, the most recent edition of the American Society of Civil Engineers standard that provides wind loads for buildings and other structures for buildings codes across the US. Since the 1970’s, most tall structures undergo testing in a boundary layer wind tunnel to accurately determine the wind induced loading. When compared to CFD, the US EPA considers a properly executed wind tunnel study to be equivalent to a CFD model with infinitesimal grid resolution and near infinite memory. One key reason for this widespread acceptance is that properly executed ABL wind tunnel studies will accurately simulate flow separation

  17. Application Of Artificial Intelligence To Wind Tunnels

    Science.gov (United States)

    Lo, Ching F.; Steinle, Frank W., Jr.

    1989-01-01

    Report discusses potential use of artificial-intelligence systems to manage wind-tunnel test facilities at Ames Research Center. One of goals of program to obtain experimental data of better quality and otherwise generally increase productivity of facilities. Another goal to increase efficiency and expertise of current personnel and to retain expertise of former personnel. Third goal to increase effectiveness of management through more efficient use of accumulated data. System used to improve schedules of operation and maintenance of tunnels and other equipment, assignment of personnel, distribution of electrical power, and analysis of costs and productivity. Several commercial artificial-intelligence computer programs discussed as possible candidates for use.

  18. Photogrammetry Applied to Wind Tunnel Testing

    Science.gov (United States)

    Liu, Tian-Shu; Cattafesta, L. N., III; Radeztsky, R. H.; Burner, A. W.

    2000-01-01

    In image-based measurements, quantitative image data must be mapped to three-dimensional object space. Analytical photogrammetric methods, which may be used to accomplish this task, are discussed from the viewpoint of experimental fluid dynamicists. The Direct Linear Transformation (DLT) for camera calibration, used in pressure sensitive paint, is summarized. An optimization method for camera calibration is developed that can be used to determine the camera calibration parameters, including those describing lens distortion, from a single image. Combined with the DLT method, this method allows a rapid and comprehensive in-situ camera calibration and therefore is particularly useful for quantitative flow visualization and other measurements such as model attitude and deformation in production wind tunnels. The paper also includes a brief description of typical photogrammetric applications to temperature- and pressure-sensitive paint measurements and model deformation measurements in wind tunnels.

  19. Comparisons between LES and Wind Tunnel Hot-Wire Measurements

    DEFF Research Database (Denmark)

    Zhu, Wei Jun; Shen, Wen Zhong; Sørensen, Jens Nørkær

    2012-01-01

    is constructed in a wind tunnel similar to the LM wind tunnel where the experiment for an NACA 0015 airfoil was carried out. The goal of this study is to validate the mixed scale SGS turbulence model against detailed measurements. Simulations are performed with the in-house EllipSys3D code on high performance...... computers. The stability and accuracy of the LES simulations are studied on various mesh configurations. The spanwise grid spacing is found important to produce correct flow disturbances along the airfoil span, which can affect the turbulent energy distribution.......Large-eddy simulations (LES) are carried out for flows over a NACA 0015 airfoil at AoA = 8o and a chord based Reynolds number of 1.71 × 106. To accurately simulate the complex flow on the suction side of the airfoil, a reasonably large number of grid points is required. The computational mesh...

  20. Comparison Between Field Data and NASA Ames Wind Tunnel Data

    Energy Technology Data Exchange (ETDEWEB)

    Corbus, D.

    2005-11-01

    The objective of this analysis is to compare the measured data from the NASA Ames wind tunnel experiment to those collected in the field at the National Wind Technology Center (NWTC) with the same turbine configuration. The results of this analysis provide insight into what measurements can be made in the field as opposed to wind tunnel testing.

  1. Wind tunnel tests of a free yawing downwind wind turbine

    Science.gov (United States)

    Verelst, D. R. S.; Larsen, T. J.; van Wingerden, J. W.

    2014-12-01

    This research paper presents preliminary results on a behavioural study of a free yawing downwind wind turbine. A series of wind tunnel tests was performed at the TU Delft Open Jet Facility with a three bladed downwind wind turbine and a rotor radius of 0.8 meters. The setup includes an off the shelf three bladed hub, nacelle and generator on which relatively flexible blades are mounted. The tower support structure has free yawing capabilities provided at the base. A short overview on the technical details of the experiment is given as well as a brief summary of the design process. The discussed test cases show that the turbine is stable while operating in free yawing conditions. Further, the effect of the tower shadow passage on the blade flapwise strain measurement is evaluated. Finally, data from the experiment is compared with preliminary simulations using DTU Wind Energy's aeroelastic simulation program HAWC2.

  2. Computational Wind Tunnel: A Design Tool for Rotorcraft, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — During initial design studies, parametric variation of vehicle geometry is routine. In addition, rotorcraft engineers traditionally use the wind tunnel to evaluate...

  3. Computational Wind Tunnel: A Design Tool for Rotorcraft Project

    Data.gov (United States)

    National Aeronautics and Space Administration — During initial design studies, parametric variation of vehicle geometry is routine. In addition, rotorcraft engineers traditionally use the wind tunnel to evaluate...

  4. Nano-ADEPT Aeroloads Wind Tunnel Test

    Science.gov (United States)

    Smith, Brandon; Yount, Bryan; Kruger, Carl; Brivkalns, Chad; Makino, Alberto; Cassell, Alan; Zarchi, Kerry; McDaniel, Ryan; Ross, James; Wercinski, Paul; hide

    2016-01-01

    A wind tunnel test of the Adaptable Deployable Entry and Placement Technology (ADEPT) was conducted in April 2015 at the US Army's 7 by10 Foot Wind Tunnel located at NASA Ames Research Center. Key geometric features of the fabric test article were a 0.7 meter deployed base diameter, a 70 degree half-angle forebody cone angle, eight ribs, and a nose-to-base radius ratio of 0.7. The primary objective of this wind tunnel test was to obtain static deflected shape and pressure distributions while varying pretension at dynamic pressures and angles of attack relevant to entry conditions at Earth, Mars, and Venus. Other objectives included obtaining aerodynamic force and moment data and determining the presence and magnitude of any dynamic aeroelastic behavior (buzz/flutter) in the fabric trailing edge. All instrumentation systems worked as planned and a rich data set was obtained. This paper describes the test articles, instrumentation systems, data products, and test results. Four notable conclusions are drawn. First, test data support adopting a pre-tension lower bound of 10 foot pounds per inch for Nano-ADEPT mission applications in order to minimize the impact of static deflection. Second, test results indicate that the fabric conditioning process needs to be reevaluated. Third, no flutter/buzz of the fabric was observed for any test condition and should also not occur at hypersonic speeds. Fourth, translating one of the gores caused ADEPT to generate lift without the need for a center of gravity offset. At hypersonic speeds, the lift generated by actuating ADEPT gores could be used for vehicle control.

  5. Wind tunnel evaluation of Hi-Vol TSP effectiveness data

    Data.gov (United States)

    U.S. Environmental Protection Agency — Wind tunnel evaluation of EPA's Hi-Vol TSP sampler for sampling effectiveness with regards to aerodynamic particle diameter (5 to 35 microns), wind speed (2, 8, 24...

  6. Glide back booster wind tunnel model testing

    Science.gov (United States)

    Pricop, M. V.; Cojocaru, M. G.; Stoica, C. I.; Niculescu, M. L.; Neculaescu, A. M.; Persinaru, A. G.; Boscoianu, M.

    2017-07-01

    Affordable space access requires partial or ideally full launch vehicle reuse, which is in line with clean environment requirement. Although the idea is old, the practical use is difficult, requiring very large technology investment for qualification. Rocket gliders like Space Shuttle have been successfullyoperated but the price and correspondingly the energy footprint were found not sustainable. For medium launchers, finally there is a very promising platform as Falcon 9. For very small launchers the situation is more complex, because the performance index (payload to start mass) is already small, versus medium and heavy launchers. For partial reusable micro launchers this index is even smaller. However the challenge has to be taken because it is likely that in a multiyear effort, technology is going to enable the performance recovery to make such a system economically and environmentally feasible. The current paper is devoted to a small unitary glide back booster which is foreseen to be assembled in a number of possible configurations. Although the level of analysis is not deep, the solution is analyzed from the aerodynamic point of view. A wind tunnel model is designed, with an active canard, to enablea more efficient wind tunnel campaign, as a national level premiere.

  7. Proceedings - Workshop on Materials Handling for Tunnel Construction

    Science.gov (United States)

    1977-08-01

    With the anticipated increases in tunnel construction in the next decade, greater demands will be made on transportation sytems to remove tunnel muck at rates consistent with tunnel excavation rates. This workshop discussed and noted that conventiona...

  8. Build an Inexpensive Wind Tunnel to Test CO2 Cars

    Science.gov (United States)

    McCormick, Kevin

    2012-01-01

    As part of the technology education curriculum, the author's eighth-grade students design, build, test, and race CO2 vehicles. To help them in refining their designs, they use a wind tunnel to test for aerodynamic drag. In this article, the author describes how to build a wind tunnel using inexpensive, readily available materials. (Contains 1…

  9. Hot Wire Anemometer Turbulence Measurements in the wind Tunnel of LM Wind Power

    DEFF Research Database (Denmark)

    Fischer, Andreas

    Flow measurements were carried out in the wind tunnel of LM Wind Power A/S with a Dantec Streamline CTA system to characterize the flow turbulence. Besides the free tunnel flow with empty test section we also investigated the tunnel flow when two grids with different mesh size were introduced dow...

  10. Wall Correction Model for Wind Tunnels with Open Test Section

    DEFF Research Database (Denmark)

    Sørensen, Jens Nørkær; Shen, Wen Zhong; Mikkelsen, Robert Flemming

    2004-01-01

    In th paper we present a correction model for wall interference on rotors of wind turbines or propellers in wind tunnels. The model, that is based on a onedimensional momentum approach, is validated against results from CFD computations using a generalized actuator disc principle. Generally......, the corrections from the model are in very good agreement with the CFD computaions, demonstrating that one-dimensional momentum theory is a reliable way of predicting corrections for wall interference in wind tunnels with closed as well as open cross sections. Keywords: Wind tunnel correction, momentum theory...

  11. The Kevlar-walled anechoic wind tunnel

    Science.gov (United States)

    Devenport, William J.; Burdisso, Ricardo A.; Borgoltz, Aurelien; Ravetta, Patricio A.; Barone, Matthew F.; Brown, Kenneth A.; Morton, Michael A.

    2013-08-01

    The aerodynamic and acoustic performance of an anechoic wind tunnel test section with walls made from thin Kevlar cloth have been measured and analyzed. The Kevlar test section offers some advantages over a conventional free-jet arrangement. The cloth contains the bulk of the flow but permits the transmission of sound with little loss. The containment results in smaller far-field aerodynamic corrections meaning that larger models can be tested at higher Reynolds numbers. The containment also eliminates the need for a jet catcher and allows for a much longer test section. Model-generated noise is thus more easily separated from facility background using beamforming. Measurements and analysis of acoustic and aerodynamic corrections for a Kevlar-walled test section are presented and discussed, along with benchmark trailing edge noise measurements.

  12. A multiple-fan active control wind tunnel for outdoor wind speed and direction simulation

    Science.gov (United States)

    Wang, Jia-Ying; Meng, Qing-Hao; Luo, Bing; Zeng, Ming

    2018-03-01

    This article presents a new type of active controlled multiple-fan wind tunnel. The wind tunnel consists of swivel plates and arrays of direct current fans, and the rotation speed of each fan and the shaft angle of each swivel plate can be controlled independently for simulating different kinds of outdoor wind fields. To measure the similarity between the simulated wind field and the outdoor wind field, wind speed and direction time series of two kinds of wind fields are recorded by nine two-dimensional ultrasonic anemometers, and then statistical properties of the wind signals in different time scales are analyzed based on the empirical mode decomposition. In addition, the complexity of wind speed and direction time series is also investigated using multiscale entropy and multivariate multiscale entropy. Results suggest that the simulated wind field in the multiple-fan wind tunnel has a high degree of similarity with the outdoor wind field.

  13. Computational design and analysis of flatback airfoil wind tunnel experiment.

    Energy Technology Data Exchange (ETDEWEB)

    Mayda, Edward A. (University of California, Davis, CA); van Dam, C.P. (University of California, Davis, CA); Chao, David D. (University of California, Davis, CA); Berg, Dale E.

    2008-03-01

    A computational fluid dynamics study of thick wind turbine section shapes in the test section of the UC Davis wind tunnel at a chord Reynolds number of one million is presented. The goals of this study are to validate standard wind tunnel wall corrections for high solid blockage conditions and to reaffirm the favorable effect of a blunt trailing edge or flatback on the performance characteristics of a representative thick airfoil shape prior to building the wind tunnel models and conducting the experiment. The numerical simulations prove the standard wind tunnel corrections to be largely valid for the proposed test of 40% maximum thickness to chord ratio airfoils at a solid blockage ratio of 10%. Comparison of the computed lift characteristics of a sharp trailing edge baseline airfoil and derived flatback airfoils reaffirms the earlier observed trend of reduced sensitivity to surface contamination with increasing trailing edge thickness.

  14. Wind Tunnel Management and Resource Optimization: A Systems Modeling Approach

    Science.gov (United States)

    Jacobs, Derya, A.; Aasen, Curtis A.

    2000-01-01

    Time, money, and, personnel are becoming increasingly scarce resources within government agencies due to a reduction in funding and the desire to demonstrate responsible economic efficiency. The ability of an organization to plan and schedule resources effectively can provide the necessary leverage to improve productivity, provide continuous support to all projects, and insure flexibility in a rapidly changing environment. Without adequate internal controls the organization is forced to rely on external support, waste precious resources, and risk an inefficient response to change. Management systems must be developed and applied that strive to maximize the utility of existing resources in order to achieve the goal of "faster, cheaper, better". An area of concern within NASA Langley Research Center was the scheduling, planning, and resource management of the Wind Tunnel Enterprise operations. Nine wind tunnels make up the Enterprise. Prior to this research, these wind tunnel groups did not employ a rigorous or standardized management planning system. In addition, each wind tunnel unit operated from a position of autonomy, with little coordination of clients, resources, or project control. For operating and planning purposes, each wind tunnel operating unit must balance inputs from a variety of sources. Although each unit is managed by individual Facility Operations groups, other stakeholders influence wind tunnel operations. These groups include, for example, the various researchers and clients who use the facility, the Facility System Engineering Division (FSED) tasked with wind tunnel repair and upgrade, the Langley Research Center (LaRC) Fabrication (FAB) group which fabricates repair parts and provides test model upkeep, the NASA and LARC Strategic Plans, and unscheduled use of the facilities by important clients. Expanding these influences horizontally through nine wind tunnel operations and vertically along the NASA management structure greatly increases the

  15. Measurement and Assessment of Flow Quality in Wind Tunnels Project

    Data.gov (United States)

    National Aeronautics and Space Administration — New wind tunnel flow quality test and analysis procedures have been developed and will be used to establish standardized turbulent flow quality measurement...

  16. GVT-Based Ground Flutter Test without Wind Tunnel Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ZONA Technology, Inc (ZONA) and Arizona State University (ASU) propose a R&D effort to develop a ground flutter testing system without wind tunnel, called the...

  17. 1 Ft. x 1 Ft. Supersonic Wind Tunnel, Bldg. 37

    Data.gov (United States)

    Federal Laboratory Consortium — The 1- by 1-Foot Supersonic Wind Tunnel (1x), located in the Engine Research Building, is one of the most active test facilities at the Glenn Research Center. Used...

  18. Floating frame grounding system. [for wind tunnel static force measurement

    Science.gov (United States)

    Forsyth, T. J.

    1987-01-01

    The development of a floating frame grounding system (FFGS) for the 40- by 80-foot low speed wind tunnel facility at the NASA Ames Research Center National Full Scale Aerodynamics Complex is addresssed. When electrical faults are detected, the FFGS ensures a ground path for the fault current. In addition, the FFGS alerts the tunnel operator when a mechanical foul occurs.

  19. Characterization of a Robotic Manipulator for Dynamic Wind Tunnel Applications

    Science.gov (United States)

    2015-03-26

    maps of aerodynamic loads data. The var - ious configurations of the Flexible Weapon greatly increase the workload and cost of performing wind tunnel...E. A Introduction to Random Vibrations, Spectral and Wavelet Analysis. Peason Education, 1993. 24. Ogata, Katsuhiko. Mondern Control Engineering

  20. Repository tunnel construction in deep clay formations

    International Nuclear Information System (INIS)

    Clarke, B.G.; Mair, R.J.; Taylor, R.N.

    1992-01-01

    One of the objects of the Hades project at Mol, Belgium has been to evaluate the feasibility of construction of a deep repository in the Boom clay formation at depth of approximately 225 metres. The main objective of the present project was to analyse and interpret the detailed geotechnical measurements made around the Hades trial shaft and tunnel excavations and evaluate the safety of radioactive waste disposal in a repository facility in deep clay formations. Plasticity calculations and finite element analyses were used which gave results consistent with the in-situ measurements. It was shown that effective stress analysis could successfully predict the observed field behaviour. Correct modelling of the small-strain stiffness of the Boom clay was essential if reasonable predictions of the pore pressure response due to construction are to be made. The calculations undertaken indicated that, even in the long term, the pressures on the test drift tunnel lining are likely to be significantly lower than the overburden pressure. Larger long-term tunnel lining pressures are predicted for impermeable linings. A series of laboratory stress path tests was undertaken to determine the strength and stiffness characteristics of the Boom clay. The tests were conducted at appropriate effective stress levels on high-quality samples retrieved during construction of the test drift. The apparatus developed for the testing is described and the results discussed. The development of a self boring retracting pressure-meter is described. This novel in-situ testing device was specifically designed to determine from direct measurements the convergence/confinement curve relevant to tunnelling in clay formations. 44 refs., 60 figs., 3 tabs

  1. Pioneering Russian wind tunnels and first experimental investigations, 1871-1915

    Science.gov (United States)

    Gorbushin, A. R.

    2017-11-01

    A review of foreign and Russian sources is given mentioning the pioneering wind tunnels built in Russia at the turn of 19th and 20th centuries. The first wind tunnel in Russia was constructed by V.A. Pashkevich at the Mikhailovsky Artillery Academy in St. Petersburg in 1871. In total from 1871 through 1915, 18 wind tunnels were constructed in Russia: 11 in Moscow, 5 in St. Petersburg and 2 in Kaluga. An overview of the pioneering Russian wind tunnels built by V.A. Pashkevich, K.E. Tsiolkovsky, prof. N.E. Zhukovsky, D.P. Ryabushinsky and prof. K.P. Boklevsky is given. Schemes, photographs, formulas, description of the research and test results taken from the original papers published by the wind tunnel designers are given. Photographs from the N.E. Zhukovsky Scientific and Memorial Museum and the Archive of the Russian Academy of Sciences are used in the article. Methods of flow visualization and results of their application are presented. The Russian scientists and researchers' contribution to the development of techniques and methods of aerodynamic experiment is shown, including one of the most important aspects - the wall interference problem.

  2. Testing compost as an anti wind erosion agent in a wind tunnel

    NARCIS (Netherlands)

    Vos, de J.A.

    1996-01-01

    The potential of compost as an anti wind erosion agent was studied in a wind tunnel on a sandy soil susceptible to wind erosion. Soil treated with a compost-water mixture, which forms a crust on the soil surface after drying, was exposed to a series of increasing wind speeds. Two composts were

  3. Noise measurement in wind tunnels, workshop summary

    Science.gov (United States)

    Hickley, D. H.; Williams, J.

    1982-09-01

    In reviewing the progress made in acoustic measurements in wind tunnels over the 5-yr span of the workshops, it is evident that a great deal of progress has occurred. Specialized facilities are now on line, special measurement techniques were developed, and corrections were devised and proven. This capability is in the process of creating a new and more correct data bank on acoustic phenomena, and represents a major step forward in acoustics technology. Additional work is still required, but now, rather than concentrating on facilities and techniques, researchers may more profitably concentrate on noise-source modeling, with the simulation of propulsor noise source (in flight) and of propulsor/airframe airflow characteristics. Promising developments in directional acoustic receivers and other discrimination/correlation techniques should now be regularly exploited, in part for model noise-source diagnosis, but also to expedite extraction of the lone source signal from any residual background noise and reverberation in the working chamber and from parasitic noise due to essential rigs or instrumentation inside the airstream.

  4. Full scale subsonic wind tunnel requirements and design studies

    Science.gov (United States)

    Kelly, M. W.; Mort, K. W.; Hickey, D. H.

    1972-01-01

    The justification and requirements are summarized for a large subsonic wind tunnel capable of testing full-scale aircraft, rotor systems, and advanced V/STOL aircraft propulsion systems. The design considerations and constraints for such a facility are reviewed, and the trades between facility test capability and costs are discussed. The design studies showed that the structural cost of this facility is the most important cost factor. For this reason (and other considerations such as requirements for engine exhaust gas purging) an open-return wind tunnel having two test sections was selected. The major technical problem in the design of an open-return wind tunnel is maintaining good test section flow quality in the presence of external winds. This problem has been studied extensively, and inlet and exhaust systems which provide satisfactory attenuation of the effects of external winds on test section flow quality were developed.

  5. Transonic Wind Tunnel Modernization for Experimental Investigation of Dynamic Stall in a Wide Range of Mach Numbers by Plasma Actuators with Combined Energy/Momentum Action

    Science.gov (United States)

    2015-01-02

    wind tunnel for the study of plasma based methods for the control of dynamic stall for helicopter rotor blades. The tunnel has a 3D positioning...SECURITY CLASSIFICATION OF: This equipment grant supported the design and construction of a subsonic variable speed wind tunnel for the study of...plasma based methods for the control of dynamic stall for helicopter rotor blades. The tunnel has a 3D positioning system and servomotor mounted below

  6. FEATURES OF THE SUBSONIC WIND TUNNEL EXPERIMENT WITH ROTATING MODELS OF AIRCRAFT

    Directory of Open Access Journals (Sweden)

    2016-01-01

    Full Text Available Paper contains description of the construction of aircraft model for aerodynamic experiment in subsonic wind-tunnel, during it rotation. The technique of the experiment, and features associated with rotation were mentioned. Provided the results of measuring Magnus force and it comparing with analytical methodology.

  7. Wall correction model for wind tunnels with open test section

    DEFF Research Database (Denmark)

    Sørensen, Jens Nørkær; Shen, Wen Zhong; Mikkelsen, Robert Flemming

    2006-01-01

    In the paper we present a correction model for wall interference on rotors of wind turbines or propellers in wind tunnels. The model, which is based on a one-dimensional momentum approach, is validated against results from CFD computations using a generalized actuator disc principle. In the model...... the exchange of axial momentum between the tunnel and the ambient room is represented by a simple formula, derived from actuator disc computations. The correction model is validated against Navier-Stokes computations of the flow about a wind turbine rotor. Generally, the corrections from the model are in very...... good agreement with the CFD computations, demonstrating that one-dimensional momentum theory is a reliable way of predicting corrections for wall interference in wind tunnels with closed as well as open cross sections....

  8. Using wind tunnels to predict bird mortality in wind farms: the case of griffon vultures.

    Science.gov (United States)

    de Lucas, Manuela; Ferrer, Miguel; Janss, Guyonne F E

    2012-01-01

    Wind farms have shown a spectacular growth during the last 15 years. Avian mortality through collision with moving rotor blades is well-known as one of the main adverse impacts of wind farms. In Spain, the griffon vulture incurs the highest mortality rates in wind farms. As far as we know, this study is the first attempt to predict flight trajectories of birds in order to foresee potentially dangerous areas for wind farm development. We analyse topography and wind flows in relation to flight paths of griffon vultures, using a scaled model of the wind farm area in an aerodynamic wind tunnel, and test the difference between the observed flight paths of griffon vultures and the predominant wind flows. Different wind currents for each wind direction in the aerodynamic model were observed. Simulations of wind flows in a wind tunnel were compared with observed flight paths of griffon vultures. No statistical differences were detected between the observed flight trajectories of griffon vultures and the wind passages observed in our wind tunnel model. A significant correlation was found between dead vultures predicted proportion of vultures crossing those cells according to the aerodynamic model. Griffon vulture flight routes matched the predominant wind flows in the area (i.e. they followed the routes where less flight effort was needed). We suggest using these kinds of simulations to predict flight paths over complex terrains can inform the location of wind turbines and thereby reduce soaring bird mortality.

  9. Using wind tunnels to predict bird mortality in wind farms: the case of griffon vultures.

    Directory of Open Access Journals (Sweden)

    Manuela de Lucas

    Full Text Available BACKGROUND: Wind farms have shown a spectacular growth during the last 15 years. Avian mortality through collision with moving rotor blades is well-known as one of the main adverse impacts of wind farms. In Spain, the griffon vulture incurs the highest mortality rates in wind farms. METHODOLOGY/PRINCIPAL FINDINGS: As far as we know, this study is the first attempt to predict flight trajectories of birds in order to foresee potentially dangerous areas for wind farm development. We analyse topography and wind flows in relation to flight paths of griffon vultures, using a scaled model of the wind farm area in an aerodynamic wind tunnel, and test the difference between the observed flight paths of griffon vultures and the predominant wind flows. Different wind currents for each wind direction in the aerodynamic model were observed. Simulations of wind flows in a wind tunnel were compared with observed flight paths of griffon vultures. No statistical differences were detected between the observed flight trajectories of griffon vultures and the wind passages observed in our wind tunnel model. A significant correlation was found between dead vultures predicted proportion of vultures crossing those cells according to the aerodynamic model. CONCLUSIONS: Griffon vulture flight routes matched the predominant wind flows in the area (i.e. they followed the routes where less flight effort was needed. We suggest using these kinds of simulations to predict flight paths over complex terrains can inform the location of wind turbines and thereby reduce soaring bird mortality.

  10. Soil erosion rates from mixed soil and gravel surfaces in a wind tunnel

    Energy Technology Data Exchange (ETDEWEB)

    Ligotke, M.W.; Klopfer, D.C.

    1990-08-01

    Protective barriers have been identified as integral components of plans to isolate defense waste on the Hanford Site. The use of natural materials to construct protective barriers over waste site is being considered. Design requirements for protective barriers include preventing exposure of buried waste, and restricting penetration or percolation of surface waters through the waste zone. Studies were initiated to evaluate the effects of wind erosion on candidate protective barrier surfaces. A wind tunnel was used to provide controlled erosive stresses and to investigate the erosive effects of wind forces on proposed surface layers for protective barriers. Mixed soil and gravel surfaces were prepared and tested for resistance to wind erosion at the Pacific Northwest Laboratory Aerosol Wind Tunnel Research Facility. These tests were performed to investigate surface deflation caused by suspension of soil from various surface layer configurations and to provide a comparison of the relative resistance of the different surfaces to wind erosion. Planning, testing, and analyzing phases of this wind erosion project were coordinated with other tasks supporting the development of protective barriers. These tasks include climate-change predictions, field studies and modeling efforts. This report provides results of measurements of deflation caused by wind forces over level surfaces. Section 2.0 reviews surface layer characteristics and previous relevant studies on wind erosion, describes effects of erosion, and discusses wind tunnel modeling. Materials and methods of the wind tunnel tests are discussed in Section 3.0. Results and discussion are presented in Section 4.0, and conclusions and recommendations Section 5.0. 53 refs., 29 figs., 7 tabs.

  11. Thermal effects influencing measurements in a supersonic blowdown wind tunnel

    Directory of Open Access Journals (Sweden)

    Vuković Đorđe S.

    2016-01-01

    Full Text Available During a supersonic run of a blowdown wind tunnel, temperature of air in the test section drops which can affect planned measurements. Adverse thermal effects include variations of the Mach and Reynolds numbers, variation of airspeed, condensation of moisture on the model, change of characteristics of the instrumentation in the model, et cetera. Available data on thermal effects on instrumentation are pertaining primarily to long-run-duration wind tunnel facilities. In order to characterize such influences on instrumentation in the models, in short-run-duration blowdown wind tunnels, temperature measurements were made in the wing-panel-balance and main-balance spaces of two wind tunnel models tested in the T-38 wind tunnel. The measurements showed that model-interior temperature in a run increased at the beginning of the run, followed by a slower drop and, at the end of the run, by a large temperature drop. Panel-force balance was affected much more than the main balance. Ways of reducing the unwelcome thermal effects by instrumentation design and test planning are discussed.

  12. Numerical investigation of air flow in a supersonic wind tunnel

    Science.gov (United States)

    Drozdov, S. M.; Rtishcheva, A. S.

    2017-11-01

    In the framework of TsAGI’s supersonic wind tunnel modernization program aimed at improving flow quality and extending the range of test regimes it was required to design and numerically validate a new test section and a set of shaped nozzles: two flat nozzles with flow Mach number at nozzle exit M=4 and M=5 and two axisymmetric nozzles with M=5 and M=6. Geometric configuration of the nozzles, the test section (an Eiffel chamber) and the diffuser was chosen according to the results of preliminary calculations of two-dimensional air flow in the wind tunnel circuit. The most important part of the work are three-dimensional flow simulation results obtained using ANSYS Fluent software. The following flow properties were investigated: Mach number, total and static pressure, total and static temperature and turbulent viscosity ratio distribution, heat flux density at wind tunnel walls (for high-temperature flow regimes). It is demonstrated that flow perturbations emerging from the junction of the nozzle with the test section and spreading down the test section behind the boundaries of characteristic rhomb’s reverse wedge are nearly impossible to eliminate. Therefore, in order to perform tests under most uniform flow conditions, the model’s center of rotation and optical window axis should be placed as close to the center of the characteristic rhomb as possible. The obtained results became part of scientific and technical basis of supersonic wind tunnel design process and were applied to a generalized class of similar wind tunnels.

  13. Computational methods applied to wind tunnel optimization

    Science.gov (United States)

    Lindsay, David

    This report describes computational methods developed for optimizing the nozzle of a three-dimensional subsonic wind tunnel. This requires determination of a shape that delivers flow to the test section, typically with a speed increase of 7 or more and a velocity uniformity of .25% or better, in a compact length without introducing boundary layer separation. The need for high precision, smooth solutions, and three-dimensional modeling required the development of special computational techniques. These include: (1) alternative formulations to Neumann and Dirichlet boundary conditions, to deal with overspecified, ill-posed, or cyclic problems, and to reduce the discrepancy between numerical solutions and boundary conditions; (2) modification of the Finite Element Method to obtain solutions with numerically exact conservation properties; (3) a Matlab implementation of general degree Finite Element solvers for various element designs in two and three dimensions, exploiting vector indexing to obtain optimal efficiency; (4) derivation of optimal quadrature formulas for integration over simplexes in two and three dimensions, and development of a program for semi-automated generation of formulas for any degree and dimension; (5) a modification of a two-dimensional boundary layer formulation to provide accurate flow conservation in three dimensions, and modification of the algorithm to improve stability; (6) development of multi-dimensional spline functions to achieve smoother solutions in three dimensions by post-processing, new three-dimensional elements for C1 basis functions, and a program to assist in the design of elements with higher continuity; and (7) a development of ellipsoidal harmonics and Lame's equation, with generalization to any dimension and a demonstration that Cartesian, cylindrical, spherical, spheroidal, and sphero-conical harmonics are all limiting cases. The report includes a description of the Finite Difference, Finite Volume, and domain remapping

  14. Structural Monitoring of Metro Infrastructure during Shield Tunneling Construction

    Directory of Open Access Journals (Sweden)

    L. Ran

    2014-01-01

    Full Text Available Shield tunneling construction of metro infrastructure will continuously disturb the soils. The ground surface will be subjected to uplift or subsidence due to the deep excavation and the extrusion and consolidation of the soils. Implementation of the simultaneous monitoring with the shield tunnel construction will provide an effective reference in controlling the shield driving, while how to design and implement a safe, economic, and effective structural monitoring system for metro infrastructure is of great importance and necessity. This paper presents the general architecture of the shield construction of metro tunnels as well as the procedure of the artificial ground freezing construction of the metro-tunnel cross-passages. The design principles for metro infrastructure monitoring of the shield tunnel intervals in the Hangzhou Metro Line 1 are introduced. The detailed monitoring items and the specified alarming indices for construction monitoring of the shield tunneling are addressed, and the measured settlement variations at different monitoring locations are also presented.

  15. Reducing Wind Tunnel Data Requirements Using Neural Networks

    Science.gov (United States)

    Ross, James C.; Jorgenson, Charles C.; Norgaard, Magnus

    1997-01-01

    The use of neural networks to minimize the amount of data required to completely define the aerodynamic performance of a wind tunnel model is examined. The accuracy requirements for commercial wind tunnel test data are very severe and are difficult to reproduce using neural networks. For the current work, multiple input, single output networks were trained using a Levenberg-Marquardt algorithm for each of the aerodynamic coefficients. When applied to the aerodynamics of a 55% scale model of a U.S. Air Force/ NASA generic fighter configuration, this scheme provided accurate models of the lift, drag, and pitching-moment coefficients. Using only 50% of the data acquired during, the wind tunnel test, the trained neural network had a predictive accuracy equal to or better than the accuracy of the experimental measurements.

  16. Structural integrity of wind tunnel wooden fan blades

    Science.gov (United States)

    Young, Clarence P., Jr.; Wingate, Robert T.; Rooker, James R.; Mort, Kenneth W.; Zager, Harold E.

    1991-01-01

    Information is presented which was compiled by the NASA Inter-Center Committee on Structural Integrity of Wooden Fan Blades and is intended for use as a guide in design, fabrication, evaluation, and assurance of fan systems using wooden blades. A risk assessment approach for existing NASA wind tunnels with wooden fan blades is provided. Also, state of the art information is provided for wooden fan blade design, drive system considerations, inspection and monitoring methods, and fan blade repair. Proposed research and development activities are discussed, and recommendations are provided which are aimed at future wooden fan blade design activities and safely maintaining existing NASA wind tunnel fan blades. Information is presented that will be of value to wooden fan blade designers, fabricators, inspectors, and wind tunnel operations personnel.

  17. Cryogenic wind tunnel technology. A way to measurement at higher Reynolds numbers

    Science.gov (United States)

    Beck, J. W.

    1984-01-01

    The goals, design, problems, and value of cryogenic transonic wind tunnels being developed in Europe are discussed. The disadvantages inherent in low-Reynolds-number (Re) wind tunnel simulations of aircraft flight at high Re are reviewed, and the cryogenic tunnel is shown to be the most practical method to achieve high Re. The design proposed for the European Transonic Wind tunnel (ETW) is presented: parameters include cross section. DISPLAY 83A46484/2 = 4 sq m, operating pressure = 5 bar, temperature = 110-120 K, maximum Re = 40 x 10 to the 6th, liquid N2 consumption = 40,000 metric tons/year, and power = 39,5 MW. The smaller Cologne subsonic tunnel being adapted to cryogenic use for preliminary studies is described. Problems of configuration, materials, and liquid N2 evaporation and handling and the research underway to solve them are outlined. The benefits to be gained by the construction of these costly installations are seen more in applied aerodynamics than in basic research in fluid physics. The need for parallel development of both high Re tunnels and computers capable of performing high-Re numerical analysis is stressed.

  18. Wind shear estimation and wake detection by rotor loads — First wind tunnel verification

    Science.gov (United States)

    Schreiber, J.; Cacciola, S.; Campagnolo, F.; Petrović, V.; Mourembles, D.; Bottasso, C. L.

    2016-09-01

    The paper describes a simple method for detecting presence and location of a wake affecting a downstream wind turbine operating in a wind power plant. First, the local wind speed and shear experienced by the wind turbine are estimated by the use of rotor loads and other standard wind turbine response data. Then, a simple wake deficit model is used to determine the lateral position of the wake with respect to the affected rotor. The method is verified in a boundary layer wind tunnel using two instrumented scaled wind turbine models, demonstrating its effectiveness.

  19. SMART Rotor Development and Wind-Tunnel Test

    Science.gov (United States)

    Lau, Benton H.; Straub, Friedrich; Anand, V. R.; Birchette, Terry

    2009-01-01

    Boeing and a team from Air Force, NASA, Army, Massachusetts Institute of Technology, University of California at Los Angeles, and University of Maryland have successfully completed a wind-tunnel test of the smart material actuated rotor technology (SMART) rotor in the 40- by 80-foot wind-tunnel of the National Full-Scale Aerodynamic Complex at NASA Ames Research Center, figure 1. The SMART rotor is a full-scale, five-bladed bearingless MD 900 helicopter rotor modified with a piezoelectric-actuated trailing-edge flap on each blade. The development effort included design, fabrication, and component testing of the rotor blades, the trailing-edge flaps, the piezoelectric actuators, the switching power amplifiers, the actuator control system, and the data/power system. Development of the smart rotor culminated in a whirl-tower hover test which demonstrated the functionality, robustness, and required authority of the active flap system. The eleven-week wind tunnel test program evaluated the forward flight characteristics of the active-flap rotor, gathered data to validate state-of-the-art codes for rotor noise analysis, and quantified the effects of open- and closed-loop active-flap control on rotor loads, noise, and performance. The test demonstrated on-blade smart material control of flaps on a full-scale rotor for the first time in a wind tunnel. The effectiveness and the reliability of the flap actuation system were successfully demonstrated in more than 60 hours of wind-tunnel testing. The data acquired and lessons learned will be instrumental in maturing this technology and transitioning it into production. The development effort, test hardware, wind-tunnel test program, and test results will be presented in the full paper.

  20. Design and development of an experimental six component wind tunnel block balance using optical fibre sensors.

    CSIR Research Space (South Africa)

    De Ponte, JD

    2014-05-01

    Full Text Available In order to meet the increasingly stringent requirements for wind tunnel balances, as expressed by the wind tunnel testing community, balance design philosophy needs to be further expanded to include alternative sensor, material, design...

  1. Experience in design and construction of the Log tunnel

    Directory of Open Access Journals (Sweden)

    Jovičić Vojkan

    2017-09-01

    Full Text Available A twin highway Log tunnel is a part of a new motorway connection between Maribor and Zagreb, section Draženci-Gruškovje, which is located towards the border crossing between Slovenia and Croatia. The tunnel is currently under construction, and only the excavation works have been completed during the writing of this paper. The terrain in the area of the Log tunnel is diverse, and the route of the highway in its vicinity is characterised by deep excavations, bridges or viaducts. The Log tunnel is approximately 250 m long, partly constructed as a gallery. The geological conditions are dominated by Miocene base rock, featuring layers of well-connected clastic rocks, which are covered by diluvium clays, silts, sands and gravels of different thicknesses. Due to the short length of the tunnel, the usual separation of the motorway route to the left and the right tunnel axes was not carried out. Thus, the tunnel was constructed with an intermediate pillar and was designed as a three-lane tunnel, including the stopping lane. The construction of the tunnel was carried out using the New Austrian tunnelling method (NATM, in which the central adit was excavated first and the intermediate pillar was constructed within it. The excavation of the main tubes followed and was divided into the top heading, bench and the invert, enabling the intermediate pillar to take the load off the top heading of both tubes. The secondary lining of the tunnel is currently under construction. The experience of the tunnel construction gathered so far is presented in the paper. The main emphasis is on the construction of the intermediate pillar, which had to take the significant and asymmetrical ground load.

  2. Microspheres for laser velocimetry in high temperature wind tunnel

    Science.gov (United States)

    Ghorieshi, Anthony

    1993-01-01

    The introduction of non-intrusive measurement techniques in wind tunnel experimentation has been a turning point in error free data acquisition. Laser velocimetry has been progressively implemented and utilized in various wind tunnels; e.g. subsonic, transonic, and supersonic. The success of the laser velocimeter technique is based on an accurate measurement of scattered light by seeding particles introduced into the flow stream in the wind tunnel. Therefore, application of appropriate seeding particles will affect, to a large extent the acquired data. The seeding material used depends on the type of experiment being run. Among the seeding material for subsonic tunnel are kerosene, Kaolin, and polystyrene. Polystyrene is known to be the best because of being solid particles, having high index of refraction, capable of being made both spherical and monodisperse. However for high temperature wind tunnel testing seeding material must have an additional characteristic that is high melting point. Typically metal oxide powders such as Al2O3 with melting point 3660 F are used. The metal oxides are, however polydispersed, have a high density, and a tendency to form large agglomerate that does not closely follow the flow velocity. The addition of flame phase silica to metal oxide helps to break up the agglomerates, yet still results in a narrow band of polydispersed seeding. The less desirable utility of metal oxide in high temperature wind tunnels necessitates the search for a better alternative particle seeding which this paper addresses. The Laser Velocimetry (LV) characteristic of polystyrene makes it a prime candidate as a base material in achieving the high temperature particle seeding inexpensively. While polystyrene monodisperse seeding particle reported has been successful in a subsonic wind tunnel, it lacks the high melting point and thus is not practically usable in a high temperature wind tunnel. It is well known that rise in melting point of polystyrene can be

  3. Investigation of UH-60A Rotor Structural Loads from Flight and Wind Tunnel Tests

    Science.gov (United States)

    2016-05-19

    Investigation of UH-60A Rotor Structural Loads From Flight and Wind Tunnel Tests Hyeonsoo Yeo Mark Potsdam US Army Aviation Development Directorate...NFAC) 40- by 80-Foot Wind Tunnel (Ref. 14) provides an- other set of airloads and structural loads measurements. Fig- ure 2 shows the UH-60A rotor ...blades installed on the NFAC Large Rotor Test Apparatus (LRTA) in the wind tunnel test section. One of the objectives of the wind tunnel test was to

  4. Fan array wind tunnel: a multifunctional, complex environmental flow manipulator

    Science.gov (United States)

    Dougherty, Christopher; Veismann, Marcel; Gharib, Morteza

    2017-11-01

    The recent emergence of small unmanned aerial vehicles (UAVs) has reshaped the aerospace testing environment. Traditional closed-loop wind tunnels are not particularly suited nor easily retrofit to take advantage of these coordinated, controls-based rotorcraft. As such, a highly configurable, novel wind tunnel aimed at addressing the unmet technical challenges associated with single or formation flight performance of autonomous drone systems is presented. The open-loop fan array wind tunnel features 1296 individually controllable DC fans arranged in a 2.88m x 2.88m array. The fan array can operate with and without a tunnel enclosure and is able to rotate between horizontal and vertical testing configurations. In addition to standard variable speed uniform flow, the fan array can generate both unsteady and shear flows. Through the aid of smaller side fan array units, vortex flows are also possible. Conceptual design, fabrication, and validation of the tunnel performance will be presented, including theoretical and computational predictions of flow speed and turbulence intensity. Validation of these parameters is accomplished through standard pitot-static and hot-wire techniques. Particle image velocimetry (PIV) of various complex flows will also be shown. This material is based upon work supported by the Center for Autonomous Systems and Technologies (CAST) at the Graduate Aerospace Laboratories of the California Institute of Technology (GALCIT).

  5. Blade-Element/Momentum Technique for Rotors operating in Wind Tunnels

    DEFF Research Database (Denmark)

    Sørensen, Jens Nørkær; Sørensen, Dan Nørtoft

    2003-01-01

    small, since important properties of the blade boundary layer otherwise cannot be captured correctly. On the other hand, severe problems with wind tunnel blockage may be the result if the ratio between the areas of the rotor and the wind tunnel cross section is too big. In all cases, wind tunnel...

  6. Ski jumping takeoff in a wind tunnel with skis.

    Science.gov (United States)

    Virmavirta, Mikko; Kivekäs, Juha; Komi, Paavo

    2011-11-01

    The effect of skis on the force-time characteristics of the simulated ski jumping takeoff was examined in a wind tunnel. Takeoff forces were recorded with a force plate installed under the tunnel floor. Signals from the front and rear parts of the force plate were collected separately to examine the anteroposterior balance of the jumpers during the takeoff. Two ski jumpers performed simulated takeoffs, first without skis in nonwind conditions and in various wind conditions. Thereafter, the same experiments were repeated with skis. The jumpers were able to perform very natural takeoff actions (similar to the actual takeoff) with skis in wind tunnel. According to the subjective feeling of the jumpers, the simulated ski jumping takeoff with skis was even easier to perform than the earlier trials without skis. Skis did not much influence the force levels produced during the takeoff but they still changed the force distribution under the feet. Contribution of the forces produced under the rear part of the feet was emphasized probably because the strong dorsiflexion is needed for lifting the skis to the proper flight position. The results presented in this experiment emphasize that research on ski jumping takeoff can be advanced by using wind tunnels.

  7. Aircraft wind tunnel characterisation using modern design of experiments

    CSIR Research Space (South Africa)

    Dias, JF

    2013-04-01

    Full Text Available 2013-1502, 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Boston, Massachusetts, 8-11 April 2013 Aircraft wind tunnel characterisation using modern design of experiments J. F. Dias1 IDMEC - Instituto...

  8. Ares I Aerodynamic Testing at the Boeing Polysonic Wind Tunnel

    Science.gov (United States)

    Pinier, Jeremy T.; Niskey, Charles J.; Hanke, Jeremy L.; Tomek, William G.

    2011-01-01

    Throughout three full design analysis cycles, the Ares I project within the Constellation program has consistently relied on the Boeing Polysonic Wind Tunnel (PSWT) for aerodynamic testing of the subsonic, transonic and supersonic portions of the atmospheric flight envelope (Mach=0.5 to 4.5). Each design cycle required the development of aerodynamic databases for the 6 degree-of-freedom (DOF) forces and moments, as well as distributed line-loads databases covering the full range of Mach number, total angle-of-attack, and aerodynamic roll angle. The high fidelity data collected in this facility has been consistent with the data collected in NASA Langley s Unitary Plan Wind Tunnel (UPWT) at the overlapping condition ofMach=1.6. Much insight into the aerodynamic behavior of the launch vehicle during all phases of flight was gained through wind tunnel testing. Important knowledge pertaining to slender launch vehicle aerodynamics in particular was accumulated. In conducting these wind tunnel tests and developing experimental aerodynamic databases, some challenges were encountered and are reported as lessons learned in this paper for the benefit of future crew launch vehicle aerodynamic developments.

  9. Wind Tunnel Interference on Wings, Bodies and Airscrews

    Science.gov (United States)

    1933-09-13

    convenientmethod of experiment is to investigate the behaviour of a model in the artificial stream of a wind tunnel, and the limited extent of this...f. lUZ across its span bas been obtained closed elliptictunnel, is by Rosenhead"’ in terms of elliptic functions. The resulting for-6 m sinb 0 cosh 0

  10. Wind Tunnel Experiments with Active Control of Bridge Section Model

    DEFF Research Database (Denmark)

    Hansen, Henriette I.; Thoft-Christensen, Palle

    This paper describes results of wind tunnel experiments with a bridge section model where movable flaps are integrated in the bridge girder so each flap is the streamlined part of the edge of the girder. This active control flap system is patented by COWIconsult and may be used to increase...

  11. 9x15 Low Speed Wind Tunnel Acoustic Improvements

    Science.gov (United States)

    Stark, David; Stephens, David

    2016-01-01

    The 9- by 15-Foot Low Speed Wind Tunnel (9x15 LSWT) at NASA Glenn Research Center was built in 1969 in the return leg of the 8- by 6-Foot Supersonic Wind Tunnel (8x6 SWT). The 8x6 SWT was completed in 1949 and acoustically treated to mitigate community noise issues in 1950. This treatment included the addition of a large muffler downstream of the 8x6 SWT test section and diffuser. The 9x15 LSWT was designed for performance testing of VSTOL aircraft models, but with the addition of the current acoustic treatment in 1986 the tunnel has been used principally for acoustic and performance testing of aircraft propulsions systems. The present document describes an anticipated acoustic upgrade to be completed in 2017.

  12. Characterization of a new open jet wind tunnel to optimize and test vertical axis wind turbines

    DEFF Research Database (Denmark)

    Tourn, Silvana; Pallarès, Jordi; Cuesta, Ildefonso

    2017-01-01

    Based on the increasing interest in urban environmental technologies, the study of small scale vertical axis wind turbines shows motivating challenges. In this paper, we present the characteristics and potentials of a new open jet wind tunnel. It has a nozzle exit area of 1.5 × 1.5 m2, and it can...

  13. A numerical optimization of high altitude testing facility for wind tunnel experiments

    Directory of Open Access Journals (Sweden)

    Bruce Ralphin Rose J

    2015-06-01

    Full Text Available High altitude test facilities are required to test the high area ratio nozzles operating at the upper stages of rocket in the nozzle full flow conditions. It is typically achieved by creating the ambient pressure equal or less than the nozzle exit pressure. On average, air/GN2 is used as active gas for ejector system that is stored in the high pressure cylinders. The wind tunnel facilities are used for conducting aerodynamic simulation experiments at/under various flow velocities and operating conditions. However, constructing both of these facilities require more laboratory space and expensive instruments. Because of this demerit, a novel scheme is implemented for conducting wind tunnel experiments by using the existing infrastructure available in the high altitude testing (HAT facility. This article presents the details about the methods implemented for suitably modifying the sub-scale HAT facility to conduct wind tunnel experiments. Hence, the design of nozzle for required area ratio A/A∗, realization of test section and the optimized configuration are focused in the present analysis. Specific insights into various rocket models including high thrust cryogenic engines and their holding mechanisms to conduct wind tunnel experiments in the HAT facility are analyzed. A detailed CFD analysis is done to propose this conversion without affecting the existing functional requirements of the HAT facility.

  14. Tunnels: different construction methods and its use for pipelines installation

    Energy Technology Data Exchange (ETDEWEB)

    Mattos, Tales; Soares, Ana Cecilia; Assis, Slow de; Bolsonaro, Ralfo; Sanandres, Simon [Petroleo do Brasil S.A. (PETROBRAS), Rio de Janeiro, RJ (Brazil)

    2009-07-01

    In a continental dimensions country like Brazil, the pipeline modal faces the challenge of opening ROW's in the most different kind of soils with the most different geomorphology. To safely fulfill the pipeline construction demand, the ROW opening uses all techniques in earthworks and route definition and, where is necessary, no digging techniques like horizontal directional drilling, micro tunneling and also full size tunnels design for pipelines installation in high topography terrains to avoid geotechnical risks. PETROBRAS has already used the tunnel technique to cross higher terrains with great construction difficult, and mainly to make it pipeline maintenance and operation easier. For the GASBOL Project, in Aparados da Serra region and in GASYRG, in Bolivia, two tunnels were opened with approximately 700 meters and 2,000 meters each one. The GASBOL Project had the particularity of being a gallery with only one excavation face, finishing under the hill and from this point was drilled a vertical shaft was drilled until the top to install the pipeline section, while in GASYRG Project the tunnel had two excavation faces. Currently, two projects are under development with tunnels, one of then is the Caraguatatuba-Taubate gas pipeline (GASTAU), with a 5 km tunnel, with the same concepts of the GASBOL tunnel, with a gallery to be opened with the use of a TBM (Tunneling Boring Machine), and a shaft to the surface, and the gas pipeline Cabiunas-Reduc III (GASDUC III) project is under construction with a 3.7 km tunnel, like the GASYRG tunnel with two faces. This paper presents the main excavation tunneling methods, conventional and mechanized, presenting the most relevant characteristics from both and, in particular, the use of tunnels for pipelines installation. (author)

  15. The application of cryogenics to high Reynolds number testing in wind tunnels. I - Evolution, theory, and advantages

    Science.gov (United States)

    Kilgore, R. A.; Dress, D. A.

    1984-01-01

    During the time which has passed since the construction of the first wind tunnel in 1870, wind tunnels have been developed to a high degree of sophistication. However, their development has consistently failed to keep pace with the demands placed on them. One of the more serious problems to be found with existing transonic wind tunnels is their inability to test subscale aircraft models at Reynolds numbers sufficiently near full-scale values to ensure the validity of using the wind tunnel data to predict flight characteristics. The Reynolds number capability of a wind tunnel may be increased by a number of different approaches. However, the best solution in terms of model, balance, and model support loads, as well as in terms of capital and operating cost appears to be related to the reduction of the temperature of the test gas to cryogenic temperatures. The present paper has the objective to review the evolution of the cryogenic wind tunnel concept and to describe its more important advantages.

  16. Aerodynamic and aeroelastic characteristics of the DARPA Smart Wing Phase II wind tunnel model

    Science.gov (United States)

    Sanders, Brian P.; Martin, Christopher A.; Cowan, David L.

    2001-06-01

    A wind tunnel demonstration was conducted on a scale model of an unmanned combat air vehicle (UCAV). The model was configured with traditional hinged control surfaces and control surfaces manufactured with embedded shape memory alloys. Control surfaces constructed with SMA wires enable a smooth and continuous deformation in both the spanwise and cordwise directions. This continuous shape results in some unique aerodynamic effects. Additionally, the stiffness distribution of the model was selected to understand the aeroelastic behavior of a wing designed with these control surfaces. The wind tunnel experiments showed that the aerodynamic performance of a wing constructed with these control surfaces is significantly improved. However, care must be taken when aeroelastic effects are considered since the wing will show a more rapid reduction in the roll moment due to increased moment arm about the elastic axis. It is shown, experimentally, that this adverse effect is easily counteracted using leading edge control surfaces.

  17. A method for data base management and analysis for wind tunnel data

    Science.gov (United States)

    Biser, Aileen O.

    1987-01-01

    To respond to the need for improved data base management and analysis capabilities for wind-tunnel data at the Langley 16-Foot Transonic Tunnel, research was conducted into current methods of managing wind-tunnel data and a method was developed as a solution to this need. This paper describes the development of the data base management and analysis method for wind-tunnel data. The design and implementation of the software system are discussed and examples of its use are shown.

  18. High Fidelity Computational and Wind Tunnel Models in Support of Certification Airworthiness of Control Surfaces with Freeplay and Other Nonlinear Features, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed work will establish high fidelity computational methods and wind tunnel test model in support of new freeplay criteria for the design, construction and...

  19. Demonstration of short-range wind lidar in a high-performance wind tunnel

    DEFF Research Database (Denmark)

    Pedersen, Anders Tegtmeier; Montes, Belen Fernández; Pedersen, Jens Engholm

    2012-01-01

    A short-range continuous-wave coherent laser radar (lidar) has been tested in a high-performance wind tunnel for possible use as a standard component in wind tunnels. The lidar was tested in a low as well as a high speed regime ranging from 5-35 m/s and 40-75 m/s, respectively. In both low and high...... future for short range lidars as a complement to LDA and other standard equipment in wind tunnels.......-speed regimes very good correlation with reference measurements was found. Furthermore different staring directions were tested and taking a simple geometrical correction into account very good correlation was again found. These measurements all demonstrate the high accuracy of the lidar and indicate a possible...

  20. Demonstration of short-range wind lidar in a high-performance wind tunnel

    DEFF Research Database (Denmark)

    Pedersen, Anders Tegtmeier; Montes, Belen Fernández; Pedersen, Jens Engholm

    A short-range continuous-wave coherent laser radar (lidar) has been tested in a high-performance wind tunnel for possible use as a standard component in wind tunnels. The lidar was tested in a low as well as a high speed regime ranging from 5-35 m/s and 40-75 m/s, respectively. In both low and high...... future for short range lidars as a complement to LDA and other standard equipment in wind tunnels.......-speed regimes very good correlation with reference measurements was found. Furthermore different staring directions were tested and taking a simple geometrical correction into account very good correlation was again found. These measurements all demonstrate the high accuracy of the lidar and indicate a possible...

  1. CFD simulation of dimpled sphere and its wind tunnel verification

    Directory of Open Access Journals (Sweden)

    Spálenský Vojtěch

    2017-01-01

    Full Text Available Paper deals with problems of CFD simulating airflow over a dimpled spherical surface and its verification by the wind tunnel measurement. The low-cost simulation approach was applied to be run on a common PC using the commercial software ANSYS CFX. The wind tunnel testing has been performed in the laboratory of aerodynamics at the Department of Air Force and Aircraft Technology of the University of Defence. Measured results of the drag coefficient versus the Reynolds number for smooth and dimpled spheres were compared and discussed. Presented simulation corresponds adequately to the experimental results. It can be stated that the CFD simulation is suitable for simulating the flow over the dimpled surfaces similar to sphere.

  2. Wind Tunnel Tests for Wind Pressure Distribution on Gable Roof Buildings

    Science.gov (United States)

    2013-01-01

    Gable roof buildings are widely used in industrial buildings. Based on wind tunnel tests with rigid models, wind pressure distributions on gable roof buildings with different aspect ratios were measured simultaneously. Some characteristics of the measured wind pressure field on the surfaces of the models were analyzed, including mean wind pressure, fluctuating wind pressure, peak negative wind pressure, and characteristics of proper orthogonal decomposition results of the measured wind pressure field. The results show that extremely high local suctions often occur in the leading edges of longitudinal wall and windward roof, roof corner, and roof ridge which are the severe damaged locations under strong wind. The aspect ratio of building has a certain effect on the mean wind pressure coefficients, and the effect relates to wind attack angle. Compared with experimental results, the region division of roof corner and roof ridge from AIJ2004 is more reasonable than those from CECS102:2002 and MBMA2006.The contributions of the first several eigenvectors to the overall wind pressure distributions become much bigger. The investigation can offer some basic understanding for estimating wind load distribution on gable roof buildings and facilitate wind-resistant design of cladding components and their connections considering wind load path. PMID:24082851

  3. Calculations of air cooler for new subsonic wind tunnel

    Science.gov (United States)

    Rtishcheva, A. S.

    2017-10-01

    As part of the component development of TsAGI’s new subsonic wind tunnel where the air flow velocity in the closed test section is up to 160 m/sec hydraulic and thermal characteristics of air cooler are calculated. The air cooler is one of the most important components due to its highest hydraulic resistance in the whole wind tunnel design. It is important to minimize its hydraulic resistance to ensure the energy efficiency of wind tunnel fans and the cost-cutting of tests. On the other hand the air cooler is to assure the efficient cooling of air flow in such a manner as to maintain the temperature below 40 °C for seamless operation of measuring equipment. Therefore the relevance of this project is driven by the need to develop the air cooler that would demonstrate low hydraulic resistance of air and high thermal effectiveness of heat exchanging surfaces; insofar as the cooling section must be given up per unit time with the amount of heat Q=30 MW according to preliminary evaluations. On basis of calculation research some variants of air cooler designs are proposed including elliptical tubes, round tubes, and lateral plate-like fins. These designs differ by the number of tubes and plates, geometrical characteristics and the material of finned surfaces (aluminium or cooper). Due to the choice of component configurations a high thermal effectiveness is achieved for finned surfaces. The obtained results form the basis of R&D support in designing the new subsonic wind tunnel.

  4. Velocity Measurement Systems for a Low-speed Wind Tunnel

    Science.gov (United States)

    2015-04-29

    SECURITY CLASSIFICATION OF: Funds were provided by the ARO for the purchase of TSI hot-wire anemometer equipment and a Dantec particle- image...Velocity Measurement Systems for a Low-speed Wind Tunnel Report Title Funds were provided by the ARO for the purchase of TSI hot-wire anemometer equipment...Funds were provided by the Army Research Office for the purchase of TSI hot-wire anemometer equipment and a Dantec particle-image velocimetry system

  5. Wind Tunnel Test of the SMART Active Flap Rotor

    Science.gov (United States)

    Straub, Friedrich K.; Anand, Vaidyanthan R.; Birchette, Terrence S.; Lau, Benton H.

    2009-01-01

    Boeing and a team from Air Force, NASA, Army, DARPA, MIT, UCLA, and U. of Maryland have successfully completed a wind-tunnel test of the smart material actuated rotor technology (SMART) rotor in the 40- by 80-foot wind-tunnel of the National Full-Scale Aerodynamic Complex at NASA Ames Research Center. The Boeing SMART rotor is a full-scale, five-bladed bearingless MD 900 helicopter rotor modified with a piezoelectric-actuated trailing edge flap on each blade. The eleven-week test program evaluated the forward flight characteristics of the active-flap rotor at speeds up to 155 knots, gathered data to validate state-of-the-art codes for rotor aero-acoustic analysis, and quantified the effects of open and closed loop active flap control on rotor loads, noise, and performance. The test demonstrated on-blade smart material control of flaps on a full-scale rotor for the first time in a wind tunnel. The effectiveness of the active flap control on noise and vibration was conclusively demonstrated. Results showed significant reductions up to 6dB in blade-vortex-interaction and in-plane noise, as well as reductions in vibratory hub loads up to 80%. Trailing-edge flap deflections were controlled within 0.1 degrees of the commanded value. The impact of the active flap on control power, rotor smoothing, and performance was also demonstrated. Finally, the reliability of the flap actuation system was successfully proven in more than 60 hours of wind-tunnel testing.

  6. Design and Characterization of the UTIAS Anechoic Wind Tunnel

    Science.gov (United States)

    Chow, Derrick H. F.

    The anechoic open-jet wind tunnel facility at the University of Toronto Institute for Aerospace Studies was updated and characterized to meet the needs of current and future aeroacoustic experiments. The wind tunnel inlet was resurfaced and flow-conditioning screens were redesigned to improve the freestream turbulence intensity to below 0.4% in the test section. The circular nozzle was replaced with a square secondary contraction that increased the maximum test section velocity to 75 m/s and improved flow uniformity to over 99% across a usable cross-sectional area of 500 mm x 500 mm. Acoustic baffles were installed in front of the wind tunnel inlet and foam wedges were installed in the anechoic chamber. The overall background sound pressure levels in the chamber were improved by 8-18 db over the range of operational freestream velocities. The anechoic chamber cut-off frequency is 170 Hz and the reverberation time for a 60 dB sound power decay is 0.032 s.

  7. Effects of transition on wind tunnel simulation of vehicel dynamics

    Science.gov (United States)

    Ericsson, L. E.

    Among the many problems the test engineer faces when trying to simulate full-scale vehicle dynamics in a wind tunnel test is the fact that the test usually will be performed at Reynolds numbers far below those existing on the full-scale vehicle. It is found that a severe scaling problem may exist even in the case of attached flow. The strong coupling existing between boundary layer transition and vehicle motion can cause the wind tunnel results to be very misleading, in some cases dangerously so. For example, the subscale test could fail to show a dynamic stability problem existing in full-scale flight, or, conversely, show one that does not exist. When flow separation occurs together with boundary layer transition, the scaling problem becomes more complicated, and the potential for dangerously misleading subscale test results increases. The existing literature is reviewed to provide examples of the different types of dynamic simulation problems that the test engineer is likely to face. It should be emphasized that the difficulties presented by transition effects in the case of wind tunnel simulation of vehicle dynamics apply to the same extent to numeric simulation methods.

  8. Correlations of Platooning Track Test and Wind Tunnel Data

    Energy Technology Data Exchange (ETDEWEB)

    Lammert, Michael P [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kelly, Kenneth J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Yanowitz, Janet [Ecoengineering

    2018-02-02

    In this report, the National Renewable Energy Laboratory analyzed results from multiple, independent truck platooning projects to compare and contrast track test results with wind tunnel test results conducted by Lawrence Livermore National Laboratory (LLNL). Some highlights from the report include compiled data, and results from four independent SAE J1321 full-size track test campaigns that were compared to LLNL wind tunnel testing results. All platooning scenarios tested demonstrated significant fuel savings with good correlation relative to following distances, but there are still unanswered questions and clear opportunities for system optimization. NOx emissions showed improvements from NREL tests in 2014 to Auburn tests in 2015 with respect to J1321 platooning track testing of Peloton system. NREL evaluated data from Volpe's Naturalistic Study of Truck Following Behavior, which showed minimal impact of naturalistic background platooning. We found significant correlation between multiple track studies, wind tunnel tests, and computational fluid dynamics, but also showed that there is more to learn regarding close formation and longer-distance effects. We also identified potential areas for further research and development, including development of advanced aerodynamic designs optimized for platooning, measurement of platoon system performance in traffic conditions, impact of vehicle lateral offsets on platooning performance, and characterization of the national potential for platooning based on fleet operational characteristics.

  9. Demonstration of short-range wind lidar in a high-performance wind tunnel

    OpenAIRE

    Pedersen, Anders Tegtmeier; Montes, Belen Fernández; Pedersen, Jens Engholm; Harris, Michael; Mikkelsen, Torben

    2012-01-01

    A short-range continuous-wave coherent laser radar (lidar) has been tested in a high-performance wind tunnel for possible use as a standard component in wind tunnels. The lidar was tested in a low as well as a high speed regime ranging from 5-35 m/s and 40-75 m/s, respectively. In both low and high-speed regimes very good correlation with reference measurements was found. Furthermore different staring directions were tested and taking a simple geometrical correction into account very good cor...

  10. A New Position Measurement System Using a Motion-Capture Camera for Wind Tunnel Tests

    Directory of Open Access Journals (Sweden)

    Yousok Kim

    2013-09-01

    Full Text Available Considering the characteristics of wind tunnel tests, a position measurement system that can minimize the effects on the flow of simulated wind must be established. In this study, a motion-capture camera was used to measure the displacement responses of structures in a wind tunnel test, and the applicability of the system was tested. A motion-capture system (MCS could output 3D coordinates using two-dimensional image coordinates obtained from the camera. Furthermore, this remote sensing system had some flexibility regarding lab installation because of its ability to measure at relatively long distances from the target structures. In this study, we performed wind tunnel tests on a pylon specimen and compared the measured responses of the MCS with the displacements measured with a laser displacement sensor (LDS. The results of the comparison revealed that the time-history displacement measurements from the MCS slightly exceeded those of the LDS. In addition, we confirmed the measuring reliability of the MCS by identifying the dynamic properties (natural frequency, damping ratio, and mode shape of the test specimen using system identification methods (frequency domain decomposition, FDD. By comparing the mode shape obtained using the aforementioned methods with that obtained using the LDS, we also confirmed that the MCS could construct a more accurate mode shape (bending-deflection mode shape with the 3D measurements.

  11. Micro Fine Sized Palm Oil Fuel Ash Produced Using a Wind Tunnel Production System

    Directory of Open Access Journals (Sweden)

    R. Ahmadi

    2016-01-01

    Full Text Available Micro fine sized palm oil fuel ash (POFA is a new supplementary cementitious material that can increase the strength, durability, and workability of concrete. However, production of this material incurs high cost and is not practical for the construction industry. This paper investigates a simple methodology of producing micro fine sized POFA by means of a laboratory scale wind tunnel system. The raw POFA obtained from an oil palm factory is first calcined to remove carbon residue and then grinded in Los Angeles abrasion machine. The grinded POFA is then blown in the fabricated wind tunnel system for separation into different ranges of particle sizes. The physical, morphological, and chemical properties of the micro fine sized POFA were then investigated using Laser Particle Size Analyser (PSA, nitrogen sorption, and Scanning Electron Microscopy with Energy Dispersive X-Ray (SEM-EDX. A total of 32.1% micro fine sized POFA were collected from each sample blown, with the size range of 1–10 micrometers. The devised laboratory scale of wind tunnel production system is successful in producing micro fine sized POFA and, with modifications, this system is envisaged applicable to be used to commercialize micro fine sized POFA production for the construction industry.

  12. Wind tunnel study of helical and straight-bladed vertical-axis wind turbine wakes

    Science.gov (United States)

    Bagheri, Maryam; Araya, Daniel

    2017-11-01

    It is hypothesized that blade curvature can serve as a passive means to control fluid entrainment and wake recovery in vertical-axis wind turbine (VAWT) arrays. We test this experimentally in a wind tunnel using two different VAWT configurations, one with straight blades and another with helical blades, keeping all other experimental parameters fixed. A small-scale, commercially available VAWT (15W max power) is used as the baseline wind tunnel model in each case. The commercial VAWT blades are replaced with either straight or helical blades that are 3D-printed extrusions of the same airfoil cross-section. Results from smoke flow visualization, three-component wake velocity measurements, and turbine power data are presented. These results give insight into the potential use of VAWTs with curved blades in utility-scale wind farms.

  13. Supervision of tunnelling constructions and software used for their evaluation

    Science.gov (United States)

    Caravanas, Aristotelis; Hilar, Matous

    2017-09-01

    Supervision is a common instrument for controlling constructions of tunnels. In order to suit relevant project’s purposes a supervision procedure is modified by local conditions, habits, codes and ways of allocating of a particular tunnelling project. The duties of tunnel supervision are specified in an agreement with the client and they can include a wide range of activities. On large scale tunnelling projects the supervision tasks are performed by a high number of people of different professions. Teamwork, smooth communication and coordination are required in order to successfully fulfil supervision tasks. The efficiency and quality of tunnel supervision work are enhanced when specialized software applications are used. Such applications should allow on-line data management and the prompt evaluation, reporting and sharing of relevant construction information and other aspects. The client is provided with an as-built database that contains all the relevant information related to a construction process, which is a valuable tool for the claim management as well as for the evaluation of structure defects that can occur in the future. As a result, the level of risks related to tunnel constructions is decreased.

  14. Wind tunnel testing of the DeepWind demonstrator in design and tilted operating conditions

    DEFF Research Database (Denmark)

    Battistia, L.; Benini, E.; Brighenti, A.

    2016-01-01

    was installed on a high precision test bench, whose axis was suitable to be inclined up to 15° with respect to the design (i.e. upright) operating condition. The experiments were performed at the large scale, high speed wind tunnel of the Politecnico di Milano (Italy), using a “free jet” (open channel...

  15. Wind Tunnel Experiments: Influence of Erosion and Deposition on Wind-Packing of New Snow

    Directory of Open Access Journals (Sweden)

    Christian G. Sommer

    2018-01-01

    Full Text Available Wind sometimes creates a hard, wind-packed layer at the surface of a snowpack. The formation of such wind crusts was observed during wind tunnel experiments with combined SnowMicroPen and Microsoft Kinect sensors. The former provides the hardness of new and wind-packed snow and the latter spatial snow depth data in the test section. Previous experiments had shown that saltation is necessary but not sufficient for wind-packing. The combination of hardness and snow depth data now allows to study the case with saltation in more detail. The Kinect data requires complex processing but with the appropriate corrections, snow depth changes can be measured with an accuracy of about 1 mm. The Kinect is therefore well suited to quantify erosion and deposition. We found that no hardening occurred during erosion and that a wind crust may or may not form when snow is deposited. Deposition is more efficient at hardening snow in wind-exposed than in wind-sheltered areas. The snow hardness increased more on the windward side of artificial obstacles placed in the wind tunnel. Similarly, the snow was harder in positions with a low Sx parameter. Sx describes how wind-sheltered (high Sx or wind-exposed (low Sx a position is and was calculated based on the Kinect data. The correlation between Sx and snow hardness was −0.63. We also found a negative correlation of −0.4 between the snow hardness and the deposition rate. Slowly deposited snow is harder than a rapidly growing accumulation. Sx and the deposition rate together explain about half of the observed variability of snow hardness.

  16. Static Aeroelastic Deformation Effects in Preliminary Wind-tunnel Tests of Silent Supersonic Technology Demonstrator

    OpenAIRE

    Makino, Yoshikazu; Ohira, Keisuke; Makimoto, Takuya; Mitomo, Toshiteru; 牧野, 好和; 大平, 啓介; 牧本, 卓也; 三友, 俊輝

    2011-01-01

    Effects of static aeroelastic deformation of a wind-tunnel test model on the aerodynamic characteristics are discussed in wind-tunnel tests in the preliminary design phase of the silent supersonic technology demonstrator (S3TD). The static aeroelastic deformation of the main wing is estimated for JAXA 2m x 2m transonic wind-tunnel and 1m x 1m supersonic wind-tunnel by a finite element method (FEM) structural analysis in which its structural model is tuned with the model deformation calibratio...

  17. Soil erosion rates caused by wind and saltating sand stresses in a wind tunnel

    International Nuclear Information System (INIS)

    Ligotke, M.W.

    1993-02-01

    Wind erosion tests were performed in a wind tunnel in support of the development of long-term protective barriers to cap stabilized waste sites at the Hanford Site. Controlled wind and saltating sand erosive stresses were applied to physical models of barrier surface layers to simulate worst-case eolian erosive stresses. The goal of these tests was to provide information useful to the design and evaluation of the surface layer composition of an arid-region waste site barrier concept that incorporates a deep fine-soil reservoir. A surface layer composition is needed that will form an armor resistant to eolian erosion during periods of extreme dry climatic conditions, especially when such conditions result in the elimination or reduction of vegetation by water deprivation or wildfire. Because of the life span required of Hanford waste barriers, it is important that additional work follow these wind tunnel studies. A modeling effort is planned to aid the interpretation of test results with respect to the suitability of pea gravel to protect the finite-soil reservoir during long periods of climatic stress. It is additionally recommended that wind tunnel tests be continued and field data be obtained at prototype or actual barrier sites. Results wig contribute to barrier design efforts and provide confidence in the design of long-term waste site caps for and regions

  18. Soil erosion rates caused by wind and saltating sand stresses in a wind tunnel

    Energy Technology Data Exchange (ETDEWEB)

    Ligotke, M.W.

    1993-02-01

    Wind erosion tests were performed in a wind tunnel in support of the development of long-term protective barriers to cap stabilized waste sites at the Hanford Site. Controlled wind and saltating sand erosive stresses were applied to physical models of barrier surface layers to simulate worst-case eolian erosive stresses. The goal of these tests was to provide information useful to the design and evaluation of the surface layer composition of an arid-region waste site barrier concept that incorporates a deep fine-soil reservoir. A surface layer composition is needed that will form an armor resistant to eolian erosion during periods of extreme dry climatic conditions, especially when such conditions result in the elimination or reduction of vegetation by water deprivation or wildfire. Because of the life span required of Hanford waste barriers, it is important that additional work follow these wind tunnel studies. A modeling effort is planned to aid the interpretation of test results with respect to the suitability of pea gravel to protect the finite-soil reservoir during long periods of climatic stress. It is additionally recommended that wind tunnel tests be continued and field data be obtained at prototype or actual barrier sites. Results wig contribute to barrier design efforts and provide confidence in the design of long-term waste site caps for and regions.

  19. Open access wind tunnel measurements of a downwind free yawing wind turbine

    DEFF Research Database (Denmark)

    Verelst, David Robert; Larsen, Torben J.; van Wingerden, Jan-Willem

    2016-01-01

    A series of free yawing wind tunnel experiments was held in the Open Jet Facility (OJF) of the TU Delft. The ≈ 300 W turbine has three blades in a downwind configuration and is optionally free to yaw. Different 1.6m diameter rotor configurations are tested such as blade flexibility and sweep....... This paper gives a brief overview of the measurement setup and challenges, and continues with presenting some key results. This wind tunnel campaign has shown that a three bladed downwind wind turbine can operate in a stable fashion under a minimal yaw error. Finally, a description of how to obtain this open...... access dataset, including the post-processing scripts and procedures, is made available via a publicly accessible website....

  20. The Effect of Layer Thickness on Aerodynamic Characteristics of Wind Tunnel RP Models

    Science.gov (United States)

    Daneshmand, S.; Adelnia, R.; Aghanajafi, C.

    Nowadays, rapid prototyping (RP) methods are widely used to produce wind tunnel testing models. Layer thickness is an important parameter that affects aerodynamic characteristics of wind tunnel models. This paper describes the effects of Layer thickness, using rapid prototyping, on aerodynamic coefficients to construct wind tunnel testing models. Three models were evaluated. These models were fabricated from ABSi by fused deposition method (FDM). The layer thickness was 0.178 mm, 0.254 mm and 0.33 mm. The surface roughness for each model was 25 μm, 63 μm and 160 μm (RZ) determined by PERTHOMETER2. A wing-body-tail configuration was chosen for the actual study. Testing covered the Mach no. range of Mach 0.3 to Mach 1.2 at an angle-of-attack range of -4° to +16° at zero sideslip. Coefficients of normal force, axial force, pitching moment, and lift over drag are shown at each of these mach numbers. Results from this study show that layer thickness does have effect on the aerodynamic characteristics; in general the difference between the data extracted from three models is less than 6 percent. The layer thickness does have more effect on the aerodynamic characteristics when mach number is decreased and has the most effect on the aerodynamic characteristics of axial force and its derivative coefficients.

  1. Preliminary Design of a LSA Aircraft Using Wind Tunnel Tests

    Directory of Open Access Journals (Sweden)

    Norbert ANGI

    2015-12-01

    Full Text Available This paper presents preliminary results concerning the design and aerodynamic calculations of a light sport aircraft (LSA. These were performed for a new lightweight, low cost, low fuel consumption and long-range aircraft. The design process was based on specific software tools as Advanced Aircraft Analysis (AAA, XFlr 5 aerodynamic and dynamic stability analysis, and Catia design, according to CS-LSA requirements. The calculations were accomplished by a series of tests performed in the wind tunnel in order to assess experimentally the aerodynamic characteristics of the airplane.

  2. The use of wind tunnel facilities to estimate hydrodynamic data

    Directory of Open Access Journals (Sweden)

    Hoffmann Kristoffer

    2016-01-01

    In a series of measurements, wind tunnel testing has been used to investigate the static response characteristics of a circular and a rectangular section model. Motivated by the wish to estimate the vortex-induced in-line vibration characteristics of a neutrally buoyant submerged marine structure, additional measurements on extremely lightweight, helium-filled circular section models were conducted in a dynamic setup. During the experiment campaign, the mass of the model was varied in order to investigate how the mass ratio influences the vibration amplitude. The results show good agreement with both aerodynamic and hydrodynamic experimental results documented in the literature.

  3. Evaluation of hydrogen as a cryogenic wind tunnel test gas

    Science.gov (United States)

    Haut, R. C.

    1977-01-01

    The nondimensional ratios used to describe various flow situations in hydrogen were determined and compared with the corresponding ideal diatomic gas ratios. The results were used to examine different inviscid flow configurations. The relatively high value of the characteristic rotational temperature causes the behavior of hydrogen, under cryogenic conditions, to deviate substantially from the behavior of an ideal diatomic gas in the compressible flow regime. Therefore, if an idea diatomic gas is to be modeled, cryogenic hydrogen is unacceptable as a wind tunnel test gas in a compressible flow situation.

  4. Enabling Advanced Wind-Tunnel Research Methods Using the NASA Langley 12-Foot Low Speed Tunnel

    Science.gov (United States)

    Busan, Ronald C.; Rothhaar, Paul M.; Croom, Mark A.; Murphy, Patrick C.; Grafton, Sue B.; O-Neal, Anthony W.

    2014-01-01

    Design of Experiment (DOE) testing methods were used to gather wind tunnel data characterizing the aerodynamic and propulsion forces and moments acting on a complex vehicle configuration with 10 motor-driven propellers, 9 control surfaces, a tilt wing, and a tilt tail. This paper describes the potential benefits and practical implications of using DOE methods for wind tunnel testing - with an emphasis on describing how it can affect model hardware, facility hardware, and software for control and data acquisition. With up to 23 independent variables (19 model and 2 tunnel) for some vehicle configurations, this recent test also provides an excellent example of using DOE methods to assess critical coupling effects in a reasonable timeframe for complex vehicle configurations. Results for an exploratory test using conventional angle of attack sweeps to assess aerodynamic hysteresis is summarized, and DOE results are presented for an exploratory test used to set the data sampling time for the overall test. DOE results are also shown for one production test characterizing normal force in the Cruise mode for the vehicle.

  5. Wind Tunnel Tests of Parabolic Trough Solar Collectors: March 2001--August 2003

    Energy Technology Data Exchange (ETDEWEB)

    Hosoya, N.; Peterka, J. A.; Gee, R. C.; Kearney, D.

    2008-05-01

    Conducted extensive wind-tunnel tests on parabolic trough solar collectors to determine practical wind loads applicable to structural design for stress and deformation, and local component design for concentrator reflectors.

  6. Producing Turbulent Wind Tunnel Inflows Relevant to Wind Turbines using an Active Grid

    Science.gov (United States)

    Rumple, Christopher; Welch, Matthew; Naughton, Jonathan

    2017-11-01

    The rise of industries like wind energy have provided motivation for generating realistic turbulent inflows in wind tunnels. Facilities with the ability to produce such inflows can study the interaction between the inflow turbulence and the flow of interest such as a wind turbine wake. An active grid - a system of actively driven elements - has gained increasing acceptance in turbulence research over the last 20 years. The ability to tailor the inflow turbulence quantities (e.g. turbulence intensities, integral length scale, and turbulence spectrum) is a driving reason for the growing use of active grids. An active grid with 40 independent axes located within the forward contraction of a low speed wind tunnel is used to explore the range of turbulent inflows possible using hot-wire anemometry to characterize the turbulence. Motor control algorithms (i.e. user waveform inputs) used to produce various turbulent inflows will be presented. Wind data available from meteorological towers are used to develop relevant inflows for wind turbines to demonstrate the usefulness of the active grid. This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, under Award # DE-SC0012671.

  7. Wind tunnel test IA300 analysis and results, volume 1

    Science.gov (United States)

    Kelley, P. B.; Beaufait, W. B.; Kitchens, L. L.; Pace, J. P.

    1987-01-01

    The analysis and interpretation of wind tunnel pressure data from the Space Shuttle wind tunnel test IA300 are presented. The primary objective of the test was to determine the effects of the Space Shuttle Main Engine (SSME) and the Solid Rocket Booster (SRB) plumes on the integrated vehicle forebody pressure distributions, the elevon hinge moments, and wing loads. The results of this test will be combined with flight test results to form a new data base to be employed in the IVBC-3 airloads analysis. A secondary objective was to obtain solid plume data for correlation with the results of gaseous plume tests. Data from the power level portion was used in conjunction with flight base pressures to evaluate nominal power levels to be used during the investigation of changes in model attitude, eleveon deflection, and nozzle gimbal angle. The plume induced aerodynamic loads were developed for the Space Shuttle bases and forebody areas. A computer code was developed to integrate the pressure data. Using simplified geometrical models of the Space Shuttle elements and components, the pressure data were integrated to develop plume induced force and moments coefficients that can be combined with a power-off data base to develop a power-on data base.

  8. Turbulent Flow Inside and Above a Wind Farm: A Wind-Tunnel Study

    Directory of Open Access Journals (Sweden)

    Leonardo P. Chamorro

    2011-11-01

    Full Text Available Wind-tunnel experiments were carried out to better understand boundary layer effects on the flow pattern inside and above a model wind farm under thermally neutral conditions. Cross-wire anemometry was used to characterize the turbulent flow structure at different locations around a 10 by 3 array of model wind turbines aligned with the mean flow and arranged in two different layouts (inter-turbine separation of 5 and 7 rotor diameters in the direction of the mean flow by 4 rotor diameters in its span. Results suggest that the turbulent flow can be characterized in two broad regions. The first, located below the turbine top tip height, has a direct effect on the performance of the turbines. In that region, the turbulent flow statistics appear to reach equilibrium as close as the third to fourth row of wind turbines for both layouts. In the second region, located right above the first one, the flow adjusts slowly. There, two layers can be identified: an internal boundary layer where the flow is affected by both the incoming wind and the wind turbines, and an equilibrium layer, where the flow is fully adjusted to the wind farm. An adjusted logarithmic velocity distribution is observed in the equilibrium layer starting from the sixth row of wind turbines. The effective surface roughness length induced by the wind farm is found to be higher than that predicted by some existing models. Momentum recovery and turbulence intensity are shown to be affected by the wind farm layout. Power spectra show that the signature of the tip vortices, in both streamwise and vertical velocity components, is highly affected by both the relative location in the wind farm and the wind farm layout.

  9. Flow and turbulence control in a boundary layer wind tunnel using passive hardware devices

    Czech Academy of Sciences Publication Activity Database

    Kuznetsov, Sergeii; Ribičić, Mihael; Pospíšil, Stanislav; Plut, Mihael; Trush, Arsenii; Kozmar, H.

    2017-01-01

    Roč. 41, č. 6 (2017), s. 643-661 ISSN 0732-8818 R&D Projects: GA ČR(CZ) GA14-12892S; GA MŠk(CZ) LO1219 Keywords : turbulent flow * atmospheric boundary layer * wind-tunnel simulation * castellated barrier wall * Counihan vortex generators * surface roughness elements * hot-wire measurements Subject RIV: JM - Building Engineering OBOR OECD: Construction engineering, Municipal and structural engineering Impact factor: 0.932, year: 2016 https://link.springer.com/article/10.1007/s40799-017-0196-z

  10. Static Aeroelastic Scaling and Analysis of a Sub-Scale Flexible Wing Wind Tunnel Model

    Science.gov (United States)

    Ting, Eric; Lebofsky, Sonia; Nguyen, Nhan; Trinh, Khanh

    2014-01-01

    This paper presents an approach to the development of a scaled wind tunnel model for static aeroelastic similarity with a full-scale wing model. The full-scale aircraft model is based on the NASA Generic Transport Model (GTM) with flexible wing structures referred to as the Elastically Shaped Aircraft Concept (ESAC). The baseline stiffness of the ESAC wing represents a conventionally stiff wing model. Static aeroelastic scaling is conducted on the stiff wing configuration to develop the wind tunnel model, but additional tailoring is also conducted such that the wind tunnel model achieves a 10% wing tip deflection at the wind tunnel test condition. An aeroelastic scaling procedure and analysis is conducted, and a sub-scale flexible wind tunnel model based on the full-scale's undeformed jig-shape is developed. Optimization of the flexible wind tunnel model's undeflected twist along the span, or pre-twist or wash-out, is then conducted for the design test condition. The resulting wind tunnel model is an aeroelastic model designed for the wind tunnel test condition.

  11. Development of a process control computer device for the adaptation of flexible wind tunnel walls

    Science.gov (United States)

    Barg, J.

    1982-01-01

    In wind tunnel tests, the problems arise of determining the wall pressure distribution, calculating the wall contour, and controlling adjustment of the walls. This report shows how these problems have been solved for the high speed wind tunnel of the Technical University of Berlin.

  12. Application of Neural Networks to Wind tunnel Data Response Surface Methods

    Science.gov (United States)

    Lo, Ching F.; Zhao, J. L.; DeLoach, Richard

    2000-01-01

    The integration of nonlinear neural network methods with conventional linear regression techniques is demonstrated for representative wind tunnel force balance data modeling. This work was motivated by a desire to formulate precision intervals for response surfaces produced by neural networks. Applications are demonstrated for representative wind tunnel data acquired at NASA Langley Research Center and the Arnold Engineering Development Center in Tullahoma, TN.

  13. Offshore and onshore wind turbine wake meandering studied in an ABL wind tunnel

    DEFF Research Database (Denmark)

    Barlas, Emre; Buckingham, Sophia; Glabeke, Gertjan

    2015-01-01

    Scaled wind turbine models have been installed in the VKI L1-B atmospheric boundary layer wind tunnel at offshore and onshore conditions. Time-resolved measurements were carried out with three component hot wire anemometry and stereo-PIV in the middle vertical plane of the wake up to eleven turbine...... spectrum, present in the entire wake mainly for offshore inflow condition. It was found that the Strouhal number, based on the rotor diameter and the wind velocity at hub height, was in the order of 0.25. Below the meandering frequency, turbulence power spectrum decreased, whereas above it increased. Wake...... diameter downstream. The results show an earlier wake recovery for the onshore case. The effect of inflow conditions and the wind turbine’s working conditions on wake meandering was investigated. Wake meandering was detected by hot wire anemometry through a low frequency peak in the turbulent power...

  14. WTSETUP: Software for Creating and Editing Configuration Files in the Low Speed Wind Tunnel Data Acquisition System

    National Research Council Canada - National Science Library

    Edwards, Craig

    1999-01-01

    The Data Acquisition System in the Low Speed Wind Tunnel at the Aeronautical and Maritime Research Laboratory is responsible for the measurement, recording, processing and displaying of wind tunnel test data...

  15. Geotechnical aspects of tunnel construction in deep clay formations for radioactive waste disposal

    International Nuclear Information System (INIS)

    De Moor, E.K.

    1987-01-01

    The significant factors affecting the construction of tunnels in deep clay formations for radioactive waste disposal were outlined. Two aspects of tunneling were discussed; the feasibility of tunnel construction and changes in pore water pressure that might occur with time. Some results of model tunnel tests and analyses were presented. (U.K.)

  16. CFD and experimental data of closed-loop wind tunnel flow

    Directory of Open Access Journals (Sweden)

    John Kaiser Calautit

    2016-06-01

    Full Text Available The data presented in this article were the basis for the study reported in the research articles entitled ‘A validated design methodology for a closed loop subsonic wind tunnel’ (Calautit et al., 2014 [1], which presented a systematic investigation into the design, simulation and analysis of flow parameters in a wind tunnel using Computational Fluid Dynamics (CFD. The authors evaluated the accuracy of replicating the flow characteristics for which the wind tunnel was designed using numerical simulation. Here, we detail the numerical and experimental set-up for the analysis of the closed-loop subsonic wind tunnel with an empty test section.

  17. Flow Quality Measurements in the NASA Ames Upgraded 11-by 11-Foot Transonic Wind Tunnel

    Science.gov (United States)

    Amaya, Max A.; Murthy, Sreedhara V.; George, M. W. (Technical Monitor)

    2000-01-01

    Among the many upgrades designed and implemented in the NASA Ames 11-by 11-Foot Transonic Wind Tunnel over the past few years, several directly affect flow quality in the test section: a turbulence reduction system with a honeycomb and two screens, a flow smoothing system in the back leg diffusers, an improved drive motor control system, and a full replacement set of composite blades for the compressor. Prior to the shut-down of the tunnel for construction activities, an 8-foot span rake populated with flow instrumentation was traversed in the test section to fully document the flow quality and establish a baseline against which the upgrades could be characterized. A similar set of measurements was performed during the recent integrated system test trials, but the scope was somewhat limited in accordance with the primary objective of such tests, namely to return the tunnel to a fully operational status. These measurements clearly revealed substantial improvements in flow angularity and significant reductions in turbulence level for both full-span and semi-span testing configurations, thus making the flow quality of the tunnel one of the best among existing transonic facilities.

  18. IDENTIFICATION OF WIND LOAD APPLIED TO THREE-DIMENSIONAL STRUCTURES BY VIRTUE OF ITS SIMULATION IN THE WIND TUNNEL

    Directory of Open Access Journals (Sweden)

    Doroshenko Sergey Aleksandrovich

    2012-10-01

    Full Text Available The authors discuss wind loads applied to a set of two buildings. The wind load is simulated with the help of the wind tunnel. In the Russian Federation, special attention is driven to the aerodynamics of high-rise buildings and structures. According to the Russian norms, identification of aerodynamic coefficients for high-rise buildings, as well as the influence of adjacent buildings and structures, is performed on the basis of models of structures exposed to wind impacts simulated in the wind tunnel. This article deals with the results of the wind tunnel test of buildings. The simulation was carried out with the involvement of a model of two twenty-three storied buildings. The experiment was held in a wind tunnel of the closed type at in the Institute of Mechanics of Moscow State University. Data were compared at the zero speed before and after the experiment. LabView software was used to process the output data. Graphs and tables were developed in the Microsoft Excel package. GoogleSketchUp software was used as a visualization tool. The three-dimensional flow formed in the wind tunnel can't be adequately described by solving the two-dimensional problem. The aerodynamic experiment technique is used to analyze the results for eighteen angles of the wind attack.

  19. Wind Tunnel Investigation of Ground Wind Loads for Ares Launch Vehicle

    Science.gov (United States)

    Keller, Donald F.; Ivanco, Thomas G.

    2010-01-01

    A three year program was conducted at the NASA Langley Research Center (LaRC) Aeroelasticity Branch (AB) and Transonic Dynamics Tunnel (TDT) with the primary objective to acquire scaled steady and dynamic ground-wind loads (GWL) wind-tunnel data for rollout, on-pad stay, and on-pad launch configurations for the Ares I-X Flight Test Vehicle (FTV). The experimental effort was conducted to obtain an understanding of the coupling of aerodynamic and structural characteristics that can result in large sustained wind-induced oscillations (WIO) on such a tall and slender launch vehicle and to generate a unique database for development and evaluation of analytical methods for predicting steady and dynamic GWL, especially those caused by vortex shedding, and resulting in significant WIO. This paper summarizes the wind-tunnel test program that employed two dynamically-aeroelastically scaled GWL models based on the Ares I-X Flight Test Vehicle. The first model tested, the GWL Checkout Model (CM), was a relatively simple model with a secondary objective of restoration and development of processes and methods for design, fabrication, testing, and data analysis of a representative ground wind loads model. In addition, parametric variations in surface roughness, Reynolds number, and protuberances (on/off) were investigated to determine effects on GWL characteristics. The second windtunnel model, the Ares I-X GWL Model, was significantly more complex and representative of the Ares I-X FTV and included the addition of simplified rigid geometrically-scaled models of the Kennedy Space Center (KSC) Mobile Launch Platform (MLP) and Launch Complex 39B primary structures. Steady and dynamic base bending moment as well as model response and steady and unsteady pressure data was acquired during the testing of both models. During wind-tunnel testing of each model, flow conditions (speed and azimuth) where significant WIO occurred, were identified and thoroughly investigated. Scaled data from

  20. Simulation of tunneling construction methods of the Cisumdawu toll road

    Science.gov (United States)

    Abduh, Muhamad; Sukardi, Sapto Nugroho; Ola, Muhammad Rusdian La; Ariesty, Anita; Wirahadikusumah, Reini D.

    2017-11-01

    Simulation can be used as a tool for planning and analysis of a construction method. Using simulation technique, a contractor could design optimally resources associated with a construction method and compare to other methods based on several criteria, such as productivity, waste, and cost. This paper discusses the use of simulation using Norwegian Method of Tunneling (NMT) for a 472-meter tunneling work in the Cisumdawu Toll Road project. Primary and secondary data were collected to provide useful information for simulation as well as problems that may be faced by the contractor. The method was modelled using the CYCLONE and then simulated using the WebCYCLONE. The simulation could show the duration of the project from the duration model of each work tasks which based on literature review, machine productivity, and several assumptions. The results of simulation could also show the total cost of the project that was modeled based on journal construction & building unit cost and online websites of local and international suppliers. The analysis of the advantages and disadvantages of the method was conducted based on its, wastes, and cost. The simulation concluded the total cost of this operation is about Rp. 900,437,004,599 and the total duration of the tunneling operation is 653 days. The results of the simulation will be used for a recommendation to the contractor before the implementation of the already selected tunneling operation.

  1. Shape optimization of supersonic ejector for supersonic wind tunnel

    Directory of Open Access Journals (Sweden)

    Dvořák V.

    2010-07-01

    Full Text Available The article deals with the shape optimization of a supersonic ejector for propulsion of an experimental supersonic wind tunnel. This ejector contains several primary nozzles arranged around the mixing chamber wall. CFD software Fluent was used to compute the flow in the ejector. A dynamic mesh method was applied to find an optimal shape of the three-dimensional geometry. During the work it was found out that the previously developed optimization method for subsonic ejectors must be modified. The improved method is more stable and the solution requires fewer optimization steps. The shapes of the mixing chamber, the diffuser, inlet parts and the optimal declination of the primary nozzles are obtained as the optimization results.

  2. Federated Database Services for Wind Tunnel Experiment Workflows

    Directory of Open Access Journals (Sweden)

    A. Paventhan

    2006-01-01

    Full Text Available Enabling the full life cycle of scientific and engineering workflows requires robust middleware and services that support effective data management, near-realtime data movement and custom data processing. Many existing solutions exploit the database as a passive metadata catalog. In this paper, we present an approach that makes use of federation of databases to host data-centric wind tunnel application workflows. The user is able to compose customized application workflows based on database services. We provide a reference implementation that leverages typical business tools and technologies: Microsoft SQL Server for database services and Windows Workflow Foundation for workflow services. The application data and user's code are both hosted in federated databases. With the growing interest in XML Web Services in scientific Grids, and with databases beginning to support native XML types and XML Web services, we can expect the role of databases in scientific computation to grow in importance.

  3. Potential risks at an industrial site: A wind tunnel study

    Czech Academy of Sciences Publication Activity Database

    Jaňour, Zbyněk; Jurčáková, Klára; Brych, Karel; Dittrt, František; Dittrich, F.

    2010-01-01

    Roč. 88, č. 3 (2010), s. 185-190 ISSN 0957-5820 R&D Projects: GA MŠk(CZ) OC 113 Institutional research plan: CEZ:AV0Z20760514; CEZ:AV0Z20600510 Keywords : atmospheric turbulence * flow visualization * wind tunnel modeling Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 1.453, year: 2010 http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B8JGG-4Y7P8YF-1&_user=640952&_coverDate=05%2F31%2F2010&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=c&_searchStrId=1433050901&_rerunOrigin= google &_acct=C000034318&_version=1&_urlVersion=0&_userid=640952&md5=b036d2c5d747eadc03ff5697ea45e6a2

  4. Building 865 Hypersonic Wind Tunnel Power System Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Larry X. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-02-01

    This report documents the characterization and analysis of a high current power supply for the building 865 Hypersonic Wind Tunnel at Sandia National Laboratories. The system described in this report became operational in 2013, replacing the original 1968 system which employed an induction voltage regulator. This analysis and testing was completed to help the parent organization understand why an updated and redesigned power system was not delivering adequate power to resistive heater elements in the HWT. This analysis led to an improved understanding of the design and operation of the revised 2013 power supply system and identifies several reasons the revised system failed to achieve the performance of the original power supply installation. Design modifications to improve the performance of this system are discussed.

  5. Comparison of Angle of Attack Measurements for Wind Tunnel Testing

    Science.gov (United States)

    Jones, Thomas, W.; Hoppe, John C.

    2001-01-01

    Two optical systems capable of measuring model attitude and deformation were compared to inertial devices employed to acquire wind tunnel model angle of attack measurements during the sting mounted full span 30% geometric scale flexible configuration of the Northrop Grumman Unmanned Combat Air Vehicle (UCAV) installed in the NASA Langley Transonic Dynamics Tunnel (TDT). The overall purpose of the test at TDT was to evaluate smart materials and structures adaptive wing technology. The optical techniques that were compared to inertial devices employed to measure angle of attack for this test were: (1) an Optotrak (registered) system, an optical system consisting of two sensors, each containing a pair of orthogonally oriented linear arrays to compute spatial positions of a set of active markers; and (2) Video Model Deformation (VMD) system, providing a single view of passive targets using a constrained photogrammetric solution whose primary function was to measure wing and control surface deformations. The Optotrak system was installed for this test for the first time at TDT in order to assess the usefulness of the system for future static and dynamic deformation measurements.

  6. Wind-Tunnel Investigation of an NACA 23012 Airfoil with Various Arrangements of Slotted Flaps

    Science.gov (United States)

    Wenzinger, Carl J; Harris , Thomas A

    1939-01-01

    An investigation was made in the 7 by 10-foot wind tunnel and in the variable-density wind tunnel of the NACA 23012 airfoil with various slotted-flap arrangements. The purpose of the investigation in the 7 by 10-foot wind tunnel was to determine the airfoil section aerodynamic characteristics as affected by flap shape, slot shape, and flap location. The flap position for maximum lift; polars for arrangements favorable for take-off and climb; and complete lift, drag, and pitching-moment characteristics for selected optimum arrangements were determined. The best arrangements were tested in the variable-density tunnel at an effective Reynolds number of 8,000,000. In addition, data from both wind tunnels are included for plain, split, external-airfoil, and Fowler flaps for purposes of comparison.

  7. Radon hazard from caisson and tunnel construction in Kong Kong

    International Nuclear Information System (INIS)

    Lam, W.K.; Tsin, T.W.; Ng, T.P.

    1988-01-01

    A possible occupational risk of caisson and tunnel excavation in Hong Kong results from the inhalation of natural radon daughters. In this study radon daughter concentrations ranging from 0.001 to 71.4 WL were recorded in caissons of various dimensions and from 0.03 to 0.95 WL in tunnels over 1 km in length under construction (ICRP exposure limit being 0.4 WL). There was clear indication of increased radon daughter accumulation in confined and unventilated areas and in unventilated caissons an exponential increase of radon daughter concentration with the ratio of depth to cross-sectional area was observed (r=0.9). The study revealed a potential radiation hazard facing underground construction workers and this is being examined by an ongoing epidemiological cohort study: meanwhile environmental control should be improved. (UK)

  8. Wind tunnel productivity status and improvement activities at NASA Langley Research Center

    Science.gov (United States)

    Putnam, Lawrence E.

    1996-01-01

    Over the last three years, a major effort has been underway to re-engineering the way wind tunnel testing is accomplished at the NASA Langley Research Center. This effort began with the reorganization of the LaRC and the consolidation of the management of the wind tunnels in the Aerodynamics Division under one operations branch. This paper provides an overview of the re-engineering activities and gives the status of the improvements in the wind tunnel productivity and customer satisfaction that have resulted from the new ways of working.

  9. Check-Standard Testing Across Multiple Transonic Wind Tunnels with the Modern Design of Experiments

    Science.gov (United States)

    Deloach, Richard

    2012-01-01

    This paper reports the result of an analysis of wind tunnel data acquired in support of the Facility Analysis Verification & Operational Reliability (FAVOR) project. The analysis uses methods referred to collectively at Langley Research Center as the Modern Design of Experiments (MDOE). These methods quantify the total variance in a sample of wind tunnel data and partition it into explained and unexplained components. The unexplained component is further partitioned in random and systematic components. This analysis was performed on data acquired in similar wind tunnel tests executed in four different U.S. transonic facilities. The measurement environment of each facility was quantified and compared.

  10. Understanding and Exploiting Wind Tunnels with Porous Flexible Walls for Aerodynamic Measurement

    OpenAIRE

    Brown, Kenneth Alexander

    2016-01-01

    The aerodynamic behavior of wind tunnels with porous, flexible walls formed from tensioned Kevlar has been characterized and new measurement techniques in such wind tunnels explored. The objective is to bring the aerodynamic capabilities of so-called Kevlar-wall test sections in-line with those of traditional solid-wall test sections. The primary facility used for this purpose is the 1.85-m by 1.85-m Stability Wind Tunnel at Virginia Tech, and supporting data is provided by the 2-m by 2-m L...

  11. Documentation and archiving of the Space Shuttle wind tunnel test data base. Volume 1: Background and description

    Science.gov (United States)

    Romere, Paul O.; Brown, Steve Wesley

    1995-01-01

    Development of the space shuttle necessitated an extensive wind tunnel test program, with the cooperation of all the major wind tunnels in the United States. The result was approximately 100,000 hours of space shuttle wind tunnel testing conducted for aerodynamics, heat transfer, and structural dynamics. The test results were converted into Chrysler DATAMAN computer program format to facilitate use by analysts, a very cost effective method of collecting the wind tunnel test results from many test facilities into one centralized location. This report provides final documentation of the space shuttle wind tunnel program. The two-volume set covers evolution of space shuttle aerodynamic configurations and gives wind tunnel test data, titles of wind tunnel data reports, sample data sets, and instructions for accessing the digital data base.

  12. Parameter Optimization on the Forced Ventilation of Symmetric Tunnel Construction Based on the Super-Short Bench-Cut Method

    Directory of Open Access Journals (Sweden)

    Xiaokai Niu

    2018-02-01

    Full Text Available To exploit the influence of the tunnel face and the distance between the diameter and the orifice of a blast pipe on the ventilation effect in symmetric tunnel construction, this paper uses Fluent to establish a three-dimensional model and numerical simulation. Firstly, the accuracy of the numerical simulation is tested and then the distance between the orifice and tunnel face and the influence of the air duct diameter on the ventilation effect are studied, respectively. The results show that the ventilation effect is best when the wind pipe is arranged on one side of the tunnel wall (an asymmetrical layout, although the space in the tunnel is axisymmetric, and that the error of the numerical simulation is less than 5% of the measured value. When the distance between the orifice and tunnel face is 5 m, the uniformity of the air flow field near the tunnel face is poor; when the distance is 10 m and 12 m, an obvious vertex area appears in the tunnel. Furthermore, the uniformity of the wind velocity flow field is optimal when the distance is 8 m. When the air duct diameter is less than 1.4 m, there is a uniformity of the flow field near the tunnel face of the upper and lower benches; when the air duct diameter is more than 1.4 m, the tunnel face of the upper bench near the ground shows more obvious backflow. Therefore, it was determined that taking the air duct diameter as 1.4 m and the distance between the orifice and tunnel face as 8 m was the best combination for the design of ventilation in this project. It was also found that a better ventilation effect can be achieved when the distance between the nozzle of the ventilator and the tunnel face is 6 m–9 m and the wind speed of the nozzle is 6 m/s–8 m/s. In practical engineering, the wind speed and the required air volume should be taken into consideration to determine the diameter of the ventilator.

  13. Expert judgment study on wind pressure coefficients. Part 2 : Unprocessed data: Expert rationales Wind tunnel data. Final report

    NARCIS (Netherlands)

    De Wit, S.

    1999-01-01

    In the design of low-rise buildings, wind tunnel experiments are scarcely employed to assess the wind-induced pressures, which are required e.g. for the simulation of ventilation flows or for the evaluation of the structural integrity. Instead, techniques are used, which predominandy rely on inter-

  14. Analytical study of the effects of wind tunnel turbulence on turbofan rotor noise. [NASA Ames 40 by 80 foot wind tunnel

    Science.gov (United States)

    Gliebe, P. R.; Kerschen, E. J.

    1979-01-01

    The influence of tunnel turbulence on turbofan rotor noise was carried out to evaluate the effectiveness of the NASA Ames 40 by 80 foot tunnel in simulating flight levels of fan noise. A previously developed theory for predicting rotor/turbulence interaction noise was refined and extended to include first-order effects of inlet turbulence anisotropy. This theory was then verified by carrying out extensive data/theory comparisons. The resulting model computer program was then employed to carry out a parametric study of the effects of fan size, blade number, and operating line on rotor/turbulence noise for outdoor test stand. NASA Ames wind tunnel, and flight inlet turbulence conditions. A major result of this study is that although wind tunnel rotor/turbulence noise levels are not as low as flight levels they are substantially lower than the outdoor test stand levels and do not mask other sources of fan noise.

  15. An ensemble Kalman filter for atmospheric data assimilation: Application to wind tunnel data

    Science.gov (United States)

    Zheng, D. Q.; Leung, J. K. C.; Lee, B. Y.

    2010-05-01

    In the previous work ( Zheng et al., 2007, 2009), a data assimilation method, based on ensemble Kalman filter, has been applied to a Monte Carlo Dispersion Model (MCDM). The results were encouraging when the method was tested by the twin experiment and a short-range field experiment. In this technical note, the measured data collected in a wind tunnel experiment have been assimilated into the Monte Carlo dispersion model. The uncertain parameters in the dispersion model, including source term, release height, turbulence intensity and wind direction have been considered. The 3D parameters, i.e. the turbulence intensity and wind direction, have been perturbed by 3D random fields. In order to find the factors which may influence the assimilation results, eight tests with different specifications were carried out. Two strategies of constructing the 3D perturbation field of wind direction were proposed, and the result shows that the two level strategy performs better than the one level strategy. It is also found that proper standard deviation and the correlation radius of the perturbation field play an important role for the data assimilation results.

  16. EA Annex XX. Comparison between calculations and measurements on a wind turbine in the NASA-Ames wind tunnel

    Energy Technology Data Exchange (ETDEWEB)

    Schepers, J.G. [ECN Wind Energy, Petten (Netherlands)

    2007-11-15

    This report describes a study in which calculational results from ECN's aeroelastic code PHATAS and the free wake lifting line code AWSM are compared with wind tunnel measurements which were carried out by NREL on a wind turbine, placed in the large NASA-Ames wind tunnel. Measurements have been taken at a large variety of conditions but in this report data at non-yawed conditions are considered only. The study was carried out within the framework IEA Annex XX 'Analysis of NASA-Ames windtunnel measurements'.

  17. Comparing different CFD wind turbine modelling approaches with wind tunnel measurements

    Science.gov (United States)

    Kalvig, Siri; Manger, Eirik; Hjertager, Bjørn

    2014-12-01

    The performance of a model wind turbine is simulated with three different CFD methods: actuator disk, actuator line and a fully resolved rotor. The simulations are compared with each other and with measurements from a wind tunnel experiment. The actuator disk is the least accurate and most cost-efficient, and the fully resolved rotor is the most accurate and least cost-efficient. The actuator line method is believed to lie in between the two ends of the scale. The fully resolved rotor produces superior wake velocity results compared to the actuator models. On average it also produces better results for the force predictions, although the actuator line method had a slightly better match for the design tip speed. The open source CFD tool box, OpenFOAM, was used for the actuator disk and actuator line calculations, whereas the market leading commercial CFD code, ANSYS/FLUENT, was used for the fully resolved rotor approach.

  18. Morphing wing system integration with wind tunnel testing =

    Science.gov (United States)

    Guezguez, Mohamed Sadok

    Preserving the environment is a major challenge for today's aviation industry. Within this context, the CRIAQ MDO 505 project started, where a multidisciplinary approach was used to improve aircraft fuel efficiency. This international project took place between several Canadian and Italian teams. Industrial teams are Bombardier Aerospace, Thales Canada and Alenia Aermacchi. The academic partners are from Ecole de Technologie Superieure, Ecole Polytechnique de Montreal and Naples University. Teams from 'CIRA' and IAR-NRC research institutes had, also, contributed on this project. The main objective of this project is to improve the aerodynamic performance of a morphing wing prototype by reducing the drag. This drag reduction is achieved by delaying the flow transition (from laminar to turbulent) by performing shape optimization of the flexible upper skin according to different flight conditions. Four linear axes, each one actuated by a 'BLDC' motor, are used to morph the skin. The skin displacements are calculated by 'CFD' numerical simulation based on flow parameters which are Mach number, the angle of attack and aileron's angle of deflection. The wing is also equipped with 32 pressure sensors to experimentally detect the transition during aerodynamic testing in the subsonic wind tunnel at the IAR-NRC in Ottawa. The first part of the work is dedicated to establishing the necessary fieldbus communications between the control system and the wing. The 'CANopen' protocol is implemented to ensure real time communication between the 'BLDC' drives and the real-time controller. The MODBUS TCP protocol is used to control the aileron drive. The second part consists of implementing the skin control position loop based on the LVDTs feedback, as well as developing an automated calibration procedure for skin displacement values. Two 'sets' of wind tunnel tests were carried out to, experimentally, investigate the morphing wing controller effect; these tests also offered the

  19. Numerical simulation of flows around deformed aircraft model in a wind tunnel

    Science.gov (United States)

    Lysenkov, A. V.; Bosnyakov, S. M.; Glazkov, S. A.; Gorbushin, A. R.; Kuzmina, S. I.; Kursakov, I. A.; Matyash, S. V.; Ishmuratov, F. Z.

    2016-10-01

    To obtain accurate data of calculation method error requires detailed simulation of the experiment in wind tunnel with keeping all features of the model, installation and gas flow. Two examples of such detailed data comparison are described in this paper. The experimental characteristics of NASA CRM model obtained in the ETW wind tunnel (Cologne, Germany), and CFD characteristics of this model obtained with the use of EWT-TsAGI application package are compared. Following comparison is carried out for an airplane model in the T-128 wind tunnel (TsAGI, Russia). It is seen that deformation influence on integral characteristics grows with increasing Re number and, accordingly, the dynamic pressure. CFD methods application for problems of experimental research in the wind tunnel allows to separate viscosity and elasticity effects.

  20. Transonic Wind Tunnel Tests on Tonic Mk 5-2: Exercise Yakkata Operational Vehicle

    National Research Council Canada - National Science Library

    Link, Yoel

    2000-01-01

    ... 0.53 m Transonic Wind Tunnel. This detailed investigation showed that the modifications made in converting Tonic Mk 5-1 to Tonic Mk 5-2 did not have any significant adverse effect on the aerodynamic characteristics...

  1. Role of Computational Fluid Dynamics and Wind Tunnels in Aeronautics R and D

    Science.gov (United States)

    Malik, Murjeeb R.; Bushnell, Dennis M.

    2012-01-01

    The purpose of this report is to investigate the status and future projections for the question of supplantation of wind tunnels by computation in design and to intuit the potential impact of computation approaches on wind-tunnel utilization all with an eye toward reducing the infrastructure cost at aeronautics R&D centers. Wind tunnels have been closing for myriad reasons, and such closings have reduced infrastructure costs. Further cost reductions are desired, and the work herein attempts to project which wind-tunnel capabilities can be replaced in the future and, if possible, the timing of such. If the possibility exists to project when a facility could be closed, then maintenance and other associated costs could be rescheduled accordingly (i.e., before the fact) to obtain an even greater infrastructure cost reduction.

  2. Analytical study of the effects of wind tunnel turbulence on turbofan rotor noise

    Science.gov (United States)

    Gliebe, P. R.

    1980-01-01

    An analytical study of the effects of wind tunnel turbulence on turbofan rotor noise was carried out to evaluate the effectiveness of the NASA Ames 40 by 80-foot wind tunnel in simulating flight levels of fan noise. A previously developed theory for predicting rotor/turbulence interaction noise, refined and extended to include first-order effects of inlet turbulence anisotropy, was employed to carry out a parametric study of the effects of fan size, blade number, and operating line for outdoor test stand, NASA Ames wind tunnel, and flight inlet turbulence conditions. A major result of this study is that although wind tunnel rotor/turbulence noise levels are not as low as flight levels, they are substantially lower than the outdoor test stand levels and do not mask other sources of fan noise.

  3. Phased array technique for low signal-to-noise ratio wind tunnels Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Closed wind tunnel beamforming for aeroacoustics has become more and more prevalent in recent years. Still, there are major drawbacks as current microphone arrays...

  4. Base Pressure Computations of the DERA Generic Missile Wind Tunnel Model

    National Research Council Canada - National Science Library

    DeSpirito, James

    2005-01-01

    .... The investigation was an extension to a previous investigation in which the computed forebody axial force did not compare well with experimental wind tunnel data, while all other forces and moments...

  5. Application of fuzzy logic to the control of wind tunnel settling chamber temperature

    Science.gov (United States)

    Gwaltney, David A.; Humphreys, Gregory L.

    1994-01-01

    The application of Fuzzy Logic Controllers (FLC's) to the control of nonlinear processes, typically controlled by a human operator, is a topic of much study. Recent application of a microprocessor-based FLC to the control of temperature processes in several wind tunnels has proven to be very successful. The control of temperature processes in the wind tunnels requires the ability to monitor temperature feedback from several points and to accommodate varying operating conditions in the wind tunnels. The FLC has an intuitive and easily configurable structure which incorporates the flexibility required to have such an ability. The design and implementation of the FLC is presented along with process data from the wind tunnels under automatic control.

  6. Phased array technique for low signal-to-noise ratio wind tunnels, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Closed wind tunnel beamforming for aeroacoustics has become more and more prevalent in recent years. Still, there are major drawbacks as current microphone arrays...

  7. A Novel Surface Thermometry Approach for use in Aerothermodynamic Wind Tunnel Testing, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR project is aimed at developing a novel thermometry technology with upconverting phosphors for temperature measurement in NASA's high-enthalpy wind tunnels....

  8. Analysis and management of risks experienced in tunnel construction

    Directory of Open Access Journals (Sweden)

    Cagatay Pamukcu

    2015-12-01

    Full Text Available In this study, first of all, the definitions of "risk", "risk analysis", "risk assessment" and "risk management" were made to avoid any confusions about these terms and significance of risk analysis and management in engineering projects was emphasized. Then, both qualitative and quantitative risk analysis techniques were mentioned and within the scope of the study, Event Tree Analysis method was selected in order to analyze the risks regarding TBM (Tunnel Boring Machine operations in tunnel construction. After all hazards that would be encountered during tunnel construction by TBM method had been investigated, those hazards were undergoing a Preliminary Hazard Analysis to sort out and prioritize the risks with high scores. When the risk scores were taken into consideration, it was seen that the hazards with high risk scores could be classified into 4 groups which are excavation + support induced accidents, accidents stemming from geologic conditions, auxiliary works, and project contract. According to these four classified groups of initiating events, Event Tree Analysis was conducted by taking into care 4 countermeasures apart from each other. Finally, the quantitative and qualitative consequences of Event Tree Analyses, which were undertaken for all initiating events, were investigated and interpreted together by making comparisons and referring to previous studies.

  9. Wind-tunnel tests of the XV-15 tilt rotor aircraft

    Science.gov (United States)

    Weiberg, J. A.; Maisel, M. D.

    1980-01-01

    The XV-15 aircraft was tested in the Ames 40 by 80 Foot Wind Tunnel for preliminary evaluation of aerodynamic and aeroelastic characteristics prior to flight. The tests were undertaken to investigate the aircraft performance, stability, control and structural loads for flight modes from helicopter through transition and airplane mode up to the tunnel capability of 170 knots. Results from these tests are presented.

  10. Wind Tunnel Simulations of the Mock Urban Setting Test - Experimental Procedures and Data Analysis

    National Research Council Canada - National Science Library

    Gailis, Ralph

    2004-01-01

    ... of the data analysis techniques is given. Emphasis is placed on the scaling arguments used to compare data between a wind tunnel and full-scale study, and on methods of uncertainty analysis to provide a rigorous underpinning to the dataset. The report serves as a complete documentation for users of the MUST wind tunnel simulation dataset, which can be obtained by contacting the author.

  11. Airloads Correlation of the UH-60A Rotor inside the 40- by 80-Foot Wind Tunnel

    OpenAIRE

    I-Chung Chang; Thomas R. Norman; Ethan A. Romander

    2014-01-01

    The presented research validates the capability of a loosely coupled computational fluid dynamics (CFD) and comprehensive rotorcraft analysis (CRA) code to calculate the flowfield around a rotor and test stand mounted inside a wind tunnel. The CFD/CRA predictions for the Full-Scale UH-60A Airloads Rotor inside the National Full-Scale Aerodynamics Complex (NFAC) 40- by 80-Foot Wind Tunnel at NASA Ames Research Center are compared with the latest measured airloads and performance data. The stud...

  12. The design of models for cryogenic wind tunnels. [mechanical properties and loads

    Science.gov (United States)

    Gillespie, V. P.

    1977-01-01

    Factors to be considered in the design and fabrication of models for cryogenic wind tunnels include high model loads imposed by the high operating pressures, the mechanical and thermodynamic properties of materials in low temperature environments, and the combination of aerodynamic loads with the thermal environment. Candidate materials are being investigated to establish criteria for cryogenic wind tunnel models and their installation. Data acquired from these tests will be provided to users of the National Transonic Facility.

  13. Wind tunnel experiments on the effects of tillage ridge features on wind erosion horizontal fluxes

    Directory of Open Access Journals (Sweden)

    M. Kardous

    2005-11-01

    Full Text Available In addition to the well-known soil factors which control wind erosion on flat, unridged surfaces, two specific processes affect the susceptibility of tillage ridged surfaces to wind erosion: ridge-induced roughness and ridge- trapping efficiency. In order to parameterize horizontal soil fluxes produced by wind over tillage ridges, eight-ridge configurations composed of sandy soil and exhibiting ridge heights to ridge spacing (RH/RS ratios ranging from 0.18 to 0.38 were experimented in a wind tunnel. These experiments are used to develop a parameterization of the horizontal fluxes over tillage ridged surfaces based only on the geometric characteristics of the ridges. Indeed, the key parameters controlling the horizontal flux, namely the friction velocity, threshold friction velocity and the adjustment coefficient, are derived through specific expressions, from ridge heights (RH and ridge spacing (RS. This parameterization was evaluated by comparing the results of the simulations to an additional experimental data set and to the data set obtained by Hagen and Armbrust (1992. In both cases, predicted and measured values are found to be in a satisfying agreement. This parameterization was used to evaluate the efficiency of ridges in reducing wind erosion. The results show that ridged surfaces, when compared to a loose, unridged soil surface, lead to an important reduction in the horizontal fluxes (exceeding 60%. Moreover, the effect of ridges in trapping particles contributes for more than 90% in the flux reduction while the ridge roughness effect is weak and decreases when the wind velocity increases.

  14. Wind tunnel experiments on the effects of tillage ridge features on wind erosion horizontal fluxes

    Directory of Open Access Journals (Sweden)

    M. Kardous

    2005-11-01

    Full Text Available In addition to the well-known soil factors which control wind erosion on flat, unridged surfaces, two specific processes affect the susceptibility of tillage ridged surfaces to wind erosion: ridge-induced roughness and ridge- trapping efficiency.

    In order to parameterize horizontal soil fluxes produced by wind over tillage ridges, eight-ridge configurations composed of sandy soil and exhibiting ridge heights to ridge spacing (RH/RS ratios ranging from 0.18 to 0.38 were experimented in a wind tunnel. These experiments are used to develop a parameterization of the horizontal fluxes over tillage ridged surfaces based only on the geometric characteristics of the ridges. Indeed, the key parameters controlling the horizontal flux, namely the friction velocity, threshold friction velocity and the adjustment coefficient, are derived through specific expressions, from ridge heights (RH and ridge spacing (RS. This parameterization was evaluated by comparing the results of the simulations to an additional experimental data set and to the data set obtained by Hagen and Armbrust (1992. In both cases, predicted and measured values are found to be in a satisfying agreement.

    This parameterization was used to evaluate the efficiency of ridges in reducing wind erosion. The results show that ridged surfaces, when compared to a loose, unridged soil surface, lead to an important reduction in the horizontal fluxes (exceeding 60%. Moreover, the effect of ridges in trapping particles contributes for more than 90% in the flux reduction while the ridge roughness effect is weak and decreases when the wind velocity increases.

  15. Wind Tunnel Model Design for Sonic Boom Studies of Nozzle Jet with Shock Interactions

    Science.gov (United States)

    Cliff, Susan E.; Denison, Marie; Sozer, Emre; Moini-Yekta, Shayan

    2016-01-01

    NASA and Industry are performing vehicle studies of configurations with low sonic boom pressure signatures. The computational analyses of modern configuration designs have matured to the point where there is confidence in the prediction of the pressure signature from the front of the vehicle, but uncertainty in the aft signatures with often greater boundary layer effects and nozzle jet pressures. Wind tunnel testing at significantly lower Reynolds numbers than in flight and without inlet and nozzle jet pressures make it difficult to accurately assess the computational solutions of flight vehicles. A wind tunnel test in the NASA Ames 9- by 7-Foot Supersonic Wind Tunnel from Mach 1.6 to 2.0 will be used to assess the effects of shocks from components passing through nozzle jet plumes on the sonic boom pressure signature and provide datasets for comparison with CFD codes. A large number of high-fidelity numerical simulations of wind tunnel test models with a variety of shock generators that simulate horizontal tails and aft decks have been studied to provide suitable models for sonic boom pressure measurements using a minimally intrusive pressure rail in the wind tunnel. The computational results are presented and the evolution of candidate wind tunnel models is summarized and discussed in this paper.

  16. Wind-Tunnel Balance Characterization for Hypersonic Research Applications

    Science.gov (United States)

    Lynn, Keith C.; Commo, Sean A.; Parker, Peter A.

    2012-01-01

    Wind-tunnel research was recently conducted at the NASA Langley Research Center s 31-Inch Mach 10 Hypersonic Facility in support of the Mars Science Laboratory s aerodynamic program. Researchers were interested in understanding the interaction between the freestream flow and the reaction control system onboard the entry vehicle. A five-component balance, designed for hypersonic testing with pressurized flow-through capability, was used. In addition to the aerodynamic forces, the balance was exposed to both thermal gradients and varying internal cavity pressures. Historically, the effect of these environmental conditions on the response of the balance have not been fully characterized due to the limitations in the calibration facilities. Through statistical design of experiments, thermal and pressure effects were strategically and efficiently integrated into the calibration of the balance. As a result of this new approach, researchers were able to use the balance continuously throughout the wide range of temperatures and pressures and obtain real-time results. Although this work focused on a specific application, the methodology shown can be applied more generally to any force measurement system calibration.

  17. Wind tunnel modeling of roadways: Comparison with mathematical models

    International Nuclear Information System (INIS)

    Heidorn, K.; Davies, A.E.; Murphy, M.C.

    1991-01-01

    The assessment of air quality impacts from roadways is a major concern to urban planners. In order to assess future road and building configurations, a number of techniques have been developed including mathematical models, which simulate traffic emissions and atmospheric dispersion through a series of mathematical relationships and physical models. The latter models simulate emissions and dispersion through scaling of these processes in a wind tunnel. Two roadway mathematical models, HIWAY-2 and CALINE-4, were applied to a proposed development in a large urban area. Physical modeling procedures developed by Rowan Williams Davies and Irwin Inc. (RWDI) in the form of line source simulators were also applied, and the resulting carbon monoxide concentrations were compared. The results indicated a factor of two agreement between the mathematical and physical models. The physical model, however, reacted to change in building massing and configuration. The mathematical models did not, since no provision for such changes was included in the mathematical models. In general, the RWDI model resulted in higher concentrations than either HIWAY-2 or CALINE-4. Where there was underprediction, it was often due to shielding of the receptor by surrounding buildings. Comparison of these three models with the CALTRANS Tracer Dispersion Experiment showed good results although concentrations were consistently underpredicted

  18. Overload prevention in model supports for wind tunnel model testing

    Directory of Open Access Journals (Sweden)

    Anton IVANOVICI

    2015-09-01

    Full Text Available Preventing overloads in wind tunnel model supports is crucial to the integrity of the tested system. Results can only be interpreted as valid if the model support, conventionally called a sting remains sufficiently rigid during testing. Modeling and preliminary calculation can only give an estimate of the sting’s behavior under known forces and moments but sometimes unpredictable, aerodynamically caused model behavior can cause large transient overloads that cannot be taken into account at the sting design phase. To ensure model integrity and data validity an analog fast protection circuit was designed and tested. A post-factum analysis was carried out to optimize the overload detection and a short discussion on aeroelastic phenomena is included to show why such a detector has to be very fast. The last refinement of the concept consists in a fast detector coupled with a slightly slower one to differentiate between transient overloads that decay in time and those that are the result of aeroelastic unwanted phenomena. The decision to stop or continue the test is therefore conservatively taken preserving data and model integrity while allowing normal startup loads and transients to manifest.

  19. Novel Design for a Wind Tunnel Vertical Gust Generator

    Science.gov (United States)

    Smith, Zachary; Jones, Anya; Hrynuk, John

    2017-11-01

    Gust response of MAVs is a fundamental problem for flight stability and control of such aircraft. Current knowledge about the gust response of these vehicles is limited and gust interaction often results in damage to vehicles. Studying isolated gust effects on simple airfoil models in a controlled environment is a necessity for the further development of MAV control laws. Gusts have typically been generated by oscillating an airfoil causing the shedding of vortices to propagate through the system. While effective, this method provides only a transient up and downdraft behavior with small changes in angle of attack, not suitable for studying MAV scale gust interactions. To study these interactions, a gust that creates a change in flow angle larger than the static stall angle of typical airfoils was developed. This work was done in a low speed, low turbulence wind tunnel at base operating speed of 1.5 m/s, generating a Reynolds number of 12,000 on a NACA 0012 wing. It describes the fundamental mechanisms of how this gust was generated and the results obtained from the gust generator. The gust, which can alter the flow field in less than 1 second, was characterized using PIV and the interactions with a stationary airfoil at several angles of attack are evaluated.

  20. Reduction of the performance of a noise screen due to screen-induced wind-speed gradients: numerical computations and wind-tunnel experiments

    NARCIS (Netherlands)

    Salomons, E.M.

    1999-01-01

    Downwind sound propagation over a noise screen is investigated by numerical computations and scale model experiments in a wind tunnel. For the computations, the parabolic equation method is used, with a range-dependent sound-speed profile based on wind-speed profiles measured in the wind tunnel and

  1. Design of Rail Instrumentation for Wind Tunnel Sonic Boom Measurements and Computational-Experimental Comparisons

    Science.gov (United States)

    Cliff, Susan E.; Elmiligui, A.; Aftosmis, M.; Morgenstern, J.; Durston, D.; Thomas, S.

    2012-01-01

    An innovative pressure rail concept for wind tunnel sonic boom testing of modern aircraft configurations with very low overpressures was designed with an adjoint-based solution-adapted Cartesian grid method. The computational method requires accurate free-air calculations of a test article as well as solutions modeling the influence of rail and tunnel walls. Specialized grids for accurate Euler and Navier-Stokes sonic boom computations were used on several test articles including complete aircraft models with flow-through nacelles. The computed pressure signatures are compared with recent results from the NASA 9- x 7-foot Supersonic Wind Tunnel using the advanced rail design.

  2. Vertical axis wind turbine wake in boundary layer flow in a wind tunnel

    Science.gov (United States)

    Rolin, Vincent; Porté-Agel, Fernando

    2016-04-01

    A vertical axis wind turbine is placed in a boundary layer flow in a wind tunnel, and its wake is investigated. Measurements are performed using an x-wire to measure two components of velocity and turbulence statistics in the wake of the wind turbine. The study is performed at various heights and crosswind positions in order to investigate the full volume of the wake for a range of tip speed ratios. The velocity deficit and levels of turbulence in the wake are related to the performance of the turbine. The asymmetric incoming boundary layer flow causes the rate of recovery in the wake to change as a function of height. Higher shear between the wake and unperturbed flow occurs at the top edge of the wake, inducing stronger turbulence and mixing in this region. The difference in flow relative to the blades causes the velocity deficit and turbulence level to change as a function of crosswind position behind the rotor. The relative difference diminishes with increasing tip speed ratio. Therefore, the wake becomes more homogeneous as tip speed ratio increases.

  3. Wind tunnel study of a vertical axis wind turbine in a turbulent boundary layer flow

    Science.gov (United States)

    Rolin, Vincent; Porté-Agel, Fernando

    2015-04-01

    Vertical axis wind turbines (VAWTs) are in a relatively infant state of development when compared to their cousins the horizontal axis wind turbines. Very few studies have been carried out to characterize the wake flow behind VAWTs, and virtually none to observe the influence of the atmospheric boundary layer. Here we present results from an experiment carried out at the EPFL-WIRE boundary-layer wind tunnel and designed to study the interaction between a turbulent boundary layer flow and a VAWT. Specifically we use stereoscopic particle image velocimetry to observe and quantify the influence of the boundary layer flow on the wake generated by a VAWT, as well as the effect the VAWT has on the boundary layer flow profile downstream. We find that the wake behind the VAWT is strongly asymmetric, due to the varying aerodynamic forces on the blades as they change their position around the rotor. We also find that the wake adds strong turbulence levels to the flow, particularly on the periphery of the wake where vortices and strong velocity gradients are present. The boundary layer is also shown to cause greater momentum to be entrained downwards rather than upwards into the wake.

  4. Design and Execution of the Hypersonic Inflatable Aerodynamic Decelerator Large-Article Wind Tunnel Experiment

    Science.gov (United States)

    Cassell, Alan M.

    2013-01-01

    The testing of 3- and 6-meter diameter Hypersonic Inflatable Aerodynamic Decelerator (HIAD) test articles was completed in the National Full-Scale Aerodynamics Complex 40 ft x 80 ft Wind Tunnel test section. Both models were stacked tori, constructed as 60 degree half-angle sphere cones. The 3-meter HIAD was tested in two configurations. The first 3-meter configuration utilized an instrumented flexible aerodynamic skin covering the inflatable aeroshell surface, while the second configuration employed a flight-like flexible thermal protection system. The 6-meter HIAD was tested in two structural configurations (with and without an aft-mounted stiffening torus near the shoulder), both utilizing an instrumented aerodynamic skin.

  5. Design and evaluation of an aeroacoustic wind tunnel for measurement of axial flow fans.

    Science.gov (United States)

    Bilka, M; Anthoine, J; Schram, C

    2011-12-01

    An anechoic wind tunnel dedicated to fan self-noise studies has been designed and constructed at the von Karman Institute The multi-chamber, mass flow driven design allows for all fan performance characteristics, aerodynamic quantities (e.g., wake turbulence measurements), and acoustic properties to be assessed in the same facility with the same conditions. The acoustic chamber performance is assessed using the optimum reference method and found to be within the ISO 3745 standards down to 150 Hz for pure tone and broadband source mechanisms. The additional influence of installation effects of an aerodynamic inlet was found to create a scattered sound field only near the source location, while still providing good anechoic results at more distant sound pressure measurement positions. It was found to have inflow properties, span-wise uniformity, and low turbulence intensity, consistent with those desired for fan self-noise studies. © 2011 Acoustical Society of America

  6. Comparisons between LES and wind tunnel hot-wire measurements of a NACA 0015 airfoil

    DEFF Research Database (Denmark)

    Zhu, Wei Jun; Shen, Wen Zhong; Bertagnolio, Franck

    2012-01-01

    is constructed in a wind tunnel similar as the condition where the experiments were carried out. The goal of this study is to validate the LES model against detailed measurements. The simulations are performed with in-house EllipSys3D code on high performance computers. Numerical study are focused...... on the stability and accuracy of the LES simulations on various mesh configurations. The spanwise grid spacing was found important to produce correct flow disturbance along the airfoil span, which further affects the turbulent energy distribution.......Large-eddy simulations (LES) are carried out for flow over a NACA 0015 airfoil at AoA = 8o and chord based Reynolds number of 1.71106. To accurately simulate the complex flow at the suction side of the airfoil, a reasonably large number of grid points are required. The computational mesh...

  7. Unsteady Aerodynamics Experiment Phase VI: Wind Tunnel Test Configurations and Available Data Campaigns

    Energy Technology Data Exchange (ETDEWEB)

    Hand, M. M.; Simms, D. A.; Fingersh, L. J.; Jager, D. W.; Cotrell, J. R.; Schreck, S.; Larwood, S. M.

    2001-12-01

    The primary objective of the insteady aerodynamics experiment was to provide information needed to quantify the full-scale, three-dimensional aerodynamic behavior of horizontal-axis wind turbines. This report is intended to familiarize the user with the entire scope of the wind tunnel test and to support the use of the resulting data.

  8. Wind-Tunnel Tests of a Bridge Model with Active Vibration Control

    DEFF Research Database (Denmark)

    Hansen, H. I.; Thoft-Christensen, Palle; Mendes, P. A.

    The application of active control systems to reduce wind vibrations in bridges is a new area of research. This paper presents the results that were obtained on a set of wind tunnel tests of a bridge model equipped with active movable flaps. Based on the monitored position and motion of the deck...

  9. Analysis of heat-transfer measurements from 2 AEDC wind tunnels on the Shuttle external tank

    Science.gov (United States)

    Nutt, K. W.

    1984-01-01

    Previous aerodynamic heating tests have been conducted in the AEDC/VKF Supersonic Wind Tunnel (A) to aid in defining the design thermal environment for the space shuttle external tank. The quality of these data has been under discussion because of the effects of low tunnel enthalpy and slow model injection rates. Recently the AEDC/VKF Hypersonic Wind Tunnel (C) has been modified to provide a Mach 4 capability that has significantly higher tunnel enthalpy with more rapid model injection rates. Tests were conducted in Tunnel C at Mach 4 to obtain data on the external tank for comparison with Tunnel A results. Data were obtained on a 0.0175 scale model of the Space Shuttle Integrated Vehicle at Re/ft = 4 x 10 to the 6th power with the tunnel stagnation temperature varying from 740 to 1440 R. Model attitude varied from an angle of attack of -5 to 5 deg and an angle of sideslip of -3 to 3 deg. One set of data was obtained in Tunnel C at Re/ft = 6.9 x 10 to the 6th for comparison with flight data. Data comparisons between the two tunnels for numerous regions on the external tank are given.

  10. Experimental study of wind tunnel performance by a two-component laserDopplerAnemometer

    Directory of Open Access Journals (Sweden)

    M Pourmahabadian

    2005-10-01

    Full Text Available Background and Aims: This survey studies the wind tunnel performance by a two- componentlaser Doppler Anemometer, so some experiments were carried out to assess the performance of awind tunnel.Method: The tunnel was capable to produce air velocity of up to 40 m/s.. Measurements ofvelocity profiles have been made actors the test section of wind tunnel through the using a twocomponentfiber optic Laser Doppler anemometer. Measurements of velocity profiles andturbulence intensities have been made across the test section of the wind tunnel using a twocomponentfiber optic Laser Doppler anemometer (I.D.A for wind speeds ranging from 1 to3m/s.Results: Performance rests of velocity profiles at a given flow rate and various position of aerosolgenerator showed that although uniformity of flow dependent to the place of an atomizer (asaerosol generator but the variation of wind speed across the test section meets the wind speedrequirements, as specified by US EPAfor 3m/s only.Conclusion:At time which particles velocity reach to less than one micron, the air velocity relateson the similarity of particles and

  11. Wind Tunnel and Hover Performance Test Results for Multicopter UAS Vehicles

    Science.gov (United States)

    Russell, Carl R.; Jung, Jaewoo; Willink, Gina; Glasner, Brett

    2016-01-01

    There is currently a lack of published data for the performance of multicopter unmanned aircraft system (UAS) vehicles, such as quadcopters and octocopters, often referred to collectively as drones. With the rapidly increasing popularity of multicopter UAS, there is interest in better characterizing the performance of this type of aircraft. By studying the performance of currently available vehicles, it will be possible to develop models for vehicles at this scale that can accurately predict performance and model trajectories. This paper describes a wind tunnel test that was recently performed in the U.S. Army's 7- by 10-ft Wind Tunnel at NASA Ames Research Center. During this wind tunnel entry, five multicopter UAS vehicles were tested to determine forces and moments as well as electrical power as a function of wind speed, rotor speed, and vehicle attitude. The test is described here in detail, and a selection of the key results from the test is presented.

  12. Development and Evaluation of a Dynamic, 3-Degree-of-Freedom (DOF) Wind Tunnel Model

    Science.gov (United States)

    2016-11-01

    ARL-CR-0807● NOV 2016 US Army Research Laboratory Development and Evaluation of a Dynamic, 3-Degree-of-Freedom ( DOF ) Wind...ARL-CR-0807 ● NOV 2016 US Army Research Laboratory Development and Evaluation of a Dynamic, 3-Degree-of-Freedom ( DOF ) Wind...Development and Evaluation of a Dynamic, 3-Degree-of-Freedom ( DOF ) Wind Tunnel Model 5a. CONTRACT NUMBER W911-QX-14-C-0016 5b. GRANT NUMBER

  13. Boundary Layer Simulation and Control in Wind Tunnels

    Science.gov (United States)

    1988-04-01

    of 1968. They should not be taken to mean that a reasonable engineering accuracy, which might be sufficient for simulation/extra- polation ...transition location, MO = 2.89, VKF-Tunnel A. 407 Ref.40 I o es If" K Srm 0 Rouonness Tunnel Mooel Relerence 3.S? J.W 0-5 Soneres

  14. Rotary Balance Wind Tunnel Testing for the FASER Flight Research Aircraft

    Science.gov (United States)

    Denham, Casey; Owens, D. Bruce

    2016-01-01

    Flight dynamics research was conducted to collect and analyze rotary balance wind tunnel test data in order to improve the aerodynamic simulation and modeling of a low-cost small unmanned aircraft called FASER (Free-flying Aircraft for Sub-scale Experimental Research). The impetus for using FASER was to provide risk and cost reduction for flight testing of more expensive aircraft and assist in the improvement of wind tunnel and flight test techniques, and control laws. The FASER research aircraft has the benefit of allowing wind tunnel and flight tests to be conducted on the same model, improving correlation between wind tunnel, flight, and simulation data. Prior wind tunnel tests include a static force and moment test, including power effects, and a roll and yaw damping forced oscillation test. Rotary balance testing allows for the calculation of aircraft rotary derivatives and the prediction of steady-state spins. The rotary balance wind tunnel test was conducted in the NASA Langley Research Center (LaRC) 20-Foot Vertical Spin Tunnel (VST). Rotary balance testing includes runs for a set of given angular rotation rates at a range of angles of attack and sideslip angles in order to fully characterize the aircraft rotary dynamics. Tests were performed at angles of attack from 0 to 50 degrees, sideslip angles of -5 to 10 degrees, and non-dimensional spin rates from -0.5 to 0.5. The effects of pro-spin elevator and rudder deflection and pro- and anti-spin elevator, rudder, and aileron deflection were examined. The data are presented to illustrate the functional dependence of the forces and moments on angle of attack, sideslip angle, and angular rate for the rotary contributions to the forces and moments. Further investigation is necessary to fully characterize the control effectors. The data were also used with a steady state spin prediction tool that did not predict an equilibrium spin mode.

  15. Airloads Correlation of the UH-60A Rotor Inside the 40- by 80-Foot Wind Tunnel

    Science.gov (United States)

    Chang, I-Chung; Norman, Thomas R.; Romander, Ethan A.

    2013-01-01

    The presented research validates the capability of a loosely-coupled computational fluid dynamics (CFD) and comprehensive rotorcraft analysis (CRA) code to calculate the flowfield around a rotor and test stand mounted inside a wind tunnel. The CFD/CRA predictions for the full-scale UH-60A Airloads Rotor inside the National Full-Scale Aerodynamics Complex (NFAC) 40- by 80-Foot Wind Tunnel at NASA Ames Research Center are compared with the latest measured airloads and performance data. The studied conditions include a speed sweep at constant lift up to an advance ratio of 0.4 and a thrust sweep at constant speed up to and including stall. For the speed sweep, wind tunnel modeling becomes important at advance ratios greater than 0.37 and test stand modeling becomes increasingly important as the advance ratio increases. For the thrust sweep, both the wind tunnel and test stand modeling become important as the rotor approaches stall. Despite the beneficial effects of modeling the wind tunnel and test stand, the new models do not completely resolve the current airload discrepancies between prediction and experiment.

  16. Airloads Correlation of the UH-60A Rotor inside the 40- by 80-Foot Wind Tunnel

    Directory of Open Access Journals (Sweden)

    I-Chung Chang

    2014-01-01

    Full Text Available The presented research validates the capability of a loosely coupled computational fluid dynamics (CFD and comprehensive rotorcraft analysis (CRA code to calculate the flowfield around a rotor and test stand mounted inside a wind tunnel. The CFD/CRA predictions for the Full-Scale UH-60A Airloads Rotor inside the National Full-Scale Aerodynamics Complex (NFAC 40- by 80-Foot Wind Tunnel at NASA Ames Research Center are compared with the latest measured airloads and performance data. The studied conditions include a speed sweep at constant lift up to an advance ratio of 0.4 and a thrust sweep at constant speed up to and including stall. For the speed sweep, wind tunnel modeling becomes important at advance ratios greater than 0.37 and test stand modeling becomes increasingly important as the advance ratio increases. For the thrust sweep, both the wind tunnel and test stand modeling become important as the rotor approaches stall. Despite the beneficial effects of modeling the wind tunnel and test stand, the new models do not completely resolve the current airload discrepancies between prediction and experiment.

  17. Evaluation of the Influence Caused by Tunnel Construction on Groundwater Environment: A Case Study of Tongluoshan Tunnel, China

    Directory of Open Access Journals (Sweden)

    Jian Liu

    2015-01-01

    Full Text Available Problems related to water inflow during tunnel construction are challenging to designers, workers, and management departments, as they can threaten tunneling project from safety, time, and economic aspects. Identifying the impacts on groundwater environment resulting from tunnel drainage and making a correct assessment before tunnel construction is essential to better understand troubles that would be encountered during tunnel excavation and helpful to adopt appropriate countermeasures to minimize the influences. This study presents an indicator system and quantifies each indicator of Tongluoshan tunnel, which is located in southwest China with a length of 5.2 km and mainly passes through carbonate rocks and sandstones, based on field investigation and related technological reports. Then, an evaluation is made using fuzzy comprehensive assessment method, with a result showing that it had influenced the local groundwater environment at a moderate degree. Information fed back from environmental investigation and hydrologic monitoring carried out during the main construction period proves the evaluation, as the flow of some springs and streams located beside the tunnel route was found experiencing an apparent decline.

  18. Pilot-scale concept of real-time wind speed-matching wind tunnel for measurements of gaseous emissions

    Science.gov (United States)

    Comprehensive control of odors, hydrogen sulfide (H2S), ammonia (NH3) and odorous volatile organic compound (VOC) emissions associated with animal production is a critical need. Current methods utilizing wind tunnels and flux chambers for measurements of gaseous emissions from area sources such as f...

  19. Soil erosion rates from mixed soil and gravel surfaces in a wind tunnel: A preliminary report

    Energy Technology Data Exchange (ETDEWEB)

    Ligotke, M.W.

    1988-12-01

    Tests of wind erosion were performed in a controlled-environment wind tunnel to support the development of natural-material protective barriers for long-term isolation of radioactive waste. Barrier performance standards currently being developed for internal and external barrier performance are expected to mandate a surface layer that is resistant to wind erosion. The purpose of this study was to initiate a series of tests to determine suitable soil and gravel mixtures for such a barrier and to test worst-case surface layer conditions under the influence of high wind speeds. Six mixed soil and gravel surfaces were prepared, weathered to represent natural wind-blown desert areas, and subjected to controlled wind erosion forces in a wind tunnel. The applied erosive forces, including surface shear forces, were characterized to provide a means of relating wind tunnel results with actual field conditions. Soil particle losses from the surfaces caused by suspension, saltation, and surface creep were monitored by aerosol sample probes and mass balance measurements. 23 refs., 22 figs., 3 tabs.

  20. Soil erosion rates from mixed soil and gravel surfaces in a wind tunnel: A preliminary report

    International Nuclear Information System (INIS)

    Ligotke, M.W.

    1988-12-01

    Tests of wind erosion were performed in a controlled-environment wind tunnel to support the development of natural-material protective barriers for long-term isolation of radioactive waste. Barrier performance standards currently being developed for internal and external barrier performance are expected to mandate a surface layer that is resistant to wind erosion. The purpose of this study was to initiate a series of tests to determine suitable soil and gravel mixtures for such a barrier and to test worst-case surface layer conditions under the influence of high wind speeds. Six mixed soil and gravel surfaces were prepared, weathered to represent natural wind-blown desert areas, and subjected to controlled wind erosion forces in a wind tunnel. The applied erosive forces, including surface shear forces, were characterized to provide a means of relating wind tunnel results with actual field conditions. Soil particle losses from the surfaces caused by suspension, saltation, and surface creep were monitored by aerosol sample probes and mass balance measurements. 23 refs., 22 figs., 3 tabs

  1. Influence of winding construction on starter-generator thermal processes

    Science.gov (United States)

    Grachev, P. Yu; Bazarov, A. A.; Tabachinskiy, A. S.

    2018-01-01

    Dynamic processes in starter-generators features high winding are overcurrent. It can lead to insulation overheating and fault operation mode. For hybrid and electric vehicles, new high efficiency construction of induction machines windings is proposed. Stator thermal processes need be considered in the most difficult operation modes. The article describes construction features of new compact stator windings, electromagnetic and thermal models of processes in stator windings and explains the influence of innovative construction on thermal processes. Models are based on finite element method.

  2. Smart dynamic rotor control using active flaps on a small-scale wind turbine: aeroelastic modeling and comparison with wind tunnel measurements

    DEFF Research Database (Denmark)

    Barlas, Thanasis K.; van Wingerden, W.; Hulskamp, A.W.

    2013-01-01

    In this paper, the proof of concept of a smart rotor is illustrated by aeroelastic simulations on a small-scale rotor and comparison with wind tunnel experiments. The application of advanced feedback controllers using actively deformed flaps in the wind tunnel measurements is shown to alleviate d...

  3. Calibration of the Flow in the Test Section of the Research Wind Tunnel at DST Group

    Science.gov (United States)

    2015-10-01

    the tunnel. The calibration data are presented and analysed and explanations of flow behaviour are given. 2. Mean-Velocity Measurements 2.1...1073. Defence Science and Technology Organisation , Melbourne, Australia. Erm, L. P. 2003 Calibration of the flow in the extended test section...of the low-speed wind tunnel at DSTO. DSTO-TR-1384. Defence Science and Technology Organisation , Melbourne, Australia. Erm, L. P. 2015

  4. Effectiveness of a Wedge Probe to Measure Sonic Boom Signatures in a Supersonic Wind Tunnel

    Science.gov (United States)

    Wilcox, Floyd J., Jr.; Elmiligui, Alaa A.

    2013-01-01

    A wind tunnel investigation was conducted in the Langley Unitary Plan Wind Tunnel (UPWT) to determine the effectiveness of a wedge probe to measure sonic boom pressure signatures compared to a slender conical probe. A generic business jet model at a constant angle of attack and at a single model to probe separation distance was used to generate a sonic boom signature. Pressure signature data were acquired with both the wedge probe and a slender conical probe for comparison. The test was conducted at a Mach number of 2.0 and a free-stream unit Reynolds number of 2 million per foot. The results showed that the wedge probe was not effective in measuring the sonic boom pressure signature of the aircraft model in the supersonic wind tunnel. Data plots and a discussion of the results are presented. No tabulated data or flow visualization photographs are included.

  5. Analysis of Wind Tunnel Polar Replicates Using the Modern Design of Experiments

    Science.gov (United States)

    Deloach, Richard; Micol, John R.

    2010-01-01

    The role of variance in a Modern Design of Experiments analysis of wind tunnel data is reviewed, with distinctions made between explained and unexplained variance. The partitioning of unexplained variance into systematic and random components is illustrated, with examples of the elusive systematic component provided for various types of real-world tests. The importance of detecting and defending against systematic unexplained variance in wind tunnel testing is discussed, and the random and systematic components of unexplained variance are examined for a representative wind tunnel data set acquired in a test in which a missile is used as a test article. The adverse impact of correlated (non-independent) experimental errors is described, and recommendations are offered for replication strategies that facilitate the quantification of random and systematic unexplained variance.

  6. Comparison of Force and Moment Coefficients for the Same Test Article in Multiple Wind Tunnels

    Science.gov (United States)

    Deloach, Richard

    2013-01-01

    This paper compares the results of force and moment measurements made on the same test article and with the same balance in three transonic wind tunnels. Comparisons are made for the same combination of Reynolds number, Mach number, sideslip angle, control surface configuration, and angle of attack range. Between-tunnel force and moment differences are quantified. An analysis of variance was performed at four unique sites in the design space to assess the statistical significance of between-tunnel variation and any interaction with angle of attack. Tunnel to tunnel differences too large to attribute to random error were detected were observed for all forces and moments. In some cases these differences were independent of angle of attack and in other cases they changed with angle of attack.

  7. Space shuttle phase B wind tunnel model and test information. Volume 2: Orbiter configuration

    Science.gov (United States)

    Glynn, J. L.; Poucher, D. E.

    1988-01-01

    Archived wind tunnel test data are available for flyback booster or other alternate recoverable configurations as well as reusable orbiters studied during initial development (Phase B) of the Space Shuttle. Considerable wind tunnel data was acquired by the competing contractors and the NASA centers for an extensive variety of configurations with an array of wing and body planforms. All contractor and NASA wind tunnel test data acquiredin the Phase B development have been compiled into a database and are available for applying to current winged flyback or recoverable booster aerodynamic studies. The Space Shuttle Phase B Wind Tunnel Database is structured by vehicle component and configuration type. Basic components include the booster, the orbiter, and the launch vehicle. Booster configuration types include straight and delta wings, canard, cylindrical, retroglide, and twin body. Orbiter configuration types include straight and delta wings, lifting body, drop tanks, and double delta wings. Launch configration types include booster and orbiter components in various stacked and tandom combinations. The digital database consists of 220 files of data containing basic tunnel recorded data.

  8. A New Global Regression Analysis Method for the Prediction of Wind Tunnel Model Weight Corrections

    Science.gov (United States)

    Ulbrich, Norbert Manfred; Bridge, Thomas M.; Amaya, Max A.

    2014-01-01

    A new global regression analysis method is discussed that predicts wind tunnel model weight corrections for strain-gage balance loads during a wind tunnel test. The method determines corrections by combining "wind-on" model attitude measurements with least squares estimates of the model weight and center of gravity coordinates that are obtained from "wind-off" data points. The method treats the least squares fit of the model weight separate from the fit of the center of gravity coordinates. Therefore, it performs two fits of "wind- off" data points and uses the least squares estimator of the model weight as an input for the fit of the center of gravity coordinates. Explicit equations for the least squares estimators of the weight and center of gravity coordinates are derived that simplify the implementation of the method in the data system software of a wind tunnel. In addition, recommendations for sets of "wind-off" data points are made that take typical model support system constraints into account. Explicit equations of the confidence intervals on the model weight and center of gravity coordinates and two different error analyses of the model weight prediction are also discussed in the appendices of the paper.

  9. Survey of needs and capabilities for wind tunnel testing of dynamic stability of aircraft at high angles of attack

    Science.gov (United States)

    Orlik-Ruckemann, K. J.

    1973-01-01

    A survey was conducted relative to future requirements for dynamic stability information for such aerospace vehicles as the space shuttle and advanced high performance military aircraft. High-angle-of-attack and high-Reynolds number conditions were emphasized. A review was made of the wind-tunnel capabilities in North America for measuring dynamic stability derivatives, revealing an almost total lack of capabilities that could satisfy these requirements. Recommendations are made regarding equipment that should be constructed to remedy this situation. A description is given of some of the more advanced existing capabilities, which can be used to at least partly satisfy immediate demands.

  10. Simulation of flow over double-element airfoil and wind tunnel test for use in vertical axis wind turbine

    DEFF Research Database (Denmark)

    Chougule, Prasad; Nielsen, Søren R.K.

    2014-01-01

    Nowadays, small vertical axis wind turbines are receiving more attention due to their suitability in micro-electricity generation. There are few vertical axis wind turbine designs with good power curve. However, the efficiency of power extraction has not been improved. Therefore, an attempt has...... been made to utilize high lift technology for vertical axis wind turbines in order to improve power efficiency. High lift is obtained by double-element airfoil mainly used in aeroplane wing design. In this current work a low Reynolds number airfoil is selected to design a double-element airfoil blade...... for use in vertical axis wind turbine to improve the power efficiency. Double-element airfoil blade design consists of a main airfoil and a slat airfoil. Orientation of slat airfoil is a parameter of investigation in this paper and air flow simulation over double-element airfoil. With primary wind tunnel...

  11. Comparison of the 10x10 and the 8x6 Supersonic Wind Tunnels at the NASA Glenn Research Center for Low-Speed (Subsonic) Operation

    Science.gov (United States)

    Hoffman, Thomas R.; Johns, Albert L.; Bury, Mark E.

    2002-01-01

    NASA Glenn Research Center and Lockheed Martin tested an aircraft model in two wind tunnels to compare low-speed (subsonic) flow characteristics. Test objectives were to determine and document similarities and uniqueness of the tunnels and to verify that the 10- by 10-Foot Supersonic Wind Tunnel (10x10 SWT) is a viable low-speed test facility when compared to the 8- by 6-Foot Supersonic Wind Tunnel (8x6 SWT). Conclusions are that the data from the two facilities compares very favorably and that the 10-by 10-Foot Supersonic Wind Tunnel at NASA Glenn Research Center is a viable low-speed wind tunnel.

  12. Study on the snow drifting modelling criteria in boundary layer wind tunnels

    Directory of Open Access Journals (Sweden)

    Georgeta BĂETU

    2014-07-01

    Full Text Available The paper presents a study on modelling the wind drifting of the snow deposited on the flat roofs of buildings in wind tunnel. The physical model of snow drifting in wind tunnel simulating the urban exposure to wind action is not frequently reported in literature, but is justified by the serious damages under accidental important snow falls combined with strong wind actions on the roofs of various buildings. A uniform layer of snow deposited on the flat roof was exposed to wind action in order to obtain the drifting. The parameters involved in the modelling at reduced scale, with particles of glass beads, of the phenomenon of transportation of the snow from the roof were analysed, particularly the roughness length and the friction wind speed. A numerical simulation in ANSYS CFX program was developed in parallel, by which a more accurate visualization of the particularities of the wind flow over the roof was possible, in the specific areas where the phenomenon of snow transportation was more susceptible to occur. Modified roughness length and friction wind speed were determined through methods used in the literature, an attempt being made in this work to analyse the factors that influence their values.

  13. Novel Sensor for Wind Tunnel Calibration and Characterization, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Advances in computational capabilities for modeling the performance of advanced flight vehicles depend on verification measurements made in ground-based wind...

  14. Conducting Rock Mass Rating for tunnel construction on Mars

    Science.gov (United States)

    Beemer, Heidi D.; Worrells, D. Scott

    2017-10-01

    Mars analogue missions provide researchers, scientists, and engineers the opportunity to establish protocols prior to sending human explorers to another planet. This paper investigated the complexity of a team of simulation astronauts conducting a Rock Mass Rating task during Analogue Mars missions. This study was conducted at the Mars Desert Research Station in Hanksville, UT, during field season 2015/2016 and with crews 167,168, and 169. During the experiment, three-person teams completed a Rock Mass Rating task during a three hour Extra Vehicular Activity on day six of their two-week simulation mission. This geological test is used during design and construction of excavations in rock on Earth. On Mars, this test could be conducted by astronauts to determine suitable rock layers for tunnel construction which would provide explorers a permanent habitat and radiation shielding while living for long periods of time on the surface. The Rock Mass Rating system derives quantitative data for engineering designs that can easily be communicated between engineers and geologists. Conclusions from this research demonstrated that it is feasible for astronauts to conduct the Rock Mass Rating task in a Mars simulated environment. However, it was also concluded that Rock Mass Rating task orientation and training will be required to ensure that accurate results are obtained.

  15. Background Pressure Profiles for Sonic Boom Vehicle Testing in the NASA Glenn 8- by 6-Foot Supersonic Wind Tunnel

    Science.gov (United States)

    Castner, Raymond; Shaw, Stephen; Adamson, Eric; Simerly, Stephanie

    2013-01-01

    In an effort to identify test facilities that offer sonic boom measurement capabilities, an exploratory test program was initiated using wind tunnels at NASA research centers. The subject of this report is the sonic boom pressure rail data collected in the Glenn Research Center 8- by 6-Foot Supersonic Wind Tunnel. The purpose is to summarize the lessons learned based on the test activity, specifically relating to collecting sonic boom data which has a large amount of spatial pressure variation. The wind tunnel background pressure profiles are presented as well as data which demonstrated how both wind tunnel Mach number and model support-strut position affected the wind tunnel background pressure profile. Techniques were developed to mitigate these effects and are presented.

  16. A new low-turbulence wind tunnel for animal and small vehicle flight experiments

    OpenAIRE

    Quinn, Daniel B.; Watts, Anthony; Nagle, Tony; Lentink, David

    2017-01-01

    Our understanding of animal flight benefits greatly from specialized wind tunnels designed for flying animals. Existing facilities can simulate laminar flow during straight, ascending and descending flight, as well as at different altitudes. However, the atmosphere in which animals fly is even more complex. Flow can be laminar and quiet at high altitudes but highly turbulent near the ground, and gusts can rapidly change wind speed. To study flight in both laminar and turbulent environments, a...

  17. IEA Annex XX. Dynamic Inflow effects at fast pitching steps on a wind turbine placed in the NASA-Ames wind tunnel

    Energy Technology Data Exchange (ETDEWEB)

    Schepers, J.G. [ECN Wind Energy, Petten (Netherlands)

    2007-10-15

    The results of a study on dynamic inflow effects are presented and discussed. The study is carried out within the framework of the IEA Annex XX 'Analysis of NASA-Ames wind tunnel measurements'. Use is made of measurements which were taken by NREL (National Renewable Energy Laboratory) on a wind turbine which was placed in the large (24.4 x 36.6m) NASA-Ames wind tunnel.

  18. The George C. Marshall Space Flight Center's 14 X 14-Inch Trisonic Wind Tunnel: A Historical Perspective

    Science.gov (United States)

    Springer, A.

    1994-01-01

    A history of the National Aeronautics and Space Administration (NASA) George C. Marshall Space Flight Center's (MSFC) 14 x 14-Inch Trisonic Wind Tunnel is presented. Its early and continuing role in the United States space program is shown through highlights of the tunnel's history and the major programs tested in the tunnel over the past 40 years. The 14-Inch Tunnel has its beginning with the Army in the late 1950's under the Army Ballistic Missile Agency (ABMA). Such programs as the Redstone, Jupiter, Pershing, and early Saturn were tested in the 14-Inch Tunnel in the late 1950's. America's first launch vehicle, the Jupiter C, was designed and developed using the 14-Inch Wind Tunnel. Under NASA, the 14-Inch Wind Tunnel has made large contributions to the Saturn, Space Transportation System, and future launch vehicle programs such as Shuttle-C and the National Launch System. A technical description of the tunnel is presented for background information on the type and capabilities of the 14-Inch Wind Tunnel. The report concludes in stating: the 14-Inch Wind Tunnel as in speed of sound; transonic, at or near the speed of sound the past, will continue to play a large but unseen role in he development of America's space program.

  19. Wind Tunnel Aeroacoustic Tests of Six Airfoils for Use on Small Wind Turbines; Period of Performance: August 23, 2002 through March 31, 2004

    Energy Technology Data Exchange (ETDEWEB)

    Oerlemans, S.

    2004-08-01

    The U.S. Department of Energy, working through the National Renewable Energy Laboratory, is engaged in a comprehensive research effort to improve our understanding of wind turbine aeroacoustics. Quiet wind turbines are an inducement to widespread deployment, so the goal of NREL's aeroacoustic research is to develop tools that the U.S. wind industry can use in developing and deploying highly efficient, quiet wind turbines at low wind speed sites. NREL's National Wind Technology Center is implementing a multifaceted approach that includes wind tunnel tests, field tests, and theoretical analyses in direct support of low wind speed turbine development by its industry partners. To that end, wind tunnel aerodynamic tests and aeroacoustic tests have been performed on six airfoils that are candidates for use on small wind turbines. Results are documented in this report.

  20. Numerical Investigation of the Optimal Construction Sequence of an Actual Super Shallow Large-Span Tunnel

    Science.gov (United States)

    Zhou, Zheng; Li, Jiang; Jin, Bao; Liu, Yang

    2017-10-01

    The construction process of super shallow large-span tunnel is quite complicated comparing with the construction technique of regular tunnels; therefore, it is deserved to investigate the optimal construction sequence which determines the schedule and safety management of the tunnel excavation. To address this issue, the optimal excavation procedure of the super shallow large-span tunnel is investigated using numerical analysis in this study, based on a practical tunnel project. First, the analytical finite element model of an actual tunnel structure is established to implement the numerical simulation of different tunnel excavation. Second, some numerical results are analyzed for the selection of the optimal construction excavation, such as the variation rules of the surface settlement, crown displacement and side wall deformation etc. The analytical results show that the ground surface heaves with the tunnel excavated and the crown displacement improves gradually. Finally, the optimal excavation scheme is determined by comparing the deformation of the tunnel structure and the law of surface subsidence.

  1. Wind-tunnel investigations of pressure distribution over high-rise buildings

    CSIR Research Space (South Africa)

    Cwik, M

    2013-09-01

    Full Text Available pressure distribution over the façade of 208 m high Warsaw Trade Tower building. Wind tunnel tests were a part of a wider research project which also includes full-scale measurements and numerical simulations (CFD, FEM), in order to examine the possibility...

  2. Wind Tunnel Model Design for Sonic Boom Studies of Nozzle Jet Flows with Shock Interactions

    Science.gov (United States)

    Cliff, Susan E.; Denison, Marie; Moini-Yekta, Shayan; Morr, Donald E.; Durston, Donald A.

    2016-01-01

    NASA and the U.S. aerospace industry are performing studies of supersonic aircraft concepts with low sonic boom pressure signatures. The computational analyses of modern aircraft designs have matured to the point where there is confidence in the prediction of the pressure signature from the front of the vehicle, but uncertainty remains in the aft signatures due to boundary layer and nozzle exhaust jet effects. Wind tunnel testing without inlet and nozzle exhaust jet effects at lower Reynolds numbers than in-flight make it difficult to accurately assess the computational solutions of flight vehicles. A wind tunnel test in the NASA Ames 9- by 7-Foot Supersonic Wind Tunnel is planned for February 2016 to address the nozzle jet effects on sonic boom. The experiment will provide pressure signatures of test articles that replicate waveforms from aircraft wings, tails, and aft fuselage (deck) components after passing through cold nozzle jet plumes. The data will provide a variety of nozzle plume and shock interactions for comparison with computational results. A large number of high-fidelity numerical simulations of a variety of shock generators were evaluated to define a reduced collection of suitable test models. The computational results of the candidate wind tunnel test models as they evolved are summarized, and pre-test computations of the final designs are provided.

  3. Nonlinear flutter wind tunnel test and numerical analysis of folding fins with freeplay nonlinearities

    Directory of Open Access Journals (Sweden)

    Yang Ning

    2016-02-01

    Full Text Available The flutter characteristics of folding control fins with freeplay are investigated by numerical simulation and flutter wind tunnel tests. Based on the characteristics of the structures, fins with different freeplay angles are designed. For a 0° angle of attack, wind tunnel tests of these fins are conducted, and vibration is observed by accelerometers and a high-speed camera. By the expansion of the connected relationships, the governing equations of fit for the nonlinear aeroelastic analysis are established by the free-interface component mode synthesis method. Based on the results of the wind tunnel tests, the flutter characteristics of fins with different freeplay angles are analyzed. The results show that the vibration divergent speed is increased, and the divergent speed is higher than the flutter speed of the nominal linear system. The vibration divergent speed is increased along with an increase in the freeplay angle. The developed free-interface component mode synthesis method could be used to establish governing equations and to analyze the characteristics of nonlinear aeroelastic systems. The results of the numerical simulations and the wind tunnel tests indicate the same trends and critical velocities.

  4. Highly cited articles in wind tunnel-related research: a bibliometric analysis.

    Science.gov (United States)

    Mo, Ziwei; Fu, Hui-Zhen; Ho, Yuh-Shan

    2018-03-22

    Wind tunnels have been widely employed in aerodynamic research. To characterize the high impact research, a bibliometric analysis was conducted on highly cited articles related to wind tunnel based on the Science Citation Index Expanded (SCI-EXPANDED) database from 1900 to 2014. Articles with at least 100 citations from the Web of Science Core Collection were selected and analyzed in terms of publication years, authors, institutions, countries/territories, journals, Web of Science categories, and citation life cycles. The results show that a total of 77 highly cited articles in 37 journals were published between 1959 and 2008. Journal of Fluid Mechanics published the most of highly cited articles. The USA was the most productive country and most frequent partner of internationally collaboration. The prolific institutions were mainly located in the USA and UK. The authors who were both first author and corresponding author published 88% of the articles. The Y index was also deployed to evaluate the publication characteristics of authors. Moreover, the articles with high citations in both history and the latest year with their citation life cycles were examined to provide insights for high impact research. The highly cited articles were almost earliest wind tunnel experimental data and reports on their own research specialty, and thus attracted high citations. It was revealed that classic works of wind tunnel research was frequently occurred in 1990s but much less in 2000s, probably due to the development of numerical models of computational fluid dynamic (CFD) in recent decades.

  5. A digital strategy for manometer dynamic enhancement. [for wind tunnel monitoring

    Science.gov (United States)

    Stoughton, J. W.

    1978-01-01

    Application of digital signal processing techniques to improve the non-linear dynamic characteristics of a sonar-type mercury manometer is described. The dynamic enhancement strategy quasi-linearizes the manometer characteristics and improves the effective bandwidth in the context of a wind-tunnel pressure regulation system. Model identification data and real-time hybrid simulation data demonstrate feasibility of approach.

  6. Field-testing a portable wind tunnel for fine dust emissions

    Science.gov (United States)

    A protable wind tunnel has been developed to allow erodibility and dust emissions testing of soil surfaces with the premise that dust concentration and properties are highly correlated with surface soil properties, as modified by crop management system. In this study we report on the field-testing ...

  7. A field wind tunnel study of fine dust emissions in sandy soils

    Science.gov (United States)

    A portable field wind tunnel has been developed to allow measurements of dust emissions from soil surfaces to test the premise that dust concentration and properties are highly correlated with surface soil properties, as modified by crop management system. In this study, we report on the effect of ...

  8. Deformation measurement in the wind tunnel for an UAV leading edge with a morphing mechanism

    NARCIS (Netherlands)

    Radestock, M.; Riemenschneider, J.; Monner, H.P.; Huxdorf, O.; Werter, N.P.M.; De Breuker, R.

    2016-01-01

    In a wind tunnel experiment a morphing wing with span extension and camber morphing was investigated. The considered aircraft is an unmanned aerial vehicle (UAV) with a span of 4 m. During the investigations a half wing model was analysed with pressure and structural measurement. The half wing model

  9. Numerical Study of the High-Speed Leg of a Wind Tunnel

    Science.gov (United States)

    Nayani, Sudheer; Sellers, William L., III; Brynildsen, Scott E.; Everhart, Joel L.

    2015-01-01

    The paper describes the numerical study of the high-speed leg of the NASA Langley 14 by 22-foot Low Speed Wind Tunnel. The high-speed leg consists of the Settling Chamber, Contraction, Test Section, and First Diffuser. Results are shown comparing two different exit boundary conditions and two different methods of determining the surface geometry.

  10. Calibration of an experimental six component wind tunnel block balance using optical fibre sensors

    CSIR Research Space (South Africa)

    de Ponte, JD

    2016-05-01

    Full Text Available Symposium on Strain-Gauge Balances, Mianyang, Sichuan China, 16-19 May 2016 Calibration of an Experimental Six Component Wind Tunnel Block Balance Using Optical Fibre Sensors J.D. de Ponte1, F.F. Pieterse2 1, 2University of Johannesburg, Auckland...

  11. Wind Tunnel Simulation of Air Pollution Dispersion in a Street Canyon

    Czech Academy of Sciences Publication Activity Database

    Civiš, Svatopluk; Střižík, M.; Jaňour, Zbyněk; Holpuch, Jan; Zelinger, Zdeněk

    2002-01-01

    Roč. 85, č. 1 (2002), s. 243-248 ISSN 1060-3271 R&D Projects: GA AV ČR IAA3040101; GA MŠk OC 715.50 Institutional research plan: CEZ:AV0Z4040901 Keywords : air pollution * photoacoustic spectrometry * wind tunnel Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 0.907, year: 2002

  12. An experimental system for release simulation of internal stores in a supersonic wind tunnel

    Directory of Open Access Journals (Sweden)

    Wei Liu

    2017-02-01

    Full Text Available Aerodynamic parameters obtained from separation experiments of internal stores in a wind tunnel are significant in aircraft designs. Accurate wind tunnel tests can help to improve the release stability of the stores and in-flight safety of the aircrafts in supersonic environments. A simulative system for free drop experiments of internal stores based on a practical project is provided in this paper. The system contains a store release mechanism, a control system and an attitude measurement system. The release mechanism adopts a six-bar linkage driven by a cylinder, which ensures the release stability. The structure and initial aerodynamic parameters of the stores are also designed and adjusted. A high speed vision measurement system for high speed rolling targets is utilized to measure the pose parameters of the internal store models and an optimizing method for the coordinates of markers is presented based on a priori model. The experimental results show excellent repeatability of the system, and indicate that the position measurement precision is less than 0.13 mm, and the attitude measurement precision for pitch and yaw angles is less than 0.126°, satisfying the requirements of practical wind tunnel tests. A separation experiment for the internal stores is also conducted in the FL-3 wind tunnel of China Aerodynamics Research Institute.

  13. Variation in energy intake and basal metabolic rate of a bird migrating in a wind tunnel

    NARCIS (Netherlands)

    Lindström, Å.; Klaassen, M.R.J.; Kvist, A.

    1999-01-01

    1. We studied the changes in body mass, metabolizable energy intake rate (ME) and basal metabolic rate (BMR) of a Thrush Nightingale, Luscinia luscinia, following repeated 12-h migratory flights in a wind tunnel. In total the bird flew for 176 h corresponding to 6300 km. This is the first study

  14. Flight costs and fuel composition of a bird migrating in a wind-tunnel

    NARCIS (Netherlands)

    Klaassen, M.R.J.; Kvist, A.; Lindström, A.

    2000-01-01

    We studied the energy and protein balance of a Thrush Nightingale Luscinia luscinia, a small long-distance migrant, during repeated 12-hr long Eights in a wind tunnel and during subsequent two-day fueling periods. From the energy budgets we estimated the power requirements for migratory flight in

  15. Wind Tunnel Measurement of Turbulent and Advective Scalar Fluxes: A Case Study on Intersection Ventilation

    Czech Academy of Sciences Publication Activity Database

    Kukačka, Libor; Nosek, Štěpán; Kellnerová, Radka; Jurčáková, Klára; Jaňour, Zbyněk

    2012-01-01

    Roč. 2012, č. 381357 (2012), s. 1-13 ISSN 1537-744X Institutional research plan: CEZ:AV0Z20760514 Keywords : air pollution * atmospheric boundary layer * wind tunnel modelling * contaminant spreading * street canyon Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 1.730, year: 2012 http://www.tswj.com/2012/381357/

  16. Computations on the volatilisation of the fungicide fenpropimorph from plants in a wind tunnel

    NARCIS (Netherlands)

    Leistra, M.; Wolters, A.

    2004-01-01

    Volatilisation of pesticides from plants is one of the main pathways for their emission to the environment. A simplified computation model was set up to simulate this volatilisation, including penetration into plants and photochemical transformation as competing processes. Previous wind tunnel

  17. 9- by 15-Foot Low Speed Wind Tunnel Acoustic Improvements Expanded Overview

    Science.gov (United States)

    Stephens, David

    2016-01-01

    The 9- by 15-Foot Low Speed Wind Tunnel (9x15 LSWT) at NASA Glenn Research Center was built in 1969 in the return leg of the 8- by 6-Foot Supersonic Wind Tunnel (8x6 SWT). The 8x6 SWT was completed in 1949 and acoustically treated to mitigate community noise issues in 1950. This treatment included the addition of a large muffler downstream of the 8x6 SWT test section and diffuser. The 9x15 LSWT was designed for performance testing of V/STOL aircraft models, but with the addition of the current acoustic treatment in 1986 the tunnel been used principally for acoustic and performance testing of aircraft propulsion systems. The present document describes an anticipated acoustic upgrade to be completed in 2017.

  18. GVT-Based Ground Flutter Test without Wind Tunnel Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ZONA Technology, Inc (ZONA) and Arizona State University (ASU) propose a R&D effort to further develop the ground flutter testing system in place of a wind...

  19. Comparison of Ares I-X Wind-Tunnel Derived Buffet Environment with Flight Data

    Science.gov (United States)

    Piatak, David J.; Sekula, Martin K.; Rausch, Russ D.

    2011-01-01

    The Ares I-X Flight Test Vehicle (FTV), launched in October 2009, carried with it over 243 buffet verification pressure sensors and was one of the most heavily instrumented launch vehicle flight tests. This flight test represented a unique opportunity for NASA and its partners to compare the wind-tunnel derived buffet environment with that measured during the flight of Ares I-X. It is necessary to define the launch vehicle buffet loads to ensure that structural components and vehicle subsystems possess adequate strength, stress, and fatigue margins when the vehicle structural dynamic response to buffet forcing functions are considered. Ares I-X buffet forcing functions were obtained via wind-tunnel testing of a rigid buffet model (RBM) instrumented with hundreds of unsteady pressure transducers designed to measure the buffet environment across the desired frequency range. This paper discusses the comparison of RBM and FTV buffet environments, including fluctuating pressure coefficient and normalized sectional buffet forcing function root-mean-square magnitudes, frequency content of power-spectral density functions, and force magnitudes of an alternating flow phenomena. Comparison of wind-tunnel model and flight test vehicle buffet environments show very good agreement with root-mean-square magnitudes of buffet forcing functions at the majority of vehicle stations. Spectra proved a challenge to compare because of different wind-tunnel and flight test conditions and data acquisition rates. However, meaningful and promising comparisons of buffet spectra are presented. Lastly, the buffet loads resulting from the transition of subsonic separated flow to supersonic attached flow were significantly over-predicted by wind-tunnel results.

  20. Wind-tunnel investigation of an armed mini remotely piloted vehicle. [conducted in Langley V/STOL tunnel

    Science.gov (United States)

    Phelps, A. E., III

    1979-01-01

    A wind tunnel investigation of a full scale remotely piloted vehicle (RPV) armed with rocket launchers was conducted. The model had unacceptable longitudinal stability characteristics at negative angles of attack in the original design configuration. The addition of a pair of fins mounted in a V arrangement on the propeller shroud resulted in a configuration with acceptable longitudinal stability characteristics. The addition of wing mounted external stores to the modified configuration resulted in a slight reduction in the longitudinal stability. The lateral directional characteristics of the model were generally good, but the model had low directional stability at low angles of attack. Aerodynamic control power was very strong around all three axes.

  1. Aeolian processes over gravel beds: Field wind tunnel simulation and its application atop the Mogao Grottoes, China

    Science.gov (United States)

    Zhang, Weimin; Tan, Lihai; Zhang, Guobin; Qiu, Fei; Zhan, Hongtao

    2014-12-01

    The aeolian processes of erosion, transport and deposition are threatening the Mogao Grottoes, a world culture heritage site. A field wind tunnel experiment was conducted atop the Mogao Grottoes using weighing sensors to quantify aeolian processes over protective gravel beds. Results reveal that aeolian erosion and deposition over gravel beds are basically influenced by gravel coverage and wind speed. Erosion is a main aeolian process over gravel beds and its strength level is mainly determined by gravel coverage: strong (50%). Aeolian deposition only occurs when gravel coverage is equal to or greater than 30% and wind speeds are between 8 and 12 m s-1, and this process continues until the occurrence of the equilibrium coverage. In addition, the change in conditions of external sand supply affects the transition between aeolian deposition and erosion over gravel beds, and the quantity of sand transport at the height of 0-24 mm is an important indicator of aeolian deposition and erosion over gravel beds. Our results also demonstrate that making the best use of wind regime atop the Mogao Grottoes and constructing an artificial gobi surface in staggered arrays, with 30% coverage and 30-mm-high gravels and in 40 mm spacing can trap westerly invading sand flow and enable the stronger easterly wind to return the deposited sand on the gravel surface back to the Mingsha Mountain so as to minimize the damage of the blown sand flux to the Mogao Grottoes.

  2. A wind-tunnel investigation of wind-turbine wakes in yawed conditions

    Science.gov (United States)

    Bastankhah, Majid; Porté-Agel, Fernando

    2015-06-01

    Wind-tunnel experiments were performed to study the performance of a model wind turbine and its wake characteristics in a boundary layer under different operating conditions, including different yaw angles and tip speed ratios. High-resolution particle image- velocimetry (PIV) was used to measure the three velocity components in a horizontal plane at hub height covering a broad streamwise range from upstream of the turbine to the far- wake region. Additionally, thrust and power coefficients of the turbine were measured under different conditions. These power and thrust measurements, together with the highly-resolved flow measurements, enabled us to systematically study different wake properties. The near-wake region is found to have a highly complex structure influenced by different factors such as tip speed ratio and wake rotation. In particular, for higher tip speed ratios, a noticeable speed-up region is observed in the central part of near wake, which greatly affects the flow distribution in this region. In this regard, the behavior of the near wake for turbines with similar thrust coefficients but different tip speed ratios can vary widely. In contrast, it is shown that the mean streamwise velocity in the far wake of the turbine with zero yaw angle has a self-similar Gaussian distribution, and the strength of wake in this region is consistent with the magnitude of the thrust coefficient. With increasing yaw angle, as expected, the power and thrust coefficients decrease, and the wake deflection increases. The measurements also reveal that, in addition to turbulent momentum flux, lateral mean momentum flux boosts the flow entrainment in only one side of the wake, which results in a faster wake recovery in that side. It is also found that the induced velocity upstream of a yawed turbine has a non-symmetric distribution, and its distribution is in agreement with the available model in the literature. Moreover, the results suggest that in order to accurately

  3. Wind Tunnel Interference Effects on Tilt Rotor Testing Using Computational Fluid Dynamics

    Science.gov (United States)

    Koning, Witold J. F.

    2016-01-01

    Experimental techniques to measure rotorcraft aerodynamic performance are widely used. However, most of them are either unable to capture interference effects from bodies, or require an extremely large computational budget. The objective of the present research is to develop an XV-15 Tiltrotor Research Aircraft rotor model for investigation of wind tunnel wall interference using a novel Computational Fluid Dynamics (CFD) solver for rotorcraft, RotCFD. In RotCFD, a mid-fidelity Unsteady Reynolds Averaged Navier-Stokes (URANS) solver is used with an incompressible flow model and a realizable k-e turbulence model. The rotor is, however, not modeled using a computationally expensive, unsteady viscous body-fitted grid, but is instead modeled using a blade-element model (BEM) with a momentum source approach. Various flight modes of the XV-15 isolated rotor, including hover, tilt, and airplane mode, have been simulated and correlated to existing experimental and theoretical data. The rotor model is subsequently used for wind tunnel wall interference simulations in the National Full-Scale Aerodynamics Complex (NFAC) at Ames Research Center in California. The results from the validation of the isolated rotor performance showed good correlation with experimental and theoretical data. The results were on par with known theoretical analyses. In RotCFD the setup, grid generation, and running of cases is faster than many CFD codes, which makes it a useful engineering tool. Performance predictions need not be as accurate as high-fidelity CFD codes, as long as wall effects can be properly simulated. For both test sections of the NFAC wall, interference was examined by simulating the XV-15 rotor in the test section of the wind tunnel and with an identical grid but extended boundaries in free field. Both cases were also examined with an isolated rotor or with the rotor mounted on the modeled geometry of the Tiltrotor Test Rig (TTR). A "quasi linear trim" was used to trim the thrust

  4. Wind Tunnel Tests on Aerodynamic Characteristics of two types of Iced Conductors with Elastic Support

    Science.gov (United States)

    Yi, You; Cheng, He; Xinxin, Wang

    2018-01-01

    The wind tunnel tests were carried out to obtain the variation laws of static aerodynamic characteristics of crescent and D-shape iced conductor with different wind velocities, wind attack angles and torsional elastic support stiffness. Test results show that the variation of wind velocity has a relatively large influence on the aerodynamic coefficients of crescent conductor with torsional elastic support 1. However, the influence on that of D-shape conductor is not obvious. With the increase of the torsional elastic support stiffness, the lift and moment coefficient curves of the crescent iced conductor form an obvious peak phenomenon in the range of 0 ° ∼30°. Meanwhile, the wind attack angle position corresponding to the maximum value of the lift and moment coefficients of the D-shape iced conductor appear a backward moving phenomenon.

  5. Wind tunnel noise reduction at Mach 5 with a rod-wall sound shield. [for prevention of premature boundary layer transition on wind tunnel models

    Science.gov (United States)

    Creel, T. R.; Beckwith, I. E.

    1983-01-01

    A method of shielding a wind-tunnel model from noise radiated by the tunnel-wall boundary layer has been developed and tested at the Langley Research Center. The shield consists of a rectangular array of longitudinal rods with boundary-layer suction through gaps between the rods. Tests were conducted at Mach 5 over a unit Reynolds number range of 1.0-3.5 x 10 to the 7th/m. Hot-wire measurements indicated the freestream noise, expressed in terms of the rms pressure fluctuations normalized by the mean pressure, was reduced from about 1.4 percent just upstream of the shielded region of a minimum level of about 0.4 percent in the forward portion of the shielded flow.

  6. Wind Power Plants Fundamentals, Design, Construction and Operation

    CERN Document Server

    Twele, Jochen

    2012-01-01

    Wind power plants teaches the physical foundations of usage of Wind Power. It includes the areas like Construction of Wind Power Plants, Design, Development of Production Series, Control, and discusses the dynamic forces acting on the systems as well as the power conversion and its connection to the distribution system. The book is written for graduate students, practitioners and inquisitive readers of any kind. It is based on lectures held at several universities. Its German version it already is the standard text book for courses on Wind Energy Engineering but serves also as reference for practising engineers.

  7. Time Accurate Unsteady Pressure Loads Simulated for the Space Launch System at a Wind Tunnel Condition

    Science.gov (United States)

    Alter, Stephen J.; Brauckmann, Gregory J.; Kleb, Bil; Streett, Craig L; Glass, Christopher E.; Schuster, David M.

    2015-01-01

    Using the Fully Unstructured Three-Dimensional (FUN3D) computational fluid dynamics code, an unsteady, time-accurate flow field about a Space Launch System configuration was simulated at a transonic wind tunnel condition (Mach = 0.9). Delayed detached eddy simulation combined with Reynolds Averaged Naiver-Stokes and a Spallart-Almaras turbulence model were employed for the simulation. Second order accurate time evolution scheme was used to simulate the flow field, with a minimum of 0.2 seconds of simulated time to as much as 1.4 seconds. Data was collected at 480 pressure taps at locations, 139 of which matched a 3% wind tunnel model, tested in the Transonic Dynamic Tunnel (TDT) facility at NASA Langley Research Center. Comparisons between computation and experiment showed agreement within 5% in terms of location for peak RMS levels, and 20% for frequency and magnitude of power spectral densities. Grid resolution and time step sensitivity studies were performed to identify methods for improved accuracy comparisons to wind tunnel data. With limited computational resources, accurate trends for reduced vibratory loads on the vehicle were observed. Exploratory methods such as determining minimized computed errors based on CFL number and sub-iterations, as well as evaluating frequency content of the unsteady pressures and evaluation of oscillatory shock structures were used in this study to enhance computational efficiency and solution accuracy. These techniques enabled development of a set of best practices, for the evaluation of future flight vehicle designs in terms of vibratory loads.

  8. The 1 × 1 m hypersonic wind tunnel Kochel/Tullahoma 1940-1960

    Science.gov (United States)

    Eckardt, Dietrich

    2015-03-01

    Peenemünde and Cape Canaveral mark cornerstones of space history. Kochel in Southern Germany and Tullahoma in Tennessee, USA also belong in this category. The technically unique Kochel wind tunnel was part of the German long-distance missile development strategy, planned and prepared in secret before the beginning of World War II. A 57 MW closed-circuit wind tunnel facility with 1 × 1 m measuring section was planned for continuous-flow simulation at high Mach numbers Ma 7-10. In the early 1940 s a site beside the Walchensee Power Station at Kochel am See in Upper Bavaria, Germany was chosen to provide the required altitude difference of 200 m for the hydraulic turbine drives. The preparatory activities for the erection of this impressive hypersonic wind tunnel facility were pushed ahead until an enforced temporary pause in September 1944. In early May 1945 US troops occupied the area and, in due course, scientists of General Arnold's Scientific Advisory Group, the `von Kármán team', ordered the transfer to the USA of available equipment, design materials and other paperwork. Here, at the Arnold Engineering Development Center (AEDC) Tullahoma, TN this `Tunnel A' was built to begin operation around 1957. The testing was conducted on the Mach 7 experimental aircraft X-15, space shuttle developments and still secret investigations on unmanned hypersonic vehicles.

  9. A new low-turbulence wind tunnel for animal and small vehicle flight experiments

    Science.gov (United States)

    Quinn, Daniel B.; Watts, Anthony; Nagle, Tony; Lentink, David

    2017-03-01

    Our understanding of animal flight benefits greatly from specialized wind tunnels designed for flying animals. Existing facilities can simulate laminar flow during straight, ascending and descending flight, as well as at different altitudes. However, the atmosphere in which animals fly is even more complex. Flow can be laminar and quiet at high altitudes but highly turbulent near the ground, and gusts can rapidly change wind speed. To study flight in both laminar and turbulent environments, a multi-purpose wind tunnel for studying animal and small vehicle flight was built at Stanford University. The tunnel is closed-circuit and can produce airspeeds up to 50 m s-1 in a rectangular test section that is 1.0 m wide, 0.82 m tall and 1.73 m long. Seamless honeycomb and screens in the airline together with a carefully designed contraction reduce centreline turbulence intensities to less than or equal to 0.030% at all operating speeds. A large diameter fan and specialized acoustic treatment allow the tunnel to operate at low noise levels of 76.4 dB at 20 m s-1. To simulate high turbulence, an active turbulence grid can increase turbulence intensities up to 45%. Finally, an open jet configuration enables stereo high-speed fluoroscopy for studying musculoskeletal control in turbulent flow.

  10. A new low-turbulence wind tunnel for animal and small vehicle flight experiments.

    Science.gov (United States)

    Quinn, Daniel B; Watts, Anthony; Nagle, Tony; Lentink, David

    2017-03-01

    Our understanding of animal flight benefits greatly from specialized wind tunnels designed for flying animals. Existing facilities can simulate laminar flow during straight, ascending and descending flight, as well as at different altitudes. However, the atmosphere in which animals fly is even more complex. Flow can be laminar and quiet at high altitudes but highly turbulent near the ground, and gusts can rapidly change wind speed. To study flight in both laminar and turbulent environments, a multi-purpose wind tunnel for studying animal and small vehicle flight was built at Stanford University. The tunnel is closed-circuit and can produce airspeeds up to 50 m s -1 in a rectangular test section that is 1.0 m wide, 0.82 m tall and 1.73 m long. Seamless honeycomb and screens in the airline together with a carefully designed contraction reduce centreline turbulence intensities to less than or equal to 0.030% at all operating speeds. A large diameter fan and specialized acoustic treatment allow the tunnel to operate at low noise levels of 76.4 dB at 20 m s -1 . To simulate high turbulence, an active turbulence grid can increase turbulence intensities up to 45%. Finally, an open jet configuration enables stereo high-speed fluoroscopy for studying musculoskeletal control in turbulent flow.

  11. Design Specifications for a Novel Climatic Wind Tunnel for the Testing of Structural Cables

    DEFF Research Database (Denmark)

    Georgakis, Christos; Koss, Holger; Ricciardelli, Francesco

    2009-01-01

    The newly proposed Femern fixed link between Denmark and Germany will push the limits in engineering design. The selection of a cable-stayed or suspension bridge will lead to one of the longest bridges of its type in the world. The challenges of designing a bridge are many and the prospects of ca...... wind tunnel facility, dedicated to the testing of structural cables, is being developed as part of this research project. This paper describes the specifications and considerations for the construction of such a facility.......The newly proposed Femern fixed link between Denmark and Germany will push the limits in engineering design. The selection of a cable-stayed or suspension bridge will lead to one of the longest bridges of its type in the world. The challenges of designing a bridge are many and the prospects...... of cable vibrations already preoccupy both the owners and designers. In this connection, the Danish owners/operators Femern Bælt A/S, together with Storebælt A/S, are funding a collaborative research project to examine the ways of reducing the risk of cable vibrations on a bridge solution. A novel climatic...

  12. Laser transit anemometer measurements on a slender cone in the Langley unitary plan wind tunnel

    Science.gov (United States)

    Humphreys, William M., Jr.; Hunter, William W., Jr.; Covell, Peter F.; Nichols, Cecil E., Jr.

    1990-01-01

    A laser transit anemometer (LTA) system was used to probe the boundary layer on a slender (5 degree half angle) cone model in the Langley unitary plan wind tunnel. The anemometer system utilized a pair of laser beams with a diameter of 40 micrometers spaced 1230 micrometers apart to measure the transit times of ensembles of seeding particles using a cross-correlation technique. From these measurements, boundary layer profiles around the model were constructed and compared with CFD calculations. The measured boundary layer profiles representing the boundary layer velocity normalized to the edge velocity as a function of height above the model surface were collected with the model at zero angle of attack for four different flow conditions, and were collected in a vertical plane that bisected the model's longitudinal center line at a location 635 mm from the tip of the forebody cone. The results indicate an excellent ability of the LTA system to make velocity measurements deep into the boundary layer. However, because of disturbances in the flow field caused by onboard seeding, premature transition occurred implying that upstream seeding is mandatory if model flow field integrity is to be maintained. A description and results of the flow field surveys are presented.

  13. Development of Active Flutter Suppression Wind Tunnel Testing Technology

    Science.gov (United States)

    1975-01-01

    O 11 MlMiMiir’tllliiilMBlrtriiTnrl _...„ , ■,.,ammJi^ul«l,Jk., timi’itilinliiltiiiriiiiilrii-i -’*$ pwm *WMmmm*Rß’m*m’vm jipwB...aileron surface relative to a 0.1 Hz triangular wave command measured about ±0.44 degrees. Hysteresis of the flaperon actuation systems measured...the tunnel. The photograph shows the flying cables, snubber cables and the umbilical cable routing. Power signals going into the model were carried by

  14. Wind Tunnel Testing of a 6%-Scale Large Civil Tilt Rotor Model in Airplane and Helicopter Modes

    Science.gov (United States)

    2014-01-01

    In April 2012 and October 2013, NASA and the U.S. Army jointly conducted a wind tunnel test program examining two notional large tilt rotor designs... rotors in the U.S. Army 7- by 10-foot wind tunnel at NASA Ames Research Center. Measurements of all six forces and moments acting on the airframe...airframe models were tested without rotors in the U.S. Army 7- by 10-foot wind tunnel at NASA Ames Research Center. This test entry represents the first

  15. Experimental determination of the free-stream disturbance field in a short-duration supersonic wind tunnel

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, J. [Institut fuer Aerodynamik und Gasdynamik, Universitaet Stuttgart, Pfaffenwaldring 21, 70550, Stuttgart (Germany); ALSTOM (Switzerland) Ltd., Brown Bovery Strasse 7, 5401, Baden (Switzerland); Knauss, H.; Wagner, S. [Institut fuer Aerodynamik und Gasdynamik, Universitaet Stuttgart, Pfaffenwaldring 21, 70550, Stuttgart (Germany)

    2003-10-01

    The free-stream disturbance field in a short-duration supersonic wind tunnel is investigated at a nominal Mach number of Ma=2.54. A specially designed constant-temperature anemometer is used to be able to draw a complete fluctuation diagram within one wind tunnel run (testing time: 120 ms). It is shown that the disturbance field is dominated by acoustic waves radiated from the turbulent boundary layer on the nozzle and the sidewalls, like in conventional supersonic wind tunnels. The acoustic field appears to be composed of highly localized shivering Mach waves superimposed on a background of eddy Mach waves. (orig.)

  16. Wind Tunnel Measurements of Shuttle Orbiter Global Heating with Comparisons to Flight

    Science.gov (United States)

    Berry, Scott A.; Merski, N. Ronald; Blanchard, Robert C.

    2002-01-01

    An aerothermodynamic database of global heating images was acquired of the Shuttle Orbiter in the NASA Langley Research Center 20-Inch Mach 6 Air Tunnel. These results were obtained for comparison to the global infrared images of the Orbiter in flight from the infrared sensing aeroheating flight experiment (ISAFE). The most recent ISAFE results from STS-103, consisted of port side images, at hypersonic conditions, of the surface features that result from the strake vortex scrubbing along the side of the vehicle. The wind tunnel results were obtained with the phosphor thermography system, which also provides global information and thus is ideally suited for comparison to the global flight results. The aerothermodynamic database includes both windward and port side heating images of the Orbiter for a range of angles of attack (20 to 40 deg), freestream unit Reynolds number (1 x 10(exp 6))/ft to 8 x 10(exp 6)/ft, body flap deflections (0, 5, and 10 deg), speed brake deflections (0 and 45 deg), as well as with boundary layer trips for forced transition to turbulence heating results. Sample global wind tunnel heat transfer images were extrapolated to flight conditions for comparison to Orbiter flight data. A windward laminar case for an angle of attack of 40 deg was extrapolated to Mach 11.6 flight conditions for comparison to STS-2 flight thermocouple results. A portside wind tunnel image for an angle of attack of 25 deg was extrapolated for Mach 5 flight conditions for comparison to STS-103 global surface temperatures. The comparisons showed excellent qualitative agreement, however the extrapolated wind tunnel results over-predicted the flight surface temperatures on the order of 5% on the windward surface and slightly higher on the portside.

  17. Conducting experimental investigations of wind influence on high-rise constructions

    Science.gov (United States)

    Poddaeva, Olga I.; Fedosova, Anastasia N.; Churin, Pavel S.; Gribach, Julia S.

    2018-03-01

    The design of buildings with a height of more than 100 meters is accompanied by strict control in determining the external loads and the subsequent calculation of building structures, which is due to the uniqueness of these facilities. An important factor, the impact of which must be carefully studied at the stage of development of project documentation, is the wind. This work is devoted to the problem of studying the wind impact on buildings above 100 meters. In the article the technique of carrying out of experimental researches of wind influence on high-rise buildings and constructions, developed in the Educational-research-and-production laboratory on aerodynamic and aeroacoustic tests of building designs of NRU MGSU is presented. The publication contains a description of the main stages of the implementation of wind tunnel tests. The article presents the approbation of the methodology, based on the presented algorithm, on the example of a high-rise building under construction. This paper reflects the key requirements that are established at different stages of performing wind impact studies, as well as the results obtained, including the average values of the aerodynamic pressure coefficients, total forces and aerodynamic drag coefficients. Based on the results of the work, conclusions are presented.

  18. Documentation and archiving of the Space Shuttle wind tunnel test data base. Volume 2: User's Guide to the Archived Data Base

    Science.gov (United States)

    Romere, Paul O.; Brown, Steve Wesley

    1995-01-01

    Development of the Space Shuttle necessitated an extensive wind tunnel test program, with the cooperation of all the major wind tunnels in the United States. The result was approximately 100,000 hours of Space Shuttle wind tunnel testing conducted for aerodynamics, heat transfer, and structural dynamics. The test results were converted into Chrysler DATAMAN computer program format to facilitate use by analysts, a very cost effective method of collecting the wind tunnel test results from many test facilities into one centralized location. This report provides final documentation of the Space Shuttle wind tunnel program. The two-volume set covers the evolution of Space Shuttle aerodynamic configurations and gives wind tunnel test data, titles of wind tunnel data reports, sample data sets, and instructions for accessing the digital data base.

  19. Drag of a Supercritical Body of Revolution in Free Flight at Transonic Speeds and Comparison with Wind Tunnel Data

    Science.gov (United States)

    Usry, J. W.; Wallace, J. W.

    1971-01-01

    The forebody drag of a supercritical body of revolution was measured in free flight over a Mach number range of 0.85 to 1.05 and a Reynolds number range of 11.5 x 10 to the 6th power to 19.4 x 10 to the 6th power and was compared with wind-tunnel data. The forebody drag coefficient for a Mach number less than 0.96 was 0.111 compared with the wind-tunnel value of 0.103. A gradual increase in the drag occurred in the Langley 8-foot transonic pressure tunnel at a lower Mach number than in the Langley 16-foot transonic tunnel or in the free-flight test. The sharp drag rise occurred near Mach 0.98 in free flight whereas the rise occurred near Mach 0.99 in the Langley 16-foot transonic tunnel. The sharp rise was not as pronounced in the Langley 8-foot transonic pressure tunnel and was probably affected by tunnel-wall-interference effects. The increase occurred more slowly and at a higher Mach number. These results indicate that the drag measurements made in the wind tunnels near Mach 1 were significantly affected by the relative size of the model and the wind tunnel.

  20. Soil wind erosion in ecological olive trees in the Tabernas desert (southeastern Spain): a wind tunnel experiment

    Science.gov (United States)

    Asensio, Carlos; Lozano, Francisco Javier; Gallardo, Pedro; Giménez, Antonio

    2016-08-01

    Wind erosion is a key component of the soil degradation processes. The purpose of this study is to find out the influence of material loss from wind on soil properties for different soil types and changes in soil properties in olive groves when they are tilled. The study area is located in the north of the Tabernas Desert, in the province of Almería, southeastern Spain. It is one of the driest areas in Europe, with a semiarid thermo-Mediterranean type of climate. We used a new wind tunnel model over three different soil types (olive-cropped Calcisol, Cambisol and Luvisol) and studied micro-plot losses and deposits detected by an integrated laser scanner. We also studied the image processing possibilities for examining the particles attached to collector plates located at the end of the tunnel to determine their characteristics and whether they were applicable to the setup. Samples collected in the traps at the end of the tunnel were analyzed. We paid special attention to the influence of organic carbon, carbonate and clay contents because of their special impact on soil crusting and the wind-erodible fraction. A principal components analysis (PCA) was carried out to find any relations on generated dust properties and the intensity and behavior of those relationships. Component 1 separated data with high N and OC contents from samples high in fine silt, CO3= and available K content. Component 2 separated data with high coarse silt and clay contents from data with high fine sand content. Component 3 was an indicator of available P2O5 content. Analysis of variance (ANOVA) was carried out to analyze the effect of soil type and sampling height on different properties of trapped dust. Calculations based on tunnel data showed overestimation of erosion in soil types and calculation of the fraction of soil erodible by wind done by other authors for Spanish soils. As the highest loss was found in Cambisols, mainly due to the effect on soil crusting and the wind

  1. New methodologies for calculation of flight parameters on reduced scale wings models in wind tunnel =

    Science.gov (United States)

    Ben Mosbah, Abdallah

    In order to improve the qualities of wind tunnel tests, and the tools used to perform aerodynamic tests on aircraft wings in the wind tunnel, new methodologies were developed and tested on rigid and flexible wings models. A flexible wing concept is consists in replacing a portion (lower and/or upper) of the skin with another flexible portion whose shape can be changed using an actuation system installed inside of the wing. The main purpose of this concept is to improve the aerodynamic performance of the aircraft, and especially to reduce the fuel consumption of the airplane. Numerical and experimental analyses were conducted to develop and test the methodologies proposed in this thesis. To control the flow inside the test sections of the Price-Paidoussis wind tunnel of LARCASE, numerical and experimental analyses were performed. Computational fluid dynamics calculations have been made in order to obtain a database used to develop a new hybrid methodology for wind tunnel calibration. This approach allows controlling the flow in the test section of the Price-Paidoussis wind tunnel. For the fast determination of aerodynamic parameters, new hybrid methodologies were proposed. These methodologies were used to control flight parameters by the calculation of the drag, lift and pitching moment coefficients and by the calculation of the pressure distribution around an airfoil. These aerodynamic coefficients were calculated from the known airflow conditions such as angles of attack, the mach and the Reynolds numbers. In order to modify the shape of the wing skin, electric actuators were installed inside the wing to get the desired shape. These deformations provide optimal profiles according to different flight conditions in order to reduce the fuel consumption. A controller based on neural networks was implemented to obtain desired displacement actuators. A metaheuristic algorithm was used in hybridization with neural networks, and support vector machine approaches and their

  2. System Dynamic Analysis of a Wind Tunnel Model with Applications to Improve Aerodynamic Data Quality

    Science.gov (United States)

    Buehrle, Ralph David

    1997-01-01

    The research investigates the effect of wind tunnel model system dynamics on measured aerodynamic data. During wind tunnel tests designed to obtain lift and drag data, the required aerodynamic measurements are the steady-state balance forces and moments, pressures, and model attitude. However, the wind tunnel model system can be subjected to unsteady aerodynamic and inertial loads which result in oscillatory translations and angular rotations. The steady-state force balance and inertial model attitude measurements are obtained by filtering and averaging data taken during conditions of high model vibrations. The main goals of this research are to characterize the effects of model system dynamics on the measured steady-state aerodynamic data and develop a correction technique to compensate for dynamically induced errors. Equations of motion are formulated for the dynamic response of the model system subjected to arbitrary aerodynamic and inertial inputs. The resulting modal model is examined to study the effects of the model system dynamic response on the aerodynamic data. In particular, the equations of motion are used to describe the effect of dynamics on the inertial model attitude, or angle of attack, measurement system that is used routinely at the NASA Langley Research Center and other wind tunnel facilities throughout the world. This activity was prompted by the inertial model attitude sensor response observed during high levels of model vibration while testing in the National Transonic Facility at the NASA Langley Research Center. The inertial attitude sensor cannot distinguish between the gravitational acceleration and centrifugal accelerations associated with wind tunnel model system vibration, which results in a model attitude measurement bias error. Bias errors over an order of magnitude greater than the required device accuracy were found in the inertial model attitude measurements during dynamic testing of two model systems. Based on a theoretical modal

  3. Wall interaction effects for a full-scale helicopter rotor in the NASA Ames 80- by 120-foot wind tunnel

    Science.gov (United States)

    Shinoda, Patrick M.

    1994-01-01

    A full-scale helicopter rotor test was conducted in the NASA Ames 80- by 120-Foot Wind Tunnel with a four-bladed S-76 rotor system. This wind tunnel test generated a unique and extensive data base covering a wide range of rotor shaft angles-of-attack and rotor thrust conditions from 0 to 100 knots. Three configurations were tested: (1) empty tunnel; (2) test stand body (fuselage) and support system; and (3) fuselage and support system with rotor installed. Empty tunnel wall pressure data are evaluated as a function of tunnel speed to understand the baseline characteristics. Aerodynamic interaction effects between the fuselage and the walls of the tunnel are investigated by comparing wall, ceiling, and floor pressures for various tunnel velocities and fuselage angles-of-attack. Aerodynamic interaction effects between the rotor and the walls of the tunnel are also investigated by comparing wall, ceiling, and floor pressures for various rotor shaft angles, rotor thrust conditions, and tunnel velocities. Empty tunnel wall pressure data show good repeatability and are not affected by tunnel speed. In addition, the tunnel wall pressure profiles are not affected by the presence of the fuselage apart from a pressure shift. Results do not indicate that the tunnel wall pressure profiles are affected by the presence of the rotor. Significant changes in the wall, ceiling, and floor pressure profiles occur with changing tunnel speeds for constant rotor thrust and shaft angle conditions. Significant changes were also observed when varying rotor thrust or rotor shaft angle-of-attack. Other results indicate that dynamic rotor loads and blade motion are influenced by the presence of the tunnel walls at very low tunnel velocity and, together with the wall pressure data, provide a good indication of flow breakdown.

  4. Aeroelastic Analysis of a Flexible Wing Wind Tunnel Model with Variable Camber Continuous Trailing Edge Flap Design

    Science.gov (United States)

    Nguyen, Nhan; Ting, Eric; Lebofsky, Sonia

    2015-01-01

    This paper presents data analysis of a flexible wing wind tunnel model with a variable camber continuous trailing edge flap (VCCTEF) design for drag minimization tested at the University of Washington Aeronautical Laboratory (UWAL). The wind tunnel test was designed to explore the relative merit of the VCCTEF concept for improved cruise efficiency through the use of low-cost aeroelastic model test techniques. The flexible wing model is a 10%-scale model of a typical transport wing and is constructed of woven fabric composites and foam core. The wing structural stiffness in bending is tailored to be half of the stiffness of a Boeing 757-era transport wing while the torsional stiffness is about the same. This stiffness reduction results in a wing tip deflection of about 10% of the wing semi-span. The VCCTEF is a multi-segment flap design having three chordwise camber segments and five spanwise flap sections for a total of 15 individual flap elements. The three chordwise camber segments can be positioned appropriately to create a desired trailing edge camber. Elastomeric material is used to cover the gaps in between the spanwise flap sections, thereby creating a continuous trailing edge. Wind tunnel data analysis conducted previously shows that the VCCTEF can achieve a drag reduction of up to 6.31% and an improvement in the lift-to-drag ratio (L=D) of up to 4.85%. A method for estimating the bending and torsional stiffnesses of the flexible wingUWAL wind tunnel model from static load test data is presented. The resulting estimation indicates that the stiffness of the flexible wing is significantly stiffer in torsion than in bending by as much as 9 to 1. The lift prediction for the flexible wing is computed by a coupled aerodynamic-structural model. The coupled model is developed by coupling a conceptual aerodynamic tool Vorlax with a finite-element model of the flexible wing via an automated geometry deformation tool. Based on the comparison of the lift curve slope

  5. Investigation of gas particle flow in an erosion wind tunnel

    Energy Technology Data Exchange (ETDEWEB)

    Tabakoff, W.; Hamed, A.; Beacher, B.

    1983-04-01

    Trajectories of small particles approaching the test specimen in an erosion tunnel are analytically determined. The two-dimensional equations of motion are solved for a spherical particle under the sole influence of aerodynamic drag. The two-dimensional gradients of gas properties in the flow field are determined by a numerical solution of the equations describing a compressible inviscid fluid. At one inlet condition, the trajectories are computed for coal ash particles of various sizes approaching test specimens at several orientations. Trends are identified in the approaching characteristics that may be related to the observed erosion. The results indicate that, for ash particles with diameters less than 10 ..mu..m, significant numbers are deflected away from the specimen. These particles would otherwise impact with the specimen if they had to resist the turning effect of the flow field.

  6. Essentials of the construction and exploitation of hydraulic tunnels in karst of eastern Herzegovina

    Directory of Open Access Journals (Sweden)

    Golijanin Aleksandar R.

    2016-01-01

    Full Text Available The main problem in the process of construction, and it also proved in practice during exploitation of hydrotechnical tunnels constructed in the karst of eastern Herzegovina, are caverns. Of all the problems that may occur in the process of construction and during exploitation of hydrotechnical tunnels constructed in the Upper Cretaceous limestone rocks, only caverns have the characteristics (size, shape, type of backfill, water inflow which, in extreme cases, represent a problem that is difficult to solve. In such circumstances, the tunnel construction is subject to unpredictable and sometimes devastating impairments. Cavern is a term that represents a wider area within the karst sediments, which can be partially backfilled with debris, sometimes completely empty, connected with the ground surface by karst channels. Accumulation tunnels for power plants, i.e. the tunnels where the water flow is under pressure, are particularly susceptible to these impairments. This study introduces practical problems that have occurred in hydrotechnical tunnels constructed in the hydropower system of Trebišnjica.

  7. Demonstration and uncertainty analysis of synchronised scanning lidar measurements of 2D velocity fields in a boundary-layer wind tunnel

    OpenAIRE

    Dooren, Marijn F.; Campagnolo, Filippo; Sjöholm, Mikael; Angelou, Nikolas; Mikkelsen, Torben; Kühn, Martin

    2017-01-01

    This paper combines the research methodologies of scaled wind turbine model experiments in wind tunnels with short-range WindScanner lidar measurement technology. The wind tunnel at the Politecnico di Milano was equipped with three wind turbine models and two short-range WindScanner lidars to demonstrate the benefits of synchronised scanning lidars in such experimental surroundings for the first time. The dual-lidar system can provide fully synchronised trajectory scans with sampling timescal...

  8. Roughness Effects on Wind-Turbine Wake Dynamics in a Boundary-Layer Wind Tunnel

    DEFF Research Database (Denmark)

    Barlas, Emre; Buckingham, Sophia; van Beeck, Jeroen

    2016-01-01

    Increasing demand in wind energy has resulted in increasingly clustered wind farms, and raised the interest in wake research dramatically in the last couple of years. To this end, the present work employs an experimental approach with scaled three-bladed wind-turbine models in a large boundary-la...

  9. Comparison of Resource Requirements for a Wind Tunnel Test Designed with Conventional vs. Modern Design of Experiments Methods

    Science.gov (United States)

    DeLoach, Richard; Micol, John R.

    2011-01-01

    The factors that determine data volume requirements in a typical wind tunnel test are identified. It is suggested that productivity in wind tunnel testing can be enhanced by managing the inference error risk associated with evaluating residuals in a response surface modeling experiment. The relationship between minimum data volume requirements and the factors upon which they depend is described and certain simplifications to this relationship are realized when specific model adequacy criteria are adopted. The question of response model residual evaluation is treated and certain practical aspects of response surface modeling are considered, including inference subspace truncation. A wind tunnel test plan developed by using the Modern Design of Experiments illustrates the advantages of an early estimate of data volume requirements. Comparisons are made with a representative One Factor At a Time (OFAT) wind tunnel test matrix developed to evaluate a surface to air missile.

  10. Full-Scale Wind Tunnel Test of an Individual Blade Control System for a UH-60 Helicopter

    National Research Council Canada - National Science Library

    Jacklin, Stephen A; Haber, Axel; de Simone, Gary; Norman, Thomas R; Kitaplioglu, Cahit; Shinoda, Patrick

    2002-01-01

    .... The acquired wind tunnel data set includes measurements of rotor performance, steady and dynamic hub forces and moments, rotor loads, control system loads, and blade vortex interaction (BVI) noise...

  11. Rotor Performance of a UH-60 Rotor System in the NASA Ames 80- by 120-Foot Wind Tunnel

    National Research Council Canada - National Science Library

    Shinoda, Patrick M; Yeo, Hyeonsoo; Norman, Thomas R

    2002-01-01

    .... To evaluate the NASA Ames 80- by 120- Foot Wind Tunnel as a hover testing facility, rotor performance data were compared with predictions, UH-60 aircraft flight test data, and UH-60 model-scale data...

  12. On-Line Flutter Prediction Tool for Wind Tunnel Flutter Testing using Parameter Varying Estimation Methodology Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ZONA Technology, Inc. (ZONA) proposes to develop an on-line flutter prediction tool for wind tunnel model using the parameter varying estimation (PVE) technique to...

  13. On-Line Flutter Prediction Tool for Wind Tunnel Flutter Testing using Parameter Varying Estimation Methodology, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — ZONA Technology, Inc. (ZONA) proposes to develop an on-line flutter prediction tool for wind tunnel model using the parameter varying estimation (PVE) technique to...

  14. Measurement of Odor-Plume Structure in a Wind Tunnel Using a Photoionization Detector and a Tracer Gas

    National Research Council Canada - National Science Library

    Justus, Kristine

    2002-01-01

    The patterns of stimulus available to moths flying along pheromone plumes in a 3-m-long wind tunnel were characterized using a high frequency photoionization detector in conjunction with an inert tracer gas...

  15. IEA Annex XX. Comparison between calculations and measurements on a wind turbine in yaw in the NASA-Ames wind tunnel

    Energy Technology Data Exchange (ETDEWEB)

    Schepers, J.G. [ECN Wind Energy, Petten (Netherlands)

    2007-10-15

    This report describes a study in which calculational results from ECN's aeroelastic code PHATAS and the free wake lifting line code AWSM are compared with measurements which were performed by NREL (National Renewable Energy Laboratory) on a wind turbine, placed in the large NASA-Ames wind tunnel. Measurements have been taken at a large variety of conditions but in this report only data at yawed conditions are considered. An important advantage of the present measurements is formed by the wind tunnel environment, which provides a very constant and homogeneous yaw angle and wind speed. The study was carried out within the framework IEA Annex XX 'Analysis of NASA-Ames wind tunnel measurements'.

  16. Wind tunneling testing and analysis relating to the spinning of light aircraft

    Science.gov (United States)

    Mccormick, B. W.; Zilliac, G. G.; Ballin, M. G.

    1984-01-01

    Included is a summary of two studies related to the spinning of light aircraft. The first study was conducted to demonstrate that the aerodynamic forces and moments acting on a tail of a spinning aircraft can be obtained from static wind-tunnel tests. The second study analytically investigated spinning using a high angle-of-attack aerodynamic model derived from a static wind-tunnel data base. The validity of the aerodynamic model is shown by comparisons with rotary-balance data and forced-oscillation tests. The results of a six-degree-of-freedom analysis show that the dynamics and aerodynamics of the steep- and flat-spin modes of a modified Yankee have been properly modeled.

  17. Predicting the aeroelastic behavior of a wind-tunnel model using transonic small disturbance theory

    Science.gov (United States)

    Silva, Walter A.; Bennett, Robert M.

    1990-01-01

    The CAP-TSD (Computational Aeroelasticity Program - Transonic Small Disturbance) code, developed at the NASA-Langley Research Center, is applied to the Active Flexible Wing (AFW) wind-tunnel model for prediction of the model's transonic aeroelastic behavior. Static aeroelastic solutions using CAP-TSD are computed. Dynamic (flutter) analyses are then performed as perturbations about the static aeroelastic deformations of the AFW. The accuracy of the static aeroelastic procedure is investigated by comparing analytical results to those from AFW wind-tunnel experiments. Dynamic results are presented in the form of root loci at different Mach numbers for a heavy gas and for air test mediums. The resultant flutter boundaries for both gases, and the effects of viscous damping and angle of attack on the flutter boundary in air, are also presented.

  18. Aeroservoelastic wind-tunnel investigations using the active flexible wing model - Status and recent accomplishments

    Science.gov (United States)

    Noll, Thomas; Perry, Boyd, III; Tiffany, Sherwood; Cole, Stanley; Buttrill, Carey; Adams, William, Jr.; Houck, Jacob; Srinathkumar, S.

    1989-01-01

    This paper describes the status of the joint NASA/Rockwell Active Flexible Wing Wind-Tunnel Test Program. The objectives of the program are to develop and validate the analysis, design and test methodologies required to apply multifunction active control technology for improving aircraft performance and stability. Major tasks of the program include designing digital multiinput/multioutput flutter-suppression and rolling-maneuver-load-alleviation concepts for a flexible full-span wind-tunnel model, obtaining an experimental data base for the basic model and each control concept, and providing comparisons between experimental and analytical results to validate the methodologies. This program is also providing the opportunity to improve real-time simulation techniques and to gain practical experience with digital control law implementation procedures.

  19. An experimental study of high contraction ratio, subsonic wind tunnel inlets

    Science.gov (United States)

    Caylor, M. J.; Batill, S. M.

    1984-01-01

    The inlet or contraction section has significant impact on the performance and operating characteristics of any subsonic wind tunnel. Previous experimental studies have been conducted to examine specific aspects of inlet performance and design. This work builds on this earlier experience by performing a comprehensive experimental analysis of a member of a family of high contraction ratio inlets used on indraft type wind tunnels. Quantitative flow field measurements were made using wall static ports, a five-hole pressure probe, and a hot wire anemometry system. Smoke flow visualization techniques were used to examine the inlet flow in a more qualitative manner and to correlate with quantitative measurements. This experimental investigation has provided insight into some of the many problems associated with inlet flows.

  20. Design and wind tunnel tests of winglets on a DC-10 wing

    Science.gov (United States)

    Gilkey, R. D.

    1979-01-01

    Results are presented of a wind tunnel test utilizing a 4.7 percent scale semi-span model in the Langley Research Center 8-foot transonic pressure wind tunnel to establish the cruise drag improvement potential of winglets as applied to the DC-10 wide body transport aircraft. Winglets were investigated on both the DC-10 Series 10 (domestic) and 30/40 (intercontinental) configurations and compared with the Series 30/40 configuration. The results of the investigation confirm that for the DC-10 winglets provide approximately twice the cruise drag reduction of wing-tip extensions for about the same increase in bending moment at the wing fuselage juncture. Furthermore, the winglet configurations achieved drag improvements which were in close agreement to analytical estimates. It was observed that relatively small changes in wing-winglet tailoring effected large improvements in drag and visual flow characteristics. All final winglet configurations exhibited visual flow characteristics on the wing and winglets

  1. Inviscid Design of Hypersonic Wind Tunnel Nozzles for a Real Gas

    Science.gov (United States)

    Korte, J. J.

    2000-01-01

    A straightforward procedure has been developed to quickly determine an inviscid design of a hypersonic wind tunnel nozzle when the test crash is both calorically and thermally imperfect. This real gas procedure divides the nozzle into four distinct parts: subsonic, throat to conical, conical, and turning flow regions. The design process is greatly simplified by treating the imperfect gas effects only in the source flow region. This simplification can be justified for a large class of hypersonic wind tunnel nozzle design problems. The final nozzle design is obtained either by doing a classical boundary layer correction or by using this inviscid design as the starting point for a viscous design optimization based on computational fluid dynamics. An example of a real gas nozzle design is used to illustrate the method. The accuracy of the real gas design procedure is shown to compare favorably with an ideal gas design based on computed flow field solutions.

  2. N.A.C.A. Langley Field Wind Tunnel Apparatusthe Tilting Manometer

    Science.gov (United States)

    Norton, F H; Bacon, D L

    1921-01-01

    A description is given of a tilting manometer designed to meet the requirements of a manometer for use in the wind tunnel at the Langley Memorial Aeronautical Laboratory. This gauge was designed to meet the requirements of a manometer in use in connection with a static pressure plate to indicate the wind speed in the tunnel. The requirements are noted. The sensitivity of the gauge must be made inversely proportional to the pressure to be measured. The gauge must be accurately and quickly set for any desired pressure. When set at the desired pressure, the extent of variation between the existing and the desired pressures may be readily estimated. In fact, this manometer is quick to adjust, is easy to read, always has the meniscus in the same position, and accurately indicates a large range of air speeds on what is a comparatively compact instrument.

  3. Gust response analysis and wind tunnel test for a high-aspect ratio wing

    Directory of Open Access Journals (Sweden)

    Liu Yi

    2016-02-01

    Full Text Available A theoretical nonlinear aeroelastic response analysis for a flexible high-aspect ratio wing excited by harmonic gust load is presented along with a companion wind tunnel test. A multidisciplinary coupled numerical calculation is developed to simulate the flexible model wing undergoing gust load in the time domain via discrete nonlinear finite element structural dynamic analysis and nonplanar unsteady vortex lattice aerodynamic computation. A dynamic perturbation analysis about a nonlinear static equilibrium is also used to determine the small perturbation flutter boundary. A novel noncontact 3-D camera measurement analysis system is firstly used in the wind tunnel test to obtain the spatial large deformation and responses. The responses of the flexible wing under different static equilibrium states and frequency gust loads are discussed. The fair to good quantitative agreements between the theoretical and experimental results demonstrate that the presented analysis method is an acceptable way to predict the geometrically nonlinear gust response for flexible wings.

  4. Aerodynamic testing model guided missiles with jets simulations in the T-35 wind tunnel

    Directory of Open Access Journals (Sweden)

    Ocokoljić Goran J.

    2014-01-01

    Full Text Available Testing of the Anti-Tank Missile with jets simulations in the T-35 wind tunnel is part of the development program of short range anti-tank system. The main task of this experiment was to provide an experimental data base for estimation of real jets influence. Analysis was presented for Mach number 0.2, model configurations with and without jets, and three jet tabs positions: tabs out of the jets, upper or lower tabs in the jets. Missile model designed that instead of the products of combustion through nozzles allow high pressure air corresponding mass flow. In additional to the wind tunnel test results the paper, also presents the results of CFD simulations. The results are presented by normal force and pitching moment coefficients.

  5. Turbulence Intensity at Inlet of 80- by 120-Foot Wind Tunnel Caused by Upwind Blockage

    Science.gov (United States)

    Salazar, Denise; Yuricich, Jillian

    2014-01-01

    In order to estimate the magnitude of turbulence in the National Full-Scale Aerodynamics Complex (NFAC) 80- by 120-Foot Wind Tunnel (80 x 120) caused by buildings located upwind from the 80 x 120 inlet, a 150th-scale study was performed that utilized a nominal two-dimensional blockage placed ahead of the inlet. The distance of the blockage ahead of the inlet was varied. This report describes velocity measurements made in the plane of the 80 x 120 model inlet for the case of zero ambient (atmospheric) wind.

  6. Plasma Wind Tunnel Testing of Electron Transpiration Cooling Concept

    Science.gov (United States)

    2017-02-28

    and Rockets, Vol. 21, No. 6 (1984), pp. 534-541.” J. Spacecraft Rock ., Vol. 21, No. 6, 1984, pp. 534–541. [3] Yoshizumi, T. and Hayashi, K...Report no. sc-rr-4960, Sandia Laboratories, Albuquerque, New Mexico , USA, 1964. [10] Kolesnikov, A. F., “Conditions of Simulation of Stagnation...Flows, RTO EN -8, Rhode-Saint-Genèse, Belgium, October 1999, pp. 6–01 – 6–26. [12] Barbante, P. and Chazot, O., “Flight Extrapolation of Plasma Wind

  7. Wind tunnel study of natural ventilation of building integrated photovoltaics double skin façade

    Science.gov (United States)

    Hudişteanu, Sebastian Valeriu; Popovici, Cătălin George; Cherecheş, Nelu-Cristian

    2018-02-01

    The paper presents a wind tunnel experimental analysis of a small-scale building model (1:30). The objective of the study is to determine the wind influence on the ventilation of a double skin façade channel (DSF) and the cooling effect over integrated photovoltaic panels. The tests were achieved by conceiving and implementation of an experimental program using a wind tunnel with atmospheric boundary layer. The effect of the wind over the ventilation of the horizontal channels of double skin façades is evaluated for different incident velocities. The results are generalized for the average steady state values of the velocities analysed. The experimental results put in evidence the correlation between the reference wind velocity and the dynamics of the air movement inside the double skin façade. These values are used to determine the convective heat transfer and the cooling effect of the air streams inside the channel upon the integrated photovoltaic panels. The decrease of the photovoltaic panels temperature determines a raise of 11% in efficiency and power generated.

  8. Wind tunnel study of natural ventilation of building integrated photovoltaics double skin façade

    Directory of Open Access Journals (Sweden)

    Hudişteanu Sebastian Valeriu

    2018-01-01

    Full Text Available The paper presents a wind tunnel experimental analysis of a small-scale building model (1:30. The objective of the study is to determine the wind influence on the ventilation of a double skin façade channel (DSF and the cooling effect over integrated photovoltaic panels. The tests were achieved by conceiving and implementation of an experimental program using a wind tunnel with atmospheric boundary layer. The effect of the wind over the ventilation of the horizontal channels of double skin façades is evaluated for different incident velocities. The results are generalized for the average steady state values of the velocities analysed. The experimental results put in evidence the correlation between the reference wind velocity and the dynamics of the air movement inside the double skin façade. These values are used to determine the convective heat transfer and the cooling effect of the air streams inside the channel upon the integrated photovoltaic panels. The decrease of the photovoltaic panels temperature determines a raise of 11% in efficiency and power generated.

  9. Decompression Sickness during Construction of the Dartford Tunnel

    Science.gov (United States)

    Golding, F. Campbell; Griffiths, P.; Hempleman, H. V.; Paton, W. D. M.; Walder, D. N.

    1960-01-01

    A clinical, radiological and statistical survey has been made of decompression sickness during the construction of the Dartford Tunnel. Over a period of two years, 1,200 men were employed on eight-hour shifts at pressures up to 28 pounds per square inch (p.s.i.). There were 689 cases of decompression sickness out of 122,000 compressions, an incidence of 0·56%. The majority of cases (94·9%) were simple “bends”. The remainder (5·1%) exhibited signs and symptoms other than pain and were more serious. All cases were successfully treated and no fatality or permanent disability occurred. In two serious cases, cysts in the lungs were discovered. It is suggested that these gave rise to air embolism when the subjects were decompressed, and pulmonary changes may contribute more than hitherto believed to the pathogenesis of bends. Some other clinical features are described, including “skin-mottling” and an association between bends and the site of an injury. The bends rate is higher for the back shift (3 p.m. to 11 p.m.) and the night shift (11 p.m. to 7 a.m.) than for the day shift. In the treatment of decompression sickness it appears to be more satisfactory to use the minimum pressure required for relief of symptoms followed by slow decompression with occasional “soaks”, than to attempt to drive the causative bubbles into solution with high pressures. During the contract the decompression tables recently prescribed by the Ministry of Labour were used. Evidence was obtained that they could be made safer, and that the two main assumptions on which they are based (that sickness will not occur at pressures below 18 p.s.i., and that a man saturates in four hours) may be incorrect. It is desirable to test tables based on 15 p.s.i. and eight-hour saturation. The existence of acclimatization to pressure was confirmed; it is such that the bends rate may fall in two to three weeks to 0·1% of the incidence on the first day of exposure. Acclimatization is lost again

  10. Study of optical techniques for the Ames unitary wind tunnel: Digital image processing, part 6

    Science.gov (United States)

    Lee, George

    1993-01-01

    A survey of digital image processing techniques and processing systems for aerodynamic images has been conducted. These images covered many types of flows and were generated by many types of flow diagnostics. These include laser vapor screens, infrared cameras, laser holographic interferometry, Schlieren, and luminescent paints. Some general digital image processing systems, imaging networks, optical sensors, and image computing chips were briefly reviewed. Possible digital imaging network systems for the Ames Unitary Wind Tunnel were explored.

  11. Evaluation of a new method for puff arrival time as assessed through wind tunnel modelling

    Czech Academy of Sciences Publication Activity Database

    Chaloupecká, Hana; Jaňour, Zbyněk; Mikšovský, J.; Jurčáková, Klára; Kellnerová, Radka

    2017-01-01

    Roč. 111, October (2017), s. 194-210 ISSN 0957-5820 R&D Projects: GA ČR GA15-18964S Institutional support: RVO:61388998 Keywords : wind tunnel * short-term gas leakage * puff Subject RIV: DG - Athmosphere Sciences, Meteorology OBOR OECD: Meteorology and atmospheric sciences Impact factor: 2.905, year: 2016 https://www.sciencedirect.com/science/article/pii/S0957582017302203

  12. Transition Detection for Low Speed Wind Tunnel Testing Using Infrared Thermography

    OpenAIRE

    Joseph, Liselle AnnMarie

    2014-01-01

    Transition is an important phenomenon in large scale, commercial, wind tunnel testing at low speeds because it is an excellent indicator of an airfoil performance. It is difficult to estimate transition through numerical techniques because of the complex nature of viscous flow. Therefore experimental techniques can be essential. Over the transition region the rate of heat transfer shows significant increases which can be detected using infrared thermography. This technique has been used predo...

  13. Aerodynamic Data Accuracy and Quality: Requirements and Capabilities in Wind Tunnel Testing.

    Science.gov (United States)

    1988-07-01

    thel theoretica estimat frcat acloseio agreeprosit woul be aplhabe pon corrctio of lsd al V rethis magnitud isbou usull aphlie toe measued Fo Mac nubr...June 1947. S. N.J. Zucrow and J.0. Hoffman , "Volume It Gas Dynamics’, Wile 1977. 9. I.M. Hall. ’Transonic Flow In To-Dimanstoonl and Axially-Smnetrt...WIND TUNNEL FLOW FIELDS FOR IMPROVED DATA ACCURACY by Albert H. Boudreau, Aerospace Engineer Arnold Engineering Development Center Arnold Air Force

  14. Study of optical techniques for the Ames unitary wind tunnel. Part 5: Infrared imagery

    Science.gov (United States)

    Lee, George

    1992-01-01

    A survey of infrared thermography for aerodynamics was made. Particular attention was paid to boundary layer transition detection. IR thermography flow visualization of 2-D and 3-D separation was surveyed. Heat transfer measurements and surface temperature measurements were also covered. Comparisons of several commercial IR cameras were made. The use of a recently purchased IR camera in the Ames Unitary Plan Wind Tunnels was studied. Optical access for these facilities and the methods to scan typical models was investigated.

  15. Geotechnical characterization and construction methods for SSC tunnel excavation

    International Nuclear Information System (INIS)

    Nelson, P.P.; Lundin, T.K.

    1990-06-01

    The site for the Superconducting Super Collider (SSC) facility was selected in 1988 after a nationwide proposal competition. The selected site is located in Ellis County, Texas, surrounding the town of Waxahachie which is about 30 miles (48 km) south of the City of Dallas central business district. This paper will describe the geotechnical conditions anticipated for excavation at the SSC site. A general geologic and geomechanical description of the rock present will be followed by a summary of the site-specific conceptual design for the tunneled components of the SSC machine. The Supercollider project will include about 70 miles (113) km of tunnel excavation

  16. Environmental monitoring of a wind park during the construction phase

    International Nuclear Information System (INIS)

    Castonguay, M.; Caron, F.

    2007-01-01

    Wind energy qualifies as green energy because of low gas emissions associated with energy production. However, in order to truly qualify as green, each phase of a wind energy project should be evaluated, including construction, the energy exploitation period, as well as the dismantling of the turbines. Environmental monitoring of wind turbine arrays during the construction and dismantling phases could reveal the environmental impact of a project. This article provided the example of a wind turbine array at l'Anse-a-Valleau, located in a forested territory on the north side of the Gaspe Peninsula along the St. Lawrence River in Quebec. The park was configured to have 67 wind turbines of 1.5 MW each, for a total of 100.5 MW. The project was evaluated at $164 million, with regional economic spending of $65.8 million. During the height of construction, the project employed 240 workers. Ten full-time jobs will be created for the operation phase, scheduled for the end of 2007. The environmental monitoring at the construction site is deemed both technical and social. Good working conditions and communication must be established between the environmental supervisor and the site manager. They must work jointly to ensure good conduct and progress of the work at the construction site. The environmental supervisor must have the necessary authority to stop work upon a breach of regulations in the deforesting phase, since 60 per cent of the territory is on public domain. Environmental monitoring also includes surveillance of the road construction, soil quality, transportation of equipment, air quality, noise pollution, and residual matter management. It was concluded that wind energy is a true form of green energy, and methods used by developers during construction demonstrate responsibility towards the environment. It was suggested that the key to success is to have good pre-planning and good communication between all parties concerned. 4 figs

  17. Tunnel boring an alternative method in construction of spent fuel repositories

    International Nuclear Information System (INIS)

    Christersson, Jukka

    1984-05-01

    In projecting of the final disposal of nuclear waste in geological formations a great importance should be paid to the selection of the tunneling method. The environment of the chosen repository area should not be exposed to any but as minor disturbances as possible by the excavation method applied. This study approaches full face tunneling methods as an alternative to conventional drill-and-blast methods in the construction of spent fuel repository tunnels. According to experiences up till now it is obvious, that tunnelboring today is fully capable technically competing with conventional tunneling methods, even in the hardest granitic rocks. The most important advantages, it provides for the construction of repositories, are: The methods does not produce any damage in the surrounding rock. Possibility to use placement techniques, which do not require preparing of additive repository holes for the fuel elements. Saving in the use of expensive filling material. The fact, that tunnel boring in hard rock is an expensive alternative, is still valid. Constuction of straight lined tunnels in unfractured rocks by tunnel boring would cost about 30-40% more than by conventional methods. The lay out arrangement of bored tunnels still have a great influence on tunnel boring machine's economy. Due to this it would be round 40-70% more expensive method in the construction of spent fuel repositories. However intensive development w is being carried out to eliminate these limitations and to make machines more flexible. Future trends in tunnel boring look good at the moment. The number of sold units has been increasing and new applications have widen out during last ten years. Harder and more abrasive rocks can now be bored than ever before and the trend seems to continue. It also looks like the cost difference in the hardest rocks is firmly getting smaller and smaller all the time. (author)

  18. Time-Accurate Unsteady Pressure Loads Simulated for the Space Launch System at Wind Tunnel Conditions

    Science.gov (United States)

    Alter, Stephen J.; Brauckmann, Gregory J.; Kleb, William L.; Glass, Christopher E.; Streett, Craig L.; Schuster, David M.

    2015-01-01

    A transonic flow field about a Space Launch System (SLS) configuration was simulated with the Fully Unstructured Three-Dimensional (FUN3D) computational fluid dynamics (CFD) code at wind tunnel conditions. Unsteady, time-accurate computations were performed using second-order Delayed Detached Eddy Simulation (DDES) for up to 1.5 physical seconds. The surface pressure time history was collected at 619 locations, 169 of which matched locations on a 2.5 percent wind tunnel model that was tested in the 11 ft. x 11 ft. test section of the NASA Ames Research Center's Unitary Plan Wind Tunnel. Comparisons between computation and experiment showed that the peak surface pressure RMS level occurs behind the forward attach hardware, and good agreement for frequency and power was obtained in this region. Computational domain, grid resolution, and time step sensitivity studies were performed. These included an investigation of pseudo-time sub-iteration convergence. Using these sensitivity studies and experimental data comparisons, a set of best practices to date have been established for FUN3D simulations for SLS launch vehicle analysis. To the author's knowledge, this is the first time DDES has been used in a systematic approach and establish simulation time needed, to analyze unsteady pressure loads on a space launch vehicle such as the NASA SLS.

  19. Pose Measurement Method and Experiments for High-Speed Rolling Targets in a Wind Tunnel

    Directory of Open Access Journals (Sweden)

    Zhenyuan Jia

    2014-12-01

    Full Text Available High-precision wind tunnel simulation tests play an important role in aircraft design and manufacture. In this study, a high-speed pose vision measurement method is proposed for high-speed and rolling targets in a supersonic wind tunnel. To obtain images with high signal-to-noise ratio and avoid impacts on the aerodynamic shape of the rolling targets, a high-speed image acquisition method based on ultrathin retro-reflection markers is presented. Since markers are small-sized and some of them may be lost when the target is rolling, a novel markers layout with which markers are distributed evenly on the surface is proposed based on a spatial coding method to achieve highly accurate pose information. Additionally, a pose acquisition is carried out according to the mentioned markers layout after removing mismatching points by Case Deletion Diagnostics. Finally, experiments on measuring the pose parameters of high-speed targets in the laboratory and in a supersonic wind tunnel are conducted to verify the feasibility and effectiveness of the proposed method. Experimental results indicate that the position measurement precision is less than 0.16 mm, the pitching and yaw angle precision less than 0.132° and the roll angle precision 0.712°.

  20. Analysis of Wind Tunnel Oscillatory Data of the X-31A Aircraft

    Science.gov (United States)

    Smith, Mark S.

    1999-01-01

    Wind tunnel oscillatory tests in pitch, roll, and yaw were performed on a 19%-scale model of the X-31A aircraft. These tests were used to study the aerodynamic characteristics of the X-31A in response to harmonic oscillations at six frequencies. In-phase and out-of-phase components of the aerodynamic coefficients were obtained over a range of angles of attack from 0 to 90 deg. To account for the effect of frequency on the data, mathematical models with unsteady terms were formulated by use of two different indicial functions. Data from a reduced set of frequencies were used to estimate model parameters, including steady-state static and dynamic stability derivatives. Both models showed good prediction capability and the ability to accurately fit the measured data. Estimated static stability derivatives compared well with those obtained from static wind tunnel tests. The roll and yaw rate derivative estimates were compared with rotary-balanced wind tunnel data and theoretical predictions. The estimates and theoretical predictions were in agreement at small angles of attack. The rotary-balance data showed, in general, acceptable agreement with the steady-state derivative estimates.

  1. Computational Design and Analysis of a Transonic Natural Laminar Flow Wing for a Wind Tunnel Model

    Science.gov (United States)

    Lynde, Michelle N.; Campbell, Richard L.

    2017-01-01

    A natural laminar flow (NLF) wind tunnel model has been designed and analyzed for a wind tunnel test in the National Transonic Facility (NTF) at the NASA Langley Research Center. The NLF design method is built into the CDISC design module and uses a Navier-Stokes flow solver, a boundary layer profile solver, and stability analysis and transition prediction software. The NLF design method alters the pressure distribution to support laminar flow on the upper surface of wings with high sweep and flight Reynolds numbers. The method addresses transition due to attachment line contamination/transition, Gortler vortices, and crossflow and Tollmien-Schlichting modal instabilities. The design method is applied to the wing of the Common Research Model (CRM) at transonic flight conditions. Computational analysis predicts significant extents of laminar flow on the wing upper surface, which results in drag savings. A 5.2 percent scale semispan model of the CRM NLF wing will be built and tested in the NTF. This test will aim to validate the NLF design method, as well as characterize the laminar flow testing capabilities in the wind tunnel facility.

  2. Far-field noise from a rotor in a wind tunnel

    Science.gov (United States)

    Grant, Justin Alexander

    This project is intended to demonstrate the current state of knowledge in the prediction of the tonal and broadband noise radiation from a Sevik rotor. The rotor measurements were made at the Virginia Tech Stability Wind Tunnel. Details of the rotor noise and flow measurements were presented by Wisda et al(2014) and Murray et al(2015) respectively. This study presents predictions based on an approach detailed by Glegg et al(2015) for the broadband noise generated by a rotor in an inhomogeneous flow, and compares them to measured noise radiated from the rotor at prescribed observer locations. Discrepancies between the measurements and predictions led to comprehensive study of the flow in the wind tunnel and the discovery of a vortex upstream of the rotor at low advance ratios. The study presents results of RANS simulations. The static pressure and velocity profile in the domain near the rotor's tip gap region were compared to measurements obtained from a pressure port array and a PIV visualization of the rotor in the wind tunnel.

  3. Finite element analysis of high aspect ratio wind tunnel wing model: A parametric study

    Science.gov (United States)

    Rosly, N. A.; Harmin, M. Y.

    2017-12-01

    Procedure for designing the wind tunnel model of a high aspect ratio (HAR) wing containing geometric nonlinearities is described in this paper. The design process begins with identification of basic features of the HAR wing as well as its design constraints. This enables the design space to be narrowed down and consequently, brings ease of convergence towards the design solution. Parametric studies in terms of the spar thickness, the span length and the store diameter are performed using finite element analysis for both undeformed and deformed cases, which respectively demonstrate the linear and nonlinear conditions. Two main criteria are accounted for in the selection of the wing design: the static deflections due to gravitational loading should be within the allowable margin of the size of the wind tunnel test section and the flutter speed of the wing should be much below the maximum speed of the wind tunnel. The findings show that the wing experiences a stiffness hardening effect under the nonlinear static solution and the presence of the store enables significant reduction in linear flutter speed.

  4. Hypersonic wind-tunnel free-flying experiments with onboard instrumentation

    KAUST Repository

    Mudford, Neil R.

    2015-01-01

    Hypersonic wind-tunnel testing with "free-flight" models unconnected to a sting ensures that sting/wake flow interactions do not compromise aerodynamic coefficient measurements. The development of miniaturized electronics has allowed the demonstration of a variant of a new method for the acquisition of hypersonic model motion data using onboard accelerometers, gyroscopes, and a microcontroller. This method is demonstrated in a Mach 6 wind-tunnel flow, whose duration and pitot pressure are sufficient for the model to move a body length or more and turn through a significant angle. The results are compared with those obtained from video analysis of the model motion, the existing method favored for obtaining aerodynamic coefficients in similar hypersonic wind-tunnel facilities. The results from the two methods are in good agreement. The new method shows considerable promise for reliable measurement of aerodynamic coefficients, particularly because the data obtained are in more directly applicable forms of accelerations and rates of turn, rather than the model position and attitude obtained from the earlier visualization method. The ideal may be to have both methods operating together.

  5. Nacelle Chine Installation Based on Wind-Tunnel Test Using Efficient Global Optimization

    Science.gov (United States)

    Kanazaki, Masahiro; Yokokawa, Yuzuru; Murayama, Mitsuhiro; Ito, Takeshi; Jeong, Shinkyu; Yamamoto, Kazuomi

    Design exploration of a nacelle chine installation was carried out. The nacelle chine improves stall performance when deploying multi-element high-lift devices. This study proposes an efficient design process using a Kriging surrogate model to determine the nacelle chine installation point in wind-tunnel tests. The design exploration was conducted in a wind-tunnel using the JAXA high-lift aircraft model at the JAXA Large-scale Low-speed Wind Tunnel. The objective was to maximize the maximum lift. The chine installation points were designed on the engine nacelle in the axial and chord-wise direction, while the geometry of the chine was fixed. In the design process, efficient global optimization (EGO) which includes Kriging model and genetic algorithm (GA) was employed. This method makes it possible both to improve the accuracy of the response surface and to explore the global optimum efficiently. Detailed observations of flowfields using the Particle Image Velocimetry method confirmed the chine effect and design results.

  6. Coupled CFD/CSD Analysis of an Active-Twist Rotor in a Wind Tunnel with Experimental Validation

    Science.gov (United States)

    Massey, Steven J.; Kreshock, Andrew R.; Sekula, Martin K.

    2015-01-01

    An unsteady Reynolds averaged Navier-Stokes analysis loosely coupled with a comprehensive rotorcraft code is presented for a second-generation active-twist rotor. High fidelity Navier-Stokes results for three configurations: an isolated rotor, a rotor with fuselage, and a rotor with fuselage mounted in a wind tunnel, are compared to lifting-line theory based comprehensive rotorcraft code calculations and wind tunnel data. Results indicate that CFD/CSD predictions of flapwise bending moments are in good agreement with wind tunnel measurements for configurations with a fuselage, and that modeling the wind tunnel environment does not significantly enhance computed results. Actuated rotor results for the rotor with fuselage configuration are also validated for predictions of vibratory blade loads and fixed-system vibratory loads. Varying levels of agreement with wind tunnel measurements are observed for blade vibratory loads, depending on the load component (flap, lag, or torsion) and the harmonic being examined. Predicted trends in fixed-system vibratory loads are in good agreement with wind tunnel measurements.

  7. Studies using wind tunnel to simulate the Atmospheric Boundary Layer at the Alcântara Space Center

    Directory of Open Access Journals (Sweden)

    Luciana P. Bassi Marinho

    2009-01-01

    Full Text Available The Alcântara Space Center (ASC region has a peculiar topography due to the existence of a coastal cliff, which modifies the atmospheric boundary layer characteristic in a way that can affect rocket launching operations. Wind tunnel measurements can be an important tool for the understanding of turbulence and wind flow pattern characteristics in the ASC neighborhood, along with computational fluid dynamics and observational data. The purpose of this paper is to describe wind tunnel experiments that have been carried out by researchers from the Brazilian Institutions IAE, ITA and INPE. The technologies of Hot-Wire Anemometer and Particle Image Velocimetry (PIV have been used in these measurements, in order to obtain information about wind flow patterns as velocity fields and vorticity. The wind tunnel measurements are described and the results obtained are presented.

  8. Special Course on Cryogenic Technology for Wind Tunnel Testing,

    Science.gov (United States)

    1985-07-01

    construction of two Transonic Airfoil Models for tests in the NASA Langley 0,3 m TCT. G. SCHACHTERLE, K.H. LUDEWIG , E. STAJEWSEY DFVLR - AVA GOTTINGEN...given to the performance spectrum of the ETW. an evaluation of the predesgn. 235 *Ferris, Alice T.. and *Moore. Thomas C.. Force Inatrunnen

  9. Method of constructing lower dry well access tunnel for nuclear reactor container

    International Nuclear Information System (INIS)

    Kume, Tadashi; Furukawa, Hedeyasu.

    1993-01-01

    The method of the present invention facilitates construction of a lower dry well access tunnel for a nuclear reactor container. The lower dry well access tunnel is constructed across the reactor container and the reactor main body foundation. In this case, the lower dry well access tunnel is divided into three sections, i.e., axial end portions and a central portion. At first, each of the end portions is attached to the walls of the reactor container and the reactor main body foundation respectively. Subsequently, the central portion is attached to each of the end portions. An adjusting margin is previously provided to the central portion upon manufacturing each of the sections for adjusting deviation from a nominal size upon construction. In such a construction method, it is possible to eliminate interference accident during construction between the end portions of the lower dry well access tunnel and the reactor container and the reactor main body foundation, to facilitate the construction. Further, this facilitates the fabricating operation for dimensional alignment between the lower dry well access tunnel, and the reactor container and the reactor main body foundation. (I.S.)

  10. Miniaturized compact water-cooled pitot-pressure probe for flow-field surveys in hypersonic wind tunnels

    Science.gov (United States)

    Ashby, George C.

    1988-01-01

    An experimental investigation of the design of pitot probes for flowfield surveys in hypersonic wind tunnels is reported. The results show that a pitot-pressure probe can be miniaturized for minimum interference effects by locating the transducer in the probe support body and water-cooling it so that the pressure-settling time and transducer temperature are compatible with hypersonic tunnel operation and flow conditions. Flowfield surveys around a two-to-one elliptical cone model in a 20-inch Mach 6 wind tunnel using such a probe show that probe interference effects are essentially eliminated.

  11. Enhancements to AERMOD's building downwash algorithms based on wind-tunnel and Embedded-LES modeling

    Science.gov (United States)

    Monbureau, E. M.; Heist, D. K.; Perry, S. G.; Brouwer, L. H.; Foroutan, H.; Tang, W.

    2018-04-01

    Knowing the fate of effluent from an industrial stack is important for assessing its impact on human health. AERMOD is one of several Gaussian plume models containing algorithms to evaluate the effect of buildings on the movement of the effluent from a stack. The goal of this study is to improve AERMOD's ability to accurately model important and complex building downwash scenarios by incorporating knowledge gained from a recently completed series of wind tunnel studies and complementary large eddy simulations of flow and dispersion around simple structures for a variety of building dimensions, stack locations, stack heights, and wind angles. This study presents three modifications to the building downwash algorithm in AERMOD that improve the physical basis and internal consistency of the model, and one modification to AERMOD's building pre-processor to better represent elongated buildings in oblique winds. These modifications are demonstrated to improve the ability of AERMOD to model observed ground-level concentrations in the vicinity of a building for the variety of conditions examined in the wind tunnel and numerical studies.

  12. Precision Electron Density Measurements in the SSX MHD Wind Tunnel

    Science.gov (United States)

    Suen-Lewis, Emma M.; Barbano, Luke J.; Shrock, Jaron E.; Kaur, Manjit; Schaffner, David A.; Brown, Michael R.

    2017-10-01

    We characterize fluctuations of the line averaged electron density of Taylor states produced by the magnetized coaxial plasma gun of the SSX device using a 632.8 nm HeNe laser interferometer. The analysis method uses the electron density dependence of the refractive index of the plasma to determine the electron density of the Taylor states. Typical magnetic field and density values in the SSX device approach about B ≅ 0.3 T and n = 0 . 4 ×1016 cm-3 . Analysis is improved from previous density measurement methods by developing a post-processing method to remove relative phase error between interferometer outputs and to account for approximately linear phase drift due to low-frequency mechanical vibrations of the interferometer. Precision density measurements coupled with local measurements of the magnetic field will allow us to characterize the wave composition of SSX plasma via density vs. magnetic field correlation analysis, and compare the wave composition of SSX plasma with that of the solar wind. Preliminary results indicate that density and magnetic field appear negatively correlated. Work supported by DOE ARPA-E ALPHA program.

  13. Comparison of Speed-Up Over Hills Derived from Wind-Tunnel Experiments, Wind-Loading Standards, and Numerical Modelling

    Science.gov (United States)

    Safaei Pirooz, Amir A.; Flay, Richard G. J.

    2018-03-01

    We evaluate the accuracy of the speed-up provided in several wind-loading standards by comparison with wind-tunnel measurements and numerical predictions, which are carried out at a nominal scale of 1:500 and full-scale, respectively. Airflow over two- and three-dimensional bell-shaped hills is numerically modelled using the Reynolds-averaged Navier-Stokes method with a pressure-driven atmospheric boundary layer and three different turbulence models. Investigated in detail are the effects of grid size on the speed-up and flow separation, as well as the resulting uncertainties in the numerical simulations. Good agreement is obtained between the numerical prediction of speed-up, as well as the wake region size and location, with that according to large-eddy simulations and the wind-tunnel results. The numerical results demonstrate the ability to predict the airflow over a hill with good accuracy with considerably less computational time than for large-eddy simulation. Numerical simulations for a three-dimensional hill show that the speed-up and the wake region decrease significantly when compared with the flow over two-dimensional hills due to the secondary flow around three-dimensional hills. Different hill slopes and shapes are simulated numerically to investigate the effect of hill profile on the speed-up. In comparison with more peaked hill crests, flat-topped hills have a lower speed-up at the crest up to heights of about half the hill height, for which none of the standards gives entirely satisfactory values of speed-up. Overall, the latest versions of the National Building Code of Canada and the Australian and New Zealand Standard give the best predictions of wind speed over isolated hills.

  14. Wind tunnel experiments to prove a hydraulic passive torque control concept for variable speed wind turbines

    NARCIS (Netherlands)

    Diepeveen, N.F.B.; Jarquin-Laguna, A.

    2014-01-01

    In this paper the results are presented of experiments to prove an innovative concept for passive torque control of variable speed wind turbines using fluid power technology. It is demonstrated that by correctly configuring the hydraulic drive train, the wind turbine rotor operates at or near

  15. New NASA-Ames wind-tunnel techniques for studying airplane spin and two-dimensional unsteady aerodynamics

    Science.gov (United States)

    Malcolm, G. N.; Davis, S. S.

    1978-01-01

    Two new wind tunnel test apparatuses were developed at NASA-Ames Research Center. The first is a rotary-balance apparatus to be used in the Ames 12-Foot Pressure Tunnel for investigating the effects of Reynolds number, spin rate, and angle of attack on the aerodynamics of fighter and general aviation aircraft in a steady spin motion. The second apparatus provides capability for oscillating a large two dimensional wing (0.5 m chord, 1.35 m span) instrumented with steady and unsteady pressure transducers in the Ames 11 x 11 ft. Transonic Wind Tunnel. A complete description of both apparatuses, their capabilities, and some typical wind tunnel results are presented.

  16. Construction of a cylindrical brine test room using a tunnel boring machine

    International Nuclear Information System (INIS)

    Likar, V.F.; Burrington, T.P.

    1990-01-01

    This paper discusses the construction of a horizontal cylindrical brine test room at the Waste Isolation Pilot Plant (WIPP). The room was constructed in the bedded salt formation at a depth of 655 meters with a tunnel boring machine. The machine leasing, technical and operational management, parameters involved, and successful completion of this effort are included. 3 figs

  17. Drag coefficients of lattice masts from full-scale wind-tunnel tests

    DEFF Research Database (Denmark)

    Georgakis, Christos; Støttrup-Andersen, Ulrik; Johnsen, Marie

    2009-01-01

    In this paper, the drag coefficients obtained from a series of full-scale section model wind-tunnel tests of several lattice mast configurations are presented and compared to those provided in Eurocode 3 and ESDU. The drag coefficients provided in Eurocode are conservative interpretations of 1......:5 scale section model tests performed at the National Physics Laboratory and the National Maritime Institute in the UK in the 1970´s. ESDU provides velocity-dependent drag coefficients equivalent to those obtained from the same series of tests. In all cases, the mast legs and diagonals are comprised...... primarily of circular hollow sections, putting into question the validity of the scaled tests from the 70’s. The results of the full-scale tests show that the drag coefficients of the masts have lower values than those obtained from the scaled tests for turbulent wind and higher for winds with low...

  18. Racing Wheels’ Effect on Drag/Side Forces Acting on a Cyclist at Sportstech-Miun Wind Tunnel

    Directory of Open Access Journals (Sweden)

    Nicola Petrone

    2018-02-01

    Full Text Available the wind tunnel at the SportsTech Research Centre at Mid Sweden University (MIUN, Ostersund was opened in 2015 for sports technology research. It is dedicated to analysis of equipment performance and garment development and suitable for roller skiing, running and cycling. The aim of this work was to develop and apply a full-scale method to investigate the aerodynamic behaviour of a cyclist facing front and cross wind at different yaw angles (from 0° to 30° and speeds. To reach this goal, a rotating structure supported by a force platform was constructed. It includes a set of rollers on which fully unrestrained cycling is possible. The method was applied to the comparison of three wheelsets (differing in material, height and shape of the rim, number and shape of spokes in terms of drag and side aerodynamic forces during a cyclist’s ride at 30 km/h, while keeping all the other factors constant. Resulting curves allowed estimating differences of 4% and 9% when applied to a recent time trial competition with supposed wind conditions.

  19. Wind tunnel test on airfoil Riso-B1-18 with an Active Trailing Edge Flap

    DEFF Research Database (Denmark)

    Bak, Christian; Gaunaa, Mac; Andersen, Peter Bjørn

    2010-01-01

    A wind tunnel test of the wind turbine airfoil Risø-B1-18 equipped with an Active Trailing Edge Flap (ATEF) was carried out. The ATEF was 9% of the total chord, made of piezo electric actuators attached to the trailing edge of a non-deformable airfoil and actuated using an (electric) amplifier...

  20. Analysis of aerodynamic measurements on a model wind turbine placed in the NASA-Ames tunnel. Contribution of ECN and TUD to IEA Wind Task XX

    Energy Technology Data Exchange (ETDEWEB)

    Schepers, J.G. [ECN Wind Energy, Petten (Netherlands); Van Rooij, R.P.J.O.M. [Delft University of Technology, Delft (Netherlands)

    2008-10-15

    In this report the most important contributions of ECN and DUT to IEA Wind Task XX are summarized. IEA Wind Task XX is an international cooperation between several parties from 7 countries coordinated by the National Renewable Energy Laboratory, NREL from the USA. The main aim of IEA Wind Task XX is to analyze the detailed aerodynamic measurements which were performed by NREL on a wind turbine placed in the large (24.4 x 36.6 m) NASA-Ames wind tunnel.

  1. Space shuttle phase B wind tunnel model and test information. Volume 3: Launch configuration

    Science.gov (United States)

    Glynn, J. L.; Poucher, D. E.

    1988-01-01

    Archived wind tunnel test data are available for flyback booster or other alternate recoverable configuration as well as reusable orbiters studied during initial development (Phase B) of the Space Shuttle, including contractor data for an extensive variety of configurations with an array of wing and body planforms. The test data have been compiled into a database and are available for application to current winged flyback or recoverable booster aerodynamic studies. The Space Shuttle Phase B Wind Tunnel Database is structured by vehicle component and configuration. Basic components include booster, orbiter, and launch vehicle. Booster configuration types include straight and delta wings, canard, cylindrical, retroglide and twin body. Orbiter configurations include straight and delta wings, lifting body, drop tanks and double delta wings. Launch configurations include booster and orbiter components in various stacked and tandem combinations. The digital database consists of 220 files containing basic tunnel data. Database structure is documented in a series of reports which include configuration sketches for the various planforms tested. This is Volume 3 -- launch configurations.

  2. Case Studies for the Statistical Design of Experiments Applied to Powered Rotor Wind Tunnel Tests

    Science.gov (United States)

    Overmeyer, Austin D.; Tanner, Philip E.; Martin, Preston B.; Commo, Sean A.

    2015-01-01

    The application of statistical Design of Experiments (DOE) to helicopter wind tunnel testing was explored during two powered rotor wind tunnel entries during the summers of 2012 and 2013. These tests were performed jointly by the U.S. Army Aviation Development Directorate Joint Research Program Office and NASA Rotary Wing Project Office, currently the Revolutionary Vertical Lift Project, at NASA Langley Research Center located in Hampton, Virginia. Both entries were conducted in the 14- by 22-Foot Subsonic Tunnel with a small portion of the overall tests devoted to developing case studies of the DOE approach as it applies to powered rotor testing. A 16-47 times reduction in the number of data points required was estimated by comparing the DOE approach to conventional testing methods. The average error for the DOE surface response model for the OH-58F test was 0.95 percent and 4.06 percent for drag and download, respectively. The DOE surface response model of the Active Flow Control test captured the drag within 4.1 percent of measured data. The operational differences between the two testing approaches are identified, but did not prevent the safe operation of the powered rotor model throughout the DOE test matrices.

  3. Study on Oxygen Supply Standard for Physical Health of Construction Personnel of High-Altitude Tunnels

    Directory of Open Access Journals (Sweden)

    Chun Guo

    2015-12-01

    Full Text Available The low atmospheric pressure and low oxygen content in high-altitude environment have great impacts on the functions of human body. Especially for the personnel engaged in complicated physical labor such as tunnel construction, high altitude can cause a series of adverse physiological reactions, which may result in multiple high-altitude diseases and even death in severe cases. Artificial oxygen supply is required to ensure health and safety of construction personnel in hypoxic environments. However, there are no provisions for oxygen supply standard for tunnel construction personnel in high-altitude areas in current tunnel construction specifications. As a result, this paper has theoretically studied the impacts of high-altitude environment on human bodies, analyzed the relationship between labor intensity and oxygen consumption in high-altitude areas and determined the critical oxygen-supply altitude values for tunnel construction based on two different standard evaluation systems, i.e., variation of air density and equivalent PIO2. In addition, it has finally determined the oxygen supply standard for construction personnel in high-altitude areas based on the relationship between construction labor intensity and oxygen consumption.

  4. Check Calibration of the NASA Glenn 10- by 10-Foot Supersonic Wind Tunnel (2014 Test Entry)

    Science.gov (United States)

    Johnson, Aaron; Pastor-Barsi, Christine; Arrington, E. Allen

    2016-01-01

    A check calibration of the 10- by 10-Foot Supersonic Wind Tunnel (SWT) was conducted in May/June 2014 using an array of five supersonic wedge probes to verify the 1999 Calibration. This check calibration was necessary following a control systems upgrade and an integrated systems test (IST). This check calibration was required to verify the tunnel flow quality was unchanged by the control systems upgrade prior to the next test customer beginning their test entry. The previous check calibration of the tunnel occurred in 2007, prior to the Mars Science Laboratory test program. Secondary objectives of this test entry included the validation of the new Cobra data acquisition system (DAS) against the current Escort DAS and the creation of statistical process control (SPC) charts through the collection of series of repeated test points at certain predetermined tunnel parameters. The SPC charts secondary objective was not completed due to schedule constraints. It is hoped that this effort will be readdressed and completed in the near future.

  5. Comparison of wind tunnel and field experiments to measure potential deposition of fenpropimorph following volatilisation from treated crops.

    Science.gov (United States)

    Hassink, Jan; Platz, Klaus; Stadler, Reinhold; Zangmeister, Werner; Fent, Gunnar; Möndel, Martin; Kubiak, Roland

    2007-02-01

    The potential for short-range transport via air, i.e. volatilisation from the area of application and subsequent deposition on adjacent non-target areas, was investigated for the fungicide fenpropimorph in a wind tunnel system and under outdoor conditions in a higher-tier field study. Fenpropimorph 750 g L(-1) EC was applied post-emergence to cereal along with a reference standard lindane EC. Stainless steel containers of water were placed at different distances downwind of the application area to trap volatile residues during a study period of 24 h following application. Meteorological conditions in the wind tunnel as well as on the field were constantly monitored during the study period. The wind tunnel system was a partly standardised system on a semi-field scale, i.e. wind direction and wind speed (2 m s(-1)) were constant, but temperature and humidity varied according to the conditions outside. In the field experiment, the average wind speed over the 24 h study period was 3 m s(-1) and no rainfall occurred. Three different measuring lines were installed on the non-target area beside the treated field to cover potential variations in the wind direction. However, no significant differences were observed since the wind direction was generally constant. Fenpropimorph was detected in minor amounts of 0.01-0.05% of the applied material in the wind tunnel experiment. Even at a distance of 1 m beside the treated field, no significant deposition occurred (0.04% of applied material after 24 h). In the field, less than 0.1% of the applied fenpropimorph was detected at 0 m directly beside the treated field. At 5 m distance the deposition values were below 0.04%, and at 20 m distance about 0.01%. In general, the amounts of deposited fenpropimorph detected in the partly standardised wind tunnel system and the higher-tier field study were in good agreement.

  6. Study of dust re-suspension at low pressure in a dedicated wind-tunnel

    Science.gov (United States)

    Rondeau, Anthony; Sabroux, Jean-Christophe; Chassefière, Eric

    2015-04-01

    The atmosphere of several telluric planets or satellites are dusty. Such is the case of Earth, Venus, Mars and Titan, each bearing different aeolian processes linked principally to the kinematic viscosity of the near-surface atmosphere. Studies of the Martian atmosphere are particularly relevant for the understanding of the dust re-suspension phenomena at low pressure (7 mbar). It turns out that operation of fusion reactors of the tokamak design produces significant amount of dust through the erosion of plasma-facing components. Such dust is a key issue, both regarding the performance and the safety of a fusion reactor such as ITER, under construction in Cadarache, France. Indeed, to evaluate the explosion risk in the ITER fusion reactor, it is essential to quantify the re-suspended dust fraction as a function of the dust inventory that can be potentially mobilized during a loss of vacuum accident (LOVA), with air or water vapour ingress. A complete accident sequence will encompass dust re-suspension from near-vacuum up to atmospheric pressure. Here, we present experimental results of particles re-suspension fractions measured at 1000, 600 and 300 mbar in the IRSN BISE (BlowIng facility for airborne releaSE) wind tunnel. Both dust monolayer deposits and multilayer deposits were investigated. In order to obtain experimental re-suspension data of dust monolayer deposits, we used an optical microscope allowing to measure the re-suspended particles fraction by size intervals of 1 µm. The deposits were made up of tungsten particles on a tungsten surface (an ubiquitous plasma facing component) and alumina particles on a glass plate, as a surrogate. A comparison of the results with the so-called Rock'nRoll dust re-suspension model (Reeks and Hall, 2001) is presented and discussed. The multilayer deposits were made in a vacuum sedimentation chamber allowing to obtain uniform deposits in terms of thickness. The re-suspension experimental data of such deposits were obtained

  7. METHODS FOR THE ARRANGEMENT OF IMMERSED TUBE TUNNELS DURING CONSTRUCTION BASED ON STRUCTURALLY UNSTABLE SOILS

    Directory of Open Access Journals (Sweden)

    E. N. Kurbatskiy

    2017-01-01

    Full Text Available Objectives. The aim of the research is to develop the most effective construction and technological methods for strengthening the bottom of rivers and bays, composed of weak structurally unstable soils, including zones with seismic activity, using pile foundations with broadening and rock filling with micropiles.Methods. The method of constructing combined transport transitions was applied, consisting of overpasses running over relatively shallow channels from coasts to artificial islands on which the route enters tunnels crossing deep shipping canals.Results. The foreign experience in the construction of immersed tube tunnels in the construction of transport crossings through the extended river and sea barriers has been analytically generalised. The features, advantages and disadvantages of the construction of immersed tube tunnels in some countries of the world are revealed.Conclusion. A large number of already constructed and operated transport transits, including immersed tube tunnels, testifies to the advantages of such projects, as compared to other types of transport transitions like bridges and tunnels constructed using mining techniques. Constructiontechnological methods for strengthening the bottom of rivers and bays, composed of weak structurally unstable soils, are proposed. When selecting a design of a bridge to ensure the passage of hightonnage vessels, it is necessary to build large-span bridges on high supports. Weak, structurally unstable soils, deep bedding of bedrock and high seismicity of the area will create serious problems in the construction and operation of such structures. The natural vibration frequencies of the large-span bridges fall into the region of the dominant earthquake frequencies, which can lead to resonant phenomena and damage the structure even under weak seismic influences. Tunnels are less susceptible to seismic impacts, since, unlike ground structures, they don't experience resonance phenomena. When

  8. Fractional Factorial Experiment Designs to Minimize Configuration Changes in Wind Tunnel Testing

    Science.gov (United States)

    DeLoach, Richard; Cler, Daniel L.; Graham, Albert B.

    2002-01-01

    This paper serves as a tutorial to introduce the wind tunnel research community to configuration experiment designs that can satisfy resource constraints in a configuration study involving several variables, without arbitrarily eliminating any of them from the experiment initially. The special case of a configuration study featuring variables at two levels is examined in detail. This is the type of study in which each configuration variable has two natural states - 'on or off', 'deployed or not deployed', 'low or high', and so forth. The basic principles are illustrated by results obtained in configuration studies conducted in the Langley National Transonic Facility and in the ViGYAN Low Speed Tunnel in Hampton, Virginia. The crucial role of interactions among configuration variables is highlighted with an illustration of difficulties that can be encountered when they are not properly taken into account.

  9. Development of Delta Wing Aerodynamics Research in Universiti Teknologi Malaysia Low Speed Wind Tunnel

    Directory of Open Access Journals (Sweden)

    Shabudin Mat

    2014-07-01

    Full Text Available This paper presents wind tunnel experiment on two delta wing configurations which are differentiated by their leading edge profiles: sharp and round-edged wings. The experiments were performed as a part of the delta wing aerodynamics research development in Universiti Teknologi Malaysia, low speed tunnel (UTM-LST. Steady load balance and flow visualization tests were conducted at Reynolds numbers of 0.5, 1, and 1.5 × 106, respectively. The flow measurement at low Reynolds number was also performed at as low as speed of 5 m/s. During the experiments, laser with smoke flow visualizations test was performed on both wings. The study has identified interesting features of the interrelationship between the conventional leading edge primary vortex and the occurrence and development of the vortex breakdown above the delta wings. The results conclude the vortex characteristics are largely dependent on the Reynolds number, angle of attack, and leading-edge radii of the wing.

  10. Transonic wind tunnel tests of a .015 scale space shuttle orbiter model, volume 2

    Science.gov (United States)

    Struzynski, N. A.

    1975-01-01

    Transonic wind tunnel tests were run on a 0.015 scale model of the Space Shuttle Orbiter Vehicle in an eight-foot tunnel during August 1975. The purpose of the program was to obtain basic shuttle aerodynamic data through a full range of elevon and aileron deflections, verification of data obtained at other facilities, and effects of Reynolds numbers. The second part of a discussion of test procedures and results in both tabular and graphical form were presented. Tests were performed at Mach numbers from 0.35 to 1.20, and at Reynolds numbers from 3.5 million to 8.2 million per foot. The angle of attack was varied from -2 to +20 degrees at sideslip angles of -2, 0, +2 degrees. Sideslip was varied from -6 to +8 degrees at constant angles of attack from 0 to +20 degrees. Various aileron and ailevon settings were tested for various angles of attack.

  11. Transonic wind tunnel tests of A.015 scale space shuttle orbiter model, volume 1

    Science.gov (United States)

    Struzynski, N. A.

    1975-01-01

    Transonic wind tunnel tests were run on a 0.015 scale model of the Space Shuttle Orbiter Vehicle in an eight-foot tunnel during August 1975. The purpose of the program was to obtain basic shuttle aerodynamic data through a full range of elevon and aileron deflections, verification of data obtained at other facilities, and effects of Reynolds numbers. The first part of a discussion of test procedures and results in both tabular and graphical form were presented. Tests were performed at Mach numbers from 0.35 to 1.20, and at Reynolds numbers for 3.5 million to 8.2 million per foot. The angle of attack was varied from -1 to +20 degrees at sideslip angles of -2, 0, +2 degrees. Sideslip was varied from -6 to +8 degrees at constant angles of attack from 0 to +20 degrees. Various aileron and ailevon settings were tested for various angles of attack.

  12. Further tests validating the adaptation process of the adaptive walls wind tunnel in Naples

    Science.gov (United States)

    Zuppardi, G.

    The present work reports some experimental results from the adaptive walls wind tunnel in Naples and must be considered a logical step forward in validating the wall adaptation process of this tunnel. Two sets of new tests were made for evaluating the effects of wall adaptation: one on the location of laminar-turbulent transition and turbulent separation points, the other one on the measurement of aerodynamic forces and moments, taken by a strain gage balance. Up to now, aerodynamic forces and moments were evaluated by the integration of pressure distributions on the model surface. All results agree with the theory, and measurement of aerodynamic forces has also been partially validated. Using a balance proved to be a technical shortcoming in the testing device.

  13. Active Control of Wind-Tunnel Model Aeroelastic Response Using Neural Networks

    Science.gov (United States)

    Scott, Robert C.

    2000-01-01

    NASA Langley Research Center, Hampton, VA 23681 Under a joint research and development effort conducted by the National Aeronautics and Space Administration and The Boeing Company (formerly McDonnell Douglas) three neural-network based control systems were developed and tested. The control systems were experimentally evaluated using a transonic wind-tunnel model in the Langley Transonic Dynamics Tunnel. One system used a neural network to schedule flutter suppression control laws, another employed a neural network in a predictive control scheme, and the third employed a neural network in an inverse model control scheme. All three of these control schemes successfully suppressed flutter to or near the limits of the testing apparatus, and represent the first experimental applications of neural networks to flutter suppression. This paper will summarize the findings of this project.

  14. Shock layer vacuum UV spectroscopy in an arc-jet wind tunnel

    Science.gov (United States)

    Palumbo, G.

    1990-01-01

    An experimental program is being developed to obtain measurements of the incident surface radiation in the 1000 A to 2000 A range from the shock stagnation region of a blunt model in the Ames 20 MW Arc-Jet Wind Tunnel. The setup consists of a water-cooled blunt model, with a magnesium fluoride forward-viewing window. Radiation incident on the window is optically imaged via an evacuated system and reflective optical elements onto the entrance slit of a spectrograph. The model will be exposed to the supersonic plasma stream from the exit nozzle of the arc-jet tunnel. The resulting bow shock radiation will be measured. It is expected that this experiment will help evaluate the importance of atomic N and O lines to the radiative heating of future Aeroassist Space Transfer Vehicles (ASTVs).

  15. A computer-controlled, on-board data acquisition system for wind-tunnel testing

    Science.gov (United States)

    Finger, H. J.; Cambra, J. M.

    1974-01-01

    A computer-controlled data acquisition system has been developed for the 40x80-foot wind tunnel at Ames Research Center. The system, consisting of several small onboard units installed in the model and a data-managing, data-displaying ground station, is capable of sampling up to 256 channels of raw data at a total sample rate of 128,000 samples/sec. Complete signal conditioning is contained within the on-board units. The sampling sequence and channel gain selection is completely random and under total control of the ground station. Outputs include a bar-graph display, digital-to-analog converters, and digital interface to the tunnel's central computer, an SEL 840MP. The system can be run stand-alone or under the control of the SEL 840MP.

  16. Unstructed Navier-Stokes Analysis of Wind-Tunnel Aeroelastic Effects on TCA Model 2

    Science.gov (United States)

    Frink, Neal T.; Allison, Dennis O.; Parikh, Paresh C.

    1999-01-01

    The aim of this work is to demonstrate a simple technique which accounts for aeroelastic deformations experienced by HSR wind-tunnel models within CFD computations. With improved correlations, CFD can become a more effective tool for augmenting the post-test understanding of experimental data. The present technique involves the loose coupling of a low-level structural representation within the ELAPS code, to an unstructured Navier-Stokes flow solver, USM3Dns. The ELAPS model is initially calibrated against bending characteristics of the wind-tunnel model. The strength of this method is that, with a single point calibration of a simple structural representation, the static aeroelastic effects can be accounted for in CFD calculations across a range of test conditions. No prior knowledge of the model deformation during the wind-on test is required. This approach has been successfully applied to the high aspect-ratio planforms of subsonic transports. The current challenge is to adapt the procedure to low aspect-ratio planforms typical of HSR configurations.

  17. What scaling means in wind engineering: Complementary role of the reduced scale approach in a BLWT and the full scale testing in a large climatic wind tunnel

    Science.gov (United States)

    Flamand, Olivier

    2017-12-01

    Wind engineering problems are commonly studied by wind tunnel experiments at a reduced scale. This introduces several limitations and calls for a careful planning of the tests and the interpretation of the experimental results. The talk first revisits the similitude laws and discusses how they are actually applied in wind engineering. It will also remind readers why different scaling laws govern in different wind engineering problems. Secondly, the paper focuses on the ways to simplify a detailed structure (bridge, building, platform) when fabricating the downscaled models for the tests. This will be illustrated by several examples from recent engineering projects. Finally, under the most severe weather conditions, manmade structures and equipment should remain operational. What “recreating the climate” means and aims to achieve will be illustrated through common practice in climatic wind tunnel modelling.

  18. Aeroservoelastic Testing of Free Flying Wind Tunnel Models Part 2: A Centerline Supported Fullspan Model Tested for Gust Load Alleviation

    Science.gov (United States)

    Scott, Robert C.; Vetter, Travis K.; Penning, Kevin B.; Coulson, David A.; Heeg, Jennifer

    2014-01-01

    This is part 2 of a two part document. Part 1 is titled: "Aeroservoelastic Testing of Free Flying Wind Tunnel Models Part 1: A Sidewall Supported Semispan Model Tested for Gust Load Alleviation and Flutter Suppression." A team comprised of the Air Force Research Laboratory (AFRL), Boeing, and the NASA Langley Research Center conducted three aeroservoelastic wind tunnel tests in the Transonic Dynamics Tunnel to demonstrate active control technologies relevant to large, flexible vehicles. In the first of these three tests, a full-span, aeroelastically scaled, wind tunnel model of a joined wing SensorCraft vehicle was mounted to a force balance to acquire a basic aerodynamic data set. In the second and third tests, the same wind tunnel model was mated to a new, two degree of freedom, beam mount. This mount allowed the full-span model to translate vertically and pitch. Trimmed flight at10 percent static margin and gust load alleviation were successfully demonstrated. The rigid body degrees of freedom required that the model be flown in the wind tunnel using an active control system. This risky mode of testing necessitated that a model arrestment system be integrated into the new mount. The safe and successful completion of these free-flying tests required the development and integration of custom hardware and software. This paper describes the many systems, software, and procedures that were developed as part of this effort. The balance and free flying wind tunnel tests will be summarized. The design of the trim and gust load alleviation control laws along with the associated results will also be discussed.

  19. Experimental and Theoretical Study of Air Flow with Obstruction Through Test Section of Wind Tunnel

    Directory of Open Access Journals (Sweden)

    Hayder Kraidy Rashid

    2016-03-01

    Full Text Available This paper estimates the sound and flow generated by a turbulent air flow in a duct from the knowledge of mean quantities (average velocity and sound pressure level.The sound excitation by fluid flow through duct can be used to predict fluid behavior. This behavior can be carried out by discovering the relation between sound excitation and fluid flow parameters like Reynolds number, Strouhal number and frequencies of turbulent fluid flow. However, the fluid flow container stability has to be taken in account simultaneously with fluid flow effect on sound generation and propagation. The experimental system used in this work is air flow through subsonic wind tunnel duct.The sound pressure levels of air flows through test section of subsonic wind tunnel (at three air flow velocities2.5, 7.3 and 12.5 m/s respectively were carried out experimentally. The sound excitation or generation by air flow throughout the test section of subsonic wind tunnel without any obstruction can't be used to imagine the fluid behavior. To predict fluid flow properties,an infinite cylinder was immersed in order to obstruct the air flow and generate a new source of sound.This case is relevant to a wide range of engineering applications including aircraft landing gear, rail pantographs and automotive side-mirrors. Sound measurements have been taken in an anechoic room at Babylon University. ANSYS program software is used to simulate all experimental results.The experimental and theoretical data that were presented in this paper will give further insight into the underlying sound generation mechanism.In the presented work, the linkage between sound generation and CFD results using thepresented work results and ANSYS simulation results was done.The results discuss the effects of fluid flow parameters such as Reynolds and Strouhal numbers on the sound generation, propagation features and vice-versa. The results are compared with other researchers which give good agreements.

  20. Pollutant Plume Dispersion over Hypothetical Urban Areas based on Wind Tunnel Measurements

    Science.gov (United States)

    Mo, Ziwei; Liu, Chun-Ho

    2017-04-01

    Gaussian plume model is commonly adopted for pollutant concentration prediction in the atmospheric boundary layer (ABL). However, it has a number of limitations being applied to pollutant dispersion over complex land-surface morphology. In this study, the friction factor (f), as a measure of aerodynamic resistance induced by rough surfaces in the engineering community, was proposed to parameterize the vertical dispersion coefficient (σz) in the Gaussian model. A series of wind tunnel experiments were carried out to verify the mathematical hypothesis and to characterize plume dispersion as a function of surface roughness as well. Hypothetical urban areas, which were assembled in the form of idealized street canyons of different aspect (building-height-to-street-width) ratios (AR = 1/2, 1/4, 1/8 and 1/12), were fabricated by aligning identical square aluminum bars at different separation apart in cross flows. Pollutant emitted from a ground-level line source into the turbulent boundary layer (TBL) was simulated using water vapour generated by ultrasonic atomizer. The humidity and the velocity (mean and fluctuating components) were measured, respectively, by humidity sensors and hot-wire anemometry (HWA) with X-wire probes in streamwise and vertical directions. Wind tunnel results showed that the pollutant concentration exhibits the conventional Gaussian distribution, suggesting the feasibility of using water vapour as a passive scalar in wind tunnel experiments. The friction factor increased with decreasing aspect ratios (widening the building separation). It was peaked at AR = 1/8 and decreased thereafter. Besides, a positive correlation between σz/xn (x is the distance from the pollutant source) and f1/4 (correlation coefficient r2 = 0.61) was observed, formulating the basic parameterization of plume dispersion over urban areas.

  1. A vegetation modeling concept for Building and Environmental Aerodynamics wind tunnel tests and its application in pollutant dispersion studies

    International Nuclear Information System (INIS)

    Gromke, Christof

    2011-01-01

    A new vegetation modeling concept for Building and Environmental Aerodynamics wind tunnel investigations was developed. The modeling concept is based on fluid dynamical similarity aspects and allows the small-scale modeling of various kinds of vegetation, e.g. field crops, shrubs, hedges, single trees and forest stands. The applicability of the modeling concept was validated in wind tunnel pollutant dispersion studies. Avenue trees in urban street canyons were modeled and their implications on traffic pollutant dispersion were investigated. The dispersion experiments proved the modeling concept to be practicable for wind tunnel studies and suggested to provide reliable concentration results. Unfavorable effects of trees on pollutant dispersion and natural ventilation in street canyons were revealed. Increased traffic pollutant concentrations were found in comparison to the tree-free reference case. - Highlights: → A concept for aerodynamic modelling of vegetation in small scale wind tunnel studies is presented. → The concept was applied to study pollutant dispersion in urban street canyons with avenue tress. → The wind tunnel studies show that modelling the aerodynamic effects of vegetation is important. → Avenue trees give rise to increased pollutant concentrations in urban street canyons. - Avenue trees in urban street canyons affect the pollutant dispersion and result in increased traffic exhaust concentrations.

  2. Demonstration of synchronised scanning Lidar measurements of 2D velocity fields in a boundary-layer wind tunnel

    Science.gov (United States)

    van Dooren, M. F.; Kühn, M.; PetroviĆ, V.; Bottasso, C. L.; Campagnolo, F.; Sjöholm, M.; Angelou, N.; Mikkelsen, T.; Croce, A.; Zasso, A.

    2016-09-01

    This paper combines the currently relevant research methodologies of scaled wind turbine model experiments in wind tunnels with remote-sensing short-range WindScanner Lidar measurement technology. The wind tunnel of the Politecnico di Milano was equipped with three wind turbine models and two short-range WindScanner Lidars to demonstrate the benefits of synchronised scanning Lidars in such experimental surroundings for the first time. The dual- Lidar system can provide fully synchronised trajectory scans with sampling time scales ranging from seconds to minutes. First, staring mode measurements were compared to hot wire probe measurements commonly used in wind tunnels. This yielded goodness of fit coefficients of 0.969 and 0.902 for the 1 Hz averaged u- and v-components of the wind speed, respectively, validating the 2D measurement capability of the Lidar scanners. Subsequently, the measurement of wake profiles on a line as well as wake area scans were executed to illustrate the applicability of Lidar scanning to measuring small scale wind flow effects. The downsides of Lidar with respect to the hot wire probes are the larger measurement probe volume and the loss of some measurements due to moving blades. In contrast, the benefits are the high flexibility in conducting both point measurements and area scanning, and the fact that remote sensing techniques do not disturb the flow while measuring. The research campaign revealed a high potential for using short-range WindScanner Lidar for accurately measuring small scale flow structures in a wind tunnel.

  3. A Wind-Tunnel Simulation of the Wake of a Large Wind Turbine in a Weakly Unstable Boundary Layer

    Science.gov (United States)

    Hancock, P. E.; Zhang, S.

    2015-09-01

    Measurements have been made in the wake of a model wind turbine in both a weakly unstable and a baseline neutral atmospheric boundary layer, in the EnFlo stratified-flow wind tunnel, between 0.5 and 10 rotor diameters from the turbine, as part of an investigation of wakes in offshore winds. In the unstable case the velocity deficit decreases more rapidly than in the neutral case, largely because the boundary-layer turbulence levels are higher with consequent increased mixing. The height and width increase more rapidly in the unstable case, though still in a linear manner. The vertical heat flux decreases rapidly through the turbine, recovering to the undisturbed level first in the lower part of the wake, and later in the upper part, through the growth of an internal layer. At 10 rotor diameters from the turbine, the wake has strong features associated with the surrounding atmospheric boundary layer. A distinction is drawn between direct effects of stratification, as necessarily arising from buoyant production, and indirect effects, which arise only because the mean shear and turbulence levels are altered. Some aspects of the wake follow a similarity-like behaviour. Sufficiently far downstream, the decay of the velocity deficit follows a power law in the unstable case as well as the neutral case, but does so after a shorter distance from the turbine. Tentatively, this distance is also shorter for a higher loading on the turbine, while the power law itself is unaffected by turbine loading.

  4. Simulation and analysis of natural rain in a wind tunnel via digital image processing techniques

    Science.gov (United States)

    Aaron, K. M.; Hernan, M.; Parikh, P.; Sarohia, V.; Gharib, M.

    1986-01-01

    It is desired to simulate natural rain in a wind tunnel in order to investigate its influence on the aerodynamic characteristics of aircraft. Rain simulation nozzles have been developed and tested at JPL. Pulsed laser sheet illumination is used to photograph the droplets in the moving airstream. Digital image processing techniques are applied to these photographs for calculation of rain statistics to evaluate the performance of the nozzles. It is found that fixed hypodermic type nozzles inject too much water to simulate natural rain conditions. A modification uses two aerodynamic spinners to flex a tube in a pseudo-random fashion to distribute the water over a larger area.

  5. Wind tunnel measurement of spray drift from on-off controlled sprayer nozzles

    DEFF Research Database (Denmark)

    Lund, Ivar; Jensen, Peter Kryger; Miller, Paul

    wide surface area with a length of 200 mm. The test was conducted in the wind tunnel at Silsoe Spray Applications Unit in the UK. The measurements consisted of two test series; airborne drift was collected on polyethylene lines more than 375 mm away from the centerline of the nozzle and ground deposits...... and arranged to deliver a pulse of spray using the WeedSeeker valve. The tests were conducted to determine accumulated spray deposit at different crosswind and forward speeds. In general, the deposits, especially those measured downwind close to the target zone showed significant increase as the crosswind...

  6. The effect of vegetation patterns on Aeolian mass flux at regional scale: a wind tunnel study

    OpenAIRE

    Youssef, Feras; Visser, Saskia M; Karssenberg, Derek; Erpul, Gunay; Cornelis, Wim; Gabriels, Donald; Poortinga, Ate; De Boever, Maarten

    2012-01-01

    ABSTRACT Although insight on the effect of vegetation pattern on Aeolian mass transport is essential for re-planting degraded land, only limited knowledge on this effect is available. The objective of this research was to understand the effect of vegetation design on the Aeolian mass flux inside a single land unit and at the borders among land units. A simulation of Atriplex halimus shrubs inside a wind tunnel was made, and sand redistribution was measured after the application of 200-230 sec...

  7. Simulated rotor test apparatus dynamic characteristics in the 80- by 120-foot wind tunnel

    Science.gov (United States)

    Hoque, M. S.; Peterson, R. L.; Graham, T. A.

    1990-01-01

    A shake test was conducted in the 80 by 120 foot Wind Tunnel at NASA Ames Research Center, using a load frame and dummy weights to simulate the weight of the NASA Rotor Test Apparatus. The simulated hub was excited with broadband random excitation, and accelerometer responses were measured at various locations. The transfer functions (acceleration per unit excitation force as a function of frequency) for each of the accelerometer responses were computed, and the data were analyzed using modal analysis to estimate the model parameters.

  8. Wind tunnel investigation of active controls technology applied to a DC-10 derivative

    Science.gov (United States)

    Winther, B. A.; Shirley, W. A.; Heimbaugh, R. M.

    1980-01-01

    Application of active controls technology to reduce aeroelastic response offers a potential for significant payoffs in terms of aerodynamic efficiency and structural weight. As part of the NASA Energy Efficient Transport program, the impact upon flutter and gust load characteristics has been investigated by means of analysis and low-speed wind tunnel tests of a semispan model. The model represents a DC-10 derivative with increased wing span and an active aileron surface, responding to vertical acceleration at the wing tip. A control law satisfying both flutter and gust load constraints is presented and evaluated. In general, the beneficial effects predicted by analysis are in good agreement with experimental data.

  9. Comparison of acoustic data from a 102 mm conic nozzle as measured in the RAE 24-foot wind tunnel and the NASA Ames 40- by 80-foot wind tunnel

    Science.gov (United States)

    Atencio, A., Jr.; Mckie, J.

    1982-01-01

    A cooperative program between the Royal Aircraft Establishment (RAE), England, and the NASA Ames Research Center was initiated to compare acoustic measurements made in the RAE 24-foot wind tunnel and in the Ames 40- by 80-foot wind tunnel. The acoustic measurements were made in both facilities using the same 102 mm conical nozzle supplied by the RAE. The nozzle was tested by each organization using its respective jet test rig. The mounting hardware and nozzle exit conditions were matched as closely as possible. The data from each wind tunnel were independently analyzed by the respective organization. The results from these tests show good agreement. In both facilities, interference with acoustic measurement is evident at angles in the forward quadrant.

  10. Correaltion of full-scale drag predictions with flight measurements on the C-141A aircraft. Phase 2: Wind tunnel test, analysis, and prediction techniques. Volume 1: Drag predictions, wind tunnel data analysis and correlation

    Science.gov (United States)

    Macwilkinson, D. G.; Blackerby, W. T.; Paterson, J. H.

    1974-01-01

    The degree of cruise drag correlation on the C-141A aircraft is determined between predictions based on wind tunnel test data, and flight test results. An analysis of wind tunnel tests on a 0.0275 scale model at Reynolds number up to 3.05 x 1 million/MAC is reported. Model support interference corrections are evaluated through a series of tests, and fully corrected model data are analyzed to provide details on model component interference factors. It is shown that predicted minimum profile drag for the complete configuration agrees within 0.75% of flight test data, using a wind tunnel extrapolation method based on flat plate skin friction and component shape factors. An alternative method of extrapolation, based on computed profile drag from a subsonic viscous theory, results in a prediction four percent lower than flight test data.

  11. Reproducing a Section of the Earth's Atmospheric Surface Layer in Small Wind Tunnels for Studies on the Environmental Fate of Chemical Warfare Agents

    National Research Council Canada - National Science Library

    Weber, D. J; Scudder, M. K; Hong, S. H; Sumpter, K. B; Shuely, W. J; Nickol, R. G; Pence, J. J; Molnar, J. W

    2004-01-01

    .... Wind speed is one of the environmental variables controlling CWA volatilization. therefore. an accurate flow field over the CWA droplets or droplet wetted area had to be designed into small laboratory wind tunnels...

  12. Probabilistic prediction of expected ground condition and construction time and costs in road tunnels

    Directory of Open Access Journals (Sweden)

    A. Mahmoodzadeh

    2016-10-01

    Full Text Available Ground condition and construction (excavation and support time and costs are the key factors in decision-making during planning and design phases of a tunnel project. An innovative methodology for probabilistic estimation of ground condition and construction time and costs is proposed, which is an integration of the ground prediction approach based on Markov process, and the time and cost variance analysis based on Monte-Carlo (MC simulation. The former provides the probabilistic description of ground classification along tunnel alignment according to the geological information revealed from geological profile and boreholes. The latter provides the probabilistic description of the expected construction time and costs for each operation according to the survey feedbacks from experts. Then an engineering application to Hamro tunnel is presented to demonstrate how the ground condition and the construction time and costs are estimated in a probabilistic way. In most items, in order to estimate the data needed for this methodology, a number of questionnaires are distributed among the tunneling experts and finally the mean values of the respondents are applied. These facilitate both the owners and the contractors to be aware of the risk that they should carry before construction, and are useful for both tendering and bidding.

  13. Determination of aerodynamic damping of twin cables in wet conditions through passive-dynamic wind tunnel tests

    DEFF Research Database (Denmark)

    Eriksen, Mads Beedholm; Mattiello, E.; Georgakis, Christos T.

    2013-01-01

    Moderate amplitude cable vibrations continue to be reported on the cable-stayed Øresund Bridge, despite the presence of helical fillets and dampers. The vibrations are particularly notable in wet conditions, which would suggest a form of rain-wind induced vibrations (RWIV). A statistical...... operational modal analysis of the monitored vibrations revealed, in certain conditions and for specific wind velocities, the presence of negative aerodynamic damping.To investigate the observed aerodynamic damping of the twin cable arrangement further, a series of 1:2.3 scale passive-dynamic wind tunnel tests...... was performed at the DTU/FORCETechnology ClimaticWind Tunnel facility in Kgs. Lyngby, Denmark. Tests were performed for both dry and wet conditions, with and without helical fillets. The specific relative cable-wind angle tested was identified as critical from the aforementioned full-scale monitoring...

  14. Wind-Tunnel Investigation of Wind Loads on a Post-Panamax Container Ship as a Function of the Container Configuration on Deck

    DEFF Research Database (Denmark)

    Andersen, Ingrid Marie Vincent

    2012-01-01

    An investigation of the wind forces acting on a 9,000+ TEU container ship has been carried out through a series of wind tunnel tests. It was investigated how the wind forces depend on the container configuration on the deck using a 1:450 scale model and a series of appropriate container...... are presented as nondimensional coefficients. It is concluded, that the measured forces and moment depend on the container configuration on deck, and the results may provide a general idea of how the magnitude of the wind forces is affected by a given container stacking configuration on a similar container ship....

  15. Active aerodynamic load control on wind turbines : Aeroservoelastic modeling and wind tunnel

    NARCIS (Netherlands)

    Barlas, A.

    2011-01-01

    This thesis investigates particular concepts and technologies that can alleviate fatigue loads on wind turbines by using distributed active aerodynamic devices on the blades, a concept briefly referred to as `smart blades'. Firstly, published research work on smart control devices is reviewed, and

  16. An evaluation of iced bridge hanger vibrations through wind tunnel testing and quasi-steady theory

    DEFF Research Database (Denmark)

    Gjelstrup, Henrik; Georgakis, Christos T.; Larsen, A.

    2012-01-01

    roughness is also examined. The static force coefficients are used to predict parameter regions where aerodynamic instability of the iced bridge hanger might be expected to occur, through use of an adapted theoretical 3- DOF quasi-steady galloping instability model, which accounts for sectional axial......Bridge hanger vibrations have been reported under icy conditions. In this paper, the results from a series of static and dynamic wind tunnel tests on a circular cylinder representing a bridge hanger with simulated thin ice accretions are presented. The experiments focus on ice accretions produced...... for wind perpendicular to the cylinder at velocities below 30 m/s and for temperatures between -5C and -1C. Aerodynamic drag, lift and moment coefficients are obtained from the static tests, whilst mean and fluctuating responses are obtained from the dynamic tests. The influence of varying surface...

  17. Preliminary studies on the Marcoule site, using a wind-tunnel

    International Nuclear Information System (INIS)

    Chassany, J.Ph.; Salaun-Penquer, G.

    1961-01-01

    The tests were carried out in the 3.30 x 2.20 subsonic elliptical wind-tunnel of the Marseille Institute of fluid mechanics, on a 1/1000 scale model measuring 3 m x 3 m. The aerodynamic field developing above the site, made visible by ammonium, hydro-chlorate fumes, and the residues were observed and filmed by means of a synchronised cine-camera with stroboscopic lighting for 4 wind directions. The fall-out from the various waste products was obtained from a spraying of lead acetate solution on the model and hydrogen sulphide emissions. The zones of maximum pollution can be determined from a study of the film taken during the blackening of the spots. (author) [fr

  18. Wind Power predictability a risk factor in the design, construction and operation of Wind Generation Turbines

    Science.gov (United States)

    Thiesen, J.; Gulstad, L.; Ristic, I.; Maric, T.

    2010-09-01

    Summit: The wind power predictability is often a forgotten decision and planning factor for most major wind parks, both onshore and offshore. The results of the predictability are presented after having examined a number of European offshore and offshore parks power predictability by using three(3) mesoscale model IRIE_GFS and IRIE_EC and WRF. Full description: It is well known that the potential wind production is changing with latitude and complexity in terrain, but how big are the changes in the predictability and the economic impacts on a project? The concept of meteorological predictability has hitherto to some degree been neglected as a risk factor in the design, construction and operation of wind power plants. Wind power plants are generally built in places where the wind resources are high, but these are often also sites where the predictability of the wind and other weather parameters is comparatively low. This presentation addresses the question of whether higher predictability can outweigh lower average wind speeds with regard to the overall economy of a wind power project. Low predictability also tends to reduce the value of the energy produced. If it is difficult to forecast the wind on a site, it will also be difficult to predict the power production. This, in turn, leads to increased balance costs and a less reduced carbon emission from the renewable source. By investigating the output from three(3) mesoscale models IRIE and WRF, using ECMWF and GFS as boundary data over a forecasting period of 3 months for 25 offshore and onshore wind parks in Europe, the predictability are mapped. Three operational mesoscale models with two different boundary data have been chosen in order to eliminate the uncertainty with one mesoscale model. All mesoscale models are running in a 10 km horizontal resolution. The model output are converted into "day a head" wind turbine generation forecasts by using a well proven advanced physical wind power model. The power models

  19. Comparison of the NASA Common Research Model European Transonic Wind Tunnel Test Data to NASA Test Data

    Science.gov (United States)

    Rivers, Melissa; Quest, Juergen; Rudnik, Ralf

    2015-01-01

    Experimental aerodynamic investigations of the NASA Common Research Model have been conducted in the NASA Langley National Transonic Facility, the NASA Ames 11-ft wind tunnel, and the European Transonic Wind Tunnel. In the NASA Ames 11-ft wind tunnel, data have been obtained at only a chord Reynolds number of 5 million for a wing/body/tail = 0 degree incidence configuration. Data have been obtained at chord Reynolds numbers of 5, 19.8 and 30 million for the same configuration in the National Transonic Facility and in the European Transonic Facility. Force and moment, surface pressure, wing bending and twist, and surface flow visualization data were obtained in all three facilities but only the force and moment and surface pressure data are presented herein.

  20. A Study of Acoustic Reflections in Full-Scale Rotor Low Frequency Noise Measurements Acquired in Wind Tunnels

    Science.gov (United States)

    Barbely, Natasha L.; Sim, Ben W.; Kitaplioglu, Cahit; Goulding, Pat, II

    2010-01-01

    Difficulties in obtaining full-scale rotor low frequency noise measurements in wind tunnels are addressed via residual sound reflections due to non-ideal anechoic wall treatments. Examples illustrated with the Boeing-SMART rotor test in the National Full-Scale Aerodynamics Complex (NFAC) 40- by 80-Foot Wind Tunnel facility demonstrated that these reflections introduced distortions in the measured acoustic time histories that are not representative of free-field rotor noise radiation. A simplified reflection analysis, based on the method of images, is used to examine the sound measurement quality in such "less-than-anechoic" environment. Predictions of reflection-adjusted acoustic time histories are qualitatively shown to account for some of the spurious fluctuations observed in wind tunnel noise measurements

  1. Air-Loads Prediction of a UH-60A Rotor inside the 40- by 80-Foot Wind Tunnel

    Science.gov (United States)

    Chang, I-Chung; Romander, Ethan A.; Potsdam, Mark; Yeo, Hyeonsoo

    2010-01-01

    The presented research extends the capability of a loose coupling computational fluid dynamics (CFD) and computational structure dynamics (CSD) code to calculate the flow-field around a rotor and test stand mounted inside a wind tunnel. Comparison of predicted air-load results for a full-scale UH-60A rotor recently tested inside the National Full-Scale Aerodynamics Complex (NFAC) 40- by 80-Foot Wind Tunnel at Ames Research Center and in free-air flight are made for three challenging flight data points from the earlier conducted UH-60A Air-loads Program. Overall results show that the extension of the coupled CFD/CSD code to the wind-tunnel environment is generally successful.

  2. WIND TUNNEL RESEARCH ON THE INFLUENCE OF ACTIVE AIRFLOW ON THE LIFT FORCE GENERATED BY THE AIRFOIL

    Directory of Open Access Journals (Sweden)

    Paweł Magryta

    2013-09-01

    Full Text Available The paper discusses the results of wind tunnel tests of airfoils with additional active airflow applied to their upper surfaces. These studies were carried out for a range of velocities up to 28 m/s in an open wind tunnel. Several types of airfoils selected for the examination feature different geometries and are widely applied in today’s aviation industry. The changes in the lift and drag force generated by these airfoils were recorded during the study. The test bench for the tests was equipped with a compressor and a vacuum pump to enable airflow through some holes on the airfoil upper surface. A rapid prototyping method and a 3D printer based on a powder printing technique were applied to print the airfoils. All of their surfaces were subject to surface grinding to smooth their external surfaces. The wind tunnel tests with and without active airflow applied to airfoils are summarised in the paper.

  3. Reverberation cancellation in a closed test section of a wind tunnel using a multi-microphone cesptral method

    Science.gov (United States)

    Blacodon, D.; Bulté, J.

    2014-04-01

    Nowadays, although aerodynamic data are still primarily sought after during wind tunnel tests, reliable acoustic measurements also become a priority for aircraft designers. In order to gather both kinds of data, aerodynamic and acoustic tests are carried out simultaneously under the same closed test section. This solution has two major drawbacks: the acoustic signals delivered by microphones may be corrupted by the boundary layer expanding on the wind tunnel walls and by the reverberant noise originating from reflective surfaces. Technological solutions can be deployed to reduce the corruption of the signals by the wind tunnel background noise. Methods based on the power cepstrum can be used to reduce reverberation effects by removing the quefrencies due to the echoes in the cepstral domain.

  4. A vegetation modeling concept for Building and Environmental Aerodynamics wind tunnel tests and its application in pollutant dispersion studies.

    Science.gov (United States)

    Gromke, Christof

    2011-01-01

    A new vegetation modeling concept for Building and Environmental Aerodynamics wind tunnel investigations was developed. The modeling concept is based on fluid dynamical similarity aspects and allows the small-scale modeling of various kinds of vegetation, e.g. field crops, shrubs, hedges, single trees and forest stands. The applicability of the modeling concept was validated in wind tunnel pollutant dispersion studies. Avenue trees in urban street canyons were modeled and their implications on traffic pollutant dispersion were investigated. The dispersion experiments proved the modeling concept to be practicable for wind tunnel studies and suggested to provide reliable concentration results. Unfavorable effects of trees on pollutant dispersion and natural ventilation in street canyons were revealed. Increased traffic pollutant concentrations were found in comparison to the tree-free reference case. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. Computed and Experimental Flutter/LCO Onset for the Boeing Truss-Braced Wing Wind-Tunnel Model

    Science.gov (United States)

    Bartels, Robert E.; Scott, Robert C.; Funk, Christie J.; Allen, Timothy J.; Sexton, Bradley W.

    2014-01-01

    This paper presents high fidelity Navier-Stokes simulations of the Boeing Subsonic Ultra Green Aircraft Research truss-braced wing wind-tunnel model and compares the results to linear MSC. Nastran flutter analysis and preliminary data from a recent wind-tunnel test of that model at the NASA Langley Research Center Transonic Dynamics Tunnel. The simulated conditions under consideration are zero angle of attack, so that structural nonlinearity can be neglected. It is found that, for Mach number greater than 0.78, the linear flutter analysis predicts flutter onset dynamic pressure below the wind-tunnel test and that predicted by the Navier-Stokes analysis. Furthermore, the wind-tunnel test revealed that the majority of the high structural dynamics cases were wing limit cycle oscillation (LCO) rather than flutter. Most Navier-Stokes simulated cases were also LCO rather than hard flutter. There is dip in the wind-tunnel test flutter/LCO onset in the Mach 0.76-0.80 range. Conditions tested above that Mach number exhibited no aeroelastic instability at the dynamic pressures reached in the tunnel. The linear flutter analyses do not show a flutter/LCO dip. The Navier-Stokes simulations also do not reveal a dip; however, the flutter/LCO onset is at a significantly higher dynamic pressure at Mach 0.90 than at lower Mach numbers. The Navier-Stokes simulations indicate a mild LCO onset at Mach 0.82, then a more rapidly growing instability at Mach 0.86 and 0.90. Finally, the modeling issues and their solution related to the use of a beam and pod finite element model to generate the Navier-Stokes structure mode shapes are discussed.

  6. New insights into the wind-dust relationship in sandblasting and direct aerodynamic entrainment from wind tunnel experiments

    KAUST Repository

    Parajuli, Sagar Prasad

    2016-01-22

    Numerous parameterizations have been developed for predicting wind erosion, yet the physical mechanism of dust emission is not fully understood. Sandblasting is thought to be the primary mechanism, but recent studies suggest that dust emission by direct aerodynamic entrainment can be significant under certain conditions. In this work, using wind tunnel experiments, we investigated some of the lesser understood aspects of dust emission in sandblasting and aerodynamic entrainment for three soil types, namely clay, silty clay loam, and clay loam. First, we explored the role of erodible surface roughness on dust emitted by aerodynamic entrainment. Second, we compared the emitted dust concentration in sandblasting and aerodynamic entrainment under a range of wind friction velocities. Finally, we explored the sensitivity of emitted dust particle size distribution (PSD) to soil type and wind friction velocity in these two processes. The dust concentration in aerodynamic entrainment showed strong positive correlation, no significant correlation, and weak negative correlation, for the clay, silty clay loam, and clay loam, respectively, with the erodible soil surface roughness. The dust in aerodynamic entrainment was significant constituting up to 28.3, 41.4, and 146.4% compared to sandblasting for the clay, silty clay loam, and clay loam, respectively. PSD of emitted dust was sensitive to soil type in both sandblasting and aerodynamic entrainment. PSD was sensitive to the friction velocity in aerodynamic entrainment but not in sandblasting. Our results highlight the need to consider the details of sandblasting and direct aerodynamic entrainment processes in parameterizing dust emission in global/regional climate models.

  7. Experimental wind tunnel study of a smart sensing skin for condition evaluation of a wind turbine blade

    Science.gov (United States)

    Downey, Austin; Laflamme, Simon; Ubertini, Filippo

    2017-12-01

    Condition evaluation of wind turbine blades is difficult due to their large size, complex geometry and lack of economic and scalable sensing technologies capable of detecting, localizing, and quantifying faults over a blade’s global area. A solution is to deploy inexpensive large area electronics over strategic areas of the monitored component, analogous to sensing skin. The authors have previously proposed a large area electronic consisting of a soft elastomeric capacitor (SEC). The SEC is highly scalable due to its low cost and ease of fabrication, and can, therefore, be used for monitoring large-scale components. A single SEC is a strain sensor that measures the additive strain over a surface. Recently, its application in a hybrid dense sensor network (HDSN) configuration has been studied, where a network of SECs is augmented with a few off-the-shelf strain gauges to measure boundary conditions and decompose the additive strain to obtain unidirectional surface strain maps. These maps can be analyzed to detect, localize, and quantify faults. In this work, we study the performance of the proposed sensing skin at conducting condition evaluation of a wind turbine blade model in an operational environment. Damage in the form of changing boundary conditions and cuts in the monitored substrate are induced into the blade. An HDSN is deployed onto the interior surface of the substrate, and the blade excited in a wind tunnel. Results demonstrate the capability of the HDSN and associated algorithms to detect, localize, and quantify damage. These results show promise for the future deployment of fully integrated sensing skins deployed inside wind turbine blades for condition evaluation.

  8. FEATURES OF DRILLING-AND-BLASTING AT CONSTRUCTION OF BESKIDSKIY TUNNEL

    Directory of Open Access Journals (Sweden)

    V. D. Petrenko

    2016-10-01

    Full Text Available Purpose. In this article it is necessary to analyze the possibility of developing technology and increasing its efficiency during the Beskidskiy tunnel construction in difficult engineering and geological conditions. Methodology. The authors have performed analysis of the technological level of mining and construction works, new technique, equipment and production. One of the important issues of blasting operation is to ensure the seismic safety, acting at a distance of 30 m in the axes of single-track tunnel, as the distance to it will be 20 m from the nearest charge in the laying tunnel. This problem was solved by applying the combined blasting of blast-hole charges with delay-action and long-delay ways. Herewith the total mass of charges in the stope was divided into three groups, in which the first group is exploded by short-delay firing with, and the second one is exploded by short-delay firing too with intervals of 200…400 ms, the third is exploded by long-delay blasting at intervals of 500…10000 ms. The combined blasting of short-delay charges and delay action ones let significantly reduce seismic action at a mass explosion of charges when driving of double-track railway tunnel of a large cross-section. Findings. The paper presents the developed technology model, describing dependence of the machines from engineering and geological conditions. The methodology of drilling and blasting works at the construction of the tunnel callote and stross as well as a technique of arrangement determination and intervals of shot-delay and delay blasting of blasthole explosive charges was developed. Maximum permissible concentration of gases and vapours at blasting was presented. The calculations showed that the maximum level of gas contamination of the working area in Beskidskiy tunnel is achieved at blast operations. In accordance with this ventilation of the tunnel when driving is carried out by independent systems with mechanical ventilation by

  9. 19 CFR 123.18 - Equipment and materials for constructing bridges or tunnels between the United States and Canada...

    Science.gov (United States)

    2010-04-01

    ... bridges or tunnels between the United States and Canada or Mexico. (a) Admission of equipment and materials. Equipment for use in construction of bridges or tunnels between the United States and Canada or... 19 Customs Duties 1 2010-04-01 2010-04-01 false Equipment and materials for constructing bridges...

  10. Reynolds-Averaged Navier-Stokes Simulation of a 2D Circulation Control Wind Tunnel Experiment

    Science.gov (United States)

    Allan, Brian G.; Jones, Greg; Lin, John C.

    2011-01-01

    Numerical simulations are performed using a Reynolds-averaged Navier-Stokes (RANS) flow solver for a circulation control airfoil. 2D and 3D simulation results are compared to a circulation control wind tunnel test conducted at the NASA Langley Basic Aerodynamics Research Tunnel (BART). The RANS simulations are compared to a low blowing case with a jet momentum coefficient, C(sub u), of 0:047 and a higher blowing case of 0.115. Three dimensional simulations of the model and tunnel walls show wall effects on the lift and airfoil surface pressures. These wall effects include a 4% decrease of the midspan sectional lift for the C(sub u) 0.115 blowing condition. Simulations comparing the performance of the Spalart Allmaras (SA) and Shear Stress Transport (SST) turbulence models are also made, showing the SST model compares best to the experimental data. A Rotational/Curvature Correction (RCC) to the turbulence model is also evaluated demonstrating an improvement in the CFD predictions.

  11. IIE`s wind tunnel calibration; Calibracion del tunel de viento del IIE

    Energy Technology Data Exchange (ETDEWEB)

    Pena Garcia, Raymundo [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1985-12-31

    The calibration of a wind tunnel is performed in such a way as to warrant a very low turbulence grade. When there is recently built tunnel, as is the case of the IIE`s tunnel, the turbulence in its testing chambers is large; for this reason it is necessary to integrate in it aerodynamic devices and elements capable of reducing it. At the end of the calibration studies can be performed in models with controlled scale. From these and from the results obtained it will be decided if the designed prototypes are built or modified. [Espanol] La calibracion de un tunel de viento se realiza de tal forma que garantiza un grado de turbulencia muy bajo. Cuando se tiene un tunel recien construido, como es el caso del tunel de viento del IIE, la turbulencia en sus camaras de prueba es grande; por lo que es necesario integrarle dispositivos y elementos aerodinamicos que sean capaces de reducirla. Al terminar la calibracion pueden realizarse estudios en modelos con escala controlada. De estos y de los resultados que se obtengan se decidira si se construyen o se modifican los prototipos disenados.

  12. Computer analysis of flow perturbations generated by placement of choke bumps in a wind tunnel

    Science.gov (United States)

    Campbell, R. L.

    1981-01-01

    An inviscid analytical study was conducted to determine the upstream flow perturbations caused by placing choke bumps in a wind tunnel. A computer program based on the stream-tube curvature method was used to calculate the resulting flow fields for a nominal free-stream Mach number range of 0.6 to 0.9. The choke bump geometry was also varied to investigate the effect of bump shape on the disturbance produced. Results from the study indicate that a region of significant variation from the free-stream conditions exists upstream of the throat of the tunnel. The extent of the disturbance region was, as a rule, dependent on Mach number and the geometry of the choke bump. In general, the upstream disturbance distance decreased for increasing nominal free-stream Mach number and for decreasing length-to-height ratio of the bump. A polynomial-curve choke bump usually produced less of a disturbance than did a circular-arc bump and going to an axisymmetric configuration (modeling choke bumps on all the tunnel walls) generally resulted in a lower disturbance than with the corresponding two dimensional case.

  13. Relevant risk factors associated with the construction of excavated tunnel cross-passages in soft soils

    NARCIS (Netherlands)

    Chivatá Cárdenas, Ibsen; Al-Jibouri, Saad H.S.; Halman, Johannes I.M.

    2013-01-01

    This paper reports on an investigation of risk factors associated with the construction of excavated tunnel cross-passages in soft soils. The investigation focused on excavations where freezing technologies are used to provide temporary support. The relevant risk factors and their associated

  14. FUN3D Airload Predictions for the Full-Scale UH-60A Airloads Rotor in a Wind Tunnel

    Science.gov (United States)

    Lee-Rausch, Elizabeth M.; Biedron, Robert T.

    2013-01-01

    An unsteady Reynolds-Averaged Navier-Stokes solver for unstructured grids, FUN3D, is used to compute the rotor performance and airloads of the UH-60A Airloads Rotor in the National Full-Scale Aerodynamic Complex (NFAC) 40- by 80-foot Wind Tunnel. The flow solver is loosely coupled to a rotorcraft comprehensive code, CAMRAD-II, to account for trim and aeroelastic deflections. Computations are made for the 1-g level flight speed-sweep test conditions with the airloads rotor installed on the NFAC Large Rotor Test Apparatus (LRTA) and in the 40- by 80-ft wind tunnel to determine the influence of the test stand and wind-tunnel walls on the rotor performance and airloads. Detailed comparisons are made between the results of the CFD/CSD simulations and the wind tunnel measurements. The computed trends in solidity-weighted propulsive force and power coefficient match the experimental trends over the range of advance ratios and are comparable to previously published results. Rotor performance and sectional airloads show little sensitivity to the modeling of the wind-tunnel walls, which indicates that the rotor shaft-angle correction adequately compensates for the wall influence up to an advance ratio of 0.37. Sensitivity of the rotor performance and sectional airloads to the modeling of the rotor with the LRTA body/hub increases with advance ratio. The inclusion of the LRTA in the simulation slightly improves the comparison of rotor propulsive force between the computation and wind tunnel data but does not resolve the difference in the rotor power predictions at mu = 0.37. Despite a more precise knowledge of the rotor trim loads and flight condition, the level of comparison between the computed and measured sectional airloads/pressures at an advance ratio of 0.37 is comparable to the results previously published for the high-speed flight test condition.

  15. Comparative study of construction schemes for proposed LINAC tunnel for ADSS

    International Nuclear Information System (INIS)

    Parchani, G.; Suresh, N.

    2003-01-01

    Radiation shielded structures involve architectural, structural and radiation shielding design. In order to attenuate the radiation level to the permissible limits concrete has been recognized as a most versatile radiation shielding material and is being extensively used. Concrete in addition to radiation shielding properties possesses very good mechanical properties, which enables its use as a structural member. High-energy linac lab, which will generate radiation, needs very large thickness of concrete for shielding. The length of tunnel (1.00 kM) is one of the most important factors in finalizing construction scheme. In view of this, it becomes essential to explore alternate construction schemes for such structures to optimize the cost of construction. In this paper, various alternates for the construction of proposed linac tunnel have been studied

  16. Parametrizing Evaporative Resistance for Heterogeneous Sparse Canopies through Novel Wind Tunnel Experimentation

    Science.gov (United States)

    Sloan, B.; Ebtehaj, A. M.; Guala, M.

    2017-12-01

    The understanding of heat and water vapor transfer from the land surface to the atmosphere by evapotranspiration (ET) is crucial for predicting the hydrologic water balance and climate forecasts used in water resources decision-making. However, the complex distribution of vegetation, soil and atmospheric conditions makes large-scale prognosis of evaporative fluxes difficult. Current ET models, such as Penman-Monteith and flux-gradient methods, are challenging to apply at the microscale due to ambiguity in determining resistance factors to momentum, heat and vapor transport for realistic landscapes. Recent research has made progress in modifying Monin-Obukhov similarity theory for dense plant canopies as well as providing clearer description of diffusive controls on evaporation at a smooth soil surface, which both aid in calculating more accurate resistance parameters. However, in nature, surfaces typically tend to be aerodynamically rough and vegetation is a mixture of sparse and dense canopies in non-uniform configurations. The goal of our work is to parameterize the resistances to evaporation based on spatial distributions of sparse plant canopies using novel wind tunnel experimentation at the St. Anthony Falls Laboratory (SAFL). The state-of-the-art SAFL wind tunnel was updated with a retractable soil box test section (shown in Figure 1), complete with a high-resolution scale and soil moisture/temperature sensors for recording evaporative fluxes and drying fronts. The existing capabilities of the tunnel were used to create incoming non-neutral stability conditions and measure 2-D velocity fields as well as momentum and heat flux profiles through PIV and hotwire anemometry, respectively. Model trees (h = 5 cm) were placed in structured and random configurations based on a probabilistic spacing that was derived from aerial imagery. The novel wind tunnel dataset provides the surface energy budget, turbulence statistics and spatial soil moisture data under varying

  17. Fundamental Understanding of Rotor Aeromechanics at High Advance Ratio Through Wind Tunnel Testing

    Science.gov (United States)

    Berry, Benjamin

    The purpose of this research is to further the understanding of rotor aeromechanics at advance ratios (mu) beyond the maximum of 0.5 (ratio of forward airspeed to rotor tip speed) for conventional helicopters. High advance ratio rotors have applications in high speed compound helicopters. In addition to one or more conventional main rotors, these aircraft employ either thrust compounding (propellers), lift compounding (fixed-wings), or both. An articulated 4-bladed model rotor was constructed, instrumented, and tested up to a maximum advance ratio of mu=1.6 in the Glenn L. Martin Wind Tunnel at the University of Maryland. The data set includes steady and unsteady rotor hub forces and moments, blade structural loads, blade flapping angles, swashplate control angles, and unsteady blade pressures. A collective-thrust control reversal--where increasing collective pitch results in lower rotor thrust--was observed and is a unique phenomenon to the high advance ratio flight regime. The thrust reversal is explained in a physical manner as well as through an analytical formulation. The requirements for the occurrence of the thrust reversal are enumerated. The effects of rotor geometry design on the thrust reversal onset are explored through the formulation and compared to the measured data. Reverse-flow dynamic stall was observed to extend the the lifting capability of the edgewise rotor well beyond the expected static stall behavior of the airfoil sections. Through embedded unsteady blade surface pressure transducers, the normal force, pitching moment, and shed dynamic stall vortex time histories at a blade section in strong reverse flow were analyzed. Favorable comparisons with published 2-D pitching airfoil reverse flow dynamic stall data indicate that the 3-D stall environment can likely be predicted using models developed from such 2-D experiments. Vibratory hub loads were observed to increase with advance ratio. Maximum amplitude was observed near mu=1, with a

  18. Computational Support of 9x7 Wind Tunnel Test of Sonic Boom Models with Plumes

    Science.gov (United States)

    Jensen, James C.; Denison, Marie; Durston, Don; Cliff, Susan E.

    2017-01-01

    NASA and its industry partners are performing studies of supersonic aircraft concepts with low sonic boom pressure signatures. The interaction of the nozzle jet flow with the aircrafts' aft components is typically where the greatest uncertainly in the pressure signature is observed with high-fidelity numerical simulations. An extensive wind tunnel test was conducted in February 2016 in the NASA Ames 9- by 7- Foot Supersonic Wind Tunnel to help address the nozzle jet effects on sonic boom. Five test models with a variety of shock generators of differing waveforms and strengths were tested with a convergent-divergent nozzle for a wide range of nozzle pressure ratios. The LAVA unstructured flow solver was used to generate first CFD comparisons with the new experimental database using best practice meshing and analysis techniques for sonic boom vehicle design for all five different configurations. LAVA was also used to redesign the internal flow path of the nozzle and to better understand the flow field in the test section, both of which significantly improved the quality of the test data.

  19. Key Topics for High-Lift Research: A Joint Wind Tunnel/Flight Test Approach

    Science.gov (United States)

    Fisher, David; Thomas, Flint O.; Nelson, Robert C.

    1996-01-01

    Future high-lift systems must achieve improved aerodynamic performance with simpler designs that involve fewer elements and reduced maintenance costs. To expeditiously achieve this, reliable CFD design tools are required. The development of useful CFD-based design tools for high lift systems requires increased attention to unresolved flow physics issues. The complex flow field over any multi-element airfoil may be broken down into certain generic component flows which are termed high-lift building block flows. In this report a broad spectrum of key flow field physics issues relevant to the design of improved high lift systems are considered. It is demonstrated that in-flight experiments utilizing the NASA Dryden Flight Test Fixture (which is essentially an instrumented ventral fin) carried on an F-15B support aircraft can provide a novel and cost effective method by which both Reynolds and Mach number effects associated with specific high lift building block flows can be investigated. These in-flight high lift building block flow experiments are most effective when performed in conjunction with coordinated ground based wind tunnel experiments in low speed facilities. For illustrative purposes three specific examples of in-flight high lift building block flow experiments capable of yielding a high payoff are described. The report concludes with a description of a joint wind tunnel/flight test approach to high lift aerodynamics research.

  20. Wind-Tunnel Investigations of Blunt-Body Drag Reduction Using Forebody Surface Roughness

    Science.gov (United States)

    Whitmore, Stephen A.; Sprague, Stephanie; Naughton, Jonathan W.; Curry, Robert E. (Technical Monitor)

    2001-01-01

    This paper presents results of wind-tunnel tests that demonstrate a novel drag reduction technique for blunt-based vehicles. For these tests, the forebody roughness of a blunt-based model was modified using micomachined surface overlays. As forebody roughness increases, boundary layer at the model aft thickens and reduces the shearing effect of external flow on the separated flow behind the base region, resulting in reduced base drag. For vehicle configurations with large base drag, existing data predict that a small increment in forebody friction drag will result in a relatively large decrease in base drag. If the added increment in forebody skin drag is optimized with respect to base drag, reducing the total drag of the configuration is possible. The wind-tunnel tests results conclusively demonstrate the existence of a forebody dragbase drag optimal point. The data demonstrate that the base drag coefficient corresponding to the drag minimum lies between 0.225 and 0.275, referenced to the base area. Most importantly, the data show a drag reduction of approximately 15% when the drag optimum is reached. When this drag reduction is scaled to the X-33 base area, drag savings approaching 45,000 N (10,000 lbf) can be realized.

  1. Second-Generation Large Civil Tiltrotor 7- by 10-Foot Wind Tunnel Test Data Report

    Science.gov (United States)

    Theodore, Colin R.; Russell, Carl R.; Willink, Gina C.; Pete, Ashley E.; Adibi, Sierra A.; Ewert, Adam; Theuns, Lieselotte; Beierle, Connor

    2016-01-01

    An approximately 6-percent scale model of the NASA Second-Generation Large Civil Tiltrotor (LCTR2) Aircraft was tested in the U.S. Army 7- by 10-Foot Wind Tunnel at NASA Ames Research Center January 4 to April 19, 2012, and September 18 to November 1, 2013. The full model was tested, along with modified versions in order to determine the effects of the wing tip extensions and nacelles; the wing was also tested separately in the various configurations. In both cases, the wing and nacelles used were adopted from the U.S. Army High Efficiency Tilt Rotor (HETR) aircraft, in order to limit the cost of the experiment. The full airframe was tested in high-speed cruise and low-speed hover flight conditions, while the wing was tested only in cruise conditions, with Reynolds numbers ranging from 0 to 1.4 million. In all cases, the external scale system of the wind tunnel was used to collect data. Both models were mounted to the scale using two support struts attached underneath the wing; the full airframe model also used a third strut attached at the tail. The collected data provides insight into the performance of the preliminary design of the LCTR2 and will be used for computational fluid dynamics (CFD) validation and the development of flight dynamics simulation models.

  2. Low-speed wind tunnel test results of the Canard Rotor/Wing concept

    Science.gov (United States)

    Bass, Steven M.; Thompson, Thomas L.; Rutherford, John W.; Swanson, Stephen

    1993-01-01

    The Canard Rotor/Wing (CRW), a high-speed rotorcraft concept, was tested at the National Aeronautics and Space Administration (NASA) Ames Research Center's 40- by 80-Foot Wind Tunnel in Mountain View, California. The 1/5-scale model was tested to identify certain low-speed, fixed-wing, aerodynamic characteristics of the configuration and investigate the effectiveness of two empennages, an H-Tail and a T-Tail. The paper addresses the principal test objectives and the results achieved in the wind tunnel test. These are summarized as: i) drag build-up and differences between the H-Tail and T-Tail configuration, ii) longitudinal stability of the H-Tail and T-Tail configurations in the conversion and cruise modes, iii) control derivatives for the canard and elevator in the conversion and cruise modes, iv) aerodynamic characteristics of varying the rotor/wing azimuth position, and v) canard and tail lift/trim capability for conversion conditions.

  3. Direct numerical simulations of an arc-powered heater for used in a hypersonic wind tunnel

    Science.gov (United States)

    Kim, Pilbum; Panesi, Marco; Freund, Jonathan

    2017-11-01

    We study a model arc-heater using direct numerical simulations, in a configuration motivated by its used to generated inflow of a high-speed wind tunnel for hypersonics research. The flow is assumed to be in local thermal equilibrium (LTE) and is modeled with with 11 species (N2, O2, NO, N, O, N2+,O2+,NO+, N+, O+, e-). The flow equations are solved in conjunction with an electrostatic field solver and the gas electric conductivity in LTE. The flow rate and the mean arc power are set to be 50.42 g/s and 84.7 kW with 214.0 V of the mean arc voltage , respectively. We study the flow details, the heading and thrust mechanisms, and make general comparisons with a corresponding, though geometrically more complex, experimental configuration. We particularly interested in the radical species it produces and will potentially be present in the wind-tunnel test section. This material is based in part upon work supported by the Department of Energy, National Nuclear Security Administration, under Award Number DE-NA0002374.

  4. Orbiter BLT Flight Experiment Wind Tunnel Simulations: Nearfield Flowfield Imaging and Surface Thermography

    Science.gov (United States)

    Danehy, Paul M.; Ivey, Christoper B.; Barthel, Brett F.; Inman, Jennifer A.; Jones, Stephen B.; Watkins, Anthony N.; Goodman, Kyle Z.; McCrea, Andrew C.; Leighty, Bradley D.; Lipford, William K.; hide

    2010-01-01

    This paper reports a series of wind tunnel tests simulating the near-field behavior of the Space Shuttle Orbiter Boundary Layer Transition Detailed Test Objective (BLT DTO) flight experiment. Hypersonic flow over a flat plate with an attached BLT DTO-shaped trip was tested in a Mach 10 wind tunnel. The sharp-leading-edge flat plate was oriented at an angle of 20 degrees with respect to the freestream flow, resulting in post-shock edge Mach number of approximately 4. The flowfield was visualized using nitric oxide (NO) planar laser-induced fluorescence (PLIF). Flow visualizations were performed at 10 Hz using a wide-field of view and high-resolution NO PLIF system. A lower spatial resolution and smaller field of view NO PLIF system visualized the flow at 500 kHz, which was fast enough to resolve unsteady flow features. At the lowest Reynolds number studied, the flow was observed to be laminar and mostly steady. At the highest Reynolds number, flow visualizations showed streak instabilities generated immediately downstream of the trip. These instabilities transitioned to unsteady periodic and spatially irregular structures downstream. Quantitative surface heating imagery was obtained using the Temperature Sensitive Paint (TSP) technique. Comparisons between the PLIF flow visualizations and TSP heating measurements show a strong correlation between flow patterns and surface heating trends.

  5. WIND TUNNEL EVALUATION FOR CONTROL TRANSITION FROM ELEVATOR TO STABILATOR OF SMALL UAV

    Directory of Open Access Journals (Sweden)

    ZULHILMY SAHWEE

    2017-06-01

    Full Text Available Faulty control surface actuator in a small Unmanned Aerial Vehicles (sUAV could be overcome with a few techniques. Redundant actuators, analytical redundancy or combination of both are normally used as fault accommodation techniques. In this paper, the accommodation technique of faulty elevator actuator is presented. This technique uses a standby control surface as temporary control reallocation. Wind tunnel measurement facility is set up for the experimental validation and it is compared with FoilSim software. Flat plate airfoil which was used as horizontal stabilizer, is simulated using numerical model and it is validated using the wind tunnel test. Then, a flat airfoil is designed to be used as stabilator for the recovery of faulty elevator actuator. Results show the different deflection angle is needed when transferring from one control surface to another. From the analysis, the proposed method could be implemented without affecting the pitch stability during control surface transition. The alternate control surface accommodation technique proves to be promising for higher reliability sUAV in the case of a faulty on-board actuator.

  6. Space Launch System Booster Separation Aerodynamic Testing in the NASA Langley Unitary Plan Wind Tunnel

    Science.gov (United States)

    Wilcox, Floyd J., Jr.; Pinier, Jeremy T.; Chan, David T.; Crosby, William A.

    2016-01-01

    A wind-tunnel investigation of a 0.009 scale model of the Space Launch System (SLS) was conducted in the NASA Langley Unitary Plan Wind Tunnel to characterize the aerodynamics of the core and solid rocket boosters (SRBs) during booster separation. High-pressure air was used to simulate plumes from the booster separation motors (BSMs) located on the nose and aft skirt of the SRBs. Force and moment data were acquired on the core and SRBs. These data were used to corroborate computational fluid dynamics (CFD) calculations that were used in developing a booster separation database. The SRBs could be remotely positioned in the x-, y-, and z-direction relative to the core. Data were acquired continuously while the SRBs were moved in the axial direction. The primary parameters varied during the test were: core pitch angle; SRB pitch and yaw angles; SRB nose x-, y-, and z-position relative to the core; and BSM plenum pressure. The test was conducted at a free-stream Mach number of 4.25 and a unit Reynolds number of 1.5 million per foot.

  7. The Impact of Truth Surrogate Variance on Quality Assessment/Assurance in Wind Tunnel Testing

    Science.gov (United States)

    DeLoach, Richard

    2016-01-01

    Minimum data volume requirements for wind tunnel testing are reviewed and shown to depend on error tolerance, response model complexity, random error variance in the measurement environment, and maximum acceptable levels of inference error risk. Distinctions are made between such related concepts as quality assurance and quality assessment in response surface modeling, as well as between precision and accuracy. Earlier research on the scaling of wind tunnel tests is extended to account for variance in the truth surrogates used at confirmation sites in the design space to validate proposed response models. A model adequacy metric is presented that represents the fraction of the design space within which model predictions can be expected to satisfy prescribed quality specifications. The impact of inference error on the assessment of response model residuals is reviewed. The number of sites where reasonably well-fitted response models actually predict inadequately is shown to be considerably less than the number of sites where residuals are out of tolerance. The significance of such inference error effects on common response model assessment strategies is examined.

  8. Analysis of the performance of the drive system and diffuser of the Langley unitary plan wind tunnel

    Science.gov (United States)

    Hasel, L. E.; Stallings, R. L.

    1981-01-01

    A broad program was initiated at the Langley Research Center in 1973 to reduce the energy consumption of the laboratory. As a part of this program, the performance characteristics of the Unitary Plan Wind Tunnel were reexamined to determine if potential methods for incresing the operating efficiencies of the tunnel could be formulated. The results of that study are summarized. The performance characteristics of the drive system components and the variable-geometry diffuser system of the tunnel are documented and analyzed. Several potential methods for reducing the energy requirements of the facility are discussed.

  9. Model Deformation and Optical Angle of Attack Measurement System in the NASA Ames Unitary Plan Wind Tunnel

    Science.gov (United States)

    Kushner, Laura K.; Drain, Bethany A.; Schairer, Edward T.; Heineck, James T.; Bell, James H.

    2017-01-01

    Both AoA and MDM measurements can be made using an optical system that relies on photogrammetry. Optical measurements are being requested by customers in wind tunnels with increasing frequency due to their non-intrusive nature and recent hardware and software advances that allow measurements to become near real time. The NASA Ames Research Center Unitary Plan Wind Tunnel is currently developing a system based on photogrammetry to measure model deformation and model angle of attack. This paper describes the new system, its development, its use on recent tests and plans to further develop the system.

  10. Performance results from a test of an S-76 rotor in the NASA Ames 80- by 120-foot wind tunnel

    Science.gov (United States)

    Shinoda, Patrick M.; Johnson, Wayne

    1993-01-01

    A full-scale helicopter rotor wind tunnel test has been conducted which covers a wide range of rotor-shaft angles-of-attack and 0-100 kt thrust conditions. The hover performance data thus obtained were compared with the results of momentum theory calculations; forward flight rotor-performance data were compared with calculations from a comprehensive rotorcraft analysis. These comparisons suggest that hover testing at an outdoor facility in the absence of ground effect is required to make a final determination of the absolute accuracy of the wind tunnel hover data.

  11. Insights into Airframe Aerodynamics and Rotor-on-Wing Interactions from a 0.25-Scale Tiltrotor Wind Tunnel Model

    Science.gov (United States)

    Young, L. A.; Lillie, D.; McCluer, M.; Yamauchi, G. K.; Derby, M. R.

    2001-01-01

    A recent experimental investigation into tiltrotor aerodynamics and acoustics has resulted in the acquisition of a set of data related to tiltrotor airframe aerodynamics and rotor and wing interactional aerodynamics. This work was conducted in the National Full-scale Aerodynamics Complex's (NFAC) 40-by-80 Foot Wind Tunnel, at NASA Ames Research Center, on the Full-Span Tilt Rotor Aeroacoustic Model (TRAM). The full-span TRAM wind tunnel test stand is nominally based on a quarter-scale representation of the V-22 aircraft. The data acquired will enable the refinement of analytical tools for the prediction of tiltrotor aeromechanics and aeroacoustics.

  12. Design of Intelligent Power Supply System for Expressway Tunnel

    Science.gov (United States)

    Wang, Li; Li, Yutong; Lin, Zimian

    2018-01-01

    Tunnel lighting program is one of the key points of tunnel infrastructure construction. As tunnels tend to handle remote locations, power supply line construction generally has been having the distance, investment, high cost characteristics. To solve this problem, we propose a green, environmentally friendly, energy-efficient lighting system. This program uses the piston-wind which cars within tunnel produce as the power and combines with solar energy, physical lighting to achieve it, which solves the problem of difficult and high cost of highway tunnel section, and provides new ideas for the future construction of tunnel power supply.

  13. Simulation and control engineering studies of NASA-Ames 40 foot by 80 foot/80 foot by 120 foot wind tunnels

    Science.gov (United States)

    Bohn, J. G.; Jones, J. E.

    1978-01-01

    The development and use of a digital computer simulation of the proposed wind tunnel facility is described. The feasibility of automatic control of wind tunnel airspeed and other parameters was examined. Specifications and implementation recommendations for a computer based automatic control and monitoring system are presented.

  14. Design and construction of the 400 kV cable system for the Severn tunnel

    Energy Technology Data Exchange (ETDEWEB)

    Arkell, C.A. (BICC Ltd., Belvedere, Eng.); Blake, W.E.; Brealey, A.D.R.; Hacke, K.J.H.; Hance, G.E.A.

    1977-03-01

    The reasons for the construction of a cable tunnel under the Rivers Severn and Wye and the application of an integrally cooled pipe-type cable system to the crossing are described. Difficulties of applying, to the tunnel scheme, the results of a field trial involving a buried pipe/cable scheme are examined, and the solutions described. The final design of cable and cooling system is given which enables a 4 x 400 mm/sup 2/ s.c.a. overhead line to be matched in current carrying capacity by a single cable per phase.

  15. Design and preliminary test results at Mach 5 of an axisymmetric slotted sound shield. [for supersonic wind tunnels (noise reduction in wind tunnel nozzles)

    Science.gov (United States)

    Beckwith, I. E.; Spokowski, A. J.; Harvey, W. D.; Stainback, P. C.

    1975-01-01

    The basic theory and sound attenuation mechanisms, the design procedures, and preliminary experimental results are presented for a small axisymmetric sound shield for supersonic wind tunnels. The shield consists of an array of small diameter rods aligned nearly parallel to the entrance flow with small gaps between the rods for boundary layer suction. Results show that at the lowest test Reynolds number (based on rod diameter) of 52,000 the noise shield reduced the test section noise by about 60 percent ( or 8 db attenuation) but no attenuation was measured for the higher range of test reynolds numbers from 73,000 to 190,000. These results are below expectations based on data reported elsewhere on a flat sound shield model. The smaller attenuation from the present tests is attributed to insufficient suction at the gaps to prevent feedback of vacuum manifold noise into the shielded test flow and to insufficient suction to prevent transition of the rod boundary layers to turbulent flow at the higher Reynolds numbers. Schlieren photographs of the flow are shown.

  16. Construction of Solar-Wind-Like Magnetic Fields

    Science.gov (United States)

    Roberts, Dana Aaron

    2012-01-01

    Fluctuations in the solar wind fields tend to not only have velocities and magnetic fields correlated in the sense consistent with Alfven waves traveling from the Sun, but they also have the magnitude of the magnetic field remarkably constant despite their being broadband. This paper provides, for the first time, a method for constructing fields with nearly constant magnetic field, zero divergence, and with any specified power spectrum for the fluctuations of the components of the field. Every wave vector, k, is associated with two polarizations the relative phases of these can be chosen to minimize the variance of the field magnitude while retaining the\\random character of the fields. The method is applied to a case with one spatial coordinate that demonstrates good agreement with observed time series and power spectra of the magnetic field in the solar wind, as well as with the distribution of the angles of rapid changes (discontinuities), thus showing a deep connection between two seemingly unrelated issues. It is suggested that using this construction will lead to more realistic simulations of solar wind turbulence and of the propagation of energetic particles.

  17. Airway disease in highway and tunnel construction workers exposed to silica.

    Science.gov (United States)

    Oliver, L Christine; Miracle-McMahill, Heidi

    2006-12-01

    Construction workers employed in a unique type of tunnel construction known as tunnel jacking were exposed over an 18-month period to respirable crystalline silica at concentrations that exceeded the OSHA permissible exposure limit. The present study examines workplace exposures and occurrence of airway disease in these workers. Medical and occupational histories and chest radiographs were obtained on 343 active construction workers who had worked on the site during the period in question. Chest radiographs were interpreted according to the ILO-1980 system of classification. Standardized questions were used to develop an algorithm to define symptoms consistent with asthma (SCA) and to determine these respiratory outcomes: chronic bronchitis, shortness of breath (SOB), and physician-diagnosed asthma (current vs. not current). Relationships with each of three work activities were examined: slurry wall breakthrough (SWB), chipping caisson overpour, and tunneling/mining. Participants included laborers, carpenters, tunnel workers, ironworkers, operating engineers, and electricians. No cases of silicosis were found on chest X-ray. Overall prevalence of chronic bronchitis, SCA, SOB, and physician-diagnosed asthma was 10.7%, 25%, 29%, and 6.6%, respectively. Odds ratios (OR) for carpenters compared to laborers were significantly elevated for chronic bronchitis, SCA, and SOB. SWB was associated with chronic bronchitis and SCA (OR 4.93, 95% CI = 1.01, 24.17; OR 3.32, 95% CI = 1.25, 8.84, respectively). The interaction between SWB, SCA, and trade was significant for carpenters (OR 6.87, 95% CI = 1.66, 28.39). Inverse trends were observed for months on the site and chronic bronchitis, SCA, and SOB (P = 0.0374, 0.0006, and 0.0307, respectively). Tunnel construction workers exposed to respirable crystalline silica and cement dust are at increased risk for airway disease. Extent of risk varies by trade and work activity. Our data indicate the importance of bystander exposures and

  18. Thermal and Pressure Characterization of a Wind Tunnel Force Balance Using the Single Vector System. Experimental Design and Analysis Approach to Model Pressure and Temperature Effects in Hypersonic Wind Tunnel Research

    Science.gov (United States)

    Lynn, Keith C.; Commo, Sean A.; Johnson, Thomas H.; Parker, Peter A,

    2011-01-01

    Wind tunnel research at NASA Langley Research Center s 31-inch Mach 10 hypersonic facility utilized a 5-component force balance, which provided a pressurized flow-thru capability to the test article. The goal of the research was to determine the interaction effects between the free-stream flow and the exit flow from the reaction control system on the Mars Science Laboratory aeroshell during planetary entry. In the wind tunnel, the balance was exposed to aerodynamic forces and moments, steady-state and transient thermal gradients, and various internal balance cavity pressures. Historically, these effects on force measurement accuracy have not been fully characterized due to limitations in the calibration apparatus. A statistically designed experiment was developed to adequately characterize the behavior of the balance over the expected wind tunnel operating ranges (forces/moments, temperatures, and pressures). The experimental design was based on a Taylor-series expansion in the seven factors for the mathematical models. Model inversion was required to calculate the aerodynamic forces and moments as a function of the strain-gage readings. Details regarding transducer on-board compensation techniques, experimental design development, mathematical modeling, and wind tunnel data reduction are included in this paper.

  19. Optical Flow for Flight and Wind Tunnel Background Oriented Schlieren Imaging

    Science.gov (United States)

    Smith, Nathanial T.; Heineck, James T.; Schairer, Edward T.

    2017-01-01

    Background oriented Schlieren images have historically been generated by calculating the observed pixel displacement between a wind-on and wind-o image pair using normalized cross-correlation. This work uses optical flow to solve the displacement fields which generate the Schlieren images. A well established method used in the computer vision community, optical flow is the apparent motion in an image sequence due to brightness changes. The regularization method of Horn and Schunck is used to create Schlieren images using two data sets: a supersonic jet plume shock interaction from the NASA Ames Unitary Plan Wind Tunnel, and a transonic flight test of a T-38 aircraft using a naturally occurring background, performed in conjunction with NASA Ames and Armstrong Research Centers. Results are presented and contrasted with those using normalized cross-correlation. The optical flow Schlieren images are found to provided significantly more detail. We apply the method to historical data sets to demonstrate the broad applicability and limitations of the technique.

  20. Analysis of Mexico wind tunnel measurements. Final report of IEA Task 29, Mexnext (Phase 1)

    Energy Technology Data Exchange (ETDEWEB)

    Schepers, J.G.; Boorsma, K. [Energy research Center of the Netherlands ECN, Petten (Netherlands); Cho, T. [Korea Aerospace Research Institute KARI, Daejeon (Korea, Republic of); Gomez-Iradi, S. [National Renewable Energy Center of Spain CENER, Sarriguren (Spain); Schaffarczyk, P. [A. Jeromin University of Applied Sciences, CEWind EG, Kiel (Germany); Shen, W.Z. [The Technical University of Denmark, Kongens Lyngby (Denmark); Lutz, T. [K. Meister University of Stuttgart, Stuttgart (Germany); Stoevesandt, B. [ForWind, Zentrum fuer Windenergieforschung, Oldenburg (Germany); Schreck, S. [National Renewable Energy Laboratory NREL, Golden, CO (United States); Micallef, D.; Pereira, R.; Sant, T. [Delft University of Technology TUD, Delft (Netherlands); Madsen, H.A.; Soerensen, N. [Risoe-DTU, Roskilde (Denmark)

    2012-02-15

    This report describes the work performed within the first phase of IEA Task 29 Mexnext. In this IEA Task 29 a total of 20 organisations from 11 different countries collaborated in analysing the measurements which have been performed in the EU project 'Mexico'. Within this Mexico project 9 European institutes carried out a wind tunnel experiment in the Large Low Speed Facility (LLF) of the German Dutch Wind Facilities DNW on a rotor with a diameter of 4.5 m. Pressure distributions were measured at five locations along the blade along with detailed flow field measurements around the rotor plane using stereo PIV. As a result of the international collaboration within this task a very thorough analysis of the data could be carried out and a large number of codes were validated not only in terms of loads but also in terms of underlying flow field. The detailed pressure measurements along the blade in combination with the detailed flow field measurements gave a unique opportunity to better understand the response of a wind turbine to the incoming flow field. Deficiencies in modelling have been established and directions for model improvement can be given.

  1. Wind Tunnel Balance Calibration: Are 1,000,000 Data Points Enough?

    Science.gov (United States)

    Rhew, Ray D.; Parker, Peter A.

    2016-01-01

    Measurement systems are typically calibrated based on standard practices established by a metrology standards laboratory, for example the National Institute for Standards and Technology (NIST), or dictated by an organization's metrology manual. Therefore, the calibration is designed and executed according to an established procedure. However, for many aerodynamic research measurement systems a universally accepted standard, traceable approach does not exist. Therefore, a strategy for how to develop a calibration protocol is left to the developer or user to define based on experience and recommended practice in their respective industry. Wind tunnel balances are one such measurement system. Many different calibration systems, load schedules and procedures have been developed for balances with little consensus on a recommended approach. Especially lacking is guidance the number of calibration data points needed. Regrettably, the number of data points tends to be correlated with the perceived quality of the calibration. Often, the number of data points is associated with ones ability to generate the data rather than by a defined need in support of measurement objectives. Hence the title of the paper was conceived to challenge recent observations in the wind tunnel balance community that shows an ever increasing desire for more data points per calibration absent of guidance to determine when there are enough. This paper presents fundamental concepts and theory to aid in the development of calibration procedures for wind tunnel balances and provides a framework that is generally applicable to the characterization and calibration of other measurement systems. Questions that need to be answered are for example: What constitutes an adequate calibration? How much data are needed in the calibration? How good is the calibration? This paper will assist a practitioner in answering these questions by presenting an underlying theory on how to evaluate a calibration based on

  2. Constructing a Plastic Bottle Wind Turbine as a Practical Aid for Learning about Using Wind Energy to Generate Electricity

    Science.gov (United States)

    Appleyard, S. J.

    2009-01-01

    A simple horizontal axis wind turbine can be easily constructed using a 1.5 l PET plastic bottle, a compact disc and a small dynamo. The turbine operates effectively at low wind speeds and has a rotational speed of 500 rpm at a wind speed of about 14 km h[superscript -1]. The wind turbine can be used to demonstrate the relationship between open…

  3. On the aero-elastic design of the DTU 10MW wind turbine blade for the LIFES50+ wind tunnel scale model

    DEFF Research Database (Denmark)

    Bayati, I.; Belloli, M.; Bernini, L.

    2016-01-01

    This paper illustrates the aero-elastic optimal design, the realization and the verification of the wind tunnel scale model blades for the DTU 10 MW wind turbine model, within LIFES50+ project. The aerodynamic design was focused on the minimization of the difference, in terms of thrust coefficient...... and for different angles of attack. The aero-elastic design algorithm was set to define the optimal spanwise thickness over chord ratio (t/c), the chord length and the twist to match the first flapwise scaled natural frequency. An aluminium mould for the carbon fibre was CNC manufactured based on B-Splines CAD...... definition of the external geometry. Then the wind tunnel tests at Politecnico di Milano confirmed successful design and manufacturing approaches....

  4. Development of procedures for the acquisition of metal Additive Manufacturing (AM) parts for use in the CSIR's wind tunnel models

    CSIR Research Space (South Africa)

    Johnston, C

    2015-11-04

    Full Text Available The first Additive Manufacturing (AM) non-load-bearing, client furnished part was used in the CSIR’s wind tunnels in 2007. The advent of metal-grown materials, and the acquisition of machines to grow them in South Africa, has made it feasible...

  5. Wind-Tunnel Investigations on a Changed Mustang Profile with Nose Flap Force and Pressure-Distribution Measurements

    Science.gov (United States)

    Krueger, W.

    1947-01-01

    Measurements are described which were taken in the large wind tunnel of the AVA on a rectangular wing "Mustang 2" with nose flap of a chord of 10 percent. Besides force measurements the results of pressure-distribution measurements are given and compared with those on the same profile "without" nose flap.

  6. Development and Operation of an Automatic Rotor Trim Control System for the UH-60 Individual Blade Control Wind Tunnel Test

    Science.gov (United States)

    Theodore, Colin R.; Tischler, Mark B.

    2010-01-01

    An automatic rotor trim control system was developed and successfully used during a wind tunnel test of a full-scale UH-60 rotor system with Individual Blade Control (IBC) actuators. The trim control system allowed rotor trim to be set more quickly, precisely and repeatably than in previous wind tunnel tests. This control system also allowed the rotor trim state to be maintained during transients and drift in wind tunnel flow, and through changes in IBC actuation. The ability to maintain a consistent rotor trim state was key to quickly and accurately evaluating the effect of IBC on rotor performance, vibration, noise and loads. This paper presents details of the design and implementation of the trim control system including the rotor system hardware, trim control requirements, and trim control hardware and software implementation. Results are presented showing the effect of IBC on rotor trim and dynamic response, a validation of the rotor dynamic simulation used to calculate the initial control gains and tuning of the control system, and the overall performance of the trim control system during the wind tunnel test.

  7. Fuel use and metabolic response to endurance exercise : a wind tunnel study of a long-distance migrant shorebird

    NARCIS (Netherlands)

    Jenni-Eiermann, Susanne; Jenni, Lukas; Kvist, Anders; Lindström, Åke; Piersma, Theunis; Visser, G. Henk

    This study examines fuel use and metabolism in a group of long-distance migrating birds, red knots Calidris canutus (Scolopacidae), flying under controlled conditions in a wind tunnel for up to 10 h. Data are compared with values for resting birds fasting for the same time. Plasma levels of free

  8. Key technologies and risk management of deep tunnel construction at Jinping II hydropower station

    Directory of Open Access Journals (Sweden)

    Chunsheng Zhang

    2016-08-01

    Full Text Available The four diversion tunnels at Jinping II hydropower station represent the deepest underground project yet conducted in China, with an overburden depth of 1500–2000 m and a maximum depth of 2525 m. The tunnel structure was subjected to a maximum external water pressure of 10.22 MPa and the maximum single-point groundwater inflow of 7.3 m3/s. The success of the project construction was related to numerous challenging issues such as the stability of the rock mass surrounding the deep tunnels, strong rockburst prevention and control, and the treatment of high-pressure, large-volume groundwater infiltration. During the construction period, a series of new technologies was developed for the purpose of risk control in the deep tunnel project. Nondestructive sampling and in-situ measurement technologies were employed to fully characterize the formation and development of excavation damaged zones (EDZs, and to evaluate the mechanical behaviors of deep rocks. The time effect of marble fracture propagation, the brittle–ductile–plastic transition of marble, and the temporal development of rock mass fracture and damage induced by high geostress were characterized. The safe construction of deep tunnels was achieved under a high risk of strong rockburst using active measures, a support system comprised of lining, grouting, and external water pressure reduction techniques that addressed the coupled effect of high geostress, high external water pressure, and a comprehensive early-warning system. A complete set of technologies for the treatment of high-pressure and large-volume groundwater infiltration was developed. Monitoring results indicated that the Jinping II hydropower station has been generally stable since it was put into operation in 2014.

  9. Shelter effect efficacy of sand fences: A comparison of systems in a wind tunnel

    Science.gov (United States)

    Wang, Tao; Qu, Jianjun; Ling, Yuquan; Liu, Benli; Xiao, Jianhua

    2018-02-01

    The Lanzhou-Xinjiang High-speed Railway runs through an expansive wind area in the Gobi Desert and blown-sand disasters are a critical issue affecting its operation. To strengthen the blown-sand disaster shelter systems along the railway, the shelter effects of punching plate and wire mesh fences with approximately equal porosity (48%) were simulated in a wind tunnel. The experimental results showed that the wind velocity was reduced to a higher extent by the punching plate fence than by the wire mesh fence. When a single row of sand fencing was used, the wind velocity reduction coefficient (Rcz) values downwind of the punching plate fence and wire mesh fence reached 71.77% and 39.37%, respectively. When double rows of sand fencing were used, the Rcz values downwind of the punching plate and wire mesh fences were approximately 87.48% and 60.81%, respectively. For the flow field structure on the leeward side of the fencing, the deceleration zone behind the punching plate fence was more pronounced than that behind the wire mesh fence. The vortex zone was not obvious and the reverse flow disappeared for both types of fences, which indicates that the turbulent intensity was small. The sand-trapping efficiency of the wire mesh fence was close to that of punching plate fence. When a single row of sand fencing was set up, the total mass flux density decreased, on average, by 65.85% downwind of the wire mesh fence, and 75.06% downwind of the punching plate fence; when double rows of sand fencing were present, the total mass flux density decreased, on average, by 84.53% downwind of the wire mesh fence and 84.51% downwind of the punching plate fence. In addition, the wind-proof efficiency and the sand-proof efficiency of the punching plate fence and the wire mesh fence decreased with increasing wind velocities. Consequently, punching plate and wire mesh fences may effectively control the sand hazard in the expansive wind area of the Gobi Desert.

  10. The capture of submicron particles by collector plates - Wind-tunnel investigations

    International Nuclear Information System (INIS)

    Gauthier, Daniel

    1971-01-01

    The deposition of submicron particles on collector plates parallel to the flow was studied experimentally in a wind-tunnel. The validity of a theoretical model based on brownian diffusion was investigated and its Inadequacies tested. The aerosol sample consisted of uranine particles (mean geometrical radius: about 0. 1 μm). The average flow speeds varied from 1 to 10 m/s and the length of the collector plates between 1 and 10 cm. Results showed that capture was mainly due to diffusion and was in good agreement with the theoretical model; however a noticeable deposit of particles on the front part of the collector edge was observed. Sedimentation was insignificant in almost all the cases. (author) [fr

  11. Direct Numerical Simulation of Acoustic Noise Generation from the Nozzle Wall of a Hypersonic Wind Tunnel

    Science.gov (United States)

    Huang, Junji; Duan, Lian; Choudhari, Meelan; Missouri Univ of Sci; Tech Team; NASA Langley Research Center Team

    2017-11-01

    Direct numerical simulations (DNS) are used to examine the acoustic noise generation from the turbulent boundary layer on the nozzle wall of a Mach 6 Ludwieg Tube. The emphasis is on characterizing the freestream acoustic pressure disturbances radiated from the nozzle-wall turbulent boundary layer and comparing it with acoustic noise generated from a single, flat wall in an unconfined setting at a similar freestream Mach number to assess the effects of noise reverberation. In particular, the numerical database is used to provide insights into the pressure disturbance spectrum and amplitude scaling with respect to the boundary-layer parameters as well as to understand the acoustic source mechanisms. Such information is important for characterizing the freestream disturbance environment in conventional (i.e., noisy) hypersonic wind tunnels. Air Force Office of Scientific Research Award No. FA9550-14-1-0170.

  12. Experimental assessment of the performance of ablative heat shield materials from plasma wind tunnel testing

    Science.gov (United States)

    Löhle, S.; Hermann, T.; Zander, F.

    2017-12-01

    A method for assessing the performance of typical heat shield materials is presented in this paper. Three different material samples, the DLR material uc(Zuram), the Airbus material uc(Asterm) and the carbon preform uc(Calcarb) were tested in the IRS plasma wind tunnel PWK1 at the same nominal condition. State of the art diagnostic tools, i.e., surface temperature with pyrometry and thermography and boundary layer optical emission spectroscopy were completed by photogrammetric surface recession measurements. These data allow the assessment of the net heat flux for each material. The analysis shows that the three materials each have a different effect on heat flux mitigation with ASTERM showing the largest reduction in surface heat flux. The effect of pyrolysis and blowing is clearly observed and the heat flux reduction can be determined from an energy balance.

  13. An integrated knowledge system for wind tunnel testing - Project Engineers' Intelligent Assistant

    Science.gov (United States)

    Lo, Ching F.; Shi, George Z.; Hoyt, W. A.; Steinle, Frank W., Jr.

    1993-01-01

    The Project Engineers' Intelligent Assistant (PEIA) is an integrated knowledge system developed using artificial intelligence technology, including hypertext, expert systems, and dynamic user interfaces. This system integrates documents, engineering codes, databases, and knowledge from domain experts into an enriched hypermedia environment and was designed to assist project engineers in planning and conducting wind tunnel tests. PEIA is a modular system which consists of an intelligent user-interface, seven modules and an integrated tool facility. Hypermedia technology is discussed and the seven PEIA modules are described. System maintenance and updating is very easy due to the modular structure and the integrated tool facility provides user access to commercial software shells for documentation, reporting, or database updating. PEIA is expected to provide project engineers with technical information, increase efficiency and productivity, and provide a realistic tool for personnel training.

  14. Uncertainty Analysis of the NASA Glenn 8x6 Supersonic Wind Tunnel

    Science.gov (United States)

    Stephens, Julia; Hubbard, Erin; Walter, Joel; McElroy, Tyler

    2016-01-01

    This paper presents methods and results of a detailed measurement uncertainty analysis that was performed for the 8- by 6-foot Supersonic Wind Tunnel located at the NASA Glenn Research Center. The statistical methods and engineering judgments used to estimate elemental uncertainties are described. The Monte Carlo method of propagating uncertainty was selected to determine the uncertainty of calculated variables of interest. A detailed description of the Monte Carlo method as applied for this analysis is provided. Detailed uncertainty results for the uncertainty in average free stream Mach number as well as other variables of interest are provided. All results are presented as random (variation in observed values about a true value), systematic (potential offset between observed and true value), and total (random and systematic combined) uncertainty. The largest sources contributing to uncertainty are determined and potential improvement opportunities for the facility are investigated.

  15. The Role of Hierarchy in Response Surface Modeling of Wind Tunnel Data

    Science.gov (United States)

    DeLoach, Richard

    2010-01-01

    This paper is intended as a tutorial introduction to certain aspects of response surface modeling, for the experimentalist who has started to explore these methods as a means of improving productivity and quality in wind tunnel testing and other aerospace applications. A brief review of the productivity advantages of response surface modeling in aerospace research is followed by a description of the advantages of a common coding scheme that scales and centers independent variables. The benefits of model term reduction are reviewed. A constraint on model term reduction with coded factors is described in some detail, which requires such models to be well-formulated, or hierarchical. Examples illustrate the consequences of ignoring this constraint. The implication for automated regression model reduction procedures is discussed, and some opinions formed from the author s experience are offered on coding, model reduction, and hierarchy.

  16. Aerodynamic Parameters of High Performance Aircraft Estimated from Wind Tunnel and Flight Test Data

    Science.gov (United States)

    Klein, Vladislav; Murphy, Patrick C.

    1998-01-01

    A concept of system identification applied to high performance aircraft is introduced followed by a discussion on the identification methodology. Special emphasis is given to model postulation using time invariant and time dependent aerodynamic parameters, model structure determination and parameter estimation using ordinary least squares an mixed estimation methods, At the same time problems of data collinearity detection and its assessment are discussed. These parts of methodology are demonstrated in examples using flight data of the X-29A and X-31A aircraft. In the third example wind tunnel oscillatory data of the F-16XL model are used. A strong dependence of these data on frequency led to the development of models with unsteady aerodynamic terms in the form of indicial functions. The paper is completed by concluding remarks.

  17. Superconducting electromagnets for large wind tunnel magnetic suspension and balance systems

    Science.gov (United States)

    Boom, R. W.; Eyssa, Y. M.; Mcintosh, G. E.; Abdelsalam, M. K.; Scurlock, R. G.; Wu, Y. Y.; Goodyer, M. J.; Balcerek, K.; Eskins, J.; Britcher, C. P.

    1984-01-01

    A superconducting electromagnetic suspension and balance system for an 8 x 8-ft, Mach 0.9 wind tunnel is presented. The system uses a superconducting solenoid as a model core 70 cm long and with a 11.5 cm OD, and a combination of permanent magnet material in the model wings to produce the required roll torque. The design, which uses an integral cold structure rather than separate cryostats for mounting all control magnets, has 14 external magnets, including 4 racetrack-shaped roll coils. Helium capacity of the system is 3.0 to 3.5 l with idling boiloff rate predicted at 0.147 to 0.2 l/h. The improvements yielded a 50-percent reduction in the system size, weight, and cost.

  18. Free-to-Roll Testing of Airplane Models in Wind Tunnels

    Science.gov (United States)

    Capone, Francis J.; Owens, D. Bruce; Hall, Robert M.

    2007-01-01

    A free-to-roll (FTR) test technique and test rig make it possible to evaluate both the transonic performance and the wingdrop/ rock behavior of a high-strength airplane model in a single wind-tunnel entry. The free-to-roll test technique is a single degree-of-motion method in which the model is free to roll about the longitudinal axis. The rolling motion is observed, recorded, and analyzed to gain insight into wing-drop/rock behavior. Wing-drop/rock is one of several phenomena symptomatic of abrupt wing stall. FTR testing was developed as part of the NASA/Navy Abrupt Wing Stall Program, which was established for the purposes of understanding and preventing significant unexpected and uncommanded (thus, highly undesirable) lateral-directional motions associated with wing-drop/rock, which have been observed mostly in fighter airplanes under high-subsonic and transonic maneuvering conditions. Before FTR testing became available, wingrock/ drop behavior of high-performance airplanes undergoing development was not recognized until flight testing. FTR testing is a reliable means of detecting, and evaluating design modifications for reducing or preventing, very complex abrupt wing stall phenomena in a ground facility prior to flight testing. The FTR test rig was designed to replace an older sting attachment butt, such that a model with its force balance and support sting could freely rotate about the longitudinal axis. The rig (see figure) includes a rotary head supported in a stationary head with a forward spherical roller bearing and an aft needle bearing. Rotation is amplified by a set of gears and measured by a shaft-angle resolver; the roll angle can be resolved to within 0.067 degrees at a rotational speed up to 1,000 degrees/s. An assembly of electrically actuated brakes between the rotary and stationary heads can be used to hold the model against a rolling torque at a commanded roll angle. When static testing is required, a locking bar is used to fix the rotating

  19. Analysis of the wind tunnel test of a tilt rotor power force model

    Science.gov (United States)

    Marr, R. L.; Ford, D. G.; Ferguson, S. W.

    1974-01-01

    Two series of wind tunnel tests were made to determine performance, stability and control, and rotor wake interaction on the airframe, using a one-tenth scale powered force model of a tilt rotor aircraft. Testing covered hover (IGE/OCE), helicopter, conversion, and airplane flight configurations. Forces and moments were recorded for the model from predetermined trim attitudes. Control positions were adjusted to trim flight (one-g lift, pitching moment and drag zero) within the uncorrected test data balance accuracy. Pitch and yaw sweeps were made about the trim attitudes with the control held at the trimmed settings to determine the static stability characteristics. Tail on, tail off, rotors on, and rotors off configurations were testes to determine the rotor wake effects on the empennage. Results are presented and discussed.

  20. Development of an Active Twist Rotor for Wind: Tunnel Testing (NLPN97-310

    Science.gov (United States)

    Cesnik, Carlos E. S.; Shin, SangJoon; Hagood, Nesbitt W., IV

    1998-01-01

    The development of the Active Twist Rotor prototype blade for hub vibration and noise reduction studies is presented in this report. Details of the modeling, design, and manufacturing are explored. The rotor blade is integrally twisted by direct strain actuation. This is accomplished by distributing embedded piezoelectric fiber composites along the span of the blade. The development of the analysis framework for this type of active blade is presented. The requirements for the prototype blade, along with the final design results are also presented. A detail discussion on the manufacturing aspects of the prototype blade is described. Experimental structural characteristics of the prototype blade compare well with design goals, and preliminary bench actuation tests show lower performance than originally predicted. Electrical difficulties with the actuators are also discussed. The presented prototype blade is leading to a complete fully articulated four-blade active twist rotor system for future wind tunnel tests.

  1. Design and Numerical Calculation of Variable Test Section for Small Supersonic Wind Tunnel

    Directory of Open Access Journals (Sweden)

    Václav DVOŘÁK

    2010-12-01

    Full Text Available The paper is concerned with numerical modelling of transition in a separated boundary layer. The model of laminar/turbulent transition is based on the combination of empirical terms determining position of the transition and averaged Navier – Stokes equations closed by the k – ω SST turbulence model. The model of transition is applied in computation of 2D flow past NACA63A421 airfoil. Computation is performed using the commercial code ANSYS Fluent 6.3.26, in which the transition method is implemented as a User-Defined-Function. Computed distributions of Cp along the airfoil are verified by comparison with experimental data, which were obtained by measurements in a closed circuit wind tunnel at the constant Reynolds number and several angles of attack. Comparisons prove applicability of the implemented transitional model.

  2. Wind Tunnel Aero-Heating and Material Destruction Tests for Improved Debris Re-Entry Analysis

    Science.gov (United States)

    Koppenwallner, G.; Lips, T.; Alwes, D.

    2009-03-01

    During the S/C re-entry destruction fragments of irregular geometry are released. One finds spheres, boxes and cylinders, which may be hollow and which are flying in tumbling motion. The experimental database on such bodies is limited. Therefore heat transfer test have been conducted in the hypersonic vacuum wind tunnel V2G of DLR Göttingen. With a special model support also rotating models could be tested.Another study objective was the thermal destruction of selected materials and CFRP components under simulated re-entry heat loads. In use are solid CFRP structures, honeycombs with CFRP facesheets, or thin walled titanium tanks with external CFRP reinforcements. The destruction of multilayer structures may be completely different to solid thick CFRP. Therefore samples of 12 CFRP and CFRP honeycombs have been tested in the LBK 2 arc jet facility of DLR.

  3. Data-Acquisition Software for PSP/TSP Wind-Tunnel Cameras

    Science.gov (United States)

    Amer, Tahani R.; Goad, William K.

    2005-01-01

    Wing-Viewer is a computer program for acquisition and reduction of image data acquired by any of five different scientificgrade commercial electronic cameras used at Langley Research center to observe wind-tunnel models coated with pressure or temperature-sensitive paints (PSP/TSP). Wing-Viewer provides full automation of camera operation and acquisition of image data, and has limited data-preprocessing capability for quick viewing of the results of PSP/TSP test images. Wing- Viewer satisfies a requirement for a standard interface between all the cameras and a single personal computer: Written by use of Microsoft Visual C++ and the Microsoft Foundation Class Library as a framework, Wing-Viewer has the ability to communicate with the C/C++ software libraries that run on the controller circuit cards of all five cameras.

  4. Correlation of theory to wind-tunnel data at Reynolds numbers below 500,000

    Science.gov (United States)

    Evangelista, Raquel; Mcghee, Robert J.; Walker, Betty S.

    1989-01-01

    This paper presents results obtained from two airfoil analysis methods compared with previously published wind tunnel test data at chord Reynolds numbers below 500,000. The analysis methods are from the Eppler-Somers airfoil design/analysis code and from ISES, the Drela-Giles Airfoil design/analysis code. The experimental data are from recent tests of the Eppler 387 airfoil in the NASA Langley Low Turbulence Pressure Tunnel. For R not less than 200,000, lift and pitching moment predictions from both theories compare well with experiment. Drag predictions from both theories also agree with experiment, although to different degrees. However, most of the drag predictions from the Eppler-Somers code are accompanied with separation bubble warnings which indicate that the drag predictions are too low. With the Drela-Giles code, there is a large discrepancy between the computed and experimental pressure distributions in cases with laminar separation bubbles, although the drag polar predictions are similar in trend to experiment.

  5. Calibration of the NASA Glenn 8- by 6-Foot Supersonic Wind Tunnel (1996 and 1997 Tests)

    Science.gov (United States)

    Arrington, E. Allen

    2012-01-01

    There were several physical and operational changes made to the NASA Glenn Research Center 8- by 6-Foot Supersonic Wind Tunnel during the period of 1992 through 1996. Following each of these changes, a facility calibration was conducted to provide the required information to support the research test programs. Due to several factors (facility research test schedule, facility downtime and continued facility upgrades), a full test section calibration was not conducted until 1996. This calibration test incorporated all test section configurations and covered the existing operating range of the facility. However, near the end of that test entry, two of the vortex generators mounted on the compressor exit tailcone failed causing minor damage to the honeycomb flow straightener. The vortex generators were removed from the facility and calibration testing was terminated. A follow-up test entry was conducted in 1997 in order to fully calibrate the facility without the effects of the vortex generators and to provide a complete calibration of the newly expanded low speed operating range. During the 1997 tunnel entry, all planned test points required for a complete test section calibration were obtained. This data set included detailed in-plane and axial flow field distributions for use in quantifying the test section flow quality.

  6. Influence of increased static pressure in MHD-channel of hypervelocity wind tunnel on its characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Alfyorov, V.I.; Rudakova, A.P.; Rukavets, V.P.; Shcherbakov, G.I. [Central Aerohydrodynamic Institute (TsAGI), Zhukovsky (Russian Federation)

    1995-12-31

    One of the main weaknesses of available MHD gas acceleration wind tunnels which restricts their application for simulating vehicle re-entry flights and reproducing scramjet combustion chamber conditions is a relatively low static pressure in the channel (P{approximately}0.1 to 0.2 Atm). The possibility of increasing this pressure and the influence of the increased pressure on the MHD-accelerator characteristics are the subject of the present paper. It is shown that the main challenge is the necessity of increasing the total Lorentz force proportionally to the channel gas density at electrode current density not resulting in heat and electrical breakdown and the development of the side walls and interelectrode insulators designed for higher heat fluxes, q {approximately} 5 to 10 kw/cm{sup 2}. Some possible wall design versions are suggested. The influence of increased pressure is investigated using the Faraday - type MED channel at static pressures in the MHD channel from 0.2 to 1.0 Atm and total accelerating current I = 300 to 1,100 Amps when B=2.5T. Forty five electrodes are used in the MHD channel at maximum current density of 50 A/cm{sup 2}. The channel flow is calculated by applying the model of a gas in thermodynamic equilibrium. The influence of the increased pressure on electrodynamic (accelerator electrode voltages and currents, Hall voltage and current) and gasdynamic (distributions of static pressure, temperature, velocity, Mach numbers, etc., along the channel length) characteristics is evaluated. Some recommendations on the development of MHD channels for hypersonic wind tunnels designed for high pressure are suggested.

  7. Aerodynamic Performance Degradation Induced by Ice Accretion. PIV Technique Assessment in Icing Wind Tunnel

    Science.gov (United States)

    Gregorio, Fabrizio De

    The aim of the present chapter is to consider the use of PIV technique in an industrial icing wind tunnel (IWT) and the potentiality/advantages of applying the PIV technique to this specific field. The purpose of icing wind tunnels is to simulate the aircraft flight condition through cloud formations. In this operational condition ice accretions appear on the aircraft exposed surfaces due to the impact of the water droplets present in the clouds and the subsequent solidification. The investigation of aircraft aerodynamic performances and flight safety in icing condition is a fundamental aspect in the phase of design, development and certification of new aircrafts. The description of this unusual ground testing facility is reported. The assessment of PIV in CIRA-IWT has been investigated. Several technological problems have been afforded and solved by developing the components of the measurement system, such as the laser system and the recording apparatus, both fully remotely controlled, equipped with several traversing mechanism and protected by the adverse environment conditions (temperature and pressure). The adopted solutions are described. Furthermore, a complete test campaign on a full-scale aircraft wing tip, equipped with moving slat and deicing system has been carried out by PIV. Two regions have been investigated. The wing leading-edge (LE) area has been studied with and without ice accretion and for different cloud characteristics. The second activitiy was aimed at the investigation of the wing-wake behavior. The measurements were aimed to characterize the wake for the model in cruise condition without ice formation and during the ice formation.

  8. Estimation of wind erosion from construction of a railway in arid northwest China

    Science.gov (United States)

    A state-of-the-art wind erosion simulation model, the Wind Erosion Prediction System and the United States Environmental Protection Agency’s AP-42 emission factors formula, were combined together to evaluate wind-blown dust emissions from various construction units from a railway construction projec...

  9. Tunnel Boring Machine Cutter Maintenance for Constructing Underground Cable Lines from Nuclear Power Plants

    International Nuclear Information System (INIS)

    Lee, Jae Wang; Yee, Eric

    2014-01-01

    The tunnel boring machine (TBM) can construct an underground tunnel efficiently and without construction noise vibration related problems. Many civil projects, such as NPP construction, set importance on the economics of construction. Thus, advance rate, which is the speed at which the TBM is able to progress along its intended route, is one of the key factors affecting construction period and construction expenses. As the saying goes, time is money. Right Double Quotation Mark In addition, it is important to manage construction permits and civil complaints, even when construction expenses and construction periods are excluded. So, accurate prediction for advance rate is important when designing tunnel project. Several designers and project owners have tried to improve construction efficiency and tunneling advance rate.. There have been several studies on managing the rate of wear, designing an optimum tunnel face, and finding the optimum cutter spacing. Cutter replacements due to cutter wear and tear are very important because the wear and tear of cutters attached to the cutter head profoundly affect the advance rate. To manage cutter wear and tear is to control parameters related to cutter shape and cutter wear rate. There have been studies on the relationship between rock properties or TBM characteristics, and cutter wear or replacement. However, many of these studies relied on computer simulations or other small scale experiments. Therefore, this paper attempts to present a correlation between cutter replacement or cutter wear, against various parameters using practical data such as rock quality and TBM shield specifications, from an actual construction site. This study was conducted to suggest directions in the improvement of TBM cutters by analyzing relationships between rock conditions and cutter maintenance as well as TBM advance rates. Actual field data was collected and compared to actual design values in evaluating the effectiveness of traditional

  10. Measurement of temperature and pressure on the surface of a blunt cone using FBG sensor in hypersonic wind tunnel

    International Nuclear Information System (INIS)

    Guru Prasad, A S; Sharath, U; Asokan, S; Nagarjun, V; Hegde, G M

    2013-01-01

    Measurement of temperature and pressure exerted on the leeward surface of a blunt cone specimen has been demonstrated in the present work in a hypersonic wind tunnel using fiber Bragg grating (FBG) sensors. The experiments were conducted on a 30° apex-angle blunt cone with 51 mm base diameter at wind flow speeds of Mach 6.5 and 8.35 in a 300 mm hypersonic wind tunnel of Indian Institute of Science, Bangalore. A special pressure insensitive temperature sensor probe along with the conventional bare FBG sensors was used for explicit temperature and aerodynamic pressure measurement respectively on the leeward surface of the specimen. computational fluid dynamics (CFD) simulation of the flow field around the blunt cone specimen has also been carried out to obtain the temperature and pressure at conditions analogous to experiments. The results obtained from FBG sensors and the CFD simulations are found to be in good agreement with each other. (paper)

  11. Lizards cooperatively tunnel to construct a long-term home for family members.

    Directory of Open Access Journals (Sweden)

    Steve McAlpin

    2011-05-01

    Full Text Available Constructing a home to protect offspring while they mature is common in many vertebrate groups, but has not previously been reported in lizards. Here we provide the first example of a lizard that constructs a long-term home for family members, and a rare case of lizards behaving cooperatively. The great desert skink, Liopholis kintorei from Central Australia, constructs an elaborate multi-tunnelled burrow that can be continuously occupied for up to 7 years. Multiple generations participate in construction and maintenance of burrows. Parental assignments based on DNA analysis show that immature individuals within the same burrow were mostly full siblings, even when several age cohorts were present. Parents were always captured at burrows containing their offspring, and females were only detected breeding with the same male both within- and across seasons. Consequently, the individual investments made to construct or maintain a burrow system benefit their own offspring, or siblings, over several breeding seasons.

  12. Blasting Impact by the Construction of an Underground Research Tunnel in KAERI

    International Nuclear Information System (INIS)

    Kwon, S.; Cho, W. J.

    2005-12-01

    The underground research tunnel, which is under construction in KAERI for the validation of HLW disposal system, is excavated by drill and blasting method using high-explosives. In order not to disturb the operation at the research facilities such as HANARO reactor, it is critical to develop a blasting design , which will not influence on the facilities, even though several tens of explosives are detonated almost simultaneously. To develop a reasonable blasting design, a test blasting at the site should be performed. A preliminary analysis for predicting the expected vibration and noise by the blasting for the construction of the underground research tunnel was performed using a typical empirical equation. From the study, a blasting design could be developed not to influence on the major research facilities in KAERI. For the validation of the blasting design, a test blasting was carried out at the site and the parameters of vibration equation could be determined using the measured data during the test blasting. Using the equation, it was possible to predict the vibration at different locations at KAERI and to conclude that the blasting design would meet the design criteria at the major facilities in KAERI. The study would verify the applicability of blasting method for the construction of a research tunnel in a rock mass and that would help the design and construction of large scale underground research laboratory, which might be carried out in the future. It is also meaningful to accumulate technical experience for enhancing the reliability and effectiveness of the design and construction of the HLW disposal repository, which will be constructed in deep underground by drill and blasting technique

  13. Scour depth estimation using an equation based on wind tunnel experiments

    Directory of Open Access Journals (Sweden)

    Tsutsui Takayuki

    2016-01-01

    Full Text Available Scour is the result of degradation and aggradation by wind or moving fluid in the front and back of a pole standing in sand, respectively, and is often observed at the bottom of bridge piers in rivers. In this study, we propose a method of estimating the scour depth around a cylindrical structure standing in sand. The relationships among the depth of the scour, the aspect ratio of the structure (= height/diameter, the fluid velocity, and the sand properties (particle size and density were determined experimentally using a wind tunnel. The experiments were carried out under clear-water scour conditions. In the experiments, the aspect ratio of the cylindrical structure, the fluid velocity, and the sand particle size were varied systematically. The diameters of the structure were 20, 40, and 60 mm, and the aspect ratio was varied from 0.25 to 3.0. Sand particles of four sizes (200, 275, 475, and 600 μm were used in the experiment, and the velocity was varied from 4 to 11 m/s. The depth and radius of the scour were measured. As a result, we have developed an equation for estimating the scour depth that uses the aspect ratio, fluid velocity, and sand particle size as parameters.

  14. A dynamic Bayesian network based approach to safety decision support in tunnel construction

    International Nuclear Information System (INIS)

    Wu, Xianguo; Liu, Huitao; Zhang, Limao; Skibniewski, Miroslaw J.; Deng, Qianli; Teng, Jiaying

    2015-01-01

    This paper presents a systemic decision approach with step-by-step procedures based on dynamic Bayesian network (DBN), aiming to provide guidelines for dynamic safety analysis of the tunnel-induced road surface damage over time. The proposed DBN-based approach can accurately illustrate the dynamic and updated feature of geological, design and mechanical variables as the construction progress evolves, in order to overcome deficiencies of traditional fault analysis methods. Adopting the predictive, sensitivity and diagnostic analysis techniques in the DBN inference, this approach is able to perform feed-forward, concurrent and back-forward control respectively on a quantitative basis, and provide real-time support before and after an accident. A case study in relating to dynamic safety analysis in the construction of Wuhan Yangtze Metro Tunnel in China is used to verify the feasibility of the proposed approach, as well as its application potential. The relationships between the DBN-based and BN-based approaches are further discussed according to analysis results. The proposed approach can be used as a decision tool to provide support for safety analysis in tunnel construction, and thus increase the likelihood of a successful project in a dynamic project environment. - Highlights: • A dynamic Bayesian network (DBN) based approach for safety decision support is developed. • This approach is able to perform feed-forward, concurrent and back-forward analysis and control. • A case concerning dynamic safety analysis in Wuhan Yangtze Metro Tunnel in China is presented. • DBN-based approach can perform a higher accuracy than traditional static BN-based approach

  15. Investing American Recovery and Reinvestment Act Funds to Advance Capability, Reliability, and Performance in NASA Wind Tunnels

    Science.gov (United States)

    Sydnor, Goerge H.

    2010-01-01

    The National Aeronautics and Space Administration's (NASA) Aeronautics Test Program (ATP) is implementing five significant ground-based test facility projects across the nation with funding provided by the American Recovery and Reinvestment Act (ARRA). The projects were selected as the best candidates within the constraints of the ARRA and the strategic plan of ATP. They are a combination of much-needed large scale maintenance, reliability, and system upgrades plus creating new test beds for upcoming research programs. The projects are: 1.) Re-activation of a large compressor to provide a second source for compressed air and vacuum to the Unitary Plan Wind Tunnel at the Ames Research Center (ARC) 2.) Addition of high-altitude ice crystal generation at the Glenn Research Center Propulsion Systems Laboratory Test Cell 3, 3.) New refrigeration system and tunnel heat exchanger for the Icing Research Tunnel at the Glenn Research Center, 4.) Technical viability improvements for the National Transonic Facility at the Langley Research Center, and 5.) Modifications to conduct Environmentally Responsible Aviation and Rotorcraft research at the 14 x 22 Subsonic Tunnel at Langley Research Center. The selection rationale, problem statement, and technical solution summary for each project is given here. The benefits and challenges of the ARRA funded projects are discussed. Indirectly, this opportunity provides the advantages of developing experience in NASA's workforce in large projects and maintaining corporate knowledge in that very unique capability. It is envisioned that improved facilities will attract a larger user base and capabilities that are needed for current and future research efforts will offer revenue growth and future operations stability. Several of the chosen projects will maximize wind tunnel reliability and maintainability by using newer, proven technologies in place of older and obsolete equipment and processes. The projects will meet NASA's goal of

  16. The construction of ventilation turrets in Atta vollenweideri leaf-cutting ants: Carbon dioxide levels in the nest tunnels, but not airflow or air humidity, influence turret structure.

    Directory of Open Access Journals (Sweden)

    Florian Halboth

    Full Text Available Nest ventilation in the leaf-cutting ant Atta vollenweideri is driven via a wind-induced mechanism. On their nests, workers construct small turrets that are expected to facilitate nest ventilation. We hypothesized that the construction and structural features of the turrets would depend on the colony's current demands for ventilation and thus might be influenced by the prevailing environmental conditions inside the nest. Therefore, we tested whether climate-related parameters, namely airflow, air humidity and CO2 levels in the outflowing nest air influenced turret construction in Atta vollenweideri. In the laboratory, we simulated a semi-natural nest arrangement with fungus chambers, a central ventilation tunnel providing outflow of air and an aboveground building arena for turret construction. In independent series, different climatic conditions inside the ventilation tunnel were experimentally generated, and after 24 hours, several features of the built turret were quantified, i.e., mass, height, number and surface area (aperture of turret openings. Turret mass and height were similar in all experiments even when no airflow was provided in the ventilation tunnel. However, elevated CO2 levels led to the construction of a turret with several minor openings and a larger total aperture. This effect was statistically significant at higher CO2 levels of 5% and 10% but not at 1% CO2. The construction of a turret with several minor openings did not depend on the strong differences in CO2 levels between the outflowing and the outside air, since workers also built permeated turrets even when the CO2 levels inside and outside were both similarly high. We propose that the construction of turrets with several openings and larger opening surface area might facilitate the removal of CO2 from the underground nest structure and could therefore be involved in the control of nest climate in leaf-cutting ants.

  17. The construction of ventilation turrets in Atta vollenweideri leaf-cutting ants: Carbon dioxide levels in the nest tunnels, but not airflow or air humidity, influence turret structure.

    Science.gov (United States)

    Halboth, Florian; Roces, Flavio

    2017-01-01

    Nest ventilation in the leaf-cutting ant Atta vollenweideri is driven via a wind-induced mechanism. On their nests, workers construct small turrets that are expected to facilitate nest ventilation. We hypothesized that the construction and structural features of the turrets would depend on the colony's current demands for ventilation and thus might be influenced by the prevailing environmental conditions inside the nest. Therefore, we tested whether climate-related parameters, namely airflow, air humidity and CO2 levels in the outflowing nest air influenced turret construction in Atta vollenweideri. In the laboratory, we simulated a semi-natural nest arrangement with fungus chambers, a central ventilation tunnel providing outflow of air and an aboveground building arena for turret construction. In independent series, different climatic conditions inside the ventilation tunnel were experimentally generated, and after 24 hours, several features of the built turret were quantified, i.e., mass, height, number and surface area (aperture) of turret openings. Turret mass and height were similar in all experiments even when no airflow was provided in the ventilation tunnel. However, elevated CO2 levels led to the construction of a turret with several minor openings and a larger total aperture. This effect was statistically significant at higher CO2 levels of 5% and 10% but not at 1% CO2. The construction of a turret with several minor openings did not depend on the strong differences in CO2 levels between the outflowing and the outside air, since workers also built permeated turrets even when the CO2 levels inside and outside were both similarly high. We propose that the construction of turrets with several openings and larger opening surface area might facilitate the removal of CO2 from the underground nest structure and could therefore be involved in the control of nest climate in leaf-cutting ants.

  18. Comparison of CFD simulations to non-rotating MEXICO blades experiment in the LTT wind tunnel of TUDelft

    Science.gov (United States)

    Zhang, Ye; van Zuijlen, Alexander; van Bussel, Gerard

    2014-06-01

    In this paper, three dimensional flow over non-rotating MEXICO blades is simulated by CFD methods. The numerical results are compared with the latest MEXICO wind turbine blades measurements obtained in the low speed low turbulence (LTT) wind tunnel of Delft University of Technology. This study aims to validate CFD codes by using these experimental data measured in well controlled conditions. In order to avoid use of wind tunnel corrections, both the blades and the wind tunnel test section are modelled in the simulations. The ability of Menter's k - ω shear stress transport (SST) turbulence model is investigated at both attached flow and massively separated flow cases. Steady state Reynolds averaged Navier Stokes (RANS) equations are solved in these computations. The pressure distribution at three measured sections are compared under the conditions of different inflow velocities and a range of angles of attack. The comparison shows that at attached flow condition, good agreement can be obtained for all three airfoil sections. Even with massively separated flow, still fairly good pressure distribution comparison can be found for the DU and NACA airfoil sections, although the RISØ section shows poor comparison. At the near stall case, considerable deviations exists on the forward half part of the upper surface for all three sections.

  19. Experimental Study on the Wake Meandering Within a Scale Model Wind Farm Subject to a Wind-Tunnel Flow Simulating an Atmospheric Boundary Layer

    Science.gov (United States)

    Coudou, Nicolas; Buckingham, Sophia; Bricteux, Laurent; van Beeck, Jeroen

    2018-04-01

    The phenomenon of meandering of the wind-turbine wake comprises the motion of the wake as a whole in both horizontal and vertical directions as it is advected downstream. The oscillatory motion of the wake is a crucial factor in wind farms, because it increases the fatigue loads, and, in particular, the yaw loads on downstream turbines. To address this phenomenon, experimental investigations are carried out in a wind-tunnel flow simulating an atmospheric boundary layer with the Coriolis effect neglected. A 3 × 3 scaled wind farm composed of three-bladed rotating wind-turbine models is subject to a neutral boundary layer over a slightly-rough surface, i.e. corresponding to offshore conditions. Particle-image-velocimetry measurements are performed in a horizontal plane at hub height in the wakes of the three wind turbines occupying the wind-farm centreline. These measurements allow determination of the wake centrelines, with spectral analysis indicating the characteristic wavelength of the wake-meandering phenomenon. In addition, measurements with hot-wire anemometry are performed along a vertical line in the wakes of the same wind turbines, with both techniques revealing the presence of wake meandering behind all three turbines. The spectral analysis performed with the spatial and temporal signals obtained from these two measurement techniques indicates a Strouhal number of ≈ 0.20 - 0.22 based on the characteristic wake-meandering frequency, the rotor diameter and the flow speed at hub height.

  20. A Wind-Tunnel Parametric Investigation of Tiltrotor Whirl-Flutter Stability Boundaries

    Science.gov (United States)

    Piatak, David J.; Kvaternik, Raymond G.; Nixon, Mark W.; Langston, Chester W.; Singleton, Jeffrey D.; Bennett, Richard L.; Brown, Ross K.

    2001-01-01

    A wind-tunnel investigation of tiltrotor whirl-flutter stability boundaries has been conducted on a 1/5-size semispan tiltrotor model known as the Wing and Rotor Aeroelastic Test System (WRATS) in the NASA-Langley Transonic Dynamics Tunnel as part of a joint NASA/Army/Bell Helicopter Textron, Inc. (BHTI) research program. The model was first developed by BHTI as part of the JVX (V-22) research and development program in the 1980's and was recently modified to incorporate a hydraulically-actuated swashplate control system for use in active controls research. The modifications have changed the model's pylon mass properties sufficiently to warrant testing to re-establish its baseline stability boundaries. A parametric investigation of the effect of rotor design variables on stability was also conducted. The model was tested in both the on-downstop and off-downstop configurations, at cruise flight and hover rotor rotational speeds, and in both air and heavy gas (R-134a) test mediums. Heavy gas testing was conducted to quantify Mach number compressibility effects on tiltrotor stability. Experimental baseline stability boundaries in air are presented with comparisons to results from parametric variations of rotor pitch-flap coupling and control system stiffness. Increasing the rotor pitch-flap coupling (delta(sub 3) more negative) was found to have a destabilizing effect on stability, while a reduction in control system stiffness was found to have little effect on whirl-flutter stability. Results indicate that testing in R-134a, and thus matching full-scale tip Mach number, has a destabilizing effect, which demonstrates that whirl-flutter stability boundaries in air are unconservative.

  1. Investigation of Materials for Boundary Layer Control in a Supersonic Wind Tunnel

    Science.gov (United States)

    Braafladt, Alexander; Lucero, John M.; Hirt, Stefanie M.

    2013-01-01

    During operation of the NASA Glenn Research Center 15- by 15-Centimeter Supersonic Wind Tunnel (SWT), a significant, undesirable corner flow separation is created by the three-dimensional interaction of the wall and floor boundary layers in the tunnel corners following an oblique-shock/ boundary-layer interaction. A method to minimize this effect was conceived by connecting the wall and floor boundary layers with a radius of curvature in the corners. The results and observations of a trade study to determine the effectiveness of candidate materials for creating the radius of curvature in the SWT are presented. The experiments in the study focus on the formation of corner fillets of four different radii of curvature, 6.35 mm (0.25 in.), 9.525 mm (0.375 in.), 12.7 mm (0.5 in.), and 15.875 mm (0.625 in.), based on the observed boundary layer thickness of 11.43 mm (0.45 in.). Tests were performed on ten candidate materials to determine shrinkage, surface roughness, cure time, ease of application and removal, adhesion, eccentricity, formability, and repeatability. Of the ten materials, the four materials which exhibited characteristics most promising for effective use were the heavy body and regular type dental impression materials, the basic sculpting epoxy, and the polyurethane sealant. Of these, the particular material which was most effective, the heavy body dental impression material, was tested in the SWT in Mach 2 flow, and was observed to satisfy all requirements for use in creating the corner fillets in the upcoming experiments on shock-wave/boundary-layer interaction.

  2. The design and commissioning of an acoustic liner for propeller noise testing in the ARA transonic wind tunnel

    Science.gov (United States)

    Wood, M. E.; Newman, D. A.

    An acoustic liner has been designed and manufactured for use in the ARA transonic wind tunnel to provide an acoustically acceptable environment for propeller noise testing up to high subsonic Mach number. Details of the aerodynamic design and development are presented and calibration of the liner with propeller model support systems is included. It is shown how the design of the acoustic treatment was aided by the use of a theoretical model for the tunnel reverberant field. An acoustic development program was undertaken involving horn tests to improve the quality of the liner. The success of this is demonstrated by propeller noise results. These results also provided the basis for definition of the practical acoustic test regime of the ARA lined tunnel suitable for the accurate measurement of propeller noise.

  3. Demonstration of synchronised scanning Lidar measurements of 2D velocity fields in a boundary-layer wind tunnel

    DEFF Research Database (Denmark)

    van Dooren, M F; Kühn, M.; Petrovic, V.

    2016-01-01

    of wake profiles on a line as well as wake area scans were executed to illustrate the applicability of Lidar scanning to measuring small scale wind flow effects. The downsides of Lidar with respect to the hot wire probes are the larger measurement probe volume and the loss of some measurements due......-range WindScanner Lidars to demonstrate the benefits of synchronised scanning Lidars in such experimental surroundings for the first time. The dualLidar system can provide fully synchronised trajectory scans with sampling time scales ranging from seconds to minutes. First, staring mode measurements were...... compared to hot wire probe measurements commonly used in wind tunnels. This yielded goodness of fit coefficients of 0.969 and 0.902 for the 1 Hz averaged u- and v-components of the wind speed, respectively, validating the 2D measurement capability of the Lidar scanners. Subsequently, the measurement...

  4. Wind Tunnel Analysis of the Aerodynamic Loads on Rolling Stock over Railway Embankments: The Effect of Shelter Windbreaks

    Science.gov (United States)

    Avila-Sanchez, Sergio; Lopez-Garcia, Oscar; Sanz-Andres, Angel

    2014-01-01

    Wind-flow pattern over embankments involves an overexposure of the rolling stock travelling on them to wind loads. Windbreaks are a common solution for changing the flow characteristic in order to decrease unwanted effects induced by the presence of cross-wind. The shelter effectiveness of a set of windbreaks placed over a railway twin-track embankment is experimentally analysed. A set of two-dimensional wind tunnel tests are undertaken and results corresponding to pressure tap measurements over a section of a typical high-speed train are herein presented. The results indicate that even small-height windbreaks provide sheltering effects to the vehicles. Also, eaves located at the windbreak tips seem to improve their sheltering effect. PMID:25544954

  5. Height profile of particle concentration in an aeolian saltating cloud: A wind tunnel investigation by PIV MSD

    Science.gov (United States)

    Dong, Zhibao; Wang, Hongtao; Zhang, Xiaohang; Ayrault, Michael

    2003-10-01

    Attempt is made to define the particle concentration in an aeolian saltating cloud and its variation with height using artificial spherical quartz sand in a wind tunnel. The height profiles of the relative particle concentration in aeolian saltating cloud at three wind velocities were detected by the state of the art PIV (Particle Image Velocimetry) MSD (Mie Scattering Diffusion) technique, and converted to actual concentration based on sand transport rate and the variation with height of velocity of the saltating cloud. The particle concentration was found to decay exponentially with height and to increase with wind velocity. It decayed more rapidly when the wind velocity decreased. The volume/volume concentration in the near-surface layer was at the order of 10-4. The results obtained by PIV MSD technique were in good agreement with those derived from the sand flux and velocity profiles, the former being about 15% greater than the later.

  6. Full-scale S-76 rotor performance and loads at low speeds in the NASA Ames 80- by 120-Foot Wind Tunnel. Vol. 1

    Science.gov (United States)

    Shinoda, Patrick M.

    1996-01-01

    A full-scale helicopter rotor test was conducted in the NASA Ames 80- by 120-Foot Wind Tunnel with a four-bladed S-76 rotor system. Rotor performance and loads data were obtained over a wide range of rotor shaft angles-of-attack and thrust conditions at tunnel speeds ranging from 0 to 100 kt. The primary objectives of this test were (1) to acquire forward flight rotor performance and loads data for comparison with analytical results; (2) to acquire S-76 forward flight rotor performance data in the 80- by 120-Foot Wind Tunnel to compare with existing full-scale 40- by 80-Foot Wind Tunnel test data that were acquired in 1977; (3) to evaluate the acoustic capability of the 80- by 120- Foot Wind Tunnel for acquiring blade vortex interaction (BVI) noise in the low speed range and compare BVI noise with in-flight test data; and (4) to evaluate the capability of the 80- by 120-Foot Wind Tunnel test section as a hover facility. The secondary objectives were (1) to evaluate rotor inflow and wake effects (variations in tunnel speed, shaft angle, and thrust condition) on wind tunnel test section wall and floor pressures; (2) to establish the criteria for the definition of flow breakdown (condition where wall corrections are no longer valid) for this size rotor and wind tunnel cross-sectional area; and (3) to evaluate the wide-field shadowgraph technique for visualizing full-scale rotor wakes. This data base of rotor performance and loads can be used for analytical and experimental comparison studies for full-scale, four-bladed, fully articulated rotor systems. Rotor performance and structural loads data are presented in this report.

  7. MHz-rate nitric oxide planar laser-induced fluorescence imaging in a Mach 10 hypersonic wind tunnel.

    Science.gov (United States)

    Jiang, Naibo; Webster, Matthew; Lempert, Walter R; Miller, Joseph D; Meyer, Terrence R; Ivey, Christopher B; Danehy, Paul M

    2011-02-01

    Nitric oxide planar laser-induced fluorescence (NO PLIF) imaging at repetition rates as high as 1 MHz is demonstrated in the NASA Langley 31 in. Mach 10 hypersonic wind tunnel. Approximately 200 time-correlated image sequences of between 10 and 20 individual frames were obtained over eight days of wind tunnel testing spanning two entries in March and September of 2009. The image sequences presented were obtained from the boundary layer of a 20° flat plate model, in which transition was induced using a variety of different shaped protuberances, including a cylinder and a triangle. The high-speed image sequences captured a variety of laminar and transitional flow phenomena, ranging from mostly laminar flow, typically at a lower Reynolds number and/or in the near wall region of the model, to highly transitional flow in which the temporal evolution and progression of characteristic streak instabilities and/or corkscrew-shaped vortices could be clearly identified.

  8. Air Flow Modeling in the Wind Tunnel of the FHWA Aerodynamics Laboratory at Turner-Fairbank Highway Research Center

    Energy Technology Data Exchange (ETDEWEB)

    Sitek, M. A. [Argonne National Lab. (ANL), Argonne, IL (United States). Transportation Research and Analysis Computing Center (TRACC) Energy Systems Division; Lottes, S. A. [Argonne National Lab. (ANL), Argonne, IL (United States). Transportation Research and Analysis Computing Center (TRACC) Energy Systems Division; Bojanowski, C. [Argonne National Lab. (ANL), Argonne, IL (United States). Transportation Research and Analysis Computing Center (TRACC) Energy Systems Division

    2017-09-01

    Computational fluid dynamics (CFD) modeling is widely used in industry for design and in the research community to support, compliment, and extend the scope of experimental studies. Analysis of transportation infrastructure using high performance cluster computing with CFD and structural mechanics software is done at the Transportation Research and Analysis Computing Center (TRACC) at Argonne National Laboratory. These resources, available at TRACC, were used to perform advanced three-dimensional computational simulations of the wind tunnel laboratory at the Turner-Fairbank Highway Research Center (TFHRC). The goals were to verify the CFD model of the laboratory wind tunnel and then to use versions of the model to provide the capability to (1) perform larger parametric series of tests than can be easily done in the laboratory with available budget and time, (2) to extend testing to wind speeds that cannot be achieved in the laboratory, and (3) to run types of tests that are very difficult or impossible to run in the laboratory. Modern CFD software has many physics models and domain meshing options. Models, including the choice of turbulence and other physics models and settings, the computational mesh, and the solver settings, need to be validated against measurements to verify that the results are sufficiently accurate for use in engineering applications. The wind tunnel model was built and tested, by comparing to experimental measurements, to provide a valuable tool to perform these types of studies in the future as a complement and extension to TFHRC’s experimental capabilities. Wind tunnel testing at TFHRC is conducted in a subsonic open-jet wind tunnel with a 1.83 m (6 foot) by 1.83 m (6 foot) cross section. A three component dual force-balance system is used to measure forces acting on tested models, and a three degree of freedom suspension system is used for dynamic response tests. Pictures of the room are shown in Figure 1-1 to Figure 1-4. A detailed CAD

  9. Male stable fly (Stomoxys calcitrans) response to CO2 changes with age: evidence from wind tunnel experiments and field collections.

    Science.gov (United States)

    Beresford, D V; Sutcliffe, J F

    2008-12-01

    Male stable flies require at least one or more blood meals to reach sexual maturity and are often caught in CO2-baited traps. We tested the hypothesis that young male stable flies (one to three days, one blood feeding session) would be more responsive to CO2 bait than older male stable flies by monitoring the upwind movement of different-aged male stable flies exposed to CO2 using a wind tunnel. The proportion of males moving upwind toward CO2 decreased with age (days), from 49% for males 3 days old. To further test this, we conducted daily sampling of stable fly populations at a beef farm using a CO2-baited cloth trap. We found that days on which a high proportion of males were caught, females were predominantly from early developmental stages, indicating that proportionately more males were caught from field populations made up of younger cohorts. These results were consistent with the wind tunnel experiment patterns.

  10. An interactive graphics program to retrieve, display, compare, manipulate, curve fit, difference and cross plot wind tunnel data

    Science.gov (United States)

    Elliott, R. D.; Werner, N. M.; Baker, W. M.

    1975-01-01

    The Aerodynamic Data Analysis and Integration System (ADAIS), developed as a highly interactive computer graphics program capable of manipulating large quantities of data such that addressable elements of a data base can be called up for graphic display, compared, curve fit, stored, retrieved, differenced, etc., was described. The general nature of the system is evidenced by the fact that limited usage has already occurred with data bases consisting of thermodynamic, basic loads, and flight dynamics data. Productivity using ADAIS of five times that for conventional manual methods of wind tunnel data analysis is routinely achieved. In wind tunnel data analysis, data from one or more runs of a particular test may be called up and displayed along with data from one or more runs of a different test. Curves may be faired through the data points by any of four methods, including cubic spline and least squares polynomial fit up to seventh order.

  11. Results of design studies and wind tunnel tests of an advanced high lift system for an Energy Efficient Transport

    Science.gov (United States)

    Oliver, W. R.

    1980-01-01

    The development of an advanced technology high lift system for an energy efficient transport incorporating a high aspect ratio supercritical wing is described. This development is based on the results of trade studies to select the high lift system, analysis techniques utilized to design the high lift system, and results of a wind tunnel test program. The program included the first experimental low speed, high Reynolds number wind tunnel test for this class of aircraft. The experimental results include the effects on low speed aerodynamic characteristics of various leading and trailing edge devices, nacelles and pylons, aileron, spoilers, and Mach and Reynolds numbers. Results are discussed and compared with the experimental data and the various aerodynamic characteristics are estimated.

  12. Analytical aeroelastic stability considerations and conversion loads for an XV-15 tilt-rotor in a wind tunnel simulation

    Science.gov (United States)

    Kottapalli, Sesi; Meza, Victor

    1992-01-01

    A rotorcraft analysis is conducted to assess tilt-rotor stability and conversion loads for the XV-15 rotor with metal blades within its specified test envelope. A 38-DOF flutter analysis based on the code by Johnson (1988) is developed to simulate a wind-tunnel test in which the rotor torque is constant and thereby study stability. The same analytical model provides the simulated loads including hub loads, blade loads, and oscillatory pitch-link loads with attention given to the nonuniform inflow through the proprotor in the presence of the wing. Tilt-rotor stability during the cruise mode is found to be sensitive to coupling effects in the control system stiffness, and a stability problem is identified in the XV-15 Advanced Technology Blades. The present analysis demonstrates that the tilt-rotor is stable within the specified test envelope of the NASA 40 x 80-ft wind tunnel.

  13. Adjoint Method and Predictive Control for 1-D Flow in NASA Ames 11-Foot Transonic Wind Tunnel

    Science.gov (United States)

    Nguyen, Nhan; Ardema, Mark

    2006-01-01

    This paper describes a modeling method and a new optimal control approach to investigate a Mach number control problem for the NASA Ames 11-Foot Transonic Wind Tunnel. The flow in the wind tunnel is modeled by the 1-D unsteady Euler equations whose boundary conditions prescribe a controlling action by a compressor. The boundary control inputs to the compressor are in turn controlled by a drive motor system and an inlet guide vane system whose dynamics are modeled by ordinary differential equations. The resulting Euler equations are thus coupled to the ordinary differential equations via the boundary conditions. Optimality conditions are established by an adjoint method and are used to develop a model predictive linear-quadratic optimal control for regulating the Mach number due to a test model disturbance during a continuous pitch

  14. Design of the Wind Tunnel Model Communication Controller Board. Degree awarded by Christopher Newport Univ. on Dec. 1998

    Science.gov (United States)

    Wilson, William C.

    1999-01-01

    The NASA Langley Research Center's Wind Tunnel Reinvestment project plans to shrink the existing data acquisition electronics to fit inside a wind tunnel model. Space limitations within a model necessitate a distributed system of Application Specific Integrated Circuits (ASICs) rather than a centralized system based on PC boards. This thesis will focus on the design of the prototype of the communication Controller board. A portion of the communication Controller board is to be used as the basis of an ASIC design. The communication Controller board will communicate between the internal model modules and the external data acquisition computer. This board is based around an Field Programmable Gate Array (FPGA), to allow for reconfigurability. In addition to the FPGA, this board contains buffer Random Access Memory (RAM), configuration memory (EEPROM), drivers for the communications ports, and passive components.

  15. A Hydrogen Peroxide Hot-Jet Simulator for Wind-Tunnel Tests of Turbojet-Exit Models

    Science.gov (United States)

    Runckel, Jack F.; Swihart, John M.

    1959-01-01

    A turbojet-engine-exhaust simulator which utilizes a hydrogen peroxide gas generator has been developed for powered-model testing in wind tunnels with air exchange. Catalytic decomposition of concentrated hydrogen peroxide provides a convenient and easily controlled method of providing a hot jet with characteristics that correspond closely to the jet of a gas turbine engine. The problems associated with simulation of jet exhausts in a transonic wind tunnel which led to the selection of a liquid monopropellant are discussed. The operation of the jet simulator consisting of a thrust balance, gas generator, exit nozzle, and auxiliary control system is described. Static-test data obtained with convergent nozzles are presented and shown to be in good agreement with ideal calculated values.

  16. Method for measuring temperatures and densities in hypersonic wind tunnel air flows using laser-induced O2 fluorescence

    Science.gov (United States)

    Laufer, Gabriel; Mckenzie, Robert L.; Fletcher, Douglas G.

    1990-01-01

    Laser-induced fluorescence in oxygen, in combination with Raman scattering, is shown to be an accurate means by which temperature, density, and their fluctuations owing to turbulence can be measured in air flows associated with high-speed wind tunnels. For temperatures above 60 K and densities above 0.01 amagat, the uncertainties in the temperature and density measurements can be less than 2 percent, if the signal uncertainties are dominated by photon statistical noise. The measurements are unaffected by collisional quenching and can be achieved with laser fluences for which nonlinear effects are insignificant. Temperature measurements using laser-induced fluorescence alone have been demonstrated at known densities in the range of low temperatures and densities which are expected in a hypersonic wind tunnel.

  17. A method for measuring temperatures and densities in hypersonic wind tunnel air flows using laser-induced O2 fluorescence

    Science.gov (United States)

    Laufer, Gabriel; Fletcher, Douglas G.; Mckenzie, Robert L.

    1990-01-01

    Laser-induced fluorescence in oxygen, in combination with Raman scattering, is shown to be an accurate means by which temperature, density, and their fluctuations due to turbulence can be measured in air flows associated with high-speed wind tunnels. For temperatures above 60 K and densities above 0.01 amagat, the uncertainty in the temperature and density measurements can be less than 2 and 3 percent, respectively, if the signal uncertainties are dominated by photon-statistical noise. The measurements are unaffected by collisional quenching and can be achieved with laser fluences for which nonlinear effects are insignificant. Temperature measurements using laser-induced fluorescence alone have been demonstrated at known densities in the range of low temperatures and densities which are expected in a hypersonic wind tunnel.

  18. Braze alloy process and strength characterization studies for 18 nickel grade 200 maraging steel with application to wind tunnel models

    Science.gov (United States)

    Bradshaw, James F.; Sandefur, Paul G., Jr.; Young, Clarence P., Jr.

    1991-01-01

    A comprehensive study of braze alloy selection process and strength characterization with application to wind tunnel models is presented. The applications for this study include the installation of stainless steel pressure tubing in model airfoil sections make of 18 Ni 200 grade maraging steel and the joining of wing structural components by brazing. Acceptable braze alloys for these applications are identified along with process, thermal braze cycle data, and thermal management procedures. Shear specimens are used to evaluate comparative shear strength properties for the various alloys at both room and cryogenic (-300 F) temperatures and include the effects of electroless nickel plating. Nickel plating was found to significantly enhance both the wetability and strength properties for the various braze alloys studied. The data are provided for use in selecting braze alloys for use with 18 Ni grade 200 steel in the design of wind tunnel models to be tested in an ambient or cryogenic environment.

  19. Validation Study for an Atmospheric Dispersion Model, Using Effective Source Heights Determined from Wind Tunnel Experiments in Nuclear Safety Analysis

    Directory of Open Access Journals (Sweden)

    Masamichi Oura

    2018-03-01

    Full Text Available For more than fifty years, atmospheric dispersion predictions based on the joint use of a Gaussian plume model and wind tunnel experiments have been applied in both Japan and the U.K. for the evaluation of public radiation exposure in nuclear safety analysis. The effective source height used in the Gaussian model is determined from ground-level concentration data obtained by a wind tunnel experiment using a scaled terrain and site model. In the present paper, the concentrations calculated by this method are compared with data observed over complex terrain in the field, under a number of meteorological conditions. Good agreement was confirmed in near-neutral and unstable stabilities. However, it was found to be necessary to reduce the effective source height by 50% in order to achieve a conservative estimation of the field observations in a stable atmosphere.

  20. Turbulence scaling study in an MHD wind tunnel on the Swarthmore Spheromak Experiment

    Science.gov (United States)

    Schaffner, D. A.; Brown, M. R.; Wan, A.

    2013-12-01

    The turbulence of colliding plasmas is explored in an MHD wind tunnel on the SSX in an effort to understand solar wind physics in a laboratory setting. Fully ionized hydrogen plasma is produced by two plasma guns on opposite sides of a 1m by 15cm copper cylinder creating plasma with L/ρi ~ 75-150, β ~ 0.1-0.2 and Lundquist number ~ 1000. Modification of B-field, Ti and β are made through stuffing flux variation of the plasma guns. Presented here are turbulent f-/k-spectra and correlation times and lengths of B-field fluctuations as measured by a 16 channel B-dot radial probe array at the chamber midplane using both FFT and wavelet analysis techniques. Power-law behavior is observed spanning about two decades of frequencies [100kHz-10MHz] and about one decade of wavelength [10cm-1cm]. Power-law fits to spectra show scaling in these regions to be robust to changes in stuffing flux; fits are on the order of f-4 and k-2 for all flux variations. Low frequency fluctuations [law behavior is seen in f-spectra for frequencies around f=fci while changes in k-spectra slopes appear around 1/k ~ 5ρi. Dissipation range fits are made with an exponentially modified power-law model [Terry et al, PoP 2012]. Fluctuation measurements in axial velocity are made using a Mach probe with edge flows reaching M ~ 0.4. Both B-field and velocity fluctuations persist on the same timescale in these experiments, though Mach velocity f-spectra show power-laws slightly shallower than those for B-field. Comparison of spectra from MHD and Hall MHD simulations of SSX performed within the HiFi modeling framework are made to the experimental results.

  1. Comparison of calculated and measured blade loads on a full-scale tilting proprotor in a wind tunnel

    Science.gov (United States)

    Johnson, W.

    1980-01-01

    The loads measured in a wind tunnel on a full-scale tilting proprotor are compared with calculated results. The data consists primarily of oscillatory beamwise bending moments at 35% radial station, oscillatory spindle chord bending moments, and oscillatory pitch link loads. The measured and calculated results as a function of thrust are compared over a range of nacelle angles from 0 to 75 deg, and a range of speeds from 80 to 185 knots.

  2. Wind Tunnel Testing of a 120th Scale Large Civil Tilt-Rotor Model in Airplane and Helicopter Modes

    Science.gov (United States)

    Theodore, Colin R.; Willink, Gina C.; Russell, Carl R.; Amy, Alexander R.; Pete, Ashley E.

    2014-01-01

    In April 2012 and October 2013, NASA and the U.S. Army jointly conducted a wind tunnel test program examining two notional large tilt rotor designs: NASA's Large Civil Tilt Rotor and the Army's High Efficiency Tilt Rotor. The approximately 6%-scale airframe models (unpowered) were tested without rotors in the U.S. Army 7- by 10-foot wind tunnel at NASA Ames Research Center. Measurements of all six forces and moments acting on the airframe were taken using the wind tunnel scale system. In addition to force and moment measurements, flow visualization using tufts, infrared thermography and oil flow were used to identify flow trajectories, boundary layer transition and areas of flow separation. The purpose of this test was to collect data for the validation of computational fluid dynamics tools, for the development of flight dynamics simulation models, and to validate performance predictions made during conceptual design. This paper focuses on the results for the Large Civil Tilt Rotor model in an airplane mode configuration up to 200 knots of wind tunnel speed. Results are presented with the full airframe model with various wing tip and nacelle configurations, and for a wing-only case also with various wing tip and nacelle configurations. Key results show that the addition of a wing extension outboard of the nacelles produces a significant increase in the lift-to-drag ratio, and interestingly decreases the drag compared to the case where the wing extension is not present. The drag decrease is likely due to complex aerodynamic interactions between the nacelle and wing extension that results in a significant drag benefit.

  3. Acoustic measurements from a rotor blade-vortex interaction noise experiment in the German-Dutch Wind Tunnel (DNW)

    Science.gov (United States)

    Martin, Ruth M.; Splettstoesser, W. R.; Elliott, J. W.; Schultz, K.-J.

    1988-01-01

    Acoustic data are presented from a 40 percent scale model of the 4-bladed BO-105 helicopter main rotor, measured in the large European aeroacoustic wind tunnel, the DNW. Rotor blade-vortex interaction (BVI) noise data in the low speed flight range were acquired using a traversing in-flow microphone array. The experimental apparatus, testing procedures, calibration results, and experimental objectives are fully described. A large representative set of averaged acoustic signals is presented.

  4. Stereo PIV Application to 6.5m x 5.5m Low-speed Wind Tunnel

    OpenAIRE

    渡辺, 重哉; WATANABE, Shigeya; 加藤, 裕之; KATO, Hiroyuki

    2002-01-01

    Large-scale wind tunnels at NAL have been utilized to acquire data on aerodynamic characteristics for the development of various types of airplane and aerospace vehicle. Although in most cases measurements concentrate on the information needed directly for vehicle design, such as aerodynamic force and moment, surface pressure, and aerodynamic heating, the need for detailed spatial information on flows around vehicles is gradually increasing as the result of advancements in vehicle design tech...

  5. M2-F1 mounted in NASA Ames Research Center 40x80 foot wind tunnel

    Science.gov (United States)

    1962-01-01

    After the first attempted ground-tow tests of the M2-F1 in March 1963, the vehicle was taken to the Ames Research Center, Mountain View, CA, for wind-tunnel testing. During these tests, Milt Thompson and others were in the M2-F1 to position the control surfaces for each test. The wingless, lifting body aircraft design was initially conceived as a means of landing an aircraft horizontally after atmospheric reentry. The absence of wings would make the extreme heat of re-entry less damaging to the vehicle. In 1962, Dryden management approved a program to build a lightweight, unpowered lifting body as a prototype to flight test the wingless concept. It would look like a 'flying bathtub,' and was designated the M2-F1, the 'M' referring to 'manned' and 'F' referring to 'flight' version. It featured a plywood shell placed over a tubular steel frame crafted at Dryden. Construction was completed in 1963. The first flight tests of the M2-F1 were over Rogers Dry Lake at the end of a tow rope attached to a hopped-up Pontiac convertible driven at speeds up to about 120 mph. This vehicle needed to be able to tow the M2-F1 on the Rogers Dry Lakebed adjacent to NASA's Flight Research Center (FRC) at a minimum speed of 100 miles per hour. To do that, it had to handle the 400-pound pull of the M2-F1. Walter 'Whitey' Whiteside, who was a retired Air Force maintenance officer working in the FRC's Flight Operations Division, was a dirt-bike rider and hot-rodder. Together with Boyden 'Bud' Bearce in the Procurement and Supply Branch of the FRC, Whitey acquired a Pontiac Catalina convertible with the largest engine available. He took the car to Bill Straup's renowned hot-rod shop near Long Beach for modification. With a special gearbox and racing slicks, the Pontiac could tow the 1,000-pound M2-F1 110 miles per hour in 30 seconds. It proved adequate for the roughly 400 car tows that got the M2-F1 airborne to prove it could fly safely and to train pilots before they were towed behind a C

  6. Tunnel construction used as solution for the Cabiunas-REDUC-3 gas pipeline

    Energy Technology Data Exchange (ETDEWEB)

    D' Oliveira, Celso A.; Teixeira, Andre N. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil)

    2009-12-19

    The construction of tunnels for pipeline routes has started being adopted as a solution for technical, environmental and safety issues in the oil and gas industry. Although it is not yet a common practice, PETROBRAS decided to use this type of construction on part of 178 extension kilometers of the main line for the Cabiunas-REDUC-3 Gas Pipeline located in the Gavioes mountains in the district of Cachoeiras de Macacu (RJ). The project implementation follows a growing trend of combining efficiency and environmental protection during its execution. Because the region is full of steep grades and is located in an environmentally sensitive area, the use of a tunnel connection removes some of the risks associated with that type of terrain. Among the many technical challenges involved in the project, one must include: access through dense forest, moving personnel, building material and equipment over step terrain and providing protection from corrosion. And as far as protecting the environment is concerned, the use of a pipeline results in a significant reduction in the loss of native vegetation and damage to the ecosystem. To increase these advantages, PETROBRAS seeks to adopt the kinds of construction methods that are most adequate for the challenge at hand, while producing the best results for the project. Whether using new or tried-and-true methods, the focus is always on perfecting the quality of service provided. (author)

  7. Analysis of a Split-Plot Experimental Design Applied to a Low-Speed Wind Tunnel Investigation

    Science.gov (United States)

    Erickson, Gary E.

    2013-01-01

    A procedure to analyze a split-plot experimental design featuring two input factors, two levels of randomization, and two error structures in a low-speed wind tunnel investigation of a small-scale model of a fighter airplane configuration is described in this report. Standard commercially-available statistical software was used to analyze the test results obtained in a randomization-restricted environment often encountered in wind tunnel testing. The input factors were differential horizontal stabilizer incidence and the angle of attack. The response variables were the aerodynamic coefficients of lift, drag, and pitching moment. Using split-plot terminology, the whole plot, or difficult-to-change, factor was the differential horizontal stabilizer incidence, and the subplot, or easy-to-change, factor was the angle of attack. The whole plot and subplot factors were both tested at three levels. Degrees of freedom for the whole plot error were provided by replication in the form of three blocks, or replicates, which were intended to simulate three consecutive days of wind tunnel facility operation. The analysis was conducted in three stages, which yielded the estimated mean squares, multiple regression function coefficients, and corresponding tests of significance for all individual terms at the whole plot and subplot levels for the three aerodynamic response variables. The estimated regression functions included main effects and two-factor interaction for the lift coefficient, main effects, two-factor interaction, and quadratic effects for the drag coefficient, and only main effects for the pitching moment coefficient.

  8. A wind tunnel study on the effect of trees on PM2.5 distribution around buildings.

    Science.gov (United States)

    Ji, Wenjing; Zhao, Bin

    2018-03-15

    Vegetation, especially trees, is effective in reducing the concentration of particulate matter. Trees can efficiently capture particles, improve urban air quality, and may further decrease the introduction of outdoor particles to indoor air. The objective of this study is to investigate the effects of trees on particle distribution and removal around buildings using wind tunnel experiments. The wind tunnel is 18m long, 12m wide, and 3.5m high. Trees were modeled using real cypress branches to mimic trees planted around buildings. At the inlet of the wind tunnel, a "line source" of particles was released, simulating air laden with particulate matter. Experiments with the cypress tree and tree-free models were conducted to compare particle concentrations around the buildings. The results indicate that cypress trees clearly reduce PM 2.5 concentrations compared with the tree-free model. The cypress trees enhanced the PM 2.5 removal rate by about 20%. The effects of trees on PM 2.5 removal and distribution vary at different heights. At the base of the trees, their effect on reducing PM 2.5 concentrations is the most significant. At a great height above the treetops, the effect is almost negligible. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. A common geometric data-base approach for computer-aided manufacturing of wind-tunnel models and theoretical aerodynamic analysis

    Science.gov (United States)

    See, M. J.; Cozzolongo, J. V.

    1983-01-01

    A more automated process to produce wind tunnel models using existing facilities is discussed. A process was sought to more rapidly determine the aerodynamic characteristics of advanced aircraft configurations. Such aerodynamic characteristics are determined from theoretical analyses and wind tunnel tests of the configurations. Computers are used to perform the theoretical analyses, and a computer aided manufacturing system is used to fabricate the wind tunnel models. In the past a separate set of input data describing the aircraft geometry had to be generated for each process. This process establishes a common data base by enabling the computer aided manufacturing system to use, via a software interface, the geometric input data generated for the theoretical analysis. Thus, only one set of geometric data needs to be generated. Tests reveal that the process can reduce by several weeks the time needed to produce a wind tunnel model component. In addition, this process increases the similarity of the wind tunnel model to the mathematical model used by the theoretical aerodynamic analysis programs. Specifically, the wind tunnel model can be machined to within 0.008 in. of the original mathematical model. However, the software interface is highly complex and cumbersome to operate, making it unsuitable for routine use. The procurement of an independent computer aided design/computer aided manufacturing system with the capability to support both the theoretical analysis and the manufacturing tasks was recommended.

  10. A probabilistic safety assessment of radioactive materials transport. Construction of risk curve in tunnel fire accidents

    Energy Technology Data Exchange (ETDEWEB)

    Watabe, Naohito; Kouno, Yutaka [Central Research Inst. of Electric Power Industry, Abiko, Chiba (Japan). Abiko Research Lab.

    1997-07-01

    For the purpose of developing safety assessment of radioactive materials (RAM) transport, CRIEPI is trying to introduce the Probabilistic Safety Assessment (PSA) which is prevalent to nuclear power plants. This report introduces the concept of evaluating `Severity Measure` of the package in an accident and also introduces the result of verification review of the concept through a case study of tunnel fire accidents. It will be able to evaluate radioactive materials transport accidents with this concept from the viewpoint of PSA, including the safety assessment with conventional tests and analyses. Besides, the risk curve of heat input to package has been constructed as the important expression of PSA. (author)

  11. A probabilistic safety assessment of radioactive materials transport. Construction of risk curve in tunnel fire accidents

    International Nuclear Information System (INIS)

    Watabe, Naohito; Kouno, Yutaka

    1997-01-01

    For the purpose of developing safety assessment of radioactive materials (RAM) transport, CRIEPI is trying to introduce the Probabilistic Safety Assessment (PSA) which is prevalent to nuclear power plants. This report introduces the concept of evaluating 'Severity Measure' of the package in an accident and also introduces the result of verification review of the concept through a case study of tunnel fire accidents. It will be able to evaluate radioactive materials transport accidents with this concept from the viewpoint of PSA, including the safety assessment with conventional tests and analyses. Besides, the risk curve of heat input to package has been constructed as the important expression of PSA. (author)

  12. Fastener load tests and retention systems tests for cryogenic wind-tunnel models

    Science.gov (United States)

    Wallace, J. W.

    1984-01-01

    A-286 stainless steel screws were tested to determine the tensile load capability and failure mode of various screw sizes and types at both cryogenic and room temperature. Additionally, five fastener retention systems were tested by using A-286 screws with specimens made from the primary metallic alloys that are currently used for cryogenic models. The locking system effectiveness was examined by simple no-load cycling to cryogenic temperatures (-275 F) as well as by dynamic and static loading at cryogenic temperatures. In general, most systems were found to be effective retention devices. There are some differences between the various devices with respect to ease of application, cleanup, and reuse. Results of tests at -275 F imply that the cold temperatures act to improve screw retention. The improved retention is probably the result of differential thermal contraction and/or increased friction (thread-binding effects). The data provided are useful in selecting screw sizes, types, and locking devices for model systems to be tested in cryogenic wind tunnels.

  13. Analysis of Wind Tunnel Longitudinal Static and Oscillatory Data of the F-16XL Aircraft

    Science.gov (United States)

    Klein, Vladislav; Murphy, Patrick C.; Curry, Timothy J.; Brandon, Jay M.

    1997-01-01

    Static and oscillatory wind tunnel data are presented for a 10-percent-scale model of an F-16XL aircraft. Static data include the effect of angle of attack, sideslip angle, and control surface deflections on aerodynamic coefficients. Dynamic data from small-amplitude oscillatory tests are presented at nominal values of angle of attack between 20 and 60 degrees. Model oscillations were performed at five frequencies from 0.6 to 2.9 Hz and one amplitude of 5 degrees. A simple harmonic analysis of the oscillatory data provided Fourier coefficients associated with the in-phase and out-of-phase components of the aerodynamic coefficients. A strong dependence of the oscillatory data on frequency led to the development of models with unsteady terms in the form of indicial functions. Two models expressing the variation of the in-phase and out-of-phase components with angle of attack and frequency were proposed and their parameters estimated from measured data.

  14. Wind tunnel and numerical data on the ventilation performance of windcatcher with wing wall

    Directory of Open Access Journals (Sweden)

    Payam Nejat

    2016-12-01

    Full Text Available The data presented in this article were the basis for the study reported in the research articles entitled “Evaluation of a two-sided windcatcher integrated with wing wall (as a new design and comparison with a conventional windcatcher” (P. Nejat, J.K. Calautit, M.Z.A. Majid, B.R. Hughes, I. Zeynali, F. Jomehzadeh, 2016 [1] which presents the effect of wing wall on the air flow distribution under using the windcatchers as a natural ventilation equipment. Here, we detail the wind tunnel testing and numerical set-up used for obtaining the data on ventilation rates and indoor airflow distribution inside a test room with a two-sided windcatcher and wing wall. Three models were integrated with wing wall angled at 30°, 45° and 60° and another windcatcher was a conventional two-sided device. The computer-aided design (CAD three-dimensional geometries which were produced using Solid Edge modeler are also included in the data article.

  15. Wind tunnel and numerical data on the ventilation performance of windcatcher with wing wall.

    Science.gov (United States)

    Nejat, Payam; Calautit, John Kaiser; Abd Majid, Muhd Zaimi; Hughes, Ben Richard; Zeynali, Iman; Jomehzadeh, Fatemeh

    2016-12-01

    The data presented in this article were the basis for the study reported in the research articles entitled "Evaluation of a two-sided windcatcher integrated with wing wall (as a new design) and comparison with a conventional windcatcher" (P. Nejat, J.K. Calautit, M.Z.A. Majid, B.R. Hughes, I. Zeynali, F. Jomehzadeh, 2016) [1] which presents the effect of wing wall on the air flow distribution under using the windcatchers as a natural ventilation equipment. Here, we detail the wind tunnel testing and numerical set-up used for obtaining the data on ventilation rates and indoor airflow distribution inside a test room with a two-sided windcatcher and wing wall. Three models were integrated with wing wall angled at 30°, 45° and 60° and another windcatcher was a conventional two-sided device. The computer-aided design (CAD) three-dimensional geometries which were produced using Solid Edge modeler are also included in the data article.

  16. Wind and water tunnel testing of a morphing aquatic micro air vehicle.

    Science.gov (United States)

    Siddall, Robert; Ortega Ancel, Alejandro; Kovač, Mirko

    2017-02-06

    Aerial robots capable of locomotion in both air and water would enable novel mission profiles in complex environments, such as water sampling after floods or underwater structural inspections. The design of such a vehicle is challenging because it implies significant propulsive and structural design trade-offs for operation in both fluids. In this paper, we present a unique Aquatic Micro Air Vehicle (AquaMAV), which uses a reconfigurable wing to dive into the water from flight, inspired by the plunge diving strategy of water diving birds in the family Sulidae . The vehicle's performance is investigated in wind and water tunnel experiments, from which we develop a planar trajectory model. This model is used to predict the dive behaviour of the AquaMAV, and investigate the efficacy of passive dives initiated by wing folding as a means of water entry. The paper also includes first field tests of the AquaMAV prototype where the folding wings are used to initiate a plunge dive.

  17. Testing of the Trim Tab Parametric Model in NASA Langley's Unitary Plan Wind Tunnel

    Science.gov (United States)

    Murphy, Kelly J.; Watkins, Anthony N.; Korzun, Ashley M.; Edquist, Karl T.

    2013-01-01

    In support of NASA's Entry, Descent, and Landing technology development efforts, testing of Langley's Trim Tab Parametric Models was conducted in Test Section 2 of NASA Langley's Unitary Plan Wind Tunnel. The objectives of these tests were to generate quantitative aerodynamic data and qualitative surface pressure data for experimental and computational validation and aerodynamic database development. Six component force-and-moment data were measured on 38 unique, blunt body trim tab configurations at Mach numbers of 2.5, 3.5, and 4.5, angles of attack from -4deg to +20deg, and angles of sideslip from 0deg to +8deg. Configuration parameters investigated in this study were forebody shape, tab area, tab cant angle, and tab aspect ratio. Pressure Sensitive Paint was used to provide qualitative surface pressure mapping for a subset of these flow and configuration variables. Over the range of parameters tested, the effects of varying tab area and tab cant angle were found to be much more significant than varying tab aspect ratio relative to key aerodynamic performance requirements. Qualitative surface pressure data supported the integrated aerodynamic data and provided information to aid in future analyses of localized phenomena for trim tab configurations.

  18. PIV-based study of the gliding osprey aerodynamics in a wind tunnel

    Science.gov (United States)

    Gurka, Roi; Liberzon, Alex; Kopp, Gregory; Kirchhefer, Adam; Weihs, Daniel

    2009-11-01

    The hunting flight of an osprey consists of periods where the bird glides while foraging for prey. High quality measurements of aerodynamics in this flight mode are needed in order to estimate the daily energy expenditure of the bird accurately. An experimental study of an osprey model in a wind tunnel (BLWTL, UWO) was performed in order to characterize the aerodynamic forces using particle image velocimetry (PIV). The model was a stuffed osprey with mechanical joints allowing control of the the wing (angle of attack, tilt) and tail orientation. Two-dimensional velocity realizations in the streamwise-normal plane were obtained simultaneously in the two fields of view: above the wing and in the wake of the wing. Mean and turbulent flow characteristics are presented as function of angle of attack based on measurements taken at 4 different angles of attack at three different locations over the wingspan. The main outcome is the accurate estimate of the drag from the measurements of momentum thickness in the turbulent boundary layer of the osprey wing. Moreover, the gradient of the momentum thickness method was applied to identify the separation point in the boundary layer. This estimate has been compared to the total drag calculated from measurements in the wake of the wing and with a theoretical prediction.

  19. MiniWall Tool for Analyzing CFD and Wind Tunnel Large Data Sets

    Science.gov (United States)

    Schuh, Michael J.; Melton, John E.; Stremel, Paul M.

    2017-01-01

    It is challenging to review and assimilate large data sets created by Computational Fluid Dynamics (CFD) simulations and wind tunnel tests. Over the past 10 years, NASA Ames Research Center has developed and refined a software tool dubbed the MiniWall to increase productivity in reviewing and understanding large CFD-generated data sets. Under the recent NASA ERA project, the application of the tool expanded to enable rapid comparison of experimental and computational data. The MiniWall software is browser based so that it runs on any computer or device that can display a web page. It can also be used remotely and securely by using web server software such as the Apache HTTP server. The MiniWall software has recently been rewritten and enhanced to make it even easier for analysts to review large data sets and extract knowledge and understanding from these data sets. This paper describes the MiniWall software and demonstrates how the different features are used to review and assimilate large data sets.

  20. The Impact of Landscape Fragmentation on Atmospheric Flow: A Wind-Tunnel Study

    Science.gov (United States)

    Poëtte, Christopher; Gardiner, Barry; Dupont, Sylvain; Harman, Ian; Böhm, Margi; Finnigan, John; Hughes, Dale; Brunet, Yves

    2017-06-01

    Landscape discontinuities such as forest edges play an important role in determining the characteristics of the atmospheric flow by generating increased turbulence and triggering the formation of coherent tree-scale structures. In a fragmented landscape, consisting of surfaces of different heights and roughness, the multiplicity of edges may lead to complex patterns of flow and turbulence that are potentially difficult to predict. Here, we investigate the effects of different levels of forest fragmentation on the airflow. Five gap spacings (of length approximately 5 h, 10 h, 15 h, 20 h, 30 h, where h is the canopy height) between forest blocks of length 8.7 h, as well as a reference case consisting of a continuous forest after a single edge, were investigated in a wind tunnel. The results reveal a consistent pattern downstream from the first edge of each simulated case, with the streamwise velocity component at tree top increasing and turbulent kinetic energy decreasing as gap size increases, but with overshoots in shear stress and turbulent kinetic energy observed at the forest edges. As the gap spacing increases, the flow appears to change monotonically from a flow over a single edge to a flow over isolated forest blocks. The apparent roughness of the different fragmented configurations also decreases with increasing gap size. No overall enhancement of turbulence is observed at any particular level of fragmentation.

  1. Loads Correlation of a Full-Scale UH-60A Airloads Rotor in a Wind Tunnel

    Science.gov (United States)

    Yeo, Hyeonsoo; Romander, Ethan A.

    2012-01-01

    Wind tunnel measurements of the rotor trim, blade airloads, and structural loads of a full-scale UH-60A Black Hawk main rotor are compared with calculations obtained using the comprehensive rotorcraft analysis CAMRAD II and a coupled CAMRAD II/OVERFLOW 2 analysis. A speed sweep at constant lift up to an advance ratio of 0.4 and a thrust sweep at constant speed into deep stall are investigated. The coupled analysis shows significant improvement over comprehensive analysis. Normal force phase is better captured and pitching moment magnitudes are better predicted including the magnitude and phase of the two stall events in the fourth quadrant at the deeply stalled condition. Structural loads are, in general, improved with the coupled analysis, but the magnitude of chord bending moment is still significantly underpredicted. As there are three modes around 4 and 5/rev frequencies, the structural responses to the 5/rev airloads due to dynamic stall are magnified and thus care must be taken in the analysis of the deeply stalled condition.

  2. Small Propeller and Rotor Testing Capabilities of the NASA Langley Low Speed Aeroacoustic Wind Tunnel

    Science.gov (United States)

    Zawodny, Nikolas S.; Haskin, Henry H.

    2017-01-01

    The Low Speed Aeroacoustic Wind Tunnel (LSAWT) at NASA Langley Research Center has recently undergone a configuration change. This change incorporates an inlet nozzle extension meant to serve the dual purposes of achieving lower free-stream velocities as well as a larger core flow region. The LSAWT, part of the NASA Langley Jet Noise Laboratory, had historically been utilized to simulate realistic forward flight conditions of commercial and military aircraft engines in an anechoic environment. The facility was modified starting in 2016 in order to expand its capabilities for the aerodynamic and acoustic testing of small propeller and unmanned aircraft system (UAS) rotor configurations. This paper describes the modifications made to the facility, its current aerodynamic and acoustic capabilities, the propeller and UAS rotor-vehicle configurations to be tested, and some preliminary predictions and experimental data for isolated propeller and UAS rotor con figurations, respectively. Isolated propeller simulations have been performed spanning a range of advance ratios to identify the theoretical propeller operational limits of the LSAWT. Performance and acoustic measurements of an isolated UAS rotor in hover conditions are found to compare favorably with previously measured data in an anechoic chamber and blade element-based acoustic predictions.

  3. Boeing Smart Rotor Full-scale Wind Tunnel Test Data Report

    Science.gov (United States)

    Kottapalli, Sesi; Hagerty, Brandon; Salazar, Denise

    2016-01-01

    A full-scale helicopter smart material actuated rotor technology (SMART) rotor test was conducted in the USAF National Full-Scale Aerodynamics Complex 40- by 80-Foot Wind Tunnel at NASA Ames. The SMART rotor system is a five-bladed MD 902 bearingless rotor with active trailing-edge flaps. The flaps are actuated using piezoelectric actuators. Rotor performance, structural loads, and acoustic data were obtained over a wide range of rotor shaft angles of attack, thrust, and airspeeds. The primary test objective was to acquire unique validation data for the high-performance computing analyses developed under the Defense Advanced Research Project Agency (DARPA) Helicopter Quieting Program (HQP). Other research objectives included quantifying the ability of the on-blade flaps to achieve vibration reduction, rotor smoothing, and performance improvements. This data set of rotor performance and structural loads can be used for analytical and experimental comparison studies with other full-scale rotor systems and for analytical validation of computer simulation models. The purpose of this final data report is to document a comprehensive, highquality data set that includes only data points where the flap was actively controlled and each of the five flaps behaved in a similar manner.

  4. Investigation of physico-chemical processes in hypervelocity MHD-gas acceleration wind tunnels

    International Nuclear Information System (INIS)

    Alfyorov, V.I.; Dmitriev, L.M.; Yegorov, B.V.; Markachev, Yu.E.

    1995-01-01

    The calculation results for nonequilibrium physicochemical processes in the circuit of the hypersonic MHD-gas acceleration wind tunnel are presented. The flow in the primary nozzle is shown to be in thermodynamic equilibrium at To=3400 K, Po=(2∼3)x10 5 Pa, M=2 used in the plenum chamber. Variations in the static pressure due to oxidation reaction of Na, K are pointed out. The channels of energy transfer from the electric field to different degrees of freedom of an accelerated gas with Na, K seeds are considered. The calculation procedure for gas dynamic and kinetic processes in the MHD-channel using measured parameters is suggested. The calculated results are compared with the data obtained in a thermodynamic gas equilibrium assumption. The flow in the secondary nozzle is calculated under the same assumptions and the gas parameters at its exit are evaluated. Particular attention is given to the influence of seeds on flows over bodies. It is shown that the seeds exert a very small influence on the flow behind a normal shock wave. The seeds behind an oblique shock wave accelerate deactivation of vibrations of N 2 , but this effect is insignificant

  5. Pulse-burst PIV in a high-speed wind tunnel

    Science.gov (United States)

    Beresh, Steven; Kearney, Sean; Wagner, Justin; Guildenbecher, Daniel; Henfling, John; Spillers, Russell; Pruett, Brian; Jiang, Naibo; Slipchenko, Mikhail; Mance, Jason; Roy, Sukesh

    2015-09-01

    Time-resolved particle image velocimetry (TR-PIV) has been achieved in a high-speed wind tunnel, providing velocity field movies of compressible turbulence events. The requirements of high-speed flows demand greater energy at faster pulse rates than possible with the TR-PIV systems developed for low-speed flows. This has been realized using a pulse-burst laser to obtain movies at up to 50 kHz, with higher speeds possible at the cost of spatial resolution. The constraints imposed by use of a pulse-burst laser are limited burst duration of 10.2 ms and a low duty cycle for data acquisition. Pulse-burst PIV has been demonstrated in a supersonic jet exhausting into a transonic crossflow and in transonic flow over a rectangular cavity. The velocity field sequences reveal the passage of turbulent structures and can be used to find velocity power spectra at every point in the field, providing spatial distributions of acoustic modes. The present work represents the first use of TR-PIV in a high-speed ground-test facility.

  6. Pulse-burst PIV in a high-speed wind tunnel

    International Nuclear Information System (INIS)

    Beresh, Steven; Kearney, Sean; Wagner, Justin; Guildenbecher, Daniel; Henfling, John; Spillers, Russell; Pruett, Brian; Jiang, Naibo; Slipchenko, Mikhail; Mance, Jason; Roy, Sukesh

    2015-01-01

    Time-resolved particle image velocimetry (TR-PIV) has been achieved in a high-speed wind tunnel, providing velocity field movies of compressible turbulence events. The requirements of high-speed flows demand greater energy at faster pulse rates than possible with the TR-PIV systems developed for low-speed flows. This has been realized using a pulse-burst laser to obtain movies at up to 50 kHz, with higher speeds possible at the cost of spatial resolution. The constraints imposed by use of a pulse-burst laser are limited burst duration of 10.2 ms and a low duty cycle for data acquisition. Pulse-burst PIV has been demonstrated in a supersonic jet exhausting into a transonic crossflow and in transonic flow over a rectangular cavity. The velocity field sequences reveal the passage of turbulent structures and can be used to find velocity power spectra at every point in the field, providing spatial distributions of acoustic modes. The present work represents the first use of TR-PIV in a high-speed ground-test facility. (paper)

  7. Aeroelastic Uncertainty Quantification Studies Using the S4T Wind Tunnel Model

    Science.gov (United States)

    Nikbay, Melike; Heeg, Jennifer

    2017-01-01

    This paper originates from the joint efforts of an aeroelastic study team in the Applied Vehicle Technology Panel from NATO Science and Technology Organization, with the Task Group number AVT-191, titled "Application of Sensitivity Analysis and Uncertainty Quantification to Military Vehicle Design." We present aeroelastic uncertainty quantification studies using the SemiSpan Supersonic Transport wind tunnel model at the NASA Langley Research Center. The aeroelastic study team decided treat both structural and aerodynamic input parameters as uncertain and represent them as samples drawn from statistical distributions, propagating them through aeroelastic analysis frameworks. Uncertainty quantification processes require many function evaluations to asses the impact of variations in numerous parameters on the vehicle characteristics, rapidly increasing the computational time requirement relative to that required to assess a system deterministically. The increased computational time is particularly prohibitive if high-fidelity analyses are employed. As a remedy, the Istanbul Technical University team employed an Euler solver in an aeroelastic analysis framework, and implemented reduced order modeling with Polynomial Chaos Expansion and Proper Orthogonal Decomposition to perform the uncertainty propagation. The NASA team chose to reduce the prohibitive computational time by employing linear solution processes. The NASA team also focused on determining input sample distributions.

  8. Turbulence, selective decay, and merging in the SSX plasma wind tunnel

    Science.gov (United States)

    Gray, Tim; Brown, Michael; Flanagan, Ken; Werth, Alexandra; Lukin, V.

    2012-10-01

    A helical, relaxed plasma state has been observed in a long cylindrical volume. The cylinder has dimensions L = 1 m and R = 0.08 m. The cylinder is long enough so that the predicted minimum energy state is a close approximation to the infinite cylinder solution. The plasma is injected at v >=50 km/s by a coaxial magnetized plasma gun located at one end of the cylindrical volume. Typical plasma parameters are Ti= 25 eV, ne>=10^15 cm-3, and B = 0.25 T. The relaxed state is rapidly attained in 1--2 axial Alfv'en times after initiation of the plasma. Magnetic data is favorably compared with an analytical model. Magnetic data exhibits broadband fluctuations of the measured axial modes during the formation period. The broadband activity rapidly decays as the energy condenses into the lowest energy mode, which is in agreement to the minimum energy eigenstate of ∇xB = λB. While the global structure roughly corresponds to the minimum energy eigenstate for the wind tunnel geometry, the plasma is high beta (β= 0.5) and does not have a flat λ profile. Merging of two plasmoids in this configuration results in noticeably more dynamic activity compared to a single plasmoid. These episodes of activity exhibit s

  9. Aerodynamic shape optimization of guided missile based on wind tunnel testing and computational fluid dynamics simulation

    Directory of Open Access Journals (Sweden)

    Ocokoljić Goran J.

    2017-01-01

    Full Text Available This paper presents modification of the existing guided missile which was done by replacing the existing front part with the new five, while the rear part of the missile with rocket motor and missile thrust vector control system remains the same. The shape of all improved front parts is completely different from the original one. Modification was performed based on required aerodynamic coefficients for the existing guided missile. The preliminary aerodynamic configurations of the improved missile front parts were designed based on theoretical and computational fluid dynamics simulations. All aerodynamic configurations were tested in the T-35 wind tunnel at the Military Technical Institute in order to determine the final geometry of the new front parts. The 3-D Reynolds averaged Navier-Stokes numerical simulations were carried out to predict the aerodynamic loads of the missile based on the finite volume method. Experimental results of the axial force, normal force, and pitching moment coefficients are presented. The computational results of the aerodynamic loads of a guided missile model are also given, and agreed well with.

  10. The effect of vegetation on wind-blown mass transport at the regional scale: A wind tunnel experiment

    NARCIS (Netherlands)

    Youssef, I.F.; Visser, S.M.; Karssenberg, D.; Erpul, G.; Cornelis, W.M.; Gabriels, D.; Poortinga, A.

    2012-01-01

    Wind erosion is a global environmental problem. Re-vegetating land is a commonly used method to reduce the negative effects of wind erosion. However, there is limited knowledge on the effect of vegetation pattern on wind-blown mass transport. The objective of this study was to investigate the effect

  11. The effect of vegetation patterns on wind-blown mass transport at the regional scale: A wind tunnel experiment

    NARCIS (Netherlands)

    Youssef, F.; Visser, S.; Karssenberg, D.J.; Erpul, G.; Cornelis, W.M.; Gabriels, D.; Poortinga, A.

    2012-01-01

    Abstract Wind erosion is a global environmental problem. Re-vegetating land is a commonly used method to reduce the negative effects of wind erosion. However, there is limited knowledge on the effect of vegetation pattern on wind-blown mass transport. The objective of this study was to investigate

  12. Construction technology of high-rise pile cap foundation of offshore wind power in Taiwan Strait

    Science.gov (United States)

    Li, C. Y.; Chi, Y.; Sun, X. Q.; Han, Y. P.; Chen, X.; Zhao, L. C.; Zhang, H.

    2017-11-01

    Offshore wind farms promise to become an important source of energy in the near future. The high-rise pile cap foundation is one of the typical foundation types for offshore wind turbine. This paper introduces the structural characteristics and construction technology of high-rise pile cap foundation, aiming at the characteristics of the sea area of Taiwan Strait and combining with engineering examples. The construction technology of high-rise pile cap foundation is expounded emphatically from the manufacture and transportation of steel pipe piles, pile foundation construction and bearing platform construction. Compared with the traditional construction technology, the construction technologies used in this project are safer and more reliable. The construction period of piles cap foundation is shortened by 10 ∼ 48 days. The construction technology provides reference for offshore wind power foundation construction.

  13. Aeroservoelastic Wind-Tunnel Tests of a Free-Flying, Joined-Wing SensorCraft Model for Gust Load Alleviation

    Science.gov (United States)

    Scott, Robert C.; Castelluccio, Mark A.; Coulson, David A.; Heeg, Jennifer

    2011-01-01

    A team comprised of the Air Force Research Laboratory (AFRL), Boeing, and the NASA Langley Research Center conducted three aeroservoelastic wind-tunnel tests in the Transonic Dynamics Tunnel to demonstrate active control technologies relevant to large, exible vehicles. In the first of these three tests, a full-span, aeroelastically scaled, wind-tunnel model of a joined-wing SensorCraft vehicle was mounted to a force balance to acquire a basic aerodynamic data set. In the second and third tests, the same wind-tunnel model was mated to a new, two-degree-of-freedom, beam mount. This mount allowed the full-span model to translate vertically and pitch. Trimmed flight at -10% static margin and gust load alleviation were successfully demonstrated. The rigid body degrees of freedom required that the model be own in the wind tunnel using an active control system. This risky mode of testing necessitated that a model arrestment system be integrated into the new mount. The safe and successful completion of these free-flying tests required the development and integration of custom hardware and software. This paper describes the many systems, software, and procedures that were developed as part of this effort. The balance and free ying wind-tunnel tests will be summarized. The design of the trim and gust load alleviation control laws along with the associated results will also be discussed.

  14. Super-long bridges with floating towers: the role of multi-box decks and Hardware-In-the-Loop technology for wind tunnel tests

    Science.gov (United States)

    Zasso, A.; Argentini, T.; Bayati, I.; Belloli, M.; Rocchi, D.

    2017-12-01

    The super long fjord crossings in E39 Norwegian project pose new challenges to long span bridge design and construction technology. Proposed solutions should consider the adoption of bridge deck with super long spans or floating solutions for at least one of the towers, due to the relevant fjord depth. At the same time, the exposed fjord environment, possibly facing the open ocean, calls for higher aerodynamic stability performances. In relation to this scenario, the present paper addresses two topics: 1) the aerodynamic advantages of multi-box deck sections in terms of aeroelastic stability, and 2) an experimental setup in a wind tunnel able to simulate the aeroelastic bridge response including the wave forcing on the floating.

  15. An investigation of drag reduction for tractor trailer vehicles with air deflector and boattail. [wind tunnel tests

    Science.gov (United States)

    Muirhead, V. U.

    1981-01-01

    A wind tunnel investigation was conducted to determine the influence of several physical variables on the aerodynamic drag of a trailer model. The physical variables included: a cab mounted wind deflector, boattail on trailer, flow vanes on trailer front, forced transition on trailer, and decreased gap between tractor and trailer. Tests were conducted at yaw angles (relative wind angles) of 0, 5, 10, 20, and 30 degrees and Reynolds numbers of 3.58 x 10 to the 5th power 6.12 x 10 to the 5th power based upon the equivalent diameter of the vehicles. The wind deflector on top of the cab produced a calculated reduction in fuel consumption of about 5 percent of the aerodynamic portion of the fuel budget for a wind speed of 15.3 km/hr (9.5 mph) over a wind angle range of 0 deg to 180 deg and for a vehicle speed of 88.5 km/hr (55 mph). The boattail produced a calculated 7 percent to 8 percent reduction in fuel consumption under the same conditions. The decrease in gap reduced the calculated fuel consumption by about 5 percent of the aerodynamic portion of the fuel budget.

  16. A wind-tunnel investigation of parameters affecting helicopter directional control at low speeds in ground effect

    Science.gov (United States)

    Yeager, W. T., Jr.; Young, W. H., Jr.; Mantay, W. R.

    1974-01-01

    An investigation was conducted in the Langley full-scale tunnel to measure the performance of several helicopter tail-rotor/fin configurations with regard to directional control problems encountered at low speeds in ground effect. Tests were conducted at wind azimuths of 0 deg to 360 deg in increments of 30 deg and 60 deg and at wind speeds from 0 to 35 knots. The results indicate that at certain combinations of wind speed and wind azimuth, large increases in adverse fin force require correspondingly large increases in the tail-rotor thrust, collective pitch, and power required to maintain yaw trim. Changing the tail-rotor direction of rotation to top blade aft for either a pusher tail rotor (tail-rotor wake blowing away from fin) or a tractor tail rotor (tail-rotor wake blowing against fin) will alleviate this problem. For a pusher tail rotor at 180 deg wind azimuth, increases in the fin/tail-rotor gap were not found to have any significant influence on the overall vehicle directional control capability. Changing the tail rotor to a higher position was found to improve tail-rotor performance for a fin-off configuration at a wind azimuth of 180 deg. A V-tail configuration with a pusher tail rotor with top blade aft direction of rotation was found to be the best configuration with regard to overall directional control capability.

  17. Analysis of 7- X 10-foot high speed wind tunnel shaft loads in support of fan blade failure investigation

    Science.gov (United States)

    Faison, Richard W.

    1987-01-01

    This is a report of the investigation of the High-Speed 7- X 10-Foot Wind Tunnel at NASA Langley Research Center, which experienced a catastrophic failure of all 18 Sitka spruce fan blades during operation at 0.8 Mach number on 2 July 1985. The High-Speed Tunnel, a closed-circuit/single-return atmospheric wind tunnel, had been operated since 1945 to support a wide range of subsonic aerodynamic tests and studies. The failed blade set had been in use since 1975. In addition to blade loss, the most significant damage was a bent main drive shaft for a total estimated damage loss of 1.7 million dollars. An analysis of the natural frequency characteristics as well as loads, reactions, stresses, and deflections of the fan drive system resulting from steady-state and dynamic loads due to unbalance was performed. Transient load cases were simulated by step input and ramp input loading functions intended to simulate the loss of one to nine blades (maximum unbalance forces).

  18. Assessment of the Uniqueness of Wind Tunnel Strain-Gage Balance Load Predictions

    Science.gov (United States)

    Ulbrich, N.

    2016-01-01

    A new test was developed to assess the uniqueness of wind tunnel strain-gage balance load predictions that are obtained from regression models of calibration data. The test helps balance users to gain confidence in load predictions of non-traditional balance designs. It also makes it possible to better evaluate load predictions of traditional balances that are not used as originally intended. The test works for both the Iterative and Non-Iterative Methods that are used in the aerospace testing community for the prediction of balance loads. It is based on the hypothesis that the total number of independently applied balance load components must always match the total number of independently measured bridge outputs or bridge output combinations. This hypothesis is supported by a control volume analysis of the inputs and outputs of a strain-gage balance. It is concluded from the control volume analysis that the loads and bridge outputs of a balance calibration data set must separately be tested for linear independence because it cannot always be guaranteed that a linearly independent load component set will result in linearly independent bridge output measurements. Simple linear math models for the loads and bridge outputs in combination with the variance inflation factor are used to test for linear independence. A highly unique and reversible mapping between the applied load component set and the measured bridge output set is guaranteed to exist if the maximum variance inflation factor of both sets is less than the literature recommended threshold of five. Data from the calibration of a six{component force balance is used to illustrate the application of the new test to real-world data.

  19. Application of shape-based similarity query for aerodynamic optimization of wind tunnel primary nozzle

    Directory of Open Access Journals (Sweden)

    Kolář Jan

    2012-04-01

    Full Text Available The aerodynamic shape optimization of the supersonic flat nozzle is the aim of proposed paper. The nozzle discussed, is applied as a primary nozzle of the inlet part of supersonic wind tunnel. Supersonic nozzles of the measure area inlet parts need to guarantee several requirements of flow properties and quality. Mach number and minimal differences between real and required velocity and turbulence profiles at the nozzle exit are the most important parameters to meet. The aerodynamic shape optimization of the flat 2D nozzle in CFD is employed to reach as uniform exit velocity profile as possible, with the mean Mach number 1.4. Optimization process does not use any of standard routines of global or local optimum searching. Instead, newly formed routine, which exploits shape-based oriented sequence of nozzles, is used to research within whole discretized parametric space. The movement within optimization process is not driven by gradient or evolutionary too, instead, the Path of Minimal Shape Deformation is followed. Dynamic mesh approach is used to deform the shape and mesh from the actual nozzle to the subsequent one. Dynamic deformation of mesh allows to speed up whole converging process as an initialization of flow at the newly formed mesh is based on afore-computed shape. Shape-based similarity query in field of supersonic nozzles is discussed and applied. Evolutionary technique with genetic algorithm is used to search for minimal deformational path. As a result, the best variant from the set of solved shapes is analyzed at the base of momentum coefficient and desired Mach number at the nozzle exit.

  20. Constructing China’s wind energy innovation system

    International Nuclear Information System (INIS)

    Klagge, Britta; Liu Zhigao; Campos Silva, Pedro

    2012-01-01

    The rapid rise of China as the largest wind energy market worldwide with several global leaders in turbine manufacturing received much attention from both scholarly and policy-analytical work. However, little attention has been given to the innovation activities of the Chinese wind industry. In our paper, we aim to address this gap, based on second-hand sources and over 50 personal interviews with wind energy-related experts. We argue that China’s wind industry has made great progress in terms of manufacturing and installing, but is confronted with various challenges and problems regarding the development of its indigenous innovation capabilities. Using innovation systems approaches as an analytical tool and focusing on institutions, actors, technology and their interaction in supporting innovation activities, we decompose the elements of China’s wind energy innovation system and their role in developing the domestic wind industry. Against this backdrop we identify and discuss challenges and obstacles in the development of an innovation-driven wind industry in China. The paper strongly argues that more attention should be paid to improve the coordination and cooperation among the various actors of the wind energy innovation system, to the build-up of a market-oriented education and training system as well as to intellectual property protection. - Highlights: ► Innovation systems concepts as analytical tool to understand wind energy in China. ► Focus on institutions, actor constellations and technology development in China. ► Analysis of success in manufacturing and the rapid rise of China’s wind industry. ► Identification of challenges and problems regarding innovation activities. ► Recommendation to (better) integrate innovation policy and wind industry policy.