WorldWideScience

Sample records for wind system design

  1. Design of Wind Turbine Vibration Monitoring System

    Directory of Open Access Journals (Sweden)

    Shoubin Wang

    2013-04-01

    Full Text Available In order to ensure safety of wind turbine operation and to reduce the occurrence of faults as well as to improve the reliability of wind turbine operation, a vibration monitoring for wind turbine is developed. In this paper, it analyses the enlargement of all the parts of the structure and the working mechanism, the research method of wind turbine operation vibration is introduced, with the focus being the use of the sensor principle. Finally the hardware design and software of this system is introduced and the main function of this system is described, which realizes condition monitoring of the work state of wind turbines.

  2. Design Optimization and Evaluation of Different Wind Generator Systems

    DEFF Research Database (Denmark)

    Chen, Zhe; Li, Hui

    2008-01-01

    With rapid development of wind power technologies and significant growth of wind power capacity installed worldwide, various wind generator systems have been developed and built. The objective of this paper is to evaluate various wind generator systems by optimization designs and comparisons...... and power electronic converter are presented; design optimizations of the investigated wind generator systems are developed with an improved genetic algorithm. Next, the optimization designs are implemented of various wind generator systems at 0.75-MW, 1.5-MW, 3.0-MW, 5.0-MWand 10MW, respectively....... In this paper, seven variable speed constant frequency (VSCF) wind generator systems are investigated, namely permanent magnet synchronous generators with the direct-driven (PMSG_DD), the single-stage gearbox (PMSG_1G) and three-stage gearbox (PMSG_3G) concepts, doubly fed induction generators with the three...

  3. Wind diesel systems - design assessment and future potential

    DEFF Research Database (Denmark)

    Infield, D.G.; Scotney, A.; Lundsager, P.

    1992-01-01

    Diesels are the obvious form. of back-up electricity generation in small to medium sized wind systems. High wind penetrations pose significant technical problems for the system designer, ranging from component sizing to control specification and dynamic stability. A key role is seen for proven...... system models for assessing both dynamic characteristics and overall performance and economics. An introduction is provided to the Wind Diesel Engineering Design Toolkit currently under development (for implementation on PC) by a consortium of leading wind diesel experts, representing six European...

  4. Wind energy systems control engineering design

    CERN Document Server

    Garcia-Sanz, Mario

    2012-01-01

    IntroductionBroad Context and MotivationConcurrent Engineering: A Road Map for EnergyQuantitative Robust ControlNovel CAD Toolbox for QFT Controller DesignOutline Part I: Advanced Robust Control Techniques: QFT and Nonlinear SwitchingIntroduction to QFTQuantitative Feedback TheoryWhy Feedback? QFT OverviewInsight into the QFT TechniqueBenefits of QFTMISO Analog QFT Control SystemIntroductionQFT Method (Single-Loop MISO System)Design Procedure OutlineMinimum-Phase System Performance SpecificationsJ LTI Plant ModelsPlant Templates of P?(s), P( j_i )Nominal PlantU-Contour (Stability Bound)Trackin

  5. Assessment of Offshore Wind System Design, Safety, and Operation Standards

    Energy Technology Data Exchange (ETDEWEB)

    Sirnivas, Senu [National Renewable Energy Lab. (NREL), Golden, CO (United States); Musial, Walt [National Renewable Energy Lab. (NREL), Golden, CO (United States); Bailey, Bruce [AWS Trupower LLC, Albany, NY (United States); Filippelli, Matthew [AWS Trupower LLC, Albany, NY (United States)

    2014-01-01

    This report is a deliverable for a project sponsored by the U.S. Department of Energy (DOE) entitled National Offshore Wind Energy Resource and Design Data Campaign -- Analysis and Collaboration (contract number DE-EE0005372; prime contractor -- AWS Truepower). The project objective is to supplement, facilitate, and enhance ongoing multiagency efforts to develop an integrated national offshore wind energy data network. The results of this initiative are intended to 1) produce a comprehensive definition of relevant met-ocean resource assets and needs and design standards, and 2) provide a basis for recommendations for meeting offshore wind energy industry data and design certification requirements.

  6. Design of intelligent controllers for wind generation system with sensorless maximum wind energy control

    International Nuclear Information System (INIS)

    Lin, Whei-Min; Hong, Chih-Ming; Cheng, Fu-Sheng

    2011-01-01

    This paper presents the design of an on-line training recurrent fuzzy neural network (RFNN) controller with a high-performance model reference adaptive system (MRAS) observer for the sensorless control of a induction generator (IG). The modified particle swarm optimization (MPSO) is adopted in this study to adapt the learning rates in the back-propagation process of the RFNN to improve the learning capability. By using the proposed RFNN controller with MPSO, the IG system can work for stand-alone power application effectively. The proposed output maximization control is achieved without mechanical sensors such as the wind speed or position sensor, and the new control system will deliver maximum electric power with light weight, high efficiency, and high reliability. The estimation of the rotor speed is based on the MRAS control theory. A sensorless vector-control strategy for an IG operating in a grid-connected variable speed wind energy conversion system can be achieved.

  7. Design of multi-energy Helds coupling testing system of vertical axis wind power system

    Science.gov (United States)

    Chen, Q.; Yang, Z. X.; Li, G. S.; Song, L.; Ma, C.

    2016-08-01

    The conversion efficiency of wind energy is the focus of researches and concerns as one of the renewable energy. The present methods of enhancing the conversion efficiency are mostly improving the wind rotor structure, optimizing the generator parameters and energy storage controller and so on. Because the conversion process involves in energy conversion of multi-energy fields such as wind energy, mechanical energy and electrical energy, the coupling effect between them will influence the overall conversion efficiency. In this paper, using system integration analysis technology, a testing system based on multi-energy field coupling (MEFC) of vertical axis wind power system is proposed. When the maximum efficiency of wind rotor is satisfied, it can match to the generator function parameters according to the output performance of wind rotor. The voltage controller can transform the unstable electric power to the battery on the basis of optimizing the parameters such as charging times, charging voltage. Through the communication connection and regulation of the upper computer system (UCS), it can make the coupling parameters configure to an optimal state, and it improves the overall conversion efficiency. This method can test the whole wind turbine (WT) performance systematically and evaluate the design parameters effectively. It not only provides a testing method for system structure design and parameter optimization of wind rotor, generator and voltage controller, but also provides a new testing method for the whole performance optimization of vertical axis wind energy conversion system (WECS).

  8. Control design for an autonomous wind based hydrogen production system

    Energy Technology Data Exchange (ETDEWEB)

    Valenciaga, F.; Evangelista, C.A. [CONICET, Laboratorio de Electronica Industrial Control e Instrumentacion (LEICI), Facultad de Ingenieria, Universidad Nacional de La Plata, CC.91, C.P. 1900, La Plata (Argentina)

    2010-06-15

    This paper presents a complete control scheme to efficiently manage the operation of an autonomous wind based hydrogen production system. This system comprises a wind energy generation module based on a multipolar permanent magnet synchronous generator, a lead-acid battery bank as short term energy storage and an alkaline von Hoerner electrolyzer. The control is developed in two hierarchical levels. The higher control level or supervisor control determines the general operation strategy for the whole system according to the wind conditions and the state of charge of the battery bank. On the other hand, the lower control level includes the individual controllers that regulate the respective module operation assuming the set-points determined by the supervisor control. These last controllers are approached using second-order super-twisting sliding mode techniques. The performance of the closed-loop system is assessed through representative computer simulations. (author)

  9. Applications of Systems Engineering to the Research, Design, and Development of Wind Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Dykes, K.; Meadows, R.; Felker, F.; Graf, P.; Hand, M.; Lunacek, M.; Michalakes, J.; Moriarty, P.; Musial, W.; Veers, P.

    2011-12-01

    This paper surveys the landscape of systems engineering methods and current wind modeling capabilities to assess the potential for development of a systems engineering to wind energy research, design, and development. Wind energy has evolved from a small industry in a few countries to a large international industry involving major organizations in the manufacturing, development, and utility sectors. Along with this growth, significant technology innovation has led to larger turbines with lower associated costs of energy and ever more complex designs for all major subsystems - from the rotor, hub, and tower to the drivetrain, electronics, and controls. However, as large-scale deployment of the technology continues and its contribution to electricity generation becomes more prominent, so have the expectations of the technology in terms of performance and cost. For the industry to become a sustainable source of electricity, innovation in wind energy technology must continue to improve performance and lower the cost of energy while supporting seamless integration of wind generation into the electric grid without significant negative impacts on local communities and environments. At the same time, issues associated with wind energy research, design, and development are noticeably increasing in complexity. The industry would benefit from an integrated approach that simultaneously addresses turbine design, plant design and development, grid interaction and operation, and mitigation of adverse community and environmental impacts. These activities must be integrated in order to meet this diverse set of goals while recognizing trade-offs that exist between them. While potential exists today to integrate across different domains within the wind energy system design process, organizational barriers such as different institutional objectives and the importance of proprietary information have previously limited a system level approach to wind energy research, design, and

  10. Conceptual Design of a Floating Support Structure and Mooring System for a Vertical Axis Wind Turbine

    DEFF Research Database (Denmark)

    Berthelsen, Petter Andreas; Fylling, Ivar; Vita, Luca

    2012-01-01

    This paper deals with the conceptual design of a floating support structure and mooring system for a 5MW vertical axis offshore wind turbine. The work is carried out as part of the DeepWind project, where the main objective is to investigate the feasibility of a floating vertical axis offshore wind...

  11. Design of water pumping system by wind turbine for using in coastal areas of Bangladesh

    Science.gov (United States)

    Alam, Muhammad Mahbubul; Tasnim, Tamanna; Doha, Umnia

    2017-06-01

    In this work, a theoretical analysis has been carried out to analyze the prospect of Wind Pumping System (WPS) for using in coastal areas of Bangladesh. Wind speed data of three coastal areas of Bangladesh-Kutubdia, Patenga and Sathkhira has been analyzed and an optimal wind turbine viable for this wind speed range has been designed using the simulation software Q-blade. The simulated turbine is then coupled with a rotodynamic pump. The output of the Wind Pumping System (WPS) for the three coastal areas has been studied.

  12. Design of a wind turbine pitch angle controller for power system stabilisation

    DEFF Research Database (Denmark)

    Jauch, Clemens; Islam, S.M.; Sørensen, Poul Ejnar

    2007-01-01

    The design of a PID pitch angle controller for a fixed speed active-stall wind turbine, using the root locus method is described in this paper. The purpose of this controller is to enable an active-stall wind turbine to perform power system stabilisation. For the purpose of controller design, the...

  13. A Novel Design and Optimization Software for Autonomous PV/Wind/Battery Hybrid Power Systems

    OpenAIRE

    Ali M. Eltamaly; Mohamed A. Mohamed

    2014-01-01

    This paper introduces a design and optimization computer simulation program for autonomous hybrid PV/wind/battery energy system. The main function of the new proposed computer program is to determine the optimum size of each component of the hybrid energy system for the lowest price of kWh generated and the best loss of load probability at highest reliability. This computer program uses the hourly wind speed, hourly radiation, and hourly load power with several numbers of wind turbine (WT) an...

  14. Design and Simulation of Dual Inverter Based Energy Storage Systems for Wind Energy Systems Using MATLAB/SIMULINK

    OpenAIRE

    Harika G,; Jayakumar N

    2014-01-01

    This paper proposes the design and simulation of dual inverter based Energy Storage Systems(ESS) for wind energy systems. A dual inverter consists of MAIN inverter which is connected to grid side and an auxiliary inverter for which an energy storage system is interfaced. Typical grid connected wind energy systems includes wind turbine, PMSG, DC-DC converters, three phase dual inverter ,energy storage system and related power electronic devices. The detailed model of design and...

  15. Conceptual Design of a Floating Support Structure and Mooring System for a Vertical Axis Wind Turbine

    DEFF Research Database (Denmark)

    Berthelsen, Petter Andreas; Fylling, Ivar; Vita, Luca

    2012-01-01

    This paper deals with the conceptual design of a floating support structure and mooring system for a 5MW vertical axis offshore wind turbine. The work is carried out as part of the DeepWind project, where the main objective is to investigate the feasibility of a floating vertical axis offshore wind...... turbine. The DeepWind concept consists of a Darrieus rotor mounted on a spar buoy support structure. The conceptual design is carried out in an iterative process, involving the different subcomponents. The present work is part of the first design iteration and the objective is to find a feasible floating...... support structure and mooring system for the DeepWind concept. The conceptual design is formulated as an optimization problem: Starting with an initial configuration, the optimization procedure tries to find a cheaper solution while satisfying a set of design requirements. This approach utilizes available...

  16. Impacts of large amounts of wind power on design and operation of power systems, results of IEA collaboration

    DEFF Research Database (Denmark)

    Holttinen, Hannele; Meibom, Peter; Orths, Antje

    2011-01-01

    There are dozens of studies made and ongoing related to wind integration. However, the results are not easy to compare. IEA WIND R&D Task 25 on Design and Operation of Power Systems with Large Amounts of Wind Power collects and shares information on wind generation impacts on power systems, with ...

  17. Sensitivity Analysis of Wind Plant Performance to Key Turbine Design Parameters: A Systems Engineering Approach; Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Dykes, K.; Ning, A.; King, R.; Graf, P.; Scott, G.; Veers, P.

    2014-02-01

    This paper introduces the development of a new software framework for research, design, and development of wind energy systems which is meant to 1) represent a full wind plant including all physical and nonphysical assets and associated costs up to the point of grid interconnection, 2) allow use of interchangeable models of varying fidelity for different aspects of the system, and 3) support system level multidisciplinary analyses and optimizations. This paper describes the design of the overall software capability and applies it to a global sensitivity analysis of wind turbine and plant performance and cost. The analysis was performed using three different model configurations involving different levels of fidelity, which illustrate how increasing fidelity can preserve important system interactions that build up to overall system performance and cost. Analyses were performed for a reference wind plant based on the National Renewable Energy Laboratory's 5-MW reference turbine at a mid-Atlantic offshore location within the United States.

  18. Design of a wind turbine pitch angle controller for power system stabilisation

    Energy Technology Data Exchange (ETDEWEB)

    Jauch, Clemens; Soerensen, Poul [Risoe National Laboratory, Wind Energy Department, P.O. Box 49, DK-4000 Roskilde (Denmark); Islam, Syed M. [Department of Electrical and Computer Engineering, Curtin University of Technology, GPO Box U1987, Perth, WA 6845 (Australia); Bak Jensen, Birgitte [Institute of Energy Technology, Aalborg University, Pontoppidanstraede 101, DK-9220 Aalborg East (Denmark)

    2007-11-15

    The design of a PID pitch angle controller for a fixed speed active-stall wind turbine, using the root locus method is described in this paper. The purpose of this controller is to enable an active-stall wind turbine to perform power system stabilisation. For the purpose of controller design, the transfer function of the wind turbine is derived from the wind turbine's step response. The performance of this controller is tested by simulation, where the wind turbine model with its pitch angle controller is connected to a power system model. The power system model employed here is a realistic model of the North European power system. A short circuit fault on a busbar close to the wind turbine generator is simulated, and the dynamic responses of the system with and without the power system stabilisation of the wind turbines are presented. Simulations show that in most operating points the pitch controller can effectively contribute to power system stabilisation. (author)

  19. Wind energy systems

    International Nuclear Information System (INIS)

    Richardson, R.D.; McNerney, G.M.

    1993-01-01

    Wind energy has matured to a level of development where it is ready to become a generally accepted utility generation technology. A brief discussion of this development is presented, and the operating and design principles are discussed. Alternative designs for wind turbines and the tradeoffs that must be considered are briefly compared. Development of a wind energy system and the impacts on the utility network including frequency stability, voltage stability, and power quality are discussed. The assessment of wind power station economics and the key economic factors that determine the economic viability of a wind power plant are presented

  20. Operation Design of Wind Turbines in Strong Wind Conditions

    DEFF Research Database (Denmark)

    Shen, Wen Zhong; Montes, Melissa Barroso; Odgaard, Peter Fogh

    2012-01-01

    and variable speed pitch regulated wind turbines. The variable speed design is more suitable for wind turbines to run at very high wind speeds which can help the turbine braking system to stop the turbine at the new "cut-out" wind speed. Reference power, rotational speed and pitch angle have been designed...

  1. Design and Implementation of Automatic Control System for Rice Seed Tape Winding Units

    OpenAIRE

    Cui, Hongguang; Ren, Wentao; Zhang, Benhua; Yang, Yi; Dai, Lili; Xiang, Quanli

    2010-01-01

    International audience; In order to adapt to the requirements of the development for precision agriculture technology, making the rice seed tape planting technology has been widely used. The paper-making improved the design on the rice seed tape twisting machine especially the seed tape winding units. It proposed seed tape winding automatic control system based on STC90C514AD to realize the rotating speed adjustment of the seed tape disk, used an angular displacement sensor real-time detectin...

  2. Simulation and optimum design of hybrid solar-wind and solar-wind-diesel power generation systems

    Science.gov (United States)

    Zhou, Wei

    Solar and wind energy systems are considered as promising power generating sources due to its availability and topological advantages in local power generations. However, a drawback, common to solar and wind options, is their unpredictable nature and dependence on weather changes, both of these energy systems would have to be oversized to make them completely reliable. Fortunately, the problems caused by variable nature of these resources can be partially overcome by integrating these two resources in a proper combination to form a hybrid system. However, with the increased complexity in comparison with single energy systems, optimum design of hybrid system becomes more complicated. In order to efficiently and economically utilize the renewable energy resources, one optimal sizing method is necessary. This thesis developed an optimal sizing method to find the global optimum configuration of stand-alone hybrid (both solar-wind and solar-wind-diesel) power generation systems. By using Genetic Algorithm (GA), the optimal sizing method was developed to calculate the system optimum configuration which offers to guarantee the lowest investment with full use of the PV array, wind turbine and battery bank. For the hybrid solar-wind system, the optimal sizing method is developed based on the Loss of Power Supply Probability (LPSP) and the Annualized Cost of System (ACS) concepts. The optimization procedure aims to find the configuration that yields the best compromise between the two considered objectives: LPSP and ACS. The decision variables, which need to be optimized in the optimization process, are the PV module capacity, wind turbine capacity, battery capacity, PV module slope angle and wind turbine installation height. For the hybrid solar-wind-diesel system, minimization of the system cost is achieved not only by selecting an appropriate system configuration, but also by finding a suitable control strategy (starting and stopping point) of the diesel generator. The

  3. Design and evaluation of hybrid wind/PV/diesel power systems for Brazilian applications

    Energy Technology Data Exchange (ETDEWEB)

    McGowan, J.G.; Manwell, J.F.; Avelar, C. [Univ. of Massachusetts, Amherst, MA (United States); Warner, C. [National Renewable Energy Lab., Golden, CO (United States)

    1996-12-31

    This paper presents a summary of a study centered on the design and evaluation of hybrid wind/PV/diesel systems for remote locations in Brazil. The objective of this work was to evaluate high reliability hybrid power systems that have been designed for the lowest life cycle costs. The technical and economic analysis of the hybrid wind/PV/diesel systems was carried out using HYBRID2, a computational code developed at the University of Massachusetts in conjunction with the National Renewable Energy Laboratory (NREL). After a summary of a generalized design procedure for such systems based on the use of this code, a systematic parametric evaluation of a representative design case for a village power system in Brazil is presented. As summarized in the paper, the performance and economic effects of key design parameters are illustrated. 8 refs., 10 figs.

  4. A Novel Design and Optimization Software for Autonomous PV/Wind/Battery Hybrid Power Systems

    Directory of Open Access Journals (Sweden)

    Ali M. Eltamaly

    2014-01-01

    Full Text Available This paper introduces a design and optimization computer simulation program for autonomous hybrid PV/wind/battery energy system. The main function of the new proposed computer program is to determine the optimum size of each component of the hybrid energy system for the lowest price of kWh generated and the best loss of load probability at highest reliability. This computer program uses the hourly wind speed, hourly radiation, and hourly load power with several numbers of wind turbine (WT and PV module types. The proposed computer program changes the penetration ratio of wind/PV with certain increments and calculates the required size of all components and the optimum battery size to get the predefined lowest acceptable probability. This computer program has been designed in flexible fashion that is not available in market available software like HOMER and RETScreen. Actual data for Saudi sites have been used with this computer program. The data obtained have been compared with these market available software. The comparison shows the superiority of this computer program in the optimal design of the autonomous PV/wind/battery hybrid system. The proposed computer program performed the optimal design steps in very short time and with accurate results. Many valuable results can be extracted from this computer program that can help researchers and decision makers.

  5. Steady-state Performance Analysis of Collector System Designs for Large-scale Offshore Wind Farms

    Energy Technology Data Exchange (ETDEWEB)

    Quinonez-Varela, G.; Ault, G.W.; McDonald, J.R. [Institute for Energy and Environment, University of Strathclyde, 204 George St., Glasgow G1 1XW, Scotland (United Kingdom)

    2006-07-01

    This paper presents a comparative analysis of the steady-state performance of various designs for the electrical collector system of offshore wind farms and discusses the advantages and disadvantages of each of these designs and their application within large-scale offshore developments. A series of power systems studies were carried out for a proposed 1 GW wind farm off the northeast coast of Scotland, with the plant set to generate at a range of power outputs in order to investigate the impact on the loading and losses of the collector system. The impact on voltage level changes on the busbars within the wind farm under various conditions of reactive power demand, i.e. considering both typical squirrel-cage machines (with typically low lagging power factors) and modern doubly-fed generators (with capability to vary power factor in lagging/leading ranges), was also investigated. In addition, for collector system designs with redundant cables, contingency conditions of losing one of the cables to the hub end were investigated. The overall results have lead to consider the application of 'single-sided ring' designs for large-scale offshore wind farms since it achieves fewer losses and also provides greater adequacy and reliability. Finally, the authors introduce an alternative design based on 'single-sided ring' arrangement which seems a more suitable option taking into account potential economic barriers from the original one-to-one design.

  6. North Wind Power Company 2-kilowatt high-reliability wind system. Phase I. Design and analysis. Technical report

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, D J; Norton, Jr, J H

    1981-07-01

    Results are presented of Phase I of a program to design a 2kW high reliability wind turbine for use in remote locations and harsh environments. In phase I of the program, a predecessor of the proposed design was procured and tested in a wind tunnel and in the freestream to observe operational characteristics. An analytical procedure was developed for designing and modelling the proposed variable axis rotor control system (VARCS). This was then verified by extensive mobile testing of pre-prototype components. A low speed three phase alternator with a Lundel type rotor was designed. Prototypes were fabricated and tested to refine calculation procedures and develop an effective alternator with appropriate characteristics. A solid state field switching regulator was designed and tested successfully. All necessary support elements were designed and engineered. A complete analysis of system reliability was conducted including failure mode and effects analyses and reliability, maintenance and safety analyses. Cost estimates were performed for a mature product in production rates of 1000 per year. Analysis and testing conducted throughout the first phase is included.

  7. Wind conditions for wind turbine design

    Energy Technology Data Exchange (ETDEWEB)

    Maribo Pedersen, B.

    1999-04-01

    Delegates from Europe and USA attended the meeting and discussed general aspects of wind conditions for wind turbine design. The subjects and the presented papers covered a very broad range of aspects of wind conditions and related influence on the wind turbine. (EHS)

  8. Design of Speed and Power Control System for Wind Turbine with Reference Tracking Method

    OpenAIRE

    H. Ghanbari; H. Nikbakht; A. Zahedi; M. Ghanbari

    2013-01-01

    This paper is focusing on designing a control system for wind turbine which can control the speed and output power according to arbitrary algorithm. Reference Tracking Method is used to control the turbine spinning speed in order to increase its output energy.

  9. Optimal design of power system stabilizer for power systems including doubly fed induction generator wind turbines

    International Nuclear Information System (INIS)

    Derafshian, Mehdi; Amjady, Nima

    2015-01-01

    This paper presents an evolutionary algorithm-based approach for optimal design of power system stabilizer (PSS) for multi-machine power systems that include doubly fed induction generator wind turbines. The proposed evolutionary algorithm is an improved particle swarm optimization named chaotic particle swarm optimization with passive congregation (CPSO-PC) applied for finding the optimal settings of PSS parameters. Two different eigenvalue-based objectives are combined as the objective function for the optimization problem of tuning PSS parameters. The first objective function comprises the damping factor of lightly damped electro-mechanical modes and the second one includes the damping ratio of these modes. The effectiveness of the proposed method to design PSS for the power systems including DFIG (Doubly Fed Induction Generator) is extensively demonstrated through eigenvalue analysis and time-domain simulations and also by comparing its simulation results with the results of other heuristic optimization approaches. - Highlights: • A new optimization model for design of PSS in power systems including DFIG is proposed. • A detailed and realistic modeling of DFIG is presented. • A new evolutionary algorithm is suggested for solving the optimization problem of designing PSS

  10. Integrated analysis of wind turbines - The impact of power systems on wind turbine design

    DEFF Research Database (Denmark)

    Barahona Garzón, Braulio

    of the integrated simulation environment are presented. The analysis of an asynchronous machine, and numerical simulations of a fixedspeed wind turbine in the integrated simulation environment, demonstrate the effects on structural loads of including the generator rotor fluxes dynamics in aeroelastic studies. Power...

  11. Advanced tools for modeling, design and optimization of wind turbine systems

    DEFF Research Database (Denmark)

    Iov, F.; Hansen, A.D.; Jauch, C.

    2005-01-01

    As wind turbine technology and control has advanced over the last decade, this has led to a high penetration of wind turbines into the power system. Whether it be for a large wind turbine or an offshore wind farm with hundreds of MW power capacity, the electrical system has become more and more i...

  12. System Dynamics Simulation of Large-Scale Generation System for Designing Wind Power Policy in China

    Directory of Open Access Journals (Sweden)

    Linna Hou

    2015-01-01

    Full Text Available This paper focuses on the impacts of renewable energy policy on a large-scale power generation system, including thermal power, hydropower, and wind power generation. As one of the most important clean energy, wind energy has been rapidly developed in the world. But in recent years there is a serious waste of wind power equipment and investment in China leading to many problems in the industry from wind power planning to its integration. One way overcoming the difficulty is to analyze the influence of wind power policy on a generation system. This paper builds a system dynamics (SD model of energy generation to simulate the results of wind energy generation policies based on a complex system. And scenario analysis method is used to compare the effectiveness and efficiency of these policies. The case study shows that the combinations of lower portfolio goal and higher benchmark price and those of higher portfolio goal and lower benchmark price have large differences in both effectiveness and efficiency. On the other hand, the combinations of uniformly lower or higher portfolio goal and benchmark price have similar efficiency, but different effectiveness. Finally, an optimal policy combination can be chosen on the basis of policy analysis in the large-scale power system.

  13. Modeling and Design Optimization of Variable-Speed Wind Turbine Systems

    Directory of Open Access Journals (Sweden)

    Ulas Eminoglu

    2014-01-01

    Full Text Available As a result of the increase in energy demand and government subsidies, the usage of wind turbine system (WTS has increased dramatically. Due to the higher energy production of a variable-speed WTS as compared to a fixed-speed WTS, the demand for this type of WTS has increased. In this study, a new method for the calculation of the power output of variable-speed WTSs is proposed. The proposed model is developed from the S-type curve used for population growth, and is only a function of the rated power and rated (nominal wind speed. It has the advantage of enabling the user to calculate power output without using the rotor power coefficient. Additionally, by using the developed model, a mathematical method to calculate the value of rated wind speed in terms of turbine capacity factor and the scale parameter of the Weibull distribution for a given wind site is also proposed. Design optimization studies are performed by using the particle swarm optimization (PSO and artificial bee colony (ABC algorithms, which are applied into this type of problem for the first time. Different sites such as Northern and Mediterranean sites of Europe have been studied. Analyses for various parameters are also presented in order to evaluate the effect of rated wind speed on the design parameters and produced energy cost. Results show that proposed models are reliable and very useful for modeling and optimization of WTSs design by taking into account the wind potential of the region. Results also show that the PSO algorithm has better performance than the ABC algorithm for this type of problem.

  14. Design and Experimental Validation of Hydraulic Yaw System for Multi MW Wind Turbine

    DEFF Research Database (Denmark)

    Stubkier, Søren; Pedersen, Henrik C.; Andersen, Torben Ole

    2013-01-01

    market. A hydraulic yaw system is such a new technology, and so a mathematical model of the full scale system and test rig system is derived and compared to measurements from the system. This is done in order to have a validated model, which wind turbine manufacturers may use for test in their simulation...... environment. The model and the test rig are tested up against different design load cases and the results are compared. The experiments show that the model is valid for comparing the overall dynamics of the hydraulic yaw system. Based on the results it is concluded that the model derived is suitable...

  15. Offshore Wind Turbine Design

    DEFF Research Database (Denmark)

    Frandsen, Sten; Hansen, Erik Asp; Ibsen, Lars Bo

    2006-01-01

    Current offshore wind turbine design methods have matured to a 1st generation state, manifested in the draft of a possible standard, IEC 61400-3 (2005). It is now time to investigate the possibilities of improving existing methods. To do so in an efficient manner a clear identification of the most...... important uncertainty drivers specific for offshore wind turbine design loads is required. Describing the initial efforts in a Danish research project, the paper points to focal points for research and development. These are mainly: soil-structure interaction, improved modelling of wave loads from deep...

  16. Optimal controller design of a doubly fed induction generator wind turbine system for small signal stability enhancement

    DEFF Research Database (Denmark)

    Yang, Lihui; Yang, Guang-Ya; Xu, Zhao

    2010-01-01

    Multi-objective optimal controller design of a doubly-fed induction generator (DFIG) wind turbine system using differential evolution (DE) is presented. A detailed mathematical model of DFIG wind turbine with a closed-loop vector control system is developed. Based on this, objective functions...... and the constraint with DE, respectively. Eigenvalue analysis and time-domain simulations are performed on a single machine infinite bus system as well as a nine-bus multi-machine system with two DFIG wind turbines to illustrate the control performance of the DFIG wind turbine with the optimised controller...... parameters. The electric energy productions of the studied DFIG wind turbine system with and without optimised controller parameters under turbulent wind speed are also demonstrated....

  17. Strategy Design of Hybrid Energy Storage System for Smoothing Wind Power Fluctuations

    Directory of Open Access Journals (Sweden)

    Jingyu Liu

    2016-11-01

    Full Text Available With the increasing contribution of wind power plants, the reliability and security of modern power systems have become a huge challenge due to the uncertainty and intermittency of wind energy sources. In this paper, a hybrid energy storage system (HESS consisting of battery and supercapacitor is built to smooth the power fluctuations of wind power. A power allocation strategy is proposed to give full play to the respective advantages of the two energy storage components. In the proposed strategy, the low-frequency and high-frequency components of wind power fluctuations are absorbed by battery groups and supercapacitor groups, respectively. By inhibiting the low-frequency components of supercapacitor current, the times of charging-discharging of battery groups can be significantly reduced. A DC/AC converter is applied to achieve the power exchange between the HESS and the grid. Adjustment rules for regulating state-of-charge (SOC of energy storage elements are designed to avoid overcharge and deep discharge considering the safety and the high efficiency of the energy storage elements. Experimental results on the test platform verify the effectiveness of the proposed power allocation strategy in DC/AC converter and battery SOC adjustment rules for regulating SOC levels.

  18. Impacts of Large Amounts of Wind Power on Design and Operation of Power Systems; Results of IEA Collaboration

    Energy Technology Data Exchange (ETDEWEB)

    Parsons, B. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Ela, E. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Holttinen, H. [VTT (Finland); Meibom, P. [DTU Riso (Denmark); Orths, A. [Energinet.dk (Denmark); O' Malley, M. [Univ. College Dubline (Ireland); Ummels, B. C. [Delft Univ. of Technology (Netherlands); Tande, J. [SINTEF (Norway); Estanqueiro, A. [INETI (Portugal); Gomez, E. [Univ. Castilla la Mancha (Spain); Smith, J. C. [Utility Wind Integration Group (UWIG), Reston, VA (United States)

    2008-06-01

    There are a multitude of studies completed and ongoing related to the cost of wind integration. However, the results are not easy to compare. An international forum for exchange of knowledge of power system impacts of wind power has been formed under the IEA Implementing Agreement on Wind Energy. IEA WIND R&D Task 25 on “Design and Operation of Power Systems with Large Amounts of Wind Power” produced a state-of-the-art report in October 2007, where the most relevant wind-power grid integration studies were analyzed, especially regarding methodologies and input data. This paper summarizes the results from 18 case studies, with discussion on differences in methodology as well as issues that have been identified to impact the cost of wind integration.

  19. A study of collector system grounding design with type-4 wind turbines at the Le Plateau wind power plant in Canada

    Energy Technology Data Exchange (ETDEWEB)

    Paquin, Jean-Nicolas [BBA Inc., Mont-Saint-Hilaire, QC (Canada); Jaskulski, Igor; Cassoli, Jair [Enercon GmbH, Aurich (Germany). R and D Dept.; Fecteau, Martin [Hydro-Quebec TransEnergie, Montreal, QC (Canada); Murray, Charles [Invenergy LLC, Chicago, IL (United States)

    2011-07-01

    Ensuring cost-effectiveness is critical to the success of a wind power plant project. Cost optimization efforts typically lead to design changes that minimize equipment expenditures. Such efforts must occur within the context of a proper risk management plan, and make use of a model-based design methodology to ensure that system reliability targets are met. In the case of wind power plant design, this is often achieved through the simulation of various collector system configurations and by having sufficient understanding of the integrated wind turbine technology. This paper describes a Temporary Overvoltage (TOV) study that has been conducted during the design phase of the Le Plateau wind power plant in Canada. The primary objective of this study is to identify the risks associated with the floating neutral operation on islanded collector feeders, in the presence of Type-4 wind turbines. Simulations were performed using the EMTP-RV software, with a detailed model of the Enercon E-70, 2.3 MW wind turbine. A specific scenario is studied to verify TOV during a single-line to ground fault, when a collector section is islanded following an upstream breaker trip. Simulation results obtained both with and without means of effective grounding in the collector system model demonstrate two things; that with the studied Type-4 wind turbines, blocking will occur quickly enough to mitigate harmful TOV, and no grounding transformer is necessary on collector feeders. (orig.)

  20. How to improve the design of the electrical system in future wind power plants

    DEFF Research Database (Denmark)

    Arana Aristi, Iván; Holbøll, Joachim; Bak, C. L.

    2009-01-01

    is to improve the understanding of the main electrical components in wind farms, based on available information, measurement data and simulation tools. The aim of these projects is to obtain validated models of wind turbine (WT) generators, WT converters, WT transformers, submarine cables, circuit breakers...... and wind farm transformers, and to develop a methodology on how to select appropriate equipment for the power system, control system and protection system....

  1. Floating wind turbine system

    Science.gov (United States)

    Viterna, Larry A. (Inventor)

    2009-01-01

    A floating wind turbine system with a tower structure that includes at least one stability arm extending therefrom and that is anchored to the sea floor with a rotatable position retention device that facilitates deep water installations. Variable buoyancy for the wind turbine system is provided by buoyancy chambers that are integral to the tower itself as well as the stability arm. Pumps are included for adjusting the buoyancy as an aid in system transport, installation, repair and removal. The wind turbine rotor is located downwind of the tower structure to allow the wind turbine to follow the wind direction without an active yaw drive system. The support tower and stability arm structure is designed to balance tension in the tether with buoyancy, gravity and wind forces in such a way that the top of the support tower leans downwind, providing a large clearance between the support tower and the rotor blade tips. This large clearance facilitates the use of articulated rotor hubs to reduced damaging structural dynamic loads. Major components of the turbine can be assembled at the shore and transported to an offshore installation site.

  2. Application of global weather and climate model output to the design and operation of wind-energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Curry, Judith [Climate Forecast Applications Network, Atlanta, GA (United States)

    2015-05-21

    This project addressed the challenge of providing weather and climate information to support the operation, management and planning for wind-energy systems. The need for forecast information is extending to longer projection windows with increasing penetration of wind power into the grid and also with diminishing reserve margins to meet peak loads during significant weather events. Maintenance planning and natural gas trading is being influenced increasingly by anticipation of wind generation on timescales of weeks to months. Future scenarios on decadal time scales are needed to support assessment of wind farm siting, government planning, long-term wind purchase agreements and the regulatory environment. The challenge of making wind forecasts on these longer time scales is associated with a wide range of uncertainties in general circulation and regional climate models that make them unsuitable for direct use in the design and planning of wind-energy systems. To address this challenge, CFAN has developed a hybrid statistical/dynamical forecasting scheme for delivering probabilistic forecasts on time scales from one day to seven months using what is arguably the best forecasting system in the world (European Centre for Medium Range Weather Forecasting, ECMWF). The project also provided a framework to assess future wind power through developing scenarios of interannual to decadal climate variability and change. The Phase II research has successfully developed an operational wind power forecasting system for the U.S., which is being extended to Europe and possibly Asia.

  3. Droop Control Design of Multi-VSC Systems for Offshore Networks to Integrate Wind Energy

    Directory of Open Access Journals (Sweden)

    Muhammad Raza

    2016-10-01

    Full Text Available This research envisages the droop control design of multi voltage source converter systems for offshore networks to integrate wind power plant with the grids. An offshore AC network is formulated by connecting several nearby wind power plants together with AC cables. The net energy in the network is transferred to onshore using voltage source high voltage direct current (VSC-HVDC transmissionsystems. In the proposed configuration, an offshore network is energized by more than one VSC-HVDC system, hereby providing redundancy to continue operation in case of failure in one of the HVDC transmission lines. The power distribution between VSC-HVDC systems is done using a droop control scheme. Frequency droop is implemented to share active power, and voltage droop is implemented to share reactive power. Furthermore, a method of calculating droop gains according to the contribution factor of each converter is presented. The system has been analyzed to evaluate the voltage profile of the network affected by the droop control. Nonlinear dynamic simulation has been performed for the verification of the control principle.

  4. Line filter design of parallel interleaved VSCs for high power wind energy conversion systems

    DEFF Research Database (Denmark)

    Gohil, Ghanshyamsinh Vijaysinh; Bede, Lorand; Teodorescu, Remus

    2015-01-01

    The Voltage Source Converters (VSCs) are often connected in parallel in a Wind Energy Conversion System (WECS) to match the high power rating of the modern wind turbines. The effect of the interleaved carriers on the harmonic performance of the parallel connected VSCs is analyzed in this paper. I...

  5. Evaluation and Design Tools for the Reliability of Wind Power Converter System

    DEFF Research Database (Denmark)

    Ma, Ke; Zhou, Dao; Blaabjerg, Frede

    2015-01-01

    As a key part in the wind turbine system, the power electronic converter is proven to have high failure rates. At the same time, the failure of the wind power converter is becoming more unacceptable because of the quick growth in capacity, remote locations to reach, and strong impact to the power...

  6. A Rotating Speed Controller Design Method for Power Levelling by Means of Inertia Energy in Wind Power Systems

    DEFF Research Database (Denmark)

    Qin, Zian; Blaabjerg, Frede; Loh, Poh Chiang

    2015-01-01

    Power fluctuation caused by wind speed variations may be harmful for the stability of the power system as well as the reliability of the wind power converter, since it may induce thermal excursions in the solder joints of the power modules. Using the wind turbine rotor inertia energy for power...... leveling has been studied before, but no quantified analysis or generic design method have been found. In this paper, the transfer functions from the wind speed to electrical power, electromagnetic torque, and rotating speed are built based on which the rotating speed controller is designed...... in the frequency domain for power leveling. Moreover, the impact of other parameters on power leveling, including the time constant of maximum power point tracking (MPPT) and the rotor inertia, are also studied. With the proposed optimal design, the power fluctuations are mitigated as much as possible, while...

  7. Design of Linear Control System for Wind Turbine Blade Fatigue Testing

    Science.gov (United States)

    Toft, Anders; Roe-Poulsen, Bjarke; Christiansen, Rasmus; Knudsen, Torben

    2016-09-01

    This paper proposes a linear method for wind turbine blade fatigue testing at Siemens Wind Power. The setup consists of a blade, an actuator (motor and load mass) that acts on the blade with a sinusoidal moment, and a distribution of strain gauges to measure the blade flexure. Based on the frequency of the sinusoidal input, the blade will start oscillating with a given gain, hence the objective of the fatigue test is to make the blade oscillate with a controlled amplitude. The system currently in use is based on frequency control, which involves some non-linearities that make the system difficult to control. To make a linear controller, a different approach has been chosen, namely making a controller which is not regulating on the input frequency, but on the input amplitude. A non-linear mechanical model for the blade and the motor has been constructed. This model has been simplified based on the desired output, namely the amplitude of the blade. Furthermore, the model has been linearised to make it suitable for linear analysis and control design methods. The controller is designed based on a simplified and linearised model, and its gain parameter determined using pole placement. The model variants have been simulated in the MATLAB toolbox Simulink, which shows that the controller design based on the simple model performs adequately with the non-linear model. Moreover, the developed controller solves the robustness issue found in the existent solution and also reduces the needed energy for actuation as it always operates at the blade eigenfrequency.

  8. Design of DC-DC Converter and its Control for a Wind Generation System Connected to an Isolated Load

    Directory of Open Access Journals (Sweden)

    Carlos A. Ramírez Gómez

    2013-11-01

    Full Text Available A method to design a Buck converter and its control, which are associated to a wind generation system that is feeding an isolated load, is presented in this paper. To design the converter a Thevenin equivalent is deduced, which represents the behavior of the wind turbine, the permanent magnet synchronous generator, and the rectifier. The design of the converter elements guarantees input/output voltages and inductor current ripples of 5 % or less. The output voltage control is developed with a proportional-integral-derivative controller and as design criteria a damping of 0,707 and cutoff frequency of 1/5 converter commutation frequency are selected. The designed controller regulates the output voltage faced load perturbations and wind speed variations. 

  9. Wind turbine technology principles and design

    CERN Document Server

    Adaramola, Muyiwa

    2014-01-01

    IntroductionPart I: AerodynamicsWind Turbine Blade Design; Peter J. Schubel and Richard J. CrossleyA Shrouded Wind Turbine Generating High Output Power with Wind-Lens Technology; Yuji Ohya and Takashi KarasudaniEcomoulding of Composite Wind Turbine Blades Using Green Manufacturing RTM Process; Brahim AttafAerodynamic Shape Optimization of a Vertical-Axis Wind Turbine Using Differential Evolution; Travis J. Carrigan, Brian H. Dennis, Zhen X. Han, and Bo P. WangPart II: Generators and Gear Systems

  10. Calculation of design load for the MOD-5A 7.3 mW wind turbine system

    Science.gov (United States)

    Mirandy, L.; Strain, J. C.

    1995-01-01

    Design loads are presented for the General Electric MOD-SA wind turbine. The MOD-SA system consists of a 400 ft. diameter, upwind, two-bladed, teetered rotor connected to a 7.3 mW variable-speed generator. Fatigue loads are specified in the form of histograms for the 30 year life of the machine, while limit (or maximum) loads have been derived from transient dynamic analysis at critical operating conditions. Loads prediction was accomplished using state of the art aeroelastic analyses developed at General Electric. Features of the primary predictive tool - the Transient Rotor Analysis Code (TRAC) are described in the paper. Key to the load predictions are the following wind models: (1) yearly mean wind distribution; (2) mean wind variations during operation; (3) number of start/shutdown cycles; (4) spatially large gusts; and (5) spatially small gusts (local turbulence). The methods used to develop statistical distributions from load calculations represent an extension of procedures used in past wind programs and are believed to be a significant contribution to Wind Turbine Generator analysis. Test/theory correlations are presented to demonstrate code load predictive capability and to support the wind models used in the analysis. In addition MOD-5A loads are compared with those of existing machines. The MOD-5A design was performed by the General Electric Company, Advanced Energy Program Department, under Contract DEN3-153 with NASA Lewis Research Center and sponsored by the Department of Energy.

  11. Design, analysis and control of hydraulic soft yaw system for 5MW wind turbine

    DEFF Research Database (Denmark)

    Stubkier, Søren; Pedersen, Henrik C.; Andersen, Torben Ole

    2012-01-01

    As wind turbines increase in size and the demands for lifetime also increases, new methods of load reduction needs to be examined. One method is to make the yaw system of the turbine soft/flexible and wereby dampen the loads to the system. This paper presents work done on dampening of these loads...

  12. How to improve the design of the electrical system in future wind power plants

    DEFF Research Database (Denmark)

    Arana Aristi, Iván; Holbøll, Joachim; Bak, C. L.

    2009-01-01

    This paper presents three topics which are important for better performance of future wind farms. The topics are investigated in three coordinated Ph.D. projects ongoing at the Technical University of Denmark (DTU), Aalborg University (AAU) and DONG Energy. The objective of all projects is to imp......This paper presents three topics which are important for better performance of future wind farms. The topics are investigated in three coordinated Ph.D. projects ongoing at the Technical University of Denmark (DTU), Aalborg University (AAU) and DONG Energy. The objective of all projects...... and wind farm transformers, and to develop a methodology on how to select appropriate equipment for the power system, control system and protection system....

  13. Design of a nonlinear backstepping control strategy of grid interconnected wind power system based PMSG

    Science.gov (United States)

    Errami, Y.; Obbadi, A.; Sahnoun, S.; Benhmida, M.; Ouassaid, M.; Maaroufi, M.

    2016-07-01

    This paper presents nonlinear backstepping control for Wind Power Generation System (WPGS) based Permanent Magnet Synchronous Generator (PMSG) and connected to utility grid. The block diagram of the WPGS with PMSG and the grid side back-to-back converter is established with the dq frame of axes. This control scheme emphasises the regulation of the dc-link voltage and the control of the power factor at changing wind speed. Besides, in the proposed control strategy of WPGS, Maximum Power Point Tracking (MPPT) technique and pitch control are provided. The stability of the regulators is assured by employing Lyapunov analysis. The proposed control strategy for the system has been validated by MATLAB simulations under varying wind velocity and the grid fault condition. In addition, a comparison of simulation results based on the proposed Backstepping strategy and conventional Vector Control is provided.

  14. Design of Linear Control System for Wind Turbine Blade Fatigue Testing

    DEFF Research Database (Denmark)

    Toft, Anders; Roe-Poulsen, Bjarke Nørskov; Christiansen, Rasmus

    2016-01-01

    This paper proposes a linear method for wind turbine blade fatigue testing at Siemens Wind Power. The setup consists of a blade, an actuator (motor and load mass) that acts on the blade with a sinusoidal moment, and a distribution of strain gauges to measure the blade flexure. Based...... on the desired output, namely the amplitude of the blade. Furthermore, the model has been linearised to make it suitable for linear analysis and control design methods.\\\\ The controller is designed based on a simplified and linearised model, and its gain parameter determined using pole placement. The model...... variants have been simulated in the MATLAB toolbox Simulink, which shows that the controller design based on the simple model performs adequately with the non-linear model. Moreover, the developed controller solves the robustness issue found in the existent solution and also reduces the needed energy...

  15. Wind energy conversion system

    Science.gov (United States)

    Longrigg, Paul

    1987-01-01

    The wind energy conversion system includes a wind machine having a propeller connected to a generator of electric power, the propeller rotating the generator in response to force of an incident wind. The generator converts the power of the wind to electric power for use by an electric load. Circuitry for varying the duty factor of the generator output power is connected between the generator and the load to thereby alter a loading of the generator and the propeller by the electric load. Wind speed is sensed electro-optically to provide data of wind speed upwind of the propeller, to thereby permit tip speed ratio circuitry to operate the power control circuitry and thereby optimize the tip speed ratio by varying the loading of the propeller. Accordingly, the efficiency of the wind energy conversion system is maximized.

  16. Design and performance simulation of 532 nm Rayleigh-Mie Doppler lidar system for 5-50 km wind measurement

    Science.gov (United States)

    Shen, Fahua; Wang, Bangxin; Shi, Wenjuan; Zhuang, Peng; Zhu, Chengyun; Xie, Chenbo

    2018-04-01

    A novel design of the 532 nm Rayleigh-Mie Doppler lidar receiving system is carried out. The use of polarization isolation technology to effectively improve the receiving system optical reception efficiency, suppress the background noise, not only improves the system wind field detection accuracy, while achieving a high-accuracy temperature measurement. The wind speed and temperature measurement principle of the system are discussed in detail, and the triple Fabry-Perot etalon parameters are optimized. Utilizing the overall design parameters of the system, the system detection performance is simulated. The simulation results show that from 5 to 50 km altitude with vertical resolution of 0.1 km@5 ∼20 km, 0.5 km@20 ∼40 km, 1 km@40 ∼50 km, by using the laser with single pulse energy of 600 mJ, repetition frequency of 50 Hz and the receiving telescope with aperture of 0.8 m, with 2min integration time and in ±50 m/s radial wind speed range, the radial wind speed measurement accuracies of our designed lidar in the day and night are better than 2.6 m/s and 0.9 m/s respectively, and its performance is obviously superior to that of traditional system 5.6 m/s and 1.4 m/s wind speed accuracies; with 10min integration time and in 210 ∼280 K temperature range, the temperature measurement accuracies of the system in the day and night are better than 3.4 K and 1.2 K respectively; since the wind speed sensitivities of the Mie and Rayleigh scattering signals are not exactly the same, in ±50 m/s radial wind speed range, the wind speed bias induced by Mie signal is less than 1 m/s in the temperature range of 210-290 K and in the backscatter ratio range of 1-1.5 for pair measurement.

  17. Study and design of a hybrid wind-diesel-compressed air energy storage system for remote areas

    International Nuclear Information System (INIS)

    Ibrahim, H.; Younes, R.; Ilinca, A.; Dimitrova, M.; Perron, J.

    2010-01-01

    Remote areas around the world predominantly rely on diesel-powered generators for their electricity supply, a relatively expensive and inefficient technology that is responsible for the emission of 1.2 million tons of greenhouse gas (GHG) annually, only in Canada . Wind-diesel hybrid systems (WDS) with various penetration rates have been experimented to reduce diesel consumption of the generators. After having experimented wind-diesel hybrid systems (WDS) that used various penetration rates, we turned our focus to that the re-engineering of existing diesel power plants can be achieved most efficiently, in terms of cost and diesel consumption, through the introduction of high penetration wind systems combined with compressed air energy storage (CAES). This article compares the available technical alternatives to supercharge the diesel that was used in this high penetration wind-diesel system with compressed air storage (WDCAS), in order to identify the one that optimizes its cost and performances. The technical characteristics and performances of the best candidate technology are subsequently assessed at different working regimes in order to evaluate the varying effects on the system. Finally, a specific WDCAS system with diesel engine downsizing is explored. This proposed design, that requires the repowering of existing facilities, leads to heightened diesel power output, increased engine lifetime and efficiency and to the reduction of fuel consumption and GHG emissions, in addition to savings on maintenance and replacement cost.

  18. Optimal PID Controller Design Based on PSO-RBFNN for Wind Turbine Systems

    Directory of Open Access Journals (Sweden)

    Jau-Woei Perng

    2014-01-01

    Full Text Available A strategy was proposed to determine the optimal operating point for the proportional-integral-derivative (PID controller of a wind turbine, and identify the stability regions in the parameter space. The proposed approach combined particle swarm optimization (PSO and radial basis function neural network (RBFNN algorithms. These intelligent algorithms are artificial learning mechanisms that can determine the optimal operating points, and were used to generate the function representing the most favorable operating  parameters from each parameter of  for the stability region of the PID controller. A graphical method was used to determine the 2D or 3D vision boundaries of the PID-type controller space in closed-loop wind turbine systems. The proposed techniques were demonstrated using simulations of a drive train model without time delay and a pitch control model with time delay. Finally, the 3D stability boundaries were determined the proposed graphical approach with and without time delay systems.

  19. Wind Energy Systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Ma, Ke

    2017-01-01

    Wind power now represents a major and growing source of renewable energy. Large wind turbines (with capacities of up to 6-8 MW) are widely installed in power distribution networks. Increasing numbers of onshore and offshore wind farms, acting as power plants, are connected directly to power...... transmission networks at the scale of hundreds of megawatts. As its level of grid penetration has begun to increase dramatically, wind power is starting to have a significant impact on the operation of the modern grid system. Advanced power electronics technologies are being introduced to improve...... the characteristics of the wind turbines, and make them more suitable for integration into the power grid. Meanwhile, there are some emerging challenges that still need to be addressed. This paper provides an overview and discusses some trends in the power electronics technologies used for wind power generation...

  20. Integrated roof wind energy system

    Directory of Open Access Journals (Sweden)

    Moonen S.P.G.

    2012-10-01

    Full Text Available Wind is an attractive renewable source of energy. Recent innovations in research and design have reduced to a few alternatives with limited impact on residential construction. Cost effective solutions have been found at larger scale, but storage and delivery of energy to the actual location it is used, remain a critical issue. The Integrated Roof Wind Energy System is designed to overcome the current issues of urban and larger scale renewable energy system. The system is built up by an axial array of skewed shaped funnels that make use of the Venturi Effect to accelerate the wind flow. This inventive use of shape and geometry leads to a converging air capturing inlet to create high wind mass flow and velocity toward a vertical-axis wind turbine in the top of the roof for generation of a relatively high amount of energy. The methods used in this overview of studies include an array of tools from analytical modelling, PIV wind tunnel testing, and CFD simulation studies. The results define the main design parameters for an efficient system, and show the potential for the generation of high amounts of renewable energy with a novel and effective system suited for the built environment.

  1. Wind Energy Systems.

    Science.gov (United States)

    Conservation and Renewable Energy Inquiry and Referral Service (DOE), Silver Spring, MD.

    During the 1920s and 1930s, millions of wind energy systems were used on farms and other locations far from utility lines. However, with passage of the Rural Electrification Act in 1939, cheap electricity was brought to rural areas. After that, the use of wind machines dramatically declined. Recently, the rapid rise in fuel prices has led to a…

  2. Probabilistic Design of Wind Turbines

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard

    During the last decades, wind turbines have been continuously developed with the aim of maximizing the life cycle benefits (production of electricity) minus the costs of planning, materials, installation, operation & maintenance as well as possible failure. In order to continue this development...... turbines and the central topics considered are statistical load extrapolation of extreme loads during operation and reliability assessment of wind turbine blades. Wind turbines differ from most civil engineering structures by having a control system which highly influences the loading. In the literature......, methods for estimating the extreme load-effects on a wind turbine during operation, where the control system is active, have been proposed. But these methods and thereby the estimated loads are often subjected to a significant uncertainty which influences the reliability of the wind turbine...

  3. Design, Optimization and Analysis of Hydraulic Soft Yaw System for 5 MW Wind Turbine

    DEFF Research Database (Denmark)

    Stubkier, Søren; Pedersen, Henrik C.

    2011-01-01

    As wind turbines increase in size and the demands for lifetime also increases, new methods of load reduction needs to be examined. One method is to make the yaw system of the turbine soft/flexible and hence dampen the loads to the system, which is the focus of the current paper. The paper first...... presents work previous done on this subject with focus on hydraulic yaw systems. By utilizing the HAWC2 aeroelastic code and an extended model of the NREL 5MW turbine combined with a simplified linear model of the turbine, the parameters of the soft yaw system are optimized. Results show that a significant...... reduction in fatigue and extreme loads to the yaw system and rotor shaft are possible, when utilizing the soft yaw drive concept compared to the original stiff yaw system. The physical demands of the hydraulic yaw system are furthermore examined for a life time of 20 years. The duty cycles, based...

  4. Design, Optimization and Analysis of Hydraulic Soft Yaw System for 5 MW Wind Turbine

    DEFF Research Database (Denmark)

    Stubkier, Søren; Pedersen, Henrik C.

    2011-01-01

    presents work previous done on this subject with focus on hydraulic yaw systems. By utilizing the HAWC2 aeroelastic code and an extended model of the NREL 5MW turbine combined with a simplified linear model of the turbine, the parameters of the soft yaw system are optimized. Results show that a significant...... reduction in fatigue and extreme loads to the yaw system and rotor shaft are possible, when utilizing the soft yaw drive concept compared to the original stiff yaw system. The physical demands of the hydraulic yaw system are furthermore examined for a life time of 20 years. The duty cycles, based...... on the extrapolated loads, show that it is possible to construct a hydraulic soft yaw system, which is able to reduce the loads on the wind turbine significantly....

  5. Probabilistic Design of Wind Turbines

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Toft, H.S.

    2010-01-01

    Probabilistic design of wind turbines requires definition of the structural elements to be included in the probabilistic basis: e.g., blades, tower, foundation; identification of important failure modes; careful stochastic modeling of the uncertain parameters; recommendations for target reliability....... It is described how uncertainties in wind turbine design related to computational models, statistical data from test specimens, results from a few full-scale tests and from prototype wind turbines can be accounted for using the Maximum Likelihood Method and a Bayesian approach. Assessment of the optimal...... reliability level by cost-benefit optimization is illustrated by an offshore wind turbine example. Uncertainty modeling is illustrated by an example where physical, statistical and model uncertainties are estimated....

  6. Design of power converter in DFIG wind turbine with enhanced system-level reliability

    DEFF Research Database (Denmark)

    Zhou, Dao; Zhang, Guanguan; Blaabjerg, Frede

    2017-01-01

    With the increasing penetration of wind power, reliable and cost-effective wind energy production are of more and more importance. As one of the promising configurations, the doubly-fed induction generator based partial-scale wind power converter is still dominating in the existing wind farms, an...

  7. Design Optimization and Site Matching of Direct-Drive Permanent Magnet Wind Generator Systems

    DEFF Research Database (Denmark)

    Li, H.; Chen, Zhe

    2009-01-01

    of the maximum wind energy capture, the rotor diameter and the rated wind speed of a direct-drive wind turbine with the optimum PM generator are determined. The annual energy output (AEO) is also presented using the Weibull density function. Finally, the maximum AEO per cost (AEOPC) of the optimized wind...

  8. Applying novel fractional order incremental conductance algorithm to design and study the maximum power tracking of small wind power systems

    OpenAIRE

    Yu, Kuo Nan; Liao, Chih Kang

    2015-01-01

    The maximum power point tracking is a very important scheme of many renewable energy. It can increase the power efficiency. However, many traditional methods has defects for the applications. This study proposed a novel fractional order incremental conductance algorithm (FOINC) for the maximum power point tracking design of small wind power systems. The proposed method is prompt in the transient of maximum power point tracking and has good steady-state response. Moreover, it can increase the ...

  9. Results of design studies and wind tunnel tests of an advanced high lift system for an Energy Efficient Transport

    Science.gov (United States)

    Oliver, W. R.

    1980-01-01

    The development of an advanced technology high lift system for an energy efficient transport incorporating a high aspect ratio supercritical wing is described. This development is based on the results of trade studies to select the high lift system, analysis techniques utilized to design the high lift system, and results of a wind tunnel test program. The program included the first experimental low speed, high Reynolds number wind tunnel test for this class of aircraft. The experimental results include the effects on low speed aerodynamic characteristics of various leading and trailing edge devices, nacelles and pylons, aileron, spoilers, and Mach and Reynolds numbers. Results are discussed and compared with the experimental data and the various aerodynamic characteristics are estimated.

  10. Innovative multi rotor wind turbine designs

    Energy Technology Data Exchange (ETDEWEB)

    Kale, S.A.; Sapali, S.N. [College of Engineering. Mechanical Engineering Dept, Pune (India)

    2012-07-01

    Among the renewable energy sources, today wind energy is the most recognized and cost effective. Developers and researchers in this sector are optimistic and continuously working innovatively to improve the technology. The wind power obtained is proportional to the swept area of wind turbine. The swept area is increased by using a single rotor of large diameter or multi rotors in array. The rotor size is growing continuously with mature technology. Multi rotor technology has a long history and the multi rotor concept persists in a variety of modern innovative systems but the concept has fallen out of consideration in mainstream design from the perception that is complex and unnecessary as very large single rotor units are now technically feasible. This work addresses the evaluation of different multi rotor wind turbine systems. These innovative wind turbines are evaluated on the basis of feasibility, technological advantages, security of expected power performance, cost, reliability, impact of innovative system, comparison with existing wind turbine design. The findings of this work will provide guidelines for the practical and economical ways for further research on the multi rotor wind turbines. (Author)

  11. Design and Operation of Power Systems with Large Amounts of Wind Power: Final Summary Report, IEA WIND Task 25, Phase Three 2012-2014

    Energy Technology Data Exchange (ETDEWEB)

    Holttinen, Hannele; Kiviluoma, Juha; Forcione, Alain; Milligan, Michael; Smith, Charles J.; Dillon, Jody; Dobschinski, Jan; van Roon, Serafin; Cutululis, Nicolaos; Orths, Antje; Eriksen, Peter Borre; Carlini, Enrico Maria; Estanqueiro, Ana; Bessa, Ricardo; Soder, Lennart; Farahmand, Hossein; Torres, Jose Rueda; Jianhua, Bai; Kondoh, Junji; Pineda, Ivan; Strbac, Goran

    2016-06-01

    This report summarizes recent findings on wind integration from the 16 countries participating in the International Energy Agency (IEA) Wind collaboration research Task 25 in 2012-2014. Both real experience and studies are reported. The national case studies address several impacts of wind power on electric power systems. In this report, they are grouped under long-term planning issues and short-term operational impacts. Long-term planning issues include grid planning and capacity adequacy. Short-term operational impacts include reliability, stability, reserves, and maximizing the value in operational timescales (balancing related issues). The first section presents variability and uncertainty of power system-wide wind power, and the last section presents recent wind integration studies for higher shares of wind power. Appendix 1 provides a summary of ongoing research in the national projects contributing to Task 25 in 2015-2017.

  12. When real life wind speed exceeds design wind assumptions

    Energy Technology Data Exchange (ETDEWEB)

    Winther-Jensen, M.; Joergensen, E.R. [Risoe National Lab., Roskilde (Denmark)

    1999-03-01

    Most modern wind turbines are designed according to a standard or a set of standards to withstand the design loads with a defined survival probability. Mainly the loads are given by the wind conditions on the site defining the `design wind speeds`, normally including extreme wind speeds given as an average and a peak value. The extreme wind speeds are normally (e.g. in the upcoming IEC standard for wind turbine safety) defined as having a 50-year recurrence period. But what happens when the 100 or 10,000 year wind situation hits a wind turbine? Results on wind turbines of wind speeds higher than the extreme design wind speeds are presented based on experiences especially from the State of Gujarat in India. A description of the normal approach of designing wind turbines in accordance with the standards in briefly given in this paper with special focus on limitations and built-in safety levels. Based on that, other possibilities than just accepting damages on wind turbines exposed for higher than design wind speeds are mentioned and discussed. The presentation does not intend to give the final answer to this problem but is meant as an input to further investigations and discussions. (au)

  13. Design Of Single-Axis And Dual-Axis Solar Tracking Systems Protected Against High Wind Speeds

    Directory of Open Access Journals (Sweden)

    Mai Salaheldin Elsherbiny

    2017-09-01

    Full Text Available Solar energy is rapidly gaining ground as an important mean of expanding renewable energy use. Solar tracking is employed in order to maximize collected solar radiation by a photovoltaic panel. In this paper we present a prototype for Automatic solar tracker that is designed using Arduino UNO with Wind sensor to Cease Wind effect on panels if wind speed exceeds certain threshold. The Proposed solar tracker tracks the location of the sun anywhere in any time by calculating the position of the sun. For producing the maximum amount of solar energy a solar panel must always be perpendicular to the source of light. Because the sun motion plane varies daily and during the day it moves from east to west one needs two axis tracking to follow the suns position. Maximum possible power is collected when two axis tracking is done. However two axis tracking is relatively costly and complex. A compromise between maximum power collection and system simplicity is obtained by single axis tracking where the plane North south axis is fixed while the east west motion is accomplished. This work deals with the design of both single and two axis tracking systems. Automatic trackers is also compared to Fixed one in terms of Energy generated Efficiency Cost and System reliability.

  14. PSS Controller for Wind Power Generation Systems

    Science.gov (United States)

    Domínguez-García, J. L.; Gomis-Bellmunt, O.; Bianchi, F.; Sumper, A.

    2012-10-01

    Small signal stability analysis for power systems with wind farm interaction is presented. Power systems oscillation modes can be excited by disturbance or fault in the grid. Variable speed wind turbines can be regulated to reduce these oscillations, stabilising the power system. A power system stabiliser (PSS) control loop for wind power is designed in order to increase the damping of the oscillation modes. The proposed power system stabiliser controller is evaluated by small signal analysis.

  15. Small-scale wind power design, analysis, and environmental impacts

    CERN Document Server

    Abraham, John P

    2014-01-01

    In today's world, clean and robust energy sources are being sought to provide power to residences, commercial operations, and manufacturing enterprises. Among the most appealing energy sources is wind power-with its high reliability and low environmental impact. Wind power's rapid penetration into markets throughout the world has taken many forms, and this book discusses the types of wind power, as well as the appropriate decisions that need to be made regarding wind power design, testing, installation, and analysis. Inside, the authors detail the design of various small-wind systems including horizontal-axis wind turbines (HAWTs) and vertical-axis wind turbines (VAWTs). The design of wind turbines takes advantage of many avenues of investigation, all of which are included in the book. Analytical methods that have been developed over the past few decades are major methods used for design. Alternatively, experimentation (typically using scaled models in wind tunnels) and numerical simulation (using modern comp...

  16. Innovative Offshore Wind Plant Design Study

    Energy Technology Data Exchange (ETDEWEB)

    Hurley, William L. [Glosten Associates, Inc., Seattle, WA (United States); Nordstrom, Charles J. [Glosten Associates, Inc., Seattle, WA (United States); Morrison, Brent J. [Glosten Associates, Inc., Seattle, WA (United States)

    2013-12-18

    Technological advancements in the Glosten PelaStar floating wind turbine system have led to projected cost of energy (COE) reductions from today’s best-in-class offshore wind systems. The PelaStar system is projected to deliver a COE that is 35% lower than that delivered by the current offshore wind plants. Several technology developments have been achieved that directly target significant cost of energy reductions. These include: Application of state-of-the-art steel construction materials and methods, including fatigue-resistant welding techniques and technologies, to reduce hull steel weight; Advancements in synthetic fiber tendon design for the mooring system, which are made possible by laboratory analysis of full-scale sub-rope specimens; Investigations into selected anchor technologies to improve anchor installation methods; Refinement of the installation method, specifically through development of the PelaStar Support Barge design. Together, these technology developments drive down the capital cost and operating cost of offshore wind plants and enable access to superb wind resources in deep water locations. These technology developments also reduce the uncertainty of the PelaStar system costs, which increases confidence in the projected COE reductions.

  17. Small Wind Energy Systems

    DEFF Research Database (Denmark)

    Simoes, Marcelo; Farret, Felix Alberto; Blaabjerg, Frede

    2015-01-01

    devices, and a centralized distribution control. In order to establish a small wind energy system it is important to observe the following: (i) Attending the energy requirements of the actual or future consumers; (ii) Establishing civil liabilities in case of accidents and financial losses due to shortage...... or low quality of energy; (iii) Negotiating collective conditions to interconnect the microgrid with the public network or with other sources of energy that is independent of wind resources; (iv) Establishing a performance criteria of power quality and reliability to end-users, in order to reduce costs...... and guaranteeing an acceptable energy supply. This paper discuss how performance is affected by local conditions and random nature of the wind, power demand profiles, turbine related factors, and presents the technical issues for implementing a self-excited induction generator system, or a permanent magnet based...

  18. Grid integration impacts on wind turbine design and development

    DEFF Research Database (Denmark)

    Hansen, Anca Daniela; Cutululis, Nicolaos Antonio; Sørensen, Poul Ejnar

    2009-01-01

    This paper presents an overall perspective on contemporary issues like wind power plants and grid integration. The purpose is to present and discuss the impacts of emerging new grid connection requirements on modern wind turbines. The grid integration issue has caused several new challenges...... to the wind turbine design and development. The survival of different wind turbine concepts and controls is strongly conditioned by their ability to comply with stringent grid connection requirements, imposed by utility companies. Beside its impact on the mechanical design and control of wind turbines......, the grid integration aspect has also an effect on wind turbines' role in the power system, on wind turbine technologies' survival on the market, as well as on the wind turbines' loads. Over the last years, it became obviously, that there it is an increasing need for design and research of wind turbines...

  19. Wind farm - A power source in future power systems

    DEFF Research Database (Denmark)

    Chen, Zhe; Blaabjerg, Frede

    2009-01-01

    The paper describes modern wind power systems, introduces the issues of large penetration of wind power into power systems, and discusses the possible methods of making wind turbines/farms act as a power source, like conventional power plants in power systems. Firstly, the paper describes modern...... wind turbines and wind farms, and then introduces the wind power development and wind farms. An optimization platform for designing electrical systems of offshore wind farms is briefed. The major issues related to the grid connection requirements and the operation of wind turbines/farms in power...... systems are illustrated....

  20. Integration of the Taber wind power project into the Alberta interconnected electric system : practical experience in design, testing and operations

    Energy Technology Data Exchange (ETDEWEB)

    Fleming, S. [ENMAX Power Corp., Calgary, AB (Canada); Wachtel, S. [Enercon GmbH, Berlin (Germany)

    2008-07-01

    This presentation discussed Alberta's ENMAX Taber wind power project. The farm was commissioned in 2007, and is comprised of 37 ENERCON E-70 turbines rated at 2.2 MW each. The turbines have an advanced blade design and variable speed operation with direct drive and full-scale AC-DC-AC power electronics. The turbines also use flexible AC transmission systems (FACTS). Due to the fact that good winds in Alberta are located far from major electrical loads, wind farms in the province are often required to perform like dispatchable generation plants. Reactive power is used to set up electromagnetic fields that enable current flow and charge certain electrical elements. Reactive power has a strong impact on voltage regulation in high voltage networks. Alberta's interconnection standards require continuous reactive power capability. The ENERCON E-70 power capability has a wide reactive power range with an actual measured response and a range fully available at MW outputs greater than 20 per cent. Overall facility response is influenced by a number of factors. Actual measured response at the Taber facility is optimized to within 1 second. A single central voltage controller is used per wind farm. Testing at the Taber farm has resulted in critical low voltage alarms on adjacent transmission lines. Close coordination with the Alberta Electricity System Operator (AESO) has been required to avert potential power outages in the area. It was concluded that a lack of compliance testing can result in difficulties complying with interconnection standards. tabs., figs.

  1. Design and Study on Sliding Mode Extremum Seeking Control of the Chaos Embedded Particle Swarm Optimization for Maximum Power Point Tracking in Wind Power Systems

    Directory of Open Access Journals (Sweden)

    Jui-Ho Chen

    2014-03-01

    Full Text Available This paper proposes a sliding mode extremum seeking control (SMESC of chaos embedded particle swarm optimization (CEPSO Algorithm, applied to the design of maximum power point tracking in wind power systems. Its features are that the control parameters in SMESC are optimized by CEPSO, making it unnecessary to change the output power of different wind turbines, the designed in-repetition rate is reduced, and the system control efficiency is increased. The wind power system control is designed by simulation, in comparison with the traditional wind power control method, and the simulated dynamic response obtained by the SMESC algorithm proposed in this paper is better than the traditional hill-climbing search (HCS and extremum seeking control (ESC algorithms in the transient or steady states, validating the advantages and practicability of the method proposed in this paper.

  2. Development and Design of a Flexible Measurement System for Offshore Wind Farms

    DEFF Research Database (Denmark)

    Kocewiak, Lukasz Hubert; Arana Aristi, Ivan; Hjerrild, Jesper

    2011-01-01

    The development process of a flexible measurement system for multi-point, high-speed and long-term offshore data logging is described in this paper. This covers the complete design taking into account precise synchronisation, electromagnetic compatibility, software development and sensor...

  3. Development and Design of a Flexible Measurement System for Offshore Wind Farm

    DEFF Research Database (Denmark)

    Kocewiak, Lukasz Hubert; Arana Aristi, Iván; Hjerrild, Jesper

    The development process of a flexible measurement system for multi-point, high-speed and long-term offshore data logging is described in this paper. This covers the complete design taking into account precise synchronisation, electromagnetic compatibility, software development and sensor...

  4. Design and operation of power systems with large amounts of wind power. Final summary report, IEA WIND Task 25, Phase two 2009 - 2011

    Energy Technology Data Exchange (ETDEWEB)

    Holttinen, H.; Kiviluoma, J. [VTT Technical Research Centre of Finland, Espoo (Finland); Robitaille, A. [Hydro Quebec, Montreal QC (Canada)] [and others

    2013-01-15

    This report provides a summary of the results from recent wind integration studies. The studies address concerns about the impact of wind power's variability and uncertainty on power system reliability and costs as well as grid reinforcement needs. Quantifiable results are presented as summary graphs: results as a MW-increase in reserve requirements, or euro/MWh increase in balancing costs, or results for capacity value of wind power. Other results are briefly summarised, together with existing experience on the issues. There is already significant experience in integrating wind power in power systems. The mitigation of wind power impacts include more flexible operational methods, incentivising flexibility in other generating plants, increasing interconnection to neighbouring regions, and application of demand-side flexibility. Electricity storage is still not as cost effective in larger power systems as other means of flexibility, but is already seeing initial applications in places with limited transmission. Electricity markets, with cross-border trade of intra-day and balancing resources and emerging ancillary services markets, are seen as promising for future large penetration levels for wind power. (orig.)

  5. Grid-connected wind and photovoltaic system

    Science.gov (United States)

    Devabakthuni, Sindhuja

    The objective of this thesis is to design a grid connected wind and photovoltaic system. A new model of converter control was designed which maintains the voltage of the bus to grid as constant when combined system of solar and wind is connected to AC bus. The model is designed to track maximum power at each point irrespective of changes in irradiance, temperature and wind speed which affects the power supplied to grid. Solar power from the sun is not constant as it is affected by changes in irradiances and temperature. Even the wind power is affected by wind speed. A MPPT controller was designed for both systems. A boost converter is designed which uses the pulses from MPPT controller to boost the output. Wind system consists of wind turbine block from the MATLAB with a pitch angle controller to maintain optimum pitch angle. The output from wind turbine is connected to a permanent magnet synchronous generator. The unregulated DC output from the photovoltaic system is directly given to boost converter. The AC output from the wind system is given to an uncontrolled rectifier to get a unregulated DC output. The unregulated DC output goes to the boost converter. A voltage source inverter was designed which converts the rectified DC output from the boost converter to AC power. The inverter is designed to maintain constant AC bus voltage irrespective of the disturbances in the power supply. Photovoltaic and wind systems are individually designed for 5KW each in MATLAB-Simulink environment. In this thesis, the models were subjected to changes in irradiance, temperature and wind speed and the results were interpreted. The model was successful in tracking maximum at every instant and the AC bus voltage was maintained constant throughout the simulation.

  6. Design Mining Interacting Wind Turbines.

    Science.gov (United States)

    Preen, Richard J; Bull, Larry

    2016-01-01

    An initial study has recently been presented of surrogate-assisted evolutionary algorithms used to design vertical-axis wind turbines wherein candidate prototypes are evaluated under fan-generated wind conditions after being physically instantiated by a 3D printer. Unlike other approaches, such as computational fluid dynamics simulations, no mathematical formulations were used and no model assumptions were made. This paper extends that work by exploring alternative surrogate modelling and evolutionary techniques. The accuracy of various modelling algorithms used to estimate the fitness of evaluated individuals from the initial experiments is compared. The effect of temporally windowing surrogate model training samples is explored. A surrogate-assisted approach based on an enhanced local search is introduced; and alternative coevolution collaboration schemes are examined.

  7. Development of Data Acquisition System for Wind Energy Applications

    OpenAIRE

    西本,澄

    1992-01-01

    A Data acquisiton system developed for wind energy applications will be described in this paper. This system is composed of an anemometer with two blades downwind and a computer which processes wind data. Wind energy calculated from an average wind speed is inaccurate, since wind power increases with the cube of wind velocity. To decide the design and the site for a wind turbine system, it is very important to consider wind data on a long term basis, that is the total wind energy and distribu...

  8. Modern Control Design for Flexible Wind Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Wright, A. D.

    2004-07-01

    Control can improve energy capture and reduce dynamic loads in wind turbines. In the 1970s and 1980s, wind turbines used classical control designs to regulate power and speed. The methods used, however, were not always successful. Modern turbines are larger, mounted on taller towers, and more dynamically active than their predecessors. Control systems to regulate turbine power and maintain stable, closed-loop behavior in the presence of turbulent wind inflow will be critical for these designs. This report applies modern state-space control design methods to a two-bladed teetering hub upwind machine at the National Wind Technology Center (NWTC), which is managed by the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) in Golden, Colorado. The design objective is to regulate turbine speed and enhance damping in several low-damped flexible modes of the turbine. Starting with simple control algorithms based on linear models, complexity is added incrementally until the desired performance is firmly established.

  9. DESIGN ASPECTS OF A RESIDENTIAL WIND GENERATOR

    Directory of Open Access Journals (Sweden)

    C. BRAD

    2017-03-01

    Full Text Available In this paper we present some aspects about the design of a small permanent magnet wind generator with axial magnetic flux often used in residential wind turbine. There are summarised the main steps of the magnetic and electric calculations with applications to a particular case: 0.6 kVA wind generator. The axial flux wind generator design starts with the characteristics of the rare earths permanent magnet existing on the market.

  10. Operation Design of Wind Turbines in Strong Wind Conditions

    DEFF Research Database (Denmark)

    Shen, Wen Zhong; Montes, Melissa Barroso; Odgaard, Peter Fogh

    2012-01-01

    optimally. In order to reduce the possible increased loading, fatigue due to the wind gusts, control strategies have been considered for both constant sped and variable speed pitch regulated wind turbines. The control study shows that the designed controllers can reduce the standard deviations efficiently...

  11. Bandwidth oriented proportional-integral controller design for back-to-back power converters in DFIG wind turbine system

    DEFF Research Database (Denmark)

    Zhou, Dao; Blaabjerg, Frede

    2017-01-01

    The Doubly-Fed Induction Generator (DFIG) system currently occupies close to 50% of the wind energy market. The vector control is the proven and state-of-the-art solution for its back-to-back power converters by using the dual-loop controller design: the inner current and the outer voltage/power....... This paper focuses on the modelling of power converters and the parameters design of PI controller. According to the Bode plots, the relationship among the switching frequency, inner loop bandwidth, and outer loop bandwidth can be found. At least one tenth difference between them is necessary for the sake...... of either the switching harmonic mitigation or the fully decouple of the dual loops. The procedure to design bandwidth for the grid-side converter and the rotor-side converter are thoroughly addressed and explained on a real-scale 2 MW and a down-scaled 7.5 kW DFIG systems. On the basis of the relationship...

  12. Wind turbine assisted diesel generator systems

    Science.gov (United States)

    Schienbein, L. A.

    1981-12-01

    The need to reduce the cost of energy in remote communities served by diesel generators has led to the investigation of the use of wind energy to replace some or all of the fuel consumed. The development of wind-turbine-assisted diesel generators in Canada has progressed from the design and testing of a 12-kW unit to the design of a prototype 100-kW wind turbine diesel hybrid. This paper presents the results of the 12-kW tests and the implementation of the test results, and the results of further engineering and cost analyses in the design of a prototype 100-kW wind turbine diesel hybrid system. The value of wind energy in a wind turbine diesel hybrid is greatly improved if the diesel generator system itself is designed to operate more efficiently at part load, with or without wind power assistance. Excess wind energy and wind turbine power fluctuations (which result in voltage and frequency fluctuations) can be minimized by selecting the best rotor operating speed.

  13. Database on wind characteristics - Analyses of wind turbine design loads

    DEFF Research Database (Denmark)

    Larsen, Gunner Chr.; Hansen, K.S.

    2004-01-01

    The main objective of IEA R&D Wind Annex XVII - Database on Wind Characteristics - has been to provide wind energy planners, designers and researchers, as well as the international wind engineering community in general, with a source of actual wind fielddata (time series and resource data) observed...... in a wide range of different wind climates and terrain types. Connected to an extension of the initial Annex period, the scope for the continuation was widened to include also support to the international windturbine standardisation efforts.. The project partners are Sweden, Norway, U.S.A., The Netherlands...... and Denmark, with Denmark as the Operating Agent. The reporting of the continuation of Annex XVII falls in two separate parts. Part one accounts in detailsfor the available data in the established database bank, and part two describes various data analyses performed with the overall purpose of improving...

  14. Online Supplementary ADP Learning Controller Design and Application to Power System Frequency Control With Large-Scale Wind Energy Integration.

    Science.gov (United States)

    Guo, Wentao; Liu, Feng; Si, Jennie; He, Dawei; Harley, Ronald; Mei, Shengwei

    2016-08-01

    The emergence of smart grids has posed great challenges to traditional power system control given the multitude of new risk factors. This paper proposes an online supplementary learning controller (OSLC) design method to compensate the traditional power system controllers for coping with the dynamic power grid. The proposed OSLC is a supplementary controller based on approximate dynamic programming, which works alongside an existing power system controller. By introducing an action-dependent cost function as the optimization objective, the proposed OSLC is a nonidentifier-based method to provide an online optimal control adaptively as measurement data become available. The online learning of the OSLC enjoys the policy-search efficiency during policy iteration and the data efficiency of the least squares method. For the proposed OSLC, the stability of the controlled system during learning, the monotonic nature of the performance measure of the iterative supplementary controller, and the convergence of the iterative supplementary controller are proved. Furthermore, the efficacy of the proposed OSLC is demonstrated in a challenging power system frequency control problem in the presence of high penetration of wind generation.

  15. Wind system documentation

    Energy Technology Data Exchange (ETDEWEB)

    Froggatt, J.R.; Tatum, C.P.

    1993-01-15

    Atmospheric transport and diffusion models have been developed by the Environmental Technology Section (ETS) of the Savannah River Technology Center to calculate the location and concentration of toxic or radioactive materials during an accidental release at the Savannah River Site (SRS). The output from these models has been used to support initial on-site and off-site emergency response activities such as protective action decision making and field monitoring coordination. These atmospheric transport and diffusion models have been incorporated into an automated computer-based system called the (Weather Information and Display) System and linked to real-time meteorological and radiological monitoring instruments to provide timely information for these emergency response activities (Hunter, 1990). This report documents various aspects of the WIND system.

  16. Design Load Basis for Offshore Wind turbines

    DEFF Research Database (Denmark)

    Natarajan, Anand; Hansen, Morten Hartvig; Wang, Shaofeng

    2016-01-01

    DTU Wind Energy is not designing and manufacturing wind turbines and does therefore not need a Design Load Basis (DLB) that is accepted by a certification body. However, to assess the load consequences of innovative features and devices added to existing offshore turbine concepts or new offshore...... turbine concept developed in our research, it is useful to have a full DLB that follows the current design standard and is representative of a general DLB used by the industry. It will set a standard for the offshore wind turbine design load evaluations performed at DTU Wind Energy, which is aligned...

  17. Database on wind characteristics - Analyses of wind turbine design loads

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, G.C.; Hansen, K.S.

    2004-06-01

    The main objective of IEA R and D Wind Annex XVII - Database on Wind Characteristics - has been to provide wind energy planners, designers and researchers, as well as the international wind engineering community in general, with a source of actual wind field data (time series and resource data) observed in a wide range of different wind climates and terrain types. Connected to an extension of the initial Annex period, the scope for the continuation was widened to include also support to the international wind turbine standardisation efforts.. The project partners are Sweden, Norway, U.S.A., The Netherlands and Denmark, with Denmark as the Operating Agent. The reporting of the continuation of Annex XVII falls in two separate parts. Part one accounts in details for the available data in the established database bank, and part two describes various data analyses performed with the overall purpose of improving the design load cases with relevance for to wind turbine structures. The present report constitutes the second part of the Annex XVII reporting. Both fatigue and extreme load aspects are dealt with, however, with the main emphasis on the latter. The work has been supported by The Ministry of Environment and Energy, Danish Energy Agency, The Netherlands Agency for Energy and the Environment (NOVEM), The Norwegian Water Resources and Energy Administration (NVE), The Swedish National Energy Administration (STEM) and The Government of the United States of America. (au)

  18. Application of a generic superstructure-based formulation to the design of wind-pumped-storage hybrid systems on remote islands

    International Nuclear Information System (INIS)

    Chen, Cheng-Liang; Chen, Hui-Chu; Lee, Jui-Yuan

    2016-01-01

    Highlights: • A rigorous model for hybrid power system (HPS) design to support a remote island. • Use pumped hydro storage to store tentative surplus electricity. • Formulate the HPS design problem as a mixed-integer linear program (MILP). - Abstract: This paper aims to present a mathematical model for the design of a hybrid power system (HPS) to support a remote island with 100 thousand citizens. The goal is to reduce diesel fuel consumption by adequate expansion of wind power supply. Pumped hydroelectric storage (PHS) is used in the HPS to buffer the impact of intermittent behavior of wind energy. A superstructure is proposed for HPS design, considering all possible capital decisions (e.g. the number of wind turbines) and hourly-basis operational variables (such as the amount of surplus electricity in storage and its discharge). The HPS design problem can then be formulated as a mixed-integer linear program (MILP) based on the proposed superstructure. For a given total share of wind power, the optimal mix of diesel-based and wind power supplies as well as the required capacity of PHS are determined using a four-step optimization approach, involving minimizing (i) the consumption of diesel fuel, (ii) the number of wind turbines, (iii) the size of the upper water reservoir, and (iv) the charge/discharge rates of the PHS system. In this sequential optimization, the objective value obtained in a previous step is added as an additional constraint to the next step. The proposed HPS design model is applied to a real case study of the remote K Island on the other side of Taiwan Strait using hourly-basis, year-round historical data. Inclusion of other renewable energy sources, such as photovoltaic cells and biomass-fired power plants, as well as economic perspectives will be considered in future work.

  19. Offshore Wind Turbine Foundation Design

    DEFF Research Database (Denmark)

    Passon, Patrik

    Offshore wind energy has greatly matured during the last decade with an annually installed energy capacity exceeding 1 GW. A key factor for further large-scale development of offshore wind energy is a cost of energy reduction. Given for example the drop in oil price since summer 2014, which has c...

  20. Optimal design of galvanic corrosion protection systems for offshore wind turbine support structures

    DEFF Research Database (Denmark)

    Sarhadi, Ali; Abrahamsen, Asger Bech; Stolpe, Mathias

    2018-01-01

    The current work addresses a mass/cost optimization procedure for galvanic anode cathodic protection (GACP) systems based on both cathodic protection (CP) standards and numerical simulation. An approach is developed for optimizing the number and dimensions of the galvanic anodes, distributing the...

  1. Optimized design of resonant controller for stator current harmonic compensation in DFIG wind turbine systems

    DEFF Research Database (Denmark)

    Liu, Changjin; Chen, Wenjie; Blaabjerg, Frede

    2012-01-01

    This paper presents an analytical method to optimize the parameters of resonant controller which is used in a Doubly-Fed Induction Generator (DFIG). In the DFIG control system, the fundamental current loop is controlled by PI-controllers, and the stator harmonic current loop is controlled...

  2. Full scale subsonic wind tunnel requirements and design studies

    Science.gov (United States)

    Kelly, M. W.; Mort, K. W.; Hickey, D. H.

    1972-01-01

    The justification and requirements are summarized for a large subsonic wind tunnel capable of testing full-scale aircraft, rotor systems, and advanced V/STOL aircraft propulsion systems. The design considerations and constraints for such a facility are reviewed, and the trades between facility test capability and costs are discussed. The design studies showed that the structural cost of this facility is the most important cost factor. For this reason (and other considerations such as requirements for engine exhaust gas purging) an open-return wind tunnel having two test sections was selected. The major technical problem in the design of an open-return wind tunnel is maintaining good test section flow quality in the presence of external winds. This problem has been studied extensively, and inlet and exhaust systems which provide satisfactory attenuation of the effects of external winds on test section flow quality were developed.

  3. Wind Power Plants Fundamentals, Design, Construction and Operation

    CERN Document Server

    Twele, Jochen

    2012-01-01

    Wind power plants teaches the physical foundations of usage of Wind Power. It includes the areas like Construction of Wind Power Plants, Design, Development of Production Series, Control, and discusses the dynamic forces acting on the systems as well as the power conversion and its connection to the distribution system. The book is written for graduate students, practitioners and inquisitive readers of any kind. It is based on lectures held at several universities. Its German version it already is the standard text book for courses on Wind Energy Engineering but serves also as reference for practising engineers.

  4. Design of the pancake-winding central solenoid coil

    International Nuclear Information System (INIS)

    Yoshida, Kiyoshi; Nishi, Masataka; Tsuji, Hirosi

    1995-01-01

    There was a debate over whether a pancake-winding or layer-winding technique is more appropriate for the Central Solenoid (CS) coil for ITER superconducting magnet. The layer-winding CS has the advantage of homogeneous winding supporting the TF centering force without weak joints, but has many difficulties during manufacturing and quality control. On other hand, the pancake-winding has the advantage of better quality control during manufacturing and module testing but has difficulties with joints and feeders, and pipes located in the load path of the bucking force from the toroidal field coils. The compact joints, reinforcement by preformed amour, sharp bending, and double seals are applied to the design of pancake-winding CS coil and demonstrated by hardware developments. The pancake-winding CS coil by using modified existing technology is compatible with the bucking concept of the ITER magnet system. (author)

  5. Design of an off-grid hybrid PV/wind power system for remote mobile base station: A case study

    Directory of Open Access Journals (Sweden)

    Mulualem T. Yeshalem

    2017-01-01

    Full Text Available There is a clear challenge to provide reliable cellular mobile service at remote locations where a reliable power supply is not available. So, the existing Mobile towers or Base Transceiver Station (BTSs uses a conventional diesel generator with backup battery banks. This paper presents the solution to utilizing a hybrid of photovoltaic (PV solar and wind power system with a backup battery bank to provide feasibility and reliable electric power for a specific remote mobile base station located at west arise, Oromia. All the necessary modeling, simulation, and techno-economic evaluation are carried out using Hybrid Optimization Model for Electric Renewable (HOMER software. The best optimal system configurations namely PV/Battery and PV/Wind/Battery hybrid systems are compared with the conventional stand-alone diesel generator (DG system. Findings indicated that PV array and battery is the most economically viable option with the total net present cost (NPC of $\\$$57,508 and per unit cost of electricity (COE of $\\$$0.355. Simulation results show that the hybrid energy systems can minimize the power generation cost significantly and can decrease CO2 emissions as compared to the traditional diesel generator only. The sensitivity analysis is also carried out to analysis the effects of probable variation in solar radiation, wind speed, diesel price and average annual energy usage of the system load in the optimal system configurations.

  6. Perceived Uncertainty Sources in Wind Power Plant Design

    Energy Technology Data Exchange (ETDEWEB)

    Damiani, Rick R [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-01-03

    This presentation for the Fourth Wind Energy Systems Engineering Workshop covers some of the uncertainties that still impact turbulent wind operation and how these affect design and structural reliability; identifies key sources and prioritization for R and D; and summarizes an analysis of current procedures, industry best practice, standards, and expert opinions.

  7. Wind Turbine Converter Control Interaction with Complex Wind Farm Systems

    DEFF Research Database (Denmark)

    Kocewiak, Lukasz Hubert; Hjerrild, Jesper; Bak, Claus Leth

    2013-01-01

    in this study. It is shown that wind farm components, such as long high-voltage alternating current cables and park transformers, can introduce significant low-frequency series resonances seen from the wind turbine terminals that can affect wind turbine control system operation and overall wind farm stability...

  8. Design of sport stadia: wind action perspective

    CSIR Research Space (South Africa)

    Goliger, Adam M

    2010-09-01

    Full Text Available This paper presents a review of the most relevant issues related to the structural and architectural design of large sport stadia, with the particular concern of wind loading aspects of these types of structures. The role and relevance of wind...

  9. Controller Design Automation for Aeroservoelastic Design Optimization of Wind Turbines

    NARCIS (Netherlands)

    Ashuri, T.; Van Bussel, G.J.W.; Zaayer, M.B.; Van Kuik, G.A.M.

    2010-01-01

    The purpose of this paper is to integrate the controller design of wind turbines with structure and aerodynamic analysis and use the final product in the design optimization process (DOP) of wind turbines. To do that, the controller design is automated and integrated with an aeroelastic simulation

  10. System Integration of the Horizontal-Axis Wind Turbine: The Design of Turbine Blades with an Axial-Flux Permanent Magnet Generator

    Directory of Open Access Journals (Sweden)

    Chi-Jeng Bai

    2014-11-01

    Full Text Available In designing a horizontal-axis wind turbine (HAWT blade, system integration between the blade design and the performance test of the generator is important. This study shows the aerodynamic design of a HAWT blade operating with an axial-flux permanent magnet (AFPM generator. An experimental platform was built to measure the performance curves of the AFPM generator for the purpose of designing the turbine blade. An in-house simulation code was developed based on the blade element momentum (BEM theory and was used to lay out the geometric shape of the turbine blade, including the pitch angle and chord length at each section. This simulation code was combined with the two-dimensional (2D airfoil data for predicting the aerodynamic performance of the designed blades. In addition, wind tunnel experiments were performed to verify the simulation results for the various operating conditions. By varying the rotational speeds at four wind speeds, the experimental and simulation results for the mechanical torques and powers presented good agreement. The mechanical power of the system, which maximizes at the best operating region, provided significant information for designing the HAWT blade.

  11. Wind turbine storage systems

    International Nuclear Information System (INIS)

    Ibrahim, H.; Ilinca, A.; Perron, J.

    2005-01-01

    Electric power is often produced in locations far from the point of utilization which creates a challenge in stabilizing power grids, particularly since electricity cannot be stored. The production of decentralized electricity by renewable energy sources offers a greater security of supply while protecting the environment. Wind power holds the greatest promise in terms of environmental protection, competitiveness and possible applications. It is known that wind energy production is not always in phase with power needs because of the uncertainty of wind. For that reason, energy storage is the key for the widespread integration of wind energy into the power grids. This paper proposed various energy storage methods that can be used in combination with decentralized wind energy production where an imbalance exists between electricity production and consumption. Energy storage can play an essential role in bringing value to wind energy, particularly if electricity is to be delivered during peak hours. Various types of energy storage are already in use or are being developed. This paper identified the main characteristics of various electricity storage techniques and their applications. They include stationary or embarked storage for long or short term applications. A comparison of characteristics made it possible to determine which types of electricity storage are best suited for wind energy. These include gravity energy; thermal energy; compressed air energy; coupled storage with natural gas; coupled storage with liquefied gas; hydrogen storage for fuel cells; chemical energy storage; storage in REDOX batteries; storage by superconductive inductance; storage in supercondensers; and, storage as kinetic energy. 21 refs., 21 figs

  12. Wind Turbine Generator System Safety and Function Test Report for the Entegrity EW50 Wind Turbine

    Energy Technology Data Exchange (ETDEWEB)

    Smith, J.; Huskey, A.; Jager, D.; Hur, J.

    2012-11-01

    This report summarizes the results of a safety and function test that NREL conducted on the Entegrity EW50 wind turbine. This test was conducted in accordance with the International Electrotechnical Commissions' (IEC) standard, Wind Turbine Generator System Part 2: Design requirements for small wind turbines, IEC 61400-2 Ed.2.0, 2006-03.

  13. Wind Turbine Generator System Safety and Function Test Report for the Ventera VT10 Wind Turbine

    Energy Technology Data Exchange (ETDEWEB)

    Smith, J.; Huskey, A.; Jager, D.; Hur, J.

    2012-11-01

    This report summarizes the results of a safety and function test that NREL conducted on the Ventera VT10 wind turbine. This test was conducted in accordance with the International Electrotechnical Commissions' (IEC) standard, Wind Turbine Generator System Part 2: Design requirements for small wind turbines, IEC 61400-2 Ed.2.0, 2006-03.

  14. Wind Power in Electrical Distribution Systems

    DEFF Research Database (Denmark)

    Chen, Zhe

    2013-01-01

    Recent years, wind power is experiencing a rapid growth, large number of wind turbines/wind farms have been installed and connected to power systems. In addition to the large centralised wind farms connected to transmission grids, many distributed wind turbines and wind farms are operated...... as distributed generators in distribution systems. This paper discusses the issues of wind turbines in distribution systems. Wind power conversion systems briefly introduced, the basic features and technical characteristics of distributed wind power system are described, and the main technical demands...

  15. Thermal and Pressure Characterization of a Wind Tunnel Force Balance Using the Single Vector System. Experimental Design and Analysis Approach to Model Pressure and Temperature Effects in Hypersonic Wind Tunnel Research

    Science.gov (United States)

    Lynn, Keith C.; Commo, Sean A.; Johnson, Thomas H.; Parker, Peter A,

    2011-01-01

    Wind tunnel research at NASA Langley Research Center s 31-inch Mach 10 hypersonic facility utilized a 5-component force balance, which provided a pressurized flow-thru capability to the test article. The goal of the research was to determine the interaction effects between the free-stream flow and the exit flow from the reaction control system on the Mars Science Laboratory aeroshell during planetary entry. In the wind tunnel, the balance was exposed to aerodynamic forces and moments, steady-state and transient thermal gradients, and various internal balance cavity pressures. Historically, these effects on force measurement accuracy have not been fully characterized due to limitations in the calibration apparatus. A statistically designed experiment was developed to adequately characterize the behavior of the balance over the expected wind tunnel operating ranges (forces/moments, temperatures, and pressures). The experimental design was based on a Taylor-series expansion in the seven factors for the mathematical models. Model inversion was required to calculate the aerodynamic forces and moments as a function of the strain-gage readings. Details regarding transducer on-board compensation techniques, experimental design development, mathematical modeling, and wind tunnel data reduction are included in this paper.

  16. Design tool for offshore wind farm clusters

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Giebel, Gregor; Waldl, Igor

    2015-01-01

    Research Alliance (EERA) and a number of industrial partners. The approach has been to develop a robust, efficient, easy to use and flexible tool, which integrates software relevant for planning offshore wind farms and wind farm clusters and supports the user with a clear optimization work flow......The Design Tool for Offshore wind farm Clusters (DTOC) is a software tool to facilitate the optimised design of both, individual and clusters of offshore wind farms. DTOC is developed with the support of an EC funded FP7 project with contributions from science partners from the European Energy...... is developed within the project using open interface standards and is now available as the commercial software product Wind&Economy....

  17. Design tool for offshore wind farm clusters

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Giebel, Gregor; Waldl, Igor

    2015-01-01

    The Design Tool for Offshore wind farm Clusters (DTOC) is a software tool to facilitate the optimised design of both, individual and clusters of offshore wind farms. DTOC is developed with the support of an EC funded FP7 project with contributions from science partners from the European Energy...... is developed within the project using open interface standards and is now available as the commercial software product Wind&Economy....... Research Alliance (EERA) and a number of industrial partners. The approach has been to develop a robust, efficient, easy to use and flexible tool, which integrates software relevant for planning offshore wind farms and wind farm clusters and supports the user with a clear optimization work flow...

  18. Summertime wind climate in Yerevan: valley wind systems

    Science.gov (United States)

    Gevorgyan, Artur

    2017-03-01

    1992-2014 wind climatology analysis in Yerevan is presented with particular focus given to the summertime thermally induced valley wind systems. Persistence high winds are observed in Yerevan during July-August months when the study region is strongly affected by a heat-driven plain-plateau circulation. The local valley winds arrive in Yerevan in the evening hours, generally, from 1500 to 1800 UTC, leading to rapid enhancement of wind speeds and dramatic changes in wind direction. Valley-winds significantly impact the local climate of Yerevan, which is a densely populated city. These winds moderate evening temperatures after hot and dry weather conditions observed during summertime afternoons. On the other hand, valley winds result in significantly higher nocturnal temperatures and more frequent occurrence of warm nights (tn90p) in Yerevan due to stronger turbulent mixing of boundary layer preventing strong surface cooling and temperature drop in nighttime and morning hours. The applied WRF-ARW limited area model is able to simulate the key features of the observed spatial pattern of surface winds in Armenia associated with significant terrain channeling, wind curls, etc. By contrast, ECMWF EPS global model fails to capture mesoscale and local wind systems over Armenia. However, the results of statistical verification of surface winds in Yerevan showed that substantial biases are present in WRF 18-h wind forecasts, as well as, the temporal variability of observed surface winds is not reproduced adequately in WRF-ARW model.

  19. Offshore Wind Energy Systems Engineering Curriculum Development

    Energy Technology Data Exchange (ETDEWEB)

    McGowan, Jon G. [Univ. of Massachusetts, Amherst, MA (United States); Manwell, James F. [Univ. of Massachusetts, Amherst, MA (United States); Lackner, Matthew A. [Univ. of Massachusetts, Amherst, MA (United States)

    2012-12-31

    Utility-scale electricity produced from offshore wind farms has the potential to contribute significantly to the energy production of the United States. In order for the U.S. to rapidly develop these abundant resources, knowledgeable scientists and engineers with sound understanding of offshore wind energy systems are critical. This report summarizes the development of an upper-level engineering course in "Offshore Wind Energy Systems Engineering." This course is designed to provide students with a comprehensive knowledge of both the technical challenges of offshore wind energy and the practical regulatory, permitting, and planning aspects of developing offshore wind farms in the U.S. This course was offered on a pilot basis in 2011 at the University of Massachusetts and the National Renewable Energy Laboratory (NREL), TU Delft, and GL Garrad Hassan have reviewed its content. As summarized in this report, the course consists of 17 separate topic areas emphasizing appropriate engineering fundamentals as well as development, planning, and regulatory issues. In addition to the course summary, the report gives the details of a public Internet site where references and related course material can be obtained. This course will fill a pressing need for the education and training of the U.S. workforce in this critically important area. Fundamentally, this course will be unique due to two attributes: an emphasis on the engineering and technical aspects of offshore wind energy systems, and a focus on offshore wind energy issues specific to the United States.

  20. Wind power plant system services

    DEFF Research Database (Denmark)

    Basit, Abdul; Altin, Müfit

    Traditionally, conventional power plants have the task to support the power system, by supplying power balancing services. These services are required by the power system operators in order to secure a safe and reliable operation of the power system. However, as in the future the wind power...... is going more and more to replace conventional power plants, the sources of conventional reserve available to the system will be reduced and fewer conventional plants will be available on-line to share the regulation burden. The reliable operation of highly wind power integrated power system might...... then beat risk unless the wind power plants (WPPs) are able to support and participate in power balancing services. The objective of this PhD project is to develop and analyse control strategies which can increase the WPPs capability to provide system services, such as active power balancing control...

  1. Innovative Design of Vertical Axis Wind Turbine

    DEFF Research Database (Denmark)

    Chougule, Prasad

    2013-01-01

    The wind turbines can be classified as: i) Horizontal axis wind turbines (HAWT), and ii) Vertical axis wind turbines (VAWT). The HAWT is fully developed and the size is growing higher. Whereas, the VAWT is not developed because of the less efficiency and vibration issues of big structure. However......, and its aerodynamic characteristics are obtained by an experimental method. A new design is called D2퐴 − 푉퐴푊푇 and a test ring is made to validate the numerical results. A double multiple stream tube method (DMSTM) and blade element method (BEM) are used to determine the numerical performance of a proposed...

  2. Optimal wind energy penetration in power systems: An approach based on spatial distribution of wind speed

    International Nuclear Information System (INIS)

    Zolfaghari, Saeed; Riahy, Gholam H.; Abedi, Mehrdad; Golshannavaz, Sajjad

    2016-01-01

    Highlights: • Chronological wind speeds at distinct locations of the wind farm are not the same. • Spatial distribution of wind speed affects wind farm’s output power expectation. • Neglecting wind speed’s spatial doubt leads to mistake in wind energy penetration. • Scenario-based method can be used for effective wind capacity penetration level. - Abstract: Contributing in power system expansions, the present study establishes an efficient scheme for optimal integration of wind energy resources. The proposed approach highly concerns the spatial distribution of wind speed at different points of a wind farm. In mathematical statements, a suitable probability distribution function (PDF) is well-designed for representing such uncertainties. In such conditions, it is likely to have dissimilar output powers for individual and identical wind turbines. Thus, the overall aggregated PDF of a wind farm remarkably influences the critical parameters including the expected power and energy, capacity factor, and the reliability metrics such as loss of load expectation (LOLE) and expected energy not supplied (EENS). Furthermore, the proposed approach is deployed for optimal allocation of wind energy in bulk power systems. Hence, two typical test systems are numerically analyzed to interrogate the performance of the proposed approach. The conducted survey discloses an over/underestimation of harvestable wind energy in the case of overlooking spatial distributions. Thus, inaccurate amounts of wind farm’s capacity factor, output power, energy and reliability indices might be estimated. Meanwhile, the number of wind turbines may be misjudged to be installed. However, the proposed approach yields in a fair judgment regarding the overall performance of the wind farm. Consequently, a reliable penetration level of wind energy to the power system is assured. Extra discussions are provided to deeply assess the promising merits of the founded approach.

  3. Design and optimize of 3-axis filament winding machine

    Science.gov (United States)

    Quanjin, Ma; Rejab, M. R. M.; Idris, M. S.; Bachtiar, B.; Siregar, J. P.; Harith, M. N.

    2017-10-01

    Filament winding technique is developed as the primary process for composite cylindrical structures fabrication at low cost. Fibres are wound on a rotating mandrel by a filament winding machine where resin impregnated fibres pass through a pay-out eye. This paper aims to develop and optimize a 3-axis, lightweight, practical, efficient, portable filament winding machine to satisfy the customer demand, which can fabricate pipes and round shape cylinders with resins. There are 3 main units on the 3-axis filament winding machine, which are the rotary unit, the delivery unit and control system unit. Comparison with previous existing filament winding machines in the factory, it has 3 degrees of freedom and can fabricate more complex shape specimens based on the mandrel shape and particular control system. The machine has been designed and fabricated on 3 axes movements with control system. The x-axis is for movement of the carriage, the y-axis is the rotation of mandrel and the z-axis is the movement of the pay-out eye. Cylindrical specimens with different dimensions and winding angles were produced. 3-axis automated filament winding machine has been successfully designed with simple control system.

  4. Multi-Objective Optimal Design of a Building Envelope and Structural System Using Cyber-Physical Modeling in a Wind Tunnel

    Directory of Open Access Journals (Sweden)

    Michael L. Whiteman

    2018-03-01

    Full Text Available This paper explores the use of a cyber-physical systems (CPS “loop-in-the-model” approach to optimally design the envelope and structural system of low-rise buildings subject to wind loads. Both the components and cladding (C&C and the main wind force resisting system (MWFRS are considered through multi-objective optimization. The CPS approach combines the physical accuracy of wind tunnel testing and efficiency of numerical optimization algorithms to obtain an optimal design. The approach is autonomous: experiments are executed in a boundary layer wind tunnel (BLWT, sensor feedback is monitored and analyzed by a computer, and optimization algorithms dictate physical changes to the structural model in the BLWT through actuators. To explore a CPS approach to multi-objective optimization, a low-rise building with a parapet wall of variable height is considered. In the BLWT, servo-motors are used to adjust the parapet to a particular height. Parapet walls alter the location of the roof corner vortices, reducing suction loads on the windward facing roof corners and edges, a C&C design load. At the same time, parapet walls increase the surface area of the building, leading to an increase in demand on the MWFRS. A combination of non-stochastic and stochastic optimization algorithms were implemented to minimize the magnitude of suction and positive pressures on the roof of a low-rise building model, followed by stochastic multi-objective optimization to simultaneously minimize the magnitude of suction pressures and base shear. Experiments were conducted at the University of Florida Experimental Facility (UFEF of the National Science Foundation’s (NSF Natural Hazard Engineering Research Infrastructure (NHERI program.

  5. Design Performance Standards for Large Scale Wind Farms

    DEFF Research Database (Denmark)

    Gordon, Mark

    2009-01-01

    This document presents, discusses and provides a general guide on electrical performance standard requirements for connection of large scale onshore wind farms into HV transmission networks. Experiences presented here refer mainly to technical requirements and issues encountered during the process...... of connection into the Eastern Australian power system under the Rules and guidelines set out by AEMC and NEMMCO (AEMO). Where applicable some international practices are also mentioned. Standards are designed to serve as a technical envelope under which wind farm proponents design the plant and maintain...... ongoing technical compliance of the plant during its operational lifetime. This report is designed to provide general technical information for the wind farm connection engineer to be aware of during the process of connection, registration and operation of wind power plants interconnected into the HV TSO...

  6. Wind Energy Conversion Systems Technology and Trends

    CERN Document Server

    2012-01-01

    Wind Energy Conversion System covers the technological progress of wind energy conversion systems, along with potential future trends. It includes recently developed wind energy conversion systems such as multi-converter operation of variable-speed wind generators, lightning protection schemes, voltage flicker mitigation and prediction schemes for advanced control of wind generators. Modeling and control strategies of variable speed wind generators are discussed, together with the frequency converter topologies suitable for grid integration. Wind Energy Conversion System also describes offshore farm technologies including multi-terminal topology and space-based wind observation schemes, as well as both AC and DC based wind farm topologies. The stability and reliability of wind farms are discussed, and grid integration issues are examined in the context of the most recent industry guidelines. Wind power smoothing, one of the big challenges for transmission system operators, is a particular focus. Fault ride th...

  7. Photurgen: The open source software for the analysis and design of hybrid solar wind energy systems in the Caribbean region: A brief introduction to its development policy

    Directory of Open Access Journals (Sweden)

    Daren Watson

    2017-11-01

    Full Text Available Hybrid Renewable Energy Systems (HRES use multiple renewable resources such as hydro, solar and wind collaboratively to produce energy that can meet a defined load demand continuously. Their combination can lead to the improvement in the systems efficiency and overall reliability. However, the level of penetration of HRES in the Caribbean region is less than its expected potential. The constraints generated by their complexity and the costly access to useful energy planning tools is a limitation to their implementation. Therefore, in collaboration with the Alternative Energy Research Group, UWI Mona, we develop a free Linear Optimization software, Photurgen, for the design and analysis of hybrid solar-wind systems within the Caribbean region. Solar-wind hybrid systems are simulated based on historic climatological resources and instantaneous load consumption data, providing the user with graphics and advice for their optimal configuration. This paper introduces the first version of Photurgen and its associated development policies. This tool is one simple solution to be applied to increase the rate of autonomous and grid-tied households within the region, with Jamaica being its experimental location.

  8. Wind in the Solar System

    Science.gov (United States)

    McIntosh, Gordon

    2010-01-01

    As an astronomy instructor I am always looking for commonly experienced Earthly phenomena to help my students and me understand and appreciate similar occurrences elsewhere in the solar system. Recently I wrote short "TPT" articles on frost and precipitation. The present article is on winds in the solar system. A windy day or storm might…

  9. Synchronous generator wind energy conversion control system

    Energy Technology Data Exchange (ETDEWEB)

    Medeiros, A.L.R. [Wind Energy Group, Recife (Brazil); Lima, A.M.N.; Jacobina, C.B.; Simoes, F.J. [DEE, Campina Grande (Brazil)

    1996-12-31

    This paper presents the performance evaluation and the design of the control system of a WECS (Wind Energy Conversion System) that employs a synchronous generator based on its digital simulation. The WECS discussed in this paper is connected to the utility grid through two Pulse Width Modulated (PWM) power converters. The structure of the proposed WECS enables us to achieve high performance energy conversion by: (i) maximizing the wind energy capture and (ii) minimizing the reactive power flowing between the grid and the synchronous generator. 8 refs., 19 figs.

  10. Computational Wind Tunnel: A Design Tool for Rotorcraft, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Rotorcraft engineers traditionally use the wind tunnel to evaluate and finalize designs. Insufficient correlation between wind tunnel results and flight tests, have...

  11. Computational Wind Tunnel: A Design Tool for Rotorcraft Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Rotorcraft engineers traditionally use the wind tunnel to evaluate and finalize designs. Insufficient correlation between wind tunnel results and flight tests, have...

  12. Design and Implement a Digital H∞ Robust Controller for a MW-Class PMSG-Based Grid-Interactive Wind Energy Conversion System

    Directory of Open Access Journals (Sweden)

    Tomonobu Senjyu

    2013-04-01

    Full Text Available A digital H∞ controller for a permanent magnet synchronous generator (PMSG based wind energy conversion system (WECS is presented. Wind energy is an uncertain fluctuating resource which requires a tight control management. So, it is still an exigent task for the control design engineers. The conventional proportional-integral (PI control is not ideal during high turbulence wind velocities, and the nonlinear behavior of the power converters. These are raising interest towards the robust control concepts. The robust design is to find a controller, for a given system, such that the closed-loop system becomes robust that assurance high-integrity and fault tolerant control system, robust H∞ control theory has befallen a standard design method of choice over the past two decades in industrial control applications. The robust H∞ control theory is also gaining eminence in the WECS. Due to the implementation complexity for the continuous H∞ controller, and availability of the high speedy micro-controllers, the design of a sample-data or a digital H∞ controller is very important for the realistic implementation. But there isn’t a single research to evaluate the performance of the digital H∞ controller for the WECS. In this paper, the proposed digital H∞ controller schemes comprise for the both generator and grid interactive power converters, and the control performances are compared with the conventional PI controller and the fuzzy controller. Simulation results confirm the efficacy of the proposed method Energies 2013, 6 2085 which are ensured the WECS stabilities, mitigate shaft stress, and improving the DC-link voltage and output power qualities.

  13. Design and Implement a Digital H{sub {infinity}}Robust Controller for a MW-Class PMSG-Based Grid-Interactive Wind Energy Conversion System

    Energy Technology Data Exchange (ETDEWEB)

    Howlander, Abdul Motin [Faculty of Engineering, Univ. of the Ryukyus, Okinawa (Japan); Urasaki, Naomitsu [Faculty of Engineering, Univ. of the Ryukyus, Okinawa (Japan); Yona, Atsushi [Faculty of Engineering, Univ. of the Ryukyus, Okinawa (Japan); Senjyu, Tomonobu [Faculty of Engineering, Univ. of the Ryukyus, Okinawa (Japan); Saber, Ahmed Yousuf [Operation Technology, Irvine, CA (United States)

    2013-04-15

    A digital H{sub {infinity}}controller for a permanent magnet synchronous generator (PMSG) based wind energy conversion system (WECS) is presented. Wind energy is an uncertain fluctuating resource which requires a tight control management. So, it is still an exigent task for the control design engineers. The conventional proportional-integral (PI) control is not ideal during high turbulence wind velocities, and the nonlinear behavior of the power converters. These are raising interest towards the robust control concepts. The robust design is to find a controller, for a given system, such that the closed-loop system becomes robust that assurance high-integrity and fault tolerant control system, robust H{sub {infinity}}control theory has befallen a standard design method of choice over the past two decades in industrial control applications. The robust H{sub {infinity}}control theory is also gaining eminence in the WECS. Due to the implementation complexity for the continuous H{sub {infinity}}controller, and availability of the high speedy micro-controllers, the design of a sample-data or a digital H{sub {infinity}}controller is very important for the realistic implementation. But there isn’t a single research to evaluate the performance of the digital H{sub {infinity}}controller for the WECS. In this paper, the proposed digital H{sub {infinity}}controller schemes comprise for the both generator and grid interactive power converters, and the control performances are compared with the conventional PI controller and the fuzzy controller. Simulation results confirm the efficacy of the proposed method Energies 2013, 6 2085 which are ensured the WECS stabilities, mitigate shaft stress, and improving the DC-link voltage and output power qualities.

  14. Design and analysis of full pitch winding and concentrated stator ...

    Indian Academy of Sciences (India)

    turbine is 140 rpm to 500 rpm. Low capacity wind turbine has higher speed and as the capacity increases, the speed decreases. Rooftop wind power generation system has power rating variation from 0·6 kW to 15 kW. The rated speed of 2·4 kW machine is 300 rpm. So, prototype of the machine 2·4 kW, 300 rpm is designed.

  15. Roll plus maneuver load alleviation control system designs for the active flexible wing wind-tunnel model

    Science.gov (United States)

    Moore, Douglas B.; Miller, Gerald D.; Klepl, Martin J.

    1991-01-01

    Three designs for controlling loads while rolling for the Active Flexible Wing (AFW) are discussed. The goal is to provide good roll control while simultaneously limiting the torsion and bending loads experienced by the wing. The first design uses Linear Quadratic Gaussian/Loop Transfer Recovery (LQG/LTR) modern control methods to control roll rate and torsional loads at four different wing locations. The second design uses a nonlinear surface command function to produce surface position commands as a function of current roll rate and commanded roll rate. The final design is a flutter suppression control system. This system stabilizes both symmetric and axisymmetric flutter modes of the AFW.

  16. The design of wind turbine for electrical power generation in Malaysian wind characteristics

    International Nuclear Information System (INIS)

    Abas Ab Wahab; Chong Wen Thong

    2000-01-01

    The paper describes the study of a wind turbine for electrical power generation in Malaysia wind characteristics. In this research, the wind turbine is designs based on the local wind characteristics and tries to avoid the problems faced in the past (turbine design, access, manpower and technical). The new wind turbine rotor design for a medium speed wind speed turbine utilises the concept of open-close type of horizontal axis (up-wind) wind turbine is intended to widen the optimum performance range for electrical generation in Malaysia wind characteristics. The wind turbine has been designed to cut-in at a lower speed, and to provide the rotation speed that high enough to run a generator. The analysis and design of new low speed wind turbine blades and open-close turbine rotor and prediction of turbine performance are being detailed in this paper. (Author)

  17. Investigation on wind energy-compressed air power system.

    Science.gov (United States)

    Jia, Guang-Zheng; Wang, Xuan-Yin; Wu, Gen-Mao

    2004-03-01

    Wind energy is a pollution free and renewable resource widely distributed over China. Aimed at protecting the environment and enlarging application of wind energy, a new approach to application of wind energy by using compressed air power to some extent instead of electricity put forward. This includes: explaining the working principles and characteristics of the wind energy-compressed air power system; discussing the compatibility of wind energy and compressor capacity; presenting the theoretical model and computational simulation of the system. The obtained compressor capacity vs wind power relationship in certain wind velocity range can be helpful in the designing of the wind power-compressed air system. Results of investigations on the application of high-pressure compressed air for pressure reduction led to conclusion that pressure reduction with expander is better than the throttle regulator in energy saving.

  18. Computational method for the design of wind turbine blades

    Energy Technology Data Exchange (ETDEWEB)

    Vitale, A.J. [Instituto Argentino de Oceanografia, Camino La Carrindanga Km. 7.5, CC 804, B8000FWB Bahia Blanca (Argentina); Universidad Tecnologica Nacional Facultad Regional Bahia Blanca, GESE, 11 de Abril 461, B8000LMI Bahia Blanca (Argentina); Universidad Nacional del Sur, Dpto. de Ing. Electrica y de Computadoras, Av. Alem 1253, 8000 Bahia Blanca (Argentina); Rossi, A.P. [Universidad Tecnologica Nacional Facultad Regional Bahia Blanca, GESE, 11 de Abril 461, B8000LMI Bahia Blanca (Argentina); Universidad Nacional del Sur, Dpto. de Ing. Electrica y de Computadoras, Av. Alem 1253, 8000 Bahia Blanca (Argentina)

    2008-07-15

    Zeus Disenador was developed to design low-power, horizontal-axis wind turbine blades, by means of an iterative algorithm. With this software, it is possible to obtain the optimum blade shape for a wind turbine to satisfy energy requirements of an electric system with optimum rotor efficiency. The number of blades, the airfoil curves and the average wind velocity can be specified by the user. The user can also request particular edge conditions for the width of the blades and for the pitch angle. Results are provided in different windows. Two- and three-dimensional graphics show the aspect of the resultant blade. Numerical results are displayed for blade length, blade surface, pitch angle variation along the blade span, rotor angular speed, rotor efficiency and rotor output power. Software verifications were made by comparing rotor power and rotor efficiency for different designs. Results were similar to those provided by commercial wind generator manufacturers. (author)

  19. Small-scale wind shear definition for aerospace vehicle design.

    Science.gov (United States)

    Fichtl, G. H.

    1972-01-01

    Rawinsonde wind profile data provide adequate wind shear information for vertical height intervals greater than 1 km. To specify wind shears for intervals below 1 km for space vehicle design, detailed wind-profile information like that provided by the FPS-16 Radar/Jimsphere system or an extrapolation procedure is required. This paper is concerned with the latter alternative. It is assumed that any realization from an ensemble of wind profiles can be represented in terms of a Fourier integral. This permits the calculation of the ensemble standard deviation and mean of the corresponding shear ensemble for any altitude and shear interval in terms of the power spectrum of the ensemble of wind profiles. The results of these calculations show that the mean and standard deviation of the wind shear ensemble, as well as the wind shear for any percentile, asymptotically behave like the vertical interval to the 0.7 power. This result is in excellent agreement with shear data from Cape Kennedy, Fla.

  20. Role of Wind Tunnels in Aircraft Design

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 8; Issue 1. Role of Wind Tunnels in Aircraft Design. S P Govinda Raju. General Article Volume 8 Issue 1 January 2003 pp 72-76. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/008/01/0072-0076. Keywords.

  1. Structural Reliability Aspects in Design of Wind Turbines

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard

    2007-01-01

    Reliability assessment, optimal design and optimal operation and maintenance of wind turbines are an area of significant interest for the fast growing wind turbine industry for sustainable production of energy. Offshore wind turbines in wind farms give special problems due to wake effects inside...... the farm. Reliability analysis and optimization of wind turbines require that the special conditions for wind turbine operation are taken into account. Control of the blades implies load reductions for large wind speeds and parking for high wind speeds. In this paper basic structural failure modes for wind...

  2. An innovative medium speed wind turbine rotor blade design for low wind regime (electrical power generation)

    International Nuclear Information System (INIS)

    Abas Abd Wahab; Chong Wen Tong

    2001-01-01

    This paper describes the preliminary study of a small-scale wind turbine rotor blade (a low wind speed region turbine). A new wind turbine rotor blade (AE2 blade) for stand alone system has been conceptualized, designed, constructed and tested. The system is a reduced size prototype (half-scaled) to develop an efficient (adapted to Malaysian wind conditions)and cost effective wind energy conversion system (WECS) with local design and production technique. The blades were constructed from aluminium sheet with metal blending technique. The layout and design of rotor blade, its innovative features and test results are presented. Results from indoor test showed that the advantages of AE2 blade in low speed, with the potential of further improvements. The best rotor efficiency, C P attained with simple AE2 blades rotor (number of blade = 3) was 37.3% (Betz efficiency = 63%) at tip speed ratio (TSR) = 3.6. From the fabrication works and indoor testing, the AE2 blade rotor has demonstrated its structural integrity (ease of assembly and transportation), simplicity, acceptable performance and low noise level. (Author)

  3. Introducing WISDEM:An Integrated System Modeling for Wind Turbines and Plant (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Dykes, K.; Graf, P.; Scott, G.; Ning, A.; King, R.; Guo, Y.; Parsons, T.; Damiani, R.; Felker, F.; Veers, P.

    2015-01-01

    The National Wind Technology Center wind energy systems engineering initiative has developed an analysis platform to leverage its research capabilities toward integrating wind energy engineering and cost models across wind plants. This Wind-Plant Integrated System Design & Engineering Model (WISDEM) platform captures the important interactions between various subsystems to achieve a better National Wind Technology Center wind energy systems engineering initiative has developed an analysis platform to leverage its research capabilities toward integrating wind energy engineering and cost models across wind plants. This Wind-Plant Integrated System Design & Engineering Model (WISDEM) platform captures the important interactions between various subsystems to achieve a better understanding of how to improve system-level performance and achieve system-level cost reductions. This work illustrates a few case studies with WISDEM that focus on the design and analysis of wind turbines and plants at different system levels.

  4. Wind Energy Innovative Systems conference proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Vas, I. E. [ed.

    1979-12-01

    Separate abstracts are included for 20 of the 22 papers presented concerning innovative wind turbines which vary in design from the standard horizontal-axis propellor-type wind turbines. Two papers have been previously included in the data base.

  5. An Appropriate Wind Model for Wind Integrated Power Systems Reliability Evaluation Considering Wind Speed Correlations

    Directory of Open Access Journals (Sweden)

    Rajesh Karki

    2013-02-01

    Full Text Available Adverse environmental impacts of carbon emissions are causing increasing concerns to the general public throughout the world. Electric energy generation from conventional energy sources is considered to be a major contributor to these harmful emissions. High emphasis is therefore being given to green alternatives of energy, such as wind and solar. Wind energy is being perceived as a promising alternative. This source of energy technology and its applications have undergone significant research and development over the past decade. As a result, many modern power systems include a significant portion of power generation from wind energy sources. The impact of wind generation on the overall system performance increases substantially as wind penetration in power systems continues to increase to relatively high levels. It becomes increasingly important to accurately model the wind behavior, the interaction with other wind sources and conventional sources, and incorporate the characteristics of the energy demand in order to carry out a realistic evaluation of system reliability. Power systems with high wind penetrations are often connected to multiple wind farms at different geographic locations. Wind speed correlations between the different wind farms largely affect the total wind power generation characteristics of such systems, and therefore should be an important parameter in the wind modeling process. This paper evaluates the effect of the correlation between multiple wind farms on the adequacy indices of wind-integrated systems. The paper also proposes a simple and appropriate probabilistic analytical model that incorporates wind correlations, and can be used for adequacy evaluation of multiple wind-integrated systems.

  6. Small Wind Energy Systems

    DEFF Research Database (Denmark)

    Simões, Marcelo Godoy; Farret, Felix Alberto; Blaabjerg, Frede

    2017-01-01

    to the public distibutor, it can serve as a backup system, as a non-interruptible power supply (with storage aggregation), provide low-voltage support, or give a clean surplus of energy transferred to the public network under economical and technological basis. In this chapter, several factors are also...

  7. Advances in wind turbine blade design and materials

    DEFF Research Database (Denmark)

    Wind energy is gaining critical ground in the area of renewable energy, with wind energy being predicted to provide up to 8% of the world’s consumption of electricity by 2021. Advances in wind turbine blade design and materials reviews the design and functionality of wind turbine rotor blades...... of wind turbine blades. The final part of the book describes advances in wind turbine blade materials, development and testing, including biobased composites, surface protection and coatings, structural performance testing and the design, manufacture and testing of small wind turbine blades. Advances...... in wind turbine blade design and materials offers a comprehensive review of the recent advances and challenges encountered in wind turbine blade materials and design, and will provide an invaluable reference for researchers and innovators in the field of wind energy production, including materials...

  8. Design off-shore wind climate

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, G.C.; Joergensen, H.E. [Risoe National Lab., Wind Energy and Atmospheric Physics Dept., Roskilde (Denmark)

    1999-03-01

    Specific recommendations of off-shore turbulence intensities, applicable for design purposes, are lacking in the present IEC-code. The present off-shore wind climate analysis presents the distribution of the turbulence standard deviation around the mean turbulence standard deviation, conditioned on the mean wind speed. Measured distributions, based on a huge amount of measuring data from two shallow water off-shore sites, are parameterized by fitting to a three parameter Weibull distribution. Combining a simple heuristic load model with the parameterized probability density functions of the turbulence standard deviations, an empirical off-shore design turbulence intensity is evaluated that in average yields the same fatigue damage as the distributed turbulence intensity. The proposed off-shore design turbulence intensity is, within the IEC code framework, applicable for extreme as well as for fatigue load determination. (au)

  9. Thermodynamic performance assessment of wind energy systems: An application

    International Nuclear Information System (INIS)

    Redha, Adel Mohammed; Dincer, Ibrahim; Gadalla, Mohamed

    2011-01-01

    In this paper, the performance of wind energy system is assessed thermodynamically, from resource and technology perspectives. The thermodynamic characteristics of wind through energy and exergy analyses are considered and both energetic and exergetic efficiencies are studied. Wind speed is affected by air temperature and pressure and has a subsequent effect on wind turbine performance based on wind reference temperature and Bernoulli's equation. VESTAS V52 wind turbine is selected for (Sharjah/UAE). Energy and exergy efficiency equations for wind energy systems are further developed for practical applications. The results show that there are noticeable differences between energy and exergy efficiencies and that exergetic efficiency reflects the right/actual performance. Finally, exergy analysis has been proven to be the right tool used in design, simulation, and performance evaluation of all renewable energy systems. -- Highlights: → In this research the performance of wind energy system is assessed thermodynamically, from resource and technology perspectives. → Energy and exergy equations for wind energy systems are further developed for practical applications. → Thermodynamic characteristics of wind turbine systems through energetic and exergetic efficiencies are evaluated from January till March 2010. → Exergy efficiency describes the system irreversibility and the minimum irreversibility exists when the wind speed reaches 11 m/s. → The power production during March was about 17% higher than the month of February and 66% higher than January.

  10. Simulation platform to model, optimize and design wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Iov, F.; Hansen, A.D.; Soerensen, P.; Blaabjerg, F.

    2004-03-01

    This report is a general overview of the results obtained in the project 'Electrical Design and Control. Simulation Platform to Model, Optimize and Design Wind Turbines'. The motivation for this research project is the ever-increasing wind energy penetration into the power network. Therefore, the project has the main goal to create a model database in different simulation tools for a system optimization of the wind turbine systems. Using this model database a simultaneous optimization of the aerodynamic, mechanical, electrical and control systems over the whole range of wind speeds and grid characteristics can be achieved. The report is structured in six chapters. First, the background of this project and the main goals as well as the structure of the simulation platform is given. The main topologies for wind turbines, which have been taken into account during the project, are briefly presented. Then, the considered simulation tools namely: HAWC, DIgSILENT, Saber and Matlab/Simulink have been used in this simulation platform are described. The focus here is on the modelling and simulation time scale aspects. The abilities of these tools are complementary and they can together cover all the modelling aspects of the wind turbines e.g. mechanical loads, power quality, switching, control and grid faults. However, other simulation packages e.g PSCAD/EMTDC can easily be added in the simulation platform. New models and new control algorithms for wind turbine systems have been developed and tested in these tools. All these models are collected in dedicated libraries in Matlab/Simulink as well as in Saber. Some simulation results from the considered tools are presented for MW wind turbines. These simulation results focuses on fixed-speed and variable speed/pitch wind turbines. A good agreement with the real behaviour of these systems is obtained for each simulation tool. These models can easily be extended to model different kinds of wind turbines or large wind

  11. SMART wind turbine rotor. Design and field test

    Energy Technology Data Exchange (ETDEWEB)

    Berg, Jonathan Charles; Resor, Brian Ray; Paquette, Joshua A.; White, Jonathan Randall

    2014-01-01

    The Wind Energy Technologies department at Sandia National Laboratories has developed and field tested a wind turbine rotor with integrated trailing-edge flaps designed for active control of rotor aerodynamics. The SMART Rotor project was funded by the Wind and Water Power Technologies Office of the U.S. Department of Energy (DOE) and was conducted to demonstrate active rotor control and evaluate simulation tools available for active control research. This report documents the design, fabrication, and testing of the SMART Rotor. This report begins with an overview of active control research at Sandia and the objectives of this project. The SMART blade, based on the DOE / SNL 9-meter CX-100 blade design, is then documented including all modifications necessary to integrate the trailing edge flaps, sensors incorporated into the system, and the fabrication processes that were utilized. Finally the test site and test campaign are described.

  12. Wind turbine with lightning protection system

    DEFF Research Database (Denmark)

    2016-01-01

    The present invention relates to a wind turbine comprising a lightning protection system comprising a waveguide interconnecting a communication device and a signal-carrying structure. In other aspects, the present invention relates to the use of a waveguide in a lightning protection system...... of a wind turbine, a power splitter and its use in a lightning protection system of a wind turbine....

  13. Efficient design and simulation of an expandable hybrid (wind-photovoltaic) power system with MPPT and inverter input voltage regulation features in compliance with electric grid requirements

    Energy Technology Data Exchange (ETDEWEB)

    Skretas, Sotirios B.; Papadopoulos, Demetrios P. [Electrical Machines Laboratory, Department of Electrical and Computer Engineering, Democritos University of Thrace (DUTH), 12 V. Sofias, 67100 Xanthi (Greece)

    2009-09-15

    In this paper an efficient design along with modeling and simulation of a transformer-less small-scale centralized DC - bus Grid Connected Hybrid (Wind-PV) power system for supplying electric power to a single phase of a three phase low voltage (LV) strong distribution grid are proposed and presented. The main components of the hybrid system are: a PV generator (PVG); and an array of horizontal-axis, fixed-pitch, small-size, variable-speed wind turbines (WTs) with direct-driven permanent magnet synchronous generator (PMSG) having an embedded uncontrolled bridge rectifier. An overview of the basic theory of such systems along with their modeling and simulation via Simulink/MATLAB software package are presented. An intelligent control method is applied to the proposed configuration to simultaneously achieve three desired goals: to extract maximum power from each hybrid power system component (PVG and WTs); to guarantee DC voltage regulation/stabilization at the input of the inverter; to transfer the total produced electric power to the electric grid, while fulfilling all necessary interconnection requirements. Finally, a practical case study is conducted for the purpose of fully evaluating a possible installation in a city site of Xanthi/Greece, and the practical results of the simulations are presented. (author)

  14. Wind energy systems information user study

    Energy Technology Data Exchange (ETDEWEB)

    Belew, W.W.; Wood, B.L.; Marle, T.L.; Reinhardt, C.L.

    1981-01-01

    This report describes the results of a series of telephone interviews with potential users of information on wind energy conversion. These interviews, part of a larger study covering nine different solar technologies, attempted to identify: the type of information each distinctive group of information users needed, and the best way of getting information to that group. Groups studied include: wind energy conversion system researchers; wind energy conversion system manufacturer representatives; wind energy conversion system distributors; wind turbine engineers; utility representatives; educators; county agents and extension service agents; and wind turbine owners.

  15. Applying value sensitive design (VSD) to wind turbines and wind parks: an exploration.

    Science.gov (United States)

    Oosterlaken, Ilse

    2015-04-01

    Community acceptance still remains a challenge for wind energy projects. The most popular explanation for local opposition, the Not in My Backyard effect, has received fierce criticism in the past decade. Critics argue that opposition is not merely a matter of selfishness or ignorance, but that moral, ecological and aesthetic values play an important role. In order to better take such values into account, a more bottom-up, participatory decision process is usually proposed. Research on this topic focusses on either stakeholder motivations/attitudes, or their behavior during project implementation. This paper proposes a third research focus, namely the 'objects' which elicit certain behavioral responses and attitudes-the wind turbine and parks. More concretely, this paper explores Value Sensitive Design (VSD) as way to arrive at wind turbines and parks that better embed or reflect key values. After a critical discussion of the notion of acceptance versus acceptability and support, the paper discusses existing literature on ecology and aesthetics in relation to wind turbine/park design, which could serve as 'building blocks' of a more integral VSD approach of the topic. It also discusses the challenge of demarcating wind park projects as VSD projects. A further challenge is that VSD has been applied mainly at the level of technical artifacts, whereas wind parks can best be conceptualized as socio-technical system. This new application would therefore expand the current practice of VSD, and may as a consequence also lead to interesting new insights for the VSD community. The paper concludes that such an outcome-oriented approach of wind turbines and park is worth exploring further, as a supplement to rather than a replacement of the process-oriented approach that is promoted by the current literature on community acceptance of wind parks.

  16. Forecastability as a Design Criterion in Wind Resource Assessment: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, J.; Hodge, B. M.

    2014-04-01

    This paper proposes a methodology to include the wind power forecasting ability, or 'forecastability,' of a site as a design criterion in wind resource assessment and wind power plant design stages. The Unrestricted Wind Farm Layout Optimization (UWFLO) methodology is adopted to maximize the capacity factor of a wind power plant. The 1-hour-ahead persistence wind power forecasting method is used to characterize the forecastability of a potential wind power plant, thereby partially quantifying the integration cost. A trade-off between the maximum capacity factor and the forecastability is investigated.

  17. Design and Performance of a Miniature Lidar Wind Profiler (MLWP)

    Science.gov (United States)

    Cornwell, Donald M., Jr.; Miodek, Mariusz J.

    1998-01-01

    The directional velocity of the wind is one of the most critical components for understanding meteorological and other dynamic atmospheric processes. Altitude-resolved wind velocity measurements, also known as wind profiles or soundings, are especially necessary for providing data for meteorological forecasting and overall global circulation models (GCM's). Wind profiler data are also critical in identifying possible dangerous weather conditions for aviation. Furthermore, a system has yet to be developed for wind profiling from the surface of Mars which could also meet the stringent requirements on size, weight, and power of such a mission. Obviously, a novel wind profiling approach based on small and efficient technology is required to meet these needs. A lidar system based on small and highly efficient semiconductor lasers is now feasible due to recent developments in the laser and detector technologies. The recent development of high detection efficiency (50%), silicon-based photon-counting detectors when combined with high laser pulse repetition rates and long receiver integration times has allowed these transmitter energies to be reduced to the order of microjoules per pulse. Aerosol lidar systems using this technique have been demonstrated for both Q-switched, diode-pumped solid-state laser transmitters (lambda = 523 nm) and semiconductor diode lasers (lambda = 830 nm); however, a wind profiling lidar based on this technique has yet to be developed. We will present an investigation of a semiconductor-laser-based lidar system which uses the "edge-filter" direct detection technique to infer Doppler frequency shifts of signals backscattered from aerosols in the planetary boundary layer (PBL). Our investigation will incorporate a novel semiconductor laser design which mitigates the deleterious effects of frequency chirp in pulsed diode lasers, a problem which has limited their use in such systems in the past. Our miniature lidar could be used on a future Mars

  18. Alternative Design Study Report: WindPACT Advanced Wind Turbine Drive Train Designs Study; November 1, 2000 -- February 28, 2002

    Energy Technology Data Exchange (ETDEWEB)

    Poore, R.; Lettenmaier, T.

    2003-08-01

    This report presents the Phase I results of the National Renewable Energy Laboratory's (NREL's) WindPACT (Wind Partnership for Advanced Component Technologies) Advanced Wind Turbine Drive Train Designs Study. Global Energy Concepts, LLC performed this work under a subcontract with NREL. The purpose of the WindPACT project is to identify technology improvements that will enable the cost of energy (COE) from wind turbines to be reduced. Other parts of the WindPACT project have examined blade and logistics scaling, balance-of-station costs, and rotor design. This study was designed to investigate innovative drive train designs.

  19. Proceedings of the Canadian Wind Energy Association's 2009 wind matters conference : wind and power systems

    International Nuclear Information System (INIS)

    2009-01-01

    This conference provided a forum for wind energy and electric power industry experts to discuss issues related to wind and power systems. An overview of wind integration studies and activities in Canada and the United States was provided. New tools and technologies for facilitating the integration of wind and improve market conditions for wind energy developers were presented. Methods of increasing wind penetration were evaluated, and technical issues related to wind interconnections throughout North America were reviewed. The conference was divided into the following 5 sessions: (1) experiences with wind integration, and lessons learned, (2) update on ongoing wind integration initiatives in Canada and the United States, (3) initiatives and tools to facilitate wind integration and market access, (4) developments in wind interconnection and grid codes, (5) wind energy and cold weather considerations, and (6) challenges to achieving the 20 per cent WindVision goal in Canada. The conference featured 21 presentations, of which 13 have been catalogued separately for inclusion in this database. refs., tabs., figs

  20. Design of a New Foundation for Offshore Wind Turbines

    DEFF Research Database (Denmark)

    Ibsen, Lars Bo; Brincker, Rune

    2004-01-01

    The gravitation platform and the monopile have in the previous major offshore wind turbine projects been dominating. A four-year research and development project has proven the bucket foundation to be feasible in suitable soil condition in water depth from near shore to app. 40 meters. A prototype...... as compared to a traditional pile foundation, it is much easier to install and it can easily be removed when the wind turbine is taken down. However, the new design is suffering from uncertainties in the accumulated fatigue in the both the steel structure and the surrounding earth material. Therefore an on......-line monitoring system has been utilized on the 80 m high operating test 3 MW wind turbine. It is explained how the system is being used to obtain mode shapes and modal parameters during different operating conditions, and how the response measurements are being used to improve the estimation of fatigue....

  1. Wind power in modern power systems

    DEFF Research Database (Denmark)

    Chen, Zhe

    2013-01-01

    In recent years, wind power is experiencing a rapid growth, and large-scale wind turbines/wind farms have been developed and connected to power systems. However, the traditional power system generation units are centralized located synchronous generators with different characteristics compared...... with wind turbines. This paper presents an overview of the issues about integrating large-scale wind power plants into modern power systems. Firstly, grid codes are introduced. Then, the main technical problems and challenges are presented. Finally, some possible technical solutions are discussed....

  2. Representivity of wind measurements for design wind speed estimations

    CSIR Research Space (South Africa)

    Goliger, Adam M

    2013-07-01

    Full Text Available Engineer in South Africa, January 1987. Wever, N., and G. Groen. 2009. Improving potential wind for extreme wind statistics. KNMI scientific report - wetenschappelijk rapport : WR 2009-02. KNMI. De Bilt. The Netherlands. 114 pp. Wieringa, J. 1986...

  3. Diagnosis of wind turbine rotor system

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Mirzaei, Mahmood; Henriksen, Lars Christian

    2016-01-01

    This paper describes a model free method for monitoring and fault diagnosis of the elements in a rotor system for a wind turbine. The diagnosis as well as the monitoring is done without using any model of the wind turbine and the applied controller or a description of the wind profile. The method...

  4. Proceedings of the fourth biennial conference and workshop on wind energy conversion systems

    Energy Technology Data Exchange (ETDEWEB)

    Kottler, Jr., R. J. [ed.

    1980-06-01

    Separate abstracts are included for papers presented concerning research and development requirements and utility interface and institutional issues for small-scale systems; design requirements and research and development requirements for large-scale systems; economic and operational requirements of large-scale wind systems; wind characteristics and wind energy siting; international activities; wind energy applications in agriculture; federal commercialization and decentralization plans; and wind energy innovative systems.

  5. Fatigue Reliability of Offshore Wind Turbine Systems

    DEFF Research Database (Denmark)

    Marquez-Dominguez, Sergio; Sørensen, John Dalsgaard

    2012-01-01

    Optimization of the design of offshore wind turbine substructures with respect to fatigue loads is an important issue in offshore wind energy. A stochastic model is developed for assessing the fatigue failure reliability. This model can be used for direct probabilistic design and for calibration...... of appropriate partial safety factors / fatigue design factors (FDF) for steel substructures of offshore wind turbines (OWTs). The fatigue life is modeled by the SN approach. Design and limit state equations are established based on the accumulated fatigue damage. The acceptable reliability level for optimal...... fatigue design of OWTs is discussed and results for reliability assessment of typical fatigue critical design of offshore steel support structures are presented....

  6. Wind Turbine Blade CAD Models Used as Scaffolding Technique to Teach Design Engineers

    Science.gov (United States)

    Irwin, John

    2013-01-01

    The Siemens PLM CAD software NX is commonly used for designing mechanical systems, and in complex systems such as the emerging area of wind power, the ability to have a model controlled by design parameters is a certain advantage. Formula driven expressions based on the amount of available wind in an area can drive the amount of effective surface…

  7. Role of Wind Tunnels in Aircraft Design

    Indian Academy of Sciences (India)

    large wind tunnels simulating the actual flight conditions as nearly as possible. Often, several wind tunnels ... wind tunnel tests can be 'scaled' to the actual velocity and actual body size using suitable scaling laws. A typical wind tunnel consists ofa test section ... tion and control positions. Some of this instrumentation like six.

  8. Robust Kalman filter design for predictive wind shear detection

    Science.gov (United States)

    Stratton, Alexander D.; Stengel, Robert F.

    1991-01-01

    Severe, low-altitude wind shear is a threat to aviation safety. Airborne sensors under development measure the radial component of wind along a line directly in front of an aircraft. In this paper, optimal estimation theory is used to define a detection algorithm to warn of hazardous wind shear from these sensors. To achieve robustness, a wind shear detection algorithm must distinguish threatening wind shear from less hazardous gustiness, despite variations in wind shear structure. This paper presents statistical analysis methods to refine wind shear detection algorithm robustness. Computational methods predict the ability to warn of severe wind shear and avoid false warning. Comparative capability of the detection algorithm as a function of its design parameters is determined, identifying designs that provide robust detection of severe wind shear.

  9. Fault Detection and Isolation for Wind Turbine Electric Pitch System

    DEFF Research Database (Denmark)

    Zhu, Jiangsheng; Ma, Kuichao; Hajizadeh, Amin

    2017-01-01

    This paper presents a model-based fault detection and isolation scheme applied on electric pitch system of wind turbines. Pitch system is one of the most critical components due to its effect on the operational safety and the dynamics of wind turbines. Faults in this system should be precisely...... detected to prevent failures and decrease downtime. To detect faults of electric pitch actuators and sensors, an extended kalman filter (EKF) based multiple model adaptive estimation (MMAE) designed to estimate the states of the system. The proposed method is demonstrated in case studies. The simulation...... results show that the proposed method detects different fault scenarios of wind turbines under the stochastic external condition....

  10. H∞ Robust Controller Design for an Induction Generator Driven by a Variable-Speed Wind Turbine

    OpenAIRE

    Hoseini, Seyed Mohammad; Heidari, Seyed Vali

    2011-01-01

    This paper presents the modeling and robust controller design design for a wind-driven induction generator system. a  robust controller for the static synchronous compensator (STATCOM) and the variable blade pitch in a wind energy conversion system (WECS) is designed to be controlled voltage and mechanical power. This controller leading to satisfactory damping characteristics achieved for the closed loop system. Effects of various system disturbances on the dynamic performance have been simul...

  11. WIND ENERGY CONVERSION SYSTEMS - A TECHNICAL REVIEW

    Directory of Open Access Journals (Sweden)

    N. RAMESH BABU

    2013-08-01

    Full Text Available Wind power production has been under the main focus for the past decade in power production and tremendous amount of research work is going on renewable energy, specifically on wind power extraction. Wind power provides an eco-friendly power generation and helps to meet the national energy demand when there is a diminishing trend in terms of non-renewable resources. This paper reviews the modeling of Wind Energy Conversion Systems (WECS, control strategies of controllers and various Maximum Power Point Tracking (MPPT technologies that are being proposed for efficient production of wind energy from the available resource.

  12. Design of High Performance Permanent-Magnet Synchronous Wind Generators

    Directory of Open Access Journals (Sweden)

    Chun-Yu Hsiao

    2014-11-01

    Full Text Available This paper is devoted to the analysis and design of high performance permanent-magnet synchronous wind generators (PSWGs. A systematic and sequential methodology for the design of PMSGs is proposed with a high performance wind generator as a design model. Aiming at high induced voltage, low harmonic distortion as well as high generator efficiency, optimal generator parameters such as pole-arc to pole-pitch ratio and stator-slot-shoes dimension, etc. are determined with the proposed technique using Maxwell 2-D, Matlab software and the Taguchi method. The proposed double three-phase and six-phase winding configurations, which consist of six windings in the stator, can provide evenly distributed current for versatile applications regarding the voltage and current demands for practical consideration. Specifically, windings are connected in series to increase the output voltage at low wind speed, and in parallel during high wind speed to generate electricity even when either one winding fails, thereby enhancing the reliability as well. A PMSG is designed and implemented based on the proposed method. When the simulation is performed with a 6 Ω load, the output power for the double three-phase winding and six-phase winding are correspondingly 10.64 and 11.13 kW. In addition, 24 Ω load experiments show that the efficiencies of double three-phase winding and six-phase winding are 96.56% and 98.54%, respectively, verifying the proposed high performance operation.

  13. Power system stabilizer control for wind power to enhance power system stability

    OpenAIRE

    Domínguez García, José Luís; Gomis Bellmunt, Oriol; Bianchi, Fernando Daniel; Sumper, Andreas

    2011-01-01

    The paper presents a small signal stability analysis for power systems with wind farm interaction. Power systems have damping oscillation modes that can be excited by disturbance or fault in the grid. The power converters of the wind farms can be used to reduce these oscillations and make the system more stable. These ideas are explored to design a power system stabilized (PSS) for a network with conventional generators and a wind farm in order to increase the damping of the oscillation...

  14. Wind loads for stability design of large multi-span duo-pitch greenhouses

    NARCIS (Netherlands)

    Bronkhorst, A.J.; Geurts, C.P.W.; Bentum, C.A. van; Knaap, L.P.M. van der; Pertermann, I.

    2017-01-01

    An atmospheric boundary layer wind tunnel study was performed to determine the overall horizontal wind load on multi-span duo-pitch greenhouses. The results of this study are intended for the stability design of inflexible Gladding system greenhouses (designated as Class A in EN 13031-1) with roof

  15. Computational Wind Tunnel: A Design Tool for Rotorcraft, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — During initial design studies, parametric variation of vehicle geometry is routine. In addition, rotorcraft engineers traditionally use the wind tunnel to evaluate...

  16. Computational Wind Tunnel: A Design Tool for Rotorcraft Project

    Data.gov (United States)

    National Aeronautics and Space Administration — During initial design studies, parametric variation of vehicle geometry is routine. In addition, rotorcraft engineers traditionally use the wind tunnel to evaluate...

  17. Solar energy system with wind vane

    Science.gov (United States)

    Grip, Robert E

    2015-11-03

    A solar energy system including a pedestal defining a longitudinal axis, a frame that is supported by the pedestal and that is rotateable relative to the pedestal about the longitudinal axis, the frame including at least one solar device, and a wind vane operatively connected to the frame to urge the frame relative to the pedestal about the longitudinal axis in response to wind acting on the wind vane.

  18. Summer Faculty Systems Design Program. Integrating Wind Tunnels and Computers. Volume 2. Details of Summer Design Study USAF/OSR/ASEE

    Science.gov (United States)

    1977-08-01

    dynamics In the bourse of the study a number of conclusions and recommendations were reached* and these are summarized in a separate section of...and Menard, M. "Adaptation de la Methode de Joppa a Une Soufflerie a Permeabilite Variable." AGARD Conference on Numerical Methods and Wind...Hirt, C. W,, and Romero, N. C. "SOLA-tCE: A Numerical Solution Algorithm for Transient Compressible Fluid Flows." Los Alamos Scientific Lab LA -6236

  19. WEP. A wind energy planning system

    International Nuclear Information System (INIS)

    Larsen, H.V.

    1991-11-01

    The report describes the Wind Energy Planning system (WEP). It is intended as a decision support system to be used in the economic evaluation of wind energy projects. Such projects could be minor projects with only a single wind turbine or large wind farm projects consisting of several wind turbine plants. In the WEP system, a wind turbine is described by data on initial investment, possible later reinvestments, O and M costs, expected yearly production, life time, and capacity factor. The raising of loans are modelled, too. Depending on which output report is created, the value of the wind generated electricity is calculated in two different ways: either the electricity is assumed to be sold at a price (time series) given by the user, or the alternative conventional power production is modelled by its specific investment, O and M costs, life time, effectivity, fuel mix, and time series for fuel prices. Using these data, capacity credit and saved fuel and O and M costs are calculated. Due to the flexible data structure of the model, the user can easily create a scenario that models a large scale introduction of wind power. In such a scenario the gradual build up through several years of the wind power capacity can be modelled. The report describes in detail the menu structure, the input facilities, the output reports, and the organization of data. Also included is an example with full input documentation and output reports. (au)

  20. Innovative design approaches for large wind turbine blades

    Science.gov (United States)

    Jackson, K. J.; Zuteck, M. D.; van Dam, C. P.; Standish, K. J.; Berry, D.

    2005-04-01

    A preliminary design study of an advanced 50 m blade for utility wind turbines is presented and discussed. The effort was part of the Department of Energy WindPACT Blade System Design Study with the goal to investigate and evaluate design and manufacturing issues for wind turbine blades in the 1-10 MW size range. Two different blade designs are considered and compared in this article. The first is a fibreglass design, while the second design selectively incorporates carbon fibre in the main structural elements. The addition of carbon results in modest cost increases and provides significant benefits, particularly with respect to blade deflection. The structural efficiency of both designs was maximized by tailoring the thickness of the blade cross-sections to simplify the construction of the internal members. Inboard the blades incorporate thick blunt trailing edge aerofoils (flatback aerofoils), while outboard more conventional sharp trailing edge high-lift aerofoils are used. The outboard section chord lengths were adjusted to yield the least complex and costly internal blade structure. A significant portion of blade weight is related to the root buildup and metal hardware for typical root attachment designs. The results show that increasing the number of studs has a positive effect on total weight, because it reduces the required root laminate thickness. The aerodynamic performance of the blade aerofoils was predicted using computational techniques that properly simulate blunt trailing edge flows. The performance of the rotor was predicted assuming both clean and soiled blade surface conditions. The rotor is shown to provide excellent performance at a weight significantly lower than that of current rotors of this size. Copyright

  1. Design of a novel and efficient lantern wind turbine

    Science.gov (United States)

    Ibrahim, M. D.; Wong, L. K.; Anyi, M.; Yunos, Y. S.; Rahman, M. R. A.; Mohta, M. Z.

    2017-04-01

    Wind turbine generates renewable energy when the forces acted on the turbine blades cause the rotation of the generator to produce clean electricity. This paper proposed a novel lantern wind turbine design compared to a conventional design model. Comparison is done based on simulation on coarse and fine meshing with all the results converged. Results showed that the pressure difference on the surface of novel design lantern wind turbine is much higher compared to the conventional wind turbine. Prototype is already manufactured and experimental result would be discussed in a separate future publication

  2. Design Study of Fully Superconducting Wind Turbine Generators

    DEFF Research Database (Denmark)

    Song, Xiaowei (Andy); Mijatovic, Nenad; Jensen, Bogi Bech

    2015-01-01

    In this paper, two fully superconducting generators employing MgB2 armature winding, with YBCO and MgB2 field winding respectively, are presented and analyzed. The ac loss in armature winding is estimated, and a simple comparative study is carried out. The results show that both electromagnetic...... designs for fully superconducting generators are promising with respect to the power density. However, the cost of removing ac loss in armature winding is as high as $900 000. It is also noted that with the current price of YBCO tape, the generator employing MgB 2 field winding would have lower cost....

  3. Power Quality Control and Design of Power Converter for Variable-Speed Wind Energy Conversion System with Permanent-Magnet Synchronous Generator

    Directory of Open Access Journals (Sweden)

    Yüksel Oğuz

    2013-01-01

    Full Text Available The control strategy and design of an AC/DC/AC IGBT-PMW power converter for PMSG-based variable-speed wind energy conversion systems (VSWECS operation in grid/load-connected mode are presented. VSWECS consists of a PMSG connected to a AC-DC IGBT-based PWM rectifier and a DC/AC IGBT-based PWM inverter with LCL filter. In VSWECS, AC/DC/AC power converter is employed to convert the variable frequency variable speed generator output to the fixed frequency fixed voltage grid. The DC/AC power conversion has been managed out using adaptive neurofuzzy controlled inverter located at the output of controlled AC/DC IGBT-based PWM rectifier. In this study, the dynamic performance and power quality of the proposed power converter connected to the grid/load by output LCL filter is focused on. Dynamic modeling and control of the VSWECS with the proposed power converter is performed by using MATLAB/Simulink. Simulation results show that the output voltage, power, and frequency of VSWECS reach to desirable operation values in a very short time. In addition, when PMSG based VSWECS works continuously with the 4.5 kHz switching frequency, the THD rate of voltage in the load terminal is 0.00672%.

  4. Power quality control and design of power converter for variable-speed wind energy conversion system with permanent-magnet synchronous generator.

    Science.gov (United States)

    Oğuz, Yüksel; Güney, İrfan; Çalık, Hüseyin

    2013-01-01

    The control strategy and design of an AC/DC/AC IGBT-PMW power converter for PMSG-based variable-speed wind energy conversion systems (VSWECS) operation in grid/load-connected mode are presented. VSWECS consists of a PMSG connected to a AC-DC IGBT-based PWM rectifier and a DC/AC IGBT-based PWM inverter with LCL filter. In VSWECS, AC/DC/AC power converter is employed to convert the variable frequency variable speed generator output to the fixed frequency fixed voltage grid. The DC/AC power conversion has been managed out using adaptive neurofuzzy controlled inverter located at the output of controlled AC/DC IGBT-based PWM rectifier. In this study, the dynamic performance and power quality of the proposed power converter connected to the grid/load by output LCL filter is focused on. Dynamic modeling and control of the VSWECS with the proposed power converter is performed by using MATLAB/Simulink. Simulation results show that the output voltage, power, and frequency of VSWECS reach to desirable operation values in a very short time. In addition, when PMSG based VSWECS works continuously with the 4.5 kHz switching frequency, the THD rate of voltage in the load terminal is 0.00672%.

  5. Small Wind Energy Systems for the Homeowner

    Energy Technology Data Exchange (ETDEWEB)

    None

    1997-01-01

    If you live in a rural or remote location, this publication will help you decide whether a wind system is practical for you. It explains the benefits, helps you assess your wind resource and possible sites, discusses legal and environmental obstacles, and analyzes economic considerations such as pricing.

  6. Design and Tuning of Wind Power Plant Voltage Controller with Embedded Application of Wind Turbines and STATCOMs

    DEFF Research Database (Denmark)

    Petersen, Lennart; Kryezi, Fitim; Iov, Florin

    2017-01-01

    This study addresses a detailed design and tuning of a wind power plant voltage control with reactive power contribution of wind turbines and static synchronous compensators (STATCOMs). First, small-signal models of a single wind turbine and STATCOM are derived by using the state-space approach. ....... The performance of the voltage controller is analysed by means of a real-time digital simulation system. The impact of discretising the controller being initially developed in continuous-time domain is shown by various study cases....

  7. Grid fault and design-basis for wind turbines - Final report

    DEFF Research Database (Denmark)

    Hansen, Anca Daniela; Cutululis, Nicolaos Antonio; Markou, Helen

    This is the final report of a Danish research project “Grid fault and design-basis for wind turbines”. The objective of this project has been to assess and analyze the consequences of the new grid connection requirements for the fatigue and ultimate structural loads of wind turbines....... The fulfillment of the grid connection requirements poses challenges for the design of both the electrical system and the mechanical structure of wind turbines. The development of wind turbine models and novel control strategies to fulfill the TSO’s requirements are of vital importance in this design. Dynamic...... approach for the quantification of the wind turbines structural loads caused by the fault ride-through grid requirement, has been proposed and exemplified for the case of an active stall wind turbine. This approach relies on the combination of knowledge from complimentary simulation tools, which have...

  8. Field measurement of wind pressure and wind-induced vibration of large-span spatial cable-truss system under strong wind or typhoon

    Directory of Open Access Journals (Sweden)

    ZHANG Zhihong

    2013-10-01

    Full Text Available In order to ensure wind-resistance safety of large-span pre-stressed flexible system in southeast coast area of China,and to prepare something for revising of current codes of practice or technical standards,the present paper conducts field measurement of wind pressure and wind-induced vibration of a practical and typical large-span spatial cable-truss system-lunar stadium in Yueqing city.Wind loading and wind effects on full-scale structure under strong wind or typhoon in real architectural environment can be obtained directly and effectively.Field measurement is the best way to investigate the wind loading property,wind effects,and wind-structure interactions of large-span flexible system.Measured data will be highly valuable for scientific research and practical design.On the other hand,it also provides the basis of wind-resistance safety design of this kind of tension structures.If any creative development,it would dramatically improve the research level of large-span pre-stressed flexible system in our country.

  9. Role of Wind Tunnels in Aircraft Design

    Indian Academy of Sciences (India)

    Wind tunnel is an aerodynamic test facility. It is mostly used to study flow patterns around bodies and measure aerodynamic forces on them. The bodies (called models) are usually scaled down but geometrically similar versions of bodies of interest like an airplane or an automobile. The results from wind tunnel tests can be ...

  10. Wind Turbine Control Impact on Stability of Wind Farms Based on Real-Life Systems Analysis

    DEFF Research Database (Denmark)

    Kocewiak, Lukasz Hubert; Hjerrild, Jesper; Bak, Claus Leth

    2012-01-01

    that wind farm components such as long HVAC cables and park transformers can introduce significant low-frequency series resonances seen form the wind turbine terminals which can affect wind turbine control system operation and overall wind farm stability. The same wind turbine converter control strategy...

  11. Wind-Diesel Hybrid Systems for Russia's Northern Territories

    Science.gov (United States)

    Gevorgian, V.; Touryan, K.; Bezrukikh, P.; Karghiev, V.

    1999-09-01

    This paper will summarize the DOE/Russian Ministry of Fuel and Energy (MF&E) activities in Russia's Northern Territories in the field of hybrid wind-diesel power systems over the last three years (1997-1999). The National Renewable Energy Laboratory (NREL) supplied technical assistance to the project, including resource assessment, system design, site identification, training and system monitoring. As a result, several wind-diesel systems have been installed and are operating in the Arkhangelsk/Murmansk regions and in Chukotka. NREL designed and provided sets of data acquisition equipment to monitor several of the first pilot wind-diesel systems. NREL's computer simulation models are being used for performance data analysis and optimizing of future system configurations.

  12. The 5 MW DeepWind floating offshore vertical wind turbine concept design - status and perspective

    DEFF Research Database (Denmark)

    Schmidt Paulsen, Uwe; Aagaard Madsen, Helge; Kragh, Knud Abildgaard

    2014-01-01

    Floating vertical-axis wind turbines for offshore wind energy present a concept with novelty and potentials for reducing COE. Cost reduction for offshore wind power plants is an industrial challenge, and DeepWind is - as the analysis of the current design shows-believed to be a good candidate......, that it is possible to achieve a competitive design ready for further industrial optimization. A preliminary analysis is provided on the emergency philosophy for this concept....... in achieving this. In the paper the current design status of the 5 MW DeepWind concept is presented. The intended siting for the turbine is off the Norwegian west coast at about 250 m of sea depth. Focus is set on the integrated design highlighting structural benefits of the light rotor, the hydrodynamic...

  13. On System Identification of Wind Turbines

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Perisic, Nevena; Pedersen, B.J.

    Recently several methods have been proposed for the system identification of wind turbines which can be considered as a linear time-varying system due to the operating conditions. For the identification of linear wind turbine models, either black-box or grey-box identification can be used....... The operational model analysis (OMA) methodology can provide accurate estimates of the natural frequencies, damping ratios and mode shapes of the systems as long as the measurements have a low noise to signal ratio. However, in order to take information about the wind turbine into account a grey...

  14. Design of a Small Scale Wind Generator for Low Wind Speed Areas ...

    African Journals Online (AJOL)

    Most small scale level wind turbine generators are directly driven system, variable speed, and partially connected power electronic converter system. Choice of such system is to avoid costs associated with gearbox. However, due to low wind speed in most of the tropical countries, synchronous generators with smaller or ...

  15. Grid Converters for Photovoltaic and Wind Power Systems

    DEFF Research Database (Denmark)

    Teodorescu, Remus; Liserre, Marco; Rodriguez, Pedro

    power, operation within a wide range of voltage and frequency, voltage ride-through capability, reactive current injection during faults, grid services support. This book explains the topologies, modulation and control of grid converters for both photovoltaic and wind power applications. In addition...... inverter topologies for photovoltaic and wind turbines Islanding detection methods for photovoltaic systems Synchronization techniques based on second order generalized integrators (SOGI) Advanced synchronization techniques with robust operation under grid unbalance condition grid filter design and active...

  16. Design and realization on function of pre-forming and continuous winding for HT-7U special winding machine

    International Nuclear Information System (INIS)

    Yu Jie; Gao Daming; Wen Jun; Zhu Wenhua; Cheng Leping; Tao Yuming

    2000-05-01

    The winding machine is one of the critical facilities for R and D of HT-7U construction. The machine mainly consists of five parts, CICC pay-off spool, a four-rollers straightening assembly, a four-roller forming/bending assembly, continuous winding structure and CNC control system with three-axis CNC control. The facility is needed for CICC magnet fabrication of HT-7U. The main requirements of the winding machine are: continuous winding to reduce number of joints inside the coils; pre-forming CICC conductor to avoid winding with tension; suitable for all TF and PF coils within the scope of various coil shape and dimension limit; improving the configuration tolerance, specially flatness of the CICC conductor. The author emphasizes on the design and realization on function of Pre-forming and Continuous Winding for HT-7U special winding machine. The winding machine with high accuracy has just been developed and applied to the construction of HT-7U model coils

  17. Design and development of nautilus whorl-wind turbine

    Science.gov (United States)

    R, Pramod; Kumar, G. B. Veeresh; Harsha, P. Sai Sri; Kumar, K. A. Udaya

    2017-07-01

    Our life is directly related to energy and its consumption, and the issues of energy research are extremely important and highly sensitive. Scientists and researchers attempt to accelerate solutions for wind energy generation, design parameters under the influence of novel policies adopted for energy management and the concerns for global warming and climate change. The objective of this study is to design a small wind turbine that is optimized for the constraints that come with residential use. The study is aimed at designing a wind turbine for tapping the low speed wind in urban locations. The design process includes the selection of the wind turbine type and the determination of the blade airfoil, finding the maximum drag model and manufacturing of the turbine economically. In this study, the Nautilus turbine is modeled, simulated and the characteristic curves are plotted. The cutting in wind speed for the turbine is around 1m/s. The turbine rotates in a range of 20 rpm to 500 rpm at wind speeds 1m/s to 10m/s On a below average day at noon where the wind speed are usually low the turbine recorded an rpm of 120 (average value) at 4m/s wind speeds. This study focuses on a computational fluid dynamics analysis of compressible radially outward flow.

  18. Design optimization of offshore wind farms with multiple types of wind turbines

    DEFF Research Database (Denmark)

    Feng, Ju; Shen, Wen Zhong

    2017-01-01

    capacity are also included. We solve the problem with a newly developed extended random search algorithm and tested it in a realistic design optimization problem based on the Horns Rev 1 offshore wind farm in Denmark. The optimized non-uniform designs are compared with their uniform counterparts. We find...... that a non-uniform design can achieve a lower levelized cost of energy than its uniform counterparts, when the capital cost per MW is slightly lower for the smaller size turbine. Comparison with the mixed-discrete particle swarm optimization algorithm is also carried out for a non-uniform wind farm design......-heights. Given a set of different types of wind turbines with a different default hub height for each type, we can specify the design of a wind farm by the types of turbines, number of turbines for each type, and turbine locations. We consider the optimization of such design to minimize the levelized cost...

  19. Site-specific design optimization of wind turbines

    DEFF Research Database (Denmark)

    Fuglsang, P.; Bak, C.; Schepers, J.G.

    2002-01-01

    This article reports results from a European project, where site characteristics were incorporated into the design process of wind turbines, to enable site-specific design. Two wind turbines of different concept were investigated at six different sites comprising normal flat terrain, offshore......-specific designs showed reductions in cost of energy by up to 15% achieved from an increase in annual energy yield and a reduction in manufacturing costs. The greatest benefits were found at sites with low mean wind speed and low turbulence. Site-specific design was not able to offset the intrinsic economic...

  20. Control design and optimization for the DOT500 hydraulic wind turbine

    NARCIS (Netherlands)

    Mulders, S.P.; Jager, Stéphane; Diepeveen, N.F.B.; van Wingerden, J.W.

    2017-01-01

    The drivetrain of most wind turbines currently being deployed commercially consists of a rotor-gearboxgenerator configuration in the nacelle. This abstract introduces the control system design and optimization for a wind turbine with a hydraulic drivetrain, based on the Delft Offshore Turbine (DOT)

  1. Baseline Design of a Hurricane-Resilient Wind Turbine (Poster)

    Energy Technology Data Exchange (ETDEWEB)

    Damiani, R.; Robertson, A.; Schreck, S.; Maples, B.; Anderson, M.; Finucane, Z.; Raina, A.

    2014-10-01

    Under U.S. Department of Energy-sponsored research FOA 415, the National Renewable Energy Laboratory led a team of research groups to produce a complete design of a large wind turbine system to be deployable in the western Gulf of Mexico region. As such, the turbine and its support structure would be subjected to hurricane-loading conditions. Among the goals of this research was the exploration of advanced and innovative configurations that would help decrease the levelized cost of energy (LCOE) of the design, and the expansion of the basic IEC design load cases (DLCs) to include hurricane environmental conditions. The wind turbine chosen was a three-bladed, downwind, direct-drive, 10-MW rated machine. The rotor blade was optimized based on an IEC load suite analysis. The drivetrain and nacelle components were scaled up from a smaller sized turbine using industry best practices. The tubular steel tower was sized using ultimate load values derived from the rotor optimization analysis. The substructure is an innovative battered and raked jacket structure. The innovative turbine has also been modeled within an aero-servo-hydro-elastic tool, and future papers will discuss results of the dynamic response analysis for select DLCs. Although multiple design iterations could not be performed because of limited resources in this study, and are left to future research, the obtained data will offer a good indication of the expected LCOE for large offshore wind turbines to be deployed in subtropical U.S. waters, and the impact design innovations can have on this value.

  2. Proceedings: Small Wind Turbine Systems, 1981

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    Small wind turbine technology is discussed. Systems development, test programs, utility interface issues, safety and reliability programs, applications, and marketing are discussed. For individual titles, see N83-23723 through N83-23741.

  3. design of a small scale wind generator for low wind speed areas

    African Journals Online (AJOL)

    USER

    the complexity of the drive train there are experimental proposals in literature where a synchronous generator that be able to operate under low wind speed can be directly connected to the end user especially the off-grid population. Hence, the study designed a six pole pairs wind turbine generator using permanent magnet ...

  4. Superconducting generators for wind turbines: design considerations

    DEFF Research Database (Denmark)

    Mijatovic, Nenad; Abrahamsen, Asger Bech; Træholt, Chresten

    2010-01-01

    The harmonic content of high temperature superconductors (HTS) field winding in air-core high temperature superconducting synchronous machine (HTS SM) has been addressed in order to investigate tendency of HTS SM towards mechanical oscillation and additional loss caused by higher flux harmonic. B....... Both analytical expressions for flux distribution and current sheet distribution have been derived and analyzed. The two main contributors to the AC loss of HTS rotor winding are also identified and their influence addressed on general level....

  5. Design of Buoys for Mounting Wind Turbines at Exposed Sites

    Science.gov (United States)

    Erdoğan, Beytullah; Çelıkkol, Barbaros; Swift, Robinson

    2018-04-01

    In this study, two designs for a buoy capable of supporting a 10 kW wind turbine and its tower were developed to operate at the University of New Hampshire's Center of Ocean Renewable Energy testing site located off the Isles of Shoals, New Hampshire. The buoys are to be moored by a catenary chain system. To evaluate wave response, two Froude-scaled models were constructed, tested, and compared at the Ocean Engineering wave tank at the University of New Hampshire. These buoys have been implemented and compared with wave tank measurements of the spar displacement at a reference elevation 2.44 m above the mean water level.

  6. Tower Design Load Verification on a 1-kW Wind Turbine: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Prascher, D.; Huskey, A.

    2004-11-01

    Wind turbine testing at the National Wind Technology Center (NWTC) has been done to characterize both tower top loads and thrust loads for small wind turbines, which is part of an ongoing effort to model and predict small wind turbine behavior and the resulting stresses imposed on the supporting tower. To these ends, a 1-kW furling wind turbine mounted on a 10-meter tower was instrumented and monitored via a data acquisition system for nearly a year. This test was conducted to verify the design loads as predicted by the simple design equations provided in the draft revision of the International Electrotechnical Commission (IEC) Small Wind Turbine Safety Standard 61400-02 CDV (hereafter called ''the draft Standard''). Data were captured for several operating conditions covered by the draft Standard. This paper addresses the collected data and what conclusions can be made from it.

  7. Modal Parameter Identification of New Design of Vertical Axis Wind Turbine

    DEFF Research Database (Denmark)

    Chougule, Prasad; Nielsen, Søren R.K.

    2013-01-01

    Vertical axis wind turbines have lower power efficiency than the horizontal axis wind turbines. However vertical axis wind turbines are proven to be economical and noise free on smaller scale. A new design of three bladed vertical axis wind turbine by using two airfoils in construction of each...... blade has been proposed to improve power efficiency. The purpose of two airfoils in blade design of vertical axis wind turbine is to create high lift which in turns gives higher power output. In such case the structural parameter identification is important to understand the system behavior due to its...... Abaqus cae software. The study is limited to evaluate lowest fundamental modal frequencies and mode shapes of proposed wind turbine....

  8. Reliability-Based Design of Wind Turbine Components

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Sørensen, John Dalsgaard

    2010-01-01

    influence the reliability is presented. For wind turbines tests with the basic materials or structural components are often performed during the design process. By adopting a reliability based design approach information from these tests can be taken into account in the design process. However, in normal...... demonstrated how partial safety factors can be derived for reliability-based design and how the partial safety factors changes dependent on the uncertainty in the test results.......Application of reliability-based design for wind turbines requires a definition of the probabilistic basis for the individual components of the wind turbine. In the present paper reliability-based design of structural wind turbine components is considered. A framework for the uncertainties which...

  9. Controller Design For DFIG Driven By Variable Speed Wind Turbine Using Static Output Feedback Technique

    Directory of Open Access Journals (Sweden)

    O. P. Bharti

    2016-08-01

    Full Text Available This paper describes the controller design for a DFIG based wind energy generation system using the static output feedback technique through the LMI Toolbox. The features of the DFIG, its converters and their controllers are discussed. The lower order nominal representation of DFIG is obtained using numerical differentiation of the SIMULINK model which is subsequently used for PID controller design. The obtained results are compared with existing methods for performance enhancement of the DFIG and wind energy conversion systems.

  10. Coordinated Control of Wind Turbine and Energy Storage System for Reducing Wind Power Fluctuation

    Directory of Open Access Journals (Sweden)

    Chunghun Kim

    2017-12-01

    Full Text Available This paper proposes a method for the coordinated control of a wind turbine and an energy storage system (ESS. Because wind power (WP is highly dependent on wind speed, which is variable, severe stability problems can be caused in power systems, especially when the WP has a high penetration level. To solve this problem, many power generation corporations or grid operators have begun using ESSs. An ESS has very quick response and good performance for reducing the impact of WP fluctuation; however, its installation cost is high. Therefore, it is important to design the control algorithm by considering both the ESS capacity and WP fluctuation. Thus, we propose a control algorithm to mitigate the WP fluctuation by using the coordinated control between the wind turbine and the ESS by considering the ESS capacity and the WP fluctuation. Using de-loaded control, according to the WP fluctuation and ESS capacity, we can expand the ESS lifespan and improve grid reliability by avoiding the extreme value of state of charge (SoC (i.e., 0 or 1 pu. The effectiveness of the proposed method was validated via MATLAB/Simulink by considering a small power system that includes both a wind turbine generator and conventional generators that react to system frequency deviation. We found that the proposed method has better performance in SoC management, thereby improving the frequency regulation by mitigating the impact of the WP fluctuation on the small power system.

  11. Designing Trailing Edge Flaps of Wind Turbines using an Integrated Design Approach

    DEFF Research Database (Denmark)

    Mirzaei, Mahmood; Poulsen, Niels Kjølstad; Niemann, Hans Henrik

    In this paper designing a controller for trailing edge flaps (TEF) as well as optimizing its position on the wind turbine blade will be considered. An integrated design approach will be used to optimize both TEF placement and controller simultaneously. Youla parameterization will be used to param......In this paper designing a controller for trailing edge flaps (TEF) as well as optimizing its position on the wind turbine blade will be considered. An integrated design approach will be used to optimize both TEF placement and controller simultaneously. Youla parameterization will be used...... to parameterize the controller and the plant. The goal is to maximize blade root bending moments while minimizing actuator activity. An optimization with linear matrix inequalities (LMI) constraints will be used to optimize the H1 norm of the system....

  12. ANALYSING SOLAR-WIND HYBRID POWER GENERATING SYSTEM

    Directory of Open Access Journals (Sweden)

    Mustafa ENGİN

    2005-02-01

    Full Text Available In this paper, a solar-wind hybrid power generating, system that will be used for security lighting was designed. Hybrid system was installed and solar cells, wind turbine, battery bank, charge regulators and inverter performance values were measured through the whole year. Using measured values of overall system efficiency, reliability, demanded energy cost per kWh were calculated, and percentage of generated energy according to resources were defined. We also include in the paper a discussion of new strategies to improve hybrid power generating system performance and demanded energy cost per kWh.

  13. Design improvements to the ESI-80 wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, T.; Kleeman, A.; Manwell, J.; McGowan, J. [Univ. of Massachusetts, Amherst, MA (United States)

    1996-12-31

    This paper describes two investigations related to improvements to an ESI-80 wind turbine. One of them involved modeling the tip flaps during braking. The other was a study of the turbine behavior with various delta-3 angles. These topics are of interest since the turbine is a two-bladed, teetered, free-yaw machine with tip flaps and an adjustable delta-3 angle. Tip flaps are used for slowing the turbine during shutdown and as an emergency system to insure that the rotor does not go into an overspeed condition in the event of failure of other parts of the system. Upon deployment, the tip flaps are exposed to a number of varying forces including aerodynamic, damper, spring, centripetal, and gravitational forces and forces at the hinged connection to the blades. For maximum braking the angle of tip flap deployment needs to be as large as possible without striking the blades in overspeed conditions and when covered with ice. To investigate tip flap design tradeoffs, a dynamic model of the tip flaps on the modified ESI-80 turbine was developed. Results include a determination of the effect of the addition of weight to the flap, overspeed conditions, and changes in damping coefficient. Changes in the delta-3 angle can be used to couple pitching and flapping motions, affecting both teeter and yaw behavior. These effects have been investigated using a modified version of YawDyn. The effects of changes in the delta-3 angle on the teeter and yaw behavior of the modified ESI-80 wind turbine were investigated. Results show that increased teeter excursions in steady high winds can be reduced by increasing the delta-3 angle. Increasing the delta-3 angle may also increase yaw motion in low wind speeds. Results suggest that the optimum delta-3 angle for improved performance may be substantially greater than the presently used angle of zero degrees. 8 refs., 16 figs.

  14. Sizing PV-wind hybrid energy system for lighting

    Directory of Open Access Journals (Sweden)

    Mustafa Engin

    2012-09-01

    Full Text Available Sizing of wind and photovoltaic generators ensures lower operational costs and therefore, is considered as an important issue. An approach for sizing along with a best management technique for a PV-wind hybrid system with batteries is proposed in this paper, in which the best size for every component of the system could be optimized according to the weather conditions and the load profile. The average hourly values for wind speed and solar radiation for Izmir, Turkey has been used in the design of the systems, along with expected load profile. A hybrid power model is also developed for battery operation according to the power balance between generators and loads used in the software, to anticipate performances for the different systems according to the different weather conditions. The output of the program will display the performance of the system during the year, the total cost of the system, and the best size for the PV-generator, wind generator, and battery capacity. Using proposed procedure, a 1.2 kWp PV-wind hybrid system was designed for Izmir, and simulated and measured results are presented.

  15. Dynamic Calculation Design of Vertical Wind Turbine | Okhueleigbe ...

    African Journals Online (AJOL)

    For this energy to be properly utilized there is need for flexibility in the design of the turbine that will be used to convert the kinetic energy of the wind to electrical energy. Although, this work did not give enough wattage needed, it is still important to talk about the importance of the dynamic calculation of the wind turbine.

  16. Effects of increasing tip velocity on wind turbine rotor design.

    Energy Technology Data Exchange (ETDEWEB)

    Resor, Brian Ray [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Maniaci, David Charles [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Berg, Jonathan Charles [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Richards, Phillip William [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-05-01

    A reduction in cost of energy from wind is anticipated when maximum allowable tip velocity is allowed to increase. Rotor torque decreases as tip velocity increases and rotor size and power rating are held constant. Reduction in rotor torque yields a lighter weight gearbox, a decrease in the turbine cost, and an increase in the capacity for the turbine to deliver cost competitive electricity. The high speed rotor incurs costs attributable to rotor aero-acoustics and system loads. The increased loads of high speed rotors drive the sizing and cost of other components in the system. Rotor, drivetrain, and tower designs at 80 m/s maximum tip velocity and 100 m/s maximum tip velocity are created to quantify these effects. Component costs, annualized energy production, and cost of energy are computed for each design to quantify the change in overall cost of energy resulting from the increase in turbine tip velocity. High fidelity physics based models rather than cost and scaling models are used to perform the work. Results provide a quantitative assessment of anticipated costs and benefits for high speed rotors. Finally, important lessons regarding full system optimization of wind turbines are documented.

  17. Model predictive control of wind energy conversion systems

    CERN Document Server

    Yaramasu, Venkata Narasimha R

    2017-01-01

    The authors provide a comprehensive analysis on the model predictive control of power converters employed in a wide variety of variable-speed wind energy conversion systems (WECS). The contents of this book includes an overview of wind energy system configurations, power converters for variable-speed WECS, digital control techniques, MPC, modeling of power converters and wind generators for MPC design. Other topics include the mapping of continuous-time models to discrete-time models by various exact, approximate, and quasi-exact discretization methods, modeling and control of wind turbine grid-side two-level and multilevel voltage source converters. The authors also focus on the MPC of several power converter configurations for full variable-speed permanent magnet synchronous generator based WECS, squirrel-cage induction generator based WECS, and semi-variable-speed doubly fed induction generator based WECS.

  18. Integrated Bidding and Operating Strategies for Wind-Storage Systems

    DEFF Research Database (Denmark)

    Ding, Huajie; Pinson, Pierre; Hu, Zechun

    2016-01-01

    to perform arbitrage and to alleviate wind power deviations from day-ahead contracts. The strategy is developed with two-price balancing markets in mind. A mixed integer nonlinear optimization formulation is built to determine optimal offers by taking into account expected wind power forecasting errors......Due to their flexible charging and discharging capabilities, energy storage systems (ESS) are considered a promising complement to wind farms (WFs) participating in electricity markets. This paper presents integrated day-ahead bidding and real-time operation strategies for a wind-storage system...... and the power balancing capability of the ESS. A modified gradient descent algorithm is designed to solve this nonlinear problem. A number of case studies validate the computational efficiency and optimality of the algorithm. Compared to the existing strategies, the proposed strategies yield increased economic...

  19. Advanced Control Design for Wind Turbines; Part I: Control Design, Implementation, and Initial Tests

    Energy Technology Data Exchange (ETDEWEB)

    Wright, A. D.; Fingersh, L. J.

    2008-03-01

    The purpose of this report is to give wind turbine engineers information and examples of the design, testing through simulation, field implementation, and field testing of advanced wind turbine controls.

  20. Design tool for offshore wind farm cluster planning

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Madsen, Peter Hauge; Giebel, Gregor

    2015-01-01

    In the framework of the FP7 project EERA DTOC: Design Tool for Offshore wind farm Cluster, a new software supporting the planning of offshore wind farms was developed, based on state-of-the-art approaches from large scale wind potential to economic benchmarking. The model portfolio includes WAsP,...... are useful for wind farm planning of the grid and necessary components and controls.......In the framework of the FP7 project EERA DTOC: Design Tool for Offshore wind farm Cluster, a new software supporting the planning of offshore wind farms was developed, based on state-of-the-art approaches from large scale wind potential to economic benchmarking. The model portfolio includes WAs......P, FUGA, WRF, Net-Op, LCoE model, CorWind, FarmFlow, EeFarm and grid code compliance calculations. The development is done by members from European Energy Research Alliance (EERA) and guided by several industrial partners. A commercial spin-off from the project is the tool ‘Wind & Economy’. The software...

  1. Wind Turbine Generator System Acoustic Noise Test Report for the Gaia Wind 11-kW Wind Turbine

    Energy Technology Data Exchange (ETDEWEB)

    Huskey, A.

    2011-11-01

    This report details the acoustic noise test conducted on the Gaia-Wind 11-kW wind turbine at the National Wind Technology Center. The test turbine is a two- bladed, downwind wind turbine with a rated power of 11 kW. The test turbine was tested in accordance with the International Electrotechnical Commission standard, IEC 61400-11 Ed 2.1 2006-11 Wind Turbine Generator Systems -- Part 11 Acoustic Noise Measurement Techniques.

  2. Coordinated Control of Wind Turbine and Energy Storage System for Reducing Wind Power Fluctuation

    Energy Technology Data Exchange (ETDEWEB)

    Muljadi, Eduard [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kim, Chunghun [Hanyang University; Chung, Chung Choo [Hanyang University

    2017-11-13

    This paper proposes a coordinated control of wind turbine and energy storage system (ESS). Because wind power (WP) is highly dependent on variable wind speed and could induce a severe stability problem to power system especially when the WP has high penetration level. To solve this problem, many power generation corporations or grid operators recently use the ESS. It has very quick response and good performance for reducing the impact of WP fluctuation but has high cost for its installation. Therefore, it is very important to design the control algorithm considering both ESS capacity and grid reliability. Thus, we propose the control algorithm to mitigate the WP fluctuation by using the coordinated control between wind turbine and ESS considering ESS state of charge (SoC) and the WP fluctuation. From deloaded control according to WP fluctuation and ESS SoC management, we can expect the ESS lifespan expansion and improved grid reliability. The effectiveness of the proposed method is validated in MATLAB/Simulink considering power system including both wind turbine generator and conventional generators which react to system frequency deviation.

  3. A Wind Power and Load Prediction Based Frequency Control Approach for Wind-Diesel-Battery Hybrid Power System

    Directory of Open Access Journals (Sweden)

    Chao Peng

    2015-01-01

    Full Text Available A frequency control approach based on wind power and load power prediction information is proposed for wind-diesel-battery hybrid power system (WDBHPS. To maintain the frequency stability by wind power and diesel generation as much as possible, a fuzzy control theory based wind and diesel power control module is designed according to wind power and load prediction information. To compensate frequency fluctuation in real time and enhance system disturbance rejection ability, a battery energy storage system real-time control module is designed based on ADRC (active disturbance rejection control. The simulation experiment results demonstrate that the proposed approach has a better disturbance rejection ability and frequency control performance compared with the traditional droop control approach.

  4. Lightning protection system for a wind turbine

    Science.gov (United States)

    Costin, Daniel P [Chelsea, VT; Petter, Jeffrey K [Williston, VT

    2008-05-27

    In a wind turbine (104, 500, 704) having a plurality of blades (132, 404, 516, 744) and a blade rotor hub (120, 712), a lightning protection system (100, 504, 700) for conducting lightning strikes to any one of the blades and the region surrounding the blade hub along a path around the blade hub and critical components of the wind turbine, such as the generator (112, 716), gearbox (708) and main turbine bearings (176, 724).

  5. McCabe wind energy system

    International Nuclear Information System (INIS)

    Norton, R.; McCabe, F.; MacMichael, G.

    1995-01-01

    A wind machine utilizing novel low-speed air foils and shrouds has been developed and is now undergoing a refinement process. Energy generated by the machine at a variety of wind speeds is significant. Use of the machine to compress air, which can serve a variety of applications, simplifies the total power producing system ranking it economical and practical for use at a variety of locations to fill many energy requirements. (author)

  6. McCabe wind energy system

    Energy Technology Data Exchange (ETDEWEB)

    Norton, R. [Wyndmoor (United States); McCabe, F. [Levr/Air, Inc., Doylestown (United States); MacMichael, G. [Regional Technical College, Galway (Iran, Islamic Republic of)

    1995-12-31

    A wind machine utilizing novel low-speed air foils and shrouds has been developed and is now undergoing a refinement process. Energy generated by the machine at a variety of wind speeds is significant. Use of the machine to compress air, which can serve a variety of applications, simplifies the total power producing system ranking it economical and practical for use at a variety of locations to fill many energy requirements. (author)

  7. Demonstration of a Basis for Tall Wind Turbine Design, EUDP Project Final Report

    DEFF Research Database (Denmark)

    Natarajan, Anand; Dimitrov, Nikolay Krasimirov; Madsen, Peter Hauge

    Wind turbine design using calibrated wind models have been proposed to be used in conjunction with load cases which lead to reduced uncertainties in the design of wind turbines with hub heights above 60m. These recommended wind profiles have been made for shear, wind directional change and turbul......Wind turbine design using calibrated wind models have been proposed to be used in conjunction with load cases which lead to reduced uncertainties in the design of wind turbines with hub heights above 60m. These recommended wind profiles have been made for shear, wind directional change...

  8. Stability and control of wind farms in power systems

    DEFF Research Database (Denmark)

    Jauch, Clemens

    The Ph.D. project ‘Stability and Control of Wind Farms in Power Systems’ deals with some selected problems related to wind power in power systems. With increasing wind power penetration, wind turbines substitute the power production of conventional powerplants. Therefore, wind turbines also have ...

  9. Verification of aero-elastic offshore wind turbine design codes under IEA Wind Task XXIII

    DEFF Research Database (Denmark)

    Vorpahl, Fabian; Strobel, Michael; Jonkman, Jason M.

    2014-01-01

    This work presents the results of a benchmark study on aero-servo-hydro-elastic codes for offshore wind turbine dynamic simulation. The codes verified herein account for the coupled dynamic systems including the wind inflow, aerodynamics, elasticity and controls of the turbine, along with the inc...

  10. SMART Wind Turbine Rotor: Design and Field Test

    Energy Technology Data Exchange (ETDEWEB)

    Berg, Jonathan C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Resor, Brian R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Paquette, Joshua A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); White, Jonathan R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-01-29

    This report documents the design, fabrication, and testing of the SMART Rotor. This work established hypothetical approaches for integrating active aerodynamic devices (AADs) into the wind turbine structure and controllers.

  11. A Wind Forecasting System for Energy Application

    Science.gov (United States)

    Courtney, Jennifer; Lynch, Peter; Sweeney, Conor

    2010-05-01

    Accurate forecasting of available energy is crucial for the efficient management and use of wind power in the national power grid. With energy output critically dependent upon wind strength there is a need to reduce the errors associated wind forecasting. The objective of this research is to get the best possible wind forecasts for the wind energy industry. To achieve this goal, three methods are being applied. First, a mesoscale numerical weather prediction (NWP) model called WRF (Weather Research and Forecasting) is being used to predict wind values over Ireland. Currently, a gird resolution of 10km is used and higher model resolutions are being evaluated to establish whether they are economically viable given the forecast skill improvement they produce. Second, the WRF model is being used in conjunction with ECMWF (European Centre for Medium-Range Weather Forecasts) ensemble forecasts to produce a probabilistic weather forecasting product. Due to the chaotic nature of the atmosphere, a single, deterministic weather forecast can only have limited skill. The ECMWF ensemble methods produce an ensemble of 51 global forecasts, twice a day, by perturbing initial conditions of a 'control' forecast which is the best estimate of the initial state of the atmosphere. This method provides an indication of the reliability of the forecast and a quantitative basis for probabilistic forecasting. The limitation of ensemble forecasting lies in the fact that the perturbed model runs behave differently under different weather patterns and each model run is equally likely to be closest to the observed weather situation. Models have biases, and involve assumptions about physical processes and forcing factors such as underlying topography. Third, Bayesian Model Averaging (BMA) is being applied to the output from the ensemble forecasts in order to statistically post-process the results and achieve a better wind forecasting system. BMA is a promising technique that will offer calibrated

  12. Proposed Wind Turbine Aeroelasticity Studies Using Helicopter Systems Analysis

    Science.gov (United States)

    Ladkany, Samaan G.

    1998-01-01

    Advanced systems for the analysis of rotary wing aeroelastic structures (helicopters) are being developed at NASA Ames by the Rotorcraft Aeromechanics Branch, ARA. The research has recently been extended to the study of wind turbines, used for electric power generation Wind turbines play an important role in Europe, Japan & many other countries because they are non polluting & use a renewable source of energy. European countries such as Holland, Norway & France have been the world leaders in the design & manufacture of wind turbines due to their historical experience of several centuries, in building complex wind mill structures, which were used in water pumping, grain grinding & for lumbering. Fossil fuel cost in Japan & in Europe is two to three times higher than in the USA due to very high import taxes. High fuel cost combined with substantial governmental subsidies, allow wind generated power to be competitive with the more traditional sources of power generation. In the USA, the use of wind energy has been limited mainly because power production from wind is twice as expensive as from other traditional sources. Studies conducted at the National Renewable Energy Laboratories (NREL) indicate that the main cost in the production of wind turbines is due to the materials & the labor intensive processes used in the construction of turbine structures. Thus, for the US to assume world leadership in wind power generation, new lightweight & consequently very flexible wind turbines, that could be economically mass produced, would have to be developed [4,5]. This effort, if successful, would result in great benefit to the US & the developing nations that suffer from overpopulation & a very high cost of energy.

  13. Distributed energy systems with wind power and energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Korpaas, Magnus

    2004-07-01

    The topic of this thesis is the study of energy storage systems operating with wind power plants. The motivation for applying energy storage in this context is that wind power generation is intermittent and generally difficult to predict, and that good wind energy resources are often found in areas with limited grid capacity. Moreover, energy storage in the form of hydrogen makes it possible to provide clean fuel for transportation. The aim of this work has been to evaluate how local energy storage systems should be designed and operated in order to increase the penetration and value of wind power in the power system. Optimization models and sequential and probabilistic simulation models have been developed for this purpose. Chapter 3 presents a sequential simulation model of a general wind hydrogen energy system. Electrolytic hydrogen is used either as a fuel for transportation or for power generation in a stationary fuel cell. The model is useful for evaluating how hydrogen storage can increase the penetration of wind power in areas with limited or no transmission capacity to the main grid. The simulation model is combined with a cost model in order to study how component sizing and choice of operation strategy influence the performance and economics of the wind-hydrogen system. If the stored hydrogen is not used as a separate product, but merely as electrical energy storage, it should be evaluated against other and more energy efficient storage options such as pumped hydro and redox flow cells. A probabilistic model of a grid-connected wind power plant with a general energy storage unit is presented in chapter 4. The energy storage unit is applied for smoothing wind power fluctuations by providing a firm power output to the grid over a specific period. The method described in the chapter is based on the statistical properties of the wind speed and a general representation of the wind energy conversion system and the energy storage unit. This method allows us to

  14. Airfoil family design for large offshore wind turbine blades

    International Nuclear Information System (INIS)

    Méndez, B; Munduate, X; Miguel, U San

    2014-01-01

    Wind turbine blades size has scaled-up during last years due to wind turbine platform increase especially for offshore applications. The EOLIA project 2007-2010 (Spanish Goverment funded project) was focused on the design of large offshore wind turbines for deep waters. The project was managed by ACCIONA Energia and the wind turbine technology was designed by ACCIONA Windpower. The project included the design of a wind turbine airfoil family especially conceived for large offshore wind turbine blades, in the order of 5MW machine. Large offshore wind turbines suffer high extreme loads due to their size, in addition the lack of noise restrictions allow higher tip speeds. Consequently, the airfoils presented in this work are designed for high Reynolds numbers with the main goal of reducing blade loads and mantainig power production. The new airfoil family was designed in collaboration with CENER (Spanish National Renewable Energy Centre). The airfoil family was designed using a evolutionary algorithm based optimization tool with different objectives, both aerodynamic and structural, coupled with an airfoil geometry generation tool. Force coefficients of the designed airfoil were obtained using the panel code XFOIL in which the boundary layer/inviscid flow coupling is ineracted via surface transpiration model. The desing methodology includes a novel technique to define the objective functions based on normalizing the functions using weight parameters created from data of airfoils used as reference. Four airfoils have been designed, here three of them will be presented, with relative thickness of 18%, 21%, 25%, which have been verified with the in-house CFD code, Wind Multi Block WMB, and later validated with wind tunnel experiments. Some of the objectives for the designed airfoils concern the aerodynamic behavior (high efficiency and lift, high tangential coefficient, insensitivity to rough conditions, etc.), others concern the geometry (good for structural design

  15. Power Electronics in Wind Turbine Systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Chen, Zhe; Teodorescu, Remus

    2006-01-01

    the conventional, fossil (and short term) based energy sources to renewable energy resources. The other is to use high efficient power electronics in power systems, power production and end-user application. This paper discuss the most emerging renewable energy source, wind energy, which by means of power...... electronics is changing from being a minor energy source to be acting as an important power source in the energy system. By that wind power is also getting an added value in the power system operation....

  16. Maximum Wind Power Tracking of Doubly Fed Wind Turbine System Based on Adaptive Gain Second-Order Sliding Mode

    Directory of Open Access Journals (Sweden)

    Hongchang Sun

    2018-01-01

    Full Text Available This paper proposes an adaptive gain second-order sliding mode control strategy to track optimal electromagnetic torque and regulate reactive power of doubly fed wind turbine system. Firstly, wind turbine aerodynamic characteristics and doubly fed induction generator (DFIG modeling are presented. Then, electromagnetic torque error and reactive power error are chosen as sliding variables, and fixed gain super-twisting sliding mode control scheme is designed. Considering that uncertainty upper bound is unknown and is hard to be estimated in actual doubly fed wind turbine system, a gain scheduled law is proposed to compel control parameters variation according to uncertainty upper bound real-time. Adaptive gain second-order sliding mode rotor voltage control method is constructed in detail and finite time stability of doubly fed wind turbine control system is strictly proved. The superiority and robustness of the proposed control scheme are finally evaluated on a 1.5 MW DFIG wind turbine system.

  17. Electromagnetic damper system for ground wind load studies

    Science.gov (United States)

    Scott, L. P.

    1972-01-01

    The design, fabrication, and adaptation of a model damper system to the 5.5% aeroelastic model of the Saturn 1B/Skylab launch vehicle are reported. The damper is dynamically calibrated over the desired range of additive damping for model conditions prior to wind tunnel testing.

  18. Vibration-based SHM System: Application to Wind Turbine Blades

    DEFF Research Database (Denmark)

    Tcherniak, D.; Mølgaard, Lasse Lohilahti

    2015-01-01

    This study presents an vibration-based system designed for structural health monitoring of wind turbine blades. Mechanical energy is introduced by means of an electromechanical actuator mounted inside the blade. The actuator's plunger periodically hits the blade structure; the induced vibrations ...

  19. A Simulation Platform To Model, Optimize And Design Wind Turbines. The Matlab/Simulink Toolbox

    Directory of Open Access Journals (Sweden)

    Anca Daniela HANSEN

    2002-12-01

    Full Text Available In the last years Matlab / Simulink® has become the most used software for modeling and simulation of dynamic systems. Wind energy conversion systems are for example such systems, containing subsystems with different ranges of the time constants: wind, turbine, generator, power electronics, transformer and grid. The electrical generator and the power converter need the smallest simulation step and therefore, these blocks decide the simulation speed. This paper presents a new and integrated simulation platform for modeling, optimizing and designing wind turbines. The platform contains different simulation tools: Matlab / Simulink - used as basic modeling tool, HAWC, DIgSilent and Saber.

  20. Optimization of Multibrid Permanent-Magnet Wind Generator Systems

    DEFF Research Database (Denmark)

    Chen, Zhe; Li, H.; Polinder, H.

    2009-01-01

    This paper investigates the cost-effective ranges of gearbox ratios and power ratings of multibrid permanent-magnet (PM) wind generator systems by using a design optimization method. First, the analytical model of a multibrid wind turbine concept consisting of a single-stage gearbox and a three......-phase radial-flux PM synchronous generator with a back-to-back power converter is presented. The design optimization is adopted with a genetic algorithm forminimizing generator system cost. To demonstrate the effectiveness of the developed electromagnetic design model, the optimization results of a 500-k......W direct-drive PM generator and a 1.5-MW multibrid PM generator with various gear ratios are, respectively, compared with those from other methods. Then, the optimal design approach is further employed for a range from 750 kW up to 10 MW. The optimization results of PM generator systems including direct...

  1. Fuzzy regulator design for wind turbine yaw control.

    Science.gov (United States)

    Theodoropoulos, Stefanos; Kandris, Dionisis; Samarakou, Maria; Koulouras, Grigorios

    2014-01-01

    This paper proposes the development of an advanced fuzzy logic controller which aims to perform intelligent automatic control of the yaw movement of wind turbines. The specific fuzzy controller takes into account both the wind velocity and the acceptable yaw error correlation in order to achieve maximum performance efficacy. In this way, the proposed yaw control system is remarkably adaptive to the existing conditions. In this way, the wind turbine is enabled to retain its power output close to its nominal value and at the same time preserve its yaw system from pointless movement. Thorough simulation tests evaluate the proposed system effectiveness.

  2. A Semi-active Control System for Wind Turbines

    DEFF Research Database (Denmark)

    Caterino, N.; Georgakis, Christos T.; Trinchillo, F.

    2014-01-01

    A semi-active (SA) control system based on the use of smart magnetorheological (MR) dampers to control the structural response of a wind turbine is proposed herein. The innovative approach is based on the implementation and use of a variable-properties base restraint. This is able to modify in real......, and a control algorithm that instantaneously commands the latter during the motion, making them to modulate the reactive force as needed to achieve the performance goals. The design and operation of such a system are shown with reference to a case study consisting of an almost 100 m tall wind turbine, realized...

  3. Performance Analysis of an Island Power System Including Wind Turbines Operating under Random Wind Speed

    OpenAIRE

    Meng-Jen Chen; Yu-Chi Wu; Guo-Tsai Liu; Sen-Feng Lin

    2013-01-01

    With continuous rise of oil price, how to develop alternative energy source has become a hot topic around the world. This study discussed the dynamic characteristics of an island power system operating under random wind speed lower than nominal wind speeds of wind turbines. The system primarily consists of three diesel engine power generation systems, three constant-speed variable-pitch wind turbines, a small hydraulic induction generation system, and lumped static loads. Detailed models b...

  4. Wind power integration connection and system operational aspects

    CERN Document Server

    Fox, Brendan

    2014-01-01

    Wind Power Integration provides a wide-ranging discussion on all major aspects of wind power integration into electricity supply systems. This second edition has been fully revised and updated to take account of the significant growth in wind power deployment in the past few years. New discussions have been added to describe developments in wind turbine generator technology and control, the network integration of wind power, innovative ways to integrate wind power when its generation potential exceeds 50% of demand, case studies on how forecasting errors have affected system operation, and an update on how the wind energy sector has fared in the marketplace. Topics covered include: the development of wind power technology and its world-wide deployment; wind power technology and the interaction of various wind turbine generator types with the utility network; and wind power forecasting and the challenges faced by wind energy in modern electricity markets.

  5. Design and operating experience on the US Department of Energy experimental Mod-0 100-kW wind turbine

    Science.gov (United States)

    Glasgow, J. C.; Birchenough, A. G.

    1978-01-01

    The experimental wind turbine was designed and fabricated to assess technology requirements and engineering problems of large wind turbines. The machine has demonstrated successful operation in all of its design modes and served as a prototype developmental test bed for the Mod-0A operational wind turbines which are currently used on utility networks. The mechanical and control system are described as they evolved in operational tests and some of the experience with various systems in the downwind rotor configurations are elaborated.

  6. Wind Farms’ Spatial Distribution Effect on Power System Reserves Requirements

    DEFF Research Database (Denmark)

    Sørensen, Poul Ejnar; Cutululis, Nicolaos Antonio

    2010-01-01

    The wind power development during last millennium was typically based on small wind turbines dispersed over large areas, leading to a significant smoothing of the wind power fluctuations in a power system balancing area. The present development goes towards much larger wind farms, concentrated...... in smaller areas, which causes the total wind power fluctuations in power system areas to increase significantly. The impact of future large wind farms spatial distribution with respect to the power system reserve requirements is analyzed in this paper. For this purpose, Correlated Wind (CorWind) power time...... series simulation model developed to simulate wind power variability over a large area is used. As a study case, two scenarios for short term offshore wind power development in the West Danish power system region are used. The first scenario assumes that all the wind farms are built in the region...

  7. A Review of Hybrid Solar PV and Wind Energy System

    Directory of Open Access Journals (Sweden)

    Rashid Al Badwawi

    2015-07-01

    Full Text Available Due to the fact that solar and wind power is intermittent and unpredictable in nature, higher penetration of their types in existing power system could cause and create high technical challenges especially to weak grids or stand-alone systems without proper and enough storage capacity. By integrating the two renewable resources into an optimum combination, the impact of the variable nature of solar and wind resources can be partially resolved and the overall system becomes more reliable and economical to run. This paper provides a review of challenges and opportunities / solutions of hybrid solar PV and wind energy integration systems. Voltage and frequency fluctuation, and harmonics are major power quality issues for both grid-connected and stand-alone systems with bigger impact in case of weak grid. This can be resolved to a large extent by having proper design, advanced fast response control facilities, and good optimization of the hybrid systems. The paper gives a review of the main research work reported in the literature with regard to optimal sizing design, power electronics topologies and control. The paper presents a review of the state of the art of both grid-connected and stand-alone hybrid solar and wind systems.

  8. Conceptual Model of Offshore Wind Environmental Risk Evaluation System

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Richard M.; Copping, Andrea E.; Van Cleve, Frances B.; Unwin, Stephen D.; Hamilton, Erin L.

    2010-06-01

    In this report we describe the development of the Environmental Risk Evaluation System (ERES), a risk-informed analytical process for estimating the environmental risks associated with the construction and operation of offshore wind energy generation projects. The development of ERES for offshore wind is closely allied to a concurrent process undertaken to examine environmental effects of marine and hydrokinetic (MHK) energy generation, although specific risk-relevant attributes will differ between the MHK and offshore wind domains. During FY10, a conceptual design of ERES for offshore wind will be developed. The offshore wind ERES mockup described in this report will provide a preview of the functionality of a fully developed risk evaluation system that will use risk assessment techniques to determine priority stressors on aquatic organisms and environments from specific technology aspects, identify key uncertainties underlying high-risk issues, compile a wide-range of data types in an innovative and flexible data organizing scheme, and inform planning and decision processes with a transparent and technically robust decision-support tool. A fully functional version of ERES for offshore wind will be developed in a subsequent phase of the project.

  9. Distributed generation system using wind/photovoltaic/fuel cell

    Science.gov (United States)

    Buasri, Panhathai

    This dissertation investigates the performance and the operation of a distributed generation (DG) power system using wind/photovoltaic/fuel cell (W/PV/FC). The power system consists of a 2500 W photovoltaic array subsystem, a 500 W proton exchange membrane fuel cell (PEMFC) stack subsystem, 300 W wind turbine, 500 W wind turbine, and 1500 W wind energy conversion subsystems. To extract maximum power from the PV, a maximum power point tracker was designed and fabricated. A 4 kW single phase inverter was used to convert the DC voltage to AC voltage; also a 44 kWh battery bank was used to store energy and prevent fluctuation of the power output of the DG system. To connect the fuel cell to the batteries, a DC/DC controller was designed and fabricated. To monitor and study the performance of the DG system under variable conditions, a data acquisition system was designed and installed. The fuel cell subsystem performance was evaluated under standalone operation using a variable resistance and under interactive mode, connected to the batteries. The manufacturing data and the experimental data were used to develop an electrical circuit model to the fuel cell. Furthermore, harmonic analysis of the DG system was investigated. For an inverter, the AC voltage delivered to the grid changed depending on the time, load, and electronic equipment that was connected. The quality of the DG system was evaluated by investigating the harmonics generated by the power electronics converters. Finally, each individual subsystem of the DG system was modeled using the neuro-fuzzy approach. The model was used to predict the performance of the DG system under variable conditions, such as passing clouds and wind gust conditions. The steady-state behaviors of the model were validated by the experimental results under different operating conditions.

  10. Design of wind turbine airfoils based on maximum power coefficient

    DEFF Research Database (Denmark)

    Cheng, Jiangtao; Chen, Jin; Cheng, Jiangtao

    2010-01-01

    Based on the blade element momentum (BEM) theory, the power coefficient of a wind turbine can be expressed in function of local tip speed ratio and lift-drag ratio. By taking the power coefficient in a predefined range of angle of attack as the final design objective and combining with an airfoil...... behaviors, noise emission as well as wind turbine service life. To show the performance of the new design technique, a new airfoil with relative thickness of 18% is designed. Comparisons with a wind turbine airfoil (NACA 63418) at Re=2×106 and Re=6×106 for free and fixed transitions show that the new...... airfoil has a higher power efficiency, better designed lift at off-design condition, better stall behavior, less sensitivity to leading edge roughness and lower noise emission. © 2010 Journal of Mechanical Engineering....

  11. Wind Power predictability a risk factor in the design, construction and operation of Wind Generation Turbines

    Science.gov (United States)

    Thiesen, J.; Gulstad, L.; Ristic, I.; Maric, T.

    2010-09-01

    Summit: The wind power predictability is often a forgotten decision and planning factor for most major wind parks, both onshore and offshore. The results of the predictability are presented after having examined a number of European offshore and offshore parks power predictability by using three(3) mesoscale model IRIE_GFS and IRIE_EC and WRF. Full description: It is well known that the potential wind production is changing with latitude and complexity in terrain, but how big are the changes in the predictability and the economic impacts on a project? The concept of meteorological predictability has hitherto to some degree been neglected as a risk factor in the design, construction and operation of wind power plants. Wind power plants are generally built in places where the wind resources are high, but these are often also sites where the predictability of the wind and other weather parameters is comparatively low. This presentation addresses the question of whether higher predictability can outweigh lower average wind speeds with regard to the overall economy of a wind power project. Low predictability also tends to reduce the value of the energy produced. If it is difficult to forecast the wind on a site, it will also be difficult to predict the power production. This, in turn, leads to increased balance costs and a less reduced carbon emission from the renewable source. By investigating the output from three(3) mesoscale models IRIE and WRF, using ECMWF and GFS as boundary data over a forecasting period of 3 months for 25 offshore and onshore wind parks in Europe, the predictability are mapped. Three operational mesoscale models with two different boundary data have been chosen in order to eliminate the uncertainty with one mesoscale model. All mesoscale models are running in a 10 km horizontal resolution. The model output are converted into "day a head" wind turbine generation forecasts by using a well proven advanced physical wind power model. The power models

  12. Local ownership, smart energy systems and better wind power economy

    DEFF Research Database (Denmark)

    Hvelplund, Frede; Möller, Bernd; Sperling, Karl

    2013-01-01

    Increasing wind power shares enhances the need to integrate wind power into the energy system and to improve its economy. In this study we propose two ways of achieving this end. One is to increase the value of wind power by integrating the heat and power markets, and thus ensures that wind power...... the acceptance rate of onshore wind. The economy of wind power is thus improved by both increasing its value and reducing its costs....

  13. System Reliability for Offshore Wind Turbines

    DEFF Research Database (Denmark)

    Marquez-Dominguez, Sergio; Sørensen, John Dalsgaard

    2013-01-01

    Deeper waters and harsher environments are the main factors that make the electricity generated by offshore wind turbines (OWTs) expensive due to high costs of the substructure, operation & maintenance and installation. The key goal of development is to decrease the cost of energy (CoE). In conse......Deeper waters and harsher environments are the main factors that make the electricity generated by offshore wind turbines (OWTs) expensive due to high costs of the substructure, operation & maintenance and installation. The key goal of development is to decrease the cost of energy (Co...... in inspections or measurements from condition monitoring systems. Finally, an example is established to illustrate the practical application of this framework for jacket type wind turbine substructure considering system effects....

  14. Dynamic influences of wind power on the power system

    Energy Technology Data Exchange (ETDEWEB)

    Rosas, Pedro

    2003-03-01

    The thesis first presents the basics influences of wind power on the power system stability and quality by pointing out the main power quality issues of wind power in a small-scale case and following, the expected large-scale problems are introduced. Secondly, a dynamic wind turbine model that supports power quality assessment of wind turbines is presented. Thirdly, an aggregate wind farm model that support power quality and stability analysis from large wind farms is presented. The aggregate wind farm model includes the smoothing of the relative power fluctuation from a wind farm compared to a single wind turbine. Finally, applications of the aggregate wind farm model to the power systems are presented. The power quality and stability characteristics influenced by large-scale wind power are illustrated with three cases. In this thesis, special emphasis has been given to appropriate models to represent the wind acting on wind farms. The wind speed model to a single wind turbine includes turbulence and tower shadow effects from the wind and the rotational sampling turbulence due to the rotation of the blades. In a park scale, the wind speed model to the wind farm includes the spatial coherence between different wind turbines. Here the wind speed model is applied to a constant rotational speed wind turbine/farm, but the model is suitable to variable speed wind turbine/farm as well. The cases presented here illustrate the influences of the wind power on the power system quality and stability. The flicker and frequency deviations are the main power quality parameters presented. The power system stability concentrates on the voltage stability and on the power system oscillations. From the cases studied, voltage and the frequency variations were smaller than expected from the large-scale wind power integration due to the low spatial correlation of the wind speed. The voltage quality analysed in a Brazilian power system and in the Nordel power system from connecting large

  15. Reliability-Based Design of Wind Turbine Foundations

    DEFF Research Database (Denmark)

    Firouzianbandpey, Sarah

    reliable, affordable, clean and renewable energy. Wind turbines have gained popularity among other renewable energy generators by having both technically and economically efficient features and by offering competitive production prices compared to other renewable energy sources. Therefore, it is a key...... green energy technology in breaking the fossil fuel dependency. The costs of foundations for offshore wind turbines typically amount to 20–30% of the total wind turbine budget. Thus, an optimized design of these foundations will improve the cost effectiveness by matching a suitable target reliability...... level. The overall aim of the present PhD thesis is to facilitate a low-cost foundation design for future offshore wind farms by focusing on the geotechnical site assessment. First, a number of well-established techniques for soil classification based on cone penetration test (CPT) data have been...

  16. Lightweight structure design for wind energy by integrating nanostructured materials

    International Nuclear Information System (INIS)

    Li, Ying; Lu, Jian

    2014-01-01

    Highlights: • Integrate high-strength nano-materials into lightweight design. • Lightweight design scheme for wind turbine tower application. • Expand the bending formulae for tapered tubular structures with varying thickness. • We rewrite the Secant Formula for a tapered beam under eccentric compression. - Abstract: Wind power develops very fast nowadays with high expectation. Although at the mean time, the use of taller towers, however, smacks head-on into the issue of transportability. The engineering base and computational tools have to be developed to match machine size and volume. Consequently the research on the light weight structures of tower is carrying out in the main countries which are actively developing wind energy. This paper reports a new design scheme of light weight structure for wind turbine tower. This design scheme is based on the integration of the nanostructured materials produced by the Surface Mechanical Attrition Treatment (SMAT) process. The objective of this study is to accomplish the weight reduction by optimizing the wall thickness of the tapered tubular structure. The basic methods include the identification of the critical zones and the distribution of the high strength materials according to different necessities. The equivalent strength or stiffness design method and the high strength material properties after SMAT process are combined together. Bending and buckling are two main kinds of static loads concerned in consideration. The study results reveal that there is still enough margin for weight reduction in the traditional wind turbine tower design

  17. Vertical Axis Wind Turbine Design Load Cases Investigation and Comparison with Horizontal Axis Wind Turbine

    DEFF Research Database (Denmark)

    Galinos, Christos; Larsen, Torben J.; Aagaard Madsen, Helge

    2016-01-01

    The paper studies the applicability of the IEC 61400-1 ed.3, 2005 International Standard of wind turbine minimum design requirements in the case of an onshore Darrieus VAWT and compares the results of basic Design Load Cases (DLCs) with those of a 3-bladed HAWT. The study is based on aeroelastic ...

  18. Safety considerations in the design and operation of large wind turbines

    Science.gov (United States)

    Reilly, D. H.

    1979-01-01

    The engineering and safety techniques used to assure the reliable and safe operation of large wind turbine generators utilizing the Mod 2 Wind Turbine System Program as an example is described. The techniques involve a careful definition of the wind turbine's natural and operating environments, use of proven structural design criteria and analysis techniques, an evaluation of potential failure modes and hazards, and use of a fail safe and redundant component engineering philosophy. The role of an effective quality assurance program, tailored to specific hardware criticality, and the checkout and validation program developed to assure system integrity are described.

  19. On a method for simulation-based wind turbine blade design

    NARCIS (Netherlands)

    Jongsma, S.H.

    2014-01-01

    Wind turbines are an important means for the production of renewable energy. Wind conditions vary from one site to another and the design of a horizontal axis wind turbine depends on these local wind conditions. One of the important aspects of the design of a wind turbine concerns the aerodynamic

  20. Wind turbine model and loop shaping controller design

    Science.gov (United States)

    Gilev, Bogdan

    2017-12-01

    A model of a wind turbine is evaluated, consisting of: wind speed model, mechanical and electrical model of generator and tower oscillation model. Model of the whole system is linearized around of a nominal point. By using the linear model with uncertainties is synthesized a uncertain model. By using the uncertain model is developed a H∞ controller, which provide mode of stabilizing the rotor frequency and damping the tower oscillations. Finally is simulated work of nonlinear system and H∞ controller.

  1. Wind Turbine design and fabrication to power street lights

    Directory of Open Access Journals (Sweden)

    Khan Mohammad

    2017-01-01

    Full Text Available The objective of this work was to design and build a wind turbine which can be used to power small street lights. Considering the typical wind speeds in Abu Dhabi, UAE and ease of construction, the design of the wind turbine was chosen to be Sea Hawk design from vertical axis wind turbine category. A three phase AC generator was used for its availability over the DC motors within the region. A 12V battery was used for storage and a charge controller was used for controlling the charge flow into the battery and for controlling the turbine rotation when the battery is fully charged. The blades used in the turbine were made of foam board according to the NACA 0018 airfoil shape with a chord length of 15cm. The connecting shaft was made of stainless steel. Structural analysis and CFD analysis were performed along with other calculations. Testing was executed to calculate the voltage output from the turbine at different wind speeds. The maximum voltage the turbine produced at 6.4 m/s wind speed was 2.4Vand the rotational speed of the turbine was 60.3 rpm.

  2. Outcomes of the DeepWind Conceptual Design

    DEFF Research Database (Denmark)

    Schmidt Paulsen, Uwe; Borg, Michael; Aagaard Madsen, Helge

    2015-01-01

    DeepWind has been presented as a novel floating offshore wind turbine concept with cost reduction potentials. Twelve international partners developed a Darrieus type floating turbine with new materials and technologies for deep-sea offshore environment. This paper summarizes results of the 5 MW D...... the Deepwind floating 1 kW demonstrator. The 5 MW simulation results, loading and performance are compared to the OC3-NREL 5 MW wind turbine. Finally the paper elaborates the conceptual design on cost modelling.......DeepWind has been presented as a novel floating offshore wind turbine concept with cost reduction potentials. Twelve international partners developed a Darrieus type floating turbine with new materials and technologies for deep-sea offshore environment. This paper summarizes results of the 5 MW...... DeepWind conceptual design. The concept was evaluated at the Hywind test site, described on its few components, in particular on the modified Troposkien blade shape and airfoil design. The feasibility of upscaling from 5 MW to 20 MW is discussed, taking into account the results from testing...

  3. Probabilistic Fatigue Design of Composite Material for Wind Turbine Blades

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Sørensen, John Dalsgaard

    2011-01-01

    In the present paper a probabilistic design approach to fatigue design of wind turbine blades is presented. The physical uncertainty on the fatigue strength for composite material is estimated using public available fatigue tests. Further, the model uncertainty on Miner rule for damage accumulation...... is also estimated based on test results. The results show that Miners rule gives a non-conservative estimate on the accumulated damage at failure. The reliability of a wind turbine blade is estimated for both out-of-plane and in-plane loading using three different design standards. The estimated annual...

  4. Grid fault and design-basis for wind turbines. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, A.D.; Cutululis, N.A.; Markou, H.; Soerensen, Poul; Iov, F.

    2010-01-15

    This is the final report of a Danish research project 'Grid fault and design-basis for wind turbines'. The objective of this project has been to assess and analyze the consequences of the new grid connection requirements for the fatigue and ultimate structural loads of wind turbines. The fulfillment of the grid connection requirements poses challenges for the design of both the electrical system and the mechanical structure of wind turbines. The development of wind turbine models and novel control strategies to fulfill the TSO's requirements are of vital importance in this design. Dynamic models and different fault ride-through control strategies have been developed and assessed in this project for three different wind turbine concepts (active stall wind turbine, variable speed doublyfed induction generator wind turbine, variable speed multipole permanent magnet wind turbine). A computer approach for the quantification of the wind turbines structural loads caused by the fault ride-through grid requirement, has been proposed and exemplified for the case of an active stall wind turbine. This approach relies on the combination of knowledge from complimentary simulation tools, which have expertise in different specialized design areas for wind turbines. In order to quantify the impact of the grid faults and grid requirements fulfillment on wind turbines structural loads and thus on their lifetime, a rainflow and a statistical analysis for fatigue and ultimate structural loads, respectively, have been performed and compared for two cases, i.e. one when the turbine is immediately disconnected from the grid when a grid fault occurs and one when the turbine is equipped with a fault ride-through controller and therefore it is able to remain connected to the grid during the grid fault. Different storm control strategies, that enable variable speed wind turbines to produce power at wind speeds higher than 25m/s and up to 50m/s without substantially increasing

  5. Active system monitoring applied on wind turbines

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Poulsen, Niels Kjølstad; Parbo, Henrik

    2009-01-01

    A concept for active system monitoring (ASM) applied on wind turbines is presented in this paper. The concept is based on an injection of a small periodic auxiliary signal in the system. An investigation of the signature from the auxiliary input in residual (error) signals can then be applied for...... for an online monitoring of central parameters/elements of the system. Statistical tests are applied on the residual signals for obtaining a correct monitoring....

  6. A High Efficiency Wind Energy System

    DEFF Research Database (Denmark)

    Khan, M. Z.; Hussain, M. M.; Naveed, M. M.

    2012-01-01

    In this paper, a wind generator system that employs a Fourphase Interleaved Bi-directional DC / DC Converter, a Selective Harmonic Elimination Sinusoidal Pulse Width Modulation (SHE SPWM) based Inverter and a PermanentMagnet Synchronous Generator (PMSG) is studied. The merits of using the topolog...

  7. An optimal design of coreless direct-drive axial flux permanent magnet generator for wind turbine

    International Nuclear Information System (INIS)

    Ahmed, D; Ahmad, A

    2013-01-01

    Different types of generators are currently being used in wind power technology. The commonly used are induction generator (IG), doubly-fed induction generator (DFIG), electrically excited synchronous generator (EESG) and permanent magnet synchronous generator (PMSG). However, the use of PMSG is rapidly increasing because of advantages such as higher power density, better controllability and higher reliability. This paper presents an innovative design of a low-speed modular, direct-drive axial flux permanent magnet (AFPM) generator with coreless stator and rotor for a wind turbine power generation system that is developed using mathematical and analytical methods. This innovative design is implemented in MATLAB / Simulink environment using dynamic modelling techniques. The main focus of this research is to improve efficiency of the wind power generation system by investigating electromagnetic and structural features of AFPM generator during its operation in wind turbine. The design is validated by comparing its performance with standard models of existing wind power generators. The comparison results demonstrate that the proposed model for the wind power generator exhibits number of advantages such as improved efficiency with variable speed operation, higher energy yield, lighter weight and better wind power utilization.

  8. An optimal design of coreless direct-drive axial flux permanent magnet generator for wind turbine

    Science.gov (United States)

    Ahmed, D.; Ahmad, A.

    2013-06-01

    Different types of generators are currently being used in wind power technology. The commonly used are induction generator (IG), doubly-fed induction generator (DFIG), electrically excited synchronous generator (EESG) and permanent magnet synchronous generator (PMSG). However, the use of PMSG is rapidly increasing because of advantages such as higher power density, better controllability and higher reliability. This paper presents an innovative design of a low-speed modular, direct-drive axial flux permanent magnet (AFPM) generator with coreless stator and rotor for a wind turbine power generation system that is developed using mathematical and analytical methods. This innovative design is implemented in MATLAB / Simulink environment using dynamic modelling techniques. The main focus of this research is to improve efficiency of the wind power generation system by investigating electromagnetic and structural features of AFPM generator during its operation in wind turbine. The design is validated by comparing its performance with standard models of existing wind power generators. The comparison results demonstrate that the proposed model for the wind power generator exhibits number of advantages such as improved efficiency with variable speed operation, higher energy yield, lighter weight and better wind power utilization.

  9. Reliability-based design of wind turbine blades

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Sørensen, John Dalsgaard

    2011-01-01

    Reliability-based design of wind turbine blades requires identification of the important failure modes/limit states along with stochastic models for the uncertainties and methods for estimating the reliability. In the present paper it is described how reliability-based design can be applied to wi...

  10. Design Tool for Direct Drive Wind Turbine Generators

    DEFF Research Database (Denmark)

    Leban, Krisztina Monika

    The current work offers a comparison of the proposed machine geometries for 6 [MW] direct drive wind generator candidates with the prospective of up scaling to 20MW. The suggestions are based on a design tool especially built for this investigation. The in-built flexibility of the design tool gives...

  11. Probabilistic Fatigue Design of Composite Material for Wind Turbine Blades

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Sørensen, John Dalsgaard

    2011-01-01

    In the present paper a probabilistic design approach to fatigue design of wind turbine blades is presented. The physical uncertainty on the fatigue strength for composite material is estimated using public available fatigue tests. Further, the model uncertainty on Miner rule for damage accumulation...

  12. Stability and control of wind farms in power systems

    Energy Technology Data Exchange (ETDEWEB)

    Jauch, C.

    2006-10-15

    The Ph.D. project 'Stability and Control of Wind Farms in Power Systems' deals with some selected problems related to wind power in power systems. With increasing wind power penetration, wind turbines substitute the power production of conventional power plants. Therefore, wind turbines also have to take over the power system stabilisation and control tasks, that were traditionally carried out by conventional power plants. Out of the many aspects related to this problem, this project focuses on transient fault ride-through and power system stabilisation. The selection of turbine types considered in this project is limited to active-stall turbines and variable speed, variable pitch turbines with gearboxes and full-scale converter-connected synchronous generators. As a basis for the project, a study into the state of the art is conducted at the beginning of the project. Grid connection requirements that were in force, or published as drafts, at the time, and scientific literature related to the topic, are studied. The project is based on simulations of wind turbines in a power system simulations tool. Some of the models used in this project were readily available prior to the project; the development of others is part of the project. The most extensive modelling work deals with the design of the electrical part of the variable speed turbine and its controls. To simulate realistic grid operation the wind turbine models are connected to an aggregated model of the Nordic power system. For that purpose the Nordic power system model, which was available prior to the project, is extended with a realistic feeder configuration. It is commonly demanded from modern wind turbines, that they must not disconnect in case of transient faults. Therefore, controllers are designed that enable the two turbine types to ride through transient faults. With these transient fault controllers the wind turbines can stay connected to the grid, such that their generation capacity is

  13. Wind energy in the electric power system

    DEFF Research Database (Denmark)

    Polinder, H.; Peinke, J.; Kramer, O.

    2016-01-01

    have to behave when connected to the power system. In this way, they already incorporate basic ancillary services. However, frequency control is normally not provided as a regular reserve, because this would require reserving parts of the available wind capacity as stand-by capacity. Within R......The ongoing increase in renewable power generation causes a parallel overall decrease in conventional power generation from, in particular, fossil and nuclear power plants. Apart from providing market-based active power schedules, these power plants are crucial for offering ancillary services...... in order to guarantee a reliable stable power supply at any instant in time. Substituting these plants with renewable generation units requires the latter to be capable of providing these ancillary services. The state of the art is that grid codes are used to define the way wind turbines and wind farms...

  14. IEA Wind Task 37 System Modeling Framework and Ontology for Wind Turbines and Plants

    NARCIS (Netherlands)

    Dykes, K; Sanchez Perez Moreno, S.; Zahle, Frederik; Ning, A; McWilliam, M.; Zaayer, M B

    2017-01-01

    This presentation will provide an overview of progress to date in the development of a system modeling framework and ontology for wind turbines and plants as part of the larger IEA Wind Task 37 on wind energy systems engineering. The goals of the effort are to create a set of guidelines for a common

  15. Design of a shrouded wind turbine for low wind speeds / Jacobus Daniel Human

    OpenAIRE

    Human, Jacobus Daniel

    2014-01-01

    The use of renewable energy is promoted worldwide to be less dependent on fossil fuels and nuclear energy. Therefore research in the field is driven to increase efficiency of renewable energy systems. This study aimed to develop a wind turbine for low wind speeds in South Africa. Although there is a greater tendency to use solar panels because of the local weather conditions, there are some practical implications that have put the use of solar panels in certain areas to an end....

  16. Efficient preliminary floating offshore wind turbine design and testing methodologies and application to a concrete spar design.

    Science.gov (United States)

    Matha, Denis; Sandner, Frank; Molins, Climent; Campos, Alexis; Cheng, Po Wen

    2015-02-28

    The current key challenge in the floating offshore wind turbine industry and research is on designing economic floating systems that can compete with fixed-bottom offshore turbines in terms of levelized cost of energy. The preliminary platform design, as well as early experimental design assessments, are critical elements in the overall design process. In this contribution, a brief review of current floating offshore wind turbine platform pre-design and scaled testing methodologies is provided, with a focus on their ability to accommodate the coupled dynamic behaviour of floating offshore wind systems. The exemplary design and testing methodology for a monolithic concrete spar platform as performed within the European KIC AFOSP project is presented. Results from the experimental tests compared to numerical simulations are presented and analysed and show very good agreement for relevant basic dynamic platform properties. Extreme and fatigue loads and cost analysis of the AFOSP system confirm the viability of the presented design process. In summary, the exemplary application of the reduced design and testing methodology for AFOSP confirms that it represents a viable procedure during pre-design of floating offshore wind turbine platforms. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  17. Harmonic analysis and suppression in hybrid wind & PV solar system

    Science.gov (United States)

    Gupta, Tripti; Namekar, Swapnil

    2018-04-01

    The growing demand of electricity has led to produce power through non-conventional source of energy such as solar energy, wind energy, hydro power, energy through biogas and biomass etc. Hybrid system is taken to complement the shortcoming of either sources of energy. The proposed system is grid connected hybrid wind and solar system. A 2.1 MW Doubly fed Induction Generator (DFIG) has been taken for analysis of wind farm whose rotor part is connected to two back-to-back converters. A 250 KW Photovoltaic (PV) array taken to analyze solar farm where inverter is required to convert power from DC to AC since electricity generated through solar PV is in the form of DC. Stability and reliability of the system is very important when the system is grid connected. Harmonics is the major Power quality issue which degrades the quality of power at load side. Harmonics in hybrid system arise through the use of power conversion unit. The other causes of harmonics are fluctuation in wind speed and solar irradiance. The power delivered to grid must be free from harmonics and within the limits specified by Indian grid codes. In proposed work, harmonic analysis of the hybrid system is performed in Electrical Transient Analysis program (ETAP) and single tuned harmonic filter is designed to maintain the utility grid harmonics within limits.

  18. System Identification for the Clipper Liberty C96 Wind Turbine

    Science.gov (United States)

    Showers, Daniel

    System identification techniques are powerful tools that help improve modeling capabilities of real world dynamic systems. These techniques are well established and have been successfully used on countless systems in many areas. However, wind turbines provide a unique challenge for system identification because of the difficulty in measuring its primary input: wind. This thesis first motivates the problem by demonstrating the challenges with wind turbine system identification using both simulations and real data. It then suggests techniques toward successfully identifying a dynamic wind turbine model including the notion of an effective wind speed and how it might be measured. Various levels of simulation complexity are explored for insights into calculating an effective wind speed. In addition, measurements taken from the University of Minnesota's Clipper Liberty C96 research wind turbine are used for a preliminary investigation into the effective wind speed calculation and system identification of a real world wind turbine.

  19. Braking System for Wind Turbines

    Science.gov (United States)

    Krysiak, J. E.; Webb, F. E.

    1987-01-01

    Operating turbine stopped smoothly by fail-safe mechanism. Windturbine braking systems improved by system consisting of two large steel-alloy disks mounted on high-speed shaft of gear box, and brakepad assembly mounted on bracket fastened to top of gear box. Lever arms (with brake pads) actuated by spring-powered, pneumatic cylinders connected to these arms. Springs give specific spring-loading constant and exert predetermined load onto brake pads through lever arms. Pneumatic cylinders actuated positively to compress springs and disengage brake pads from disks. During power failure, brakes automatically lock onto disks, producing highly reliable, fail-safe stops. System doubles as stopping brake and "parking" brake.

  20. The design and stability determination of wind turbine tower

    International Nuclear Information System (INIS)

    Abas Abd Wahab; Khairul Barriyah

    2001-01-01

    In wind turbine tower design, two load categories (static and wind load) were considered. The static load for this structure is the tower self-weight, which can be calculated from its density and area of the material, whereas the wind load was calculated based on CP3: Chapter V: Part 2: 1972, using the maximum wind speed of 30 m/s. The stability of this tower under the action of these two loads has been determined using RISA-3D program. The program were subjected to two joint types, i.e pinned and fixed joints. The tower using fixed joint members has established the necessary tower stability. The simulation, calculation and results are being discussed in detail in this paper. (Author)

  1. Structured Control of LPV Systems with Application to Wind Turbines

    OpenAIRE

    Adegas, Fabiano Daher; Stoustrup, Jakob

    2012-01-01

    This paper deals with structured control of linear parameter varying systems (LPV) with application to wind turbines. Instead of attempting to reduce the problem to linear matrix inequalities (LMI), we propose to design the controllersvia an LMI-based iterative algorithm. The proposed algorithm can synthesize structured controllers like decentralized, static output and reduced order output feedback for discrete-time LPV systems. Based on a coordinate decent, it relies on a sufficient matrix i...

  2. Overview and Design of self-acting pitch control mechanism for vertical axis wind turbine using multi body simulation approach

    International Nuclear Information System (INIS)

    Chougule, Prasad; Nielsen, Søren

    2014-01-01

    Awareness about wind energy is constantly growing in the world. Especially a demand for small scale wind turbine is increasing and various products are available in market. There are mainly two types of wind turbines, horizontal axis wind turbine and vertical axis wind turbines. Horizontal axis wind turbines are suitable for high wind speed whereas vertical axis wind turbines operate relatively low wind speed area. Vertical axis wind turbines are cost effective and simple in construction as compared to the horizontal axis wind turbine. However, vertical axis wind turbines have inherent problem of self-start inability and has low power coefficient as compare to the horizontal axis wind turbine. These two problems can be eliminated by incorporating the blade pitching mechanism. So, in this paper overview of various pitch control systems is discussed and design of self-acting pitch mechanism is given. A pitch control linkage mechanism for vertical axis wind turbine is modeled by multi-body approach using MSC Software. Aerodynamic loads are predicted from a mathematical model based on double multiple stream tube method. An appropriate airfoil which works at low Reynolds number is selected for blade design. It is also focused on commercialization of the vertical axis wind turbine which incorporates the self-acting pitch control system. These aerodynamic load model will be coupled with the multi-body model in future work for optimization of the pitch control linkage mechanism. A 500 Watt vertical axis wind turbine is designed and it is planned to implement the self-acting pitch control mechanism in real model

  3. Wind Turbine and Wind Power Plant Modelling Aspects for Power System Stability Studies

    DEFF Research Database (Denmark)

    Altin, Müfit; Hansen, Anca Daniela; Göksu, Ömer

    2014-01-01

    is not reasonable regarding the focus of the study. Therefore the power system operators should be aware of the modelling aspects of the wind power considering the related stability study and implement the required model in the appropriate power system toolbox. In this paper, the modelling aspects of wind turbines...... and wind power plants are reviewed for power system stability studies. Important remarks of the models are presented by means of simulations to emphasize the impact of these modelling details on the power system.......Large amount of wind power installations introduce modeling challenges for power system operators at both the planning and operational stages of power systems. Depending on the scope of the study, the modeling details of the wind turbine or the wind power plant are required to be different. A wind...

  4. Modeling & power management of standalone PV-Wind Hybrid energy system for remote location

    Science.gov (United States)

    Shawon, M. J. A.

    This thesis mainly focuses on a novel design of a standalone PV-Wind hybrid energy system for remote locations where grid extension is not feasible or is expensive. The Hybrid PV-Wind standalone energy system shows higher reliability compared to Wind or PV standalone systems as wind and solar are complementary. A Matlab/Simulink model of an integrated standalone PV-Wind hybrid system using a battery for storage and backup protection is presented. The individual component of the system is discussed and modeled. A novel and unique control strategy is designed and simulated to control the power flow of the system while maintaining the battery charging and discharging limit. In addition, different converter design and maximum power point tracking control are applied to ensure efficient and reliable power supply under various atmospheric and loading conditions.

  5. Biomimetic Wind Turbine Design with Lift Enhancing Periodic Stall

    NARCIS (Netherlands)

    Stamhuis, Eize Jan

    2017-01-01

    A wind turbine includes a rotor; a blade; and a periodic stall system. The periodic stall system selectively moves at least part of the blade in an oscillating motion whereby an angle of incidence continuously varies to invoke periodic stall. The periodic stall system can move the entire blade or

  6. IEA Wind Task 37: Systems Modeling Framework and Ontology for Wind Turbines and Plants

    Energy Technology Data Exchange (ETDEWEB)

    Dykes, Katherine L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zahle, Frederik [Technical University of Denmark; Merz, Karl [SINTEF Energy Research; McWilliam, Mike [Technical University of Denmark; Bortolotti, Pietro [Technical University Munich

    2017-08-14

    This presentation will provide an overview of progress to date in the development of a system modeling framework and ontology for wind turbines and plants as part of the larger IEA Wind Task 37 on wind energy systems engineering. The goals of the effort are to create a set of guidelines for a common conceptual architecture for wind turbines and plants so that practitioners can more easily share descriptions of wind turbines and plants across multiple parties and reduce the effort for translating descriptions between models; integrate different models together and collaborate on model development; and translate models among different levels of fidelity in the system.

  7. Wind tunnel testing of the DeepWind demonstrator in design and tilted operating conditions

    DEFF Research Database (Denmark)

    Battistia, L.; Benini, E.; Brighenti, A.

    2016-01-01

    was installed on a high precision test bench, whose axis was suitable to be inclined up to 15° with respect to the design (i.e. upright) operating condition. The experiments were performed at the large scale, high speed wind tunnel of the Politecnico di Milano (Italy), using a “free jet” (open channel...

  8. Superconducting Coil Winding Machine Control System

    Energy Technology Data Exchange (ETDEWEB)

    Nogiec, J. M. [Fermilab; Kotelnikov, S. [Fermilab; Makulski, A. [Fermilab; Walbridge, D. [Fermilab; Trombly-Freytag, K. [Fermilab

    2016-10-05

    The Spirex coil winding machine is used at Fermilab to build coils for superconducting magnets. Recently this ma-chine was equipped with a new control system, which al-lows operation from both a computer and a portable remote control unit. This control system is distributed between three layers, implemented on a PC, real-time target, and FPGA, providing respectively HMI, operational logic and direct controls. The system controls motion of all mechan-ical components and regulates the cable tension. Safety is ensured by a failsafe, redundant system.

  9. Modular Approach of Dynamic Modeling of Type - 3 Wind Energy Conversion Systems

    OpenAIRE

    Rani M, Deepthi; Kumar M, Satyendra

    2017-01-01

    Modular approach towards type 3 Wind Energy Conversion System (WECS) is presented in this paper. This consists of design, dynamic modeling, simulation and stability analysis of wind power system which includes Wind Turbine (WT), Doubly Fed Induction Generator (DFIG) and advanced AC/DC/AC power converters. The dq reference frame is used to obtain the equivalent circuit of the DFIG. MATLAB Simulink has been used as the tool to evaluate the stability analysis of the WECS. It is proved that the...

  10. Self-Powered Wind Sensor System for Detecting Wind Speed and Direction Based on a Triboelectric Nanogenerator.

    Science.gov (United States)

    Wang, Jiyu; Ding, Wenbo; Pan, Lun; Wu, Changsheng; Yu, Hua; Yang, Lijun; Liao, Ruijin; Wang, Zhong Lin

    2018-04-02

    The development of the Internet of Things has brought new challenges to the corresponding distributed sensor systems. Self-powered sensors that can perceive and respond to environmental stimuli without an external power supply are highly desirable. In this paper, a self-powered wind sensor system based on an anemometer triboelectric nanogenerator (a-TENG, free-standing mode) and a wind vane triboelectric nanogenerator (v-TENG, single-electrode mode) is proposed for simultaneously detecting wind speed and direction. A soft friction mode is adopted instead of a typical rigid friction for largely enhancing the output performance of the TENG. The design parameters including size, unit central angle, and applied materials are optimized to enhance sensitivity, resolution, and wide measurement scale. The optimized a-TENG could deliver an open-circuit voltage of 88 V and short-circuit current of 6.3 μA, corresponding to a maximum power output of 0.47 mW (wind speed of 6.0 m/s), which is capable of driving electronics for data transmission and storage. The current peak value of the a-TENG signal is used for analyzing wind speed for less energy consumption. Moreover, the output characteristics of a v-TENG are further explored, with six actual operation situations, and the v-TENG delivers fast response to the incoming wind and accurately outputs the wind direction data. As a wind sensor system, wind speed ranging from 2.7 to 8.0 m/s can be well detected (consistent with a commercial sensor) and eight regular directions can be monitored. Therefore, the fabricated wind sensor system has great potential in wireless environmental monitoring applications.

  11. Optimisation of electrical system for offshore wind farms via genetic algorithm

    DEFF Research Database (Denmark)

    Chen, Zhe; Zhao, Menghua; Blaabjerg, Frede

    2009-01-01

    An optimisation platform based on genetic algorithm (GA) is presented, where the main components of a wind farm and key technical specifications are used as input parameters and the electrical system design of the wind farm is optimised in terms of both production cost and system reliability...

  12. Analysis and discussion on anti-thunder scheme of wind power generation system

    Science.gov (United States)

    Sun, Shuguang

    2017-01-01

    Anti-thunder scheme of wind power generation system is discussed in this paper. Through the research and analysis on the harm of the thunder, division of lightning protection zone and lightning protection measures are put forward, which has a certain practical significance on the design and application of wind power generation system.

  13. Isolated systems with wind power. An implementation guideline

    Energy Technology Data Exchange (ETDEWEB)

    Clausen, N.E.; Bindner, H.; Frandsen, S.; Hansen, J.C.; Hansen, L.H.; Lundsager, P.

    2001-06-01

    The overall objective of this research project is to study the development of methods and guidelines rather than 'universal solutions' for the use of wind energy in isolated communities. So far most studies of isolated systems with wind power have been case-oriented and it has proven difficult to extend results from one project to another, not least due to the strong individuality that has characterised such systems in design and implementation. In the present report a unified and generally applicable approach is attempted in order to support a fair assessment of the technical and economical feasibility of isolated power supply systems with wind energy. General guidelines and checklists on which facts and data are needed to carry out a project feasibility analysis are presented as well as guidelines how to carry out the project feasibility study and the environmental analysis. The report outlines the results of the project as a set of proposed guidelines to be applied when developing a project containing an application of wind in an isolated power system. It is the author's hope that this will facilitate the development of projects and enhance electrification of small rural communities in developing countries. (au)

  14. Wind power variability and power system reserves in South Africa

    DEFF Research Database (Denmark)

    Sørensen, Poul Ejnar; Litong-Palima, Marisciel; Hahmann, Andrea N.

    2017-01-01

    Variable renewable generation, primarily from wind and solar, introduces new uncertainties in the operation of power systems. This paper describes and applies a method to quantify how wind power development will affect the use of short-term automatic reserves in the future South African power...... system. The study uses a scenario for wind power development in South Africa, based on information from the South African transmission system operator (Eskom) and the Department of Energy. The scenario foresees 5% wind power penetration by 2025. Time series for wind power production and forecasts...... are simulated, and the duration curves for wind power ramp rates and wind power forecast errors are applied to assess the use of reserves due to wind power variability. The main finding is that the 5% wind power penetration in 2025 will increase the use of short-term automatic reserves by approximately 2%....

  15. Powering the Future: A Wind Turbine Design Challenge

    Science.gov (United States)

    Pries, Caitlin Hicks; Hughes, Julie

    2011-01-01

    Nothing brings out the best in eighth-grade physical science students quite like an engineering challenge. The wind turbine design challenge described in this article has proved to be a favorite among students with its focus on teamwork and creativity and its (almost) sneaky reinforcement of numerous physics concepts. For this activity, pairs of…

  16. Multi-phase alternative current machine winding design | Khan ...

    African Journals Online (AJOL)

    ... single-phase to 18-phase excitation. Experimental results of a five-phase induction machine supplied from a static five-phase supply are provided to support the proposed design. Keywords: AC machine, Multi-phase machine, Stator winding, Five-phase. International Journal of Engineering, Science and Technology, Vol.

  17. Modeling of uncertainties for wind turbine blade design

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Toft, Henrik Stensgaard

    2014-01-01

    Wind turbine blades are designed by a combination of tests and numerical calculations using finite element models of the blade. The blades are typically composite structures with laminates of glass-fiber and/or carbon-fibers glued together by a matrix material. This paper presents a framework...

  18. Aircraft wind tunnel characterisation using modern design of experiments

    CSIR Research Space (South Africa)

    Dias, JF

    2013-04-01

    Full Text Available 2013-1502, 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Boston, Massachusetts, 8-11 April 2013 Aircraft wind tunnel characterisation using modern design of experiments J. F. Dias1 IDMEC - Instituto...

  19. Thermoplastic Composite Wind Turbine Blades : An Integrated Design Approach

    NARCIS (Netherlands)

    Joncas, S.

    2010-01-01

    This thesis proposes a new structural design concept for future large wind turbine blades based on fully recyclable thermoplastic composites (TPC). With respect to material properties, cost and processing, reactively processed anionic polyamide-6 (APA-6) has been identified as the most promising

  20. Models for Numerical Evaluation of Variable Speed Different Wind Generator Systems

    DEFF Research Database (Denmark)

    Li, Hui; Chen, Zhe; Polinder, H.

    2007-01-01

    -effective wind conversion system among the various possible configurations. The aim of this project is to evaluate the suitable cost- effective wind generator systems by using the optimization designs and the numerical comparison. The research report is made of two parts, one focus on the design models......, the analytical models include the wind turbine power characteristics; the single/threestage gearbox and the power electronic converter for possible wind turbine concepts are described. Finally, the electromagnetic design models of the investigated generator topologies are presented, including the squirrel cage...... induction generator (SCIG), the doubly-fed induction generator (DFIG), the electrically excited synchronous generator (EESG) and permanent magnet synchronous generator (PMSG). Numerical evaluation with optimized design and comparison of variable speed wind generator systems by using the presented models...

  1. Photovoltaic-wind hybrid system for permanent magnet DC motor

    Science.gov (United States)

    Nasir, M. N. M.; Lada, M. Y.; Baharom, M. F.; Jaafar, H. I.; Ramani, A. N.; Sulaima, M. F.

    2015-05-01

    Hybrid system of Photovoltaic (PV) - Wind turbine (WT) generation has more advantages and reliable compared to PV or wind turbine system alone. The aim of this paper is to model and design hybrid system of PV-WT supplying 100W permanent-magnet dc motor. To achieve the objective, both of PV and WT are connected to converter in order to get the same source of DC supply. Then both sources were combined and straightly connected to 100W permanent magnet dc motor. All the works in this paper is only applied in circuit simulator by using Matlab Simulink. The output produced from each converter is expected to be suit to the motor specification. The output produced from each renewable energy system is as expected to be high as it can support the motor if one of them is breakdown

  2. LQG Controller Design for Pitch Regulated Variable Speed Wind Turbine

    DEFF Research Database (Denmark)

    Imran, Raja Muhammed; Hussain, Dil Muhammad Akbar; Chen, Zhe

    2014-01-01

    Variable speed wind turbine is a complex and nonlinear system, a sophisticated control is required to meet the challenges posed by these systems. This paper is presenting a pitch regulation strategy based on LQG (Linear Quadratic Gaussian) to regulate turbine at its rated power and to reject...

  3. Isolated systems with wind power. Main report

    Energy Technology Data Exchange (ETDEWEB)

    Lundsager, P.; Bindner, H.; Clausen, N.E.; Frandsen, S.; Hansen, L.H.; Hansen, J.C.

    2001-06-01

    The overall objective of this research project is to study the development of methods and guidelines rather than 'universal solutions' for the use of wind energy in isolated communities. The main specific objective of the project is to develop and present a more unified and generally applicable approach for assessing the technical and economical feasibility of isolated power supply systems with wind energy. As a part of the project the following tasks were carried out: Review of literature, field measurements in Egypt, development of an inventory of small isolated systems, overview of end-user demands, analysis of findings and development of proposed guidelines. The project is reported in one main report and four topical reports, all of them issued as Risoe reports. This is the Main Report Risoe-R-1256, summing up the activities and findings of the project and outlining an Implementation Strategy for Isolated Systems with Wind Power, applicable for international organisations such as donor agencies and development banks. (au)

  4. Controller Design of DFIG Based Wind Turbine by Using Evolutionary Soft Computational Techniques

    Directory of Open Access Journals (Sweden)

    O. P. Bharti

    2017-06-01

    Full Text Available This manuscript illustrates the controller design for a doubly fed induction generator based variable speed wind turbine by using a bioinspired scheme. This methodology is based on exploiting two proficient swarm intelligence based evolutionary soft computational procedures. The particle swarm optimization (PSO and bacterial foraging optimization (BFO techniques are employed to design the controller intended for small damping plant of the DFIG. Wind energy overview and DFIG operating principle along with the equivalent circuit model is adequately discussed in this paper. The controller design for DFIG based WECS using PSO and BFO are described comparatively in detail. The responses of the DFIG system regarding terminal voltage, current, active-reactive power, and DC-Link voltage have slightly improved with the evolutionary soft computational procedure. Lastly, the obtained output is equated with a standard technique for performance improvement of DFIG based wind energy conversion system.

  5. RELIABILITY BASED DESIGN OF FIXED FOUNDATION WIND TURBINES

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, R.

    2013-10-14

    Recent analysis of offshore wind turbine foundations using both applicable API and IEC standards show that the total load demand from wind and waves is greatest in wave driven storms. Further, analysis of overturning moment loads (OTM) reveal that impact forces exerted by breaking waves are the largest contributor to OTM in big storms at wind speeds above the operating range of 25 m/s. Currently, no codes or standards for offshore wind power generators have been adopted by the Bureau of Ocean Energy Management Regulation and Enforcement (BOEMRE) for use on the Outer Continental Shelf (OCS). Current design methods based on allowable stress design (ASD) incorporate the uncertainty in the variation of loads transferred to the foundation and geotechnical capacity of the soil and rock to support the loads is incorporated into a factor of safety. Sources of uncertainty include spatial and temporal variation of engineering properties, reliability of property measurements applicability and sufficiency of sampling and testing methods, modeling errors, and variability of estimated load predictions. In ASD these sources of variability are generally given qualitative rather than quantitative consideration. The IEC 61400‐3 design standard for offshore wind turbines is based on ASD methods. Load and resistance factor design (LRFD) methods are being increasingly used in the design of structures. Uncertainties such as those listed above can be included quantitatively into the LRFD process. In LRFD load factors and resistance factors are statistically based. This type of analysis recognizes that there is always some probability of failure and enables the probability of failure to be quantified. This paper presents an integrated approach consisting of field observations and numerical simulation to establish the distribution of loads from breaking waves to support the LRFD of fixed offshore foundations.

  6. Wind energy systems solutions for power quality and stabilization

    CERN Document Server

    Ali, Mohd Hasan

    2012-01-01

    Unlike conventional power plants, wind plants emit no air pollutants or greenhouse gases--and wind energy is a free, renewable resource. However, the induction machines commonly used as wind generators have stability problems similar to the transient stability of synchronous machines. To minimize power, frequency, and voltage fluctuations caused by network faults or random wind speed variations, control mechanisms are necessary. Wind Energy Systems: Solutions for Power Quality and Stabilization clearly explains how to solve stability and power quality issues of wind generator systems. Covering

  7. Review of Energy Storage System for Wind Power Integration Support

    DEFF Research Database (Denmark)

    Zhao, Haoran; Wu, Qiuwei; Hu, Shuju

    2015-01-01

    -discharging characteristics, Energy Storage System (ESS) is considered as an effective tool to enhance the flexibility and controllability not only of a specific wind farm, but also of the entire grid. This paper reviews the state of the art of the ESS technologies for wind power integration support from different aspects......With the rapid growth of wind energy development and increasing wind power penetration level, it will be a big challenge to operate the power system with high wind power penetration securely and reliably due to the inherent variability and uncertainty of wind power. With the flexible charging...

  8. Effect of wind in the design of reinforced concrete buildings

    Directory of Open Access Journals (Sweden)

    L.S. Tapajós

    Full Text Available ABSTRACT This paper presents the results from a parametric study carried in order to quantify how far errors in the design stage related to the consideration of the wind action may put at risk the response and safety of reinforced concrete buildings. Using an architectural model as reference and varying the number of floors of the building, the structural safety was evaluated as a function of the wind action intensity. Results showed that even for low-rise buildings, with 10 floors, ignoring the wind action can significantly jeopardize their behaviour and safety. Yet, for slenderer buildings, up to 30 floors, it can lead to catastrophic results, as the ruin of the structure by progressive collapse.

  9. Impact of advanced wind power ancillary services on power system

    DEFF Research Database (Denmark)

    Hansen, Anca Daniela; Altin, Müfit

    The objective of this report is to illustrate and analyse, by means of simulation test cases, the impact of wind power advanced ancillary services, like inertial response (IR), power oscillation damping (POD) and synchronising power (SP) on the power system. Generic models for wind turbine, wind...... power plant and power system are used in the investigation....

  10. Intelligent Control for the Variable-Speed Variable-Pitch Wind Energy System

    Directory of Open Access Journals (Sweden)

    M. Heidari

    2017-09-01

    Full Text Available In this paper, a new type of multi-variable compensation control method for the wind energy conversion systems (WECS is presented. Based on wind energy conversion systems, combining artificial neural network (ANN control and PID, a new type of PID NN intelligent controller for steady state torque of the wind generator is designed, by which the steady state torque output is regulated to track the optimal curve of wind power factor and the blade pitch angle is regulated to keep the stable power output. Also, the LPV model of the WECS, LPV compensator for the wind generator is designed to effectively compensate output of the wind generator torque and the blade pitch angle. Finally, simulation models of the control system based on a realistic model of a 8kw wind turbines are built up based on the Dspace platform. The results show that the proposed method can reduce interferences caused by disturbed parameters of the WECS, mechanical shocks of the wind generator speed are reduced while capturing the largest wind energyfluctuation range of wind generator power output is reduced, and the working efficiency of the variable pitch servo system is improved.

  11. Small-Signal Stability of Wind Power System With Full-Load Converter Interfaced Wind Turbines

    DEFF Research Database (Denmark)

    Knüppel, Thyge; Nielsen, Jørgen Nygaard; Jensen, Kim Høj

    2012-01-01

    Small-signal stability analysis of power system oscillations is a well established field within power system analysis, but not much attention has yet been paid to systems with a high penetration of wind turbines and with large wind power plants (WPP). In this paper a comprehensive analysis...... is presented which assesses the impact of full-load converter interfaced wind turbines on power system small-signal stability. The study is based on a 7 generator network with lightly damped inter-area modes. A detailed wind turbine (WT) model with all grid relevant control functions is used in the study...

  12. Structured Control of LPV Systems with Application to Wind Turbines

    DEFF Research Database (Denmark)

    Adegas, Fabiano Daher; Stoustrup, Jakob

    2012-01-01

    This paper deals with structured control of linear parameter varying systems (LPV) with application to wind turbines. Instead of attempting to reduce the problem to linear matrix inequalities (LMI), we propose to design the controllers via an LMI-based iterative algorithm. The proposed algorithm...... can synthesize structured controllers like decentralized, static output and reduced order output feedback for discrete-time LPV systems. Based on a coordinate decent, it relies on a sufficient matrix inequality condition extended with slack variables to an upper bound on the induced L2-norm...... of the closed-loop system. Algorithms for the computation of feasible as well as optimal controllers are presented. The general case where no restrictions are imposed on the parameter dependence is treated here due to its suitability for modeling wind turbines. A comprehensive numerical example of a gain...

  13. Technical analysis of photovoltaic/wind systems with hydrogen storage

    Directory of Open Access Journals (Sweden)

    Bakić Vukman V.

    2012-01-01

    Full Text Available The technical analysis of a hybrid wind-photovoltaic energy system with hydrogen gas storage was studied. The market for the distributed power generation based on renewable energy is increasing, particularly for the standalone mini-grid applications. The main design components of PV/Wind hybrid system are the PV panels, the wind turbine and an alkaline electrolyzer with tank. The technical analysis is based on the transient system simulation program TRNSYS 16. The study is realized using the meteorological data for a Typical Metrological Year (TMY for region of Novi Sad, Belgrade cities and Kopaonik national park in Serbia. The purpose of the study is to design a realistic energy system that maximizes the use of renewable energy and minimizes the use of fossil fuels. The reduction in the CO2 emissions is also analyzed in the paper. [Acknowledgment. This paper is the result of the investigations carried out within the scientific project TR33036 supported by the Ministry of Science of the Republic of Serbia.

  14. Economic Operation of Power Systems with Significant Wind Power Penetration

    DEFF Research Database (Denmark)

    Farashbashi-Astaneh, Seyed-Mostafa

    This dissertation addresses economic operation of power systems with high penetration of wind power. Several studies are presented to address the economic operation of power systems with high penetration of variable wind power. The main concern in such power systems is high variability...... and unpredictability. Unlike conventional power plants, the output power of a wind farm is not controllable. This brings additional complexity to operation and planning of wind dominant power systems. The key solution in face of wind power uncertainty is to enhance power system flexibility. The enhanced flexibility......, cooperative wind-storage operation is studied. Lithium-Ion battery units are chosen as storage units. A novel formulation is proposed to investigate optimal operation of a storage unit considering power system balancing conditions and wind power imbalances. An optimization framework is presented to increase...

  15. Inrush Current Simulation of Two Windings Power Transformer using Machine Parameters Estimated by Design Procedure of Winding Structure

    Science.gov (United States)

    Tokunaga, Yoshitaka; Kubota, Kunihiro

    This paper presents estimation techniques of machine parameters for two windings power transformer using design procedure of winding structure. Especially, it is very difficult to obtain machine parameters for transformers in customers' facilities. Using estimation techniques, machine parameters could be calculated from the only nameplate data of these transformers. Subsequently, EMTP-ATP simulation of the inrush current was carried out using machine parameters estimated by design procedure of winding structure and simulation results were reproduced measured waveforms.

  16. Trends in Wind Turbine Generator Systems

    DEFF Research Database (Denmark)

    Polinder, Henk; Ferreira, Jan Abraham; Jensen, Bogi Bech

    2013-01-01

    This paper reviews the trends in wind turbine generator systems. After discussing some important requirements and basic relations, it describes the currently used systems: the constant speed system with squirrel-cage induction generator, and the three variable speed systems with doubly fed...... induction generator (DFIG), with gearbox and fully rated converter, and direct drive (DD). Then, possible future generator systems are reviewed. Hydraulic transmissions are significantly lighter than gearboxes and enable continuously variable transmission, but their efficiency is lower. A brushless DFIG...... is a medium speed generator without brushes and with improved low-voltage ride-through characteristics compared with the DFIG. Magnetic pseudo DDs are smaller and lighter than DD generators, but need a sufficiently low and stable magnet price to be successful. In addition, superconducting generators can...

  17. The Use of Design Models of Wind-Electric Set with a Horizontal Axis of Rotation of the Wind Wheel for Dynamic Calculations at Urban Development

    Directory of Open Access Journals (Sweden)

    Konstantinov Igor

    2016-01-01

    Full Text Available The issues of modern urban development raise a significant question about an environmental cleanliness of progressing cities. Energy sources which are running on fuel cause tremendous harm to the atmosphere. Therefore, special attention is paid to the rational use of natural renewable resources such as wind and solar energy. Wind-electric sets, or wind turbines, are able to work autonomously, which is also important for the development of modern “smart” cities. Currently, the most commonly used design of wind turbines is the system which has the form of a tower of circular cross section (also called pipe, which carries at the upper end a nacelle with wind wheel. When such a system is being designed in urban conditions the wind pulsation and seismic calculations are added to the standard calculations. These added calculations are dynamic loads. It is known that in the process of solution of dynamic tasks design models of various levels of approximation can be used. It occurs due to stages of the design and other factors. The question of errors, which are associated with the use of a dissected, or partitioned, design scheme, raises.

  18. Design of protective inductors for HVDC transmission line within DC grid offshore wind farms

    DEFF Research Database (Denmark)

    Deng, Fujin; Chen, Zhe

    2013-01-01

    This paper presents fault analysis and protective inductors design for an offshore wind farm, where the power collection system in the wind farm and the power transmission link to the grid adopt high-voltage direct-current (HVDC) technology. This paper focuses on dealing with short-circuit faults...... in the HVDC link between the offshore station and the onshore station. The transient characteristics of the transmission system are analyzed in detail. The criteria of selecting protective inductors are proposed to effectively limit the short-circuit current and avoid the damage to the converters. A dc grid...... offshore wind farm is simulated, and the results demonstrate the effectiveness of the proposed protective inductors design....

  19. DISTRIBUTED EXTERNAL SURFACE HARDENING OF CAR DESIGN BY WINDING

    Directory of Open Access Journals (Sweden)

    O. V. Fomin

    2017-04-01

    Full Text Available Purpose. The paper involves coverage of features and results of the research conducted by the authors to determine the feasibility and establishment of pre-stressed-strained state of freight cars by winding in order to improve their strength characteristics. It is also necessary to present the theoretical justification for the effectiveness of the application of this method for car designs and an appropriate example for the tank-car. Methodology. The conducted study is based on an analysis of known works on the subject, mathematical justification and computer modeling. At the calculations of rolling stock components contemporary conventional techniques were used. Findings. Authors found that the winding method for pre-stressed-strained state is effective and appropriate for use in the construction of railway rolling stock and, in particular freight cars. Freight car designs with the pre-stressed-strained state are characterized by a number of strength advantages, among which there is an improvement of the work on the perception of operational loads and resource conservation. Originality. For the first time it is proposed the improvement of bearing capacity of freight car constructions through the creation of its component in the directed stress-strained state. It is also for the first time proposed the use of distributed external surface hardening by the method of winding to create a pre-stress-strained state of structural components of freight cars. The methods for winding designs of freight cars and their implementation were considered. Practical value. The studies developed a number of technical solutions for improving the design of freight cars and tank-container, which has been patented. Corresponding solutions for the tank-car are partially presented. Practical implementation of such solutions will significantly improve the technical, economic and operational performances of car designs.

  20. Preliminary Design of a LSA Aircraft Using Wind Tunnel Tests

    Directory of Open Access Journals (Sweden)

    Norbert ANGI

    2015-12-01

    Full Text Available This paper presents preliminary results concerning the design and aerodynamic calculations of a light sport aircraft (LSA. These were performed for a new lightweight, low cost, low fuel consumption and long-range aircraft. The design process was based on specific software tools as Advanced Aircraft Analysis (AAA, XFlr 5 aerodynamic and dynamic stability analysis, and Catia design, according to CS-LSA requirements. The calculations were accomplished by a series of tests performed in the wind tunnel in order to assess experimentally the aerodynamic characteristics of the airplane.

  1. Electricity generating system. [Wind/diesel/flywheel system

    Energy Technology Data Exchange (ETDEWEB)

    Moody, R.L.

    1992-02-05

    An electricity generating system is described which includes a water tank with electric heating elements connected to the water cooling system of a diesel engine which is heated by excess output of the system. Power in excess of that required by a load which is generated by a wind turbine driven generator runs up a flywheel and further excess is absorbed in the tank. A fan associated with a radiator connected to the tank may be operated to dissipate further excess power. When the load requirements exceed the output of the generators linked to the wind turbine and the flywheel the engine operates a synchronous alternator. (author).

  2. Structural design optimization of a morphing trailing edge flap for wind turbine blades

    DEFF Research Database (Denmark)

    Barlas, Athanasios; Lin, Yu-Huan; Aagaard Madsen, Helge

    A flap actuation system, the Controllable Rubber Trailing Edge Flap (CRTEF), for distributed load control on a wind turbine blade had been developed in the period from 2006 to 2013 at DTU (http://www.induflap.dk/). The purpose of the presented work is to optimize the structural design of the flex...

  3. Application of genetic algorithm in electrical system optimization for offshore wind farms

    DEFF Research Database (Denmark)

    Chen, Zhe; Zhao, M.; Blaabjerg, Frede

    2008-01-01

    Genetic Algorithm (GA) has been widely used in solving optimization problem in different areas. This paper illustrates the application of GA in the electrical system design for offshore wind farms, where the main components of a wind farm and key technical specifications are used as input...

  4. Building 865 Hypersonic Wind Tunnel Power System Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Larry X. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-02-01

    This report documents the characterization and analysis of a high current power supply for the building 865 Hypersonic Wind Tunnel at Sandia National Laboratories. The system described in this report became operational in 2013, replacing the original 1968 system which employed an induction voltage regulator. This analysis and testing was completed to help the parent organization understand why an updated and redesigned power system was not delivering adequate power to resistive heater elements in the HWT. This analysis led to an improved understanding of the design and operation of the revised 2013 power supply system and identifies several reasons the revised system failed to achieve the performance of the original power supply installation. Design modifications to improve the performance of this system are discussed.

  5. Design and development of an experimental six component wind tunnel block balance using optical fibre sensors.

    CSIR Research Space (South Africa)

    De Ponte, JD

    2014-05-01

    Full Text Available In order to meet the increasingly stringent requirements for wind tunnel balances, as expressed by the wind tunnel testing community, balance design philosophy needs to be further expanded to include alternative sensor, material, design...

  6. Microcontroller-based data logging instrumentation system for wind ...

    African Journals Online (AJOL)

    The collected data were transmitted to a PC through an RS-232 serial interface, and were processed using the 208W Data logger support software. Wind speed and direction measured by the microcontroller-based data logging system were analyzed using line graphs, scatter correlation charts and wind roses. Wind speeds ...

  7. Overall Optimization for Offshore Wind Farm Electrical System

    DEFF Research Database (Denmark)

    Hou, Peng; Hu, Weihao; Chen, Cong

    2017-01-01

    Based on particle swarm optimization (PSO), an optimization platform for offshore wind farm electrical system (OWFES) is proposed in this paper, where the main components of an offshore wind farm and key technical constraints are considered as input parameters. The offshore wind farm electrical s...

  8. Partial Safety Factors for Fatigue Design of Wind Turbine Blades

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Sørensen, John Dalsgaard

    2010-01-01

    In the present paper calibration of partial safety factors for fatigue design of wind turbine blades is considered. The stochastic models for the physical uncertainties on the material properties are based on constant amplitude fatigue tests and the uncertainty on Miners rule for linear damage ac...... of the partial safety factors depending on the level of model and statistical uncertainty. This could be useful for manufactures that perform additional measurements or calculations in order to bring down the model and statistical uncertainties....

  9. Small Wind Electric Systems: A South Dakota Consumer's Guide

    International Nuclear Information System (INIS)

    O'Dell, K.

    2001-01-01

    The South Dakota Consumer's Guide for Small Wind Electric Systems provides consumers with enough information to help them determine if a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include: how to make your home more energy efficient, how to choose the right size turbine, the parts of a wind electric system, determining if there is enough wind resource on your site, choosing the best site for your turbine, connecting your system to the utility grid, and if it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a state wind resource map and a list of state incentives and state contacts for more information

  10. Small Wind Electric Systems: An Illinois Consumer's Guide

    International Nuclear Information System (INIS)

    O'Dell, K.

    2001-01-01

    The Illinois Consumer's Guide for Small Wind Electric Systems provides consumers with enough information to help them determine if a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include: how to make your home more energy efficient, how to choose the right size turbine, the parts of a wind electric system, determining if there is enough wind resource on your site, choosing the best site for your turbine, connecting your system to the utility grid, and if it's possible to become independent of the utility grid using wind energy. The cover of the guide contains a wind resource map for Illinois and a list of state incentives and state contacts for more information

  11. Aerodynamics and Optimal Design of Biplane Wind Turbine Blades

    Science.gov (United States)

    Chiu, Phillip

    In order to improve energy capture and reduce the cost of wind energy, in the past few decades wind turbines have grown significantly larger. As their blades get longer, the design of the inboard region (near the blade root) becomes a trade-off between competing structural and aerodynamic requirements. State-of-the-art blades require thick airfoils near the root to efficiently support large loads inboard, but those thick airfoils have inherently poor aerodynamic performance. New designs are required to circumvent this design compromise. One such design is the "biplane blade", in which the thick airfoils in the inboard region are replaced with thinner airfoils in a biplane configuration. This design was shown previously to have significantly increased structural performance over conventional blades. In addition, the biplane airfoils can provide increased lift and aerodynamic efficiency compared to thick monoplane inboard airfoils, indicating a potential for increased power extraction. This work investigates the fundamental aerodynamic aspects, aerodynamic design and performance, and optimal structural design of the biplane blade. First, the two-dimensional aerodynamics of biplanes with relatively thick airfoils are investigated, showing unique phenomena which arise as a result of airfoil thickness. Next, the aerodynamic design of the full biplane blade is considered. Two biplane blades are designed for optimal aerodynamic loading, and their aerodynamic performance quantified. Considering blades with practical chord distributions and including the drag of the mid-blade joint, it is shown that biplane blades have comparable power output to conventional monoplane designs. The results of this analysis also show that the biplane blades can be designed with significantly less chord than conventional designs, a characteristic which enables larger blade designs. The aerodynamic loads on the biplane blades are shown to be increased in gust conditions and decreased under

  12. Communications for Coordinative Control of Wind Power Systems

    DEFF Research Database (Denmark)

    Wei, Mu

    system control strategies for wind power integration, in order to achieve coordinative control for a secure and efficient power system. The project basically contains three main aspects: studies on DGS (Distributed Generation System) characteristics, analysis of communication technologies...... (Fixed Speed Induction Generator) and DFIG (Doubly-Fed Induction Generator) based wind turbine systems. Based on the study, the critical points to stabilize FSWTs (Fixed Speed Wind Turbines), after disturbances, are determined. This demands the latency requirements on the possible control and protection...

  13. Hydrogen Production from Optimal Wind-PV Energies Systems

    International Nuclear Information System (INIS)

    T Tafticht; K Agbossou

    2006-01-01

    Electrolytic hydrogen offers a promising alternative for long-term energy storage of renewable energies (RE). A stand-alone RE system based on hydrogen production has been developed at the Hydrogen Research Institute and successfully tested for automatic operation with designed control devices. The system is composed of a wind turbine, a photovoltaic (PV) array, an electrolyzer, batteries for buffer energy storage, hydrogen and oxygen storage tanks, a fuel cell, AC and DC loads, power conditioning devices and different sensors. The long-term excess energy with respect to load demand has been sent to the electrolyser for hydrogen production and then the fuel cell has utilised this stored hydrogen to produce electricity when there were insufficient wind and solar energies with respect to load requirements. The RE system components have substantially different voltage-current characteristics and they are integrated on the DC bus through power conditioning devices for optimal operation by using the developed Maximum Power Point Tracking (MPPT) control method. The experimental results show that the power gain obtained by this method clearly increases the hydrogen production and storage rate from wind-PV systems. (authors)

  14. Electrical system studies for the grid connection of wind farms

    International Nuclear Information System (INIS)

    Arp, K.; Hanson, J.; Hopp, S.; Zimmermann, W.

    2007-01-01

    Wind power is gaining momentum in the world's energy balance. Several issues have to be addressed whenever power-generating devices are connected to the grid. The paper describes studies needed to evaluate the influence of wind farms on the connected transmission system and how faults in the system impact on induction generators in a wind farm. Some generalized results of studies for an offshore wind farm in the North Sea and a Bulgarian wind farm show how studies can influence the layout of the internal network and the electrical equipment. (authors)

  15. Designing information systems

    CERN Document Server

    Blethyn, Stanley G

    2014-01-01

    Designing Information Systems focuses on the processes, methodologies, and approaches involved in designing information systems. The book first describes systems, management and control, and how to design information systems. Discussions focus on documents produced from the functional construction function, users, operators, analysts, programmers and others, process management and control, levels of management, open systems, design of management information systems, and business system description, partitioning, and leveling. The text then takes a look at functional specification and functiona

  16. Isolated systems with wind power. An implementation guideline

    DEFF Research Database (Denmark)

    Clausen, Niels-Erik; Bindner, Henrik W.; Frandsen, Sten Tronæs

    2001-01-01

    to extend results from one project to another, not least due to the strong individuality that has characterised such systems in design and implementation. In the present report a unified and generally applicableapproach is attempted in order to support a fair assessment of the technical and economical...... feasibility of isolated power supply systems with wind energy. General guidelines and checklists on which facts and data are needed to carry out a projectfeasibility analysis are presented as well as guidelines how to carry out the project feasibility study and the environmental analysis. The report outlines...

  17. High wind warning system for Bordeaux, Wyoming.

    Science.gov (United States)

    2010-07-01

    "The state of Wyoming has frequent severe wind conditions, particularly in the southeast corner of the state along Interstate : 80 and Interstate 25. The high winds are problematic in many ways including, interfering with the performance of the : tra...

  18. Application of aeroacoustic models to design of wind turbine rotors

    Energy Technology Data Exchange (ETDEWEB)

    Fuglsang, P.; Madsen, H.A. [Risoe National Lab., Wind Energy and Atmospheric Physics Dept., Roskilde (Denmark)

    1997-12-31

    A design method is presented for wind turbine rotors. The design process is split into overall design of the rotor and detailed design of the blade tip. A numerical optimization tool is used together with a semi-empirical noise prediction code for overall rotor design. The noise prediction code is validated with measurements and good agreement is obtained both on the total noise emission and on the sensitivity to wind speed, tip pitch angle and tip speed. A design study for minimum noise emission for a 300 kW rotor shows that the total sound power level can be reduced by 3 dB(A) without loss in energy production and the energy production can be increased by 2% without increase in the total noise. Detailed CFD calculations are subsequently done to resolve the blade tip flow. The characteristics of the general flow and the tip vortex are found, and the relevant parameters for the aeroacoustic models are derived for a sharp rectangular tip. (au) 16 refs.

  19. Future on Power Electronics for Wind Turbine Systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Ma, Ke

    2013-01-01

    generators, power electronic systems, and control solutions have to be introduced to improve the characteristics of the wind power plant and make it more suitable to be integrated into the power grid. Meanwhile, there are also some emerging technology challenges, which need to be further clarified...... and investigated. This paper gives an overview and discusses some development trends in the technologies used for wind power systems. First, the developments of technology and market are generally discussed. Next, several state-of-the-art wind turbine concepts, as well as the corresponding power electronic......Wind power is still the most promising renewable energy in the year of 2013. The wind turbine system (WTS) started with a few tens of kilowatt power in the 1980s. Now, multimegawatt wind turbines are widely installed even up to 6-8 MW. There is a widespread use of wind turbines in the distribution...

  20. Short-Term Wind Speed Forecasting for Power System Operations

    KAUST Repository

    Zhu, Xinxin

    2012-04-01

    The emphasis on renewable energy and concerns about the environment have led to large-scale wind energy penetration worldwide. However, there are also significant challenges associated with the use of wind energy due to the intermittent and unstable nature of wind. High-quality short-term wind speed forecasting is critical to reliable and secure power system operations. This article begins with an overview of the current status of worldwide wind power developments and future trends. It then reviews some statistical short-term wind speed forecasting models, including traditional time series approaches and more advanced space-time statistical models. It also discusses the evaluation of forecast accuracy, in particular, the need for realistic loss functions. New challenges in wind speed forecasting regarding ramp events and offshore wind farms are also presented. © 2012 The Authors. International Statistical Review © 2012 International Statistical Institute.

  1. Optimization of Electrical System for Offshore Wind Farms via a Genetic Algorithm Approach

    DEFF Research Database (Denmark)

    Zhao, Menghua

    Offshore wind farms seem to be more attractive than onshore farms. However, offshore wind farms cost more money than onshore wind farms in both installation and maintenance. Due to the fast development of power electronics, more kinds of configurations of offshore wind farm are possible, which lead...... to very different costs, system reliability, power quality, and power losses etc. Therefore, the optimization of electrical system design for offshore wind farms becomes more and more necessary. There are two tasks in this project: 1) the first one is to construct an algorithm for finding the capacity......, and the LTC limitation of transformers, the power generation limits and the voltage operation range are considered as the constraints. The optimization method combined with probabilistic analysis is used to obtain the capacity of a given wind farm site. The OES-OWF is approached by Genetic Algorithm (GA...

  2. A Review of Methods to Increase the Availability of Wind Turbine Generator Systems

    NARCIS (Netherlands)

    Shipurkar, U.; Polinder, H.; Ferreira, J.A.

    2016-01-01

    Availability is an important factor to be considered when designing wind turbine generator systems. The quest for increasing availability is based on the following five design approaches - design for component reliability, active control for reliability, design for fault tolerance, prognostics, and

  3. Novel tubular switched reluctance motor with double excitation windings: Design, modeling, and experiments

    Science.gov (United States)

    Yan, Liang; Li, Wei; Jiao, Zongxia; Chen, I.-Ming

    2015-12-01

    The space utilization of linear switched reluctance machine is relatively low, which unavoidably constrains the improvement of system output performance. The objective of this paper is to propose a novel tubular linear switched reluctance motor with double excitation windings. The employment of double excitation helps to increase the electromagnetic force of the system. Furthermore, the installation of windings on both stator and mover can make the structure more compact and increase the system force density. The design concept and operating principle are presented. Following that, the major structure parameters of the system are determined. Subsequently, electromagnetic force and reluctance are formulated analytically based on equivalent magnetic circuits, and the result is validated with numerical computation. Then, a research prototype is developed, and experiments are conducted on the system output performance. It shows that the proposed design of electric linear machine can achieve higher thrust force compared with conventional linear switched reluctance machines.

  4. Combined preliminary–detailed design of wind turbines

    Directory of Open Access Journals (Sweden)

    P. Bortolotti

    2016-05-01

    Full Text Available This paper is concerned with the holistic optimization of wind turbines. A multi-disciplinary optimization procedure is presented that marries the overall sizing of the machine in terms of rotor diameter and tower height (often termed “preliminary design” with the detailed sizing of its aerodynamic and structural components. The proposed combined preliminary–detailed approach sizes the overall machine while taking into full account the subtle and complicated couplings that arise due to the mutual effects of aerodynamic and structural choices. Since controls play a central role in dictating performance and loads, control laws are also updated accordingly during optimization. As part of the approach, rotor and tower are sized simultaneously, even in this case capturing the mutual effects of one component over the other due to the tip clearance constraint. The procedure, here driven by detailed models of the cost of energy, results in a complete aero-structural design of the machine, including its associated control laws. The proposed methods are tested on the redesign of two wind turbines, a 2.2 MW onshore machine and a large 10 MW offshore one. In both cases, the optimization leads to significant changes with respect to the initial baseline configurations, with noticeable reductions in the cost of energy. The novel procedures are also exercised on the design of low-induction rotors for both considered wind turbines, showing that they are typically not competitive with conventional high-efficiency rotors.

  5. Uncertainty and Risk Assessment in the Design Process for Wind

    Energy Technology Data Exchange (ETDEWEB)

    Damiani, Rick R. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2018-02-09

    This report summarizes the concepts and opinions that emerged from an initial study on the subject of uncertainty in wind design that included expert elicitation during a workshop held at the National Wind Technology Center at the National Renewable Energy Laboratory July 12-13, 2016. In this paper, five major categories of uncertainties are identified. The first category is associated with direct impacts on turbine loads, (i.e., the inflow including extreme events, aero-hydro-servo-elastic response, soil-structure inter- action, and load extrapolation). The second category encompasses material behavior and strength. Site suitability and due-diligence aspects pertain to the third category. Calibration of partial safety factors and optimal reliability levels make up the fourth one. And last but not least, is the category associated with uncertainties in computational modeling. The main sections of this paper follow this organization.

  6. Winding mandrel design for the wide cable SSC dipole

    International Nuclear Information System (INIS)

    Morgan, G.H.; Greene, A.; Jochen, G.; Morgillo, A.

    1990-01-01

    The 50 mm coil i.d. SSC dipole magnets use wider cables to give a greater operational margin between quench field and operating field. The cable used for the inner coil has 30 strands of the same size (0.808 mm) instead of 23 and the outer has 36 strands of the same size (0.648 mm) instead of 30 and the cable widths are increased in proportion. Although the coil inner diameter has been increased from 40 mm, the coil ends are noticeably harder to wind. This report describes the computational and experimental effort to design winding mandrels or center posts for the constant-perimeter ends. 1 ref., 2 figs., 2 tabs

  7. Stability and Control of Wind Farms in Power Systems

    DEFF Research Database (Denmark)

    Jauch, Clemens

    The Ph.D. project ‘Stability and Control of Wind Farms in Power Systems' deals with some selected problems related to wind power in power systems. With increasing wind power penetration, wind turbines substitute the power production of conventional power plants. Therefore, wind turbines also have...... to take over the power system stabilisation and control tasks, that were traditionally carried out by conventional power plants. Out of the many aspects related to this problem, this project focuses on transient fault ride-through and power system stabilisation. The selection of turbine types considered...... that were in force, or published as drafts, at the time, and scientific literature related to the topic, are studied. The project is based on simulations of wind turbines in a power system simulations tool. Some of the models used in this project were readily available prior to the project; the development...

  8. Analysis of performance of wind systems holding centrifugal pumps; Analise do desempenho de sistemas eolicos comportando bombas centrifugas

    Energy Technology Data Exchange (ETDEWEB)

    Silva, S.R. [Minas Gerais Univ., Belo Horizonte, MG (Brazil). Dept. de Engenharia Eletrica; Araujo, T.S.; Simoes, F.J. [Paraiba Univ., Campina Grande, PB (Brazil). Nucleo de Energia

    1987-12-31

    Early studies have indicated an improved efficiency in Wind Energy Conversion Systems (WECS) to pumping water using centrifugal pumps supplied by wind generators with intermediate electrical power transmission. In these cases, the good matching between the wind rotor and the pump is added by some control strategies that provide stability and efficiency. In this work, the design aspects are discussed and some control strategies are analysed. The useful wind power, the output flow and overall efficiency are determined as function of wind velocity and the behavior of WECS is evaluated considering the local wind probability distribution. (author). 7 refs., 7 figs

  9. Backup Mechanical Brake System of the Wind Turbine

    Science.gov (United States)

    Sirotkin, E. A.; Solomin, E. V.; Gandzha, S. A.; Kirpichnikova, I. M.

    2018-01-01

    Paper clarifies the necessity of the emergency mechanical brake systems usage for wind turbines. We made a deep analysis of the wind turbine braking methods available on the market, identifying their strengths and weaknesses. The electromechanical braking appeared the most technically reasonable and economically attractive. We described the developed combined electromechanical brake system for vertical axis wind turbine driven from electric drive with variable torque enough to brake over the turbine even on the storm wind speed up to 45 m/s. The progress was made due to the development of specific kinematic brake system diagram and intelligent control system managed by special operation algorithm.

  10. Dynamic wind turbine models in power system simulation tool

    DEFF Research Database (Denmark)

    Hansen, Anca D.; Iov, Florin; Sørensen, Poul

    This report presents a collection of models and control strategies developed and implemented in the power system simulation tool PowerFactory DIgSILENT for different wind turbine concepts. It is the second edition of Risø-R-1400(EN) and it gathers and describes a whole wind turbine model database...... speed doubly-fed induction generator wind turbine concept 3. Variable speed multi-pole permanent magnet synchronous generator wind turbine concept These wind turbine concept models can be used and even extended for the study of different aspects, e.g. the assessment of power quality, control strategies......, connection of the wind turbine at different types of grid and storage systems. Different control strategies have been developed and implemented for these wind turbine concepts, their performance in normal or fault operation being assessed and discussed by means of simulations. The described control...

  11. Optimal Control of a Wind Farm Group Using the WindEx System

    Directory of Open Access Journals (Sweden)

    Piotr Kacejko

    2014-09-01

    Full Text Available The aim of this paper is to present achievements obtained in implementing the framework project N R01 0021 06 in the Power System Department of Lublin University of Technology. The result of the work was “A system of optimal wind farm power control in the conditions of limited transmission capabilities of power networks”, which one of two main modules is a state estimator. The featured wind farm control system was integrated with a SCADA dispatcher system WindEx using the WebSVC service.

  12. Optimal Control of a Wind Farm Group Using the WindEx System

    OpenAIRE

    Piotr Kacejko; Michał Wydra; Robert Jędrychowski

    2014-01-01

    The aim of this paper is to present achievements obtained in implementing the framework project N R01 0021 06 in the Power System Department of Lublin University of Technology. The result of the work was “A system of optimal wind farm power control in the conditions of limited transmission capabilities of power networks”, which one of two main modules is a state estimator. The featured wind farm control system was integrated with a SCADA dispatcher system WindEx using the WebSVC service.

  13. Supplementary Controller Design for SSR Damping in a Series-Compensated DFIG-Based Wind Farm

    Directory of Open Access Journals (Sweden)

    Minqiang Hu

    2012-11-01

    Full Text Available The increasing presence of wind power in power systems will likely drive the integration of large wind farms with electrical networks that are series-compensated to sustain large power flows. This may potentially lead to subsynchronous resonance (SSR issues. In this paper, a supplementary controller on the grid-side converter (GSC control loop is designed to mitigate SSR for wind power systems based on doubly fed induction generators (DFIGs with back-to-back converters. Different supplementary controller feedback signals and modulated-voltage injecting points are proposed and compared based on modal analysis and verified through root locus analysis to identify the optimal feedback signal and the most effective control location for SSR damping. The validity and effectiveness of the proposed supplemental control are demonstrated on the IEEE first benchmark model for computer simulations of SSR by means of time domain simulation analysis using Matlab/Simulink.

  14. Modeling of wind turbines for power system studies

    Energy Technology Data Exchange (ETDEWEB)

    Petru, T.

    2001-05-01

    When wind turbines are installed into the electric grid, the power quality is affected. Today, strict installation recommendations often prevail due to a lack of knowledge on this subject. Consequently, it is important to predict the impact of wind turbines on the electric grid before the turbines are installed. The thesis describes relevant power quality issues, discusses different configurations of wind turbines with respect to power quality and draw requirements regarding wind turbine modeling. A model of a stall-regulated, fixed-speed wind turbine system is introduced and its power quality impact on the electric grid is evaluated. The model is verified with field measurements.

  15. Simulation of interaction between wind farm and power system

    DEFF Research Database (Denmark)

    Sørensen, Poul Ejnar; Hansen, Anca Daniela; Janosi, L.

    2002-01-01

    A dynamic model of the wind farm Hagesholm has been implemented in the dedicated power system simulation program DIgSILENT. The wind farm con- sists of six 2MW NM2000/72 wind turbines from NEG-Micon. The model has been verified using simultaneous powerquality measurements on the 10 kV terminals...... of a single wind turbine and power performance measurements on two wind turbines. The verification shows a generally good agreement between simulations and measurements, although the simulations at higher windspeeds seem to underestimate the power and voltage fluctuations. A way to improve the simulation...

  16. Building Chinese wind data for Wind Erosion Prediction System using surrogate US data

    Science.gov (United States)

    Wind erosion is a global problem, especially in arid and semiarid regions of the world, which leads to land degradation and atmosphere pollution. The process-based Wind Erosion Prediction System (WEPS), developed by the USDA, is capable of simulating the windblown soil loss with changing weather and...

  17. Coordinated Frequency Control of Wind Turbines in Power Systems with High Wind Power Penetration

    DEFF Research Database (Denmark)

    Tarnowski, Germán Claudio

    generation were studied considering a large share of wind power in the system. Results show the abilities of the architectures to manage the variability of the generated wind power, reducing the impact on the grid frequency and providing suitable frequency regulation service when required. The coordination...

  18. Guy cable design and damping for vertical axis wind turbines

    Science.gov (United States)

    Carne, T. G.

    1981-05-01

    Guy cables are frequently used to support vertical axis wind turbines since guying the turbine reduces some of the structural requirements on the tower. The guys must be designed to provide both the required strength and the required stiffness at the top of the turbine. The axial load which the guys apply to the tower, bearings, and foundations is an undesirable consequence of using guys to support the turbine. Limiting the axial load so that it does not significantly affect the cost of the turbine is an important objective of the cable design. The lateral vibrations of the cables is another feature of the cable design which needs to be considered. These aspects of the cable design are discussed, and a technique for damping cable vibrations was mathematically analyzed and demonstrated with experimental data.

  19. Design as if people matter: aesthetic guidelines for the wind industry

    International Nuclear Information System (INIS)

    Gipe, P.

    1995-01-01

    Opinion surveys show that wind has high public support, but a worrisome NIMBY factor. This support erodes once specific projects are proposed. Because support is fragile and can be squandered by ill-conceived projects, the industry must do everything it can to ensure that wind turbines and wind power plants become good neighbours. One means of maximizing acceptance is to incorporate aesthetic guidelines into the design of wind turbines and wind power plants. (Author)

  20. A deflection monitoring system for a wind turbine blade

    DEFF Research Database (Denmark)

    2017-01-01

    A wind turbine blade comprising a system for monitoring the deflection of a wind turbine blade is described. The system comprises a wireless range-measurement system, having at least one wireless communication device located towards the root end of the blade and at least one wireless communication...

  1. Unit Commitment: Computational Performance, System Representation and Wind Uncertainty Management

    NARCIS (Netherlands)

    Morales Espana, G.

    2014-01-01

    In recent years, high penetration of variable generating sources, such as wind power, has challenged independent system operators (ISO) in keeping a cheap and reliable power system operation. Any deviation between expected and real wind production must be absorbed by the power system resources

  2. Reliability analysis of wind embedded power generation system for ...

    African Journals Online (AJOL)

    This paper presents a method for Reliability Analysis of wind energy embedded in power generation system for Indian scenario. This is done by evaluating the reliability index, loss of load expectation, for the power generation system with and without integration of wind energy sources in the overall electric power system.

  3. Rule - based Fault Diagnosis Expert System for Wind Turbine

    Directory of Open Access Journals (Sweden)

    Deng Xiao-Wen

    2017-01-01

    Full Text Available Under the trend of increasing installed capacity of wind power, the intelligent fault diagnosis of wind turbine is of great significance to the safe and efficient operation of wind farms. Based on the knowledge of fault diagnosis of wind turbines, this paper builds expert system diagnostic knowledge base by using confidence production rules and expert system self-learning method. In Visual Studio 2013 platform, C # language is selected and ADO.NET technology is used to access the database. Development of Fault Diagnosis Expert System for Wind Turbine. The purpose of this paper is to realize on-line diagnosis of wind turbine fault through human-computer interaction, and to improve the diagnostic capability of the system through the continuous improvement of the knowledge base.

  4. Mitigation of Power System Oscillation Caused by Wind Power Fluctuation

    DEFF Research Database (Denmark)

    Su, Chi; Hu, Weihao; Chen, Zhe

    2013-01-01

    Wind power is increasingly integrated in modern power grids, which brings new challenges to the power system operation. Wind power is fluctuating because of the uncertain nature of wind, whereas wind shear and tower shadow effects also cause periodic fluctuations. These may lead to serious forced...... oscillation when the frequencies of the periodic fluctuations are close to the natural oscillation frequencies of the connected power system. By using modal analysis and time-domain simulations, this study studies the forced oscillation caused by the wind shear and tower shadow effects. Three forced...... oscillation mitigation controllers are proposed and compared. A model of direct-drive-full-convertor-based wind farm connected to the IEEE 10-machine 39-bus system is adopted as the test system. The calculations and simulations are conducted in DIgSILENT PowerFactory 14.0. Results are presented to show...

  5. A Vertical-Axis Off-Grid Squirrel-Cage Induction Generator Wind Power System

    Directory of Open Access Journals (Sweden)

    Peifeng Xu

    2016-10-01

    Full Text Available In order to broaden the limited utilization range of wind power and improve the charging and discharging control performance of the storage battery in traditional small wind power generation systems, a wind power system based on a vertical-axis off-grid induction generator is proposed in this paper. The induction generator not only can run in a wide wind speed range but can also assist the vertical-axis wind turbine to realize self-starting at low wind speed. Combined with the maximum power point tracking method, the slip frequency control strategy is employed to regulate the pulse width modulation (PWM converter to control the output power of the proposed system when the wind speed and load change. The charge and discharge of the storage battery is realized by the segmented current-limiting control strategy by means of an electric power unloader device connected to the DC bus. All these implement a balanced and stable operation of the proposed power generation system. The experimental research on the 5.5 kW prototype system is developed, and the corresponding results verify the correctness and feasibility of the system design and control strategy. Some comparison experiments with a magnetic suspension permanent magnet synchronous generator (PMSG demonstrate the application prospect of the proposed vertical-axis off-grid induction generator wind power system.

  6. Unit commitment for systems with significant wind penetration

    OpenAIRE

    Tuohy, Aidan; Meibom, Peter; Denny, Eleanor; O'Malley, Mark

    2009-01-01

    PUBLISHED The stochastic nature of wind alters the unit commitment and dispatch problem. By accounting for this uncertainty when scheduling the system, more robust schedules are produced, which should, on average, reduce expected costs. In this paper, the effects of stochastic wind and load on the unit commitment and dispatch of power systems with high levels of wind power are examined. By comparing the costs, planned operation and performance of the schedules produced, it is shown that st...

  7. Concept design and coupled dynamic response analysis on 6-MW spar-type floating offshore wind turbine

    Science.gov (United States)

    Meng, Long; Zhou, Tao; He, Yan-ping; Zhao, Yong-sheng; Liu, Ya-dong

    2017-10-01

    Tower, Spar platform and mooring system are designed in the project based on a given 6-MW wind turbine. Under wind-induced only, wave-induced only and combined wind and wave induced loads, dynamic response is analyzed for a 6-MW Spar-type floating offshore wind turbine (FOWT) under operating conditions and parked conditions respectively. Comparison with a platform-fixed system (land-based system) of a 6-MW wind turbine is carried out as well. Results demonstrate that the maximal out-of-plane deflection of the blade of a Spar-type system is 3.1% larger than that of a land-based system; the maximum response value of the nacelle acceleration is 215% larger for all the designed load cases being considered; the ultimate tower base fore-aft bending moment of the Spar-type system is 92% larger than that of the land-based system in all of the Design Load Cases (DLCs) being considered; the fluctuations of the mooring tension is mainly wave-induced, and the safety factor of the mooring tension is adequate for the 6-MW FOWT. The results can provide relevant modifications to the initial design for the Spar-type system, the detailed design and model basin test of the 6-MW Spar-type system.

  8. Pumped storage in systems with very high wind penetration

    International Nuclear Information System (INIS)

    Tuohy, A.; O'Malley, M.

    2011-01-01

    This paper examines the operation of the Irish power system with very high levels of wind energy, with and without pumped storage. A unit commitment model which accounts for the uncertainty in wind power is used. It is shown that as wind penetration increases, the optimal operation of storage depends on wind output as well as load. The main benefit from storage is shown to be a decrease in wind curtailment. The economics of the system are examined to find the level at which storage justifies its capital costs and inefficiencies. It is shown that the uncertainty of wind makes the option of storage more attractive. The size of the energy store has an impact on results. At lower levels of installed wind (up to approximately 50% of energy from wind in Ireland), the reduction in curtailment is insufficient to justify building storage. At greater levels of wind, storage reduces curtailment sufficiently to justify the additional capital costs. It can be seen that if storage replaces OCGTs in the plant mix instead of CCGTs, then the level at which it justifies itself is lower. Storage increases the level of carbon emissions at wind penetration below 60%. - Research highlights: → Examines operation of pumped storage unit in a system with levels of wind from 34%-68% of energy. → High capital cost of storage is not justified until system has high (approx. 45%) wind penetration. → Results are driven by the amount of wind curtailment avoided and plant mix of system. → Other flexible options (e.g. interconnection) offer many of the same benefits as storage.

  9. Design and Study of a Low-Cost Laboratory Model Digital Wind Power Meter

    Science.gov (United States)

    Radhakrishnan, Rugmini; Karthika, S.

    2010-01-01

    A vane-type low-cost laboratory model anemometer cum power meter is designed and constructed for measuring low wind energy created from accelerating fluids. The constructed anemometer is a device which records the electrical power obtained by the conversion of wind power using a wind sensor coupled to a DC motor. It is designed for its…

  10. DFIG Based Wind Turbines Behavior Improvement during Wind Variations using Fractional Order Control Systems

    Directory of Open Access Journals (Sweden)

    M. Hosseinabadi

    2014-12-01

    Full Text Available This paper is concerned with behavior analysis and improvement of wind turbines with Doubly Fed Induction Generator (DFIG when using a new fractional-order control strategy during wind variations. A doubly fed induction generator, two types of variable frequency power electronic converters and two input wind waveforms are considered. A fractional-order control strategy is proposed for the wind turbine control unit. Output parameters of the wind turbine are drawn by simulations using MATLAB/Simulink for both fractional-order and integer-order (classic control systems and a complete comparison between these two strategies has been presented. Results show a better operation when using fractional-order control system.

  11. Parametric study on off-design aerodynamic performance of a horizontal axis wind turbine blade and proposed pitch control

    International Nuclear Information System (INIS)

    Najafian Ashrafi, Z.; Ghaderi, M.; Sedaghat, A.

    2015-01-01

    Highlights: • A pitch controlled 200 kW HAWT blade is designed with BEM for off-design conditions. • Parametric study conducted on power coefficient, axial and angular induction factors. • The optimal pitch angles were determined at off-design operating conditions. - Abstract: In this paper, a 200 kW horizontal axis wind turbine (HAWT) blade is designed using an efficient iterative algorithm based on the blade element momentum theory (BEM) on aerodynamic of wind turbines. The effects of off-design variations of wind speed are investigated on the blade performance parameters according to constant rotational speed of the rotor. The performance parameters considered are power coefficient, axial and angular induction factors, lift and drag coefficients on the blade, angle of attack and angle of relative wind. At higher or lower wind speeds than the designed rated speed, the power coefficient is reduced due to considerable changes in the angle of attacks. Therefore, proper pitch control angles were calculated to extract maximum possible power at various off-design speeds. The results showed a considerable improvement in power coefficient for the pitch controlled blade as compared with the baseline design in whole operating range. The present approach can be equally employed for determining pitch angles to design pitch control system of medium and large-scale wind turbines

  12. Analysis of chaos in high-dimensional wind power system.

    Science.gov (United States)

    Wang, Cong; Zhang, Hongli; Fan, Wenhui; Ma, Ping

    2018-01-01

    A comprehensive analysis on the chaos of a high-dimensional wind power system is performed in this study. A high-dimensional wind power system is more complex than most power systems. An 11-dimensional wind power system proposed by Huang, which has not been analyzed in previous studies, is investigated. When the systems are affected by external disturbances including single parameter and periodic disturbance, or its parameters changed, chaotic dynamics of the wind power system is analyzed and chaotic parameters ranges are obtained. Chaos existence is confirmed by calculation and analysis of all state variables' Lyapunov exponents and the state variable sequence diagram. Theoretical analysis and numerical simulations show that the wind power system chaos will occur when parameter variations and external disturbances change to a certain degree.

  13. Analysis of chaos in high-dimensional wind power system

    Science.gov (United States)

    Wang, Cong; Zhang, Hongli; Fan, Wenhui; Ma, Ping

    2018-01-01

    A comprehensive analysis on the chaos of a high-dimensional wind power system is performed in this study. A high-dimensional wind power system is more complex than most power systems. An 11-dimensional wind power system proposed by Huang, which has not been analyzed in previous studies, is investigated. When the systems are affected by external disturbances including single parameter and periodic disturbance, or its parameters changed, chaotic dynamics of the wind power system is analyzed and chaotic parameters ranges are obtained. Chaos existence is confirmed by calculation and analysis of all state variables' Lyapunov exponents and the state variable sequence diagram. Theoretical analysis and numerical simulations show that the wind power system chaos will occur when parameter variations and external disturbances change to a certain degree.

  14. Systems and methods for an integrated electrical sub-system powered by wind energy

    Science.gov (United States)

    Liu, Yan [Ballston Lake, NY; Garces, Luis Jose [Niskayuna, NY

    2008-06-24

    Various embodiments relate to systems and methods related to an integrated electrically-powered sub-system and wind power system including a wind power source, an electrically-powered sub-system coupled to and at least partially powered by the wind power source, the electrically-powered sub-system being coupled to the wind power source through power converters, and a supervisory controller coupled to the wind power source and the electrically-powered sub-system to monitor and manage the integrated electrically-powered sub-system and wind power system.

  15. Computational Design Scheme for Wind Turbine Drive-Train Based on Lagrange Multipliers

    Directory of Open Access Journals (Sweden)

    Mohammed Saleh

    2017-01-01

    Full Text Available The design optimization of wind turbines and their subsystems will make them competitive as an ideal alternative for energy. This paper proposed a design procedure for one of these subsystems, which is the Wind Turbine Drive-Train (WTDT. The design of the WTDT is based on the load assumptions and considered as the most significant parameter for increasing the efficiency of energy generation. In industry, these loads are supplemented by expert assumptions and manipulated to design the transmission elements. In contrary, in this work, the multibody system approach is used to estimate the static as well as dynamic loads based on the Lagrange multipliers. Lagrange multipliers are numerical parameters associated with the holonomic and nonholonomic constraints assigned in the drive-train model. The proposed scheme includes computational manipulations of kinematic constraints, mapping the generalized forces into Cartesian respective, and enactment of velocity-based constrains. Based on the dynamic model and the obtained forces, the design process of a planetary stage of WTDT is implemented with trade-off’s optimization in terms of gearing parameters. A wind turbine of 1.4 megawatts is introduced as an evaluation study of the proposed procedure, in which the main advantage is the systematic nature of designing complex systems in motion.

  16. Wind Turbine Generator System Duration Test Report for the Gaia-Wind 11 kW Wind Turbine

    Energy Technology Data Exchange (ETDEWEB)

    Huskey, A.; Bowen, A.; Jager, D.

    2010-09-01

    This test was conducted as part of the U.S. Department of Energy's (DOE) Independent Testing project. This project was established to help reduce the barriers of wind energy expansion by providing independent testing results for small turbines. In total, five turbines are being tested at the National Renewable Energy Laboratory's (NRELs) National Wind Technology Center (NWTC) as a part of this project. Duration testing is one of up to five tests that may be performed on the turbines, including power performance, safety and function, noise, and power quality tests. The results of the testing will provide the manufacturers with reports that may be used for small wind turbine certification. The test equipment includes a Gaia-Wind 11 kW wind turbine mounted on an 18 m monopole tower. Gaia-Wind Ltd. manufactured the turbine in Denmark, although the company is based in Scotland. The system was installed by the NWTC Site Operations group with guidance and assistance from Gaia-Wind.

  17. Power System Operation with Large Scale Wind Power Integration

    DEFF Research Database (Denmark)

    Suwannarat, A.; Bak-Jensen, B.; Chen, Z.

    2007-01-01

    The Danish power system starts to face problems of integrating thousands megawatts of wind power, which produce in a stochastic behavior due to natural wind fluctuations. With wind power capacities increasing, the Danish Transmission System Operator (TSO) is faced with new challenges related...... to the uncertain nature of wind power. In this paper, proposed models of generations and control system are presented which analyze the deviation of power exchange at the western Danish-German border, taking into account the fluctuating nature of wind power. The performance of the secondary control of the thermal...... power plants and the spinning reserves control from the Combined Heat and Power (CHP) units to achieve active power balance with the increased wind power penetration is presented....

  18. Design Preliminaries for Direct Drive under Water Wind Turbine Generator

    DEFF Research Database (Denmark)

    Leban, Krisztina Monika; Ritchie, Ewen; Argeseanu, Alin

    2012-01-01

    This paper focuses on the preliminary design process of a 20 MW electric generator. The application calls for an offshore, vertical axis, direct drive wind turbine. Arguments for selecting the type of electric machine for the application are presented and discussed. Comparison criteria for deciding...... on a type of machine are listed. Additional constraints emerging from the direct drive, vertical axis concepts are considered. General rules and a preliminary algorithm are discussed for the machine selected to be most suitable for the imposed conditions....

  19. Study of integrated optimization design of wind farm in complex terrain

    DEFF Research Database (Denmark)

    Xu, Chang; Chen, Dandan; Han, Xingxing

    2017-01-01

    Aiming at the present stage the micro-site selection of wind farm in complex terrain and the wind turbine layout and other close relationship, and selecting more reasonable wind turbine layout, more online power and saving more investment as the goal, analyzing briefly the main factors influencing...... wind farm design in complex terrain and setting up integrated optimization mathematical model for micro-site selection, power lines and road maintenance design etc.. Based on the existing 1-year wind measurement data in the wind farm area, the genetic algorithm was used to optimize the micro...

  20. FAST modularization framework for wind turbine simulation: full-system linearization

    Science.gov (United States)

    Jonkman, J. M.; Jonkman, B. J.

    2016-09-01

    The wind engineering community relies on multiphysics engineering software to run nonlinear time-domain simulations e.g. for design-standards-based loads analysis. Although most physics involved in wind energy are nonlinear, linearization of the underlying nonlinear system equations is often advantageous to understand the system response and exploit well- established methods and tools for analyzing linear systems. This paper presents the development and verification of the new linearization functionality of the open-source engineering tool FAST v8 for land-based wind turbines, as well as the concepts and mathematical background needed to understand and apply it correctly.

  1. FAST Modularization Framework for Wind Turbine Simulation: Full-System Linearization: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Jonkman, Jason; Jonkman, Bonnie

    2016-11-01

    The wind engineering community relies on multiphysics engineering software to run nonlinear time-domain simulations e.g. for design-standards-based loads analysis. Although most physics involved in wind energy are nonlinear, linearization of the underlying nonlinear system equations is often advantageous to understand the system response and exploit well-established methods and tools for analyzing linear systems. This paper presents the development and verification of the new linearization functionality of the open-source engineering tool FAST v8 for land-based wind turbines, as well as the concepts and mathematical background needed to understand and apply it correctly.

  2. Power Electronics Converters for Wind Turbine Systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Liserre, Marco; Ma, Ke

    2012-01-01

    The steady growth of installed wind power together with the upscaling of the single wind turbine power capability has pushed the research and development of power converters toward full-scale power conversion, lowered cost pr kW, increased power density, and also the need for higher reliability......, in the latter case with attention to series connection and parallel connection either electrical or magnetic ones (multiphase/windings machines/transformers). It is concluded that as the power level increases in wind turbines, medium-voltage power converters will be a dominant power converter configuration...

  3. Control design for two-bladed wind turbines

    NARCIS (Netherlands)

    Van Solingen, E.

    2015-01-01

    In the past decades wind energy has evolved into a mature source of sustainable energy such that onshore wind turbines have become cost competitive with other fossil-based energy sources. Onshore wind energy, however, faces social resistance and a lack of available locations. Offshore wind energy,

  4. Wind power communication design and implementation of test environment for IEC61850/UCA2

    Energy Technology Data Exchange (ETDEWEB)

    Johnsson, A.; Svensson, J.

    2002-04-01

    Elforsk has sponsored a joint Swedish-Danish project aiming at finding and recommend a common solution for communication with wind power plants. The first stage of the work resulted in a requirement specification Functional Requirements on Communication System for Wind Turbine Applications. During the project a number of possible communication solutions were identified. The two most promising solutions have been tested in order to verify to what extent they fulfil the requirements in the specification. A version of the IEC 61850 standard based on the communication protocol MMS, has been tested at a wind power plant at Gotland, Sweden, and an OPC-interface has been tested in Denmark. This report includes a description of the design choices made for the test implementation of MMS, as well as a detailed description of the implementation of the IEC 61850/UCA2 software including information models and information exchange services. (BA)

  5. Modeling of wind turbines with doubly fed generator system

    CERN Document Server

    Fortmann, Jens

    2014-01-01

    Jens Fortmann describes the deduction of models for the grid integration of variable speed wind turbines and the reactive power control design of wind plants. The modeling part is intended as background to understand the theory, capabilities and limitations of the generic doubly fed generator and full converter wind turbine models described in the IEC 61400-27-1 and as 2nd generation WECC models that are used as standard library models of wind turbines for grid simulation software. Focus of the reactive power control part is a deduction of the origin and theory behind the reactive current requ

  6. Economic incentives to wind systems commercialization. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Lotker, M.; Shaw, Jr, R. W.; Adolfson, W. F.; Bernardi, R. P.; Davidoff, P. H.; Eckhart, M. T.; Gunwaldsen, D. S.; Mettam, P. J.; Narayanan, P.; Sillin, J. O.

    1978-08-01

    This assessment of Economic Incentives to Wind Systems Commercialization is an analysis of the quantitative and qualitative impacts of a variety of Government funded economic incentives on Wind Energy Conversion Systems (WECS). The purpose of this study is to achieve better understanding of the relationship between implementation of specific economic incentives for WECS, and the factors surrounding WECS commercial introduction.

  7. Power Quality Improvements in Wind Diesel Power Generation System

    Directory of Open Access Journals (Sweden)

    Omar Feddaoui

    2015-08-01

    Full Text Available Generation of electricity using diesel is costly for small remote isolated communities. At remote location electricity generation from renewable energy such as wind can help reduce the overall operating costs by reducing the fuel costs. However, the penetration of wind power into small diesel-based grids is limited because of its effect on power quality and reliability. This paper focuses on the combination of Wind Turbine and Diesel Generator systems for sustained power generation, to improve the power quality of wind generation system. The performances of the optimal control structure are assessed and discussed by means of a set of simulations.

  8. Control system design guide

    Energy Technology Data Exchange (ETDEWEB)

    Sellers, David; Friedman, Hannah; Haasl, Tudi; Bourassa, Norman; Piette, Mary Ann

    2003-05-01

    The ''Control System Design Guide'' (Design Guide) provides methods and recommendations for the control system design process and control point selection and installation. Control systems are often the most problematic system in a building. A good design process that takes into account maintenance, operation, and commissioning can lead to a smoothly operating and efficient building. To this end, the Design Guide provides a toolbox of templates for improving control system design and specification. HVAC designers are the primary audience for the Design Guide. The control design process it presents will help produce well-designed control systems that achieve efficient and robust operation. The spreadsheet examples for control valve schedules, damper schedules, and points lists can streamline the use of the control system design concepts set forth in the Design Guide by providing convenient starting points from which designers can build. Although each reader brings their own unique questions to the text, the Design Guide contains information that designers, commissioning providers, operators, and owners will find useful.

  9. Wind Turbine Power Curve Design for Optimal Power Generation in Wind Farms Considering Wake Effect

    DEFF Research Database (Denmark)

    Tian, Jie; Zhou, Dao; Su, Chi

    2017-01-01

    In modern wind farms, maximum power point tracking (MPPT) is widely implemented. Using the MPPT method, each individual wind turbine is controlled by its pitch angle and tip speed ratio to generate the maximum active power. In a wind farm, the upstream wind turbine may cause power loss to its...... downstream wind turbines due to the wake effect. According to the wake model, downstream power loss is also determined by the pitch angle and tip speed ratio of the upstream wind turbine. By optimizing the pitch angle and tip speed ratio of each wind turbine, the total active power of the wind farm can...... be increased. In this paper, the optimal pitch angle and tip speed ratio are selected for each wind turbine by the exhausted search. Considering the estimation error of the wake model, a solution to implement the optimized pitch angle and tip speed ratio is proposed, which is to generate the optimal control...

  10. Power electronics converters for wind turbine systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Liserre, Marco; Ma, Ke

    2011-01-01

    The steady growth of installed wind power which reached 200 GW capacity in 2010, together with the up-scaling of the single wind turbine power capability - 7 MW’s has been announced by manufacturers - has pushed the research and development of power converters towards full scale power conversion,...

  11. Real-time monitoring, prognosis, and resilient control for wind turbine systems

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Zhiwei; Sheng, Shuangwen

    2018-02-01

    This special issue aims to provide a platform for academic and industrial communities to report recent results and emerging research in real-time monitoring, fault diagnosis, prognosis, and resilient control and design of wind turbine systems. After a strict peer-review process, 20 papers were selected, which represent the most recent progress of the real-time monitoring, diagnosis, prognosis, and resilient control methods/techniques in wind turbine systems.

  12. Environmental Risk Evaluation System (ERES) for Offshore Wind - Mock-Up of ERES, Fiscal Year 2010 Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Richard M.; Copping, Andrea E.; Van Cleve, Frances B.

    2010-11-01

    The Environmental Risk Evaluation System (ERES) has been created to set priorities among the environmental risks from offshore wind development. This report follows the conceptual design for ERES and shows what the system would look like, using a web interface created as part of a Knowledge Management System (KMS) for offshore wind. The KMS, called Zephyrus, and ERES for offshore wind, will be populated and made operational in a later phase of the project.

  13. Balancing modern Power System with large scale of wind power

    DEFF Research Database (Denmark)

    Basit, Abdul; Altin, Müfit; Hansen, Anca Daniela

    2014-01-01

    Power system operators must ensure robust, secure and reliable power system operation even with a large scale integration of wind power. Electricity generated from the intermittent wind in large propor-tion may impact on the control of power system balance and thus deviations in the power system...... frequency in small or islanded power systems or tie line power flows in interconnected power systems. Therefore, the large scale integration of wind power into the power system strongly concerns the secure and stable grid operation. To ensure the stable power system operation, the evolving power system has...... to be analysed with improved analytical tools and techniques. This paper proposes techniques for the active power balance control in future power systems with the large scale wind power integration, where power balancing model provides the hour-ahead dispatch plan with reduced planning horizon and the real time...

  14. Reliability Assessment of Wind Farm Electrical System Based on a Probability Transfer Technique

    Directory of Open Access Journals (Sweden)

    Hejun Yang

    2018-03-01

    Full Text Available The electrical system of a wind farm has a significant influence on the wind farm reliability and electrical energy yield. The disconnect switch installed in an electrical system cannot only improve the operating flexibility, but also enhance the reliability for a wind farm. Therefore, this paper develops a probabilistic transfer technique for integrating the electrical topology structure, the isolation operation of disconnect switch, and stochastic failure of electrical equipment into the reliability assessment of wind farm electrical system. Firstly, as the traditional two-state reliability model of electrical equipment cannot consider the isolation operation, so the paper develops a three-state reliability model to replace the two-state model for incorporating the isolation operation. In addition, a proportion apportion technique is presented to evaluate the state probability. Secondly, this paper develops a probabilistic transfer technique based on the thoughts that through transfer the unreliability of electrical system to the energy transmission interruption of wind turbine generators (WTGs. Finally, some novel indices for describing the reliability of wind farm electrical system are designed, and the variance coefficient of the designed indices is used as a convergence criterion to determine the termination of the assessment process. The proposed technique is applied to the reliability assessment of a wind farm with the different topologies. The simulation results show that the proposed techniques are effective in practical applications.

  15. An insight on advantage of hybrid sun–wind-tracking over sun-tracking PV system

    International Nuclear Information System (INIS)

    Rahimi, Masoud; Banybayat, Meisam; Tagheie, Yaghoub; Valeh-e-Sheyda, Peyvand

    2015-01-01

    Graphical abstract: Real photograph of hybrid sun–wind-tracking system. - Highlights: • Novel hybrid sun–wind-tracking system proposed to enhance PV cell performance. • The wind tracker can cool down the PV cell as sun-tracking system work. • The hybrid tracker achieved 7.4% increase in energy gain over the sun tracker. • The overall daily output energy gain was increased by 49.83% by using this system. - Abstract: This paper introduces the design and application of a novel hybrid sun–wind-tracking system. This hybrid system employs cooling effect of wind, besides the advantages of tracking sun for enhancing power output from examined hybrid photovoltaic cell. The principal experiment focuses on comparison between dual-axes sun-tracking and hybrid sun–wind-tracking photovoltaic (PV) panels. The deductions based on the research tests confirm that the overall daily output energy gain was increased by 49.83% compared with that of a fixed system. Moreover, an overall increase of about 7.4% in the output power was found for the hybrid sun–wind-tracking over the two-axis sun tracking system.

  16. IEA Task 32: Wind Lidar Systems for Wind Energy Deployment (LIDAR)

    Energy Technology Data Exchange (ETDEWEB)

    Kuhn, Martin; Trabucchi, Davide; Clifton, Andrew; Courtney, Mike; Rettenmeier, Andreas

    2016-05-25

    Under the International Energy Agency Wind Implementing Agreement (IEA Wind) Task 11, researchers started examining novel applications for remote sensing and the issues around them during the 51st topical expert meeting about remote sensing in January 2007. The 59th topical expert meeting organized by Task 11 in October 2009 was also dedicated to remote sensing, and the first draft of the Task's recommended practices on remote sensing was published in January 2013. The results of the Task 11 topical expert meetings provided solid groundwork for a new IEA Wind Task 32 on wind lidar technologies. Members of the wind community identified the need to consolidate the knowledge about wind lidar systems to facilitate their use, and to investigate how to exploit the advantages offered by this technology. This was the motivation that led to the start of IEA Wind Task 32 'Lidar Application for Wind Energy Deployment' in November 2011. The kick-off was meeting was held in May 2012.

  17. Optimal application of climate data to the development of design wind speeds

    DEFF Research Database (Denmark)

    Kruger, Andries C.; Retief, Johan V.; Goliger, Adam M.

    2014-01-01

    of South Africa created an opportunity to bring together a range of expertise that could contribute to the optimal development of design wind speed information. These include the knowledge of the statistical extraction of extreme wind observations from reanalysis and model data, the quality control...... and extreme value analysis of measured wind data, the reliability basis of statistical results, and the principles of wind action on structures and its standardization.......Accurate extreme wind statistics are important for the design of a safe and economic built environment. The recent revision of the South African Wind Loading Code for engineers (SANS 10160-3:2011) will also include a reassessment of design wind speed statistics. In addition, the Wind Atlas of South...

  18. Primary reserve studies for high wind power penetrated systems

    DEFF Research Database (Denmark)

    Das, Kaushik; Altin, Müfit; Hansen, Anca Daniela

    2015-01-01

    load shedding. The impact of low inertia caused due to displacement of conventional generators by wind penetration on the power system frequency is investigated in this paper. The possibilities of improving frequency with increase in primary reserve supplied from conventional generators are analyzed....... This paper further explores the capabilities of wind turbines to provide support during underfrequency to prevent load shedding. Maximum wind penetration possible without causing load shedding following a large disturbance is also investigated....

  19. New method to design stellarator coils without the winding surface

    Science.gov (United States)

    Zhu, Caoxiang; Hudson, Stuart R.; Song, Yuntao; Wan, Yuanxi

    2018-01-01

    Finding an easy-to-build coils set has been a critical issue for stellarator design for decades. Conventional approaches assume a toroidal ‘winding’ surface, but a poorly chosen winding surface can unnecessarily constrain the coil optimization algorithm, This article presents a new method to design coils for stellarators. Each discrete coil is represented as an arbitrary, closed, one-dimensional curve embedded in three-dimensional space. A target function to be minimized that includes both physical requirements and engineering constraints is constructed. The derivatives of the target function with respect to the parameters describing the coil geometries and currents are calculated analytically. A numerical code, named flexible optimized coils using space curves (FOCUS), has been developed. Applications to a simple stellarator configuration, W7-X and LHD vacuum fields are presented.

  20. Cost analysis and optimisation of offshore wind energy converter systems

    International Nuclear Information System (INIS)

    Koehler, S.

    1995-12-01

    The objective of this project was to estimate the price of the energy produced by offshore wind energy converters (OWECS), with special respect to the influence of the support structure, the grid connection and operation and maintenance. An economic model based on a physical approach suitable for parameter studies has been developed and implemented in a computer code (SCOptiM or Simple Cost Optimization Program). The model of the wind energy converter system is divided in three main subsystems: the support structure, the tower head (i.e. rotor and machinery) and the grid connection. The manufacturing costs of the support structure are calculated based on the amount of material that is required regarding the extreme loads and other design criteria, e.g. fundamental eigenfrequency, buckling, tower height, etc. The support structure design is a stepped monopile, each section with constant diameter and wall thickness. Each design criterion is expressed as a relation between the diameter and the wall thickness. These relations define the allowed design areas which meet all conditions, for soft-soft, soft-stiff and stiff tower design as well. Three state-of-the-art turbines (0.5 MW, 1.2 MW and 3 MW) were chosen and supplied with the necessary offshore features. The additional costs are estimated with data given by the manufacturers. An estimate of the costs for the grid connection is derived by an empirical model based on the British Phase IIC Study. Finally, the price of the produced energy is calculated by using a simple discounted cash flow analysis that considers the operation costs as well. A recalculation of two former studies and one offshore project showed, that, in its range of validity, the model is an appropriate tool to give a first estimate of the costs of an offshore wind farm. At three reference sites two in the North Sea and one in the IJsselmeer, offshore wind energy farms were placed and optimized regarding the price of energy. The lowest price of

  1. WindSat Space Borne Polarimetric Microwave Radiometer: Data Products and System Performance

    Science.gov (United States)

    Truesdale, D.; Gaiser, P.; Bettenhausen, M. H.; Li, L.; Twarog, E.

    2017-12-01

    WindSat, a satellite-based multi-frequency polarimetric microwave radiometer developed by the Naval Research Laboratory for the U.S. Navy and the NPOESS Integrated Program Office (IPO), has collected over 14 years of fully-polarimetric microwave measurements from space since its launch in 2003. The primary WindSat mission was to demonstrate the capability to retrieve the ocean surface wind vector from a space-based microwave radiometer. The WindSat data is now being used to produce near-real-time products for the ocean surface wind vector, sea surface temperature (SST) and atmospheric columnar water vapor and cloud liquid water over the ocean at the U.S. Navy's Fleet Numerical Meteorological and Oceanographic Center (FNMOC). Several groups are assimilating WindSat data products into numerical weather models with positive results. In addition to providing environmental products over the ocean, the WindSat data set has been exploited for retrievals over land and ice. In particular, the WindSat channel set is well suited to retrieving soil moisture and land surface temperature. We have also built on heritage algorithms to derive sea ice concentration. This paper will provide highlights of WindSat environmental products. The success of the WindSat mission is directly traceable to the on-orbit sensor calibration. WindSat was designed with a one-year mission requirement and three year goal. Now in WindSat's fifteenth year on orbit, we continue to monitor the instrument performance and the calibration stability. Key system performance and calibration parameters include the receiver gains and NEDTs. These parameters are susceptible to component aging and changes in the payload thermal behavior. We will present trends in NEDT and receiver gains over the life of the mission. In addition to its primary mission, the long life of WindSat enables it to provide many forms of risk reduction and lessons learned for future microwave imagers.

  2. Impact of integrating wind power in the Norwegian power system

    International Nuclear Information System (INIS)

    Tande, John Olav

    2006-04-01

    Wind power may in the future constitute a significant part of the Norwegian electricity supply. 20 TWh annual wind generation is a realistic goal for 2020 assuming wind farms on-land and offshore. The development of grid codes for wind farms is sound. It is recognising that large wind farms are basically power plants and may participate in securing efficient and stable power system operation. Modern wind farms may control the reactive power or voltage as any other power plant, and may also control active power or frequency as long as wind conditions permits. Grid code requirements must however be carefully assessed and possibly adjusted over time aiming for overall least cost solutions. Development of wind farms are today to some degree hindered by conservative assumptions being made on operation of wind farms in areas with limited power transfer capacity. By accepting temporary grid congestions, however, a large increase installed wind power is viable. For grid congestion that appears a few hours per year only, the cost of lost generation will be modest and may be economic over the alternatives of limiting wind farm capacities or increasing the grid transfer capacity. Wind generation impact on power system operation and adequacy will be overall positive. Combining wind and hydro provides for a more stable annual energy supply than hydro alone, and wind generation will generally be higher in the winter period than in the summer. Wind will replace the generation with the highest operating cost, and reduce the average Nord Pool spot market price. 20 TWh wind will reduce price with about 3 oere/kWh and CO 2 emissions by 12-14 million tons for the case of replacing coal, and about 6 million tons for replacing natural gas. Wind impact on need for balancing power is small, i.e. the extra balancing cost is about 0,8 oere per kWh wind, and about half if investment in new reserve capacity is not needed. In summary this report demonstrates options for large scale integration

  3. Wind power electric systems modeling, simulation and control

    CERN Document Server

    Rekioua, Djamila

    2014-01-01

    The book helps readers understand key concepts in standalone and grid connected wind energy systems and features analysis into the modeling and optimization of commonly used configurations through the implementation of different control strategies.Utilizing several electrical machinery control approaches, such as vector control and direct torque control 'Wind Power Electric Systems' equips readers with the means to understand, assess and develop their own wind energy systems and to evaluate the performance of such systems.Mathematical models are provided for each system and a corresponding MAT

  4. Optimal Design of Hydrogen Based/Wind/Microhydro Using Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Mochamad Ashari

    2012-12-01

    Full Text Available The target of stand-alone hybrid power generation system was to supply the load demand with high reliability and economically as possible. To design these criteria the optimal design of the proposed configuration should be done by using intelligent optimization technique. This study utilized Genetic Algorithm method to determine the optimal capacities of hydrogen, wind turbines and micro hydro unit according to the minimum cost objective functions that relate to these two factors. In this study, the cost objective function included the annual capital cost, annual operation maintenance cost, annual replacement cost and annual customer damage cost. The proposed method had been tested in the hybrid power generation system located in Leuwijawa village in Central Java of Indonesia. Simulation results showed that the optimum configuration can be achieved using 19.85 ton of hydrogen tanks, 21 x 100 kW wind turbines and 610 kW of micro hydro unit respectively.

  5. Structural analysis of wind turbine rotors for NSF-NASA Mod-0 wind power system

    Science.gov (United States)

    Spera, D. A.

    1976-01-01

    Preliminary estimates are presented of vibratory loads and stresses in hingeless and teetering rotors for the proposed NSF-NASA Mod-0 wind power system. Preliminary blade design utilizes a tapered tubular aluminum spar which supports nonstructural aluminum ribs and skin and is joined to the rotor hub by a steel shank tube. Stresses in the shank of the blade are calculated for static, rated, and overload operating conditions. Blade vibrations were limited to the fundamental flapping modes, which were elastic cantilever bending for hingeless rotor blades and rigid-body rotation for teetering rotor blades. The MOSTAB-C computer code was used to calculate aerodynamic and mechanical loads. The teetering rotor has substantial advantages over the hingeless rotor with respect to shank stresses, fatigue life, and tower loading. The hingeless rotor analyzed does not appear to be structurally stable during overloads.

  6. The Current State of Additive Manufacturing in Wind Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Mann, Margaret [National Renewable Energy Lab. (NREL), Golden, CO (United States); Palmer, Sierra [Worcester Polytechnic Institute (WPI), , Worcester, MA (United States); Lee, Dominic [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kurup, Parthiv [National Renewable Energy Lab. (NREL), Golden, CO (United States); Remo, Timothy [National Renewable Energy Lab. (NREL), Golden, CO (United States); Jenne, Dale Scott [National Renewable Energy Lab. (NREL), Golden, CO (United States); Richardson, Bradley S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Love, Lonnie J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Post, Brian K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-12-01

    Wind power is an inexhaustible form of energy that is being captured throughout the U.S. to power the engine of our economy. A robust, domestic wind industry promises to increase U.S. industry growth and competitiveness, strengthen U.S. energy security independence, and promote domestic manufacturing nationwide. As of 2016, ~82GW of wind capacity had been installed, and wind power now provides more than 5.5% of the nation’s electricity and supports more than 100,000 domestic jobs, including 500 manufacturing facilities in 43 States. To reach the U.S. Department of Energy’s (DOE’s) 2015 Wind Vision study scenario of wind power serving 35% of the nation's end-use demand by 2050, significant advances are necessary in all areas of wind technologies and market. An area that can greatly impact the cost and rate of innovation in wind technologies is the use of advanced manufacturing, with one of the most promising areas being additive manufacturing (AM). Considering the tremendous promise offered by advanced manufacturing, it is the purpose of this report to identify the use of AM in the production and operation of wind energy systems. The report has been produced as a collaborative effort for the DOE Wind Energy Technology Office (WETO), between Oak Ridge National Laboratory (ORNL) and the National Renewable Energy Laboratory (NREL).

  7. Optimized Generator Designs for the DTU 10-MW Offshore Wind Turbine using GeneratorSE: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Sethuraman, Latha; Maness, Michael; Dykes, Katherine

    2017-01-01

    Compared to land-based applications, offshore wind imposes challenges for the development of next generation wind turbine generator technology. Direct-drive generators are believed to offer high availability, efficiency, and reduced operation and maintenance requirements; however, previous research suggests difficulties in scaling to several megawatts or more in size. The resulting designs are excessively large and/or massive, which are major impediments to transportation logistics, especially for offshore applications. At the same time, geared wind turbines continue to sustain offshore market growth through relatively cheaper and lightweight generators. However, reliability issues associated with mechanical components in a geared system create significant operation and maintenance costs, and these costs make up a large portion of overall system costs offshore. Thus, direct-drive turbines are likely to outnumber their gear-driven counterparts for this market, and there is a need to review the costs or opportunities of building machines with different types of generators and examining their competitiveness at the sizes necessary for the next generation of offshore wind turbines. In this paper, we use GeneratorSE, the National Renewable Energy Laboratory's newly developed systems engineering generator sizing tool to estimate mass, efficiency, and the costs of different generator technologies satisfying the electromagnetic, structural, and basic thermal design requirements for application in a very large-scale offshore wind turbine such as the Technical University of Denmark's (DTU) 10-MW reference wind turbine. For the DTU reference wind turbine, we use the previously mentioned criteria to optimize a direct-drive, radial flux, permanent-magnet synchronous generator; a direct-drive electrically excited synchronous generator; a medium-speed permanent-magnet generator; and a high-speed, doubly-fed induction generator. Preliminary analysis of leveled costs of

  8. Optimized Generator Designs for the DTU 10-MW Offshore Wind Turbine using GeneratorSE

    Energy Technology Data Exchange (ETDEWEB)

    Sethuraman, Latha; Maness, Michael; Dykes, Katherine

    2017-01-09

    Compared to land-based applications, offshore wind imposes challenges for the development of next generation wind turbine generator technology. Direct-drive generators are believed to offer high availability, efficiency, and reduced operation and maintenance requirements; however, previous research suggests difficulties in scaling to several megawatts or more in size. The resulting designs are excessively large and/or massive, which are major impediments to transportation logistics, especially for offshore applications. At the same time, geared wind turbines continue to sustain offshore market growth through relatively cheaper and lightweight generators. However, reliability issues associated with mechanical components in a geared system create significant operation and maintenance costs, and these costs make up a large portion of overall system costs offshore. Thus, direct-drive turbines are likely to outnumber their gear-driven counterparts for this market, and there is a need to review the costs or opportunities of building machines with different types of generators and examining their competitiveness at the sizes necessary for the next generation of offshore wind turbines. In this paper, we use GeneratorSE, the National Renewable Energy Laboratory's newly developed systems engineering generator sizing tool to estimate mass, efficiency, and the costs of different generator technologies satisfying the electromagnetic, structural, and basic thermal design requirements for application in a very large-scale offshore wind turbine such as the Technical University of Denmark's (DTU) 10-MW reference wind turbine. For the DTU reference wind turbine, we use the previously mentioned criteria to optimize a direct-drive, radial flux, permanent-magnet synchronous generator; a direct-drive electrically excited synchronous generator; a medium-speed permanent-magnet generator; and a high-speed, doubly-fed induction generator. Preliminary analysis of leveled costs of

  9. Constructing China’s wind energy innovation system

    International Nuclear Information System (INIS)

    Klagge, Britta; Liu Zhigao; Campos Silva, Pedro

    2012-01-01

    The rapid rise of China as the largest wind energy market worldwide with several global leaders in turbine manufacturing received much attention from both scholarly and policy-analytical work. However, little attention has been given to the innovation activities of the Chinese wind industry. In our paper, we aim to address this gap, based on second-hand sources and over 50 personal interviews with wind energy-related experts. We argue that China’s wind industry has made great progress in terms of manufacturing and installing, but is confronted with various challenges and problems regarding the development of its indigenous innovation capabilities. Using innovation systems approaches as an analytical tool and focusing on institutions, actors, technology and their interaction in supporting innovation activities, we decompose the elements of China’s wind energy innovation system and their role in developing the domestic wind industry. Against this backdrop we identify and discuss challenges and obstacles in the development of an innovation-driven wind industry in China. The paper strongly argues that more attention should be paid to improve the coordination and cooperation among the various actors of the wind energy innovation system, to the build-up of a market-oriented education and training system as well as to intellectual property protection. - Highlights: ► Innovation systems concepts as analytical tool to understand wind energy in China. ► Focus on institutions, actor constellations and technology development in China. ► Analysis of success in manufacturing and the rapid rise of China’s wind industry. ► Identification of challenges and problems regarding innovation activities. ► Recommendation to (better) integrate innovation policy and wind industry policy.

  10. Impact of high level penetration of Wind Turbines on Power System Transient Stability

    DEFF Research Database (Denmark)

    Kalogiannis, Theodoros; Llano, Enrique Muller; Hoseinzadeh, Bakhtyar

    2015-01-01

    One of the most relevant aspects in power systems is their reliability and robustness of maintaining the stability under large disturbances. System stability is a crucial aspect to consider when expanding the network, e.g. while increasing the levels of wind power penetration. Wind turbine...... generators differ from the conventional ones in their inertial contribution to the grid, therefore, in most cases the ability of the system to maintain a stable operation is declined. To investigate this, two standard models are designed in PowerFactory software. The first is used to characterize system...... components, the response of the wind turbines and thereupon to validate them, whereas the second is used to estimate the maximum levels of wind power penetration. Those levels mainly depend on the spinning reserve, the inertia of the system and the severity of the event. Rate of change of frequency...

  11. Miniature UAV Wind LIDAR & Flight Extension System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Systems & Processes Engineering Corporation and Texas A&M University propose a Wind Measurement LIDAR System for extending the flight duration or decreasing...

  12. Designing photovoltaic systems

    Energy Technology Data Exchange (ETDEWEB)

    Jones, G.J.

    1987-03-22

    Photovoltaic system design understanding has matured rapidly in the last decade. Initially the design process emphasized detailed modeling, load match, and on-site energy storage. This entire approach ended once the systems were allowed to operate interactively with the utility. Current design thinking emphasizes system energy cost in relation to utility avoided cost. This leads to a new logic that allows for much simplified design procedures. This paper reviews these procedures for the two types of grid-connected photovoltaic systems and presents a brief discussion of balance-of-system options.

  13. Power Electronics for the Next Generation Wind Turbine System

    DEFF Research Database (Denmark)

    Ma, Ke

    The wind power generation has been steadily growing both for the total installed capacity and for the individual turbine size. Due to much more significant impacts to the power grid, the power electronics, which can change the behavior of wind turbines from an unregulated power source to an active...... generation unit, are becoming crucial in the wind turbine system. The objective of this project is to study the power electronics technology used for the next generation wind turbines. Some emerging challenges as well as potentials like the cost of energy and reliability are going to be addressed. First...... several potential converter topologies and power semiconductor devices for the future wind power application are presented in respect to the advantages/drawbacks. And then the criteria for evaluating the wind power converter are generally discussed, where the importance of thermal stress in the power...

  14. Clothing Systems Design Lab

    Data.gov (United States)

    Federal Laboratory Consortium — The Clothing Systems Design Lab houses facilities for the design and rapid prototyping of military protective apparel.Other focuses include: creation of patterns and...

  15. Emergy-based sustainability evaluation of wind power generation systems

    International Nuclear Information System (INIS)

    Yang, Jin; Chen, Bin

    2016-01-01

    Highlights: • Emergy is used to quantify the sustainability level of wind farms. • A GHG-based indicator is incorporated into emergetic accounting. • Possible pathways to achieve sustainable wind farm management are analyzed. - Abstract: With large-scale commercialization of wind technology, one must investigate economical and sustainable wind resource utilization. In this paper, emergy analysis is used to quantify the environmental pressure, renewability, economic efficiency, and sustainability of a typical wind power system, considering the lifetime stages from extraction and processing of raw materials and resources to the final product (electricity) via material transportation, construction and operation. Possible pathways to achieve sustainable management of wind energy supply chain were also analyzed based on scenario analysis. Results show that wind power is a promising means of substituting traditional fossil fuel-based power generation systems, with the lowest transformity of 4.49 × 10 4 sej/J, smaller environmental loading ratio of 5.84, and lower greenhouse gas emission intensity of 0.56 kg/kWh. To shed light on potential pathways to achieve sustainable and low-carbon wind energy supply chain management and make informed choices, a sensitivity analysis was done by establishing scenarios from the perspectives of material recycling and technical development. Results suggest that using new materials of lower energy intensity or recycled materials in upstream wind turbine manufacturing and construction materials are the most effective measures.

  16. Reactor System Design

    International Nuclear Information System (INIS)

    Chi, S. K.; Kim, G. K.; Yeo, J. W.

    2006-08-01

    SMART NPP(Nuclear Power Plant) has been developed for duel purpose, electricity generation and energy supply for seawater desalination. The objective of this project IS to design the reactor system of SMART pilot plant(SMART-P) which will be built and operated for the integrated technology verification of SMART. SMART-P is an integral reactor in which primary components of reactor coolant system are enclosed in single pressure vessel without connecting pipes. The major components installed within a vessel includes a core, twelve steam generator cassettes, a low-temperature self pressurizer, twelve control rod drives, and two main coolant pumps. SMART-P reactor system design was categorized to the reactor coe design, fluid system design, reactor mechanical design, major component design and MMIS design. Reactor safety -analysis and performance analysis were performed for developed SMART=P reactor system. Also, the preparation of safety analysis report, and the technical support for licensing acquisition are performed

  17. Optimal supplementary frequency controller design using the wind farm frequency model and controller parameters stability region.

    Science.gov (United States)

    Toulabi, Mohammadreza; Bahrami, Shahab; Ranjbar, Ali Mohammad

    2018-03-01

    In most of the existing studies, the frequency response in the variable speed wind turbines (VSWTs) is simply realized by changing the torque set-point via appropriate inputs such as frequency deviations signal. However, effective dynamics and systematic process design have not been comprehensively discussed yet. Accordingly, this paper proposes a proportional-derivative frequency controller and investigates its performance in a wind farm consisting of several VSWTs. A band-pass filter is deployed before the proposed controller to avoid responding to either steady state frequency deviations or high rate of change of frequency. To design the controller, the frequency model of the wind farm is first characterized. The proposed controller is then designed based on the obtained open loop system. The stability region associated with the controller parameters is analytically determined by decomposing the closed-loop system's characteristic polynomial into the odd and even parts. The performance of the proposed controller is evaluated through extensive simulations in MATLAB/Simulink environment in a power system comprising a high penetration of VSWTs equipped with the proposed controller. Finally, based on the obtained feasible area and appropriate objective function, the optimal values associated with the controller parameters are determined using the genetic algorithm (GA). Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  18. A Review of Methodological Approaches for the Design and Optimization of Wind Farms

    DEFF Research Database (Denmark)

    Herbert-Acero, José F.; Probst, Oliver; Réthoré, Pierre-Elouan

    2014-01-01

    This article presents a review of the state of the art of the Wind Farm Design and Optimization (WFDO) problem. The WFDO problem refers to a set of advanced planning actions needed to extremize the performance of wind farms, which may be composed of a few individual Wind Turbines (WTs) up to thou...

  19. Techno-economic Analysis of a Wind-Diesel Hybrid Power System in the South Algeria

    Directory of Open Access Journals (Sweden)

    Khaireddine Allali

    2015-07-01

    Full Text Available The electrical energy is often produced with the help of diesel generators in isolated areas in the Saharan region. While the latter requiring relatively little investment because is generally expensive to exploit due to the transportation to remote areas adds extra cost, significant fuel consumption and relatively high maintenance cost, etc. Moreover, the electricity production by the diesel is ineffective, presents significant environmental risks. But these isolated areas have significant wind energy potential; which is good position for the exploitation of clean and sustainable wind energy. The use of wind-diesel power system is widely recommended especially to reduce fuel consumption and in this way to reduce system operating costs and environmental impact. The subject of this paper is to present the techno-economic analysis of a wind-diesel hybrid power system. In this context, the contribution envisaged with this research is to collaborate on the optimal design of a hybrid power system including a wind turbine generator, a diesel generator and an energy storage system for powering a continuous way an isolated site in the South Algerian installed power of 120 kW.This system has a high control strategy for the management of different power sources (wind, diesel, battery that depending to weather conditions, especially wind speed values and the power demanded by the consumer load.

  20. Modeling and Parameter Estimation of a Small Wind Generation System

    Directory of Open Access Journals (Sweden)

    Carlos A. Ramírez Gómez

    2013-11-01

    Full Text Available The modeling and parameter estimation of a small wind generation system is presented in this paper. The system consists of a wind turbine, a permanent magnet synchronous generator, a three phase rectifier, and a direct current load. In order to estimate the parameters wind speed data are registered in a weather station located in the Fraternidad Campus at ITM. Wind speed data were applied to a reference model programed with PSIM software. From that simulation, variables were registered to estimate the parameters. The wind generation system model together with the estimated parameters is an excellent representation of the detailed model, but the estimated model offers a higher flexibility than the programed model in PSIM software.

  1. A review of the European offshore wind innovation system

    NARCIS (Netherlands)

    Wieczorek, A.J.; Negro, S.O.; Harmsen, R.; Heimeriks, G.J.; Luo, L.; Hekkert, M.P.

    2013-01-01

    Offshore wind has the potential of becoming an important pillar of the future European energy system. It can contribute to policy objectives on climate change, energy security, green growth and social progress. However, the large potential of offshore wind does not automatically lead to a large

  2. PMBLDCG based stand-alone wind energy conversion system for ...

    African Journals Online (AJOL)

    This paper deals with a permanent magnet brushless DC generator (PMBLDCG) based stand-alone wind energy conversion system (WECS) for small scale power generation. A buck-boost DC-DC converter is used for controlling the PMBLDCG speed to achieve optimum energy output from the wind turbine without sensing ...

  3. Space vehicle electromechanical system and helical antenna winding fixture

    Science.gov (United States)

    Judd, Stephen; Dallmann, Nicholas; Guenther, David; Enemark, Donald; Seitz, Daniel; Martinez, John; Storms, Steven

    2017-12-26

    A space vehicle electromechanical system may employ an architecture that enables convenient and practical testing, reset, and retesting of solar panel and antenna deployment on the ground. A helical antenna winding fixture may facilitate winding and binding of the helical antenna.

  4. Costa de Cocos wind-diesel hybrid power system

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, Abraham; Estrada, Luis [Southwest Thechnology Development Institute, New Mexico State University, Las Cruces (United States); Newcomb, Charles; Corbus, David [National Renewable Energy Laboratory, CO (United States)

    2000-07-01

    This paper describes the performance and reliability of the Costa de Cocos wind-diesel hybrid system. Located in a remote coastal area in southern Mexico, the system is exposed to high temperatures and humidity, slat spray and occasional storm wind. It continues to supply the load, but has experienced some problems associated with inverter failure, battery degradation and corrosion. Inadequate operation and maintenance practices have also caused some problems. The information collected to date from technical visits and remote data collection is discussed in this paper. The system design and operation are also covered. [Spanish] Este articulo describe el rendimiento y la confiabilidad del sistema hibrido de viento y diesel en Costa de Cocos. Localizado en una costa remota en la parte sur de Mexico, el sistema esta expuesto a altas temperaturas y humedad, fuerte brisa marina y vientos ocasionales de tormenta. Sigue suministrando la carga, pero ha experimentado algunos problemas asociados con fallas del inversor, la degradacion de las baterias y corrosion. La inadecuada operacion y practicas de mantenimiento tambien han causado algunos problemas. Este articulo analiza la informacion reunida a la fecha sobre las visitas tecnicas y la recoleccion remota de datos. Tambien incluye el disel del sistema y su operacion.

  5. Lightning protection of flap system for wind turbine blades

    DEFF Research Database (Denmark)

    Candela Garolera, Anna; Madsen, Søren Find

    The aim of this PhD project was to investigate the behaviour of a Controllable Rubber Trailing Edge Flap (CRTEF) in a wind turbine blade when it is exposed to lightning discharges, and find the best technical solution to protect the CRTEF and the controlling system against lightning, based......, the current transmission, including the study of the induced electromagnetic fields, and the effects of degradation of the flap material due to the exposure to the lightning high electric fields. The main tools for this analysis were the simulation by the finite elements method and testing in the high voltage......, as well as general the general principles of lightning protection and the experience acquired in the analysis of lightning damages in field performed during the PhD, were the base for the design and validation of an vi effective and reliable lightning protection for the flap. Regarding the design...

  6. Design of support structures for offshore wind turbines

    OpenAIRE

    van der Tempel, J.

    2006-01-01

    To meet growing energy demands, the Kyoto protocol and the much desired diversification of supply, wind energy has become a mainstream source of energy in the EU. Cost wise it is already competing with gas fired electricity. In the last decade wind moved offshore to accommodate even more wind power. The offshore wind resource is more abundant and of a better quality, resulting in higher electricity output. On the other hand, the cost of installing turbines offshore is higher than onshore. To ...

  7. Hybrid power system (hydro, solar and wind) for rural electricity generation

    International Nuclear Information System (INIS)

    Mahinda Kurukulasuriya

    2000-01-01

    Generation of affordable cheap electric energy for rural development by a hybrid power system (10-50 kW) of hydropower, solar and wind energies on self determining basis and computer application to determine its performance. In this paper the following topics were discussed, design of hybrid power system, its justification and economic analysis, manufacturing and installation of the system. (Author)

  8. DC-DC Converters in Wind Systems for Micro-generation: A Systematic Review

    Directory of Open Access Journals (Sweden)

    Carlos Alejandro Ramírez

    2014-08-01

    Full Text Available This paper presents a literature review analyzing four topics concerning wind systems for micro-generation: system topologies, system modeling, power converters design, and power converter controllers. The review also reveals the open research problems in the literature, and the opportunities to improve commonly adopted solutions.

  9. Wind refrigeration : design and results of an experimental facility; Refrigeracion eolica: Diseno y resultados de una instalacion experimental

    Energy Technology Data Exchange (ETDEWEB)

    Beltran, R. G.; Talero, A.

    2004-07-01

    This article describes the experimental setup used to obtain design parameters for a wind driven refrigeration equipment. The system compressor is directly coupled to the wind mill and will provide refrigeration to a community located in La Guajira in northern Colombia. The testing on the experimental installation assessed the refrigeration capacity that could be provided by an open type commercial compressor coupled to the wind mill axis. Power and torque requirements have been evaluated for different wind mill rotational speeds. An assessment of the local conditions relating to wind speed, frequency and preferred direction for the installation site has been made based on measurements by the Meteorological National Institute and independent data from other sources. (Author)

  10. Design of support structures for offshore wind turbines

    NARCIS (Netherlands)

    van der Tempel, J.

    2006-01-01

    To meet growing energy demands, the Kyoto protocol and the much desired diversification of supply, wind energy has become a mainstream source of energy in the EU. Cost wise it is already competing with gas fired electricity. In the last decade wind moved offshore to accommodate even more wind power.

  11. Offshore Wind Farm Clusters - Towards new integrated Design Tool

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Réthoré, Pierre-Elouan; Peña, Alfredo

    In EERA DTOC testing of existing wind farm wake models against four validation data test sets from large offshore wind farms is carried out. This includes Horns Rev-1 in the North Sea, Lillgrund in the Baltic Sea, Roedsand-2 in the Baltic Sea and from 10 large offshore wind farms in Northern Euro...

  12. Offshore Wind Farm Layout Design Considering Optimized Power Dispatch Strategy

    DEFF Research Database (Denmark)

    Hou, Peng; Hu, Weihao; N. Soltani, Mohsen

    2017-01-01

    Offshore wind farm has drawn more and more attention recently due to its higher energy capacity and more freedom to occupy area. However, the investment is higher. In order to make a cost-effective wind farm, the wind farm layout should be optimized. The wake effect is one of the dominant factors...

  13. ADDJUST - An automated system for steering Centaur launch vehicles in measured winds

    Science.gov (United States)

    Swanson, D. C.

    1977-01-01

    ADDJUST (Automatic Determination and Dissemination of Just-Updated Steering Terms) is an automated computer and communication system designed to provide Atlas/Centaur and Titan/Centaur launch vehicles with booster-phase steering data on launch day. Wind soundings are first obtained, from which a smoothed wind velocity vs altitude relationship is established. Design for conditions at the end of the boost phase with initial pitch and yaw maneuvers, followed by zero total angle of attack through the filtered wind establishes the required vehicle attitude as a function of altitude. Polynomial coefficients for pitch and yaw attitude vs altitude are determined and are transmitted for validation and loading into the Centaur airborne computer. The system has enabled 14 consecutive launches without a flight wind delay.

  14. Energy Storage System Scheduling in Wind-Diesel Microgrids

    Science.gov (United States)

    Ross, Michael

    This thesis proposes a knowledge based expert system tool that can be used as an online controller for the charging/discharging of an energy storage system in a wind-diesel microgrid. The wind-diesel microgrid is modelled, and a typical energy storage system is implemented to test the functionality of the controller using hourly-discrete power values. The results are compared against an offline optimization that was provided 24-hour lookahead wind values, as well as a controller that was implemented using artificial neural networks. The knowledge based expert system is then used to analyze the cost of energy, by means of a parametric analysis, consisting of varying the wind penetration, energy storage system power rating and energy rating to determine for which wind penetration values a storage system implementation would be technically and economically viable. Different storage technologies are tested in a one-year time frame to determine which would be best suited for this particular application. The energy storage systems are implemented as single-layer and dual-layer, in which the knowledge based expert system is modified for the latter analysis, in order to determine whether or not there are advantages to having a dual-layer storage system. Throughout these analyses, the flexibility of the knowledge based expert system controller to various energy storage systems and microgrid models is verified. It also demonstrates that, in a context of high base generation costs, energy storage can be a viable solution to managing wind power variations.

  15. Optical system design

    CERN Document Server

    Fischer, Robert F

    2008-01-01

    Honed for more than 20 years in an SPIE professional course taught by renowned optical systems designer Robert E. Fischer, Optical System Design, Second Edition brings you the latest cutting-edge design techniques and more than 400 detailed diagrams that clearly illustrate every major procedure in optical design. This thoroughly updated resource helps you work better and faster with computer-aided optical design techniques, diffractive optics, and the latest applications, including digital imaging, telecommunications, and machine vision. No need for complex, unnecessary mathematical derivations-instead, you get hundreds of examples that break the techniques down into understandable steps. For twenty-first century optical design without the mystery, the authoritative Optical Systems Design, Second Edition features: Computer-aided design use explained through sample problems Case studies of third-millennium applications in digital imaging, sensors, lasers, machine vision, and more New chapters on optomechanic...

  16. Performance Guaranteed Inertia Emulation forDiesel-Wind System Feed Microgrid via ModelReference Control

    Energy Technology Data Exchange (ETDEWEB)

    Melin, Alexander M. [ORNL; Zhang, Yichen [University of Tennessee, Knoxville (UTK), Department of Electrical Engineering and Computer Science; Djouadi, Seddik [University of Tennessee, Knoxville (UTK), Department of Electrical Engineering and Computer Science; Olama, Mohammed M. [ORNL

    2017-04-01

    In this paper, a model reference control based inertia emulation strategy is proposed. Desired inertia can be precisely emulated through this control strategy so that guaranteed performance is ensured. A typical frequency response model with parametrical inertia is set to be the reference model. A measurement at a specific location delivers the information of disturbance acting on the diesel-wind system to the referencemodel. The objective is for the speed of the diesel-wind system to track the reference model. Since active power variation is dominantly governed by mechanical dynamics and modes, only mechanical dynamics and states, i.e., a swing-engine-governor system plus a reduced-order wind turbine generator, are involved in the feedback control design. The controller is implemented in a three-phase diesel-wind system feed microgrid. The results show exact synthetic inertia is emulated, leading to guaranteed performance and safety bounds.

  17. SIMWEST - A simulation model for wind energy storage systems

    Science.gov (United States)

    Edsinger, R. W.; Warren, A. W.; Gordon, L. H.; Chang, G. C.

    1978-01-01

    This paper describes a comprehensive and efficient computer program for the modeling of wind energy systems with storage. The level of detail of SIMWEST (SImulation Model for Wind Energy STorage) is consistent with evaluating the economic feasibility as well as the general performance of wind energy systems with energy storage options. The software package consists of two basic programs and a library of system, environmental, and control components. The first program is a precompiler which allows the library components to be put together in building block form. The second program performs the technoeconomic system analysis with the required input/output, and the integration of system dynamics. An example of the application of the SIMWEST program to a current 100 kW wind energy storage system is given.

  18. Review of Power System Stability with High Wind Power Penetration

    DEFF Research Database (Denmark)

    Hu, Rui; Hu, Weihao; Chen, Zhe

    2015-01-01

    This paper presents an overview of researches on power system stability with high wind power penetration including analyzing methods and improvement approaches. Power system stability issues can be classified diversely according to different considerations. Each classified issue has special...... analyzing methods and stability improvement approaches. With increasing wind power penetration, system balancing and the reduced inertia may cause a big threaten for stable operation of power systems. To mitigate or eliminate the wind impacts for high wind penetration systems, although the practical...... and reliable choices currently are the strong outside connections or sufficient reserve capacity constructions, many novel theories and approaches are invented to investigate the stability issues, looking forward to an extra-high penetration or totally renewable resource based power systems. These analyzing...

  19. Market penetration of large wind/diesel systems

    International Nuclear Information System (INIS)

    Kronborg, T.

    1992-01-01

    Burmeister ampersand Wain is developing a large size wind/diesel package in collaboration with Micon, the Danish wind turbine manufacturer, and the Danish utility NESA. The package comprises an initial calculation of the technical feasibility and the economic viability of an actual project, installing the optimum number of large wind turbines, and service, operation, and maintenance as needed. The concept should be seen as an addition to existing diesel-based power stations. Wind turbines are especially advantageous in smaller diesel-based electrical systems in the 1-20 MW range because such systems can have high fuel costs and expensive maintenance. Analysis of the market for the wind/diesel concept indicates islands and remote areas with limited population are likely candidates for implementation of wind/diesel systems. An example of an economic analysis of a wind/diesel application on an isolated island is presented, showing the cost savings possible. To obtain practical experience and to demonstrate the wind/diesel concept, a MW-size demonstration plant is being constructed in Denmark

  20. Power quality control of an autonomous wind-diesel power system based on hybrid intelligent controller.

    Science.gov (United States)

    Ko, Hee-Sang; Lee, Kwang Y; Kang, Min-Jae; Kim, Ho-Chan

    2008-12-01

    Wind power generation is gaining popularity as the power industry in the world is moving toward more liberalized trade of energy along with public concerns of more environmentally friendly mode of electricity generation. The weakness of wind power generation is its dependence on nature-the power output varies in quite a wide range due to the change of wind speed, which is difficult to model and predict. The excess fluctuation of power output and voltages can influence negatively the quality of electricity in the distribution system connected to the wind power generation plant. In this paper, the authors propose an intelligent adaptive system to control the output of a wind power generation plant to maintain the quality of electricity in the distribution system. The target wind generator is a cost-effective induction generator, while the plant is equipped with a small capacity energy storage based on conventional batteries, heater load for co-generation and braking, and a voltage smoothing device such as a static Var compensator (SVC). Fuzzy logic controller provides a flexible controller covering a wide range of energy/voltage compensation. A neural network inverse model is designed to provide compensating control amount for a system. The system can be optimized to cope with the fluctuating market-based electricity price conditions to lower the cost of electricity consumption or to maximize the power sales opportunities from the wind generation plant.

  1. The experimental design of solar heating thermoelectric generator with wind cooling chimney

    International Nuclear Information System (INIS)

    Özdemir, Ali Ekber; Köysal, Yavuz; Özbaş, Engin; Atalay, Tahsin

    2015-01-01

    Highlights: • We model an experimental design of thermal electrical generator. • Electrical parameters were collected under the solar radiation. • All the calculated values were obtained from collected data. • Generated power and electrical efficiency were changed by thermal gradient. - Abstract: In this paper we present an experimental design of new solar based thermoelectric generator with wind chimney. Presented generator mainly consists of four parts: a heat pipe with solar collector tube for solar heating, a wind chimney for cooling, a thermoelectric (TE) module for electricity generation and measurement devices-sensors. Presented generator based on experimental design. Aim of this experimental design is to show an alternative way for cheap and efficiently renewable energy producing. The most important features of presented generator are uncomplicated structure, efficiently and cheapness. This experimental design can be improved and used for domestic and commercial application. For this reason, main parts of system can be enhanced and system can be improved. To evaluate of presented generator we collected some experimental data on designed system. Then maximum output power, electrical efficiency and Seebeck coefficient are calculated from obtained data. Results of the measurement are displayed in the form of graphs and tables. Our experiment was carried out on 16th and 21th August, in Samsun, on the north coast of Turkey with the exact location 41°14′N 36°26′E with sea level. Collection of the data was performed from 8:30 a.m. to 4 p.m

  2. Stability improvement of induction generator-based wind turbine systems

    DEFF Research Database (Denmark)

    Chen, Zhe; Hu, Y.; Blaabjerg, Frede

    2007-01-01

    affecting the stability are analysed. The characteristics of the induction-generator-based wind turbines are described, and possible methods of improving stability of the wind generators are discussed. The system modelling is presented, and then the discussed methods of improving stability are investigated......The stability improvement of induction-generator-based wind turbine systems under power system fault conditions has been studied. Two types of generators are considered, namely rotor short-circuited induction generators and dynamic slip-controlled wound rotor induction generators. The factors...

  3. Efficiency improvement for wind energy pumped storage systems

    DEFF Research Database (Denmark)

    Forcos, A.; Marinescu, C.; Teodorescu, Remus

    2011-01-01

    Integrating wind energy into the grid may raise stability problems. Solutions for avoiding these situations are studied and energy storage methods are suitable for balancing the energy between the wind turbine and grid. In this paper, an autonomous wind turbine pumped storage system is presented....... The focus of this paper is to improve the efficiency of this system, which is small at low power levels. The driving motorpump group of the storage system is the key point presented in this paper for efficiency improving. Two control methods, experimentally implemented for induction machine are presented...

  4. Stability improvement of induction generator-based wind turbine systems

    DEFF Research Database (Denmark)

    Chen, Zhe; Hu, Y.; Blaabjerg, Frede

    2007-01-01

    The stability improvement of induction-generator-based wind turbine systems under power system fault conditions has been studied. Two types of generators are considered, namely rotor short-circuited induction generators and dynamic slip-controlled wound rotor induction generators. The factors...... affecting the stability are analysed. The characteristics of the induction-generator-based wind turbines are described, and possible methods of improving stability of the wind generators are discussed. The system modelling is presented, and then the discussed methods of improving stability are investigated....... Simulation results have been presented and the effectiveness of the stability improvement methods has been discussed....

  5. Designing automatic resupply systems.

    Science.gov (United States)

    Harding, M L

    1999-02-01

    This article outlines the process for designing and implementing autoresupply systems. The planning process includes determination of goals and appropriate participation. Different types of autoresupply mechanisms include kanban, breadman, consignment, systems contracts, and direct shipping from an MRP schedule.

  6. Upper wind observing systems used for meteorological operations

    Directory of Open Access Journals (Sweden)

    J. Nash

    Full Text Available Methods of upper wind measurements used in operational meteorology have been reviewed to provide guidance to those developing wind profiler radar systems. The main limitations of the various methods of tracking weather balloons are identified using results from the WMO radiosonde comparisons and additional tests in the United Kingdom. Costs associated with operational balloon measurements are reviewed. The sampling and quality of operational aircraft wind observations are illustrated with examples from the ASDAR system. Measurement errors in horizontal winds are quantified wherever possible. When tracking equipment is functioning correctly, random errors in southerly and westerly wind component measurements from aircraft and weather balloons are usually in the range 0.5-2 m s-1.

  7. An improved AVC strategy applied in distributed wind power system

    Science.gov (United States)

    Zhao, Y. N.; Liu, Q. H.; Song, S. Y.; Mao, W.

    2016-08-01

    Traditional AVC strategy is mainly used in wind farm and only concerns about grid connection point, which is not suitable for distributed wind power system. Therefore, this paper comes up with an improved AVC strategy applied in distributed wind power system. The strategy takes all nodes of distribution network into consideration and chooses the node having the most serious voltage deviation as control point to calculate the reactive power reference. In addition, distribution principles can be divided into two conditions: when wind generators access to network on single node, the reactive power reference is distributed according to reactive power capacity; when wind generators access to network on multi-node, the reference is distributed according to sensitivity. Simulation results show the correctness and reliability of the strategy. Compared with traditional control strategy, the strategy described in this paper can make full use of generators reactive power output ability according to the distribution network voltage condition and improve the distribution network voltage level effectively.

  8. Sizing and Simulation of PV-Wind Hybrid Power System

    OpenAIRE

    Engin, Mustafa

    2013-01-01

    A sizing procedure is developed for hybrid system with the aid of mathematical models for photovoltaic cell, wind turbine, and battery that are readily present in the literature. This sizing procedure can simulate the annual performance of different kinds of photovoltaic-wind hybrid power system structures for an identified set of renewable resources, which fulfills technical limitations with the lowest energy cost. The output of the program will display the performance of the system during t...

  9. Coupled Dynamic Modeling of Floating Wind Turbine Systems: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Wayman, E. N.; Sclavounos, P. D.; Butterfield, S.; Jonkman, J.; Musial, W.

    2006-03-01

    This article presents a collaborative research program that the Massachusetts Institute of Technology (MIT) and the National Renewable Energy Laboratory (NREL) have undertaken to develop innovative and cost-effective floating and mooring systems for offshore wind turbines in water depths of 10-200 m. Methods for the coupled structural, hydrodynamic, and aerodynamic analysis of floating wind turbine systems are presented in the frequency domain. This analysis was conducted by coupling the aerodynamics and structural dynamics code FAST [4] developed at NREL with the wave load and response simulation code WAMIT (Wave Analysis at MIT) [15] developed at MIT. Analysis tools were developed to consider coupled interactions between the wind turbine and the floating system. These include the gyroscopic loads of the wind turbine rotor on the tower and floater, the aerodynamic damping introduced by the wind turbine rotor, the hydrodynamic damping introduced by wave-body interactions, and the hydrodynamic forces caused by wave excitation. Analyses were conducted for two floater concepts coupled with the NREL 5-MW Offshore Baseline wind turbine in water depths of 10-200 m: the MIT/NREL Shallow Drafted Barge (SDB) and the MIT/NREL Tension Leg Platform (TLP). These concepts were chosen to represent two different methods of achieving stability to identify differences in performance and cost of the different stability methods. The static and dynamic analyses of these structures evaluate the systems' responses to wave excitation at a range of frequencies, the systems' natural frequencies, and the standard deviations of the systems' motions in each degree of freedom in various wind and wave environments. This article in various wind and wave environments. This article explores the effects of coupling the wind turbine with the floating platform, the effects of water depth, and the effects of wind speed on the systems' performance. An economic feasibility analysis of

  10. Wind Energy Conversion by Plant-Inspired Designs.

    Science.gov (United States)

    McCloskey, Michael A; Mosher, Curtis L; Henderson, Eric R

    2017-01-01

    In 2008 the U.S. Department of Energy set a target of 20% wind energy by 2030. To date, induction-based turbines form the mainstay of this effort, but turbines are noisy, perceived as unattractive, a potential hazard to bats and birds, and their height hampers deployment in residential settings. Several groups have proposed that artificial plants containing piezoelectric elements may harvest wind energy sufficient to contribute to a carbon-neutral energy economy. Here we measured energy conversion by cottonwood-inspired piezoelectric leaves, and by a "vertical flapping stalk"-the most efficient piezo-leaf previously reported. We emulated cottonwood for its unusually ordered, periodic flutter, properties conducive to piezo excitation. Integrated over 0°-90° (azimuthal) of incident airflow, cottonwood mimics outperformed the vertical flapping stalk, but they produced < daW per conceptualized tree. In contrast, a modest-sized cottonwood tree may dissipate ~ 80 W via leaf motion alone. A major limitation of piezo-transduction is charge generation, which scales with capacitance (area). We thus tested a rudimentary, cattail-inspired leaf with stacked elements wired in parallel. Power increased systematically with capacitance as expected, but extrapolation to acre-sized assemblages predicts < daW. Although our results suggest that present piezoelectric materials will not harvest mid-range power from botanic mimics of convenient size, recent developments in electrostriction and triboelectric systems may offer more fertile ground to further explore this concept.

  11. HVAC systems design handbook

    CERN Document Server

    Haines, Roger W

    2010-01-01

    Thoroughly updated with the latest codes, technologies, and practices, this all-in-one resource provides details, calculations, and specifications for designing efficient and effective residential, commercial, and industrial HVAC systems. HVAC Systems Design Handbook, Fifth Edition, features new information on energy conservation and computer usage for design and control, as well as the most recent International Code Council (ICC) Mechanical Code requirements. Detailed illustrations, tables, and essential HVAC equations are also included. This comprehensive guide contains everything you need to design, operate, and maintain peak-performing HVAC systems.

  12. Human Systems Design Criteria

    DEFF Research Database (Denmark)

    Rasmussen, Jens

    1982-01-01

    This paper deals with the problem of designing more humanised computer systems. This problem can be formally described as the need for defining human design criteria, which — if used in the design process - will secure that the systems designed get the relevant qualities. That is not only...... the necessary functional qualities but also the needed human qualities. The author's main argument is, that the design process should be a dialectical synthesis of the two points of view: Man as a System Component, and System as Man's Environment. Based on a man's presentation of the state of the art a set...... of design criteria is suggested and their relevance discussed. The point is to focus on the operator rather than on the computer. The crucial question is not to program the computer to work on its own conditions, but to “program” the operator to function on human conditions....

  13. Studies for Characterisation of Electrical Properties of DC Collection System in Offshore Wind Farms

    DEFF Research Database (Denmark)

    Chen, Yu-Hsing; Dincan, Catalin Gabriel; Olsen, Rolant Joannesarson

    2016-01-01

    Offshore HVDC-connected wind farms where the wind plant power collection network becomes DC, rather than AC, offer reduced electrical losses, lower equipment ratings potentially leading to lower bill-of-material cost, and undiminished functionality. However, no standards exist for an offshore...... medium-voltage DC power collection cable-based system, routing power from MVDC wind turbines all the way to the HVDC export cable. To progress, it is therefore important to establish some common reference for the design and performance of the components needed in an MVDC collection network. Any suggested...

  14. Design of a real-time wind turbine simulator using a custom parallel architecture

    Science.gov (United States)

    Hoffman, John A.; Gluck, R.; Sridhar, S.

    1995-01-01

    The design of a new parallel-processing digital simulator is described. The new simulator has been developed specifically for analysis of wind energy systems in real time. The new processor has been named: the Wind Energy System Time-domain simulator, version 3 (WEST-3). Like previous WEST versions, WEST-3 performs many computations in parallel. The modules in WEST-3 are pure digital processors, however. These digital processors can be programmed individually and operated in concert to achieve real-time simulation of wind turbine systems. Because of this programmability, WEST-3 is very much more flexible and general than its two predecessors. The design features of WEST-3 are described to show how the system produces high-speed solutions of nonlinear time-domain equations. WEST-3 has two very fast Computational Units (CU's) that use minicomputer technology plus special architectural features that make them many times faster than a microcomputer. These CU's are needed to perform the complex computations associated with the wind turbine rotor system in real time. The parallel architecture of the CU causes several tasks to be done in each cycle, including an IO operation and the combination of a multiply, add, and store. The WEST-3 simulator can be expanded at any time for additional computational power. This is possible because the CU's interfaced to each other and to other portions of the simulation using special serial buses. These buses can be 'patched' together in essentially any configuration (in a manner very similar to the programming methods used in analog computation) to balance the input/ output requirements. CU's can be added in any number to share a given computational load. This flexible bus feature is very different from many other parallel processors which usually have a throughput limit because of rigid bus architecture.

  15. LWST Phase I Project Conceptual Design Study: Evaluation of Design and Construction Approaches for Economical Hybrid Steel/Concrete Wind Turbine Towers; June 28, 2002 -- July 31, 2004

    Energy Technology Data Exchange (ETDEWEB)

    LaNier, M. W.

    2005-01-01

    The United States Department of Energy (DOE) Wind Energy Research Program has begun a new effort to partner with U.S. industry to develop wind technology that will allow wind systems to compete in regions of low wind speed. The Class 4 and 5 sites targeted by this effort have annual average wind speeds of 5.8 m/s (13 mph), measured at 10 m (33 ft) height. Such sites are abundant in the United States and would increase the land area available for wind energy production twenty-fold. The new program is targeting a levelized cost of energy of 3 cents/kWh at these sites by 2010. A three-element approach has been initiated. These efforts are concept design, component development, and system development. This work builds on previous activities under the WindPACT program and the Next Generation Turbine program. If successful, DOE estimates that his new technology could result in 35 to 45 gigawatts of additional wind capacity being installed by 2020.

  16. Power system integration and control of variable speed wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Eek, Jarle

    2009-12-15

    A wind power plant is a highly dynamic system that dependent on the type of technology requires a number of automatic control loops. This research deals with modelling, control and analysis related to power system integration of variable speed, pitch controlled wind turbines. All turbine components have been modelled and implemented in the power system simulation program SIMPOW, and a description of the modelling approach for each component is given. The level of model detail relates to the classical modelling of power system components for power system stability studies, where low frequency oscillations are of special importance. The wind turbine model includes a simplified representation of the developed rotor torque and the thrust force based on C{sub p-} and C{sub t} characteristic curves. The mechanical system model represents the fundamental torsional mode and the first mode of blades and tower movements. Two generator technologies have been investigated. The doubly fed induction generator (DFIG) and the stator converter interfaced permanent magnet synchronous generator (PMSG). A simplified model of a 2 level voltage source converter is used for both machine types. The generator converter controllers have been given special attention. All model components are linearized for the purpose of control system design and power system interaction related to small signal stability analysis. Different control strategies discussed in the literature have been investigated with regard to power system interaction aspects. All control parameters are identified using the internal model control approach. The analysis is focused on three main areas: 1. Identification of low damped oscillatory modes. This is carried out by the establishment and discussion of wind turbine modelling. 2. Interaction between control loops. A systematic approach is presented in order to analyse the influence of control loops used in variable speed wind turbines. 3.Impact on power system performance

  17. Coordinated Control Strategies of VSC-HVDC-Based Wind Power Systems for Low Voltage Ride Through

    Directory of Open Access Journals (Sweden)

    Xinyin Zhang

    2015-07-01

    Full Text Available The Voltage Source Converter-HVDC (VSC-HVDC system applied to wind power generation can solve large scale wind farm grid-connection and long distance transmission problems. However, the low voltage ride through (LVRT of the VSC-HVDC connected wind farm is a key technology issue that must be solved, and it is currently lacking an economic and effective solution. In this paper, a LVRT coordinated control strategy is proposed for the VSC-HVDC-based wind power system. In this strategy, the operation and control of VSC-HVDC and wind farm during the grid fault period is improved. The VSC-HVDC system not only provides reactive power support to the grid, but also effectively maintains the power balance and DC voltage stability by reducing wind-farm power output, without increasing the equipment investment. Correspondingly, to eliminate the influence on permanent magnet synchronous generator (PMSG-based wind turbine (WT systems, a hierarchical control strategy is designed. The speed and validity of the proposed LVRT coordinated control strategy and hierarchical control strategy were verified by MATLAB/Simulink simulations.

  18. Conventional and novel control designs for direct driven PMSG wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shuhui; Haskew, Timothy A.; Xu, Ling [Department of Electrical and Computer Engineering, The University of Alabama, 317 Houser Hall, Tuscaloosa, AL 35487 (United States)

    2010-03-15

    With the advance of power electronic technology, direct driven permanent magnet synchronous generators (PMSG) have increasingly drawn interests to wind turbine manufactures. This paper studies and compares conventional and a novel control designs for a direct driven PMSG wind turbine. The paper presents transient and steady-state models of a PMSG system in a d-q reference frame. Then, general PMSG characteristics are investigated in the rotor-flux-oriented frame. A shortage of conventional control mechanisms is studied analytically and through computer simulation. A novel direct-current based d-q vector control technique is proposed by integrating fuzzy, adaptive and traditional PID control technologies in an optimal control configuration. Comparison study demonstrates that the proposed control approach, having superior performance in various aspects, is effective not only in achieving desired PMSG control objectives but also in improving the optimal performance of the overall system. (author)

  19. On Small-Signal Stability of Wind Power System with Full-Load Converter Interfaced Wind Turbines

    DEFF Research Database (Denmark)

    Knüppel, Thyge; Akhmatov, Vladislav; Nielsen, Jørgen Nygård

    2010-01-01

    Small-signal stability analysis of power system oscillations is a well established field within power system analysis, but not much attention has yet been paid to systems with a high penetration of wind turbines and with large wind power plants. In this paper an analysis is presented which assess...... the impact of full-load converter interfaced wind turbines on power system small-signal stability. The study is based on a 7 generator network with lightly damped inter-area modes. A detailed wind turbine model with all grid relevant control functions is used in the study. Furthermore is the wind power plant...

  20. Determining the impact of wind on system costs via the temporal patterns of load and wind generation

    International Nuclear Information System (INIS)

    Davis, Clay D.; Gotham, Douglas J.; Preckel, Paul V.; Liu, Andrew L.

    2013-01-01

    Ambitious targets have been set for expanding electricity generation from renewable sources, including wind. Expanding wind power impacts needs for other electricity generating resources. As states plan for increasing levels of wind generation in their portfolio of generation resources it is important to consider how this intermittent resource impacts the need for other generation resources. A case study for Indiana estimates the value of wind capacity and demonstrates how to optimize its level and the levels of other generation resources. Changes are driven by temporal patterns of wind power output and load. System wide impacts are calculated for energy, capacity, and costs under multiple wind expansion scenarios which highlight the geographic characteristics of a systems portfolio of wind generation. The impacts of carbon prices, as proposed in the Bingaman Bill, are considered. Finally, calculations showing the effect increasing levels of wind generation will have on end use Indiana retail rates are included. - Highlights: • We estimate the value of wind capacity. • We determine wind generation's impact on the optimal mix of non-wind generation. • Optimal levels of wind and non-wind generation are determined. • We consider the impact of a carbon price on the optimal mix of resources. • The impact of additional wind capacity on Indiana residential rates is calculated

  1. Unit Commitment for Systems With Significant Wind Penetration

    DEFF Research Database (Denmark)

    Tuohy, Aidan; Meibom, Peter; Denny, E.

    2009-01-01

    optimization. The impact of planning the system more frequently to account for updated wind and load forecasts is then examined. More frequent planning means more up to date forecasts are used, which reduces the need for reserve and increases performance of the schedules. It is shown that mid-merit and peaking......The stochastic nature of wind alters the unit commitment and dispatch problem. By accounting for this uncertainty when scheduling the system, more robust schedules are produced, which should, on average, reduce expected costs. In this paper, the effects of stochastic wind and load on the unit...

  2. Screening of epoxy systems for high performance filament winding applications

    Science.gov (United States)

    Chiao, T. T.; Jessop, E. S.; Penn, L.

    1975-01-01

    Several promising epoxy systems for high performance filament winding applications are described. Viscosities, gel times, and cast resin tensile behavior are given, as well as heat deflection under load and water absorption measurements.

  3. Transient stability risk assessment of power systems incorporating wind farms

    DEFF Research Database (Denmark)

    Miao, Lu; Fang, Jiakun; Wen, Jinyu

    2013-01-01

    Large-scale wind farm integration has brought several aspects of challenges to the transient stability of power systems. This paper focuses on the research of the transient stability of power systems incorporating with wind farms by utilizing risk assessment methods. The detailed model of double...... fed induction generator has been established. Wind penetration variation and multiple stochastic factors of power systems have been considered. The process of transient stability risk assessment based on the Monte Carlo method has been described and a comprehensive risk indicator has been proposed....... An investigation has been conducted into an improved 10-generator 39-bus system with a wind farm incorporated to verify the validity and feasibility of the risk assessment method proposed....

  4. Reliability-Based Design of Wind Turbine Foundations – Computational Modelling

    DEFF Research Database (Denmark)

    Vahdatirad, Mohammad Javad

    Among renewable green energy generators, wind turbines are the most technically and economically efficient. Therefore, wind power plants are experiencing a competitive increased trend in global growth. The gas and oil industry is shrouded by political conflict, not the least of which is burning...... increased cost-effectiveness in wind turbines, and an optimized design must be implemented on the expensive structural components. The traditional wind turbine foundation typically expends 25-30% of the total wind turbine budget; thus it is one of the most costly fabrication components. Therefore......, a reduction in foundation cost, and optimizing foundation structural design is the best solution to cost effectiveness. An optimized wind turbine foundation design should provide a suitable target reliability level. Unfortunately, the reliability level is not identified in most current deterministic design...

  5. Psychology of system design

    CERN Document Server

    Meister, D

    2014-01-01

    This is a book about systems, including: systems in which humans control machines; systems in which humans interact with humans and the machine component is relatively unimportant; systems which are heavily computerized and those that are not; and governmental, industrial, military and social systems. The book deals with both traditional systems like farming, fishing and the military, and with systems just now tentatively emerging, like the expert and the interactive computer system. The emphasis is on the system concept and its implications for analysis, design and evaluation of these many di

  6. Definition and preliminary design of the Laser Atmospheric Wind Sounder (LAWS) phase 1. Volume 2

    Science.gov (United States)

    1990-01-01

    The steps and engineering trades and analyses used in establishing the initial requirements and in developing a concept and configuration for the laser atmospheric wind sounder (LAWS) instrument. A summary of the performance anticipated from the baseline configuration, and a bibliography are presented. LAWS, which is a facility instrument of the Earth observing system (EOS), is the culmination of over 20 years of effort in the field of laser Doppler wind sensing and will be the first instrument to fly in space capable of providing global-scale tropospheric wind profiles at high spatial resolutions. Global-scale wind profiles are necessary for: (1) more accurate diagnosis of large-scale circulation and climate dynamics; (2) improved numerical weather prediction; (3) improved understanding of mesoscale systems; and (4) improved understanding of global biogeochemical and hydrologic cycles. The objective of phase 1 was to define and perform a preliminary design for the LAWS instrument. The definition phase consisted of identifying realistic concepts for LAWS and analyzing them in sufficient detail to be able to choose the most promising one for the LAWS instrument. Systems and subsystems configurations were then developed for the chosen concept. The concept and subsequent configuration were to be compatible with two prospective platforms: the Japanese polar orbiting platform (JPOP) and as an attached payload on the Space Station Freedom. After a thorough and objective concept selection process, a heterodyne detection Doppler lidar using a CO2 laser transmitter operating a 9.1 micron over a 2.1 micron solid state system was chosen. A configuration for LAWS that meets the performance requirements was designed at the conclusion of phase 1.

  7. RTE: the integration of wind energy in the power system

    International Nuclear Information System (INIS)

    Glachant, Magali; Neau, Emmanuel

    2011-03-01

    The total installed capacity of wind power in France grew from a few hundred MW at the beginning of 2005 to 5500 MW at the end of 2010. This fast growth is set to continue, and the French Government's decision of 15 December 2009 on the country's long-term investment programs in power generation requires France to have at least 25 GW of installed wind capacity (including 6 GW offshore) by 2020. But the French specificities are that wind farms are largely spread over the territory, and 95 % of them have an output power below 12 MW which means they are mainly connected to the distribution network. As a consequence, this new intermittent and decentralized production is not 'naturally' observable by RTE, whereas it has nevertheless impacts on the operation of the transmission system for which RTE is responsible. The natural variability of wind power and the difficulty of its predictability require indeed a change in the traditional way of ensuring balancing between production and demand, of managing day-ahead margins and of controlling the electrical flows. Furthermore RTE operators have to be informed quickly and reliably of the real time output power of wind farms and of its evolvement some hours or days ahead to ensure the reliability of the French electrical power system. In this context, new tools were necessary to RTE to acquire as soon as possible data concerning wind power. In two years long, RTE set up an observatory of wind production called the 'IPES system'. 'IPES' enables to get information about technical characteristics of the whole wind farms in France and to observe the wind generation by two ways: in real time with tele-metered data and in the short term with a forecast model integrated into the system. In addition, RTE currently carries out studies about the behavior and the forecasting of wind production integrated into the grids, as internal activities (about forecast methods), and in different projects (such as European projects: Safewind for

  8. Dynamic wind turbine models in power system simulation tool

    DEFF Research Database (Denmark)

    Hansen, A.; Jauch, Clemens; Soerensen, P.

    The present report describes the dynamic wind turbine models implemented in the power system simulation tool DIgSILENT. The developed models are a part of the results of a national research project, whose overall objective is to create a model database in different simulation tools. The report...... provides a description of the wind turbine modelling, both at a component level and at a system level....

  9. Aerial sensor for wind turbines Design, implementation and demonstration of the technology

    DEFF Research Database (Denmark)

    Schmidt Paulsen, Uwe; Moñux, Oscar

    The EUDP‐2012 proposal, “Improved wind turbine efficiency using synchronized sensors” is a project which focuses on improving the efficiency of energy production, primarily for wind turbines, but as a spinoff, also traditional power plants. It builds on the experience and proven technology from...... three previous wind turbine projects: ‐ A wing mounted inflow sensor for wind turbines. This system has gone through multiple stages of development, and will be greatly enhanced by the synchronization technology from this project....

  10. Control of Full-Scale Converter based Wind Power Plants for damping of low frequency system oscillations

    DEFF Research Database (Denmark)

    Adamczyk, Andrzej Grzegorz; Teodorescu, Remus; Rodriguez, Pedro

    2011-01-01

    Damping of low frequency power oscillations is one of essential aspects of maintaining power system stability. In literature can be found publications on damping capability of Doubly Fed Induction Generator based wind turbines. This paper extends discussion on Wind Power Plant damping capability...... and design is based on modal analysis, therefore matching modeling approach for wind power plant is proposed. Finally, performance of Wind Power Plant damping control is compared to a regular power system stabilizer installed on a synchronous generator....... to Full-Scale Converter based type. Moreover resemblance of such Wind Power Plant to modern FACTS devices is recognized and exploited. Paper discusses many aspect of damping controller design, including feedback signal selection and control effectiveness with respect to wind farm location. Analysis...

  11. Large wind power plants modeling techniques for power system simulation studies

    Energy Technology Data Exchange (ETDEWEB)

    Larose, Christian; Gagnon, Richard; Turmel, Gilbert; Giroux, Pierre; Brochu, Jacques [IREQ Hydro-Quebec Research Institute, Varennes, QC (Canada); McNabb, Danielle; Lefebvre, Daniel [Hydro-Quebec TransEnergie, Montreal, QC (Canada)

    2009-07-01

    This paper presents efficient modeling techniques for the simulation of large wind power plants in the EMT domain using a parallel supercomputer. Using these techniques, large wind power plants can be simulated in detail, with each wind turbine individually represented, as well as the collector and receiving network. The simulation speed of the resulting models is fast enough to perform both EMT and transient stability studies. The techniques are applied to develop an EMT detailed model of a generic wind power plant consisting of 73 x 1.5-MW doubly-fed induction generator (DFIG) wind turbine. Validation of the modeling techniques is presented using a comparison with a Matlab/SimPowerSystems simulation. To demonstrate the simulation capabilities using these modeling techniques, simulations involving a 120-bus receiving network with two generic wind power plants (146 wind turbines) are performed. The complete system is modeled using the Hypersim simulator and Matlab/SimPowerSystems. The simulations are performed on a 32-processor supercomputer using an EMTP-like solution with a time step of 18.4 {mu}s. The simulation performance is 10 times slower than in real-time, which is a huge gain in performance compared to traditional tools. The simulation is designed to run in real-time so it never stops, resulting in a capability to perform thousand of tests via automatic testing tools. (orig.)

  12. Wind Tunnel Management and Resource Optimization: A Systems Modeling Approach

    Science.gov (United States)

    Jacobs, Derya, A.; Aasen, Curtis A.

    2000-01-01

    Time, money, and, personnel are becoming increasingly scarce resources within government agencies due to a reduction in funding and the desire to demonstrate responsible economic efficiency. The ability of an organization to plan and schedule resources effectively can provide the necessary leverage to improve productivity, provide continuous support to all projects, and insure flexibility in a rapidly changing environment. Without adequate internal controls the organization is forced to rely on external support, waste precious resources, and risk an inefficient response to change. Management systems must be developed and applied that strive to maximize the utility of existing resources in order to achieve the goal of "faster, cheaper, better". An area of concern within NASA Langley Research Center was the scheduling, planning, and resource management of the Wind Tunnel Enterprise operations. Nine wind tunnels make up the Enterprise. Prior to this research, these wind tunnel groups did not employ a rigorous or standardized management planning system. In addition, each wind tunnel unit operated from a position of autonomy, with little coordination of clients, resources, or project control. For operating and planning purposes, each wind tunnel operating unit must balance inputs from a variety of sources. Although each unit is managed by individual Facility Operations groups, other stakeholders influence wind tunnel operations. These groups include, for example, the various researchers and clients who use the facility, the Facility System Engineering Division (FSED) tasked with wind tunnel repair and upgrade, the Langley Research Center (LaRC) Fabrication (FAB) group which fabricates repair parts and provides test model upkeep, the NASA and LARC Strategic Plans, and unscheduled use of the facilities by important clients. Expanding these influences horizontally through nine wind tunnel operations and vertically along the NASA management structure greatly increases the

  13. Optimization of hybrid system (wind-solar energy) for pumping water ...

    African Journals Online (AJOL)

    This paper presents an optimization method for a hybrid (wind-solar) autonomous system designed for pumping water. This method is based on mathematical models demonstrated for the analysis and control of the performance of the various components of the hybrid system. These models provide an estimate of ...

  14. Control system design method

    Science.gov (United States)

    Wilson, David G [Tijeras, NM; Robinett, III, Rush D.

    2012-02-21

    A control system design method and concomitant control system comprising representing a physical apparatus to be controlled as a Hamiltonian system, determining elements of the Hamiltonian system representation which are power generators, power dissipators, and power storage devices, analyzing stability and performance of the Hamiltonian system based on the results of the determining step and determining necessary and sufficient conditions for stability of the Hamiltonian system, creating a stable control system based on the results of the analyzing step, and employing the resulting control system to control the physical apparatus.

  15. Determination of fault operation dynamical constraints for the design of wind turbine DFIG drives

    CERN Document Server

    Aguglia, Davide; Wamkeue, René; Cros, Jérôme

    2010-01-01

    This paper presents an efficient design tool for the estimation of the transient electromagnetic peak torque and transient rotor over-voltages of wind turbines (WT) doubly-fed induction generators (DFIG) during severe fault conditions on the grid side. This versatile and robust tool is well adapted to the implementation in a DFIG drives CAD environment using iterative optimization procedures. In such an application, it is used to compute the dynamical constraints function during the integrated design process of the whole drive including the generator, the gearbox and the power converters. Results show that it is necessary to take into account the dynamical constraints under fault operation, during the early steps of the system design process. Another application of the tool is also illustrated in the paper: the design of the protection system (i.e. the crowbar resistance) for a given generator, a given gearbox and a given power converter.

  16. Optimal Sizing of wind power systems in three high wind potential zones in Kuwait for remote housing electrification

    OpenAIRE

    Hajiah, Ali; Sebzali, M.

    2016-01-01

    This paper presents a technical study for wind power systems in three sites in Kuwait namely Al-Wafra, Um-Omara and Al-Taweel. Hourly wind speed data for three years are used in order to optimally sizing the wind power systems. Firstly, the Wiebull, function is used to model the wind speed data for each sites. After that a numerical method is used to optimize the energy sources in the power system (wind turbine and battery) using MATLAB. After that the MATLAB is used to analyze the performanc...

  17. Optimal design of a hybrid solar-wind-battery system using the minimization of the annualized cost system and the minimization of the loss of power supply probability (LPSP)

    Energy Technology Data Exchange (ETDEWEB)

    Ould Bilal, B.; Sambou, V.; Ndiaye, P.A.; Kebe, C.M.F. [Centre International de Formation et de Recherche en Energie Solaire (C.I.F.R.E.S), ESP BP: 5085 Dakar Fann (Senegal); Ndongo, M. [Centre de Recherche Appliquee aux Energies Renouvelables de l' Eau et du Froid (CRAER)/FST/Universite de Nouakchott (Mauritania)

    2010-10-15

    Potou is an isolated site, located in the northern coast of Senegal. The populations living in this area have no easy access to electricity supply. The use of renewable energies can contribute to the improvement of the living conditions of these populations. The methodology used in this paper consists in Sizing a hybrid solar-wind-battery system optimized through multi-objective genetic algorithm for this site and the influence of the load profiles on the optimal configuration. The two principal aims are: the minimization of the annualized cost system and the minimization of the loss of power supply probability (LPSP). To study the load profile influence, three load profiles with the same energy (94 kW h/day) have been used. The achieved results show that the cost of the optimal configuration strongly depends on the load profile. For example, the cost of the optimal configuration decreases by 7% and 5% going from profile 1 to 2 and for those ones going from 1 to 3. (author)

  18. Robust multi-model control of an autonomous wind power system

    Energy Technology Data Exchange (ETDEWEB)

    Cutululis, Nicolas Antonio; Hansen, Anca Daniela; Soerensen, Poul [Risoe National Lab., Wind Energy Dept., Roskilde (Denmark); Ceanga, Emil [' Dunarea de Jos' Univ., Faculty of Electrical Engineering, Galati (Romania)

    2006-07-01

    This article presents a robust multi-model control structure for a wind power system that uses a variable speed wind turbine (VSWT) driving a permanent magnet synchronous generator (PMSG) connected to a local grid. The control problem consists in maximizing the energy captured from the wind for varying wind speeds. The VSWT-PMSG linearized model analysis reveals the resonant nature of its dynamic at points on the optimal regimes characteristic (ORC). The natural frequency of the system and the damping factor are strongly dependent on the operating point on the ORC. Under these circumstances a robust multi-model control structure is designed. The simulation results prove the viability of the proposed control structure. (Author)

  19. Adaptive Controller for Drive System PMSG in Wind Turbine

    Directory of Open Access Journals (Sweden)

    Gnanambal

    2014-07-01

    Full Text Available This paper proposes adaptive Maximum Power Point Tracking (MPPT controller for Permanent Magnet Synchronous Generator (PMSG wind turbine and direct power control for grid side inverter for transformer less integration of wind energy. PMSG wind turbine with two back to back voltage source converters are considered more efficient, used to make real and reactive power control. The optimal control strategy has introduced for integrated control of PMSG Maximum Power Extraction, DC link voltage control and grid voltage support controls. Simulation model using MATLAB Simulink has developed to investigate the performance of proposed control techniques for PMSG wind turbine steady and variable wind conditions. This paper shows that the direct driven grid connected PMSG system has excellent performances and confirms the feasibility of the proposed techniques. While the wind turbine market continues to be dominated by conventional gear-driven wind turbine systems, the direct drive is attracting attention. PM machines are more attractive and superior with higher efficiency and energy yield, higher reliability, and power-to-weight ratio compared with electricity-excited machines.

  20. Inverse design-momentum, a method for the preliminary design of horizontal axis wind turbines

    International Nuclear Information System (INIS)

    Battisti, L; Soraperra, G; Fedrizzi, R; Zanne, L

    2007-01-01

    Wind turbine rotor prediction methods based on generalized momentum theory BEM routinely used in industry and vortex wake methods demand the use of airfoil tabulated data and geometrical specifications such as the blade spanwise chord distribution. They belong to the category of 'direct design' methods. When, on the other hand, the geometry is deduced from some design objective, we refer to 'inverse design' methods. This paper presents a method for the preliminary design of wind turbine rotors based on an inverse design approach. For this purpose, a generalized theory was developed without using classical tools such as BEM. Instead, it uses a simplified meridional flow analysis of axial turbomachines and is based on the assumption that knowing the vortex distribution and appropriate boundary conditions is tantamount to knowing the velocity distribution. The simple conservation properties of the vortex components consistently cope with the forces and specific work exchange expressions through the rotor. The method allows for rotor arbitrarily radial load distribution and includes the wake rotation and expansion. Radial pressure gradient is considered in the wake. The capability of the model is demonstrated first by a comparison with the classical actuator disk theory in investigating the consistency of the flow field, then the model is used to predict the blade planform of a commercial wind turbine. Based on these validations, the authors postulate the use of a different vortex distribution (i.e. not-uniform loading) for blade design and discuss the effect of such choices on blade chord and twist, force distribution and power coefficient. In addition to the method's straightforward application to the pre-design phase, the model clearly shows the link between blade geometry and performance allowing quick preliminary evaluation of non uniform loading on blade structural characteristics

  1. Study on optimal design of wind turbine blade airfoil and its application

    International Nuclear Information System (INIS)

    Sun, Min Young; Kim, Dong Yong; Lim, Jae Kyoo

    2012-01-01

    This study was carried out with two goals. One was the development of a model of a wind turbine blade airfoil and the other was the application of the folding blade. In general, in large sized (MW) wind turbines, damage is prevented in small wind turbines since equipment costs and maintenance costs are high, and therefore, the blade will cause serious damage. The wind turbine proposed in this study does not require maintenance, and the blades do not break during high winds because they are folded in accordance with changes in the wind speed. But generators are not cut out, while maintaining a constant angle will continue to produce. The focus of this study, the wind turbine is continued by folding blade system in strong winds and gusts without stopping production

  2. Study and design of a hybrid wind-diesel-compressed air system for providing electricity to a remote telecommunication station; Etudes et conception d'un systeme hybride eolien-diesel-air comprime pour l'electrification d'une station de telecommunications isolee

    Energy Technology Data Exchange (ETDEWEB)

    Ibrahim, H.; Dimitrova, M. [TechnoCentre eolien Gaspesie-les Iles, Gaspe, PQ (Canada); Ilinca, A. [Quebec Univ., Rimouski, PQ (Canada); Perron, J. [Quebec Univ., Chicoutimi, PQ (Canada)

    2010-07-01

    This poster reported on a study that examined the feasibility of using a hybrid wind-diesel-compressed air system to produce electricity at remote telecommunication stations. Low and high penetration wind-diesel hybrid systems were studied in order to reduce the diesel consumption. The use of a high penetration wind-diesel system together with compressed air energy storage (CAES) was shown to be a viable alternative to improve the overall percentage of renewable energy and reduce the cost of electricity in remote areas where a good wind resource is available. Different technical solutions for the CAES system were compared. refs., figs.

  3. Generic 12-Bus Test System for Wind Power Integration Studies

    DEFF Research Database (Denmark)

    Adamczyk, Andrzej Grzegorz; Altin, Müfit; Göksu, Ömer

    2012-01-01

    High wind power penetration levels into power systems requires an appropriate power system model when assessing impact on the overall system stability. The model should capture the wide range of dynamics related to the wind integration studies, such as voltage control, synchronizing power control......, inertial response, frequency control, damping of electromechanical oscillations, balanced and unbalanced fault management, etc. Hence, the power system components: conventional power plants with controls, transmission lines, transformers and loads should be represented accurately to achieve realistic power...... system characteristics. Additionally, the power system model should be simple and computationally manageable in order to simulate multiple scenarios with different control parameters in a reasonable time. In this paper, a generic power system model is presented in order to comprehend the wind integration...

  4. Resilient computer system design

    CERN Document Server

    Castano, Victor

    2015-01-01

    This book presents a paradigm for designing new generation resilient and evolving computer systems, including their key concepts, elements of supportive theory, methods of analysis and synthesis of ICT with new properties of evolving functioning, as well as implementation schemes and their prototyping. The book explains why new ICT applications require a complete redesign of computer systems to address challenges of extreme reliability, high performance, and power efficiency. The authors present a comprehensive treatment for designing the next generation of computers, especially addressing safety-critical, autonomous, real time, military, banking, and wearable health care systems.   §  Describes design solutions for new computer system - evolving reconfigurable architecture (ERA) that is free from drawbacks inherent in current ICT and related engineering models §  Pursues simplicity, reliability, scalability principles of design implemented through redundancy and re-configurability; targeted for energy-,...

  5. Integrating wind power in the (French) power system

    International Nuclear Information System (INIS)

    Pellen, A.

    2007-03-01

    RTE and EDF have no other technological option than to restrain the contribution of the French wind power fleet to base-load generation where it comes in direct competition with the nuclear power plants. The author aims to explain this situation and answer the following questions. Why the fossil fueled reactor fleet in France will not be affected by an evolution of the wind power capacity? Why, in France electric power generation-demand SYSTEM wind power cannot be a substitute for fossil fueled thermal units? (A.L.B.)

  6. Remote Systems Design & Deployment

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, Sharon A.; Baker, Carl P.; Valdez, Patrick LJ

    2009-08-28

    The Pacific Northwest National Laboratory (PNNL) was tasked by Washington River Protection Solutions, LLC (WRPS) to provide information and lessons learned relating to the design, development and deployment of remote systems, particularly remote arm/manipulator systems. This report reflects PNNL’s experience with remote systems and lays out the most important activities that need to be completed to successfully design, build, deploy and operate remote systems in radioactive and chemically contaminated environments. It also contains lessons learned from PNNL’s work experiences, and the work of others in the national laboratory complex.

  7. Design and analysis of full pitch winding and concentrated stator ...

    Indian Academy of Sciences (India)

    the winding, (ii) low cogging torque and permanent magnet (PM) weight. The basic machine configuration is an 8 salient pole rotor and 6 salient pole stator with concentrated windings. Permanent Magnets are fixed to the stator pole. Figure 1 shows this machine configuration. FRM for low-speed servo drive application was ...

  8. Coupling Atmosphere and Waves for Coastal Wind Turbine Design

    DEFF Research Database (Denmark)

    Bolanos, Rodolfo; Larsén, Xiaoli Guo; Petersen, Ole S.

    2014-01-01

    a 50% variation in roughness and 20% in wind, with the better formulation for wind leading degraded predictions of roughness compared with observations. The large estimates of roughness when using a 3rd generation wave model are evident offshore, while a roughness formulation based on wave age produces...

  9. Aerodynamic performance analysis of an airborne wind turbine system with NREL Phase IV rotor

    International Nuclear Information System (INIS)

    Saeed, Muhammad; Kim, Man-Hoe

    2017-01-01

    Highlights: • Aerodynamic predictions for a buoyant airborne system at an altitude of 400 m. • Aerodynamic characteristics of NREL Phase IV rotor operating in a shell casing. • Buoyant shell aerodynamics under varying wind conditions. - Abstract: Wind energy becomes more powerful and consistent with an increase in altitude, therefore, harvesting the wind energy at high altitude results in a naturally restocked source of energy which is cheaper and far more efficient than the conventional wind power system. Airborne wind turbine (AWT), one of the many techniques being employed for this purpose, stands out due to its uninterrupted scheme of energy production. This paper presents the aerodynamic performance of AWT system with NREL Phase IV rotor at an altitude of 400 m. Unsteady simulation of the airborne system has been carried out and variations in the rotor’s torque for a complete revolution are reported and discussed. In order to compare the performance of the shell mounted configuration of Phase IV rotor with its standard test configuration, steady state simulations of the rotor are also conducted under various wind conditions for both configurations. Finally, for stable design of the buoyant airborne system, aerodynamic forces on the shell body are computed and reported.

  10. Low-order aeroelastic models of wind turbines for controller design

    DEFF Research Database (Denmark)

    Sønderby, Ivan Bergquist

    Wind turbine controllers are used to optimize the performance of wind turbines such as to reduce power variations and fatigue and extreme loads on wind turbine components. Accurate tuning and design of modern controllers must be done using low-order models that accurately captures the aeroelastic...... response of the wind turbine. The purpose of this thesis is to investigate the necessary model complexity required in aeroelastic models used for controller design and to analyze and propose methods to design low-order aeroelastic wind turbine models that are suited for model-based control design...... stall using only few states. A set of reduced-order models obtained at various operating points are shown to be easily connected by interpolation and are thereby suited for gain-scheduling control design. A new method is proposed to reduce separately the number of structural and aerodynamic states...

  11. Computational design and analysis of flatback airfoil wind tunnel experiment.

    Energy Technology Data Exchange (ETDEWEB)

    Mayda, Edward A. (University of California, Davis, CA); van Dam, C.P. (University of California, Davis, CA); Chao, David D. (University of California, Davis, CA); Berg, Dale E.

    2008-03-01

    A computational fluid dynamics study of thick wind turbine section shapes in the test section of the UC Davis wind tunnel at a chord Reynolds number of one million is presented. The goals of this study are to validate standard wind tunnel wall corrections for high solid blockage conditions and to reaffirm the favorable effect of a blunt trailing edge or flatback on the performance characteristics of a representative thick airfoil shape prior to building the wind tunnel models and conducting the experiment. The numerical simulations prove the standard wind tunnel corrections to be largely valid for the proposed test of 40% maximum thickness to chord ratio airfoils at a solid blockage ratio of 10%. Comparison of the computed lift characteristics of a sharp trailing edge baseline airfoil and derived flatback airfoils reaffirms the earlier observed trend of reduced sensitivity to surface contamination with increasing trailing edge thickness.

  12. Impacts of wind energy in-feed on power system small signal stability

    OpenAIRE

    Banna, Hasan UI; Luna Alloza, Álvaro; Ying, Shaoqing; Ghorbani, Hamidreza; Rodríguez Cortés, Pedro

    2014-01-01

    Integration of large amount of wind energy in an interconnected power system creates concerns about secure, reliable and economical operation of the entire power system. So it becomes very necessary to investigate the impacts of wind power infeed on the dynamic behavior of the power system. This paper presents the impacts of large amount of wind power in feed on the rotor oscillatory stability. Wind turbine generator types currently employed in wind farms, optimal location of the wind farms i...

  13. System-wide emissions implications of increased wind power penetration.

    Science.gov (United States)

    Valentino, Lauren; Valenzuela, Viviana; Botterud, Audun; Zhou, Zhi; Conzelmann, Guenter

    2012-04-03

    This paper discusses the environmental effects of incorporating wind energy into the electric power system. We present a detailed emissions analysis based on comprehensive modeling of power system operations with unit commitment and economic dispatch for different wind penetration levels. First, by minimizing cost, the unit commitment model decides which thermal power plants will be utilized based on a wind power forecast, and then, the economic dispatch model dictates the level of production for each unit as a function of the realized wind power generation. Finally, knowing the power production from each power plant, the emissions are calculated. The emissions model incorporates the effects of both cycling and start-ups of thermal power plants in analyzing emissions from an electric power system with increasing levels of wind power. Our results for the power system in the state of Illinois show significant emissions effects from increased cycling and particularly start-ups of thermal power plants. However, we conclude that as the wind power penetration increases, pollutant emissions decrease overall due to the replacement of fossil fuels.

  14. Wind Turbine Blade Nondestructive Testing with a Transportable Radiography System

    Directory of Open Access Journals (Sweden)

    J. G. Fantidis

    2011-01-01

    Full Text Available Wind turbines are becoming widely used as they are an environmentally friendly way for energy production without emissions; however, they are exposed to a corrosive environment. In addition, as wind turbines typically are the tallest structures in the surrounding area of a wind farm, it is expected that they will attract direct lightning strikes several times during their operating life. The purpose of this paper is to show that the radiography with a transportable unit is a solution to find defects in the wind turbine blade and reduce the cost of inspection. A transportable neutron radiography system, incorporating an Sb–Be source, has been simulated using the MCNPX code. The simulated system has a wide range of radiography parameters.

  15. Feedback Linearization Controller for a Wind Energy Power System

    Directory of Open Access Journals (Sweden)

    Muthana Alrifai

    2016-09-01

    Full Text Available This paper deals with the control of a doubly-fed induction generator (DFIG-based variable speed wind turbine power system. A system of eight ordinary differential equations is used to model the wind energy conversion system. The generator has a wound rotor type with back-to-back three-phase power converter bridges between its rotor and the grid; it is modeled using the direct-quadrature rotating reference frame with aligned stator flux. An input-state feedback linearization controller is proposed for the wind energy power system. The controller guarantees that the states of the system track the desired states. Simulation results are presented to validate the proposed control scheme. Moreover, further simulation results are shown to investigate the robustness of the proposed control scheme to changes in some of the parameters of the system.

  16. Overview of power converter designs feasible for high voltage transformer-less wind turbine

    DEFF Research Database (Denmark)

    Sztykiel, Michal

    2011-01-01

    Many leading wind turbine manufacturers are pushing forward in variable-speed wind turbines, often exceeding 5 MW. Therefore, novel designs and concepts for optimal high power wind turbines appeared. One of the most promising concepts is the high voltage (10-35 kV) transformer-less topology. High...... topology along with an overview of most promising candidates for optimal full-scale power converter design. Study is carried with proposed and justified high voltage wind turbine application along with selection of existing and most promising multilevel power converter topologies, which could...

  17. Design of h-Darrieus vertical axis wind turbine

    Science.gov (United States)

    Parra, Teresa; Vega, Carmen; Gallegos, A.; Uzarraga, N. C.; Castro, F.

    2015-05-01

    Numerical simulation is used to predict the performance of a Vertical Axis Wind Turbine (VAWT) H-Darrieus. The rotor consists of three straight blades with shape of aerofoil of the NACA family attached to a rotating vertical shaft. The influence of the solidity is tested to get design tendencies. The mesh has two fluid volumes: one sliding mesh for the rotor where the rotation velocity is established while the other is the environment of the rotor. Bearing in mind the overall flow is characterized by important secondary flows, the turbulence model selected was realizable k-epsilon with non-equilibrium wall functions. Conservation equations were solved with a Third-Order Muscl scheme using SIMPLE to couple pressure and velocity. During VAWT operation, the performance depends mainly on the relative motion of the rotating blade and has a fundamental period which depends both on the rate of rotation and the number of blades. The transient study is necessary to characterise the hysteresis phenomenon. Hence, more than six revolutions get the periodic behaviour. Instantaneous flows provide insight about wake structure interaction. Time averaged parameters let obtain the characteristic curves of power coefficient.

  18. Design of h-Darrieus vertical axis wind turbine

    Directory of Open Access Journals (Sweden)

    Parra Teresa

    2015-01-01

    Full Text Available Numerical simulation is used to predict the performance of a Vertical Axis Wind Turbine (VAWT H-Darrieus. The rotor consists of three straight blades with shape of aerofoil of the NACA family attached to a rotating vertical shaft. The influence of the solidity is tested to get design tendencies. The mesh has two fluid volumes: one sliding mesh for the rotor where the rotation velocity is established while the other is the environment of the rotor. Bearing in mind the overall flow is characterized by important secondary flows, the turbulence model selected was realizable k-epsilon with non-equilibrium wall functions. Conservation equations were solved with a Third-Order Muscl scheme using SIMPLE to couple pressure and velocity. During VAWT operation, the performance depends mainly on the relative motion of the rotating blade and has a fundamental period which depends both on the rate of rotation and the number of blades. The transient study is necessary to characterise the hysteresis phenomenon. Hence, more than six revolutions get the periodic behaviour. Instantaneous flows provide insight about wake structure interaction. Time averaged parameters let obtain the characteristic curves of power coefficient.

  19. Initial design of a stall-controlled wind turbine rotor

    Energy Technology Data Exchange (ETDEWEB)

    Nygaard, T.A. [Inst. for Energiteknikk, Kjeller (Norway)

    1997-08-01

    A model intended for initial design of stall-controlled wind turbine rotors is described. The user specifies relative radial position of an arbitrary number of airfoil sections, referring to a data file containing lift-and drag curves. The data file is on the same format as used in the commercial blade-element code BLADES-/2/, where lift- and drag coefficients are interpolated from tables as function of Reynolds number, relative thickness and angle of attack. The user can set constraints on a selection of the following: Maximum power; Maximum thrust in operation; Maximum root bending moment in operation; Extreme root bending moment, parked rotor; Tip speed; Upper and lower bounds on optimisation variables. The optimisation variables can be selected from: Blade radius; Rotational speed; Chord and twist at an arbitrary number of radial positions. The user can chose linear chord distribution and a hyperbola-like twist distribution to ensure smooth planform and twist, or cubic spline interpolation for one or both. The aerodynamic model is based on classical strip theory with Prandtl tip loss correction, supplemented by empirical data for high induction factors. (EG)

  20. Design and Control of A DC Grid for Offshore Wind Farms

    DEFF Research Database (Denmark)

    Deng, Fujin

    grid are proposed as well. The HVDC transmission system configuration is studied. A DC/DC converter is proposed as the offshore converter to step up the collection level voltage to the transmission level voltage. The control strategies for the offshore converter and the onshore converter are proposed......Wind power is growing rapidly around the world, and the offshore wind farm is currently seen as a promising solution to satisfy the growing demand for renewable energy source. Along with the increase in the capacity of offshore wind farms and the distance between offshore wind farms and land......, the high-voltage direct current (HVDC) is attractive. In addition, the DC grid may also be interested for interconnecting the wind turbines in the collection level. As a consequence, a DC grid can be established for the offshore wind farm, where the wind power collection system and power transmission...