WorldWideScience

Sample records for wind powered generator

  1. Wind electric power generation

    International Nuclear Information System (INIS)

    Koch, M.K.; Wind, L.; Canter, B.; Moeller, T.

    2001-01-01

    The monthly statistics of wind electric power generation in Denmark are compiled from information given by the owners of the private wind turbines. For each wind turbine the name of the site and of the type of turbine is given, and the power generation data are given for the month in question together with the total production in 1999 and 2000. Also the data of operation start are given. On the map of Denmark the sites of the wind turbines are marked. (CLS)

  2. Wind electric power generation

    International Nuclear Information System (INIS)

    Koch, M. K.; Wind, L.; Canter, B.; Moeller, T.

    2002-01-01

    The monthly statistics of wind electric power generation in Denmark are compiled from information given by the owners of the private wind turbines. For each wind turbine the name of the site and of the type of turbine is given, and the power generation data are given for the month in question together with the total production in 2000 and 2001. Also the data of operation start are given. On the map of Denmark the sites of the wind turbines are marked. (SM)

  3. Wind power. [electricity generation

    Science.gov (United States)

    Savino, J. M.

    1975-01-01

    A historical background on windmill use, the nature of wind, wind conversion system technology and requirements, the economics of wind power and comparisons with alternative systems, data needs, technology development needs, and an implementation plan for wind energy are presented. Considerable progress took place during the 1950's. Most of the modern windmills feature a wind turbine electricity generator located directly at the top of their rotor towers.

  4. Wind electric power generation

    International Nuclear Information System (INIS)

    Groening, B.; Koch, M.; Canter, B.; Moeller, T.

    1995-01-01

    The monthly statistics of wind electric power generation in Denmark are compiled from information given by the owners of private wind turbines. For each wind turbine the name of the site and of the type of turbine is given, and the power generation data are given for the month in question together with the total production in 1988 and 1989. Also the data of operation start are given. On the map of Denmark the sites of the wind turbines are marked. The statistics for December 1994 comprise 2328 wind turbines

  5. Wind power generation

    International Nuclear Information System (INIS)

    Anon.

    1999-01-01

    The monthly statistics of wind electric power generation in Denmark are compiled from information given by the owners of private wind turbines. The data are arranged according to the size of the turbines. For each wind turbine the name of the site and type of turbine is given as well as the production during the last 3 months in 1998, and the total production in 1997 and 1998. Data on the operation is given

  6. Gearless wind power generator

    Energy Technology Data Exchange (ETDEWEB)

    Soederlund, L.; Ridanpaeae, P.; Vihriaelae, H.; Peraelae, R. [Tampere Univ. of Technology (Finland). Lab. of Electricity and Magnetism

    1998-12-31

    During the wind power generator project a design algorithm for a gearless permanent magnet generator with an axially orientated magnetic flux was developed and a 10 kW model machine was constructed. Utilising the test results a variable wind speed system of 100 kW was designed that incorporates a permanent magnet generator, a frequency converter and a fuzzy controller. This system produces about 5-15% more energy than existing types and stresses to the blades are minimised. The type of generator designed in the project represents in general a gearless solution for slow-speed electrical drives. (orig.)

  7. Gearless wind power generator

    Energy Technology Data Exchange (ETDEWEB)

    Soederlund, L.; Ridanpaeae, P.; Vihriaelae, H.; Peraelae, R. [Tampere Univ. of Technology (Finland). Lab. of Electricity and Magnetism

    1998-10-01

    In the project a 100 kW axial flux permanent magnet wind power generator has been designed. The toroidal stator with air gap winding is placed between two rotating discs with permanent magnets. The magnet material is NdBFe due to its excellent magnetic properties compared to other materials. This type of topology enables a very large number of poles compared to conventional machine of the same size. A large number of poles is required to achieve a low rotational speed and consequently a direct driven system. The stator winding is formed by rectangular coils. The end winding is very short leading to small resistive losses. On the other hand, the absence of iron teeth causes eddy current losses in the conductors. These can be restricted to an acceptable level by keeping the wire diameter and flux density small. This means that the number of phases should be large. Several independent three phase systems may be used. The toothless stator also means that the iron losses are small and there exists no cogging torque

  8. Generation of electricity by wind power

    Energy Technology Data Exchange (ETDEWEB)

    Golding, E W

    1976-01-01

    Information on wind power is presented concerning the history of windmills; estimation of the energy obtainable from the wind; wind characteristics and distribution; wind power sites; wind surveys; wind flow over hills; measurement of wind velocity; wind structure and its determination; wind data and energy estimation; testing of wind driven ac generators; wind-driven machines; propeller type windmills; plants for isolated premises and small communities; economy of wind power generation; construction costs for large wind-driven generators; relationship of wind power to other power sources; research and development; and international cooperation.

  9. Wind Generators and Market Power

    DEFF Research Database (Denmark)

    Misir, Nihat

    price thresholds are significantly higher when the monopolist at the peakload level owns both types of generators. Furthermore, when producing electricity with the peakload generator, the monopolist can avoid facing prices below marginal cost by owning a certain share of the wind generators.......Electricity production from wind generators holds significant importance in European Union’s 20% renewable energy target by 2020. In this paper, I show that ownership of wind generators affects market outcomes by using both a Cournot oligopoly model and a real options model. In the Cournot...... oligopoly model, ownership of the wind generators by owners of fossil-fueled (peakload) generators decreases total peakload production and increases the market price. These effects increase with total wind generation and aggregate wind generator ownership. In the real options model, start up and shut down...

  10. Optimal Control of Wind Power Generation

    Directory of Open Access Journals (Sweden)

    Pawel Pijarski

    2018-03-01

    Full Text Available Power system control is a complex task, which is strongly related to the number and kind of generating units as well as to the applied technologies, such as conventional coal fired power plants or wind and photovoltaic farms. Fast development of wind generation that is considered as unstable generation sets new strong requirements concerning remote control and data hubs cooperating with SCADA systems. Considering specific nature of the wind power generation, the authors analyze the problem of optimal control for wind power generation in farms located over a selected remote-controlled part of the Operator grid under advantageous wind conditions. This article presents an original stepwise method for tracing power flows that makes possible to eliminate current (power overloading of power grid branches. Its core idea is to consider the discussed problem as an optimization task.

  11. Conditional prediction intervals of wind power generation

    DEFF Research Database (Denmark)

    Pinson, Pierre; Kariniotakis, Georges

    2010-01-01

    A generic method for the providing of prediction intervals of wind power generation is described. Prediction intervals complement the more common wind power point forecasts, by giving a range of potential outcomes for a given probability, their so-called nominal coverage rate. Ideally they inform...... on the characteristics of prediction errors for providing conditional interval forecasts. By simultaneously generating prediction intervals with various nominal coverage rates, one obtains full predictive distributions of wind generation. Adapted resampling is applied here to the case of an onshore Danish wind farm...... to the case of a large number of wind farms in Europe and Australia among others is finally discussed....

  12. Integrated Control for Small Power Wind Generator

    Directory of Open Access Journals (Sweden)

    Hongliang Liu

    2018-05-01

    Full Text Available The control strategies of the small power wind generator are usually divided into the maximum power point tracking (MPPT case, which requires the wind generator produce power as much as possible, and the power limited control (PLC case that demands the wind generator produce a power level following the load requirement. Integration of these two operating cases responding to flexible and sophisticated power demands is the main topic of this article. A small power wind generator including the sluggish mechanical dynamic phenomenon, which uses the permanent magnet synchronous generator, is introduced to validate different control methods integrating MPPT and PLC cases and based on hysteresis control. It is a matter of an indirect power control method derived from three direct methods following perturb and observe principle as well as from a look-up table. To analyze and compare the proposed power control methods, which are implemented into an emulator of a small power wind generator, a power demand profile is used. This profile is randomly generated based on measured rapid wind velocity data. Analyzing experimental results, from the power viewpoint, all proposed methods reveal steady-state error with big amount of peak resulting from the nature of perturb and observe.

  13. Directly driven generators for wind power applications

    Energy Technology Data Exchange (ETDEWEB)

    Lampola, P [Helsinki Univ. of Technology, Espoo (Finland). Lab. of Electromechanics

    1996-12-31

    The article deals with an analysis of directly driven, low-speed wind generators. The generators studied were a permanent-magnet synchronous machine and an asynchronous machine. The machines were compared with a typical generator of a wind power plant. The electromagnetic optimization of the machines was done by the finite element method. The rated power of the generators was 500 kW and the rotational speed was 40 rpm. (author)

  14. Directly driven generators for wind power applications

    Energy Technology Data Exchange (ETDEWEB)

    Lampola, P. [Helsinki Univ. of Technology, Espoo (Finland). Lab. of Electromechanics

    1995-12-31

    The article deals with an analysis of directly driven, low-speed wind generators. The generators studied were a permanent-magnet synchronous machine and an asynchronous machine. The machines were compared with a typical generator of a wind power plant. The electromagnetic optimization of the machines was done by the finite element method. The rated power of the generators was 500 kW and the rotational speed was 40 rpm. (author)

  15. High-Altitude Wind Power Generation

    NARCIS (Netherlands)

    Fagiano, L.; Milanese, M.; Piga, D.

    2010-01-01

    Abstract—The paper presents the innovative technology of highaltitude wind power generation, indicated as Kitenergy, which exploits the automatic flight of tethered airfoils (e.g., power kites) to extract energy from wind blowing between 200 and 800 m above the ground. The key points of this

  16. Wind power, distrubted generation and transmission

    DEFF Research Database (Denmark)

    Østergaard, Poul Alberg

    the possibilities for integration of even more wind power using new power balancing strategies that exploit the possibilities given by the existence of CHP plants as well as the impact of heat pumps for district heating. The analyses demonstrate that it is possible to accommodate 50% or more wind power without......Denmark has the World?s highest penetration of wind power in electricity generation with a share of 15.0% of total domestic demand in 2002 (DEA, 2004). This is unevenly distributed in the two electricity systems of Denmark giving a share as high as 20.7% in Western Denmark in 2003 up from 18...... power balancing strategies are not applied, costly grid expansions will follow expansions in installed wind power capacity....

  17. Development of wind power generation in China

    International Nuclear Information System (INIS)

    Zhiquan, Y.; Yan, C.; Lijun, X.

    1995-01-01

    Present status and development of wind power generation in China is described in this paper. China is vast in territory with abundant wind resources. The exploitable wind energy in China is estimated up to 253,000 MW. At present, more than 150 thousand small WTGs of a total capacity of 17 MW are used to provide residential electricity uses in non-grid connected areas and 13 wind farms, with above 160 medium and large scale grid connected WTGs (50-500 kW) of a total capacity of 30 MW, have been constructed. At the same time, some progress has been made in the fields of nation-wide wind resource assessment, measurement technology of wind turbine performance, the assimilation of foreign wind turbine technology, grid connected WTG technology and the operation of wind farm etc. It is planned that the total installed capacity of WTGs will reach 1000 MW by the end of 2000. Wind power generation could be a part of electric power industry in China. (Author)

  18. Power Quality Improvements in Wind Diesel Power Generation System

    Directory of Open Access Journals (Sweden)

    Omar Feddaoui

    2015-08-01

    Full Text Available Generation of electricity using diesel is costly for small remote isolated communities. At remote location electricity generation from renewable energy such as wind can help reduce the overall operating costs by reducing the fuel costs. However, the penetration of wind power into small diesel-based grids is limited because of its effect on power quality and reliability. This paper focuses on the combination of Wind Turbine and Diesel Generator systems for sustained power generation, to improve the power quality of wind generation system. The performances of the optimal control structure are assessed and discussed by means of a set of simulations.

  19. Wind power plant for electricity generation

    Energy Technology Data Exchange (ETDEWEB)

    Landsiedel, E

    1978-11-09

    The invention concerns a wind power plant which rotates on a vertical axis and is suitable for the generation of electricity. This wind power machine with a vertical axis can be mounted at any height, so that it can catch the wind on the vertical axis of rotation. Further, it does not have to be turned into the direction of the wind and fixed. The purpose of the invention is to obtain equal load on the structure due to the vertical axis. The purpose of the invention is fulfilled by having the wind vanes fixed above one another from the bottom to the top in 6 different directions. The particular advantage of the invention lies in the fact that the auxiliary blades can bring the other blades to the operating position in good time, due to their particular method of fixing.

  20. Grid code requirements for wind power generation

    International Nuclear Information System (INIS)

    Djagarov, N.; Filchev, S.; Grozdev, Z.; Bonev, M.

    2011-01-01

    In this paper production data of wind power in Europe and Bulgaria and plans for their development within 2030 are reviewed. The main characteristics of wind generators used in Bulgaria are listed. A review of the grid code in different European countries, which regulate the requirements for renewable sources, is made. European recommendations for requirements harmonization are analyzed. Suggestions for the Bulgarian gird code are made

  1. Wind power generation and dispatch in competitive power markets

    Science.gov (United States)

    Abreu, Lisias

    Wind energy is currently the fastest growing type of renewable energy. The main motivation is led by more strict emission constraints and higher fuel prices. In addition, recent developments in wind turbine technology and financial incentives have made wind energy technically and economically viable almost anywhere. In restructured power systems, reliable and economical operation of power systems are the two main objectives for the ISO. The ability to control the output of wind turbines is limited and the capacity of a wind farm changes according to wind speeds. Since this type of generation has no production costs, all production is taken by the system. Although, insufficient operational planning of power systems considering wind generation could result in higher system operation costs and off-peak transmission congestions. In addition, a GENCO can participate in short-term power markets in restructured power systems. The goal of a GENCO is to sell energy in such a way that would maximize its profitability. However, due to market price fluctuations and wind forecasting errors, it is essential for the wind GENCO to keep its financial risk at an acceptable level when constituting market bidding strategies. This dissertation discusses assumptions, functions, and methodologies that optimize short-term operations of power systems considering wind energy, and that optimize bidding strategies for wind producers in short-term markets. This dissertation also discusses uncertainties associated with electricity market environment and wind power forecasting that can expose market participants to a significant risk level when managing the tradeoff between profitability and risk.

  2. Reactive power management of power networks with wind generation

    CERN Document Server

    Amaris, Hortensia; Ortega, Carlos Alvarez

    2012-01-01

    As the energy sector shifts and changes to focus on renewable technologies, the optimization of wind power becomes a key practical issue. Reactive Power Management of Power Networks with Wind Generation brings into focus the development and application of advanced optimization techniques to the study, characterization, and assessment of voltage stability in power systems. Recent advances on reactive power management are reviewed with particular emphasis on the analysis and control of wind energy conversion systems and FACTS devices. Following an introduction, distinct chapters cover the 5 key

  3. Operating of Small Wind Power Plants with Induction Generators

    OpenAIRE

    Jakub Nevrala; Stanislav Misak

    2008-01-01

    This paper describes different systems of small wind power plants with induction generators used in the Czech Republic. Problems of wind power plants running with induction generators are solved within partial target of the research project MSM 6198910007. For small wind power plants is used induction motor as a generator. Parameters of the name plate of motor must be resolved for generator running on measuring base. These generators are running as a separately working generators or generator...

  4. Aggregated wind power generation probabilistic forecasting based on particle filter

    International Nuclear Information System (INIS)

    Li, Pai; Guan, Xiaohong; Wu, Jiang

    2015-01-01

    Highlights: • A new method for probabilistic forecasting of aggregated wind power generation. • A dynamic system is established based on a numerical weather prediction model. • The new method handles the non-Gaussian and time-varying wind power uncertainties. • Particle filter is applied to forecast predictive densities of wind generation. - Abstract: Probability distribution of aggregated wind power generation in a region is one of important issues for power system daily operation. This paper presents a novel method to forecast the predictive densities of the aggregated wind power generation from several geographically distributed wind farms, considering the non-Gaussian and non-stationary characteristics in wind power uncertainties. Based on a mesoscale numerical weather prediction model, a dynamic system is established to formulate the relationship between the atmospheric and near-surface wind fields of geographically distributed wind farms. A recursively backtracking framework based on the particle filter is applied to estimate the atmospheric state with the near-surface wind power generation measurements, and to forecast the possible samples of the aggregated wind power generation. The predictive densities of the aggregated wind power generation are then estimated based on these predicted samples by a kernel density estimator. In case studies, the new method presented is tested on a 9 wind farms system in Midwestern United States. The testing results that the new method can provide competitive interval forecasts for the aggregated wind power generation with conventional statistical based models, which validates the effectiveness of the new method

  5. On the spatial hedging effectiveness of German wind power futures for wind power generators

    DEFF Research Database (Denmark)

    Christensen, Troels Sønderby; Pircalabu, Anca

    2018-01-01

    The wind power futures recently introduced on the German market fill the gap of a standardized product that addresses directly the volume risk in wind power trading. While the German wind power futures entail risk-reducing benefits for wind power generators generally speaking, it remains unclear...... the extent of these benefits across wind farms with different geographical locations. In this paper, we consider the wind utilization at 31 different locations in Germany, and for each site, we propose a copula model for the joint behavior of the site-specific wind index and the overall German wind index....... Our results indicate that static mixture copulas are preferred to the stand-alone copula models usually employed in the economic literature. Further, we find evidence of asymmetric dependence and upper tail dependence. To quantify the benefits of wind power futures at each wind site, we perform...

  6. A Dynamic Wind Generation Model for Power Systems Studies

    OpenAIRE

    Estanqueiro, Ana

    2007-01-01

    In this paper, a wind park dynamic model is presented together with a base methodology for its application to power system studies. This detailed wind generation model addresses the wind turbine components and phenomena more relevant to characterize the power quality of a grid connected wind park, as well as the wind park response to the grid fast perturbations, e.g., low voltage ride through fault. The developed model was applied to the operating conditions of the selected sets of wind turbi...

  7. Optimized power generation in offshore wind parks

    NARCIS (Netherlands)

    Oliveira Filho, J. de; Papp, Z.

    2011-01-01

    Electricity generation on offshore wind parks has an increasing economic importance - the European Commission foresees that 12% of the wind energy will be produced on offshore installations by 2020, and this share is likely to increase further in the following years. However, the continuously

  8. Wind Turbine Power Curve Design for Optimal Power Generation in Wind Farms Considering Wake Effect

    Directory of Open Access Journals (Sweden)

    Jie Tian

    2017-03-01

    Full Text Available In modern wind farms, maximum power point tracking (MPPT is widely implemented. Using the MPPT method, each individual wind turbine is controlled by its pitch angle and tip speed ratio to generate the maximum active power. In a wind farm, the upstream wind turbine may cause power loss to its downstream wind turbines due to the wake effect. According to the wake model, downstream power loss is also determined by the pitch angle and tip speed ratio of the upstream wind turbine. By optimizing the pitch angle and tip speed ratio of each wind turbine, the total active power of the wind farm can be increased. In this paper, the optimal pitch angle and tip speed ratio are selected for each wind turbine by the exhausted search. Considering the estimation error of the wake model, a solution to implement the optimized pitch angle and tip speed ratio is proposed, which is to generate the optimal control curves for each individual wind turbine off-line. In typical wind farms with regular layout, based on the detailed analysis of the influence of pitch angle and tip speed ratio on the total active power of the wind farm by the exhausted search, the optimization is simplified with the reduced computation complexity. By using the optimized control curves, the annual energy production (AEP is increased by 1.03% compared to using the MPPT method in a case-study of a typical eighty-turbine wind farm.

  9. Reliability analysis of wind embedded power generation system for ...

    African Journals Online (AJOL)

    This paper presents a method for Reliability Analysis of wind energy embedded in power generation system for Indian scenario. This is done by evaluating the reliability index, loss of load expectation, for the power generation system with and without integration of wind energy sources in the overall electric power system.

  10. Capacity expansion model of wind power generation based on ELCC

    Science.gov (United States)

    Yuan, Bo; Zong, Jin; Wu, Shengyu

    2018-02-01

    Capacity expansion is an indispensable prerequisite for power system planning and construction. A reasonable, efficient and accurate capacity expansion model (CEM) is crucial to power system planning. In most current CEMs, the capacity of wind power generation is considered as boundary conditions instead of decision variables, which may lead to curtailment or over construction of flexible resource, especially at a high renewable energy penetration scenario. This paper proposed a wind power generation capacity value(CV) calculation method based on effective load-carrying capability, and a CEM that co-optimizes wind power generation and conventional power sources. Wind power generation is considered as decision variable in this model, and the model can accurately reflect the uncertainty nature of wind power.

  11. Power Electronics for the Next Generation Wind Turbine System

    DEFF Research Database (Denmark)

    Ma, Ke

    generation unit, are becoming crucial in the wind turbine system. The objective of this project is to study the power electronics technology used for the next generation wind turbines. Some emerging challenges as well as potentials like the cost of energy and reliability are going to be addressed. First...... conversion is pushed to multi-MW level with high power density requirement. It has also been revealed that thermal stress in the power semiconductors is closely related to many determining factors in the wind power application like the reliability, cost, power density, etc. therefore it is an important......The wind power generation has been steadily growing both for the total installed capacity and for the individual turbine size. Due to much more significant impacts to the power grid, the power electronics, which can change the behavior of wind turbines from an unregulated power source to an active...

  12. Hybrid biomass-wind power plant for reliable energy generation

    International Nuclear Information System (INIS)

    Perez-Navarro, A.; Alfonso, D.; Alvarez, C.; Ibanez, F.; Sanchez, C.; Segura, I.

    2010-01-01

    Massive implementation of renewable energy resources is a key element to reduce CO 2 emissions associated to electricity generation. Wind resources can provide an important alternative to conventional electricity generation mainly based on fossil fuels. However, wind generators are greatly affected by the restrictive operating rules of electricity markets because, as wind is naturally variable, wind generators may have serious difficulties on submitting accurate generation schedules on a day ahead basis, and on complying with scheduled obligations in real-time operation. In this paper, an innovative system combining a biomass gasification power plant, a gas storage system and stand-by generators to stabilize a generic 40 MW wind park is proposed and evaluated with real data. The wind park power production model is based on real data about power production of a Spanish wind park and a probabilistic approach to quantify fluctuations and so, power compensation needs. The hybrid wind-biomass system is analysed to obtain main hybrid system design parameters. This hybrid system can mitigate wind prediction errors and so provide a predictable source of electricity. An entire year cycle of hourly power compensations needs has been simulated deducing storage capacity, extra power needs of the biomass power plant and stand-by generation capacity to assure power compensation during critical peak hours with acceptable reliability. (author)

  13. Synchrophasor Applications for Wind Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Muljadi, E. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Zhang, Y. C. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Allen, A. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Singh, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Gevorgian, V. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Wan, Y. H. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2014-02-01

    The U.S. power industry is undertaking several initiatives that will improve the operations of the electric power grid. One of those is the implementation of wide-area measurements using phasor measurement units to dynamically monitor the operations and status of the network and provide advanced situational awareness and stability assessment. The overviews of synchrophasors and stability analyses in this report are intended to present the potential future applications of synchrophasors for power system operations under high penetrations of wind and other renewable energy sources.

  14. Hybrid system power generation'wind-photovoltaic' connected to the ...

    African Journals Online (AJOL)

    Hybrid system power generation'wind-photovoltaic' connected to the ... from Hybrid System, power delivered to or from grid and phase voltage of the inverter leg. ... Renewable Energy, Electrical Network 220 kV, Hybrid System, Solar, MPPT.

  15. statistical analysis of wind speed for electrical power generation

    African Journals Online (AJOL)

    HOD

    sites are suitable for the generation of electrical energy. Also, the results ... Nigerian Journal of Technology (NIJOTECH). Vol. 36, No. ... parameter in the wind-power generation system. ..... [3] A. Zaharim, A. M Razali, R. Z Abidin, and K Sopian,.

  16. Variability in large-scale wind power generation: Variability in large-scale wind power generation

    Energy Technology Data Exchange (ETDEWEB)

    Kiviluoma, Juha [VTT Technical Research Centre of Finland, Espoo Finland; Holttinen, Hannele [VTT Technical Research Centre of Finland, Espoo Finland; Weir, David [Energy Department, Norwegian Water Resources and Energy Directorate, Oslo Norway; Scharff, Richard [KTH Royal Institute of Technology, Electric Power Systems, Stockholm Sweden; Söder, Lennart [Royal Institute of Technology, Electric Power Systems, Stockholm Sweden; Menemenlis, Nickie [Institut de recherche Hydro-Québec, Montreal Canada; Cutululis, Nicolaos A. [DTU, Wind Energy, Roskilde Denmark; Danti Lopez, Irene [Electricity Research Centre, University College Dublin, Dublin Ireland; Lannoye, Eamonn [Electric Power Research Institute, Palo Alto California USA; Estanqueiro, Ana [LNEG, Laboratorio Nacional de Energia e Geologia, UESEO, Lisbon Spain; Gomez-Lazaro, Emilio [Renewable Energy Research Institute and DIEEAC/EDII-AB, Castilla-La Mancha University, Albacete Spain; Zhang, Qin [State Grid Corporation of China, Beijing China; Bai, Jianhua [State Grid Energy Research Institute Beijing, Beijing China; Wan, Yih-Huei [National Renewable Energy Laboratory, Transmission and Grid Integration Group, Golden Colorado USA; Milligan, Michael [National Renewable Energy Laboratory, Transmission and Grid Integration Group, Golden Colorado USA

    2015-10-25

    The paper demonstrates the characteristics of wind power variability and net load variability in multiple power systems based on real data from multiple years. Demonstrated characteristics include probability distribution for different ramp durations, seasonal and diurnal variability and low net load events. The comparison shows regions with low variability (Sweden, Spain and Germany), medium variability (Portugal, Ireland, Finland and Denmark) and regions with higher variability (Quebec, Bonneville Power Administration and Electric Reliability Council of Texas in North America; Gansu, Jilin and Liaoning in China; and Norway and offshore wind power in Denmark). For regions with low variability, the maximum 1 h wind ramps are below 10% of nominal capacity, and for regions with high variability, they may be close to 30%. Wind power variability is mainly explained by the extent of geographical spread, but also higher capacity factor causes higher variability. It was also shown how wind power ramps are autocorrelated and dependent on the operating output level. When wind power was concentrated in smaller area, there were outliers with high changes in wind output, which were not present in large areas with well-dispersed wind power.

  17. Power Electronics for the Next Generation Wind Turbine System

    DEFF Research Database (Denmark)

    Ma, Ke

    This book presents recent studies on the power electronics used for the next generation wind turbine system. Some criteria and tools for evaluating and improving the critical performances of the wind power converters have been proposed and established. The book addresses some emerging problems...

  18. Operating of Small Wind Power Plants with Induction Generators

    Directory of Open Access Journals (Sweden)

    Jakub Nevrala

    2008-01-01

    Full Text Available This paper describes different systems of small wind power plants with induction generators used in the Czech Republic. Problems of wind power plants running with induction generators are solved within partial target of the research project MSM 6198910007. For small wind power plants is used induction motor as a generator. Parameters of the name plate of motor must be resolved for generator running on measuring base. These generators are running as a separately working generators or generators connected to the power grid. Methods of control these systems as a separately working, directly connecting to power grid, control by frequency converter and wiring by synchronous cascade are confronted on the measuring base too.

  19. Assessment of wind power generation along the coast of Ghana

    Energy Technology Data Exchange (ETDEWEB)

    Adaramola, Muyiwa S., E-mail: muyiwa.adaramola@umb.no [Department of Ecology and Natural Resource Management, Norwegian University of Life Sciences, Ås (Norway); Agelin-Chaab, Martin [Department of Automotive, Mechanical and Manufacturing Engineering, University of Ontario Institute of Technology, Oshawa, ON (Canada); Paul, Samuel S. [REHAU Industries, Winnipeg, Manitoba (Canada)

    2014-01-15

    Highlights: • The wind energy and its economic viability along the coastal region of Ghana are examined. • Wind resource along the coastal region of Ghana fall into Class 2 or less wind resource. • Wind turbine with rated speed from 9 to 11 m/s is suggested for wind power development. • The unit cost of wind generated electricity is found be between 0.0732 GH¢/kW h and 0.2905 GH¢/kW h. - Abstract: This study examined the wind energy potential and the economic viability of using wind turbine for electricity generation in selected locations along the coastal region of Ghana. The two-parameter Weibull probability density function was employed to analyze the wind speed data obtained from the Ghana Energy Commission. The energy output and unit cost of electricity generated from medium size commercial wind turbine models with rated powers ranging from 50 kW to 250 kW were determined. It was found that the wind resource along the coastal region of Ghana can be classified into Class 2 or less wind resource which indicate that this resource in this area is marginally suitable for large scale wind energy development or suitable for small scale applications and be useful as part of hybrid energy system. It was further observed that wind turbine with designed cut-in wind speed of less than 3 m/s and moderate rated wind speed between 9 and 11 m/s is more suitable for wind energy development along the coastal region of Ghana. Based on the selected wind turbine and assumptions used in this study, it was estimated that the unit cost of electricity varied between 0.0695 GH¢/kW h and 0.2817 GH¢/kW h.

  20. Assessment of wind power generation along the coast of Ghana

    International Nuclear Information System (INIS)

    Adaramola, Muyiwa S.; Agelin-Chaab, Martin; Paul, Samuel S.

    2014-01-01

    Highlights: • The wind energy and its economic viability along the coastal region of Ghana are examined. • Wind resource along the coastal region of Ghana fall into Class 2 or less wind resource. • Wind turbine with rated speed from 9 to 11 m/s is suggested for wind power development. • The unit cost of wind generated electricity is found be between 0.0732 GH¢/kW h and 0.2905 GH¢/kW h. - Abstract: This study examined the wind energy potential and the economic viability of using wind turbine for electricity generation in selected locations along the coastal region of Ghana. The two-parameter Weibull probability density function was employed to analyze the wind speed data obtained from the Ghana Energy Commission. The energy output and unit cost of electricity generated from medium size commercial wind turbine models with rated powers ranging from 50 kW to 250 kW were determined. It was found that the wind resource along the coastal region of Ghana can be classified into Class 2 or less wind resource which indicate that this resource in this area is marginally suitable for large scale wind energy development or suitable for small scale applications and be useful as part of hybrid energy system. It was further observed that wind turbine with designed cut-in wind speed of less than 3 m/s and moderate rated wind speed between 9 and 11 m/s is more suitable for wind energy development along the coastal region of Ghana. Based on the selected wind turbine and assumptions used in this study, it was estimated that the unit cost of electricity varied between 0.0695 GH¢/kW h and 0.2817 GH¢/kW h

  1. Power generation from wind turbines in a solar chimney

    Energy Technology Data Exchange (ETDEWEB)

    Foote, Tudor [Graduate Student, Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, Jolley Hall, Campus Box 1185, One Brookings Drive, St. Louis, Missouri, 63130 (United States); Agarwal, Ramesh K. [William Palm Professor, Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, Jolley Hall, Campus Box 1185, One Brookings Drive, St. Louis, Missouri, 63130 (United States)

    2013-07-01

    Recent studies have shown that shrouded wind turbines can generate greater power compared to bare turbines. A solar chimney generates an upward draft of wind inside a tower and a shroud around the wind turbine. There are numerous empty silos on farms in the U.S. that can be converted to solar chimneys with minor modifications at modest cost. The objective of this study is to determine the potential of these silos/chimneys for generating wind power. The study is conducted through analytical/computational approach by employing the commercial Computational Fluid Dynamics (CFD) software. Computations are performed for five different geometric configurations consisting of a turbine, a cylindrical silo, and/or a venturi and/or a diffuser using the dimensions of typical silos and assuming Class 3 wind velocity. The incompressible Navier-Stokes equations with the Boussinesq approximation and a two equation realizable {kappa}-{epsilon} model are employed in the calculations, and the turbine is modeled as an actuator disk. The power coefficient (Cp) and generated power are calculated for the five cases. Consistent with recent literature, it was found that the silos with diffusers increase the Cp beyond Betz’s limit significantly and thus the generated power. It should be noted that Cp is calculated by normalizing it by the turbine area swept by the wind. This study shows the potential of using abandoned silos in the mid-west and other parts of the country for localized wind power generation.

  2. Probabilistic forecasting of wind power generation using extreme learning machine

    DEFF Research Database (Denmark)

    Wan, Can; Xu, Zhao; Pinson, Pierre

    2014-01-01

    an extreme learning machine (ELM)-based probabilistic forecasting method for wind power generation. To account for the uncertainties in the forecasting results, several bootstrapmethods have been compared for modeling the regression uncertainty, based on which the pairs bootstrap method is identified......Accurate and reliable forecast of wind power is essential to power system operation and control. However, due to the nonstationarity of wind power series, traditional point forecasting can hardly be accurate, leading to increased uncertainties and risks for system operation. This paper proposes...... with the best performance. Consequently, a new method for prediction intervals formulation based on theELMand the pairs bootstrap is developed.Wind power forecasting has been conducted in different seasons using the proposed approach with the historical wind power time series as the inputs alone. The results...

  3. FEM Simulation of Small Wind Power Generating System Using PMSG

    Science.gov (United States)

    Kesamaru, Katsumi; Ohno, Yoshihiro; Sonoda, Daisuke

    The paper describes a new approach to simulate the small wind power generating systems using PMSG, in which the output is connected to constant resistive load, such as heaters, through the rectifier and the dc chopper. The dynamics of the wind power generating system is presented, and it is shown by simulation results that this approach is useful for system dynamics, such as starting phenomena.

  4. Conceptual survey of Generators and Power Electronics for Wind Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, L.H.; Helle, L.; Blaabjerg, F.; Ritchie, E.; Munk-Nielsen, S.; Bindner, H.; Soerensen, P.; Bak-Jensen, B.

    2001-12-01

    This report presents a survey on generator concepts and power electronic concepts for wind turbines. The report is aimed as a tool for decision-makers and development people with respect to wind turbine manufactures, utilities, and independent system operators as well as manufactures of generators and power electronics. The survey is focused on the electric development of wind turbines and it yields an overview on: State of the art on generators and power electronics; future concepts and technologies within generators and power electronics; market needs in the shape of requirements to the grid connection, and; consistent system solutions, plus an evaluation of these seen in the prospect of market needs. This survey on of generator and power electronic concepts was carried out in co-operation between Aalborg University and Risoe National Laboratory in the scope of the research programme Electric Design and Control. (au)

  5. Alliance created to study wind-generated power potential

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    Wind-generated power may get a boost from a new consortium of companies that have joined together to expand the potential across the country for this cheap, renewable energy source. Niagara Mohawk Power Corporation has announced that it will join with the Pacific Gas and Electric Company (PG ampersand E), the Electric Power Research Institute (EPRI) and US Windpower, Inc., in developing an advanced, 33-meter, variable-speed wind turbine that reduced the cost and improves the power quality of wind energy. The majority of the estimated $20 million cost will be provided by US Windpower

  6. Optimization of power generation from shrouded wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Foote, Tudor; Agarwal, Ramesh [Department of Mechanical Engineering and Materials Science, Washington University in St. Louis (United States)

    2013-07-01

    In past several years, several studies have shown that the shrouded wind turbines can generate greater power compared to bare turbines. The objective of this study is to determine the potential of shrouded wind turbines for increased power generation by conducting numerical simulations. An analytical/computational study is performed by employing the well-known commercial Computational Fluid Dynamics (CFD) software FLUENT. An actuator disc model is used to model the turbine. The incompressible Navier-Stokes equations and a two equation realizable {kappa}-{epsilon} model are employed in the calculations. The power coefficient Cp and generated power are calculated for a large number of cases for horizontal axis wind turbines (HAWT) of various diameters and wind speeds for both bare and shrouded turbines. The design of the shroud is optimized by employing a single objective genetic algorithm; the objective being the maximization of the power coefficient Cp. It was found that the shroud indeed increases the Cp beyond the Betz’s limit significantly and as a result the generated power; this effect is consistent with that found in the recent literature that the shrouded wind-turbines can generate greater power than the bare turbines. The optimized shape of the shroud or diffuser further increases the generated power and Cp.

  7. Some answers to power generation lie blowing in the wind

    Energy Technology Data Exchange (ETDEWEB)

    1975-10-02

    An assessment of wind power generation schemes by the Energy Technology Support Unit is reported. The capital cost of large, efficient windmills should be around 100--200 Pounds per installed kW and an optimum size for a single wind rotor would be 1 MW.

  8. Conceptual survey of generators and power electronics for wind turbines

    DEFF Research Database (Denmark)

    Hansen, L.H.; Helle, L.; Blaabjerg, F.

    2002-01-01

    This report presents a survey on generator concepts and power electronic concepts for wind turbines. The report is aimed as a tool for decision-makers and development people with respect to wind turbine manufactures, utilities, and independent systemoperators as well as manufactures of generators...... and power electronics. The survey is focused on the electric development of wind turbines and it yields an overview on: - State of the art on generators and power electronics. - future concepts andtechnologies within generators and power electronics. - market needs in the shape of requirements to the grid...... connection, and - consistent system solutions, plus an evaluation of these seen in the prospect of market needs. This survey on of generatorand power electronic concepts was carried out in co-operation between Aalborg University and Risø National Laboratory in the scope of the research programme Electric...

  9. Wind power: cost effective generation for the 1990s

    Energy Technology Data Exchange (ETDEWEB)

    Pedersen, T [Vestas Wind Systems A/S (Denmark)

    1989-01-01

    Wind power plants have been installed all over the world, notably in California and Denmark. Commercially available wind turbines today are rated from 50 KW to 1 MW with emphasis on the 1 MW range. As the fuel is ''free'' generating costs are identical to the capital, operation and maintenance costs of the plant. An estimate of the unit price of wind power generated electricity in Denmark is comparable to that generated by a coal fired plant. The main environmental impacts of a wind farm are considered. These are visual impact, noise emission, use of (agricultural) space and the impact on wildlife, mainly birds. Finally the installation of a wind farm and its connection to the grid are described. (3 figures, 1 table). (UK)

  10. Wind Power Generation in India: Evolution, Trends and Prospects

    Directory of Open Access Journals (Sweden)

    M.F. Khan

    2013-10-01

    Full Text Available In the present context of shrinking conventional resources coupled with environmental perils, the wind power offers an attractive alternative. Wind power generation in India started way back in early 1980s with the installation of experimental wind turbines in western and southern states of Gujarat and Tamil Nadu. For first two decades of its existence until about 2000 the progress was slow but steady. In last one decade Indian wind electricity sector has grown at very rapid pace which has promoted the country to the fifth position as largest wind electric power generator and the third largest market in the world. The galvanization of wind sector has been achieved through some aggressive policy mechanisms and persistent support by government organizations such as MNRE and C-WET. This paper articulates the journey of Indian wind program right since its inception to the present trends and developments as well as the future prospects. Keywords: mnre, c-wet, renewable energy, wind power, wind turbines.

  11. The design of wind turbine for electrical power generation in Malaysian wind characteristics

    International Nuclear Information System (INIS)

    Abas Ab Wahab; Chong Wen Thong

    2000-01-01

    The paper describes the study of a wind turbine for electrical power generation in Malaysia wind characteristics. In this research, the wind turbine is designs based on the local wind characteristics and tries to avoid the problems faced in the past (turbine design, access, manpower and technical). The new wind turbine rotor design for a medium speed wind speed turbine utilises the concept of open-close type of horizontal axis (up-wind) wind turbine is intended to widen the optimum performance range for electrical generation in Malaysia wind characteristics. The wind turbine has been designed to cut-in at a lower speed, and to provide the rotation speed that high enough to run a generator. The analysis and design of new low speed wind turbine blades and open-close turbine rotor and prediction of turbine performance are being detailed in this paper. (Author)

  12. Voltage Control in Wind Power Plants with Doubly Fed Generators

    DEFF Research Database (Denmark)

    Garcia, Jorge Martinez

    In this work, the process of designing a wind power plant composed of; doubly fed induction generators, a static compensator unit, mechanically switched capacitors and on-load tap changer, for voltage control is shown. The selected control structure is based on a decentralized system, since...... supplied by the doubly fed induction generator wind turbines is overcome by installing a reactive power compensator, i.e. a static compensator unit, which is coordinated with the plant control by a specific dispatcher. This dispatcher is set according to the result of the wind power plant load flow....... To release the operation of the converters during steady-state disturbances, mechanically switched capacitors are installed in the wind power plant, which due to their characteristics, they are appropriate for permanent disturbances compensation. The mechanically switched capacitors are controlled to allow...

  13. Estimating generation costs for wind power production in France

    International Nuclear Information System (INIS)

    Benazet, J.F.; Probert, E.J.

    1997-01-01

    Wind power is being exploited in several European countries as one of a possible number of sources of renewable energy. However, in France there is a heavy reliance on nuclear and hydro-electric power and the potential of wind power as part of the energy mix has been virtually ignored. One of the reasons advanced for the under utilisation of this technology is that it is financially unattractive. In this paper the contribution which wind power could potentially make to overall power production levels in France is examined. A cost estimate model is developed which derives electricity generation costs and determines realistic levels of production for the future. The model automatically determines the associated number of wind turbines required and the geographical areas in which they should be located. (author)

  14. Wind power integration into the automatic generation control of power systems with large-scale wind power

    DEFF Research Database (Denmark)

    Basit, Abdul; Hansen, Anca Daniela; Altin, Müfit

    2014-01-01

    Transmission system operators have an increased interest in the active participation of wind power plants (WPP) in the power balance control of power systems with large wind power penetration. The emphasis in this study is on the integration of WPPs into the automatic generation control (AGC......) of the power system. The present paper proposes a coordinated control strategy for the AGC between combined heat and power plants (CHPs) and WPPs to enhance the security and the reliability of a power system operation in the case of a large wind power penetration. The proposed strategy, described...... and exemplified for the future Danish power system, takes the hour-ahead regulating power plan for generation and power exchange with neighbouring power systems into account. The performance of the proposed strategy for coordinated secondary control is assessed and discussed by means of simulations for different...

  15. Grid-connected inverter for wind power generation system

    Institute of Scientific and Technical Information of China (English)

    YANG Yong; RUAN Yi; SHEN Huan-qing; TANG Yan-yan; YANG Ying

    2009-01-01

    In wind power generation system the grid-connected inverter is an important section for energy conversion and transmission, of which the performance has a direct influence on the entire wind power generation system. The mathematical model of the grid-connected inverter is deduced firstly. Then, the space vector pulse width modulation (SVPWM) is analyzed. The power factor can be controlled close to unity, leading or lagging, which is realized based on PI-type current controller and grid voltage vector-oriented control. The control strategy is verified by the simulation and experimental results with a good sinusoidal current, a small harmonic component and a fast dynamic response.

  16. Wind Turbine Generator Efficiency Based on Powertrain Combination and Annual Power Generation Prediction

    Directory of Open Access Journals (Sweden)

    Dongmyung Kim

    2018-05-01

    Full Text Available Wind turbine generators are eco-friendly generators that produce electric energy using wind energy. In this study, wind turbine generator efficiency is examined using a powertrain combination and annual power generation prediction, by employing an analysis model. Performance testing was conducted in order to analyze the efficiency of a hydraulic pump and a motor, which are key components, and so as to verify the analysis model. The annual wind speed occurrence frequency for the expected installation areas was used to predict the annual power generation of the wind turbine generators. It was found that the parallel combination of the induction motors exhibited a higher efficiency when the wind speed was low and the serial combination showed higher efficiency when wind speed was high. The results of predicting the annual power generation considering the regional characteristics showed that the power generation was the highest when the hydraulic motors were designed in parallel and the induction motors were designed in series.

  17. Wind Generation Participation in Power System Frequency Response: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Gevorgian, Vahan; Zhang, Yingchen

    2017-01-01

    The electrical frequency of an interconnected power system must be maintained close its nominal level at all times. Excessive under- and overfrequency excursions can lead to load shedding, instability, machine damage, and even blackouts. There is a rising concern in the electric power industry in recent years about the declining amount of inertia and primary frequency response (PFR) in many interconnections. This decline may continue due to increasing penetrations of inverter-coupled generation and the planned retirements of conventional thermal plants. Inverter-coupled variable wind generation is capable of contributing to PFR and inertia with a response that is different from that of conventional generation. It is not yet entirely understood how such a response will affect the system at different wind power penetration levels. The modeling work presented in this paper evaluates the impact of wind generation's provision of these active power control strategies on a large, synchronous interconnection. All simulations were conducted on the U.S. Western Interconnection with different levels of instantaneous wind power penetrations (up to 80%). The ability of wind power plants to provide PFR - and a combination of synthetic inertial response and PFR - significantly improved the frequency response performance of the system.

  18. ANALYSING SOLAR-WIND HYBRID POWER GENERATING SYSTEM

    Directory of Open Access Journals (Sweden)

    Mustafa ENGİN

    2005-02-01

    Full Text Available In this paper, a solar-wind hybrid power generating, system that will be used for security lighting was designed. Hybrid system was installed and solar cells, wind turbine, battery bank, charge regulators and inverter performance values were measured through the whole year. Using measured values of overall system efficiency, reliability, demanded energy cost per kWh were calculated, and percentage of generated energy according to resources were defined. We also include in the paper a discussion of new strategies to improve hybrid power generating system performance and demanded energy cost per kWh.

  19. Emergy-based sustainability evaluation of wind power generation systems

    International Nuclear Information System (INIS)

    Yang, Jin; Chen, Bin

    2016-01-01

    Highlights: • Emergy is used to quantify the sustainability level of wind farms. • A GHG-based indicator is incorporated into emergetic accounting. • Possible pathways to achieve sustainable wind farm management are analyzed. - Abstract: With large-scale commercialization of wind technology, one must investigate economical and sustainable wind resource utilization. In this paper, emergy analysis is used to quantify the environmental pressure, renewability, economic efficiency, and sustainability of a typical wind power system, considering the lifetime stages from extraction and processing of raw materials and resources to the final product (electricity) via material transportation, construction and operation. Possible pathways to achieve sustainable management of wind energy supply chain were also analyzed based on scenario analysis. Results show that wind power is a promising means of substituting traditional fossil fuel-based power generation systems, with the lowest transformity of 4.49 × 10"4 sej/J, smaller environmental loading ratio of 5.84, and lower greenhouse gas emission intensity of 0.56 kg/kWh. To shed light on potential pathways to achieve sustainable and low-carbon wind energy supply chain management and make informed choices, a sensitivity analysis was done by establishing scenarios from the perspectives of material recycling and technical development. Results suggest that using new materials of lower energy intensity or recycled materials in upstream wind turbine manufacturing and construction materials are the most effective measures.

  20. Optimal prediction intervals of wind power generation

    DEFF Research Database (Denmark)

    Wan, Can; Wu, Zhao; Pinson, Pierre

    2014-01-01

    direct optimization of both the coverage probability and sharpness to ensure the quality. The proposed method does not involve the statistical inference or distribution assumption of forecasting errors needed in most existing methods. Case studies using real wind farm data from Australia have been...

  1. Effect of fall wind on wind power generation; Furyoku hatsuden ni okeru dashikaze no koka

    Energy Technology Data Exchange (ETDEWEB)

    Nagai, H [Nihon University, Tokyo (Japan)

    1997-11-25

    Wind conditions in Arakawa Town, Niigata Prefecture, were surveyed by anemometers and anemoscopes installed at 3 different points, and the data are analyzed to develop the prediction model for investigating possibility of introduction of wind mills there. Outlined herein is power generated by fall wind by comparing predicted power availability with the actual results. In order to investigate possibility of power generation by fall wind, the wind conditions and power availability are simulated using the observed wind condition data. Predicted wind velocity involves a large error at a point where frequency of prevailing wind direction is high, and direction in which average wind velocity is high coincides with direction in which land is slanted at a high slope. Fall wind occurs locally for geographical reasons. Location of the wind mill must be carefully considered, because it is complex, although potentially gives a larger quantity of power. A wind mill of 400kW can produce power of around 600MWh annually, when it is located at the suited site confirmed by the wind condition analysis results. 6 refs., 5 figs., 6 tabs.

  2. Feasibility of wind power generation in Ghana | Ayensu | Journal of ...

    African Journals Online (AJOL)

    For payback period of 10 years, the projected cost of the energy produced by a single turbine was estimated to be GHC 0.30 (~ 20 cents) per kWh (compared to 14 cents/kWh for photovoltaic generation and 10 cents/kWh for solar thermal), which therefore makes large scale optimized wind power generation competitive in ...

  3. Output power control of two coupled wind generators

    Directory of Open Access Journals (Sweden)

    A Boukhelifa

    2016-09-01

    Full Text Available In this paper we are interested to the power control of two wind generators coupled to the network through power converters. Every energy chain conversion is composed of a wind turbine, a gearbox, a Double Fed Induction Generator (DFIG, two PWM converters and a DC bus. The power exchange and the DC voltage are controlled by the use of proportional integral correctors. For our study, initially we have modeled all the components of the one system energy conversion, and then we have simulated its behavior using Matlab/Simulink. In another part of this paper we present the analysis of the interaction and the powerflow between the two aerogenerators following a disturbance due to wind speed on every turbine. Also we have considered a connection fault to the DC bus. In each case the assessment of power brought into play is checked. Simulation tests are established.

  4. Trading wind generation from short-term probabilistic forecasts of wind power

    DEFF Research Database (Denmark)

    Pinson, Pierre; Chevallier, Christophe; Kariniotakis, Georges

    2007-01-01

    Due to the fluctuating nature of the wind resource, a wind power producer participating in a liberalized electricity market is subject to penalties related to regulation costs. Accurate forecasts of wind generation are therefore paramount for reducing such penalties and thus maximizing revenue......, as well as on modeling of the sensitivity a wind power producer may have to regulation costs. The benefits resulting from the application of these strategies are clearly demonstrated on the test case of the participation of a multi-MW wind farm in the Dutch electricity market over a year....... participation. Such strategies permit to further increase revenues and thus enhance competitiveness of wind generation compared to other forms of dispatchable generation. This paper formulates a general methodology for deriving optimal bidding strategies based on probabilistic forecasts of wind generation...

  5. Windmills: Ancestors of the wind power generation

    Institute of Scientific and Technical Information of China (English)

    Cesare ROSSI; Flavio RUSSO; Sergio SAVINO

    2017-01-01

    A brief description of the windmills from the second millennium BC to the Renaissance is presented.This survey is a part of several studies conducted by the authors on technology in the ancient world.The windmills are the first motor,other than human muscles,and are the ancestors of the modem wind turbines.Some authors' virtual reconstructions of old windmills are also presented.The paper shows that the operating principle of many modem machines had already been conceived in the ancient times by using a technology that was more advanced than expected,but with two main differences,as follows:Similar tasks were accomplished by using much less energy;and the environmental impact was nil or very low.Modem designers should sometimes consider simplicity rather than the use of a large amount of energy.

  6. Windmills: Ancestors of the wind power generation

    Science.gov (United States)

    Rossi, Cesare; Russo, Flavio; Savino, Sergio

    2017-09-01

    A brief description of the windmills from the second millennium BC to the Renaissance is presented. This survey is a part of several studies conducted by the authors on technology in the ancient world. The windmills are the first motor, other than human muscles, and are the ancestors of the modern wind turbines. Some authors' virtual reconstructions of old windmills are also presented. The paper shows that the operating principle of many modern machines had already been conceived in the ancient times by using a technology that was more advanced than expected, but with two main differences, as follows: Similar tasks were accomplished by using much less energy; and the environmental impact was nil or very low. Modern designers should sometimes consider simplicity rather than the use of a large amount of energy.

  7. Different Models for Forecasting Wind Power Generation: Case Study

    Directory of Open Access Journals (Sweden)

    David Barbosa de Alencar

    2017-11-01

    Full Text Available Generation of electric energy through wind turbines is one of the practically inexhaustible alternatives of generation. It is considered a source of clean energy, but still needs a lot of research for the development of science and technologies that ensures uniformity in generation, providing a greater participation of this source in the energy matrix, since the wind presents abrupt variations in speed, density and other important variables. In wind-based electrical systems, it is essential to predict at least one day in advance the future values of wind behavior, in order to evaluate the availability of energy for the next period, which is relevant information in the dispatch of the generating units and in the control of the electrical system. This paper develops ultra-short, short, medium and long-term prediction models of wind speed, based on computational intelligence techniques, using artificial neural network models, Autoregressive Integrated Moving Average (ARIMA and hybrid models including forecasting using wavelets. For the application of the methodology, the meteorological variables of the database of the national organization system of environmental data (SONDA, Petrolina station, from 1 January 2004 to 31 March 2017, were used. A comparison among results by different used approaches is also done and it is also predicted the possibility of power and energy generation using a certain kind of wind generator.

  8. High Power Wind Generator Designs with Less or No PMs

    DEFF Research Database (Denmark)

    Boldea, Ion; Tutelea, Lucian; Blaabjerg, Frede

    2014-01-01

    synchronous generators, by doubly-fed (wound rotor) induction and cage induction generators and by introducing new topologies with pertinent costs for high power (MW range) wind energy conversion units. The present overview attempts, based on recent grid specifications, an evaluation of commercial and novel...... considering the interaction with the PWM converter in terms of power/speed range, losses, kVA, and costs) rather than on the control issues which abound in literature, will be of use for future R&D efforts in wind energy conversion, storage and use.......The recent steep increase in high energy permanent magnet (PM) price (above 130$/kg and more) triggered already strong R&D efforts to develop wind generators with less PMs (less weight in NdFeB magnets/kW or the use of ferrite PMs) or fully without PMs. All these by optimizing existing dc excited...

  9. Power Maximization Control of Variable Speed Wind Generation System Using Permanent Magnet Synchronous Generator

    Science.gov (United States)

    Morimoto, Shigeo; Nakamura, Tomohiko; Takeda, Yoji

    This paper proposes the sensorless output power maximization control of the wind generation system. A permanent magnet synchronous generator (PMSG) is used as a variable speed generator in the proposed system. The generator torque is suitably controlled according to the generator speed and thus the power from a wind turbine settles down on the maximum power point by the proposed MPPT control method, where the information of wind velocity is not required. Moreover, the maximum available generated power is obtained by the optimum current vector control. The current vector of PMSG is optimally controlled according to the generator speed and the required torque in order to minimize the losses of PMSG considering the voltage and current constraints. The proposed wind power generation system can be achieved without mechanical sensors such as a wind velocity detector and a position sensor. Several experimental results show the effectiveness of the proposed control method.

  10. SimWIND: A geospatial infrastructure model for optimizing wind power generation and transmission

    International Nuclear Information System (INIS)

    Phillips, Benjamin R.; Middleton, Richard S.

    2012-01-01

    Wind is a clean, enduring energy resource with the capacity to satisfy 20% or more of U.S. electricity demand. Presently, wind potential is limited by a paucity of electrical transmission lines and/or capacity between promising wind resources and primary load centers. We present the model SimWIND to address this shortfall. SimWIND is an integrated optimization model for the geospatial arrangement and cost minimization of wind-power generation–transmission–delivery infrastructure. Given a set of possible wind-farm sites, the model simultaneously determines (1) where and how much power to generate and (2) where to build new transmission infrastructure and with what capacity in order to minimize the cost for delivering a targeted amount of power to load. Costs and routing of transmission lines consider geographic and social constraints as well as electricity losses. We apply our model to the Electric Reliability Council of Texas (ERCOT) Interconnection, considering scenarios that deliver up to 20 GW of new wind power. We show that SimWIND could potentially reduce ERCOT's projected ∼$5B transmission network upgrade line length and associated costs by 50%. These results suggest that SimWIND's coupled generation–transmission–delivery modeling approach could play a critical role in enhancing planning efforts and reducing costs for wind energy integration. - Highlights: ► Wind power is limited by transmission capacity between resources and demands. ► SimWIND is a coupled generation-transmission-delivery model for wind infrastructure. ► The model minimizes costs considering realistic transmission routing and networking. ► We show that SimWIND could save 50% of $5B costs for expanding the Texas grid. ► Results suggest SimWIND may play a critical role in enhancings wind planning efforts.

  11. Wind power integration into the automatic generation control of power systems with large-scale wind power

    Directory of Open Access Journals (Sweden)

    Abdul Basit

    2014-10-01

    Full Text Available Transmission system operators have an increased interest in the active participation of wind power plants (WPP in the power balance control of power systems with large wind power penetration. The emphasis in this study is on the integration of WPPs into the automatic generation control (AGC of the power system. The present paper proposes a coordinated control strategy for the AGC between combined heat and power plants (CHPs and WPPs to enhance the security and the reliability of a power system operation in the case of a large wind power penetration. The proposed strategy, described and exemplified for the future Danish power system, takes the hour-ahead regulating power plan for generation and power exchange with neighbouring power systems into account. The performance of the proposed strategy for coordinated secondary control is assessed and discussed by means of simulations for different possible future scenarios, when wind power production in the power system is high and conventional production from CHPs is at a minimum level. The investigation results of the proposed control strategy have shown that the WPPs can actively help the AGC, and reduce the real-time power imbalance in the power system, by down regulating their production when CHPs are unable to provide the required response.

  12. Wind turbine power generation in the South Pennines

    International Nuclear Information System (INIS)

    Anon.

    1991-10-01

    This document has been produced in response to emerging demands for locating wind farms in the South Pennines region in the United Kingdom region, the absence - as yet - of any national policy guidelines and a concern that a lack of protected landscape area status may lead to increased targeting of the area for wind farm developments. Increasingly, the rich heritage based landscape of the South Pennines is gaining recognition. It is important that the basic landscape resource is conserved and enhanced. Thus the need to clarify a set of relevant guidelines against which individual proposals may be considered. It is recommended that policies for dealing with demands for wind turbine developments are based upon an appreciation of the intrinsic character of the South Pennine landscape. Similarly, it is important that the consideration of guidelines is supported by information on how demands for wind generated power have evolved and why development pressures for wind farms are now emerging in the sub-region. The document is structured as follows: (1) Wind Power -Background; (2) Wind Power in the South Pennines - The Potential; (3) The South Pennines: Landscape Character; (4) Planning Policy Guidelines. (author)

  13. Wind power scenario generation through state-space specifications for uncertainty analysis of wind power plants

    International Nuclear Information System (INIS)

    Díaz, Guzmán; Gómez-Aleixandre, Javier; Coto, José

    2016-01-01

    Highlights: • State space representations for simulating wind power plant output are proposed. • The representation of wind speed in state space allows structural analysis. • The joint model incorporates the temporal and spatial dependence structure. • The models are easily integrable into a backward/forward sweep algorithm. • Results evidence the remarkable differences between joint and marginal models. - Abstract: This paper proposes the use of state space models to generate scenarios for the analysis of wind power plant (WPP) generation capabilities. The proposal is rooted on the advantages that state space models present for dealing with stochastic processes; mainly their structural definition and the use of Kalman filter to naturally tackle some involved operations. The specification proposed in this paper comprises a structured representation of individual Box–Jenkins models, with indications about further improvements that can be easily performed. These marginal models are combined to form a joint model in which the dependence structure is easily handled. Indications about the procedure to calibrate and check the model, as well as a validation of its statistical appropriateness, are provided. Application of the proposed state space models provides insight on the need to properly specify the structural dependence between wind speeds. In this paper the joint and marginal models are smoothly integrated into a backward–forward sweep algorithm to determine the performance indicators (voltages and powers) of a WPP through simulation. As a result, visibly heavy tails emerge in the generated power probability distribution through the use of the joint model—incorporating a detailed description of the dependence structure—in contrast with the normally distributed power yielded by the margin-based model.

  14. Wind Turbine Generator System Power Performance Test Report for the ARE442 Wind Turbine

    Energy Technology Data Exchange (ETDEWEB)

    van Dam, J.; Jager, D.

    2010-02-01

    This report summarizes the results of a power performance test that NREL conducted on the ARE 442 wind turbine. This test was conducted in accordance with the International Electrotechnical Commission's (IEC) standard, Wind Turbine Generator Systems Part 12: Power Performance Measurements of Electricity Producing Wind Turbines, IEC 61400-12-1 Ed.1.0, 2005-12. However, because the ARE 442 is a small turbine as defined by IEC, NREL also followed Annex H that applies to small wind turbines. In these summary results, wind speed is normalized to sea-level air density.

  15. Wind energy-hydrogen storage hybrid power generation

    Energy Technology Data Exchange (ETDEWEB)

    Wenjei Yang; Orhan Aydin [University of Michigan, Ann Arbor, MI (United States). Dept. of Mechanical Engineering and Applied Mechanics

    2001-07-01

    In this theoretical investigation, a hybrid power generation system utilizing wind energy and hydrogen storage is presented. Firstly, the available wind energy is determined, which is followed by evaluating the efficiency of the wind energy conversion system. A revised model of windmill is proposed from which wind power density and electric power output are determined. When the load demand is less than the output of the generation, the excess electric power is relayed to the electrolytic cell where it is used to electrolyse the de-ionized water. Hydrogen thus produced can be stored as hydrogen compressed gas or liquid. Once the hydrogen is stored in an appropriate high-pressure vessel, it can be used in a combustion engine, fuel cell, or burned in a water-cooled burner to produce a very high-quality steam for space heating, or to drive a turbine to generate electric power. It can also be combined with organic materials to produce synthetic fuels. The conclusion is that the system produces no harmful waste and depletes no resources. Note that this system also works well with a solar collector instead of a windmill. (author)

  16. Intelligent Power Management of hybrid Wind/ Fuel Cell/ Energy Storage Power Generation System

    OpenAIRE

    A. Hajizadeh; F. Hassanzadeh

    2013-01-01

    This paper presents an intelligent power management strategy for hybrid wind/ fuel cell/ energy storage power generation system. The dynamic models of wind turbine, fuel cell and energy storage have been used for simulation of hybrid power system. In order to design power flow control strategy, a fuzzy logic control has been implemented to manage the power between power sources. The optimal operation of the hybrid power system is a main goal of designing power management strategy. The hybrid ...

  17. Maximum wind power plant generation by reducing the wake effect

    International Nuclear Information System (INIS)

    De-Prada-Gil, Mikel; Alías, César Guillén; Gomis-Bellmunt, Oriol; Sumper, Andreas

    2015-01-01

    Highlights: • To analyze the benefit of applying a new control strategy to maximise energy yield. • To operate some wind turbines at non-optimum points for reducing wake effects. • Single, partial and multiple wakes for any wind direction are taken into account. • Thrust coefficient is computed according to Blade Element Momentum (BEM) theory. - Abstract: This paper analyses, from a steady state point of view, the potential benefit of a Wind Power Plant (WPP) control strategy whose main objective is to maximise its total energy yield over its lifetime by taking into consideration that the wake effect within the WPP varies depending on the operation of each wind turbine. Unlike the conventional approach in which each wind turbine operation is optimised individually to maximise its own energy capture, the proposed control strategy aims to optimise the whole system by operating some wind turbines at sub-optimum points, so that the wake effect within the WPP is reduced and therefore the total power generation is maximised. The methodology used to assess the performance of both control approaches is presented and applied to two particular study cases. It contains a comprehensive wake model considering single, partial and multiple wake effects among turbines. The study also takes into account the Blade Element Momentum (BEM) theory to accurately compute both power and thrust coefficient of each wind turbine. The results suggest a good potential of the proposed concept, since an increase in the annual energy captured by the WPP from 1.86% up to 6.24% may be achieved (depending on the wind rose at the WPP location) by operating some specific wind turbines slightly away from their optimum point and reducing thus the wake effect

  18. Smoothing Control of Wind Farm Output by Using Kinetic Energy of Variable Speed Wind Power Generators

    Science.gov (United States)

    Sato, Daiki; Saitoh, Hiroumi

    This paper proposes a new control method for reducing fluctuation of power system frequency through smoothing active power output of wind farm. The proposal is based on the modulation of rotaional kinetic energy of variable speed wind power generators through power converters between permanent magnet synchronous generators (PMSG) and transmission lines. In this paper, the proposed control is called Fluctuation Absorption by Flywheel Characteristics control (FAFC). The FAFC can be easily implemented by adding wind farm output signal to Maximum Power Point Tracking control signal through a feedback control loop. In order to verify the effectiveness of the FAFC control, a simulation study was carried out. In the study, it was assumed that the wind farm consisting of PMSG type wind power generator and induction machine type wind power generaotors is connected with a power sysem. The results of the study show that the FAFC control is a useful method for reducing the impacts of wind farm output fluctuation on system frequency without additional devices such as secondary battery.

  19. Is nuclear energy power generation more dangerous than power generation by wind and solar energy

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Y

    1979-03-01

    Since the occurrence of the petroleum crisis, many countries have devoted a great deal of effort to search for substitute energy sources. Aside from nuclear energy, forms of power generation with wind, solar energy, and geothermal energy have all been actually adopted in one place or another. Most recently, a research report was published by the Canadian Bureau of Nuclear Energy Management stating that the use of wind and solar energy to generate electricity is much more dangerous than power generation with nuclear energy. When mining, transportation, machine manufacturing, etc. are included in the process of producing unit power, i.e. kilowatt/year, the data of various risks of death, injury, and diseases are computed in terms of man/day losses by the bureau. They indicate that of the ten forms of power generation, the danger is the least with natural gas, only about a 6 man/day, and nuclear energy is the next least dangerous, about 10 man/day. The danger of using temperature differential of sea water to generate electricity is about 25 man/day, and the most dangerous form of power generation is coal, amounting to three thousand man/day.

  20. French wind power generation programme EOLE 2005 - first results

    Energy Technology Data Exchange (ETDEWEB)

    Laali, A.R. [Electricite de France (EDF), Chatou (France); Benard, M. [Electricite de France (EDF), Paris (France)

    1997-12-31

    EOLE 2005 has been launched in July 1996 by the French Ministry of Industry, Electricite de France and ADEME (Agency for Environment and Energy Management). The Ministries of Research and Environment are participating also in this programme. The purpose is to create an initial market in France for wind power generation in order to evaluate the cost-effectiveness and the competitiveness of the wind energy compared to other energy sources by 2005. The installed capacity will reach at least 250 MW and possibly 500 MW.

  1. A novel excitation assistance switched reluctance wind power generator

    DEFF Research Database (Denmark)

    Liu, Xiao; Park, Kiwoo; Chen, Zhe

    2014-01-01

    The high inductance of a general switched reluctance generator (SRG) may prevent the excitation of the magnetic field from being quickly established enough, which may further limit the output power of the SRG. A novel excitation assistance SRG (EASRG) for wind power generation is proposed...... in this paper to solve the above problem. C-shape stator cores are employed in a modular design concept for quick maintenance or replacement, and a ring-shape excitation assistant coil is sandwiched in the space between the modular stator cores. The magnetization and torque characteristics are simulated by 3-D...

  2. HTS technology - Generating the future of offshore wind power

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Jens

    2010-09-15

    Superconductive generator design is going to become a real competitive alternative in the future. In general, superconductor design is the most competitive out of Direct Drive Systems and best fulfils the needs of the upcoming market - especially in the offshore market, where WECs with higher nominal power up to 10MW are required. Low weight, high reliability and the very good grid behaviour are the main advantages of the superconductor generator design and will lead to lower costs. The other systems are restricted to a smaller energy output range and / or onshore wind power production business.

  3. Integration of wind power in the Danish generation system. EC wind power penetration study, phase 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1989-06-01

    The Commission of the European Communities has asked utilities in the member countries to carry out a coordinated study of the wind energy potential. The main objective is to show the consequences for the future electricity system when integrating wind power production covering 5, 10 or 15% of total demand. In addition to the best estimate scenario believed to be operational, some additional calculations have been carried out: wind power production as a negative load only (not operational for the total system); different levels of investment in wind farms. The methodology is based on the following steps: define a reference scenario for year 2000; define an alternative scenario with a certain amount of wind power production; calculate time-series for electrical load and district heating from combined heat/power production; calculate time-series for wind power production; make economic evaluation and sensitivity analysis; show environmental differences. Incorporation of wind power into the ELSAM power system, with the wind energy meeting, about 5% of demand will give rise to additional control capacity, or call for new contracts with neighbouring countries. The study includes estimated network investments. The simulations have been made with the SIM and SLUMP computer programmes. The economic analyses and the sensitivity analyses have been carried out using spreadsheets. The conclusion concerning profitability - based on the best estimate assumptions - is that the studied wind power scenarios are unprofitable. (EG)

  4. Wind Generators

    Science.gov (United States)

    1989-01-01

    When Enerpro, Inc. president, Frank J. Bourbeau, attempted to file a patent on a system for synchronizing a wind generator to the electric utility grid, he discovered Marshall Space Flight Center's Frank Nola's power factor controller. Bourbeau advanced the technology and received a NASA license and a patent for his Auto Synchronous Controller (ASC). The ASC reduces generator "inrush current," which occurs when large generators are abruptly brought on line. It controls voltage so the generator is smoothly connected to the utility grid when it reaches its synchronous speed, protecting the components from inrush current damage. Generator efficiency is also increased in light winds by applying lower than rated voltage. Wind energy is utilized to drive turbines to generate electricity for utility companies.

  5. Probabilistic Forecast of Wind Power Generation by Stochastic Differential Equation Models

    KAUST Repository

    Elkantassi, Soumaya

    2017-01-01

    Reliable forecasting of wind power generation is crucial to optimal control of costs in generation of electricity with respect to the electricity demand. Here, we propose and analyze stochastic wind power forecast models described by parametrized

  6. Assessment and analysis of wind energy generation and power ...

    African Journals Online (AJOL)

    This study concerns the evaluation of wind power potential and the choice of a wind turbine to be installed near Rabah Bitat international airport of Annaba. Furthermore, the performances of power control of this turbine are developed. For this, the wind speed data measured by meteorological station of th e airport are used.

  7. Induction generator-induction motor wind-powered pumping system

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, M.S.; Lyra, R.O.C.; Silva, S.R. [CPDEE - UFMG, Belo Horizonte (Brazil)

    1997-12-31

    The energy storage matter plays an important role in wind-electric conversion systems for isolated applications. Having that in mind, two different approaches can be basically considered: either the immediate conversion of the generated electric energy, as in a water pumping system or electric energy storage for later use, as in a battery charging system. Due to some features such as no need of an external reactive power source and, sometimes, a gearbox, permanent-magnet synchronous generators have been broadly used in low rated power isolated systems. Despite that, system performance can be affected when the generator is feeding an inductive load (e.g., an induction motor) under variable-speed-variable-frequency operational conditions. Since there is no effective flux control, motor overload may occur at high wind speeds. Thus, good system performance can be obtained through additional control devices which may increase system cost. Although being rugged and cheap, induction machines always work as a reactive power drain; therefore, they demand an external reactive power source. Considering that, reactive static compensators appear as an attractive alternative to the cost x performance problem. In addition to that, different control strategies can be used so that system performance can be improved.

  8. Private wind powered electricity generators for industry in the UK

    Science.gov (United States)

    Thabit, S. S.; Stark, J.

    This paper investigates the impact of the provisions of the new Energy Act, 1983 on industrial wind-powered private generators of electricity and the effects of published tariffs on various industrial working patterns. Up to 30 percent savings can be achieved in annual electricity bill costs for an industrial generator/user of electricity working a single daily shift, if located in a favorable, 7 m/s mean annual wind speed regime. Variation of the availability charge between Electricity Boards about a base value of 0.70 pounds sterling/kVA was found to have insignificant (+ or - 1.3 percent) impact on total electricity bill costs. It was also shown that for industrial users of electricity, the simpler two-rate purchase terms were commercially adequate when compared with the four-rate alternative where expensive metering becomes necessary.

  9. Modeling and Simulation of Generator Side Converter of Doubly Fed Induction Generator-Based Wind Power Generation System

    DEFF Research Database (Denmark)

    Guo, Yougui; Zeng, Ping; Blaabjerg, Frede

    2010-01-01

    A real wind power generation system is given in this paper. SVM control strategy and vector control is applied for generator side converter and doubly fed induction generator respectively. First the mathematical models of the wind turbine rotor, drive train, generator side converter are described...

  10. Variability in large-scale wind power generation

    DEFF Research Database (Denmark)

    Kiviluoma, Juha; Holttinen, Hannele; Weir, David

    2016-01-01

    The paper demonstrates the characteristics of wind power variability and net load variability in multiple power systems based on real data from multiple years. Demonstrated characteristics include probability distribution for different ramp durations, seasonal and diurnal variability and low net ...... with well-dispersed wind power. Copyright © 2015 John Wiley & Sons, Ltd....

  11. Dynamic evaluation of the levelized cost of wind power generation

    International Nuclear Information System (INIS)

    Díaz, Guzmán; Gómez-Aleixandre, Javier; Coto, José

    2015-01-01

    Highlights: • Conventional levelized cost of energy is static and does not consider flexibility. • This paper defines a dynamic version by means of stochastic programming. • A penalty for early exercising is proposed to differentiate static and dynamic. • Results show the effects of feed-in tariff support in low wind sites. • Policy implications are derived on the basis of the static and dynamic measures. - Abstract: This paper discusses an alternative computation method of the levelized cost of energy of distributed wind power generators. Unlike in the conventional procedures, it includes time of commencement as an optimization variable. For that purpose, a methodology from Longstaff and Schwartz’s dynamic program for pricing financial American options is derived, which provides the ability to find the optimum time and value while coping with uncertainty revenues from energy sales and variable capital costs. The results obtained from the analysis of wind records of 50 sites entail that the conventional levelized cost of energy can be broken down into an optimum, minimum (time-dependent) value and a penalty for early exercising, which can be employed to define investment strategies and support policies

  12. Wind power

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    This publication describes some of the technical, economic, safety and institutional considerations involved in the selection, installation and evaluation of a wind generation system. This information is presented, where possible, in practical, non-technical terms. The first four sections provide background information, theory, and general knowledge, while the remaining six sections are of a more specific nature to assist the prospective owner of a wind generator in his calculations and selections. Meteorological information is provided relating to the wind regime in Nova Scotia. The section on cost analysis discusses some of the factors and considerations which must be examined in order to provide a logical comparison between the alternatives of electricity produced from other sources. The final two sections are brief summaries of the regulations and hazards pertaining to the use of wind generators. The cost of wind-generated electricity is high compared to present Nova Scotia Power Corporation rates, even on Sable Island, Nova Scotia's highest wind area. However, it may be observed that Sable Island is one of the areas of Nova Scotia which is not presently supplied through the power grid and, particularly if there was a significant increase in the price of diesel oil, wind-generated electricity may well be the most economical alternative in that area. Generally speaking, however, where a consumer can purchase electricity at the normal domestic rate, wind generators are not economical, and they will not become economical unless there is a great reduction in their cost, an great increase in electricity rates, or both. Includes glossary. 23 figs., 11 tabs.

  13. Indices for planning wind power generation; Furyoku hatsuden no keikaku shihyo

    Energy Technology Data Exchange (ETDEWEB)

    Takeuchi, H

    1997-11-25

    Outlined herein are status of wind power generation development, indices for planning development, and actual development results. At present, wind power generates electric power of 6,781MW worldwide. USA has been rapidly developing wind power generation since enactment of the PURPA law, and accounted for 25% of the world output in the past. However, the county is recently unseated from the world top position by Germany, which has been extensively developing wind power generation since enactment of the EFL law to reach 1,799MW. In Japan, electric power companies, local governments and public institutions have been positively introducing wind mills since 1992, when Tohoku Electric Power Co. built Ryuhi Wind Park, now generating a total power of 15MW by 64 units located at 33 different points. According to the surveys by NEDO on wind conditions, there are a number of districts suited for wind mills in Hokkaido, Tohoku, Okinawa and sea areas in Honshu. The indices described herein for planning wind power generation include rotor diameter, tower height, speed of rotation, weight, power to be generated, utilization and service factors, noise level, and investment and running costs. In the present state of the development of wind power generation in Japan, development points are 33, generated ouptut 15,097kW and units 64. 14 figs.

  14. Loss Minimizing Operation of Doubly Fed Induction Generator Based Wind Generation Systems Considering Reactive Power Provision

    DEFF Research Database (Denmark)

    Baohua, Zhang; Hu, Weihao; Chen, Zhe

    2014-01-01

    The paper deals with control techniques for minimizing the operating loss of doubly fed induction generator based wind generation systems when providing reactive power. The proposed method achieves its goal through controlling the rotor side q-axis current in the synchronous reference frame...

  15. Adequacy of Frequency Reserves for High Wind Power Generation

    DEFF Research Database (Denmark)

    Das, Kaushik; Litong-Palima, Marisciel; Maule, Petr

    2017-01-01

    In this article, a new methodology is developed to assess the adequacy of frequency reserves to handle power imbalances caused by wind power forecast errors. The goal of this methodology is to estimate the adequate volume and speed of activation of frequency reserves required to handle power...

  16. PREDICTION OF POWER GENERATION OF SMALL SCALE VERTICAL AXIS WIND TURBINE USING FUZZY LOGIC

    Directory of Open Access Journals (Sweden)

    Altab Hossain

    2009-01-01

    Full Text Available Renewable energy from the wind turbine has been focused for the alternative source of power generation due to the following advances of the of the wind turbine. Firstly, the wind turbine is highly efficient and eco-friendly. Secondly, the turbine has the ability to response for the changeable power generation based on the wind velocity and structural framework. However, the competitive efficiency of the wind turbine is necessary to successfully alternate the conventional power sources. The most relevant factor which affects the overall efficiency of the wind turbine is the wind velocity and the relative turbine dimensions. Artificial intelligence systems are widely used technology that can learn from examples and are able to deal with non-linear problems. Compared with traditional approach, fuzzy logic approach is more efficient for the representation, manipulation and utilization. Therefore, the primary purpose of this work was to investigate the relationship between wind turbine power generation and wind velocity, and to illustrate how fuzzy expert system might play an important role in prediction of wind turbine power generation. The main purpose of the measurement over the small scaled prototype vertical axis wind turbine for the wind velocity is to predict the performance of full scaled H-type vertical axis wind turbine. Prediction of power generation at the different wind velocities has been tested at the Thermal Laboratory of Faculty of Engineering, Universiti Industri Selangor (UNISEL and results concerning the daily prediction have been obtained.

  17. PREDICTION OF POWER GENERATION OF SMALL SCALE VERTICAL AXIS WIND TURBINE USING FUZZY LOGIC

    Directory of Open Access Journals (Sweden)

    Altab Md. Hossain

    2009-12-01

    Full Text Available Renewable energy from the wind turbine has been focused for the alternative source of power generation due to the following advances of the of the wind turbine. Firstly, the wind turbine is highly efficient and eco-friendly. Secondly, the turbine has the ability to response for the changeable power generation based on the wind velocity and structural framework. However, the competitive efficiency of the wind turbine is necessary to successfully alternate the conventional power sources. The most relevant factor which affects the overall efficiency of the wind turbine is the wind velocity and the relative turbine dimensions. Artificial intelligence systems are widely used technology that can learn from examples and are able to deal with non-linear problems. Compared with traditional approach, fuzzy logic approach is more efficient for the representation, manipulation and utilization. Therefore, the primary purpose of this work was to investigate the relationship between wind turbine power generation and wind velocity, and to illustrate how fuzzy expert system might play an important role in prediction of wind turbine power generation. The main purpose of the measurement over the small scaled prototype vertical axis wind turbine for the wind velocity is to predict the performance of full scaled H-type vertical axis wind turbine. Prediction of power generation at the different wind velocities has been tested at the Thermal Laboratory of Faculty of Engineering, Universiti Industri Selangor (UNISEL and results concerning the daily prediction have been obtained.

  18. Stochastic reactive power dispatch in hybrid power system with intermittent wind power generation

    International Nuclear Information System (INIS)

    Taghavi, Reza; Seifi, Ali Reza; Samet, Haidar

    2015-01-01

    Environmental concerns besides fuel costs are the predominant reasons for unprecedented escalating integration of wind turbine on power systems. Operation and planning of power systems are affected by this type of energy due to the intermittent nature of wind speed inputs with high uncertainty in the optimization output variables. Consequently, in order to model this high inherent uncertainty, a PRPO (probabilistic reactive power optimization) framework should be devised. Although MC (Monte-Carlo) techniques can solve the PRPO with high precision, PEMs (point estimate methods) can preserve the accuracy to attain reasonable results when diminishing the computational effort. Also, this paper introduces a methodology for optimally dispatching the reactive power in the transmission system, while minimizing the active power losses. The optimization problem is formulated as a LFP (linear fuzzy programing). The core of the problem lay on generation of 2m + 1 point estimates for solving PRPO, where n is the number of input stochastic variables. The proposed methodology is investigated using the IEEE-14 bus test system equipped with HVDC (high voltage direct current), UPFC (unified power flow controller) and DFIG (doubly fed induction generator) devices. The accuracy of the method is demonstrated in the case study. - Highlights: • This paper uses stochastic loads in optimization process. • AC–DC load flow is modified to use some advantages of DC part in optimization process. • UPFC and DFIG are simulated in a way that could be effective in optimization process. • Fuzzy set has been used as an uncertainty analysis tool in the optimization

  19. Stand-alone excitation synchronous wind power generators with power flow management strategy

    Directory of Open Access Journals (Sweden)

    Tzuen-Lih Chern

    2014-09-01

    Full Text Available This study presents a stand-alone excitation synchronous wind power generator (SESWPG with power flow management strategy (PFMS. The rotor speed of the excitation synchronous generator tracks the utility grid frequency by using servo motor tracking technologies. The automatic voltage regulator governs the exciting current of generator to achieve the control goals of stable voltage. When wind power is less than the needs of the consumptive loading, the proposed PFMS increases motor torque to provide a positive power output for the loads, while keeping the generator speed constant. Conversely, during the periods of wind power greater than output loads, the redundant power of generator production is charged to the battery pack and the motor speed remains constant with very low power consumption. The advantage of the proposed SESWPG is that the generator can directly output stable alternating current (AC electricity without using additional DC–AC converters. The operation principles with software simulation for the system are described in detail. Experimental results of a laboratory prototype are shown to verify the feasibility of the system.

  20. Incorporation of a Wind Generator Model into a Dynamic Power Flow Analysis

    Directory of Open Access Journals (Sweden)

    Angeles-Camacho C.

    2011-07-01

    Full Text Available Wind energy is nowadays one of the most cost-effective and practical options for electric generation from renewable resources. However, increased penetration of wind generation causes the power networks to be more depend on, and vulnerable to, the varying wind speed. Modeling is a tool which can provide valuable information about the interaction between wind farms and the power network to which they are connected. This paper develops a realistic characterization of a wind generator. The wind generator model is incorporated into an algorithm to investigate its contribution to the stability of the power network in the time domain. The tool obtained is termed dynamic power flow. The wind generator model takes on account the wind speed and the reactive power consumption by induction generators. Dynamic power flow analysis is carried-out using real wind data at 10-minute time intervals collected for one meteorological station. The generation injected at one point into the network provides active power locally and is found to reduce global power losses. However, the power supplied is time-varying and causes fluctuations in voltage magnitude and power fl ows in transmission lines.

  1. Estimation of wake propagation behind the rotors of wind-powered generators

    DEFF Research Database (Denmark)

    Naumov, I. V.; Mikkelsen, Robert Flemming; Okulov, Valery

    2016-01-01

    . It is shown that the recovery of velocity of incident flow is faster than has been previously defined in the models of calculating the impact of wind electric power plants on the regional climate changes. Thus, existing wind loss calculated on the model of wake behind the wind-powered generator, adjusted......The objectives of this work are to develop the experimental model of wake behind the wind-power generator rotor to estimate its propagation distance and the impact on the average and pulsation characteristics of incident flow with the possibility of further use of these data in the calculation...... models of wind and climate changes in the regions and to determine the optimal operation of wind turbines. For experimental modeling, the laboratory model of wind-powered generator with a horizontal axis was used that operated as wind turbine in optimal mode. The kinematic characteristics of flow...

  2. Power Control of Permanent Magnet Generator Based Variable Speed Wind Turbines

    DEFF Research Database (Denmark)

    Deng, Fujin; Chen, Zhe

    2009-01-01

    When the wind power accounts for a large portion of the grid, it will be required to regulate the active power and reactive power. This paper investigates a MWlevel variable speed wind turbine with a permanent magnet synchronous generator (PMSG). The power control capabilities of two kinds...... of control schemes conducted respectively on this wind turbine under two conditions, including rapid wind speed change and grids faults, are compared. The simulation study of the wind turbine system is conducted using PSCAD/EMTDC, and the results show the different power control capabilities of the two...

  3. An approach to the conversion of the power generated by an offshore wind power farm connected into seawave power generator

    Energy Technology Data Exchange (ETDEWEB)

    Franzitta, Vicenzo; Messineo, Antonio; Trapanese, Marco

    2011-07-01

    The development of renewable energy systems has been undergoing for the past decades but sea wave's energy resource has been under-utilized. This under-utilization has several reasons: the energy concentration is low in sea waves, extraction of this energy requires leading edge technologies and conversion of the energy into electrical energy is difficult. This study compares two different methods to connect the sea waves' generator to the network and to the offshore wind power farm. The first method consists in a decentralized approach: each generator is connected to the grid through an AC converter. The second method is a partially centralized approach: a rectifier is connected to each generator, all of the generators are then connected together to a common DC bus and power is then converted in AC to be connected to the grid. This study has shown that the partially centralized approach is more reliable and efficient than the decentralized approach.

  4. Design of Electricity Markets for Efficient Balancing of Wind Power Generation

    OpenAIRE

    Scharff, Richard

    2015-01-01

    Deploying wind power to a larger extent is one solution to reduce negative environmental impacts of electric power supply. However, various challenges are connected with increasing wind power penetration levels. From the perspective of transmission system operators, this includes balancing of varying as well as - to some extent - uncertain generation levels. From the perspective of power generating companies, changes in the generation mix will affect the market's merit order and, hence, their...

  5. Output Power Control of Wind Turbine Generator by Pitch Angle Control using Minimum Variance Control

    Science.gov (United States)

    Senjyu, Tomonobu; Sakamoto, Ryosei; Urasaki, Naomitsu; Higa, Hiroki; Uezato, Katsumi; Funabashi, Toshihisa

    In recent years, there have been problems such as exhaustion of fossil fuels, e. g., coal and oil, and environmental pollution resulting from consumption. Effective utilization of renewable energies such as wind energy is expected instead of the fossil fuel. Wind energy is not constant and windmill output is proportional to the cube of wind speed, which cause the generated power of wind turbine generators (WTGs) to fluctuate. In order to reduce fluctuating components, there is a method to control pitch angle of blades of the windmill. In this paper, output power leveling of wind turbine generator by pitch angle control using an adaptive control is proposed. A self-tuning regulator is used in adaptive control. The control input is determined by the minimum variance control. It is possible to compensate control input to alleviate generating power fluctuation with using proposed controller. The simulation results with using actual detailed model for wind power system show effectiveness of the proposed controller.

  6. Half century of wind power generation memoir. Part 1; Furyoku hatsuden hanseiki sono omoide. 1

    Energy Technology Data Exchange (ETDEWEB)

    Nakata, H.

    1995-12-01

    This article may be deemed an autobiography of an individual on his development of wind power generation devices. The author began to be interested in electricity while he was a pupil of primary school and during his time of middle school student, when he walked against the strong wind on an embankment, he got an idea to utilize the wind power and succeeded to generate electricity with his handmade wind power generator using a bicycle generator. Afterwards he kept interested in devices utilizing the wind power, in 1973, energy saving was widely promoted due to the oil crises, and taking that opportunity, he established single-handedly a laboratory for development of utilization of the breeze power. Since his retirement from teaching profession in the spring of 1980, he has coped with earnestly the development of wind power generators. He acquired and installed various machine tools for metal works for generators and various machines for wood works for making propellers. In this article, wind power generators using bicycle generators (direct connection type and speed increasing type), small D.C. motors (motors for driving tape recorder, motors for automobile radiator and windshield wiper, etc.) and automobile generators (D.C. generators and alternators) are explained. 11 figs.

  7. The Relationship Between Electricity Price and Wind Power Generation in Danish Electricity Markets

    DEFF Research Database (Denmark)

    Hu, Weihao; Chen, Zhe; Bak-Jensen, Birgitte

    2010-01-01

    of competitive electricity markets in some ways, is chosen as the studied power system. The relationship between the electricity price (both the spot price and the regulation price) and the wind power generation in an electricity market is investigated in this paper. The spot price, the down regulation price...... and the up regulation price generally decreases when the wind power penetration in the power system increases. The statistical characteristics of the spot price for different wind power penetration are analyzed. The findings of this paper may be useful for wind power generation companies to make the optimal...... bidding strategy and may be also useful for the optimal operation of modern power systems with high wind power penetrations....

  8. A Vertical-Axis Off-Grid Squirrel-Cage Induction Generator Wind Power System

    Directory of Open Access Journals (Sweden)

    Peifeng Xu

    2016-10-01

    Full Text Available In order to broaden the limited utilization range of wind power and improve the charging and discharging control performance of the storage battery in traditional small wind power generation systems, a wind power system based on a vertical-axis off-grid induction generator is proposed in this paper. The induction generator not only can run in a wide wind speed range but can also assist the vertical-axis wind turbine to realize self-starting at low wind speed. Combined with the maximum power point tracking method, the slip frequency control strategy is employed to regulate the pulse width modulation (PWM converter to control the output power of the proposed system when the wind speed and load change. The charge and discharge of the storage battery is realized by the segmented current-limiting control strategy by means of an electric power unloader device connected to the DC bus. All these implement a balanced and stable operation of the proposed power generation system. The experimental research on the 5.5 kW prototype system is developed, and the corresponding results verify the correctness and feasibility of the system design and control strategy. Some comparison experiments with a magnetic suspension permanent magnet synchronous generator (PMSG demonstrate the application prospect of the proposed vertical-axis off-grid induction generator wind power system.

  9. Simulating European wind power generation applying statistical downscaling to reanalysis data

    International Nuclear Information System (INIS)

    González-Aparicio, I.; Monforti, F.; Volker, P.; Zucker, A.; Careri, F.; Huld, T.; Badger, J.

    2017-01-01

    Highlights: •Wind speed spatial resolution highly influences calculated wind power peaks and ramps. •Reduction of wind power generation uncertainties using statistical downscaling. •Publicly available dataset of wind power generation hourly time series at NUTS2. -- Abstract: The growing share of electricity production from solar and mainly wind resources constantly increases the stochastic nature of the power system. Modelling the high share of renewable energy sources – and in particular wind power – crucially depends on the adequate representation of the intermittency and characteristics of the wind resource which is related to the accuracy of the approach in converting wind speed data into power values. One of the main factors contributing to the uncertainty in these conversion methods is the selection of the spatial resolution. Although numerical weather prediction models can simulate wind speeds at higher spatial resolution (up to 1 × 1 km) than a reanalysis (generally, ranging from about 25 km to 70 km), they require high computational resources and massive storage systems: therefore, the most common alternative is to use the reanalysis data. However, local wind features could not be captured by the use of a reanalysis technique and could be translated into misinterpretations of the wind power peaks, ramping capacities, the behaviour of power prices, as well as bidding strategies for the electricity market. This study contributes to the understanding what is captured by different wind speeds spatial resolution datasets, the importance of using high resolution data for the conversion into power and the implications in power system analyses. It is proposed a methodology to increase the spatial resolution from a reanalysis. This study presents an open access renewable generation time series dataset for the EU-28 and neighbouring countries at hourly intervals and at different geographical aggregation levels (country, bidding zone and administrative

  10. Short-term optimal wind power generation capacity in liberalized electricity markets

    International Nuclear Information System (INIS)

    Olsina, Fernando; Roescher, Mark; Larisson, Carlos; Garces, Francisco

    2007-01-01

    Mainly because of environmental concerns and fuel price uncertainties, considerable amounts of wind-based generation capacity are being added to some deregulated power systems. The rapid wind development registered in some countries has essentially been driven by strong subsidizing programs. Since wind investments are commonly isolated from market signals, installed wind capacity can be higher than optimal, leading to distortions of the power prices with a consequent loss of social welfare. In this work, the influence of wind generation on power prices in the framework of a liberalized electricity market has been assessed by means of stochastic simulation techniques. The developed methodology allows investigating the maximal wind capacity that would be profitably deployed if wind investments were subject to market conditions only. For this purpose, stochastic variables determining power prices are accurately modeled. A test system resembling the size and characteristics of the German power system has been selected for this study. The expected value of the optimal, short-term wind capacity is evaluated for a considerable number of random realizations of power prices. The impact of dispersing the wind capacity over statistical independent wind sites has also been evaluated. The simulation results reveal that fuel prices, installation and financing costs of wind investments are very influential parameters on the maximal wind capacity that might be accommodated in a market-based manner

  11. Stochastic model of wind-fuel cell for a semi-dispatchable power generation

    DEFF Research Database (Denmark)

    Alvarez-Mendoza, Fernanda; Bacher, Peder; Madsen, Henrik

    2017-01-01

    electrolyte membrane fuel cell, which are embedded in one complete system with the wind power. This study uses historic wind speed data from Mexico; the forecasts are obtained using the recursive least square algorithm with a forgetting factor. The proposed approach provides probabilistic information......Hybrid systems are implemented to improve the efficiency of individual generation technologies by complementing each other. Intermittence is a challenge to overcome especially for renewable energy sources for electric generation, as in the case of wind power. This paper proposes a hybrid system...... for short-term wind power generation and electric generation as the outcome of the hybrid system. A method for a semi-dispatchable electric generation based on time series analysis is presented, and the implementation of wind power and polymer electrolyte membrane fuel cell models controlled by a model...

  12. Modeling and Comparison of Power Converters for Doubly Fed Induction Generators in Wind Turbines

    DEFF Research Database (Denmark)

    Helle, Lars

    on the generated power quality and controllability. A consequence of this increased focus has been an ever increased set of requirements formulated in national grid requirement. These requirements has forced wind turbines to evolve from a simple generator on a stick into complicated miniature power plants......During the last decades, renewable energy resources have become an ever increasing part of the world wide power generation and especially energy produced by wind turbines has captured a significant part of this power production. This large penetration of wind power has caused increased focus...... on the design engineers employed in the wind industry. Such a progress may force design engineers to adopt common practice from more or less related technologies rather than finding the optimum solution for the specific application. For instance when applying power electronic converters to wind turbines...

  13. Understanding Dynamic Model Validation of a Wind Turbine Generator and a Wind Power Plant: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Muljadi, Eduard; Zhang, Ying Chen; Gevorgian, Vahan; Kosterev, Dmitry

    2016-09-01

    Regional reliability organizations require power plants to validate the dynamic models that represent them to ensure that power systems studies are performed to the best representation of the components installed. In the process of validating a wind power plant (WPP), one must be cognizant of the parameter settings of the wind turbine generators (WTGs) and the operational settings of the WPP. Validating the dynamic model of a WPP is required to be performed periodically. This is because the control parameters of the WTGs and the other supporting components within a WPP may be modified to comply with new grid codes or upgrades to the WTG controller with new capabilities developed by the turbine manufacturers or requested by the plant owners or operators. The diversity within a WPP affects the way we represent it in a model. Diversity within a WPP may be found in the way the WTGs are controlled, the wind resource, the layout of the WPP (electrical diversity), and the type of WTGs used. Each group of WTGs constitutes a significant portion of the output power of the WPP, and their unique and salient behaviors should be represented individually. The objective of this paper is to illustrate the process of dynamic model validations of WTGs and WPPs, the available data recorded that must be screened before it is used for the dynamic validations, and the assumptions made in the dynamic models of the WTG and WPP that must be understood. Without understanding the correct process, the validations may lead to the wrong representations of the WTG and WPP modeled.

  14. Power and Frequency Control as it Relates to Wind-Powered Generation

    Energy Technology Data Exchange (ETDEWEB)

    Lacommare, Kristina S H

    2010-12-20

    This report is a part of an investigation of the ability of the U.S. power system to accommodate large scale additions of wind generation. The objectives of this report are to describe principles by which large multi-area power systems are controlled and to anticipate how the introduction of large amounts of wind power production might require control protocols to be changed. The operation of a power system is described in terms of primary and secondary control actions. Primary control is fast, autonomous, and provides the first-line corrective action in disturbances; secondary control takes place on a follow-up time scale and manages the deployment of resources to ensure reliable and economic operation. This report anticipates that the present fundamental primary and secondary control protocols will be satisfactory as wind power provides an increasing fraction of the total production, provided that appropriate attention is paid to the timing of primary control response, to short term wind forecasting, and to management of reserves for control action.

  15. ARIMA-Based Time Series Model of Stochastic Wind Power Generation

    DEFF Research Database (Denmark)

    Chen, Peiyuan; Pedersen, Troels; Bak-Jensen, Birgitte

    2010-01-01

    This paper proposes a stochastic wind power model based on an autoregressive integrated moving average (ARIMA) process. The model takes into account the nonstationarity and physical limits of stochastic wind power generation. The model is constructed based on wind power measurement of one year from...... the Nysted offshore wind farm in Denmark. The proposed limited-ARIMA (LARIMA) model introduces a limiter and characterizes the stochastic wind power generation by mean level, temporal correlation and driving noise. The model is validated against the measurement in terms of temporal correlation...... and probability distribution. The LARIMA model outperforms a first-order transition matrix based discrete Markov model in terms of temporal correlation, probability distribution and model parameter number. The proposed LARIMA model is further extended to include the monthly variation of the stochastic wind power...

  16. Effect of operating methods of wind turbine generator system on net power extraction under wind velocity fluctuations in fields

    Energy Technology Data Exchange (ETDEWEB)

    Wakui, Tetsuya; Yamaguchi, Kazuya; Hashizume, Takumi [Waseda Univ., Advanced Research Inst. for Science and Engineering, Tokyo (Japan); Outa, Eisuke [Waseda Univ., Mechanical Engineering Dept., Tokyo (Japan); Tanzawa, Yoshiaki [Nippon Inst. of Technology, Mechanical Engineering Dept., Saitama (Japan)

    1999-01-01

    The effect of how a wind turbine generator system is operated is discussed from the viewpoint of net power extraction with wind velocity fluctuation in relation to the scale and the dynamic behaviour of the system. On a wind turbine generator system consisting of a Darrieus-Savonius hybrid wind turbine, a load generator and a battery, we took up two operating methods: constant tip speed ratio operation for a stand-alone system (Scheme 1) and synchronous operation by connecting a grid (Scheme 2). With our simulation model, using the result of the net extracting power, we clarified that Scheme 1 is more effective than Scheme 2 for small-scale systems. Furthermore, in Scheme 1, the appropriate rated power output of the system under each wind condition can be confirmed. (Author)

  17. Maximum generation power evaluation of variable frequency offshore wind farms when connected to a single power converter

    Energy Technology Data Exchange (ETDEWEB)

    Gomis-Bellmunt, Oriol; Sumper, Andreas [Centre d' Innovacio Tecnologica en Convertidors Estatics i Accionaments (CITCEA-UPC), Universitat Politecnica de Catalunya UPC, Av. Diagonal, 647, Pl. 2, 08028 Barcelona (Spain); IREC Catalonia Institute for Energy Research, Barcelona (Spain); Junyent-Ferre, Adria; Galceran-Arellano, Samuel [Centre d' Innovacio Tecnologica en Convertidors Estatics i Accionaments (CITCEA-UPC), Universitat Politecnica de Catalunya UPC, Av. Diagonal, 647, Pl. 2, 08028 Barcelona (Spain)

    2010-10-15

    The paper deals with the evaluation of power generated by variable and constant frequency offshore wind farms connected to a single large power converter. A methodology to analyze different wind speed scenarios and system electrical frequencies is presented and applied to a case study, where it is shown that the variable frequency wind farm concept (VF) with a single power converter obtains 92% of the total available power, obtained with individual power converters in each wind turbine (PC). The PC scheme needs multiple power converters implying drawbacks in terms of cost, maintenance and reliability. The VF scheme is also compared to a constant frequency scheme CF, and it is shown that a significant power increase of more than 20% can be obtained with VF. The case study considers a wind farm composed of four wind turbines based on synchronous generators. (author)

  18. Wind power

    International Nuclear Information System (INIS)

    Gipe, P.

    2007-01-01

    This book is a translation of the edition published in the USA under the title of ''wind power: renewable energy for home, farm and business''. In the wake of mass blackouts and energy crises, wind power remains a largely untapped resource of renewable energy. It is a booming worldwide industry whose technology, under the collective wing of aficionados like author Paul Gipe, is coming of age. Wind Power guides us through the emergent, sometimes daunting discourse on wind technology, giving frank explanations of how to use wind technology wisely and sound advice on how to avoid common mistakes. Since the mid-1970's, Paul Gipe has played a part in nearly every aspect of wind energy development from installing small turbines to promoting wind energy worldwide. As an American proponent of renewable energy, Gipe has earned the acclaim and respect of European energy specialists for years, but his arguments have often fallen on deaf ears at home. Today, the topic of wind power is cropping up everywhere from the beaches of Cape Cod to the Oregon-Washington border, and one wind turbine is capable of producing enough electricity per year to run 200 average American households. Now, Paul Gipe is back to shed light on this increasingly important energy source with a revised edition of Wind Power. Over the course of his career, Paul Gipe has been a proponent, participant, observer, and critic of the wind industry. His experience with wind has given rise to two previous books on the subject, Wind Energy Basics and Wind Power for Home and Business, which have sold over 50,000 copies. Wind Power for Home and Business has become a staple for both homeowners and professionals interested in the subject, and now, with energy prices soaring, interest in wind power is hitting an all-time high. With chapters on output and economics, Wind Power discloses how much you can expect from each method of wind technology, both in terms of energy and financial savings. The book updated models

  19. Impact of Wind Power Generation on European Cross-Border Power Flows

    DEFF Research Database (Denmark)

    Zugno, Marco; Pinson, Pierre; Madsen, Henrik

    2013-01-01

    analysis is employed in order to reduce the problem dimension. Then, nonlinear relationships between forecast wind power production as well as spot price in Germany, by far the largest wind power producer in Europe, and power flows are modeled using local polynomial regression. We find that both forecast...... wind power production and spot price in Germany have substantial nonlinear effects on power transmission on a European scale.......A statistical analysis is performed in order to investigate the relationship between wind power production and cross-border power transmission in Europe. A dataset including physical hourly cross-border power exchanges between European countries as dependent variables is used. Principal component...

  20. Power train analysis for the DOE/NASA 100-kW wind turbine generator

    Science.gov (United States)

    Seidel, R. C.; Gold, H.; Wenzel, L. M.

    1978-01-01

    Progress in explaining variations of power experienced in the on-line operation of a 100 kW experimental wind turbine-generator is reported. Data are presented that show the oscillations tend to be characteristic of a wind-driven synchronous generator because of low torsional damping in the power train, resonances of its large structure, and excitation by unsteady and nonuniform wind flow. The report includes dynamic analysis of the drive-train torsion, the generator, passive driveline damping, and active pitch control as well as correlation with experimental recordings. The analysis assumes one machine on an infinite bus with constant generator-field excitation.

  1. Arrangement for adapting a wind wheel to an electric power generator

    Energy Technology Data Exchange (ETDEWEB)

    Beusse, H

    1977-08-11

    The invention is concerned with a device for adapting a wind wheel to an electric power generator in such a way that the wind wheel will always be operated with a maximum performance coefficient, that another source of energy, e.g. a prime mover, can supply the power deficit if the wind power is not sufficient, and that the generator at the output of the facility is kept mains-synchronous of constant speed and constant voltage. According to the invention, the shaft power of the wind power engine is transmitted to a first generator driving an electromotor. The motor is coupled to a second generator feeding into a consumer grid. By means of an anemometer the excitation output of the motor is controled in such manner that the speed of the generator is practically constant-provided a sufficient supply of wind is available. On the shaft of the output generator a prinse mover, e.g. a Diesel engine, is mounted being controllable for contant speed by means of a controll device in such a way that the prime mover takes over the missing amount of power if the wind supply falls short of the power taken off at the generator output.

  2. Wind power soars

    Energy Technology Data Exchange (ETDEWEB)

    Flavin, C. [Worldwatch Inst., Washington, DC (United States)

    1996-12-31

    Opinions on the world market for wind power are presented in this paper. Some data for global wind power generating capacity are provided. European and other markets are discussed individually. Estimated potential for wind power is given for a number of countries. 3 figs.

  3. Generation of statistical scenarios of short-term wind power production

    DEFF Research Database (Denmark)

    Pinson, Pierre; Papaefthymiou, George; Klockl, Bernd

    2007-01-01

    Short-term (up to 2-3 days ahead) probabilistic forecasts of wind power provide forecast users with a paramount information on the uncertainty of expected wind generation. Whatever the type of these probabilistic forecasts, they are produced on a per horizon basis, and hence do not inform...... on the development of the forecast uncertainty through forecast series. This issue is addressed here by describing a method that permits to generate statistical scenarios of wind generation that accounts for the interdependence structure of prediction errors, in plus of respecting predictive distributions of wind...

  4. Composition Modeling and Equivalence of an Integrated Power Generation System of Wind, Photovoltaic and Energy Storage Unit

    Institute of Scientific and Technical Information of China (English)

    WANG Haohuai; TANG Yong; HOU Junxian; ZOU Jiangfeng; LIANGShuang; SU Feng

    2011-01-01

    The characteristic of wind and solar generation is random and fluctuant. In order to improve their generation performance, the integrated power generation of wind, photovoltaic (PV) and energy storage is a focus in the study. In this paper,

  5. Power Electronic Drives, Controls, and Electric Generators for Large Wind Turbines - An Overview

    DEFF Research Database (Denmark)

    Ma, Ke; Tutelea, L.; Boldea, Ion

    2015-01-01

    and exceed a power rating of 10 MW are discussed. The role of power electronics for improving the operation of wind turbines and ensuring compliance with power grid codes is analyzed with a view at producing fully controllable generation units suitable for tight integration into the power grid and large...

  6. Application of Boost Converter to Increase the Speed Range of Dual-stator Winding Induction Generator in Wind Power Systems

    DEFF Research Database (Denmark)

    Kavousi, Ayoub; Fathi, S. Hamid; Milimonfared, Jafar

    2018-01-01

    In this paper, a topology using a Dual-stator Winding Induction Generator (DWIG) and a boost converter is proposed for the variable speed wind power application. At low rotor speeds, the generator saturation limits the voltage of the DWIG. Using a boost converter, higher DC voltage can be produced...... while the DWIG operates at Maximum Power Point Tracking (MPPT) even at low speed and low voltage conditions. Semiconductor Excitation Controller (SEC) of the DWIG utilizes Control-Winding Voltage Oriented Control (CWVOC) method to adjust the voltage, considering V/f characteristics. For the proposed...... topology, the SEC capacity and the excitation capacitor is optimized by analyzing the SEC reactive current considering wind turbine power-speed curve, V/f strategy, and the generator parameters. The method shows that the per-unit capacity of the SEC can be limited to the inverse of DWIG magnetizing...

  7. Power system reliability impacts of wind generation and operational reserve requirements

    Directory of Open Access Journals (Sweden)

    Esteban Gil

    2015-06-01

    Full Text Available Due to its variability, wind generation integration presents a significant challenge to power system operators in order to maintain adequate reliability levels while ensuring least cost operation. This paper explores the trade-off between the benefits associated to a higher wind penetration and the additional operational reserve requirements that they impose. Such exploration is valued in terms of its effect on power system reliability, measured as an amount of unserved energy. The paper also focuses on how changing the Value of Lost Load (VoLL can be used to attain different reliability targets, and how wind power penetration and the diversity of the wind energy resource will impact quality of supply (in terms of instances of unserved energy. The evaluation of different penetrations of wind power generation, different wind speed profiles, wind resource diversity, and different operational reserve requirements, is conducted on the Chilean Northern Interconnected System (SING using statistical modeling of wind speed time series and computer simulation through a 24-hour ahead unit commitment algorithm and a Monte Carlo simulation scheme. Results for the SING suggest that while wind generation can significantly reduce generation costs, it can also imply higher security costs to reach acceptable reliability levels.

  8. An investigation on the impacts of regulatory interventions on wind power expansion in generation planning

    International Nuclear Information System (INIS)

    Alishahi, Ehsan; Moghaddam, Mohsen P.; Sheikh-El-Eslami, Mohammad K.

    2011-01-01

    Large integration of intermittent wind generation in power system has necessitated the inclusion of more innovative and sophisticated approaches in power system investment planning. This paper presents a novel framework on the basis of a combination of stochastic dynamic programming (SDP) algorithm and game theory to study the impacts of different regulatory interventions to promote wind power investment in generation expansion planning. In this study, regulatory policies include Feed-in-Tariff (FIT) incentive, quota and tradable green certificate. The intermittent nature and uncertainties of wind power generation will cause the investors encounter risk in their investment decisions. To overcome this problem, a novel model has been derived to study the regulatory impacts on wind generation expansion planning. In our approach, the probabilistic nature of wind generation is modeled. The model can calculate optimal investment strategies, in which the wind power uncertainty is included. This framework is implemented on a test system to illustrate the working of the proposed approach. The result shows that FITs are the most effective policy to encourage the rapid and sustained deployment of wind power. FITs can significantly reduce the risks of investing in renewable energy technologies and thus create conditions conducive to rapid market growth. - Highlights: → The impacts of regulatory policies to promote wind power investment are investigated. → These policies include Feed-in-Tariff (FIT), quota and tradable green certificate. → Result shows that FIT is an effective policy to motivate the rapid growth of wind power. → In quota, customers are forced to provide the quota decided by regulators from wind.

  9. Wind Power Utilization Guide.

    Science.gov (United States)

    1981-09-01

    The expres- sions for the rotor torque for a Darrieus machine can be found in Reference 4.16. The Darrieus wind turbine offers the following... turbine generators, wind -driven turbines , power conditioning, wind power, energy conservation, windmills, economic ana \\sis. 20 ABS 1"ACT (Conti,on... turbines , power conditioning requirements, siting requirements, and the economics of wind power under different conditions. Three examples are given to

  10. Performance of Doubly-Fed Wind Power Generators During Voltage Dips

    DEFF Research Database (Denmark)

    Aparicio, N.; Chen, Zhe; Beltran, H.

    The growing of wind generation in Spain has forced its Transmission System Operator (TSO) to release new requirements that establish the amount of reactive power that a wind turbine has to supply to the grid during a voltage dip. Wind turbines equipped with doubly-fed induction generators (DFIG......) can regulate easily the reactive power generated in steady state. However, difficulties appear when reactive power has to be generated during voltage dips. Simulations have been carried out in order to check whether DFIG wind turbines can fulfill the reactive power requirements. Protection system...... commonly employed with DFIG in order to achieve ride-through capabilities including crowbar plays an important role to meet the requirements together with grid-side converter. Resistance associated with the crowbar and its connection duration are crucial at the beginning of the fault. Grid-side converter...

  11. Probabilistic Forecast of Wind Power Generation by Stochastic Differential Equation Models

    KAUST Repository

    Elkantassi, Soumaya

    2017-04-01

    Reliable forecasting of wind power generation is crucial to optimal control of costs in generation of electricity with respect to the electricity demand. Here, we propose and analyze stochastic wind power forecast models described by parametrized stochastic differential equations, which introduce appropriate fluctuations in numerical forecast outputs. We use an approximate maximum likelihood method to infer the model parameters taking into account the time correlated sets of data. Furthermore, we study the validity and sensitivity of the parameters for each model. We applied our models to Uruguayan wind power production as determined by historical data and corresponding numerical forecasts for the period of March 1 to May 31, 2016.

  12. Fast simulation of wind generation for frequency stability analysis in island power systems

    Energy Technology Data Exchange (ETDEWEB)

    Conroy, James [EirGrid, Dublin (Ireland)

    2010-07-01

    Frequency stability is a major issue for power system planning and operation in an island power system such as Ireland. As increasing amounts of variable speed wind generation are added to the system, this issue becomes more prominent, as variable speed wind generation does not provide an inherent inertial response. This lack of an inertial response means that simplified models for variable speed wind farms can be used for investigating frequency stability. EirGrid uses DIgSILENT Power Factory (as well as other software tools) to investigate frequency stability. In PowerFactory, an automation program has been created to convert detailed wind farm representation (as necessary for other types of analysis) to negative load models for frequency stability analysis. The advantage of this approach is much-improved simulation speed without loss of accuracy. This approach can also be to study future wind energy targets, and long-term simulation of voltage stability. (orig.)

  13. Assessment and analysis of wind energy generation and power ...

    African Journals Online (AJOL)

    time, a statistical analysis of wind characteristics and the extrapolation of weibull parameters are presented. Otherwise, the .... The wind speed probability density function. (PDF) can ... be adjusted using following expression [28, 30,. 31]:. (11).

  14. System Dynamics Simulation of Large-Scale Generation System for Designing Wind Power Policy in China

    Directory of Open Access Journals (Sweden)

    Linna Hou

    2015-01-01

    Full Text Available This paper focuses on the impacts of renewable energy policy on a large-scale power generation system, including thermal power, hydropower, and wind power generation. As one of the most important clean energy, wind energy has been rapidly developed in the world. But in recent years there is a serious waste of wind power equipment and investment in China leading to many problems in the industry from wind power planning to its integration. One way overcoming the difficulty is to analyze the influence of wind power policy on a generation system. This paper builds a system dynamics (SD model of energy generation to simulate the results of wind energy generation policies based on a complex system. And scenario analysis method is used to compare the effectiveness and efficiency of these policies. The case study shows that the combinations of lower portfolio goal and higher benchmark price and those of higher portfolio goal and lower benchmark price have large differences in both effectiveness and efficiency. On the other hand, the combinations of uniformly lower or higher portfolio goal and benchmark price have similar efficiency, but different effectiveness. Finally, an optimal policy combination can be chosen on the basis of policy analysis in the large-scale power system.

  15. Centralised power control of wind farm with doubly fed induction generators

    DEFF Research Database (Denmark)

    Hansen, A.D.; Sørensen, Poul Ejnar; Iov, F.

    2006-01-01

    At the moment, the control ability of wind farms is a prime research concern for the grid integration of large wind farms, due to their required active role in the power system. This paper describes the on-going work of a research project, whose overall objective is to analyse and assess...... the possibilities for control of different wind farm concepts. The scope of this paper is the control of a wind farm made up exclusively of doubly fed induction generators. The paper addresses the design and implementation issues of such a controller and focuses on the ability of the wind farm control strategy...

  16. Increasing power generation in horizontal axis wind turbines using optimized flow control

    Science.gov (United States)

    Cooney, John A., Jr.

    In order to effectively realize future goals for wind energy, the efficiency of wind turbines must increase beyond existing technology. One direct method for achieving increased efficiency is by improving the individual power generation characteristics of horizontal axis wind turbines. The potential for additional improvement by traditional approaches is diminishing rapidly however. As a result, a research program was undertaken to assess the potential of using distributed flow control to increase power generation. The overall objective was the development of validated aerodynamic simulations and flow control approaches to improve wind turbine power generation characteristics. BEM analysis was conducted for a general set of wind turbine models encompassing last, current, and next generation designs. This analysis indicated that rotor lift control applied in Region II of the turbine power curve would produce a notable increase in annual power generated. This was achieved by optimizing induction factors along the rotor blade for maximum power generation. In order to demonstrate this approach and other advanced concepts, the University of Notre Dame established the Laboratory for Enhanced Wind Energy Design (eWiND). This initiative includes a fully instrumented meteorological tower and two pitch-controlled wind turbines. The wind turbines are representative in their design and operation to larger multi-megawatt turbines, but of a scale that allows rotors to be easily instrumented and replaced to explore new design concepts. Baseline data detailing typical site conditions and turbine operation is presented. To realize optimized performance, lift control systems were designed and evaluated in CFD simulations coupled with shape optimization tools. These were integrated into a systematic design methodology involving BEM simulations, CFD simulations and shape optimization, and selected experimental validation. To refine and illustrate the proposed design methodology, a

  17. Simulation of an offshore wind farm using fluid power for centralized electricity generation

    Directory of Open Access Journals (Sweden)

    A. Jarquin Laguna

    2017-07-01

    Full Text Available A centralized approach for electricity generation within a wind farm is explored through the use of fluid power technology. This concept considers a new way of generation, collection and transmission of wind energy inside a wind farm, in which electrical conversion does not occur during any intermediate conversion step before the energy has reached the offshore central platform. A numerical model was developed to capture the relevant physics from the dynamic interaction between different turbines coupled to a common hydraulic network and controller. This paper presents a few examples of the time domain simulation results for a hypothetical hydraulic wind farm subject to turbulent wind conditions. The performance and operational parameters of individual turbines are compared with those of a reference wind farm based on conventional wind turbine generator technology using the same wind farm layout and environmental conditions. For the presented case studies, results indicate that the individual wind turbines are able to operate within operational limits. Despite the stochastic turbulent wind conditions and wake effects, the hydraulic wind farm is able to produce electricity with reasonable performance in both below and above rated conditions. With the current pressure control concept, a continuous operation of the hydraulic wind farm is shown including the full stop of one or more turbines.

  18. Power quality improvement by using STATCOM control scheme in wind energy generation interface to grid

    Science.gov (United States)

    Kirmani, Sheeraz; Kumar, Brijesh

    2018-01-01

    “Electric Power Quality (EPQ) is a term that refers to maintaining the near sinusoidal waveform of power distribution bus voltages and currents at rated magnitude and frequency”. Today customers are more aware of the seriousness that the power quality possesses, this prompt the utilities to assure good quality of power to their customer. The power quality is basically customer centric. Increased focus of utilities toward maintaining reliable power supply by employing power quality improvement tools has reduced the power outages and black out considerably. Good power quality is the characteristic of reliable power supply. Low power factor, harmonic pollution, load imbalance, fast voltage variations are some common parameters which are used to define the power quality. If the power quality issues are not checked i.e. the parameters that define power quality doesn't fall within the predefined standards than it will lead into high electricity bill, high running cost in industries, malfunctioning of equipments, challenges in connecting renewable. Capacitor banks, FACTS devices, harmonic filters, SVC’s (static voltage compensators), STATCOM (Static-Compensator) are the solutions to achieve the power quality. The performance of Wind turbine generators is affected by poor quality power, at the same time these wind power generating plant affects the power quality negatively. This paper presents the STATCOM-BESS (battery energy storage system) system and studies its impact on the power quality in a system which consists of wind turbine generator, non linear load, hysteresis controller for controlling the operation of STATCOM and grid. The model is simulated in the MATLAB/Simulink. This scheme mitigates the power quality issues, improves voltage profile and also reduces harmonic distortion of the waveforms. BESS level out the imbalances caused in real power due to intermittent nature of wind power available due to varying wind speeds.

  19. Optimizing wind power generation while minimizing wildlife impacts in an urban area.

    Directory of Open Access Journals (Sweden)

    Gil Bohrer

    Full Text Available The location of a wind turbine is critical to its power output, which is strongly affected by the local wind field. Turbine operators typically seek locations with the best wind at the lowest level above ground since turbine height affects installation costs. In many urban applications, such as small-scale turbines owned by local communities or organizations, turbine placement is challenging because of limited available space and because the turbine often must be added without removing existing infrastructure, including buildings and trees. The need to minimize turbine hazard to wildlife compounds the challenge. We used an exclusion zone approach for turbine-placement optimization that incorporates spatially detailed maps of wind distribution and wildlife densities with power output predictions for the Ohio State University campus. We processed public GIS records and airborne lidar point-cloud data to develop a 3D map of all campus buildings and trees. High resolution large-eddy simulations and long-term wind climatology were combined to provide land-surface-affected 3D wind fields and the corresponding wind-power generation potential. This power prediction map was then combined with bird survey data. Our assessment predicts that exclusion of areas where bird numbers are highest will have modest effects on the availability of locations for power generation. The exclusion zone approach allows the incorporation of wildlife hazard in wind turbine siting and power output considerations in complex urban environments even when the quantitative interaction between wildlife behavior and turbine activity is unknown.

  20. Optimizing wind power generation while minimizing wildlife impacts in an urban area.

    Science.gov (United States)

    Bohrer, Gil; Zhu, Kunpeng; Jones, Robert L; Curtis, Peter S

    2013-01-01

    The location of a wind turbine is critical to its power output, which is strongly affected by the local wind field. Turbine operators typically seek locations with the best wind at the lowest level above ground since turbine height affects installation costs. In many urban applications, such as small-scale turbines owned by local communities or organizations, turbine placement is challenging because of limited available space and because the turbine often must be added without removing existing infrastructure, including buildings and trees. The need to minimize turbine hazard to wildlife compounds the challenge. We used an exclusion zone approach for turbine-placement optimization that incorporates spatially detailed maps of wind distribution and wildlife densities with power output predictions for the Ohio State University campus. We processed public GIS records and airborne lidar point-cloud data to develop a 3D map of all campus buildings and trees. High resolution large-eddy simulations and long-term wind climatology were combined to provide land-surface-affected 3D wind fields and the corresponding wind-power generation potential. This power prediction map was then combined with bird survey data. Our assessment predicts that exclusion of areas where bird numbers are highest will have modest effects on the availability of locations for power generation. The exclusion zone approach allows the incorporation of wildlife hazard in wind turbine siting and power output considerations in complex urban environments even when the quantitative interaction between wildlife behavior and turbine activity is unknown.

  1. Neural network based control of Doubly Fed Induction Generator in wind power generation

    Science.gov (United States)

    Barbade, Swati A.; Kasliwal, Prabha

    2012-07-01

    To complement the other types of pollution-free generation wind energy is a viable option. Previously wind turbines were operated at constant speed. The evolution of technology related to wind systems industry leaded to the development of a generation of variable speed wind turbines that present many advantages compared to the fixed speed wind turbines. In this paper the phasor model of DFIG is used. This paper presents a study of a doubly fed induction generator driven by a wind turbine connected to the grid, and controlled by artificial neural network ANN controller. The behaviour of the system is shown with PI control, and then as controlled by ANN. The effectiveness of the artificial neural network controller is compared to that of a PI controller. The SIMULINK/MATLAB simulation for Doubly Fed Induction Generator and corresponding results and waveforms are displayed.

  2. Unit commitment with wind power generation: integrating wind forecast uncertainty and stochastic programming.

    Energy Technology Data Exchange (ETDEWEB)

    Constantinescu, E. M.; Zavala, V. M.; Rocklin, M.; Lee, S.; Anitescu, M. (Mathematics and Computer Science); (Univ. of Chicago); (New York Univ.)

    2009-10-09

    We present a computational framework for integrating the state-of-the-art Weather Research and Forecasting (WRF) model in stochastic unit commitment/energy dispatch formulations that account for wind power uncertainty. We first enhance the WRF model with adjoint sensitivity analysis capabilities and a sampling technique implemented in a distributed-memory parallel computing architecture. We use these capabilities through an ensemble approach to model the uncertainty of the forecast errors. The wind power realizations are exploited through a closed-loop stochastic unit commitment/energy dispatch formulation. We discuss computational issues arising in the implementation of the framework. In addition, we validate the framework using real wind speed data obtained from a set of meteorological stations. We also build a simulated power system to demonstrate the developments.

  3. Two methods for estimating limits to large-scale wind power generation.

    Science.gov (United States)

    Miller, Lee M; Brunsell, Nathaniel A; Mechem, David B; Gans, Fabian; Monaghan, Andrew J; Vautard, Robert; Keith, David W; Kleidon, Axel

    2015-09-08

    Wind turbines remove kinetic energy from the atmospheric flow, which reduces wind speeds and limits generation rates of large wind farms. These interactions can be approximated using a vertical kinetic energy (VKE) flux method, which predicts that the maximum power generation potential is 26% of the instantaneous downward transport of kinetic energy using the preturbine climatology. We compare the energy flux method to the Weather Research and Forecasting (WRF) regional atmospheric model equipped with a wind turbine parameterization over a 10(5) km2 region in the central United States. The WRF simulations yield a maximum generation of 1.1 We⋅m(-2), whereas the VKE method predicts the time series while underestimating the maximum generation rate by about 50%. Because VKE derives the generation limit from the preturbine climatology, potential changes in the vertical kinetic energy flux from the free atmosphere are not considered. Such changes are important at night when WRF estimates are about twice the VKE value because wind turbines interact with the decoupled nocturnal low-level jet in this region. Daytime estimates agree better to 20% because the wind turbines induce comparatively small changes to the downward kinetic energy flux. This combination of downward transport limits and wind speed reductions explains why large-scale wind power generation in windy regions is limited to about 1 We⋅m(-2), with VKE capturing this combination in a comparatively simple way.

  4. Microgrid Control Strategy Utlizing Thermal Energy Storage With Renewable Solar And Wind Power Generation

    Science.gov (United States)

    2016-06-01

    iii Approved for public release; distribution is unlimited MICROGRID CONTROL STRATEGY UTLIZING THERMAL ENERGY STORAGE WITH RENEWABLE SOLAR AND WIND... control tracks increasing power generation in the morning. The batteries require a large amount of electrical power to charge every morning, as charge ...is 37 lost throughout the night. This causes the solar panels to output their maximum power generation. The MPPT control records when power

  5. Performance Analysis of Doubly Excited Brushless Generator with Outer Rotor for Wind Power Application

    Directory of Open Access Journals (Sweden)

    Yingchao Zhang

    2012-09-01

    Full Text Available In this paper, a novel doubly excited brushless generator (DEBG with outer radial laminated magnetic barrier rotor (RLMB-rotor for wind power application was designed and analyzed. The DEBG has 10 rotor pole numbers with outer rotor. Its performance is investigated using the 2D transient finite element method. The magnetic fields, torque capability, end winding voltage characteristics, radial magnetic force and energy efficiency were analyzed. All studies in this paper show that the simplicity, reliability, high efficiency and low vibration and noise of the DEBG with outer rotor are attractive for variable speed constant frequency (VSCF wind power generation system.

  6. Integration of permanent magnet synchronous generator wind turbines into power grid

    Science.gov (United States)

    Abedini, Asghar

    The world is seeing an ever-increasing demand for electrical energy. The future growth of electrical power generation needs to be a mix of technologies including fossil fuels, hydro, nuclear, wind, and solar. The federal and state energy agencies have taken several proactive steps to increase the share of renewable energy in the total generated electrical power. In 2005, 11.1% of the total 1060 GW electricity generation capacity was from Renewable Energy Sources (RES) in the US. The power capacity portfolio included 9.2% from hydroelectric, 0.87% from wind, and 0.7% from biomass. Other renewable power capacity included 2.8 GW of geothermal, 0.4 GW of solar thermal, and 0.2 GW of solar PV. Although the share of renewable energy sources is small compared with the total power capacity, they are experiencing a high and steady growth. The US is leading the world in wind energy growth with a 27% increase in 2006 and a projected 26% increase in 2007, according to the American Wind Energy Association (AWEA). The US Department of Energy benchmarked a goal to meet 5% of the nation's energy need by launching the Wind Powering America (WPA) program. Although renewable energy sources have many benefits, their utilization in the electrical grid does not come without cost. The higher penetration of RES has introduced many technical and non-technical challenges, including power quality, reliability, safety and protection, load management, grid interconnections and control, new regulations, and grid operation economics. RES such as wind and PV are also intermittent in nature. The energy from these sources is available as long as there is wind or sunlight. However, these are energies that are abundant in the world and the power generated from these sources is pollution free. Due to high price of foundation of wind farms, employing variable speed wind turbines to maximize the extracted energy from blowing wind is more beneficial. On the other hand, since wind power is intermittent

  7. A study on evaluating the power generation of solar-wind hybrid systems in Izmir, Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Ulgen, K. [Ege Univ., Solar Energy Inst., Izmir (Turkey); Hepbasli, A. [Ege Univ., Dept. of Mechanical Engineering, Izmir (Turkey)

    2003-03-15

    Turkey is abundant in terms of renewable energy resources. Residential and industrial utilization of solar energy started in the 1980s, while the first Build-Operate-Transfer (BOT) windmill park, located at Alacati, Izmir, was commissioned in 1998. Additionally, power generation through solar-wind hybrid systems has recently appeared on the Turkish market. This study investigates the wind and solar thermal power availability in Izmir, located in the western part of Turkey. Simple models were developed to determine wind, solar, and hybrid power resources per unit area. Experimental data, consisting of hourly records over a 5 yr period, 1995-1999, were measured in the Solar/Wind Meteorological Station of the Solar Energy Institute at Ege University. Correlations between solar and wind power data were carried out on an hourly, a daily, and a monthly basis. It can be concluded that possible applications of hybrid systems could be considered for the efficient utilization of these resources. (Author)

  8. Three essays on the effect of wind generation on power system planning and operations

    Science.gov (United States)

    Davis, Clay Duane

    While the benefits of wind generation are well known, some drawbacks are still being understood as wind power is integrated into the power grid at increasing levels. The primary difference between wind generation and other forms of generation is the intermittent, and somewhat unpredictable, aspect of this resource. The somewhat uncontrollable aspect of wind generation makes it important to consider the relationship between this resource and load, and also how the operation of other non-wind generation resources may be affected. The three essays that comprise this dissertation focus on these and other important issues related to wind generation; leading to an improved understanding of how to better plan for and utilize this resource. The first essay addresses the cost of increased levels of installed wind capacity from both a capacity planning and economic dispatch perspective to arrive at the total system cost of installing a unit of wind capacity. This total includes not only the cost of the wind turbine and associated infrastructure, but also the cost impact an additional unit of wind capacity has on the optimal mix and operation of other generating units in the electricity supply portfolio. The results of the model showed that for all wind expansion scenarios, wind capacity is not cost-effective regardless of the level of the wind production tax credit and carbon prices that were considered. Larger levels of installed wind capacity result in reduced variable cost, but this reduction is not able to offset increases in capital cost, as a unit of installed wind capacity does not result in an equal reduction in other non-wind capacity needs. The second essay develops a methodology to better handle unexpected short term fluctuations in wind generation within the existing power system. The methodology developed in this essay leads to lower expected costs by anticipating and planning for fluctuations in wind generation by focusing on key constraints in the system. The

  9. Wind power

    International Nuclear Information System (INIS)

    2009-01-01

    At the end of 2008,the European wind power capacity had risen to 65,247 MW which is a 15,1% increase on 2007. The financial crisis does not appear to have any real consequences of the wind power sector's activity in 2008. At the end of 2008 the European Union accommodated 53,9% of the world's wind power capacity. The top ten countries in terms of installed wind capacities are: 1) Usa with 25,388 MW, 2) Germany with 23,903 MW, 3) Spain with 16,740 MW, 4) China with 12,200 MW, 5) India with 9,645 MW, 6) Italy with 3,736 MW, 7) France with 3,542 MW, 8) U.K. with 3,406 MW, 9) Denmark with 3,166 MW and 10) Portugal with 2,862 MW. (A.C.)

  10. Probabilistic Constrained Load Flow Considering Integration of Wind Power Generation and Electric Vehicles

    DEFF Research Database (Denmark)

    Vlachogiannis, Ioannis (John)

    2009-01-01

    A new formulation and solution of probabilistic constrained load flow (PCLF) problem suitable for modern power systems with wind power generation and electric vehicles (EV) demand or supply is represented. The developed stochastic model of EV demand/supply and the wind power generation model...... are incorporated into load flow studies. In the resulted PCLF formulation, discrete and continuous control parameters are engaged. Therefore, a hybrid learning automata system (HLAS) is developed to find the optimal offline control settings over a whole planning period of power system. The process of HLAS...

  11. Potentiality of wind power generation along the Bangladesh coast

    Science.gov (United States)

    Shaikh, Md. Akramuzzaman; Chowdhury, K. M. Azam; Sen, Sukanta; Islam, Mohammad Masudul

    2017-12-01

    Nowadays Bangladesh is facing the problem with electricity as the production is less comparing to the demand. A significant amount of electricity is consumed in urban areas especially by industries whereas in rural or coastal areas most of the people are not having it. Around 40 millions of people living in the 724 km long coast in Bangladesh. Moreover, it is surprising that throughout the year there is sufficient wind blow in coastal areas by which we can produce a massive amount of electricity. However, day by day the utilization of wind energy is increasing in the world which reduces costs of renewable energy technology, improves efficiency. It would be a good alternative solution instead of dependency on natural gas. Wind energy is mainly potential in coastal and offshore areas with strong wind regimes. Wind energy is vital for ensuring a green energy for the future. The agricultural land of Bangladesh needs the supply of water at right time for better yielding. The installation of windmills will be very much convenient for operating the water supply pumps. This research highlights the possibility of wind energy and describes the necessary steps to implement and develop wind energy sector in Bangladesh by using other's successful ideas. Supportive policies, rules, and decree can be applied to make government, non-government organization, and donor organizations work together to develop wind energy sector in Bangladesh.

  12. Estonian company develops an enhanced wind power generator

    Index Scriptorium Estoniae

    2010-01-01

    Eesti firmas Goliath Wind OÜ töötatakse välja uut tüüpi energiasäästlikku tuulegeneraatorit, mis võimaldaks tuuleenergia hinda alandada kuni viiendiku võrra. Vt. samas intervjuud Goliath Wind OÜ juhatuse liikme Lars Machiga

  13. Statistical analysis of wind speed for electrical power generation in ...

    African Journals Online (AJOL)

    Also, the results have shown that Jos, Kano and Minna fall in class 4 and therefore suitable for both off grid and grid connected modes. In addition, the effects of c and k parameters on the probability distribution functions have been presented. Keywords: Wind speed - probability - density function – wind energy conversion ...

  14. Opportunities for ice storage to provide ancillary services to power grids incorporating wind turbine generation

    Science.gov (United States)

    Finley, Christopher

    Power generation using wind turbines increases the electrical system balancing, regulation and ramp rate requirements due to the minute to minute variability in wind speed and the difficulty in accurately forecasting wind speeds. The addition of thermal energy storage, such as ice storage, to a building's space cooling equipment increases the operational flexibility of the equipment by allowing the owner to choose when the chiller is run. The ability of the building owner to increase the power demand from the chiller (e.g. make ice) or to decrease the power demand (e.g. melt ice) to provide electrical system ancillary services was evaluated.

  15. Long-Term Reserve Expansion of Power Systems With High Wind Power Penetration Using Universal Generating Function Methods

    DEFF Research Database (Denmark)

    DING, YI; Wang, Peng; Goel, Lalit

    2010-01-01

    from long term planning point of view utilizing universal generating function (UGF) methods. The reliability models of wind farms and conventional generators are represented as the correspondin UGFs and the special operators for these UGFs are defined to evaluate the customer and the system...... reliabilities. The effect of transmission network on customer reliabilities is also considered in the system UGF. The power output models of wind turbine generators in a wind farm considering wind speed correlation and un-correlation are developed, respectively. A reliability-based reserve expansion method...

  16. Assessing the Structural, Driver and Economic Impacts of Traffic Pole Mounted Wind Power Generator and Solar Panel Hybrid System

    Science.gov (United States)

    2012-06-01

    This project evaluates the physical and economic feasibility of using existing traffic infrastructure to mount wind power : generators. Some possible places to mount a light weight wind generator and solar panel hybrid system are: i) Traffic : signal...

  17. Space-time trajectories of wind power generation: Parameterized precision matrices under a Gaussian copula approach

    DEFF Research Database (Denmark)

    Tastu, Julija; Pinson, Pierre; Madsen, Henrik

    2015-01-01

    -correlations. Estimation is performed in a maximum likelihood framework. Based on a test case application in Denmark, with spatial dependencies over 15 areas and temporal ones for 43 hourly lead times (hence, for a dimension of n = 645), it is shown that accounting for space-time effects is crucial for generating skilful......Emphasis is placed on generating space-time trajectories of wind power generation, consisting of paths sampled from high-dimensional joint predictive densities, describing wind power generation at a number of contiguous locations and successive lead times. A modelling approach taking advantage...

  18. Environmental Benefits of Using Wind Generation to Power Plug-In Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Mahdi Hajian

    2011-08-01

    Full Text Available As alternatives to conventional vehicles, Plug-in Hybrid Electric Vehicles (PHEVs running off electricity stored in batteries could decrease oil consumption and reduce carbon emissions. By using electricity derived from clean energy sources, even greater environmental benefits are obtainable. This study examines the potential benefits arising from the widespread adoption of PHEVs in light of Alberta’s growing interest in wind power. It also investigates PHEVs’ capacity to mitigate natural fluctuations in wind power generation.

  19. Wind energy generation for electric power production, preliminary studies. Part I

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, A

    1976-03-01

    Studies of wind power generation done by SAAB-Scania during 1975 are described. The project deals with generation of electricity for delivery to the transmission system. Both plants with horizontal axis and plants with vertical axis have been studied. A projected pilot plant with a rotor of 18 meter and an effect of 50 kW at 10 m/s wind velocity is described. Suggestions are made for a continuation of the project.

  20. Power control for direct-driven permanent magnet wind generator system with battery storage.

    Science.gov (United States)

    Guang, Chu Xiao; Ying, Kong

    2014-01-01

    The objective of this paper is to construct a wind generator system (WGS) loss model that addresses the loss of the wind turbine and the generator. It aims to optimize the maximum effective output power and turbine speed. Given that the wind generator system has inertia and is nonlinear, the dynamic model of the wind generator system takes the advantage of the duty of the Buck converter and employs feedback linearization to design the optimized turbine speed tracking controller and the load power controller. According to that, this paper proposes a dual-mode dynamic coordination strategy based on the auxiliary load to reduce the influence of mode conversion on the lifetime of the battery. Optimized speed and power rapid tracking as well as the reduction of redundant power during mode conversion have gone through the test based on a 5 kW wind generator system test platform. The generator output power as the capture target has also been proved to be efficient.

  1. Power Control for Direct-Driven Permanent Magnet Wind Generator System with Battery Storage

    Directory of Open Access Journals (Sweden)

    Chu Xiao Guang

    2014-01-01

    Full Text Available The objective of this paper is to construct a wind generator system (WGS loss model that addresses the loss of the wind turbine and the generator. It aims to optimize the maximum effective output power and turbine speed. Given that the wind generator system has inertia and is nonlinear, the dynamic model of the wind generator system takes the advantage of the duty of the Buck converter and employs feedback linearization to design the optimized turbine speed tracking controller and the load power controller. According to that, this paper proposes a dual-mode dynamic coordination strategy based on the auxiliary load to reduce the influence of mode conversion on the lifetime of the battery. Optimized speed and power rapid tracking as well as the reduction of redundant power during mode conversion have gone through the test based on a 5 kW wind generator system test platform. The generator output power as the capture target has also been proved to be efficient.

  2. Suitability Analyses of Wind Power Generation Complex in South Korea by Using Environmental & Social Criterias

    Science.gov (United States)

    Zhu, Y.; Jeon, S. W.; Seong, M.

    2017-12-01

    In case of wind-power, one of the most economical renewable energy resources, it is highly emerged owing to the strategic aspect of the response of environmental restriction and strong energy security as well as the upcoming motivation for huge industrial growth in the future. According to the fourth Fundamental Renewable Energy Plan, declared in Sep. 2014, the government instituted the scheme to minimize the proportion of previous RDF(Refused Derived Fuel) till 2035, promoting the solar power and wind power as the core energy for the next generation. Especially in South Korea, it is somewhat desperate to suggest the standard for environmentally optimal locations of wind power setup accompanied with the prevention of disasters from the climate changes. This is because that in case of South Korea, most of suitable places for Wind power complex are in the ridge of the mountains, where is highly invaluable sites as the pool of bio-resources and ecosystem conservations. In this research, we are to focus on the analysis of suitable locations for wind farm site which is relevant to the meteorological and geological factors, by utilizing GIS techniques through the whole South Korea. Ultimately, this analyses are to minimize the adverse effect derived from the current development of wind power in mountain ridges and the time for negotiation for wind power advance.

  3. Probabilistic Wind Power Ramp Forecasting Based on a Scenario Generation Method

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qin [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Florita, Anthony R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Krishnan, Venkat K [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Hodge, Brian S [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Cui, Mingjian [University of Texas at Dallas; Feng, Cong [University of Texas at Dallas; Wang, Zhenke [University of Texas at Dallas; Zhang, Jie [University of Texas at Dallas

    2018-02-01

    Wind power ramps (WPRs) are particularly important in the management and dispatch of wind power and currently drawing the attention of balancing authorities. With the aim to reduce the impact of WPRs for power system operations, this paper develops a probabilistic ramp forecasting method based on a large number of simulated scenarios. An ensemble machine learning technique is first adopted to forecast the basic wind power forecasting scenario and calculate the historical forecasting errors. A continuous Gaussian mixture model (GMM) is used to fit the probability distribution function (PDF) of forecasting errors. The cumulative distribution function (CDF) is analytically deduced. The inverse transform method based on Monte Carlo sampling and the CDF is used to generate a massive number of forecasting error scenarios. An optimized swinging door algorithm is adopted to extract all the WPRs from the complete set of wind power forecasting scenarios. The probabilistic forecasting results of ramp duration and start-time are generated based on all scenarios. Numerical simulations on publicly available wind power data show that within a predefined tolerance level, the developed probabilistic wind power ramp forecasting method is able to predict WPRs with a high level of sharpness and accuracy.

  4. Probabilistic Wind Power Ramp Forecasting Based on a Scenario Generation Method: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qin [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Florita, Anthony R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Krishnan, Venkat K [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Hodge, Brian S [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Cui, Mingjian [Univ. of Texas-Dallas, Richardson, TX (United States); Feng, Cong [Univ. of Texas-Dallas, Richardson, TX (United States); Wang, Zhenke [Univ. of Texas-Dallas, Richardson, TX (United States); Zhang, Jie [Univ. of Texas-Dallas, Richardson, TX (United States)

    2017-08-31

    Wind power ramps (WPRs) are particularly important in the management and dispatch of wind power, and they are currently drawing the attention of balancing authorities. With the aim to reduce the impact of WPRs for power system operations, this paper develops a probabilistic ramp forecasting method based on a large number of simulated scenarios. An ensemble machine learning technique is first adopted to forecast the basic wind power forecasting scenario and calculate the historical forecasting errors. A continuous Gaussian mixture model (GMM) is used to fit the probability distribution function (PDF) of forecasting errors. The cumulative distribution function (CDF) is analytically deduced. The inverse transform method based on Monte Carlo sampling and the CDF is used to generate a massive number of forecasting error scenarios. An optimized swinging door algorithm is adopted to extract all the WPRs from the complete set of wind power forecasting scenarios. The probabilistic forecasting results of ramp duration and start time are generated based on all scenarios. Numerical simulations on publicly available wind power data show that within a predefined tolerance level, the developed probabilistic wind power ramp forecasting method is able to predict WPRs with a high level of sharpness and accuracy.

  5. Wind up with continuous intra-day electricity markets? The integration of large-share wind power generation in Denmark

    International Nuclear Information System (INIS)

    Karanfil, Fatih; Li, Yuanjing

    2015-01-01

    This paper suggests an innovative idea to examine the functionality of an electricity intra-day market by testing causality among its fundamental components. As fluctuations of poorly predicted wind power generation are challenging the stability of the current electricity system, an intra-day market design can play an important role in managing wind forecast errors. Using Danish and Nordic data, it investigates the main drivers of the price difference between the intra-day and day-ahead markets, and causality between wind forecast errors and their counterparts. Our results show that the wind and conventional generation forecast errors significantly cause the intra-day price to differ from the day-ahead price, and that the relative intra-day price decreases with the unexpected amount of wind generation. Cross-border electricity exchanges are found to be important to handle wind forecast errors. Additionally, some zonal differences with respect to both causality and impulse responses are detected. This paper provides the first evidence on the persuasive functioning of the intra-day market in the case of Denmark, whereby intermittent production deviations are effectively reduced, and wind forecast errors are jointly handled through the responses from demand, conventional generation, and intra-day international electricity trade. (authors)

  6. Simulating European wind power generation applying statistical downscaling to reanalysis data

    DEFF Research Database (Denmark)

    Gonzalez-Aparicio, I.; Monforti, F.; Volker, Patrick

    2017-01-01

    generation time series dataset for the EU-28 and neighbouring countries at hourly intervals and at different geographical aggregation levels (country, bidding zone and administrative territorial unit), for a 30 year period taking into account the wind generating fleet at the end of 2015. (C) 2017 The Authors...... and characteristics of the wind resource which is related to the accuracy of the approach in converting wind speed data into power values. One of the main factors contributing to the uncertainty in these conversion methods is the selection of the spatial resolution. Although numerical weather prediction models can...... could not be captured by the use of a reanalysis technique and could be translated into misinterpretations of the wind power peaks, ramping capacities, the behaviour of power prices, as well as bidding strategies for the electricity market. This study contributes to the understanding what is captured...

  7. Potentials of wind power

    International Nuclear Information System (INIS)

    Bezrukikh, P.P.; Bezrukikh, P.P.

    2000-01-01

    The ecological advantages of the wind power facilities (WPF) are considered. The possibilities of small WPF, generating the capacity from 40 W up to 10 kW, are discussed. The basic technical data on the national and foreign small WPF are presented. The combined wind power systems are considered. Special attention is paid to the most perspective wind-diesel systems, which provide for all possible versions of the electro-power supply. Useful recommendations and information on the wind power engineering are given for those, who decided to build up a wind facility [ru

  8. Introduction guide book for wind power generation; Furyoku hatsuden donyu guide book

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    This paper arranges essential items for introduction of wind power generation to local governments. Natural wind power energy which is free from emission of atmospheric pollutants such as CO2 and probably profitable, is leading regenerative energy among several new energies, and its rapid diffusion is expected. At the end of 1995, a wind power generation facility capacity amounts to 4900MW in the world, 1770MW in USA, 1140MW in Germany, 630MW in Denmark, 550MW in India, and 250MW in the Netherlands. In Japan, its introduction to local governments is in progress with preparation of a purchase system of surplus electric power and a system interconnection guideline. A total facility capacity reached 10MW in 1996, and is scheduled to reach 150MW in fiscal 2010. NEDO`s wind characteristic map of Japan shows many promising areas for power generation. Since these information is not yet well known, the following are summarized: the present state, features of wind condition, power generation systems, application cases, an approach to survey research, construction, maintenance and related laws, and a subsidy system. 31 refs., 48 figs., 40 tabs.

  9. Combined wind, hydropower and photovoltaic systems for generation of electric power and control of water resources

    International Nuclear Information System (INIS)

    Abid, M.; Karimov, K.S.; Akhmedov, K.M.

    2011-01-01

    In this paper the present day energy consumption and potentialities of utilization of wind- and hydropower resources in some Central and Southern Asian Republics, in particular, in the Republic of Tajikistan, Kyrgyzstan and Pakistan are presented. The maximum consumption of electric power is observed in winter time when hydropower is the minimum, but wind power is the maximum. At the same time water is needed mostly in summer time for irrigation and in winter time for generation of electric power. This results in conflicts between countries that utilize water mostly for irrigation and those which use water for generation of electric power. It is proposed that the utilization of water with the supplement of wind and solar energy will facilitate the proper and efficient management of water resources in Central Asia. In the future in Tajikistan, wind power systems with a capacity of 30-100 MW and more will be installed, providing power balance of the country in winter; hence saving water in reservoirs, especially in drought years. This will provide the integration of electricity generated by wind, hydroelectric power and photovoltaic system in the unified energy system of the country. (author)

  10. Optimal design of power system stabilizer for power systems including doubly fed induction generator wind turbines

    International Nuclear Information System (INIS)

    Derafshian, Mehdi; Amjady, Nima

    2015-01-01

    This paper presents an evolutionary algorithm-based approach for optimal design of power system stabilizer (PSS) for multi-machine power systems that include doubly fed induction generator wind turbines. The proposed evolutionary algorithm is an improved particle swarm optimization named chaotic particle swarm optimization with passive congregation (CPSO-PC) applied for finding the optimal settings of PSS parameters. Two different eigenvalue-based objectives are combined as the objective function for the optimization problem of tuning PSS parameters. The first objective function comprises the damping factor of lightly damped electro-mechanical modes and the second one includes the damping ratio of these modes. The effectiveness of the proposed method to design PSS for the power systems including DFIG (Doubly Fed Induction Generator) is extensively demonstrated through eigenvalue analysis and time-domain simulations and also by comparing its simulation results with the results of other heuristic optimization approaches. - Highlights: • A new optimization model for design of PSS in power systems including DFIG is proposed. • A detailed and realistic modeling of DFIG is presented. • A new evolutionary algorithm is suggested for solving the optimization problem of designing PSS

  11. Hybrid power system (hydro, solar and wind) for rural electricity generation

    International Nuclear Information System (INIS)

    Mahinda Kurukulasuriya

    2000-01-01

    Generation of affordable cheap electric energy for rural development by a hybrid power system (10-50 kW) of hydropower, solar and wind energies on self determining basis and computer application to determine its performance. In this paper the following topics were discussed, design of hybrid power system, its justification and economic analysis, manufacturing and installation of the system. (Author)

  12. Simulation of an offshore wind farm using fluid power for centralized electricity generation

    International Nuclear Information System (INIS)

    Jarquin-Laguna, A

    2016-01-01

    A centralized approach for electricity generation within a wind farm is explored through the use of fluid power technology. This concept considers a new way of generation, collection and transmission of wind energy inside a wind farm, in which electrical conversion does not occur during any intermediate conversion step before the energy has reached the offshore central platform. A numerical model was developed to capture the relevant physics from the dynamic interaction between different turbines coupled to a common hydraulic network and controller. This paper presents two examples of the time-domain simulation results for an hypothetical hydraulic wind farm subject to turbulent wind conditions. The performance and operational parameters of individual turbines are compared with those of a reference wind farm with conventional technology turbines, using the same wind farm layout and environmental conditions. For the presented case study, results indicate that the individual wind turbines are able to operate within operational limits with the current pressure control concept. Despite the stochastic turbulent wind input and wake effects, the hydraulic wind farm is able to produce electricity with reasonable performance in both below and above rated conditions. (paper)

  13. Characteristics Analysis of an Excitation Assistance Switched Reluctance Wind Power Generator

    DEFF Research Database (Denmark)

    Liu, Xiao; Wang, Chao; Chen, Zhe

    2015-01-01

    In order to fully analyze the characteristics of an excitation assistance switched reluctance generator (EASRG) applied in wind power generation, a static model and a dynamic model are proposed. The static model is based on the 3-D finite-element method (FEM), which can be used to obtain the stat...

  14. Incorporation of wind generation to the Mexican power grid: Steady state analysis

    Energy Technology Data Exchange (ETDEWEB)

    Tovar, J.H.; Guardado, J.L.; Cisneros, F. [Inst. Tecnologico de Morelia (Mexico); Cadenas, R.; Lopez, S. [Comision Federal de Electricidad, Morelia (Mexico)

    1997-09-01

    This paper describes a steady state analysis related with the incorporation of large amounts of eolic generation into the Mexican power system. An equivalent node is used to represent individual eolic generators in the wind farm. Possible overloads, losses, voltage and reactive profiles and estimated severe contingencies are analyzed. Finally, the conclusions of this study are presented.

  15. Performance of automatic generation control mechanisms with large-scale wind power

    Energy Technology Data Exchange (ETDEWEB)

    Ummels, B.C.; Gibescu, M.; Paap, G.C. [Delft Univ. of Technology (Netherlands); Kling, W.L. [Transmission Operations Department of TenneT bv (Netherlands)

    2007-11-15

    The unpredictability and variability of wind power increasingly challenges real-time balancing of supply and demand in electric power systems. In liberalised markets, balancing is a responsibility jointly held by the TSO (real-time power balancing) and PRPs (energy programs). In this paper, a procedure is developed for the simulation of power system balancing and the assessment of AGC performance in the presence of large-scale wind power, using the Dutch control zone as a case study. The simulation results show that the performance of existing AGC-mechanisms is adequate for keeping ACE within acceptable bounds. At higher wind power penetrations, however, the capabilities of the generation mix are increasingly challenged and additional reserves are required at the same level. (au)

  16. Equivalent Method of Integrated Power Generation System of Wind, Photovoltaic and Energy Storage in Power Flow Calculation and Transient Simulation

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    The integrated power generation system of wind, photovoltaic (PV) and energy storage is composed of several wind turbines, PV units and energy storage units. The detailed model of integrated generation is not suitable for the large-scale powe.r system simulation because of the model's complexity and long computation time. An equivalent method for power flow calculation and transient simulation of the integrated generation system is proposed based on actual projects, so as to establish the foundation of such integrated system simulation and analysis.

  17. Wind power today

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-04-01

    This publication highlights initiatives of the US DOE`s Wind Energy Program. 1997 yearly activities are also very briefly summarized. The first article describes a 6-megawatt wind power plant installed in Vermont. Another article summarizes technical advances in wind turbine technology, and describes next-generation utility and small wind turbines in the planning stages. A village power project in Alaska using three 50-kilowatt turbines is described. Very brief summaries of the Federal Wind Energy Program and the National Wind Technology Center are also included in the publication.

  18. Reduced storage and balancing needs in a fully renewable European power system with excess wind and solar power generation

    DEFF Research Database (Denmark)

    Heide, Dominik; Greiner, Martin; von Bremen, Lüder

    The storage and balancing needs of a simplified European power system, which is based on wind and solar power generation only, are derived from an extensive weather-driven modeling of hourly power mismatches between generation and load. The storage energy capacity, the annual balancing energy...... and the balancing power are found to depend significantly on the mixing ratio between wind and solar power generation. They decrease strongly with the overall excess generation. At 50% excess generation the required long-term storage energy capacity and annual balancing energy amount to 1% of the annual consumption....... The required balancing power turns out to be 25% of the average hourly load. These numbers are in agreement with current hydro storage lakes in Scandinavia and the Alps, as well as with potential hydrogen storage in mostly North-German salt caverns....

  19. Reduced storage and balancing needs in a fully renewable European power system with excess wind and solar power generation

    DEFF Research Database (Denmark)

    Heide, Dominik; Greiner, Martin; von Bremen, Lüder

    2011-01-01

    The storage and balancing needs of a simplified European power system, which is based on wind and solar power generation only, are derived from an extensive weather-driven modeling of hourly power mismatches between generation and load. The storage energy capacity, the annual balancing energy...... and the balancing power are found to depend significantly on the mixing ratio between wind and solar power generation. They decrease strongly with the overall excess generation. At 50% excess generation the required long-term storage energy capacity and annual balancing energy amount to 1% of the annual consumption....... The required balancing power turns out to be 25% of the average hourly load. These numbers are in agreement with current hydro storage lakes in Scandinavia and the Alps, as well as with potential hydrogen storage in mostly North-German salt caverns....

  20. Wind power

    International Nuclear Information System (INIS)

    2006-06-01

    This road-map proposes by the Group Total aims to inform the public on the wind power. It presents the principles, the technology takes off, its applications and technology focus, the global market trends and the outlooks and Total commitments in the domain. (A.L.B.)

  1. Danish Wind Power

    DEFF Research Database (Denmark)

    Lund, Henrik; Hvelplund, Frede; Østergaard, Poul Alberg

    In a normal wind year, Danish wind turbines generate the equivalent of approx. 20 percent of the Danish electricity demand. This paper argues that only approx. 1 percent of the wind power production is exported. The rest is used to meet domestic Danish electricity demands. The cost of wind power...... misleading. The cost of CO2 reduction by use of wind power in the period 2004-2008 was only 20 EUR/ton. Furthermore, the Danish wind turbines are not paid for by energy taxes. Danish wind turbines are given a subsidy via the electricity price which is paid by the electricity consumers. In the recent years...... is paid solely by the electricity consumers and the net influence on consumer prices was as low as 1-3 percent on average in the period 2004-2008. In 2008, the net influence even decreased the average consumer price, although only slightly. In Denmark, 20 percent wind power is integrated by using both...

  2. Special Tests for the Power Electronic Converters of Wind Turbine Generators

    DEFF Research Database (Denmark)

    Helle, Lars; Senturk, Osman Selcuk; Teodorescu, Remus

    2011-01-01

    -level medium-voltage source converter topologies, of the 3L-ANPC-VSC and 3L-HB-VSC type, are considered in the paper. Both converters employ press-pack IGBT-diode pairs and interface a 6 MW wind turbine to a medium voltage grid. The power loss and thermal model data applicable for both grid and generator......Power electronic converters for wind turbines are characterized by high specific power density and high reliability. Special tests for such converters are performed in order to determine the power loss and thermal models, which are dependent of the load profile and converter structure. Two multi......-side VSCs is used to estimate the switch junction temperatures through the simulation of wind turbine grid interface operation. A discussion of the power density and reliability of the grid-side VSCs with respect to press-pack switches, gate driver, and cooling plate is included. A test set-up for a single...

  3. On the optimal mix of wind and solar generation in the future Chinese power system

    International Nuclear Information System (INIS)

    Huber, Matthias; Weissbart, Christoph

    2015-01-01

    China is one of the largest and fastest growing economies in the world. Until now, the corresponding growth of electricity consumption has been mainly provided by coal. However, as national reserves are limited and since burning coal leads to severe environmental problems, the employment of alternative sources of energy supply has become an important part of the Chinese energy policy. Recent studies show that wind energy alone could meet all of China's electricity demand. While our results validate these findings with regard to annual production, we look at the hour-by-hour resolution and uncover a major limitation: wind generation will not match the demand at every given point in time. This results in significant periods with over- and undersupply. Our study shows that combining wind and solar generation in the power system reduces overproduction significantly and increases the capacity credit of the combined VRE (variable renewable energy sources). The article demonstrates that up to 70% of VRE comprising 20–30% solar generation in the form of photovoltaics (PV) can be integrated into China's electricity system with moderate storage requirements. We encourage planners to consider those findings in their long-term planning in order to set up a sustainable power system for China at low costs. - Highlights: • Analyzing the potentials for wind and solar generation in China. • Capacity credit of variable renewable energy sources. • Future storage demand for a renewable based Chinese power system. • Defining the optimal mix of wind and solar generation.

  4. Dual-loop self-optimizing robust control of wind power generation with Doubly-Fed Induction Generator.

    Science.gov (United States)

    Chen, Quan; Li, Yaoyu; Seem, John E

    2015-09-01

    This paper presents a self-optimizing robust control scheme that can maximize the power generation for a variable speed wind turbine with Doubly-Fed Induction Generator (DFIG) operated in Region 2. A dual-loop control structure is proposed to synergize the conversion from aerodynamic power to rotor power and the conversion from rotor power to the electrical power. The outer loop is an Extremum Seeking Control (ESC) based generator torque regulation via the electric power feedback. The ESC can search for the optimal generator torque constant to maximize the rotor power without wind measurement or accurate knowledge of power map. The inner loop is a vector-control based scheme that can both regulate the generator torque requested by the ESC and also maximize the conversion from the rotor power to grid power. An ℋ(∞) controller is synthesized for maximizing, with performance specifications defined based upon the spectrum of the rotor power obtained by the ESC. Also, the controller is designed to be robust against the variations of some generator parameters. The proposed control strategy is validated via simulation study based on the synergy of several software packages including the TurbSim and FAST developed by NREL, Simulink and SimPowerSystems. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  5. Why is China’s wind power generation not living up to its potential?

    Science.gov (United States)

    Huenteler, Joern; Tang, Tian; Chan, Gabriel; Diaz Anadon, Laura

    2018-04-01

    Following a decade of unprecedented investment, China now has the world’s largest installed base of wind power capacity. Yet, despite siting most wind farms in the wind-rich Northern and Western provinces, electricity generation from Chinese wind farms has not reached the performance benchmarks of the United States and many other advanced economies. This has resulted in lower environmental, economic, and health benefits than anticipated. We develop a framework to explain the performance of the Chinese and US wind sectors, accounting for a comprehensive set of driving factors. We apply this framework to a novel dataset of virtually all wind farms installed in China and the United States through the end of 2013. We first estimate the wind sector’s technical potential using a methodology that produces consistent estimates for both countries. We compare this potential to actual performance and find that Chinese wind farms generated electricity at 37%–45% of their annual technical potential during 2006–2013 compared to 54%–61% in the United States. Our findings underscore that the larger gap between actual performance and technical potential in China compared to the United States is significantly driven by delays in grid connection (14% of the gap) and curtailment due to constraints in grid management (10% of the gap), two challenges of China’s wind power expansion covered extensively in the literature. However, our findings show that China’s underperformance is also driven by suboptimal turbine model selection (31% of the gap), wind farm siting (23% of the gap), and turbine hub heights (6% of the gap)—factors that have received less attention in the literature and, crucially, are locked-in for the lifetime of wind farms. This suggests that besides addressing grid connection delays and curtailment, China will also need policy measures to address turbine siting and technology choices to achieve its national goals and increase utilization up to US levels.

  6. statistical analysis of wind speed for electrical power generation

    African Journals Online (AJOL)

    HOD

    In order to predict and model the potential of any site, ... gamma, and Raleigh distributions for 8 locations in. Nigeria. ... probability density function is used to model the average power in ... mathematical expression of the Weibull distribution is.

  7. Status of Wind Power Technologies

    DEFF Research Database (Denmark)

    Zhao, Haoran; Wu, Qiuwei

    2018-01-01

    With the development of wind turbine technology, wind power will become more controllable and grid‐friendly. It is desirable to make wind farms operate as conventional power plants. Wind turbine generators (WTGs) were mainly used in rural and remote areas for wind power generation. WTG‐based wind...... energy conversion systems (WECS) can be divided into the four main types (type 1‐4). Due to the inherent variability and uncertainty of the wind, the integration of wind power into the grid has brought challenges in several different areas, including power quality, system reliability, stability......, and planning. The impact of each is largely dependent on the level of wind power penetration in the grid. In many countries, relatively high levels of wind power penetration have been achieved. This chapter shows the estimated wind power penetration in leading wind markets....

  8. Frequency Control Strategy for Black Starts via PMSG-Based Wind Power Generation

    Directory of Open Access Journals (Sweden)

    Yi Tang

    2017-03-01

    Full Text Available The use of wind power generation (WPG as a source for black starts will significantly enhance the resiliency of power systems and shorten their recovery time from blackouts. Given that frequency stability is the most serious issue during the initial recovery period, virtual inertia control can enable wind turbines to provide frequency support to an external system. In this study, a general procedure of WPG participating in black starts is presented, and the key issues are discussed. The adaptability of existing virtual inertia control strategies is analyzed, and improvement work is performed. A new coordinated frequency control strategy is proposed based on the presented improvement work. A local power network with a permanent-magnet synchronous generator (PMSG-based wind farm is modeled and used to verify the effectiveness of the strategy.

  9. DESIGN AND DEVELOPMENT OF A 1/3 SCALE VERTICAL AXIS WIND TURBINE FOR ELECTRICAL POWER GENERATION

    Directory of Open Access Journals (Sweden)

    Altab Md. Hossain

    2007-12-01

    Full Text Available This research describes the electrical power generation in Malaysia by the measurement of wind velocity acting on the wind turbine technology. The primary purpose of the measurement over the 1/3 scaled prototype vertical axis wind turbine for the wind velocity is to predict the performance of full scaled H-type vertical axis wind turbine. The electrical power produced by the wind turbine is influenced by its two major part, wind power and belt power transmission system. The blade and the drag area system are used to determine the powers of the wind that can be converted into electric power as well as the belt power transmission system. In this study both wind power and belt power transmission system has been considered. A set of blade and drag devices have been designed for the 1/3 scaled wind turbine at the Thermal Laboratory of Faculty of Engineering, Universiti Industri Selangor (UNISEL. Test has been carried out on the wind turbine with the different wind velocities of 5.89 m/s, 6.08 m/s and 7.02 m/s. From the experiment, the wind power has been calculated as 132.19 W, 145.40 W and 223.80 W. The maximum wind power is considered in the present study.

  10. DESIGN AND DEVELOPMENT OF A 1/3 SCALE VERTICAL AXIS WIND TURBINE FOR ELECTRICAL POWER GENERATION

    Directory of Open Access Journals (Sweden)

    Altab Hossain

    2007-01-01

    Full Text Available This research describes the electrical power generation in Malaysia by the measurement of wind velocity acting on the wind turbine technology. The primary purpose of the measurement over the 1/3 scaled prototype vertical axis wind turbine for the wind velocity is to predict the performance of full scaled H-type vertical axis wind turbine. The electrical power produced by the wind turbine is influenced by its two major part, wind power and belt power transmission system. The blade and the drag area system are used to determine the powers of the wind that can be converted into electric power as well as the belt power transmission system. In this study both wind power and belt power transmission system has been considered. A set of blade and drag devices have been designed for the 1/3 scaled wind turbine at the Thermal Laboratory of Faculty of Engineering, Universiti Industri Selangor (UNISEL. Test has been carried out on the wind turbine with the different wind velocities of 5.89 m/s, 6.08 m/s and 7.02 m/s. From the experiment, the wind power has been calculated as 132.19 W, 145.40 W and 223.80 W. The maximum wind power is considered in the present study.

  11. Robust optimization-based DC optimal power flow for managing wind generation uncertainty

    Science.gov (United States)

    Boonchuay, Chanwit; Tomsovic, Kevin; Li, Fangxing; Ongsakul, Weerakorn

    2012-11-01

    Integrating wind generation into the wider grid causes a number of challenges to traditional power system operation. Given the relatively large wind forecast errors, congestion management tools based on optimal power flow (OPF) need to be improved. In this paper, a robust optimization (RO)-based DCOPF is proposed to determine the optimal generation dispatch and locational marginal prices (LMPs) for a day-ahead competitive electricity market considering the risk of dispatch cost variation. The basic concept is to use the dispatch to hedge against the possibility of reduced or increased wind generation. The proposed RO-based DCOPF is compared with a stochastic non-linear programming (SNP) approach on a modified PJM 5-bus system. Primary test results show that the proposed DCOPF model can provide lower dispatch cost than the SNP approach.

  12. Underground disposal techniques of radioactive wastes and wind power generation in Europe

    International Nuclear Information System (INIS)

    Mori, Yoshiaki

    2003-01-01

    The 25th business report on foreign survey of electric power civil engineering technology. On the 25th foreign survey held by the Society of Electric Power Civil Engineering, Technology, disposal of high-level radioactive wastes (HLRWs) in Switzerland and Sweden, and wind power generation in Spain and Denmark were focused. As a result, it was found that opalinas clay and calcite under survey and investigation of host rock candidates for disposal of HLRWs are stable rock stratum with extremely low water permeability and without groundwater stream. At present, basic research and concrete disposing method are under advancement through actual scale tests. To obtain peoples' understanding on necessity, safety, cost-sharing, and so on of this business, it is essential to easily and precisely technical contents with high level generation specialty. And, on wind power generation, it is necessary to install wind wheels at a position enough to become maximum in wind energy usable from wind observation data and to maintain the wheel mechanically and electrically. Here were described outlines on the survey with its members and schedules. (G.K.)

  13. INVESTIGATION ON ESTABLISHED OPERATIONAL MODES OF FREQUENCY-CONTROLLED INDUCTION GENERATOR OF WIND POWER PLANTS

    Directory of Open Access Journals (Sweden)

    R. I. Mustafayev

    2014-01-01

    Full Text Available The paper proposes an analytical expression for calculating a manipulated variable of stator voltage in a frequency-controlled induction generator with a cage rotor of a wind power plant while regulating a constant value of the absolute slip of the generator. Comparison of the calculated results by the proposed expression and full differential equations of the generator (an equation of state at steady state has confirmed a high accuracy of the analytical expression.

  14. Space-time scenarios of wind power generation produced using a Gaussian copula with parametrized precision matrix

    DEFF Research Database (Denmark)

    Tastu, Julija; Pinson, Pierre; Madsen, Henrik

    The emphasis in this work is placed on generating space-time trajectories (also referred to as scenarios) of wind power generation. This calls for prediction of multivariate densities describing wind power generation at a number of distributed locations and for a number of successive lead times. ...

  15. Generator Rescheduling under Congested Power System with Wind Integrated Competitive Power Market

    Directory of Open Access Journals (Sweden)

    Sadhan Gope

    2017-02-01

    Full Text Available Integration of renewable energy like wind or solar energy creates a huge pressure to the system operator (SO to ensure the congestion free transmission network under deregulated power market. Congestion Management (CM with integration of wind farm in double auction electricity market are described in this work to minimize fuel cost, system losses and locational marginal price (LMP of the system. Location of Wind Farm (WF is identified based by using Bus sensitivity factor (BSF, which is also used for selection of load bus for double auction bidding (DAB. The impacts of wind farm in congested power system under deregulated environment have been investigated in this work. Modified 39-bus New England test system is used for demonstrate the effectiveness of the presented approach by using Sequential Quadratic Programming (SQP.

  16. Wind Power Career Chat

    Energy Technology Data Exchange (ETDEWEB)

    L. Flowers

    2011-01-01

    This document will teach students about careers in the wind energy industry. Wind energy, both land-based and offshore, is expected to provide thousands of new jobs in the next several decades. Wind energy companies are growing rapidly to meet America's demand for clean, renewable, and domestic energy. These companies need skilled professionals. Wind power careers will require educated people from a variety of areas. Trained and qualified workers manufacture, construct, operate, and manage wind energy facilities. The nation will also need skilled researchers, scientists, and engineers to plan and develop the next generation of wind energy technologies.

  17. Permanent Magnet Synchronous Generator Driven Wind Energy Conversion System Based on Parallel Active Power Filter

    Directory of Open Access Journals (Sweden)

    FERDI Brahim

    2014-05-01

    Full Text Available This paper proposes a novel application of the instantaneous P-Q theory in a wind energy conversion system (WECS. The proposed WECS is formed by permanent magnet synchronous generator (PMSG wind turbine system connected to the grid through parallel active power filter (PAPF. PAPF uses the generated wind energy to feed loads connected at the point of common coupling (PPC, compensates current harmonics and injects the excess of this energy into the grid using P-Q theory as control method. To demonstrate the feasibility and the performance of the proposed control scheme, simulation of this wind system has been realized using MATLAB/SIMULINK software. Simulation results show the accuracy and validity of the proposed control scheme for the PMSGPAPF system.

  18. A testing procedure for wind turbine generators based on the power grid statistical model

    DEFF Research Database (Denmark)

    Farajzadehbibalan, Saber; Ramezani, Mohammad Hossein; Nielsen, Peter

    2017-01-01

    In this study, a comprehensive test procedure is developed to test wind turbine generators with a hardware-in-loop setup. The procedure employs the statistical model of the power grid considering the restrictions of the test facility and system dynamics. Given the model in the latent space...

  19. Enabling Wind Power Nationwide

    Energy Technology Data Exchange (ETDEWEB)

    Jose Zayas, Michael Derby, Patrick Gilman and Shreyas Ananthan,

    2015-05-01

    Leveraging this experience, the U.S. Department of Energy’s (DOE’s) Wind and Water Power Technologies Office has evaluated the potential for wind power to generate electricity in all 50 states. This report analyzes and quantifies the geographic expansion that could be enabled by accessing higher above ground heights for wind turbines and considers the means by which this new potential could be responsibly developed.

  20. Perspectives of the wind power generation in Uruguay; Perspectivas de la generacion eolica en Uruguay

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, Daniel Luis [Administracion Nacional de Usinas y Transmisiones Electricas (UTE), Montevideu (Uruguay)

    2004-07-01

    The objective of this paper is to describe, the journey for the development of power generation through source of wind, and to establish the elements that must be overcome to enable implementation of wind projects in Uruguay. For its achievement will be a descriptive framework that has been developing wind energy in the region, particularly as it relates to the Argentine case, as opposed to activities in the Uruguay in the same period. Carry out a review and interrelation between the greenhouse effect, the internalization of environmental costs and sustainable development concept, as well as analyzing the input of emissions to the environment by issuing sector. It will describe, briefly, the composition of the matrix of power generation in Uruguay. Subsequently analyzing the history of wind energy in Uruguay, the results of this experience and will be explored regarding the existence or absence of incentives within the existing legal framework. Finally, described the wind power perspectives in Uruguay and propound what will be the key steps and tools necessary to facilitate the development of this source of generation in the country.

  1. Observability of wind power

    International Nuclear Information System (INIS)

    Gonot, J.P.; Fraisse, J.L.

    2009-01-01

    The total installed capacity of wind power grows from a few hundred MW at the beginning of 2005 to 3400 MW at the end of 2008. With such a trend, a total capacity of 7000 MW could be reached by 2010. The natural variability of wind power and the difficulty of its predictability require a change in the traditional way of managing supply/demand balance, day-ahead margins and the control of electrical flows. As a consequence, RTE operators should be informed quickly and reliably of the real time output power of wind farms and of its evolvement some hours or days ahead to ensure the reliability of the French electrical power system. French specificities are that wind farms are largely spread over the territory, that 95 % of wind farms have an output power below 10 MW and that they are connected to the distribution network. In this context, new tools were necessary to acquire as soon as possible data concerning wind power. In two years long, RTE set up an observatory of wind production 'IPES system' enable to get an access to the technical characteristics of the whole wind farms, to observe in real time 75 % of the wind generation and to implement a forecast model related to wind generation. (authors)

  2. Design study of high-temperature superconducting generators for wind power systems

    Energy Technology Data Exchange (ETDEWEB)

    Maki, N [Technova Inc. 13th Fl. Imperial Hotel Tower, 1-chome, Chiyoda-ku, Tokyo 100-0011 (Japan)], E-mail: naokmaki@technova.co.jp

    2008-02-15

    Design study on high-temperature superconducting machines (HTSM) for wind power systems was carried out using specially developed design program. Outline of the design program was shown and the influence of machine parameters such as pole number, rotor outer diameter and synchronous reactance on the machine performance was clarified. Three kinds of generator structure are considered for wind power systems and the HTSM operated under highly magnetic saturated conditions with conventional rotor and stator has better performance than the other types of HTSM. Furthermore, conceptual structure of 8 MW, 20 pole HTSM adopting salient-pole rotor as in the case of water turbine generators and race-truck shaped HTS field windings like Japanese Maglev was shown.

  3. Design study of high-temperature superconducting generators for wind power systems

    International Nuclear Information System (INIS)

    Maki, N

    2008-01-01

    Design study on high-temperature superconducting machines (HTSM) for wind power systems was carried out using specially developed design program. Outline of the design program was shown and the influence of machine parameters such as pole number, rotor outer diameter and synchronous reactance on the machine performance was clarified. Three kinds of generator structure are considered for wind power systems and the HTSM operated under highly magnetic saturated conditions with conventional rotor and stator has better performance than the other types of HTSM. Furthermore, conceptual structure of 8 MW, 20 pole HTSM adopting salient-pole rotor as in the case of water turbine generators and race-truck shaped HTS field windings like Japanese Maglev was shown

  4. Low-Cost Superconducting Wire for Wind Generators: High Performance, Low Cost Superconducting Wires and Coils for High Power Wind Generators

    Energy Technology Data Exchange (ETDEWEB)

    None

    2012-01-01

    REACT Project: The University of Houston will develop a low-cost, high-current superconducting wire that could be used in high-power wind generators. Superconducting wire currently transports 600 times more electric current than a similarly sized copper wire, but is significantly more expensive. The University of Houston’s innovation is based on engineering nanoscale defects in the superconducting film. This could quadruple the current relative to today’s superconducting wires, supporting the same amount of current using 25% of the material. This would make wind generators lighter, more powerful and more efficient. The design could result in a several-fold reduction in wire costs and enable their commercial viability of high-power wind generators for use in offshore applications.

  5. Open circuit V-I characteristics of a coreless ironless electric generator for low density wind power generation

    Science.gov (United States)

    Razali, Akhtar; Rahman, Fadhlur; Azlan, Syaiful; Razali Hanipah, Mohd; Azri Hizami, Mohd

    2018-04-01

    Cogging is an attraction of magnetism between permanent magnets and soft ironcore lamination in a conventional electric ironcore generator. The presence of cog in the generator is seen somehow restricted the application of the generator in an application where low rotational torque is required. Cog torque requires an additional input power to overcome, hence became one of the power loss sources. With the increasing of power output, the cogging is also proportionally increased. This leads to the increasing of the supplied power of the driver motor to overcome the cog. Therefore, this research is embarked to study fundamentally about the possibility of removing ironcore lamination in an electric generator. This research deals with removal of ironcore lamination in electric generator to eliminate cog torque. A confinement technique is proposed to confine and focus magnetic flux by introducing opposing permanent magnets arrangement. The concept is then fabricated and experimentally validated to qualify its no-load characteristics. The rotational torque and power output are measured and efficiency is then analyzed. Results indicated that the generator produced RMS voltage of 416VAC at rotational speed of 1762 RPM. Torque required to rotate the generator was at 2Nm for various rotational speed. The generator has shown 30% lesser rotational torque compared to the conventional ironcore type generator due to the absent of cogging torque in the system. Lesser rotational torque required to rotate has made this type of generator has a potential to be used for low wind density wind turbine application.

  6. Evaluating potentials for future generation off-shore wind-power outside Norway

    Science.gov (United States)

    Benestad, R. E.; Haugen, J.; Haakenstad, H.

    2012-12-01

    With todays critical need of renewable energy sources, it is naturally to look towards wind power. With the long coast of Norway, there is a large potential for wind farms offshore Norway. Although there are more challenges with offshore wind energy installations compared to wind farms on land, the offshore wind is generally higher, and there is also higher persistence of wind speed values in the power generating classes. I planning offshore wind farms, there is a need of evaluation of the wind resources, the wind climatology and possible future changes. In this aspect, we use data from regional climate model runs performed in the European ENSEMBLE-project (van der Linden and J.F.B. Mitchell, 2009). In spite of increased reliability in RCMs in the recent years, the simulations still suffer from systematic model errors, therefore the data has to be corrected before using them in wind resource analyses. In correcting the wind speeds from the RCMs, we will use wind speeds from a Norwegian high resolution wind- and wave- archive, NORA10 (Reistad et al 2010), to do quantile mapping (Themeβl et. al. 2012). The quantile mapping is performed individually for each regional simulation driven by ERA40-reanalysis from the ENSEMBLE-project corrected against NORA10. The same calibration is then used to the belonging regional climate scenario. The calibration is done for each grid cell in the domain and for each day of the year centered in a +/-15 day window to make an empirical cumulative density function for each day of the year. The quantile mapping of the scenarios provide us with a new wind speed data set for the future, more correct compared to the raw ENSEMBLE scenarios. References: Reistad M., Ø. Breivik, H. Haakenstad, O. J. Aarnes, B. R. Furevik and J-R Bidlo, 2010, A high-resolution hindcast of wind and waves for The North Sea, The Norwegian Sea and The Barents Sea. J. Geophys. Res., 116. doi:10.1029/2010JC006402. Themessl M. J., A. Gobiet and A. Leuprecht, 2012

  7. Wind Energy Management System EMS Integration Project: Incorporating Wind Generation and Load Forecast Uncertainties into Power Grid Operations

    Energy Technology Data Exchange (ETDEWEB)

    Makarov, Yuri V.; Huang, Zhenyu; Etingov, Pavel V.; Ma, Jian; Guttromson, Ross T.; Subbarao, Krishnappa; Chakrabarti, Bhujanga B.

    2010-01-01

    The power system balancing process, which includes the scheduling, real time dispatch (load following) and regulation processes, is traditionally based on deterministic models. Since the conventional generation needs time to be committed and dispatched to a desired megawatt level, the scheduling and load following processes use load and wind and solar power production forecasts to achieve future balance between the conventional generation and energy storage on the one side, and system load, intermittent resources (such as wind and solar generation), and scheduled interchange on the other side. Although in real life the forecasting procedures imply some uncertainty around the load and wind/solar forecasts (caused by forecast errors), only their mean values are actually used in the generation dispatch and commitment procedures. Since the actual load and intermittent generation can deviate from their forecasts, it becomes increasingly unclear (especially, with the increasing penetration of renewable resources) whether the system would be actually able to meet the conventional generation requirements within the look-ahead horizon, what the additional balancing efforts would be needed as we get closer to the real time, and what additional costs would be incurred by those needs. To improve the system control performance characteristics, maintain system reliability, and minimize expenses related to the system balancing functions, it becomes necessary to incorporate the predicted uncertainty ranges into the scheduling, load following, and, in some extent, into the regulation processes. It is also important to address the uncertainty problem comprehensively by including all sources of uncertainty (load, intermittent generation, generators’ forced outages, etc.) into consideration. All aspects of uncertainty such as the imbalance size (which is the same as capacity needed to mitigate the imbalance) and generation ramping requirement must be taken into account. The latter

  8. FY 1998 Report on development of large-scale wind power generation systems. Research on the future prospects of wind power generation systems; 1998 nendo ogata furyoku hatsuden system kaihatsu. Furyoku hatsuden system no shorai tenbo ni kansuru chosa kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Current status of wind power generation in Japan and situations in foreign countries ahead of Japan are surveyed, in order to clarify the prospects for the future diffusion and expansion of wind power generation systems in Japan. The surveyed trends of wind power generation in Japan include those related to mandatory laws and regulations, e.g., the Electricity Enterprises Act, introductory and operation situations in local autonomies and electric power companies, and R and D efforts by academic and research organizations. The surveyed wind power generation situations in foreign countries include trends of international standardization for wind power generation, and global situations of introducing these systems. The on-the-spot oversea surveys include location/wind conditions in Greece's islands, cyclone-caused damages in India, World Renewable Energy Congress in Perth and advanced technologies in Europe for wind power generation systems, and the survey results are reported in detail. The surveyed R and D projects in Japan include the basic technological R and D plans (draft) for, e.g., wind power generation systems for isolated islands. (NEDO)

  9. An Advanced Bayesian Method for Short-Term Probabilistic Forecasting of the Generation of Wind Power

    Directory of Open Access Journals (Sweden)

    Antonio Bracale

    2015-09-01

    Full Text Available Currently, among renewable distributed generation systems, wind generators are receiving a great deal of interest due to the great economic, technological, and environmental incentives they involve. However, the uncertainties due to the intermittent nature of wind energy make it difficult to operate electrical power systems optimally and make decisions that satisfy the needs of all the stakeholders of the electricity energy market. Thus, there is increasing interest determining how to forecast wind power production accurately. Most the methods that have been published in the relevant literature provided deterministic forecasts even though great interest has been focused recently on probabilistic forecast methods. In this paper, an advanced probabilistic method is proposed for short-term forecasting of wind power production. A mixture of two Weibull distributions was used as a probability function to model the uncertainties associated with wind speed. Then, a Bayesian inference approach with a particularly-effective, autoregressive, integrated, moving-average model was used to determine the parameters of the mixture Weibull distribution. Numerical applications also are presented to provide evidence of the forecasting performance of the Bayesian-based approach.

  10. Modified Grid-Connected CSI for Hybrid PV/Wind Power Generation System

    Directory of Open Access Journals (Sweden)

    D. Amorndechaphon

    2012-01-01

    Full Text Available The principle of a power conditioning unit for hybrid PV/wind power generation system is proposed. The proposed power conditioner is based on the current source inverter (CSI topology. All energy sources are connected in parallel with a DC-bus through the modified wave-shaping circuits. To achieve the unity power factor at the utility grid, the DC-link current can be controlled via the wave-shaping circuits with the sinusoidal PWM scheme. In this work, the carrier-based PWM scheme is also proposed to minimize the utility current THD. The power rating of the proposed system can be increased by connecting more PV/wind modules through their wave-shaping circuits in parallel with the other modules. The details of the operating principles, the system configurations, and the design considerations are described. The effectiveness of the proposed CSI is demonstrated by simulation results.

  11. System frequency support of permanent magnet synchronous generator-based wind power plant

    Science.gov (United States)

    Wu, Ziping

    With ever-increasing penetration of wind power into modern electric grids all over the world, a trending replacement of conventional synchronous generators by large wind power plants will likely result in the poor overall frequency regulation performance. On the other hand, permanent magnet synchronous generator wind Turbine System (PMSG-WTG) with full power back to back converters tends to become one of the most promising wind turbine technologies thanks to various advantages. It possesses a significant amount of kinetic energy stored in the rotating mass of turbine blades, which can be utilized to enhance the total inertia of power system. Additionally, the deloaded operation and decoupled control of active and reactive power make it possible for PMSG-WTG to provide a fast frequency regulation through full-power converter. First of all, a comprehensive and in-depth survey is conducted to analyze the motivations for incorporating the inertial response and frequency regulation of VSWT into the system frequency regulation. Besides, control classifications, fundamental control concepts and advanced control schemes implemented for auxiliary frequency support of individual WT or wind power plant are elaborated along with a comparison of the potential frequency regulation capabilities of four major types of WTs. Secondly, a Controls Advanced Research Turbine2-Permanent Magnet Synchronous Generator wind turbine (CART2-PMSG) integrated model representing the typical configuration and operation characteristics of PMSG-WT is established in Matlab/Simulink,. Meanwhile, two different rotor-side converter control schemes, including rotor speed-based control and active power-based control, are integrated into this CART2-PMSG integrated model to perform Maximum Power Point Tracking (MPPT) operation over a wide range of wind speeds, respectively. Thirdly, a novel comprehensive frequency regulation (CFR) control scheme is developed and implemented into the CART2-PMSG model based

  12. Feasibility study of permanent magnet generator topologies for small-scale wind power application

    Energy Technology Data Exchange (ETDEWEB)

    Rovio, T.

    2010-07-01

    In this work the design of electric generators for use in a 300-Watt wind power plant is explored. These generators must also be suitable for short-series manufacture. There are two foci: the best design methods for these machines and comparison of technical and economical performance of machnines designed with these methods. I explain how the wind turbine affects the generator design process. Easy-to-manufacture structures are selected from each electric machine topology. The design and construction of prototype axial and radial flux machines is studied. A design method for a claw-pole transversal flux machine is introduced. This design method is based on FEM and genetic optimization, without recourse to iron-circuit models. Finally, I compare the predicted performance of the new claw-pole transversal flux generator to axial flux and radial flux generator prototypes is compared

  13. Equivalent circuit and characteristic simulation of a brushless electrically excited synchronous wind power generator

    Science.gov (United States)

    Wang, Hao; Zhang, Fengge; Guan, Tao; Yu, Siyang

    2017-09-01

    A brushless electrically excited synchronous generator (BEESG) with a hybrid rotor is a novel electrically excited synchronous generator. The BEESG proposed in this paper is composed of a conventional stator with two different sets of windings with different pole numbers, and a hybrid rotor with powerful coupling capacity. The pole number of the rotor is different from those of the stator windings. Thus, an analysis method different from that applied to conventional generators should be applied to the BEESG. In view of this problem, the equivalent circuit and electromagnetic torque expression of the BEESG are derived on the basis of electromagnetic relation of the proposed generator. The generator is simulated and tested experimentally using the established equivalent circuit model. The experimental and simulation data are then analyzed and compared. Results show the validity of the equivalent circuit model.

  14. A comparative investigation of three PM-less MW power range wind generator topologies

    DEFF Research Database (Denmark)

    Bratiloveanu, Catalin-Rauti; Traian Cosmin Anghelus, Dumitru; Boldea, I.

    2012-01-01

    As the wind energy penetration range increases steadily and the high energy PM costs are rising dramatically, PM-less large power wind generators with high performance are needed. Apart from extending the range of cage rotor induction generators, doubly-fed induction generators and dc excited...... investigates by quasi 2D-FEM two dc stator polarized (to increase machine side PWM converter voltage utilization, that is to reduce peak kVA ratings and costs of the machine side PWM converter) directly-driven switched reluctance generators (one with circumferential field and one with transverse flux (with...... heteropolar-rotor (standard) synchronous generators, especially for direct drives (very low speed) and multibrid (with single stage transmission (5/1-8/1 ratio)), new topologies have to be investigated to reduce initial costs and weights for high enough efficiency and energy annual yield. The present paper...

  15. Wind Power in Georgia

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-11-01

    Georgia has good wind power potential. Preliminary analyses show that the technical wind power potential in Georgia is good. Meteorological data shows that Georgia has four main areas in Georgia with annual average wind speeds of over 6 m/s and two main areas with 5-6 m/s at 80m. The most promising areas are the high mountain zone of the Great Caucasus, The Kura river valley, The South-Georgian highland and the Southern part of the Georgian Black Sea coast. Czech company Wind Energy Invest has recently signed a Memorandum of Understanding with Georgian authorities for development of the first wind farm in Georgia, a 50MW wind park in Paravani, Southern Georgia, to be completed in 2014. Annual generation is estimated to 170.00 GWh and the investment estimated to 101 million US$. Wind power is suited to balance hydropower in the Georgian electricity sector Electricity generation in Georgia is dominated by hydro power, constituting 88% of total generation in 2009. Limited storage capacity and significant spring and summer peaks in river flows result in an uneven annual generation profile and winter time shortages that are covered by three gas power plants. Wind power is a carbon-free energy source well suited to balance hydropower, as it is available (often strongest) in the winter and can be exported when there is a surplus. Another advantage with wind power is the lead time for the projects; the time from site selection to operation for a wind power park (approximately 2.5 years) is much shorter than for hydro power (often 6-8 years). There is no support system or scheme for renewable sources in Georgia, so wind power has to compete directly with other energy sources and is in most cases more expensive to build than hydro power. In a country and region with rapidly increasing energy demands, the factors described above nevertheless indicate that there is a commercial niche and a role to play for Georgian wind power. Skra: An example of a wind power development

  16. Coordinated control of wind generation and energy storage for power system frequency regulation

    Science.gov (United States)

    Baone, Chaitanya Ashok

    Large-scale centralized synchronous generators have long been the primary actors in exercising active power and frequency control, and much of the existing grid control framework is predicated upon their dynamic terminal characteristics. Important among these characteristics is the inertia of such generators. These play key roles in determining the electromechanical stability of the electric power grid. Modern wind generator systems are partially or fully connected to the grid through power electronic interfaces, and hence do not present the same level of inertial coupling. The absence of inertial frequency response from modern wind generator systems is a topic of growing concern in power engineering practice, as the penetration of wind generation is expected to grow dramatically in the next few years. Solutions proposed in the literature have sought to address this problem by seeking to mimic the inherent inertial response characteristics of traditional synchronous generators via control loops added to wind generators. Recent literature has raised concerns regarding this approach, and the work here will further examine its shortcomings, motivating approaches that seek to optimally design for the characteristics of the equipment exercising the control, rather than forcing new technologies to mimic the characteristics of synchronous machines. In particular, this work will develop a new approach to power system frequency regulation, with features suited to distributed energy storage devices such as grid-scale batteries and wind turbine speed and blade pitch control. The dynamic characteristics of these new technologies are treated along with existing mechanisms, such as synchronous machine governor control, to develop a comprehensive multi-input control design approach. To make the method practically feasible for geographically distributed power systems, an observer-based distributed control design utilizing phasor measurement unit (PMU) signals along with local

  17. Market value of wind power

    NARCIS (Netherlands)

    Haan, de J.E.S.; Shoeb, M.A.; Lopes Ferreira, H.M.; Kling, W.L.

    2013-01-01

    Variability and predictability constraints of wind hinder the cost-efficient integration of wind power generation into power markets. Within the framework of EIT KIC INNOENERGY Offwindtech project, a ‘Market Value’ tool is developed. Here, the market value of wind power generation can be assessed

  18. Strategic wind power trading considering rival wind power production

    DEFF Research Database (Denmark)

    Exizidis, Lazaros; Kazempour, Jalal; Pinson, Pierre

    2016-01-01

    In an electricity market with high share of wind power, it is expected that wind power producers may exercise market power. However, wind producers have to cope with wind’s uncertain nature in order to optimally offer their generation, whereas in a market with more than one wind producers, uncert...... depending on the rival’s wind generation, given that its own expected generation is not high. Finally, as anticipated, expected system cost is higher when both wind power producers are expected to have low wind power generation......In an electricity market with high share of wind power, it is expected that wind power producers may exercise market power. However, wind producers have to cope with wind’s uncertain nature in order to optimally offer their generation, whereas in a market with more than one wind producers......, uncertainty of rival wind power generation should also be considered. Under this context, this paper addresses the impact of rival wind producers on the offering strategy and profits of a pricemaker wind producer. A stochastic day-ahead market setup is considered, which optimizes the day-ahead schedules...

  19. Using Analog Ensemble to generate spatially downscaled probabilistic wind power forecasts

    Science.gov (United States)

    Delle Monache, L.; Shahriari, M.; Cervone, G.

    2017-12-01

    We use the Analog Ensemble (AnEn) method to generate probabilistic 80-m wind power forecasts. We use data from the NCEP GFS ( 28 km resolution) and NCEP NAM (12 km resolution). We use forecasts data from NAM and GFS, and analysis data from NAM which enables us to: 1) use a lower-resolution model to create higher-resolution forecasts, and 2) use a higher-resolution model to create higher-resolution forecasts. The former essentially increases computing speed and the latter increases forecast accuracy. An aggregated model of the former can be compared against the latter to measure the accuracy of the AnEn spatial downscaling. The AnEn works by taking a deterministic future forecast and comparing it with past forecasts. The model searches for the best matching estimates within the past forecasts and selects the predictand value corresponding to these past forecasts as the ensemble prediction for the future forecast. Our study is based on predicting wind speed and air density at more than 13,000 grid points in the continental US. We run the AnEn model twice: 1) estimating 80-m wind speed by using predictor variables such as temperature, pressure, geopotential height, U-component and V-component of wind, 2) estimating air density by using predictors such as temperature, pressure, and relative humidity. We use the air density values to correct the standard wind power curves for different values of air density. The standard deviation of the ensemble members (i.e. ensemble spread) will be used as the degree of difficulty to predict wind power at different locations. The value of the correlation coefficient between the ensemble spread and the forecast error determines the appropriateness of this measure. This measure is prominent for wind farm developers as building wind farms in regions with higher predictability will reduce the real-time risks of operating in the electricity markets.

  20. FY 1998 Report on development of large-scale wind power generation systems. Feasibility study on development of new technologies for wind power generation (Study on the development of wind power generation systems for small-scale power grids); 1998 nendo ogata furyoku hatsuden system kaihatsu seika hokokusho. Furyoku hatsuden shingijutsu kaihatsu kanosei chosa (shokibo keito ni okeru furyoku hatsuden system ni kansuru chosa)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    This survey includes the characteristics of small-scale power grids, feasibility studies on introduction of wind turbines in these grids, and statuses of application of wind turbines to isolated islands or the like in the advanced countries, in order to promote introduction of wind power generation systems in isolated islands or the like. It is concluded that small-capacity wind power generation systems can be possibly introduced in the intermediate- to large-scale grids in isolated islands, 1,500kW or larger in capacity, in the Tokyo, Kyushu and Okinawa Electric Power Companies' areas. A scheduled steamer ship for isolated islands can carry up to 10 ton track, and introduction of a small-scale wind turbine is more advantageous viewed from the transportation cost. Some foreign countries have the sites which have achieved a high percentage of grid connection of wind power units by stabilizing wind conditions and connecting them to the main high-voltage grids in different manners from those adopted in Japan. For developing wind turbine bodies, most of the foreign countries surveyed are concentrating their efforts on development and manufacture of large-size units, paying little attention on development of small-size wind turbines for isolated islands. For the future prospects, the promising concepts include adoption of wind turbines small in capacity and easy to transport and assemble, and hybrid systems combined with power storage units. (NEDO)

  1. FY 1998 Report on development of large-scale wind power generation systems. Feasibility study on development of new technologies for wind power generation (Study on the development of wind power generation systems for small-scale power grids); 1998 nendo ogata furyoku hatsuden system kaihatsu seika hokokusho. Furyoku hatsuden shingijutsu kaihatsu kanosei chosa (shokibo keito ni okeru furyoku hatsuden system ni kansuru chosa)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    This survey includes the characteristics of small-scale power grids, feasibility studies on introduction of wind turbines in these grids, and statuses of application of wind turbines to isolated islands or the like in the advanced countries, in order to promote introduction of wind power generation systems in isolated islands or the like. It is concluded that small-capacity wind power generation systems can be possibly introduced in the intermediate- to large-scale grids in isolated islands, 1,500kW or larger in capacity, in the Tokyo, Kyushu and Okinawa Electric Power Companies' areas. A scheduled steamer ship for isolated islands can carry up to 10 ton track, and introduction of a small-scale wind turbine is more advantageous viewed from the transportation cost. Some foreign countries have the sites which have achieved a high percentage of grid connection of wind power units by stabilizing wind conditions and connecting them to the main high-voltage grids in different manners from those adopted in Japan. For developing wind turbine bodies, most of the foreign countries surveyed are concentrating their efforts on development and manufacture of large-size units, paying little attention on development of small-size wind turbines for isolated islands. For the future prospects, the promising concepts include adoption of wind turbines small in capacity and easy to transport and assemble, and hybrid systems combined with power storage units. (NEDO)

  2. Wind power plant

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, G

    1975-11-20

    A wind power plant is proposed suitable for electicity generation or water pumping. This plant is to be self-adjusting to various wind velocities and to be kept in operation even during violent storms. For this purpose the mast, carrying the wind rotor and pivotable around a horizontal axis is tiltable and equipped with a wind blind. Further claims contain various configurations of the tilting base resp. the cut in of an elastic link, the attachment and design of the wind blind as well as the constructive arrangement of one or more dynamos.

  3. Price Forecasting of Electricity Markets in the Presence of a High Penetration of Wind Power Generators

    Directory of Open Access Journals (Sweden)

    Saber Talari

    2017-11-01

    Full Text Available Price forecasting plays a vital role in the day-ahead markets. Once sellers and buyers access an accurate price forecasting, managing the economic risk can be conducted appropriately through offering or bidding suitable prices. In networks with high wind power penetration, the electricity price is influenced by wind energy; therefore, price forecasting can be more complicated. This paper proposes a novel hybrid approach for price forecasting of day-ahead markets, with high penetration of wind generators based on Wavelet transform, bivariate Auto-Regressive Integrated Moving Average (ARIMA method and Radial Basis Function Neural Network (RBFN. To this end, a weighted time series for wind dominated power systems is calculated and added to a bivariate ARIMA model along with the price time series. Moreover, RBFN is applied as a tool to correct the estimation error, and particle swarm optimization (PSO is used to optimize the structure and adapt the RBFN to the particular training set. This method is evaluated on the Spanish electricity market, which shows the efficiency of this approach. This method has less error compared with other methods especially when it considers the effects of large-scale wind generators.

  4. Assessing the Impact of Wind/PV Power Generation and Market Policies on Decentralized Hybrid Systems

    DEFF Research Database (Denmark)

    S.M. Arnoux, Luciana; Santiago, Leonardo

    In this paper, we offer a comprehensive approach to assess the impact of wind and photovoltaic power generation on decentralized hybrid systems. In particular, we focus on three performance measures of the energy system, namely reliability, costs, and efficiency. Most of the current studies focus...... level. Therefore, we appropriately assess the inherent uncertainty and design options. First, we use linear and quantile regression models to estimate the wind speed and solar insolation. Then, we use different quantiles as an input for the hybrid system design to assess market policies (e.g., net...

  5. Generators of Modern Wind Turbines

    DEFF Research Database (Denmark)

    Chen, Zhe

    2008-01-01

    In this paper, various types of wind generator configurations, including power electronic grid interfaces, drive trains, are described The performance in power systems is briefed. Then the optimization of generator system is presented. Some investigation results are presented and discussed....

  6. FENCH-analysis of electricity generation greenhouse gas emissions from solar and wind power in Germany

    International Nuclear Information System (INIS)

    Hartmann, D.

    1997-01-01

    The assessment of energy supply systems with regard to the influence on climate change requires not only the quantification of direct emissions caused by the operation of a power plant. It also has to take into account indirect emissions resulting from e.g. construction and dismounting of the power plant. Processes like manufacturing the materials for building the plant, the transportation of components and the construction and maintenance of the power plant are included. A tool to determine and assess the energy and mass flows is the Life Cycle Analysis (LCA) which allows the assessment of environmental impacts related to a product or service. In this paper a FENCH (Full Energy Chain)-analysis based on a LCA of electricity production from wind and solar power plants under operation conditions typical for application its Germany is presented. The FENCH-analysis is based on two methods, Process Chain Analysis (PCA) and Input-Output-Analysis (IOA) which are illustrated by the example of an electricity generation from a wind power plant. The calculated results are shown for the cumulated (indirect and direct) Greenhouse-Gas (GHG)-emissions for an electricity production from wind and solar power plants. A comparison of the results to the electricity production from a coal fired power plant is performed. At last a comparison of 1 kWh electricity from renewable energy to 1 kWh from fossil energy carrier has to be done, because the benefits of 1 kWh electricity from various types of power plants are different. Electricity from wind energy depends on the meteorological conditions while electricity from a fossil fired power plant is able to follow the power requirements of the consumers nearly all the time. By considering the comparison of the different benefit provided the GHG-Emissions are presented. (author)

  7. Valuation of wind power distributed generation by using Longstaff–Schwartz option pricing method

    International Nuclear Information System (INIS)

    Díaz, Guzmán; Moreno, Blanca; Coto, José; Gómez-Aleixandre, Javier

    2015-01-01

    Highlights: • We analyze the economic value of wind power distributed generation (DG) projects. • Unlike NPV, RO approach accounts for the flexibility for decision-making. • We adapt Longstaff–Schwartz (LS) option pricing to multivariate wind power setting. • LS finds optimal times for DG investment under revenue uncertainty and decaying costs. • We find this method best suited for valuating DG projects of expected low revenue. - Abstract: In the context of decaying capital cost and uncertain revenues, prospective valuation of a wind power distributed generation (DG) project is difficult. The conventional net present value (NPV) presents a static picture that does not account for the value of waiting for better market conditions to proceed with a DG investment. On the contrary, real options (RO) analysis does account for the managerial flexibility to switch between options over the investment horizon. In this paper we argue that the value of a DG wind-based project can be revisited by means of Longstaff–Schwartz method, originally intended for the evaluation of American financial options. The adaption of this method to the wind power DG setting provides a means for (i) efficiently dealing with the several stochastic processes involved (spot electricity prices and possibly various wind speed processes) avoiding the curse of dimensionality, (ii) accounting for the decaying capital cost of DG, and (iii) solving the perfect foresight problem presented by Monte Carlo conventional simulations. We present in this paper the procedure to follow when applying the method to the wind power DG setting. Particularly, we discuss the standardization of the wind speed and spot price processes, and the advantages of building a state space model that includes all the correlated processes by adequately transforming Box–Jenkins and Ornstein–Uhlenbeck models. Also we discuss the representation of the capital cost forecast by means of learning curves. On the whole, we

  8. Measured effects of wind turbine generation at the Block Island Power Company

    Science.gov (United States)

    Wilreker, V. F.; Smith, R. F.; Stiller, P. H.; Scot, G. W.; Shaltens, R. K.

    1984-01-01

    Data measurements made on the NASA MOD-OA 200-kw wind-turbine generator (WTG) installed on a utility grid form the basis for an overall performance analysis. Fuel displacement/-savings, dynamic interactions, and WTG excitation (reactive-power) control effects are studied. Continuous recording of a large number of electrical and mechanical variables on FM magnetic tape permit evaluation and correlation of phenomena over a bandwidth of at least 20 Hz. Because the wind-power penetration reached peaks of 60 percent, the impact of wind fluctuation and wind-turbine/diesel-utility interaction is evaluated in a worst-case scenario. The speed-governor dynamics of the diesel units exhibited an underdamped response, and the utility operation procedures were not altered to optimize overall WTG/utility performance. Primary findings over the data collection period are: a calculated 6.7-percent reduction in fuel consumption while generating 11 percent of the total electrical energy; acceptable system voltage and frequency fluctuations with WTG connected; and applicability of WTG excitation schemes using voltage, power, or VARS as the controlled variable.

  9. Evaluating the quality of scenarios of short-term wind power generation

    International Nuclear Information System (INIS)

    Pinson, P.; Girard, R.

    2012-01-01

    Highlights: ► Presentation of the desirable properties of wind power generation scenarios. ► Description of various evaluation frameworks (univariate, multivariate, diagnostic). ► Highlighting of the properties of current approaches to scenario generation. ► Guidelines for future evaluation/benchmark exercises. -- Abstract: Scenarios of short-term wind power generation are becoming increasingly popular as input to multistage decision-making problems e.g. multivariate stochastic optimization and stochastic programming. The quality of these scenarios is intuitively expected to substantially impact the benefits from their use in decision-making. So far however, their verification is almost always focused on their marginal distributions for each individual lead time only, thus overlooking their temporal interdependence structure. The shortcomings of such an approach are discussed. Multivariate verification tools, as well as diagnostic approaches based on event-based verification are then presented. Their application to the evaluation of various sets of scenarios of short-term wind power generation demonstrates them as valuable discrimination tools.

  10. Power electronic solutions for interfacing offshore wind turbine generators to medium voltage DC collection grids

    Science.gov (United States)

    Daniel, Michael T.

    Here in the early 21st century humanity is continuing to seek improved quality of life for citizens throughout the world. This global advancement is providing more people than ever with access to state-of-the-art services in areas such as transportation, entertainment, computing, communication, and so on. Providing these services to an ever-growing population while considering the constraints levied by continuing climate change will require new frontiers of clean energy to be developed. At the time of this writing, offshore wind has been proven as both a politically and economically agreeable source of clean, sustainable energy by northern European nations with many wind farms deployed in the North, Baltic, and Irish Seas. Modern offshore wind farms are equipped with an electrical system within the farm itself to aggregate the energy from all turbines in the farm before it is transmitted to shore. This collection grid is traditionally a 3-phase medium voltage alternating current (MVAC) system. Due to reactive power and other practical constraints, it is preferable to use a medium voltage direct current (MVDC) collection grid when siting farms >150 km from shore. To date, no offshore wind farm features an MVDC collection grid. However, MVDC collection grids are expected to be deployed with future offshore wind farms as they are sited further out to sea. In this work it is assumed that many future offshore wind farms may utilize an MVDC collection grid to aggregate electrical energy generated by individual wind turbines. As such, this work presents both per-phase and per-pole power electronic converter systems suitable for interfacing individual wind turbines to such an MVDC collection grid. Both interfaces are shown to provide high input power factor at the wind turbine while providing DC output current to the MVDC grid. Common mode voltage stress and circulating currents are investigated, and mitigation strategies are provided for both interfaces. A power sharing

  11. Evaluating the quality of scenarios of short-term wind power generation

    DEFF Research Database (Denmark)

    Pinson, Pierre; Girard, R.

    2012-01-01

    Scenarios of short-term wind power generation are becoming increasingly popular as input to multi-stage decision-making problems e.g. multivariate stochastic optimization and stochastic programming. The quality of these scenarios is intuitively expected to substantially impact the benets from...... their use in decision-making. So far however, their verication is almost always focused on their marginal distributions for each individual lead time only, thus overlooking their temporal interdependence structure. The shortcomings of such an approach are discussed. Multivariate verication tools, as well...... as diagnostic approaches based on event-based verication are then presented. Their application to the evaluation of various sets of scenarios of short-term wind power generation demonstrates them as valuable discrimination tools....

  12. Reduction of wind powered generator cost by use of a one bladed rotor

    Energy Technology Data Exchange (ETDEWEB)

    Pruyn, R R; Wiesner, W; Ljungstroem, O [ed.

    1976-01-01

    Cost analysis supported by preliminary design studies of one and two bladed wind powered generator units shows that a 30% reduction in acquisition cost can be achieved with a one bladed design. Designs studied were sized for an output power of 1000 kilowatts. The one bladed design has the potential for reducing acquisition cost to $680 per available kilowatt if the unit is located in a region with mean surface winds of 15 mph. Vibratory loads of the one bladed design are significant and will require considerable design attention. The one per rev Coriolis torque caused by blade flapping is the most significant problem. The major source of blade flapping will be the velocity gradient of the ground boundary layer. A torsional vibration isolating coupling may be required in the generator drive to reduce the loads due to this vibratory torque. An inclined flapping hinge also is desirable to cause pitch-flap coupling that will suppress blade flap motions.

  13. FY 1998 Report on development of large-scale wind power generation systems. Feasibility study on development of new technologies for wind power generation (Study on the development of wind power generation); 1998 nendo ogata furyoku hatsuden system kaihatsu. Furyoku hatsuden shingijutsu kaihatsu kanosei chosa (furyoku hatsuden gijutsu ni kansuru kaihatsu doko chosa)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    This survey is designed to analyze, e.g., current status of large-scale wind power generation devices/system technologies and development trends worldwide, and to make predictions about future developments, in an effort to contribute to advancements in new technology for wind power generation systems in Japan. The international R and D cooperation programs promoted by IEA and EU have helped the participants produce a number of good results at lower costs. The European countries have developed the wind power generation industries in each area, promoted by the governmental subsidy policies, and are leading the world. The system is becoming larger, from around an average unit capacity of 250kW in the beginning of the 90's to 600kW now, reducing the cost by the scale merit. The improved computer capacity has made it possible to more easily analyze the complicated rotor aerodynamics, structural dynamics, wind characteristics and other factors related to wind power generation systems. The future R and D directions will include world standards for large-scale wind turbines, advancements in wind farm technologies, offshore wind power generation systems, advancement in design technologies, and new concepts for wind power turbine designs, e.g., floating wind turbine. (NEDO)

  14. Wind Energy Management System Integration Project Incorporating Wind Generation and Load Forecast Uncertainties into Power Grid Operations

    Energy Technology Data Exchange (ETDEWEB)

    Makarov, Yuri V.; Huang, Zhenyu; Etingov, Pavel V.; Ma, Jian; Guttromson, Ross T.; Subbarao, Krishnappa; Chakrabarti, Bhujanga B.

    2010-09-01

    The power system balancing process, which includes the scheduling, real time dispatch (load following) and regulation processes, is traditionally based on deterministic models. Since the conventional generation needs time to be committed and dispatched to a desired megawatt level, the scheduling and load following processes use load and wind power production forecasts to achieve future balance between the conventional generation and energy storage on the one side, and system load, intermittent resources (such as wind and solar generation) and scheduled interchange on the other side. Although in real life the forecasting procedures imply some uncertainty around the load and wind forecasts (caused by forecast errors), only their mean values are actually used in the generation dispatch and commitment procedures. Since the actual load and intermittent generation can deviate from their forecasts, it becomes increasingly unclear (especially, with the increasing penetration of renewable resources) whether the system would be actually able to meet the conventional generation requirements within the look-ahead horizon, what the additional balancing efforts would be needed as we get closer to the real time, and what additional costs would be incurred by those needs. In order to improve the system control performance characteristics, maintain system reliability, and minimize expenses related to the system balancing functions, it becomes necessary to incorporate the predicted uncertainty ranges into the scheduling, load following, and, in some extent, into the regulation processes. It is also important to address the uncertainty problem comprehensively, by including all sources of uncertainty (load, intermittent generation, generators’ forced outages, etc.) into consideration. All aspects of uncertainty such as the imbalance size (which is the same as capacity needed to mitigate the imbalance) and generation ramping requirement must be taken into account. The latter unique

  15. A study on the power generation potential of mini wind turbine in east coast of Peninsular Malaysia

    Science.gov (United States)

    Basrawi, Firdaus; Ismail, Izwan; Ibrahim, Thamir Khalil; Idris, Daing Mohamad Nafiz Daing; Anuar, Shahrani

    2017-03-01

    A small-scale wind turbine is an attractive renewable energy source, but its economic viability depends on wind speed. The aim of this study is to determine economic viability of small-scale wind turbine in East Coast of Peninsular Malaysia. The potential energy generated has been determined by wind speed data and power curved of. Hourly wind speed data of Kuantan throughout 2015 was collected as the input. Then, a model of wind turbine was developed based on a commercial a 300W mini wind turbine. It was found that power generation is 3 times higher during northeast monsoon season at 15 m elevation. This proved that the northeast monsoon season has higher potential in generating power by wind turbine in East Coast of Peninsular Malaysia. However, only a total of 153.4 kWh/year of power can be generated at this condition. The power generator utilization factor PGUI or capacity ratio was merely 0.06 and it is not technically viable. By increasing the height of wind turbine to 60 m elevation, power generation amount drastically increased to 344 kWh/year, with PGUI of 0.13. This is about two-thirds of PGUI for photovoltaic technology which is 0.21 at this site. If offshore condition was considered, power generation amount further increased to 1,328 kWh/year with PGUI of 0.51. Thus, for a common use of mini wind turbine that is usually installed on-site at low elevation, it has low power generation potential. But, if high elevation as what large wind turbine needed is implemented, it is technically viable option in East Coast of Peninsular Malaysia.

  16. FY 2000 report on the survey of the stabilization of wind power generation power system, etc.; 2000 nendo furyoku hatsuden denryoku keito anteika nado chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    For the purpose of elucidating effects of output fluctuations at the time of quantity introduction of wind power generation, conducted were observation of wind characteristics in Hokkaido and analysis of the characteristics, estimation of fluctuations in wind power output, analysis of fluctuations in system frequency, etc. In the observation of wind characteristics, wind velocity/wind direction were measured at observation posts of 30 wind turbines installed at 16 sites in Hokkaido. Concerning the conversion into wind power output, 10 cases were selected such as the case of passage of low atmospheric pressure, etc., and the generator unit and wind firm were simulated in detail. In the estimation of wind power output, good agreement with the results estimated was confirmed at points very near to posts of observation of wind characteristics. As to the evaluation of effects of wind power generation to the system, power system frequencies were simulated using the models constructed and using capacity and kinds of frequency adjusted power source as parameter. As a result, it was indicated that there was a possibility of frequency's sharply fluctuating in case the surplus energy in frequency adjustment is reduced by fluctuations in demand and further in case wind power output is fluctuated. (NEDO)

  17. Solution of wind integrated thermal generation system for environmental optimal power flow using hybrid algorithm

    Directory of Open Access Journals (Sweden)

    Ambarish Panda

    2016-09-01

    Full Text Available A new evolutionary hybrid algorithm (HA has been proposed in this work for environmental optimal power flow (EOPF problem. The EOPF problem has been formulated in a nonlinear constrained multi objective optimization framework. Considering the intermittency of available wind power a cost model of the wind and thermal generation system is developed. Suitably formed objective function considering the operational cost, cost of emission, real power loss and cost of installation of FACTS devices for maintaining a stable voltage in the system has been optimized with HA and compared with particle swarm optimization algorithm (PSOA to prove its effectiveness. All the simulations are carried out in MATLAB/SIMULINK environment taking IEEE30 bus as the test system.

  18. Estimation of uncertainty of wind energy predictions with application to weather routing and wind power generation

    CERN Document Server

    Zastrau, David

    2017-01-01

    Wind drives in combination with weather routing can lower the fuel consumption of cargo ships significantly. For this reason, the author describes a mathematical method based on quantile regression for a probabilistic estimate of the wind propulsion force on a ship route.

  19. The Opportunity of Using Wind to Generate Power as a Renewable Energy:"Case of Kuwait”

    OpenAIRE

    Abdelkarim J.Ibreik; Humoud A. Alqatta

    2015-01-01

    The demand ofsustainable energy is increased daily by expanding our cities and creating new cities and suburbswith huge towers besides increasing in population,moreover the environment and human life is threatening by the pollutions resulted from energy generation. For this reason the researchersattracted todevelop renewable energy and explore its large benefits and unit capacity. Wind power is one of the clean renewable energy resources.Therefore the importance of implementing th...

  20. Wind power generation plant installed on cargo ship and marine resources recovery by seawater electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Murahara, M. [Tokyo Inst. of Technology, Tokyo (Japan)]|[Tokai Univ., Hiratsuka, Kanagawa (Japan); Seki, K. [Mingdao Univ., Taiwan (China)]|[Tokai Univ., Hiratsuka, Kanagawa (Japan). Research Inst. of Science and Technology

    2008-07-01

    Transmission loss from offshore wind turbine arrays is directly proportional to the length of the cable that brings power onshore. In order to minimize transmission loss, wind-generated electricity needs to be stored temporarily in a different form. Seawater, rock salt, and water of saline lakes can be desalinated and then electrolyzed to produce hydrogen. This paper presented a new method of offshore sodium production in Japan by seawater electrolysis. In this technique, sodium is manufactured on site by molten-salt electrolysis as a solid fuel. Sodium is electrolytically collected from the seawater or rock salt by the wind power generation. The sodium is then transported to a hydrogen power plant on land and then is added water to generate hydrogen for operating a hydrogen combustion turbine. The sodium hydroxide by-product is then supplied to the soda industry as a raw material. In seawater electrolysis, not only sodium but also fresh water, magnesium, calcium, potassium, sodium hydroxide, chlorine, oxygen, hydrogen, hydrochloric acid, and sulfuric acid are isolated and recovered as by-products. 5 refs., 6 figs.

  1. Study on development system of increasing gearbox for high-performance wind-power generator

    Science.gov (United States)

    Xu, Hongbin; Yan, Kejun; Zhao, Junyu

    2005-12-01

    Based on the analysis of the development potentiality of wind-power generator and domestic manufacture of its key parts in China, an independent development system of the Increasing Gearbox for High-performance Wind-power Generator (IGHPWG) was introduced. The main elements of the system were studied, including the procedure design, design analysis system, manufacturing technology and detecting system, and the relative important technologies were analyzed such as mixed optimal joint transmission structure of the first planetary drive with two grade parallel axle drive based on equal strength, tooth root round cutting technology before milling hard tooth surface, high-precise tooth grinding technology, heat treatment optimal technology and complex surface technique, and rig test and detection technique of IGHPWG. The development conception was advanced the data share and quality assurance system through all the elements of the development system. The increasing Gearboxes for 600KW and 1MW Wind-power Generator have been successfully developed through the application of the development system.

  2. Linear wind generator

    International Nuclear Information System (INIS)

    Kozarov, A.; Petrov, O.; Antonov, J.; Sotirova, S.; Petrova, B.

    2006-01-01

    The purpose of the linear wind-power generator described in this article is to decrease the following disadvantages of the common wind-powered turbine: 1) large bending and twisting moments to the blades and the shaft, especially when strong winds and turbulence exist; 2) significant values of the natural oscillation period of the construction result in the possibility of occurrence of destroying resonance oscillations; 3) high velocity of the peripheral parts of the rotor creating a danger for birds; 4) difficulties, connected with the installation and the operation on the mountain ridges and passages where the wind energy potential is the largest. The working surfaces of the generator in questions driven by the wind are not connected with a joint shaft but each moves along a railway track with few oscillations. So the sizes of each component are small and their number can be rather large. The mechanical trajectory is not a circle but a closed outline in a vertical plain, which consists of two rectilinear sectors, one above the other, connected in their ends by semi-circumferences. The mechanical energy of each component turns into electrical on the principle of the linear electrical generator. A regulation is provided when the direction of the wind is perpendicular to the route. A possibility of effectiveness is shown through aiming of additional quantities of air to the movable components by static barriers

  3. The Application of Stationary VOC-PR with PLL for Grid side Converter-based Wind Power Generation System

    DEFF Research Database (Denmark)

    Guo, Yougui; Zeng, Ping; Li, Lijuan

    2010-01-01

    Voltage oriented control PR is combined with space vector modulation and phase locked loop to control the grid side converter in wind power generation system in this paper. First the mathematical models of grid side converter and LCL filter as well as grid are given. Then the control strategy...... of grid side converter-based wind power generation system is given in detail. Finally the simulation model consisting of the grid side converter wind power generation system is set up. The simulation results have verified that the control strategy is feasible to be used for control of gird currents......, active power, reactive power and DC-link voltage in wind power generation system. It has laid a good basis for the real system development....

  4. A novel HTS SMES application in combination with a permanent magnet synchronous generator type wind power generation system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, G.H.; Kim, A.R.; Kim, S. [Changwon National University, 9 Sarim-dong, Changwon 641-773 (Korea, Republic of); Park, M., E-mail: paku@changwon.ac.kr [Changwon National University, 9 Sarim-dong, Changwon 641-773 (Korea, Republic of); Yu, I.K. [Changwon National University, 9 Sarim-dong, Changwon 641-773 (Korea, Republic of); Seong, K.C. [Superconducting Device and Cryogenics Group, Korea Electrotechnology Research Institute, Changwon 641-120 (Korea, Republic of); Won, Y.J. [Korea Electric Power Corporation, Changwon 641-241 (Korea, Republic of)

    2011-11-15

    A novel connection topology of SMES is proposed in this paper. Structure of the proposed system is cost-effective because it reduces a converter. The proposed system smoothens output power of wind power generation system. Advantage of the system is to improve the low voltage ride through capability. Superconducting magnetic energy storage (SMES) system is a DC current driven device and can be utilized to improve power quality particularly in connection with renewable energy sources due to higher efficiency and faster response than other devices. This paper suggests a novel connection topology of SMES which can smoothen the output power flow of the wind power generation system (WPGS). The structure of the proposed system is cost-effective because it reduces a power converter in comparison with a conventional application of SMES. One more advantage of SMES in the proposed system is to improve the capability of low voltage ride through (LVRT) for the permanent magnet synchronous generator (PMSG) type WPGS. The proposed system including a SMES has been modeled and analyzed by a PSCAD/EMTDC. The simulation results show the effectiveness of the novel SMES application strategy to not only mitigate the output power of the PMSG but also improve the capability of LVRT for PMSG type WPGS.

  5. A novel HTS SMES application in combination with a permanent magnet synchronous generator type wind power generation system

    International Nuclear Information System (INIS)

    Kim, G.H.; Kim, A.R.; Kim, S.; Park, M.; Yu, I.K.; Seong, K.C.; Won, Y.J.

    2011-01-01

    A novel connection topology of SMES is proposed in this paper. Structure of the proposed system is cost-effective because it reduces a converter. The proposed system smoothens output power of wind power generation system. Advantage of the system is to improve the low voltage ride through capability. Superconducting magnetic energy storage (SMES) system is a DC current driven device and can be utilized to improve power quality particularly in connection with renewable energy sources due to higher efficiency and faster response than other devices. This paper suggests a novel connection topology of SMES which can smoothen the output power flow of the wind power generation system (WPGS). The structure of the proposed system is cost-effective because it reduces a power converter in comparison with a conventional application of SMES. One more advantage of SMES in the proposed system is to improve the capability of low voltage ride through (LVRT) for the permanent magnet synchronous generator (PMSG) type WPGS. The proposed system including a SMES has been modeled and analyzed by a PSCAD/EMTDC. The simulation results show the effectiveness of the novel SMES application strategy to not only mitigate the output power of the PMSG but also improve the capability of LVRT for PMSG type WPGS.

  6. Stator Current Harmonic Reduction in a Novel Half Quasi-Z-Source Wind Power Generation System

    Directory of Open Access Journals (Sweden)

    Shoudao Huang

    2016-09-01

    Full Text Available The generator stator current gets distorted with unacceptable levels of total harmonic distortion (THD because impedance-source wind power generation systems use three-phase diode rectifiers. The stator current harmonics will cause increasing losses and torque ripple, which reduce the efficiency and stability of the system. This paper proposes a novel half quasi-Z-source inverter (H-qZSI for grid-connected wind power generation systems, which can reduce the generator stator current harmonics a great deal. When H-qZSI operates in the shoot-through zero state, the derivative of the generator stator current is only determined by the instantaneous value of the generator stator voltage, so the nonlinear relationship between generator stator current and stator voltage is improved compared with the traditional impedance-source inverter. Theoretically, it is indicated that the stator current harmonics can be reduced effectively by means of the proposed H-qZSI. Finally, simulation and experimental results are given to verify the theoretical analysis.

  7. Reduced Cost of Reactive Power in Doubly Fed Induction Generator Wind Turbine System with Optimized Grid Filter

    DEFF Research Database (Denmark)

    Zhou, Dao; Blaabjerg, Frede; Franke, Toke

    2014-01-01

    The modern grid requirement has caused that the wind power system behaves more like conventional rotating generators and it is able to support certain amount of the reactive power. For a typical doubly-fed induction generator wind turbine system, the reactive power can be supported either through...... for the generator and the wind power converter in terms of the reactive power done by the rotor-side converter or the grid-side converter with various grid filters. Afterwards, the annual energy loss is also estimated based on yearly wind profile. Finally, experimental results of the loss distribution are performed...... the rotor-side converter or the grid-side converter. This paper firstly compares the current ripples and supportive reactive power ranges between the conventional L and optimized LCL filter, if the reactive power is injected from the grid-side converter. Then, the loss distribution is evaluated both...

  8. Reduced Cost of Reactive Power in Doubly Fed Induction Generator Wind Turbine System With Optimized Grid Filter

    DEFF Research Database (Denmark)

    Zhou, Dao; Blaabjerg, Frede; Franke, Toke

    2015-01-01

    The modern grid requirement has caused that the wind power system behaves more like conventional rotating generators, and it is able to support certain amount of the reactive power. For a typical doubly fed induction generator (DFIG) wind turbine system, the reactive power can be supported either...... for the generator and the wind power converter in terms of the reactive power done by the rotor-side converter or the grid-side converter with various grid filters. Afterward, the annual energy loss is also estimated based on yearly wind profile. Finally, experimental results of the loss distribution are performed...... through the rotor-side converter or the grid-side converter. This paper first compares the current ripples and supportive reactive power ranges between the conventional L and optimized LCL filter, if the reactive power is injected from the grid-side converter. Then, the loss distribution is evaluated both...

  9. Effect of wind turbine generator model and siting on wind power changes out of large WECS arrays

    Science.gov (United States)

    Schleuter, R. A.; Park, G. L.; Lotfalian, M.; Dorsey, J.; Shayanfar, H.

    1981-01-01

    Methods of reducing the WECS generation change through selection of the wind turbine model for each site, selection of an appropriate siting configuration, and wind array controls are discussed. An analysis of wind generation change from an echelon and a farm for passage of a thunderstorm is presented. Reduction of the wind generation change over ten minutes is shown to reduce the increase in spinning reserve, unloadable generation and load following requirements on unit commitment when significant WECS generation is present and the farm penetration constraint is satisfied. Controls on the blade pitch angle of all wind turbines in an array or a battery control are shown to reduce both the wind generation change out of an array and the effective farm penetration in anticipation of a storm so that the farm penetration constraint may be satisfied.

  10. DC Link Current Estimation in Wind-Double Feed Induction Generator Power Conditioning System

    Directory of Open Access Journals (Sweden)

    MARIAN GAICEANU

    2010-12-01

    Full Text Available In this paper the implementation of the DC link current estimator in power conditioning system of the variable speed wind turbine is shown. The wind turbine is connected to double feed induction generator (DFIG. The variable electrical energy parameters delivered by DFIG are fitted with the electrical grid parameters through back-to-back power converter. The bidirectional AC-AC power converter covers a wide speed range from subsynchronous to supersynchronous speeds. The modern control of back-to-back power converter involves power balance concept, therefore its load power should be known in any instant. By using the power balance control, the DC link voltage variation at the load changes can be reduced. In this paper the load power is estimated from the dc link, indirectly, through a second order DC link current estimator. The load current estimator is based on the DC link voltage and on the dc link input current of the rotor side converter. This method presents certain advantages instead of using measured method, which requires a low pass filter: no time delay, the feedforward current component has no ripple, no additional hardware, and more fast control response. Through the numerical simulation the performances of the proposed DC link output current estimator scheme are demonstrated.

  11. Offshore Wind Power

    DEFF Research Database (Denmark)

    Negra, Nicola Barberis

    reliability models, and a new model that accounts for all relevant factors that influence the evaluations is developed. According to this representation, some simulations are performed and both the points of view of the wind farm owner and the system operator are evaluated and compared. A sequential Monte...... Carlo simulation is used for these calculations: this method, in spite of an extended computation time, has shown flexibility in performing reliability studies, especially in case of wind generation, and a broad range of results which can be evaluated. The modelling is then extended to the entire power......The aim of the project is to investigate the influence of wind farms on the reliability of power systems. This task is particularly important for large offshore wind farms, because failure of a large wind farm might have significant influence on the balance of the power system, and because offshore...

  12. A novel HTS SMES application in combination with a permanent magnet synchronous generator type wind power generation system

    Science.gov (United States)

    Kim, G. H.; Kim, A. R.; Kim, S.; Park, M.; Yu, I. K.; Seong, K. C.; Won, Y. J.

    2011-11-01

    Superconducting magnetic energy storage (SMES) system is a DC current driven device and can be utilized to improve power quality particularly in connection with renewable energy sources due to higher efficiency and faster response than other devices. This paper suggests a novel connection topology of SMES which can smoothen the output power flow of the wind power generation system (WPGS). The structure of the proposed system is cost-effective because it reduces a power converter in comparison with a conventional application of SMES. One more advantage of SMES in the proposed system is to improve the capability of low voltage ride through (LVRT) for the permanent magnet synchronous generator (PMSG) type WPGS. The proposed system including a SMES has been modeled and analyzed by a PSCAD/EMTDC. The simulation results show the effectiveness of the novel SMES application strategy to not only mitigate the output power of the PMSG but also improve the capability of LVRT for PMSG type WPGS.

  13. On-Shore Central Hydraulic Power Generation for Wind and Tidal Energy

    Science.gov (United States)

    Jones, Jack A.; Bruce, Allan; Lim, Steven; Murray, Luke; Armstrong, Richard; Kimbrall, Richard; Cook-Chenault, Kimberly; DeGennaro, Sean

    2012-01-01

    Tidal energy, offshore wind energy, and onshore wind energy can be converted to electricity at a central ground location by means of converting their respective energies into high-pressure hydraulic flows that are transmitted to a system of generators by high-pressure pipelines. The high-pressure flows are then efficiently converted to electricity by a central power plant, and the low-pressure outlet flow is returned. The Department of Energy (DOE) is presently supporting a project led by Sunlight Photonics to demonstrate a 15 kW tidal hydraulic power generation system in the laboratory and possibly later submerged in the ocean. All gears and submerged electronics are completely eliminated. A second portion of this DOE project involves sizing and costing a 15 MW tidal energy system for a commercial tidal energy plant. For this task, Atlantis Resources Corporation s 18-m diameter demonstrated tidal blades are rated to operate in a nominal 2.6 m/sec tidal flow to produce approximately one MW per set of tidal blades. Fifteen units would be submerged in a deep tidal area, such as in Maine s Western Passage. All would be connected to a high-pressure (20 MPa, 2900 psi) line that is 35 cm ID. The high-pressure HEPG fluid flow is transported 500-m to on-shore hydraulic generators. HEPG is an environmentally-friendly, biodegradable, watermiscible fluid. Hydraulic adaptations to ORPC s cross-flow turbines are also discussed. For 15 MW of wind energy that is onshore or offshore, a gearless, high efficiency, radial piston pump can replace each set of top-mounted gear-generators. The fluid is then pumped to a central, easily serviceable generator location. Total hydraulic/electrical efficiency is 0.81 at full rated wind or tidal velocities and increases to 0.86 at 1/3 rated velocities.

  14. An innovative medium speed wind turbine rotor blade design for low wind regime (electrical power generation)

    International Nuclear Information System (INIS)

    Abas Abd Wahab; Chong Wen Tong

    2001-01-01

    This paper describes the preliminary study of a small-scale wind turbine rotor blade (a low wind speed region turbine). A new wind turbine rotor blade (AE2 blade) for stand alone system has been conceptualized, designed, constructed and tested. The system is a reduced size prototype (half-scaled) to develop an efficient (adapted to Malaysian wind conditions)and cost effective wind energy conversion system (WECS) with local design and production technique. The blades were constructed from aluminium sheet with metal blending technique. The layout and design of rotor blade, its innovative features and test results are presented. Results from indoor test showed that the advantages of AE2 blade in low speed, with the potential of further improvements. The best rotor efficiency, C P attained with simple AE2 blades rotor (number of blade = 3) was 37.3% (Betz efficiency = 63%) at tip speed ratio (TSR) = 3.6. From the fabrication works and indoor testing, the AE2 blade rotor has demonstrated its structural integrity (ease of assembly and transportation), simplicity, acceptable performance and low noise level. (Author)

  15. Study on the Selection of Equipment Suppliers for Wind Power Generation EPC Project

    Science.gov (United States)

    Yang, Yuanyue; Li, Huimin

    2017-12-01

    In the EPC project, the purchase cost of equipments accounted for about 60% of the total project cost, thus, the selection of equipment suppliers has an important influence on the EPC project. This paper, took EPC project for the phase I engineering of Guizhou Huaxi Yunding wind power plant as research background, constructed the evaluation index system for the selection of equipment suppliers for wind power generation EPC project from multiple perspectives, and introduced matter-element extension evaluation model to evaluate the selection of equipment suppliers for this project from the qualitative and quantitative point of view. The result is consistent with the actual situation, which verifies the validity and operability of this method.

  16. Analyzing the Impacts of Increased Wind Power on Generation Revenue Sufficiency: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qin; Wu, Hongyu; Tan, Jin; Hodge, Bri-Mathias; Li, Wanning; Luo, Cheng

    2016-08-01

    The Revenue Sufficiency Guarantee (RSG), as part of make-whole (or uplift) payments in electricity markets, is designed to recover the generation resources' offer-based production costs that are not otherwise covered by their market revenues. Increased penetrations of wind power will bring significant impacts to the RSG payments in the markets. However, literature related to this topic is sparse. This paper first reviews the industrial practices of implementing RSG in major U.S. independent system operators (ISOs) and regional transmission operators (RTOs) and then develops a general RSG calculation method. Finally, an 18-bus test system is adopted to demonstrate the impacts of increased wind power on RSG payments.

  17. On the exergetic capacity factor of a wind – Solar power generation system

    DEFF Research Database (Denmark)

    Xydis, George

    2013-01-01

    production. In this paper, a detailed exergetic analysis aiming to identify the overall Exergetic Capacity Factor (ExCF) for a wind – solar power generation system was done. ExCF, as a new parameter, can be used for better classification and evaluation of renewable energy sources (RES). All the energy...... and exergy characteristics of wind and solar energy were examined in order to identify the variables that affect the power output of the hybrid system. A validated open source PV optimization tool was also included in the analysis, It was shown that parameters as e.g. air density or tracking losses, low......In the recent years, exergy analysis has become a very important tool in the evaluation of systems’ efficiency. It aims on minimizing the energy related-system losses and therefore maximizing energy savings and helps society substantially to move towards sustainable development and cleaner...

  18. Spatial mapping of wind parks in Republic of Macedonia from aspect of power generation and connection to power grid

    International Nuclear Information System (INIS)

    Janchevska, Melita

    2012-01-01

    The master thesis “Spatial mapping of wind parks in Republic of Macedonia from aspect of power generation and connection to power grid” presents spatial aspects for setting of wind parks at favourable locations. The thesis presents a comprehensive analysis how to carry out the administrative procedures that are in force in Republic of Macedonia, a range of minimum allowed distances in setting of each of the wind plants within a wind parks, but also requirements for fulfilling the basic human rights in preserving quality of life of the people in rural areas where the wind parks are build. As a result, a compromise in setting of wind parks and a suitable solution of sustainable development should be reached. Therefore, the decision making process should be based on the following key factors: environmental, social and economic development of the area of concern. The production of wind power is strongly influenced by meteorological conditions and has an average factor of utilization of up to 30%. This low factor of utilization cannot be used for planning of the basic energy needs of the country, but it can contribute certainly towards the reduction of the participation of conventional power plants. Republic of Macedonia introduced feed-in tariffs as a subsiding mechanism for building and strong penetration of wind parks. Additional funding mechanisms include carbon financing and green-field credits, through development of projects in the framework of Clean Development Mechanism, which improves the economic feasibility of the project and increases the interest of the investors. The analysis of the relevant spatial aspects of setting wind parks in Republic of Macedonia based on balanced and sustainable spatial development is made with regards to the following thematic areas: exploiting the potential of wind energy, climate issues, geo morphological and geo seismically aspects, rational use of land, protection of agricultural land and forests, spatial allocation of

  19. Reducing costs of wind power with a gearless permanent-magnet generator

    International Nuclear Information System (INIS)

    Vihriaelae, H.; Peraelae, R.; Soederlund, L.; Eriksson, J.T.

    1995-01-01

    This article examines a disc-type axial-field permanent magnet generator (PMG) utilizing the latest generation of permanent magnet material, namely Nd 15 B 8 Fe 77 . A frequency converter (FC) is needed to keep the system synchronized with the grid. It also offers a possibility to use variable speed. The main advantages of this novel system compared to the conventional one are a higher overall efficiency, better reliability, reduced weight and diminished need for maintenance, all contributing to the cost-reduction of wind power. (author)

  20. Reducing costs of wind power with a gearless permanent-magnet generator

    Energy Technology Data Exchange (ETDEWEB)

    Vihriaelae, H; Peraelae, R; Soederlund, L; Eriksson, J T [Tampere Univ. of Technology (Finland). Lab. of Electricity and Magnetism

    1996-12-31

    This article examines a disc-type axial-field permanent magnet generator (PMG) utilizing the latest generation of permanent magnet material, namely Nd{sub 15}B{sub 8}Fe{sub 77}. A frequency converter (FC) is needed to keep the system synchronized with the grid. It also offers a possibility to use variable speed. The main advantages of this novel system compared to the conventional one are a higher overall efficiency, better reliability, reduced weight and diminished need for maintenance, all contributing to the cost-reduction of wind power. (author)

  1. Reducing costs of wind power with a gearless permanent-magnet generator

    Energy Technology Data Exchange (ETDEWEB)

    Vihriaelae, H.; Peraelae, R.; Soederlund, L.; Eriksson, J.T. [Tampere Univ. of Technology (Finland). Lab. of Electricity and Magnetism

    1995-12-31

    This article examines a disc-type axial-field permanent magnet generator (PMG) utilizing the latest generation of permanent magnet material, namely Nd{sub 15}B{sub 8}Fe{sub 77}. A frequency converter (FC) is needed to keep the system synchronized with the grid. It also offers a possibility to use variable speed. The main advantages of this novel system compared to the conventional one are a higher overall efficiency, better reliability, reduced weight and diminished need for maintenance, all contributing to the cost-reduction of wind power. (author)

  2. A Review of Power Electronics for Wind Power

    DEFF Research Database (Denmark)

    Chen, Zhe

    2011-01-01

    The paper reviews the power electronic applications for wind energy systems. Main wind turbine systems with different generators and power electronic converters are described. The electrical topologies of wind farms with power electronic conversion are discussed. Power electronic applications...

  3. Active Power and Flux Control of a Self-Excited Induction Generator for a Variable-Speed Wind Turbine Generation

    Energy Technology Data Exchange (ETDEWEB)

    Na, Woonki; Muljadi, Eduard; Leighty, Bill; Kim, Jonghoon

    2017-05-11

    A Self-Excited Induction Generation (SEIG) for a variable speed wind turbine generation(VS-WG) is normally considered to be a good candidate for implementation in stand-alone applications such as battery charging, hydrogenation, water pumping, water purification, water desalination, and etc. In this study, we have examined a study on active power and flux control strategies for a SEIG for a variable speed wind turbine generation. The control analysis for the proposed system is carried out by using PSCAD software. In the process, we can optimize the control design of the system, thereby enhancing and expediting the control design procedure for this application. With this study, this control design for a SEIG for VS-WG can become the industry standard for analysis and development in terms of SEIG.

  4. Wind power plant

    Energy Technology Data Exchange (ETDEWEB)

    Kling, A

    1977-01-13

    The wind power plant described has at least one rotor which is coupled to an electricity generator. The systems are fixed to a suspended body so that it is possible to set up the wind power plant at greater height where one can expect stronger and more uniform winds. The anchoring on the ground or on a floating body is done by mooring cables which can simultaneously have the function of an electric cable. The whole system can be steered by fins. The rotor system itself consists of at least one pair of contrarotating, momentum balanced rotors.

  5. Wind power in modern power systems

    DEFF Research Database (Denmark)

    Chen, Zhe

    2013-01-01

    In recent years, wind power is experiencing a rapid growth, and large-scale wind turbines/wind farms have been developed and connected to power systems. However, the traditional power system generation units are centralized located synchronous generators with different characteristics compared...... with wind turbines. This paper presents an overview of the issues about integrating large-scale wind power plants into modern power systems. Firstly, grid codes are introduced. Then, the main technical problems and challenges are presented. Finally, some possible technical solutions are discussed....

  6. Generation Expansion Planning With Large Amounts of Wind Power via Decision-Dependent Stochastic Programming

    Energy Technology Data Exchange (ETDEWEB)

    Zhan, Yiduo; Zheng, Qipeng P.; Wang, Jianhui; Pinson, Pierre

    2017-07-01

    Power generation expansion planning needs to deal with future uncertainties carefully, given that the invested generation assets will be in operation for a long time. Many stochastic programming models have been proposed to tackle this challenge. However, most previous works assume predetermined future uncertainties (i.e., fixed random outcomes with given probabilities). In several recent studies of generation assets' planning (e.g., thermal versus renewable), new findings show that the investment decisions could affect the future uncertainties as well. To this end, this paper proposes a multistage decision-dependent stochastic optimization model for long-term large-scale generation expansion planning, where large amounts of wind power are involved. In the decision-dependent model, the future uncertainties are not only affecting but also affected by the current decisions. In particular, the probability distribution function is determined by not only input parameters but also decision variables. To deal with the nonlinear constraints in our model, a quasi-exact solution approach is then introduced to reformulate the multistage stochastic investment model to a mixed-integer linear programming model. The wind penetration, investment decisions, and the optimality of the decision-dependent model are evaluated in a series of multistage case studies. The results show that the proposed decision-dependent model provides effective optimization solutions for long-term generation expansion planning.

  7. Active Power Optimal Control of Wind Turbines with Doubly Fed Inductive Generators Based on Model Predictive Control

    Directory of Open Access Journals (Sweden)

    Guo Jiuwang

    2015-01-01

    Full Text Available Because of the randomness and fluctuation of wind energy, as well as the impact of strongly nonlinear characteristic of variable speed constant frequency (VSCF wind power generation system with doubly fed induction generators (DFIG, traditional active power control strategies are difficult to achieve high precision control and the output power of wind turbines is more fluctuated. In order to improve the quality of output electric energy of doubly fed wind turbines, on the basis of analyzing the operating principles and dynamic characteristics of doubly fed wind turbines, this paper proposes a new active power optimal control method of doubly fed wind turbines based on predictive control theory. This method uses state space model of wind turbines, based on the prediction of the future state of wind turbines, moves horizon optimization, and meanwhile, gets the control signals of pitch angle and generator torque. Simulation results show that the proposed control strategies can guarantee the utilization efficiency for wind energy. Simultaneously, they can improve operation stability of wind turbines and the quality of electric energy.

  8. Modeling and forecasting of wind power generation - Regime-switching approaches

    DEFF Research Database (Denmark)

    Trombe, Pierre-Julien

    The present thesis addresses a number of challenges emerging from the increasing penetration of renewable energy sources into power systems. Focus is placed on wind energy and large-scale offshore wind farms. Indeed, offshore wind power variability is becoming a serious obstacle to the integration...... of more renewable energy into power systems since these systems are subjected to maintain a strict balance between electricity consumption and production, at any time. For this purpose, wind power forecasts offer an essential support to power system operators. In particular, there is a growing demand...... case study is the Horns Rev wind farm located in the North Sea. Regime-switching aspects of offshore wind power fluctuations are investigated. Several formulations of Markov-Switching models are proposed in order to better characterize the stochastic behavior of the underlying process and improve its...

  9. Resolution 8.069/12. It approve the regulations for the large size structures installation, destined for wind power generation

    International Nuclear Information System (INIS)

    2012-01-01

    This resolution approve the regulations for the large size structures installation, destined to wind power generation. The objective of this rule is to regulate the urban conditions of the facilities and the environmental guarantees, safety and inhabitants wholesomeness

  10. Two methods for damping torsional vibrations in DFIG-based wind generators using power converters

    Science.gov (United States)

    Zhao, Zuyi; Lu, Yupu; Xie, Da; Yu, Songtao; Wu, Wangping

    2017-01-01

    This paper proposes novel damping control algorithms by using static synchronous compensator (STATCOM) and energy storage system (ESS) to damp torsional vibrations in doubly fed induction generator (DFIG) based wind turbine systems. It first analyses the operating characteristics of STATCOM and ESS for regulating power variations to increase grid voltage stability. Then, new control strategies for STATCOM and ESS are introduced to damp the vibrations. It is followed by illustration of their effectiveness to damp the drive train torsional vibrations of wind turbines, which can be caused by grid disturbances, such as voltage sags and frequency fluctuations. Results suggest that STATCOM is a promising technology to mitigate the torsional vibrations caused by grid voltage sags. By contrast, the ESS connected to the point of common coupling (PCC) of wind turbine systems shows even obvious advantages because of its capability of absorbing/releasing both active and reactive power. It can thus be concluded that STATCOM is useful for stabilizing power system voltage fluctuations, and ESS is more effective both in regulating PCC voltage fluctuations and damping torsional vibrations caused by grid voltage frequency fluctuations.

  11. Disadvantages of the wind power

    International Nuclear Information System (INIS)

    Andersen, Odd W.

    2005-01-01

    The article discussed various disadvantages of the wind power production and focuses on turbine types, generators, operational safety and development aspects. Some environmental problems are mentioned

  12. Co-generation of hydrogen from nuclear and wind: the effect on costs of realistic variations in wind capacity and power prices

    International Nuclear Information System (INIS)

    Miller, A.I.; Duffey, R.

    2005-01-01

    Can electricity from high-capacity nuclear reactors be blended with the variable output of wind turbines to produce electrolytic hydrogen competitively? Future energy hopes and emissions reduction scenarios place significant reliance on renewables, actually meaning largely new wind power both onshore and offshore. The opportunity exists for a synergy between high capacity factor nuclear plants and wind power using hydrogen by both as a 'currency' for use in transportation and industrial processing. But this use of hydrogen needs to be introduced soon. To be competitive with alternative sources, hydrogen produced by conventional electrolysis requires low-cost electricity (likely <2.5 Cent US/kW.h). One approach is to operate interruptibly allowing an installation to sell electricity when the grid price is high and to make hydrogen when it is low. Our previous studies have shown that this could be a cost-competitive approach with a nuclear power generator producing electricity around 3 Cent US/kW.h. Although similar unit costs are projected for wind-generated electricity, idleness of the hydrogen production (electrolysis) facility due to the variability of wind generated electricity imposes a serious cost penalty. This paper reports our latest results on the potential economics of blending electricity from nuclear and wind sources by using wind-generated power, when available, to augment the current through electrolysis equipment that is primarily nuclear-powered. A voltage penalty accompanies the higher current. A 10% increase in capital cost for electrolysis equipment enables it to accommodate the higher rate of hydrogen generation, while still being substantially cheaper than the capital cost of wind-dedicated electrolysis. Real-time data for electricity costs have been combined with real-time wind variability in our NuWind model. The variability in wind fields between sites was accommodated by assuming an average wind speed that produced an average electricity

  13. Optimizing the wind power generation in low wind speed areas using an advanced hybrid RBF neural network coupled with the HGA-GSA optimization method

    Energy Technology Data Exchange (ETDEWEB)

    Assareh, Ehsanolah; Poultangari, Iman [Dezful Branch, Islamic Azad University, Dezful (Iran, Islamic Republic of); Tandis, Emad [Mechanical Engineering Department, University of Jundi Shapor, Dezful (Iran, Islamic Republic of); Nedael, Mojtaba [Dept. of Energy Engineering, Graduate School of the Environment and Energy, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of)

    2016-10-15

    Enhancing the energy production from wind power in low-wind areas has always been a fundamental subject of research in the field of wind energy industry. In the first phase of this research, an initial investigation was performed to evaluate the potential of wind in south west of Iran. The initial results indicate that the wind potential in the studied location is not sufficient enough and therefore the investigated region is identified as a low wind speed area. In the second part of this study, an advanced optimization model was presented to regulate the torque in the wind generators. For this primary purpose, the torque of wind turbine is adjusted using a Proportional and integral (PI) control system so that at lower speeds of the wind, the power generated by generator is enhanced significantly. The proposed model uses the RBF neural network to adjust the net obtained gains of the PI controller for the purpose of acquiring the utmost electricity which is produced through the generator. Furthermore, in order to edify and instruct the neural network, the optimal data set is obtained by a Hybrid genetic algorithm along with a gravitational search algorithm (HGA-GSA). The proposed method is evaluated by using a 5MW wind turbine manufactured by National Renewable Energy Laboratory (NREL). Final results of this study are indicative of the satisfactory and successful performance of the proposed investigated model.

  14. Power Electronic Systems for Switched Reluctance Generator based Wind Farms and DC Networks

    DEFF Research Database (Denmark)

    Park, Kiwoo

    enable various renewable energy sources, such as Photovoltaic (PV) and wind, to produce dc power directly. In addition, battery-based energy storage systems inherently operate with dc power. Hence, dc network (dc-grid) systems which connect these dc sources and storages directly using dc networks...... are gaining much attention again. The dc network system has a great potential to outdo the traditional ac systems in many technical challenges and could be highly profitable especially for offshore wind farm applications, where the size and weight of the components are crucial to the entire system costs......Wind power technology, as the most competitive renewable energy technology, is quickly developing. The wind turbine size is growing and the grid penetration of wind power is increasing rapidly. Recently, the developments on wind power technology pay more attentions on efficiency and reliability...

  15. Low voltage ride through strategies for SCIG wind turbines in distributed power generation systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Teodorescu, Remus; Rodriguez, Pedro

    2008-01-01

    Fulfilling the new grid codes constitutes one of the main challenges for the wind power industry, that is specially concerned about the new fault-ride-through requirements. Enhancing the operation of wind-turbines in front of grid faults is not only an important issue for new wind farms, but also...

  16. Optimal placement of horizontal - and vertical - axis wind turbines in a wind farm for maximum power generation using a genetic algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xiaomin; Agarwal, Ramesh [Department of Mechanical Engineering & Materials Science, Washington University in St. Louis, Jolley Hall, Campus Box 1185, One Brookings Drive, St. Louis, Missouri, 63130 (United States)

    2012-07-01

    In this paper, we consider the Wind Farm layout optimization problem using a genetic algorithm. Both the Horizontal –Axis Wind Turbines (HAWT) and Vertical-Axis Wind Turbines (VAWT) are considered. The goal of the optimization problem is to optimally position the turbines within the wind farm such that the wake effects are minimized and the power production is maximized. The reasonably accurate modeling of the turbine wake is critical in determination of the optimal layout of the turbines and the power generated. For HAWT, two wake models are considered; both are found to give similar answers. For VAWT, a very simple wake model is employed.

  17. Maximum power point tracking-based control algorithm for PMSG wind generation system without mechanical sensors

    International Nuclear Information System (INIS)

    Hong, Chih-Ming; Chen, Chiung-Hsing; Tu, Chia-Sheng

    2013-01-01

    Highlights: ► This paper presents MPPT based control for optimal wind energy capture using RBFN. ► MPSO is adopted to adjust the learning rates to improve the learning capability. ► This technique can maintain the system stability and reach the desired performance. ► The EMF in the rotating reference frame is utilized in order to estimate speed. - Abstract: This paper presents maximum-power-point-tracking (MPPT) based control algorithms for optimal wind energy capture using radial basis function network (RBFN) and a proposed torque observer MPPT algorithm. The design of a high-performance on-line training RBFN using back-propagation learning algorithm with modified particle swarm optimization (MPSO) regulating controller for the sensorless control of a permanent magnet synchronous generator (PMSG). The MPSO is adopted in this study to adapt the learning rates in the back-propagation process of the RBFN to improve the learning capability. The PMSG is controlled by the loss-minimization control with MPPT below the base speed, which corresponds to low and high wind speed, and the maximum energy can be captured from the wind. Then the observed disturbance torque is feed-forward to increase the robustness of the PMSG system

  18. Characterization of a Power Electronic Grid Simulator for Wind Turbine Generator Compliance Testing

    DEFF Research Database (Denmark)

    Glasdam, Jakob Bærholm; Gevorgian, V.; Wallen, R.

    2014-01-01

    This paper presents the commissioning results and testing capabilities of a multi-megawatt power electronic grid simulator situated in National Renewable Energy Laboratory’s (NREL’s) new testing facility. The commissioning is done using a commercial type 4 multi-megawatt sized wind turbine...... generator (WTG) installed in NREL’s new 5 MW dynamometer and a kilowatt sized type 1 WTG connected to the existing 2.5 MW dynamometer at NREL. The paper demonstrates the outstanding testing capability of the grid simulator and its application in the grid code compliance evaluation of WTGs including balanced...

  19. Assembling Markets for Wind Power

    DEFF Research Database (Denmark)

    Pallesen, Trine

    hand, as an economic good, wind power is said to suffer from (techno-economic) ‘disabilities’, such as high costs, fluctuating and unpredictable generation, etc. Therefore, because of its performance as a good, it is argued that the survival of wind power in the market is premised on different......This project studies the making of a market for wind power in France. Markets for wind power are often referred to as ‘political markets: On the one hand, wind power has the potential to reduce CO2-emissions and thus stall the effects of electricity generation on climate change; and on the other...... instruments, some of which I will refer to as ‘prosthetic devices’. This thesis inquires into two such prosthetic devices: The feed-in tariff and the wind power development zones (ZDE) as they are negotiated and practiced in France, and also the ways in which they affect the making of markets for wind power....

  20. Modeling and Maximum Power Point Tracking Control of Wind Generating Units Equipped with Permanent Magnet Synchronous Generators in Presence of Losses

    Directory of Open Access Journals (Sweden)

    Andrea Bonfiglio

    2017-01-01

    Full Text Available This paper focuses on the modeling of wind turbines equipped with direct drive permanent magnet synchronous generators for fundamental frequency power system simulations. Specifically, a procedure accounting for the system active power losses to initialize the simulation starting from the load flow results is proposed. Moreover, some analytical assessments are detailed on typical control schemes for fully rated wind turbine generators, thereby highlighting how active power losses play a fundamental role in the effectiveness of the wind generator control algorithm. Finally, the paper proposes analytical criteria to design the structure and the parameters of the regulators of the wind generator control scheme. Simulations performed with Digsilent Power Factory validated the proposed procedure, highlighting the impact of active power losses on the characterization of the initial steady state and that the simplifying assumptions done in order to synthesize the controllers are consistent with the complete modeling performed by the aforementioned power system simulator.

  1. Probabilistic Forecasts of Wind Power Generation by Stochastic Differential Equation Models

    DEFF Research Database (Denmark)

    Møller, Jan Kloppenborg; Zugno, Marco; Madsen, Henrik

    2016-01-01

    The increasing penetration of wind power has resulted in larger shares of volatile sources of supply in power systems worldwide. In order to operate such systems efficiently, methods for reliable probabilistic forecasts of future wind power production are essential. It is well known...... that the conditional density of wind power production is highly dependent on the level of predicted wind power and prediction horizon. This paper describes a new approach for wind power forecasting based on logistic-type stochastic differential equations (SDEs). The SDE formulation allows us to calculate both state......-dependent conditional uncertainties as well as correlation structures. Model estimation is performed by maximizing the likelihood of a multidimensional random vector while accounting for the correlation structure defined by the SDE formulation. We use non-parametric modelling to explore conditional correlation...

  2. The wind power of Mexico

    International Nuclear Information System (INIS)

    Hernandez-Escobedo, Q.; Manzano-Agugliaro, F.; Zapata-Sierra, A.

    2010-01-01

    The high price of fossil fuels and the environmental damage they cause have encouraged the development of renewable energy resources, especially wind power. This work discusses the potential of wind power in Mexico, using data collected every 10 min between 2000 and 2008 at 133 automatic weather stations around the country. The wind speed, the number of hours of wind useful for generating electricity and the potential electrical power that could be generated were estimated for each year via the modelling of a wind turbine employing a logistic curve. A linear correlation of 90.3% was seen between the mean annual wind speed and the mean annual number of hours of useful wind. Maps were constructed of the country showing mean annual wind speeds, useful hours of wind, and the electrical power that could be generated. The results show that Mexico has great wind power potential with practically the entire country enjoying more than 1700 h of useful wind per year and the potential to generate over 2000 kW of electrical power per year per wind turbine installed (except for the Chiapas's State). Indeed, with the exception of six states, over 5000 kW per year could be generated by each turbine. (author)

  3. A Review of Power Electronics for Wind Power

    Institute of Scientific and Technical Information of China (English)

    Zhe CHEN

    2011-01-01

    The paper reviews the power electronic applications for wind energy systems.Main wind turbine systems with different generators and power electronic converters are described.The electrical topologies of wind farms with power electronic conversion are discussed.Power electronic applications for improving the performance of wind turbines and wind farms in power systems have been illustrated.

  4. Wind power - energy from air

    International Nuclear Information System (INIS)

    Alakangas, E.

    1998-01-01

    The wind conditions for wind power generation are favourable on the coast, in the archipelagos and in the fell areas of Finland. About 7 MW of wind power has been constructed in Finland, with the investment support of the Ministry of Trade and Industry. In 1995 about 11 GWh were produced by wind energy. A number of wind power plants are under design on the coasts of the Gulf of Finland and the Gulf of Bothnia as well as on the Aaland Islands. The first arctic wind park was constructed in Lapland in September 1996

  5. Applications of wind generation for power system frequency control, inter-area oscillations damping and parameter identification

    Science.gov (United States)

    Wilches-Bernal, Felipe

    Power systems around the world are experiencing a continued increase in wind generation as part of their energy mix. Because of its power electronics interface, wind energy conversion systems interact differently with the grid than conventional generation. These facts are changing the traditional dynamics that regulate power system behavior and call for a re-examination of traditional problems encountered in power systems like frequency response, inter-area oscillations and parameter identification. To address this need, realistic models for wind generation are necessary. The dissertation implements such models in a MATLAB-based flexible environment suited for power system research. The dissertation continues with an analysis of the frequency response of a test power system dependent mainly on a mode referred to as the frequency regulation mode. Using this test system it is shown that its frequency regulation capability is reduced with wind penetration levels of 25% and above. A controller for wind generation to restore the frequency response of the system is then presented. The proposed controller requires the WTG to operate in a deloaded mode, a condition that is obtained through pitching the wind turbine blades. Time simulations at wind penetration levels of 25% and 50% are performed to demonstrate the effectiveness of the proposed controller. Next, the dissertation evaluates how the inter-area oscillation of a two-machine power system is affected by wind integration. The assessment is performed based on the positioning of the WTG, the level of wind penetration, and the loading condition of the system. It is determined that integrating wind reduces the damping of the inter-area mode of the system when performed in an area that imports power. For this worst-case scenario, the dissertation proposes two controllers for wind generation to improve the damping of the inter-area mode. The first controller uses frequency as feedback signal for the active power control

  6. Adaptive Hysteresis Band Current Control (AHB) with PLL of Grid Side Converter-Based Wind Power Generation System

    DEFF Research Database (Denmark)

    Guo, Yougui; Zeng, Ping; Li, Lijuan

    2011-01-01

    Adaptive hysteresis band current control(AHB CC) is used to control the three-phase grid currents by means of grid side converter in wind power generation system in this paper. AHB has reached the good purpose with PLL (Lock phase loop). First the mathematical models of each part are given......, transformer and grid, and control parts, etc. The simulation results have verified that the control strategy is feasible to fit for control of gird currents, active power, reactive power and DC-link voltage in wind power generation system....

  7. Intelligent approach to maximum power point tracking control strategy for variable-speed wind turbine generation system

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Whei-Min; Hong, Chih-Ming [Department of Electrical Engineering, National Sun Yat-Sen University, Kaohsiung 80424 (China)

    2010-06-15

    To achieve maximum power point tracking (MPPT) for wind power generation systems, the rotational speed of wind turbines should be adjusted in real time according to wind speed. In this paper, a Wilcoxon radial basis function network (WRBFN) with hill-climb searching (HCS) MPPT strategy is proposed for a permanent magnet synchronous generator (PMSG) with a variable-speed wind turbine. A high-performance online training WRBFN using a back-propagation learning algorithm with modified particle swarm optimization (MPSO) regulating controller is designed for a PMSG. The MPSO is adopted in this study to adapt to the learning rates in the back-propagation process of the WRBFN to improve the learning capability. The MPPT strategy locates the system operation points along the maximum power curves based on the dc-link voltage of the inverter, thus avoiding the generator speed detection. (author)

  8. The contribution of wind energy to electric power generation; Der Beitrag der Windenergie zur Stromerzeugung

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    The conference discussed the following five subjects: (1) Status and perspectives of wind power in Germany and Japan; (2) Grid connection of wind power systems; (3) Wind power and electric power supply; (4) Future fields of application, technical perspectives; (5) Panel discussion. [German] Der Tagungsband beinhaltet Beitraege in fuenf Bloecken, die die folgenden Ueberschriften haben: (1) Stand und Perspektiven der Windenergienutzung in Deutschland und Japan; (2) Netzintegration von Windenergieanlagen; (3) Windenergie in der elektrischen Energieversorgung; (4) zukuenftige Anwendungsfelder, technische Perspektiven sowie (5) Paneldiskussion. (AKF)

  9. Trend in China's Wind Power

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    @@ Attractive prospects for wind power development Sha Yiqiang:In recent years,the development and utilization of wind energy has achieved remarkable results.To the end of 2007,the installed capacity of the wind power had reached 94 000 MW all over the world,which is distributed over 60 countries.Over the past 20 years,the wind power generation installation cost has been reduced by 50% and is closing to that of the conventional energy resources.Meanwhile,the single unit capacity,efficiency and reliability of wind power have been greatly improved.

  10. Induced Torques on Synchronous Generators from Operation of Wind Power Plant based on Full-Load Converter Interfaced Wind Turbines

    DEFF Research Database (Denmark)

    Knüppel, Thyge; Nielsen, Jørgen N.; Jensen, Kim H.

    2011-01-01

    It is expected that large wind power plants (WPP) contribute to stable and reliable operation of the electric power system. This includes participation with delivery of system services such as voltage and frequency support. With variable-speed WPPs this can be achieved by adding auxiliary...... be predicted with the presented method. The work is based on a nonlinear, dynamic model of the 3.6 MW Siemens Wind Power wind turbine....... controllers that control the active and reactive power output accordingly. While being designed for a given system service, any feedback control affects the closed-loop behavior of the overall system and thereby its small-signal stability properties. Eigenvalue analysis conveniently determines the stability...

  11. Controllable Grid Interface for Testing Ancillary Service Controls and Fault Performance of Utility-Scale Wind Power Generation: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Gevorgian, Vahan; Koralewicz, Przemyslaw; Wallen, Robb; Muljadi, Eduard

    2017-02-01

    The rapid expansion of wind power has led many transmission system operators to demand modern wind power plants to comply with strict interconnection requirements. Such requirements involve various aspects of wind power plant operation, including fault ride-through and power quality performance as well as the provision of ancillary services to enhance grid reliability. During recent years, the National Renewable Energy Laboratory (NREL) of the U.S. Department of Energy has developed a new, groundbreaking testing apparatus and methodology to test and demonstrate many existing and future advanced controls for wind generation (and other renewable generation technologies) on the multimegawatt scale and medium-voltage levels. This paper describes the capabilities and control features of NREL's 7-MVA power electronic grid simulator (also called a controllable grid interface, or CGI) that enables testing many active and reactive power control features of modern wind turbine generators -- including inertial response, primary and secondary frequency responses, and voltage regulation -- under a controlled, medium-voltage grid environment. In particular, this paper focuses on the specifics of testing the balanced and unbalanced fault ride-through characteristics of wind turbine generators under simulated strong and weak medium-voltage grid conditions. In addition, this paper provides insights on the power hardware-in-the-loop feature implemented in the CGI to emulate (in real time) the conditions that might exist in various types of electric power systems under normal operations and/or contingency scenarios. Using actual test examples and simulation results, this paper describes the value of CGI as an ultimate modeling validation tool for all types of 'grid-friendly' controls by wind generation.

  12. Price Forecasting of Electricity Markets in the Presence of a High Penetration of Wind Power Generators

    OpenAIRE

    Saber Talari; Miadreza Shafie-khah; Gerardo J. Osório; Fei Wang; Alireza Heidari; João P. S. Catalão

    2017-01-01

    Price forecasting plays a vital role in the day-ahead markets. Once sellers and buyers access an accurate price forecasting, managing the economic risk can be conducted appropriately through offering or bidding suitable prices. In networks with high wind power penetration, the electricity price is influenced by wind energy; therefore, price forecasting can be more complicated. This paper proposes a novel hybrid approach for price forecasting of day-ahead markets, with high penetration of wind...

  13. Wind Power Meteorology

    DEFF Research Database (Denmark)

    Lundtang Petersen, Erik; Mortensen, Niels Gylling; Landberg, Lars

    Wind power meteorology has evolved as an applied science, firmly founded on boundary-layer meteorology, but with strong links to climatology and geography. It concerns itself with three main areas: siting of wind turbines, regional wind resource assessment, and short-term prediction of the wind...... resource. The history, status and perspectives of wind power meteorology are presented, with emphasis on physical considerations and on its practical application. Following a global view of the wind resource, the elements of boundary layer meteorology which are most important for wind energy are reviewed......: wind profiles and shear, turbulence and gust, and extreme winds. The data used in wind power meteorology stem mainly from three sources: onsite wind measurements, the synoptic networks, and the re-analysis projects. Wind climate analysis, wind resource estimation and siting further require a detailed...

  14. Optimal design of wind power generation equipment%风力发电设备的优化设计

    Institute of Scientific and Technical Information of China (English)

    宗倩

    2016-01-01

    风能清洁无污染,是人们梦寐以求的新能源。风力发电是一种有效利用风能的新形式,风力发电设备决定着发电效率与发电成本,因此优化发电设备至关重要。通过阐述风力发电基本原理及现代风机的基本组成,提出风力发电设备优化设计的几点思路,为提高风力发电可利用价值提供参考。%Wind power is clean and pollution-free, which is the new energy people want to use. Wind power generation is aneffectivenewformofusingwindenergy,windpowergenerationequipmentdeterminestheefficiencyandcostofpower generation, therefore to optimize power generation equipment is essential. Through elaborating basic composition of wind power generation and basic principles of modern wind turbines, this paper proposed a few ideas on optimal design of wind power generation equipment, which provided reference for increasing its use value.

  15. Starting to Explore Wind Power

    Science.gov (United States)

    Hare, Jonathan

    2008-01-01

    Described is a simple, cheap and versatile homemade windmill and electrical generator suitable for a school class to use to explore many aspects and practicalities of using wind to generate electrical power. (Contains 8 figures.)

  16. Loss evaluation and design optimisation for direct driven permanent magnet synchronous generators for wind power

    Energy Technology Data Exchange (ETDEWEB)

    Eriksson, Sandra; Bernhoff, Hans [Swedish Centre for Renewable Electric Energy Conversion, Division for Electricity, Department of Engineering Sciences, Uppsala University, Box 534, 751 21 Uppsala (Sweden)

    2011-01-15

    When designing a generator for a wind turbine it is important to adapt the generator to the source, i.e. the wind conditions at the specific site. Furthermore, the variable speed operation of the generator needs to be considered. In this paper, electromagnetic losses in direct driven permanent magnet synchronous generators are evaluated through simulations. Six different generators are compared to each other. The simulations are performed by using an electromagnetic model, solved in a finite element environment and a control model developed in MATLAB. It is shown that when designing a generator it is important to consider the statistical wind distribution, control system, and aerodynamic efficiency in order to evaluate the performance properly. In this paper, generators with high overload capability are studied since they are of interest for this specific application. It is shown that a generator optimised for a minimum of losses will have a high overload capability. (author)

  17. Implementation of IEC Generic Model of Type 1 Wind Turbine Generator in DIgSILENT PowerFactory

    DEFF Research Database (Denmark)

    Zhao, Haoran; Wu, Qiuwei; Margaris, Ioannis

    2013-01-01

    The implementation method for the International Electrotechnical Commission (IEC) generic models of Type 1 wind turbine generator (WTG) in DIgSILENT PowerFactory is presented. The following items are described, i.e. model structure, model blocks and how to implement these blocks in the PowerFactory...

  18. Faroe Islands Wind-Powered Space Heating Microgrid Using Self-Excited 220 kW Induction Generator

    DEFF Research Database (Denmark)

    Thomsen, Bjarti; Guerrero, Josep M.; Thogersen, Paul

    2014-01-01

    its own control of frequency and voltage. A micro-controller is used to control frequency by matching load (heaters) to generated power and to produce the correct reactive power and voltage by switched capacitors. One challenge is the startup procedure at high winds speeds when nominal speed tend...

  19. Modeling and Control of Grid Side Converter in Wind Power Generation System Based on Synchronous VFDPC with PLL

    DEFF Research Database (Denmark)

    Guo, Yougui; Zeng, Ping; Li, Lijuan

    2011-01-01

    Virtual flux oriented direct power control (VFDPC) is combined space vector modulation (SVM) with PI of DC-link voltage, active power and reactive power to control the grid side converter in wind power generation system in this paper. VFDPC has reached good performances with PLL (phase lock loop......, LCL filter, transformer grid, and control parts, such as PI controllers of DC-link voltage, active power, reactive power, and SVM, and so on. The simulation results have verified that the control strategy is feasible to fit for control of gird currents, active power, reactive power and DC-link voltage...

  20. Wind Power Now!

    Science.gov (United States)

    Inglis, David Rittenhouse

    1975-01-01

    The government promotes and heavily subsidizes research in nuclear power plants. Federal development of wind power is slow in comparison even though much research with large wind-electric machines has already been conducted. Unless wind power programs are accelerated it will not become a major energy alternative to nuclear power. (MR)

  1. Fluid power network for centralized electricity generation in offshore wind farms

    NARCIS (Netherlands)

    Jarquin-Laguna, A.

    2014-01-01

    An innovative and completely different wind-energy conversion system is studied where a centralized electricity generation within a wind farm is proposed by means of a hydraulic network. This paper presents the dynamic interaction of two turbines when they are coupled to the same hydraulic network.

  2. An improved artificial physical optimization algorithm for dynamic dispatch of generators with valve-point effects and wind power

    International Nuclear Information System (INIS)

    Yuan, Xiaohui; Ji, Bin; Zhang, Shuangquan; Tian, Hao; Chen, Zhihuan

    2014-01-01

    Highlights: • Dynamic load economic dispatch with wind power (DLEDW) model is established. • Markov chains combined with scenario analysis method are used to predict wind power. • Chance constrained technique is used to simulate the impacts of wind forecast error. • Improved artificial physical optimization algorithm is proposed to solve DLEDW. • Heuristic search strategies are applied to handle the constraints of DLEDW. - Abstract: Wind power, a kind of promising renewable energy resource, has recently been getting more attractive because of various environmental and economic considerations. But the penetration of wind power with its fluctuation nature has made the operation of power system more intractable. To coordinate the reliability and operation cost, this paper established a stochastic model of dynamic load economic dispatch with wind integration (DLEDW). In this model, constraints such as ramping up/down capacity, prohibited operating zone are considered and effects of valve-point are taken into account. Markov chains combined with scenario analysis method is used to generate predictive values of wind power and chance constrained programming (CCP) is applied to simulate the impacts of wind power fluctuation on system operation. An improved artificial physical optimization algorithm is presented to solve the DLEDW problem. Heuristic strategies based on the priority list and stochastic simulation techniques are proposed to handle the constraints. In addition, a local chaotic mutation strategy is applied to overcome the disadvantage of premature convergence of artificial physical optimization algorithm. Two test systems with and without wind power integration are used to verify the feasibility and effectiveness of the proposed method and the results are compared with those of gravitational search algorithm, particle swarm optimization and standard artificial physical optimization. The simulation results demonstrate that the proposed method has a

  3. Effect of pole number and slot number on performance of dual rotor permanent magnet wind power generator using ferrite magnets

    Directory of Open Access Journals (Sweden)

    Peifeng Xu

    2017-05-01

    Full Text Available Dual rotor permanent magnet (DRPM wind power generator using ferrite magnets has the advantages of low cost, high efficiency, and high torque density. How to further improve the performance and reduce the cost of the machine by proper choice of pole number and slot number is an important problem to be solved when performing preliminarily design a DRPM wind generator. This paper presents a comprehensive performance comparison of a DRPM wind generator using ferrite magnets with different slot and pole number combinations. The main winding factors are calculated by means of the star of slots. Under the same machine volume and ferrite consumption, the flux linkage, back-electromotive force (EMF, cogging torque, output torque, torque pulsation, and losses are investigated and compared using finite element analysis (FEA. The results show that the slot and pole number combinations have an important impact on the generator properties.

  4. FY1999 technological development of wind power generation systems for islands. Development of wind power generation systems in islands; 1999 nendo ritoyo furyoku hatsuden system nado gijutsu kaihatsu. Rito ni okeru furyoku hatsuden system no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    With an objective of developing wind power generation systems that suit small to medium size islands in Japan, conceptual design was made on a 100-kW class wind mill to satisfy such requirements as no need of large heavy machines, and gust resisting performance. Investigations were performed on sites suitable for demonstration tests thereof. This paper reports the achievements in fiscal 1999. In investigating the site location feasibilities, which took small to medium size islands in Okinawa Prefecture as the discussion objects, environmental investigation, wind condition forecast and investigation, and system linkage investigation were carried out, whereas one point each in three islands were extracted as the promising sites. The system discussion and design called for wind velocity resistance of 80 m/s, system linkage percentage of 40% at maximum, power generation cost of 20 yen per kWh, design life of 20 years, constructability of requiring no large heavy machines, and operation mode of diesel hybrid use. Along with these specifications, conceptual design was performed on the system constituting elements, such as wind mill blades, generators, electric power control devices, and towers. In the blade aerodynamic test, wind tunnel tests were executed by using three types of blade wings. Sample blades were fabricated for the preparation of blade material tests. (NEDO)

  5. Generation of electricity from wind

    International Nuclear Information System (INIS)

    Debroy, S.K.; Behera, S.; Murty, J.S.

    1997-01-01

    Bulk power can be generated by using a chain of wind mills with the current level of technology. Wind turbine technology has improved considerably resulting in better efficiency, availability and capacity factor including a significant reduction in the cost of manufacture and installation

  6. Overview, status and outline of the new IEC 61400-27. Electrical simulation models for wind power generation

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, Poul [Wiley (John) and Sons, Inc., New York, NY (United States). Journal Dept.; Andresen, Bjoern [Siemens Wind Power (Denmark); Fortmann, Jens [RE-Power Systems AG (Germany); Johansen, Knud [Energinet.dk (Denmark); Pourbeik, Pouyan [EPRI (United States)

    2011-07-01

    This paper presents the ongoing work in Working Group (WG) 27 of IEC Technical Committee (TC) 88 developing a standard IEC 61400-27 for 'Electrical simulation models for wind power generation'. The purpose of the standardization work is to define generic simulation models for wind turbines and wind power plants, which are intended for power systems stability analyses. Thus, the models will be applicable for dynamic simulations of power system events such as faults, loss of generation or loads and switching of lines. The paper presents the actual status of the IEC TC88 WG27 work. Some of the challenges encountered during the process of the development of the standard are described, and expected outcome of the standard is also presented. (orig.)

  7. Superconducting wind turbine generators

    DEFF Research Database (Denmark)

    Abrahamsen, Asger Bech; Mijatovic, Nenad; Seiler, Eugen

    2010-01-01

    , the main challenge of the superconducting direct drive technology is to prove that the reliability is superior to the alternative drive trains based on gearboxes or permanent magnets. A strategy of successive testing of superconducting direct drive trains in real wind turbines of 10 kW, 100 kW, 1 MW and 10......We have examined the potential of 10 MW superconducting direct drive generators to enter the European offshore wind power market and estimated that the production of about 1200 superconducting turbines until 2030 would correspond to 10% of the EU offshore market. The expected properties of future...... offshore turbines of 8 and 10 MW have been determined from an up-scaling of an existing 5 MW turbine and the necessary properties of the superconducting drive train are discussed. We have found that the absence of the gear box is the main benefit and the reduced weight and size is secondary. However...

  8. 风力发电系统中的风速测量技术%Wind Speed Measurement Technology in Wind Power Generation System

    Institute of Scientific and Technical Information of China (English)

    雷鹏; 刘文红; 张帅; 邱天爽

    2015-01-01

    风速测量在风力发电系统中影响着风力机组的转速和功率的控制,风速值的准确性将影响整个风机的效率.首先介绍了几种在风力发电系统中常用的风速测量仪,简述了其原理、结构特点,然后分析了各种风速测量方法的优缺点及适用范围,最后展望了软测量技术在风力发电系统风速测量中的应用前景.%The wind speed measurement in wind power system, the influence of the wind turbine speed and power control, the accuracy of the wind speed value will affect the efficiency of the whole wind turbine. In this paper, the wind speed measuring instrument for wind power generation system is introduced, and its principle and structure characteristics are described. Then the advantages and disadvantages of various wind speed measurement methods are analyzed.

  9. Levelized Cost of Energy Analysis of a Wind Power Generation System at Búrfell in Iceland

    Directory of Open Access Journals (Sweden)

    Birgir Freyr Ragnarsson

    2015-09-01

    Full Text Available Wind energy harnessing is a new energy production alternative in Iceland. Current installed wind power in Iceland sums to 1.8 MW, which in contrast is 0.1% of the country’s total electricity production. This article is dedicated to the exploration of the potential cost of wind energy production at Búrfell in the south of Iceland. A levelized cost of energy (LCOE approach was applied to the estimation of the potential cost. Weibull simulation is used to simulate wind data for calculations. A confirmation of the power law is done by comparing real data to calculated values. A modified Weibull simulation is verified by comparing results with actual on-site test wind turbines. A wind farm of 99MWis suggested for the site. Key results were the capacity factor (CF at Búrfell being 38.15% on average and that the LCOE for wind energy was estimated as 0.087–0.088 USD/kWh (assuming 10% weighted average cost of capital (WACC, which classifies Búrfell among the lowest LCOE sites for wind energy in Europe.

  10. Winding Design for Minimum Power Loss and Low-Cost Manufacture in Application to Fixed-Speed PM Generator

    OpenAIRE

    Wrobel, Rafal; Staton, David; Lock, Richard J; Booker, Julian D; Drury, David

    2015-01-01

    This paper presents the results from a coupled thermal and power loss analysis of an open-slot permanent-magnet (PM) generator. The research focus has been placed on the winding design providing minimum power loss at an ac operation, together with low-cost manufacture. The analyzed PM generator is intended to operate at a fixed speed, allowing for the winding design to be finely tuned for a single operating point. Such a design approach has not been widely reported in literature, and the exis...

  11. Implementation of draft IEC Generic Model of Type 1 Wind Turbine Generator in PowerFactory and Simulink

    DEFF Research Database (Denmark)

    Zhao, Haoran; Wu, Qiuwei; Sørensen, Poul Ejnar

    2013-01-01

    This paper presents the implementation work of IEC generic model of Type 1 wind turbine generator (WTG) in two commercial simulation tools: DIgSILENT PowerFactory (PF) and Matlab Simulink. The model topology, details of the composite blocks and implementation procedure in PF and Simulink environm......This paper presents the implementation work of IEC generic model of Type 1 wind turbine generator (WTG) in two commercial simulation tools: DIgSILENT PowerFactory (PF) and Matlab Simulink. The model topology, details of the composite blocks and implementation procedure in PF and Simulink...

  12. MCMC for Wind Power Simulation

    NARCIS (Netherlands)

    Papaefthymiou, G.; Klöckl, B.

    2008-01-01

    This paper contributes a Markov chain Monte Carlo (MCMC) method for the direct generation of synthetic time series of wind power output. It is shown that obtaining a stochastic model directly in the wind power domain leads to reduced number of states and to lower order of the Markov chain at equal

  13. Fiscal 1999 research report. Revision of introduction guidebook for wind power generation; 1999 nendo furyoku hatsuden donyu guide book no kaitei gyomu chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Expectations are rapidly growing higher in Japan, whose energy supply structure is but fragile, that new energies upon introduction and diffusion will help settle emerging environmental problems such as global warming. For the acceleration of new energy introduction, it is necessary to supply autonomous entities etc. planning to adopt new energies with various materials such as basic knowledge of new energies, cases of successful introduction, and procedures to follow for their adoption. Wind power generation has come to attract attention as a environmentally-friendly clean method of energy supply, and there is a strong tendency towards its adoption. Under such circumstances, a guidebook has been prepared, in which study results are systematically written as to the items to consider before local autonomies etc. install their wind power generation systems. The main items in the guidebook are the outlines of wind power generation, wind characteristics, wind power generation system, precedents of wind power generation, how to conduct studies about wind power generation, construction and maintenance of wind power generation systems, procedures, laws, and regulations relating to wind power generation, and government subsidies for wind power development. (NEDO)

  14. Coordination Between Wind Power, Hydro Storage Facility and Conventional Generating Units According to the Annual Growth Load

    Directory of Open Access Journals (Sweden)

    Shahrokh Shojaeean

    2013-04-01

    Full Text Available Considering the growing trend of the consumption of the electric power and the global tendency to substitute new renewable sources of energy, this paper proposes a Monte Carlo based method to determine an optimal level of this change. Considering the limitation of the wind farms in continuous supply of electric power, hydrostatic power storage facilities are used beside wind farms so that the electric power could be stored and fed in a continuous flow into power systems. Due to the gradual exclusion of conventional generators and 5 percent annual load increments, LOLE index was used in order to calculate the amount of the wind power and the capacity of the necessary power storage facility. To this end, LOLE index was calculated for the first year as the reference index for the estimation of the amount of wind power and the capacity of the storage facility in consequent years. For the upcoming years, calculations have been made to account for the gradual exclusion of conventional generators in proportion to load increments. The proposed method has been implemented and simulated on IEEE-RTS test system.

  15. Wind power takes over

    International Nuclear Information System (INIS)

    2002-01-01

    All over the industrialized world concentrated efforts are being made to make wind turbines cover some of the energy demand in the coming years. There is still a long way to go, however, towards a 'green revolution' as far as energy is concerned, for it is quite futile to use wind power for electric heating. The article deals with some of the advantages and disadvantages of developing wind power. In Norway, for instance, environmentalists fear that wind power plants along the coast may have serious consequences for the stocks of white-tailed eagle and golden eagle. An other factor that delays the large-scale application of wind power in Norway is the low price of electricity. Some experts, however, maintain that wind power may already compete with new hydroelectric power of intermediate cost. The investment costs are expected to go down with one third by 2020, when wind power may be the most competitive energy source to utilize

  16. Stabilization and control of tie-line power flow of microgrid including wind generation by distributed energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Molina, M.G.; Mercado, P.E. [CONICET, Instituto de Energia Electrica, Universidad Nacional de San Juan, Av. Libertador San Martin Oeste 1109, J5400ARL San Juan (Argentina)

    2010-06-15

    High penetration of wind generation in electrical microgrids causes fluctuations of tie-line power flow and significantly affects the power system operation. This can lead to severe problems, such as system frequency oscillations, and/or violations of power lines capability. With proper control, a distribution static synchronous compensator (DSTATCOM) integrated with superconducting magnetic energy storage (SMES) is able to significantly enhance the dynamic security of the power system. This paper proposes the use of a SMES system in combination with a DSTATCOM as effective distributed energy storage (DES) for stabilization and control of the tie-line power flow of microgrids incorporating wind generation. A new detailed model of the integrated DSTATCOM-SMES device is derived and a novel three-level control scheme is designed. The dynamic performance of the proposed control schemes is fully validated using MATLAB/Simulink. (author)

  17. Superconducting Wind Turbine Generators

    Directory of Open Access Journals (Sweden)

    Yunying Pan

    2016-08-01

    Full Text Available Wind energy is well known as a renewable energy because its clean and less polluted characteristic, which is the foundation of development modern wind electricity. To find more efficient wind turbine is the focus of scientists around the world. Compared from conventional wind turbines, superconducting wind turbine generators have advantages at zero resistance, smaller size and lighter weight. Superconducting wind turbine will inevitably become the main trends in this area. This paper intends to introduce the basic concept and principle of superconductivity, and compare form traditional wind turbine to obtain superiority, then to summary three proposed machine concept.While superconductivity have difficulty  in modern technology and we also have proposed some challenges in achieving superconducting wind turbine finally.

  18. Power fluctuations suppression of stand-alone hybrid generation combining solar photovoltaic/wind turbine and fuel cell systems

    International Nuclear Information System (INIS)

    Ahmed, Nabil A.; Miyatake, Masafumi; Al-Othman, A.K.

    2008-01-01

    In this paper a hybrid energy system combining variable speed wind turbine, solar photovoltaic and fuel cell generation systems is presented to supply continuous power to residential power applications as stand-alone loads. The wind and photovoltaic systems are used as main energy sources while the fuel cell is used as secondary or back-up energy source. Three individual dc-dc boost converters are used to control the power flow to the load. A simple and cost effective control with dc-dc converters is used for maximum power point tracking and hence maximum power extracting from the wind turbine and the solar photovoltaic systems. The hybrid system is sized to power a typical 2 kW/150 V dc load as telecommunication power plants or ac residential power applications in isolated islands continuously throughout the year. The results show that even when the sun and wind are not available; the system is reliable and available and it can supply high-quality power to the load. The simulation results which proved the accuracy of the proposed controllers are given to demonstrate the availability of the proposed system in this paper. Also, a complete description of the management and control system is presented

  19. Exploiting maximum energy from variable speed wind power generation systems by using an adaptive Takagi-Sugeno-Kang fuzzy model

    International Nuclear Information System (INIS)

    Galdi, V.; Piccolo, A.; Siano, P.

    2009-01-01

    Nowadays, incentives and financing options for developing renewable energy facilities and the new development in variable speed wind technology make wind energy a competitive source if compared with conventional generation ones. In order to improve the effectiveness of variable speed wind systems, adaptive control systems able to cope with time variances of the system under control are necessary. On these basis, a data driven designing methodology for TSK fuzzy models design is presented in this paper. The methodology, on the basis of given input-output numerical data, generates the 'best' TSK fuzzy model able to estimate with high accuracy the maximum extractable power from a variable speed wind turbine. The design methodology is based on fuzzy clustering methods for partitioning the input-output space combined with genetic algorithms (GA), and recursive least-squares (LS) optimization methods for model parameter adaptation

  20. Wind Turbine Power Generation Emulation Via Doubly Fed Induction Generator Control

    Science.gov (United States)

    2009-12-01

    vde thetas vqs_pu vds_pu synchronous...to stationary 0 ide_ref 200 Vdc_ref I_ref I_meas vqe PI iq I_ref I_meas vde PI id v_ref v_meas iqs PI Vdc 4 theta_s 3 ide 2 iqe 1 Vdc 21 between...1-1 x(-1)- a b a + b+ Sy stem Generator Variac P/S 60V 60HzVariac P/S 60V 60Hz 70 Vabc_s THETA CALCULATION 5 vde 4 vqe 3 Vas 2 Vdc_out 1

  1. Evaluation of flexible demand-side load-following reserves in power systems with high wind generation penetration

    NARCIS (Netherlands)

    Paterakis, N.G.; Catalao, J.P.S.; Ntomaris, A.V.; Erdinc, O.

    2015-01-01

    In this study, a two-stage stochastic programming joint energy and reserve day-ahead market structure is proposed in order to procure the required load-following reserves to tackle with wind power production uncertainty. Reserves can be procured both from generation and demand-side. Responsive

  2. Impacts of wind power generation and CO{sub 2} emission constraints on the future choice of fuels and technologies in the power sector of Vietnam

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, K.Q. [Institute of Energy, Hanoi (Viet Nam)

    2007-04-15

    This paper examines the impacts of wind power generation on the future choice of fuels and technologies in the power sector of Vietnam. The study covers a time frame of 20 yr from 2005 to 2025 and the MARKAL model has been chosen to be adaptable to this specific task. The results of the study show that on a simple cost base, power generated from wind is not yet competitive with that of fossil fuel-based power plants. In order to make wind energy competitive, either carbon tax or an emission reduction target on the system must be imposed. The presence of wind power could affect not only the change in generation mix from coal-based power plants to wind turbines but also an increase in the capacity of other technologies which emit less carbon dioxide. It thus helps reduce fossil fuel requirement and consequently enhances energy security for the country. The study also shows that wind turbine in Vietnam could be a potential CDM project for annex I party countries. (author)

  3. Contribution of VSC-HVDC to Frequency Regulation of Power Systems With Offshore Wind Generation

    DEFF Research Database (Denmark)

    Liu, Hongzhi; Chen, Zhe

    2015-01-01

    to the onshore system grid through voltage-source converter-based–high voltage direct current (VSC-HVdc) transmission systems. Due to the decoupling of VSC-HVdc and signal transmission delay, offshore wind farms may not be able to respond to the onshore grid frequency excursion in time and, consequently......, the stability and security of the power system will be put at risk, especially for those with high wind penetration. This paper proposes a coordinated control scheme to allow VSC-HVdc link to contribute to the system frequency regulation by adjusting its dc-link voltage. By means of this approach, the dc...... capacitors of VSC-HVdc are controlled to absorb or release energy so as to provide frequency support. To further enhance the system frequency response, the frequency support from VSC-HVdc is also finely coordinated with that from offshore wind farm according to the latency of offshore wind farm responding...

  4. Analysis on Designed Wind Speed of Wind Power Generator Based on Wind Source Estimation%基于风资源评估的风电机组设计风速分析

    Institute of Scientific and Technical Information of China (English)

    华荣芹; 张新燕; 胡立锦

    2014-01-01

    Taking topography and wind source of one wind area in Xinjiang as study object,this paper analyzes basic data of the historic wind source.By calculating and analyzing main parameters such as wind energy density,wind direction frequen-cy,direction distribution of wind energy density,yearly change of wind speed,turbulence intensity and yearly generating ca-pacity,it optimizes and ensures designed wind speed and power of the wind power generator in favor of this area.By exem-plification,it analyzes impact of wake flow and points out problems to be noted for model selection and configuration for the wind power generator.%以新疆某风区的地形、风资源情况为研究对象,分析其历史风资源基础数据。通过计算、分析风能密度、风向频率及风能密度的方向分布、风速年变化、湍流强度、年发电量等主要参数,优化和确定有利于该地区的风力机设计风速和功率。通过例证分析了尾流的影响,指出进行风力发电机组选型和配置时应注意的问题。

  5. Protection from ground faults in the stator winding of generators at power plants in the Siberian networks

    International Nuclear Information System (INIS)

    Vainshtein, R. A.; Lapin, V. I.; Naumov, A. M.; Doronin, A. V.; Yudin, S. M.

    2010-01-01

    The experience of many years of experience in developing and utilization of ground fault protection in the stator winding of generators in the Siberian networks is generalized. The main method of protection is to apply a direct current or an alternating current with a frequency of 25 Hz to the primary circuits of the stator. A direct current is applied to turbo generators operating in a unit with a transformer without a resistive coupling to the external grid or to other generators. Applying a 25 Hz control current is appropriate for power generation systems with compensation of a capacitive short circuit current to ground. This method forms the basis for protection of generators operating on busbars, hydroelectric generators with a neutral grounded through an arc-suppression reactor, including in consolidated units with generators operating in parallel on a single low-voltage transformer winding.

  6. Power Extraction Control of Variable Speed Wind Turbine Systems Based on Direct Drive Synchronous Generator in All Operating Regimes

    Directory of Open Access Journals (Sweden)

    Youssef Errami

    2018-01-01

    Full Text Available Due to the increased penetration of wind energy into the electrical power systems in recent years, the turbine controls are actively occupied in the research. This paper presents a nonlinear backstepping strategy to control the generators and the grid sides of a Wind Farm System (WFS based Direct Drive Synchronous Generator (DDSG. The control objectives such as Tracking the Maximum Power (TMP from the WFS, pitch control, regulation of dc-link voltage, and reactive and active power generation at varying wind velocity are included. To validate the proposed control strategy, simulation results for 6-MW-DDSG based Wind Farm System are carried out by MATLAB-Simulink. Performance comparison and evaluation with Vector Oriented Control (VOC are provided under a wide range of functioning conditions, three-phase voltage dips, and the probable occurrence of uncertainties. The proposed control strategy offers remarkable characteristics such as excellent dynamic and steady state performance under varying wind speed and robustness to parametric variations in the WFS and under severe faults of grid voltage.

  7. Electricity generation comparison of food waste-based bioenergy with wind and solar powers: A mini review

    Directory of Open Access Journals (Sweden)

    Ngoc Bao Dung Thi

    2016-09-01

    Full Text Available The food waste treatment-based anaerobic digestion has been proven to play a primary role in electricity industry with high potentially economic benefits, which could reduce electricity prices in comparison with other renewable energy resources such as wind and solar power. The levelized costs of electricity were reported to be 65, 190, 130 and 204 US$ MWh−1 for food waste treatment in anaerobic landfill, anaerobic digestion biogas, solar power, and wind power, respectively. As examples, the approaches of food waste treatment via anaerobic digestion to provide a partial energy supply for many countries in future were estimated as 42.9 TWh yr−1 in China (sharing 0.87% of total electricity generation, 7.04 TWh yr−1 in Japan (0.64% of total electricity generation and 13.3 TWh yr−1 in the US (0.31% of total electricity generation. Electricity generation by treating food waste is promised to play an important role in renewable energy management. Comparing with wind and solar powers, converting food waste to bioenergy provides the lowest investment costs (500 US$ kW−1 and low operation cost (0.1 US$ kWh−1. With some limits in geography and season of other renewable powers, using food waste for electricity generation is supposedly to be a suitable solution for balancing energy demand in many countries.

  8. Sizing and control of trailing edge flaps on a smart rotor for maximum power generation in low fatigue wind regimes

    DEFF Research Database (Denmark)

    Smit, Jeroen; Bernhammer, Lars O.; Navalkar, Sachin T.

    2016-01-01

    to fatigue damage have been identified. In these regions, the turbine energy output can be increased by deflecting the trailing edge (TE) flap in order to track the maximum power coefficient as a function of local, instantaneous speed ratios. For this purpose, the TE flap configuration for maximum power...... generation has been using blade element momentum theory. As a first step, the operation in non-uniform wind field conditions was analysed. Firstly, the deterministic fluctuation in local tip speed ratio due to wind shear was evaluated. The second effect is associated with time delays in adapting the rotor...

  9. Survey for making a data book related to the development of new energy technology. Wind power generation; 1999 nendo shin energy gijjtsu kaihatsu kankei data shu sakusei chosa hokokusho. Furyoku hatsuden

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    For the purpose of systematically arranging the data on new energy, this paper focused on the wind power system and collected/arranged the most up-to-date published data on the wind power system, mostly in terms of samples of introduction in Japan and abroad, supporting plans and policies, market of the wind power system, specifications for the main wind turbines, etc. This report included the following: (1) Quantity of introduction of wind power system. (2) Targeted quantity of introduction of wind power system in Japan and abroad. (3) Policies on wind power system in Japan and abroad. (4) Sales of wind power system. (5) Cost of introduction of wind power system. (6) Effects of introduction of wind power generation. (7) Trend of technology development/subjects on technology development/problems on introductory promotion. (8) Outline of wind power system. (9) Predominant trends of wind power generation in Japan. (10) List of the persons to contact enterprises related to wind power generation. (11) Quantity of wind energy existing in Japan. (12) Specifications for wind turbine by power generation scale. (13) Method to calculate power generation cost of wind power system. (14) Explanation of basic technical terms. (15) List of the related rules as to introduction of wind power generation. (16) Publications relating to wind power generation. (NEDO)

  10. Wind power plant

    Energy Technology Data Exchange (ETDEWEB)

    Caneghem, A.E. von

    1975-07-24

    The invention applies to a wind power plant in which the wind is used to drive windmills. The plant consists basically of a vertical tube with a lateral wind entrance opening with windmill on its lower end. On its upper end, the tube carries a nozzle-like top which increases the wind entering the tube by pressure decrease. The wind is thus made suitable for higher outputs. The invention is illustrated by constructional examples.

  11. Commercial wind power

    International Nuclear Information System (INIS)

    Braun, G.W.; Smith, D.R.

    1992-01-01

    In 1990 the 23,000 wind turbines in the world connected to utility grids were rated at a total of 2200 MW and produced 3,353,000,000 kWh of electricity. This represents the residential use of a city with population of 1,000,000 at US energy use rates, or 2,000,000 at European rates. Denmark produced about 2% of its electricity from the wind, while California and Hawaii produced about 1% of theirs. California wind farms produced 76% of the world total, and Pacific Gas and Electric Company (PG and E) received nearly half of this. In addition to these grid-connected turbines, more than 50,000 smaller turbines (averaging about 100 watts each) supplied electricity to remote areas, such as Mongolia. Such non-grid-connected turbines can be components of hybrid generation systems when combined with energy storage and/or complementary power sources. However, the emphasis of this paper is on utility-connected wind turbines. Wind also supplies mechanical energy, such as for water pumping

  12. Design and analysis of a direct-drive wind power generator with ultra-high torque density

    Science.gov (United States)

    Jian, Linni; Shi, Yujun; Wei, Jin; Zheng, Yanchong

    2015-05-01

    In order to get rid of the nuisances caused by mechanical gearboxes, generators with low rated speed, which can be directly connected to wind turbines, are attracting increasing attention. The purpose of this paper is to propose a new direct-drive wind power generator (DWPG), which can offer ultra-high torque density. First, magnetic gear (MG) is integrated to achieve non-contact torque transmission and speed variation. Second, armature windings are engaged to achieve electromechanical energy conversion. Interior permanent magnet (PM) design on the inner rotor is adopted to boost the torque transmission capability of the integrated MG. Nevertheless, due to lack of back iron on the stator, the proposed generator does not exhibit prominent salient feature, which usually exists in traditional interior PM (IPM) machines. This makes it with good controllability and high power factor as the surface-mounted permanent magnet machines. The performance is analyzed using finite element method. Investigation on the magnetic field harmonics demonstrates that the permanent-magnetic torque offered by the MG can work together with the electromagnetic torque offered by the armature windings to balance the driving torque captured by the wind turbine. This allows the proposed generator having the potential to offer even higher torque density than its integrated MG.

  13. The Potential of Combined Heat and Power Generation, Wind Power Generation and Load Management Techniques for Cost Reduction in Small Electricity Supply Systems.

    Science.gov (United States)

    Bass, Jeremy Hugh

    Available from UMI in association with The British Library. Requires signed TDF. An evaluation is made of the potential fuel and financial savings possible when a small, autonomous diesel system sized to meet the demands of an individual, domestic consumer is adapted to include: (1) combined heat and power (CHP) generation, (2) wind turbine generation, (3) direct load control. The potential of these three areas is investigated by means of time-step simulation modelling on a microcomputer. Models are used to evaluate performance and a Net Present Value analysis used to assess costs. A cost/benefit analysis then enables those areas, or combination of areas, that facilitate and greatest savings to be identified. The modelling work is supported by experience gained from the following: (1) field study of the Lundy Island wind/diesel system, (2) laboratory testing of a small diesel generator set, (3) study of a diesel based CHP unit, (4) study of a diesel based direct load control system, (5) statistical analysis of data obtained from the long-term monitoring of a large number of individual household's electricity consumption. Rather than consider the consumer's electrical demand in isolation, a more flexible approach is adopted, with consumer demand being regarded as the sum of primarily two components: a small, electricity demand for essential services and a large, reschedulable demand for heating/cooling. The results of the study indicate that: (1) operating a diesel set in a CHP mode is the best strategy for both financial and fuel savings. A simple retrofit enables overall conversion efficiencies to be increased from 25% to 60%, or greater, at little cost. (2) wind turbine generation in association with direct load control is a most effective combination. (3) a combination of both the above areas enables greatest overall financial savings, in favourable winds resulting in unit energy costs around 20% of those of diesel only operation.

  14. Mitigation of wind power fluctuations by intelligent response of demand and distributed generation

    NARCIS (Netherlands)

    MacDougall, P.A.; Warmer, C.; Kok, K.

    2011-01-01

    With the world becoming ever more conscious of the necessity for clean, sustainable energy sources, an increased proportion of energy produced by wind resources is expected. In the current power system, the integration of such large capacity of non-load-following and intermittent supply leads to

  15. Wind Tunnel Measurements at LM Wind Power

    DEFF Research Database (Denmark)

    Bertagnolio, Franck

    2012-01-01

    This section presents the results obtained during the experimental campaign that was conducted in the wind tunnel at LM Wind Power in Lunderskov from August 16th to 26th, 2010. The goal of this study is to validate the so-called TNO trailing edge noise model through measurements of the boundary...... layer turbulence characteristics and the far-field noise generated by the acoustic scattering of the turbulent boundary layer vorticies as they convect past the trailing edge. This campaign was conducted with a NACA0015 airfoil section that was placed in the wind tunnel section. It is equipped with high...

  16. Space-time scenarios of wind power generation produced using a Gaussian copula with parametrized precision matrix

    Energy Technology Data Exchange (ETDEWEB)

    Tastu, J.; Pinson, P.; Madsen, Henrik

    2013-09-01

    The emphasis in this work is placed on generating space-time trajectories (also referred to as scenarios) of wind power generation. This calls for prediction of multivariate densities describing wind power generation at a number of distributed locations and for a number of successive lead times. A modelling approach taking advantage of sparsity of precision matrices is introduced for the description of the underlying space-time dependence structure. The proposed parametrization of the dependence structure accounts for such important process characteristics as non-constant conditional precisions and direction-dependent cross-correlations. Accounting for the space-time effects is shown to be crucial for generating high quality scenarios. (Author)

  17. Coordinated Multi-Objective Control of Regulating Resources in Multi-Area Power Systems with Large Penetration of Wind Power Generation

    DEFF Research Database (Denmark)

    Nyeng, Preben; Yang, Bo; Ma, Jian

    2008-01-01

    This paper describes a control algorithm for a Wide Area Energy Storage and Management System (WAEMS). The WAEMS is designed to meet the demand for fast, accurate and reliable regulation services in multi-area power systems with a significant share of wind power and other intermittent generation...

  18. Climate change impacts on the power generation potential of a European mid-century wind farms scenario

    International Nuclear Information System (INIS)

    Tobin, Isabelle; Vautard, Robert; Noël, Thomas; Jerez, Sonia; Thais, Françoise; Van Meijgaard, Erik; Prein, Andreas; Déqué, Michel; Kotlarski, Sven; Maule, Cathrine Fox; Nikulin, Grigory; Teichmann, Claas

    2016-01-01

    Wind energy resource is subject to changes in climate. To investigate the impacts of climate change on future European wind power generation potential, we analyze a multi-model ensemble of the most recent EURO-CORDEX regional climate simulations at the 12 km grid resolution. We developed a mid-century wind power plant scenario to focus the impact assessment on relevant locations for future wind power industry. We found that, under two greenhouse gas concentration scenarios, changes in the annual energy yield of the future European wind farms fleet as a whole will remain within ±5% across the 21st century. At country to local scales, wind farm yields will undergo changes up to 15% in magnitude, according to the large majority of models, but smaller than 5% in magnitude for most regions and models. The southern fleets such as the Iberian and Italian fleets are likely to be the most affected. With regard to variability, changes are essentially small or poorly significant from subdaily to interannual time scales. (letter)

  19. Study for the selection of optimal site in northeastern, Mexico for wind power generation using genetic algorithms.

    Science.gov (United States)

    Gonzalez, T.; Ruvalcaba, A.; Oliver, L.

    2016-12-01

    The electricity generation from renewable resources has acquired a leading role. Mexico particularrly it has great interest in renewable natural resources for power generation, especially wind energy. Therefore, the country is rapidly entering in the development of wind power generators sites. The development of a wind places as an energy project, does not have a standardized methodology. Techniques vary according to the developer to select the best place to install a wind turbine system. Generally to install the system the developers consider three key factors: 1) the characteristics of the wind, 2) the potential distribution of electricity and 3) transport access to the site. This paper presents a study with a different methodology which is carried out in two stages: the first at regional scale uses "space" and "natural" criteria in order to select a region based on its cartographic features such as politics and physiographic division, location of conservation natural areas, water bodies, urban criteria; and natural criteria such as the amount and direction of the wind, the type and land use, vegetation, topography and biodiversity of the site. The result of the application of these criteria, gives a first optimal selection area. The second part of the methodology includes criteria and variables on detail scale. The analysis of all data information collected will provide new parameters (decision variables) for the site. The overall analysis of the information, based in these criteria, indicates that the best location that the best location of the field would be the southern Coahuila and the central part of Nuevo Leon. The wind power site will contribute to the economy grow of important cities including Monterrey. Finally, computational model of genetic algorithm will be used as a tool to determine the best site selection depending on the parameters considered.

  20. Mastering the power of wind

    International Nuclear Information System (INIS)

    Stiegel, J.

    1999-01-01

    In this paper the author deals with environmental aspects use of fossil fuels for the energy production. As a way for our planet to get back to a normal and ecologically balanced system the fossil fuels reduction and their replacement by renewable racecourses is recommended. Energetic potential of flowing sun, wind and tidal waves as power resources is discussed. The natural ecological resources are best utilised in the United States where the installed wind power output is 1600 MW. With 360 MW installed output in 1991 the Denmark took lead among European countries in utilising the wind power. The most dynamic power plant development among the European Union countries was recorded in Germany, where the installed power output of the wind power plants is 632 MW, i.e. i.e. 11.5 times higher compared to 55 MW in 1991. The economy of wind power in Germany and in Slovakia is compared. In Slovakia with annual 200 000 kWh power generation annually and the present kWh purchase price guarantee the rate of return of 10 million slovak crowns investment into a wind power plant project is in 100 years. Although the first wind power plants have already been built in the Zahorie, Kremnicke Bane, and Secovce regions, the wind exploitation status in Slovakia is still limping. According to professionals, the wind conditions in Slovakia are not ideal, but sufficient for a supplementary wind power plant system, that can be quite motivating especially for villages. Mount Chopok or mount Krizna are ideal sites to erect the three-blade tower with respect to wind speed. And also the anticipated Kremnicke vrchy site is worth considering. (author)

  1. For the definition of capacity effects of electricity generation from wind power and solar radiation

    International Nuclear Information System (INIS)

    Kaltschmitt, M.

    1996-01-01

    It is the objective of this contribution to define the calculable really available output of a fluctuating electricity generation from wind energy and solar radiation. Apart from that, the methods for determining the really available output are explained, as far as they are necessary for understanding the definitions. Exemplified on a simulated large-scale regenerative electricity generation in Germany, in addition, some defined values are calculated and discussed. (orig.) [de

  2. An assessment of wind energy potential as a power generation source in the capital of Iran, Tehran

    International Nuclear Information System (INIS)

    Keyhani, A.; Ghasemi-Varnamkhasti, M.; Khanali, M.; Abbaszadeh, R.

    2010-01-01

    In this paper, the statistical data of eleven years' wind speed measurements of the capital of Iran, Tehran, are used to find out the wind energy potential. Also, other wind characteristics with the help of two methods of meteorological and Weibull are assessed to evaluate of which at a height of 10 m above ground level and in open area. For this purpose, a long term data source, consisting of eleven years (1995-2005) of three-hour period measured mean wind data, was adopted and analyzed. Based on these data, it was indicated that the numerical values of the shape and scale parameters for Tehran varied over a wide range. The yearly values of k (dimensionless Weibull shape parameter), ranged from 1.91 to 2.26 with a mean value of 2.02, while those of c (Weibull scale parameter), were in the range of 4.38-5.1 with a mean value of 4.81. Corresponding values for monthly data of whole year were found to be within the range 1.72-2.68 and 4.09-5.67, respectively related to k and c Weibull parameters. Results revealed that the highest and the lowest wind power potential are in April and August, respectively. It was also concluded that the site studied is not suitable for electric wind application in a large-scale. It was found that the wind potential of the region can be adequate for non-grid connected electrical and mechanical applications, such as wind generators for local consumption, battery charging, and water pumping. In wind direction evaluation, it was found that the most probable wind direction for the eleven-year period is on 180 deg, i.e. west winds. (author)

  3. Noise from wind power plants

    International Nuclear Information System (INIS)

    Ljunggren, S.

    2001-12-01

    First, the generation of noise at wind power plants and the character of the sound is described. The propagation of the sound and its dependence on the structure of the ground and on wind and temperature is treated next. Models for calculation of the noise emission are reviewed and examples of applications are given. Different means for reducing the disturbances are described

  4. Balancing of generators at wind power plants. Operational balancing in normal operation at wind power plants; Auswuchten von Generatoren auf Windkraftanlagen. Betriebsauswuchten im Normalbetrieb der Windkraftanlage

    Energy Technology Data Exchange (ETDEWEB)

    Franke, Dieter [IDF vibrodiagnose GmbH, Dresden (Germany); Schmidt, Gerrit [WSB Service GmbH (Germany)

    2010-07-01

    An increasing or suddenly arising unbalanced state in the generator of a wind power plant can be recognized by means of condition monitoring systems and regularly accomplished oscillation diagnoses. A strong unbalanced state results in a fast bearing wear, increases the risk of outage and reduces the profit. The risk of a further damage of the generator by means of a clearly increased vibration severity often is substantial. The counterbalancing takes place at the extended rotor at work benches in workshops. Among other things, the substantial cost is based on the expense of the disassembly and remounting of the generator. The total costs may amount several ten thousand Euro. As an alternative to balancing in the workshop, an operating balancing is recommended on the plant in order to reduce the costs. This was successfully realized by the engineer's office IDF vibrodiagnose GmbH (Dresden, Federal Republic of Germany) by the example of a Vestas V44 plant. The authors of the contribution under consideration describe the approach and advantages of an operating balancing. The main vibration stimulation at generators are described.

  5. Capacity factor prediction and planning in the wind power generation industry

    Energy Technology Data Exchange (ETDEWEB)

    Gurgur, Cigdem Z. [Department of Management and Marketing, Richard T. Doermer School of Business and Management Sciences, Indiana - Purdue University, 2101 Coliseum Blvd. East, Fort Wayne, IN 46805 (United States); Jones, Michael [Xcel Energy, Denver, CO 80223 (United States)

    2010-12-15

    The common practice to calculate wind generation capacity values relies more on heuristic approximations than true system estimations. In this paper we proposed a more accurate method. In the first part of our analysis, a Monte Carlo simulation was created based on Markov chains to provide an independent estimate of the true behavior of wind farm capacity value as a function of system penetration. With this curve as a baseline, a technique for using beta distributions to model the input variables was adopted. A final step to increase accuracy involved the use of numerical convolution within the program to eliminate summation estimates. (author)

  6. Wind power in Norway

    International Nuclear Information System (INIS)

    1998-01-01

    This report analyses business costs and socio-economic costs in the development of wind power in Norway and policy instruments to encourage such a development. It is founded on an analysis of the development of wind power in other countries, notably U.S.A, Denmark, Germany, the Netherlands and Britain. The report describes the institutional background in each country, the policy instruments that have been used and still are and the results achieved. The various cost components in Norwegian wind power development and the expected market price of wind power are also discussed. The discussion of instruments distinguishes between investment oriented and production oriented instruments. 8 refs., 9 figs., 3 tabs

  7. Development of an Active Power Reserve Management Method for DC Applied Wave-Wind Combined Generation Systems

    Directory of Open Access Journals (Sweden)

    Seungmin Jung

    2015-11-01

    Full Text Available A system that combines a wind turbine and a wave generator can share the off-shore platform and therefore mix the advantages of the transmission system construction and the power conversion system. The current hybrid generation system considers output limitation according to the instructions of the transmission system operator (TSO, and controls the profile using wind turbine pitch control. However, the integrated wave generation system utilizing a DC network does not adapt a power limitation scheme due to its mechanical constraints. In this paper, a control plan focusing on the electrical section of wave generators is formed in order to effectively manage the output profile of the hybrid generation system. The plan pays attention to power reserve flexibility for the utility grid using the analysis of the controllable elements. Comparison with the existing system is performed based on real offshore conditions. With the help of power system computer aided design (PSCAD simulation, the ability of the novel technique is estimated by proposing the real power control based on the reference signal of TSO and the reactive power capacity it produces.

  8. Drivers of imbalance cost of wind power

    DEFF Research Database (Denmark)

    Obersteiner, C.; Siewierski, T.; Andersen, Anders

    2010-01-01

    In Europe an increasing share of wind power is sold on the power market. Therefore more and more wind power generators become balancing responsible and face imbalance cost that reduce revenues from selling wind power. A comparison of literature illustrates that the imbalance cost of wind power...... varies in a wide range. To explain differences we indentify parameters influencing imbalance cost and compare them for case studies in Austria, Denmark and Poland. Besides the wind power forecast error also the correlation between imbalance and imbalance price influences imbalance cost significantly...... of imperfect forecast is better suited to reflect real cost incurred due to inaccurate wind power forecasts....

  9. Multi-Input Converter with MPPT Feature for Wind-PV Power Generation System

    Directory of Open Access Journals (Sweden)

    Chih-Lung Shen

    2013-01-01

    Full Text Available A multi-input converter (MIC to process wind-PV power is proposed, designed, analyzed, simulated, and implemented. The MIC cannot only process solar energy but deal with wind power, of which structure is derived from forward-type DC/DC converter to step-down/up voltage for charger systems, DC distribution applications, or grid connection. The MIC comprises an upper modified double-ended forward, a lower modified double-ended forward, a common output inductor, and a DSP-based system controller. The two modified double-ended forwards can operate individually or simultaneously so as to accommodate the variation of the hybrid renewable energy under different atmospheric conditions. While the MIC operates at interleaving mode, better performance can be achieved and volume also is reduced. The proposed MIC is capable of recycling the energy stored in the leakage inductance and obtaining high step-up output voltage. In order to draw maximum power from wind turbine and PV panel, perturb-and-observe method is adopted to achieve maximum power point tracking (MPPT feature. The MIC is constructed, analyzed, simulated, and tested. Simulations and hardware measurements have demonstrated the feasibility and functionality of the proposed multi-input converter.

  10. Enhanced Control for a Direct-driven Permanent Synchronous Generator Wind-power Generation System with Flywheel Energy Storage Unit Under Unbalanced Grid Fault

    DEFF Research Database (Denmark)

    Yao, Jun; Zhou, Te; Hu, Weihao

    2015-01-01

    This article presents an enhanced control strategy for a direct-driven permanent synchronous generator based wind-power generation system with a flywheel energy storage unit. The behaviors of the direct-driven permanent magnet synchronous generator system with a flywheel energy storage unit under......, the DC-link voltage oscillations can be effectively suppressed during the unbalanced grid fault by controlling the flywheel energy storage unit. Furthermore, a proportional–integral-resonant controller is designed for the flywheel motor to eliminate the oscillations in the DC-link voltage. Finally......, the proposed coordinated control strategy for the direct-driven permanent magnet synchronous generator system with a flywheel energy storage unit has been validated by the simulation results of a 1-MW direct-driven permanent magnet synchronous generator wind power generation system with a flywheel energy...

  11. Superconducting wind turbine generators

    International Nuclear Information System (INIS)

    Abrahamsen, A B; Seiler, E; Zirngibl, T; Andersen, N H; Mijatovic, N; Traeholt, C; Pedersen, N F; Oestergaard, J; Noergaard, P B

    2010-01-01

    We have examined the potential of 10 MW superconducting direct drive generators to enter the European offshore wind power market and estimated that the production of about 1200 superconducting turbines until 2030 would correspond to 10% of the EU offshore market. The expected properties of future offshore turbines of 8 and 10 MW have been determined from an up-scaling of an existing 5 MW turbine and the necessary properties of the superconducting drive train are discussed. We have found that the absence of the gear box is the main benefit and the reduced weight and size is secondary. However, the main challenge of the superconducting direct drive technology is to prove that the reliability is superior to the alternative drive trains based on gearboxes or permanent magnets. A strategy of successive testing of superconducting direct drive trains in real wind turbines of 10 kW, 100 kW, 1 MW and 10 MW is suggested to secure the accumulation of reliability experience. Finally, the quantities of high temperature superconducting tape needed for a 10 kW and an extreme high field 10 MW generator are found to be 7.5 km and 1500 km, respectively. A more realistic estimate is 200-300 km of tape per 10 MW generator and it is concluded that the present production capacity of coated conductors must be increased by a factor of 36 by 2020, resulting in a ten times lower price of the tape in order to reach a realistic price level for the superconducting drive train.

  12. Adaptive Control and Parameter Identification of a Doubly-Fed Induction Generator for Wind Power

    Science.gov (United States)

    2011-09-01

    power. It later hit a plateau during an electricity restructuring period in the 1990s and regained momentum in the past decade [4]. The spread of wind...downstream, the Bernoulli equation states that the total energy of the airflow remains constant. Given that the above conditions are satisfied, one...can apply the Bernoulli equation from far upstream to just in front of the rotor and from just behind the rotor to far downstream [16]: D Dp p V Vρ

  13. The Cost-Optimal Distribution of Wind and Solar Generation Facilities in a Simplified Highly Renewable European Power System

    Science.gov (United States)

    Kies, Alexander; von Bremen, Lüder; Schyska, Bruno; Chattopadhyay, Kabitri; Lorenz, Elke; Heinemann, Detlev

    2016-04-01

    The transition of the European power system from fossil generation towards renewable sources is driven by different reasons like decarbonisation and sustainability. Renewable power sources like wind and solar have, due to their weather dependency, fluctuating feed-in profiles, which make their system integration a difficult task. To overcome this issue, several solutions have been investigated in the past like the optimal mix of wind and PV [1], the extension of the transmission grid or storages [2]. In this work, the optimal distribution of wind turbines and solar modules in Europe is investigated. For this purpose, feed-in data with an hourly temporal resolution and a spatial resolution of 7 km covering Europe for the renewable sources wind, photovoltaics and hydro was used. Together with historical load data and a transmission model , a simplified pan-European power power system was simulated. Under cost assumptions of [3] the levelized cost of electricity (LCOE) for this simplified system consisting of generation, consumption, transmission and backup units is calculated. With respect to the LCOE, the optimal distribution of generation facilities in Europe is derived. It is shown, that by optimal placement of renewable generation facilities the LCOE can be reduced by more than 10% compared to a meta study scenario [4] and a self-sufficient scenario (every country produces on average as much from renewable sources as it consumes). This is mainly caused by a shift of generation facilities towards highly suitable locations, reduced backup and increased transmission need. The results of the optimization will be shown and implications for the extension of renewable shares in the European power mix will be discussed. The work is part of the RESTORE 2050 project (Wuppertal Institute, Next Energy, University of Oldenburg), that is financed by the Federal Ministry of Education and Research (BMBF, Fkz. 03SFF0439A). [1] Kies, A. et al.: Kies, Alexander, et al

  14. Wind power barometer

    International Nuclear Information System (INIS)

    2014-01-01

    The worldwide wind power increased by 12.4% in 2013 to reach 318.6 GW but the world market globally decreased by losing 10 GW: only 35.6 GW have been installed in 2013 which is even less than was installed in 2009. This activity contraction is mainly due to the collapse of the American market, American authorities having been late to decide to maintain federal incentives. The European wind power market also contracted in 2013 because of the lack of trust of the investors in the new energy policies of the European governments. In the rest of the world wind energy has kept on growing particularly in China and Canada. At the end of 2013 the cumulated wind power reached 117,73 GW in Europe. About 1.5 MW out of 10 MW of wind power installed in Europe in 2013 come from off-shore wind farms, United-Kingdom and Denmark being the most important players by totalling more than 70% of the off-shore wind power installed at the end of 2013. Various charts and tables give the figures of the wind power cumulated and installed in 2013 in different parts of the world: Europe, North America and Asia, the time evolution of the worldwide wind power since 1995, the wind power cumulated and installed in 2013 for the different countries of Europe and the ratio between the cumulated wind power and the country population. A table lists the main manufacturers of wind turbines and gives their turnover and number of employees at the end of 2013

  15. Wind-power plant

    Energy Technology Data Exchange (ETDEWEB)

    Kling, A

    1976-08-26

    The invention is concerned with a wind-power plant whose rotor axis is pivoted in the supporting structure and swingable around an axis of tilt, forming an angle with the rotor axis and the vertical axis, and allowing precession of the rotor. On changes of wind direction an electric positioning device is moving the rotor axis into the new direction in such a way that no precession forces are exerted on the supporting structure and this one may very easily be held. Instead of one rotor, also a type with two coaxial, co-planar countercurrent rotors may be used. Each of the two countercurrent rotors is carrying a number of magnetic poles, distributed all over the circumference, acting together with the magnetic poles of the other rotor. At least the poles of one rotor have electric line windings being connected by leads with a collector so that the two rotors form the two parts of a power generator being each rotatable with respect to the other ('stator' and 'rotor').

  16. Wind power in France

    International Nuclear Information System (INIS)

    Tuille, F.; Courtel, J.

    2015-01-01

    After 3 years of steady decreasing, wind power has resumed growth in 2014 in France and the preliminary figures of 2015 confirm this trend. About 1100 MW were installed in 2014 which was almost twice as much as it was installed the year before. This renaissance is mostly due to the implementation of Brottes' law that eases the installations of wind farms by suppressing the wind power development areas (that were interfering with regional wind power schemes) and by suppressing the minimum number of 5 turbines for any new wind farms. Another important incentive measure was the announcement in January 2015 of a new financial support scheme in replacement of the policy of guaranteed purchase price for the electricity produced. In 2014 the total wind power produced in mainland France reached 17 TW which represented 3.1% of the production of electricity. (A.C.)

  17. Mismatch of wind power capacity and generation: causing factors, GHG emissions and potential policy responses

    NARCIS (Netherlands)

    Subtil Lacerda, J.; van den Bergh, J.C.J.M.

    2016-01-01

    Policies to assure combatting climate change and realising energy security have stimulated a rapid growth in global installed capacity of renewable energy generation. The expansion of power generation from renewables, though, has so far lagged behind the growth in generation capacity. This indicates

  18. Wind power prediction models

    Science.gov (United States)

    Levy, R.; Mcginness, H.

    1976-01-01

    Investigations were performed to predict the power available from the wind at the Goldstone, California, antenna site complex. The background for power prediction was derived from a statistical evaluation of available wind speed data records at this location and at nearby locations similarly situated within the Mojave desert. In addition to a model for power prediction over relatively long periods of time, an interim simulation model that produces sample wind speeds is described. The interim model furnishes uncorrelated sample speeds at hourly intervals that reproduce the statistical wind distribution at Goldstone. A stochastic simulation model to provide speed samples representative of both the statistical speed distributions and correlations is also discussed.

  19. Climate Wind Power Resources

    Directory of Open Access Journals (Sweden)

    Nana M. Berdzenishvili

    2013-01-01

    Full Text Available Georgia as a whole is characterized by rather rich solar energy resources, which allows to construct alternative power stations in the close proximity to traditional power plants. In this case the use of solar energy is meant. Georgia is divided into 5 zones based on the assessment of wind power resources. The selection of these zones is based on the index of average annual wind speed in the examined area, V> 3 m / s and V> 5 m / s wind speed by the summing duration in the course of the year and V = 0. . . 2 m / s of passive wind by total and continuous duration of these indices per hour.

  20. The influence of generation mix on the wind integrating capability of North China power grids: A modeling interpretation and potential solutions

    International Nuclear Information System (INIS)

    Yu Dayang; Zhang Bo; Liang Jun; Han Xueshan

    2011-01-01

    The large-scale wind power development in China has reached a bottleneck of grid integrating capability. As a result, excess wind electricity has to be rejected in the nighttime low demand hours, when the wind power is ramping up. To compensate for the fluctuation of wind power, new coal-fired power plants are being constructed along with the big wind projects in the North China grids. This study analyzed why adding coal-fired generation cannot remove the bottleneck of wind integration by modeling the operating problem of the wind integration. The peak-load adjusting factor of the regional grid is defined. Building more coal-fired power plants will not increase the adjusting factor of the current grid. Although it does help to increase the total integrated wind power in the short term, it will add difficulties to the long-term wind integration. Alternatively, the coordinated resource utilization is then suggested with the discussion of both the effective pumped hydro storage and the potential electric vehicle storage. - Highlights: → Adjusting factors indicate the grid wind integrating capability. → Building coal-fired generation restrains long-term wind integration. → HVDC and nuclear projects should be planned integrated with the wind. → Pumped storage and electric vehicles provide potential solutions.

  1. Short term hydroelectric power system scheduling with wind turbine generators using the multi-pass iteration particle swarm optimization approach

    International Nuclear Information System (INIS)

    Lee, T.-Y.

    2008-01-01

    This paper uses multi-pass iteration particle swarm optimization (MIPSO) to solve short term hydroelectric generation scheduling of a power system with wind turbine generators. MIPSO is a new algorithm for solving nonlinear optimal scheduling problems. A new index called iteration best (IB) is incorporated into particle swarm optimization (PSO) to improve solution quality. The concept of multi-pass dynamic programming is applied to modify PSO further and improve computation efficiency. The feasible operational regions of the hydro units and pumped storage plants over the whole scheduling time range must be determined before applying MIPSO to the problem. Wind turbine power generation then shaves the power system load curves. Next, MIPSO calculates hydroelectric generation scheduling. It begins with a coarse time stage and searching space and refines the time interval between two time stages and the search spacing pass by pass (iteration). With the cooperation of agents called particles, the near optimal solution of the scheduling problem can be effectively reached. The effects of wind speed uncertainty were also considered in this paper. The feasibility of the new algorithm is demonstrated by a numerical example, and MIPSO solution quality and computation efficiency are compared to those of other algorithms

  2. Offshore Wind Power Planning in Korea

    DEFF Research Database (Denmark)

    Seo, Chul Soo; Cha, Seung-Tae; Park, Sang Ho

    2012-01-01

    this possible, Korea has announced the National offshore power roadmap and is now in pursuit. However, large scale offshore wind farms can incur many problems, such as power quality problems, when connecting to a power system.[1][2] Thus, KEPCO is on the process of a research study to evaluate the effects...... that connecting offshore wind power generation to a power system has on the power system. This paper looks over offshore wind power planning in Korea and describes the development of impact assessment technology of offshore wind farms.......Wind power generation is globally recognized as the most universal and reliable form of renewable energy. Korea is currently depending mostly on coal and petroleum to generate electrical power and is now trying to replace them with renewable energy such as offshore wind power generation. To make...

  3. Wind power: Italian wind power industry

    International Nuclear Information System (INIS)

    Botta, G.; Casale, C.

    2008-01-01

    Trends in the world point a growing wind power sector in the future taking into account the safety of energy supply and environmental issues. Will determine the future scenario of price and availability of conventional energy sources. The current level reached by the price of oil create a win-win situation [it

  4. Diagnosis of Short-Circuit Fault in Large-Scale Permanent-Magnet Wind Power Generator Based on CMAC

    Directory of Open Access Journals (Sweden)

    Chin-Tsung Hsieh

    2013-01-01

    Full Text Available This study proposes a method based on the cerebellar model arithmetic controller (CMAC for fault diagnosis of large-scale permanent-magnet wind power generators and compares the results with Error Back Propagation (EBP. The diagnosis is based on the short-circuit faults in permanent-magnet wind power generators, magnetic field change, and temperature change. Since CMAC is characterized by inductive ability, associative ability, quick response, and similar input signals exciting similar memories, it has an excellent effect as an intelligent fault diagnosis implement. The experimental results suggest that faults can be diagnosed effectively after only training CMAC 10 times. In comparison to training 151 times for EBP, CMAC is better than EBP in terms of training speed.

  5. Modeling, analysis, control and design application guidelines of Doubly Fed Induction Generator (DFIG) for wind power applications

    Science.gov (United States)

    Masaud, Tarek

    Double Fed Induction Generators (DFIG) has been widely used for the past two decades in large wind farms. However, there are many open-ended problems yet to be solved before they can be implemented in some specific applications. This dissertation deals with the general analysis, modeling, control and applications of the DFIG for large wind farm applications. A detailed "d-q" model of DFIG along with other applications is simulated using the MATLAB/Simulink platform. The simulation results have been discussed in detail in both sub-synchronous and super-synchronous mode of operation. An improved vector control strategy based on the rotor flux oriented vector control has been proposed to control the active power output of the DFIG. The new vector control strategy is compared with the stator flux oriented vector control which is commonly used. It is observed that the new improved vector control method provides a better active power tracking accuracy compare with the stator flux oriented vector control. The behavior of the DFIG -based wind farm under the various grid disturbances is also studied in this dissertation. The implementation of the Flexible AC Transmission System devices (FACTS) to overcome the voltage stability issue for such applications is investigated. The study includes the implementation of both a static synchronous compensator (STATCOM), and the static VAR compensator (SVC) as dynamic reactive power compensators at the point of common coupling to support DFIG-based wind farm during disturbances. Integrating FACTS protect the grid connected DFIG-based wind farm from going offline during and after the disturbances. It is found that the both devices improve the transient performance and therefore helps the wind turbine generator system to remain in service during grid faults. A comparison between the performance of the two devices in terms of the amount of reactive power injected, time response and the application cost has been discussed in this

  6. Use of Three-Level Power Converters in Wind-Driven Permanent-Magnet Synchronous Generators with Unbalanced Loads

    Directory of Open Access Journals (Sweden)

    Ming-Hung Chen

    2015-06-01

    Full Text Available This paper describes the design and implementation of three-level power converters for wind-driven permanent-magnet synchronous generators with unbalanced loads. To increase voltage stress and reduce current harmonics in the electrical power generated by a wind generator, a three-phase, three-level rectifier is used. Because a synchronous rotating frame is used on the AC-input side, the use of a neutral-point-clamped controller is proposed to increase the power factor to unity and reduce current harmonics. Furthermore, a novel six-leg inverter is proposed for transferring energy from the DC voltage to a three-phase, four-wire AC source with a constant voltage and a constant frequency. The power converters also contain output transformers and filters for power buffering and filtering, respectively. All three output phase voltages are fed back to control the inverter output during load variations. A digital signal processor is used as the core control device for implementing a 1.5 kV, 75 kW drive system. Experimental data show that the power factor is successfully increased to unity and the total current harmonic distortion is 3.2% on the AC-input side. The entire system can attain an efficiency of 91%, and the voltage error between the upper and lower capacitors is approximately zero. Experimental results that confirm the high performance of the proposed system are presented.

  7. Coordinated control of a DFIG-based wind-power generation system with SGSC under distorted grid voltage conditions

    DEFF Research Database (Denmark)

    Yao, Jun; Li, Qing; Chen, Zhe

    2013-01-01

    in the multiple synchronous rotating reference frames. In order to counteract the adverse effects of the voltage harmonics upon the DFIG, the SGSC generates series compensation control voltages to keep the stator voltage sinusoidal and symmetrical, which allows the use of the conventional vector control strategy......This paper presents a coordinated control method for a doubly-fed induction generator (DFIG)-based wind-power generation system with a series grid-side converter (SGSC) under distorted grid voltage conditions. The detailed mathematical models of the DFIG system with SGSC are developed...

  8. Wind turbine power stations

    International Nuclear Information System (INIS)

    Anon.

    1992-11-01

    The Countryside Council for Wales (CCW's) policy on wind turbine power stations needs to be read in the context of CCW's document Energy:Policy and perspectives for the Welsh countryside. This identifies four levels of action aimed at reducing emission of gases which contribute towards the risk of global warming and gases which cause acid deposition. These are: the need for investment in energy efficiency; the need for investment in conventional power generation in order to meet the highest environmental standards; the need for investment in renewable energy; and the need to use land use transportation policies and decisions to ensure energy efficiency and energy conservation. CCW views wind turbine power stations, along with other renewable energy systems, within this framework. CCW's policy is to welcome the exploitation of renewable energy sources as an element in a complete and environmentally sensitive energy policy, subject to the Environmental Assessment of individual schemes and monitoring of the long-term impact of the various technologies involved. (Author)

  9. Heat loss analysis-based design of a 12 MW wind power generator module having an HTS flux pump exciter

    International Nuclear Information System (INIS)

    Sung, Hae-Jin; Go, Byeong-Soo; Jiang, Zhenan; Park, Minwon; Yu, In-Keun

    2016-01-01

    Highlights: • A large-scale HTS generator module has been suggested to avoid issues such as a huge vacuum vessel and higher reliability. • The challenging heat loss analysis of a large-scale HTS generator has successfully been performed, enabling the design of an optimal support structure having a total heat loss of 43 W/400 kW. • The results prove the potential of a large-scale superconducting wind-power generator to operate efficiently, and support further development of the concept. - Abstract: The development of an effective high-temperature superconducting (HTS) generator is currently a research focus; however, the reduction of heat loss of a large-scale HTS generator is a challenge. This study deals with a heat loss analysis-based design of a 12 MW wind power generator module having an HTS flux pump exciter. The generator module consists of an HTS rotor of the generator and an HTS flux pump exciter. The specifications of the module were described, and the detailed configuration of the module was illustrated. For the heat loss analysis of the module, the excitation loss of the flux pump exciter, eddy current loss of all of the structures in the module, radiation loss, and conduction loss of an HTS coil supporter were assessed using a 3D finite elements method program. In the case of the conduction loss, different types of the supporters were compared to find out the supporter of the lowest conduction loss in the module. The heat loss analysis results of the module were reflected in the design of the generator module and discussed in detail. The results will be applied to the design of large-scale superconducting generators for wind turbines including a cooling system.

  10. Heat loss analysis-based design of a 12 MW wind power generator module having an HTS flux pump exciter

    Energy Technology Data Exchange (ETDEWEB)

    Sung, Hae-Jin, E-mail: haejin0216@gmail.com [Changwon National University, 20 Changwondaehak-ro, Changwon, 641-773 (Korea, Republic of); Go, Byeong-Soo [Changwon National University, 20 Changwondaehak-ro, Changwon, 641-773 (Korea, Republic of); Jiang, Zhenan [Robinson Research Institute, Victoria University of Wellington, PO Box 33436 (New Zealand); Park, Minwon [Changwon National University, 20 Changwondaehak-ro, Changwon, 641-773 (Korea, Republic of); Yu, In-Keun, E-mail: yuik@changwon.ac.kr [Changwon National University, 20 Changwondaehak-ro, Changwon, 641-773 (Korea, Republic of)

    2016-11-15

    Highlights: • A large-scale HTS generator module has been suggested to avoid issues such as a huge vacuum vessel and higher reliability. • The challenging heat loss analysis of a large-scale HTS generator has successfully been performed, enabling the design of an optimal support structure having a total heat loss of 43 W/400 kW. • The results prove the potential of a large-scale superconducting wind-power generator to operate efficiently, and support further development of the concept. - Abstract: The development of an effective high-temperature superconducting (HTS) generator is currently a research focus; however, the reduction of heat loss of a large-scale HTS generator is a challenge. This study deals with a heat loss analysis-based design of a 12 MW wind power generator module having an HTS flux pump exciter. The generator module consists of an HTS rotor of the generator and an HTS flux pump exciter. The specifications of the module were described, and the detailed configuration of the module was illustrated. For the heat loss analysis of the module, the excitation loss of the flux pump exciter, eddy current loss of all of the structures in the module, radiation loss, and conduction loss of an HTS coil supporter were assessed using a 3D finite elements method program. In the case of the conduction loss, different types of the supporters were compared to find out the supporter of the lowest conduction loss in the module. The heat loss analysis results of the module were reflected in the design of the generator module and discussed in detail. The results will be applied to the design of large-scale superconducting generators for wind turbines including a cooling system.

  11. Statement on Wind Power

    Energy Technology Data Exchange (ETDEWEB)

    2010-01-15

    Wind power will grow in importance in future electricity supply. In the next few decades it will to some degree replace fossil power but it will, at the same time also depend on fossil-b beyond, when wind power is expected to have a substantial share of the electricity market, CO{sub 2} emission-free electricity plants that are well suited for balancing the wind intermittency will be required. Predictions of the future penetration of wind power into the electricity market are critically dependent on a number of policy measures and will be especially influenced by climate driven energy policies. Very large investments will also be necessary as is shown by the lEA's Blue Map Scenario which includes 5,000 TWh wind electricity by 2050 at a cost of USD 700 billion. This implies an average 8% increase of wind electricity per year energy system, i.e. an energy system so large that it affects the entire world. The Energy Committee's scenario for electricity production in the year 2050 includes 5,000 TWh wind electricity out of a total of 45,000 TWh. Wind electricity thus has a within presently reached penetration of wind energy in a single country and within the calculated future projections of its penetration. Future large continental and intercontinental power grids may enable higher penetrations of wind energy since contributions of wind power from a larger area will tend to reduce its intermittency. Also, large-scale storage systems (thermal storage as is intermittent power systems. These alternatives have been discussed from a technical point of view [3] but for the required large-scale systems, further studies on the social, environmental and economical implications are needed

  12. Wind power forecast

    Energy Technology Data Exchange (ETDEWEB)

    Pestana, Rui [Rede Electrica Nacional (REN), S.A., Lisboa (Portugal). Dept. Systems and Development System Operator; Trancoso, Ana Rosa; Delgado Domingos, Jose [Univ. Tecnica de Lisboa (Portugal). Seccao de Ambiente e Energia

    2012-07-01

    Accurate wind power forecast are needed to reduce integration costs in the electric grid caused by wind inherent variability. Currently, Portugal has a significant wind power penetration level and consequently the need to have reliable wind power forecasts at different temporal scales, including localized events such as ramps. This paper provides an overview of the methodologies used by REN to forecast wind power at national level, based on statistical and probabilistic combinations of NWP and measured data with the aim of improving accuracy of pure NWP. Results show that significant improvement can be achieved with statistical combination with persistence in the short-term and with probabilistic combination in the medium-term. NWP are also able to detect ramp events with 3 day notice to the operational planning. (orig.)

  13. Rotor Speed Control of a Direct-Driven Permanent Magnet Synchronous Generator-Based Wind Turbine Using Phase-Lag Compensators to Optimize Wind Power Extraction

    Directory of Open Access Journals (Sweden)

    Ester Hamatwi

    2017-01-01

    Full Text Available Due to the intermittent nature of wind, the wind power output tends to be inconsistent, and hence maximum power point tracking (MPPT is usually employed to optimize the power extracted from the wind resource at a wide range of wind speeds. This paper deals with the rotor speed control of a 2 MW direct-driven permanent magnet synchronous generator (PMSG to achieve MPPT. The proportional-integral (PI, proportional-derivative (PD, and proportional-integral-derivative (PID controllers have widely been employed in MPPT studies owing to their simple structure and simple design procedure. However, there are a number of shortcomings associated with these controllers; the trial-and-error design procedure used to determine the P, I, and D gains presents a possibility for poorly tuned controller gains, which reduces the accuracy and the dynamic performance of the entire control system. Moreover, these controllers’ linear nature, constricted operating range, and their sensitivity to changes in machine parameters make them ineffective when applied to nonlinear and uncertain systems. On the other hand, phase-lag compensators are associated with a design procedure that is well defined from fundamental principles as opposed to the aforementioned trial-and-error design procedure. This makes the latter controller type more accurate, although it is not well developed yet, and hence it is the focus of this paper. The simulation results demonstrated the effectiveness of the proposed MPPT controller.

  14. Combined time-varying forecast based on the proper scoring approach for wind power generation

    DEFF Research Database (Denmark)

    Chen, Xingying; Jiang, Yu; Yu, Kun

    2017-01-01

    Compared with traditional point forecasts, combined forecast have been proposed as an effective method to provide more accurate forecasts than individual model. However, the literature and research focus on wind-power combined forecasts are relatively limited. Here, based on forecasting error...... distribution, a proper scoring approach is applied to combine plausible models to form an overall time-varying model for the next day forecasts, rather than weights-based combination. To validate the effectiveness of the proposed method, real data of 3 years were used for testing. Simulation results...... demonstrate that the proposed method improves the accuracy of overall forecasts, even compared with a numerical weather prediction....

  15. Superconducting Wind Turbine Generators

    DEFF Research Database (Denmark)

    Mijatovic, Nenad

    A HTS machine could be a way to address some of the technical barriers offshore wind energy is about to face. Due to the superior power density of HTS machines, this technology could become a milestone on which many, including the wind industry, will rely in the future. The work presented...... in this thesis is a part of a larger endeavor, the Superwind project that focused on identifying the potentials that HTS machines could offer to the wind industry and addressing some of the challenges in the process. In order to identify these challenges, I have design and constructed a HTS machine experimental...... setup which is made to serve as precursor, leading towards an optimized HTS machine concept proposed for wind turbines. In part, the work presented in this thesis will focus on the description of the experimental setup and reasoning behind the choices made during the design. The setup comprises from...

  16. V-I characteristics of a coreless ironless electric generator in a closed-circuit mode for low wind density power generation

    Science.gov (United States)

    Razali, Akhtar; Rahman, Fadhlur; Leong, Yap Wee; Razali Hanipah, Mohd; Azri Hizami, Mohd

    2018-04-01

    This research deals with removal of ironcore lamination in electric generator to eliminate cog torque. A confinement technique is proposed to confine and focus magnetic flux by introducing opposing permanent magnets arrangement. The generator was fabricated and experimentally validated to qualify its loaded characteristics. The rotational torque and power output are measured and efficiency is then analyzed. At 100Ω load, the generator power output increased with the increased of rotational speed. Nearly 78% of efficiency was achieved when the generator was rotated at 250rpm. At this speed, the generator produced RMS voltage of 81VAC. Torque required to rotate the generator was found to be 3.2Nm. The slight increment of mechanical torque to spin the generator was due to the counter electromotive force (CEMF) existed in the copper windings. However, the torque required is still lower by nearly 30% than conventional AFPM generator. It is there concluded that this generator is suitable to be used for low wind density power generation application.

  17. Fuzzy logic based power management strategy of a multi-MW doubly-fed induction generator wind turbine with battery and ultracapacitor

    International Nuclear Information System (INIS)

    Sarrias-Mena, Raúl; Fernández-Ramírez, Luis M.; García-Vázquez, Carlos Andrés; Jurado, Francisco

    2014-01-01

    Integrating energy storage systems (ESS) with wind turbines results to be an interesting option for improving the grid integration capability of wind energy. This paper presents and evaluates a wind hybrid system consisting of a 1.5 MW doubly-fed induction generator (DFIG) wind turbine and double battery-ultracapacitor ESS. Commercially available components are used in this wind hybrid system. A novel supervisory control system (SCS) is designed and implemented, which is responsible for setting the active and reactive power references for each component of the hybrid system. A fuzzy logic controller, taking into account the grid demand, power generation prediction, actual DFIG power generation and state-of-charge (SOC) of the ESSs, sets the active power references. The reactive power references are proportionally delivered to each element regarding their current limitations in the SCS. The appropriate control of the power converters allows each power source to achieve the operation defined by the SCS. The wind hybrid system and SCS are assessed by simulation under wind fluctuations, grid demand changes, and grid disturbances. Results show an improved performance in the overall response of the system with the implementation of the SCS. - Highlights: • We study a wind hybrid system based on DFIG wind turbine, battery and ultracapacitor. • A novel supervisory control system based on fuzzy logic is designed and implemented. • The control improves the system response under different operating conditions

  18. Fluid power network for centralized electricity generation in offshore wind farms

    International Nuclear Information System (INIS)

    Jarquin-Laguna, A

    2014-01-01

    An innovative and completely different wind-energy conversion system is studied where a centralized electricity generation within a wind farm is proposed by means of a hydraulic network. This paper presents the dynamic interaction of two turbines when they are coupled to the same hydraulic network. Due to the stochastic nature of the wind and wake interaction effects between turbines, the operating parameters (i.e. pitch angle, rotor speed) of each turbine are different. Time domain simulations, including the main turbine dynamics and laminar transient flow in pipelines, are used to evaluate the efficiency and rotor speed stability of the hydraulic system. It is shown that a passive control of the rotor speed, as proposed in previous work for a single hydraulic turbine, has strong limitations in terms of performance for more than one turbine coupled to the same hydraulic network. It is concluded that in order to connect several turbines, a passive control strategy of the rotor speed is not sufficient and a hydraulic network with constant pressure is suggested. However, a constant pressure network requires the addition of active control at the hydraulic motors and spear valves, increasing the complexity of the initial concept. Further work needs to be done to incorporate an active control strategy and evaluate the feasibility of the constant pressure hydraulic network

  19. Efficiency of a small wind power station

    International Nuclear Information System (INIS)

    Ivanov, K.; Christov, Ch.; Kozarev, N.

    2001-01-01

    The aim of the study is to obtain the optimal solution for wind station both by technical parameters and costs. The energetic characteristics of the wind as a renewable energy source are discussed and assessment of the economical efficiency is made. For the determination of the optimal wind parameters the method of integral wind curves is used. The low power wind generators (0.4 - 1.5 kW) are considered as optimal for the presented wind characteristics

  20. Implementation of IEC Generic Models of Type 1 Wind Turbine Generator in DIgSILENT PowerFactory

    Institute of Scientific and Technical Information of China (English)

    Haoran ZHAO; Qiuwei WU; Ioannis MARGARIS; Poul S(O)RENSEN

    2013-01-01

    The implementation method for the International Electrotechnical Commission (IEC) generic models of Type 1 wind turbine generator (WTG) in DIgSILENT PowerFactory is presented.The following items are described,i.e.model structure,model blocks and how to implement these blocks in the PowerFactory environment.Case studies under both normal and fault conditions are done with the implemented IEC generic models of Type 1 WTG,and dynamic responses are captured and analyzed.The case study results show that the IEC generic models of Type 1 WTG can correctly represent the performances of Type 1 WTG under both normal and fault conditions.

  1. A solar PV augmented hybrid scheme for enhanced wind power generation through improved control strategy for grid connected doubly fed induction generator

    Directory of Open Access Journals (Sweden)

    Adikanda Parida

    2016-12-01

    Full Text Available In this paper, a wind power generation scheme using a grid connected doubly fed induction generator (DFIG augmented with solar PV has been proposed. A reactive power-based rotor speed and position estimation technique with reduced machine parameter sensitivity is also proposed to improve the performance of the DFIG controller. The estimation algorithm is based on model reference adaptive system (MRAS, which uses the air gap reactive power as the adjustable variable. The overall generation reliability of the wind energy conversion system can be considerably improved as both solar and wind energy can supplement each other during lean periods of either of the sources. The rotor-side DC-link voltage and active power generation at the stator terminals of the DFIG are maintained constant with minimum storage battery capacity using single converter arrangement without grid-side converter (GSC. The proposed scheme has been simulated and experimentally validated with a practical 2.5 kW DFIG using dSPACE CP1104 module which produced satisfactory results.

  2. The difficult wind power

    International Nuclear Information System (INIS)

    Groenaas, Sigbjoern

    2005-01-01

    The article presents a brief survey of the conditions for wind power production in Norway and points out that several areas should be well suited. A comparison to Danish climate is made. The wind variations, turbulence problems and regional conditions are discussed

  3. Discussion on mass concrete construction of wind turbine generator foundation

    Science.gov (United States)

    Shang, Liang; Wu, Chaoxiang; Yin, Xiaoyong

    2018-04-01

    Wind power is one of the main power sources currently. China has rich wind power resources, wind power plants are developed faster and faster. However, China wind power construction started late, which is lack of relevant experience technology. It is easy to produce quality problems. The key to the construction quality of wind power plant is the construction quality of mass concrete construction. Therefore, construction technology and quality control of wind turbine generator foundation mass concrete are discussed and analyzed in the paper.

  4. 基于PI功率控制的风力发电系统仿真%Simulation of Wind Power Generation System Based on PI Power Control

    Institute of Scientific and Technical Information of China (English)

    黄悦华; 黎欢欢; 李光勖; 潘天浩; 袁纯国

    2012-01-01

    利用Matlab/Simulink仿真软件,建立风力发电系统仿真模型.根据不同时间段的风速情况,对风力发电机组的转速进行调节控制,使其保持在最佳叶尖速比下运行,进而使用PI控制技术实现最大风能捕获.仿真结果表明:这种控制策略可以有效地提高风力发电系统的效率,能够对输出功率进行追踪控制.%Using Matlab/Simulink simulation software, a wind power system simulation model is established. According to the wind speed of different time periods, the wind turbine keeps the optimum tip-speed ratio by adjusting the speed of wind turbine, and then achieves maximum wind energy capture by using PI control technology. The simulation results show that this control strategy can effectively improve the efficiency of wind power generation system, therefore track and control the output power.

  5. ANEMOS: Development of a next generation wind power forecasting system for the large-scale integration of onshore and offshore wind farms.

    Science.gov (United States)

    Kariniotakis, G.; Anemos Team

    2003-04-01

    Objectives: Accurate forecasting of the wind energy production up to two days ahead is recognized as a major contribution for reliable large-scale wind power integration. Especially, in a liberalized electricity market, prediction tools enhance the position of wind energy compared to other forms of dispatchable generation. ANEMOS, is a new 3.5 years R&D project supported by the European Commission, that resembles research organizations and end-users with an important experience on the domain. The project aims to develop advanced forecasting models that will substantially outperform current methods. Emphasis is given to situations like complex terrain, extreme weather conditions, as well as to offshore prediction for which no specific tools currently exist. The prediction models will be implemented in a software platform and installed for online operation at onshore and offshore wind farms by the end-users participating in the project. Approach: The paper presents the methodology of the project. Initially, the prediction requirements are identified according to the profiles of the end-users. The project develops prediction models based on both a physical and an alternative statistical approach. Research on physical models gives emphasis to techniques for use in complex terrain and the development of prediction tools based on CFD techniques, advanced model output statistics or high-resolution meteorological information. Statistical models (i.e. based on artificial intelligence) are developed for downscaling, power curve representation, upscaling for prediction at regional or national level, etc. A benchmarking process is set-up to evaluate the performance of the developed models and to compare them with existing ones using a number of case studies. The synergy between statistical and physical approaches is examined to identify promising areas for further improvement of forecasting accuracy. Appropriate physical and statistical prediction models are also developed for

  6. Optimal control of wind power plants

    NARCIS (Netherlands)

    Steinbuch, M.; Boer, de W.W.; Bosgra, O.H.; Peeters, S.A.W.M.; Ploeg, J.

    1988-01-01

    The control system design for a wind power plant is investigated. Both theoverall wind farm control and the individual wind turbine control effect thewind farm dynamic performance.For a wind turbine with a synchronous generator and rectifier/invertersystem a multivariable controller is designed.

  7. Impact of Neutral Point Current Control on Copper Loss Distribution of Five Phase PM Generators Used in Wind Power Plants

    Directory of Open Access Journals (Sweden)

    ARASHLOO, R. S.

    2014-05-01

    Full Text Available Efficiency improvement under faulty conditions is one of the main objectives of fault tolerant PM drives. This goal can be achieved by increasing the output power while reducing the losses. Stator copper loss not only directly affects the total efficiency, but also plays an important role in thermal stress generations of iron core. In this paper, the effect of having control on neutral point current is studied on the efficiency of five-phase permanent magnet machines. Open circuit fault is considered for both one and two phases, and the distribution of copper loss along the windings are evaluated in each case. It is shown that only by having access to neutral point, it is possible to generate less stator thermal stress and more mechanical power in five-phase permanent magnet generators. Wind power generation and their applications are kept in mind, and the results are verified via simulations and experimental tests on an outer-rotor type of five-phase PM machine.

  8. System Efficiency of a Tap Transformer Based Grid Connection Topology Applied on a Direct Driven Generator for Wind Power

    Directory of Open Access Journals (Sweden)

    Senad Apelfröjd

    2014-01-01

    Full Text Available Results from experiments on a tap transformer based grid connection system for a variable speed vertical axis wind turbine are presented. The tap transformer based system topology consists of a passive diode rectifier, DC-link, IGBT inverter, LCL-filter, and tap transformer. Full range variable speed operation is enabled by using the different step-up ratios of a tap transformer. Simulations using MATLAB/Simulink have been performed in order to study the behavior of the system. A full experimental set up of the system has been used in the laboratory study, where a clone of the on-site generator was driven by an induction motor and the system was connected to a resistive load to better evaluate the performance. Furthermore, the system is run and evaluated for realistic wind speeds and variable speed operation. For a more complete picture of the system performance, a case study using real site Weibull parameters is done, comparing different tap selection options. The results show high system efficiency at nominal power and an increase in overall power output for full tap operation in comparison with the base case, a standard transformer. In addition, the loss distribution at different wind speeds is shown, which highlights the dominant losses at low and high wind speeds. Finally, means for further increasing the overall system efficiency are proposed.

  9. System efficiency of a tap transformer based grid connection topology applied on a direct driven generator for wind power.

    Science.gov (United States)

    Apelfröjd, Senad; Eriksson, Sandra

    2014-01-01

    Results from experiments on a tap transformer based grid connection system for a variable speed vertical axis wind turbine are presented. The tap transformer based system topology consists of a passive diode rectifier, DC-link, IGBT inverter, LCL-filter, and tap transformer. Full range variable speed operation is enabled by using the different step-up ratios of a tap transformer. Simulations using MATLAB/Simulink have been performed in order to study the behavior of the system. A full experimental set up of the system has been used in the laboratory study, where a clone of the on-site generator was driven by an induction motor and the system was connected to a resistive load to better evaluate the performance. Furthermore, the system is run and evaluated for realistic wind speeds and variable speed operation. For a more complete picture of the system performance, a case study using real site Weibull parameters is done, comparing different tap selection options. The results show high system efficiency at nominal power and an increase in overall power output for full tap operation in comparison with the base case, a standard transformer. In addition, the loss distribution at different wind speeds is shown, which highlights the dominant losses at low and high wind speeds. Finally, means for further increasing the overall system efficiency are proposed.

  10. System Efficiency of a Tap Transformer Based Grid Connection Topology Applied on a Direct Driven Generator for Wind Power

    Science.gov (United States)

    2014-01-01

    Results from experiments on a tap transformer based grid connection system for a variable speed vertical axis wind turbine are presented. The tap transformer based system topology consists of a passive diode rectifier, DC-link, IGBT inverter, LCL-filter, and tap transformer. Full range variable speed operation is enabled by using the different step-up ratios of a tap transformer. Simulations using MATLAB/Simulink have been performed in order to study the behavior of the system. A full experimental set up of the system has been used in the laboratory study, where a clone of the on-site generator was driven by an induction motor and the system was connected to a resistive load to better evaluate the performance. Furthermore, the system is run and evaluated for realistic wind speeds and variable speed operation. For a more complete picture of the system performance, a case study using real site Weibull parameters is done, comparing different tap selection options. The results show high system efficiency at nominal power and an increase in overall power output for full tap operation in comparison with the base case, a standard transformer. In addition, the loss distribution at different wind speeds is shown, which highlights the dominant losses at low and high wind speeds. Finally, means for further increasing the overall system efficiency are proposed. PMID:25258733

  11. Next Generation Wind Turbine

    Energy Technology Data Exchange (ETDEWEB)

    Cheraghi, S. Hossein [Western New England Univ., Springfield, MA (United States); Madden, Frank [FloDesign Wind Turbine Corp., Waltham, MA (United States)

    2012-09-01

    The goal of this collaborative effort between Western New England University's College of Engineering and FloDesign Wind Turbine (FDWT) Corporation to wok on a novel areodynamic concept that could potentially lead to the next generation of wind turbines. Analytical studies and early scale model tests of FDWT's Mixer/Ejector Wind Turbine (MEWT) concept, which exploits jet-age advanced fluid dynamics, indicate that the concept has the potential to significantly reduce the cost of electricity over conventional Horizontal Axis Wind Turbines while reducing land usage. This project involved the design, fabrication, and wind tunnel testing of components of MEWT to provide the research and engineering data necessary to validate the design iterations and optimize system performance. Based on these tests, a scale model prototype called Briza was designed, fabricated, installed and tested on a portable tower to investigate and improve the design system in real world conditions. The results of these scale prototype efforts were very promising and have contributed significantly to FDWT's ongoing development of a product scale wind turbine for deployment in multiple locations around the U.S. This research was mutually beneficial to Western New England University, FDWT, and the DOE by utilizing over 30 student interns and a number of faculty in all efforts. It brought real-world wind turbine experience into the classroom to further enhance the Green Engineering Program at WNEU. It also provided on-the-job training to many students, improving their future employment opportunities, while also providing valuable information to further advance FDWT's mixer-ejector wind turbine technology, creating opportunities for future project innovation and job creation.

  12. Sources of the wind power stations

    International Nuclear Information System (INIS)

    Chudivani, J.; Huettner, L.

    2012-01-01

    The paper deals with problems of the wind power stations. Describes the basic properties of wind energy. Shows and describes the different types of electrical machines used as a source of electricity in the wind power stations. Shows magnetic fields synchronous generator with salient poles and permanent magnets in the program FEMM. Describes methods for assessing of reversing the effects of the wind power stations on the distribution network. (Authors)

  13. FACTS Devices for Large Wind Power Plants

    DEFF Research Database (Denmark)

    Adamczyk, Andrzej Grzegorz; Teodorescu, Remus; Rodriguez, Pedro

    2010-01-01

    Growing number of wind turbines is changing electricity generation profile all over the world. However, high wind energy penetration affects power system safety and stability. For this reason transmission system operators (TSO) impose more stringent connection requirements on the wind power plant...

  14. Philosophy of power generation

    International Nuclear Information System (INIS)

    Amein, H.; Joyia, Y.; Qureshi, M.N.; Asif, M.

    1995-01-01

    In view of the huge power demand in future, the capital investment requirements for the development of power projects to meet the future energy requirements are so alarming that public sector alone cannot manage to raise funds and participation of the private sector in power generation development has become imperative. This paper discusses a power generation philosophy based on preference to the exploitation of indigenous resources and participation of private sector. In order to have diversification in generation resources, due consideration has been given to the development of nuclear power and even non-conventional but promising technologies of solar, wind, biomass and geothermal etc. (author)

  15. Performance and optimum characteristics by finite element analysis of a coreless ironless electric generator for low wind density power generation

    Science.gov (United States)

    Razali, Akhtar; Rahman, Fadhlur; Leong, Yap Wee; Razali Hanipah, Mohd; Azri Hizami, Mohd

    2018-04-01

    Cogging is an attraction of magnetism between permanent magnets and soft ironcore lamination in a conventional electric ironcore generator. The presence of cog in the generator is seen somehow restricted the application of the generator in an application where low rotational torque is required. Cog torque requires an additional input power to overcome, hence became one of the power loss sources. With the increasing of power output, the cogging is also proportionally increased. This leads to the increasing of the supplied power of the driver motor to overcome the cog. Therefore, this research is embarked to study fundamentally about the possibility of removing ironcore lamination in an electric generator. This research deals with removal of ironcore lamination in electric generator to eliminate cog torque. A confinement technique is proposed to confine and focus magnetic flux by introducing opposing permanent magnets arrangement. There were several parameters analysed using the JMAG Designer. Transient response analysis was used in the JMAG Designer. The parameters analysed were the number of coil turns per phase, gap distance between the magnet pairs as well as the magnet grade used. These few parameters were analysed under the open circuit condition. Results showed with the increasing of gap distance, output voltage produced decreased. The increment of number of turns in the coils and higher magnet grades used, these increased the output voltage of the generator. With the help of these results, a reference point is established to get optimum design parameter for fabrication of working prototype.

  16. Maximum power extraction under different vector-control schemes and grid-synchronization strategy of a wind-driven Brushless Doubly-Fed Reluctance Generator.

    Science.gov (United States)

    Mousa, Mohamed G; Allam, S M; Rashad, Essam M

    2018-01-01

    This paper proposes an advanced strategy to synchronize the wind-driven Brushless Doubly-Fed Reluctance Generator (BDFRG) to the grid-side terminals. The proposed strategy depends mainly upon determining the electrical angle of the grid voltage, θ v and using the same transformation matrix of both the power winding and grid sides to ensure that the generated power-winding voltage has the same phase-sequence of the grid-side voltage. On the other hand, the paper proposes a vector-control (power-winding flux orientation) technique for maximum wind-power extraction under two schemes summarized as; unity power-factor operation and minimum converter-current. Moreover, a soft-starting method is suggested to avoid the employed converter over-current. The first control scheme is achieved by adjusting the command power-winding reactive power at zero for a unity power-factor operation. However, the second scheme depends on setting the command d-axis control-winding current at zero to maximize the ratio of the generator electromagnetic-torque per the converter current. This enables the system to get a certain command torque under minimum converter current. A sample of the obtained simulation and experimental results is presented to check the effectiveness of the proposed control strategies. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  17. Wind power project at Pasni

    International Nuclear Information System (INIS)

    Masud, Jamil

    1998-01-01

    Major power generation capacity additions have recently been achieved in Pakistan as a result of policy initiatives taken in response to widespread power shortages in the eighties. These additions are based mainly on residual fuel oil and natural gas as fuel, resulting in a marked shift in favor of thermal generation and away from the traditionally dominant hydel sources. In recent decades, the supply of electricity to less developed areas has also been accorded high priority in Pakistan, although economic considerations in grid expansion have largely limited an otherwise aggressive rural electrification program to areas easily accessible from the national grid. These factors, coupled with relatively high system losses, have contributed to an unprecedented increase in emissions of greenhouse gases from the power generation industry in the country. An option which merits serious consideration in Pakistan is wind power. Wind power provides an opportunity to reduce dependence on imported fossil fuels and, at the same time, expand the power supply capacity to remote locations where grid expansion is not practical. Preliminary analysis of wind data in selected coastal locations in the Balochistan province indicates that a potential exists for harvesting wind energy using currently available technologies. (author)

  18. Blown by the wind. Replacing nuclear power in German electricity generation

    International Nuclear Information System (INIS)

    Lechtenböhmer, Stefan; Samadi, Sascha

    2013-01-01

    Only three days after the beginning of the nuclear catastrophe in Fukushima, Japan, on 11 March 2011, the German government ordered 8 of the country's 17 existing nuclear power plants (NPPs) to stop operating within a few days. In summer 2011 the government put forward a law – passed in parliament by a large majority – that calls for a complete nuclear phase-out by the end of 2022. These government actions were in contrast to its initial plans, laid out in fall 2010, to expand the lifetimes of the country's NPPs. The immediate closure of 8 NPPs and the plans for a complete nuclear phase-out within little more than a decade, raised concerns about Germany's ability to secure a stable supply of electricity. Some observers feared power supply shortages, increasing CO 2 -emissions and a need for Germany to become a net importer of electricity. Now – a little more than a year after the phase-out law entered into force – this paper examines these concerns using (a) recent statistical data on electricity production and demand in the first 15 months after the German government's immediate reaction to the Fukushima accident and (b) reviews the most recent projections and scenarios by different stakeholders on how the German electricity system may develop until 2025, when NPPs will no longer be in operation. The paper finds that Germany has a realistic chance of fully replacing nuclear power with additional renewable electricity generation on an annual basis by 2025 or earlier, provided that several related challenges, e.g. expansion of the grids and provision of balancing power, can be solved successfully. Already in 2012 additional electricity generation from renewable energy sources in combination with a reduced domestic demand for electricity will likely fully compensate for the reduced power generation from the NPPs shut down in March 2011. If current political targets will be realised, Germany neither has to become a net electricity importer, nor will be unable

  19. Power generation from wind energy: An ancient dream can come true

    Energy Technology Data Exchange (ETDEWEB)

    Jarass, L

    1978-06-01

    In the first part of the article, the physical fundamentals of wind energy utilisation are explained. After this, a survey is given on wind energy utilisation in the part and on modern wind energy projects. The following countries are considered: Denmark, France, Soviet Union, Great Britain, Netherlands, Sweden, West Germany. The main plants are listed in a detailed table.

  20. Electric power generation in a combined photovoltaic and wind power system at Ottendorf-Okrilla (Saxony); Elektroenergieerzeugung einer kombinierten Wind-Photovoltaik-Anlage in Ottendorf-Okrilla (Sachsen)

    Energy Technology Data Exchange (ETDEWEB)

    Futterschneider, H.; Hirsch, W.; Rindelhardt, U.; Teichmann, G.

    1996-04-01

    A hybrid wind-photovoltaic system has been operated in the Zentrallager of the Plus-Warenhandelsgesellschaft in Ottendorf-Okrilla (Saxony) since 1992. A 60 kW wind energy converter of Tackes TW-60 type has been combined with a 3.18 kW photovoltaic system. Some special features of the pv system (orientation of the generator, master-slave operation of the inverters) are remarkable. The operation of both systems was investigated in detail. With a yield of 689 kWh/kW{sub p}a in 1995 the pv system achieved comparable results with other grid coupled pv systems in Saxony. Possible better results are prevented by the selected generator orientation. The master-slave mode of the inverter was studied in detail. The nonoptimal relation between the generator size and the inverters influenced the results. The wind energy converter achieved in 1995 a yield of 990 kWh/kW, which is below average also for non coast areas. The result is influenced by many obstacles in the surrounding of the converter. The time availability of the hybrid energy system in 1995 was 71.5% (6260 hours). (orig.) [Deutsch] Vom Zentrallager der Plus-Warenhandelgesellschaft in Ottendorf-Okrilla (Sachsen) wird seit 1992 eine hybride Wind-Photovoltaik-Anlage zur Erzeugung von Elektroenergie betrieben. Die Anlage besteht aus einer 60-kW-Windkraftanlage des Typs TW 60 und einer Photovoltaikanlage mit einer Spitzenleistung von 3,18 kW. Letztere zeichnet sich durch einige Besonderheiten (Orientierung des Generators, Master-Slave-Betrieb der Wechselrichter) aus. Das Betriebsverhalten der Anlagen wurde ueber einen laengeren Zeitraum untersucht. Im Jahr 1995 erreichte die Photovoltaikanlage mit 689 Vollastbetriebsstunden etwa die Ergebnisse anderer Photovoltaikanlagen in Sachsen. Moegliche hoehere Ertraege werden durch die gewaehlte Orientierung des Generators verhindert. Die Master-Slave-Schaltung der Wechselrichter arbeitete ohne Probleme. Ihre Effektivitaet wurde durch die nicht optimale Abstimmung von Generator

  1. Generation Expansion Planning with Large Amounts of Wind Power via Decision-Dependent Stochastic Programming

    DEFF Research Database (Denmark)

    Zhan, Yiduo; Zheng, Qipeng; Wang, Jianhui

    2016-01-01

    , the probability distribution function is determined by not only input parameters but also decision variables. To deal with the nonlinear constraints in our model, a quasi-exact solution approach is then introduced to reformulate the multistage stochastic investment model to a mixed-integer linear programming......Power generation expansion planning needs to deal with future uncertainties carefully, given that the invested generation assets will be in operation for a long time. Many stochastic programming models have been proposed to tackle this challenge. However, most previous works assume predetermined...

  2. Discussion of “Prediction intervals for short-term wind farm generation forecasts” and “Combined nonparametric prediction intervals for wind power generation”

    DEFF Research Database (Denmark)

    Pinson, Pierre; Tastu, Julija

    2014-01-01

    A new score for the evaluation of interval forecasts, the so-called coverage width-based criterion (CWC), was proposed and utilized.. This score has been used for the tuning (in-sample) and genuine evaluation (out-ofsample) of prediction intervals for various applications, e.g., electric load [1......], electricity prices [2], general purpose prediction [3], and wind power generation [4], [5]. Indeed, two papers by the same authors appearing in the IEEE Transactions On Sustainable Energy employ that score and use it to conclude on the comparative quality of alternative approaches to interval forecasting...

  3. Variability of the Wind Turbine Power Curve

    Directory of Open Access Journals (Sweden)

    Mahesh M. Bandi

    2016-09-01

    Full Text Available Wind turbine power curves are calibrated by turbine manufacturers under requirements stipulated by the International Electrotechnical Commission to provide a functional mapping between the mean wind speed v ¯ and the mean turbine power output P ¯ . Wind plant operators employ these power curves to estimate or forecast wind power generation under given wind conditions. However, it is general knowledge that wide variability exists in these mean calibration values. We first analyse how the standard deviation in wind speed σ v affects the mean P ¯ and the standard deviation σ P of wind power. We find that the magnitude of wind power fluctuations scales as the square of the mean wind speed. Using data from three planetary locations, we find that the wind speed standard deviation σ v systematically varies with mean wind speed v ¯ , and in some instances, follows a scaling of the form σ v = C × v ¯ α ; C being a constant and α a fractional power. We show that, when applicable, this scaling form provides a minimal parameter description of the power curve in terms of v ¯ alone. Wind data from different locations establishes that (in instances when this scaling exists the exponent α varies with location, owing to the influence of local environmental conditions on wind speed variability. Since manufacturer-calibrated power curves cannot account for variability influenced by local conditions, this variability translates to forecast uncertainty in power generation. We close with a proposal for operators to perform post-installation recalibration of their turbine power curves to account for the influence of local environmental factors on wind speed variability in order to reduce the uncertainty of wind power forecasts. Understanding the relationship between wind’s speed and its variability is likely to lead to lower costs for the integration of wind power into the electric grid.

  4. Harnessing wind power with sustained policy support

    Energy Technology Data Exchange (ETDEWEB)

    Meera, L. [BITS-Pilani. Dept. of Economics, Hyderabad (India)

    2012-07-01

    The development of wind power in India began in the 1990s, and has significantly increased in the last few years. The ''Indian Wind Turbine Manufacturers Association (IWTMA)'' has played a leading role in promoting wind energy in India. Although a relative newcomer to the wind industry compared with Denmark or the US, a combination of domestic policy support for wind power and the rise of Suzlon (a leading global wind turbine manufacturer) have led India to become the country with the fifth largest installed wind power capacity in the world. Wind power accounts for 6% of India's total installed power capacity, and it generates 1.6% of the country's power. (Author)

  5. Determining the bounds of skilful forecast range for probabilistic prediction of system-wide wind power generation

    Directory of Open Access Journals (Sweden)

    Dirk Cannon

    2017-06-01

    Full Text Available State-of-the-art wind power forecasts beyond a few hours ahead rely on global numerical weather prediction models to forecast the future large-scale atmospheric state. Often they provide initial and boundary conditions for nested high resolution simulations. In this paper, both upper and lower bounds on forecast range are identified within which global ensemble forecasts provide skilful information for system-wide wind power applications. An upper bound on forecast range is associated with the limit of predictability, beyond which forecasts have no more skill than predictions based on climatological statistics. A lower bound is defined at the lead time beyond which the resolved uncertainty associated with estimating the future large-scale atmospheric state is larger than the unresolved uncertainty associated with estimating the system-wide wind power response to a given large-scale state.The bounds of skilful ensemble forecast range are quantified for three leading global forecast systems. The power system of Great Britain (GB is used as an example because independent verifying data is available from National Grid. The upper bound defined by forecasts of GB-total wind power generation at a specific point in time is found to be 6–8 days. The lower bound is found to be 1.4–2.4 days. Both bounds depend on the global forecast system and vary seasonally. In addition, forecasts of the probability of an extreme power ramp event were found to possess a shorter limit of predictability (4.5–5.5 days. The upper bound on this forecast range can only be extended by improving the global forecast system (outside the control of most users or by changing the metric used in the probability forecast. Improved downscaling and microscale modelling of the wind farm response may act to decrease the lower bound. The potential gain from such improvements have diminishing returns beyond the short-range (out to around 2 days.

  6. Control of frequency converters for wind power systems with doubly fed asynchronous generators; Regelung von Frequenzumrichtern fuer Windenergieanlagen mit doppelt gespeistem Asynchrongenerator

    Energy Technology Data Exchange (ETDEWEB)

    Engelhardt, Stephan [Woodward SEG GmbH und Co. KG, Kempen (Germany)

    2007-07-01

    Modern wind energy systems are characterized by an extensive use of power electronics. Using complex converter systems is technically and commercially very attractive as it allows an optimized operation of the wind turbine in regard to efficiency, reduced stress to the drive train due to variable speed and feeding wind power with high quality into the grid. For some years wind energy systems with frequency converter and doubly fed asynchronous generator have the biggest market share. The main requirements from grid codes regarding fault ride through operation will be summarized and enhanced control algorithms for this special type of system will be presented. (orig.)

  7. Incorporating wind generation forecast uncertainty into power system operation, dispatch, and unit commitment procedures

    Energy Technology Data Exchange (ETDEWEB)

    Makarov, Yuri V.; Etingov, Pavel V.; Huang, Zhenyu; Ma, Jiam; Subbarao, Krishnappa [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)

    2010-07-01

    An approach to evaluate the uncertainties of the balancing capacity, ramping capability, and ramp duration requirements is proposed. The approach includes three steps: forecast data acquisition, statistical analysis of retrospective information, and prediction of grid balancing requirements for a specified time horizon and a given confidence level. An assessment of the capacity and ramping requirements is performed using a specially developed probabilistic algorithm based on histogram analysis, incorporating sources of uncertainty - both continuous (wind and load forecast errors) and discrete (forced generator outages and start-up failures). A new method called the ''flying-brick'' technique is developed to evaluate the look-ahead required generation performance envelope for the worst case scenario within a user-specified confidence level. A self-validation process is used to validate the accuracy of the confidence intervals. To demonstrate the validity of the developed uncertainty assessment methods and its impact on grid operation, a framework for integrating the proposed methods with an EMS system is developed. Demonstration through integration with an EMS system illustrates the applicability of the proposed methodology and the developed tool for actual grid operation and paves the road for integration with EMS systems from other vendors. (orig.)

  8. Wind power in political whirlwind

    International Nuclear Information System (INIS)

    Morch, Stein

    2002-01-01

    In Norway, according to this article, shifting fair wind and head wind for wind power have changed to unpredictable political whirlwinds. That is, there is great uncertainty with respect to further development of wind power in Norway as well as in nearby markets such as Sweden, Denmark and the Netherlands. The government, represented by Enova, has announced reduced investment grants, and so the realization of a ''green'' market, at home or across the frontiers, becomes very important. The political goal of producing 3 TWh of wind power per year by 2010 apparently is still valid, but it is difficult to see any robust and convincing clarity when it comes to policy instruments and economical frames that will make it possible to reach that goal. In its directive on renewable energy sources in the energy generation, the EU has quoted a total increase in capacity from 14 percent in 1997 to 22 percent in 2010. This has been shared among the member countries as indicative targets and there is great freedom in the selection of policy instruments. At the end of 2002, the wind power production in Norway is 0.3 TWh/year

  9. Wind power in Germany - a success story

    International Nuclear Information System (INIS)

    Weller, T.

    1996-01-01

    The successful introduction of wind power to the electric power industry in the Federal Republic of Germany is described using graphic representations to illustrate the industry's growth over the last twenty years. The history of the wind market is discussed, together with the importance of stakeholders as a way of funding the industry. The author concludes that public support for environmentally sensitive power generation was the key factor leading to the success of the wind power industry in Germany. (UK)

  10. Power generation technologies

    CERN Document Server

    Breeze, Paul

    2014-01-01

    The new edition of Power Generation Technologies is a concise and readable guide that provides an introduction to the full spectrum of currently available power generation options, from traditional fossil fuels and the better established alternatives such as wind and solar power, to emerging renewables such as biomass and geothermal energy. Technology solutions such as combined heat and power and distributed generation are also explored. However, this book is more than just an account of the technologies - for each method the author explores the economic and environmental costs and risk factor

  11. Power generation

    International Nuclear Information System (INIS)

    Nunez, Anibal D.

    2001-01-01

    In the second half of twentieth century, nuclear power became an industrial reality. Now the operating 433 power plants, the 37 plants under construction, near 9000 years/reactor with only one serious accident with emission of radioactive material to the environment (Chernobyl) show the maturity of this technology. Today nuclear power contribute a 17% to the global generation and an increase of 75 % of the demand of electricity is estimated for 2020 while this demand is expected to triplicate by 2050. How this requirement can be satisfied? All the indicators seems to demonstrate that nuclear power will be the solution because of the shortage of other sources, the increase of the prices of the non renewable fuels and the scarce contribution of the renewable ones. In addition, the climatic changes produced by the greenhouse effect make even more attractive nuclear power. The situation of Argentina is analyzed and compared with other countries. The convenience of an increase of nuclear power contribution to the total national generation seems clear and the conclusion of the construction of the Atucha II nuclear power plant is recommended

  12. Efficiency of small wind generator powered water pumping systems; Rendimento de unidade de bombeamento de agua acionada por gerador eolico de pequeno porte

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Mendeleyev Guerreiro; Carvalho, Paulo Cesar Marques de; Costa, Levy Ferreira [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Dept. de Engenharia Eletrica; Borges Neto, Manuel Rangel [Centro Federal de Educacao Tecnologica de Petrolina (CEFET), PE (Brazil)

    2008-07-01

    The present paper aims to evaluate the efficiency of a small wind generator powered water pumping system; the generator is a permanent magnet generator of 1 kw of axial flow, using three fiber glass blades with 2.46 m diameter. The used centrifugal pump is connected to a 0.5 c v motor, three-phase, frequency of 60 Hz, rotational speed of 3450 rpm. For the efficiency evaluation a shell anemometer, a flow and pressure sensor were used, connected to a data logger to the collection and storage of the data. An energy analyzer was also used to collect the current, voltage and power generated from the wind generator. (author)

  13. Collision effects of wind-power generators and other obstacles on birds.

    Science.gov (United States)

    Drewitt, Allan L; Langston, Rowena H W

    2008-01-01

    There is extensive literature on avian mortality due to collision with man-made structures, including wind turbines, communication masts, tall buildings and windows, power lines, and fences. Many studies describe the consequences of bird-strike rather than address the causes, and there is little data based on long-term, standardized, and systematic assessments. Despite these limitations, it is apparent that bird-strike is a significant cause of mortality. It is therefore important to understand the effects of this mortality on bird populations. The factors which determine avian collision risk are described, including location, structural attributes, such as height and the use of lighting, weather conditions, and bird morphology and behavior. The results of incidental and more systematic observations of bird-strike due to a range of structures are presented and the implications of collision mortality for bird populations, particularly those of scarce and threatened species susceptible to collisions, are discussed. Existing measures for reducing collision mortality are described, both generally and specifically for each type of structure. It is concluded that, in some circumstances, collision mortality can adversely affect bird populations, and that greater effort is needed to derive accurate estimates of mortality levels locally, regionally, and nationally to better assess impacts on avian populations. Priority areas for future work are suggested, including further development of remote technology to monitor collisions, research into the causes of bird-strike, and the design of new, effective mitigation measures.

  14. Variable speed DFIG wind energy system for power generation and harmonic current mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Gaillard, A.; Saadate, S. [Groupe de Recherche en Electrotechnique et Electronique de Nancy, Nancy Universite - Universite Henri Poincare Nancy 1, BP239, 54506 Vandoeuvre les Nancy Cedex (France); Poure, P. [Laboratoire d' Instrumentation Electronique de Nancy, Nancy Universite - Universite Henri Poincare Nancy 1, BP239, 54506 Vandoeuvre les Nancy Cedex (France); Machmoum, M. [IREENA, 37 Boulevard de l' Universite, BP 406, 44602 Saint-Nazaire Cedex (France)

    2009-06-15

    This paper presents a novel approach for simultaneous power generation and harmonic current mitigation using variable speed WECS with DFIG. A new control strategy is proposed to upgrade the DFIG control to achieve simultaneously a green active and reactive power source with active filtering capability. To ensure high filtering performance, we studied an improved harmonic isolator in the time-domain, based on a new high selectivity filter developed in our laboratory. We examined two solutions for harmonic current mitigation: first, by compensating the whole harmonic component of the grid currents or second, by selective isolation of the predominant harmonic currents to ensure active filtering of the 5th and 7th harmonics. Simulation results for a 3 MW WECS with DFIG confirm the effectiveness and the performance of the two proposed approaches. (author)

  15. Modeling, analysis and comparison of TSR and OTC methods for MPPT and power smoothing in permanent magnet synchronous generator-based wind turbines

    International Nuclear Information System (INIS)

    Nasiri, M.; Milimonfared, J.; Fathi, S.H.

    2014-01-01

    Highlights: • Small signal modeling of PMSG wind turbine with two controllers are introduced. • Poles and zeroes analyzing of OTC and TSR methods is performed. • Generator output power with varying wind speed in PMSG wind turbine is studied. • MPPT capability of OTC and TSR methods to wind speed variations are compared. • Power smoothing capability and reducing mechanical stress of both methods are studied. - Abstract: This paper presents a small signal modeling of a direct-driven permanent magnet synchronous generator (PMSG) based on wind turbine which is connected to the grid via back-to-back converters. The proposed small signal model includes two maximum power point tracking (MPPT) controllers: tip speed ratio (TSR) control and optimal torque control (OTC). These methods are analytically compared to illustrate MPPT and power smoothing capability. Then, to compare the MPPT and power smoothing operation of the mentioned methods, simulations are performed in MATLAB/Simulink software. From the simulation results, OTC is highly efficient in power smoothing enhancement and has clearly good performance to extract maximum power from wind; however, TSR control has definitely fast responses to wind speed variations with the expense of higher fluctuations due to its non-minimum phase characteristic

  16. Voltage and frequency control of wind-powered islanded microgrids based on induction generator and STATCOM

    DEFF Research Database (Denmark)

    Bouzid, Allal; Sicard, Pierre; Guerrero, Josep M.

    2015-01-01

    This paper presents a comprehensive modeling of a three-phase cage induction machine used as a self-excited squirrel-cage induction generator (SEIG), and discusses the regulation of the voltage and frequency of a self-excited SEIG based on the action of the static synchronous Compensator (STATCOM......). The STATCOM with the proposed controller consists of a three-phase voltage-sourced inverter and a DC voltage. The compensator can provide the active and reactive powers and regulate AC system bus voltage and the frequency, but also may enhance the load stability. Moreover, a feed forward control method...

  17. Wind power potential and integration in Africa

    Directory of Open Access Journals (Sweden)

    Agbetuyi, A.F.

    2013-03-01

    Full Text Available Wind energy penetration into power networks is increasing very rapidly all over the world. The great concern about global warming and continued apprehensions about nuclear power around the world should drive most countries in Africa into strong demand for wind generation because of its advantages which include the absence of harmful emissions, very clean and almost infinite availability of wind that is converted into electricity. This paper shows the power available in the wind. It also gives an overview of the wind power potential and integration in some selected Africa countries like Egypt, Morocco, South Africa and Nigeria and the challenges of wind power integration in Africa’s continent are also discussed. The Northern part of Africa is known to be Africa’s Wind pioneers having installed and connected the Wind Energy Converters (WEC to the grid. About 97% of the continent’s total wind installations are located in Egypt, Morocco and Tunisia. Research work should commence on the identified sites with high wind speeds in those selected Africa countries, so that those potential sites can be connected to the grid. This is because the ability of a site to sufficiently accommodate wind generation not only depends on wind speeds but on its ability to interconnect to the existing grid. If these wind energy potentials are tapped and connected to the grid, the erratic and epileptic power supply facing most countries in Africa will be reduced; thereby reducing rural-urban migration and more jobs will be created.

  18. Global wind power development: Economics and policies

    International Nuclear Information System (INIS)

    Timilsina, Govinda R.; Cornelis van Kooten, G.; Narbel, Patrick A.

    2013-01-01

    Existing literature indicates that theoretically, the earth's wind energy supply potential significantly exceeds global energy demand. Yet, only 2–3% of global electricity demand is currently derived from wind power despite 27% annual growth in wind generating capacity over the last 17 years. More than 95% of total current wind power capacity is installed in the developed countries plus China and India. Our analysis shows that the economic competitiveness of wind power varies at wider range across countries or locations. A climate change damage cost of US$20/tCO 2 imposed to fossil fuels would make onshore wind competitive to all fossil fuels for power generation; however, the same would not happen to offshore wind, with few exceptions, even if the damage cost is increased to US$100/tCO 2 . To overcome a large number of technical, financial, institutional, market and other barriers to wind power, many countries have employed various policy instruments, including capital subsidies, tax incentives, tradable energy certificates, feed-in tariffs, grid access guarantees and mandatory standards. Besides, climate change mitigation policies, such as the Clean Development Mechanism, have played a pivotal role in promoting wind power. Despite these policies, intermittency, the main technical constraint, could remain as the major challenge to the future growth of wind power. - Highlights: • Global wind energy potential is enormous, yet the wind energy contribution is very small. • Existing policies are boosting development of wind power. • Costs of wind energy are higher than cost of fossil-based energies. • Reasonable premiums for climate change mitigation substantially promote wind power. • Intermittency is the key challenge to future development of wind power

  19. Fiscal 1998 research report. Feasibility survey on offshore wind power generation in Japan; 1998 nendo chosa hokokusho. Nippon ni okeru yojo furyoku hatsuden no donyu kanosei chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    This survey studied the feasibility of large-scale offshore wind power generation in Japan. Attempt was also made on preparation of outline maps of offshore wind around Japan. The cost of future offshore wind power generation systems is roughly dependent on technical issues and environmental issues. As technical issues, 'installation site,' 'foundation,' 'system interconnection' and 'maintenance/management' were summarized based on applications in Europe. As a result, it was clarified that technical issues can be solved with existing technologies to a certain extent, however, those relate to economical problems closely. The previous environment impact assessments say that wind power generation has no problems on the environmental issues. As relatively strong wind coastal areas, the outline maps of offshore wind point out Western Hokkaido area, Japan Sea area of Tohoku district, Pacific ocean area of the central part of Honshu, Genkai Nada area, Western Kyushu area and Southwest islands area, and suggest that these areas are promising for offshore wind power generation. (NEDO)

  20. Fiscal 1998 research report. Feasibility survey on offshore wind power generation in Japan; 1998 nendo chosa hokokusho. Nippon ni okeru yojo furyoku hatsuden no donyu kanosei chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    This survey studied the feasibility of large-scale offshore wind power generation in Japan. Attempt was also made on preparation of outline maps of offshore wind around Japan. The cost of future offshore wind power generation systems is roughly dependent on technical issues and environmental issues. As technical issues, 'installation site,' 'foundation,' 'system interconnection' and 'maintenance/management' were summarized based on applications in Europe. As a result, it was clarified that technical issues can be solved with existing technologies to a certain extent, however, those relate to economical problems closely. The previous environment impact assessments say that wind power generation has no problems on the environmental issues. As relatively strong wind coastal areas, the outline maps of offshore wind point out Western Hokkaido area, Japan Sea area of Tohoku district, Pacific ocean area of the central part of Honshu, Genkai Nada area, Western Kyushu area and Southwest islands area, and suggest that these areas are promising for offshore wind power generation. (NEDO)

  1. FY 1998 Report on development of large-scale wind power generation systems. Part 1. Operational research on large-scale wind power generation systems; 1998 nendo ogata furyoku hatsuden system kaihatsu seika hokokusho. 1. Ogata furyoku hatsuden system no unten kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    The research and development project is implemented for large-scale wind power generation systems, and the FY 1998 results are reported. In the FY 1998, a slip property variable generator is actually mounted on the wind power generator, to conduct various types of demonstration tests. The reliability validation tests include microstructure examinations, fatigue tests and fatigue strength tests to predict residual strength in the blade. It is confirmed that the blade has a sufficient residual strength. The performance validation tests include continuous measurement of power outputs and wind velocities, and analysis of the output fluctuations. The power output performance during winter when the west wind prevails is higher than designed. In the tests for evaluating the characteristics of the system on which a slip property variable generator is mounted, the output smoothing effect is confirmed in a range beyond the rated output. The wind power generation system is continuously operated, to accumulate the operational data for, e.g., capacity factor, operating time rate, and system failure status. The FY 1998 results are 920,000kWh as the output and 21% as capacity factor. The other items investigate include aerodynamic noise reduction countermeasures, fatigue life of the wind turbine blades, economics of wind power generation, and dismantling and reuse of the wind turbines. (NEDO)

  2. Wind power integration connection and system operational aspects

    CERN Document Server

    Fox, Brendan

    2014-01-01

    Wind Power Integration provides a wide-ranging discussion on all major aspects of wind power integration into electricity supply systems. This second edition has been fully revised and updated to take account of the significant growth in wind power deployment in the past few years. New discussions have been added to describe developments in wind turbine generator technology and control, the network integration of wind power, innovative ways to integrate wind power when its generation potential exceeds 50% of demand, case studies on how forecasting errors have affected system operation, and an update on how the wind energy sector has fared in the marketplace. Topics covered include: the development of wind power technology and its world-wide deployment; wind power technology and the interaction of various wind turbine generator types with the utility network; and wind power forecasting and the challenges faced by wind energy in modern electricity markets.

  3. The new generation of tools for prediction of wind power potential and site selection

    DEFF Research Database (Denmark)

    Lundtang Petersen, Erik

    2012-01-01

    , from insufficient input data to deficient physics and resolution in any of the models, model linking issues, insufficient resolution or errors in surface topographical data such as terrain heights, land cover data etc. Therefore it has been decided on a European Union level to launch a project “The New...... European Wind Atlas” aiming at reducing overall uncertainties in determining wind conditions; standing on three legs: A data bank from a series of intensive measuring campaigns; a thorough examination and redesign of the model chain from global, mesoscale to microscale models and the creation of the wind...

  4. Cutting-in control of the variable speed constant frequency wind power generator based on internal model controller

    Energy Technology Data Exchange (ETDEWEB)

    Guo Jindong; Xu Honghua; Zhao Dongli [Inst. of Electrical Engineering, CAS, BJ (China)

    2008-07-01

    The no-impact-current cutting-in-network control is the key of variable speed constant frequency (VSCF) wind power control system. Based on the stator flux linkage oriented control theory of doubly fed induction generator (DFIG), the field-oriented vector control technique and the internal model controller (IMC) are transplanted into the voltage control of DFIG and a novel cutting-in control strategy is obtained. The strategy does not need the exact inductor generator model, and has perfect performance without overshoot. The structure of the controller is simple, and the only parameter to be adjusted is directly related to system performance, so the strategy is easy to realize. Finally the strategy is studied by simulation using Matlab, the results of the simulation show that the control strategy can effectively control the stator voltage. (orig.)

  5. Offshore Wind Power Data

    DEFF Research Database (Denmark)

    Cutululis, Nicolaos Antonio; Litong-Palima, Marisciel; Zeni, Lorenzo

    2012-01-01

    Wind power development scenarios are critical when trying to assess the impact of the demonstration at national and European level. The work described in this report had several objectives. The main objective was to prepare and deliver the proper input necessary for assessing the impact of Demo 4...

  6. Direct Interval Forecasting of Wind Power

    DEFF Research Database (Denmark)

    Wan, Can; Xu, Zhao; Pinson, Pierre

    2013-01-01

    This letter proposes a novel approach to directly formulate the prediction intervals of wind power generation based on extreme learning machine and particle swarm optimization, where prediction intervals are generated through direct optimization of both the coverage probability and sharpness...

  7. Danish Wind Power Export and Cost

    DEFF Research Database (Denmark)

    Lund, Henrik; Hvelplund, Frede; Alberg Østergaard, Poul

    In a normal wind year, Danish wind turbines generate the equivalent of approx. 20 percent of the Danish electricity demand. This paper argues that only approx. 1 percent of the wind power production is exported. The rest is used to meet domestic Danish electricity demands. The cost of wind power...... misleading. The cost of CO2 reduction by use of wind power in the period 2004-2008 was only 20 EUR/ton. Furthermore, the Danish wind turbines are not paid for by energy taxes. Danish wind turbines are given a subsidy via the electricity price which is paid by the electricity consumers. In the recent years...... is paid solely by the electricity consumers and the net influence on consumer prices was as low as 1-3 percent on average in the period 2004-2008. In 2008, the net influence even decreased the average consumer price, although only slightly. In Denmark, 20 percent wind power is integrated by using both...

  8. Coordinated Frequency Control of Wind Turbines in Power Systems with High Wind Power Penetration

    DEFF Research Database (Denmark)

    Tarnowski, Germán Claudio

    The integration of large amounts of wind power in power systems presents huge challenges. In particular, with the increase of wind power generation, more regulation reserves would be necessary, the capability of the power system to offer conventional regulating power would be reduced...... particular views. These models were developed and verified during this work, basedaround a particular manufacturer’s wind turbine and on said isolated power system withwind power. The capability of variable speed wind turbines for providing Inertial Response is analysed. To perform this assessment, a control...... generation were studied considering a large share of wind power in the system. Results show the abilities of the architectures to manage the variability of the generated wind power, reducing the impact on the grid frequency and providing suitable frequency regulation service when required. The coordination...

  9. Aerodynamic flow deflector to increase large scale wind turbine power generation by 10%.

    Science.gov (United States)

    2015-11-01

    The innovation proposed in this paper has the potential to address both the efficiency demands of wind farm owners as well as to provide a disruptive design innovation to turbine manufacturers. The aerodynamic deflector technology was created to impr...

  10. Power System Operation with Large Scale Wind Power Integration

    DEFF Research Database (Denmark)

    Suwannarat, A.; Bak-Jensen, B.; Chen, Z.

    2007-01-01

    to the uncertain nature of wind power. In this paper, proposed models of generations and control system are presented which analyze the deviation of power exchange at the western Danish-German border, taking into account the fluctuating nature of wind power. The performance of the secondary control of the thermal......The Danish power system starts to face problems of integrating thousands megawatts of wind power, which produce in a stochastic behavior due to natural wind fluctuations. With wind power capacities increasing, the Danish Transmission System Operator (TSO) is faced with new challenges related...... power plants and the spinning reserves control from the Combined Heat and Power (CHP) units to achieve active power balance with the increased wind power penetration is presented....

  11. Data book on new energy technology in FY 1997. Wind power generation; Shin energy gijutsu kaihatsu kankei data shu sakusei chosa. Furyoku hatsuden

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    It is an urgent necessity for Japan to promote the technological development and accelerate the introduction and diffusion of new energy. In order to diffuse and enlighten the introduction of new energy technology efficiently, it is necessary to compile various information regarding new energy in a comprehensive and systematic way, and formulate a database. Aiming at the systematic formulation of data on new energy, this survey focuses on the field of wind power generation system (WPS) and provides a collection of the latest published data on WPS, particularly regarding the worldwide installed wind power capacity, support plan and government policies, current situations of WPS market, and major technical characteristics of typical wind turbines. This report consists of the significance of wind energy, world market of wind turbines, government policies, international wind energy development, subsidies for wind energy, procedures of wind turbine system installation, governmental measures for wind energy development, subsidiary companies and organizations, basis of wind energy, and Japan`s wind energy development in 1997

  12. Wind power barometer

    International Nuclear Information System (INIS)

    Anon.

    2010-01-01

    The global wind power market not only repelled the strictures of the financial crisis, but saw the installation of 37 GW in 2009, which is almost 10 GW up on 2008. China and the United States registered particularly steady growth and the European Union also picked up momentum to break its installation record. A total capacity of 158 GW of wind power are now installed across the world from which 74.8 GW in the European Union. Among the European countries Denmark has the highest wind capacity per inhabitant in 2009: 627.5 kW/1000 inhabitants. Spain seeks to limit its market's growth in order to better manage the development of wind energy across the country. German growth is back, Italy chalks up a new record for installation and the French market is becoming increasingly regulated. United-Kingdom is developing offshore wind farms: the offshore capacity could reasonably rise to 20000 MW by 2020. The last part of the article reports some economical news from the leading players: Vestas, GE-Energy, Gamesa, Enercon, Sinovel and Siemens. (A.C.)

  13. Balancing modern Power System with large scale of wind power

    DEFF Research Database (Denmark)

    Basit, Abdul; Altin, Müfit; Hansen, Anca Daniela

    2014-01-01

    Power system operators must ensure robust, secure and reliable power system operation even with a large scale integration of wind power. Electricity generated from the intermittent wind in large propor-tion may impact on the control of power system balance and thus deviations in the power system...... frequency in small or islanded power systems or tie line power flows in interconnected power systems. Therefore, the large scale integration of wind power into the power system strongly concerns the secure and stable grid operation. To ensure the stable power system operation, the evolving power system has...... to be analysed with improved analytical tools and techniques. This paper proposes techniques for the active power balance control in future power systems with the large scale wind power integration, where power balancing model provides the hour-ahead dispatch plan with reduced planning horizon and the real time...

  14. Attitudes towards wind power

    International Nuclear Information System (INIS)

    Young, B.

    1993-01-01

    Planning permission for the construction of a small 'farm' of wind turbines at Delabole (Deli windfarm) had been obtained and it was intended to use this source of renewable energy by generating electricity and selling it to the electrical power companies for distribution through the National Grid. It was important, therefore, to establish just what the attitudes of local residents were to the proposed development. A programme of research was discussed with the developer and it was agreed that an attitude survey would be conducted in the local area in the summer of 1990, before the turbines were erected, and before the tourist season was completely spent in order to obtain the views of visitors as well. A similar survey would then be done one year later, when the Deli windfarm was established and running. In addition, control samples would be taken at these two times in Exeter to give baseline information on attitudes toward this topic. This proposal was put to the developer and agreement was reached with him and the UK Department of Energy who were providing financial support for the research. The results of the research are reported. (author)

  15. Endurance Wind Power : practical insights into small wind

    International Nuclear Information System (INIS)

    Hicks, D.

    2008-01-01

    This presentation discussed practical issues related to purchasing and installing small wind turbines in Canada. Wind power capacity can be estimated by looking at provincial wind maps as well as by seeking wind data at local airports. Wind resources are typically measured at heights of between 20 meters and 50 m. The height of a wind turbine tower can significantly increase the turbine's wind generating capacity. Turbine rotors should always be placed 30 feet higher than obstacles within 500 feet. Many provinces have now mandated utilities to accept renewable energy resources from grid-connected wind energy plants. Net billing systems are used to determine the billing relationship between power-producing consumers and the utilities who will buy the excess power and sell it to other consumers. Utilities are not yet mandated to purchase excess power, and it is likely that federal and provincial legislation will be needed to ensure that net billing systems continue to grow. Many Canadian municipalities have no ordinances related to wind turbine placements. Consumers interested in purchasing small wind turbines should ensure that the turbine has been certified by an accredited test facility and has an adequate safety system. The noise of the turbine as well as its power performance in relation to the purchaser's needs must also be considered. It was concluded that small wind turbines can provide a means for electricity consumers to reduce their carbon footprint and hedge against the inflationary costs of fossil-fuelled energy resources. tabs., figs

  16. Wind power engine

    Energy Technology Data Exchange (ETDEWEB)

    Musgrove, P J

    1977-02-10

    The device is a wind-power engine with vertical axis and with one or several wings with airfoil profile fixed on a frame which is pivoted at the vertical axis. Each wing forms at least on one part of its length an angle of inclination with the vertical. The angle increases under the influence of the centrifugal force when the r.p.m. exceed a normal operation range. This method helps to reduce mechanical loads occurring with high wind speeds without requiring a complicated construction.

  17. An Examination of AC/HVDC Power Circuits for Interconnecting Bulk Wind Generation with the Electric Grid

    Directory of Open Access Journals (Sweden)

    Daniel Ludois

    2010-06-01

    Full Text Available The application of high voltage dc (HVDC transmission for integrating large scale and/or off-shore wind generation systems with the electric grid is attractive in comparison to extra high voltage (EHV ac transmission due to a variety of reasons. While the technology of classical current sourced converters (CSC using thyristors is well established for realization of large HVDC systems, the technology of voltage sourced converters (VSC is emerging to be an alternative approach, particularly suitable for multi-terminal interconnections. More recently, a more modular scheme that may be termed ‘bridge of bridge’ converters (BoBC has been introduced to realize HVDC systems. While all these three approaches are functionally capable of realizing HVDC systems, the converter power circuit design trade-offs between these alternatives are not readily apparent. This paper presents an examination of these topologies from the point of view of power semiconductor requirements, reactive component requirements, operating losses, fault tolerance, multi-terminal operation, modularity, complexity, etc. Detailed analytical models will be used along with a benchmark application to develop a comparative evaluation of the alternatives that maybe used by wind energy/bulk transmission developers for performing engineering trade-off studies.

  18. Optimal sizing study of hybrid wind/PV/diesel power generation unit

    Energy Technology Data Exchange (ETDEWEB)

    Belfkira, Rachid; Zhang, Lu; Barakat, Georges [Groupe de Recherche en Electrotechnique et Automatique du Havre, University of Le Havre, 25 rue Philippe Lebon, BP 1123, 76063 Le Havre (France)

    2011-01-15

    In this paper, a methodology of sizing optimization of a stand-alone hybrid wind/PV/diesel energy system is presented. This approach makes use of a deterministic algorithm to suggest, among a list of commercially available system devices, the optimal number and type of units ensuring that the total cost of the system is minimized while guaranteeing the availability of the energy. The collection of 6 months of data of wind speed, solar radiation and ambient temperature recorded for every hour of the day were used. The mathematical modeling of the main elements of the hybrid wind/PV/diesel system is exposed showing the more relevant sizing variables. A deterministic algorithm is used to minimize the total cost of the system while guaranteeing the satisfaction of the load demand. A comparison between the total cost of the hybrid wind/PV/diesel energy system with batteries and the hybrid wind/PV/diesel energy system without batteries is presented. The reached results demonstrate the practical utility of the used sizing methodology and show the influence of the battery storage on the total cost of the hybrid system. (author)

  19. Multi-objective hybrid PSO-APO algorithm based security constrained optimal power flow with wind and thermal generators

    Directory of Open Access Journals (Sweden)

    Kiran Teeparthi

    2017-04-01

    Full Text Available In this paper, a new low level with teamwork heterogeneous hybrid particle swarm optimization and artificial physics optimization (HPSO-APO algorithm is proposed to solve the multi-objective security constrained optimal power flow (MO-SCOPF problem. Being engaged with the environmental and total production cost concerns, wind energy is highly penetrating to the main grid. The total production cost, active power losses and security index are considered as the objective functions. These are simultaneously optimized using the proposed algorithm for base case and contingency cases. Though PSO algorithm exhibits good convergence characteristic, fails to give near optimal solution. On the other hand, the APO algorithm shows the capability of improving diversity in search space and also to reach a near global optimum point, whereas, APO is prone to premature convergence. The proposed hybrid HPSO-APO algorithm combines both individual algorithm strengths, to get balance between global and local search capability. The APO algorithm is improving diversity in the search space of the PSO algorithm. The hybrid optimization algorithm is employed to alleviate the line overloads by generator rescheduling during contingencies. The standard IEEE 30-bus and Indian 75-bus practical test systems are considered to evaluate the robustness of the proposed method. The simulation results reveal that the proposed HPSO-APO method is more efficient and robust than the standard PSO and APO methods in terms of getting diverse Pareto optimal solutions. Hence, the proposed hybrid method can be used for the large interconnected power system to solve MO-SCOPF problem with integration of wind and thermal generators.

  20. Efficient estimator of probabilities of large power spills in an stand-alone system with wind generation and storage

    NARCIS (Netherlands)

    D. Bhaumik (Debarati); D.T. Crommelin (Daan); A.P. Zwart (Bert)

    2016-01-01

    textabstractThe challenges of integrating unpredictable wind energy into a power system can be alleviated using energy storage devices. We assessed a single domestic energy system with a wind turbine and a battery. We investigated the best operation mode of the battery such that the occurrence of

  1. Wind power in Arctic regions

    International Nuclear Information System (INIS)

    Lundsager, P.; Ahm, P.; Madsen, B.; Krogsgaard, P.

    1993-07-01

    Arctic or semi-arctic regions are often endowed with wind resources adequate for a viable production of electricity from the wind. Only limited efforts have so far been spent to introduce and to demonstrate the obvious synergy of combining wind power technology with the problems and needs of electricity generation in Arctic regions. Several factors have created a gap preventing the wind power technology carrying its full role in this context, including a certain lack of familiarity with the technology on the part of the end-users, the local utilities and communities, and a lack of commonly agreed techniques to adapt the same technology for Arctic applications on the part of the manufacturers. This report is part of a project that intends to contribute to bridging this gap. The preliminary results of a survey conducted by the project are included in this report, which is a working document for an international seminar held on June 3-4, 1993, at Risoe National Laboratory, Denmark. Following the seminar a final report will be published. It is intended that the final report will serve as a basis for a sustained, international effort to develop the wind power potential of the Arctic and semi-arctic regions. The project is carried out by a project group formed by Risoe, PA Energy and BTM Consult. The project is sponsored by the Danish Energy Agency of the Danish Ministry of Energy through grant no. ENS-51171/93-0008. (au)

  2. Wind power and bird kills

    International Nuclear Information System (INIS)

    Raynolds, M.

    1998-01-01

    The accidental killing of birds by wind generators, and design improvements in the towers that support the turbines that might cut down on the bird killings were discussed. The first problem for the industry began in the late 1980s when the California Energy Commission reported as many as 160 birds (the majority being raptors, including the protected golden eagle) killed in one year in the vicinity of wind power plants. The key factor identified was the design of the towers as birds of prey are attracted to lattice towers as a place to hunt from. Tubular towers do not provide a place for the birds to perch, therefore they reduce the potential for bird strikes. Bird strikes also have been reported in Spain and the siting of the towers have been considered as the principal cause of the bird strikes. In view of these incidents, the wind power industry is developing standards for studying the potential of bird strikes and is continuing to study bird behaviour leading to collisions, the impact of topography, cumulative impacts and new techniques to reduce bird strikes. Despite the reported incidents, the risk of bird strikes by wind turbines, compared to other threats to birds such as pollution, oil spills, and other threats from fossil and nuclear fuels, is considered to be negligible. With continuing efforts to minimize incidents by proper design and siting, wind power can continue to grow as an environmentally sound and efficient source of energy

  3. Wind power and bird kills

    Energy Technology Data Exchange (ETDEWEB)

    Raynolds, M.

    1998-12-01

    The accidental killing of birds by wind generators, and design improvements in the towers that support the turbines that might cut down on the bird killings were discussed. The first problem for the industry began in the late 1980s when the California Energy Commission reported as many as 160 birds (the majority being raptors, including the protected golden eagle) killed in one year in the vicinity of wind power plants. The key factor identified was the design of the towers as birds of prey are attracted to lattice towers as a place to hunt from. Tubular towers do not provide a place for the birds to perch, therefore they reduce the potential for bird strikes. Bird strikes also have been reported in Spain and the siting of the towers have been considered as the principal cause of the bird strikes. In view of these incidents, the wind power industry is developing standards for studying the potential of bird strikes and is continuing to study bird behaviour leading to collisions, the impact of topography, cumulative impacts and new techniques to reduce bird strikes. Despite the reported incidents, the risk of bird strikes by wind turbines, compared to other threats to birds such as pollution, oil spills, and other threats from fossil and nuclear fuels, is considered to be negligible. With continuing efforts to minimize incidents by proper design and siting, wind power can continue to grow as an environmentally sound and efficient source of energy.

  4. Issues and prospects in opting for new off-grid in favor to grid-integrated wind power generation systems : the case of Ethiopia

    Energy Technology Data Exchange (ETDEWEB)

    Wolde-Ghiorgis, W. [Addis Ababa Univ., Addis Ababa (Ethiopia). Dept. of Electrical and Computer Engineering

    2008-07-01

    This presentation addressed issues and prospects that help resolve constraints facing wind energy development in developing countries, with particular reference to on grid-integrated, and possibly off-grid power generation. The limitations to wind energy-development include a lack of a sizable and interconnected grids and a lack of financing. As such, even if harnessable wind energy potential is discovered at conveniently located inland sites, producing electricity would still be a challenge. This is the situation faced by less developed countries such as Ethiopia where the population and energy demands are increasing. There are also additional constraints to be addressed, recognized and resolved. This paper demonstrated that the use of clean development mechanisms (CDM) could attract support from interested industrialized countries to initiate off-grid wind power generation schemes. Off-grid wind power generation is considered to be a viable option for CDM financing. Cost comparisons and operational safety favour off-grid wind power generation. 5 refs., 3 tabs.

  5. Wind energy generation and pollution control

    International Nuclear Information System (INIS)

    Mohibullah; Mohd Nishat Anwar

    2009-01-01

    Full text: In India, power generation from wind has emerged as one of the most successful programme. It is making meaningful contributions to the overall power requirements in some of the states. India is emerging as fifth nation in wind power generation. As per the projections made by Ministry of New and Renewable Energy, Govt. of India, 10 % of the total capacity of power generation will come from renewable energy sources by the year 2012. It is envisaged that 50 % of this capacity may come from wind power alone. The paper describes a WECS (Wind Energy Conversion Systems) structure implemented in the MATLAB-Simulink simulation environment by using the specialized PSB toolbox, designed for modeling and simulation of electrical equipment. A study is made to show effectiveness in pollution control. An analytical study is also made regarding the potential of wind energy in limiting the amount of green house gases added into the atmosphere per year in different states in India. The amount of green house gases which are saved in the process are calculated for nine wind potential sites in India. The amount of green house gases saved is considerable to reduce environmental pollution and saving in carbon credit. Approximately an amount of 70681 Euro per year may be saved if the scheme is implemented and use of wind energy known in India is fully utilized for power generation. (author)

  6. Incorporation of a wind generator model into a dynamic power flow analysis; Incorporacion de un modelo de generador eolico al analisis de flujos dinamicos de potencia

    Energy Technology Data Exchange (ETDEWEB)

    Angeles Camacho, C.; Banuelos Ruedas, F. [Instituto de Ingenieria, Universidad Nacional Autonoma de Mexico (Mexico)]. E-mail: cangelesc@iingen.unam.mx; fbanuelosr@iingen.unam.mx

    2011-07-15

    Wind energy is nowadays one of the most cost-effective and practical options for electric generation from renewable resources. However, increased penetration of wind generation causes the power networks to be more depend on, and vulnerable to, the varying wind speed. Modeling is a tool which can provide valuable information about the interaction between wind farms and the power network to which they are connected. This paper develops a realistic characterization of a wind generator. The wind generator model is incorporated into an algorithm to investigate its contribution to the stability of the power network in the time domain. The tool obtained is termed dynamic power flow. The wind generator model takes on account the wind speed and the reactive power consumption by induction generators. Dynamic power flow analysis is carried-out using real wind data at 10-minute time intervals collected for one meteorological station. The generation injected at one point into the network provides active power locally and is found to reduce global power losses. However, the power supplied is time-varying and causes fluctuations in voltage magnitude and power flows in transmission lines. [Spanish] La energia eolica es hoy en dia una de las opciones mas efectivas y practicas para la generacion de electricidad a partir de energias renovables. Sin embargo, el incremento de la penetracion de energia eolica provoca que los sistemas de potencia se vuelvan mas dependientes y vulnerables a las variaciones de la velocidad del viento. El modelado es una herramienta que provee informacion valiosa de la interaccion dinamica entre las turbinas eolicas y las redes de potencia a las que se conectan. El presente articulo desarrolla una caracterizacion realista de un modelo de la turbina eolica. El modelo de la turbina eolica se incorpora a un algoritmo para el analisis de su contribucion a la estabilidad de una red electrica en el dominio del tiempo. La herramienta obtenida se conoce como flujos

  7. Real-time simulation of a Doubly-Fed Induction Generator based wind power system on eMEGASimRTM Real-Time Digital Simulator

    Science.gov (United States)

    Boakye-Boateng, Nasir Abdulai

    The growing demand for wind power integration into the generation mix prompts the need to subject these systems to stringent performance requirements. This study sought to identify the required tools and procedures needed to perform real-time simulation studies of Doubly-Fed Induction Generator (DFIG) based wind generation systems as basis for performing more practical tests of reliability and performance for both grid-connected and islanded wind generation systems. The author focused on developing a platform for wind generation studies and in addition, the author tested the performance of two DFIG models on the platform real-time simulation model; an average SimpowerSystemsRTM DFIG wind turbine, and a detailed DFIG based wind turbine using ARTEMiSRTM components. The platform model implemented here consists of a high voltage transmission system with four integrated wind farm models consisting in total of 65 DFIG based wind turbines and it was developed and tested on OPAL-RT's eMEGASimRTM Real-Time Digital Simulator.

  8. Wind power variability and power system reserves in South Africa

    DEFF Research Database (Denmark)

    Sørensen, Poul Ejnar; Litong-Palima, Marisciel; Hahmann, Andrea N.

    2017-01-01

    Variable renewable generation, primarily from wind and solar, introduces new uncertainties in the operation of power systems. This paper describes and applies a method to quantify how wind power development will affect the use of short-term automatic reserves in the future South African power sys...

  9. Cooperative wind turbine control for maximizing wind farm power using sequential convex programming

    International Nuclear Information System (INIS)

    Park, Jinkyoo; Law, Kincho H.

    2015-01-01

    Highlights: • The continuous wake model describes well the wake profile behind a wind turbine. • The wind farm power function describes well the power production of a wind farm. • Cooperative control increases the wind farm power efficiency by 7.3% in average. • SCP can be employed to efficiently optimize the control actions of wind turbines. - Abstract: This paper describes the use of a cooperative wind farm control approach to improve the power production of a wind farm. The power production by a downstream wind turbine can decrease significantly due to reduced wind speed caused by the upstream wind turbines, thereby lowering the overall wind farm power production efficiency. In spite of the interactions among the wind turbines, the conventional (greedy) wind turbine control strategy tries to maximize the power of each individual wind turbine by controlling its yaw angle, its blade pitch angle and its generator torque. To maximize the overall wind farm power production while taking the wake interference into account, this study employs a cooperative control strategy. We first derive the wind farm power as a differentiable function of the control actions for the wind turbines in a wind farm. The wind farm power function is then maximized using sequential convex programming (SCP) to determine the optimum coordinated control actions for the wind turbines. Using an example wind farm site and available wind data, we show how the cooperative control strategy improves the power production of the wind farm

  10. Wind Powering America

    Energy Technology Data Exchange (ETDEWEB)

    Flowers, L. (NREL); Dougherty, P. J. (DOE)

    2001-07-07

    At the June 1999 Windpower Conference, the Secretary of Energy launched the Office of Energy Efficiency and Renewable Energy's Wind Powering America (WPA) initiative. The goals of the initiative are to meet 5% of the nation's energy needs with wind energy by 2020 (i.e., 80,000 megawatts installed), to double the number of states that have more than 20 megawatts (MW) of wind capacity to 16 by 2005 and triple it to 24 by 2010, and to increase wind's contribution to Federal electricity use to 5% by 2010. To achieve the Federal government's goal, DOE would take the leadership position and work with its Federal partners. Subsequently, the Secretary accelerated the DOE 5% commitment to 2005. Achieving the 80,000 MW goal would result in approximately $60 billion investment and $1.5 billion of economic development in our rural areas (where the wind resources are the greatest). The purpose of this paper is to provide an update on DOE's strategy for achieving its goals and the activities it has undertaken since the initiative was announced.

  11. Wind Powering America

    International Nuclear Information System (INIS)

    Flowers, L.; Dougherty, P. J.

    2001-01-01

    At the June 1999 Windpower Conference, the Secretary of Energy launched the Office of Energy Efficiency and Renewable Energy's Wind Powering America (WPA) initiative. The goals of the initiative are to meet 5% of the nation's energy needs with wind energy by 2020 (i.e., 80,000 megawatts installed), to double the number of states that have more than 20 megawatts (MW) of wind capacity to 16 by 2005 and triple it to 24 by 2010, and to increase wind's contribution to Federal electricity use to 5% by 2010. To achieve the Federal government's goal, DOE would take the leadership position and work with its Federal partners. Subsequently, the Secretary accelerated the DOE 5% commitment to 2005. Achieving the 80,000 MW goal would result in approximately$60 billion investment and$1.5 billion of economic development in our rural areas (where the wind resources are the greatest). The purpose of this paper is to provide an update on DOE's strategy for achieving its goals and the activities it has undertaken since the initiative was announced

  12. Characteristics of future Vertical Axis Wind Turbines (VAWTs). [to generate utility grid electric power

    Science.gov (United States)

    Kadlec, E. G.

    1979-01-01

    The developing Darrieus VAWT technology whose ultimate objective is economically feasible, industry-produced, commercially marketed wind energy systems is reviewed. First-level aerodynamic, structural, and system analyses capabilities which support and evaluate the system designs are discussed. The characteristics of current technology designs are presented and their cost effectiveness is assessed. Potential improvements identified are also presented along with their cost benefits.

  13. A Comprehensive Review of Low-Voltage-Ride-Through Methods for Fixed-Speed Wind Power Generators

    DEFF Research Database (Denmark)

    Moghadasi, Amirhasan; Sarwat, Arif; Guerrero, Josep M.

    2016-01-01

    This paper presents a comprehensive review of various techniques employed to enhance the low voltage ride through (LVRT) capability of the fixed-speed induction generators (FSIGs)-based wind turbines (WTs), which has a non-negligible 20% contribution of the existing wind energy in the world...

  14. Wind power integration : From individual wind turbine to wind park as a power plant

    NARCIS (Netherlands)

    Zhou, Y.

    2009-01-01

    As power capacities of single wind turbine, single wind park and total wind power installation are continuously increasing, the wind power begins to challenge the safety operation of the power system. This thesis focuses on the grid integration aspects such as the dynamic behaviours of wind power

  15. Pricing offshore wind power

    International Nuclear Information System (INIS)

    Levitt, Andrew C.; Kempton, Willett; Smith, Aaron P.; Musial, Walt; Firestone, Jeremy

    2011-01-01

    Offshore wind offers a very large clean power resource, but electricity from the first US offshore wind contracts is costlier than current regional wholesale electricity prices. To better understand the factors that drive these costs, we develop a pro-forma cash flow model to calculate two results: the levelized cost of energy, and the breakeven price required for financial viability. We then determine input values based on our analysis of capital markets and of 35 operating and planned projects in Europe, China, and the United States. The model is run for a range of inputs appropriate to US policies, electricity markets, and capital markets to assess how changes in policy incentives, project inputs, and financial structure affect the breakeven price of offshore wind power. The model and documentation are made publicly available. - Highlights: → We calculate the Breakeven Price (BP) required to deploy offshore wind plants. → We determine values for cost drivers and review incentives structures in the US. → We develop 3 scenarios using today's technology but varying in industry experience. → BP differs widely by Cost Scenario; relative policy effectiveness varies by stage. → The low-range BP is below regional market values in the Northeast United States.

  16. Wind power barometer

    International Nuclear Information System (INIS)

    Anon.

    2012-01-01

    Despite the economic crisis affecting most of the globe's major economies, wind energy continues to gain supporters around the world. Global wind power capacity increased by 40.5 GW between 2010 and 2011 compared to a 39 GW rise between 2009 and 2010, after deduction of decommissioned capacity. By the end of 2011 global installed wind turbine capacity should stand at around 238.5 GW, and much of the world's growth is being driven by capacity build-up in the emerging markets (China, India...). In 2011 Asia was the world's biggest market (52%) ahead of Europe (24.5%) and North-America (19.7%). Europe has still the largest wind power capacity in the world with 40.6% of total in 2011. 2011 was another tough year for Vestas company while Gamesa company has managed to maintain positive profit growth by gaining market shares abroad. Siemens keeps its lead in the offshore market. The Chinese market is now suffering form excess capacity and Chinese companies fell prey to domestic competition

  17. Potential power density and power generation of wind parks. Share of regional wind power generation in consumption for a ''2% scenario''; Potenzielle Leistungsdichte und Stromerzeugung von Windparks. Anteil der regionalen Windstromerzeugung am Verbrauch fuer ein ''2 %-Szenario''

    Energy Technology Data Exchange (ETDEWEB)

    Konetschny, Claudia; Schmid, Tobias; Jetter, Fabian [Forschungsstelle fuer Energiewirtschaft (FfE) e.V., Muenchen (Germany)

    2017-05-15

    Targets for wind energy use are given in different units. In addition to the number of plants, the power and the annual electricity generation, an information of a surface to be used for the use of wind power has become increasingly established. However, the relationships between area consumption, installed power and generated current are not approximately linear. On the basis of a small-scale modeling of the addition of wind energy installations using the wind resource tools WiSTl developed by the Research Center for Energy Economics (FfE), the article provides recommendations for the conversion of the area identified. In addition, the share of electricity generation based on a 2% scenario of power generation from wind power plants of the electricity consumption will be determined for each Federal State. [German] Ziele zur Windenergienutzung werden in verschiedenen Einheiten angegeben. Neben der Anzahl an Anlagen, der Leistung und der jaehrlichen Stromerzeugung hat sich zunehmend die Angabe einer fuer die Windkraftnutzung auszuweisenden Flaeche etabliert. Die Zusammenhaenge zwischen Flaechenverbrauch, installierter Leistung und erzeugter Strommenge sind jedoch nicht annaehernd linear. Anhand einer kleinteiligen Modeliierung des Zubaus von Windenergieanlagen mithilfe des von der Forschungsstelle fuer Energiewirtschaft (FfE) entwickelten Windszenario-Tools WiSTl gibt der Artikel Empfehlungen zur Umrechnung der ausgewiesenen Flaeche. Zusaetzlich wird basierend auf einem 2 %-Szenario der Anteil der Stromerzeugung aus Windenergieanlagen am Stromverbrauch je Bundesland bestimmt.

  18. Development of Shunt-Type Three-Phase Active Power Filter with Novel Adaptive Control for Wind Generators

    Directory of Open Access Journals (Sweden)

    Ming-Hung Chen

    2015-01-01

    Full Text Available This paper proposes a new adaptive filter for wind generators that combines instantaneous reactive power compensation technology and current prediction controller, and therefore this system is characterized by low harmonic distortion, high power factor, and small DC-link voltage variations during load disturbances. The performance of the system was first simulated using MATLAB/Simulink, and the possibility of an adaptive digital low-pass filter eliminating current harmonics was confirmed in steady and transient states. Subsequently, a digital signal processor was used to implement an active power filter. The experimental results indicate, that for the rated operation of 2 kVA, the system has a total harmonic distortion of current less than 5.0% and a power factor of 1.0 on the utility side. Thus, the transient performance of the adaptive filter is superior to the traditional digital low-pass filter and is more economical because of its short computation time compared with other types of adaptive filters.

  19. Development of Shunt-Type Three-Phase Active Power Filter with Novel Adaptive Control for Wind Generators.

    Science.gov (United States)

    Chen, Ming-Hung

    2015-01-01

    This paper proposes a new adaptive filter for wind generators that combines instantaneous reactive power compensation technology and current prediction controller, and therefore this system is characterized by low harmonic distortion, high power factor, and small DC-link voltage variations during load disturbances. The performance of the system was first simulated using MATLAB/Simulink, and the possibility of an adaptive digital low-pass filter eliminating current harmonics was confirmed in steady and transient states. Subsequently, a digital signal processor was used to implement an active power filter. The experimental results indicate, that for the rated operation of 2 kVA, the system has a total harmonic distortion of current less than 5.0% and a power factor of 1.0 on the utility side. Thus, the transient performance of the adaptive filter is superior to the traditional digital low-pass filter and is more economical because of its short computation time compared with other types of adaptive filters.

  20. A survey on wind power ramp forecasting.

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, C.; Gama, J.; Matias, L.; Botterud, A.; Wang, J. (Decision and Information Sciences); (INESC Porto)

    2011-02-23

    The increasing use of wind power as a source of electricity poses new challenges with regard to both power production and load balance in the electricity grid. This new source of energy is volatile and highly variable. The only way to integrate such power into the grid is to develop reliable and accurate wind power forecasting systems. Electricity generated from wind power can be highly variable at several different timescales: sub-hourly, hourly, daily, and seasonally. Wind energy, like other electricity sources, must be scheduled. Although wind power forecasting methods are used, the ability to predict wind plant output remains relatively low for short-term operation. Because instantaneous electrical generation and consumption must remain in balance to maintain grid stability, wind power's variability can present substantial challenges when large amounts of wind power are incorporated into a grid system. A critical issue is ramp events, which are sudden and large changes (increases or decreases) in wind power. This report presents an overview of current ramp definitions and state-of-the-art approaches in ramp event forecasting.

  1. Study of Green Shipping Technologies - Harnessing Wind, Waves and Solar Power in New Generation Marine Propulsion Systems

    Directory of Open Access Journals (Sweden)

    Grzegorz Rutkowski

    2016-12-01

    Full Text Available The purpose and scope of this paper is to describe the complexity of the new generation marine propulsion technologies implemented in the shipping industry to promote green ships concept and change the view of sea transportation to a more ecological and environment-friendly. Harnessing wind, waves and solar power in shipping industry can help the ship’s owners reduce the operational costs. Reducing fuel consumption results in producing less emissions and provides a clean source of renewable energy. Green shipping technologies can also effectively increase the operating range of vessels and help drive sea transportation towards a greener future and contribute to the global reduction of harmful gas emissions from the world's shipping fleets.

  2. Wind Integration into Various Generation Mixtures

    NARCIS (Netherlands)

    Maddaloni, J.D.; Rowe, A.M.; Kooten, van G.C.

    2009-01-01

    A load balance model is used to quantify the economic and environmental effects of integrating wind power into three typical generation mixtures. System operating costs over a specified period are minimized by controlling the operating schedule of the existing power generating facilities for a range

  3. Landscape externalities from onshore wind power

    International Nuclear Information System (INIS)

    Meyerhoff, Juergen; Ohl, Cornelia; Hartje, Volkmar

    2010-01-01

    The expansion of renewable energy is a central element of the German Federal Government's climate and energy policy. The target for 2020 is to produce 30% of the electricity from renewable energies. Wind power has been selected to be a major contributor to this change. Replacing old wind turbines by modern ones and building new turbines on land will be crucial in meeting this target. However, the expansion of onshore wind power is not universally accepted. In several regions of Germany residents are protesting against setting up new wind turbines. To determine the negative effects two choice experiments were applied in Westsachsen and Nordhessen, Germany. In both regions the externalities of wind power generation until 2020 based on today's state of technology were measured. The results show that negative landscape externalities would result from expanding wind power generation. Using latent class models three different groups of respondents experiencing different degrees of externalities were identified.

  4. Wind turbine structural dynamics - a review of the principles for modern power generation, onshore and offshore

    Energy Technology Data Exchange (ETDEWEB)

    Tempel, J. van der; Molenaar, D.-P.

    2002-07-01

    Wind turbines for electricity production have two seemingly opposing constraints; they need to be structural secure yet of low cost. To meet the first constraint, it would be an obvious choice to design a stiff structure of consequently large mass but this would drive up the cost. By reducing the mass a more cost effective turbine can be realized. However, such lightweight structures are by definition more flexible. To design a cost effective flexible system, thorough understanding of the dynamics is essential. This paper reviews the theoretical basics of the dynamic design options and applies these to realistic situations, including offshore machines under wave action. The wind energy converter and the support structure form an integrated dynamic system that must be developed in mutual interdependency and close co-operation. This paper provides a contribution to this integration process by extending the design approach initiated in the Opti-OW ECS study and the work of Kuhn. (author)

  5. Reserve Requirement Impacts of Microgrid Integration of Wind, Solar, and Ocean Wave Power Generation

    OpenAIRE

    Ortego Trujillo, Patxi

    2016-01-01

    The ocean wave energy is a free and abundant resource which has led to exploring new methods to take advantage of the energy in an efficient and profitable way. The wave energy harnessing techniques are not as mature as other renewable energy resources ones such as wind or solar. Nevertheless, in recent years wave energy converters (WECs) have been gaining attention and restoring confidence worldwide in their role to meet the increasing demands and strict environmental standards Ocean wave po...

  6. Harmonics in a Wind Power Plant: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Preciado, V.; Madrigal, M.; Muljadi, E.; Gevorgian, V.

    2015-04-02

    Wind power generation has been growing at a very fast pace for the past decade, and its influence and impact on the electric power grid is significant. As in a conventional power plant, a wind power plant (WPP) must ensure that the quality of the power being delivered to the grid is excellent. At the same time, the wind turbine should be able to operate immune to small disturbances coming from the grid. Harmonics are one of the more common power quality issues presented by large WPPs because of the high switching frequency of the power converters and the possible nonlinear behavior from electric machines (generator, transformer, reactors) within a power plant. This paper presents a summary of the most important issues related to harmonics in WPPs and discusses practical experiences with actual Type 1 and Type 3 wind turbines in two WPPs.

  7. FY 1998 Report on development of large-scale wind power generation systems. Research of wind turbines for storm worthy and easy construction; 1998 nendo ogata furyoku hatsuden system kaihatsu. Taikyofu kensetsu yoigata fusha ni kansuru chosa kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    The research and development statuses in various countries are surveyed, to have useful information to draw the future R and D directions for wind turbines resistant to storms and easy construction. Greece has sites suitable for wind power generation in mountainous districts, and is developing the systems while taking the characteristic weather conditions into consideration. The country provides information regarding aerodynamic/structural design methods for wind turbine blades applicable to turbulent wind generated by complex terrain, and wind assessment and analyses in complex terrain. In India, on-the-spot surveys are made at the cyclone-attacked wind farms. One of the areas on which the USA is putting emphasis is development of small-size wind turbines and wind-diesel hybrid systems for developing countries and independent grid systems in remote areas. Australia is constructing wind-diesel hybrid systems to be connected to a number of independent grid systems in its western area. In Europe, information is collected for the advanced aerodynamic analysis, construction of offshore wind turbines, and production engineering and facilities for blades and other components from Vestas and N.E.G. Micon as the leading wind turbine makers. (NEDO)

  8. Wind power and market power in competitive markets

    International Nuclear Information System (INIS)

    Twomey, Paul; Neuhoff, Karsten

    2010-01-01

    Average market prices for intermittent generation technologies are lower than for conventional generation. This has a technical reason but can be exaggerated in the presence of market power. When there is much wind smaller amounts of conventional generation technologies are required, and prices are lower, while at times of little wind prices are higher. This effect reflects the value of different generation technologies to the system. But under conditions of market power, conventional generators with market power can further depress the prices if they have to buy back energy at times of large wind output and can increase prices if they have to sell additional power at times of little wind output. This greatly exaggerates the effect. Forward contracting does not reduce the effect. An important consequence is that allowing market power profit margins as a support mechanism for generation capacity investment is not a technologically neutral policy.

  9. Power recovery method for testing the efficiency of the ECD of an integrated generation unit for offshore wind power and ocean wave energy

    Institute of Scientific and Technical Information of China (English)

    CHEN WeiXing; GAO Feng; MENG XiangDun; REN AnYe; HU Yan

    2017-01-01

    Offshore wind power and ocean wave energy are clean,renewable and rich resources.The integrated generation unit for the two kinds of energy is introduced.The energy conversion device (ECD) is utilized to convert the mechanical energy absorbed from the wind power and wave energy into the hydraulic energy,the conversion efficiency of which is significant.In this paper,a power recovery method for testing the efficiency of the ECD is proposed.A simulation desktop is developed to validate the proposed method.The efficiency of the ECD is influenced by the hydraulic cylinders and the mechanical transmission.Here,the static efficiency of the hydraulic cylinders of the ECD is tested first.The results show that the static mechanical efficiency is about 95 % and that the volumetric efficiency is over 99%.To test the effects induced by the mechanical transmission of the ECD,each hydraulic cylinder of the ECD is substituted with two springs.Then the power loss of the ECDM under different rotational speeds is obtained.Finally,a test platform is built and the efficiency of the ECD under different rotational speeds and pressures is obtained.The results show that the efficiency is about 80%.

  10. Wind farm electrical power production model for load flow analysis

    International Nuclear Information System (INIS)

    Segura-Heras, Isidoro; Escriva-Escriva, Guillermo; Alcazar-Ortega, Manuel

    2011-01-01

    The importance of renewable energy increases in activities relating to new forms of managing and operating electrical power: especially wind power. Wind generation is increasing its share in the electricity generation portfolios of many countries. Wind power production in Spain has doubled over the past four years and has reached 20 GW. One of the greatest problems facing wind farms is that the electrical power generated depends on the variable characteristics of the wind. To become competitive in a liberalized market, the reliability of wind energy must be guaranteed. Good local wind forecasts are therefore essential for the accurate prediction of generation levels for each moment of the day. This paper proposes an electrical power production model for wind farms based on a new method that produces correlated wind speeds for various wind farms. This method enables a reliable evaluation of the impact of new wind farms on the high-voltage distribution grid. (author)

  11. Electric power generation

    International Nuclear Information System (INIS)

    Pinske, J.D.

    1981-01-01

    Apart from discussing some principles of power industry the present text deals with the different ways of electric power generation. Both the conventional methods of energy conversion in heating and water power stations and the facilities for utilizing regenerative energy sources (sun, wind, ground heat, tidal power) are considered. The script represents the essentials of the lecture of the same name which is offered to the students of the special subject 'electric power engineering' at the Fachhochschule Hamburg. It does not require any special preliminary knowledge except for the general principles of electrical engineering. It is addressing students of electrical engineering who have passed their preliminary examination at technical colleges and universities. Moreover, it shall also be of use for engineers who want to obtain a quick survey of the structure and the operating characteristics of the extremely different technical methods of power generation. (orig.) [de

  12. Turbine Control Strategies for Wind Farm Power Optimization

    DEFF Research Database (Denmark)

    Mirzaei, Mahmood; Göçmen Bozkurt, Tuhfe; Giebel, Gregor

    2015-01-01

    In recent decades there has been increasing interest in green energies, of which wind energy is the most important one. In order to improve the competitiveness of the wind power plants, there are ongoing researches to decrease cost per energy unit and increase the efficiency of wind turbines...... and wind farms. One way of achieving these goals is to optimize the power generated by a wind farm. One optimization method is to choose appropriate operating points for the individual wind turbines in the farm. We have made three models of a wind farm based on three difference control strategies...... the generated power by changing the power reference of the individual wind turbines. We use the optimization setup to compare power production of the wind farm models. This paper shows that for the most frequent wind velocities (below and around the rated values), the generated powers of the wind farms...

  13. Integrating wind power in the (French) power system

    International Nuclear Information System (INIS)

    Pellen, A.

    2007-03-01

    RTE and EDF have no other technological option than to restrain the contribution of the French wind power fleet to base-load generation where it comes in direct competition with the nuclear power plants. The author aims to explain this situation and answer the following questions. Why the fossil fueled reactor fleet in France will not be affected by an evolution of the wind power capacity? Why, in France electric power generation-demand SYSTEM wind power cannot be a substitute for fossil fueled thermal units? (A.L.B.)

  14. A reduced switch count UPF power conditioner for grid connected variable speed wind energy conversion system employing PM generators: a simulation study

    Energy Technology Data Exchange (ETDEWEB)

    Raju, A.B.; Fernandes, B.G.; Chatterjee, K. [Indian Institute of Technology, Mumbai (India). Dept. of Electrical Engineering

    2004-07-01

    In this paper, modelling and simulation of a grid connected variable speed wind energy conversion system (VSWECS) with reduced switch count power converter is presented. The system consists of a permanent magnet synchronous generator (PMSG), two-pulse width modulated B-4 power converters and a maximum power point tracker (MPPT). Mathematical models of each element of the system are developed separately and are then integrated to simulate the whole system for various wind velocities. The complete system is simulated using MATLAB/SIMULINK and simulation results are presented. (author)

  15. Performance of Generating Plant: Managing the Changes. Supporting paper: The evolution of the electricity sector and renewable sources in Italy: opportunities and problems for wind power integration

    Energy Technology Data Exchange (ETDEWEB)

    Salvaderi, Luigi [IEEE Fellow (Italy)

    2008-05-15

    The WEC Committee on the Performance of Generating Plant (PGP) has been collecting and analysing power plant performance statistics worldwide for more than 30 years and has produced regular reports, which include examples of advanced techniques and methods for improving power plant performance through benchmarking. A series of reports from the various working groups was issued in 2008. This document serves as a supporting paper. Sections include: features of Italian energy and electricity; the evolution of liberalisation; support mechanism for renewables; connection to wind farm transmission network; wind source integration into power system; and, final comments.

  16. design of a small scale wind generator for low wind speed areas

    African Journals Online (AJOL)

    USER

    Most small scale level wind turbine generators are directly driven system, variable speed, and partially ... the best solutions for small-scale wind power plants. Low-speed multi-pole PM generators ..... Designs of the Same Magnet Structure for.

  17. Deterministic and probabilistic interval prediction for short-term wind power generation based on variational mode decomposition and machine learning methods

    International Nuclear Information System (INIS)

    Zhang, Yachao; Liu, Kaipei; Qin, Liang; An, Xueli

    2016-01-01

    Highlights: • Variational mode decomposition is adopted to process original wind power series. • A novel combined model based on machine learning methods is established. • An improved differential evolution algorithm is proposed for weight adjustment. • Probabilistic interval prediction is performed by quantile regression averaging. - Abstract: Due to the increasingly significant energy crisis nowadays, the exploitation and utilization of new clean energy gains more and more attention. As an important category of renewable energy, wind power generation has become the most rapidly growing renewable energy in China. However, the intermittency and volatility of wind power has restricted the large-scale integration of wind turbines into power systems. High-precision wind power forecasting is an effective measure to alleviate the negative influence of wind power generation on the power systems. In this paper, a novel combined model is proposed to improve the prediction performance for the short-term wind power forecasting. Variational mode decomposition is firstly adopted to handle the instability of the raw wind power series, and the subseries can be reconstructed by measuring sample entropy of the decomposed modes. Then the base models can be established for each subseries respectively. On this basis, the combined model is developed based on the optimal virtual prediction scheme, the weight matrix of which is dynamically adjusted by a self-adaptive multi-strategy differential evolution algorithm. Besides, a probabilistic interval prediction model based on quantile regression averaging and variational mode decomposition-based hybrid models is presented to quantify the potential risks of the wind power series. The simulation results indicate that: (1) the normalized mean absolute errors of the proposed combined model from one-step to three-step forecasting are 4.34%, 6.49% and 7.76%, respectively, which are much lower than those of the base models and the hybrid

  18. Autonomous Aerial Sensors for Wind Power Meteorology

    DEFF Research Database (Denmark)

    Giebel, Gregor; Schmidt Paulsen, Uwe; Reuder, Joachim

    2011-01-01

    , UAVs could be quite cost-effective. In order to test this assumption and to test the limits of UAVs for wind power meteorology, this project assembles four different UAVs from four participating groups. Risø has built a lighter-than-air kite with a long tether, Bergen University flies a derivative......This paper describes a new approach for measurements in wind power meteorology using small unmanned flying platforms. Large-scale wind farms, especially offshore, need an optimisation between installed wind power density and the losses in the wind farm due to wake effects between the turbines. Good...... movement. In any case, a good LIDAR or SODAR will cost many tenthousands of euros. Another current problem in wind energy is the coming generation of wind turbines in the 10-12MW class, with tip heights of over 200m. Very few measurement masts exist to verify our knowledge of atmospheric physics, and most...

  19. Power fluctuation and power loss of wind turbines due to wind shear and tower shadow

    Institute of Scientific and Technical Information of China (English)

    Binrong WEN; Sha WEI; Kexiang WEI; Wenxian YANG; Zhike PENG; Fulei CHU

    2017-01-01

    The magnitude and stability of power output are two key indices of wind turbines.This study investigates the effects of wind shear and tower shadow on power output in terms of power fluctuation and power loss to estimate the capacity and quality of the power generated by a wind turbine.First,wind speed models,particularly the wind shear model and the tower shadow model,are described in detail.The widely accepted tower shadow model is modified in view of the cone-shaped towers of modem large-scale wind turbines.Power fluctuation and power loss due to wind shear and tower shadow are analyzed by performing theoretical calculations and case analysis within the framework of a modified version of blade element momentum theory.Results indicate that power fluctuation is mainly caused by tower shadow,whereas power loss is primarily induced by wind shear.Under steady wind conditions,power loss can be divided into wind farm loss and rotor loss.Wind farm loss is constant at 3α(3α-1)R2/(8H2).By contrast,rotor loss is strongly influenced by the wind turbine control strategies and wind speed.That is,when the wind speed is measured in a region where a variable-speed controller works,the rotor loss stabilizes around zero,but when the wind speed is measured in a region where the blade pitch controller works,the rotor loss increases as the wind speed intensifies.The results of this study can serve as a reference for accurate power estimation and strategy development to mitigate the fluctuations in aerodynamic loads and power output due to wind shear and tower shadow.

  20. An Appropriate Wind Model for Wind Integrated Power Systems Reliability Evaluation Considering Wind Speed Correlations

    Directory of Open Access Journals (Sweden)

    Rajesh Karki

    2013-02-01

    Full Text Available Adverse environmental impacts of carbon emissions are causing increasing concerns to the general public throughout the world. Electric energy generation from conventional energy sources is considered to be a major contributor to these harmful emissions. High emphasis is therefore being given to green alternatives of energy, such as wind and solar. Wind energy is being perceived as a promising alternative. This source of energy technology and its applications have undergone significant research and development over the past decade. As a result, many modern power systems include a significant portion of power generation from wind energy sources. The impact of wind generation on the overall system performance increases substantially as wind penetration in power systems continues to increase to relatively high levels. It becomes increasingly important to accurately model the wind behavior, the interaction with other wind sources and conventional sources, and incorporate the characteristics of the energy demand in order to carry out a realistic evaluation of system reliability. Power systems with high wind penetrations are often connected to multiple wind farms at different geographic locations. Wind speed correlations between the different wind farms largely affect the total wind power generation characteristics of such systems, and therefore should be an important parameter in the wind modeling process. This paper evaluates the effect of the correlation between multiple wind farms on the adequacy indices of wind-integrated systems. The paper also proposes a simple and appropriate probabilistic analytical model that incorporates wind correlations, and can be used for adequacy evaluation of multiple wind-integrated systems.

  1. Power Quality Control and Design of Power Converter for Variable-Speed Wind Energy Conversion System with Permanent-Magnet Synchronous Generator

    Directory of Open Access Journals (Sweden)

    Yüksel Oğuz

    2013-01-01

    Full Text Available The control strategy and design of an AC/DC/AC IGBT-PMW power converter for PMSG-based variable-speed wind energy conversion systems (VSWECS operation in grid/load-connected mode are presented. VSWECS consists of a PMSG connected to a AC-DC IGBT-based PWM rectifier and a DC/AC IGBT-based PWM inverter with LCL filter. In VSWECS, AC/DC/AC power converter is employed to convert the variable frequency variable speed generator output to the fixed frequency fixed voltage grid. The DC/AC power conversion has been managed out using adaptive neurofuzzy controlled inverter located at the output of controlled AC/DC IGBT-based PWM rectifier. In this study, the dynamic performance and power quality of the proposed power converter connected to the grid/load by output LCL filter is focused on. Dynamic modeling and control of the VSWECS with the proposed power converter is performed by using MATLAB/Simulink. Simulation results show that the output voltage, power, and frequency of VSWECS reach to desirable operation values in a very short time. In addition, when PMSG based VSWECS works continuously with the 4.5 kHz switching frequency, the THD rate of voltage in the load terminal is 0.00672%.

  2. Power quality control and design of power converter for variable-speed wind energy conversion system with permanent-magnet synchronous generator.

    Science.gov (United States)

    Oğuz, Yüksel; Güney, İrfan; Çalık, Hüseyin

    2013-01-01

    The control strategy and design of an AC/DC/AC IGBT-PMW power converter for PMSG-based variable-speed wind energy conversion systems (VSWECS) operation in grid/load-connected mode are presented. VSWECS consists of a PMSG connected to a AC-DC IGBT-based PWM rectifier and a DC/AC IGBT-based PWM inverter with LCL filter. In VSWECS, AC/DC/AC power converter is employed to convert the variable frequency variable speed generator output to the fixed frequency fixed voltage grid. The DC/AC power conversion has been managed out using adaptive neurofuzzy controlled inverter located at the output of controlled AC/DC IGBT-based PWM rectifier. In this study, the dynamic performance and power quality of the proposed power converter connected to the grid/load by output LCL filter is focused on. Dynamic modeling and control of the VSWECS with the proposed power converter is performed by using MATLAB/Simulink. Simulation results show that the output voltage, power, and frequency of VSWECS reach to desirable operation values in a very short time. In addition, when PMSG based VSWECS works continuously with the 4.5 kHz switching frequency, the THD rate of voltage in the load terminal is 0.00672%.

  3. Optimal Site Selection of Wind-Solar Complementary Power Generation Project for a Large-Scale Plug-In Charging Station

    Directory of Open Access Journals (Sweden)

    Wenjun Chen

    2017-10-01

    Full Text Available The wind-solar hybrid power generation project combined with electric vehicle charging stations can effectively reduce the impact on the power system caused by the random charging of electric cars, contribute to the in-situ wind-solar complementary system and reduce the harm arising from its output volatility. In this paper, the site selection index system of a landscape complementary power generation project is established by using the statistical methods and statistical analysis in the literature. Subsequently, using the Analytic Network Process to calculate the index weight, a cloud model was used in combination with preference ranking organization method for enrichment evaluations to transform and sort uncertain language information. Finally, using the results of the decision-making for the location of the Shanghai wind-solar complementary project and by carrying out contrast analysis and sensitivity analysis, the superiority and stability of the decision model constructed in this study was demonstrated.

  4. Realities and myths of wind power

    International Nuclear Information System (INIS)

    Juanico, Luis

    2001-01-01

    In the last ten years we have seen an impressive growth of electrical generation by wind power. However this increase cannot be explained by an advance of the technology or by the improvement of the economic factors. The explanation of the boom is based mostly on environmental aspects instead of strategic considerations on energy supply. In Argentina wind power is promoted as a kind of economically viable panacea based on four myths: the explosive growth of wind power, the decrease of costs as a function of the power increase, the wind power potential of Patagonia, the analogy with conventional technologies. The analysis of these myths shows that the global wind power production is very low and it is concentrated in few developed countries, it is supported by environmental interests and protected by important subsidies. In Argentina this support cannot be justified neither by environmental considerations nor by economic reasons

  5. Wind power production: from the characterisation of the wind resource to wind turbine technologies

    International Nuclear Information System (INIS)

    Beslin, Guy; Multon, Bernard

    2016-01-01

    Illustrated by graphs and tables, this article first describes the various factors and means related to the assessment of wind resource in the World, in Europe, and the factors which characterize a local wind resource. In this last respect, the authors indicate how local topography is taken into account to calculate wind speed, how time variations are taken into account (at the yearly, seasonal or daily level), the different methods used to model a local wind resource, how to assess the power recoverable by a wind turbine with horizontal axis (notion of Betz limit). In the second part, the authors present the different wind turbines, their benefits and drawbacks: vertical axis, horizontal axis (examples of a Danish-type wind turbine, of wind turbines designed for extreme conditions). Then, they address the technology of big wind turbines: evolution of technology and of commercial offer, aerodynamic characteristics of wind turbine and benefit of a varying speed (technological solutions, importance of the electric generator). They describe how to choose a wind turbine, how product lines are organised, how the power curve and energy capacity are determined. The issue of integration of wind energy into the power system is then addressed. The next part addressed the economy of wind energy production (annualized production cost, order of magnitude of wind electric power production cost). Future trends are discussed and offshore wind energy production is briefly addressed

  6. ANALYSIS OF MONTE CARLO SIMULATION SAMPLING TECHNIQUES ON SMALL SIGNAL STABILITY OF WIND GENERATOR- CONNECTED POWER SYSTEM

    Directory of Open Access Journals (Sweden)

    TEMITOPE RAPHAEL AYODELE

    2016-04-01

    Full Text Available Monte Carlo simulation using Simple Random Sampling (SRS technique is popularly known for its ability to handle complex uncertainty problems. However, to produce a reasonable result, it requires huge sample size. This makes it to be computationally expensive, time consuming and unfit for online power system applications. In this article, the performance of Latin Hypercube Sampling (LHS technique is explored and compared with SRS in term of accuracy, robustness and speed for small signal stability application in a wind generator-connected power system. The analysis is performed using probabilistic techniques via eigenvalue analysis on two standard networks (Single Machine Infinite Bus and IEEE 16–machine 68 bus test system. The accuracy of the two sampling techniques is determined by comparing their different sample sizes with the IDEAL (conventional. The robustness is determined based on a significant variance reduction when the experiment is repeated 100 times with different sample sizes using the two sampling techniques in turn. Some of the results show that sample sizes generated from LHS for small signal stability application produces the same result as that of the IDEAL values starting from 100 sample size. This shows that about 100 sample size of random variable generated using LHS method is good enough to produce reasonable results for practical purpose in small signal stability application. It is also revealed that LHS has the least variance when the experiment is repeated 100 times compared to SRS techniques. This signifies the robustness of LHS over that of SRS techniques. 100 sample size of LHS produces the same result as that of the conventional method consisting of 50000 sample size. The reduced sample size required by LHS gives it computational speed advantage (about six times over the conventional method.

  7. Wind power's coming of age

    International Nuclear Information System (INIS)

    Phillips, J.A.

    1992-01-01

    This article examines the role that wind power has in meeting future energy demand. The topics of the article include demonstration of current technology, an overview of research and market activity, institutional and regulatory barriers and other issues, financing of wind power projects, incentives and penalties, current market experience, national trends in application of wind power plants, advanced technologies, intermittency, power quality, and transmission and distribution

  8. Wind power project; Proyecto eolico

    Energy Technology Data Exchange (ETDEWEB)

    Borja D, Marco A. [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)

    2003-07-01

    In the international scope, nowadays it is recognized that the wind power generation is an innovating activity of high technology that has been integrated to the electrical systems in order to diversify the power generation and to foment the sustainable development. In several industrialized countries no one discusses any longer if wind power generation is a viable alternative or not, because in the last ten years the facts have widely demonstrated their technical viability and environmental advantage with respect to the conventional generation schemes. [Spanish] En el ambito internacional, hoy en dia se reconoce que la generacion eoloelectrica es una actividad innovadora de alta tecnologia que se ha integrado a los sistemas electricos con el proposito de diversificar la generacion de electricidad y fomentar el desarrollo sustentable. En varios paises industrializados ya no se discute si la generacion eoloelectrica es una alternativa viable o no, pues en los ultimos diez anos los hechos han demostrado ampliamente su viabilidad tecnica y ventaja ambiental respecto a la generacion convencional.

  9. Maximum Power Point Tracking in Variable Speed Wind Turbine Based on Permanent Magnet Synchronous Generator Using Maximum Torque Sliding Mode Control Strategy

    Institute of Scientific and Technical Information of China (English)

    Esmaeil Ghaderi; Hossein Tohidi; Behnam Khosrozadeh

    2017-01-01

    The present study was carried out in order to track the maximum power point in a variable speed turbine by minimizing electromechanical torque changes using a sliding mode control strategy.In this strategy,fhst,the rotor speed is set at an optimal point for different wind speeds.As a result of which,the tip speed ratio reaches an optimal point,mechanical power coefficient is maximized,and wind turbine produces its maximum power and mechanical torque.Then,the maximum mechanical torque is tracked using electromechanical torque.In this technique,tracking error integral of maximum mechanical torque,the error,and the derivative of error are used as state variables.During changes in wind speed,sliding mode control is designed to absorb the maximum energy from the wind and minimize the response time of maximum power point tracking (MPPT).In this method,the actual control input signal is formed from a second order integral operation of the original sliding mode control input signal.The result of the second order integral in this model includes control signal integrity,full chattering attenuation,and prevention from large fluctuations in the power generator output.The simulation results,calculated by using MATLAB/m-file software,have shown the effectiveness of the proposed control strategy for wind energy systems based on the permanent magnet synchronous generator (PMSG).

  10. Power quality improvements of wind farms

    Energy Technology Data Exchange (ETDEWEB)

    Soebrink, Kent H. [Eltra (Denmark); Stoeber, Ralf; Schettler, Frank; Bergmann, Klaus [Siemens (Germany); Jenkins, Nicholas; Ekanayake, Janaka; Saad-Saoud, Zouhir; Liboa, Maria Luiza; Strbac, Goran [UMIST (United Kingdom); Kaas Pedersen, Joergen; Helgesen Pedersen, Knud Ole [Technical Univ. of Denmark (Denmark)

    1998-06-01

    The main objective of the project was to investigate how the power quality of the electrical output of wind farms could be improved by the use of modern high power electronic technology. Although the research is of direct application to wind energy it will also be relevant to many other types of small-scale generation embedded in utility distribution networks. The operation of wind turbines with asynchronous generators requires reactive power which, if supplied form the network, leads to low voltages and increased losses. In order to improve the power factor of the generation, fixed capacitors are usually used to provide reactive power. However, if they are sized for the full requirement of the wind farm, they can cause self-excitation and potentially damaging and hazardous overvoltages if the wind turbines` connection with the network is interrupted and they become islanded. An advanced Static VAr Compensator (ASVC) uses a power electronic converter to generate or absorb reactive power. They can be used to provide reactive power with rapid control and with only modestly sized passive components (i.e. small capacitors and reactors). The objective of the project was to combine research and development of this novel form of electronic equipment with its application to increase the use of renewable energy, and wind power in particular, in the European Union. (EG) 19 refs.

  11. Excess wind power

    DEFF Research Database (Denmark)

    Østergaard, Poul Alberg

    2005-01-01

    Expansion of wind power is an important element in Danish climate change abatement policy. Starting from a high penetration of approx 20% however, momentary excess production will become an important issue in the future. Through energy systems analyses using the EnergyPLAN model and economic...... analyses it is analysed how excess productions are better utilised; through conversion into hydrogen of through expansion of export connections thereby enabling sales. The results demonstrate that particularly hydrogen production is unviable under current costs but transmission expansion could...

  12. Integration of wind generation forecasts. Volume 2

    International Nuclear Information System (INIS)

    Ahlstrom, M.; Zavadil, B.; Jones, L.

    2005-01-01

    WindLogics is a company that specializes in atmospheric modelling, visualization and fine-scale forecasting systems for the wind power industry. A background of the organization was presented. The complexities of wind modelling were discussed. Issues concerning location and terrain, shear, diurnal and interannual variability were reviewed. It was suggested that wind power producers should aim to be mainstream, and that variability should be considered as intrinsic to fuel supply. Various utility operating impacts were outlined. Details of an Xcel NSP wind integration study were presented, as well as a studies conducted in New York state and Colorado. It was concluded that regulations and load following impacts with wind energy integration are modest. Overall impacts are dominated by costs incurred to accommodate wind generation variability and uncertainty in the day-ahead time frame. Cost impacts can be reduced with adjustments to operating strategies, improvements in wind forecasting and access to real-time markets. Details of WindLogic's wind energy forecast system were presented, as well as examples of day ahead and hour ahead forecasts and wind speed and power forecasts. Screenshots of control room integration, EMS integration and simulations were presented. Details of a utility-scale wind energy forecasting system funded by Xcel Renewable Development Fund (RDF) were also presented. The goal of the system was to optimize the way that wind forecast information is integrated into the control room environment. Project components were outlined. It was concluded that accurate day-ahead forecasting can lead to significant asset optimization. It was recommended that wind plants share data, and aim to resolve issues concerning grid codes and instrumentation. refs., tabs., figs

  13. Partial differential equation methods for stochastic dynamic optimization: an application to wind power generation with energy storage.

    Science.gov (United States)

    Johnson, Paul; Howell, Sydney; Duck, Peter

    2017-08-13

    A mixed financial/physical partial differential equation (PDE) can optimize the joint earnings of a single wind power generator (WPG) and a generic energy storage device (ESD). Physically, the PDE includes constraints on the ESD's capacity, efficiency and maximum speeds of charge and discharge. There is a mean-reverting daily stochastic cycle for WPG power output. Physically, energy can only be produced or delivered at finite rates. All suppliers must commit hourly to a finite rate of delivery C , which is a continuous control variable that is changed hourly. Financially, we assume heavy 'system balancing' penalties in continuous time, for deviations of output rate from the commitment C Also, the electricity spot price follows a mean-reverting stochastic cycle with a strong evening peak, when system balancing penalties also peak. Hence the economic goal of the WPG plus ESD, at each decision point, is to maximize expected net present value (NPV) of all earnings (arbitrage) minus the NPV of all expected system balancing penalties, along all financially/physically feasible future paths through state space. Given the capital costs for the various combinations of the physical parameters, the design and operating rules for a WPG plus ESD in a finite market may be jointly optimizable.This article is part of the themed issue 'Energy management: flexibility, risk and optimization'. © 2017 The Author(s).

  14. Modular simulation of a hybrid power system with diesel, photovoltaic inverter and wind turbine generation

    Directory of Open Access Journals (Sweden)

    Klimis Ch. Karasavvas

    2008-05-01

    Full Text Available The dynamic behavior and stability of an isolated electric power system, fed by a conventional energy plant and a re-newable energy system, is presented in this paper. Matlab/Simulink is the used software for simulating the whole system.

  15. FY 1998 Report on development of large-scale wind power generation systems. Part 2. Operational research on large-scale wind power generation systems; 1998 nendo ogata furyoku hatsuden system kaihatsu seika hokokusho. 2. Ogata furyoku hatsuden system no unten kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    The on-the-spot surveys are conducted and related information is collected for current status of wind power generators connected to power grid systems and simulation techniques therefor in the USA and European countries. In Denmark, the grid system to which wind power generators are connected is a 10kV radiation type system, by which these generators are connected to general consumers. Power quality is investigated by the programs developed by DEFU (Danske Elvarkers Forening Udredning). The German's Norderland Wind Park has the largest capacity in Europe with 35 units of 1.5MW generators. They are connected to a 110kV grind system via ISOREE to control disturbances to the commercial grid system. The USA, used to have the world largest wind power generation capacity, is now plays second fiddle to Germany whose capacity has now exceeded 2,000MW. The country is now seeing the second rush for construction of wind power generators, planning to have a new capacity of 570MW in 1998. Information is also collected from other countries or organizations, including the Netherlands, WREC, Italy and Spain. (NEDO)

  16. FY 1998 Report on development of large-scale wind power generation systems. Part 2. Operational research on large-scale wind power generation systems; 1998 nendo ogata furyoku hatsuden system kaihatsu seika hokokusho. 2. Ogata furyoku hatsuden system no unten kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    The on-the-spot surveys are conducted and related information is collected for current status of wind power generators connected to power grid systems and simulation techniques therefor in the USA and European countries. In Denmark, the grid system to which wind power generators are connected is a 10kV radiation type system, by which these generators are connected to general consumers. Power quality is investigated by the programs developed by DEFU (Danske Elvarkers Forening Udredning). The German's Norderland Wind Park has the largest capacity in Europe with 35 units of 1.5MW generators. They are connected to a 110kV grind system via ISOREE to control disturbances to the commercial grid system. The USA, used to have the world largest wind power generation capacity, is now plays second fiddle to Germany whose capacity has now exceeded 2,000MW. The country is now seeing the second rush for construction of wind power generators, planning to have a new capacity of 570MW in 1998. Information is also collected from other countries or organizations, including the Netherlands, WREC, Italy and Spain. (NEDO)

  17. Accurate Short-Term Power Forecasting of Wind Turbines: The Case of Jeju Island’s Wind Farm

    OpenAIRE

    BeomJun Park; Jin Hur

    2017-01-01

    Short-term wind power forecasting is a technique which tells system operators how much wind power can be expected at a specific time. Due to the increasing penetration of wind generating resources into the power grids, short-term wind power forecasting is becoming an important issue for grid integration analysis. The high reliability of wind power forecasting can contribute to the successful integration of wind generating resources into the power grids. To guarantee the reliability of forecas...

  18. Integration of wind power in the liberalized Dutch electricity market

    NARCIS (Netherlands)

    Ummels, B.C.; Gibescu, M.; Kling, W.L.; Paap, G.C.

    2006-01-01

    Wind power is becoming a large-scale electricity generation technology in a number of European countries, including the Netherlands.Owing to the variability and unpredictability of wind power production, large-scale wind power can be foreseen to have large consequences for balancing generation and

  19. Effect of operating methods of wind turbine-generator system on net power extraction under wind speed fluctuations in fields; Hendo fukyoka deno doryoku chushutsu kara mita furyoku hatsuden system no unten seigyoho ni kansuru kosatsu

    Energy Technology Data Exchange (ETDEWEB)

    Wakui, T. [Japan Society for the Promotion of Science, Tokyo (Japan); Hashizume, T.; Ota, E. [Waseda University, Tokyo (Japan). School of Science and Engineering

    2000-01-25

    The effect of operating methods of wind turbine-generator system on net power extraction under wind speed fluctuations is discussed in relation to the dynamic behavior of the system. The system is composed of a Darrieus-Savonius hybrid wind turbine and a load generator. In this paper, two types of operating method are examined; constant tip speed ratio operation for stand-alone power systems (Scheme 1) and synchronous operation for utility power systems (Scheme 2). The computed results of the net extracting power using our dynamic simulation model show that the dominant factor of power extraction in Scheme 1 is the dynamic characteristics of rotational components and that it is important to select the appropriate rated wind speed in Scheme 2. Thus, it is concluded that a conformable operating method and rated power output of the system exist for each wind condition. In particular, small-scale systems, which are smaller than approximately 10 kW-system range, are desirable to be operated under a constant tip speed ratio as stand-alone power systems. (author)

  20. The Spectrum of Wind Power Fluctuations

    Science.gov (United States)

    Bandi, Mahesh

    2016-11-01

    Wind is a variable energy source whose fluctuations threaten electrical grid stability and complicate dynamical load balancing. The power generated by a wind turbine fluctuates due to the variable wind speed that blows past the turbine. Indeed, the spectrum of wind power fluctuations is widely believed to reflect the Kolmogorov spectrum; both vary with frequency f as f - 5 / 3. This variability decreases when aggregate power fluctuations from geographically distributed wind farms are averaged at the grid via a mechanism known as geographic smoothing. Neither the f - 5 / 3 wind power fluctuation spectrum nor the mechanism of geographic smoothing are understood. In this work, we explain the wind power fluctuation spectrum from the turbine through grid scales. The f - 5 / 3 wind power fluctuation spectrum results from the largest length scales of atmospheric turbulence of order 200 km influencing the small scales where individual turbines operate. This long-range influence spatially couples geographically distributed wind farms and synchronizes farm outputs over a range of frequencies and decreases with increasing inter-farm distance. Consequently, aggregate grid-scale power fluctuations remain correlated, and are smoothed until they reach a limiting f - 7 / 3 spectrum. This work was funded by the Collective Interactions Unit, OIST Graduate University, Japan.