WorldWideScience

Sample records for wind number density

  1. Number density structures in the inner heliosphere

    Science.gov (United States)

    Stansby, D.; Horbury, T. S.

    2018-06-01

    Aims: The origins and generation mechanisms of the slow solar wind are still unclear. Part of the slow solar wind is populated by number density structures, discrete patches of increased number density that are frozen in to and move with the bulk solar wind. In this paper we aimed to provide the first in-situ statistical study of number density structures in the inner heliosphere. Methods: We reprocessed in-situ ion distribution functions measured by Helios in the inner heliosphere to provide a new reliable set of proton plasma moments for the entire mission. From this new data set we looked for number density structures measured within 0.5 AU of the Sun and studied their properties. Results: We identified 140 discrete areas of enhanced number density. The structures occurred exclusively in the slow solar wind and spanned a wide range of length scales from 50 Mm to 2000 Mm, which includes smaller scales than have been previously observed. They were also consistently denser and hotter that the surrounding plasma, but had lower magnetic field strengths, and therefore remained in pressure balance. Conclusions: Our observations show that these structures are present in the slow solar wind at a wide range of scales, some of which are too small to be detected by remote sensing instruments. These structures are rare, accounting for only 1% of the slow solar wind measured by Helios, and are not a significant contribution to the mass flux of the solar wind.

  2. Wind power statistics and an evaluation of wind energy density

    Energy Technology Data Exchange (ETDEWEB)

    Jamil, M.; Parsa, S.; Majidi, M. [Materials and Energy Research Centre, Tehran (Iran, Islamic Republic of)

    1995-11-01

    In this paper the statistical data of fifty days` wind speed measurements at the MERC- solar site are used to find out the wind energy density and other wind characteristics with the help of the Weibull probability distribution function. It is emphasized that the Weibull and Rayleigh probability functions are useful tools for wind energy density estimation but are not quite appropriate for properly fitting the actual wind data of low mean speed, short-time records. One has to use either the actual wind data (histogram) or look for a better fit by other models of the probability function. (Author)

  3. Effect of pole number and slot number on performance of dual rotor permanent magnet wind power generator using ferrite magnets

    Directory of Open Access Journals (Sweden)

    Peifeng Xu

    2017-05-01

    Full Text Available Dual rotor permanent magnet (DRPM wind power generator using ferrite magnets has the advantages of low cost, high efficiency, and high torque density. How to further improve the performance and reduce the cost of the machine by proper choice of pole number and slot number is an important problem to be solved when performing preliminarily design a DRPM wind generator. This paper presents a comprehensive performance comparison of a DRPM wind generator using ferrite magnets with different slot and pole number combinations. The main winding factors are calculated by means of the star of slots. Under the same machine volume and ferrite consumption, the flux linkage, back-electromotive force (EMF, cogging torque, output torque, torque pulsation, and losses are investigated and compared using finite element analysis (FEA. The results show that the slot and pole number combinations have an important impact on the generator properties.

  4. Characteristics of Solar Wind Density Depletions During Solar Cycles 23 and 24

    Directory of Open Access Journals (Sweden)

    Keunchan Park

    2017-06-01

    Full Text Available Solar wind density depletions are phenomena that solar wind density is rapidly decreased and keep the state. They are generally believed to be caused by the interplanetary (IP shocks. However, there are other cases that are hardly associated with IP shocks. We set up a hypothesis for this phenomenon and analyze this study. We have collected the solar wind parameters such as density, speed and interplanetary magnetic field (IMF data related to the solar wind density depletion events during the period from 1996 to 2013 that are obtained with the advanced composition explorer (ACE and the Wind satellite. We also calculate two pressures (magnetic, dynamic and analyze the relation with density depletion. As a result, we found total 53 events and the most these phenomena’s sources caused by IP shock are interplanetary coronal mass ejection (ICME. We also found that solar wind density depletions are scarcely related with IP shock’s parameters. The solar wind density is correlated with solar wind dynamic pressure within density depletion. However, the solar wind density has an little anti-correlation with IMF strength during all events of solar wind density depletion, regardless of the presence of IP shocks. Additionally, In 47 events of IP shocks, we find 6 events that show a feature of blast wave. The quantities of IP shocks are weaker than blast wave from the Sun, they are declined in a short time after increasing rapidly. We thus argue that IMF strength or dynamic pressure are an important factor in understanding the nature of solar wind density depletion. Since IMF strength and solar wind speed varies with solar cycle, we will also investigate the characteristics of solar wind density depletion events in different phases of solar cycle as an additional clue to their physical nature.

  5. Atmospheric air density analysis with Meteo-40S wind monitoring system

    Directory of Open Access Journals (Sweden)

    Zahariea Dănuţ

    2017-01-01

    Full Text Available In order to estimate the wind potential of wind turbine sites, the wind resource maps can be used for mean annual wind speed, wind speed frequency distribution and mean annual wind power density determination. The general evaluation of the wind resource and the wind turbine ratings are based on the standard air density measured at sea level and at 15°C, ρs=1.225 kg/m3. Based on the experimental data obtained for a continental climate specific location, this study will present the relative error between the standard air density and the density of the dry and the moist air. Considering a cold day, for example on Friday 10th February 2017, on 1-second measurement rate and 10-minute measuring interval starting at 16:20, the mean relative errors obtained are 10.4145% for dry air, and 10.3634% for moist air. Based on these results, a correction for temperature, atmospheric air pressure and relative humidity should be always considered for wind resource assessment, as well as for the predicting the wind turbines performance.

  6. High Power Density Power Electronic Converters for Large Wind Turbines

    DEFF Research Database (Denmark)

    Senturk, Osman Selcuk

    . For these VSCs, high power density is required due to limited turbine nacelle space. Also, high reliability is required since maintenance cost of these remotely located wind turbines is quite high and these turbines operate under harsh operating conditions. In order to select a high power density and reliability......In large wind turbines (in MW and multi-MW ranges), which are extensively utilized in wind power plants, full-scale medium voltage (MV) multi-level (ML) voltage source converters (VSCs) are being more preferably employed nowadays for interfacing these wind turbines with electricity grids...... VSC solution for wind turbines, first, the VSC topology and the switch technology to be employed should be specified such that the highest possible power density and reliability are to be attained. Then, this qualitative approach should be complemented with the power density and reliability...

  7. Wind farm density and harvested power in very large wind farms: A low-order model

    Science.gov (United States)

    Cortina, G.; Sharma, V.; Calaf, M.

    2017-07-01

    In this work we create new understanding of wind turbine wakes recovery process as a function of wind farm density using large-eddy simulations of an atmospheric boundary layer diurnal cycle. Simulations are forced with a constant geostrophic wind and a time varying surface temperature extracted from a selected period of the Cooperative Atmospheric Surface Exchange Study field experiment. Wind turbines are represented using the actuator disk model with rotation and yaw alignment. A control volume analysis around each turbine has been used to evaluate wind turbine wake recovery and corresponding harvested power. Results confirm the existence of two dominant recovery mechanisms, advection and flux of mean kinetic energy, which are modulated by the background thermal stratification. For the low-density arrangements advection dominates, while for the highly loaded wind farms the mean kinetic energy recovers through fluxes of mean kinetic energy. For those cases in between, a smooth balance of both mechanisms exists. From the results, a low-order model for the wind farms' harvested power as a function of thermal stratification and wind farm density has been developed, which has the potential to be used as an order-of-magnitude assessment tool.

  8. Wind Characteristics and an Evaluation of Wind Power Density at Three Sites in Egypt

    International Nuclear Information System (INIS)

    Etman, S.M.

    2008-01-01

    This paper presents the results of the analysis of wind speed data for one calendar year (2005) at three stations (El-Tor, El-Nonzha, and El-Notron) in Egypt along with the wind energy potential of each site. The wind power density at 25 m height was obtained by extrapolation of data at 10 m using a Power-law expression. The frequency distribution of observed hourly wind speeds occurring at each station is examined, particularly for wind speeds greater than or equal to 3 and 5 m/s (cut-in wind speeds for most wind turbines). The study reveals that the wind turbine can be operated at the sites El-Tor, El-Nouzha, and El-Notron with an annual availability factor of about 89.9 %, 76.2 %, and 67.9 % if the cut-in wind speed is 3 m/s and 67.2 %,51.8 %, and 17.1 % if the cut-in wind speed is 5 m/s, respectively. The total available wind power density ( kWh/m 2 /yr) Was estimated at the selected sites; El-Tor, El-Nouzha and El-Notron and was found to be: 3838.4, 825.5 and 284 kWh/m 2 /yr for case 3m/s and 2276.2, 489,5 and 71 kWh/m 2 /yr for case 5 m/s, respectively

  9. Gauge transformations with fractional winding numbers

    International Nuclear Information System (INIS)

    Abouelsaood, A.

    1996-01-01

    The role which gauge transformations of noninteger winding numbers might play in non-Abelian gauge theories is studied. The phase factor acquired by the semiclassical physical states in an arbitrary background gauge field when they undergo a gauge transformation of an arbitrary real winding number is calculated in the path integral formalism assuming that a θFF term added to the Lagrangian plays the same role as in the case of integer winding numbers. Requiring that these states provide a representation of the group of open-quote open-quote large close-quote close-quote gauge transformations, a condition on the allowed backgrounds is obtained. It is shown that this representability condition is only satisfied in the monopole sector of a spontaneously broken gauge theory, but not in the vacuum sector of an unbroken or a spontaneously broken non-Abelian gauge theory. It is further shown that the recent proof of the vanishing of the θ parameter when gauge transformations of arbitrary fractional winding numbers are allowed breaks down in precisely those cases where the representability condition is obeyed because certain gauge transformations needed for the proof, and whose existence is assumed, are either spontaneously broken or cannot be globally defined as a result of a topological obstruction. copyright 1996 The American Physical Society

  10. Winding around the winding number in topology, geometry, and analysis

    CERN Document Server

    Roe, John

    2015-01-01

    The winding number is one of the most basic invariants in topology. It measures the number of times a moving point P goes around a fixed point Q, provided that P travels on a path that never goes through Q and that the final position of P is the same as its starting position. This simple idea has far-reaching applications. The reader of this book will learn how the winding number can help us show that every polynomial equation has a root (the fundamental theorem of algebra), guarantee a fair division of three objects in space by a single planar cut (the ham sandwich theorem), explain why ever

  11. Substorm-related thermospheric density and wind disturbances derived from CHAMP observations

    Directory of Open Access Journals (Sweden)

    P. Ritter

    2010-06-01

    Full Text Available The input of energy and momentum from the magnetosphere is most efficiently coupled into the high latitude ionosphere-thermosphere. The phenomenon we are focusing on here is the magnetospheric substorm. This paper presents substorm related observations of the thermosphere derived from the CHAMP satellite. With its sensitive accelerometer the satellite can measure the air density and zonal winds. Based on a large number of substorm events the average high and low latitude thermospheric response to substorm onsets was deduced. During magnetic substorms the thermospheric density is enhanced first at high latitudes. Then the disturbance travels at an average speed of 650 m/s to lower latitudes, and 3–4 h later the bulge reaches the equator on the night side. Under the influence of the Coriolis force the travelling atmospheric disturbance (TAD is deflected westward. In accordance with present-day atmospheric models the disturbance zonal wind velocities during substorms are close to zero near the equator before midnight and attain moderate westward velocities after midnight. In general, the wind system is only weakly perturbed (Δvy<20 m/s by substorms.

  12. Solar wind structure suggested by bimodal correlations of solar wind speed and density between the spacecraft SOHO and Wind

    Science.gov (United States)

    Ogilvie, K. W.; Coplan, M. A.; Roberts, D. A.; Ipavich, F.

    2007-08-01

    We calculate the cross-spacecraft maximum lagged-cross-correlation coefficients for 2-hour intervals of solar wind speed and density measurements made by the plasma instruments on the Solar and Heliospheric Observatory (SOHO) and Wind spacecraft over the period from 1996, the minimum of solar cycle 23, through the end of 2005. During this period, SOHO was located at L1, about 200 R E upstream from the Earth, while Wind spent most of the time in the interplanetary medium at distances of more than 100 R E from the Earth. Yearly histograms of the maximum, time-lagged correlation coefficients for both the speed and density are bimodal in shape, suggesting the existence of two distinct solar wind regimes. The larger correlation coefficients we suggest are due to structured solar wind, including discontinuities and shocks, while the smaller are likely due to Alfvénic turbulence. While further work will be required to firmly establish the physical nature of the two populations, the results of the analysis are consistent with a solar wind that consists of turbulence from quiet regions of the Sun interspersed with highly filamentary structures largely convected from regions in the inner solar corona. The bimodal appearance of the distributions is less evident in the solar wind speed than in the density correlations, consistent with the observation that the filamentary structures are convected with nearly constant speed by the time they reach 1 AU. We also find that at solar minimum the fits for the density correlations have smaller high-correlation components than at solar maximum. We interpret this as due to the presence of more relatively uniform Alfvénic regions at solar minimum than at solar maximum.

  13. Power spectral density analysis of wind-shear turbulence for related flight simulations. M.S. Thesis

    Science.gov (United States)

    Laituri, Tony R.

    1988-01-01

    Meteorological phenomena known as microbursts can produce abrupt changes in wind direction and/or speed over a very short distance in the atmosphere. These changes in flow characteristics have been labelled wind shear. Because of its adverse effects on aerodynamic lift, wind shear poses its most immediate threat to flight operations at low altitudes. The number of recent commercial aircraft accidents attributed to wind shear has necessitated a better understanding of how energy is transferred to an aircraft from wind-shear turbulence. Isotropic turbulence here serves as the basis of comparison for the anisotropic turbulence which exists in the low-altitude wind shear. The related question of how isotropic turbulence scales in a wind shear is addressed from the perspective of power spectral density (psd). The role of the psd in related Monte Carlo simulations is also considered.

  14. A comparison of shock-cloud and wind-cloud interactions: effect of increased cloud density contrast on cloud evolution

    Science.gov (United States)

    Goldsmith, K. J. A.; Pittard, J. M.

    2018-05-01

    The similarities, or otherwise, of a shock or wind interacting with a cloud of density contrast χ = 10 were explored in a previous paper. Here, we investigate such interactions with clouds of higher density contrast. We compare the adiabatic hydrodynamic interaction of a Mach 10 shock with a spherical cloud of χ = 103 with that of a cloud embedded in a wind with identical parameters to the post-shock flow. We find that initially there are only minor morphological differences between the shock-cloud and wind-cloud interactions, compared to when χ = 10. However, once the transmitted shock exits the cloud, the development of a turbulent wake and fragmentation of the cloud differs between the two simulations. On increasing the wind Mach number, we note the development of a thin, smooth tail of cloud material, which is then disrupted by the fragmentation of the cloud core and subsequent `mass-loading' of the flow. We find that the normalized cloud mixing time (tmix) is shorter at higher χ. However, a strong Mach number dependence on tmix and the normalized cloud drag time, t_{drag}^' }, is not observed. Mach-number-dependent values of tmix and t_{drag}^' } from comparable shock-cloud interactions converge towards the Mach-number-independent time-scales of the wind-cloud simulations. We find that high χ clouds can be accelerated up to 80-90 per cent of the wind velocity and travel large distances before being significantly mixed. However, complete mixing is not achieved in our simulations and at late times the flow remains perturbed.

  15. The small amplitude of density turbulence in the inner solar wind

    Directory of Open Access Journals (Sweden)

    S. R. Spangler

    2003-01-01

    Full Text Available Very Long Baseline Interferometer (VLBI observations were made of radio sources close to the Sun, whose lines of sight pass through the inner solar wind (impact parameters 16-26 RE. Power spectra were analyzed of the interferometer phase fluctuations due to the solar wind plasma. These power spectra provide information on the level of plasma density fluctuations on spatial scales of roughly one hundred to several thousand kilometers. By specifying an outer scale to the turbulence spectrum, we can estimate the root-mean-square (rms amplitude of the density fluctuations. The data indicate that the rms fluctuation in density is only about 10% of the mean density. This value is low, and consistent with extrapolated estimates from more distant parts of the solar wind. Physical speculations based on this result are presented.

  16. Assessment of wind speed and wind power through three stations in Egypt, including air density variation and analysis results with rough set theory

    International Nuclear Information System (INIS)

    Essa, K.S.M.; Embaby, M.; Marrouf, A.A.; Koza, A.M.; Abd El-Monsef, M.E.

    2007-01-01

    It is well known that the wind energy potential is proportional to both air density and the third power of the wind speed average over a suitable time period. The wind speed and air density have random variables depending on both time and location. The main objective of this work is to derive the most general wind energy potential of the wind formulation putting into consideration the time variable in both wind speed and air density. The correction factor is derived explicitly in terms of the cross-correlation and the coefficients of variation.The application is performed for environmental and wind speed measurements at the Cairo Airport, Kosseir and Hurguada, Egypt. Comparisons are made between Weibull, Rayleigh, and actual data distributions of wind speed and wind power of one year 2005. A Weibull distribution is the best match to the actual probability distribution of wind speed data for most stations. The maximum wind energy potential was 373 W/m 2 in June at Hurguada (Red Sea coast) where the annual mean value was 207 W/m 2 . By Using Rough Set Theory, We Find That the Wind Power Depends on the Wind Speed with greater than air density

  17. Optimal Pole Number and Winding Designs for Low Speed–High Torque Synchronous Reluctance Machines

    Directory of Open Access Journals (Sweden)

    Gurutz Artetxe

    2018-01-01

    Full Text Available This paper studies the feasibility of using synchronous reluctance machines (SynRM for low speed–high torque applications. The challenge lies in obtaining low torque ripple values, high power factor, and, especially, high torque density values, comparable to those of permanent magnet synchronous machines (PMSMs, but without resorting to use permanent magnets. A design and calculation procedure based on multistatic finite element analysis is developed and experimentally validated via a 200 Nm, 160 rpm prototype SynRM. After that, machine designs with different rotor pole and stator slot number combinations are studied, together with different winding types: integral-slot distributed-windings (ISDW, fractional-slot distributed-windings (FSDW and fractional-slot concentrated-windings (FSCW. Some design criteria for low-speed SynRM are drawn from the results of the study. Finally, a performance comparison between a PMSM and a SynRM is performed for the same application and the conclusions of the study are summarized.

  18. Satellite accelerometer measurements of neutral density and winds during geomagnetic storms

    Science.gov (United States)

    Marcos, F. A.; Forbes, J. M.

    1986-01-01

    A new thermospheric wind measurement technique is reported which is based on a Satellite Electrostatic Triaxial Accelerometer (SETA) system capable of accurately measuring accelerations in the satellite's in-track, cross-track and radial directions. Data obtained during two time periods are presented. The first data set describes cross-track winds measured between 170 and 210 km during a 5-day period (25 to 29 March 1979) of mostly high geomagnetic activity. In the second data set, cross-track winds and neutral densities from SETA and exospheric temperatures from the Millstone Hill incoherent scatter radar are examined during an isolated magnetic substorm occurring on 21 March 1979. A polar thermospheric wind circulation consisting of a two cell horizontal convection pattern is reflected in both sets of cross-track acceleration measurements. The density response is highly asymmetric with respect to its day/night behavior. Latitude structures of the density response at successive times following the substorm peak suggest the equatorward propagation of a disturbance with a phase speed between 300 and 600 m/s. A deep depression in the density at high latitudes (less than 70 deg) is evident in conjunction with this phenomenon. The more efficient propagation of the disturbance to lower latitudes during the night is probably due to the midnight surge effect.

  19. A joint probability density function of wind speed and direction for wind energy analysis

    International Nuclear Information System (INIS)

    Carta, Jose A.; Ramirez, Penelope; Bueno, Celia

    2008-01-01

    A very flexible joint probability density function of wind speed and direction is presented in this paper for use in wind energy analysis. A method that enables angular-linear distributions to be obtained with specified marginal distributions has been used for this purpose. For the marginal distribution of wind speed we use a singly truncated from below Normal-Weibull mixture distribution. The marginal distribution of wind direction comprises a finite mixture of von Mises distributions. The proposed model is applied in this paper to wind direction and wind speed hourly data recorded at several weather stations located in the Canary Islands (Spain). The suitability of the distributions is judged from the coefficient of determination R 2 . The conclusions reached are that the joint distribution proposed in this paper: (a) can represent unimodal, bimodal and bitangential wind speed frequency distributions, (b) takes into account the frequency of null winds, (c) represents the wind direction regimes in zones with several modes or prevailing wind directions, (d) takes into account the correlation between wind speeds and its directions. It can therefore be used in several tasks involved in the evaluation process of the wind resources available at a potential site. We also conclude that, in the case of the Canary Islands, the proposed model provides better fits in all the cases analysed than those obtained with the models used in the specialised literature on wind energy

  20. Power-Production Diagnostic Tools for Low-Density Wind Farms with Applications to Wake Steering

    Science.gov (United States)

    Takle, E. S.; Herzmann, D.; Rajewski, D. A.; Lundquist, J. K.; Rhodes, M. E.

    2016-12-01

    Hansen (2011) provided guidelines for wind farm wake analysis with applications to "high density" wind farms (where average distance between turbines is less than ten times rotor diameter). For "low-density" (average distance greater than fifteen times rotor diameter) wind farms, or sections of wind farms we demonstrate simpler sorting and visualization tools that reveal wake interactions and opportunities for wind farm power prediction and wake steering. SCADA data from a segment of a large mid-continent wind farm, together with surface flux measurements and lidar data are subjected to analysis and visualization of wake interactions. A time-history animated visualization of a plan view of power level of individual turbines provides a quick analysis of wake interaction dynamics. Yaw-based sectoral histograms of enhancement/decline of wind speed and power from wind farm reference levels reveals angular width of wake interactions and identifies the turbine(s) responsible for the power reduction. Concurrent surface flux measurements within the wind farm allowed us to evaluate stability influence on wake loss. A one-season climatology is used to identify high-priority candidates for wake steering based on estimated power recovery. Typical clearing prices on the day-ahead market are used to estimate the added value of wake steering. Current research is exploring options for identifying candidate locations for wind farm "build-in" in existing low-density wind farms.

  1. Assessing different parameters estimation methods of Weibull distribution to compute wind power density

    International Nuclear Information System (INIS)

    Mohammadi, Kasra; Alavi, Omid; Mostafaeipour, Ali; Goudarzi, Navid; Jalilvand, Mahdi

    2016-01-01

    Highlights: • Effectiveness of six numerical methods is evaluated to determine wind power density. • More appropriate method for computing the daily wind power density is estimated. • Four windy stations located in the south part of Alberta, Canada namely is investigated. • The more appropriate parameters estimation method was not identical among all examined stations. - Abstract: In this study, the effectiveness of six numerical methods is evaluated to determine the shape (k) and scale (c) parameters of Weibull distribution function for the purpose of calculating the wind power density. The selected methods are graphical method (GP), empirical method of Justus (EMJ), empirical method of Lysen (EML), energy pattern factor method (EPF), maximum likelihood method (ML) and modified maximum likelihood method (MML). The purpose of this study is to identify the more appropriate method for computing the wind power density in four stations distributed in Alberta province of Canada namely Edmonton City Center Awos, Grande Prairie A, Lethbridge A and Waterton Park Gate. To provide a complete analysis, the evaluations are performed on both daily and monthly scales. The results indicate that the precision of computed wind power density values change when different parameters estimation methods are used to determine the k and c parameters. Four methods of EMJ, EML, EPF and ML present very favorable efficiency while the GP method shows weak ability for all stations. However, it is found that the more effective method is not similar among stations owing to the difference in the wind characteristics.

  2. Manifestation of solar activity in solar wind particle flux density

    International Nuclear Information System (INIS)

    Kovalenko, V.A.

    1988-01-01

    An analysis has been made of the origin of long-term variations in flux density of solar wind particles (nv) for different velocity regimes. The study revealed a relationship of these variations to the area of the polar coronal holes (CH). It is shown that within the framework of the model under development, the main longterm variations of nv are a result of the latitude redistribution of the solar wind mass flux in the heliosphere and are due to changes in the large-scale geometry of the solar plasma flow in the corona. A study has been made of the variations of nv for high speed solar wind streams. It is found that nv in high speed streams which are formed in CH, decreases from minimum to maximum solar activity. The analysis indicates that this decrease is attributable to the magnetic field strength increase in coronal holes. It has been found that periods of rapid global changes of background magnetic fields on the Sun are accompanied by a reconfiguration of coronal magnetic fields, rapid changes in the length of quiescent filaments, and by an increase in the density of the particle flux of a high speed solar wind. It has been established that these periods precede the formation of CH, corresponding to the increase in solar wind velocity near the Earth and to enhancement of the level of geomagnetic disturbance. (author)

  3. Experimental investigation on performance of crossflow wind turbine as effect of blades number

    Science.gov (United States)

    Kurniawati, Diniar Mungil; Tjahjana, Dominicus Danardono Dwi Prija; Santoso, Budi

    2018-02-01

    Urban living is one of the areas with large electrical power consumption that requires a power supply that is more than rural areas. The number of multi-storey buildings such as offices, hotels and several other buildings that caused electricity power consumption in urban living is very high. Therefore, energy alternative is needed to replace the electricity power consumption from government. One of the utilization of renewable energy in accordance with these conditions is the installation of wind turbines. One type of wind turbine that is now widely studied is a crossflow wind turbines. Crossflow wind turbine is one of vertical axis wind turbine which has good self starting at low wind speed condition. Therefore, the turbine design parameter is necessary to know in order to improve turbine performance. One of wind turbine performance parameter is blades number. The main purpose of this research to investigate the effect of blades number on crossflow wind turbine performance. The design of turbine was 0.4 × 0.4 m2 tested by experimental method with configuration on three kinds of blades number were 8,16 and 20. The turbine investigated at low wind speed on 2 - 5 m/s. The result showed that best performance on 16 blade number.

  4. The role of meridional density differences for a wind-driven overturning circulation

    Energy Technology Data Exchange (ETDEWEB)

    Schewe, J.; Levermann, A. [Potsdam Institute for Climate Impact Research, Earth System Analysis, Potsdam (Germany); Potsdam University, Physics Institute, Potsdam (Germany)

    2010-03-15

    Experiments with the coupled climate model CLIMBER-3{alpha}, which contains an oceanic general circulation model, show deep upwelling in the Southern Ocean to be proportional to the surface wind stress in the latitudinal band of Drake Passage. At the same time, the distribution of the Southern Ocean upwelling onto the oceanic basins is controlled by buoyancy distribution; the inflow into each basin being proportional to the respective meridional density difference. We observe approximately the same constant of proportionality for all basins, and demonstrate that it can be directly related to the flow geometry. For increased wind stress in the Southern Ocean, the overturning increases both in the Atlantic and the Indo-Pacific basin. For strongly reduced wind stress, the circulation enters a regime where Atlantic overturning is maintained through Pacific upwelling, in order to satisfy the transports set by the density differences. Previous results on surface buoyancy and wind stress forcing, obtained with different models, are reproduced within one model in order to distill a consistent picture. We propose that both Southern Ocean upwelling and meridional density differences set up a system of conditions that determine the global meridional overturning circulation. (orig.)

  5. Evolution of the Sunspot Number and Solar Wind B Time Series

    Science.gov (United States)

    Cliver, Edward W.; Herbst, Konstantin

    2018-03-01

    The past two decades have witnessed significant changes in our knowledge of long-term solar and solar wind activity. The sunspot number time series (1700-present) developed by Rudolf Wolf during the second half of the 19th century was revised and extended by the group sunspot number series (1610-1995) of Hoyt and Schatten during the 1990s. The group sunspot number is significantly lower than the Wolf series before ˜1885. An effort from 2011-2015 to understand and remove differences between these two series via a series of workshops had the unintended consequence of prompting several alternative constructions of the sunspot number. Thus it has been necessary to expand and extend the sunspot number reconciliation process. On the solar wind side, after a decade of controversy, an ISSI International Team used geomagnetic and sunspot data to obtain a high-confidence time series of the solar wind magnetic field strength (B) from 1750-present that can be compared with two independent long-term (> ˜600 year) series of annual B-values based on cosmogenic nuclides. In this paper, we trace the twists and turns leading to our current understanding of long-term solar and solar wind activity.

  6. Radial evolution of the intermittency of density fluctuations in the fast solar wind

    International Nuclear Information System (INIS)

    Bruno, R.; D'Amicis, R.; Telloni, D.; Primavera, L.; Sorriso-Valvo, L.; Carbone, V.; Malara, F.; Veltri, P.; Pietropaolo, E.

    2014-01-01

    We study the radial evolution of the intermittency of density fluctuations in the fast solar wind. The study is performed by analyzing the plasma density measurements provided by Helios 2 in the inner heliosphere between 0.3 and 0.9 AU. The analysis is carried out by means of a complete set of diagnostic tools, including the flatness factor at different timescales to estimate intermittency, the Kolmogorov-Smirnov test to estimate the degree of intermittency, and the Fourier transform to estimate the power spectral densities of these fluctuations. Density fluctuations within the fast wind are rather intermittent and their level of intermittency, together with the amplitude of intermittent events, decreases with the distance from the Sun, at odds with the intermittency of both magnetic field and all other plasma parameters. Furthermore, the intermittent events are strongly correlated, exhibiting temporal clustering. This indicates that the mechanism underlying their generation departs from a time-varying Poisson process. A remarkable, qualitative similarity with the behavior of plasma density fluctuations obtained from a numerical study of the nonlinear evolution of parametric instability in the solar wind supports the idea that this mechanism has an important role in governing density fluctuations in the inner heliosphere.

  7. Atmospheric pressure, density, temperature and wind variations between 50 and 200 km

    Science.gov (United States)

    Justus, C. G.; Woodrum, A.

    1972-01-01

    Data on atmospheric pressure, density, temperature and winds between 50 and 200 km were collected from sources including Meteorological Rocket Network data, ROBIN falling sphere data, grenade release and pitot tube data, meteor winds, chemical release winds, satellite data, and others. These data were analyzed by a daily difference method and results on the distribution statistics, magnitude, and spatial structure of the irregular atmospheric variations are presented. Time structures of the irregular variations were determined by the analysis of residuals from harmonic analysis of time series data. The observed height variations of irregular winds and densities are found to be in accord with a theoretical relation between these two quantities. The latitude variations (at 50 - 60 km height) show an increasing trend with latitude. A possible explanation of the unusually large irregular wind magnitudes of the White Sands MRN data is given in terms of mountain wave generation by the Sierra Nevada range about 1000 km west of White Sands. An analytical method is developed which, based on an analogy of the irregular motion field with axisymmetric turbulence, allows measured or model correlation or structure functions to be used to evaluate the effective frequency spectra of scalar and vector quantities of a spacecraft moving at any speed and at any trajectory elevation angle.

  8. The winding number of three complexes in SU(3)

    International Nuclear Information System (INIS)

    Lasher, G.

    1989-01-01

    The Phillip-Stone algorithm for the topological charge of a lattice gauge field requires the computation of the winding number of certain 3-complexes in the space of the group. The extension of the computational procedure for the SU(2) gauge group to SU(3) requires an understanding of the SU(3) geometry. An important issue is the behavior of a 3-cell in SU(3) as it approaches a critical configuration, i.e., one at which the cell is a discontinuous function of its vertices. A measure of the proximity of a cell to criticality is found and a method for computing its contribution to the winding number is recommended. (orig.)

  9. Applicability of Synthetic Aperture Radar Wind Retrievals on Offshore Wind Resources Assessment in Hangzhou Bay, China

    DEFF Research Database (Denmark)

    Chang, Rui; Zhu, Rong; Badger, Merete

    2014-01-01

    In view of the high cost and sparse spatial resolution of offshore meteorological observations, ocean winds retrieved from satellites are valuable in offshore wind resource assessment as a supplement to in situ measurements. This study examines satellite synthetic aperture radar (SAR) images from...... ENVISAT advanced SAR (ASAR) for mapping wind resources with high spatial resolution. Around 181 collected pairs of wind data from SAR wind maps and from 13 meteorological stations in Hangzhou Bay are compared. The statistical results comparing in situ wind speed and SAR-based wind speed show a standard...... density functions are compared at one meteorological station. The SAR-based results appear not to estimate the mean wind speed, Weibull scale and shape parameters and wind power density from the full in situ data set so well due to the lower number of satellite samples. Distributions calculated from...

  10. Determination of the number of Vertical Axis Wind Turbine blades based on power spectrum

    Directory of Open Access Journals (Sweden)

    Fedak Waldemar

    2017-01-01

    Full Text Available Technology of wind exploitation has been applied widely all over the world and has already reached the level in which manufacturers want to maximize the yield with the minimum investment outlays. The main objective of this paper is the determination of the optimal number of blades in the Cup-Bladed Vertical Axis Wind Turbine. Optimizing the size of the Vertical Axis Wind Turbine allows the reduction of costs. The maximum power of the rotor is selected as the performance target. The optimum number of Vertical Axis Wind Turbine blades evaluation is based on analysis of a single blade simulation and its superposition for the whole rotor. The simulation of working blade was done in MatLab environment. Power spectrum graphs were prepared and compared throughout superposition of individual blades in the Vertical Axis Wind Turbine rotor. The major result of this research is the Vertical Axis Wind Turbine power characteristic. On the basis of the analysis of the power spectra, optimum number of the blades was specified for the analysed rotor. Power spectrum analysis of wind turbine enabled the specification of the optimal number of blades, and can be used regarding investment outlays and power output of the Vertical Axis Wind Turbine.

  11. Determination of the number of Vertical Axis Wind Turbine blades based on power spectrum

    Science.gov (United States)

    Fedak, Waldemar; Anweiler, Stanisław; Gancarski, Wojciech; Ulbrich, Roman

    2017-10-01

    Technology of wind exploitation has been applied widely all over the world and has already reached the level in which manufacturers want to maximize the yield with the minimum investment outlays. The main objective of this paper is the determination of the optimal number of blades in the Cup-Bladed Vertical Axis Wind Turbine. Optimizing the size of the Vertical Axis Wind Turbine allows the reduction of costs. The maximum power of the rotor is selected as the performance target. The optimum number of Vertical Axis Wind Turbine blades evaluation is based on analysis of a single blade simulation and its superposition for the whole rotor. The simulation of working blade was done in MatLab environment. Power spectrum graphs were prepared and compared throughout superposition of individual blades in the Vertical Axis Wind Turbine rotor. The major result of this research is the Vertical Axis Wind Turbine power characteristic. On the basis of the analysis of the power spectra, optimum number of the blades was specified for the analysed rotor. Power spectrum analysis of wind turbine enabled the specification of the optimal number of blades, and can be used regarding investment outlays and power output of the Vertical Axis Wind Turbine.

  12. Optimized chord and twist angle distributions of wind turbine blade considering Reynolds number effects

    Energy Technology Data Exchange (ETDEWEB)

    Wang, L.; Tang, X. [Univ. of Central Lancashire. Engineering and Physical Sciences, Preston (United Kingdom); Liu, X. [Univ. of Cumbria. Sustainable Engineering, Workington (United Kingdom)

    2012-07-01

    The aerodynamic performance of a wind turbine depends very much on its blade geometric design, typically based on the blade element momentum (BEM) theory, which divides the blade into several blade elements. In current blade design practices based on Schmitz rotor design theory, the blade geometric parameters including chord and twist angle distributions are determined based on airfoil aerodynamic data at a specific Reynolds number. However, rotating wind turbine blade elements operate at different Reynolds numbers due to variable wind speed and different blade span locations. Therefore, the blade design through Schmitz rotor theory at a specific Reynolds number does not necessarily provide the best power performance under operational conditions. This paper aims to provide an optimal blade design strategy for horizontal-axis wind turbines operating at different Reynolds numbers. A fixed-pitch variable-speed (FPVS) wind turbine with S809 airfoil is chosen as a case study and a Matlab program which considers Reynolds number effects is developed to determine the optimized chord and twist angle distributions of the blade. The performance of the optimized blade is compared with that of the preliminary blade which is designed based on Schmitz rotor design theory at a specific Reynolds number. The results demonstrate that the proposed blade design optimization strategy can improve the power performance of the wind turbine. This approach can be further developed for any practice of horizontal axis wind turbine blade design. (Author)

  13. Strong coupling QCD at finite baryon-number density

    International Nuclear Information System (INIS)

    Karsch, F.; Muetter, K.H.

    1989-01-01

    We present a new representation of the partition function for strong-coupling QCD which is suitable also for finite baryon-number-density simulations. This enables us to study the phase structure in the canonical formulation (with fixed baryon number B) as well as the grand canonical one (with fixed chemical potential μ). We find a clear signal for a first-order chiral phase transition at μ c a=0.63. The critical baryon-number density n c a 3 =0.045 is only slightly higher than the density of nuclear matter. (orig.)

  14. Relative Density of Backfilled Soil Material around Monopiles for Offshore Wind Turbines

    DEFF Research Database (Denmark)

    Sørensen, Søren Peder Hyldal; Ibsen, Lars Bo; Frigaard, Peter

    2012-01-01

    The relative density of backfilled soil material around offshore monopiles is assessed through experimental testing in the Large Wave Channel (GWK) of the Coastal Research Centre (FZK) in Hannover. The relative density of the backfill material was found to vary between 65 and 80 %. The dependency...... of the relative density of backfill on the maximum pile bending moment is assessed through three-dimensional numerical modeling of a monopile foundation located at the offshore wind farm at Horns Reef, Denmark....

  15. The solar wind plasma density control of night-time auroral particle precipitation

    Directory of Open Access Journals (Sweden)

    V. G. Vorobjev

    2004-03-01

    Full Text Available DMSP F6 and F7 spacecraft observations of the average electron and ion energy, and energy fluxes in different night-time precipitation regions for the whole of 1986 were used to examine the precipitation features associated with solar wind density changes. It was found that during magnetic quietness |AL|<100nT, the enhancement of average ion fluxes was observed at least two times, along with the solar wind plasma density increase from 2 to 24cm–3. More pronounced was the ion flux enhancement that occurred in the b2i–b4s and b4s–b5 regions, which are approximately corresponding to the statistical auroral oval and map to the magnetospheric plasma sheet tailward of the isotropy boundary. The average ion energy decrease of about 2–4kev was registered simultaneously with this ion flux enhancement. The results verify the occurrence of effective penetration of the solar wind plasma into the magnetospheric tail plasma sheet. Key words. Ionosphere (auroral ionosphere, particle precipitation – Magnetospheric physics (solar windmagnetosphere interaction

  16. A study of density modulation index in the inner heliospheric solar wind during solar cycle 23

    International Nuclear Information System (INIS)

    Bisoi, Susanta Kumar; Janardhan, P.; Ingale, M.; Subramanian, P.; Ananthakrishnan, S.; Tokumaru, M.; Fujiki, K.

    2014-01-01

    The ratio of the rms electron density fluctuations to the background density in the solar wind (density modulation index, ε N ≡ ΔN/N) is of vital importance for understanding several problems in heliospheric physics related to solar wind turbulence. In this paper, we have investigated the behavior of ε N in the inner heliosphere from 0.26 to 0.82 AU. The density fluctuations ΔN have been deduced using extensive ground-based observations of interplanetary scintillation at 327 MHz, which probe spatial scales of a few hundred kilometers. The background densities (N) have been derived using near-Earth observations from the Advanced Composition Explorer. Our analysis reveals that 0.001 ≲ ε N ≲ 0.02 and does not vary appreciably with heliocentric distance. We also find that ε N declines by 8% from 1998 to 2008. We discuss the impact of these findings on problems ranging from our understanding of Forbush decreases to the behavior of the solar wind dynamic pressure over the recent peculiar solar minimum at the end of cycle 23.

  17. The redshift number density evolution of Mg II absorption systems

    International Nuclear Information System (INIS)

    Chen Zhi-Fu

    2013-01-01

    We make use of the recent large sample of 17 042 Mg II absorption systems from Quider et al. to analyze the evolution of the redshift number density. Regardless of the strength of the absorption line, we find that the evolution of the redshift number density can be clearly distinguished into three different phases. In the intermediate redshift epoch (0.6 ≲ z ≲ 1.6), the evolution of the redshift number density is consistent with the non-evolution curve, however, the non-evolution curve over-predicts the values of the redshift number density in the early (z ≲ 0.6) and late (z ≳ 1.6) epochs. Based on the invariant cross-section of the absorber, the lack of evolution in the redshift number density compared to the non-evolution curve implies the galaxy number density does not evolve during the middle epoch. The flat evolution of the redshift number density tends to correspond to a shallow evolution in the galaxy merger rate during the late epoch, and the steep decrease of the redshift number density might be ascribed to the small mass of halos during the early epoch.

  18. Precision Electron Density Measurements in the SSX MHD Wind Tunnel

    Science.gov (United States)

    Suen-Lewis, Emma M.; Barbano, Luke J.; Shrock, Jaron E.; Kaur, Manjit; Schaffner, David A.; Brown, Michael R.

    2017-10-01

    We characterize fluctuations of the line averaged electron density of Taylor states produced by the magnetized coaxial plasma gun of the SSX device using a 632.8 nm HeNe laser interferometer. The analysis method uses the electron density dependence of the refractive index of the plasma to determine the electron density of the Taylor states. Typical magnetic field and density values in the SSX device approach about B ≅ 0.3 T and n = 0 . 4 ×1016 cm-3 . Analysis is improved from previous density measurement methods by developing a post-processing method to remove relative phase error between interferometer outputs and to account for approximately linear phase drift due to low-frequency mechanical vibrations of the interferometer. Precision density measurements coupled with local measurements of the magnetic field will allow us to characterize the wave composition of SSX plasma via density vs. magnetic field correlation analysis, and compare the wave composition of SSX plasma with that of the solar wind. Preliminary results indicate that density and magnetic field appear negatively correlated. Work supported by DOE ARPA-E ALPHA program.

  19. Tidal signatures of the thermospheric mass density and zonal wind at midlatitude: CHAMP and GRACE observations

    Directory of Open Access Journals (Sweden)

    C. Xiong

    2015-02-01

    Full Text Available By using the accelerometer measurements from CHAMP and GRACE satellites, the tidal signatures of the thermospheric mass density and zonal wind at midlatitudes have been analyzed in this study. The results show that the mass density and zonal wind at southern midlatitudes are dominated by a longitudinal wave-1 pattern. The most prominent tidal components in mass density and zonal wind are the diurnal tides D0 and DW2 and the semidiurnal tides SW1 and SW3. This is consistent with the tidal signatures in the F region electron density at midlatitudes as reported by Xiong and Lühr (2014. These same tidal components are observed both in the thermospheric and ionospheric quantities, supporting a mechanism that the non-migrating tides in the upper atmosphere are excited in situ by ion–neutral interactions at midlatitudes, consistent with the modeling results of Jones Jr. et al. (2013. We regard the thermospheric dynamics as the main driver for the electron density tidal structures. An example is the in-phase variation of D0 between electron density and mass density in both hemispheres. Further research including coupled atmospheric models is probably needed for explaining the similarities and differences between thermospheric and ionospheric tidal signals at midlatitudes.

  20. Comparison of several measure-correlate-predict models using support vector regression techniques to estimate wind power densities. A case study

    International Nuclear Information System (INIS)

    Díaz, Santiago; Carta, José A.; Matías, José M.

    2017-01-01

    Highlights: • Eight measure-correlate-predict (MCP) models used to estimate the wind power densities (WPDs) at a target site are compared. • Support vector regressions are used as the main prediction techniques in the proposed MCPs. • The most precise MCP uses two sub-models which predict wind speed and air density in an unlinked manner. • The most precise model allows to construct a bivariable (wind speed and air density) WPD probability density function. • MCP models trained to minimise wind speed prediction error do not minimise WPD prediction error. - Abstract: The long-term annual mean wind power density (WPD) is an important indicator of wind as a power source which is usually included in regional wind resource maps as useful prior information to identify potentially attractive sites for the installation of wind projects. In this paper, a comparison is made of eight proposed Measure-Correlate-Predict (MCP) models to estimate the WPDs at a target site. Seven of these models use the Support Vector Regression (SVR) and the eighth the Multiple Linear Regression (MLR) technique, which serves as a basis to compare the performance of the other models. In addition, a wrapper technique with 10-fold cross-validation has been used to select the optimal set of input features for the SVR and MLR models. Some of the eight models were trained to directly estimate the mean hourly WPDs at a target site. Others, however, were firstly trained to estimate the parameters on which the WPD depends (i.e. wind speed and air density) and then, using these parameters, the target site mean hourly WPDs. The explanatory features considered are different combinations of the mean hourly wind speeds, wind directions and air densities recorded in 2014 at ten weather stations in the Canary Archipelago (Spain). The conclusions that can be drawn from the study undertaken include the argument that the most accurate method for the long-term estimation of WPDs requires the execution of a

  1. Three-dimensional density and compressible magnetic structure in solar wind turbulence

    Science.gov (United States)

    Roberts, Owen W.; Narita, Yasuhito; Escoubet, C.-Philippe

    2018-03-01

    The three-dimensional structure of both compressible and incompressible components of turbulence is investigated at proton characteristic scales in the solar wind. Measurements of the three-dimensional structure are typically difficult, since the majority of measurements are performed by a single spacecraft. However, the Cluster mission consisting of four spacecraft in a tetrahedral formation allows for a fully three-dimensional investigation of turbulence. Incompressible turbulence is investigated by using the three vector components of the magnetic field. Meanwhile compressible turbulence is investigated by considering the magnitude of the magnetic field as a proxy for the compressible fluctuations and electron density data deduced from spacecraft potential. Application of the multi-point signal resonator technique to intervals of fast and slow wind shows that both compressible and incompressible turbulence are anisotropic with respect to the mean magnetic field direction P⟂ ≫ P∥ and are sensitive to the value of the plasma beta (β; ratio of thermal to magnetic pressure) and the wind type. Moreover, the incompressible fluctuations of the fast and slow solar wind are revealed to be different with enhancements along the background magnetic field direction present in the fast wind intervals. The differences in the fast and slow wind and the implications for the presence of different wave modes in the plasma are discussed.

  2. Geometrical meaning of winding number and its characterization of topological phases in one-dimensional chiral non-Hermitian systems

    Science.gov (United States)

    Yin, Chuanhao; Jiang, Hui; Li, Linhu; Lü, Rong; Chen, Shu

    2018-05-01

    We unveil the geometrical meaning of winding number and utilize it to characterize the topological phases in one-dimensional chiral non-Hermitian systems. While chiral symmetry ensures the winding number of Hermitian systems are integers, it can take half integers for non-Hermitian systems. We give a geometrical interpretation of the half integers by demonstrating that the winding number ν of a non-Hermitian system is equal to half of the summation of two winding numbers ν1 and ν2 associated with two exceptional points, respectively. The winding numbers ν1 and ν2 represent the times of the real part of the Hamiltonian in momentum space encircling the exceptional points and can only take integers. We further find that the difference of ν1 and ν2 is related to the second winding number or energy vorticity. By applying our scheme to a non-Hermitian Su-Schrieffer-Heeger model and an extended version of it, we show that the topologically different phases can be well characterized by winding numbers. Furthermore, we demonstrate that the existence of left and right zero-mode edge states is closely related to the winding number ν1 and ν2.

  3. Influence of Reynolds Number on Multi-Objective Aerodynamic Design of a Wind Turbine Blade.

    Science.gov (United States)

    Ge, Mingwei; Fang, Le; Tian, De

    2015-01-01

    At present, the radius of wind turbine rotors ranges from several meters to one hundred meters, or even more, which extends Reynolds number of the airfoil profile from the order of 105 to 107. Taking the blade for 3MW wind turbines as an example, the influence of Reynolds number on the aerodynamic design of a wind turbine blade is studied. To make the study more general, two kinds of multi-objective optimization are involved: one is based on the maximum power coefficient (CPopt) and the ultimate load, and the other is based on the ultimate load and the annual energy production (AEP). It is found that under the same configuration, the optimal design has a larger CPopt or AEP (CPopt//AEP) for the same ultimate load, or a smaller load for the same CPopt//AEP at higher Reynolds number. At a certain tip-speed ratio or ultimate load, the blade operating at higher Reynolds number should have a larger chord length and twist angle for the maximum Cpopt//AEP. If a wind turbine blade is designed by using an airfoil database with a mismatched Reynolds number from the actual one, both the load and Cpopt//AEP will be incorrectly estimated to some extent. In some cases, the assessment error attributed to Reynolds number is quite significant, which may bring unexpected risks to the earnings and safety of a wind power project.

  4. Influence of Reynolds Number on Multi-Objective Aerodynamic Design of a Wind Turbine Blade

    Science.gov (United States)

    Ge, Mingwei; Fang, Le; Tian, De

    2015-01-01

    At present, the radius of wind turbine rotors ranges from several meters to one hundred meters, or even more, which extends Reynolds number of the airfoil profile from the order of 105 to 107. Taking the blade for 3MW wind turbines as an example, the influence of Reynolds number on the aerodynamic design of a wind turbine blade is studied. To make the study more general, two kinds of multi-objective optimization are involved: one is based on the maximum power coefficient (C Popt) and the ultimate load, and the other is based on the ultimate load and the annual energy production (AEP). It is found that under the same configuration, the optimal design has a larger C Popt or AEP (C Popt//AEP) for the same ultimate load, or a smaller load for the same C Popt//AEP at higher Reynolds number. At a certain tip-speed ratio or ultimate load, the blade operating at higher Reynolds number should have a larger chord length and twist angle for the maximum C popt//AEP. If a wind turbine blade is designed by using an airfoil database with a mismatched Reynolds number from the actual one, both the load and C popt//AEP will be incorrectly estimated to some extent. In some cases, the assessment error attributed to Reynolds number is quite significant, which may bring unexpected risks to the earnings and safety of a wind power project. PMID:26528815

  5. Interplanetary Type III Bursts and Electron Density Fluctuations in the Solar Wind

    Science.gov (United States)

    Krupar, V.; Maksimovic, M.; Kontar, E. P.; Zaslavsky, A.; Santolik, O.; Soucek, J.; Kruparova, O.; Eastwood, J. P.; Szabo, A.

    2018-04-01

    Type III bursts are generated by fast electron beams originated from magnetic reconnection sites of solar flares. As propagation of radio waves in the interplanetary medium is strongly affected by random electron density fluctuations, type III bursts provide us with a unique diagnostic tool for solar wind remote plasma measurements. Here, we performed a statistical survey of 152 simple and isolated type III bursts observed by the twin-spacecraft Solar TErrestrial RElations Observatory mission. We investigated their time–frequency profiles in order to retrieve decay times as a function of frequency. Next, we performed Monte Carlo simulations to study the role of scattering due to random electron density fluctuations on time–frequency profiles of radio emissions generated in the interplanetary medium. For simplification, we assumed the presence of isotropic electron density fluctuations described by a power law with the Kolmogorov spectral index. Decay times obtained from observations and simulations were compared. We found that the characteristic exponential decay profile of type III bursts can be explained by the scattering of the fundamental component between the source and the observer despite restrictive assumptions included in the Monte Carlo simulation algorithm. Our results suggest that relative electron density fluctuations /{n}{{e}} in the solar wind are 0.06–0.07 over wide range of heliospheric distances.

  6. MATERIAL COMPOSITIONS AND NUMBER DENSITIES FOR NEUTRONICS CALCULATIONS

    International Nuclear Information System (INIS)

    D. A. Thomas

    1996-01-01

    The purpose of this analysis is to calculate the number densities and isotopic weight percentages of the standard materials to be used in the neutronics (criticality and radiation shielding) evaluations by the Waste Package Development Department. The objective of this analysis is to provide material number density information which can be referenced by future neutronics design analyses, such as for those supporting the Conceptual Design Report

  7. THz limb sounder (TLS) for lower thermospheric wind, oxygen density, and temperature

    Science.gov (United States)

    Wu, Dong L.; Yee, Jeng-Hwa; Schlecht, Erich; Mehdi, Imran; Siles, Jose; Drouin, Brian J.

    2016-07-01

    Neutral winds are one of the most critical measurements in the lower thermosphere and E region ionosphere (LTEI) for understanding complex electrodynamic processes and ion-neutral interactions. We are developing a high-sensitivity, low-power, noncryogenic 2.06 THz Schottky receiver to measure wind profiles at 100-140 km. The new technique, THz limb sounder (TLS), aims to measure LTEI winds by resolving the wind-induced Doppler shift of 2.06 THz atomic oxygen (OI) emissions. As a transition between fine structure levels in the ground electronic state, the OI emission is in local thermodynamic equilibrium (LTE) at altitudes up to 350 km. This LTE property, together with day-and-night capability and small line-of-sight gradient, makes the OI limb sounding a very attractive technique for neutral wind observations. In addition to the wind measurement, TLS can also retrieve [OI] density and neutral temperature in the LTEI region. TLS leverages rapid advances in THz receiver technologies including subharmonically pumped (SHP) mixers and Schottky-diode-based power multipliers. Current SHP Schottky receivers have produced good sensitivity for THz frequencies at ambient environment temperatures (120-150 K), which are achievable through passively cooling in spaceflight. As an emerging technique, TLS can fill the critical data gaps in the LTEI neutral wind observations to enable detailed studies on the coupling and dynamo processes between charged and neutral molecules.

  8. Room for wind. An investigation into the possibilities for the erection of large numbers of wind turbines. Ruimte voor wind. Een studie naar de plaatsingsmogelijkheden van grote aantallen windturbines

    Energy Technology Data Exchange (ETDEWEB)

    Arkesteijn, L; Van Huis, G; Reckman, E

    1987-01-01

    The Dutch government aims to realize a wind power capacity in The Netherlands of 1000 MW in the year 2000. Environmental impacts of the erection of a large number of 200 kW and 1 MW wind turbines are studied. Four siting models have been developed in which attention is paid to environmental and economic aspects, the possibilities to introduce the electric power into the national power grid and the availability and reliability of enough wind. Noise pollution and danger for birds are to be avoided. The choice between the construction of wind parks where a number of wind turbines is concentrated in a small area or a more dispersed construction is somewhat difficult if all relevant factors are to be taken into consideration. Without government's interference the target of 1000 MW in the year 2000 will probably not be attained. It is therefore desirable to practise an active energy policy in favor of wind energy, for which many ways are possible.

  9. The effect of adsorbed liquid and material density on saltation threshold: Insight from laboratory and wind tunnel experiments

    Science.gov (United States)

    Yu, Xinting; Hörst, Sarah M.; He, Chao; Bridges, Nathan T.; Burr, Devon M.; Sebree, Joshua A.; Smith, James K.

    2017-11-01

    Saltation threshold, the minimum wind speed for sediment transport, is a fundamental parameter in aeolian processes. Measuring this threshold using boundary layer wind tunnels, in which particles are mobilized by flowing air, for a subset of different planetary conditions can inform our understanding of physical processes of sediment transport. The presence of liquid, such as water on Earth or methane on Titan, may affect the threshold values to a great extent. Sediment density is also crucial for determining threshold values. Here we provide quantitative data on density and water content of common wind tunnel materials (including chromite, basalt, quartz sand, beach sand, glass beads, gas chromatograph packing materials, walnut shells, iced tea powder, activated charcoal, instant coffee, and glass bubbles) that have been used to study conditions on Earth, Titan, Mars, and Venus. The measured density values for low density materials are higher compared to literature values (e.g., ∼30% for walnut shells), whereas for the high density materials, there is no such discrepancy. We also find that low density materials have much higher water content and longer atmospheric equilibration timescales compared to high density sediments. We used thermogravimetric analysis (TGA) to quantify surface and internal water and found that over 80% of the total water content is surface water for low density materials. In the Titan Wind Tunnel (TWT), where Reynolds number conditions similar to those on Titan can be achieved, we performed threshold experiments with the standard walnut shells (125-150 μm, 7.2% water by mass) and dried walnut shells, in which the water content was reduced to 1.7%. The threshold results for the two scenarios are almost the same, which indicates that humidity had a negligible effect on threshold for walnut shells in this experimental regime. When the water content is lower than 11.0%, the interparticle forces are dominated by adsorption forces, whereas at

  10. Computerized system for building 'the rose' of the winds and defining the velocity and the average density of the wind power for a given place

    International Nuclear Information System (INIS)

    Valkov, I.; Dekova, I.; Arnaudov, A.; Kostadinov, A.

    2002-01-01

    This paper considers the structure and the working principle of a computerized system for building 'the rose' of the winds. The behaviour of the system has been experimentally investigated and on the basis of the received data 'the rose' of the winds has been built, a diagram of the average wind velocity at a predefined step in the course of time has been made, and the average density of the wind power has been quantitatively defined. The proposed system enables possibilities for creating a data base of wind parameters, their processing and graphical visualizing of the received results. The system allows to improve the work of devices of wild's wind gauge type. (authors)

  11. NORSEWInD satellite wind climatology

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Badger, Merete; Mouche, Alexis

    The EU-NORSEWInD project www.norsewind.eu has taken place from August 2008 to July 2012 (4 years). NORSEWInD is short for Northern Seas Wind Index database. In the project ocean surface wind observations from space have been retrieved, processed and analysed. The overall aim of the work...... is to provide new offshore wind climatology map for the entire area of interest based on satellite remote sensing. This has been based on Synthetic Aperture Radar (SAR) from Envisat ASAR using 9000 scenes re-processed with ECMWF wind direction and CMOD-IFR. The number of overlapping samples range from 450...... in the Irish Sea to more than 1200 in most of the Baltic Sea. Wind resource statistics include maps at 2 km spatial resolution of mean wind speed, Weibull A and k, and energy density at 10 m above sea level. Uncertainty estimates on the number of available samples for each of the four parameters are presented...

  12. Design and analysis of a direct-drive wind power generator with ultra-high torque density

    Science.gov (United States)

    Jian, Linni; Shi, Yujun; Wei, Jin; Zheng, Yanchong

    2015-05-01

    In order to get rid of the nuisances caused by mechanical gearboxes, generators with low rated speed, which can be directly connected to wind turbines, are attracting increasing attention. The purpose of this paper is to propose a new direct-drive wind power generator (DWPG), which can offer ultra-high torque density. First, magnetic gear (MG) is integrated to achieve non-contact torque transmission and speed variation. Second, armature windings are engaged to achieve electromechanical energy conversion. Interior permanent magnet (PM) design on the inner rotor is adopted to boost the torque transmission capability of the integrated MG. Nevertheless, due to lack of back iron on the stator, the proposed generator does not exhibit prominent salient feature, which usually exists in traditional interior PM (IPM) machines. This makes it with good controllability and high power factor as the surface-mounted permanent magnet machines. The performance is analyzed using finite element method. Investigation on the magnetic field harmonics demonstrates that the permanent-magnetic torque offered by the MG can work together with the electromagnetic torque offered by the armature windings to balance the driving torque captured by the wind turbine. This allows the proposed generator having the potential to offer even higher torque density than its integrated MG.

  13. Applicability of Synthetic Aperture Radar Wind Retrievals on Offshore Wind Resources Assessment in Hangzhou Bay, China

    Directory of Open Access Journals (Sweden)

    Rui Chang

    2014-05-01

    Full Text Available In view of the high cost and sparse spatial resolution of offshore meteorological observations, ocean winds retrieved from satellites are valuable in offshore wind resource assessment as a supplement to in situ measurements. This study examines satellite synthetic aperture radar (SAR images from ENVISAT advanced SAR (ASAR for mapping wind resources with high spatial resolution. Around 181 collected pairs of wind data from SAR wind maps and from 13 meteorological stations in Hangzhou Bay are compared. The statistical results comparing in situ wind speed and SAR-based wind speed show a standard deviation (SD of 1.99 m/s and correlation coefficient of R = 0.67. The model wind directions, which are used as input for the SAR wind speed retrieval, show a high correlation coefficient (R = 0.89 but a large standard deviation (SD = 42.3° compared to in situ observations. The Weibull probability density functions are compared at one meteorological station. The SAR-based results appear not to estimate the mean wind speed, Weibull scale and shape parameters and wind power density from the full in situ data set so well due to the lower number of satellite samples. Distributions calculated from the concurrent 81 SAR and in situ samples agree well.

  14. A new estimation method for nuclide number densities in equilibrium cycle

    International Nuclear Information System (INIS)

    Seino, Takeshi; Sekimoto, Hiroshi; Ando, Yoshihira.

    1997-01-01

    A new method is proposed for estimating nuclide number densities of LWR equilibrium cycle by multi-recycling calculation. Conventionally, it is necessary to spend a large computation time for attaining the ultimate equilibrium state. Hence, the cycle in nearly constant fuel composition has been considered as an equilibrium state which can be achieved by a few of recycling calculations on a simulated cycle operation under a specific fuel core design. The present method uses steady state fuel nuclide number densities as the initial guess for multi-recycling burnup calculation obtained by a continuously fuel supplied core model. The number densities are modified to be the initial number densities for nuclides of a batch supplied fuel. It was found that the calculated number densities could attain to more precise equilibrium state than that of a conventional multi-recycling calculation with a small number of recyclings. In particular, the present method could give the ultimate equilibrium number densities of the nuclides with the higher mass number than 245 Cm and 244 Pu which were not able to attain to the ultimate equilibrium state within a reasonable number of iterations using a conventional method. (author)

  15. The number density of a charged relic

    Energy Technology Data Exchange (ETDEWEB)

    Berger, C.F. [Massachusetts Institute of Technology, Cambridge, MA (United States). Center for Theoretical Physics]|[California Univ., Santa Barbara, CA (United States). Kavli Inst. for Theoretical Physics; Covi, L. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Kraml, S. [CNRS/IN2P3, Grenoble (France). Lab. de Physique Subatomique et de Cosmologie; Palorini, F. [Lyon Univ., UCBL, CNRS/IN2P3, Villeurbanne (France). IPN de Lyon

    2008-07-15

    We investigate scenarios in which a charged, long-lived scalar particle decouples from the primordial plasma in the Early Universe. We compute the number density at time of freeze-out considering both the cases of abelian and non-abelian interactions and including the effect of Sommerfeld enhancement at low initial velocity. We also discuss as extreme case the maximal cross section that fulfils the unitarity bound. We then compare these number densities to the exotic nuclei searches for stable relics and to the BBN bounds on unstable relics and draw conclusions for the cases of a stau or stop NLSP in supersymmetric models with a gravitino or axino LSP. (orig.)

  16. The number density of a charged relic

    International Nuclear Information System (INIS)

    Berger, C.F.; Kraml, S.; Palorini, F.

    2008-07-01

    We investigate scenarios in which a charged, long-lived scalar particle decouples from the primordial plasma in the Early Universe. We compute the number density at time of freeze-out considering both the cases of abelian and non-abelian interactions and including the effect of Sommerfeld enhancement at low initial velocity. We also discuss as extreme case the maximal cross section that fulfils the unitarity bound. We then compare these number densities to the exotic nuclei searches for stable relics and to the BBN bounds on unstable relics and draw conclusions for the cases of a stau or stop NLSP in supersymmetric models with a gravitino or axino LSP. (orig.)

  17. Multi-objective random search algorithm for simultaneously optimizing wind farm layout and number of turbines

    DEFF Research Database (Denmark)

    Feng, Ju; Shen, Wen Zhong; Xu, Chang

    2016-01-01

    A new algorithm for multi-objective wind farm layout optimization is presented. It formulates the wind turbine locations as continuous variables and is capable of optimizing the number of turbines and their locations in the wind farm simultaneously. Two objectives are considered. One is to maximi...

  18. Density Fluctuations in the Solar Wind Driven by Alfvén Wave Parametric Decay

    Science.gov (United States)

    Bowen, Trevor A.; Badman, Samuel; Hellinger, Petr; Bale, Stuart D.

    2018-02-01

    Measurements and simulations of inertial compressive turbulence in the solar wind are characterized by anti-correlated magnetic fluctuations parallel to the mean field and density structures. This signature has been interpreted as observational evidence for non-propagating pressure balanced structures, kinetic ion-acoustic waves, as well as the MHD slow-mode. Given the high damping rates of parallel propagating compressive fluctuations, their ubiquity in satellite observations is surprising and suggestive of a local driving process. One possible candidate for the generation of compressive fluctuations in the solar wind is the Alfvén wave parametric instability. Here, we test the parametric decay process as a source of compressive waves in the solar wind by comparing the collisionless damping rates of compressive fluctuations with growth rates of the parametric decay instability daughter waves. Our results suggest that generation of compressive waves through parametric decay is overdamped at 1 au, but that the presence of slow-mode-like density fluctuations is correlated with the parametric decay of Alfvén waves.

  19. Gearless wind power generator

    Energy Technology Data Exchange (ETDEWEB)

    Soederlund, L.; Ridanpaeae, P.; Vihriaelae, H.; Peraelae, R. [Tampere Univ. of Technology (Finland). Lab. of Electricity and Magnetism

    1998-10-01

    In the project a 100 kW axial flux permanent magnet wind power generator has been designed. The toroidal stator with air gap winding is placed between two rotating discs with permanent magnets. The magnet material is NdBFe due to its excellent magnetic properties compared to other materials. This type of topology enables a very large number of poles compared to conventional machine of the same size. A large number of poles is required to achieve a low rotational speed and consequently a direct driven system. The stator winding is formed by rectangular coils. The end winding is very short leading to small resistive losses. On the other hand, the absence of iron teeth causes eddy current losses in the conductors. These can be restricted to an acceptable level by keeping the wire diameter and flux density small. This means that the number of phases should be large. Several independent three phase systems may be used. The toothless stator also means that the iron losses are small and there exists no cogging torque

  20. A modified model of axial flux permanent magnet generator for wind turbine applications

    International Nuclear Information System (INIS)

    Ashraf, M.M.

    2014-01-01

    The Axial Flux Permanent Magnet Generators (AFPMGs) are gaining immense attention in the modern era. The single stage AFPMG topology consists of one stator disc which is held stationery between two revolving rotor discs attached with a common shaft. The number of poles of AFPMG depends on the winding pattern in which the coils are connected in series within stator disc. Connecting the coils in begin-to-end winding pattern, doubles the number of poles which also increases the active mass of AFPMG. The AFPMG considering begin-to-end winding pattern, can be operated at half shaft speed. This AFPMG is also having greater air gap flux density which, ultimately, improves the power density parameter of AFPMG. In this paper, a modified AFPMG has been proposed which is designed by considering begin-to-end winding pattern. A 380W single phase, single stage prototype model has been developed and tested. The test results show that power density of designed AFPMG with begin-to-end winding pattern has been improved by 32% as compared to AFPMG with begin-to-begin winding pattern. The proposed low speed and high power density AFPMG model can be actively deployed for wind turbine applications. (author)

  1. Induction Motor with Switchable Number of Poles and Toroidal Winding

    Directory of Open Access Journals (Sweden)

    MUNTEANU, A.

    2011-05-01

    Full Text Available This paper presents a study of an induction motor provided with toroidal stator winding. The ring-type coils offer a higher versatility in obtaining a different number of pole pairs by means of delta/star and series/parallel connections respectively. As consequence, the developed torque can vary within large limits and the motor can be utilized for applications that require, for example, high load torque values for a short time. The study involves experimental tests and FEM simulation for an induction machine with three configurations of pole pairs. The conclusions attest the superiority of the toroidal winding for certain applications such as electric vehicles or lifting machines.

  2. The application of cryogenics to high Reynolds number testing in wind tunnels. I - Evolution, theory, and advantages

    Science.gov (United States)

    Kilgore, R. A.; Dress, D. A.

    1984-01-01

    During the time which has passed since the construction of the first wind tunnel in 1870, wind tunnels have been developed to a high degree of sophistication. However, their development has consistently failed to keep pace with the demands placed on them. One of the more serious problems to be found with existing transonic wind tunnels is their inability to test subscale aircraft models at Reynolds numbers sufficiently near full-scale values to ensure the validity of using the wind tunnel data to predict flight characteristics. The Reynolds number capability of a wind tunnel may be increased by a number of different approaches. However, the best solution in terms of model, balance, and model support loads, as well as in terms of capital and operating cost appears to be related to the reduction of the temperature of the test gas to cryogenic temperatures. The present paper has the objective to review the evolution of the cryogenic wind tunnel concept and to describe its more important advantages.

  3. Imaging Plasma Density Structures in the Soft X-Rays Generated by Solar Wind Charge Exchange with Neutrals

    Science.gov (United States)

    Sibeck, David G.; Allen, R.; Aryan, H.; Bodewits, D.; Brandt, P.; Branduardi-Raymont, G.; Brown, G.; Carter, J. A.; Collado-Vega, Y. M.; Collier, M. R.; Connor, H. K.; Cravens, T. E.; Ezoe, Y.; Fok, M.-C.; Galeazzi, M.; Gutynska, O.; Holmström, M.; Hsieh, S.-Y.; Ishikawa, K.; Koutroumpa, D.; Kuntz, K. D.; Leutenegger, M.; Miyoshi, Y.; Porter, F. S.; Purucker, M. E.; Read, A. M.; Raeder, J.; Robertson, I. P.; Samsonov, A. A.; Sembay, S.; Snowden, S. L.; Thomas, N. E.; von Steiger, R.; Walsh, B. M.; Wing, S.

    2018-06-01

    Both heliophysics and planetary physics seek to understand the complex nature of the solar wind's interaction with solar system obstacles like Earth's magnetosphere, the ionospheres of Venus and Mars, and comets. Studies with this objective are frequently conducted with the help of single or multipoint in situ electromagnetic field and particle observations, guided by the predictions of both local and global numerical simulations, and placed in context by observations from far and extreme ultraviolet (FUV, EUV), hard X-ray, and energetic neutral atom imagers (ENA). Each proposed interaction mechanism (e.g., steady or transient magnetic reconnection, local or global magnetic reconnection, ion pick-up, or the Kelvin-Helmholtz instability) generates diagnostic plasma density structures. The significance of each mechanism to the overall interaction (as measured in terms of atmospheric/ionospheric loss at comets, Venus, and Mars or global magnetospheric/ionospheric convection at Earth) remains to be determined but can be evaluated on the basis of how often the density signatures that it generates are observed as a function of solar wind conditions. This paper reviews efforts to image the diagnostic plasma density structures in the soft (low energy, 0.1-2.0 keV) X-rays produced when high charge state solar wind ions exchange electrons with the exospheric neutrals surrounding solar system obstacles. The introduction notes that theory, local, and global simulations predict the characteristics of plasma boundaries such the bow shock and magnetopause (including location, density gradient, and motion) and regions such as the magnetosheath (including density and width) as a function of location, solar wind conditions, and the particular mechanism operating. In situ measurements confirm the existence of time- and spatial-dependent plasma density structures like the bow shock, magnetosheath, and magnetopause/ionopause at Venus, Mars, comets, and the Earth. However, in situ

  4. A Spatial Model for the Instantaneous Estimation of Wind Power at a Large Number of Unobserved Sites

    DEFF Research Database (Denmark)

    Lenzi, Amanda; Guillot, Gilles; Pinson, Pierre

    2015-01-01

    We propose a hierarchical Bayesian spatial model to obtain predictive densities of wind power at a set of un-monitored locations. The model consists of a mixture of Gamma density for the non-zero values and degenerated distributions at zero. The spatial dependence is described through a common...... Gaussian random field with a Matérn covariance. For inference and prediction, we use the GMRF-SPDE approximation implemented in the R-INLA package. We showcase the method outlined here on data for 336 wind farms located in Denmark. We test the predictions derived from our method with model-diagnostic tools...

  5. Dependence of regular background noise of VLF radiation and thunder-storm activity on solar wind proton density

    International Nuclear Information System (INIS)

    Sobolev, A.V.; Kozlov, V.I.

    1997-01-01

    Correlation of the intensity of slowly changing regular background noise within 9.7 kHz frequency in Yakutsk (L = 3) and of the solar wind density protons was determined. This result explains the reverse dependence of the intensity of the regular background noise on the solar activity, 27-day frequency, increase before and following geomagnetic storms, absence of relation with K p index of geomagnetic activity. Conclusion is made that growth of density of the solar wind protons results in increase of the regular background noise and thunderstorm activity

  6. Solar wind electron densities from Viking dual-frequency radio measurements

    International Nuclear Information System (INIS)

    Muhleman, D.O.; Anderson, J.D.

    1981-01-01

    Simultaneous phase coherent, two-frequency measurements of the time delay between the Earth station and the Viking spacecraft have been analyzed in terms of the electron density profiles from 4 solar radii (R/sub sun/) to 200 R/sub sun/. The measurements were made during a period of solar activity minimum (1976--1977) and show a strong solar latitude effect. The data were analyzed with both a model independent, direct numerical inversion technique and with model fitting, yielding essentially the same results. It is shown that the solar wind density can be represented by two power laws near the solar equator proportional to r/sup -2.7/ and r/sup -2.04/. However, the more rapidly falling term quickly disappears at moderate latitudes (approx.20 0 ), leaving only the inverse-square behavior

  7. Periodic Density Structures and the Origin of the Slow Solar Wind

    Science.gov (United States)

    Viall-Kepko, Nicholeen M.; Vourlidas, Angelos

    2015-01-01

    The source of the slow solar wind has challenged scientists for years. Periodic density structures (PDSs), observed regularly in the solar wind at 1 AU (Astronomical Unit), can be used to address this challenge. These structures have length scales of hundreds to several thousands of megameters and frequencies of tens to hundreds of minutes. Two lines of evidence indicate that PDSs are formed in the solar corona as part of the slow solar wind release and/or acceleration processes. The first is corresponding changes in compositional data in situ, and the second is PDSs observed in the inner Heliospheric Imaging data on board the Solar Terrestrial Relations Observatory (STEREO)/Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI) suite. The periodic nature of these density structures is both a useful identifier as well as an important physical constraint on their origin. In this paper, we present the results of tracking periodic structures identified in the inner Heliospheric Imager in SECCHI back in time through the corresponding outer coronagraph (COR2) images. We demonstrate that the PDSs are formed around or below 2.5 solar radii-the inner edge of the COR2 field of view. We compute the occurrence rates of PDSs in 10 days of COR2 images both as a function of their periodicity and location in the solar corona, and we find that this set of PDSs occurs preferentially with a periodicity of approximately 90 minutes and occurs near streamers. Lastly, we show that their acceleration and expansion through COR2 is self-similar, thus their frequency is constant at distances beyond 2.5 solar radii.

  8. Reproductive success of Horned Lark and McCown's Longspur in relation to wind energy infrastructure

    Science.gov (United States)

    Mahoney, Anika; Chalfoun, Anna D.

    2016-01-01

    Wind energy is a rapidly expanding industry with potential indirect effects to wildlife populations that are largely unexplored. In 2011 and 2012, we monitored 211 nests of 2 grassland songbirds, Horned Lark (Eremophila alpestris) and McCown's Longspur (Rhynchophanes mccownii), at 3 wind farms and 2 undeveloped reference sites in Wyoming, USA. We evaluated several indices of reproductive investment and success: clutch size, size-adjusted nestling mass, daily nest survival rate, and number of fledglings. We compared reproductive success between wind farms and undeveloped sites and modeled reproductive success within wind farms as a function of wind energy infrastructure and habitat. Size-adjusted nestling mass of Horned Lark was weakly negatively related to turbine density. In 2011, nest survival of Horned Lark decreased 55% as turbine density increased from 10 to 39 within 2 km of the nest. In 2012, however, nest survival of Horned Lark was best predicted by the combination of vegetation height, distance to shrub edge, and turbine density, with survival increasing weakly with increasing vegetation height. McCown's Longspur nest survival was weakly positively related to vegetation density at the nest site when considered with the amount of grassland habitat in the neighborhood and turbine density within 1 km of the nest. Habitat and distance to infrastructure did not explain clutch size or number of fledglings for either species, or size-adjusted nestling mass for McCown's Longspur. Our results suggest that the influence of wind energy infrastructure varies temporally and by species, even among species using similar habitats. Turbine density was repeatedly the most informative measure of wind energy development. Turbine density could influence wildlife responses to wind energy production and may become increasingly important to consider as development continues in areas with high-quality wind resources.

  9. Spacecraft radio scattering observations of the power spectrum of electron density fluctuations in the solar wind

    International Nuclear Information System (INIS)

    Woo, R.; Armstrong, J.W.

    1979-01-01

    Solar wind electron density power spectra in the solar equatorial region are inferred from observations of phase scintillations and spectral broadening made with the Viking, Helios, and Pioneer spacecraft. The heliocentric distance range covered is 2--215 R/sub S/, and for some observations close to the sun the spectra extend to fluctuation frequencies as high as 100 Hz. For heliocentric distances > or approx. =20 R/sub S/ the equivalent spacecraft-measured one-dimensional density spectrym V/sub n/e is well modeled by a single power law (f/sup -alpha/) in the frequency range 10 -4 -5 x 10 -2 Hz. The mean spectral index α is 1.65, very close to the Kolmogorov value of 5/3. Under the assumption of constant solar wind speed, V/sub n/e varies as R/sup -3.45/, where R is heliocentric distance. Within 20 R/sub S/, V/sub n/e can still be modeled by a single power law over the frequency range 10 -3 -10 1 Hz, but the spectral index becomes smaller, αapprox.1.1. The flattening of the density spectrum with 20 R/sub S/ is presumably associated with energy deposition in the near-sun region and acceleration of the solar wind

  10. Number density measurements on analytical discharge systems: application of ''hook'' spectroscopy

    International Nuclear Information System (INIS)

    Majidi, V.; Hsu, W.; Coleman, D.M.

    1988-01-01

    Various methods for determining atomic, ionic and electron number densities are reviewed. Time- and spatially-resolved number densities of sodium atoms in the post discharge environment of a high voltage spark are then quantitatively determined using the anomalous dispersion hook method. Number densities are calculated from hook separation near the Na D-lines. Lateral profiles are subsequently transformed to the radial domain using a derivative free Abel inversion process. Advantages, limitations, and practical ramification of the hook method are discussed. (author)

  11. Power density investigation on the press-pack IGBT 3L-HB-VSCs applied to large wind turbine

    DEFF Research Database (Denmark)

    Senturk, Osman Selcuk; Munk-Nielsen, Stig; Teodorescu, Remus

    2011-01-01

    capabilities, DC capacitor sizes, converter cabinet volumes of the three 3LHB- VSCs utilizing press-pack IGBTs are investigated in order to quantify and compare the power densities of the 3L-HB-VSCs employed as grid-side converters. Also, the suitable transformer types for the 3L-HB-VSCs are determined......With three different DC-side and AC-side connections, the three-level H-bridge voltage source converters (3L-HB-VSCs) are alternatives to 3L neutral-point-clamped VSCs (3L-NPC-VSCs) for interfacing large wind turbines with electricity grids. In order to assess their feasibility for large wind...... turbines, they should be investigated in terms of power density, which is one of the most important design criteria for wind turbine converters due to turbine nacelle space limitation. In this study, by means of the converter electro-thermal models based on the converter characteristics, the power...

  12. Turbulence, raindrops and the l{sup 1/2} number density law

    Energy Technology Data Exchange (ETDEWEB)

    Lovejoy, S [Department of Physics, McGill University, 3600 University street, Montreal, Quebec, H3A 2T8 (Canada); Schertzer, D [Universite Paris-Est, ENPC/CEREVE, 77455 Marne-la-Vallee Cedex 2 (France)], E-mail: lovejoy@physics.mcgill.ca

    2008-07-15

    Using a unique data set of three-dimensional drop positions and masses (the HYDROP experiment), we show that the distribution of liquid water in rain displays a sharp transition between large scales which follow a passive scalar-like Corrsin-Obukhov (k{sup -5/3}) spectrum and a small-scale statistically homogeneous white noise regime. We argue that the transition scale l{sub c} is the critical scale where the mean Stokes number (= drop inertial time/turbulent eddy time) St{sub l} is unity. For five storms, we found l{sub c} in the range 45-75 cm with the corresponding dissipation scale St{sub {eta}} in the range 200-300. Since the mean interdrop distance was significantly smaller ({approx} 10 cm) than l{sub c} we infer that rain consists of 'patches' whose mean liquid water content is determined by turbulence with each patch being statistically homogeneous. For l>l{sub c}, we have St{sub l}<1 and due to the observed statistical homogeneity for lwind velocities at coarse grained resolution l{sub c}. From this, we derive equations for the number and mass densities (n and {rho}) and their variance fluxes ({psi} and {chi}). By showing that {chi} is dissipated at small scales (with l{sub {rho}}{sub ,diss}{approx}l{sub c}) and {psi} over a wide range, we conclude that {rho} should indeed follow Corrsin-Obukhov k{sup -5/3} spectra but that n should instead follow a k{sup -2} spectrum corresponding to fluctuations scaling as {delta}{rho}{approx}l{sup 1/3} and {delta}n{approx}l{sup 1/2}. While the Corrsin-Obukhov law has never been observed in rain before, its discovery is perhaps not surprising; in contrast the {delta}n{approx}l{sup 1/2} number density law is quite new. The key difference between the {delta}{rho}, {delta}n laws is the fact that the microphysics (coalescence, breakup) conserves drop mass, but not numbers of particles. This implies that the timescale for the transfer of the

  13. Subtidal hydrodynamics in a tropical lagoon: A dimensionless numbers approach

    Science.gov (United States)

    Tenorio-Fernandez, L.; Valle-Levinson, A.; Gomez-Valdes, J.

    2018-01-01

    Observations in a tropical lagoon of the Yucatan peninsula motivated a non-dimensional number analysis to examine the relative influence of tidal stress, density gradients and wind stress on subtidal hydrodynamics. A two-month observation period in Chelem Lagoon covered the transition from the dry to the wet season. Chelem Lagoon is influenced by groundwater inputs and exhibits a main sub-basin (central sub-basin), a west sub-basin and an east sub-basin. Subtidal hydrodynamics were associated with horizontal density gradients that were modified seasonally by evaporation, precipitation, and groundwater discharge. A tidal Froude number (Fr0), a Wedderburn number (W), and a Stress ratio (S0) were used to diagnose the relative importance of dominant subtidal driving forces. The Froude number (Fr0) compares tidal forcing and baroclinic forcing through the ratio of tidal stress to longitudinal baroclinic pressure gradient. The Wedderburn number (W) relates wind stress to baroclinicity. The stress ratio (S0) sizes tidal stress and wind stress. S0 is a new diagnostic tool for systems influenced by tides and winds, and represents the main contribution of this research. Results show that spring-tide subtidal flows in the tropical lagoon had log(Fr0) ≫ 0 and log(S0) > 0 , i.e., driven mainly by tidal stresses (advective accelerations). Neap tides showed log(Fr0) ≪ 0 and log(S0) < 0) , i.e., flows driven by baroclinicity, especially at the lagoon heads of the east and west sub-basins. However, when the wind stress intensified over the lagoon, the relative importance of baroclinicity decreased and the wind stress controlled the dynamics (log(W) ≫ 0). Each sub-basin exhibited a different subtidal response, according to the dimensionless numbers. The response depended on the fortnightly tidal cycle, the location and magnitude of groundwater input, and the direction and magnitude of the wind stress.

  14. Comparison of SAR Wind Speed Retrieval Algorithms for Evaluating Offshore Wind Energy Resources

    DEFF Research Database (Denmark)

    Kozai, K.; Ohsawa, T.; Takeyama, Y.

    2010-01-01

    Envisat/ASAR-derived offshore wind speeds and energy densities based on 4 different SAR wind speed retrieval algorithms (CMOD4, CMOD-IFR2, CMOD5, CMOD5.N) are compared with observed wind speeds and energy densities for evaluating offshore wind energy resources. CMOD4 ignores effects of atmospheri...

  15. Experimental tests of the effect of rotor diameter ratio and blade number to the cross-flow wind turbine performance

    Science.gov (United States)

    Susanto, Sandi; Tjahjana, Dominicus Danardono Dwi Prija; Santoso, Budi

    2018-02-01

    Cross-flow wind turbine is one of the alternative energy harvester for low wind speeds area. Several factors that influence the power coefficient of cross-flow wind turbine are the diameter ratio of blades and the number of blades. The aim of this study is to find out the influence of the number of blades and the diameter ratio on the performance of cross-flow wind turbine and to find out the best configuration between number of blades and diameter ratio of the turbine. The experimental test were conducted under several variation including diameter ratio between outer and inner diameter of the turbine and number of blades. The variation of turbine diameter ratio between inner and outer diameter consisted of 0.58, 0.63, 0.68 and 0.73 while the variations of the number of blades used was 16, 20 and 24. The experimental test were conducted under certain wind speed which are 3m/s until 4 m/s. The result showed that the configurations between 0.68 diameter ratio and 20 blade numbers is the best configurations that has power coefficient of 0.049 and moment coefficient of 0.185.

  16. High-performance permanent magnet brushless motors with balanced concentrated windings and similar slot and pole numbers

    International Nuclear Information System (INIS)

    Stumberger, Bojan; Stumberger, Gorazd; Hadziselimovic, Miralem; Hamler, Anton; Trlep, Mladen; Gorican, Viktor; Jesenik, Marko

    2006-01-01

    The paper presents a comparison between the performances of exterior-rotor permanent magnet brushless motors with distributed windings and the performances of exterior-rotor permanent magnet brushless motors with concentrated windings. Finite element method analysis is employed to determine the performance of each motor. It is shown that motors with concentrated windings and similar slot and pole numbers exhibit similar or better performances than motors with distributed windings for brushless AC (BLAC) operation mode and brushless DC (BLDC) operation mode as well

  17. Increased Mach Number Capability for the NASA Glenn 10x10 Supersonic Wind Tunnel

    Science.gov (United States)

    Slater, J. W.; Saunders, J. D.

    2015-01-01

    Computational simulations and wind tunnel testing were conducted to explore the operation of the Abe Silverstein Supersonic Wind Tunnel at the NASA Glenn Research Center at test section Mach numbers above the current limit of Mach 3.5. An increased Mach number would enhance the capability for testing of supersonic and hypersonic propulsion systems. The focus of the explorations was on understanding the flow within the second throat of the tunnel, which is downstream of the test section and is where the supersonic flow decelerates to subsonic flow. Methods of computational fluid dynamics (CFD) were applied to provide details of the shock boundary layer structure and to estimate losses in total pressure. The CFD simulations indicated that the tunnel could be operated up to Mach 4.0 if the minimum width of the second throat was made smaller than that used for previous operation of the tunnel. Wind tunnel testing was able to confirm such operation of the tunnel at Mach 3.6 and 3.7 before a hydraulic failure caused a stop to the testing. CFD simulations performed after the wind tunnel testing showed good agreement with test data consisting of static pressures along the ceiling of the second throat. The CFD analyses showed increased shockwave boundary layer interactions, which was also observed as increased unsteadiness of dynamic pressures collected in the wind tunnel testing.

  18. Effect of number of blades on aerodynamic forces on a straight-bladed Vertical Axis Wind Turbine

    International Nuclear Information System (INIS)

    Li, Qing'an; Maeda, Takao; Kamada, Yasunari; Murata, Junsuke; Furukawa, Kazuma; Yamamoto, Masayuki

    2015-01-01

    Small wind turbine performance and safety standard for straight-bladed Vertical Axis Wind Turbine (VAWT) have not been developed in the world because of the lack of fundament experimental data. This paper focuses on the evaluation of aerodynamic forces depending on several numbers of blades in wind tunnel experiment. In the present study, the test airfoil of blade is symmetry airfoil of NACA 0021 and the number of blades is from two to five. Pressure acting on the surface of rotor blade is measured during rotation by multiport pressure devices and transmitted to a stationary system through wireless LAN. And then, the aerodynamic forces (tangential force, normal force et al.) are discussed as a function of azimuth angle, achieving a quantitative analysis of the effect of numbers of blades. Finally, the loads are compared with the experimental data of six-component balance. As a result, it is clarified that the power coefficient decreases with the increase of numbers of blades. Furthermore, the power which is absorbed from wind by wind turbine mainly depends on upstream region of azimuth angle of θ = 0°∼180°. In this way, these results are very important for developing the simple design equations and applications for straight-bladed VAWT. - Highlights: • Aerodynamic forces are measured by not only torque meter but also six-component balance. • The pressure distribution on the surface of rotor blade is directly measured by multiport pressure devices. • The power coefficient decreases with the increase of numbers of blades. • The fluctuation amplitudes from six-component balance show larger value than the results of pressure distribution.

  19. Kinetic Theory and Fast Wind Observations of the Electron Strahl

    Science.gov (United States)

    Horaites, Konstantinos; Boldyrev, Stanislav; Wilson, Lynn B., III; Viñas, Adolfo F.; Merka, Jan

    2018-02-01

    We develop a model for the strahl population in the solar wind - a narrow, low-density and high-energy electron beam centred on the magnetic field direction. Our model is based on the solution of the electron drift-kinetic equation at heliospheric distances where the plasma density, temperature and the magnetic field strength decline as power laws of the distance along a magnetic flux tube. Our solution for the strahl depends on a number of parameters that, in the absence of the analytic solution for the full electron velocity distribution function (eVDF), cannot be derived from the theory. We however demonstrate that these parameters can be efficiently found from matching our solution with observations of the eVDF made by the Wind satellite's SWE strahl detector. The model is successful at predicting the angular width (FWHM) of the strahl for the Wind data at 1 au, in particular by predicting how this width scales with particle energy and background density. We find that the strahl distribution is largely determined by the local temperature Knudsen number γ ∼ |T dT/dx|/n, which parametrizes solar wind collisionality. We compute averaged strahl distributions for typical Knudsen numbers observed in the solar wind, and fit our model to these data. The model can be matched quite closely to the eVDFs at 1 au; however, it then overestimates the strahl amplitude at larger heliocentric distances. This indicates that our model may be improved through the inclusion of additional physics, possibly through the introduction of 'anomalous diffusion' of the strahl electrons.

  20. Stochastic generation of hourly wind speed time series

    International Nuclear Information System (INIS)

    Shamshad, A.; Wan Mohd Ali Wan Hussin; Bawadi, M.A.; Mohd Sanusi, S.A.

    2006-01-01

    In the present study hourly wind speed data of Kuala Terengganu in Peninsular Malaysia are simulated by using transition matrix approach of Markovian process. The wind speed time series is divided into various states based on certain criteria. The next wind speed states are selected based on the previous states. The cumulative probability transition matrix has been formed in which each row ends with 1. Using the uniform random numbers between 0 and 1, a series of future states is generated. These states have been converted to the corresponding wind speed values using another uniform random number generator. The accuracy of the model has been determined by comparing the statistical characteristics such as average, standard deviation, root mean square error, probability density function and autocorrelation function of the generated data to those of the original data. The generated wind speed time series data is capable to preserve the wind speed characteristics of the observed data

  1. The first Donaldson invariant as the winding number of a Nicolai map

    International Nuclear Information System (INIS)

    Mansfield, P.

    1988-01-01

    The authors show that the first Donaldson invariant expressed by Witten as the partition function of a relativistic quantum field theory can be interpreted as the winding number of the stochastic map introduced by Nicolai in the context of supersymmetric Yang-Mills theories

  2. Wind energy potential in Bulgaria

    International Nuclear Information System (INIS)

    Shtrakov, Stanko Vl.

    2009-01-01

    In this study, wind characteristic and wind energy potential in Bulgaria were analyzed using the wind speed data. The wind energy potential at different sites in Bulgaria has been investigated by compiling data from different sources and analyzing it using a software tool. The wind speed distribution curves were obtained by using the Weibull and Rayleigh probability density functions. The results relating to wind energy potential are given in terms of the monthly average wind speed, wind speed probability density function (PDF), wind speed cumulative density function (CDF), and wind speed duration curve. A technical and economic assessment has been made of electricity generation from three wind turbines having capacity of (60, 200, and 500 kW). The yearly energy output capacity factor and the electrical energy cost of kWh produced by the three different turbines were calculated

  3. A comment on "bats killed in large numbers at United States wind energy facilities"

    Science.gov (United States)

    Huso, Manuela M.P.; Dalthorp, Dan

    2014-01-01

    Widespread reports of bat fatalities caused by wind turbines have raised concerns about the impacts of wind power development. Reliable estimates of the total number killed and the potential effects on populations are needed, but it is crucial that they be based on sound data. In a recent BioScience article, Hayes (2013) estimated that over 600,000 bats were killed at wind turbines in the United States in 2012. The scientific errors in the analysis are numerous, with the two most serious being that the included sites constituted a convenience sample, not a representative sample, and that the individual site estimates are derived from such different methodologies that they are inherently not comparable. This estimate is almost certainly inaccurate, but whether the actual number is much smaller, much larger, or about the same is uncertain. An accurate estimate of total bat fatality is not currently possible, given the shortcomings of the available data.

  4. Bearing failure detection of micro wind turbine via power spectral density analysis for stator current signals spectrum

    Science.gov (United States)

    Mahmood, Faleh H.; Kadhim, Hussein T.; Resen, Ali K.; Shaban, Auday H.

    2018-05-01

    The failure such as air gap weirdness, rubbing, and scrapping between stator and rotor generator arise unavoidably and may cause extremely terrible results for a wind turbine. Therefore, we should pay more attention to detect and identify its cause-bearing failure in wind turbine to improve the operational reliability. The current paper tends to use of power spectral density analysis method of detecting internal race and external race bearing failure in micro wind turbine by estimation stator current signal of the generator. The failure detector method shows that it is well suited and effective for bearing failure detection.

  5. Physics-based Tests to Identify the Accuracy of Solar Wind Ion Measurements: A Case Study with the Wind Faraday Cups

    Science.gov (United States)

    Kasper, J. C.; Lazarus, A. J.; Steinberg, J. T.; Ogilvie, K. W.; Szabo, A.

    2006-01-01

    We present techniques for comparing measurements of velocity, temperature, and density with constraints imposed by the plasma physics of magnetized bi-Maxwellian ions. Deviations from these physics-based constraints are interpreted as arising from measurement errors. Two million ion spectra from the Solar Wind Experiment Faraday Cup instruments on the Wind spacecraft are used as a case study. The accuracy of velocity measurements is determined by the fact that differential flow between hydrogen and helium should be aligned with the ambient magnetic field. Modeling the breakdown of field alignment suggests velocity uncertainties are less than 0.16% in magnitude and 3deg in direction. Temperature uncertainty is found by examining the distribution of observed temperature anisotropies in high-beta solar wind intervals where the firehose, mirror, and cyclotron microinstabilities should drive the distribution to isotropy. The presence of a finite anisotropy at high beta suggests overall temperature uncertainties of 8%. Hydrogen and helium number densities are compared with the electron density inferred from observations of the local electron plasma frequency as a function of solar wind speed and year. We find that after accounting for the contribution of minor ions, the results are consistent with a systematic offset between the two instruments of 34%. The temperature and density methods are sensitive to non-Maxwellian features such as heat flux and proton beams and as a result are more suited to slow solar wind where these features are rare. These procedures are of general use in identifying the accuracy of observations from any solar wind ion instrument.

  6. Space-time scenarios of wind power generation produced using a Gaussian copula with parametrized precision matrix

    DEFF Research Database (Denmark)

    Tastu, Julija; Pinson, Pierre; Madsen, Henrik

    The emphasis in this work is placed on generating space-time trajectories (also referred to as scenarios) of wind power generation. This calls for prediction of multivariate densities describing wind power generation at a number of distributed locations and for a number of successive lead times. ...

  7. 14821AT LANCE, Missile Number 2419, Round Number 349APT, 12 May 1980.

    Science.gov (United States)

    1980-05-01

    WSTRUCTIONUREPOT DCUMNTAIONPAG EPORE COMPLEMON PORN REPORT NUMBER 2GOTACCESSION NO S. RECIPIENT’S CATALOG NUMBER TDR 1148 __7 0_____T___ ~. *.~----...,S. TYPE OF...Data at 0815 MDT ---------- 4 4. White Sands Desert Site (WSD) Significant Level Data at 0815 MDT ------------------------------------ 5 5. WSD Upper...humidity, dew point (0 C), density (gm/n,3), Wind direction and speed, and cloud cover were made at the LC-39 Met Site at T-0 minutes. (2) Monitor of

  8. Urban renewal based wind environment at pedestrian level in high-density and high-rise urban areas in Sai Ying Pun, Hong Kong

    Science.gov (United States)

    Yao, J. W.; Zheng, J. Y.; Zhao, Y.; Shao, Y. H.; Yuan, F.

    2017-11-01

    In high-density and high-rise urban areas, pedestrian level winds contribute to improve comfort, safety and diffusion of heat in urban areas. Outdoor wind study is extremely vital and a prerequisite in high-density cities considering that the immediate pedestrian level wind environment is fundamentally impacted by the presence of a series of high-rise buildings. In this paper, the research site of Sai Ying Pun in Hong Kong will be analysed in terms of geography, climate and urban morphology, while the surrounding natural ventilation has also been simulated by the wind tunnel experiment Computational Fluid Dynamics (CFD). It has found that, the existing problems in this district are the contradiction between planning control and commercial interests, which means some areas around tall buildings are not benefit to the residents because of the unhealthy wind environment. Therefore, some recommendation of urban renewal strategy has been provided.

  9. The Effect of Air Density on Sand Transport Structures and the Adobe Abrasion Profile: A Field Wind-Tunnel Experiment Over a Wide Range of Altitude

    Science.gov (United States)

    Han, Qingjie; Qu, Jianjun; Dong, Zhibao; Zu, Ruiping; Zhang, Kecun; Wang, Hongtao; Xie, Shengbo

    2014-02-01

    Aeolian sand transport results from interactions between the surface and the airflow above. Air density strongly constrains airflow characteristics and the resulting flow of sand, and therefore should not be neglected in sand transport models. In the present study, we quantify the influence of air density on the sand flow structure, sand transport rate, adobe abrasion profiles, and abrasion rate using a portable wind-tunnel in the field. For a given wind speed, the flow's ability to transport sand decreases at low air density, so total sand transport decreases, but the saltation height increases. Thus, the damage to human structures increases compared with what occurs at lower altitudes. The adobe abrasion rate by the cloud of blowing sand decreases exponentially with increasing height above the surface, while the wind erosion and dust emission intensity both increase with increasing air density. Long-term feedback processes between air density and wind erosion suggest that the development of low-altitude areas due to long-term deflation plays a key role in dust emission, and will have a profound significance for surface Aeolian processes and geomorphology.

  10. Calculation of depleted wind resources near wind farms

    DEFF Research Database (Denmark)

    Nielsen, Morten

    2015-01-01

    Traditional wind resource maps include wind distribution, energy density and potential power production without wake effects. Adding wake effect to such maps is feasible by means of a new method based on Fourier transformation,and the extra computational work is comparable to that of the basic wind...

  11. Estonian wind climate

    International Nuclear Information System (INIS)

    Kull, Ain

    1999-01-01

    Estonia is situated on the eastern coast of the Baltic Sea. This is a region with intensive cyclonic activity and therefore with a relatively high mean wind speed. Atmospheric circulation and its seasonal variation determine the general character of the Estonian wind regime over the Atlantic Ocean and Eurasia. However, the Baltic sea itself is a very important factor affecting wind climate, it has an especially strong influence on the wind regime in costal areas. The mean energy density (W/m 2 ) is a wind energy characteristic that is proportional to the third power of wind speed and describes energy available in a flow of air through a unit area. The mean energy density is a characteristic which has practical importance in regional assessment of snowdrift, storm damage and wind energy

  12. SPENT NUCLEAR FUEL NUMBER DENSITIES FOR MULTI-PURPOSE CANISTER CRITICALITY CALCULATIONS

    International Nuclear Information System (INIS)

    D. A. Thomas

    1996-01-01

    The purpose of this analysis is to calculate the number densities for spent nuclear fuel (SNF) to be used in criticality evaluations of the Multi-Purpose Canister (MPC) waste packages. The objective of this analysis is to provide material number density information which will be referenced by future MPC criticality design analyses, such as for those supporting the Conceptual Design Report

  13. Do Transient Electrodynamic Processes Support Enhanced Neutral Mass Densities in Earth's Cusp-Region Thermosphere via Divergent Upward Winds?

    Science.gov (United States)

    Conde, M.; Larsen, M. F.; Troyer, R.; Gillespie, D.; Kosch, M.

    2017-12-01

    Satellite accelerometer measurements show that Earth's thermosphere contains two substantial and permanent regions of enhanced mass density that are located at around 400 km altitude near the footprints of the north and south geomagnetic cusps. The additional mass in these regions must be supported against gravity, which requires that similarly localized perturbations must occur in one or more of the other fields (beyond mass density) that appear in the momentum conservation equation for the thermospheric neutral fluid. However more than a decade after the density enhancements were first discovered, there are still no observations of any other corresponding perturbations to terms appearing directly in this equation that would indicate what is supporting the extra mass. To date, most candidate mechanisms involve high-altitude transient electrodynamic heating (at 250 km and above) that drives upwelling and associated horizontal divergence. Indeed, there are very few viable mechanisms that don't ultimately cause substantial localized neutral wind perturbations to occur near the density anomalies. Thus, we report here on a study to search for signatures of these localized perturbations in winds, using several data sources. These are the WATS instrument that flew aboard the DE-2 spacecraft, the C-REX-1 rocket flight through the CUSP in 2014, and two ground-based Fabry-Perot instruments that are located in Antarctica at latitudes that pass under the geomagnetic cusps - i.e. at McMurdo and South Pole stations. Using these data, we will present both climatological averages and also individual case studies to illustrate what localized signatures occur (if any) in the neutral wind fields near the cusp-region density anomalies.

  14. Ulysses observations of a 'density hole' in the high-speed solar wind

    International Nuclear Information System (INIS)

    Riley, P.; Gosling, J.T.; McComas, D.J.; Forsyth, R.J.

    1998-01-01

    Ulysses observations at mid and high heliographic latitudes have revealed a solar wind devoid of the large variations in density, temperature, and speed that are commonly observed at low latitudes. One event, however, observed on May 1, 1996, while Ulysses was located at ∼3.7AU and 38.5 degree, stands out in the plasma data set. The structure, which is unique in the Ulysses high-latitude data set, is seen as a drop in proton density of almost an order of magnitude and a comparable rise in proton temperature. The event lasts ∼3(1)/(2) hours giving the structure a size of ∼9.6x10 6 km (0.06 AU) along the spacecraft trajectory. Minimum variance analysis of this interval indicates that the angle between the average magnetic field direction and the minimum variance direction is ∼92 degree, suggesting that the 'density hole' may be approximated by a series of planar slabs separated by several tangential discontinuities. We discuss several possible explanations for the origin of this structure, but ultimately the origin of the density hole remains unknown. copyright 1998 American Geophysical Union

  15. Periodic fluctuations in correlation-based connectivity density time series: Application to wind speed-monitoring network in Switzerland

    Science.gov (United States)

    Laib, Mohamed; Telesca, Luciano; Kanevski, Mikhail

    2018-02-01

    In this paper, we study the periodic fluctuations of connectivity density time series of a wind speed-monitoring network in Switzerland. By using the correlogram-based robust periodogram annual periodic oscillations were found in the correlation-based network. The intensity of such annual periodic oscillations is larger for lower correlation thresholds and smaller for higher. The annual periodicity in the connectivity density seems reasonably consistent with the seasonal meteo-climatic cycle.

  16. Short-term wind power forecasting: probabilistic and space-time aspects

    DEFF Research Database (Denmark)

    Tastu, Julija

    work deals with the proposal and evaluation of new mathematical models and forecasting methods for short-term wind power forecasting, accounting for space-time dynamics based on geographically distributed information. Different forms of power predictions are considered, starting from traditional point...... into the corresponding models are analysed. As a final step, emphasis is placed on generating space-time trajectories: this calls for the prediction of joint multivariate predictive densities describing wind power generation at a number of distributed locations and for a number of successive lead times. In addition......Optimal integration of wind energy into power systems calls for high quality wind power predictions. State-of-the-art forecasting systems typically provide forecasts for every location individually, without taking into account information coming from the neighbouring territories. It is however...

  17. Solar Wind 0.1-1 keV Electrons in the Corotating Interaction Regions

    Science.gov (United States)

    Wang, L.; Tao, J.; Li, G.; Wimmer-Schweingruber, R. F.; Jian, L. K.; He, J.; Tu, C.; Tian, H.; Bale, S. D.

    2017-12-01

    Here we present a statistical study of the 0.1-1 keV suprathermal electrons in the undisturbed and compressed slow/fast solar wind, for the 71 corotating interaction regions (CIRs) with good measurements from the WIND 3DP and MFI instruments from 1995 to 1997. For each of these CIRs, we separate the strahl and halo electrons based on their different behaviors in pitch angle distributions in the undisturbed and compressed solar wind. We fit both the strahl and halo energy spectra to a kappa function with an index κ index and effective temperature Teff, and calculate the pitch-angle width at half-maximum (PAHM) of the strahl population. We also integrate the electron measurements between 0.1 and 1.0 keV to obtain the number density n and average energy Eavg for the strahl and halo populations. We find that for both the strahl and halo populations within and around these CIRs, the fitted κ index strongly correlates with Teff, similar to the quiet-time solar wind (Tao et al., ApJ, 2016). The number density of both the strahl and halo shows a strong positive correlation with the electron core temperature. The strahl number density ns is correlated with the magnitude of interplanetary magnetic field, and the strahl PAHM width is anti-correlated with the solar wind speed. These results suggest that the origin of strahl electrons from the solar corona is likely related to the electron core temperature and magnetic field strength, while the production of halo electrons in the interplanetary medium could depend on the solar wind velocity.

  18. Hydroxyl layer: trend of number density and intra-annual variability

    Science.gov (United States)

    Sonnemann, G. R.; Hartogh, P.; Berger, U.; Grygalashvyly, M.

    2015-06-01

    The layer of vibrationally excited hydroxyl (OH*) near the mesopause in Earth's atmosphere is widely used to derive the temperature at this height and to observe dynamical processes such as gravity waves. The concentration of OH* is controlled by the product of atomic hydrogen, with ozone creating a layer of enhanced concentration in the mesopause region. However, the basic influences on the OH* layer are atomic oxygen and temperature. The long-term monitoring of this layer provides information on a changing atmosphere. It is important to know which proportion of a trend results from anthropogenic impacts on the atmosphere and which proportion reflects natural variations. In a previous paper (Grygalashvyly et al., 2014), the trend of the height of the layer and the trend in temperature were investigated particularly in midlatitudes on the basis of our coupled dynamic and chemical transport model LIMA (Leibniz Institute Middle Atmosphere). In this paper we consider the trend for the number density between the years 1961 and 2009 and analyze the reason of the trends on a global scale. Further, we consider intra-annual variations. Temperature and wind have the strongest impacts on the trend. Surprisingly, the increase in greenhouse gases (GHGs) has no clear influence on the chemistry of OH*. The main reason for this lies in the fact that, in the production term of OH*, if atomic hydrogen increases due to increasing humidity of the middle atmosphere by methane oxidation, ozone decreases. The maximum of the OH* layer is found in the mesopause region and is very variable. The mesopause region is a very intricate domain marked by changeable dynamics and strong gradients of all chemically active minor constituents determining the OH* chemistry. The OH* concentration responds, in part, very sensitively to small changes in these parameters. The cause for this behavior is given by nonlinear reactions of the photochemical system being a nonlinear enforced chemical oscillator

  19. Hydroxyl layer: trend of number density and intra-annual variability

    Directory of Open Access Journals (Sweden)

    G. R. Sonnemann

    2015-06-01

    Full Text Available The layer of vibrationally excited hydroxyl (OH* near the mesopause in Earth's atmosphere is widely used to derive the temperature at this height and to observe dynamical processes such as gravity waves. The concentration of OH* is controlled by the product of atomic hydrogen, with ozone creating a layer of enhanced concentration in the mesopause region. However, the basic influences on the OH* layer are atomic oxygen and temperature. The long-term monitoring of this layer provides information on a changing atmosphere. It is important to know which proportion of a trend results from anthropogenic impacts on the atmosphere and which proportion reflects natural variations. In a previous paper (Grygalashvyly et al., 2014, the trend of the height of the layer and the trend in temperature were investigated particularly in midlatitudes on the basis of our coupled dynamic and chemical transport model LIMA (Leibniz Institute Middle Atmosphere. In this paper we consider the trend for the number density between the years 1961 and 2009 and analyze the reason of the trends on a global scale. Further, we consider intra-annual variations. Temperature and wind have the strongest impacts on the trend. Surprisingly, the increase in greenhouse gases (GHGs has no clear influence on the chemistry of OH*. The main reason for this lies in the fact that, in the production term of OH*, if atomic hydrogen increases due to increasing humidity of the middle atmosphere by methane oxidation, ozone decreases. The maximum of the OH* layer is found in the mesopause region and is very variable. The mesopause region is a very intricate domain marked by changeable dynamics and strong gradients of all chemically active minor constituents determining the OH* chemistry. The OH* concentration responds, in part, very sensitively to small changes in these parameters. The cause for this behavior is given by nonlinear reactions of the photochemical system being a nonlinear enforced

  20. On Lunar Exospheric Column Densities and Solar Wind Access Beyond the Terminator from ROSAT Soft X-Ray Observations of Solar Wind Charge Exchange

    Science.gov (United States)

    Collier, Michael R.; Snowden, S. L.; Sarantos, M.; Benna, M.; Carter, J. A.; Cravens, T. E.; Farrell, W. M.; Fatemi, S.; Hills, H. Kent; Hodges, R. R.; hide

    2014-01-01

    We analyze the Rontgen satellite (ROSAT) position sensitive proportional counter soft X-ray image of the Moon taken on 29 June 1990 by examining the radial profile of the surface brightness in three wedges: two 19 deg wedges (one north and one south) 13-32 deg off the terminator toward the dark side and one wedge 38 deg wide centered on the antisolar direction. The radial profiles of both the north and the south wedges show significant limb brightening that is absent in the 38 deg wide antisolar wedge. An analysis of the soft X-ray intensity increase associated with the limb brightening shows that its magnitude is consistent with that expected due to solar wind charge exchange (SWCX) with the tenuous lunar atmosphere based on lunar exospheric models and hybrid simulation results of solar wind access beyond the terminator. Soft X-ray imaging thus can independently infer the total lunar limb column density including all species, a property that before now has not been measured, and provide a large-scale picture of the solar wind-lunar interaction. Because the SWCX signal appears to be dominated by exospheric species arising from solar wind implantation, this technique can also determine how the exosphere varies with solar wind conditions. Now, along with Mars, Venus, and Earth, the Moon represents another solar system body at which SWCX has been observed.

  1. Effect of the number of blades on the dynamics of floating straight-bladed vertical axis wind turbines

    DEFF Research Database (Denmark)

    Cheng, Zhengshun; Aagaard Madsen, Helge; Gao, Zhen

    2017-01-01

    Floating vertical axis wind turbines (VAWTs) are promising solutions for exploiting the wind energy resource in deep waters due to their potential cost-of-energy reduction. The number of blades is one of the main concerns when designing a VAWT for offshore application. In this paper, the effect...

  2. Quark number density and susceptibility calculation with one correction in mean field potential

    International Nuclear Information System (INIS)

    Singh, S. Somorendro

    2016-01-01

    We calculate quark number density and susceptibility of a model which has one loop correction in mean field potential. The calculation shows continuous increasing in the number density and susceptibility up to the temperature T = 0.4 GeV. Then the value of number density and susceptibility approach to the lattice result for higher value of temperature. The result indicates that the calculated values of the model fit well and the result increase the temperature to reach the lattice data with the one loop correction in the mean field potential. (author)

  3. LONG-TERM TRENDS IN THE SOLAR WIND PROTON MEASUREMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, Heather A.; McComas, David J. [Southwest Research Institute, San Antonio, TX (United States); DeForest, Craig E. [Southwest Research Institute, Boulder, CO (United States)

    2016-11-20

    We examine the long-term time evolution (1965–2015) of the relationships between solar wind proton temperature ( T {sub p}) and speed ( V {sub p}) and between the proton density ( n {sub p}) and speed using OMNI solar wind observations taken near Earth. We find a long-term decrease in the proton temperature–speed ( T {sub p}– V {sub p}) slope that lasted from 1972 to 2010, but has been trending upward since 2010. Since the solar wind proton density–speed ( n {sub p}– V {sub p}) relationship is not linear like the T {sub p}– V {sub p} relationship, we perform power-law fits for n {sub p}– V {sub p}. The exponent (steepness in the n {sub p}– V {sub p} relationship) is correlated with the solar cycle. This exponent has a stronger correlation with current sheet tilt angle than with sunspot number because the sunspot number maxima vary considerably from cycle to cycle and the tilt angle maxima do not. To understand this finding, we examined the average n {sub p} for different speed ranges, and found that for the slow wind n {sub p} is highly correlated with the sunspot number, with a lag of approximately four years. The fast wind n {sub p} variation was less, but in phase with the cycle. This phase difference may contribute to the n {sub p}– V {sub p} exponent correlation with the solar cycle. These long-term trends are important since empirical formulas based on fits to T {sub p} and V {sub p} data are commonly used to identify interplanetary coronal mass ejections, but these formulas do not include any time dependence. Changes in the solar wind density over a solar cycle will create corresponding changes in the near-Earth space environment and the overall extent of the heliosphere.

  4. An assessment on seasonal analysis of wind energy characteristics and wind turbine characteristics

    International Nuclear Information System (INIS)

    Akpinar, E. Kavak; Akpinar, S.

    2005-01-01

    This paper presents seasonal variations of the wind characteristics and wind turbine characteristics in the regions around Elazig, namely Maden, Agin and Keban. Mean wind speed data in measured hourly time series format is statistically analyzed for the six year period 1998-2003. The probability density distributions are derived from the time series data and their distributional parameters are identified. Two probability density functions are fitted to the measured probability distributions on a seasonal basis. The wind energy characteristics of all the regions is studied based on the Weibull and Rayleigh distributions. Energy calculations and capacity factors for the wind turbine characteristics were determined for wind machines of different sizes between 300 and 2300 kW. It was found that Maden is the best region, among the regions analyzed, for wind characteristics and wind turbine characteristics

  5. Power density investigations for the large wind turbines' grid-side press-pack IGBT 3L-NPC-VSCs

    DEFF Research Database (Denmark)

    Senturk, Osman Selcuk; Helle, Lars; Munk-Nielsen, Stig

    2012-01-01

    -thermal models are required to be derived, implemented, and utilized. In this study, employed as a grid-side medium voltage full-scale voltage source converters (VSCs) in a multi-MW wind turbine, press-pack IGBT three-level neutral-point-clamped VSC (3L-NPC-VSC), 3L active NPC-VSC (3L-ANPC-VSC), and 3L neutral......Power density is the important design criterion in wind turbine converter design provided that satisfactory converter performance is guaranteed. In order to assess a converter in terms of power density, which is dependent on converter electrical and thermal behaviors, converter electro......-point-piloted VSC (3L-NPP-VSC) are characterized in terms of converter operating principles, physical structure, power loss, and DC bus capacitor size for establishing the basis for converter electro-thermal modeling. Via the practical implementations of the converter electro-thermal models in a computation...

  6. Effective atomic numbers and electron density of dosimetric material

    Directory of Open Access Journals (Sweden)

    Kaginelli S

    2009-01-01

    Full Text Available A novel method for determination of mass attenuation coefficient of x-rays employing NaI (Tl detector system and radioactive sources is described.in this paper. A rigid geometry arrangement and gating of the spectrometer at FWHM position and selection of absorber foils are all done following detailed investigation, to minimize the effect of small angle scattering and multiple scattering on the mass attenuation coefficient, m/r, value. Firstly, for standardization purposes the mass attenuation coefficients of elemental foils such as Aluminum, Copper, Molybdenum, Tantalum and Lead are measured and then, this method is utilized for dosimetric interested material (sulfates. The experimental mass attenuation coefficient values are compared with the theoretical values to find good agreement between the theory and experiment within one to two per cent. The effective atomic numbers of the biological substitute material are calculated by sum rule and from the graph. The electron density of dosimetric material is calculated using the effective atomic number. The study has discussed in detail the attenuation coefficient, effective atomic number and electron density of dosimetric material/biological substitutes.

  7. An Optimal Number-Dependent Preventive Maintenance Strategy for Offshore Wind Turbine Blades Considering Logistics

    Directory of Open Access Journals (Sweden)

    Mahmood Shafiee

    2013-01-01

    Full Text Available In offshore wind turbines, the blades are among the most critical and expensive components that suffer from different types of damage due to the harsh maritime environment and high load. The blade damages can be categorized into two types: the minor damage, which only causes a loss in wind capture without resulting in any turbine stoppage, and the major (catastrophic damage, which stops the wind turbine and can only be corrected by replacement. In this paper, we propose an optimal number-dependent preventive maintenance (NDPM strategy, in which a maintenance team is transported with an ordinary or expedited lead time to the offshore platform at the occurrence of the Nth minor damage or the first major damage, whichever comes first. The long-run expected cost of the maintenance strategy is derived, and the necessary conditions for an optimal solution are obtained. Finally, the proposed model is tested on real data collected from an offshore wind farm database. Also, a sensitivity analysis is conducted in order to evaluate the effect of changes in the model parameters on the optimal solution.

  8. Frozen density embedding with non-integer subsystems' particle numbers.

    Science.gov (United States)

    Fabiano, Eduardo; Laricchia, Savio; Della Sala, Fabio

    2014-03-21

    We extend the frozen density embedding theory to non-integer subsystems' particles numbers. Different features of this formulation are discussed, with special concern for approximate embedding calculations. In particular, we highlight the relation between the non-integer particle-number partition scheme and the resulting embedding errors. Finally, we provide a discussion of the implications of the present theory for the derivative discontinuity issue and the calculation of chemical reactivity descriptors.

  9. Arbitrary-order Hilbert Spectral Analysis and Intermittency in Solar Wind Density Fluctuations

    Science.gov (United States)

    Carbone, Francesco; Sorriso-Valvo, Luca; Alberti, Tommaso; Lepreti, Fabio; Chen, Christopher H. K.; Němeček, Zdenek; Šafránková, Jana

    2018-05-01

    The properties of inertial- and kinetic-range solar wind turbulence have been investigated with the arbitrary-order Hilbert spectral analysis method, applied to high-resolution density measurements. Due to the small sample size and to the presence of strong nonstationary behavior and large-scale structures, the classical analysis in terms of structure functions may prove to be unsuccessful in detecting the power-law behavior in the inertial range, and may underestimate the scaling exponents. However, the Hilbert spectral method provides an optimal estimation of the scaling exponents, which have been found to be close to those for velocity fluctuations in fully developed hydrodynamic turbulence. At smaller scales, below the proton gyroscale, the system loses its intermittent multiscaling properties and converges to a monofractal process. The resulting scaling exponents, obtained at small scales, are in good agreement with those of classical fractional Brownian motion, indicating a long-term memory in the process, and the absence of correlations around the spectral-break scale. These results provide important constraints on models of kinetic-range turbulence in the solar wind.

  10. Cryogenic wind tunnel technology. A way to measurement at higher Reynolds numbers

    Science.gov (United States)

    Beck, J. W.

    1984-01-01

    The goals, design, problems, and value of cryogenic transonic wind tunnels being developed in Europe are discussed. The disadvantages inherent in low-Reynolds-number (Re) wind tunnel simulations of aircraft flight at high Re are reviewed, and the cryogenic tunnel is shown to be the most practical method to achieve high Re. The design proposed for the European Transonic Wind tunnel (ETW) is presented: parameters include cross section. DISPLAY 83A46484/2 = 4 sq m, operating pressure = 5 bar, temperature = 110-120 K, maximum Re = 40 x 10 to the 6th, liquid N2 consumption = 40,000 metric tons/year, and power = 39,5 MW. The smaller Cologne subsonic tunnel being adapted to cryogenic use for preliminary studies is described. Problems of configuration, materials, and liquid N2 evaporation and handling and the research underway to solve them are outlined. The benefits to be gained by the construction of these costly installations are seen more in applied aerodynamics than in basic research in fluid physics. The need for parallel development of both high Re tunnels and computers capable of performing high-Re numerical analysis is stressed.

  11. Modeling wind speed and wind power distributions in Rwanda

    Energy Technology Data Exchange (ETDEWEB)

    Safari, Bonfils [Department of Physics, National University of Rwanda, P.O. Box 117, Huye District, South Province (Rwanda)

    2011-02-15

    Utilization of wind energy as an alternative energy source may offer many environmental and economical advantages compared to fossil fuels based energy sources polluting the lower layer atmosphere. Wind energy as other forms of alternative energy may offer the promise of meeting energy demand in the direct, grid connected modes as well as stand alone and remote applications. Wind speed is the most significant parameter of the wind energy. Hence, an accurate determination of probability distribution of wind speed values is very important in estimating wind speed energy potential over a region. In the present study, parameters of five probability density distribution functions such as Weibull, Rayleigh, lognormal, normal and gamma were calculated in the light of long term hourly observed data at four meteorological stations in Rwanda for the period of the year with fairly useful wind energy potential (monthly hourly mean wind speed anti v{>=}2 m s{sup -1}). In order to select good fitting probability density distribution functions, graphical comparisons to the empirical distributions were made. In addition, RMSE and MBE have been computed for each distribution and magnitudes of errors were compared. Residuals of theoretical distributions were visually analyzed graphically. Finally, a selection of three good fitting distributions to the empirical distribution of wind speed measured data was performed with the aid of a {chi}{sup 2} goodness-of-fit test for each station. (author)

  12. Small numbers are sensed directly, high numbers constructed from size and density.

    Science.gov (United States)

    Zimmermann, Eckart

    2018-04-01

    Two theories compete to explain how we estimate the numerosity of visual object sets. The first suggests that the apparent numerosity is derived from an analysis of more low-level features like size and density of the set. The second theory suggests that numbers are sensed directly. Consistent with the latter claim is the existence of neurons in parietal cortex which are specialized for processing the numerosity of elements in the visual scene. However, recent evidence suggests that only low numbers can be sensed directly whereas the perception of high numbers is supported by the analysis of low-level features. Processing of low and high numbers, being located at different levels of the neural hierarchy should involve different receptive field sizes. Here, I tested this idea with visual adaptation. I measured the spatial spread of number adaptation for low and high numerosities. A focused adaptation spread of high numerosities suggested the involvement of early neural levels where receptive fields are comparably small and the broad spread for low numerosities was consistent with processing of number neurons which have larger receptive fields. These results provide evidence for the claim that different mechanism exist generating the perception of visual numerosity. Whereas low numbers are sensed directly as a primary visual attribute, the estimation of high numbers however likely depends on the area size over which the objects are spread. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Effect of Blade Roughness on Transition and Wind Turbine Performance.

    Energy Technology Data Exchange (ETDEWEB)

    Ehrmann, Robert S. [Texas A & M Univ., College Station, TX (United States); White, E. B. [Texas A & M Univ., College Station, TX (United States)

    2015-09-01

    The real-world effect of accumulated surface roughness on wind-turbine power production is not well understood. To isolate specific blade roughness features and test their effect, field measurements of turbine-blade roughness were made and simulated on a NACA 633-418 airfoil in a wind tunnel. Insect roughness, paint chips, and erosion were characterized then manufactured. In the tests, these roughness configurations were recreated as distributed roughness, a forward-facing step, and an eroded leading edge. Distributed roughness was tested in three heights and five densities. Chord Reynolds number was varied between 0:8 to 4:8 × 106. Measurements included lift, drag, pitching moment, and boundary-layer transition location. Results indicate minimal effect from paint-chip roughness. As distributed roughness height and density increase, the lift-curve slope, maximum lift, and lift-to-drag ratio decrease. As Reynolds number increases, natural transition is replaced by bypass transition. The critical roughness Reynolds number varies between 178 to 318, within the historical range. At a chord Reynolds number of 3:2 × 106, the maximum lift-to-drag ratio decreases 40% for 140 μm roughness, corresponding to a 2.3% loss in annual energy production. Simulated performance loss compares well to measured performance loss of an in-service wind turbine.

  14. Influence of the level of fit of a density probability function to wind-speed data on the WECS mean power output estimation

    International Nuclear Information System (INIS)

    Carta, Jose A.; Ramirez, Penelope; Velazquez, Sergio

    2008-01-01

    Static methods which are based on statistical techniques to estimate the mean power output of a WECS (wind energy conversion system) have been widely employed in the scientific literature related to wind energy. In the static method which we use in this paper, for a given wind regime probability distribution function and a known WECS power curve, the mean power output of a WECS is obtained by resolving the integral, usually using numerical evaluation techniques, of the product of these two functions. In this paper an analysis is made of the influence of the level of fit between an empirical probability density function of a sample of wind speeds and the probability density function of the adjusted theoretical model on the relative error ε made in the estimation of the mean annual power output of a WECS. The mean power output calculated through the use of a quasi-dynamic or chronological method, that is to say using time-series of wind speed data and the power versus wind speed characteristic of the wind turbine, serves as the reference. The suitability of the distributions is judged from the adjusted R 2 statistic (R a 2 ). Hourly mean wind speeds recorded at 16 weather stations located in the Canarian Archipelago, an extensive catalogue of wind-speed probability models and two wind turbines of 330 and 800 kW rated power are used in this paper. Among the general conclusions obtained, the following can be pointed out: (a) that the R a 2 statistic might be useful as an initial gross indicator of the relative error made in the mean annual power output estimation of a WECS when a probabilistic method is employed; (b) the relative errors tend to decrease, in accordance with a trend line defined by a second-order polynomial, as R a 2 increases

  15. Hybrid PV/wind system with quinary asymmetric inverter without increasing DC-link number

    Directory of Open Access Journals (Sweden)

    Aida Baghbany Oskouei

    2016-06-01

    Full Text Available This paper suggests quinary asymmetric inverter with coupled inductors and transformer, and uses it in hybrid system including photovoltaic (PV and wind. This inverter produces twenty-five-level voltage in addition to merits of multilevel inverter, has only one DC source. Then, it is adequate for hybrid systems, which prevents increasing DC-link and makes control of system easy. Proposed structure also provides isolation in the system and the switch numbers are reduced in this topology compared with other multilevel structures. In this system, battery is used as backup, where PV and wind have complementary nature. The performance of proposed inverter and hybrid system is validated with simulation results using MATLAB/SIMULINK software and experimental results based PCI-1716 data acquisition system.

  16. Probabilistic wind power forecasting based on logarithmic transformation and boundary kernel

    International Nuclear Information System (INIS)

    Zhang, Yao; Wang, Jianxue; Luo, Xu

    2015-01-01

    Highlights: • Quantitative information on the uncertainty of wind power generation. • Kernel density estimator provides non-Gaussian predictive distributions. • Logarithmic transformation reduces the skewness of wind power density. • Boundary kernel method eliminates the density leakage near the boundary. - Abstracts: Probabilistic wind power forecasting not only produces the expectation of wind power output, but also gives quantitative information on the associated uncertainty, which is essential for making better decisions about power system and market operations with the increasing penetration of wind power generation. This paper presents a novel kernel density estimator for probabilistic wind power forecasting, addressing two characteristics of wind power which have adverse impacts on the forecast accuracy, namely, the heavily skewed and double-bounded nature of wind power density. Logarithmic transformation is used to reduce the skewness of wind power density, which improves the effectiveness of the kernel density estimator in a transformed scale. Transformations partially relieve the boundary effect problem of the kernel density estimator caused by the double-bounded nature of wind power density. However, the case study shows that there are still some serious problems of density leakage after the transformation. In order to solve this problem in the transformed scale, a boundary kernel method is employed to eliminate the density leak at the bounds of wind power distribution. The improvement of the proposed method over the standard kernel density estimator is demonstrated by short-term probabilistic forecasting results based on the data from an actual wind farm. Then, a detailed comparison is carried out of the proposed method and some existing probabilistic forecasting methods

  17. Number theory an introduction via the density of primes

    CERN Document Server

    Fine, Benjamin

    2016-01-01

    Now in its second edition, this textbook provides an introduction and overview of number theory based on the density and properties of the prime numbers. This unique approach offers both a firm background in the standard material of number theory, as well as an overview of the entire discipline. All of the essential topics are covered, such as the fundamental theorem of arithmetic, theory of congruences, quadratic reciprocity, arithmetic functions, and the distribution of primes. New in this edition are coverage of p-adic numbers, Hensel's lemma, multiple zeta-values, and elliptic curve methods in primality testing. Key topics and features include: A solid introduction to analytic number theory, including full proofs of Dirichlet's Theorem and the Prime Number Theorem Concise treatment of algebraic number theory, including a complete presentation of primes, prime factorizations in algebraic number fields, and unique factorization of ideals Discussion of the AKS algorithm, which shows that primality testing is...

  18. Wind Resource Assessment of Gujarat (India)

    Energy Technology Data Exchange (ETDEWEB)

    Draxl, C.; Purkayastha, A.; Parker, Z.

    2014-07-01

    India is one of the largest wind energy markets in the world. In 1986 Gujarat was the first Indian state to install a wind power project. In February 2013, the installed wind capacity in Gujarat was 3,093 MW. Due to the uncertainty around existing wind energy assessments in India, this analysis uses the Weather Research and Forecasting (WRF) model to simulate the wind at current hub heights for one year to provide more precise estimates of wind resources in Gujarat. The WRF model allows for accurate simulations of winds near the surface and at heights important for wind energy purposes. While previous resource assessments published wind power density, we focus on average wind speeds, which can be converted to wind power densities by the user with methods of their choice. The wind resource estimates in this study show regions with average annual wind speeds of more than 8 m/s.

  19. Power Curve Estimation With Multivariate Environmental Factors for Inland and Offshore Wind Farms

    KAUST Repository

    Lee, Giwhyun

    2015-04-22

    In the wind industry, a power curve refers to the functional relationship between the power output generated by a wind turbine and the wind speed at the time of power generation. Power curves are used in practice for a number of important tasks including predicting wind power production and assessing a turbine’s energy production efficiency. Nevertheless, actual wind power data indicate that the power output is affected by more than just wind speed. Several other environmental factors, such as wind direction, air density, humidity, turbulence intensity, and wind shears, have potential impact. Yet, in industry practice, as well as in the literature, current power curve models primarily consider wind speed and, sometimes, wind speed and direction. We propose an additive multivariate kernel method that can include the aforementioned environmental factors as a new power curve model. Our model provides, conditional on a given environmental condition, both the point estimation and density estimation of power output. It is able to capture the nonlinear relationships between environmental factors and the wind power output, as well as the high-order interaction effects among some of the environmental factors. Using operational data associated with four turbines in an inland wind farm and two turbines in an offshore wind farm, we demonstrate the improvement achieved by our kernel method.

  20. Estimation of Extreme Response and Failure Probability of Wind Turbines under Normal Operation using Probability Density Evolution Method

    DEFF Research Database (Denmark)

    Sichani, Mahdi Teimouri; Nielsen, Søren R.K.; Liu, W. F.

    2013-01-01

    Estimation of extreme response and failure probability of structures subjected to ultimate design loads is essential for structural design of wind turbines according to the new standard IEC61400-1. This task is focused on in the present paper in virtue of probability density evolution method (PDEM......), which underlies the schemes of random vibration analysis and structural reliability assessment. The short-term rare failure probability of 5-mega-watt wind turbines, for illustrative purposes, in case of given mean wind speeds and turbulence levels is investigated through the scheme of extreme value...... distribution instead of any other approximate schemes of fitted distribution currently used in statistical extrapolation techniques. Besides, the comparative studies against the classical fitted distributions and the standard Monte Carlo techniques are carried out. Numerical results indicate that PDEM exhibits...

  1. Summer sudden Na number density enhancements measured with the ALOMAR Weber Na Lidar

    Directory of Open Access Journals (Sweden)

    D. Heinrich

    2008-05-01

    Full Text Available We present summer Na-densities and atmospheric temperatures measured 80 to 110 km above the Arctic Lidar Observatory for Middle Atmosphere Research (ALOMAR. The Weber Na Lidar is part of ALOMAR, located at 69° N in Norway, 150 km north of the Arctic Circle. The sun does not set here during the summer months, and measurements require a narrowband Faraday Anomalous Dispersion Optical Filter (FADOF.

    We discuss an observed sudden enhancement in the Na number density around 22:00 UT on 1 to 2 June 2006. We compare this observation with previous summer measurements and find a frequent appearance of Na number density enhancements near local midnight. We describe the time of appearance, the altitude distribution, the duration and the strength of these enhancements and compare them to winter observations. We investigate possible formation mechanisms and, as others before, we find a strong link between these Na number density enhancements and sporadic E layers.

  2. Summer sudden Na number density enhancements measured with the ALOMAR Weber Na Lidar

    Directory of Open Access Journals (Sweden)

    D. Heinrich

    2008-05-01

    Full Text Available We present summer Na-densities and atmospheric temperatures measured 80 to 110 km above the Arctic Lidar Observatory for Middle Atmosphere Research (ALOMAR. The Weber Na Lidar is part of ALOMAR, located at 69° N in Norway, 150 km north of the Arctic Circle. The sun does not set here during the summer months, and measurements require a narrowband Faraday Anomalous Dispersion Optical Filter (FADOF. We discuss an observed sudden enhancement in the Na number density around 22:00 UT on 1 to 2 June 2006. We compare this observation with previous summer measurements and find a frequent appearance of Na number density enhancements near local midnight. We describe the time of appearance, the altitude distribution, the duration and the strength of these enhancements and compare them to winter observations. We investigate possible formation mechanisms and, as others before, we find a strong link between these Na number density enhancements and sporadic E layers.

  3. Draft-circular on wind turbines. Concept-circulaire wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    1983-01-01

    Criteria for providing licenses to build and operate a wind turbine are surveyed. Factors to consider are: characteristics of the landscape, density of population, town and country planning, environmental aspects (birds), safety and nuisance. National regulations for wind turbines will simplify licensing procedures and improve legal security.

  4. Distribution of E/N and N/e/ in a cross-flow electric discharge laser. [electric field to neutral gas density and electron number density

    Science.gov (United States)

    Dunning, J. W., Jr.; Lancashire, R. B.; Manista, E. J.

    1976-01-01

    Measurements have been conducted of the effect of the convection of ions and electrons on the discharge characteristics in a large scale laser. The results are presented for one particular distribution of ballast resistance. Values of electric field, current density, input power density, ratio of electric field to neutral gas density (E/N), and electron number density were calculated on the basis of measurements of the discharge properties. In a number of graphs, the E/N ratio, current density, power density, and electron density are plotted as a function of row number (downstream position) with total discharge current and gas velocity as parameters. From the dependence of the current distribution on the total current, it appears that the electron production in the first two rows significantly affects the current flowing in the succeeding rows.

  5. Influence of the level of fit of a density probability function to wind-speed data on the WECS mean power output estimation

    Energy Technology Data Exchange (ETDEWEB)

    Carta, Jose A. [Department of Mechanical Engineering, University of Las Palmas de Gran Canaria, Campus de Tafira s/n, 35017 Las Palmas de Gran Canaria, Canary Islands (Spain); Ramirez, Penelope; Velazquez, Sergio [Department of Renewable Energies, Technological Institute of the Canary Islands, Pozo Izquierdo Beach s/n, 35119 Santa Lucia, Gran Canaria, Canary Islands (Spain)

    2008-10-15

    Static methods which are based on statistical techniques to estimate the mean power output of a WECS (wind energy conversion system) have been widely employed in the scientific literature related to wind energy. In the static method which we use in this paper, for a given wind regime probability distribution function and a known WECS power curve, the mean power output of a WECS is obtained by resolving the integral, usually using numerical evaluation techniques, of the product of these two functions. In this paper an analysis is made of the influence of the level of fit between an empirical probability density function of a sample of wind speeds and the probability density function of the adjusted theoretical model on the relative error {epsilon} made in the estimation of the mean annual power output of a WECS. The mean power output calculated through the use of a quasi-dynamic or chronological method, that is to say using time-series of wind speed data and the power versus wind speed characteristic of the wind turbine, serves as the reference. The suitability of the distributions is judged from the adjusted R{sup 2} statistic (R{sub a}{sup 2}). Hourly mean wind speeds recorded at 16 weather stations located in the Canarian Archipelago, an extensive catalogue of wind-speed probability models and two wind turbines of 330 and 800 kW rated power are used in this paper. Among the general conclusions obtained, the following can be pointed out: (a) that the R{sub a}{sup 2} statistic might be useful as an initial gross indicator of the relative error made in the mean annual power output estimation of a WECS when a probabilistic method is employed; (b) the relative errors tend to decrease, in accordance with a trend line defined by a second-order polynomial, as R{sub a}{sup 2} increases. (author)

  6. MAGNETOHYDRODYNAMIC ACCRETION DISK WINDS AS X-RAY ABSORBERS IN ACTIVE GALACTIC NUCLEI

    International Nuclear Information System (INIS)

    Fukumura, Keigo; Kazanas, Demosthenes; Behar, Ehud; Contopoulos, Ioannis

    2010-01-01

    We present the two-dimensional ionization structure of self-similar magnetohydrodynamic winds off accretion disks around and irradiated by a central X-ray point source. On the basis of earlier observational clues and theoretical arguments, we focus our attention on a subset of these winds, namely those with radial density dependence n(r) ∝ 1/r (r is the spherical radial coordinate). We employ the photoionization code XSTAR to compute the ionic abundances of a large number of ions of different elements and then compile their line-of-sight (LOS) absorption columns. We focus our attention on the distribution of the column density of the various ions as a function of the ionization parameter ξ (or equivalently r) and the angle θ. Particular attention is paid to the absorption measure distribution (AMD), namely their hydrogen-equivalent column per logarithmic ξ interval, dN H /dlog ξ, which provides a measure of the winds' radial density profiles. For the chosen density profile n(r) ∝ 1/r, the AMD is found to be independent of ξ, in good agreement with its behavior inferred from the X-ray spectra of several active galactic nuclei (AGNs). For the specific wind structure and X-ray spectrum, we also compute detailed absorption line profiles for a number of ions to obtain their LOS velocities, v ∼ 100-300 km s -1 (at log ξ ∼ 2-3) for Fe XVII and v ∼ 1000-4000 km s -1 (at log ξ ∼ 4-5) for Fe XXV, in good agreement with the observation. Our models describe the X-ray absorption properties of these winds with only two parameters, namely the mass-accretion rate m-dot and the LOS angle θ. The probability of obscuration of the X-ray ionizing source in these winds decreases with increasing m-dot and increases steeply with the LOS inclination angle θ. As such, we concur with previous authors that these wind configurations, viewed globally, incorporate all the requisite properties of the parsec scale 'torii' invoked in AGN unification schemes. We indicate that a

  7. Climatology of mesopause region nocturnal temperature, zonal wind, and sodium density observed by sodium lidar over Hefei, China (32°N, 117°E)

    Science.gov (United States)

    Li, T.; Ban, C.; Fang, X.; Li, J.; Wu, Z.; Xiong, J.; Feng, W.; Plane, J. M. C.

    2017-12-01

    The University of Science and Technology of China narrowband sodium temperature/wind lidar, located in Hefei, China (32°N, 117°E), was installed in November 2011 and have made routine nighttime measurements since January 2012. We obtained 154 nights ( 1400 hours) of vertical profiles of temperature, sodium density, and zonal wind, and 83 nights ( 800 hours) of vertical flux of gravity wave (GW) zonal momentum in the mesopause region (80-105 km) during the period of 2012 to 2016. In temperature, it is likely that the diurnal tide dominates below 100 km in spring, while the semidiurnal tide dominates above 100 km throughout the year. A clear semiannual variation in temperature is revealed near 90 km, likely related to the tropical mesospheric semiannual oscillation (MSAO). The variability of sodium density is positively correlated with temperature, suggesting that in addition to dynamics, the chemistry may also play an important role in the formation of sodium atoms. The observed sodium peak density is 1000 cm-3 higher than that simulated by the model. In zonal wind, the diurnal tide dominates in both spring and fall, while semidiurnal tide dominates in winter. The observed semiannual variation in zonal wind near 90 km is out-of-phase with that in temperature, consistent with tropical MSAO. The GW zonal momentum flux is mostly westward in fall and winter, anti-correlated with eastward zonal wind. The annual mean flux averaged over 87-97 km is -0.3 m2/s2 (westward), anti-correlated with eastward zonal wind of 10 m/s. The comparisons of lidar results with those observed by satellite, nearby radar, and simulated by model show generally good agreements.

  8. Number density measurements on analytical discharge systems: application of ''hook'' spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Majidi, V.; Hsu, W.; Coleman, D.M.

    1988-01-01

    Various methods for determining atomic, ionic and electron number densities are reviewed. Time- and spatially-resolved number densities of sodium atoms in the post discharge environment of a high voltage spark are then quantitatively determined using the anomalous dispersion hook method. Number densities are calculated from hook separation near the Na D-lines. Lateral profiles are subsequently transformed to the radial domain using a derivative free Abel inversion process. Advantages, limitations, and practical ramification of the hook method are discussed.

  9. Incorporating wind availability into land use regression modelling of air quality in mountainous high-density urban environment.

    Science.gov (United States)

    Shi, Yuan; Lau, Kevin Ka-Lun; Ng, Edward

    2017-08-01

    Urban air quality serves as an important function of the quality of urban life. Land use regression (LUR) modelling of air quality is essential for conducting health impacts assessment but more challenging in mountainous high-density urban scenario due to the complexities of the urban environment. In this study, a total of 21 LUR models are developed for seven kinds of air pollutants (gaseous air pollutants CO, NO 2 , NO x , O 3 , SO 2 and particulate air pollutants PM 2.5 , PM 10 ) with reference to three different time periods (summertime, wintertime and annual average of 5-year long-term hourly monitoring data from local air quality monitoring network) in Hong Kong. Under the mountainous high-density urban scenario, we improved the traditional LUR modelling method by incorporating wind availability information into LUR modelling based on surface geomorphometrical analysis. As a result, 269 independent variables were examined to develop the LUR models by using the "ADDRESS" independent variable selection method and stepwise multiple linear regression (MLR). Cross validation has been performed for each resultant model. The results show that wind-related variables are included in most of the resultant models as statistically significant independent variables. Compared with the traditional method, a maximum increase of 20% was achieved in the prediction performance of annual averaged NO 2 concentration level by incorporating wind-related variables into LUR model development. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Self-assisted GaAs nanowires with selectable number density on Silicon without oxide layer

    International Nuclear Information System (INIS)

    Bietti, S; Somaschini, C; Esposito, L; Sanguinetti, S; Frigeri, C; Fedorov, A; Geelhaar, L

    2014-01-01

    We present the growth of self-assisted GaAs nanowires (NWs) with selectable number density on bare Si(1 1 1), not covered by the silicon oxide. We determine the number density of the NWs by initially self-assembling GaAs islands on whose top a single NW is nucleated. The number density of the initial GaAs base islands can be tuned by droplet epitaxy and the same degree of control is then transferred to the NWs. This procedure is completely performed during a single growth in an ultra-high vacuum environment and requires neither an oxide layer covering the substrate, nor any pre-patterning technique. (paper)

  11. Evaluation model of wind energy resources and utilization efficiency of wind farm

    Science.gov (United States)

    Ma, Jie

    2018-04-01

    Due to the large amount of abandoned winds in wind farms, the establishment of a wind farm evaluation model is particularly important for the future development of wind farms In this essay, consider the wind farm's wind energy situation, Wind Energy Resource Model (WERM) and Wind Energy Utilization Efficiency Model(WEUEM) are established to conduct a comprehensive assessment of the wind farm. Wind Energy Resource Model (WERM) contains average wind speed, average wind power density and turbulence intensity, which assessed wind energy resources together. Based on our model, combined with the actual measurement data of a wind farm, calculate the indicators using the model, and the results are in line with the actual situation. We can plan the future development of the wind farm based on this result. Thus, the proposed establishment approach of wind farm assessment model has application value.

  12. Effective atomic number, electron density and kerma of gamma ...

    Indian Academy of Sciences (India)

    Abstract. An attempt has been made to estimate the effective atomic number, electron density (0.001 to 105 MeV) and kerma (0.001 to 20 MeV) of gamma radiation for a wide range of oxides of ... The lanthanide oxides find remarkable applications in the field of medicine, biology, nuclear engineering and space technology.

  13. POWER SPECTRAL DENSITY OF FLUCTUATIONS OF BULK AND THERMAL SPEEDS IN THE SOLAR WIND

    International Nuclear Information System (INIS)

    Šafránková, J.; Němeček, Z.; Němec, F.; Přech, L.; Chen, C. H. K.; Zastenker, G. N.

    2016-01-01

    This paper analyzes solar wind power spectra of bulk and thermal speed fluctuations that are computed with a time resolution of 32 ms in the frequency range of 0.001–2 Hz. The analysis uses measurements of the Bright Monitor of the Solar Wind on board the Spektr-R spacecraft that are limited to 570 km s 1 bulk speed. The statistics, based on more than 42,000 individual spectra, show that: (1) the spectra of bulk and thermal speeds can be fitted by two power-law segments; (2) despite their large variations, the parameters characterizing frequency spectrum fits computed on each particular time interval are very similar for both quantities; (3) the median slopes of the bulk and thermal speeds of the segment attributed to the MHD scale are 1.43 and 1.38, respectively, whereas they are 3.08 and 2.43 in the kinetic range; (4) the kinetic range slopes of bulk and thermal speed spectra become equal when either the ion density or magnetic field strength are high; (5) the break between MHD and kinetic scales seems to be controlled by the ion β parameter; (6) the best scaling parameter for bulk and thermal speed variations is a sum of the inertial length and proton thermal gyroradius; and (7) the above conclusions can be applied to the density variations if the background magnetic field is very low.

  14. POWER SPECTRAL DENSITY OF FLUCTUATIONS OF BULK AND THERMAL SPEEDS IN THE SOLAR WIND

    Energy Technology Data Exchange (ETDEWEB)

    Šafránková, J.; Němeček, Z.; Němec, F.; Přech, L. [Charles University, Faculty of Mathematics and Physics, V Holešovičkách 2, 180 00 Prague 8 (Czech Republic); Chen, C. H. K. [Department of Physics, Imperial College London, London SW7 2AZ (United Kingdom); Zastenker, G. N., E-mail: jana.safrankova@mff.cuni.cz [Space Research Institute of Russian Academy of Sciences, Moscow, Russia, Profsoyuznaya ul. 84/32, Moscow 117997 (Russian Federation)

    2016-07-10

    This paper analyzes solar wind power spectra of bulk and thermal speed fluctuations that are computed with a time resolution of 32 ms in the frequency range of 0.001–2 Hz. The analysis uses measurements of the Bright Monitor of the Solar Wind on board the Spektr-R spacecraft that are limited to 570 km s{sup 1} bulk speed. The statistics, based on more than 42,000 individual spectra, show that: (1) the spectra of bulk and thermal speeds can be fitted by two power-law segments; (2) despite their large variations, the parameters characterizing frequency spectrum fits computed on each particular time interval are very similar for both quantities; (3) the median slopes of the bulk and thermal speeds of the segment attributed to the MHD scale are 1.43 and 1.38, respectively, whereas they are 3.08 and 2.43 in the kinetic range; (4) the kinetic range slopes of bulk and thermal speed spectra become equal when either the ion density or magnetic field strength are high; (5) the break between MHD and kinetic scales seems to be controlled by the ion β parameter; (6) the best scaling parameter for bulk and thermal speed variations is a sum of the inertial length and proton thermal gyroradius; and (7) the above conclusions can be applied to the density variations if the background magnetic field is very low.

  15. Wind model for low frequency power fluctuations in offshore wind farms

    DEFF Research Database (Denmark)

    Vigueras-Rodríguez, A.; Sørensen, Poul Ejnar; Cutululis, Nicolaos Antonio

    2010-01-01

    of hours, taking into account the spectral correlation between different wind turbines. The modelling is supported by measurements from two large wind farms, namely Nysted and Horns Rev. Measurements from individual wind turbines and meteorological masts are used. Finally, the models are integrated......This paper investigates the correlation between the frequency components of the wind speed Power Spectral Density. The results extend an already existing power fluctuation model that can simulate power fluctuations of wind power on areas up to several kilometers and for time scales up to a couple...

  16. Proposed Columbia Wind Farm number-sign 1. Joint NEPA/SEPA draft environmental impact statement

    International Nuclear Information System (INIS)

    1995-03-01

    This Draft Environmental Impact Statement (DEIS) addresses the Columbia Wind Farm number-sign 1 (Project) proposal for construction and operation of a 25 megawatt (MW) wind power project in the Columbia Hills area southeast of Goldendale in Klickitat County, Washington. The Project would be constructed on private land by Conservation and Renewable Energy System (CARES) (the Applicant). An Environmental Impact Statement is required under both NEPA and SEPA guidelines and is issued under Section 102 (2) (C) of the National Environmental Policy Act (NEPA) at 42 U.S.C. 4321 et seq and under the Washington State Environmental Policy Act (SEPA) as provided by RCW 43.21C.030 (2) (c). Bonneville Power Administration is the NEPA lead agency; Klickitat County is the nominal SEPA lead agency and CARES is the SEPA co-lead agency for this DEIS. The Project site is approximately 395 hectares (975 acres) in size. The Proposed Action would include approximately 91 model AWT-26 wind turbines. Under the No Action Alternative, the Project would not be constructed and existing grazing and agricultural activities on the site would continue

  17. Low density lesion in solid mass on CT: Pathologic change and housfield number

    International Nuclear Information System (INIS)

    Han, Tae Il; Lim, Joo Won; Ryu, Kyung Nam; Ko, Young Tae; Song, Mi Jin; Lee, Dong Ho; Lee, Ju Hie

    1994-01-01

    We retrospectively reviewed the pathologic changes and housfield unit of the low density lesion in solid mass on CT. Pathologically proved solid mass was evaluated in regard to the shape and margin of the low density in the mass on the CT scans of 23 patient. The CT number of the low density lesion was correlated with the pathologic changes. Pathologic changes of the low density lesions were; necrosis (n=17), hemorrhage (n=13), cyst (n=4), myxoid degeneration (n=2), hyaline degeneration (n=1), fibrosis (n=1), and mixed cellularity (n=1). In 14 cases, more than 2 pathologic changes were seen. In 11 cases, necrosis was associated with hemorrhage. The CT number ranged from 11.5 to 44.9 Housfield unit(HU) (mean, 25.2 HU). The average CT number was 26.9 HU in hemorrhage and necrosis, 17.2 HU in cystic change, 20.9 HU in myxoid degeneration, 35.7 HU in hyaline de generation, 22.3 HU in fibrosis, and 21.4 HU in mixed cellularity. The hemorrhage and necrosis in 17 cases showed irregular margin, amorphous shape, and showed centrifugal distribution. The cystic change in 4 cases showed well defined margin, round shape, and peripheral location in solid mass. The low density lesions in solid mass on CT represented variable pathologic changes; necrosis, hemorrhage, cyst, myxoid degeneration, hyaline degeneration, fibrosis, and mixed cellularity. Pathologic changes would not be differentiated on the basis of CT number

  18. Solar Illumination Control of the Polar Wind

    Science.gov (United States)

    Maes, L.; Maggiolo, R.; De Keyser, J.; André, M.; Eriksson, A. I.; Haaland, S.; Li, K.; Poedts, S.

    2017-11-01

    Polar wind outflow is an important process through which the ionosphere supplies plasma to the magnetosphere. The main source of energy driving the polar wind is solar illumination of the ionosphere. As a result, many studies have found a relation between polar wind flux densities and solar EUV intensity, but less is known about their relation to the solar zenith angle at the ionospheric origin, certainly at higher altitudes. The low energy of the outflowing particles and spacecraft charging means it is very difficult to measure the polar wind at high altitudes. We take advantage of an alternative method that allows estimations of the polar wind flux densities far in the lobes. We analyze measurements made by the Cluster spacecraft at altitudes from 4 up to 20 RE. We observe a strong dependence on the solar zenith angle in the ion flux density and see that both the ion velocity and density exhibit a solar zenith angle dependence as well. We also find a seasonal variation of the flux density.

  19. Wind Atlas of Bay of Bengal with Satellite Wind Measurement

    DEFF Research Database (Denmark)

    Nadi, Navila Rahman

    footstep towards offshore wind energy analysis for this region. Generally, it is difficult to find offshore wind data relative to the wind turbine hub heights, therefore a starting point is necessary to identify the possible wind power density of the region. In such scenario, Synthetic aperture radars (SAR......The objective of this study is to obtain appropriate offshore location in the Bay of Bengal, Bangladesh for further development of wind energy. Through analyzing the previous published works, no offshore wind energy estimation has been found here. That is why, this study can be claimed as the first......) have proven useful. In this study, SAR based dataset- ENVISAT ASAR has been used for Wind Atlas generation. Furthermore, a comparative study has been performed with Global Wind Atlas (GWA) to determine a potential offshore wind farm. Additionally, the annual energy production of that offshore windfarm...

  20. Fitting a mixture of von Mises distributions in order to model data on wind direction in Peninsular Malaysia

    International Nuclear Information System (INIS)

    Masseran, N.; Razali, A.M.; Ibrahim, K.; Latif, M.T.

    2013-01-01

    Highlights: • We suggest a simple way for wind direction modeling using the mixture of von Mises distribution. • We determine the most suitable probability model for wind direction regime in Malaysia. • We provide the circular density plots to show the most prominent directions of wind blows. - Abstract: A statistical distribution for describing wind direction provides information about the wind regime at a particular location. In addition, this information complements knowledge of wind speed, which allows researchers to draw some conclusions about the energy potential of wind and aids the development of efficient wind energy generation. This study focuses on modeling the frequency distribution of wind direction, including some characteristics of wind regime that cannot be represented by a unimodal distribution. To identify the most suitable model, a finite mixture of von Mises distributions were fitted to the average hourly wind direction data for nine wind stations located in Peninsular Malaysia. The data used were from the years 2000 to 2009. The suitability of each mixture distribution was judged based on the R 2 coefficient and the histogram plot with a density line. The results showed that the finite mixture of the von Mises distribution with H number of components was the best distribution to describe the wind direction distributions in Malaysia. In addition, the circular density plots of the suitable model clearly showed the most prominent directions of wind blows than the other directions

  1. Changes in the High-Latitude Topside Ionospheric Vertical Electron-Density Profiles in Response to Solar-Wind Perturbations During Large Magnetic Storms

    Science.gov (United States)

    Benson, Robert F.; Fainberg, Joseph; Osherovich, Vladimir; Truhlik, Vladimir; Wang, Yongli; Arbacher, Becca

    2011-01-01

    The latest results from an investigation to establish links between solar-wind and topside-ionospheric parameters will be presented including a case where high-latitude topside electron-density Ne(h) profiles indicated dramatic rapid changes in the scale height during the main phase of a large magnetic storm (Dst wind data obtained from the NASA OMNIWeb database indicated that the magnetic storm was due to a magnetic cloud. This event is one of several large magnetic storms being investigated during the interval from 1965 to 1984 when both solar-wind and digital topside ionograms, from either Alouette-2, ISIS-1, or ISIS-2, are potentially available.

  2. Wind and IMP 8 Solar Wind, Magnetosheath and Shock Data

    Science.gov (United States)

    2004-01-01

    The purpose of this project was to provide the community access to magnetosheath data near Earth. We provided 27 years of IMP 8 magnetosheath proton velocities, densities, and temperatures with our best (usually 1-min.) time resolution. IMP 8 crosses the magnetosheath twice each 125 day orbit, and we provided magnetosheath data for the roughly 27 years of data for which magnetometer data are also available (which are needed to reliably pick boundaries). We provided this 27 years of IMP 8 magnetosheath data to the NSSDC; this data is now integrated with the IMP 8 solar wind data with flags indicating whether each data point is in the solar wind, magnetosheath, or at the boundary between the two regions. The plasma speed, density, and temperature are provided for each magnetosheath point. These data are also available on the MIT web site ftp://space .mit.edu/pub/plasma/imp/www/imp.html. We provide ASCII time-ordered rows of data giving the observation time, the spacecraft position in GSE, the velocity is GSE, the density and temperature for protons. We also have analyzed and archived on our web site the Wind magnetosheath plasma parameters. These consist of ascii files of the proton and alpha densities, speeds, and thermal speeds. These data are available at ftp://space.mit.edu/pub/plasma/wind/sheath These are the two products promised in the work statement and they have been completed in full.

  3. Total, accessible and reserve wind energy resources in Bulgaria

    International Nuclear Information System (INIS)

    Ivanov, P.; Trifonova, L.

    1996-01-01

    The article is a part of the international project 'Bulgaria Country Study to Address Climate Change Inventory of the Greenhouse Gases Emission and Sinks Alternative Energy Balance and Technology Programs' sponsored by the Department of Energy, US. The 'total' average annual wind resources in Bulgaria determined on the basis wind velocity density for more than 100 meteorological stations are estimated on 125 000 TWh. For the whole territory the theoretical wind power potential is about 14200 GW. The 'accessible' wind resources are estimated on about 62000 TWh. The 'reserve' (or usable) wind resources are determined using 8 velocity intervals for WECS (Wind Energy Conversion Systems) operation, number and disposition of turbines, and the usable (3%) part of the territory. The annual reserve resources are estimated at about 21 - 33 TWh. The 'economically beneficial' wind resources (EBWR) are those part of the reserve resources which could be included in the country energy balance using specific technologies in specific time period. It is foreseen that at year 2010 the EBWR could reach 0.028 TWh. 7 refs., 2 tabs., 1 fig

  4. Wind energy assessment and wind farm simulation in Triunfo - Pernambuco, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Laerte; Filho, Celso

    2010-09-15

    The Triunfo wind's characterization, in Pernambuco state, situated in Brazilian northeast, and wind power potential assessment study shows a average wind speed of 11.27 m / s, predominant Southeast wind direction, average wind power density of 1672 W/m2 and Weibull parameters shape and scale equal to 2,0 and 12,7 m/s. The wind farm was simulated by using 850kW wind turbines (total of 20MW). The simulated shows AEP of 111,4 GWh, Cf of 62% and 5462 hours of operation by year. The economical simulated results, shows Pay-back of 3 years, TIR = 47% and VAN = 85.506kEuro booths @ 20 years time period.

  5. Density Variations in the Earth's Magnetospheric Cusps

    Science.gov (United States)

    Walsh, B. M.; Niehof, J.; Collier, M. R.; Welling, D. T.; Sibeck, D. G.; Mozer, F. S.; Fritz, T. A.; Kuntz, K. D.

    2016-01-01

    Seven years of measurements from the Polar spacecraft are surveyed to monitor the variations of plasma density within the magnetospheric cusps. The spacecraft's orbital precession from 1998 through 2005 allows for coverage of both the northern and southern cusps from low altitude out to the magnetopause. In the mid- and high- altitude cusps, plasma density scales well with the solar wind density (n(sub cusp)/n(sub sw) approximately 0.8). This trend is fairly steady for radial distances greater then 4 R(sub E). At low altitudes (r less than 4R(sub E)) the density increases with decreasing altitude and even exceeds the solar wind density due to contributions from the ionosphere. The density of high charge state oxygen (O(greater +2) also displays a positive trend with solar wind density within the cusp. A multifluid simulation with the Block-Adaptive-Tree Solar Wind Roe-Type Upwind Scheme MHD model was run to monitor the relative contributions of the ionosphere and solar wind plasma within the cusp. The simulation provides similar results to the statistical measurements from Polar and confirms the presence of ionospheric plasma at low altitudes.

  6. Superconducting toroidal field coil current densities for the TFCX

    International Nuclear Information System (INIS)

    Kalsi, S.S.; Hooper, R.J.

    1985-04-01

    A major goal of the Tokamak Fusion Core Experiment (TFCX) study was to minimize the size of the device and achieve lowest cost. Two key factors influencing the size of the device employing superconducting magnets are toroidal field (TF) winding current density and its nuclear heat load withstand capability. Lower winding current density requires larger radial build of the winding pack. Likewise, lower allowable nuclear heating in the winding requires larger shield thickness between the plasma and coil. In order to achieve a low-cost device, it is essential to maximize the winding's current density and nuclear heating withhstand capability. To meet the above objective, the TFCX design specification adopted as goals a nominal winding current density of 3500 A/cm 2 with 10-T peak field at the winding and peak nuclear heat load limits of 1 MW/cm 3 for the nominal design and 50 MW/cm 3 for an advanced design. This study developed justification for these current density and nuclear heat load limits

  7. Electron number density profiles derived from radio occultation on the CASSIOPE spacecraft

    DEFF Research Database (Denmark)

    Shume, E. B.; Vergados, P.; Komjathy, A.

    2017-01-01

    This paper presents electron number density profiles derived from high resolution Global Positioning System (GPS) radio occultation (RO) observations performed using the Enhanced Polar Outflow Probe (e-POP) payload on the high inclination CAScade, Smallsat and IOnospheric Polar Explorer (CASSIOPE...... good agreement with density profiles estimated from ionosonde data, measured over nearby stations to the latitude and longitude of the RO tangent points, (2) in good agreement with density profiles inferred from GPS RO measured by the Constellation Observing System for Meteorology, Ionosphere...

  8. Autocorrelation Study of Solar Wind Plasma and IMF Properties as Measured by the MAVEN Spacecraft

    Science.gov (United States)

    Marquette, Melissa L.; Lillis, Robert J.; Halekas, J. S.; Luhmann, J. G.; Gruesbeck, J. R.; Espley, J. R.

    2018-04-01

    It has long been a goal of the heliophysics community to understand solar wind variability at heliocentric distances other than 1 AU, especially at ˜1.5 AU due to not only the steepening of solar wind stream interactions outside 1 AU but also the number of missions available there to measure it. In this study, we use 35 months of solar wind and interplanetary magnetic field (IMF) data taken at Mars by the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft to conduct an autocorrelation analysis of the solar wind speed, density, and dynamic pressure, which is derived from the speed and density, as well as the IMF strength and orientation. We found that the solar wind speed is coherent, that is, has an autocorrelation coefficient above 1/e, over roughly 56 hr, while the density and pressure are coherent over smaller intervals of roughly 25 and 20 hr, respectively, and that the IMF strength is coherent over time intervals of approximately 20 hr, while the cone and clock angles are considerably less steady but still somewhat coherent up to time lags of roughly 16 hr. We also found that when the speed, density, pressure, or IMF strength is higher than average, the solar wind or IMF becomes uncorrelated more quickly, while when they are below average, it tends to be steadier. This analysis allows us to make estimates of the values of solar wind plasma and IMF parameters when they are not directly measured and provide an approximation of the error associated with that estimate.

  9. Design considerations for permanent magnet direct drive generators for wind energy applications

    NARCIS (Netherlands)

    Jassal, A.K.; Polinder, H.; Damen, M.E.C.; Versteegh, K.

    2012-01-01

    Permanent Magnet Direct Drive (PMDD) generators offer very high force density, high efficiency and low number of components. Due to these advantages, PMDD generators are getting popular in the wind energy industry especially for offshore application. Presence of permanent magnets gives magnetic

  10. Neutral wind and density perturbations in the thermosphere created by gravity waves observed by the TIDDBIT sounder

    Science.gov (United States)

    Vadas, Sharon L.; Crowley, Geoff

    2017-06-01

    In this paper, we study the 10 traveling ionospheric disturbances (TIDs) observed at zobs˜283 km by the TIDDBIT ionospheric sounder on 30 October 2007 at 0400-0700 UT near Wallops Island, USA. These TIDs propagated northwest/northward and were previously found to be secondary gravity waves (GWs) from tropical storm Noel. An instrumented sounding rocket simultaneously measured a large neutral wind peak uH' with a similar azimuth at z ˜ 325 km. Using the measured TID amplitudes and wave vectors from the TIDDBIT system, together with ion-neutral theory, GW dissipative polarization relations and ray tracing, we determine the GW neutral horizontal wind and density perturbations as a function of altitude from 220 to 380 km. We find that there is a serious discrepancy between the GW dissipative theory and the observations unless the molecular viscosity, μ, decreases with altitude in the middle to upper thermosphere. Assuming that μ∝ρ¯q, where ρ¯ is the density, we find using GW dissipative theory that the GWs could have been observed at zobs and that one or more of the GWs could have caused the uH' wind peak at z≃325 km if q ˜ 0.67 for z≥220 km. This implies that the kinematic viscosity, ν=μ/ρ¯, increases less rapidly with altitude for z≥220 km: ν∝1/ρ¯0.33. This dependence makes sense because as ρ¯→0, the distance between molecules goes to infinity, which implies no molecular collisions and therefore no molecular viscosity μ.

  11. Characterization of wind power resource and its intermittency

    Science.gov (United States)

    Gunturu, U. B.; Schlosser, C. A.

    2011-12-01

    Wind resource in the continental and offshore United States has been calculated and characterized using metrics that describe - apart from abundance - its availability, persistence and intermittency. The Modern Era Retrospective-Analysis for Research and Applications (MERRA) boundary layer flux data has been used to construct wind power density profiles at 50, 80, 100 and 120 m turbine hub heights. The wind power density estimates at 50 m are qualitatively similar to those in the US wind atlas developed by the National Renewable Energy Laboratory (NREL), but quantitatively a class less in some regions, but are within the limits of uncertainty. We also show that for long tailed distributions like those of the wind power density, the mean is an overestimation and median is a more robust metric for summary representation of wind power resource.Generally speaking, the largest and most available wind power density resources are found in off-shore regions of the Atlantic and Pacific coastline, and the largest on-shore resource potential lies in the central United States. However, the intermittency and widespread synchronicity of on-shore wind power density are substantial, and highlights areas where considerable back-up generation technologies will be required. Generation-duration curves are also presented for the independent systems operator (ISO) zones of the U.S. to highlight the regions with the largest capacity factor (MISO, ERCOT, and SWPP) as well as the periods and extent to which all ISOs contain no wind power and the potential benefits of aggregation on wind power intermittency in each region. The impact of raising the wind turbine hub height on metrics of abundance, persistence, variability and intermittency is analyzed. There is a general increase in availability and abundance of wind resource but there is also an increase in intermittency with respect to a 'usable wind power' crossing level in low resource regions. A similar perspective of wind resource for

  12. Prospects for generating electricity by large onshore and offshore wind farms

    Science.gov (United States)

    Volker, Patrick J. H.; Hahmann, Andrea N.; Badger, Jake; Jørgensen, Hans E.

    2017-03-01

    The decarbonisation of energy sources requires additional investments in renewable technologies, including the installation of onshore and offshore wind farms. For wind energy to remain competitive, wind farms must continue to provide low-cost power even when covering larger areas. Inside very large wind farms, winds can decrease considerably from their free-stream values to a point where an equilibrium wind speed is reached. The magnitude of this equilibrium wind speed is primarily dependent on the balance between turbine drag force and the downward momentum influx from above the wind farm. We have simulated for neutral atmospheric conditions, the wind speed field inside different wind farms that range from small (25 km2) to very large (105 km2) in three regions with distinct wind speed and roughness conditions. Our results show that the power density of very large wind farms depends on the local free-stream wind speed, the surface characteristics, and the turbine density. In onshore regions with moderate winds the power density of very large wind farms reaches 1 W m-2, whereas in offshore regions with very strong winds it exceeds 3 W m-2. Despite a relatively low power density, onshore regions with moderate winds offer potential locations for very large wind farms. In offshore regions, clusters of smaller wind farms are generally preferable; under very strong winds also very large offshore wind farms become efficient.

  13. Preliminary study of long-term wind characteristics of the Mexican Yucatan Peninsula

    International Nuclear Information System (INIS)

    Soler-Bientz, Rolando; Watson, Simon; Infield, David

    2009-01-01

    Mexico's Yucatan Peninsula is one of the most promising areas for wind energy development within the Latin American region but no comprehensive assessment of wind resource has been previously published. This research presents a preliminary analysis of the meteorological parameters relevant to the wind resource in order to find patterns in their long-term behaviour and to establish a foundation for subsequent research into the wind power potential of the Yucatan Peninsula. Three meteorological stations with data measured for a period between 10 and 20 years were used in this study. The monthly trends of ambient temperature, atmospheric pressure and wind speed data were identified and are discussed. The directional behaviour of the winds, their frequency distributions and the related Weibull parameters are presented. Wind power densities for the study sites have been estimated and have been shown to be relatively low (wind power class 1), though a larger number of suitable sites needs to be studied before a definitive resource evaluation can be reported.

  14. How supernovae launch galactic winds?

    Science.gov (United States)

    Fielding, Drummond; Quataert, Eliot; Martizzi, Davide; Faucher-Giguère, Claude-André

    2017-09-01

    We use idealized three-dimensional hydrodynamic simulations of global galactic discs to study the launching of galactic winds by supernovae (SNe). The simulations resolve the cooling radii of the majority of supernova remnants (SNRs) and thus self-consistently capture how SNe drive galactic winds. We find that SNe launch highly supersonic winds with properties that agree reasonably well with expectations from analytic models. The energy loading (η _E= \\dot{E}_wind/ \\dot{E}_SN) of the winds in our simulations are well converged with spatial resolution while the wind mass loading (η _M= \\dot{M}_wind/\\dot{M}_\\star) decreases with resolution at the resolutions we achieve. We present a simple analytic model based on the concept that SNRs with cooling radii greater than the local scaleheight break out of the disc and power the wind. This model successfully explains the dependence (or lack thereof) of ηE (and by extension ηM) on the gas surface density, star formation efficiency, disc radius and the clustering of SNe. The winds our simulations are weaker than expected in reality, likely due to the fact that we seed SNe preferentially at density peaks. Clustering SNe in time and space substantially increases the wind power.

  15. Laboratory Facility for Simulating Solar Wind Sails

    International Nuclear Information System (INIS)

    Funaki, Ikkoh; Ueno, Kazuma; Oshio, Yuya; Ayabe, Tomohiro; Horisawa, Hideyuki; Yamakawa, Hiroshi

    2008-01-01

    Magnetic sail (MagSail) is a deep space propulsion system, in which an artificial magnetic cavity captures the energy of the solar wind to propel a spacecraft in the direction leaving the sun. For a scale-model experiment of the plasma flow of MagSail, we employed a magnetoplasmadynamic arcjet as a solar wind simulator. It is observed that a plasma flow from the solar wind simulator reaches a quasi-steady state of about 0.8 ms duration after a transient phase when initiating the discharge. During this initial phase of the discharge, a blast-wave was observed to develop radially in a vacuum chamber. When a solenoidal coil (MagSail scale model) is immersed into the quasi-steady flow where the velocity is 45 km/s, and the number density is 10 19 m-3, a bow shock as well as a magnetic cavity were formed in front of the coil. As a result of the interaction between the plasma flow and the magnetic cavity, the momentum of the simulated solar wind is decreased, and it is found from the thrust measurement that the solar wind momentum is transferred to the coil simulating MagSail.

  16. Prospects for generating electricity by large onshore and offshore wind farms

    DEFF Research Database (Denmark)

    Volker, Patrick; Hahmann, Andrea N.; Badger, Jake

    2017-01-01

    large wind farms, winds can decrease considerably from their free-stream values to a point where an equilibrium wind speed is reached. The magnitude of this equilibrium wind speed is primarily dependent on the balance between turbine drag force and the downward momentum influx from above the wind farm......The decarbonisation of energy sources requires additional investments in renewable technologies, including the installation of onshore and offshore wind farms. For wind energy to remain competitive, wind farms must continue to provide low-cost power even when covering larger areas. Inside very...... on the local free-stream wind speed, the surface characteristics, and the turbine density. In onshore regions with moderate winds the power density of very large wind farms reaches 1 W m−2, whereas in offshore regions with very strong winds it exceeds 3 W m−2. Despite a relatively low power density, onshore...

  17. Investigation of wind characteristics and assessment of wind energy potential for Waterloo region, Canada

    International Nuclear Information System (INIS)

    Li Meishen; Li Xianguo

    2005-01-01

    Wind energy becomes more and more attractive as one of the clean renewable energy resources. Knowledge of the wind characteristics is of great importance in the exploitation of wind energy resources for a site. It is essential in designing or selecting a wind energy conversion system for any application. This study examines the wind characteristics for the Waterloo region in Canada based on a data source measured at an elevation 10 m above the ground level over a 5-year period (1999-2003) with the emphasis on the suitability for wind energy technology applications. Characteristics such as annual, seasonal, monthly and diurnal wind speed variations and wind direction variations are examined. Wind speed data reveal that the windy months in Waterloo are from November to April, defined as the Cold Season in this study, with February being the windiest month. It is helpful that the high heating demand in the Cold Season coincides with the windy season. Analysis shows that the day time is the windy time, with 2 p.m. in the afternoon being the windiest moment. Moreover, a model derived from the maximum entropy principle (MEP) is applied to determine the diurnal, monthly, seasonal and yearly wind speed frequency distributions, and the corresponding Lagrangian parameters are determined. Based on these wind speed distributions, this study quantifies the available wind energy potential to provide practical information for the application of wind energy in this area. The yearly average wind power density is 105 W/m 2 . The day and night time wind power density in the Cold Season is 180 and 111 W/m 2 , respectively

  18. THE STELLAR NUMBER DENSITY DISTRIBUTION IN THE LOCAL SOLAR NEIGHBORHOOD IS NORTH-SOUTH ASYMMETRIC

    Energy Technology Data Exchange (ETDEWEB)

    Yanny, Brian [Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States); Gardner, Susan [Department of Physics and Astronomy, University of Kentucky, Lexington, KY 40506-0055 (United States)

    2013-11-10

    We study the number density distribution of a sample of K and M dwarf stars, matched north and south of the Galactic plane within a distance of 2 kpc from the Sun, using observations from the Ninth Data Release of the Sloan Digital Sky Survey. We determine distances using the photometric parallax method, and in this context systematic effects exist which could potentially impact the determination of the number density profile with height from the Galactic plane—and ultimately affect a number density north-south asymmetry. They include: (1) the calibration of the various photometric parallax relations, (2) the ability to separate dwarfs from giants in our sample, (3) the role of stellar population differences such as age and metallicity, (4) the ability to determine the offset of the Sun from the Galactic plane, and (5) the correction for reddening from dust in the Galactic plane, though our stars are at high Galactic latitudes. We find the various analyzed systematic effects to have a negligible impact on our observed asymmetry, and using a new and larger sample of stars we confirm and refine the earlier discovery of Widrow et al. of a significant Galactic north-south asymmetry in the stellar number density distribution.

  19. THE STELLAR NUMBER DENSITY DISTRIBUTION IN THE LOCAL SOLAR NEIGHBORHOOD IS NORTH-SOUTH ASYMMETRIC

    Energy Technology Data Exchange (ETDEWEB)

    Yanny, Brian; Gardner, Susan

    2013-10-17

    We study the number density distribution of a sample of K and M dwarf stars, matched North and South of the Galactic plane within a distance of 2 kpc from the sun, using observations from the Ninth Data Release of the Sloan Digital Sky Survey. We determine distances using the photometric parallax method, and in this context systematic effects exist which could potentially impact the determination of the number density profile with height from the Galactic plane --- and ultimately affect a number density North-South asymmetry. They include: (i) the calibration of the various photometric parallax relations, (ii) the ability to separate dwarfs from giants in our sample, (iii) the role of stellar population differences such as age and metallicity, (iv) the ability to determine the offset of the sun from the Galactic plane, and (v) the correction for reddening from dust in the Galactic plane, though our stars are at high Galactic latitudes. We find the various analyzed systematic effects to have a negligible impact on our observed asymmetry, and using a new and larger sample of stars we confirm and refine the earlier discovery of Widrow et al. of a significant Galactic North-South asymmetry in the stellar number density distribution.

  20. Aggregated wind power generation probabilistic forecasting based on particle filter

    International Nuclear Information System (INIS)

    Li, Pai; Guan, Xiaohong; Wu, Jiang

    2015-01-01

    Highlights: • A new method for probabilistic forecasting of aggregated wind power generation. • A dynamic system is established based on a numerical weather prediction model. • The new method handles the non-Gaussian and time-varying wind power uncertainties. • Particle filter is applied to forecast predictive densities of wind generation. - Abstract: Probability distribution of aggregated wind power generation in a region is one of important issues for power system daily operation. This paper presents a novel method to forecast the predictive densities of the aggregated wind power generation from several geographically distributed wind farms, considering the non-Gaussian and non-stationary characteristics in wind power uncertainties. Based on a mesoscale numerical weather prediction model, a dynamic system is established to formulate the relationship between the atmospheric and near-surface wind fields of geographically distributed wind farms. A recursively backtracking framework based on the particle filter is applied to estimate the atmospheric state with the near-surface wind power generation measurements, and to forecast the possible samples of the aggregated wind power generation. The predictive densities of the aggregated wind power generation are then estimated based on these predicted samples by a kernel density estimator. In case studies, the new method presented is tested on a 9 wind farms system in Midwestern United States. The testing results that the new method can provide competitive interval forecasts for the aggregated wind power generation with conventional statistical based models, which validates the effectiveness of the new method

  1. Random function representation of stationary stochastic vector processes for probability density evolution analysis of wind-induced structures

    Science.gov (United States)

    Liu, Zhangjun; Liu, Zenghui

    2018-06-01

    This paper develops a hybrid approach of spectral representation and random function for simulating stationary stochastic vector processes. In the proposed approach, the high-dimensional random variables, included in the original spectral representation (OSR) formula, could be effectively reduced to only two elementary random variables by introducing the random functions that serve as random constraints. Based on this, a satisfactory simulation accuracy can be guaranteed by selecting a small representative point set of the elementary random variables. The probability information of the stochastic excitations can be fully emerged through just several hundred of sample functions generated by the proposed approach. Therefore, combined with the probability density evolution method (PDEM), it could be able to implement dynamic response analysis and reliability assessment of engineering structures. For illustrative purposes, a stochastic turbulence wind velocity field acting on a frame-shear-wall structure is simulated by constructing three types of random functions to demonstrate the accuracy and efficiency of the proposed approach. Careful and in-depth studies concerning the probability density evolution analysis of the wind-induced structure have been conducted so as to better illustrate the application prospects of the proposed approach. Numerical examples also show that the proposed approach possesses a good robustness.

  2. Wind energy potential assessment of Cameroon's coastal regions for the installation of an onshore wind farm.

    Science.gov (United States)

    Arreyndip, Nkongho Ayuketang; Joseph, Ebobenow; David, Afungchui

    2016-11-01

    For the future installation of a wind farm in Cameroon, the wind energy potentials of three of Cameroon's coastal cities (Kribi, Douala and Limbe) are assessed using NASA average monthly wind data for 31 years (1983-2013) and compared through Weibull statistics. The Weibull parameters are estimated by the method of maximum likelihood, the mean power densities, the maximum energy carrying wind speeds and the most probable wind speeds are also calculated and compared over these three cities. Finally, the cumulative wind speed distributions over the wet and dry seasons are also analyzed. The results show that the shape and scale parameters for Kribi, Douala and Limbe are 2.9 and 2.8, 3.9 and 1.8 and 3.08 and 2.58, respectively. The mean power densities through Weibull analysis for Kribi, Douala and Limbe are 33.7 W/m2, 8.0 W/m2 and 25.42 W/m2, respectively. Kribi's most probable wind speed and maximum energy carrying wind speed was found to be 2.42 m/s and 3.35 m/s, 2.27 m/s and 3.03 m/s for Limbe and 1.67 m/s and 2.0 m/s for Douala, respectively. Analysis of the wind speed and hence power distribution over the wet and dry seasons shows that in the wet season, August is the windiest month for Douala and Limbe while September is the windiest month for Kribi while in the dry season, March is the windiest month for Douala and Limbe while February is the windiest month for Kribi. In terms of mean power density, most probable wind speed and wind speed carrying maximum energy, Kribi shows to be the best site for the installation of a wind farm. Generally, the wind speeds at all three locations seem quite low, average wind speeds of all the three studied locations fall below 4.0m/s which is far below the cut-in wind speed of many modern wind turbines. However we recommend the use of low cut-in speed wind turbines like the Savonius for stand alone low energy needs.

  3. Wind Energy Resource Atlas of Armenia

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, D.; Schwartz, M.; Scott, G.; Haymes, S.; Heimiller, D.; George, R.

    2003-07-01

    This wind energy resource atlas identifies the wind characteristics and distribution of the wind resource in the country of Armenia. The detailed wind resource maps and other information contained in the atlas facilitate the identification of prospective areas for use of wind energy technologies for utility-scale power generation and off-grid wind energy applications. The maps portray the wind resource with high-resolution (1-km2) grids of wind power density at 50-m above ground. The wind maps were created at the National Renewable Energy Laboratory (NREL) using a computerized wind mapping system that uses Geographic Information System (GIS) software.

  4. Development of distributed topographical forecasting model for wind resource assessment using artificial neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Narayana, P.B. [Green Life Energy Solutions LLP, Secunderabad (India); Rao, S.S. [National Institute of Technology. Dept. of Mechanical Engineering, Warangal (India); Reddy, K.H. [JNT Univ.. Dept. of Mechanical Engineering, Anantapur (India)

    2012-07-01

    Economics of wind power projects largely depend on the availability of wind power density. Wind resource assessment is a study estimating wind speeds and wind power densities in the region under consideration. The accuracy and reliability of data sets comprising of wind speeds and wind power densities at different heights per topographic region characterized by elevation or mean sea level, is important for wind power projects. Indian Wind Resource Assessment program conducted in 80's consisted of wind data measured by monitoring stations at different topographies in order to measure wind power density values at 25 and 50 meters above the ground level. In this paper, an attempt has been made to assess wind resource at a given location using artificial neural networks. Existing wind resource data has been used to train the neural networks. Location topography (characterized by longitude, latitude and mean sea level), air density, mean annual wind speed (MAWS) are used as inputs to the neural network. Mean annual wind power density (MAWPD) in watt/m{sup 2} is predicted for a new topographic location. Simple back propagation based neural network has been found to be sufficient for predicting these values with suitable accuracy. This model is closely linked to the problem of wind energy forecasting considering the variations of specific atmospheric variables with time horizons. This model will help the wind farm developers to have an initial estimation of the wind energy potential at a particular topography. (Author)

  5. Preliminary evaluation of wind power potential in Bangladesh

    International Nuclear Information System (INIS)

    Rahman, M.M.; Azam, M.M.; Choudhury, M.G.M.

    1998-01-01

    Available wind speed data for six locations of Bangladesh have been analyzed with a view to assess the wind power potential of these locations. Regions having high wind potential are identified for the generation of electric energy by wind energy conversion systems (WECS). The wind power density varies from 12 to 650 W/m/sup 2/ in Bangladesh depending on the location and time of year. Among the six locations, Chittagang, a coastal station in the southeastern region of the country, possesses the maximum wind power density (1670650 W/m/sup 2/) and seems to be the most suitable location for establishing WECS. This study could be considered as the basis for further research and development effort on wind power application in Bangladesh. (authors)

  6. Effective atomic number and electron density of marble concrete

    International Nuclear Information System (INIS)

    Akkurt, I.; El-Khayatt, A.M.

    2013-01-01

    The effective atomic numbers (Z eff ) and effective electron density (N e ) of different type concrete have been measured and the results were compared with the calculation obtained using the mass attenuation coefficients (μ/ρ) obtained via XCOM in the photon energy range of 1 keV-100 GeV. Six different concrete in where marble has been used in the rate of 0, 5, 10, 15, 20, 25 %, has been used in the study. (author)

  7. Intercalibration and Cross-Correlation of Ace and Wind Solar Wind Data

    Science.gov (United States)

    2003-01-01

    This report covers activities funded from October 1, 1998 through September 30, 2002. Two yearly status reports have been filed on this grant, and they are included as Appendix 1. The purpose of this grant was to compare ACE and Wind solar wind parameters when the two spacecraft were near to one another and then to use the intercalibrated parameters to carry out scientific investigations. In September, 2001 a request for a one-year, no-cost extension until September 30, 2002 was submitted and approved. The statement of work for that extension included adjustment of ACE densities below wind speeds of 350 km/s, a study of shock normal orientations using travel time delays between the two spacecraft, comparison of density jumps at shocks, and a study of temperature anisotropies and double streaming to see if such features evolved between the spacecraft.

  8. Wind Turbine Generator System Power Performance Test Report for the ARE442 Wind Turbine

    Energy Technology Data Exchange (ETDEWEB)

    van Dam, J.; Jager, D.

    2010-02-01

    This report summarizes the results of a power performance test that NREL conducted on the ARE 442 wind turbine. This test was conducted in accordance with the International Electrotechnical Commission's (IEC) standard, Wind Turbine Generator Systems Part 12: Power Performance Measurements of Electricity Producing Wind Turbines, IEC 61400-12-1 Ed.1.0, 2005-12. However, because the ARE 442 is a small turbine as defined by IEC, NREL also followed Annex H that applies to small wind turbines. In these summary results, wind speed is normalized to sea-level air density.

  9. How Planting Density Affects Number and Yield of Potato Minitubers in a Commercial Glasshouse Production System

    NARCIS (Netherlands)

    Veeken, van der A.J.H.; Lommen, W.J.M.

    2009-01-01

    Commercial potato minituber production systems aim at high tuber numbers per plant. This study investigated by which mechanisms planting density (25.0, 62.5 and 145.8 plants/m2) of in vitro derived plantlets affected minituber yield and minituber number per plantlet. Lowering planting density

  10. Program to determine space vehicle response to wind turbulence

    Science.gov (United States)

    Wilkening, H. D.

    1972-01-01

    Computer program was developed as prelaunch wind monitoring tool for Saturn 5 vehicle. Program accounts for characteristic wind changes including turbulence power spectral density, wind shear, peak wind velocity, altitude, and wind direction using stored variational statistics.

  11. Wind power variations under humid and arid meteorological conditions

    International Nuclear Information System (INIS)

    Şen, Zekâi

    2013-01-01

    Highlights: • It indicates the role of weather parameters’ roles in the wind energy calculation. • Meteorological variables are more significant in arid regions for wind power. • It provides opportunity to take into consideration air density variability. • Wind power is presented in terms of the wind speed, temperature and pressure. - Abstract: The classical wind power per rotor area per time is given as the half product of the air density by third power of the wind velocity. This approach adopts the standard air density as constant (1.23 g/cm 3 ), which ignores the density dependence on air temperature and pressure. Weather conditions are not taken into consideration except the variations in wind velocity. In general, increase in pressure and decrease in temperature cause increase in the wind power generation. The rate of increase in the pressure has less effect on the wind power as compared with the temperature rate. This paper provides the wind power formulation based on three meteorological variables as the wind velocity, air temperature and air pressure. Furthermore, from the meteorology point of view any change in the wind power is expressed as a function of partial changes in these meteorological variables. Additionally, weather conditions in humid and arid regions differ from each other, and it is interesting to see possible differences between the two regions. The application of the methodology is presented for two meteorology stations in Istanbul, Turkey, as representative of the humid regions and Al-Madinah Al-Monawwarah, Kingdom of Saudi Arabia, for arid region, both on daily record bases for 2010. It is found that consideration of air temperature and pressure in the average wind power calculation gives about 1.3% decrease in Istanbul, whereas it is about 13.7% in Al-Madinah Al-Monawwarah. Hence, consideration of meteorological variables in wind power calculations becomes more significant in arid regions

  12. Latitudinal distribution of the solar wind properties in the low- and high-pressure regimes: Wind observations

    Directory of Open Access Journals (Sweden)

    C. Lacombe

    Full Text Available The solar wind properties depend on λ, the heliomagnetic latitude with respect to the heliospheric current sheet (HCS, more than on the heliographic latitude. We analyse the wind properties observed by Wind at 1 AU during about 2.5 solar rotations in 1995, a period close to the last minimum of solar activity. To determine λ, we use a model of the HCS which we fit to the magnetic sector boundary crossings observed by Wind. We find that the solar wind properties mainly depend on the modulus |λ|. But they also depend on a local parameter, the total pressure (magnetic pressure plus electron and proton thermal pressure. Furthermore, whatever the total pressure, we observe that the plasma properties also depend on the time: the latitudinal gradients of the wind speed and of the proton temperature are not the same before and after the closest HCS crossing. This is a consequence of the dynamical stream interactions. In the low pressure wind, at low |λ|, we find a clear maximum of the density, a clear minimum of the wind speed and of the proton temperature, a weak minimum of the average magnetic field strength, a weak maximum of the average thermal pressure, and a weak maximum of the average β factor. This overdense sheet is embedded in a density halo. The latitudinal thickness is about 5° for the overdense sheet, and 20° for the density halo. The HCS is thus wrapped in an overdense sheet surrounded by a halo, even in the non-compressed solar wind. In the high-pressure wind, the plasma properties are less well ordered as functions of the latitude than in the low-pressure wind; the minimum of the average speed is seen before the HCS crossing. The latitudinal thickness of the high-pressure region is about 20°. Our observations are qualitatively consistent with the numerical model of Pizzo for the deformation of the heliospheric current sheet and plasma sheet.

    Key words: Interplanetary physics (solar wind

  13. Wind energy potential assessment of Cameroon’s coastal regions for the installation of an onshore wind farm

    Directory of Open Access Journals (Sweden)

    Nkongho Ayuketang Arreyndip

    2016-11-01

    Full Text Available For the future installation of a wind farm in Cameroon, the wind energy potentials of three of Cameroon’s coastal cities (Kribi, Douala and Limbe are assessed using NASA average monthly wind data for 31 years (1983–2013 and compared through Weibull statistics. The Weibull parameters are estimated by the method of maximum likelihood, the mean power densities, the maximum energy carrying wind speeds and the most probable wind speeds are also calculated and compared over these three cities. Finally, the cumulative wind speed distributions over the wet and dry seasons are also analyzed. The results show that the shape and scale parameters for Kribi, Douala and Limbe are 2.9 and 2.8, 3.9 and 1.8 and 3.08 and 2.58, respectively. The mean power densities through Weibull analysis for Kribi, Douala and Limbe are 33.7 W/m2, 8.0 W/m2 and 25.42 W/m2, respectively. Kribi’s most probable wind speed and maximum energy carrying wind speed was found to be 2.42 m/s and 3.35 m/s, 2.27 m/s and 3.03 m/s for Limbe and 1.67 m/s and 2.0 m/s for Douala, respectively. Analysis of the wind speed and hence power distribution over the wet and dry seasons shows that in the wet season, August is the windiest month for Douala and Limbe while September is the windiest month for Kribi while in the dry season, March is the windiest month for Douala and Limbe while February is the windiest month for Kribi. In terms of mean power density, most probable wind speed and wind speed carrying maximum energy, Kribi shows to be the best site for the installation of a wind farm. Generally, the wind speeds at all three locations seem quite low, average wind speeds of all the three studied locations fall below 4.0m/s which is far below the cut-in wind speed of many modern wind turbines. However we recommend the use of low cut-in speed wind turbines like the Savonius for stand alone low energy needs

  14. Permanent magnet machines with air gap windings and integrated teeth windings

    Energy Technology Data Exchange (ETDEWEB)

    Alatalo, M [Chalmers Univ. of Technology, Goeteborg (Sweden). School of Electrical and Computer Engineering

    1996-06-01

    The Thesis deals with axial and radial flux permanent magnet machines with air gap windings and an integrated teeth winding. The aim is to develop a machine that produces a high torque per unit volume with as low losses as possible. The hypothesis is that an advanced three-phase winding, magnetized by a permanent magnet rotor should be better than other machine topologies. The finite element method is used to find favourable dimensions of the slotless winding, the integrated teeth winding and the permanent magnet rotor. Three machines were built and tested in order to verify calculations. It can be concluded that the analysis method shows good agreement with the calculated and the measured values of induced voltage and torque. The experiments showed that the slotless machine with NdFeB-magnets performs approximately like the slotted machine. A theoretical comparison of axial flux topology to radial flux topology showed that the torque production of the inner rotor radial flux machine is superior to that of the axial flux machine. An integrated teeth winding based on iron powder teeth glued to the winding was studied. The force density of a pole with integrated teeth is around three times the force density of a slotless pole. A direct drive wind power generator of 6.4 kW with integrated teeth can have the same power losses and magnet weight as a transversal flux machine. Compared to a standard induction machine the integrated teeth machine had approximately 2.5 times the power capacity of the induction machine with the same power losses and outer volume. 39 refs

  15. Reducing the Density and Number of Tobacco Retailers: Policy Solutions and Legal Issues.

    Science.gov (United States)

    Ackerman, Amy; Etow, Alexis; Bartel, Sara; Ribisl, Kurt M

    2017-02-01

    Because higher density of tobacco retailers is associated with greater tobacco use, U.S. communities seek ways to reduce the density and number of tobacco retailers. This approach can reduce the concentration of tobacco retailers in poorer communities, limit youth exposure to tobacco advertising, and prevent misleading associations between tobacco and health messaging. Communities can reduce the density and number of tobacco retailers by imposing minimum distance requirements between existing retailers, capping the number of retailers in a given geographic area, establishing a maximum number of retailers proportional to population size, and prohibiting sales at certain types of establishments, such as pharmacies, or within a certain distance of locations serving youth. Local governments use direct regulation, licensing, or zoning laws to enact these changes. We analyze each approach under U.S. constitutional law to assist communities in selecting and implementing one or more of these methods. There are few published legal opinions that address these strategies in the context of tobacco control. But potential constitutional challenges include violations of the Takings Clause of the Fifth Amendment, which protects property owners from onerous government regulations, and under the Fourteenth Amendment's Equal Protection and Due Process Clauses, which protect business owners from arbitrary or unreasonable regulations that do not further a legitimate government interest. Because there is an evidentiary basis linking the density of tobacco retailers to smoking rates in a community, courts are likely to reject constitutional challenges to carefully crafted laws that reduce the number of tobacco retailers. Our review of the relevant constitutional issues confirms that local governments have the authority to utilize laws and policies to reduce the density and number of tobacco retailers in their communities, given existing public health data. The analysis guides policy

  16. Wind energy statistics

    International Nuclear Information System (INIS)

    Holttinen, H.; Tammelin, B.; Hyvoenen, R.

    1997-01-01

    The recording, analyzing and publishing of statistics of wind energy production has been reorganized in cooperation of VTT Energy, Finnish Meteorological (FMI Energy) and Finnish Wind Energy Association (STY) and supported by the Ministry of Trade and Industry (KTM). VTT Energy has developed a database that contains both monthly data and information on the wind turbines, sites and operators involved. The monthly production figures together with component failure statistics are collected from the operators by VTT Energy, who produces the final wind energy statistics to be published in Tuulensilmae and reported to energy statistics in Finland and abroad (Statistics Finland, Eurostat, IEA). To be able to verify the annual and monthly wind energy potential with average wind energy climate a production index in adopted. The index gives the expected wind energy production at various areas in Finland calculated using real wind speed observations, air density and a power curve for a typical 500 kW-wind turbine. FMI Energy has produced the average figures for four weather stations using the data from 1985-1996, and produces the monthly figures. (orig.)

  17. Depletion of solar wind plasma near a planetary boundary

    International Nuclear Information System (INIS)

    Zwan, B.J.; Wolf, R.A.

    1976-01-01

    A mathematical model is presented that describes the squeezing of solar wind plasma out along interplanetary magnetic field lines in the region between the bow shock and the effective planetary boundary (in the case of the earth, the magnetopause). In the absence of local magnetic merging the squeezing process should create a 'depletion layer,' a region of very low plasma density just outside the magnetopause. Numerical solutions are obtained for the dimensionless magnetohydrodynamic equations describing this depletion process for the case where the solar wind magnetic field is perpendicular to the solar wind flow direction. For the case of the earth with a magnetopause standoff distance of 10 R/subE/, the theory predicts that the density should be reduced by a factor > or =2 in a layer about 700--1300 km thick if M/subA/, the Alfven Mach number in the solar wind, is equal to 8. The layer thickness should vary as M/subA/ -2 and should be approximately uniform for a large area of the magnetopause around the subsolar point. Computed layer thicknesses are somewhat smaller than those derived from Lees' axisymmetric model. Depletion layers should develop fully only where magnetic merging is locally unimportant. Scaling of the model calculations to Venus and Mars suggest layer thicknesses about 1/10 and 1/15 those of the earth, respectively, neglecting diffusion and ionospheric effects

  18. Determination of CT number and density profile of binderless, pre-treated and tannin-based Rhizophora spp. particleboards using computed tomography imaging and electron density phantom

    Energy Technology Data Exchange (ETDEWEB)

    Yusof, Mohd Fahmi Mohd, E-mail: mfahmi@usm.my; Hamid, Puteri Nor Khatijah Abdul; Tajuddin, Abdul Aziz [School of Physics, Universiti Sains Malaysia, 11800 Penang (Malaysia); Bauk, Sabar [School of Distance Education, Universiti Sains Malaysia, 11800 Penang (Malaysia); Hashim, Rokiah [School of Industrial Technologies, Universiti Sains Malaysia, 11800 Penang (Malaysia)

    2015-04-29

    Plug density phantoms were constructed in accordance to CT density phantom model 062M CIRS using binderless, pre-treated and tannin-based Rhizophora Spp. particleboards. The Rhizophora Spp. plug phantoms were scanned along with the CT density phantom using Siemens Somatom Definition AS CT scanner at three CT energies of 80, 120 and 140 kVp. 15 slices of images with 1.0 mm thickness each were taken from the central axis of CT density phantom for CT number and CT density profile analysis. The values were compared to water substitute plug phantom from the CT density phantom. The tannin-based Rhizophora Spp. gave the nearest value of CT number to water substitute at 80 and 120 kVp CT energies with χ{sup 2} value of 0.011 and 0.014 respectively while the binderless Rhizphora Spp. gave the nearest CT number to water substitute at 140 kVp CT energy with χ{sup 2} value of 0.023. The tannin-based Rhizophora Spp. gave the nearest CT density profile to water substitute at all CT energies. This study indicated the suitability of Rhizophora Spp. particleboard as phantom material for the use in CT imaging studies.

  19. Determination of CT number and density profile of binderless, pre-treated and tannin-based Rhizophora spp. particleboards using computed tomography imaging and electron density phantom

    International Nuclear Information System (INIS)

    Yusof, Mohd Fahmi Mohd; Hamid, Puteri Nor Khatijah Abdul; Tajuddin, Abdul Aziz; Bauk, Sabar; Hashim, Rokiah

    2015-01-01

    Plug density phantoms were constructed in accordance to CT density phantom model 062M CIRS using binderless, pre-treated and tannin-based Rhizophora Spp. particleboards. The Rhizophora Spp. plug phantoms were scanned along with the CT density phantom using Siemens Somatom Definition AS CT scanner at three CT energies of 80, 120 and 140 kVp. 15 slices of images with 1.0 mm thickness each were taken from the central axis of CT density phantom for CT number and CT density profile analysis. The values were compared to water substitute plug phantom from the CT density phantom. The tannin-based Rhizophora Spp. gave the nearest value of CT number to water substitute at 80 and 120 kVp CT energies with χ 2 value of 0.011 and 0.014 respectively while the binderless Rhizphora Spp. gave the nearest CT number to water substitute at 140 kVp CT energy with χ 2 value of 0.023. The tannin-based Rhizophora Spp. gave the nearest CT density profile to water substitute at all CT energies. This study indicated the suitability of Rhizophora Spp. particleboard as phantom material for the use in CT imaging studies

  20. Conductive solar wind models in rapidly diverging flow geometries

    International Nuclear Information System (INIS)

    Holzer, T.E.; Leer, E.

    1980-01-01

    A detailed parameter study of conductive models of the solar wind has been carried out, extending the previous similar studies of Durney (1972) and Durney and Hundhausen (1974) by considering collisionless inhibition of thermal conduction, rapidly diverging flow geometries, and the structure of solutions for the entire n 0 -T 0 plane (n 0 and T 0 are the coronal base density and temperature). Primary emphasis is placed on understanding the complex effects of the physical processes operative in conductive solar wind models. There are five points of particular interest that have arisen from the study: (1) neither collisionless inhibition of thermal conduction nor rapidly diverging flow geometries can significantly increase the solar wind speed at 1 AU; (2) there exists a firm upper limit on the coronal base temperature consistent with observed values of the coronal base pressure and solar wind mass flux density; (3) the principal effect of rapidly diverging flow geometries is a decrease in the solar wind mass flux density at 1 AU and an increase in the mass flux density at the coronal base; (4) collisionless inhibition of thermal conduction can lead to a solar wind flow speed that either increases or decreases with increasing coronal base density (n 0 ) and temperature (T 0 , depending on the region of the n 0 -T 0 plane considered; (5) there is a region of the n 0 -T/sub o/ plane at high coronal base densities where low-speed, high-mass-flux, transonic solar wind flows exist: a region not previously considered

  1. Wind energy development: Danish experiences and international options

    International Nuclear Information System (INIS)

    Frandsen, S.; Hasted, F.; Josephsen, L.; Nielson, J.H.

    1989-01-01

    In Denmark, wind energy makes a visible contribution to energy planning. Since 1976, over 1,800 wind turbine units have been installed in Denmark, representing a capacity of ca 140 MW out of a grid capacity of 8,000 MW. These units are all grid-connected and the unit sizes range from 55 kW to 400 kW. The installed wind energy capacity represents a substantial development of technologies for wind energy utilization during the last 15 years, involving participation from research institutes, electric utilities, private industry, and the national energy administration. A considerable improvement of the technical and economic performance of wind turbines, along with increased reliability and durability, has been strongly supported by comprehensive government programs. In 1985, another large construction program was initiated which will add 100 MW wind power capacity by the end of 1990. Parallel with commercial development, Danish utilities have developed and constructed a number of megawatt-size wind turbines on a pilot basis. In general terms the wind energy resources in Denmark are rather good, and many suitable sites exist, but installed wind energy capacity is limited by the high population density. Consequently, research is being conducted on the feasibility of offshore wind turbines. In other countries, wind energy developments similar to those in Denmark are taking place. In communities with no connection to the national grid, special attention should be paid to hybrid systems such as wind-diesel and hydro-wind systems. A substantial transfer of technology is required for facilitating significant development of hybrid systems in developing countries. 11 refs., 7 figs., 2 tabs

  2. Effect of the number of blades and solidity on the performance of a vertical axis wind turbine

    Science.gov (United States)

    Delafin, PL; Nishino, T.; Wang, L.; Kolios, A.

    2016-09-01

    Two, three and four bladed ϕ-shape Vertical Axis Wind Turbines are simulated using a free-wake vortex model. Two versions of the three and four bladed turbines are considered, one having the same chord length as the two-bladed turbine and the other having the same solidity as the two-bladed turbine. Results of the two-bladed turbine are validated against published experimental data of power coefficient and instantaneous torque. The effect of solidity on the power coefficient is presented and the instantaneous torque, thrust and lateral force of the two-, three- and four-bladed turbines are compared for the same solidity. It is found that increasing the number of blades from two to three significantly reduces the torque, thrust and lateral force ripples. Adding a fourth blade further reduces the ripples except for the torque at low tip speed ratio. This work aims to help choosing the number of blades during the design phase of a vertical axis wind turbine.

  3. Characteristics of transformer-type superconducting fault current limiter depending on reclosing in changing the number of turns of secondary winding

    International Nuclear Information System (INIS)

    Choi, S.G.; Choi, H.S.; Cho, Y.S.; Park, H.M.; Jung, B.I.; Ha, K.H.

    2011-01-01

    The amount of consumed power is increasing with industrial development and rapidly increasing population. In accidents due to increased power consumption, the fault current sharply increases. Superconducting fault current limiters (SFCL) are studied widely to limit such fault currents. In this study, the characteristics of a transformer-type SFCL are analyzed depending on reclosing in changing the number of secondary winding turns. For experiment conditions, the turn ratio of the primary and secondary windings of a transformer-type SFCL was set to 4:2 and 4:4. The voltage was incremented by 80 V from 120 V for the experiment. The circuit breaker was operated with two open times of CO-0.17 s -CO-0.17 s -CO seconds (C; closed, O; open), respectively. Comparing the result for the experiment conditions with the case of the turn ratios of the primary and secondary windings at 4:4 and 4:2, the fault current was limited effectively in 4:2 than in 4:4 for the fault current limit ratios. With respect to the result of recovery characteristics, it was examined that the superconducting unit recovered faster when the turn ratio of the primary and secondary windings was 4:2 than 4:4. Comparing the amount of consumed power related to the recovery characteristics of the superconducting element, it was examined that the recovery time was faster in less power consumption for the superconducting unit. As such, since a transformer-type SFCL depending on reclosing in changing the number of turns of the secondary winding controls the turn ratio of the secondary winding to control fault current limiting and recovery characteristics, it can normally operate.

  4. Empirical model for the electron density peak height disturbance in response to solar wind conditions

    Science.gov (United States)

    Blanch, E.; Altadill, D.

    2009-04-01

    Geomagnetic storms disturb the quiet behaviour of the ionosphere, its electron density and the electron density peak height, hmF2. Many works have been done to predict the variations of the electron density but few efforts have been dedicated to predict the variations the hmF2 under disturbed helio-geomagnetic conditions. We present the results of the analyses of the F2 layer peak height disturbances occurred during intense geomagnetic storms for one solar cycle. The results systematically show a significant peak height increase about 2 hours after the beginning of the main phase of the geomagnetic storm, independently of both the local time position of the station at the onset of the storm and the intensity of the storm. An additional uplift is observed in the post sunset sector. The duration of the uplift and the height increase are dependent of the intensity of the geomagnetic storm, the season and the local time position of the station at the onset of the storm. An empirical model has been developed to predict the electron density peak height disturbances in response to solar wind conditions and local time which can be used for nowcasting and forecasting the hmF2 disturbances for the middle latitude ionosphere. This being an important output for EURIPOS project operational purposes.

  5. Number and density discrimination rely on a common metric: Similar psychophysical effects of size, contrast, and divided attention.

    Science.gov (United States)

    Tibber, Marc S; Greenwood, John A; Dakin, Steven C

    2012-06-04

    While observers are adept at judging the density of elements (e.g., in a random-dot image), it has recently been proposed that they also have an independent visual sense of number. To test the independence of number and density discrimination, we examined the effects of manipulating stimulus structure (patch size, element size, contrast, and contrast-polarity) and available attentional resources on both judgments. Five observers made a series of two-alternative, forced-choice discriminations based on the relative numerosity/density of two simultaneously presented patches containing 16-1,024 Gaussian blobs. Mismatches of patch size and element size (across reference and test) led to bias and reduced sensitivity in both tasks, whereas manipulations of contrast and contrast-polarity had varied effects on observers, implying differing strategies. Nonetheless, the effects reported were consistent across density and number judgments, the only exception being when luminance cues were made available. Finally, density and number judgment were similarly impaired by attentional load in a dual-task experiment. These results are consistent with a common underlying metric to density and number judgments, with the caveat that additional cues may be exploited when they are available.

  6. Wind resource assessment: A three year experience

    Energy Technology Data Exchange (ETDEWEB)

    Al-Abbadi, N.M.; Alawaji, S.H.; Eugenio, N.N. [Energy Research Institute (ERI), Riyadh (Saudi Arabia)

    1997-12-31

    This paper presents the results of data collected from three different sites located in the central, northern and eastern region of Saudi Arabia. Each site is geographically and climatologically different from the others. Statistical moments and frequency distributions were generated for the wind speed and direction parameters to analyse the wind energy characteristics and its availability. The results of these statistical operations present the wind power and energy density estimates of the three sites. The data analysis presented a prospect of wind energy conversion and utilization. The annual extractable energy density is 488, 890, 599 kWh/m{sup 2} for the central, northern and eastern sites respectively. Also, the paper demonstrates the lessons learned from operating wind assessment stations installed in remote areas having different environmental characteristics.

  7. Sustainable Block Design Process for High-Rise and High-Density Districts with Snow and Wind Simulations for Winter Cities

    Directory of Open Access Journals (Sweden)

    Norihiro Watanabe

    2017-11-01

    Full Text Available Urban designs that consider regional climatic conditions are one of the most important approaches for developing sustainable cities. In cities that suffer from heavy snow and cold winds in winter, an urban design approach different than that used for warm cities should be used. This study presents a scientific design process (the sustainable design approach that incorporates environmental and energy assessments that use snow and wind simulations to establish guidelines for the design of urban blocks in high-rise and high-density districts so that the impact of snow and wind can be minimized in these cities. A city block in downtown Sapporo, Japan, was used as a case study, and we evaluated four conceptual models. The four models were evaluated for how they impacted the snow and wind conditions in the block as well as the snow removal energy. Based on the results, we were able to identify the design guidelines in downtown Sapporo: an urban block design with higher building height ratio without the mid-rise part can reduce the snowdrifts and lower the snow removal energy. The proposed sustainable urban design approach would be effective in improving the quality of public spaces and reducing snow removal energy in winter cities.

  8. 3D WindScanner lidar measurements of wind and turbulence around wind turbines, buildings and bridges

    DEFF Research Database (Denmark)

    Mikkelsen, Torben Krogh; Sjöholm, Mikael; Angelou, Nikolas

    2017-01-01

    WindScanner is a distributed research infrastructure developed at DTU with the participation of a number of European countries. The research infrastructure consists of a mobile technically advanced facility for remote measurement of wind and turbulence in 3D. The WindScanners provide coordinated...... structures and of flow in urban environments. The mobile WindScanner facility enables 3D scanning of wind and turbulence fields in full scale within the atmospheric boundary layer at ranges from 10 meters to 5 (10) kilometers. Measurements of turbulent coherent structures are applied for investigation...

  9. Large-scale density structures in the outer heliosphere

    Science.gov (United States)

    Belcher, J. W.; Lazarus, A. J.; Mcnutt, R. L., Jr.; Gordon, G. S., Jr.

    1993-01-01

    The Plasma Science experiment on the Voyager 2 spacecraft has measured the solar wind density from 1 to 38 AU. Over this distance, the solar wind density decreases as the inverse square of the heliocentric distance. However, there are large variations in this density at a given radius. Such changes in density are the dominant cause of changes in the solar wind ram pressure in the outer heliosphere and can cause large perturbations in the location of the termination shock of the solar wind. Following a simple model suggested by Suess, we study the non-equilibrium, dynamic location of the termination shock as it responds to these pressure changes. The results of this study suggest that the termination shock is rarely if ever at its equilibrium distance and may depart from that distance by as much as 50 AU at times.

  10. Design Considerations of a Transverse Flux Machine for Direct-Drive Wind Turbine Applications: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Husain, Tausif; Hasan, Iftekhar; Sozer, Yilmaz; Husain, Iqbal; Muljadi, Eduard

    2017-01-01

    This paper presents the design considerations of a double-sided transverse flux machine (TFM) for direct-drive wind turbine applications. The TFM has a modular structure with quasi-U stator cores and ring windings. The rotor is constructed with ferrite magnets in a flux-concentrating arrangement to achieve high air gap flux density. The design considerations for this TFM with respect to initial sizing, pole number selection, key design ratios, and pole shaping are presented in this paper. Pole number selection is critical in the design process of a TFM because it affects both the torque density and power factor under fixed magnetic and changing electrical loading. Several key design ratios are introduced to facilitate the design procedure. The effect of pole shaping on back-emf and inductance is also analyzed. These investigations provide guidance toward the required design of a TFM for direct-drive applications. The analyses are carried out using analytical and three-dimensional finite element analysis. A prototype is under construction for experimental verification.

  11. Voyager observations of O(+6) and other minor ions in the solar wind

    Science.gov (United States)

    Villanueva, Louis; Mcnutt, Ralph L., Jr.; Lazarus, Alan J.; Steinberg, John T.

    1994-01-01

    The plasma science (PLS) experiments on the Voyager 1 and 2 spacecraft began making measurements of the solar wind shortly after the two launches in the fall of 1977. In reviewing the data obtained prior to the Jupiter encounters in 1979, we have found that the large dynamic range of the PLS instrument generally allows a clean separation of signatures of minor ions (about 2.5% of the time) during a single instrument scan in energy per charge. The minor ions, most notably O(+6), are well separated from the protons and alpha particles during times when the solar wind Mach number (ratio of streaming speed to thermal speed) is greater than approximately 15. During the Earth to Jupiter cruise we find that the average ratio of alpha particle number density to that of oxygen is 66 +/- 7 (Voyager 1) and 71 +/- 17 (Voyager 2). These values are consistent with the value 75 +/- 20 inferred from the Ion Composition Instrument on ISEE 3 during the period spanning 1978 and 1982. We have inferred an average coronal temperature of (1.7 +/- 0.1) x 10(exp 6) K based on the ratio of O(+7) to O(+6) number densities. Our observations cover a period of increasing solar activity. During this time we have found that the alpha particle to proton number density ratio is increasing with the solar cycle, the oxygen to proton ratio increases, and the alpha particle to oxygen ratio remains relatively constant in time.

  12. Wind power soars

    Energy Technology Data Exchange (ETDEWEB)

    Flavin, C. [Worldwatch Inst., Washington, DC (United States)

    1996-12-31

    Opinions on the world market for wind power are presented in this paper. Some data for global wind power generating capacity are provided. European and other markets are discussed individually. Estimated potential for wind power is given for a number of countries. 3 figs.

  13. Magnetized Disk Winds in NGC 3783

    Science.gov (United States)

    Fukumura, Keigo; Kazanas, Demosthenes; Shrader, Chris; Behar, Ehud; Tombesi, Francesco; Contopoulos, Ioannis

    2018-01-01

    We analyze a 900 ks stacked Chandra/HETG spectrum of NGC 3783 in the context of magnetically driven accretion-disk wind models in an effort to provide tight constraints on the global conditions of the underlying absorbers. Motivated by the earlier measurements of its absorption measure distribution (AMD) indicating X-ray-absorbing ionic columns that decrease slowly with decreasing ionization parameter, we employ 2D magnetohydrodynamic (MHD) disk wind models to describe the global outflow. We compute its photoionization structure along with the wind kinematic properties, allowing us to further calculate in a self-consistent fashion the shapes of the major X-ray absorption lines. With the wind radial density profile determined by the AMD, the profiles of the ensemble of the observed absorption features are determined by the two global parameters of the MHD wind; i.e., disk inclination {θ }{obs} and wind density normalization n o . Considering the most significant absorption features in the ∼1.8–20 Å range, we show that the MHD wind is best described by n{(r)∼ 6.9× {10}11(r/{r}o)}-1.15 cm‑3 and {θ }{obs}=44^\\circ . We argue that winds launched by X-ray heating or radiation pressure, or even MHD winds but with steeper radial density profiles, are strongly disfavored by data. Considering the properties of Fe K-band absorption features (i.e., Fe XXV and Fe XXVI), while typically prominent in the active galactic nucleus X-ray spectra, they appear to be weak in NGC 3783. For the specific parameters of our model obtained by fitting the AMD and the rest of the absorption features, these features are found to be weak, in agreement with observations.

  14. SAR-Based Wind Resource Statistics in the Baltic Sea

    Directory of Open Access Journals (Sweden)

    Alfredo Peña

    2011-01-01

    Full Text Available Ocean winds in the Baltic Sea are expected to power many wind farms in the coming years. This study examines satellite Synthetic Aperture Radar (SAR images from Envisat ASAR for mapping wind resources with high spatial resolution. Around 900 collocated pairs of wind speed from SAR wind maps and from 10 meteorological masts, established specifically for wind energy in the study area, are compared. The statistical results comparing in situ wind speed and SAR-based wind speed show a root mean square error of 1.17 m s−1, bias of −0.25 m s−1, standard deviation of 1.88 m s−1 and correlation coefficient of R2 0.783. Wind directions from a global atmospheric model, interpolated in time and space, are used as input to the geophysical model function CMOD-5 for SAR wind retrieval. Wind directions compared to mast observations show a root mean square error of 6.29° with a bias of 7.75°, standard deviation of 20.11° and R2 of 0.950. The scale and shape parameters, A and k, respectively, from the Weibull probability density function are compared at only one available mast and the results deviate ~2% for A but ~16% for k. Maps of A and k, and wind power density based on more than 1000 satellite images show wind power density values to range from 300 to 800 W m−2 for the 14 existing and 42 planned wind farms.

  15. Investigation of wind characteristics and wind energy assessment in Sao Joao do Cariri (SJC) - Paraiba, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Laerte; Filho, Celso

    2010-09-15

    In this study wind characterization and wind energy assessment of the Sao Joao do Cariri (SJC) in Paraiba state situated in Brazilian northeast. The average wind speed and temperature for 25 and 50 m were found 4,74m/s, 24,46C and 5,31m/s 24,25C with wind speed predominate direction of SSE (165 degrees). Weibull shape, scale ,Weibull fit wind speed and Power wind density found 2,54, 5,4m/s, 4,76m/s and 103W/m2 for 25m wind height measurements and 2,59, 6,0m/s, 5,36m/s and 145W/m2 for 50m wind height measurements.

  16. The steady and vibrating statuses of tulip tree leaves in wind

    Directory of Open Access Journals (Sweden)

    Yuanyuan Zhu

    2017-01-01

    Full Text Available The study of tree leaf aerodynamics is useful to tree protection, solar panel design and development of new power generation technology. 73 tulip leaves were tested in suspended condition and with front as well as back surface of the lamina facing wind. Three types of vibrating statuses, two types of steady statuses, and five critical wind speeds were observed. The existence probabilities of the statuses and criticals, the probability density distribution of every critical over the range of wind speed 0–27 m/s, and the expected values of the criticals were obtained by statistics. The critical Reynolds number, defined by critical wind speed and lamina length, shows an increasing trend with increasing the lamina area or length to width ratio of the lamina, but it shows no trend of increase or decrease with increasing the length ratio of petiole to lamina.

  17. High temperature co-axial winding transformers

    Science.gov (United States)

    Divan, Deepakraj M.; Novotny, Donald W.

    1993-01-01

    The analysis and design of co-axial winding transformers is presented. The design equations are derived and the different design approaches are discussed. One of the most important features of co-axial winding transformers is the fact that the leakage inductance is well controlled and can be made low. This is not the case in conventional winding transformers. In addition, the power density of co-axial winding transformers is higher than conventional ones. Hence, using co-axial winding transformers in a certain converter topology improves the power density of the converter. The design methodology used in meeting the proposed specifications of the co-axial winding transformer specifications are presented and discussed. The final transformer design was constructed in the lab. Co-axial winding transformers proved to be a good choice for high power density and high frequency applications. They have a more predictable performance compared with conventional transformers. In addition, the leakage inductance of the transformer can be controlled easily to suit a specific application. For space applications, one major concern is the extraction of heat from power apparatus to prevent excessive heating and hence damaging of these units. Because of the vacuum environment, the only way to extract heat is by using a cold plate. One advantage of co-axial winding transformers is that the surface area available to extract heat from is very large compared to conventional transformers. This stems from the unique structure of the co-axial transformer where the whole core surface area is exposed and can be utilized for cooling effectively. This is a crucial issue here since most of the losses are core losses.

  18. Path-integral computation of superfluid densities

    International Nuclear Information System (INIS)

    Pollock, E.L.; Ceperley, D.M.

    1987-01-01

    The normal and superfluid densities are defined by the response of a liquid to sample boundary motion. The free-energy change due to uniform boundary motion can be calculated by path-integral methods from the distribution of the winding number of the paths around a periodic cell. This provides a conceptually and computationally simple way of calculating the superfluid density for any Bose system. The linear-response formulation relates the superfluid density to the momentum-density correlation function, which has a short-ranged part related to the normal density and, in the case of a superfluid, a long-ranged part whose strength is proportional to the superfluid density. These facts are discussed in the context of path-integral computations and demonstrated for liquid 4 He along the saturated vapor-pressure curve. Below the experimental superfluid transition temperature the computed superfluid fractions agree with the experimental values to within the statistical uncertainties of a few percent in the computations. The computed transition is broadened by finite-sample-size effects

  19. Applying Nyquist's method for stability determination to solar wind observations

    Science.gov (United States)

    Klein, Kristopher G.; Kasper, Justin C.; Korreck, K. E.; Stevens, Michael L.

    2017-10-01

    The role instabilities play in governing the evolution of solar and astrophysical plasmas is a matter of considerable scientific interest. The large number of sources of free energy accessible to such nearly collisionless plasmas makes general modeling of unstable behavior, accounting for the temperatures, densities, anisotropies, and relative drifts of a large number of populations, analytically difficult. We therefore seek a general method of stability determination that may be automated for future analysis of solar wind observations. This work describes an efficient application of the Nyquist instability method to the Vlasov dispersion relation appropriate for hot, collisionless, magnetized plasmas, including the solar wind. The algorithm recovers the familiar proton temperature anisotropy instabilities, as well as instabilities that had been previously identified using fits extracted from in situ observations in Gary et al. (2016). Future proposed applications of this method are discussed.

  20. Dependence of inhomogeneous vibrational linewidth broadening on attractive forces from local liquid number densities

    International Nuclear Information System (INIS)

    George, S.M.; Harris, C.B.

    1982-01-01

    The dependence of inhomogeneous vibrational linewidth broadening on attractive forces form slowly varying local liquid number densities is examined. The recently developed Schweizer--Chandler theory of vibrational dephasing is used to compute absolute inhomogeneous broadening linewidths. The computed linewidths are compared to measured inhomogeneous broadening linewidths determined using picosecond vibrational dephasing experiments. There is a similarity between correlations of the Schweizer--Chandler and George--Auweter--Harris predicted inhomogeneous broadening linewidths and the measured inhomogeneous broadening linewidths. For the methyl stretches under investigation, this correspondence suggests that the width of the number density distribution in the liquid determines the relative inhomogeneous broadening magnitudes

  1. Evaluation of global onshore wind energy potential and generation costs.

    Science.gov (United States)

    Zhou, Yuyu; Luckow, Patrick; Smith, Steven J; Clarke, Leon

    2012-07-17

    In this study, we develop an updated global estimate of onshore wind energy potential using reanalysis wind speed data, along with updated wind turbine technology performance, land suitability factors, cost assumptions, and explicit consideration of transmission distance in the calculation of transmission costs. We find that wind has the potential to supply a significant portion of the world energy needs, although this potential varies substantially by region and with assumptions such as on what types of land can be used to site wind farms. Total global economic wind potential under central assumptions, that is, intermediate between optimistic and pessimistic, is estimated to be approximately 119.5 petawatt hours per year (13.6 TW) at less than 9 cents/kWh. A sensitivity analysis of eight key parameters is presented. Wind potential is sensitive to a number of input parameters, particularly wind speed (varying by -70% to +450% at less than 9 cents/kWh), land suitability (by -55% to +25%), turbine density (by -60% to +80%), and cost and financing options (by -20% to +200%), many of which have important policy implications. As a result of sensitivities studied here we suggest that further research intended to inform wind supply curve development focus not purely on physical science, such as better resolved wind maps, but also on these less well-defined factors, such as land-suitability, that will also have an impact on the long-term role of wind power.

  2. Area vs. density: influence of visual variables and cardinality knowledge in early number comparison.

    Science.gov (United States)

    Abreu-Mendoza, Roberto A; Soto-Alba, Elia E; Arias-Trejo, Natalia

    2013-01-01

    Current research in the number development field has focused in individual differences regarding the acuity of children's approximate number system (ANS). The most common task to evaluate children's acuity is through non-symbolic numerical comparison. Efforts have been made to prevent children from using perceptual cues by controlling the visual properties of the stimuli (e.g., density, contour length, and area); nevertheless, researchers have used these visual controls interchangeably. Studies have also tried to understand the relation between children's cardinality knowledge and their performance in a number comparison task; divergent results may in fact be rooted in the use of different visual controls. The main goal of the present study is to explore how the usage of different visual controls (density, total filled area, and correlated and anti-correlated area) affects children's performance in a number comparison task, and its relationship to children's cardinality knowledge. For that purpose, 77 preschoolers participated in three tasks: (1) counting list elicitation to test whether children could recite the counting list up to ten, (2) give a number to evaluate children's cardinality knowledge, and (3) number comparison to evaluate their ability to compare two quantities. During this last task, children were asked to point at the set with more geometric figures when two sets were displayed on a screen. Children were exposed only to one of the three visual controls. Results showed that overall, children performed above chance in the number comparison task; nonetheless, density was the easiest control, while correlated and anti-correlated area was the most difficult in most cases. Only total filled area was sensitive to discriminate cardinal principal knowers from non-cardinal principal knowers. How this finding helps to explain conflicting evidence from previous research, and how the present outcome relates to children's number word knowledge is discussed.

  3. Evaluation of wind energy potential in the south-south geopolitical ...

    African Journals Online (AJOL)

    South geopolitical zone of Nigeria using 10 year wind data obtained at a height of 10m as a possible location for energy generation from wind. The obtained ... Keywords: Mean wind speed, Wind power density, Wind energy, Renewable energy ...

  4. Late-Holocene climate evolution at the WAIS Divide site, West Antarctica: Bubble number-density estimates

    Science.gov (United States)

    Fegyveresi, John M.; Alley, R.B.; Spencer, M.K.; Fitzpatrick, J.J.; Steig, E.J.; White, J.W.C.; McConnell, J.R.; Taylor, K.C.

    2011-01-01

    A surface cooling of ???1.7??C occurred over the ???two millennia prior to ???1700 CE at the West Antarctic ice sheet (WAIS) Divide site, based on trends in observed bubble number-density of samples from the WDC06A ice core, and on an independently constructed accumulation-rate history using annual-layer dating corrected for density variations and thinning from ice flow. Density increase and grain growth in polar firn are both controlled by temperature and accumulation rate, and the integrated effects are recorded in the number-density of bubbles as the firn changes to ice. Numberdensity is conserved in bubbly ice following pore close-off, allowing reconstruction of either paleotemperature or paleo-accumulation rate if the other is known. A quantitative late-Holocene paleoclimate reconstruction is presented for West Antarctica using data obtained from the WAIS Divide WDC06A ice core and a steady-state bubble number-density model. The resultant temperature history agrees closely with independent reconstructions based on stable-isotopic ratios of ice. The ???1.7??C cooling trend observed is consistent with a decrease in Antarctic summer duration from changing orbital obliquity, although it remains possible that elevation change at the site contributed part of the signal. Accumulation rate and temperature dropped together, broadly consistent with control by saturation vapor pressure.

  5. Stochastic Prediction of Wind Generating Resources Using the Enhanced Ensemble Model for Jeju Island’s Wind Farms in South Korea

    Directory of Open Access Journals (Sweden)

    Deockho Kim

    2017-05-01

    Full Text Available Due to the intermittency of wind power generation, it is very hard to manage its system operation and planning. In order to incorporate higher wind power penetrations into power systems that maintain secure and economic power system operation, an accurate and efficient estimation of wind power outputs is needed. In this paper, we propose the stochastic prediction of wind generating resources using an enhanced ensemble model for Jeju Island’s wind farms in South Korea. When selecting the potential sites of wind farms, wind speed data at points of interest are not always available. We apply the Kriging method, which is one of spatial interpolation, to estimate wind speed at potential sites. We also consider a wind profile power law to correct wind speed along the turbine height and terrain characteristics. After that, we used estimated wind speed data to calculate wind power output and select the best wind farm sites using a Weibull distribution. Probability density function (PDF or cumulative density function (CDF is used to estimate the probability of wind speed. The wind speed data is classified along the manufacturer’s power curve data. Therefore, the probability of wind speed is also given in accordance with classified values. The average wind power output is estimated in the form of a confidence interval. The empirical data of meteorological towers from Jeju Island in Korea is used to interpolate the wind speed data spatially at potential sites. Finally, we propose the best wind farm site among the four potential wind farm sites.

  6. The use of energy pattern factor (EPF) in estimating wind power ...

    African Journals Online (AJOL)

    The Energy Pattern Factor (EPF) method is a less computational method of estimating the available wind power density of an area and wind speed variation account for the energy power density throughout a given period. Using the Average daily wind speed data for an 11 year period (2004-2014) obtained from the ...

  7. Three-component model of solar wind--interstellar medium interaction: some numerical results

    International Nuclear Information System (INIS)

    Baranov, V.; Ermakov, M.; Lebedev, M.

    1981-01-01

    A three-component (electrons, protons, H atoms) model for the interaction between the local interstellar medium and the solar wind is considered. A numerical analysis has been performed to determine how resonance charge exchange in interstellar H atoms that have penetrated the solar wind would affect the two-shock model developed previously by Baranov et al. In particular, if n/sub Hinfinity//n/sub e/infinity>10 (n/sub Hinfinity/, n/sub e/infinity denote the number density of H atoms and electrons in the local ISM) the inner shock may approach the sun as closely as the outer planetary orbits

  8. Analysis of wind speed distributions: Wind distribution function derived from minimum cross entropy principles as better alternative to Weibull function

    International Nuclear Information System (INIS)

    Kantar, Yeliz Mert; Usta, Ilhan

    2008-01-01

    In this study, the minimum cross entropy (MinxEnt) principle is applied for the first time to the wind energy field. This principle allows the inclusion of previous information of a wind speed distribution and covers the maximum entropy (MaxEnt) principle, which is also discussed by Li and Li and Ramirez as special cases in their wind power study. The MinxEnt probability density function (pdf) derived from the MinxEnt principle are used to determine the diurnal, monthly, seasonal and annual wind speed distributions. A comparison between MinxEnt pdfs defined on the basis of the MinxEnt principle and the Weibull pdf on wind speed data, which are taken from different sources and measured in various regions, is conducted. The wind power densities of the considered regions obtained from Weibull and MinxEnt pdfs are also compared. The results indicate that the pdfs derived from the MinxEnt principle fit better to a variety of measured wind speed data than the conventionally applied empirical Weibull pdf. Therefore, it is shown that the MinxEnt principle can be used as an alternative method to estimate both wind distribution and wind power accurately

  9. Wind shear coefficients and their effect on energy production

    International Nuclear Information System (INIS)

    Rehman, Shafiqur; Al-Abbadi, Naif M.

    2005-01-01

    This paper provides realistic values of wind shear coefficients calculated using measured values of wind speed at 20, 30 and 40 m above the ground for the first time in Saudi Arabia in particular and, to the best of the authors' knowledge, in the Gulf region in general. The paper also presents air density values calculated using the measured air temperature and surface pressure and the effects of wind shear factor on energy production from wind machines of different sizes. The measured data used in the study covered a period of almost three years between June 17, 1995 and December 1998. An overall mean value of wind shear coefficient of 0.194 can be used with confidence to calculate the wind speed at different heights if measured values are known at one height. The study showed that the wind shear coefficient is significantly influenced by seasonal and diurnal changes. Hence, for precise estimations of wind speed at a height, both monthly or seasonal and hourly or night time and day time average values of wind shear coefficient must be used. It is suggested that the wind shear coefficients must be calculated either (i) using long term average values of wind speed at different heights or (ii) using those half hourly mean values of wind speed for which the wind shear coefficient lies in the range 0 and 0.51. The air density, calculated using measured temperature and pressure was found to be 1.18 kg/m 3 . The air density values were also found to vary with the season of the year and hour of the day, and hence, care must be taken when precise calculations are to be made. The air density values, as shown in this paper, have no significant variation with height. The energy production analysis showed that the actual wind shear coefficient presented in this paper produced 6% more energy compared to that obtained using the 1/7 power law. Similarly, higher plant capacity factors were obtained with the wind shear factor of 0.194 compared to that with 0.143

  10. Space-time scenarios of wind power generation produced using a Gaussian copula with parametrized precision matrix

    Energy Technology Data Exchange (ETDEWEB)

    Tastu, J.; Pinson, P.; Madsen, Henrik

    2013-09-01

    The emphasis in this work is placed on generating space-time trajectories (also referred to as scenarios) of wind power generation. This calls for prediction of multivariate densities describing wind power generation at a number of distributed locations and for a number of successive lead times. A modelling approach taking advantage of sparsity of precision matrices is introduced for the description of the underlying space-time dependence structure. The proposed parametrization of the dependence structure accounts for such important process characteristics as non-constant conditional precisions and direction-dependent cross-correlations. Accounting for the space-time effects is shown to be crucial for generating high quality scenarios. (Author)

  11. On extending Kohn-Sham density functionals to systems with fractional number of electrons.

    Science.gov (United States)

    Li, Chen; Lu, Jianfeng; Yang, Weitao

    2017-06-07

    We analyze four ways of formulating the Kohn-Sham (KS) density functionals with a fractional number of electrons, through extending the constrained search space from the Kohn-Sham and the generalized Kohn-Sham (GKS) non-interacting v-representable density domain for integer systems to four different sets of densities for fractional systems. In particular, these density sets are (I) ensemble interacting N-representable densities, (II) ensemble non-interacting N-representable densities, (III) non-interacting densities by the Janak construction, and (IV) non-interacting densities whose composing orbitals satisfy the Aufbau occupation principle. By proving the equivalence of the underlying first order reduced density matrices associated with these densities, we show that sets (I), (II), and (III) are equivalent, and all reduce to the Janak construction. Moreover, for functionals with the ensemble v-representable assumption at the minimizer, (III) reduces to (IV) and thus justifies the previous use of the Aufbau protocol within the (G)KS framework in the study of the ground state of fractional electron systems, as defined in the grand canonical ensemble at zero temperature. By further analyzing the Aufbau solution for different density functional approximations (DFAs) in the (G)KS scheme, we rigorously prove that there can be one and only one fractional occupation for the Hartree Fock functional, while there can be multiple fractional occupations for general DFAs in the presence of degeneracy. This has been confirmed by numerical calculations using the local density approximation as a representative of general DFAs. This work thus clarifies important issues on density functional theory calculations for fractional electron systems.

  12. 3D WindScanner lidar measurements of wind and turbulence around wind turbines, buildings and bridges

    Science.gov (United States)

    Mikkelsen, T.; Sjöholm, M.; Angelou, N.; Mann, J.

    2017-12-01

    WindScanner is a distributed research infrastructure developed at DTU with the participation of a number of European countries. The research infrastructure consists of a mobile technically advanced facility for remote measurement of wind and turbulence in 3D. The WindScanners provide coordinated measurements of the entire wind and turbulence fields, of all three wind components scanned in 3D space. Although primarily developed for research related to on- and offshore wind turbines and wind farms, the facility is also well suited for scanning turbulent wind fields around buildings, bridges, aviation structures and of flow in urban environments. The mobile WindScanner facility enables 3D scanning of wind and turbulence fields in full scale within the atmospheric boundary layer at ranges from 10 meters to 5 (10) kilometers. Measurements of turbulent coherent structures are applied for investigation of flow pattern and dynamical loads from turbines, building structures and bridges and in relation to optimization of the location of, for example, wind farms and suspension bridges. This paper presents our achievements to date and reviews briefly the state-of-the-art of the WindScanner measurement technology with examples of uses for wind engineering applications.

  13. Wind energy applications of synthetic aperture radar

    Energy Technology Data Exchange (ETDEWEB)

    Bruun Christiansen, M.

    2006-11-15

    Synthetic aperture radars (SAR), mounted on satellites or aircraft, have proven useful for ocean wind mapping. Wind speeds at the height 10 m may be retrieved from measurements of radar backscatter using empirical model functions. The resulting wind fields are valuable in offshore wind energy planning as a supplement to on site measurements, which are costly and sparse, and model wind fields, which are not fully validated. Two applications of SAR measurements in offshore wind energy planning are addressed here: the study of wind farm wake effects and the potential of using SAR winds in offshore wind resource assessment. Firstly, wind wakes behind two large offshore wind farms in Denmark Horns Rev and Nysted are identified. A region of reduced wind speed is found downstream of both wind farms from the SAR wind fields. The wake extent and magnitude depends on the wind speed, the atmospheric stability, and the fraction of turbines operating. Wind farm wake effects are detected up to 20 km downwind of the last turbine. This distance is longer than predicted by state-of-the art wake models. Wake losses are typically 10-20% near the wind farms. Secondly, the potential of using SAR wind maps in offshore wind resource assessment is investigated. The resource assessment is made through Weibull fitting to frequency observations of wind speed and requires at least 100 satellite observations per year for a given site of interest. Predictions of the energy density are very sensitive to the wind speed and the highest possible accuracy on SAR wind retrievals is therefore sought. A 1.1 m s{sup -1} deviation on the mean wind speed is found through comparison with mast measurements at Horns Rev. The accuracy on mean wind speeds and energy densities found from satellite measurements varies with different empirical model functions. Additional uncertainties are introduced by the infrequent satellite sampling at fixed times of the day. The accuracy on satellite based wind resource

  14. Spatial and temporal patterns of global onshore wind speed distribution

    International Nuclear Information System (INIS)

    Zhou, Yuyu; Smith, Steven J

    2013-01-01

    Wind power, a renewable energy source, can play an important role in electrical energy generation. Information regarding wind energy potential is important both for energy related modeling and for decision-making in the policy community. While wind speed datasets with high spatial and temporal resolution are often ultimately used for detailed planning, simpler assumptions are often used in analysis work. An accurate representation of the wind speed frequency distribution is needed in order to properly characterize wind energy potential. Using a power density method, this study estimated global variation in wind parameters as fitted to a Weibull density function using NCEP/climate forecast system reanalysis (CFSR) data over land areas. The Weibull distribution performs well in fitting the time series wind speed data at most locations according to R 2 , root mean square error, and power density error. The wind speed frequency distribution, as represented by the Weibull k parameter, exhibits a large amount of spatial variation, a regionally varying amount of seasonal variation, and relatively low decadal variation. We also analyzed the potential error in wind power estimation when a commonly assumed Rayleigh distribution (Weibull k = 2) is used. We find that the assumption of the same Weibull parameter across large regions can result in non-negligible errors. While large-scale wind speed data are often presented in the form of mean wind speeds, these results highlight the need to also provide information on the wind speed frequency distribution. (letter)

  15. Fractional winding numbers and the U(1) problem

    International Nuclear Information System (INIS)

    Rothe, K.D.; Swieca, J.A.; Pontificia Univ. Catolica do Rio de Janeiro

    1980-06-01

    The effective Lagrangian description of gauge theories with spontaneous mass generation is simulated by considering the chiral Gross-Neveu model embedded in a two-dimensional U(1) gauge theory. It is shown that in this hybrid model the non-vanishing expectation value of psi psi is due to the contribution of instanton configurations with fractional winding. (Author) [pt

  16. Perturbation theory of the quark-gluon plasma at finite temperature and baryon number density

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    At very high energy densities, hadronic matter becomes an almost ideal gas of quarks and gluons. In these circumstances, the effects of particle interactions are small, and to some order in perturbation theory are computable by methods involving weak coupling expansions. To illustrate the perturbative methods which may be used to compute the thermodynamic potential, the results and methods which are employed to compute to first order in α/sub s/ are reviewed. The problem of the plasmon effect, and the necessity of using non-perturbative methods when going beyond first order in α/sub s/ in evaluating the thermodynamic potential are discussed. The results at zero temperature and finite baryon number density to second order in α/sub s/ are also reviewed. The method of renormalization group improving the weak coupling expansions by replacing the expansion by an expansion in a temperature and baryon number density dependent coupling which approaches zero at high energy densities is discussed. Non-perturbative effects such as instantons are briefly mentioned and the breakdown of perturbation theory for the thermodynamical at order α/sub s/ 3 for finite temperature is presented

  17. A Model-Independent Discussion of Quark Number Density and Quark Condensate at Zero Temperature and Finite Quark Chemical Potential

    International Nuclear Information System (INIS)

    Xu Shu-Sheng; Shi Chao; Cui Zhu-Fang; Zong Hong-Shi; Jiang Yu

    2015-01-01

    Generally speaking, the quark propagator is dependent on the quark chemical potential in the dense quantum chromodynamics (QCD). By means of the generating functional method, we prove that the quark propagator actually depends on p_4 + iμ from the first principle of QCD. The relation between quark number density and quark condensate is discussed by analyzing their singularities. It is concluded that the quark number density has some singularities at certain μ when T = 0, and the variations of the quark number density as well as the quark condensate are located at the same point. In other words, at a certain μ the quark number density turns to nonzero, while the quark condensate begins to decrease from its vacuum value. (paper)

  18. Roughness Sensitivity Comparisons of Wind Turbine Blade Sections

    Energy Technology Data Exchange (ETDEWEB)

    Wilcox, Benjamin J. [Texas A & M Univ., College Station, TX (United States). Dept. of Aerospace Engineering; White, Edward B. [Texas A & M Univ., College Station, TX (United States). Dept. of Aerospace Engineering; Maniaci, David Charles [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Wind Energy Technologies Dept.

    2017-10-01

    One explanation for wind turbine power degradation is insect roughness. Historical studies on insect-induced power degradation have used simulation methods which are either un- representative of actual insect roughness or too costly or time-consuming to be applied to wide-scale testing. Furthermore, the role of airfoil geometry in determining the relations between insect impingement locations and roughness sensitivity has not been studied. To link the effects of airfoil geometry, insect impingement locations, and roughness sensitivity, a simulation code was written to determine representative insect collection patterns for different airfoil shapes. Insect collection pattern data was then used to simulate roughness on an NREL S814 airfoil that was tested in a wind tunnel at Reynolds numbers between 1.6 x 106 and 4.0 x 106. Results are compared to previous tests of a NACA 633 -418 airfoil. Increasing roughness height and density results in decreased maximum lift, lift curve slope, and lift-to-drag ratio. Increasing roughness height, density, or Reynolds number results in earlier bypass transition, with critical roughness Reynolds numbers lying within the historical range. Increased roughness sensitivity on the 25% thick NREL S814 is observed compared to the 18% thick NACA 63 3 -418. Blade-element-momentum analysis was used to calculate annual energy production losses of 4.9% and 6.8% for a NACA 633 -418 turbine and an NREL S814 turbine, respectively, operating with 200 μm roughness. These compare well to historical field measurements.

  19. Magnetosheath density fluctuations and magnetopause motion

    Energy Technology Data Exchange (ETDEWEB)

    Sibeck, D.G. [Johns Hopkins Univ. Applied Physics Lab., Laurel, MD (United States); Gosling, J.T. [Los Alamos National Lab., NM (United States)

    1996-01-01

    The interplanetary magnetic field (IMF) orientation controls foreshock densities and modulates the fraction of the solar wind dynamic pressure applied to the magnetosphere. Such pressure variations produce bow shock and magnetopause motion and cause the radial profiles for various magnetosheath parameters to sweep inward and outward past nearly stationary satellites. The authors report ISEE 2 observations of correlated density and speed fluctuations, and anticorrelated density and temperature fluctuations, on an outbound pass through the northern dawnside magnetosheath. Densities decreased when the magnetic field rotated southward and draped about the magnetopause. In the absence of any significant solar wind density or dynamic pressure variations, they interpret the magnetosheath fluctuations as evidence for radial magnetosheath motion induced by variations in the IMF orientation. 41 refs., 8 figs.

  20. Experimental studies of Savonius wind turbines with variations sizes and fin numbers towards performance

    Science.gov (United States)

    Utomo, Ilham Satrio; Tjahjana, Dominicus Danardono Dwi Prija; Hadi, Syamsul

    2018-02-01

    The use of renewable energy in Indonesia is still low. Especially the use of wind energy. Wind turbine Savonius is one turbine that can work with low wind speed. However, Savonius wind turbines still have low efficiency. Therefore it is necessary to modify. Modifications by using the fin are expected to increase the positive drag force by creating a flow that can enter the overlap ratio of the gap. This research was conducted using experimental approach scheme. Parameters generated from the experiment include: power generator, power coefficient, torque coefficient. The experimental data will be collected by variation of fin area, horizontal finning, at wind speed 3 m/s - 4,85 m/s. Experimental results show that with the addition of fin can improve the performance of wind turbine Savonius 11%, and by using the diameter of 115 mm fin is able to provide maximum performance in wind turbine Savonius.

  1. MODEL-OBSERVATION COMPARISONS OF ELECTRON NUMBER DENSITIES IN THE COMA OF 67P/CHURYUMOV–GERASIMENKO DURING 2015 JANUARY

    Energy Technology Data Exchange (ETDEWEB)

    Vigren, E.; Edberg, N. J. T.; Eriksson, A. I.; Johansson, F.; Odelstad, E. [Swedish Institute of Space Physics, Uppsala (Sweden); Altwegg, K.; Tzou, C.-Y. [Physikalisches Institut, University of Bern, Bern (Switzerland); Galand, M. [Department of Physics, Imperial College London, London (United Kingdom); Henri, P.; Valliéres, X., E-mail: erik.vigren@irfu.se [Laboratoire de Physique et Chimie de l’Environnement et de l’Espace, Orleans (France)

    2016-09-01

    During 2015 January 9–11, at a heliocentric distance of ∼2.58–2.57 au, the ESA Rosetta spacecraft resided at a cometocentric distance of ∼28 km from the nucleus of comet 67P/Churyumov–Gerasimenko, sweeping the terminator at northern latitudes of 43°N–58°N. Measurements by the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis/Comet Pressure Sensor (ROSINA/COPS) provided neutral number densities. We have computed modeled electron number densities using the neutral number densities as input into a Field Free Chemistry Free model, assuming H{sub 2}O dominance and ion-electron pair formation by photoionization only. A good agreement (typically within 25%) is found between the modeled electron number densities and those observed from measurements by the Mutual Impedance Probe (RPC/MIP) and the Langmuir Probe (RPC/LAP), both being subsystems of the Rosetta Plasma Consortium. This indicates that ions along the nucleus-spacecraft line were strongly coupled to the neutrals, moving radially outward with about the same speed. Such a statement, we propose, can be further tested by observations of H{sub 3}O{sup +}/H{sub 2}O{sup +} number density ratios and associated comparisons with model results.

  2. Wind energy potential in Peshawar, Pakistan

    International Nuclear Information System (INIS)

    Nasir, S.M.; Raza, S.M.

    1994-01-01

    Hourly wind data at Peshawar airport, received from the Headquarters, Pakistan Air Force, has been used to determine the diurnal variations, speed duration and speed frequency curves. The applicability of Weibull distribution is then tested over probability density function, which shows that weibull distribution fits the wind data satisfactorily and with a good precision, provided the observations of calm spells are omitted. Our analysis shows that monthly mean wind speed and wind power varies from 0.6 to 2.0 m/s and 0.2 to 4.0 wm-2, respectively, giving fair prospects for wind owe applications over the summer months. (author)

  3. Satellite information for wind energy applications

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, M.; Astrup, P.; Bay Hasager, C.

    2004-11-01

    An introduction to satellite information relevant for wind energy applications is given. It includes digital elevation model (DEM) data based on satellite observations. The Shuttle Radar Topography Mission (SRTM) is useful for regional scale wind resource studies. Comparison results from complex terrain in Spain and flat terrain in Denmark are found to be acceptable for both sites. Also land cover type information can be retrieved from satellite observations. Land cover type maps have to be combined with roughness data from field observation or literature values. Land cover type maps constitute an aid to map larger regions within shorter time. Field site observations of obstacles and hedges are still necessary. The raster-based map information from DEM and land cover maps can be converted for use in WASP. For offshore locations it is possible to estimate the wind resources based on ocean surface wind data from several types of satellite observations. The RWT software allows an optimal calculation of SAR wind resource statistics. A tab-file with SAR-based observed wind climate (OWC) data can be obtained for 10 m above sea level and used in WASP. RWT uses a footprint averaging technique to obtain data as similar as possible to mast observations. Maximum-likelihood fitting is used to calculate the Weibull A and k parameters from the constrained data set. Satellite SAR wind maps cover the coastal zone from 3 km and offshore with very detailed information of 400 m by 400 m grid resolution. Spatial trends in mean wind, energy density, Weibull A and k and uncertainty values are provided for the area of interest. Satellite scatterometer wind observations have a spatial resolution of 25 km by 25 km. These data typically represent a site further offshore, and the tab-file statistics should be used in WASP combined with topography and roughness information to assess the coastal wind power potential. Scatterometer wind data are observed {approx} twice per day, whereas SAR only

  4. The formation of molecules in protostellar winds

    International Nuclear Information System (INIS)

    Glassgold, A.E.; Mamon, G.A.; Huggins, P.J.

    1991-01-01

    The production and destruction processes for molecules in very fast protostellar winds are analyzed and modeled with a one-dimensional chemical kinetics code. Radial density and temperature distributions suggested by protostellar theory are explored as are a range of mass-loss rates. The efficiency of in situ formation of heavy molecules is found to be high if the wind temperature falls sufficiently rapidly, as indicated by theory. The degree of molecular conversion is a strong function of the mass-loss rate and of density gradients associated with the acceleration and collimation of the wind. Even in cases where essentially all of the heavy atoms are processed into molecules, a significant fraction of atomic hydrogen remains so that hghly molecular, protostellar winds are able to emit the 21-cm line. Although CO has a substantial abundance in most models relevant to very young protostars, high abundances of other molecules such as SiO and H2O signify more complete association characteristic of winds containing regions of very high density. Although the models apply only to regions close to the protostar, they are in qualitative accord with recent observations at much larger distances of both atomic and molecular emission from extremely high-velocity flow. 57 refs

  5. Wind Power in Electrical Distribution Systems

    DEFF Research Database (Denmark)

    Chen, Zhe

    2013-01-01

    Recent years, wind power is experiencing a rapid growth, large number of wind turbines/wind farms have been installed and connected to power systems. In addition to the large centralised wind farms connected to transmission grids, many distributed wind turbines and wind farms are operated as dist...

  6. The study of the influence of the diameter ratio and blade number to the performance of the cross flow wind turbine by using 2D computational fluid dynamics modeling

    Science.gov (United States)

    Tjahjana, Dominicus Danardono Dwi Prija; Purbaningrum, Pradityasari; Hadi, Syamsul; Wicaksono, Yoga Arob; Adiputra, Dimas

    2018-02-01

    Cross flow turbine can be one of the alternative energies for regions with low wind speed. Collision between wind and the blades which happened two times caused the cross flow turbine to have high power coefficient. Some factors that influence the turbine power coefficient are diameter ratio and blade number. The objective of the research was to study the effect of the diameter ratio and the blade number to the cross flow wind turbine performance. The study was done in two dimensional (2D) computational fluid dynamics (CFD) simulation method using the ANSYS-Fluent software. The turbine diameter ratio were 0.58, 0.63, 0.68 and 0.73. The diameter ratio resulting in the highest power coefficient value was then simulated by varying the number of blades, namely 16, 20 and 24. Each variation was tested on the wind speed of 2 m/s and at the tip speed ratio (TSR) of 0.1 to 0.4 with the interval of 0.1. The wind turbine with the ratio diameter of 0.68 and the number of blades of 20 generated the highest power coefficient of 0.5 at the TSR of 0.3.

  7. On the Origins of the Intercorrelations Between Solar Wind Variables

    Science.gov (United States)

    Borovsky, Joseph E.

    2018-01-01

    It is well known that the time variations of the diverse solar wind variables at 1 AU (e.g., solar wind speed, density, proton temperature, electron temperature, magnetic field strength, specific entropy, heavy-ion charge-state densities, and electron strahl intensity) are highly intercorrelated with each other. In correlation studies of the driving of the Earth's magnetosphere-ionosphere-thermosphere system by the solar wind, these solar wind intercorrelations make determining cause and effect very difficult. In this report analyses of solar wind spacecraft measurements and compressible-fluid computer simulations are used to study the origins of the solar wind intercorrelations. Two causes are found: (1) synchronized changes in the values of the solar wind variables as the plasma types of the solar wind are switched by solar rotation and (2) dynamic interactions (compressions and rarefactions) in the solar wind between the Sun and the Earth. These findings provide an incremental increase in the understanding of how the Sun-Earth system operates.

  8. Winding numbers in homotopy theory from integers to reals

    International Nuclear Information System (INIS)

    Mekhfi, M.

    1993-07-01

    In Homotopy Theory (HT) we define paths on a given topological space. Closed paths prove to be construction elements of a group (the fundamental group) Π 1 and carry charges, the winding numbers. The charges are integers as they indicate how many times closed paths encircle a given hole (or set of holes). Open paths as they are defined in (HT) do not possess any groups structure and as such they are less useful in topology. In the present paper we enlarge the concept of a path in such a way that both types of paths do possess a group structure. In this broad sense we have two fundamental groups the Π i = Z group and the SO(2) group of rotations but the latter has the global property that there is no periodicity in the rotation angle. There is also two charge operators W and W λ whose eigenvalues are either integers or reals depending respectively on the paths being closed or open. Also the SO(2) group and the real charge operator W λ are not independently defined but directly related respectively to the Π i group and to the integer charge operator W. Thus well defined links can be established between seemingly different groups and charges. (author). 3 refs, 1 fig

  9. THE H I MASS DENSITY IN GALACTIC HALOS, WINDS, AND COLD ACCRETION AS TRACED BY Mg II ABSORPTION

    Energy Technology Data Exchange (ETDEWEB)

    Kacprzak, Glenn G. [Swinburne University of Technology, Victoria 3122 (Australia); Churchill, Christopher W., E-mail: gkacprzak@astro.swin.edu.au, E-mail: cwc@nmsu.edu [New Mexico State University, Las Cruces, NM 88003 (United States)

    2011-12-20

    It is well established that Mg II absorption lines detected in background quasar spectra arise from gas structures associated with foreground galaxies. The degree to which galaxy evolution is driven by the gas cycling through halos is highly uncertain because their gas mass density is poorly constrained. Fitting the Mg II equivalent width (W) distribution with a Schechter function and applying the N(H I)-W correlation of Menard and Chelouche, we computed {Omega}(H I){sub MgII} {identical_to} {Omega}(H I){sub halo} = 1.41{sup +0.75}{sub -0.44} Multiplication-Sign 10{sup -4} for 0.4 {<=} z {<=} 1.4. We exclude damped Ly{alpha}'s (DLAs) from our calculations so that {Omega}(H I){sub halo} comprises accreting and/or outflowing halo gas not locked up in cold neutral clouds. We deduce that the cosmic H I gas mass density fraction in galactic halos traced by Mg II absorption is {Omega}(H I){sub halo}/{Omega}(H I){sub DLA} {approx_equal} 15% and {Omega}(H I){sub halo}/{Omega}{sub b} {approx_equal} 0.3%. Citing several lines of evidence, we propose that infall/accretion material is sampled by small W whereas outflow/winds are sampled by large W, and find that {Omega}(H I){sub infall} is consistent with {Omega}(H I){sub outflow} for bifurcation at W = 1.23{sup +0.15}{sub -0.28} Angstrom-Sign ; cold accretion would then comprise no more than {approx}7% of the total H I mass density. We discuss evidence that (1) the total H I mass cycling through halos remains fairly constant with cosmic time and that the accretion of H I gas sustains galaxy winds, and (2) evolution in the cosmic star formation rate depends primarily on the rate at which cool H I gas cycles through halos.

  10. Concept of effective atomic number and effective mass density in dual-energy X-ray computed tomography

    International Nuclear Information System (INIS)

    Bonnin, Anne; Duvauchelle, Philippe; Kaftandjian, Valérie; Ponard, Pascal

    2014-01-01

    This paper focuses on dual-energy X-ray computed tomography and especially the decomposition of the measured attenuation coefficient in a mass density and atomic number basis. In particular, the concept of effective atomic number is discussed. Although the atomic number is well defined for chemical elements, the definition of an effective atomic number for any compound is not an easy task. After reviewing different definitions available in literature, a definition related to the method of measurement and X-ray energy, is suggested. A new concept of effective mass density is then introduced in order to characterize material from dual-energy computed tomography. Finally, this new concept and definition are applied on a simulated case, focusing on explosives identification in luggage

  11. Two-colour QCD at finite fundamental quark-number density and related theories

    International Nuclear Information System (INIS)

    Hands, S.J.; Kogut, J.B.; Morrison, S.E.; Sinclair, D.K.

    2001-01-01

    We are simulating SU(2) Yang-Mills theory with four flavours of dynamical quarks in the fundamental representation of SU(2) 'colour' at finite chemical potential, μ for quark number, as a model for QCD at finite baryon number density. In particular we observe that for μ large enough this theory undergoes a phase transition to a state with a diquark condensate which breaks quark-number symmetry. In this phase we examine the spectrum of light scalar and pseudoscalar bosons and see evidence for the Goldstone boson associated with this spontaneous symmetry breaking. This theory is closely related to QCD at finite chemical potential for isospin, a theory which we are now studying for SU(3) colour

  12. Two-colour QCD at finite fundamental quark-number density and related theories

    International Nuclear Information System (INIS)

    Hands, S. J.; Kogut, J. B.; Morrison, S. E.; Sinclair, D. K.

    2000-01-01

    We are simulating SU(2) Yang-Mills theory with four flavours of dynamical quarks in the fundamental representation of SU(2) colour at finite chemical potential, p for quark number, as a model for QCD at finite baryon number density. In particular we observe that for p large enough this theory undergoes a phase transition to a state with a diquark condensate which breaks quark-number symmetry. In this phase we examine the spectrum of light scalar and pseudoscalar bosons and see evidence for the Goldstone boson associated with this spontaneous symmetry breaking. This theory is closely related to QCD at finite chemical potential for isospin, a theory which we are now studying for SU(3) colour

  13. Space-time trajectories of wind power generation: Parameterized precision matrices under a Gaussian copula approach

    DEFF Research Database (Denmark)

    Tastu, Julija; Pinson, Pierre; Madsen, Henrik

    2015-01-01

    -correlations. Estimation is performed in a maximum likelihood framework. Based on a test case application in Denmark, with spatial dependencies over 15 areas and temporal ones for 43 hourly lead times (hence, for a dimension of n = 645), it is shown that accounting for space-time effects is crucial for generating skilful......Emphasis is placed on generating space-time trajectories of wind power generation, consisting of paths sampled from high-dimensional joint predictive densities, describing wind power generation at a number of contiguous locations and successive lead times. A modelling approach taking advantage...

  14. Construction of a voxel model from CT images with density derived from CT numbers

    International Nuclear Information System (INIS)

    Cheng Mengyun; Zeng Qin; Cao Ruifen; Li Gui; Zheng Huaqing; Huang Shanqing; Song Gang; Wu Yican

    2011-01-01

    The voxel models representing human anatomy have been developed to calculate dose distribution in human body, while the density and elemental composition are the most important physical properties of voxel model. Usually, when creating the Monte Carlo input files, the average tissue densities recommended in ICRP Publication were used to assign each voxel in the existing voxel models. As each tissue consists of many voxels with different densities, the conventional method of average tissue densities failed to take account of the voxel's discrepancy, and therefore could not represent human anatomy faithfully. To represent human anatomy more faithfully, a method was implemented to assign each voxel, the densities of which were derived from CT number. In order to compare with the traditional method, we constructed two models from the cadaver specimen dataset. A CT-based pelvic voxel model called Pelvis-CT model was constructed, the densities of which were derived from the CT numbers. A color photograph-based pelvic voxel model called Pelvis-Photo model was also constructed, the densities of which were taken from ICRP Publication. The CT images and the color photographs were obtained from the same female cadaver specimen. The Pelvis-CT and Pelvis-Photo models were both ported into Monte Carlo code MCNP to calculate the conversion coefficients from kerma free-in-air to absorbed dose for external monoenergetic photon beams with energies of 0.1, 1 and 10 MeV under anterior-posterior (AP) geometry. The results were compared with those of given in ICRP Publication 74. Differences of up to 50% were observed between conversion coefficients of Pelvis-CT and Pelvis- Photo models, moreover the discrepancies decreased for the photon beams with higher energies. The overall trend of conversion coefficients of the Pelvis-CT model agreed well with that of ICRP Publication 74 data. (author)

  15. Theoretical models for MHD turbulence in the solar wind

    International Nuclear Information System (INIS)

    Veltri, P.; Malara, F.

    1997-01-01

    The in situ measurements of velocity, magnetic field, density and temperature fluctuations performed in the solar wind have greatly improved our knowledge of MDH turbulence not only from the point of view of space physics but also from the more general point of view of plasma physics. These fluctuations which extend over a wide range of frequencies (about 5 decades), a fact which seems to be the signature of turbulent nonlinear energy cascade, display, mainly in the trailing edge of high-speed streams, a number of features characteristic of a self-organized situation: i) a high degree of correlation between magnetic and velocity field fluctuations, ii) a very low level of fluctuations in mass density and magnetic-field intensity, iii) a considerable anisotropy revealed by minimum variance analysis of the magnetic-field correlation tensor. Many fundamental processes in plasma physics, which were largely unknown or not understood before their observations in the solar wind, have been explained, by building up analytical models or performing numerical simulations. We discuss the most recent analytical theories and numerical simulations and outline the limits implicit in any analysis which consider the low-frequency solar-wind fluctuations as a superposition of linear modes. The characterization of low-frequency fluctuations during Alfvenic periods, which results from the models discussed, is finally presented

  16. On wind speed pattern and energy potential in Nigeria

    International Nuclear Information System (INIS)

    Adaramola, M.S.; Oyewola, O.M.

    2011-01-01

    The aim of this paper is to review wind speed distribution and wind energy availability in Nigeria and discuss the potential of using this resource for generation of wind power in the country. The power output from a wind turbine is strongly dependent on the wind speed and accurate information about the wind data in a targeted location is essential. The annual mean wind speeds in Nigeria range from about 2 to 9.5 m/s and the annual power density range between 3.40 and 520 kW/m 2 based on recent reported data. The trend shows that wind speeds are low in the south and gradually increases to relatively high speeds in the north. The areas that are suitable for exploitation of wind energy for electricity generation as well as for water pumping were identified. Also some of the challenges facing the development of wind energy and suggested solutions were presented. - Research Highlights: → Review of wind speed distribution and wind energy availability in Nigeria in presented. → The annual mean wind speeds in Nigeria range from about 2 to 9.5 m/s and the annual power density range between 3.40 and 520 kW/m 2 based on recent reported data. → The areas that are suitable for exploitation of wind energy for electricity generation as well as for water pumping were identified.

  17. Constraining the cosmic radiation density due to lepton number

    International Nuclear Information System (INIS)

    Mangano, Gianpiero; Miele, Gennaro; Pastor, Sergio; Pisanti, Ofelia; Sarikas, Srdjan

    2013-01-01

    The cosmic energy density in the form of radiation before and during Big Bang Nucleosynthesis is typically parameterized in terms of the effective number of neutrinos N eff , and it is a key parameters in cosmological models slightly more general than the successful minimal ΛCDM scenario. This quantity, in case of no extra degrees of freedom, depends upon the chemical potential and the temperature characterizing the three active neutrino distributions, as well as by their possible non-thermal features. We summarize here the results of a recent analysis to determine the BBN bound on N eff from primordial neutrino–antineutrino asymmetries, with a careful treatment of the dynamics of neutrino oscillations, and considering quite a wide range for the total lepton number in the neutrino sector, η ν =η ν e +η ν μ +η ν τ and the initial electron neutrino asymmetry η ν e in . Comparing these results with the forthcoming measurement of N eff by the Planck satellite will give insight on the nature of the radiation content of the universe

  18. Solar wind modulation of the Martian ionosphere observed by Mars Global Surveyor

    Directory of Open Access Journals (Sweden)

    J.-S. Wang

    2004-06-01

    Full Text Available Electron density profiles in the Martian ionosphere observed by the radio occultation experiment on board Mars Global Surveyor have been analyzed to determine if the densities are influenced by the solar wind. Evidence is presented that the altitude of the maximum ionospheric electron density shows a positive correlation to the energetic proton flux in the solar wind. The solar wind modulation of the Martian ionosphere can be attributed to heating of the neutral atmosphere by the solar wind energetic proton precipitation. The modulation is observed to be most prominent at high solar zenith angles. It is argued that this is consistent with the proposed modulation mechanism.

  19. Temporal and spatial effects of ablation plume on number density distribution of droplets in an aerosol measured by laser-induced breakdown

    International Nuclear Information System (INIS)

    Yashiro, H.; Kakehata, M.

    2013-01-01

    We proposed and experimentally demonstrated a novel method of evaluating the number density of droplets in an aerosol by laser-induced breakdown. The number density of droplets is evaluated from the volume in which the laser intensity exceeds the breakdown threshold intensity for droplets, and the number of droplets in this volume, which is evaluated by the experimentally observed breakdown probability. This measurement method requires a large number of laser shots for not only precise measurement but also highly temporally and spatially resolved density distribution in aerosol. Laser ablation plumes ejected from liquid droplets generated by breakdown disturb the density around the measurement points. Therefore, the recovery time of the density determines the maximum repetition rate of the probe laser irradiating a fixed point. The expansion range of the ablation plume determines the minimum distance at which the measurement points are unaffected by a neighboring breakdown when multiple laser beams are simultaneously irradiated. These laser irradiation procedures enable the measurement of the number density distribution of droplets in an aerosol at a large number of points within a short measurement time.

  20. Temporal and spatial effects of ablation plume on number density distribution of droplets in an aerosol measured by laser-induced breakdown

    Energy Technology Data Exchange (ETDEWEB)

    Yashiro, H.; Kakehata, M. [Electronics and Photonics Research Institute (ESPRIT), National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan)

    2013-05-07

    We proposed and experimentally demonstrated a novel method of evaluating the number density of droplets in an aerosol by laser-induced breakdown. The number density of droplets is evaluated from the volume in which the laser intensity exceeds the breakdown threshold intensity for droplets, and the number of droplets in this volume, which is evaluated by the experimentally observed breakdown probability. This measurement method requires a large number of laser shots for not only precise measurement but also highly temporally and spatially resolved density distribution in aerosol. Laser ablation plumes ejected from liquid droplets generated by breakdown disturb the density around the measurement points. Therefore, the recovery time of the density determines the maximum repetition rate of the probe laser irradiating a fixed point. The expansion range of the ablation plume determines the minimum distance at which the measurement points are unaffected by a neighboring breakdown when multiple laser beams are simultaneously irradiated. These laser irradiation procedures enable the measurement of the number density distribution of droplets in an aerosol at a large number of points within a short measurement time.

  1. Time-dependent occupation numbers in reduced-density-matrix-functional theory: Application to an interacting Landau-Zener model

    International Nuclear Information System (INIS)

    Requist, Ryan; Pankratov, Oleg

    2011-01-01

    We prove that if the two-body terms in the equation of motion for the one-body reduced density matrix are approximated by ground-state functionals, the eigenvalues of the one-body reduced density matrix (occupation numbers) remain constant in time. This deficiency is related to the inability of such an approximation to account for relative phases in the two-body reduced density matrix. We derive an exact differential equation giving the functional dependence of these phases in an interacting Landau-Zener model and study their behavior in short- and long-time regimes. The phases undergo resonances whenever the occupation numbers approach the boundaries of the interval [0,1]. In the long-time regime, the occupation numbers display correlation-induced oscillations and the memory dependence of the functionals assumes a simple form.

  2. The effects of vision-related aspects on noise perception of wind turbines in quiet areas.

    Science.gov (United States)

    Maffei, Luigi; Iachini, Tina; Masullo, Massimiliano; Aletta, Francesco; Sorrentino, Francesco; Senese, Vincenzo Paolo; Ruotolo, Francesco

    2013-04-26

    Preserving the soundscape and geographic extension of quiet areas is a great challenge against the wide-spreading of environmental noise. The E.U. Environmental Noise Directive underlines the need to preserve quiet areas as a new aim for the management of noise in European countries. At the same time, due to their low population density, rural areas characterized by suitable wind are considered appropriate locations for installing wind farms. However, despite the fact that wind farms are represented as environmentally friendly projects, these plants are often viewed as visual and audible intruders, that spoil the landscape and generate noise. Even though the correlations are still unclear, it is obvious that visual impacts of wind farms could increase due to their size and coherence with respect to the rural/quiet environment. In this paper, by using the Immersive Virtual Reality technique, some visual and acoustical aspects of the impact of a wind farm on a sample of subjects were assessed and analyzed. The subjects were immersed in a virtual scenario that represented a situation of a typical rural outdoor scenario that they experienced at different distances from the wind turbines. The influence of the number and the colour of wind turbines on global, visual and auditory judgment were investigated. The main results showed that, regarding the number of wind turbines, the visual component has a weak effect on individual reactions, while the colour influences both visual and auditory individual reactions, although in a different way.

  3. An evaluation of wind energy potential at Kati Bandar, Pakistan

    Energy Technology Data Exchange (ETDEWEB)

    Ullah, Irfan [Department of Mechanical Engineering, NWFP University of Engineering and Technology, Peshawar (Pakistan); Chaudhry, Qamar-uz-Zaman [Pakistan Meteorological Department, Sector H-8/2, Islamabad (Pakistan); Chipperfield, Andrew J. [Computational Engineering and Design Group, School of Engineering Sciences, University of Southampton, Highfield, Southampton SO17 1BJ (United Kingdom)

    2010-02-15

    As a developing nation of energy-starved people, Pakistan urgently needs new sources of affordable, clean energy. Wind energy is potentially attractive because of its low environmental impact and sustainability. This work aims to investigate the wind power production potential of sites in south-eastern Pakistan. Wind speed data measured over a one-year period at a typical site on the south-east coast of Pakistan are presented. Frequency distributions of wind speed and wind power densities at three heights, seasonal variations of speed, and estimates of power likely to be produced by commercial turbines are included. The site investigated is found to be a class 4 wind power site with annual average wind speed of 7.16 m/s and power density of 414 W/m{sup 2} at 50 m height. The site is, therefore, likely to be suitable for wind farms as well as small, stand-alone systems. (author)

  4. The wind power of Mexico

    International Nuclear Information System (INIS)

    Hernandez-Escobedo, Q.; Manzano-Agugliaro, F.; Zapata-Sierra, A.

    2010-01-01

    The high price of fossil fuels and the environmental damage they cause have encouraged the development of renewable energy resources, especially wind power. This work discusses the potential of wind power in Mexico, using data collected every 10 min between 2000 and 2008 at 133 automatic weather stations around the country. The wind speed, the number of hours of wind useful for generating electricity and the potential electrical power that could be generated were estimated for each year via the modelling of a wind turbine employing a logistic curve. A linear correlation of 90.3% was seen between the mean annual wind speed and the mean annual number of hours of useful wind. Maps were constructed of the country showing mean annual wind speeds, useful hours of wind, and the electrical power that could be generated. The results show that Mexico has great wind power potential with practically the entire country enjoying more than 1700 h of useful wind per year and the potential to generate over 2000 kW of electrical power per year per wind turbine installed (except for the Chiapas's State). Indeed, with the exception of six states, over 5000 kW per year could be generated by each turbine. (author)

  5. The effects of variability on the number-flux-density relationship for radio sources

    International Nuclear Information System (INIS)

    Schuch, N.J.

    1981-01-01

    It has been known for some time that the number-flux-density relationship for radio sources requires a population of sources whose properties evolve with cosmological epoch, at least in models where the redshifts are all taken to be cosmological. In particular, the surveys made at metre wavelengths show, for bright sources, a slope of the log N -log S curve which is steeper than the value -1.5 expected in a static, non-evolving Euclidean universe. Here, N is the number of radio sources brighter than flux density S. Expansion without evolution in conventional geometrical models predicts slopes flatter than -1.5. If the radio survey is carried out at higher frequencies (typically 2.7 or 5 GHz - 11 or 6 cm wavelength), the slope of the log N -log S curve is steeper than -1.5 but not so steep as the slopes found for the low-frequency surveys. Many of the sources found in high-frequency surveys have radio spectra with relatively higher flux-densities in the centimetre range; these sources are frequently variable at high frequencies, with time-scales from a month or two upwards. Some possible effects of the variations on the observed counts of radio sources are considered. (author)

  6. Preliminary scaling laws for plasma current, ion kinetic temperature, and plasma number density in the NASA Lewis bumpy torus plasma

    Science.gov (United States)

    Roth, J. R.

    1976-01-01

    Parametric variation of independent variables which may affect the characteristics of bumpy torus plasma have identified those which have a significant effect on the plasma current, ion kinetic temperature, and plasma number density, and those which do not. Empirical power law correlations of the plasma current, and the ion kinetic temperature and number density were obtained as functions of potential applied to the midplane electrode rings, the background neutral gas pressure, and the magnetic field strength. Additional parameters studied included the type of gas, the polarity of the midplane electrode rings, the mode of plasma operation, and the method of measuring the plasma number density. No significant departures from the scaling laws appear to occur at the highest ion kinetic temperatures or number densities obtained to date.

  7. Atomic Physics of Shocked Plasma in Winds of Massive Stars

    Science.gov (United States)

    Leutenegger, Maurice A.; Cohen, David H.; Owocki, Stanley P.

    2012-01-01

    High resolution diffraction grating spectra of X-ray emission from massive stars obtained with Chandra and XMM-Newton have revolutionized our understanding of their powerful, radiation-driven winds. Emission line shapes and line ratios provide diagnostics on a number of key wind parameters. Modeling of resolved emission line velocity profiles allows us to derive independent constraints on stellar mass-loss rates, leading to downward revisions of a factor of a few from previous measurements. Line ratios in He-like ions strongly constrain the spatial distribution of Xray emitting plasma, confirming the expectations of radiation hydrodynamic simulations that X-ray emission begins moderately close to the stellar surface and extends throughout the wind. Some outstanding questions remain, including the possibility of large optical depths in resonance lines, which is hinted at by differences in line shapes of resonance and intercombination lines from the same ion. Resonance scattering leads to nontrivial radiative transfer effects, and modeling it allows us to place constraints on shock size, density, and velocity structure

  8. Solar wind/local interstellar medium interaction including charge exchange with neural hydrogen

    Science.gov (United States)

    Pauls, H. Louis; Zank, Gary P.

    1995-01-01

    We present results from a hydrodynamic model of the interaction of the solar wind with the local interstellar medium (LISM), self-consistently taking into account the effects of charge exchange between the plasma component and the interstellar neutrals. The simulation is fully time dependent, and is carried out in two or three dimensions, depending on whether the helio-latitudinal dependence of the solar wind speed and number density (both giving rise to three dimensional effects) are included. As a first approximation it is assumed that the neutral component of the flow can be described by a single, isotropic fluid. Clearly, this is not the actual situation, since charge exchange with the supersonic solar wind plasma in the region of the nose results in a 'second' neutral fluid propagating in the opposite direction as that of the LISM neutrals.

  9. Analysis on Designed Wind Speed of Wind Power Generator Based on Wind Source Estimation%基于风资源评估的风电机组设计风速分析

    Institute of Scientific and Technical Information of China (English)

    华荣芹; 张新燕; 胡立锦

    2014-01-01

    Taking topography and wind source of one wind area in Xinjiang as study object,this paper analyzes basic data of the historic wind source.By calculating and analyzing main parameters such as wind energy density,wind direction frequen-cy,direction distribution of wind energy density,yearly change of wind speed,turbulence intensity and yearly generating ca-pacity,it optimizes and ensures designed wind speed and power of the wind power generator in favor of this area.By exem-plification,it analyzes impact of wake flow and points out problems to be noted for model selection and configuration for the wind power generator.%以新疆某风区的地形、风资源情况为研究对象,分析其历史风资源基础数据。通过计算、分析风能密度、风向频率及风能密度的方向分布、风速年变化、湍流强度、年发电量等主要参数,优化和确定有利于该地区的风力机设计风速和功率。通过例证分析了尾流的影响,指出进行风力发电机组选型和配置时应注意的问题。

  10. Revealing the Physics of Galactic Winds Through Massively-Parallel Hydrodynamics Simulations

    Science.gov (United States)

    Schneider, Evan Elizabeth

    This thesis documents the hydrodynamics code Cholla and a numerical study of multiphase galactic winds. Cholla is a massively-parallel, GPU-based code designed for astrophysical simulations that is freely available to the astrophysics community. A static-mesh Eulerian code, Cholla is ideally suited to carrying out massive simulations (> 20483 cells) that require very high resolution. The code incorporates state-of-the-art hydrodynamics algorithms including third-order spatial reconstruction, exact and linearized Riemann solvers, and unsplit integration algorithms that account for transverse fluxes on multidimensional grids. Operator-split radiative cooling and a dual-energy formalism for high mach number flows are also included. An extensive test suite demonstrates Cholla's superior ability to model shocks and discontinuities, while the GPU-native design makes the code extremely computationally efficient - speeds of 5-10 million cell updates per GPU-second are typical on current hardware for 3D simulations with all of the aforementioned physics. The latter half of this work comprises a comprehensive study of the mixing between a hot, supernova-driven wind and cooler clouds representative of those observed in multiphase galactic winds. Both adiabatic and radiatively-cooling clouds are investigated. The analytic theory of cloud-crushing is applied to the problem, and adiabatic turbulent clouds are found to be mixed with the hot wind on similar timescales as the classic spherical case (4-5 t cc) with an appropriate rescaling of the cloud-crushing time. Radiatively cooling clouds survive considerably longer, and the differences in evolution between turbulent and spherical clouds cannot be reconciled with a simple rescaling. The rapid incorporation of low-density material into the hot wind implies efficient mass-loading of hot phases of galactic winds. At the same time, the extreme compression of high-density cloud material leads to long-lived but slow-moving clumps

  11. Chemistry in T Tauri winds

    Energy Technology Data Exchange (ETDEWEB)

    Rawlings, J M.C.; Williams, D A; Canto, J

    1988-02-15

    The chemistry occurring in the winds of T Tauri stars is investigated. On the assumption that the wind is dust-free, then routes to H/sub 2/ are inhibited under the conditions in the wind, and subsequent chemistry does not produce substantial molecular abundances. The major losses to the chemical network lie in the geometrical dilution and collisional dissociation rather than in chemical destruction and photodissociation. Mass loading of the wind with dust and H/sub 2/ may, however, occur. This stimulates the chemistry and may in some circumstances lead to a conversion of approx.1-10 per cent of carbon into CO. This gives a column density of CO which is marginally detectable. A positive detection of CO at high wind velocities would imply that the winds must be cool and that mixing of molecular material from a disc, which may play a role in collimating the wind, or the remnants of a disc, must occur.

  12. Visualization of wind farms

    International Nuclear Information System (INIS)

    Pahlke, T.

    1994-01-01

    With the increasing number of wind energy installations the visual impact of single wind turbines or wind parks is a growing problem for landscape preservation, leading to resistance of local authorities and nearby residents against wind energy projects. To increase acceptance and to form a basis for planning considerations, it is necessary to develop instruments for the visualization of planned wind parks, showing their integration in the landscape. Photorealistic montages and computer animation including video sequences may be helpful in 'getting the picture'. (orig.)

  13. Economic feasibility of developing wind turbines in Aligoodarz, Iran

    International Nuclear Information System (INIS)

    Mohammadi, Kasra; Mostafaeipour, Ali

    2013-01-01

    Highlights: • Three hourly long term measured wind speed data from 2005 to 2009 for city of Aligoodarz in Iran was analyzed. • Wind power density and wind energy density of the region were estimated using Weibull distribution. • Performance of six different wind turbine models were analyzed. • Economic evaluation was performed and installing of E-3120 (50 kW) model turbine was suggested. - Abstract: This study evaluates the economic feasibility of electricity generation using wind turbines in city of Aligoodarz situated in the west part of Iran. For this purpose, the wind energy potential and its characteristics were assessed in terms of diurnal, monthly and annual analysis using five years measured wind speed data from 2005 to 2009 at 10 m height. The analysis results specified a nearly stable wind pattern in different hours and months of the year which demonstrated more suitability of the region for wind energy harnessing to meet the electricity demand in all time intervals throughout the year. According to Pacific Northwest Laboratory (PNL) wind power classification, the wind resource in Aligoodarz falls in class 3 and the location was recognized as a moderate location for wind energy development. The economic feasibility of six different wind turbines with rated powers ranging from 20 to 150 kW was evaluated. Among all turbines examined, the E-3120 wind turbine was introduced as the most attractive option for installation

  14. Influence of density and mean atomic number on CT attenuation corrected PET: Phantom studies

    International Nuclear Information System (INIS)

    Maintas, D.; Houzard, C.; Galy, G.; Maintas, C.; Itti, R.; Cachin, F.; Mognetti, Th.; Slosman

    2007-01-01

    Aim: the aim of this work is to study the influence of medium density on the CT or external source attenuation corrected images, by simulation on a phantom, with various positron emission tomographs. Material and method: a series of experiments on a cylindrical phantom filled with water marked with [18 F]-FDG, containing six vials filled per pair with mediums of different densities or solutions of KI, CaCl 2 and saccharose with various densities, was carried out under comparable conditions on three different tomographs. In only one of the vials of each pair, an identical radioactivity of [18 F]-FDG was added, three to five fold the surrounding activity. The reconstructions and attenuation corrections suggested by the manufacturers, were carried out under the usual conditions of each site. The activity of each structure was estimated by the methods of profiles and regions of interest, on the non attenuation corrected images (N.A.C.), the images corrected by CT (C.T.A.C.), and/or external source (G.P.A.C.). Results: with all three tomographs, the activities estimated on the N.A.C. images present an inverse correlation to the medium density (important absorption by dense material). On C.T.A.C. images, we observed with only two of the three tomographs, an overestimation of the activity in the 'radioactive' vials, depending on the medium mean Z number and density (over correction), and a artifactual 'activity' in the denser 'cold' vial (incorrect attenuation correction. The dense saccharose solutions, with non elevated Z number, do not affect the CT attenuation correction. (authors)

  15. Wind energy potential in India

    International Nuclear Information System (INIS)

    Rangarajan, S.

    1995-01-01

    Though located in the tropics, India is endowed with substantial wind resources because of its unique geographical location which gets fully exposed to both the south-west and north-east monsoon winds. The westerly winds of the south-west monsoons provide bulk of the wind potential. Areas with mean annual wind speed exceeding 18 k mph and areas with mean annual power density greater than 140 W/m 2 have been identified using the wind data collected by the wind monitoring project funded by the Ministry of Non-conventional Energy Sources (MNES). Seasonal variations in wind speed at selected locations are discussed as also the frequency distribution of hourly wind speed. Annual capacity factors for 250 kW wind electric generators have been calculated for several typical locations. A good linear correlation has been found between mean annual wind speed and mean annual capacity factor. A method is described for assessing wind potential over an extended region where adequate data is available. It is shown that the combined wind energy potential over five selected areas of limited extent in Gujarat, Andhra Pradesh and Tamil Nadu alone amounts to 22,000 MW under the assumption of 20 per cent land availability for installing wind farms. For a higher percentage of land availability, the potential will be correspondingly higher. (author). 12 refs., 6 figs., 3 tabs

  16. Wind energy potential assessment at four typical locations in Ethiopia

    Energy Technology Data Exchange (ETDEWEB)

    Bekele, Getachew; Palm, Bjoern [Department of Energy Technology, KTH, 10044 Stockholm (Sweden)

    2009-03-15

    The wind energy potential at four different sites in Ethiopia - Addis Ababa (09:02N, 38:42E), Mekele (13:33N, 39:30E), Nazret (08:32N, 39:22E), and Debrezeit (8:44N, 39:02E) - has been investigated by compiling data from different sources and analyzing it using a software tool. The results relating to wind energy potential are given in terms of the monthly average wind speed, wind speed probability density function (PDF), wind speed cumulative density function (CDF), and wind speed duration curve (DC) for all four selected sites. In brief, for measurements taken at a height of 10 m, the results show that for three of the four locations the wind energy potential is reasonable, with average wind speeds of approximately 4 m/s. For the fourth site, the mean wind speed is less than 3 m/s. This study is the first stage in a longer project and will be followed by an analysis of solar energy potential and finally the design of a hybrid standalone electric energy supply system that includes a wind turbine, PV, diesel generator and battery. (author)

  17. A method for conversion of Hounsfield number to electron density and prediction of macroscopic pair production cross-sections

    International Nuclear Information System (INIS)

    Knoeoes, T.; Nilsson, M.; Ahlgren, L.

    1986-01-01

    A method for the determination of electron density using a narrow beam attenuation geometry is described. The method does not require that the elemental composition of the phantom materials is known. The Hounsfield numbers for the phantom materials used were determined using five different CT scanners. A relationship between Hounsfield number and electron density can thus be established, which is of considerable value in radiation therapy treatment planning procedures. Measurements of the ratio coherent/incoherent scattering of low energy photons in a certain geometry has proven valuable for determination of atomic number, which in its turn can be used for estimation of macroscopic pair production coefficients for high energy photons. The combination of knowledge of electron density with methods for determination of processes, dependent on atomic number, can form a base for adequate composition of phantom materials for purposes of testing dose calculation algorithms for photons and electrons. (orig.)

  18. Optimizing the number and locations of turbines in a wind farm addressing energy-noise trade-off: A hybrid approach

    International Nuclear Information System (INIS)

    Mittal, Prateek; Mitra, Kishalay; Kulkarni, Kedar

    2017-01-01

    Highlights: • Concurrent resolution of turbine number and locations during micro-siting. • Effect of noise on energy-noise multi-objective optimization is demonstrated. • A hybrid algorithm is proposed utilizing probabilistic and deterministic methods. • ∼24% improved performance is achieved over the benchmark case study. • ∼29% enhanced efficiency over real-binary genetic algorithm alone can be observed. - Abstract: Micro-siting is an optimal way of placing turbines inside a wind farm while considering various design objectives and constraints. Using a well-established Jensen wake model and ISO-9613-2 noise calculation, this study performs a wind farm layout optimization based on a multi-objective trade-off between minimization of the noise propagation and maximization of the energy generation. A novel hybrid methodology is developed which is a combination of probabilistic real-binary coded multi-objective evolutionary algorithm and a newly proposed deterministic gradient based non-dominated normalized normal constraint method. Based on the Inverted Generational Distance metric, the performance of the proposed method is found to be better than the conventional normalized normal constraint method or the concerned evolutionary method alone. Moreover, in contrast to the previous studies, the generated non-dominated front is capable of providing a trade-off between various alternative energy-noise solutions, along with an additional information about the corresponding turbine numbers and their optimal location coordinates. As a result, the decision maker can choose from different competing wind turbine layouts based on existing noise and other standard regulations.

  19. Aggregated wind power plant models consisting of IEC wind turbine models

    DEFF Research Database (Denmark)

    Altin, Müfit; Göksu, Ömer; Hansen, Anca Daniela

    2015-01-01

    The common practice regarding the modelling of large generation components has been to make use of models representing the performance of the individual components with a required level of accuracy and details. Owing to the rapid increase of wind power plants comprising large number of wind...... turbines, parameters and models to represent each individual wind turbine in detail makes it necessary to develop aggregated wind power plant models considering the simulation time for power system stability studies. In this paper, aggregated wind power plant models consisting of the IEC 61400-27 variable...... speed wind turbine models (type 3 and type 4) with a power plant controller is presented. The performance of the detailed benchmark wind power plant model and the aggregated model are compared by means of simulations for the specified test cases. Consequently, the results are summarized and discussed...

  20. Plant Density Effect on Grain Number and Weight of Two Winter Wheat Cultivars at Different Spikelet and Grain Positions

    OpenAIRE

    Li, Yong; Cui, Zhengyong; Ni, Yingli; Zheng, Mengjing; Yang, Dongqing; Jin, Min; Chen, Jin; Wang, Zhenlin; Yin, Yanping

    2016-01-01

    In winter wheat, grain development is asynchronous. The grain number and grain weight vary significantly at different spikelet and grain positions among wheat cultivars grown at different plant densities. In this study, two winter wheat (Triticum aestivum L.) cultivars, 'Wennong6' and 'Jimai20', were grown under four different plant densities for two seasons, in order to study the effect of plant density on the grain number and grain weight at different spikelet and grain positions. The resul...

  1. Effect of error propagation of nuclide number densities on Monte Carlo burn-up calculations

    International Nuclear Information System (INIS)

    Tohjoh, Masayuki; Endo, Tomohiro; Watanabe, Masato; Yamamoto, Akio

    2006-01-01

    As a result of improvements in computer technology, the continuous energy Monte Carlo burn-up calculation has received attention as a good candidate for an assembly calculation method. However, the results of Monte Carlo calculations contain the statistical errors. The results of Monte Carlo burn-up calculations, in particular, include propagated statistical errors through the variance of the nuclide number densities. Therefore, if statistical error alone is evaluated, the errors in Monte Carlo burn-up calculations may be underestimated. To make clear this effect of error propagation on Monte Carlo burn-up calculations, we here proposed an equation that can predict the variance of nuclide number densities after burn-up calculations, and we verified this equation using enormous numbers of the Monte Carlo burn-up calculations by changing only the initial random numbers. We also verified the effect of the number of burn-up calculation points on Monte Carlo burn-up calculations. From these verifications, we estimated the errors in Monte Carlo burn-up calculations including both statistical and propagated errors. Finally, we made clear the effects of error propagation on Monte Carlo burn-up calculations by comparing statistical errors alone versus both statistical and propagated errors. The results revealed that the effects of error propagation on the Monte Carlo burn-up calculations of 8 x 8 BWR fuel assembly are low up to 60 GWd/t

  2. THE NUMBER DENSITY AND MASS DENSITY OF STAR-FORMING AND QUIESCENT GALAXIES AT 0.4 ≤ z ≤ 2.2

    International Nuclear Information System (INIS)

    Brammer, Gabriel B.; Whitaker, K. E.; Van Dokkum, P. G.; Lee, K.-S.; Muzzin, A.; Marchesini, D.; Franx, M.; Kriek, M.; Labbe, I.; Quadri, R. F.; Williams, R.; Rudnick, G.

    2011-01-01

    We study the buildup of the bimodal galaxy population using the NEWFIRM Medium-Band Survey, which provides excellent redshifts and well-sampled spectral energy distributions of ∼27, 000 galaxies with K 3 x 10 10 M sun increases by a factor of ∼10 from z ∼ 2 to the present day, whereas the mass density in star-forming galaxies is flat or decreases over the same time period. Modest mass growth by a factor of ∼2 of individual quiescent galaxies can explain roughly half of the strong density evolution at masses >10 11 M sun , due to the steepness of the exponential tail of the mass function. The rest of the density evolution of massive, quiescent galaxies is likely due to transformation (e.g., quenching) of the massive star-forming population, a conclusion which is consistent with the density evolution we observe for the star-forming galaxies themselves, which is flat or decreasing with cosmic time. Modest mass growth does not explain the evolution of less massive quiescent galaxies (∼10 10.5 M sun ), which show a similarly steep increase in their number densities. The less massive quiescent galaxies are therefore continuously formed by transforming galaxies from the star-forming population.

  3. Power Electronics Converters for Wind Turbine Systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Liserre, Marco; Ma, Ke

    2012-01-01

    The steady growth of installed wind power together with the upscaling of the single wind turbine power capability has pushed the research and development of power converters toward full-scale power conversion, lowered cost pr kW, increased power density, and also the need for higher reliability. ...

  4. Design, operation and control of series-connected power converters for offshore wind parks

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz, Alejandro Garces

    2012-07-01

    Offshore wind farms need to develop technologies that fulfill three main objectives:Efficiency, power density and reliability. The purpose of this thesis is to study an HVDC transmission system based on series connection of the turbines which theoretically meet these three objectives. A new topology of matrix converter operated at high frequency is proposed. This converter is studied using different modulation algorithms. Simulation and experimental results demonstrated that the converter can be operated as a current source converter with high efficiency. An optimal control based on a linear quadratic regulator is propose dto control the matrix converter as well as the converter placed on shore. Results demonstrated the high performance of this type of control and its simplicity for implementation. An stationary state study based on non-linear programming and Montecarlo simulation was carried out to determine the performance of the concept for long-term operation. Series connection is an efficient technology if and only if the differences in the effective wind velocity are small. This aspect limits the number of wind turbines that can be connected in series, since a numerous number of turbines will lead to high covariances in the distribution of the wind. A complementary study about active filter and reactive power compensation was carried out using an optimization-based algorithm. (Author)

  5. Quiet-time Suprathermal (~0.1-1.5 keV) Electrons in the Solar Wind

    Science.gov (United States)

    Tao, Jiawei; Wang, Linghua; Zong, Qiugang; Li, Gang; Salem, Chadi S.; Wimmer-Schweingruber, Robert F.; He, Jiansen; Tu, Chuanyi; Bale, Stuart D.

    2016-03-01

    We present a statistical survey of the energy spectrum of solar wind suprathermal (˜0.1-1.5 keV) electrons measured by the WIND 3DP instrument at 1 AU during quiet times at the minimum and maximum of solar cycles 23 and 24. After separating (beaming) strahl electrons from (isotropic) halo electrons according to their different behaviors in the angular distribution, we fit the observed energy spectrum of both strahl and halo electrons at ˜0.1-1.5 keV to a Kappa distribution function with an index κ and effective temperature Teff. We also calculate the number density n and average energy Eavg of strahl and halo electrons by integrating the electron measurements between ˜0.1 and 1.5 keV. We find a strong positive correlation between κ and Teff for both strahl and halo electrons, and a strong positive correlation between the strahl n and halo n, likely reflecting the nature of the generation of these suprathermal electrons. In both solar cycles, κ is larger at solar minimum than at solar maximum for both strahl and halo electrons. The halo κ is generally smaller than the strahl κ (except during the solar minimum of cycle 23). The strahl n is larger at solar maximum, but the halo n shows no difference between solar minimum and maximum. Both the strahl n and halo n have no clear association with the solar wind core population, but the density ratio between the strahl and halo roughly anti-correlates (correlates) with the solar wind density (velocity).

  6. Classical transitions with the topological number changing in the early Universe

    Science.gov (United States)

    Gani, Vakhid A.; Kirillov, Alexander A.; Rubin, Sergey G.

    2018-04-01

    We consider classical dynamics of two real scalar fields within a model with the potential having a saddle point. The solitons of such model are field configurations that have the form of closed loops in the field space. We study the formation and evolution of these solitons, in particular, the conditions at which they could be formed even when the model potential has only one minimum. These non-trivial field configurations represent domain walls in the three-dimensional physical space. The set of these configurations can be split into disjoint equivalence classes. We provide a simple expression for the winding number of an arbitrary closed loop in the field space and discuss the transitions that change the winding number. We also show that non-trivial field configurations could be responsible for the energy density excess that could evade the CMB constraints but could be important at scales which are responsible for the formation of galaxies and the massive primordial black holes.

  7. Topological relics of symmetry breaking: winding numbers and scaling tilts from random vortex–antivortex pairs

    International Nuclear Information System (INIS)

    Zurek, W H

    2013-01-01

    I show that random distributions of vortex–antivortex pairs (rather than of individual vortices) lead to scaling of typical winding numbers W trapped inside a loop of circumference C with the square root of that circumference, W∼√C, when the expected winding numbers are large, |W| ≫ 1. Such scaling is consistent with the Kibble–Zurek mechanism (KZM), with 〈W 2 〉 inversely proportional to ξ-hat , the typical size of the domain that can break symmetry in unison. (The dependence of ξ-hat on quench rate is predicted by KZM from critical exponents of the phase transition.) Thus, according to KZM, the dispersion √ 2 > scales as √(C/ ξ-hat ) for large W. By contrast, a distribution of individual vortices with randomly assigned topological charges would result in the dispersion scaling with the square root of the area inside C (i.e., √ 2 > ∼ C). Scaling of the dispersion of W as well as of the probability of detection of non-zero W with C and ξ-hat can be also studied for loops so small that non-zero windings are rare. In this case I show that dispersion varies not as 1/√( ξ-hat ), but as 1/ ξ-hat , which results in a doubling of the scaling of dispersion with the quench rate when compared to the large |W| regime. Moreover, the probability of trapping of non-zero W becomes approximately equal to 〈W 2 〉, and scales as 1/ ξ-hat 2 . This quadruples—as compared with √ 2 > ≃ √C/ξ-circumflex valid for large W—the exponent in the power law dependence of the frequency of trapping of |W| = 1 on ξ-hat when the probability of |W| > 1 is negligible. This change of the power law exponent by a factor of four—from 1/√( ξ-hat ) for the dispersion of large W to 1/ ξ-hat 2 for the frequency of non-zero W when |W| > 1 is negligibly rare—is of paramount importance for experimental tests of KZM. (paper)

  8. Reduction of the Random Variables of the Turbulent Wind Field

    DEFF Research Database (Denmark)

    Sichani, Mahdi Teimouri; Nielsen, Søren R.K.

    2012-01-01

    .e. Importance Sampling (IS) or Subset Simulation (SS), will be deteriorated on problems with many random variables. The problem with PDEM is that a multidimensional integral has to be carried out over the space defined by the random variables of the system. The numerical procedure requires discretization......Applicability of the Probability Density Evolution Method (PDEM) for realizing evolution of the probability density for the wind turbines has rather strict bounds on the basic number of the random variables involved in the model. The efficiency of most of the Advanced Monte Carlo (AMC) methods, i...... of the integral domain; this becomes increasingly difficult as the dimensions of the integral domain increase. On the other hand efficiency of the AMC methods is closely dependent on the design points of the problem. Presence of many random variables may increase the number of the design points, hence affects...

  9. Nearly incompressible MHD turbulence in the solar wind

    International Nuclear Information System (INIS)

    Matthaeus, W.H.; Zhou, Y.

    1989-01-01

    Observational studies indicate that solar wind plasma and magnetic field fluctuations may be meaningfully viewed as an example of magnetohydrodynamic turbulence. This paper presents a brief summary of some relevant results of turbulence theory and reviews a turbulence style description of 'typical' solar wind conditions. Recent results, particularly those regarding the radial evolution of inertial range cross helicity, support the viewpoint that interplanetary turbulence is active and evolving with heliocentric distance. A number of observed properties can be understood by appeal to incompressible turbulence mechanisms. This connection may be understood by appeal to incompressible turbulence mechanisms. This connection may be understood in terms of theories of pseudosound density fluctuations and nearly incompressible magnetohydrodynamics, which are also reviewed here. Finally, we summarize a recent two-scale dynamical theory of the radial and temporal evolution of the turbulence, which may provide an additional framework for understanding the observations. (author). 49 refs

  10. Power Electronics for the Next Generation Wind Turbine System

    DEFF Research Database (Denmark)

    Ma, Ke

    generation unit, are becoming crucial in the wind turbine system. The objective of this project is to study the power electronics technology used for the next generation wind turbines. Some emerging challenges as well as potentials like the cost of energy and reliability are going to be addressed. First...... conversion is pushed to multi-MW level with high power density requirement. It has also been revealed that thermal stress in the power semiconductors is closely related to many determining factors in the wind power application like the reliability, cost, power density, etc. therefore it is an important......The wind power generation has been steadily growing both for the total installed capacity and for the individual turbine size. Due to much more significant impacts to the power grid, the power electronics, which can change the behavior of wind turbines from an unregulated power source to an active...

  11. Joint constraints on galaxy bias and σ8 through the N-pdf of the galaxy number density

    International Nuclear Information System (INIS)

    Arnalte-Mur, Pablo; Martínez, Vicent J.; Vielva, Patricio; Sanz, José L.; Saar, Enn; Paredes, Silvestre

    2016-01-01

    We present a full description of the N-probability density function of the galaxy number density fluctuations. This N-pdf is given in terms, on the one hand, of the cold dark matter correlations and, on the other hand, of the galaxy bias parameter. The method relies on the assumption commonly adopted that the dark matter density fluctuations follow a local non-linear transformation of the initial energy density perturbations. The N-pdf of the galaxy number density fluctuations allows for an optimal estimation of the bias parameter (e.g., via maximum-likelihood estimation, or Bayesian inference if there exists any a priori information on the bias parameter), and of those parameters defining the dark matter correlations, in particular its amplitude (σ 8 ). It also provides the proper framework to perform model selection between two competitive hypotheses. The parameters estimation capabilities of the N-pdf are proved by SDSS-like simulations (both, ideal log-normal simulations and mocks obtained from Las Damas simulations), showing that our estimator is unbiased. We apply our formalism to the 7th release of the SDSS main sample (for a volume-limited subset with absolute magnitudes M r  ≤ −20). We obtain b-circumflex  = 1.193 ± 0.074 and σ-bar 8  = 0.862 ± 0.080, for galaxy number density fluctuations in cells of the size of 30h −1 Mpc. Different model selection criteria show that galaxy biasing is clearly favoured

  12. Denmark - supplier of competitive offshore wind solutions. Megavind's strategy for offshore wind research, development and demonstration

    Energy Technology Data Exchange (ETDEWEB)

    2010-12-15

    In May 2006, the Danish Government presented a report on promoting environmentally effective technology and established a number of innovative partnerships. The partnerships intend to strengthen public-private cooperation between the state, industry, universities and venture capital to accelerate innovation for a number of green technologies. The partnership for wind energy is called Megavind. Megavind's strategy for offshore wind describes the offshore challenges and suggests research, development and demonstration (RD and D) priorities to enable offshore wind power become to competitive with other energy technologies. The strategy lists key recommendations as well as key thematic priorities and for each of these a number of RD and D priorities. Under each thematic priority references are made to the European Strategic Energy Technology plan (SET-plan), which prioritises offshore wind RD and D in Europe. (LN)

  13. The potential of wind farms

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    Summaries of papers presented at the European wind energy conference on the potential of wind farms are presented. It is stated that in Denmark today, wind energy provides about 3% to the Danish electricity consumption and the wind power capacity is, according to Danish wind energy policy, expected to increase substantially in the years to come. A number of countries in Europe and elsewhere are making significant progress in this repect. Descriptions of performance are given in relation to some individual wind farms. The subjects covered concern surveys of national planning and policies regarding wind utilization and national and global development of wind turbine arrays. Papers also deal with utility and project planning, wind prediction and certification, wind loads and fatigue, wakes, noise and control. (AB).

  14. Wind power - energy from air

    International Nuclear Information System (INIS)

    Alakangas, E.

    1998-01-01

    The wind conditions for wind power generation are favourable on the coast, in the archipelagos and in the fell areas of Finland. About 7 MW of wind power has been constructed in Finland, with the investment support of the Ministry of Trade and Industry. In 1995 about 11 GWh were produced by wind energy. A number of wind power plants are under design on the coasts of the Gulf of Finland and the Gulf of Bothnia as well as on the Aaland Islands. The first arctic wind park was constructed in Lapland in September 1996

  15. An appraisal of wind speed distribution prediction by soft computing methodologies: A comparative study

    International Nuclear Information System (INIS)

    Petković, Dalibor; Shamshirband, Shahaboddin; Anuar, Nor Badrul; Saboohi, Hadi; Abdul Wahab, Ainuddin Wahid; Protić, Milan; Zalnezhad, Erfan; Mirhashemi, Seyed Mohammad Amin

    2014-01-01

    Highlights: • Probabilistic distribution functions of wind speed. • Two parameter Weibull probability distribution. • To build an effective prediction model of distribution of wind speed. • Support vector regression application as probability function for wind speed. - Abstract: The probabilistic distribution of wind speed is among the more significant wind characteristics in examining wind energy potential and the performance of wind energy conversion systems. When the wind speed probability distribution is known, the wind energy distribution can be easily obtained. Therefore, the probability distribution of wind speed is a very important piece of information required in assessing wind energy potential. For this reason, a large number of studies have been established concerning the use of a variety of probability density functions to describe wind speed frequency distributions. Although the two-parameter Weibull distribution comprises a widely used and accepted method, solving the function is very challenging. In this study, the polynomial and radial basis functions (RBF) are applied as the kernel function of support vector regression (SVR) to estimate two parameters of the Weibull distribution function according to previously established analytical methods. Rather than minimizing the observed training error, SVR p oly and SVR r bf attempt to minimize the generalization error bound, so as to achieve generalized performance. According to the experimental results, enhanced predictive accuracy and capability of generalization can be achieved using the SVR approach compared to other soft computing methodologies

  16. An optimal design of coreless direct-drive axial flux permanent magnet generator for wind turbine

    International Nuclear Information System (INIS)

    Ahmed, D; Ahmad, A

    2013-01-01

    Different types of generators are currently being used in wind power technology. The commonly used are induction generator (IG), doubly-fed induction generator (DFIG), electrically excited synchronous generator (EESG) and permanent magnet synchronous generator (PMSG). However, the use of PMSG is rapidly increasing because of advantages such as higher power density, better controllability and higher reliability. This paper presents an innovative design of a low-speed modular, direct-drive axial flux permanent magnet (AFPM) generator with coreless stator and rotor for a wind turbine power generation system that is developed using mathematical and analytical methods. This innovative design is implemented in MATLAB / Simulink environment using dynamic modelling techniques. The main focus of this research is to improve efficiency of the wind power generation system by investigating electromagnetic and structural features of AFPM generator during its operation in wind turbine. The design is validated by comparing its performance with standard models of existing wind power generators. The comparison results demonstrate that the proposed model for the wind power generator exhibits number of advantages such as improved efficiency with variable speed operation, higher energy yield, lighter weight and better wind power utilization.

  17. An optimal design of coreless direct-drive axial flux permanent magnet generator for wind turbine

    Science.gov (United States)

    Ahmed, D.; Ahmad, A.

    2013-06-01

    Different types of generators are currently being used in wind power technology. The commonly used are induction generator (IG), doubly-fed induction generator (DFIG), electrically excited synchronous generator (EESG) and permanent magnet synchronous generator (PMSG). However, the use of PMSG is rapidly increasing because of advantages such as higher power density, better controllability and higher reliability. This paper presents an innovative design of a low-speed modular, direct-drive axial flux permanent magnet (AFPM) generator with coreless stator and rotor for a wind turbine power generation system that is developed using mathematical and analytical methods. This innovative design is implemented in MATLAB / Simulink environment using dynamic modelling techniques. The main focus of this research is to improve efficiency of the wind power generation system by investigating electromagnetic and structural features of AFPM generator during its operation in wind turbine. The design is validated by comparing its performance with standard models of existing wind power generators. The comparison results demonstrate that the proposed model for the wind power generator exhibits number of advantages such as improved efficiency with variable speed operation, higher energy yield, lighter weight and better wind power utilization.

  18. First and second order Markov chain models for synthetic generation of wind speed time series

    International Nuclear Information System (INIS)

    Shamshad, A.; Bawadi, M.A.; Wan Hussin, W.M.A.; Majid, T.A.; Sanusi, S.A.M.

    2005-01-01

    Hourly wind speed time series data of two meteorological stations in Malaysia have been used for stochastic generation of wind speed data using the transition matrix approach of the Markov chain process. The transition probability matrices have been formed using two different approaches: the first approach involves the use of the first order transition probability matrix of a Markov chain, and the second involves the use of a second order transition probability matrix that uses the current and preceding values to describe the next wind speed value. The algorithm to generate the wind speed time series from the transition probability matrices is described. Uniform random number generators have been used for transition between successive time states and within state wind speed values. The ability of each approach to retain the statistical properties of the generated speed is compared with the observed ones. The main statistical properties used for this purpose are mean, standard deviation, median, percentiles, Weibull distribution parameters, autocorrelations and spectral density of wind speed values. The comparison of the observed wind speed and the synthetically generated ones shows that the statistical characteristics are satisfactorily preserved

  19. Assessment and analysis of wind energy generation and power ...

    African Journals Online (AJOL)

    time, a statistical analysis of wind characteristics and the extrapolation of weibull parameters are presented. Otherwise, the .... The wind speed probability density function. (PDF) can ... be adjusted using following expression [28, 30,. 31]:. (11).

  20. Wind Energy Systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Ma, Ke

    2017-01-01

    transmission networks at the scale of hundreds of megawatts. As its level of grid penetration has begun to increase dramatically, wind power is starting to have a significant impact on the operation of the modern grid system. Advanced power electronics technologies are being introduced to improve......Wind power now represents a major and growing source of renewable energy. Large wind turbines (with capacities of up to 6-8 MW) are widely installed in power distribution networks. Increasing numbers of onshore and offshore wind farms, acting as power plants, are connected directly to power...... the characteristics of the wind turbines, and make them more suitable for integration into the power grid. Meanwhile, there are some emerging challenges that still need to be addressed. This paper provides an overview and discusses some trends in the power electronics technologies used for wind power generation...

  1. Podocyte number and density changes during early human life.

    Science.gov (United States)

    Kikuchi, Masao; Wickman, Larysa; Rabah, Raja; Wiggins, Roger C

    2017-05-01

    Podocyte depletion, which drives progressive glomerulosclerosis in glomerular diseases, is caused by a reduction in podocyte number, size or function in the context of increasing glomerular volume. Kidneys obtained at autopsy from premature and mature infants who died in the first year of life (n = 24) were used to measure podometric parameters for comparison with previously reported data from older kidneys. Glomerular volume increased 4.6-fold from 0.13 ± 0.07 μm 3 x10 6 in the pre-capillary loop stage, through 0.35 μm 3 x10 6 at the capillary loop, to 0.60 μm 3 x10 6 at the mature glomerular stage. Podocyte number per glomerulus increased from 326 ± 154 per glomerulus at the pre-capillary loop stage to 584 ± 131 per glomerulus at the capillary loop stage of glomerular development to reach a value of 589 ± 166 per glomerulus in mature glomeruli. Thus, the major podocyte number increase occurs in the early stages of glomerular development, in contradistinction to glomerular volume increase, which continues after birth in association with body growth. As glomeruli continue to enlarge, podocyte density (number per volume) rapidly decreases, requiring a parallel rapid increase in podocyte size that allows podocyte foot processes to maintain complete coverage of the filtration surface area. Hypertrophic stresses on the glomerulus and podocyte during development and early rapid growth periods of life are therefore likely to play significant roles in determining how and when defects in podocyte structure and function due to genetic variants become clinically manifest. Therapeutic strategies aimed at minimizing mismatch between these factors may prove clinically useful.

  2. Four Methods for LIDAR Retrieval of Microscale Wind Fields

    Directory of Open Access Journals (Sweden)

    Thomas Naini

    2012-08-01

    Full Text Available This paper evaluates four wind retrieval methods for micro-scale meteorology applications with volume and time resolution in the order of 30m3 and 5 s. Wind field vectors are estimated using sequential time-lapse volume images of aerosol density fluctuations. Suitably designed mono-static scanning backscatter LIDAR systems, which are sensitive to atmospheric density aerosol fluctuations, are expected to be ideal for this purpose. An important application is wind farm siting and evaluation. In this case, it is necessary to look at the complicated region between the earth’s surface and the boundary layer, where wind can be turbulent and fractal scaling from millimeter to kilometer. The methods are demonstrated using first a simple randomized moving hard target, and then with a physics based stochastic space-time dynamic turbulence model. In the latter case the actual vector wind field is known, allowing complete space-time error analysis. Two of the methods, the semblance method and the spatio-temporal method, are found to be most suitable for wind field estimation.

  3. Effects of the sowing density on he yield and the number of seeds in seed maize

    Directory of Open Access Journals (Sweden)

    Jovin Predrag

    2006-01-01

    Full Text Available Higher sowing densities (57,100, 71,400 and 85,500 plants ha-1 of the female component did not significantly affect the yield increase in the hybrid ZP 196 (4.56,4.61 and 4.701 ha-1 under natural conditions of cultivation, but they significantly affected the increase of the number of germinated seeds (21,272,000, 23,893,000 and 24,226,000 ha-1. In the seed production under irrigation conditions of the hybrid ZP 677, greater densities (71,400, 85,500 and 99,900 plants ha-1 did not significantly affect the increase of neither the yield (3.39,3.44 and 3.60 tha-1 nor the number of geminated seeds (11,238,000,11,651,000 and 12,427,000 ha-1. On the other hand, higher sowing densities (71,400,85,500 and 99,900 plants ha-1 of the female component significantly increased both, the yield (4.01, 4.38 and 4.40 t ha-1 and the number of germinated seeds (13,122,000,15,022,000 and 15,560,000 ha-1 in the hybrid ZP 680 under irrigation conditions.

  4. Wind Farm Group Efficiency - A Sensitivity Analysis with a Mesoscale Model

    DEFF Research Database (Denmark)

    Volker, Patrick; Badger, Jake; Hahmann, Andrea N.

    2014-01-01

    In the North Sea the total installed capacity was in 2012 5GW, and it estimated that it will grow to 40GW by 2020 (EWEA). This will lead to an increasing wind farm density in regions with the most favourable conditions. In this study, we investigate the sensitivity of power density losses to wind...

  5. European wind turbine testing procedure developments. Task 1: Measurement method to verify wind turbine performance characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Hunter, R.; Friis Pedersen, T.; Dunbabin, P.; Antoniou, I.; Frandsen, S.; Klug, H.; Albers, A.; Lee, W.K.

    2001-01-01

    There is currently significant standardisation work ongoing in the context of wind farm energy yield warranty assessment and wind turbine power performance testing. A standards maintenance team is revising the current IEC (EN) 61400-12 Ed 1 standard for wind turbine power performance testing. The standard is being divided into four documents. Two of them are drafted for evaluation and verification of complete wind farms and of individual wind turbines within wind farms. This document, and the project it describes, has been designed to help provide a solid technical foundation for this revised standard. The work was wide ranging and addressed 'grey' areas of knowledge, regarding existing methodologies or to carry out basic research in support of fundamentally new procedures. The work has given rise to recommendations in all areas of the work, including site calibration procedures, nacelle anemometry, multi-variate regression analysis and density normalisation. (au)

  6. Using Satellite SAR to Characterize the Wind Flow around Offshore Wind Farms

    Directory of Open Access Journals (Sweden)

    Charlotte Bay Hasager

    2015-06-01

    Full Text Available Offshore wind farm cluster effects between neighboring wind farms increase rapidly with the large-scale deployment of offshore wind turbines. The wind farm wakes observed from Synthetic Aperture Radar (SAR are sometimes visible and atmospheric and wake models are here shown to convincingly reproduce the observed very long wind farm wakes. The present study mainly focuses on wind farm wake climatology based on Envisat ASAR. The available SAR data archive covering the large offshore wind farms at Horns Rev has been used for geo-located wind farm wake studies. However, the results are difficult to interpret due to mainly three issues: the limited number of samples per wind directional sector, the coastal wind speed gradient, and oceanic bathymetry effects in the SAR retrievals. A new methodology is developed and presented. This method overcomes effectively the first issue and in most cases, but not always, the second. In the new method all wind field maps are rotated such that the wind is always coming from the same relative direction. By applying the new method to the SAR wind maps, mesoscale and microscale model wake aggregated wind-fields results are compared. The SAR-based findings strongly support the model results at Horns Rev 1.

  7. Wind energy, status and opportunities

    International Nuclear Information System (INIS)

    Van Wijk, A.

    1994-01-01

    Wind energy is diffuse but was widely used before the industrial revolution. The first oil crisis triggered renewed interest in wind energy technology in remote areas. Winds develop when solar radiation reaches the earth's highly varied surface unevenly, creating temperature density and pressure differences. The earth's atmosphere has to circulate to transport heat from the tropics towards the poles. On a global scale, these atmospheric currents work as an immense energy transfer medium. Three main applications can be distinguished: wind pumps, off-grid applications and grid-connected applications. The total generating costs for wind turbine systems are determined by total investments costs, the life time, the operating and maintenance costs, the wind regime (the wind energy potential is proportional to v 3 where v is the wind speed), the efficiency and availability of the wind turbine. The main gains are achieved as a result of improved reliability. The optimum size of a wind turbine depends on the wind speed, the wind turbine costs, the construction costs, the environmental impact and the social costs. The value of wind energy depends on the application that is made of the energy generated and on the costs of alternatives, it can be calculated by the avoided costs of damage to flora, fauna and mankind due to acid rain deposition, enhancement of the greenhouse effect. The environmental aspects are bird hindrance, noise, telecommunication interference and safety. 2 tabs., 1 fig

  8. Aerodynamic parameters of across-wind self-limiting vibration for square sections after lock-in in smooth flow

    Science.gov (United States)

    Wu, Jong-Cheng; Chang, Feng-Jung

    2011-08-01

    The paper aims to identify the across-wind aerodynamic parameters of two-dimensional square section structures after the lock-in stage from the response measurements of wind tunnel tests under smooth wind flow conditions. Firstly, a conceivable self-limiting model was selected from the existent literature and the revisit of the analytical solution shows that the aerodynamic parameters (linear and nonlinear aerodynamic dampings Y1 and ɛ, and aerodynamic stiffness Y2) are not only functions of the section shape and reduced wind velocity but also dependent on both the mass ratio ( mr) and structural damping ratio ( ξ) independently, rather than on the Scruton number as a whole. Secondly, the growth-to-resonance (GTR) method was adopted for identifying the aerodynamic parameters of four different square section models (DN1, DN2, DN3 and DN4) by varying the density ranging from 226 to 409 kg/m 3. To improve the accuracy of the results, numerical optimization of the curve-fitting for experimental and analytical response in time domain was performed to finalize the results. The experimental results of the across-wind self-limiting steady-state amplitudes after lock-in stage versus the reduced wind velocity show that, except the tail part of the DN1 case slightly decreases indicating a pure vortex-induced lock-in persists, the DN2, DN3 and DN4 cases have a trend of monotonically increasing with the reduced wind velocity, which shows an asymptotic combination with the galloping behavior. Due to such a combination effect, all three aerodynamic parameters decrease as the reduced wind velocity increases and asymptotically approaches to a constant at the high branch. In the DN1 case, the parameters Y1 and Y2 decrease as the reduced wind velocity increases while the parameter ɛ slightly reverses in the tail part. The 3-dimensional surface plot of the Y1, ɛ and Y2 curves further show that, excluding the DN1 case, the parameters in the DN2, DN3 and DN4 cases almost follow a

  9. Interaction of intersteller pick-up ions with the solar wind

    International Nuclear Information System (INIS)

    Mobius, E.; Klecker, B.; Hovestadt, D.; Scholer, M.

    1988-01-01

    The interaction of interstellar pick-up ions with the solar wind is studied by comparing a model for the velocity distribution function of pick-up ions with actual measurements of He + ions in the solar wind. The model includes the effects of pitch-angle diffusion due to interplanetary Alfven waves, adiabatic deceleration in the expanding solar wind and the radial variation of the source function. It is demonstrated that the scattering mean free path is in the range ≤0.1 AU and that energy diffusion can be neglected as compared with adiabatic deceleration. The effects of adiabatic focusing, of the radial variation of the neutral density and of an variation of the solar wind velocity with distance from the Sun are investigated. With the correct choice of these parameters the authors can model the measured energy spectra of the pick-up ions does not vary with the solar wind velocity and the direction of the interplanetary magnetic field for a given local neutral gas density and ionization rate. Therefore, the comparison of the model distributions with the measurements leads to a quantitative determination of the local interstellar gas density

  10. Construction of a voxel model from CT images with density derived from CT numbers

    International Nuclear Information System (INIS)

    Cheng Mengyun; Zeng Qin; Cao Ruifen; Li Gui; Zheng Huaqing; Huang Shanqing; Song Gang; Wu Yican

    2010-01-01

    The voxel models representing human anatomy have been developed to calculate dose distribution in human body, while the density is the most important physical property of voxel model. Traditionally, when creating the Monte Carlo input files, the average tissue parameters recommended in ICRP report were used to assign each voxel in the existing voxel models. However, as each tissue consists of many voxels in which voxels are different in their densities, the method of assigning average tissue parameters doesn't take account of the voxel's discrepancy, and can't represent human anatomy faithfully. To represent human anatomy more faithfully, a method was implemented to assign each voxel, the density of which was derived from CT number. In order to compare with the traditional method, we have constructed two models from a same cadaver specimen date set. A CT-based pelvic voxel model called Pelvis-CT model, was constructed, the densities of which were derived from the CT numbers. A color photograph-based pelvic voxel model called Pelvis-Photo model, was also constructed, the densities of which were taken from ICRP Publication. The CT images and color photographs were obtained from the same female cadaver specimen. The Pelvis-CT and Pelvis-Photo models were ported into Monte Carlo code MCNP to calculate the conversion coefficients from kerma free-in-air to absorbed dose for external monoenergetic photon beams with energies of 0.1, 1 and 10 MeV under anterior-posterior (AP) geometries. The results were compared with those of given in ICRP74. Differences of up to 50% were observed between conversion coefficients of Pelvis-CT and Pelvis-Photo models, moreover the discrepancies decreased for the photon beams with higher energies. The overall trend of conversion coefficients of the Pelvis-CT model were agreed well with that of ICRP74 data. (author)

  11. Design Study of Fully Superconducting Wind Turbine Generators

    DEFF Research Database (Denmark)

    Song, Xiaowei (Andy); Mijatovic, Nenad; Jensen, Bogi Bech

    2015-01-01

    In this paper, two fully superconducting generators employing MgB2 armature winding, with YBCO and MgB2 field winding respectively, are presented and analyzed. The ac loss in armature winding is estimated, and a simple comparative study is carried out. The results show that both electromagnetic...... designs for fully superconducting generators are promising with respect to the power density. However, the cost of removing ac loss in armature winding is as high as $900 000. It is also noted that with the current price of YBCO tape, the generator employing MgB 2 field winding would have lower cost....

  12. V-I characteristics of a coreless ironless electric generator in a closed-circuit mode for low wind density power generation

    Science.gov (United States)

    Razali, Akhtar; Rahman, Fadhlur; Leong, Yap Wee; Razali Hanipah, Mohd; Azri Hizami, Mohd

    2018-04-01

    This research deals with removal of ironcore lamination in electric generator to eliminate cog torque. A confinement technique is proposed to confine and focus magnetic flux by introducing opposing permanent magnets arrangement. The generator was fabricated and experimentally validated to qualify its loaded characteristics. The rotational torque and power output are measured and efficiency is then analyzed. At 100Ω load, the generator power output increased with the increased of rotational speed. Nearly 78% of efficiency was achieved when the generator was rotated at 250rpm. At this speed, the generator produced RMS voltage of 81VAC. Torque required to rotate the generator was found to be 3.2Nm. The slight increment of mechanical torque to spin the generator was due to the counter electromotive force (CEMF) existed in the copper windings. However, the torque required is still lower by nearly 30% than conventional AFPM generator. It is there concluded that this generator is suitable to be used for low wind density power generation application.

  13. Optimizing wind power generation while minimizing wildlife impacts in an urban area.

    Science.gov (United States)

    Bohrer, Gil; Zhu, Kunpeng; Jones, Robert L; Curtis, Peter S

    2013-01-01

    The location of a wind turbine is critical to its power output, which is strongly affected by the local wind field. Turbine operators typically seek locations with the best wind at the lowest level above ground since turbine height affects installation costs. In many urban applications, such as small-scale turbines owned by local communities or organizations, turbine placement is challenging because of limited available space and because the turbine often must be added without removing existing infrastructure, including buildings and trees. The need to minimize turbine hazard to wildlife compounds the challenge. We used an exclusion zone approach for turbine-placement optimization that incorporates spatially detailed maps of wind distribution and wildlife densities with power output predictions for the Ohio State University campus. We processed public GIS records and airborne lidar point-cloud data to develop a 3D map of all campus buildings and trees. High resolution large-eddy simulations and long-term wind climatology were combined to provide land-surface-affected 3D wind fields and the corresponding wind-power generation potential. This power prediction map was then combined with bird survey data. Our assessment predicts that exclusion of areas where bird numbers are highest will have modest effects on the availability of locations for power generation. The exclusion zone approach allows the incorporation of wildlife hazard in wind turbine siting and power output considerations in complex urban environments even when the quantitative interaction between wildlife behavior and turbine activity is unknown.

  14. VisibleWind: wind profile measurements at low altitude

    Science.gov (United States)

    Wilkerson, Tom; Bradford, Bill; Marchant, Alan; Apedaile, Tom; Wright, Cordell

    2009-09-01

    VisibleWindTM is developing an inexpensive rapid response system, for accurately characterizing wind shear and small scale wind phenomena in the boundary layer and for prospecting suitable locations for wind power turbines. The ValidWind system can also collect reliable "ground truth" for other remote wind sensors. The system employs small (0.25 m dia.) lightweight balloons and a tracker consisting of an Impulse 200 XL laser rangefinder coupled to a PC for automated data recording. Experiments on balloon trajectories demonstrate that the laser detection of range (+/- 0.5 m), together with measured azimuth and altitude, is an inexpensive, convenient, and capable alternative to other wind tracking methods. The maximum detection range has been increased to 2200 meters using micro-corner-cube retroreflector tape on balloons. Low power LEDs enable nighttime tracking. To avoid large balloon gyrations about the mean trajectory, we use balloons having low ascent rates and subcritical Reynolds numbers. Trajectory points are typically recorded every 4 - 7 seconds. Atmospheric features observed under conditions of inversions or "light and variable winds" include abrupt onsets of shear at altitudes of 100-250 m, velocity changes of order 1-3 m/s within layers of 10-20 m thickness, and veering of the wind direction by 180 degrees or more as altitude increases from 300 to 500 m. We have previously reported comparisons of balloon-based wind profiles with the output of a co-located sodar. Even with the Impulse rangefinder, our system still requires a "man in the loop" to track the balloon. A future system enhancement will automate balloon tracking, so that laser returns are obtained automatically at 1 Hz. While balloon measurements of large-scale, high altitude wind profiles are well known, this novel measurement system provides high-resolution, real-time characterization of the fluctuating local wind fields at the bottom of the boundary layer where wind power turbines and other

  15. On the signatures of magnetic islands and multiple X-lines in the solar wind as observed by ARTEMIS and WIND

    Science.gov (United States)

    Eriksson, S.; Newman, D. L.; Lapenta, G.; Angelopoulos, V.

    2014-06-01

    We report the first observation consistent with a magnetic reconnection generated magnetic island at a solar wind current sheet that was observed on 10 June 2012 by the two ARTEMIS satellites and the upstream WIND satellite. The evidence consists of a core magnetic field within the island which is formed by enhanced Hall magnetic fields across a solar wind reconnection exhaust. The core field at ARTEMIS displays a local dip coincident with a peak plasma density enhancement and a locally slower exhaust speed which differentiates it from a regular solar wind exhaust crossing. Further indirect evidence of magnetic island formation is presented in the form of a tripolar Hall magnetic field, which is supported by an observed electron velocity shear, and plasma density depletion regions which are in general agreement with multiple reconnection X-line signatures at the same current sheet on the basis of predicted signatures of magnetic islands as generated by a kinetic reconnection simulation for solar wind-like conditions. The combined ARTEMIS and WIND observations of tripolar Hall magnetic fields across the same exhaust and Grad-Shrafranov reconstructions of the magnetic field suggest that an elongated magnetic island was encountered which displayed a 4RE normal width and a 43RE extent along the exhaust between two neighboring X-lines.

  16. Wind turbines and idiopathic symptoms

    DEFF Research Database (Denmark)

    Blanes-Vidal, Victoria; Schwartz, Joel

    2016-01-01

    Whether or not wind turbines pose a risk to human health is a matter of heated debate. Personal reactions to other environmental exposures occurring in the same settings as wind turbines may be responsible of the reported symptoms. However, these have not been accounted for in previous studies. We...... investigated whether there is an association between residential proximity to wind turbines and idiopathic symptoms, after controlling for personal reactions to other environmental co-exposures. We assessed wind turbine exposures in 454 residences as the distance to the closest wind turbine (Dw) and number...... of wind turbines

  17. Hydroacoustic registration of fish abundance of offshore wind farms. Horns Rev offshore wind farm. Annual report 2004.

    Energy Technology Data Exchange (ETDEWEB)

    Hvidt, C.B.; Bruenner, L.; Reier Knudsen, F.

    2005-05-15

    Elsam Engineering AS has approved the implementation of a project concerning the registration of fish communities in Horns Rev Offshore Wind Farm with use of hydroacoustic methods. In a joint effort, Bio/consult as, Carl Bro as and SIMRAD AS have monitored the fish communities at Horns Rev Offshore Wind Farm using a new hydroacoustic methodology. The new hydroacoustic technique combines the use of scientific sonar acoustics with GPS to determine the density, diversity and location of fish. The objectives of this project were to test the possibility of using hydroacoustic techniques as alternative methods to traditional techniques to assess the fish assemblage inhabiting offshore wind farms and to investigate the possible effect from the wind farm and hard bottom substrates (turbine foundations) on fish abundance. The field study was carried out October 9-10, 2004 and consisted of four horizontal hydroacoustic survey transects each covering impact and reference areas. Transects were surveyed in order to achieve identical impact and reference transect pairs concerning environment, topography and time correspondence. The hydroacoustic equipment consisted of a SIMRAD EK60/EY60 echo sounder with a split-beam transducer (Simrad ES 120-4x10) mounted on a pan and tilt unit, a transceiver, a laptop extended with a GPS-receiver and additional large external hard discs. The raw data files from EK60 were converted to echogram files suitable for the post processing application, Sonar5-Pro. The Sonar5-Pro software makes it possible to filter out echo detections from the surface and the bottom, as well as perform cross filter detection. The validity of the results using the hydroacoustic method is high due to the cross filtering and single target tracking technique. From the hydroacoustic results, no or very little effect from the wind farm or from hard bottom substrates was found on the fish densities at Horns Rev Wind Farm at the time of the survey. The execution of the field

  18. Cloud Liquid Water, Mean Droplet Radius and Number Density Measurements Using a Raman Lidar

    Science.gov (United States)

    Whiteman, David N.; Melfi, S. Harvey

    1999-01-01

    A new technique for measuring cloud liquid water, mean droplet radius and droplet number density is outlined. The technique is based on simultaneously measuring Raman and Mie scattering from cloud liquid droplets using a Raman lidar. Laboratory experiments on liquid micro-spheres have shown that the intensity of Raman scattering is proportional to the amount of liquid present in the spheres. This fact is used as a constraint on calculated Mie intensity assuming a gamma function particle size distribution. The resulting retrieval technique is shown to give stable solutions with no false minima. It is tested using Raman lidar data where the liquid water signal was seen as an enhancement to the water vapor signal. The general relationship of retrieved average radius and number density is consistent with traditional cloud physics models. Sensitivity to the assumed maximum cloud liquid water amount and the water vapor mixing ratio calibration are tested. Improvements to the technique are suggested.

  19. Detection of density-dependent effects on caribou numbers from a series of census data

    Directory of Open Access Journals (Sweden)

    Francois Messier

    1991-10-01

    Full Text Available The main objective of this paper is to review and discuss the applicability of statistical procedures for the detection of density dependence based on a series of annual or multi-annual censuses. Regression models for which the statistic value under the null hypothesis of density independence is set a priori (slope = 0 or 1, generate spurious indications of density dependence. These tests are inappropriate because low sample sizes, high variance, and sampling error consistently bias the slope when applied to a finite number of population estimates. Two distribution-free tests are reviewed for which the rejection region for the hypothesis of density independence is derived intrinsically from the data through a computer-assisted permutation process. The "randomization test" gives the best results as the presence of a pronounced trend in the sequence of population estimates does not affect test results. The other non-parametric test, the "permutation test", gives reliable results only if the population fluctuates around a long-term equilibrium density. Both procedures are applied to three sets of data (Pukaskwa herd, Avalon herd, and a hypothetical example that represent quite divergent population trajectories over time.

  20. Wind turbine blades for harnessing energy from Malaysian low speed wind - manufacturing technique

    International Nuclear Information System (INIS)

    Abas Abd Wahab; Azmin Shakrine

    2000-01-01

    Blades for wind turbine to harness energy in the Malaysia low speed winds have been designed. During wind tunnel testing, wind turbine model using this type of blades has cut in speed of 1.5 m/s and turned at 450 rpm at 4 m/s wind. The blades, due to their critical dimensions of 1.2 m length, 5 cm thickness, tapered and 15 degree twist, were difficult to produce especially in large number. Several production methods have been studied but for economical mass production, fibreglass blades using CNC cutting mould were chosen. The blade and mould designs and the manufacturing processes are briefly outlined in this paper. (Author)

  1. Power Performance Test Report for the SWIFT Wind Turbine

    Energy Technology Data Exchange (ETDEWEB)

    Mendoza, I.; Hur, J.

    2012-12-01

    This report summarizes the results of a power performance test that NREL conducted on the SWIFT wind turbine. This test was conducted in accordance with the International Electrotechnical Commission's (IEC) standard, Wind Turbine Generator Systems Part 12: Power Performance Measurements of Electricity Producing Wind Turbines, IEC 61400-12-1 Ed.1.0, 2005-12. However, because the SWIFT is a small turbine as defined by IEC, NREL also followed Annex H that applies to small wind turbines. In these summary results, wind speed is normalized to sea-level air density.

  2. Wind energy potential analysis in Al-Fattaih-Darnah

    Energy Technology Data Exchange (ETDEWEB)

    Tjahjana, Dominicus Danardono Dwi Prija, E-mail: danar1405@gmail.com; Salem, Abdelkarim Ali, E-mail: keemsalem@gmail.com; Himawanto, Dwi Aries, E-mail: dwiarieshimawanto@gmail.com [University of Sebelas Maret, Jl. Ir. Sutami No. 36 A, Surakarta, Indonesia 57126 (Indonesia)

    2016-03-29

    In this paper the wind energy potential in Al-Fattaih-Darnah, Libya, had been studied. Wind energy is very attractive because it can provide a clean and renewable energy. Due mostly to the uncertainty caused by the chaotic characteristics of wind near the earth’s surface, wind energy characteristic need to be investigated carefully in order to get consistent power generation. This investigation was based on one year wind data measured in 2003. As a result of the analysis, wind speed profile and wind energy potential have been developed. The wind energy potential of the location is looked very promising to generate electricity. The annual wind speed of the site is 8.21 m/s and the wind speed carrying maximum energy is 7.97 m/s. The annual power density of the site is classified into class 3. The Polaris P50-500 wind turbine can produce 768.39 M Wh/year and has capacity factor of 17.54%.

  3. An innovative method for offshore wind farm site selection based on the interval number with probability distribution

    Science.gov (United States)

    Wu, Yunna; Chen, Kaifeng; Xu, Hu; Xu, Chuanbo; Zhang, Haobo; Yang, Meng

    2017-12-01

    There is insufficient research relating to offshore wind farm site selection in China. The current methods for site selection have some defects. First, information loss is caused by two aspects: the implicit assumption that the probability distribution on the interval number is uniform; and ignoring the value of decision makers' (DMs') common opinion on the criteria information evaluation. Secondly, the difference in DMs' utility function has failed to receive attention. An innovative method is proposed in this article to solve these drawbacks. First, a new form of interval number and its weighted operator are proposed to reflect the uncertainty and reduce information loss. Secondly, a new stochastic dominance degree is proposed to quantify the interval number with a probability distribution. Thirdly, a two-stage method integrating the weighted operator with stochastic dominance degree is proposed to evaluate the alternatives. Finally, a case from China proves the effectiveness of this method.

  4. Colliding winds: Interaction regions with strong heat conduction

    International Nuclear Information System (INIS)

    Imamura, J.N.; Chevalier, R.A.

    1984-01-01

    The interaction of fast stellar wind with a slower wind from previous mass loss gives rise to a region of hot, shocked gas. We obtain self-similar solutions for the interaction region under the assumptions of constant mass loss rate and wind velocity for the two winds, conversion of energy in the shock region, and either isothermal electrons and adiabatic ions or isothermal electrons ad ions in the shocked region. The isothermal assumption is intended to show the effects of strog heat conduction. The solutions have no heat conduction through the shock waves and assume that the electron and ion temperatures are equilibriated in the shock waves. The one-temperature isothermal solutions have nearly constant density through the shocked region, while the two-temperature solutions are intermediate between the one-temperature adiabatic and isothermal solutions. In the two-temperature solutions, the ion temperature goes to zero at the point where the gas comoves with the shocked region and the density peaks at this point. The solution may qualitatively describe the effects of heat conduction on interaction regions in the solar wind. It will be important to determine whether the assumption of no thermal waves outside the shocked region applies to shock waves in the solar wind

  5. The role of wind in hydrochorous mangrove propagule dispersal

    Directory of Open Access Journals (Sweden)

    T. Van der Stocken

    2013-06-01

    Full Text Available Although wind has been recognized to be an important factor in the dispersal of hydrochorous mangrove propagules, and hence in the quantification of (metapopulation dynamics, the species-specific sensitivity to wind effects has not been studied. We combined observations from a controlled experiment (flume tank and in situ experiments to understand wind and water current contributions to dispersal potential as well as to estimate real dispersal ranges due to immediate response to tidal currents (two outgoing tides. This was done for 4 species with propagules differing in morphological and buoyancy properties (i.e. Rhizophora mucronata, Ceriops tagal, Heritiera littoralis and Xylocarpus granatum. The flume experiments revealed that the influence of wind depends on the density of a propagule (and hence its buoyancy characteristics and that typical morphological characteristics of the dispersal unit are additionally important. H. littoralis propagules were influenced most, because on the one hand their low density (613.58 g L−1; n =10 enables them to float on top of the water surface, and on the other hand their "sailboat-like" structure provides a relatively large surface area. The X. granatum fruits appeared to be the least influenced by ambient wind conditions, explained by the smooth surface and spherical shape of which, because of the fruit's high density (890.05 g L−1; n = 1, only a small part sticks above the water surface. Although the seeds of X. granatum are of a similar size class than H. littoralis propagules, they are (like the X. granatum fruits largely submerged due to their high density (870.66 g L−1; n = 8, hence catching less wind than H. littoralis propagules. The influence of wind on the dispersal of the horizontally floating C. tagal and R. mucronata dispersal units was strong, comparable to that of H. littoralis propagules. A differential effect of wind was found within elongated propagules, which directly follows from

  6. Stellar feedback in galaxies and the origin of galaxy-scale winds

    Science.gov (United States)

    Hopkins, Philip F.; Quataert, Eliot; Murray, Norman

    2012-04-01

    Feedback from massive stars is believed to play a critical role in driving galactic super-winds that enrich the intergalactic medium and shape the galaxy mass function, mass-metallicity relation and other global galaxy properties. In previous papers, we have introduced new numerical methods for implementing stellar feedback on sub-giant molecular cloud (sub-GMC) through galactic scales in numerical simulations of galaxies; the key physical processes include radiation pressure in the ultraviolet through infrared, supernovae (Type I and Type II), stellar winds ('fast' O star through 'slow' asymptotic giant branch winds), and H II photoionization. Here, we show that these feedback mechanisms drive galactic winds with outflow rates as high as ˜10-20 times the galaxy star formation rate. The mass-loading efficiency (wind mass-loss rate divided by the star formation rate) scales roughly as ? (where Vc is the galaxy circular velocity), consistent with simple momentum-conservation expectations. We use our suite of simulations to study the relative contribution of each feedback mechanism to the generation of galactic winds in a range of galaxy models, from Small Magellanic Cloud like dwarfs and Milky Way (MW) analogues to z˜ 2 clumpy discs. In massive, gas-rich systems (local starbursts and high-z galaxies), radiation pressure dominates the wind generation. By contrast, for MW-like spirals and dwarf galaxies the gas densities are much lower and sources of shock-heated gas such as supernovae and stellar winds dominate the production of large-scale outflows. In all of our models, however, the winds have a complex multiphase structure that depends on the interaction between multiple feedback mechanisms operating on different spatial scales and time-scales: any single feedback mechanism fails to reproduce the winds observed. We use our simulations to provide fitting functions to the wind mass loading and velocities as a function of galaxy properties, for use in cosmological

  7. Wind effects on prey availability: How northward migrating waders use brackish and hypersaline lagoons in the sivash, Ukraine

    Science.gov (United States)

    Verkuil, Yvonne; Koolhaas, Anita; Van Der Winden, Jan

    Large numbers of waders migrating northward in spring use the Sivash, a large system of shallow, brackish and hypersaline lagoons in the Black Sea and Azov Sea region (Ukraine). The bottoms of these lagoons are often uncovered by the wind. Hence, for waders the time and space available for feeding depend on wind conditions. In hypersaline lagoons the benthic and pelagic fauna was very poor, consisting mainly of chironomid larvae (0.19 g AFDM·m -2) and brine shrimps Artemia salina, respectively. Brine shrimp abundance was correlated with salinity, wind force, wind direction and water depth. Dunlin Calidris alpina and curlew sandpiper Calidris ferruginea were the only species feeding on brine shrimp. As brine shrimp densities are higher in deeper water, smaller waders such as broad-billed sandpipers Limicola falcinellus are too short-legged to reach exploitable densities of brine shrimp. In brackish lagoons the benthic and pelagic fauna was rich, consisting of polychaetes, bivalves, gastropods, chironomid larvae, isopods and amphipods (8.9 to 30.5 g AFDM·m -2), but there were no brine shrimps. Prey biomass increased with the distance from the coast, being highest on the site that was most frequently inundated. Dunlin, broad-billed sandpiper and grey plover Pluvialis squatarola were the most abundant birds in the brackish lagoon. Due to the effects of wind-tides only a small area was usually available as a feeding site. Gammarus insensibilis was the alternative prey resource in the water layer, and their density varied with wind direction in the same way as brine shrimp. Curlew sandpipers and dunlins in the hypersaline lagoons and broad-billed sandpipers in the brackish lagoons often changed feeding sites, probably following the variation in prey availability. Only because of the large size and variety of lagoons are waders in the Sivash always able to find good feeding sites.

  8. Shadowing effects of offshore wind farms - an idealised mesoscale model study

    DEFF Research Database (Denmark)

    Volker, Patrick; Badger, Jake; Hahmann, Andrea N.

    The study of wind farm (WF) interaction is expected to gain importance, since the offshore wind farm density will increase especially in the North Sea in the near future. We present preliminary results of wind farm interaction simulated by mesoscale models. We use the Explicit Wake Parametrisatio...

  9. Joint constraints on galaxy bias and σ{sub 8} through the N-pdf of the galaxy number density

    Energy Technology Data Exchange (ETDEWEB)

    Arnalte-Mur, Pablo; Martínez, Vicent J. [Observatori Astronòmic de la Universitat de València, C/ Catedràtic José Beltrán, 2, 46980 Paterna, València (Spain); Vielva, Patricio; Sanz, José L. [Instituto de Física de Cantabria (CSIC-UC), Avda. de Los Castros s/n, E-39005—Santander (Spain); Saar, Enn [Cosmology Department, Tartu Observatory, Observatooriumi 1, Tõravere (Estonia); Paredes, Silvestre, E-mail: pablo.arnalte@uv.es, E-mail: vielva@ifca.unican.es, E-mail: martinez@uv.es, E-mail: sanz@ifca.unican.es, E-mail: saar@to.ee, E-mail: silvestre.paredes@upct.es [Departamento de Matemática Aplicada y Estadística, Universidad Politécnica de Cartagena, C/Dr. Fleming s/n, 30203 Cartagena (Spain)

    2016-03-01

    We present a full description of the N-probability density function of the galaxy number density fluctuations. This N-pdf is given in terms, on the one hand, of the cold dark matter correlations and, on the other hand, of the galaxy bias parameter. The method relies on the assumption commonly adopted that the dark matter density fluctuations follow a local non-linear transformation of the initial energy density perturbations. The N-pdf of the galaxy number density fluctuations allows for an optimal estimation of the bias parameter (e.g., via maximum-likelihood estimation, or Bayesian inference if there exists any a priori information on the bias parameter), and of those parameters defining the dark matter correlations, in particular its amplitude (σ{sub 8}). It also provides the proper framework to perform model selection between two competitive hypotheses. The parameters estimation capabilities of the N-pdf are proved by SDSS-like simulations (both, ideal log-normal simulations and mocks obtained from Las Damas simulations), showing that our estimator is unbiased. We apply our formalism to the 7th release of the SDSS main sample (for a volume-limited subset with absolute magnitudes M{sub r} ≤ −20). We obtain b-circumflex  = 1.193 ± 0.074 and σ-bar{sub 8} = 0.862 ± 0.080, for galaxy number density fluctuations in cells of the size of 30h{sup −1}Mpc. Different model selection criteria show that galaxy biasing is clearly favoured.

  10. Low Reynolds Number Vehicles

    Science.gov (United States)

    1985-02-01

    of the blade. The Darrieus VAWT has more complex aerodynamics. This type of wind turbine produces power as a result of the tangential thrust as...Horizontal Axis Propeller-Type b) Verticle Axis Darrieus -Type Figure 78. Wind Turbine Configurations 0 6 Q K [_ 2 -, C 4 UJ UJ...Sailplanes 23 5.2 Wind Turbines 23 6. CONCLUDING REMARKS 24 7. RECOMMENDATIONS FOR FUTURE RESEARCH 24 REFERENCES 25 FIGURES 32 yv/ LOW REYNOLDS NUMBER

  11. Superconducting Wind Turbine Generators

    DEFF Research Database (Denmark)

    Mijatovic, Nenad

    A HTS machine could be a way to address some of the technical barriers offshore wind energy is about to face. Due to the superior power density of HTS machines, this technology could become a milestone on which many, including the wind industry, will rely in the future. The work presented...... in this thesis is a part of a larger endeavor, the Superwind project that focused on identifying the potentials that HTS machines could offer to the wind industry and addressing some of the challenges in the process. In order to identify these challenges, I have design and constructed a HTS machine experimental...... setup which is made to serve as precursor, leading towards an optimized HTS machine concept proposed for wind turbines. In part, the work presented in this thesis will focus on the description of the experimental setup and reasoning behind the choices made during the design. The setup comprises from...

  12. Wind energy in the agricultural sector. Tailwind or head wind?

    International Nuclear Information System (INIS)

    Van der Knijff, A.

    1999-06-01

    The state of the art in the use of wind energy in the agricultural sector in the Netherlands is given in order to map opportunities. Obstacles to expansion of wind capacity in that sector in the short term are described, as well as the most important developments with respect to wind energy. An estimated 275 wind turbines with a capacity of 50 MW are in use in the Netherlands. This means that the agricultural sector accounts for approximately 14% of the total wind capacity in the Netherlands (363 MW in 1998). Most of the agricultural businesses supply all the electricity generated to the public networks. Only a small number of farmers use some of the generated electricity themselves. The most important obstacles for the agrarian sector are the proposed policies of provinces and municipalities, the limited capacity of the public electricity network, and the lack of clarity regarding the liberalisation of the electricity market. In particular, provincial and municipal policies (solitary wind turbines versus wind farms) will determine the prospects for the future of wind energy in the agrarian sector. Despite possible adversities, there are good prospects for the future for the sector because farmers own land in windy locations. 33 refs

  13. Methodology for the determination of wind characteristics and assessment of wind energy potential in Túquerres - Nariño

    Directory of Open Access Journals (Sweden)

    Francisco Eraso Checa

    2018-01-01

    Full Text Available The world is living a steady increase in the electric power demand, an alternative power generation different to conventional is the renewable energy. With the appearance of the Law 1715, Colombia has an incentives policy for the integration of new projects in renewable energies. Because of that, is important to develop studies with real data in the field of the potential of renewable energy resources which can be implemented. This article presents the analysis of the wind generation potential of Túquerres Savanna, located in the department of Nariño. The potential was obtained from the measurement of the wind speed, during the period between the months of June and December of the year 2015. The data were analyzed statistically according to a measure of central tendency, frequency distribution and Weibull distribution for the normalization of scattered data; finally, the power density was calculated according to a horizontal axis wind turbine and the electrical generation potential of the area was simulated. The average wind speeds are 4,4 m/s and the power density founded is 3,47 W/m2.

  14. Wind power error estimation in resource assessments.

    Directory of Open Access Journals (Sweden)

    Osvaldo Rodríguez

    Full Text Available Estimating the power output is one of the elements that determine the techno-economic feasibility of a renewable project. At present, there is a need to develop reliable methods that achieve this goal, thereby contributing to wind power penetration. In this study, we propose a method for wind power error estimation based on the wind speed measurement error, probability density function, and wind turbine power curves. This method uses the actual wind speed data without prior statistical treatment based on 28 wind turbine power curves, which were fitted by Lagrange's method, to calculate the estimate wind power output and the corresponding error propagation. We found that wind speed percentage errors of 10% were propagated into the power output estimates, thereby yielding an error of 5%. The proposed error propagation complements the traditional power resource assessments. The wind power estimation error also allows us to estimate intervals for the power production leveled cost or the investment time return. The implementation of this method increases the reliability of techno-economic resource assessment studies.

  15. Wind power error estimation in resource assessments.

    Science.gov (United States)

    Rodríguez, Osvaldo; Del Río, Jesús A; Jaramillo, Oscar A; Martínez, Manuel

    2015-01-01

    Estimating the power output is one of the elements that determine the techno-economic feasibility of a renewable project. At present, there is a need to develop reliable methods that achieve this goal, thereby contributing to wind power penetration. In this study, we propose a method for wind power error estimation based on the wind speed measurement error, probability density function, and wind turbine power curves. This method uses the actual wind speed data without prior statistical treatment based on 28 wind turbine power curves, which were fitted by Lagrange's method, to calculate the estimate wind power output and the corresponding error propagation. We found that wind speed percentage errors of 10% were propagated into the power output estimates, thereby yielding an error of 5%. The proposed error propagation complements the traditional power resource assessments. The wind power estimation error also allows us to estimate intervals for the power production leveled cost or the investment time return. The implementation of this method increases the reliability of techno-economic resource assessment studies.

  16. Report on field test project for wind power development at Nagashima-cho. Detailed wind characteristics survey; Nagashimacho ni okeru furyoku field test jigyo (fukyo seisa) hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-11-01

    A detailed wind characteristics survey was conducted to study the feasibility of a wind power generation system for Nagashima-cho, Izumi-gun, Kagoshima Prefecture. Observation instruments were installed at the top of a hill approximately 80m above the sea level situated to the northwest of the Nagashima-cho town hall and, in the period October 1998 through September 1999, data were collected at a point 20m above ground, such as the average wind speed and direction, wind velocity standard deviation, and the maximum instantaneous wind velocity. The data were analyzed, and findings were obtained, as mentioned below. The annual average wind speed was 5.0m, strong in winter and weak in summer. The annual wind direction occurrence rate was 61.8%, turbulence intensity was 0.17 at wind speeds of 4m/s and more, these not presenting any particular problem. Wind energy density was 148W/m{sup 2}. Both wind speed conditions and energy density were slightly lower than the reference levels indicated for evaluation. Studies were made on the assumption that three classes of wind turbines (150, 300, and 750kW) would be introduced, and then it was found that both operating factors and facility availability rates exceeded the required levels. Since there were no detrimental factors in the surrounding conditions, it was concluded that possibilities were high that wind power generation at the site would be practical. (NEDO)

  17. On the signatures of magnetic islands and multiple X-lines in the solar wind as observed by ARTEMIS and WIND

    International Nuclear Information System (INIS)

    Eriksson, S; Newman, D L; Lapenta, G; Angelopoulos, V

    2014-01-01

    We report the first observation consistent with a magnetic reconnection generated magnetic island at a solar wind current sheet that was observed on 10 June 2012 by the two ARTEMIS satellites and the upstream WIND satellite. The evidence consists of a core magnetic field within the island which is formed by enhanced Hall magnetic fields across a solar wind reconnection exhaust. The core field at ARTEMIS displays a local dip coincident with a peak plasma density enhancement and a locally slower exhaust speed which differentiates it from a regular solar wind exhaust crossing. Further indirect evidence of magnetic island formation is presented in the form of a tripolar Hall magnetic field, which is supported by an observed electron velocity shear, and plasma density depletion regions which are in general agreement with multiple reconnection X-line signatures at the same current sheet on the basis of predicted signatures of magnetic islands as generated by a kinetic reconnection simulation for solar wind-like conditions. The combined ARTEMIS and WIND observations of tripolar Hall magnetic fields across the same exhaust and Grad–Shrafranov reconstructions of the magnetic field suggest that an elongated magnetic island was encountered which displayed a 4R E normal width and a 43R E extent along the exhaust between two neighboring X-lines. (paper)

  18. Small Wind Turbine Technology Assessment

    International Nuclear Information System (INIS)

    Avia Aranda, F.; Cruz Cruz, I.

    1999-01-01

    The result of the study carried out under the scope of the ATYCA project Test Plant of Wind Systems for Isolated Applications, about the state of art of the small wind turbine technology (wind turbines with swept area smaller than 40 m 2 ) is presented. The study analyzes the collected information on 60 models of wind turbines from 23 manufacturers in the worldwide market. Data from Chinese manufacturers, that have a large participation in the total number of small wind turbines in operation, are not included, due to the unavailability of the technical information. (Author) 15 refs

  19. Verification of high-speed solar wind stream forecasts using operational solar wind models

    DEFF Research Database (Denmark)

    Reiss, Martin A.; Temmer, Manuela; Veronig, Astrid M.

    2016-01-01

    and the background solar wind conditions. We found that both solar wind models are capable of predicting the large-scale features of the observed solar wind speed (root-mean-square error, RMSE ≈100 km/s) but tend to either overestimate (ESWF) or underestimate (WSA) the number of high-speed solar wind streams (threat......High-speed solar wind streams emanating from coronal holes are frequently impinging on the Earth's magnetosphere causing recurrent, medium-level geomagnetic storm activity. Modeling high-speed solar wind streams is thus an essential element of successful space weather forecasting. Here we evaluate...... high-speed stream forecasts made by the empirical solar wind forecast (ESWF) and the semiempirical Wang-Sheeley-Arge (WSA) model based on the in situ plasma measurements from the Advanced Composition Explorer (ACE) spacecraft for the years 2011 to 2014. While the ESWF makes use of an empirical relation...

  20. Optimizing wind power generation while minimizing wildlife impacts in an urban area.

    Directory of Open Access Journals (Sweden)

    Gil Bohrer

    Full Text Available The location of a wind turbine is critical to its power output, which is strongly affected by the local wind field. Turbine operators typically seek locations with the best wind at the lowest level above ground since turbine height affects installation costs. In many urban applications, such as small-scale turbines owned by local communities or organizations, turbine placement is challenging because of limited available space and because the turbine often must be added without removing existing infrastructure, including buildings and trees. The need to minimize turbine hazard to wildlife compounds the challenge. We used an exclusion zone approach for turbine-placement optimization that incorporates spatially detailed maps of wind distribution and wildlife densities with power output predictions for the Ohio State University campus. We processed public GIS records and airborne lidar point-cloud data to develop a 3D map of all campus buildings and trees. High resolution large-eddy simulations and long-term wind climatology were combined to provide land-surface-affected 3D wind fields and the corresponding wind-power generation potential. This power prediction map was then combined with bird survey data. Our assessment predicts that exclusion of areas where bird numbers are highest will have modest effects on the availability of locations for power generation. The exclusion zone approach allows the incorporation of wildlife hazard in wind turbine siting and power output considerations in complex urban environments even when the quantitative interaction between wildlife behavior and turbine activity is unknown.

  1. Distributed Wind Competitiveness Improvement Project

    Energy Technology Data Exchange (ETDEWEB)

    2018-02-27

    The Competitiveness Improvement Project (CIP) is a periodic solicitation through the U.S. Department of Energy and its National Renewable Energy Laboratory. The Competitiveness Improvement Project (CIP) is a periodic solicitation through the U.S. Department of Energy and its National Renewable Energy Laboratory. Manufacturers of small and medium wind turbines are awarded cost-shared grants via a competitive process to optimize their designs, develop advanced manufacturing processes, and perform turbine testing. The goals of the CIP are to make wind energy cost competitive with other distributed generation technology and increase the number of wind turbine designs certified to national testing standards. This fact sheet describes the CIP and funding awarded as part of the project.ufacturers of small and medium wind turbines are awarded cost-shared grants via a competitive process to optimize their designs, develop advanced manufacturing processes, and perform turbine testing. The goals of the CIP are to make wind energy cost competitive with other distributed generation technology and increase the number of wind turbine designs certified to national testing standards. This fact sheet describes the CIP and funding awarded as part of the project.

  2. Optimal Wind Turbines Micrositing in Onshore Wind Farms Using Fuzzy Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Jun Yang

    2015-01-01

    Full Text Available With the fast growth in the number and size of installed wind farms (WFs around the world, optimal wind turbines (WTs micrositing has become a challenge from both technological and mathematical points of view. An appropriate layout of wind turbines is crucial to obtain adequate performance with respect to the development and operation of the wind power plant during its life span. This work presents a fuzzy genetic algorithm (FGA for maximizing the economic profitability of the project. The algorithm considers a new WF model including several important factors to the design of the layout. The model consists of wake loss, terrain effect, and economic benefits, which can be calculated by locations of wind turbines. The results demonstrate that the algorithm performs better than genetic algorithm, in terms of maximum values of net annual value of wind power plants and computational burden.

  3. Evaluation of wind power production prospective and Weibull parameter estimation methods for Babaurband, Sindh Pakistan

    International Nuclear Information System (INIS)

    Khahro, Shahnawaz Farhan; Tabbassum, Kavita; Soomro, Amir Mahmood; Dong, Lei; Liao, Xiaozhong

    2014-01-01

    Highlights: • Weibull scale and shape parameters are calculated using 5 numerical methods. • Yearly mean wind speed is 6.712 m/s at 80 m height with highest in May 9.595 m/s. • Yearly mean WPD is 310 W/m 2 and available energy density is 2716 kWh/m 2 at 80 m height. • Probability of higher wind speeds is more in spring and summer than in autumn and winter. • Estimated cost of per kWh of electricity from wind is calculated as 0.0263 US$/kWh. - Abstract: Pakistan is currently experiencing an acute shortage of energy and urgently needs new sources of affordable energy that could alleviate the misery of the energy starved masses. At present the government is increasing not only the conventional energy sources like hydel and thermal but also focusing on the immense potential of renewable energy sources like; solar, wind, biogas, waste-to-energy etc. The recent economic crisis worldwide, global warming and climate change have also emphasized the need for utilizing economic feasible energy sources having lowest carbon emissions. Wind energy, with its sustainability and low environmental impact, is highly prominent. The aim of this paper is to explore the wind power production prospective of one of the sites in south region of Pakistan. It is worth mentioning here that this type of detailed analysis is hardly done for any location in Pakistan. Wind power densities and frequency distributions of wind speed at four different altitudes along with estimated wind power expected to be generated through commercial wind turbines is calculated. Analysis and comparison of 5 numerical methods is presented in this paper to determine the Weibull scale and shape parameters for the available wind data. The yearly mean wind speed of the considered site is 6.712 m/s and has power density of 310 W/m 2 at 80 m height with high power density during April to August (highest in May with wind speed 9.595 m/s and power density 732 W/m 2 ). Economic evaluation, to exemplify feasibility

  4. Wind power barometer

    International Nuclear Information System (INIS)

    2014-01-01

    The worldwide wind power increased by 12.4% in 2013 to reach 318.6 GW but the world market globally decreased by losing 10 GW: only 35.6 GW have been installed in 2013 which is even less than was installed in 2009. This activity contraction is mainly due to the collapse of the American market, American authorities having been late to decide to maintain federal incentives. The European wind power market also contracted in 2013 because of the lack of trust of the investors in the new energy policies of the European governments. In the rest of the world wind energy has kept on growing particularly in China and Canada. At the end of 2013 the cumulated wind power reached 117,73 GW in Europe. About 1.5 MW out of 10 MW of wind power installed in Europe in 2013 come from off-shore wind farms, United-Kingdom and Denmark being the most important players by totalling more than 70% of the off-shore wind power installed at the end of 2013. Various charts and tables give the figures of the wind power cumulated and installed in 2013 in different parts of the world: Europe, North America and Asia, the time evolution of the worldwide wind power since 1995, the wind power cumulated and installed in 2013 for the different countries of Europe and the ratio between the cumulated wind power and the country population. A table lists the main manufacturers of wind turbines and gives their turnover and number of employees at the end of 2013

  5. Electron density and effective atomic number (Zeff) determination through x-ray Moiré deflectometry

    Science.gov (United States)

    Valdivia Leiva, Maria Pia; Stutman, Dan; Finkenthal, Michael

    2014-10-01

    Talbot-Lau based Moiré deflectometry is a powerful density diagnostic capable of delivering refraction information and attenuation from a single image, through the accurate detection of X-ray phase-shift and intensity. The technique is able to accurately measure both the real part of the index of refraction δ (directly related to electron density) and the attenuation coefficient μ of an object placed in the x-ray beam. Since the atomic number Z (or Zeff for a composite sample) is proportional to these quantities, an elemental map of the effective atomic number can be obtained with the ratio of the phase and the absorption image. The determination of Zeff from refraction and attenuation measurements with Moiré deflectometry could be of high interest in various fields of HED research such as shocked materials and ICF experiments as Zeff is linked, by definition, to the x-ray absorption properties of a specific material. This work is supported by U.S. DoE/NNSA Grant No. 435 DENA0001835.

  6. Development of a standard data base for FBR core nuclear design. 10. Reevaluation of atomic number density of JOYO Mk-II core

    Energy Technology Data Exchange (ETDEWEB)

    Numata, Kazuyuki; Sato, Wakaei [Japan Nuclear Cycle Development Inst., Oarai, Ibaraki (Japan). Oarai Engineering Center; Ishikawa, Makoto; Arii, Yoshio [Nuclear Energy System Incorporation, Tokyo (Japan)

    1999-07-01

    The material composition of JOYO Mk-II core components in its initial core was reevaluated as a part of the effort for developing a standard data base for FBR core nuclear design. The special feature of the reevaluation is to treat the decay of Pu-241 isotope, so that the atomic number densities of Pu-241 and Am-241 in fuel assemblies can be exactly evaluated on the initial critical date, Nov. 22nd, 1982. Further, the atomic number densities of other core components were also evaluated to improve the analytical accuracy. Those include the control rods which were not so strictly evaluated in the past, and the dummy fuels and the neutron sources which were not treated in the analytical model so far. The results of the present reevaluation were as follows: (1) The changes of atomic number densities of the major nuclides such as Pu-239, U-235 and U-238 were about {+-}0.2 to 0.3%. On the other hand, the number density of Pu-241, which was the motivation of the present work, was reduced by 12%. From the fact, the number densities in the past analysis might be based on the isotope measurement of the manufacturing point of time without considering the decay of Pu-241. (2) As the other core components, the number densities of control rods and outer reflector-type A were largely improved. (author)

  7. Autonomous Aerial Sensors for Wind Power Meteorology

    DEFF Research Database (Denmark)

    Giebel, Gregor; Schmidt Paulsen, Uwe; Reuder, Joachim

    2011-01-01

    , UAVs could be quite cost-effective. In order to test this assumption and to test the limits of UAVs for wind power meteorology, this project assembles four different UAVs from four participating groups. Risø has built a lighter-than-air kite with a long tether, Bergen University flies a derivative......This paper describes a new approach for measurements in wind power meteorology using small unmanned flying platforms. Large-scale wind farms, especially offshore, need an optimisation between installed wind power density and the losses in the wind farm due to wake effects between the turbines. Good...... movement. In any case, a good LIDAR or SODAR will cost many tenthousands of euros. Another current problem in wind energy is the coming generation of wind turbines in the 10-12MW class, with tip heights of over 200m. Very few measurement masts exist to verify our knowledge of atmospheric physics, and most...

  8. Denmark - supplier of competitive offshore wind solutions. Megavind's strategy for offshore wind research, development and demonstration

    Energy Technology Data Exchange (ETDEWEB)

    2010-12-15

    In May 2006, the Danish Government presented a report on promoting environmentally effective technology and established a number of innovative partnerships. The partnerships intend to strengthen public-private cooperation between the state, industry, universities and venture capital to accelerate innovation for a number of green technologies. The partnership for wind energy is called Megavind. Megavind's strategy for offshore wind describes the offshore challenges and suggests research, development and demonstration (RD and D) priorities to enable offshore wind power become to competitive with other energy technologies. The strategy lists key recommendations as well as key thematic priorities and for each of these a number of RD and D priorities. Under each thematic priority references are made to the European Strategic Energy Technology plan (SET-plan), which prioritises offshore wind RD and D in Europe. (LN)

  9. Preliminary wing model tests in the variable density wind tunnel of the National Advisory Committee for Aeronautics

    Science.gov (United States)

    Munk, Max M

    1926-01-01

    This report contains the results of a series of tests with three wing models. By changing the section of one of the models and painting the surface of another, the number of models tested was increased to five. The tests were made in order to obtain some general information on the air forces on wing sections at a high Reynolds number and in particular to make sure that the Reynolds number is really the important factor, and not other things like the roughness of the surface and the sharpness of the trailing edge. The few tests described in this report seem to indicate that the air forces at a high Reynolds number are not equivalent to respective air forces at a low Reynolds number (as in an ordinary atmospheric wind tunnel). The drag appears smaller at a high Reynolds number and the maximum lift is increased in some cases. The roughness of the surface and the sharpness of the trailing edge do not materially change the results, so that we feel confident that tests with systematic series of different wing sections will bring consistent results, important and highly useful to the designer.

  10. On trends in historical marine wind data

    Science.gov (United States)

    Cardone, Vincent J.; Greenwood, Juliet G.; Cane, Mark A.

    1990-01-01

    Long-period variations which include a trend toward strengthening winds over the last three decades have on the one hand been suggested to be real climatic changes, and on the other artifacts of the evolution of measuring techniques. An examination is presently conducted of individual ship reports from three regions with high data densities, in order to resolve this dispute. Even with corrections for instrumental effects, the pre-1950 winds appear weaker than post-1950 winds; the most probable explanation is the absence of universal sea state and Beaufort force standards prior to 1946.

  11. A detailed and verified wind resource atlas for Denmark

    Energy Technology Data Exchange (ETDEWEB)

    Mortensen, N G; Landberg, L; Rathmann, O; Nielsen, M N [Risoe National Lab., Roskilde (Denmark); Nielsen, P [Energy and Environmental Data, Aalberg (Denmark)

    1999-03-01

    A detailed and reliable wind resource atlas covering the entire land area of Denmark has been established. Key words of the methodology are wind atlas analysis, interpolation of wind atlas data sets, automated generation of digital terrain descriptions and modelling of local wind climates. The atlas contains wind speed and direction distributions, as well as mean energy densities of the wind, for 12 sectors and four heights above ground level: 25, 45, 70 and 100 m. The spatial resolution is 200 meters in the horizontal. The atlas has been verified by comparison with actual wind turbine power productions from over 1200 turbines. More than 80% of these turbines were predicted to within 10%. The atlas will become available on CD-ROM and on the Internet. (au)

  12. Wind energy statistics 2011; Vindkraftsstatistik 2011

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-11-01

    Wind energy statistics 2011 is the fifth publication in the annual series. The report's focus is on regional distribution, i e the number of plants and installed capacity allocated to counties and municipalities. The publication also reports a division between sea- and land-based plants and the size of wind farms in Sweden in terms of installed capacity. The publication is published in spring in report form and since 2010 statistics on number of plants, installed capacity, and regional distribution semi-annually are also presented on the Swedish Energy Agency's website. The statistics relating to installed capacity, number of wind farms and location in this publication is taken from the electricity certificate system, introduced in May 2003. Thanks to the electricity certificate system there is in principle comprehensive statistics of wind energy which in this publication is presented in different intersections. Statistics related to electricity production is taken from the Swedish Kraftnaets [Swedish national grid's] registry Cesar.

  13. The singing comet 67P: utilizing fully kinetic simulations to study its interaction with the solar wind plasma

    Science.gov (United States)

    Deca, J.; Divin, A. V.; Horanyi, M.; Henri, P.

    2016-12-01

    We present preliminary results of the first 3-D fully kinetic and electromagnetic simulations of the solar wind interaction with 67P/Churyumov-Gerasimenko at 3 AU, before the comet transitions into its high-activity phase. We focus on the global cometary environment and the electron-kinetic activity of the interaction. In addition to the background solar wind plasma flow, our model includes also plasma-driven ionization of cometary neutrals and collisional effects. We approximate mass loading of cold cometary oxygen and hydrogen using a hyperbolic relation with distance to the comet. We consider two primary cases: a weak outgassing comet (with the peak ion density 10x the solar wind density) and a moderately outgassing comet (with the peak ion density 50x the solar wind density). The weak comet is characterized by the formation of a narrow region containing a compressed solar wind (the density of the solar wind ion population is 3x the value far upstream of the comet) and a magnetic barrier ( 2x to 4x the interplanetary magnetic field). Blobs of plasma are detached continuously from this sheath region. Standing electromagnetic waves are excited in the cometary wake due to a strong anisotropy in the plasma pressure, as the density and the magnetic field magnitude are anti-correlated.The moderate mass-loading case shows more dynamics at the dayside region. The stagnation of the solar wind flow is accompanied by the formation of elongated density stripes, indicating the presence of a Rayleigh-Taylor instability. These density cavities are elongated in the direction of the magnetic field and encompass the dayside ionopause. To conclude, we believe that our results provide vital information to disentangle the observations made by the Rosetta spacecraft and compose a global solar wind - comet interaction model.

  14. Improved Formulation for the Optimization of Wind Turbine Placement in a Wind Farm

    Directory of Open Access Journals (Sweden)

    Zong Woo Geem

    2013-01-01

    Full Text Available As an alternative to fossil fuels, wind can be considered because it is a renewable and greenhouse gas-free natural resource. When wind power is generated by wind turbines in a wind farm, the optimal placement of turbines is critical because different layouts produce different efficiencies. The objective of the wind turbine placement problem is to maximize the generated power while minimizing the cost in installing the turbines. This study proposes an efficient optimization formulation for the optimal layout of wind turbine placements under the resources (e.g., number of turbines or budget limit by introducing corresponding constraints. The proposed formulation gave users more conveniences in considering resources and budget bounds. After performing the optimization, results were compared using two different methods (branch and bound method and genetic algorithm and two different objective functions.

  15. Wind energy literature survey no. 34

    DEFF Research Database (Denmark)

    Pavese, Christian

    2015-01-01

    As a service to readers, Wind Energy regularly conducts literature surveys and publishes lists of relevant articles drawnfrom recent issues of Wind Energy itself and a large number of periodicals including Journal of Wind Engineering andIndustrial Aerodynamics, International Journal of Energy...... Research, Renewable Energy, Energy Sources, Journal of SolarEnergy Engineering, American Institute of Aeronautics and Astronautics Journal, Electric Power Components and Systemsalong with a number of periodicals published by the Institute of Electrical and Electronics Engineers, etc. The list...... is limitedexclusively to journals not specifically devoted to wind energy and its applications. To assist the reader, the list is separatedinto broad categories. Although many papers fit several categories, each paper is listed only once under the categorythought most appropriate. Please note that the inclusion...

  16. Wind uplift of radioactive dust from the ground

    International Nuclear Information System (INIS)

    Makhon'ko, K.P.

    1992-01-01

    Near nuclear power plants the recontamination of the atmosphere near the ground becomes dangerous, if a radioactive zone has formed at the site. Wind can easily carry toxic dust from the polluted territory of neighboring industrial enterprises. Moreover, wind erosion of the soil during the summer or transport of radioactive snow by a snowstorm during the winter can displace the boundaries of the contaminated radioactive zone. In Russia the investigation of wind pickup of radioactive dust from the ground began after a radiation accident occurred at a storage facility in the Southern Urals in 1957, as a result of which a contaminated zone formed in the area. Since the direct mechanism of detachment of dust particles from the ground is not important in studying the results of the raising of radioactive dust into the atmosphere by wind, the authors do not distinguish between wind pickup and wind erosion, and the entire process wind pickup of radioactivity from the ground. After the radiation accident at the Chernobyl nuclear power plant a new generation of investigators began to study wind pickup of radioactive dust from the ground, and the process under consideration was sometimes referred to as wind uplift. The intensity of the process of wind pickup of radioactive dust from the ground is characterized by the wind pickup coefficient α, which is the coefficient of proportionality between the upward flux Q of radioactivity from the ground and the density A of radioactive contamination of the ground: α = Q/A. Physically, the coefficient α is the upward flux of the impurity from the ground with unit contamination density, i.e., the intensity of dust contamination or the fraction of radioactivity picked up by the wind from the ground per unit time. The greatest difficulty in determining α experimentally under dusty conditions is measuring correctly the upward radioactivity flux Q. The author discusses three methods for determining this quantity

  17. Using Analog Ensemble to generate spatially downscaled probabilistic wind power forecasts

    Science.gov (United States)

    Delle Monache, L.; Shahriari, M.; Cervone, G.

    2017-12-01

    We use the Analog Ensemble (AnEn) method to generate probabilistic 80-m wind power forecasts. We use data from the NCEP GFS ( 28 km resolution) and NCEP NAM (12 km resolution). We use forecasts data from NAM and GFS, and analysis data from NAM which enables us to: 1) use a lower-resolution model to create higher-resolution forecasts, and 2) use a higher-resolution model to create higher-resolution forecasts. The former essentially increases computing speed and the latter increases forecast accuracy. An aggregated model of the former can be compared against the latter to measure the accuracy of the AnEn spatial downscaling. The AnEn works by taking a deterministic future forecast and comparing it with past forecasts. The model searches for the best matching estimates within the past forecasts and selects the predictand value corresponding to these past forecasts as the ensemble prediction for the future forecast. Our study is based on predicting wind speed and air density at more than 13,000 grid points in the continental US. We run the AnEn model twice: 1) estimating 80-m wind speed by using predictor variables such as temperature, pressure, geopotential height, U-component and V-component of wind, 2) estimating air density by using predictors such as temperature, pressure, and relative humidity. We use the air density values to correct the standard wind power curves for different values of air density. The standard deviation of the ensemble members (i.e. ensemble spread) will be used as the degree of difficulty to predict wind power at different locations. The value of the correlation coefficient between the ensemble spread and the forecast error determines the appropriateness of this measure. This measure is prominent for wind farm developers as building wind farms in regions with higher predictability will reduce the real-time risks of operating in the electricity markets.

  18. Solar wind acceleration in coronal holes

    International Nuclear Information System (INIS)

    Kopp, R.A.

    1978-01-01

    Past attempts to explain the large solar wind velocities in high speed streams by theoretical models of the expansion have invoked either extended nonthermal heating of the corona, heat flux inhibition, or direct addition of momentum to the expanding coronal plasma. Several workers have shown that inhibiting the heat flux at low coronal densities is probably not adequate to explain quantitatively the observed plasma velocities in high speed streams. It stressed that, in order to account for both these large plasma velocities and the low densities found in coronal holes (from which most high speed streams are believed to emanate), extended heating by itself will not suffice. One needs a nonthermal mechanism to provide the bulk acceleration of the high wind plasma close to the sun, and the most likely candidate at present is direct addition of the momentum carried by outward-propagating waves to the expanding corona. Some form of momentum addition appears to be absolutely necessary if one hopes to build quantitatively self-consistent models of coronal holes and high speed solar wind streams

  19. Design and fabrication of radial flux permanent magnet generator for wind turbine applications

    International Nuclear Information System (INIS)

    Ashraf, M.M.; Malik, T.N.; Zafar, S.; Raja, U.N.

    2013-01-01

    Presently alternate energy resources are replacing conventional energy sources to produce electrical power to minimize the usage of fossil fuels. Wind power is one of the potential alternate energy resources and is being exploited and deployed actively. The wind energy system is basically composed of two core components: wind turbine and electrical generator. This paper presents the design and fabrication of permanent magnet generator for direct drive wind turbine applications. Radial flux permanent magnet generator (RFPMG) producing three phase alternating current voltage has been designed subject to satisfying the features of low operating shaft speed, higher power density , higher current density, cost effectiveness and compact structure. RFPMG design focuses on usage of neodymium permanent magnets for excitation instead of electromagnets to minimize the excitation arrangement challenges and losses. A 300 W prototype RFPMG has been fabricated. The performance of the generator has been evaluated on specially designed wind tunnel. The generator is directly coupled with wind turbine shaft to eliminate the gearbox losses. No load and load tests show that the performance of the machine is up to the mark. The improved design parameters of power density and current density are 73.2 W/kg and 5.9 A/mm 2 respectively. The same machine output has been rectified using bridge rectifier for battery charging application. The desired output voltages are obtained at minimum shaft speed of the generator. Thus the design of generator confirms its application with small scale domestic wind turbines produci ng direct current supply. (author)

  20. Effective Density and Mixing State of Aerosol Particles in a Near-Traffic Urban Environment

    DEFF Research Database (Denmark)

    Rissler, Jenny; Nordin, Erik Z; Eriksson, Axel C

    2014-01-01

    -range transport from polluted continental areas. The effective density of each group was relatively stable over time, especially of the soot aggregates, which had effective densities similar to those observed in laboratory studies of fresh diesel exhaust emissions. When heated to 300 °C, the soot aggregate......In urban environments, airborne particles are continuously emitted, followed by atmospheric aging. Also, particles emitted elsewhere, transported by winds, contribute to the urban aerosol. We studied the effective density (mass-mobility relationship) and mixing state with respect to the density...... and more dense particles. Both groups were present at each size in varying proportions. Two types of temporal variability in the relative number fraction of the two groups were found: soot correlated with intense traffic in a diel pattern and dense particles increased during episodes with long...

  1. Correlation of theory to wind-tunnel data at Reynolds numbers below 500,000

    Science.gov (United States)

    Evangelista, Raquel; Mcghee, Robert J.; Walker, Betty S.

    1989-01-01

    This paper presents results obtained from two airfoil analysis methods compared with previously published wind tunnel test data at chord Reynolds numbers below 500,000. The analysis methods are from the Eppler-Somers airfoil design/analysis code and from ISES, the Drela-Giles Airfoil design/analysis code. The experimental data are from recent tests of the Eppler 387 airfoil in the NASA Langley Low Turbulence Pressure Tunnel. For R not less than 200,000, lift and pitching moment predictions from both theories compare well with experiment. Drag predictions from both theories also agree with experiment, although to different degrees. However, most of the drag predictions from the Eppler-Somers code are accompanied with separation bubble warnings which indicate that the drag predictions are too low. With the Drela-Giles code, there is a large discrepancy between the computed and experimental pressure distributions in cases with laminar separation bubbles, although the drag polar predictions are similar in trend to experiment.

  2. FACTS Devices for Large Wind Power Plants

    DEFF Research Database (Denmark)

    Adamczyk, Andrzej Grzegorz; Teodorescu, Remus; Rodriguez, Pedro

    2010-01-01

    Growing number of wind turbines is changing electricity generation profile all over the world. However, high wind energy penetration affects power system safety and stability. For this reason transmission system operators (TSO) impose more stringent connection requirements on the wind power plant...

  3. Normal and Extreme Wind Conditions for Power at Coastal Locations in China.

    Science.gov (United States)

    Gao, Meng; Ning, Jicai; Wu, Xiaoqing

    2015-01-01

    In this paper, the normal and extreme wind conditions for power at 12 coastal locations along China's coastline were investigated. For this purpose, the daily meteorological data measured at the standard 10-m height above ground for periods of 40-62 years are statistically analyzed. The East Asian Monsoon that affects almost China's entire coastal region is considered as the leading factor determining wind energy resources. For most stations, the mean wind speed is higher in winter and lower in summer. Meanwhile, the wind direction analysis indicates that the prevalent winds in summer are southerly, while those in winter are northerly. The air densities at different coastal locations differ significantly, resulting in the difference in wind power density. The Weibull and lognormal distributions are applied to fit the yearly wind speeds. The lognormal distribution performs better than the Weibull distribution at 8 coastal stations according to two judgement criteria, the Kolmogorov-Smirnov test and absolute error (AE). Regarding the annual maximum extreme wind speed, the generalized extreme value (GEV) distribution performs better than the commonly-used Gumbel distribution. At these southeastern coastal locations, strong winds usually occur in typhoon season. These 4 coastal provinces, that is, Guangdong, Fujian, Hainan, and Zhejiang, which have abundant wind resources, are also prone to typhoon disasters.

  4. On probabilistic forecasting of wind power time-series

    DEFF Research Database (Denmark)

    Pinson, Pierre

    power dynamics. In both cases, the model parameters are adaptively and recursively estimated, time-adaptativity being the result of exponential forgetting of past observations. The probabilistic forecasting methodology is applied at the Horns Rev wind farm in Denmark, for 10-minute ahead probabilistic...... forecasting of wind power generation. Probabilistic forecasts generated from the proposed methodology clearly have higher skill than those obtained from a classical Gaussian assumption about wind power predictive densities. Corresponding point forecasts also exhibit significantly lower error criteria....

  5. An Exploration of Wind Stress Calculation Techniques in Hurricane Storm Surge Modeling

    Directory of Open Access Journals (Sweden)

    Kyra M. Bryant

    2016-09-01

    Full Text Available As hurricanes continue to threaten coastal communities, accurate storm surge forecasting remains a global priority. Achieving a reliable storm surge prediction necessitates accurate hurricane intensity and wind field information. The wind field must be converted to wind stress, which represents the air-sea momentum flux component required in storm surge and other oceanic models. This conversion requires a multiplicative drag coefficient for the air density and wind speed to represent the air-sea momentum exchange at a given location. Air density is a known parameter and wind speed is a forecasted variable, whereas the drag coefficient is calculated using an empirical correlation. The correlation’s accuracy has brewed a controversy of its own for more than half a century. This review paper examines the lineage of drag coefficient correlations and their acceptance among scientists.

  6. Contribution of Strong Discontinuities to the Power Spectrum of the Solar Wind

    International Nuclear Information System (INIS)

    Borovsky, Joseph E.

    2010-01-01

    Eight and a half years of magnetic field measurements (2 22 samples) from the ACE spacecraft in the solar wind at 1 A.U. are analyzed. Strong (large-rotation-angle) discontinuities in the solar wind are collected and measured. An artificial time series is created that preserves the timing and amplitudes of the discontinuities. The power spectral density of the discontinuity series is calculated and compared with the power spectral density of the solar-wind magnetic field. The strong discontinuities produce a power-law spectrum in the ''inertial subrange'' with a spectral index near the Kolmogorov -5/3 index. The discontinuity spectrum contains about half of the power of the full solar-wind magnetic field over this ''inertial subrange.'' Warnings are issued about the significant contribution of discontinuities to the spectrum of the solar wind, complicating interpretation of spectral power and spectral indices.

  7. Operation and Equivalent Loads of Wind Turbines in Large Wind Farms

    Science.gov (United States)

    Andersen, Soren Juhl; Sorensen, Jens Norkaer; Mikkelsen, Robert Flemming

    2017-11-01

    Wind farms continue to grow in size and as the technology matures, the design of wind farms move towards including dynamic effects besides merely annual power production estimates. The unsteady operation of wind turbines in large wind farms has been modelled with EllipSys3D(Michelsen, 1992, and Sørensen, 1995) for a number of different scenarios using a fully coupled large eddy simulations(LES) and aero-elastic framework. The turbines are represented in the flow fields using the actuator line method(Sørensen and Shen, 2002), where the aerodynamic forces and deflections are derived from an aero-elastic code, Flex5(Øye, 1996). The simulations constitute a database of full turbine operation in terms of both production and loads for various wind speeds, turbulence intensities, and turbine spacings. The operating conditions are examined in terms of averaged power production and thrust force, as well as 10min equivalent flapwise bending, yaw, and tilt moment loads. The analyses focus on how the performance and loads change throughout a given farm as well as comparing how various input parameters affect the operation and loads of the wind turbines during different scenarios. COMWIND(Grant 2104-09- 067216/DSF), Nordic Consortium on Optimization and Control of Wind Farms, Eurotech Greentech Wind project, Winds2Loads, and CCA LES. Ressources Granted on SNIC and JESS. The Vestas NM80 turbine has been used.

  8. Wind Atlas Analysis and Application Program: WAsP 11 Help Facility

    DEFF Research Database (Denmark)

    2014-01-01

    of specific wind turbines and wind farms. The WAsP Help Facility includes a Quick Start Tutorial, a User's Guide and a Technical Reference. It further includes descriptions of the Observed Wind Climate Wizard, the WAsP Climate Analyst, the WAsP Map Editor tool, the WAsP Turbine Editor tool, the Air Density...

  9. Wind forecasting for grid code compliance

    Energy Technology Data Exchange (ETDEWEB)

    Vanitha, V.; Kishore, S.R.N. [Amrita Vishwa Vidyapeetham Univ.. Dept. of Electrical and Electronics Engineering, Coimbatore (India)

    2012-07-01

    This work explores Adaptive Neuro-Fuzzy Inference Systems (ANFIS) to forecast the average hourly wind speed. To determine the characteristics of ANFIS that best suited the target wind speed forecasting system, several ANFIS models were trained, tested and compared. Different types and number of inputs, training and checking sizes, type and number of membership functions and techniques to generate the initial (FIS) were analyzed. Comparisons with other forecasting methods were analyzed the models were given wind speed, direction and air pressure as inputs having the best forecasting accuracy. SCADA system is utilized to obtain the wind speed to the forecasting system in the host computer where ANFIS is present. The SCADA is located in the central room, the substation of the wind farm, or even at a remote off site point. The data obtained from the site is plotted at every instant and the predicted wind speed is displayed and also exported to the excel sheet which will be sent/e-mailed in the form of Graphs and excel sheets to the operator, State load dispatch centre (SLDC) and to the customer. (Author)

  10. Calculation of radiation attenuation coefficients, effective atomic numbers and electron densities for some building materials

    International Nuclear Information System (INIS)

    Damla, N.; Baltas, H.; Celik, A.; Kiris, E.; Cevik, U.

    2008-01-01

    Some building materials, regularly used in Turkey, such as sand, cement, gas concrete (lightweight, aerated concrete), tile and brick, have been investigated in terms of mass attenuation coefficient, effective atomic, numbers (Z eff ), effective electron densities (N e ) and photon interaction cross section (σ a ) at 14 different energies from 81- to 1332-keV gamma-ray energies. The gamma rays were detected by using gamma-ray spectroscopy, a High Purity Germanium (HPGe) detector. The elemental compositions of samples were analysed using an energy dispersive X-ray fluorescence spectrometer. Mass attenuation coefficients of these samples have been compared with tabulations based upon the results of WinXcom. The theoretical mass attenuation coefficients were estimated using the mixture rule and the experimental values of investigated parameters were compared with the calculated values. The agreement of measured values of mass attenuation coefficient, effective atomic numbers, effective electron densities and photon interaction cross section with the theory has been found to be quite satisfactory. (authors)

  11. A ``Cyber Wind Facility'' for HPC Wind Turbine Field Experiments

    Science.gov (United States)

    Brasseur, James; Paterson, Eric; Schmitz, Sven; Campbell, Robert; Vijayakumar, Ganesh; Lavely, Adam; Jayaraman, Balaji; Nandi, Tarak; Jha, Pankaj; Dunbar, Alex; Motta-Mena, Javier; Craven, Brent; Haupt, Sue

    2013-03-01

    The Penn State ``Cyber Wind Facility'' (CWF) is a high-fidelity multi-scale high performance computing (HPC) environment in which ``cyber field experiments'' are designed and ``cyber data'' collected from wind turbines operating within the atmospheric boundary layer (ABL) environment. Conceptually the ``facility'' is akin to a high-tech wind tunnel with controlled physical environment, but unlike a wind tunnel it replicates commercial-scale wind turbines operating in the field and forced by true atmospheric turbulence with controlled stability state. The CWF is created from state-of-the-art high-accuracy technology geometry and grid design and numerical methods, and with high-resolution simulation strategies that blend unsteady RANS near the surface with high fidelity large-eddy simulation (LES) in separated boundary layer, blade and rotor wake regions, embedded within high-resolution LES of the ABL. CWF experiments complement physical field facility experiments that can capture wider ranges of meteorological events, but with minimal control over the environment and with very small numbers of sensors at low spatial resolution. I shall report on the first CWF experiments aimed at dynamical interactions between ABL turbulence and space-time wind turbine loadings. Supported by DOE and NSF.

  12. Wind power in France

    International Nuclear Information System (INIS)

    Tuille, F.; Courtel, J.

    2015-01-01

    After 3 years of steady decreasing, wind power has resumed growth in 2014 in France and the preliminary figures of 2015 confirm this trend. About 1100 MW were installed in 2014 which was almost twice as much as it was installed the year before. This renaissance is mostly due to the implementation of Brottes' law that eases the installations of wind farms by suppressing the wind power development areas (that were interfering with regional wind power schemes) and by suppressing the minimum number of 5 turbines for any new wind farms. Another important incentive measure was the announcement in January 2015 of a new financial support scheme in replacement of the policy of guaranteed purchase price for the electricity produced. In 2014 the total wind power produced in mainland France reached 17 TW which represented 3.1% of the production of electricity. (A.C.)

  13. Effects of wind turbines on upland nesting birds in Conservation Reserve Program grasslands

    Science.gov (United States)

    Leddy, K.L.; Higgins, K.F.; Naugle, D.E.

    1999-01-01

    Grassland passerines were surveyed during summer 1995 on the Buffalo Ridge Wind Resource Area in southwestern Minnesota to determine the relative influence of wind turbines on overall densities of upland nesting birds in Conservation Reserve Program (CRP) grasslands. Birds were surveyed along 40 m fixed width transects that were placed along wind turbine strings within three CRP fields and in three CRP fields without turbines. Conservation Reserve Program grasslands without turbines and areas located 180 m from turbines supported higher densities (261.0-312.5 males/100 ha) of grassland birds than areas within 80 m of turbines (58.2-128.0 males/100 ha). Human disturbance, turbine noise, and physical movements of turbines during operation may have disturbed nesting birds. We recommend that wind turbines be placed within cropland habitats that support lower densities of grassland passerines than those found in CRP grasslands.

  14. The Wind Energy Potential of Kurdistan, Iran

    Science.gov (United States)

    Arefi, Farzad; Moshtagh, Jamal; Moradi, Mohammad

    2014-01-01

    In the current work by using statistical methods and available software, the wind energy assessment of prone regions for installation of wind turbines in, Qorveh, has been investigated. Information was obtained from weather stations of Baneh, Bijar, Zarina, Saqez, Sanandaj, Qorveh, and Marivan. The monthly average and maximum of wind speed were investigated between the years 2000–2010 and the related curves were drawn. The Golobad curve (direction and percentage of dominant wind and calm wind as monthly rate) between the years 1997–2000 was analyzed and drawn with plot software. The ten-minute speed (at 10, 30, and 60 m height) and direction (at 37.5 and 10 m height) wind data were collected from weather stations of Iranian new energy organization. The wind speed distribution during one year was evaluated by using Weibull probability density function (two-parametrical), and the Weibull curve histograms were drawn by MATLAB software. According to the average wind speed of stations and technical specifications of the types of turbines, the suitable wind turbine for the station was selected. Finally, the Divandareh and Qorveh sites with favorable potential were considered for installation of wind turbines and construction of wind farms. PMID:27355042

  15. Report on the field test project for wind power development at Yaku Town (wind characteristics investigation); Yakumachi ni okeru furyoku kaihatsu field test jigyo (fukyo seisa) hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-11-01

    Wind characteristics are observed for a year at Yakushima Young Travellers' Village of the above-named town, Kagoshima Prefecture. The exponential index of the wind speed distribution in the vertical direction is between 1.6 and 4.7, or 3.5 on the average, relatively small due probably to the peculiar terrain and causing no trouble in the development. Turbulence intensity is 0.16 at when the wind speed is 2m/s or more, low enough to meet the reference value (0.30 or less). The total occurrence rate on the prevalent wind axis (SSE-NNW) is 48%, falling short of the reference value (60% or more). The average wind speed in the prevalent wind direction is high and the wind energy density concentrates on the prevalent wind axis, this showing that the site is good for wind power development. The annual average wind speed is 5.6m/s, slightly lower than the reference value (5.8m/s or more). Since there are possibilities of a maximum instantaneous wind speed of over 60m/s, caution is to be used in determining the wind endurance level for the wind turbine design. The annual wind energy density is 325W/m{sup 2}, fully meeting the reference value (215W/m{sup 2} or more). The annual operation rates of the 150/300/750kW wind turbine models are 61/65/80%, and these meet the reference value (45% or more). Their annual capacity ratios are 24.5/26.6/27.7%, and these again meet the reference value (17% or more). (NEDO)

  16. Evaluating the impact of electrical grid connection on the wind turbine performance for Hofa wind farm scheme in Jordan

    International Nuclear Information System (INIS)

    Abderrazzaq, M.H.; Aloquili, O.

    2008-01-01

    The growth of wind energy is attributed to the development of turbine size and the increase in number of units in each wind farm. The current modern design of large wind turbines (WT) is directed towards producing efficient, sensitive and reliable units. To achieve this goal, modern turbines are equipped with several devices which are operated with highly advanced electronic circuits. Sensing instruments, measuring devices and control processes of major systems and subsystems are based on various types of electronic apparatus and boards. These boards are very sensitive to the voltage variations caused by abnormal conditions in both the turbine itself and the electric grid to which the wind farm is connected. This paper evaluates wind farm records and proposes a number of methods to overcome such obstacles associated with the design of large wind turbines. Several cases of grid abnormality such as sudden feeder interruption due to the short circuit, network disconnection, voltage variation and circuit breaker opening affecting wind turbines operation and availability are classified and presented. The weight of such impact is determined for each type of disturbances associated with electronic problems in the wind turbine. Wind turbine performance at Hofa wind farm scheme in Jordan is taken as a case study

  17. Wind speed reductions by large-scale wind turbine deployments lower turbine efficiencies and set low wind power potentials

    Science.gov (United States)

    Miller, Lee; Kleidon, Axel

    2017-04-01

    Wind turbines generate electricity by removing kinetic energy from the atmosphere. Large numbers of wind turbines are likely to reduce wind speeds, which lowers estimates of electricity generation from what would be presumed from unaffected conditions. Here, we test how well wind power potentials that account for this effect can be estimated without explicitly simulating atmospheric dynamics. We first use simulations with an atmospheric general circulation model (GCM) that explicitly simulates the effects of wind turbines to derive wind power limits (GCM estimate), and compare them to a simple approach derived from the climatological conditions without turbines [vertical kinetic energy (VKE) estimate]. On land, we find strong agreement between the VKE and GCM estimates with respect to electricity generation rates (0.32 and 0.37 We m-2) and wind speed reductions by 42 and 44%. Over ocean, the GCM estimate is about twice the VKE estimate (0.59 and 0.29 We m-2) and yet with comparable wind speed reductions (50 and 42%). We then show that this bias can be corrected by modifying the downward momentum flux to the surface. Thus, large-scale limits to wind power can be derived from climatological conditions without explicitly simulating atmospheric dynamics. Consistent with the GCM simulations, the approach estimates that only comparatively few land areas are suitable to generate more than 1 We m-2 of electricity and that larger deployment scales are likely to reduce the expected electricity generation rate of each turbine. We conclude that these atmospheric effects are relevant for planning the future expansion of wind power.

  18. Column Number Density Expressions Through M = 0 and M = 1 Point Source Plumes Along Any Straight Path

    Science.gov (United States)

    Woronowicz, Michael

    2016-01-01

    Analytical expressions for column number density (CND) are developed for optical line of sight paths through a variety of steady free molecule point source models including directionally-constrained effusion (Mach number M = 0) and flow from a sonic orifice (M = 1). Sonic orifice solutions are approximate, developed using a fair simulacrum fitted to the free molecule solution. Expressions are also developed for a spherically-symmetric thermal expansion (M = 0). CND solutions are found for the most general paths relative to these sources and briefly explored. It is determined that the maximum CND from a distant location through directed effusion and sonic orifice cases occurs along the path parallel to the source plane that intersects the plume axis. For the effusive case this value is exactly twice the CND found along the ray originating from that point of intersection and extending to infinity along the plume's axis. For sonic plumes this ratio is reduced to about 4/3. For high Mach number cases the maximum CND will be found along the axial centerline path. Keywords: column number density, plume flows, outgassing, free molecule flow.

  19. On the solar wind - magnetosphere - ionosphere coupling: AMPTE/CCE particle data and the AE indices

    International Nuclear Information System (INIS)

    Daglis, I.A.; Wilken, B.; Sarris, E.T.; Kremser, G.

    1992-01-01

    We present a statistical study of the substorm particle energization in terms of the energy density of the major magnetospheric ions (H + , O + , He ++ , He + ). The correlation between energy density during substorm expansion phase and the auroral indices (AE, AU, Al) is examined and interpreted. Most distinct result is that the ionospheric origin O + energy density correlate remarkable well with the AE index, while the solar wind origin He ++ energy density does not correlate at all with AE. Mixed origin H + and He + ions exhibit an intermediate behavior. Furthermore, the O + energy density correlates very well with the pre-onset AU index level, while there is no correlation with the pre-onset AL index. The results are interpreted as a result of solar wind. The results are interpreted as a result of solar wind - magnetosphere - ionosphere coupling through the internal magnetospheric dynamo: the ionosphere responds to the increased activity of the internal dynamo (which is due to the high solar wind input) and influences substorm dynamics by feeding the near-Earth magnetotail with energetic ionospheric ions during late growth phase and expansion phase

  20. Spatial variation of particle number concentration in school microscale environments and its impact on exposure assessment.

    Science.gov (United States)

    Salimi, Farhad; Mazaheri, Mandana; Clifford, Sam; Crilley, Leigh R; Laiman, Rusdin; Morawska, Lidia

    2013-05-21

    It has not yet been established whether the spatial variation of particle number concentration (PNC) within a microscale environment can have an effect on exposure estimation results. In general, the degree of spatial variation within microscale environments remains unclear, since previous studies have only focused on spatial variation within macroscale environments. The aims of this study were to determine the spatial variation of PNC within microscale school environments, in order to assess the importance of the number of monitoring sites on exposure estimation. Furthermore, this paper aims to identify which parameters have the largest influence on spatial variation as well as the relationship between those parameters and spatial variation. Air quality measurements were conducted for two consecutive weeks at each of the 25 schools across Brisbane, Australia. PNC was measured at three sites within the grounds of each school, along with the measurement of meteorological and several other air quality parameters. Traffic density was recorded for the busiest road adjacent to the school. Spatial variation at each school was quantified using coefficient of variation (CV). The portion of CV associated with instrument uncertainty was found to be 0.3, and, therefore, CV was corrected so that only noninstrument uncertainty was analyzed in the data. The median corrected CV (CVc) ranged from 0 to 0.35 across the schools, with 12 schools found to exhibit spatial variation. The study determined the number of required monitoring sites at schools with spatial variability and tested the deviation in exposure estimation arising from using only a single site. Nine schools required two measurement sites and three schools required three sites. Overall, the deviation in exposure estimation from using only one monitoring site was as much as 1 order of magnitude. The study also tested the association of spatial variation with wind speed/direction and traffic density, using partial

  1. Determining magnetospheric ULF wave activity from external drivers using the most influential solar wind parameters

    Science.gov (United States)

    Bentley, S.; Watt, C.; Owens, M. J.

    2017-12-01

    Ultra-low frequency (ULF) waves in the magnetosphere are involved in the energisation and transport of radiation belt particles and are predominantly driven by the external solar wind. By systematically examining the instantaneous relative contribution of non-derived solar wind parameters and accounting for their interdependencies using fifteen years of ground-based measurements (CANOPUS) at a single frequency and magnetic latitude, we conclude that the dominant causal parameters for ground-based ULF wave power are solar wind speed v, interplanetary magnetic field component Bz and summed power in number density perturbations δNp. We suggest that these correspond to driving by the Kelvin-Helmholtz instability, flux transfer events and direct perturbations from solar wind structures sweeping past. We will also extend our analysis to a stochastic wave model at multiple magnetic latitudes that will be used in future to predict background ULF wave power across the radiation belts in different magnetic local time sectors, and to examine the relative contribution of the parameters v, Bz and var(Np) in these sectors.

  2. Wind Energy literature survey no. 32

    DEFF Research Database (Denmark)

    Henriksen, Lars Christian

    2014-01-01

    As a service to readers, Wind Energy regularly conducts literature surveys and publishes lists of relevant articles drawn from recent issues of Wind Energy itself and a large number of periodicals including the following: Journal of Wind Engineering and Industrial Aerodynamics, International...... Journal of Energy Research, Renewable Energy, Energy Sources, Journal of Solar Energy Engineering, American Institute of Aeronautics and Astronautics Journal, Electric Power Components and Systems along with a number of periodicals published by the Institute of Electrical and Electronics Engineers, and so...... on. The list is limited exclusively to journals not specifically devoted to wind energy and its applications. To assist the reader, the list is separated into broad categories. Although many papers fit several categories, each paper is listed only once under the category thought most appropriate...

  3. Wind Energy literature survey no. 31

    DEFF Research Database (Denmark)

    Henriksen, Lars Christian

    2014-01-01

    As a service to readers, Wind Energy regularly conducts literature surveys and publishes lists of relevant articles drawn from recent issues of Wind Energy itself and a large number of periodicals including: Journal of Wind Engineering and Industrial Aerodynamics, International Journal of Energy...... Research, Renewable Energy, Energy Sources, Journal of Solar Energy Engineering, American Institute of Aeronautics and Astronautics Journal, Electric Power Components and Systems along with a number of periodicals published by the Institute of Electrical and Electronics Engineers, and so on. The list...... is limited exclusively to journals not specifically devoted to wind energy and its applications. To assist the reader, the list is separated into broad categories. Although many papers fit several categories, each paper is listed only once under the category thought most appropriate. Please note...

  4. Wind energy literature survey no. 33

    DEFF Research Database (Denmark)

    Pavese, Christian

    2014-01-01

    As a service to readers, Wind Energy regularly conducts literature surveys and publishes lists of relevant articles drawn from recent issues of Wind Energy itself and a large number of periodicals, including the following: Journal of Wind Engineering and Industrial Aerodynamics, International...... Journal of Energy Research, Renewable Energy, Energy Sources, Journal of Solar Energy Engineering, American Institute of Aeronautics and Astronautics Journal, Electric Power Components and Systems along with a number of periodicals published by the Institute of Electrical and Electronics Engineers, and so...... on. The list is limited exclusively to journals not specifically devoted to wind energy and its applications. To assist the reader, the list is separated into broad categories. Although many papers fit several categories, each paper is listed only once under the category thought most appropriate...

  5. Saturation wind power potential and its implications for wind energy.

    Science.gov (United States)

    Jacobson, Mark Z; Archer, Cristina L

    2012-09-25

    Wind turbines convert kinetic to electrical energy, which returns to the atmosphere as heat to regenerate some potential and kinetic energy. As the number of wind turbines increases over large geographic regions, power extraction first increases linearly, but then converges to a saturation potential not identified previously from physical principles or turbine properties. These saturation potentials are >250 terawatts (TW) at 100 m globally, approximately 80 TW at 100 m over land plus coastal ocean outside Antarctica, and approximately 380 TW at 10 km in the jet streams. Thus, there is no fundamental barrier to obtaining half (approximately 5.75 TW) or several times the world's all-purpose power from wind in a 2030 clean-energy economy.

  6. Wind energy in Europe

    International Nuclear Information System (INIS)

    Evans, L.C.

    1992-01-01

    Wind energy should be an important part of the energy supply mix, both at home and abroad, to provide cleaner air and a more stable fuel supply. Not only can wind energy contribute to solving complex global issues, it also can provide a large market for American technological leadership. Even though utilities are paying more attention to wind in a number of states, there are no plans for major installations of wind power plants in the United States. At the same time, European nations have developed aggressive wind energy development programs, including both ambitious research and development efforts and market incentives. Many countries recognize the importance of the clean energy provided by wind technology and are taking steps to promote their fledgling domestic industries. The emphasis on market incentives is starting to pay off. In 1991, European utilities and developers installed nearly twice as much wind capacity as Americans did. In 1992 the gap will be even greater. This article reviews aggressive incentives offered by European governments to boost their domestic wind industries at home and abroad in this almost $1 billion per year market. By offering substantial incentives - considerably more than the American Wind Energy Association (AWEA) is proposing - European nations are ensuring dramatic near-term wind energy development and are taking a major step toward dominating the international wind industry of the 21st century

  7. Estimating bat and bird mortality occurring at wind energy turbines from covariates and carcass searches using mixture models.

    Science.gov (United States)

    Korner-Nievergelt, Fränzi; Brinkmann, Robert; Niermann, Ivo; Behr, Oliver

    2013-01-01

    Environmental impacts of wind energy facilities increasingly cause concern, a central issue being bats and birds killed by rotor blades. Two approaches have been employed to assess collision rates: carcass searches and surveys of animals prone to collisions. Carcass searches can provide an estimate for the actual number of animals being killed but they offer little information on the relation between collision rates and, for example, weather parameters due to the time of death not being precisely known. In contrast, a density index of animals exposed to collision is sufficient to analyse the parameters influencing the collision rate. However, quantification of the collision rate from animal density indices (e.g. acoustic bat activity or bird migration traffic rates) remains difficult. We combine carcass search data with animal density indices in a mixture model to investigate collision rates. In a simulation study we show that the collision rates estimated by our model were at least as precise as conventional estimates based solely on carcass search data. Furthermore, if certain conditions are met, the model can be used to predict the collision rate from density indices alone, without data from carcass searches. This can reduce the time and effort required to estimate collision rates. We applied the model to bat carcass search data obtained at 30 wind turbines in 15 wind facilities in Germany. We used acoustic bat activity and wind speed as predictors for the collision rate. The model estimates correlated well with conventional estimators. Our model can be used to predict the average collision rate. It enables an analysis of the effect of parameters such as rotor diameter or turbine type on the collision rate. The model can also be used in turbine-specific curtailment algorithms that predict the collision rate and reduce this rate with a minimal loss of energy production.

  8. Estimating bat and bird mortality occurring at wind energy turbines from covariates and carcass searches using mixture models.

    Directory of Open Access Journals (Sweden)

    Fränzi Korner-Nievergelt

    Full Text Available Environmental impacts of wind energy facilities increasingly cause concern, a central issue being bats and birds killed by rotor blades. Two approaches have been employed to assess collision rates: carcass searches and surveys of animals prone to collisions. Carcass searches can provide an estimate for the actual number of animals being killed but they offer little information on the relation between collision rates and, for example, weather parameters due to the time of death not being precisely known. In contrast, a density index of animals exposed to collision is sufficient to analyse the parameters influencing the collision rate. However, quantification of the collision rate from animal density indices (e.g. acoustic bat activity or bird migration traffic rates remains difficult. We combine carcass search data with animal density indices in a mixture model to investigate collision rates. In a simulation study we show that the collision rates estimated by our model were at least as precise as conventional estimates based solely on carcass search data. Furthermore, if certain conditions are met, the model can be used to predict the collision rate from density indices alone, without data from carcass searches. This can reduce the time and effort required to estimate collision rates. We applied the model to bat carcass search data obtained at 30 wind turbines in 15 wind facilities in Germany. We used acoustic bat activity and wind speed as predictors for the collision rate. The model estimates correlated well with conventional estimators. Our model can be used to predict the average collision rate. It enables an analysis of the effect of parameters such as rotor diameter or turbine type on the collision rate. The model can also be used in turbine-specific curtailment algorithms that predict the collision rate and reduce this rate with a minimal loss of energy production.

  9. Spectroscopic measurements of plasma temperatures and electron number density in a uranium hollow cathode discharge lamp

    International Nuclear Information System (INIS)

    Shah, M.L.; Suri, B.M.; Gupta, G.P.

    2015-01-01

    The HCD (Hollow Cathode Discharge) lamps have been used as a source of free atoms of any metal, controllable by direct current in the lamp. The plasma parameters including neutral species temperature, atomic excitation temperature and electron number density in a see-through type, homemade uranium hollow cathode discharge lamp with neon as a buffer gas have been investigated using optical emission spectroscopic techniques. The neutral species temperature has been measured using the Doppler broadening of a neon atomic spectral line. The atomic excitation temperature has been measured using the Boltzmann plot method utilizing uranium atomic spectral lines. The electron number density has been determined from the Saha-Boltzmann equation utilizing uranium atomic and ionic spectral lines. To the best of our knowledge, all these three plasma parameters are simultaneously measured for the first time in a uranium hollow cathode discharge lamp

  10. Aleutian Pribilof Islands Wind Energy Feasibility Study

    Energy Technology Data Exchange (ETDEWEB)

    Bruce A. Wright

    2012-03-27

    Under this project, the Aleutian Pribilof Islands Association (APIA) conducted wind feasibility studies for Adak, False Pass, Nikolski, Sand Point and St. George. The DOE funds were also be used to continue APIA's role as project coordinator, to expand the communication network quality between all participants and with other wind interest groups in the state and to provide continued education and training opportunities for regional participants. This DOE project began 09/01/2005. We completed the economic and technical feasibility studies for Adak. These were funded by the Alaska Energy Authority. Both wind and hydro appear to be viable renewable energy options for Adak. In False Pass the wind resource is generally good but the site has high turbulence. This would require special care with turbine selection and operations. False Pass may be more suitable for a tidal project. APIA is funded to complete a False Pass tidal feasibility study in 2012. Nikolski has superb potential for wind power development with Class 7 wind power density, moderate wind shear, bi-directional winds and low turbulence. APIA secured nearly $1M from the United States Department of Agriculture Rural Utilities Service Assistance to Rural Communities with Extremely High Energy Costs to install a 65kW wind turbine. The measured average power density and wind speed at Sand Point measured at 20m (66ft), are 424 W/m2 and 6.7 m/s (14.9 mph) respectively. Two 500kW Vestas turbines were installed and when fully integrated in 2012 are expected to provide a cost effective and clean source of electricity, reduce overall diesel fuel consumption estimated at 130,000 gallons/year and decrease air emissions associated with the consumption of diesel fuel. St. George Island has a Class 7 wind resource, which is superior for wind power development. The current strategy, led by Alaska Energy Authority, is to upgrade the St. George electrical distribution system and power plant. Avian studies in Nikolski

  11. Manufacturing Development of the NCSX Modular Coil Windings

    International Nuclear Information System (INIS)

    Chrzanowski, JH; Fogarty, PJ; Heitzenroeder, PJ; Meighan, T.; Nelson, B.; Raftopoulos, S.; Williamson, D.

    2005-01-01

    The modular coils on the National Compact Stellarator Experiment (NCSX) present a number of significant engineering challenges due to their complex shapes, requirements for high dimensional accuracy and the high current density required in the modular coils due to space constraints. In order to address these challenges, an R and D program was established to develop the conductor, insulation scheme, manufacturing techniques, and procedures. A prototype winding named Twisted Racetrack Coil (TRC) was of particular importance in dealing with these challenges. The TRC included a complex shaped winding form, conductor, insulation scheme, leads and termination, cooling system and coil clamps typical of the modular coil design. Even though the TRC is smaller in size than a modular coil, its similar complex geometry provided invaluable information in developing the final design, metrology techniques and development of manufacturing procedures. In addition a discussion of the development of the copper rope conductor including ''Keystoning'' concerns; the epoxy impregnation system (VPI) plus the tooling and equipment required to manufacture the modular coils will be presented

  12. Wind Turbine Power Curves Incorporating Turbulence Intensity

    DEFF Research Database (Denmark)

    Sørensen, Emil Hedevang Lohse

    2014-01-01

    . The model and method are parsimonious in the sense that only a single function (the zero-turbulence power curve) and a single auxiliary parameter (the equivalent turbulence factor) are needed to predict the mean power at any desired turbulence intensity. The method requires only ten minute statistics......The performance of a wind turbine in terms of power production (the power curve) is important to the wind energy industry. The current IEC-61400-12-1 standard for power curve evaluation recognizes only the mean wind speed at hub height and the air density as relevant to the power production...

  13. Multi-component wind measurements of wind turbine wakes performed with three LiDARs

    Science.gov (United States)

    Iungo, G. V.; Wu, Y.-T.; Porté-Agel, F.

    2012-04-01

    Field measurements of the wake flow produced from the interaction between atmospheric boundary layer and a wind turbine are performed with three wind LiDARs. The tested wind turbine is a 2 MW Enercon E-70 located in Collonges, Switzerland. First, accuracy of mean values and frequency resolution of the wind measurements are surveyed as a function of the number of laser rays emitted for each measurement. Indeed, measurements performed with one single ray allow maximizing sampling frequency, thus characterizing wake turbulence. On the other hand, if the number of emitted rays is increased accuracy of mean wind is increased due to the longer sampling period. Subsequently, two-dimensional measurements with a single LiDAR are carried out over vertical sections of the wind turbine wake and mean wake flow is obtained by averaging 2D measurements consecutively performed. The high spatial resolution of the used LiDAR allows characterizing in details velocity defect present in the central part of the wake and its downstream recovery. Single LiDAR measurements are also performed by staring the laser beam at fixed directions for a sampling period of about ten minutes and maximizing the sampling frequency in order to characterize wake turbulence. From these tests wind fluctuation peaks are detected in the wind turbine wake at blade top-tip height for different downstream locations. The magnitude of these turbulence peaks is generally reduced by moving downstream. This increased turbulence level at blade top-tip height observed for a real wind turbine has been already detected from previous wind tunnel tests and Large Eddy simulations, thus confirming the presence of a source of dangerous fatigue loads for following wind turbines within a wind farm. Furthermore, the proper characterization of wind fluctuations through LiDAR measurements is proved by the detection of the inertial subrange from spectral analysis of these velocity signals. Finally, simultaneous measurements with two

  14. Market survey China. Wind Energy

    International Nuclear Information System (INIS)

    2008-07-01

    The title survey presents an overview of the wind developments in China, an analysis of the key market players in this sector, and an assessment of the potential future market for wind-related activities in China. The survey is concluded with a number of conclusions and recommendations

  15. Continuous supersonic plasma wind tunnel

    DEFF Research Database (Denmark)

    Andersen, S.A.; Jensen, Vagn Orla; Nielsen, P.

    1969-01-01

    The normal magnetic field configuration of a Q device has been modified to obtain a 'magnetic Laval nozzle'. Continuous supersonic plasma 'winds' are obtained with Mach numbers ~3. The magnetic nozzle appears well suited for the study of the interaction of supersonic plasma 'winds' with either...

  16. Database on wind characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, K.S. [The Technical Univ. of Denmark (Denmark); Courtney, M.S. [Risoe National Lab., (Denmark)

    1999-08-01

    The organisations that participated in the project consists of five research organisations: MIUU (Sweden), ECN (The Netherlands), CRES (Greece), DTU (Denmark), Risoe (Denmark) and one wind turbine manufacturer: Vestas Wind System A/S (Denmark). The overall goal was to build a database consisting of a large number of wind speed time series and create tools for efficiently searching through the data to select interesting data. The project resulted in a database located at DTU, Denmark with online access through the Internet. The database contains more than 50.000 hours of measured wind speed measurements. A wide range of wind climates and terrain types are represented with significant amounts of time series. Data have been chosen selectively with a deliberate over-representation of high wind and complex terrain cases. This makes the database ideal for wind turbine design needs but completely unsuitable for resource studies. Diversity has also been an important aim and this is realised with data from a large range of terrain types; everything from offshore to mountain, from Norway to Greece. (EHS)

  17. Highly reliable wind-rolling triboelectric nanogenerator operating in a wide wind speed range

    Science.gov (United States)

    Yong, Hyungseok; Chung, Jihoon; Choi, Dukhyun; Jung, Daewoong; Cho, Minhaeng; Lee, Sangmin

    2016-01-01

    Triboelectric nanogenerators are aspiring energy harvesting methods that generate electricity from the triboelectric effect and electrostatic induction. This study demonstrates the harvesting of wind energy by a wind-rolling triboelectric nanogenerator (WR-TENG). The WR-TENG generates electricity from wind as a lightweight dielectric sphere rotates along the vortex whistle substrate. Increasing the kinetic energy of a dielectric converted from the wind energy is a key factor in fabricating an efficient WR-TENG. Computation fluid dynamics (CFD) analysis is introduced to estimate the precise movements of wind flow and to create a vortex flow by adjusting the parameters of the vortex whistle shape to optimize the design parameters to increase the kinetic energy conversion rate. WR-TENG can be utilized as both a self-powered wind velocity sensor and a wind energy harvester. A single unit of WR-TENG produces open-circuit voltage of 11.2 V and closed-circuit current of 1.86 μA. Additionally, findings reveal that the electrical power is enhanced through multiple electrode patterns in a single device and by increasing the number of dielectric spheres inside WR-TENG. The wind-rolling TENG is a novel approach for a sustainable wind-driven TENG that is sensitive and reliable to wind flows to harvest wasted wind energy in the near future. PMID:27653976

  18. Long-term solar wind electron variations between 1971 and 1978

    International Nuclear Information System (INIS)

    Feldman, W.C.; Asbridge, J.R.; Bame, S.J.; Gosling, J.T.

    1979-01-01

    Imp solar wind electron data measured between 1971 and 1978 were studied with the aim of determining long-term variations near the earth. Two separate sets of parameter variations were observed: (1) in 1976--1977 the solar wind density, the electron temperature, and the interplanetary electrostatic potential were all enhanced, and (2) the halo density and associated electron parameters were all depressed during a 1 1/2-year period centered on the last 6 months of 1976. Although interpretation of these results in terms of corresponding coronal and interplanetary variations is not unique, it may be significant that measured solar wind parameters near the minimum of solar cycle 20 agree better with the Hartle-Sturrock model of the coronal expansion than they do during other epochs

  19. Modeling X-ray Absorbers in AGNs with MHD-Driven Accretion-Disk Winds

    Science.gov (United States)

    Fukumura, Keigo; Kazanas, D.; Shrader, C. R.; Tombesi, F.; Contopoulos, J.; Behar, E.

    2013-04-01

    We have proposed a systematic view of the observed X-ray absorbers, namely warm absorbers (WAs) in soft X-ray and highly-ionized ultra-fast outflows (UFOs), in the context of magnetically-driven accretion-disk wind models. While potentially complicated by variability and thermal instability in these energetic outflows, in this simplistic model we have calculated 2D kinematic field as well as density and ionization structure of the wind with density profile of 1/r corresponding to a constant column distribution per decade of ionization parameter. In particular we show semi-analytically that the inner layer of the disk-wind manifests itself as the strongly-ionized fast outflows while the outer layer is identified as the moderately-ionized absorbers. The computed characteristics of these two apparently distinct absorbers are consistent with X-ray data (i.e. a factor of ~100 difference in column and ionization parameters as well as low wind velocity vs. near-relativistic flow). With the predicted contour curves for these wind parameters one can constrain allowed regions for the presence of WAs and UFOs.The model further implies that the UFO's gas pressure is comparable to that of the observed radio jet in 3C111 suggesting that the magnetized disk-wind with density profile of 1/r is a viable agent to help sustain such a self-collimated jet at small radii.

  20. Bird numbers and distribution in the Horns Rev offshore wind farm area. Annual status report 2003

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    This report presents data from six aerial surveys of birds in the Horns Rev wind farm area in 2003. Including 16 surveys conducted before construction of the wind farm started and three during the construction phase, a total of 25 surveys have been performed in the area since August 1999. Up until August 2002 the study area was surveyed from 26 north-south oriented, parallel transect lines. After that time four short transects were added eastwards from the previously easternmost transect. From August 2002 slight adjustments to the transect lines in the wind farm area had to be made in order to avoid collision, as survey altitude was 76 m and wind turbines are 110 m to highest wing tip. The six surveys in 2003 were performed on 13 February, 16 March, 23 April, 5 September, 4 and 30 December. The operational phase of the wind farm commenced in 2002. Hence the six surveys from 2003 are all considered post-construction data sets. A preliminary evaluation of the potential impact of the wind turbines on bird distributions has been carried out by comparison of these data to those from the 16 pre-construction surveys. (au)

  1. Simulation of power fluctuation of wind farms based on frequency domain

    DEFF Research Database (Denmark)

    Lin, Jin; Sun, Yuanzhang; Li, Guojie

    2011-01-01

    , however, is incapable of completely explaining the physical mechanism of randomness of power fluctuation. To remedy such a situation, fluctuation modeling based on the frequency domain is proposed. The frequency domain characteristics of stochastic fluctuation on large wind farms are studied using...... the power spectral density of wind speed, the frequency domain model of a wind power generator and the information on weather and geography of the wind farms. The correctness and effectiveness of the model are verified by comparing the measurement data with simulation results of a certain wind farm. © 2011...

  2. Studies on effective atomic number, electron density and kerma for some fatty acids and carbohydrates

    DEFF Research Database (Denmark)

    Manohara, S.R.; Hanagodimath, S.M.; Gerward, Leif

    2008-01-01

    The effective atomic number, Z(eff), the effective electron density, N-el, and kerma have been calculated for some fatty acids and carbohydrates for photon interaction in the extended energy range from 1 keV to 100 GeV using an accurate database of photon-interaction cross sections and the WinXCo...

  3. Infauna monitoring Horns Rev offshore wind farm. Annual state report 2004

    Energy Technology Data Exchange (ETDEWEB)

    Bech, M.; Frederiksen, R.; Pedersen, John; Leonhard, S.B.

    2005-04-15

    A total of 40 species were identified from the surveys in the Horns Rev area in September 2004 while 42 species were identified in 2003 and 47 species in September 2001. The decline in the number of species occurred both inside the wind farm and reference areas, which indicates that the decline could be a combination of changes in sediment characteristics and natural variation rather than an effect from the establishment of the wind farm. More species were not associated with the hard substrate at the turbine sites in 2004 compared to 2003, while in 2001, more species were associated with fine-grained sand. The median sediment grain size increased from 2001 to 2003 to 2004, which suggests that the velocity of the current increased, but modelling calculations on current speed predicted a 2% reduction in the wind farm area and up to a 15% reduction very close to the scour protection. These results agreed with the grain sizes found at the stations 5, 25 and 100 metres from the scour protection. At most stations, the medium grain size was 5 metres lower from the scour protection compared with the station 100 metres from the scour protection, which indicates that the velocity of the current was lower close to the scour protection. No significant impact on the infauna in the wind farm area was detectable concerning distance-related effects. Though general reductions in the population size of some of the character species in the surveyed areas might be related to changes in the sediment structure, the infauna community at Horns Rev showed no obvious sign of stress response as a consequence of possible impact from construction and operating activities. New species were observed in 2003 and 2004 and some of these might be a result of sediment characteristics, less predation or natural variation. The recording of other species might be a result of the introduction of hard bottom habitants in the wind farm area. The density of the most abundant bivalves and bristle worms was

  4. Infauna monitoring Horns Rev offshore wind farm. Annual status report 2004

    International Nuclear Information System (INIS)

    Bech, M.; Frederiksen, R.; Pedersen, John; Leonhard, S.B.

    2005-04-01

    A total of 40 species were identified from the surveys in the Horns Rev area in September 2004 while 42 species were identified in 2003 and 47 species in September 2001. The decline in the number of species occurred both inside the wind farm and reference areas, which indicates that the decline could be a combination of changes in sediment characteristics and natural variation rather than an effect from the establishment of the wind farm. More species were not associated with the hard substrate at the turbine sites in 2004 compared to 2003, while in 2001, more species were associated with fine-grained sand. The median sediment grain size increased from 2001 to 2003 to 2004, which suggests that the velocity of the current increased, but modelling calculations on current speed predicted a 2% reduction in the wind farm area and up to a 15% reduction very close to the scour protection. These results agreed with the grain sizes found at the stations 5, 25 and 100 metres from the scour protection. At most stations, the medium grain size was 5 metres lower from the scour protection compared with the station 100 metres from the scour protection, which indicates that the velocity of the current was lower close to the scour protection. No significant impact on the infauna in the wind farm area was detectable concerning distance-related effects. Though general reductions in the population size of some of the character species in the surveyed areas might be related to changes in the sediment structure, the infauna community at Horns Rev showed no obvious sign of stress response as a consequence of possible impact from construction and operating activities. New species were observed in 2003 and 2004 and some of these might be a result of sediment characteristics, less predation or natural variation. The recording of other species might be a result of the introduction of hard bottom habitants in the wind farm area. The density of the most abundant bivalves and bristle worms was

  5. Geometry of solar corona expansion and solar wind parameters

    International Nuclear Information System (INIS)

    Krajnev, M.B.

    1980-01-01

    The character of the parameter chanqe of solar wind plasma in the region of the Earth orbit is studied. The main regularities in the parametep behaviour of solar wind (plasma velocity and density) are qualitatively explained in the framework of a model according to which solar corona expansion stronqly differs from radial expansion, that is: the solar wind current lines are focused towards helioequator during the period of low solar activity with gradual transfer to radial expansion during the years of high solar activity. It is shown that the geometry of the solar wind current tubes and its change with the solar activity cycle can not serve an explanation of the observed change of the solar wind parameters

  6. Evolution of the solar wind acceleration region during 1990-1994

    International Nuclear Information System (INIS)

    Tokumaru, Munetoshi; Kondo, Tetsuro; Takaba, Hiroshi; Mori, Hirotaka; Tanaka, Takashi

    1996-01-01

    The single-station measurements of interplanetary scintillation (IPS) at 2GHz and 8GHz using the Kashima radio telescope are used to study the distribution of the solar wind velocity and density fluctuations near the sun. Wind velocities derived from our IPS data with the IPS co-spectrum method show a radial increase in the distance range between 10 and 30 Rs (solar radii). From the scintillation index analysis, it is found that the radial fall of density fluctuations in the solar wind is described by the power-law function. A series of Kashima IPS observations reveals that a pronounced change in velocity and turbulence level occurs at the polar region of the sun during 1990-1994. That is, the high-speed wind and the reduced-turbulence region develop there as the solar activity declines. This fact is consistent with the long-term evolution of the coronal magnetic structure inferred from He1083nm observations

  7. Summary of experience from a large number of construction inspections; Wind power plant projects; Erfarenhetsaaterfoering fraan entreprenadbesiktningar

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Bertil; Holmberg, Rikard

    2010-08-15

    This report presents a summary of experience from a large number of construction inspections of wind power projects. The working method is based on the collection of construction experience in form of questionnaires. The questionnaires were supplemented by a number of in-depth interviews to understand more in detail what is perceived to be a problem and if there were suggestions for improvements. The results in this report is based on inspection protocols from 174 wind turbines, which corresponds to about one-third of the power plants built in the time period. In total the questionnaires included 4683 inspection remarks as well as about one hundred free text comments. 52 of the 174 inspected power stations were rejected, corresponding to 30%. It has not been possible to identify any over represented type of remark as a main cause of rejection, but the rejection is usually based on a total number of remarks that is too large. The average number of remarks for a power plant is 27. Most power stations have between 20 and 35 remarks. The most common remarks concern shortcomings in marking and documentation. These are easily adjusted, and may be regarded as less serious. There are, however, a number of remarks which are recurrent and quite serious, mainly regarding gearbox, education and lightning protection. Usually these are also easily adjusted, but the consequences if not corrected can be very large. The consequences may be either shortened life of expensive components, e.g. oil problems in gear boxes, or increased probability of serious accidents, e.g. maladjusted lightning protection. In the report, comparison between power stations with various construction period, size, supplier, geography and topography is also presented. The general conclusion is that the differences are small. The results of the evaluation of questionnaires correspond well with the result of the in-depth interviews with clients. The problem that clients agreed upon as the greatest is the lack

  8. Wind Speed Perception and Risk

    Science.gov (United States)

    Agdas, Duzgun; Webster, Gregory D.; Masters, Forrest J.

    2012-01-01

    Background How accurately do people perceive extreme wind speeds and how does that perception affect the perceived risk? Prior research on human–wind interaction has focused on comfort levels in urban settings or knock-down thresholds. No systematic experimental research has attempted to assess people's ability to estimate extreme wind speeds and perceptions of their associated risks. Method We exposed 76 people to 10, 20, 30, 40, 50, and 60 mph (4.5, 8.9, 13.4, 17.9, 22.3, and 26.8 m/s) winds in randomized orders and asked them to estimate wind speed and the corresponding risk they felt. Results Multilevel modeling showed that people were accurate at lower wind speeds but overestimated wind speeds at higher levels. Wind speed perceptions mediated the direct relationship between actual wind speeds and perceptions of risk (i.e., the greater the perceived wind speed, the greater the perceived risk). The number of tropical cyclones people had experienced moderated the strength of the actual–perceived wind speed relationship; consequently, mediation was stronger for people who had experienced fewer storms. Conclusion These findings provide a clearer understanding of wind and risk perception, which can aid development of public policy solutions toward communicating the severity and risks associated with natural disasters. PMID:23226230

  9. Wind speed perception and risk.

    Directory of Open Access Journals (Sweden)

    Duzgun Agdas

    Full Text Available BACKGROUND: How accurately do people perceive extreme wind speeds and how does that perception affect the perceived risk? Prior research on human-wind interaction has focused on comfort levels in urban settings or knock-down thresholds. No systematic experimental research has attempted to assess people's ability to estimate extreme wind speeds and perceptions of their associated risks. METHOD: We exposed 76 people to 10, 20, 30, 40, 50, and 60 mph (4.5, 8.9, 13.4, 17.9, 22.3, and 26.8 m/s winds in randomized orders and asked them to estimate wind speed and the corresponding risk they felt. RESULTS: Multilevel modeling showed that people were accurate at lower wind speeds but overestimated wind speeds at higher levels. Wind speed perceptions mediated the direct relationship between actual wind speeds and perceptions of risk (i.e., the greater the perceived wind speed, the greater the perceived risk. The number of tropical cyclones people had experienced moderated the strength of the actual-perceived wind speed relationship; consequently, mediation was stronger for people who had experienced fewer storms. CONCLUSION: These findings provide a clearer understanding of wind and risk perception, which can aid development of public policy solutions toward communicating the severity and risks associated with natural disasters.

  10. Wind speed perception and risk.

    Science.gov (United States)

    Agdas, Duzgun; Webster, Gregory D; Masters, Forrest J

    2012-01-01

    How accurately do people perceive extreme wind speeds and how does that perception affect the perceived risk? Prior research on human-wind interaction has focused on comfort levels in urban settings or knock-down thresholds. No systematic experimental research has attempted to assess people's ability to estimate extreme wind speeds and perceptions of their associated risks. We exposed 76 people to 10, 20, 30, 40, 50, and 60 mph (4.5, 8.9, 13.4, 17.9, 22.3, and 26.8 m/s) winds in randomized orders and asked them to estimate wind speed and the corresponding risk they felt. Multilevel modeling showed that people were accurate at lower wind speeds but overestimated wind speeds at higher levels. Wind speed perceptions mediated the direct relationship between actual wind speeds and perceptions of risk (i.e., the greater the perceived wind speed, the greater the perceived risk). The number of tropical cyclones people had experienced moderated the strength of the actual-perceived wind speed relationship; consequently, mediation was stronger for people who had experienced fewer storms. These findings provide a clearer understanding of wind and risk perception, which can aid development of public policy solutions toward communicating the severity and risks associated with natural disasters.

  11. IEA Wind TCP Task 26: Impacts of Wind Turbine Technology on the System Value of Wind in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Lantz, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Riva, Alberto D [Ea Energy Analyses; Hethey, Janos [Ea Energy Analyses; Vitina, Aisma [Danish Energy Agency

    2018-05-01

    This report analyzes the impact of different land-based wind turbine designs on grid integration and related system value and cost. This topic has been studied in a number of previous publications, showing the potential benefits of wind turbine technologies that feature higher capacity factors. Building on the existing literature, this study aims to quantify the effects of different land-based wind turbine designs in the context of a projection of the European power system to 2030. This study contributes with insights on the quantitative effects in a likely European market setup, taking into account the effect of existing infrastructure on both existing conventional and renewable generation capacities. Furthermore, the market effects are put into perspective by comparing cost estimates for deploying different types of turbine design. Although the study focuses on Europe, similar considerations and results can be applied to other power systems with high wind penetration.

  12. Power reserve provision with wind farms. Grid integration of wind power

    Energy Technology Data Exchange (ETDEWEB)

    Gesino, Alejandro J.

    2011-07-01

    Wind power is, admittedly, different from other power technologies and integrating large amounts of it in the existing power systems is a challenge that requires innovative approaches to keep the sustainability of the power system operation. In the coming years its contribution to the system security will become mandatory as far as the trend goes towards more decentralized structures and an increase in complexity due to a higher number of market participants. This PhD addresses one of the fundamental ancillary services researching about a secure and flexible methodology for power reserve provision with wind farms. Based on the current needs and security standards of those highly developed European grid codes, a new model for power reserve provision with wind power is developed. This methodology, algorithms and variables are tested based on real scenarios from five German wind farm clusters. Finally, once the methodology for power reserve provision with wind power has been tested, real control capabilities from already installed wind farms in Germany and Portugal are analyzed. Their capabilities of following control commands as well as an error deviation analysis are also presented. (orig.)

  13. Solar wind plasma structure near a 'HELIOS-Perihelion'

    International Nuclear Information System (INIS)

    Kikuchi, H.

    1979-01-01

    The purpose of this paper is to introduce a couple of preliminary but important results obtained from HELIOS observation concerning solar wind plasma structure near a ''HELIOS-Perihelion'' among the data analyses in progress, partly in relation to laboratory plasma. Idealized profiles of the bulk velocity, density and temperature of solar wind near 0.3 AU as deduced from HELIOS A data and correlated K-coronal contours were obtained. During 1974 - 1976, the sun was in the period of declining cycle, and the coronal holes expanded to lower latitudes from northern and southern holes. There is general tendency that the northern coronal hole is somewhat larger than the southern coronal hole. In regards to solar wind velocity, there are two fast stream regions with velocity as high as 800 Km/sec. An electron spectrum measured near a HELIOS-Perihelion (0.3 AU) approximately in the solar direction is shown. Three regions can be distinguished in velocity distribution. The density contours of solar wind electrons in velocity space exhibit a narrow beam of electrons in the magnetic field direction close to the plane of observation. (Kato, T.)

  14. Evaluation of the climate change impact on wind resources in Taiwan Strait

    International Nuclear Information System (INIS)

    Chang, Tsang-Jung; Chen, Chun-Lung; Tu, Yi-Long; Yeh, Hung-Te; Wu, Yu-Ting

    2015-01-01

    Highlights: • We propose a new statistical downscaling framework to evaluate the climate change impact on wind resources in Taiwan Strait. • The statistical model relates Weibull distribution parameters to output of a GCM model and regression coefficients. • Validation of the simulated wind speed distribution presents an acceptable agreement with meteorological data. • Three chosen GCMs show the same tendency that the eastern half of Taiwan Strait stores higher wind resources. - Abstract: A new statistical downscaling framework is proposed to evaluate the climate change impact on wind resources in Taiwan Strait. In this framework, a two-parameter Weibull distribution function is used to estimate the wind energy density distribution in the strait. An empirically statistical downscaling model that relates the Weibull parameters to output of a General Circulation Model (GCM) and regression coefficients is adopted. The regression coefficients are calculated using wind speed results obtained from a past climate (1981–2000) simulation reconstructed by a Weather Research and Forecasting (WRF) model. These WRF-reconstructed wind speed results are validated with data collected at a weather station on an islet inside the strait. The comparison shows that the probability distributions of the monthly wind speeds obtained from WRF-reconstructed and measured wind speed data are in acceptable agreement, with small discrepancies of 10.3% and 7.9% for the shape and scale parameters of the Weibull distribution, respectively. The statistical downscaling framework with output from three chosen GCMs (i.e., ECHAM5, CM2.1 and CGCM2.3.2) is applied to evaluate the wind energy density distribution in Taiwan Strait for three future climate periods of 2011–2040, 2041–2070, and 2071–2100. The results show that the wind energy density distributions in the future climate periods are higher in the eastern half of Taiwan Strait, but reduce slightly by 3% compared with that in the

  15. Enhancement of phase space density by increasing trap anisotropy in a magneto-optical trap with a large number of atoms

    International Nuclear Information System (INIS)

    Vengalattore, M.; Conroy, R.S.; Prentiss, M.G.

    2004-01-01

    The phase space density of dense, cylindrical clouds of atoms in a 2D magneto-optic trap is investigated. For a large number of trapped atoms (>10 8 ), the density of a spherical cloud is limited by photon reabsorption. However, as the atom cloud is deformed to reduce the radial optical density, the temperature of the atoms decreases due to the suppression of multiple scattering leading to an increase in the phase space density. A density of 2x10 -4 has been achieved in a magneto-optic trap containing 2x10 8 atoms

  16. Study of the solar wind coupling to the time difference horizontal geomagnetic field

    Directory of Open Access Journals (Sweden)

    P. Wintoft

    2005-07-01

    Full Text Available The local ground geomagnetic field fluctuations (Δ B are dominated by high frequencies and 83% of the power is located at periods of 32 min or less. By forming 10-min root-mean-square (RMS of Δ B a major part of this variation is captured. Using measured geomagnetic induced currents (GIC, from a power grid transformer in Southern Sweden, it is shown that the 10-min standard deviation GIC may be computed from a linear model using the RMS Δ X and Δ Y at Brorfelde (BFE: 11.67° E, 55.63° N, Denmark, and Uppsala (UPS: 17.35° E, 59.90° N, Sweden, with a correlation of 0.926±0.015. From recurrent neural network models, that are driven by solar wind data, it is shown that the log RMS Δ X and Δ Y at the two locations may be predicted up to 30 min in advance with a correlation close to 0.8: 0.78±0.02 for both directions at BFE; 0.81±0.02 and 0.80±0.02 in the X- and Y-directions, respectively, at UPS. The most important inputs to the models are the 10-min averages of the solar wind magnetic field component Bz and velocity V, and the 10-min standard deviation of the proton number density σn. The average proton number density n has no influence.

    Keywords. Magnetospheric physics (Solar wind - magnetosphere interactions – Geomagnetism and paleomagnetism (Rapid time variations

  17. Interaction between water and wind as a driver of passive dispersal in mangroves.

    Directory of Open Access Journals (Sweden)

    Tom Van der Stocken

    Full Text Available Although knowledge on dispersal patterns is essential for predicting long-term population dynamics, critical information on the modalities of passive dispersal and potential interactions between vectors is often missing. Here, we use mangrove propagules with a wide variety of morphologies to investigate the interaction between water and wind as a driver of passive dispersal. We imposed 16 combinations of wind and hydrodynamic conditions in a flume tank, using propagules of six important mangrove species (and genera, resulting in a set of dispersal morphologies that covers most variation present in mangrove propagules worldwide. Additionally, we discussed the broader implications of the outcome of this flume study on the potential of long distance dispersal for mangrove propagules in nature, applying a conceptual model to a natural mangrove system in Gazi Bay (Kenya. Overall, the effect of wind on dispersal depended on propagule density (g l(-1. The low-density Heritiera littoralis propagules were most affected by wind, while the high-density vertically floating propagules of Ceriops tagal and Bruguiera gymnorrhiza were least affected. Avicennia marina, and horizontally floating Rhizophora mucronata and C. tagal propagules behaved similarly. Morphological propagule traits, such as the dorsal sail of H. littoralis, explained another part of the interspecific differences. Within species, differences in dispersal velocities can be explained by differences in density and for H. littoralis also by variations in the shape of the dorsal sail. Our conceptual model illustrates that different propagule types have a different likelihood of reaching the open ocean depending on prevailing water and wind currents. Results suggest that in open water, propagule traits (density, morphology, and floating orientation appear to determine the effect of water and wind currents on dispersal dynamics. This has important implications for inter- and intraspecific

  18. Wind energy centre at Gujarat State, India. Business plan

    International Nuclear Information System (INIS)

    Van Hulle, F.; Jansen, J.C.; Prasad, N.S.; Suresh, R.

    1997-07-01

    The report describes the business plan for the establishment of a Wind Energy Centre in Gujarat. This Wind Energy Center has to provide a reliable delivery of a range of development and technical quality assurance services to the wind energy industry in northern India on the basis of sustained operations and recovery of all operating costs and - contingent on the way the Centre is financed - at least part of the initial investment costs. Core activities of the Wind Energy Centre are: Research and development supporting activities for the wind energy sector; Testing and certification of wind energy equipment; Consultancy, monitoring and information services; and Training courses on wind energy technology and implementation. The wind energy centre aims with its services at a number of customers: the manufacturing industry, wind farm developers and governmental authorities. An exploration of the market for the services of the envisaged wind energy centre shows that the concept is financially viable. A set of assumptions has been made about the growth rate of the installed wind power capacity in Northern India and about the number of wind turbine manufacturing companies in the target area of the centre. From these assumptions the total number of new wind turbine types coming on the Indian market annually is derived for a period of ten years. These figures have served as a basis for the determination of the required manpower and facilities of the centre for design and development support activities, feasibility and siting studies, testing and certification. Furthermore a projection has been made for providing expert manpower capacity for carrying out R and D, consultancy and other services. 14 tabs., 1 ref

  19. Do terrestrial animals avoid areas close to turbines in functioning wind farms in agricultural landscapes?

    Science.gov (United States)

    Łopucki, Rafał; Klich, Daniel; Gielarek, Sylwia

    2017-07-01

    Most studies on the effects of wind energy on animals have focused on avian and bat activity, habitat use, and mortality, whereas very few have been published on terrestrial, non-volant wildlife. In this paper, we studied the utilization of functioning wind farm areas by four terrestrial animals common to agricultural landscapes: European roe deer, European hare, red fox, and the common pheasant. Firstly, we expected that the studied animals do not avoid areas close to turbines and utilize the whole area of functioning wind farms with a frequency similar to the control areas. Secondly, we expected that there is no relation between the turbine proximity and the number of tracks of these animals. The study was conducted over two winter seasons using the snow-tracking method along 100 m linear transects. In total, 583 transects were recorded. Wind farm operations may affect terrestrial animals both in wind farm interiors and in a 700-m buffer zone around the edge of turbines. The reactions of animals were species specific. Herbivorous mammals (roe deer and European hare) avoided wind farm interiors and proximity to turbines. The common pheasant showed a positive reaction to wind turbine proximity. The red fox had the most neutral response to wind turbines. Although this species visited wind farm interiors less often than the control area, there was no relation between fox track density and turbine proximity. Greater weight should be given to the effects of wind farms on non-flying wildlife than at present. Investors and regulatory authorities should always consider the likely impacts of wind farms during environmental impact assessments and try to reduce these negative effects.

  20. Wind Powering America

    International Nuclear Information System (INIS)

    Flowers, L.; Dougherty, P. J.

    2001-01-01

    At the June 1999 Windpower Conference, the Secretary of Energy launched the Office of Energy Efficiency and Renewable Energy's Wind Powering America (WPA) initiative. The goals of the initiative are to meet 5% of the nation's energy needs with wind energy by 2020 (i.e., 80,000 megawatts installed), to double the number of states that have more than 20 megawatts (MW) of wind capacity to 16 by 2005 and triple it to 24 by 2010, and to increase wind's contribution to Federal electricity use to 5% by 2010. To achieve the Federal government's goal, DOE would take the leadership position and work with its Federal partners. Subsequently, the Secretary accelerated the DOE 5% commitment to 2005. Achieving the 80,000 MW goal would result in approximately$60 billion investment and$1.5 billion of economic development in our rural areas (where the wind resources are the greatest). The purpose of this paper is to provide an update on DOE's strategy for achieving its goals and the activities it has undertaken since the initiative was announced

  1. Wind energy assessment for the coastal part of Bangladesh

    International Nuclear Information System (INIS)

    Khadem, S.K.; Ghosh, H.R.; Kaiser, S.; Aditya, S.K.; Hussain, M.

    2005-01-01

    Earlier measurement and study of wind speed for the coastal part of Bangladesh showed that some of the areas of this part would be useful for wind power generation. But till now no measurement at the hub height of wind machine has yet done. Data has been collected from different sources and analysis has been done using logarithmic law and micro scale modeling software, WAsP for wind energy assessment over the coastal part. It has been found that the speed varies from 4m/s to 5.7 m/s at a height of 50m above ground level depending on the land type. Wind power density varies from 100 to 250 w/m/sub 2/ indicate the wind power can play an important role in the energy sector. (author)

  2. Hybrid Model of Inhomogeneous Solar Wind Plasma Heating by Alfven Wave Spectrum: Parametric Studies

    Science.gov (United States)

    Ofman, L.

    2010-01-01

    Observations of the solar wind plasma at 0.3 AU and beyond show that a turbulent spectrum of magnetic fluctuations is present. Remote sensing observations of the corona indicate that heavy ions are hotter than protons and their temperature is anisotropic (T(sub perpindicular / T(sub parallel) >> 1). We study the heating and the acceleration of multi-ion plasma in the solar wind by a turbulent spectrum of Alfvenic fluctuations using a 2-D hybrid numerical model. In the hybrid model the protons and heavy ions are treated kinetically as particles, while the electrons are included as neutralizing background fluid. This is the first two-dimensional hybrid parametric study of the solar wind plasma that includes an input turbulent wave spectrum guided by observation with inhomogeneous background density. We also investigate the effects of He++ ion beams in the inhomogeneous background plasma density on the heating of the solar wind plasma. The 2-D hybrid model treats parallel and oblique waves, together with cross-field inhomogeneity, self-consistently. We investigate the parametric dependence of the perpendicular heating, and the temperature anisotropy in the H+-He++ solar wind plasma. It was found that the scaling of the magnetic fluctuations power spectrum steepens in the higher-density regions, and the heating is channeled to these regions from the surrounding lower-density plasma due to wave refraction. The model parameters are applicable to the expected solar wind conditions at about 10 solar radii.

  3. Guide to Using the WIND Toolkit Validation Code

    Energy Technology Data Exchange (ETDEWEB)

    Lieberman-Cribbin, W.; Draxl, C.; Clifton, A.

    2014-12-01

    In response to the U.S. Department of Energy's goal of using 20% wind energy by 2030, the Wind Integration National Dataset (WIND) Toolkit was created to provide information on wind speed, wind direction, temperature, surface air pressure, and air density on more than 126,000 locations across the United States from 2007 to 2013. The numerical weather prediction model output, gridded at 2-km and at a 5-minute resolution, was further converted to detail the wind power production time series of existing and potential wind facility sites. For users of the dataset it is important that the information presented in the WIND Toolkit is accurate and that errors are known, as then corrective steps can be taken. Therefore, we provide validation code written in R that will be made public to provide users with tools to validate data of their own locations. Validation is based on statistical analyses of wind speed, using error metrics such as bias, root-mean-square error, centered root-mean-square error, mean absolute error, and percent error. Plots of diurnal cycles, annual cycles, wind roses, histograms of wind speed, and quantile-quantile plots are created to visualize how well observational data compares to model data. Ideally, validation will confirm beneficial locations to utilize wind energy and encourage regional wind integration studies using the WIND Toolkit.

  4. Wind Resource Assessment in Abadan Airport in Iran

    Directory of Open Access Journals (Sweden)

    Mojtaba Nedaei

    2012-11-01

    Full Text Available Renewable energies have potential for supplying of relatively clean and mostly local energy. Wind energy generation is expected to increase in the near future and has experienced dramatic growth over the past decade in many countries. Wind speed is the most important parameter in the design and study of wind energy conversion systems. Probability density functions such as Weibull and Rayleigh are often used in wind speed and wind energy analyses. This paper presents an assessment of wind energy at three heights during near two years based on Weibull distribution function in Abadan Airport. Extrapolation of the 10 m and 40 m data, using the power law, has been used to determine the wind speed at height of 80 m. According to the results wind speed at 80 m height in Abadan is ranged from 5.8 m/s in Nov to 8.5 m/s in Jun with average value of 7.15 m/s. In this study, different parameters such as Weibull parameters, diurnal and monthly wind speeds, cumulative distribution and turbulence intensity have been estimated and analyzed. In addition Energy production of different wind turbines at different heights was estimated. The results show that the studied site has good potential for Installation of large and commercial wind turbines at height of 80 m or higher. Keywords: Abadan, Iran, wind energy, wind resource, wind turbine, Weibull

  5. In Search of the Wind Energy Potential

    DEFF Research Database (Denmark)

    Lundtang Petersen, Erik

    2017-01-01

    The worldwide advancement of wind energy is putting high demands on a number of underlying technologies such as wind turbine aerodynamics, structural dynamics, gearbox design, electrical grid connections, and so on. As wind is the only fuel for wind power plants, naturally, wind......-meteorology and wind-climatology are essential for any utilization of wind energy. This is what we are concerned about here with a view on what has happened in wind energy potential assessments in the last 25 years where the utilization of wind turbines in national power supply has accelerated and what...... is the perspective for future improvements of the assessment methods. We take as the starting point the methodology of The European Wind Atlas [I. Troen and E. L. Petersen, European Wind Atlas (Risø National Laboratory, Roskilde, Denmark, 1989)]. From there to the global wind atlas methodology [J. Badger et al...

  6. Assessment of Economic Feasibility on Promising Wind Energy Sites in Myanmar

    OpenAIRE

    Soe, Thi Thi; Zheng, Maosheng; Aung, Zar Ni

    2016-01-01

    Due to lack of reliable wind data measured on site by high tower mast, the preliminarily wind atlas of Myanmar is forecasted with Modern Era Retrospective-analysis for Research and Application (MERRA) reanalysis data using in ArcGIS. From the result wind- map, the promising areas were found in Arakan, Pathein, Yangon, Ye which lie at coastal area in Myanmar and of which wind power density can be used for village power application with isolated-grid. To evaluate the annual energy production of...

  7. Effective atomic numbers and effective electron densities for trommel sieve waste and some commonly used building materials

    International Nuclear Information System (INIS)

    Kurudirek, M.; Canimkurbey, B.; Coban, M.; Ayguen, M.; Erzeneoglu, S. Z.

    2010-01-01

    Trommel sieve waste and some commonly used building materials (Portland cement, lime and pointing) have been investigated in terms of effective atomic numbers (Z e ff) and effective electron densities (N e ) by using X- and γ- rays at 22.1, 25 and 88 keV photon energies. A high resolution Si(Li) detector was employed to detect X- and/or γ- radiation coming through in a narrow beam good geometry set-up. Chemical compositions of the materials used in the present study were determined using a wave length dispersive X-ray fluorescence spectrometer (WDXRFS). The variations in photon interaction parameters were discussed regarding the photon energy and chemical composition. The experimental values of effective atomic numbers and effective electron densities were compared with the ones obtained from theory.

  8. Mapping seabird sensitivity to offshore wind farms.

    Science.gov (United States)

    Bradbury, Gareth; Trinder, Mark; Furness, Bob; Banks, Alex N; Caldow, Richard W G; Hume, Duncan

    2014-01-01

    We present a Geographic Information System (GIS) tool, SeaMaST (Seabird Mapping and Sensitivity Tool), to provide evidence on the use of sea areas by seabirds and inshore waterbirds in English territorial waters, mapping their relative sensitivity to offshore wind farms. SeaMaST is a freely available evidence source for use by all connected to the offshore wind industry and will assist statutory agencies in assessing potential risks to seabird populations from planned developments. Data were compiled from offshore boat and aerial observer surveys spanning the period 1979-2012. The data were analysed using distance analysis and Density Surface Modelling to produce predicted bird densities across a grid covering English territorial waters at a resolution of 3 km×3 km. Coefficients of Variation were estimated for each grid cell density, as an indication of confidence in predictions. Offshore wind farm sensitivity scores were compiled for seabird species using English territorial waters. The comparative risks to each species of collision with turbines and displacement from operational turbines were reviewed and scored separately, and the scores were multiplied by the bird density estimates to produce relative sensitivity maps. The sensitivity maps reflected well the amassed distributions of the most sensitive species. SeaMaST is an important new tool for assessing potential impacts on seabird populations from offshore development at a time when multiple large areas of development are proposed which overlap with many seabird species' ranges. It will inform marine spatial planning as well as identifying priority areas of sea usage by marine birds. Example SeaMaST outputs are presented.

  9. Constraining the cosmic radiation density due to lepton number with Big Bang Nucleosynthesis

    International Nuclear Information System (INIS)

    Mangano, Gianpiero; Miele, Gennaro; Pisanti, Ofelia; Sarikas, Srdjan; Pastor, Sergio

    2011-01-01

    The cosmic energy density in the form of radiation before and during Big Bang Nucleosynthesis (BBN) is typically parameterized in terms of the effective number of neutrinos N eff . This quantity, in case of no extra degrees of freedom, depends upon the chemical potential and the temperature characterizing the three active neutrino distributions, as well as by their possible non-thermal features. In the present analysis we determine the upper bounds that BBN places on N eff from primordial neutrino-antineutrino asymmetries, with a careful treatment of the dynamics of neutrino oscillations. We consider quite a wide range for the total lepton number in the neutrino sector, η ν = η ν e +η ν μ +η ν τ and the initial electron neutrino asymmetry η ν e in , solving the corresponding kinetic equations which rule the dynamics of neutrino (antineutrino) distributions in phase space due to collisions, pair processes and flavor oscillations. New bounds on both the total lepton number in the neutrino sector and the ν e −ν-bar e asymmetry at the onset of BBN are obtained fully exploiting the time evolution of neutrino distributions, as well as the most recent determinations of primordial 2 H/H density ratio and 4 He mass fraction. Note that taking the baryon fraction as measured by WMAP, the 2 H/H abundance plays a relevant role in constraining the allowed regions in the η ν −η ν e in plane. These bounds fix the maximum contribution of neutrinos with primordial asymmetries to N eff as a function of the mixing parameter θ 13 , and point out the upper bound N eff ∼ eff by the Planck satellite will likely provide insight on the nature of the radiation content of the universe

  10. Constraining the cosmic radiation density due to lepton number with Big Bang Nucleosynthesis

    Science.gov (United States)

    Mangano, Gianpiero; Miele, Gennaro; Pastor, Sergio; Pisanti, Ofelia; Sarikas, Srdjan

    2011-03-01

    The cosmic energy density in the form of radiation before and during Big Bang Nucleosynthesis (BBN) is typically parameterized in terms of the effective number of neutrinos Neff. This quantity, in case of no extra degrees of freedom, depends upon the chemical potential and the temperature characterizing the three active neutrino distributions, as well as by their possible non-thermal features. In the present analysis we determine the upper bounds that BBN places on Neff from primordial neutrino-antineutrino asymmetries, with a careful treatment of the dynamics of neutrino oscillations. We consider quite a wide range for the total lepton number in the neutrino sector, ην = ηνe+ηνμ+ηντ and the initial electron neutrino asymmetry ηνein, solving the corresponding kinetic equations which rule the dynamics of neutrino (antineutrino) distributions in phase space due to collisions, pair processes and flavor oscillations. New bounds on both the total lepton number in the neutrino sector and the νe-bar nue asymmetry at the onset of BBN are obtained fully exploiting the time evolution of neutrino distributions, as well as the most recent determinations of primordial 2H/H density ratio and 4He mass fraction. Note that taking the baryon fraction as measured by WMAP, the 2H/H abundance plays a relevant role in constraining the allowed regions in the ην-ηνein plane. These bounds fix the maximum contribution of neutrinos with primordial asymmetries to Neff as a function of the mixing parameter θ13, and point out the upper bound Nefflesssim3.4. Comparing these results with the forthcoming measurement of Neff by the Planck satellite will likely provide insight on the nature of the radiation content of the universe.

  11. MCMC for Wind Power Simulation

    NARCIS (Netherlands)

    Papaefthymiou, G.; Klöckl, B.

    2008-01-01

    This paper contributes a Markov chain Monte Carlo (MCMC) method for the direct generation of synthetic time series of wind power output. It is shown that obtaining a stochastic model directly in the wind power domain leads to reduced number of states and to lower order of the Markov chain at equal

  12. Wind effects on RVACS performance

    International Nuclear Information System (INIS)

    Tzanos, C.

    1995-01-01

    The reactor vessel auxillary cooling system (RVACS) is a passive liquid-metal reactor decay-heat removal system. The RVACS performance is a function of the pressure difference between air flow inlet and outlet, of the air inlet temperature, of the air density variation along the flow path, and of the pressure loss characteristics of the path. The pressure difference can be affected by wind speed and direction. The objective of this project was to investigate the effects of wind on the performance of the RVACS, specifically, the heat release through the stacks, of a liquid-metal reactor

  13. Three-beam aerosol backscatter correlation lidar for wind profiling

    Science.gov (United States)

    Prasad, Narasimha S.; Radhakrishnan Mylapore, Anand

    2017-03-01

    The development of a three-beam aerosol backscatter correlation (ABC) light detection and ranging (lidar) to measure wind characteristics for wake vortex and plume tracking applications is discussed. This is a direct detection elastic lidar that uses three laser transceivers, operating at 1030-nm wavelength with ˜10-kHz pulse repetition frequency and nanosec class pulse widths, to directly obtain three components of wind velocities. By tracking the motion of aerosol structures along and between three near-parallel laser beams, three-component wind speed profiles along the field-of-view of laser beams are obtained. With three 8-in. transceiver modules, placed in a near-parallel configuration on a two-axis pan-tilt scanner, the lidar measures wind speeds up to 2 km away. Optical flow algorithms have been adapted to obtain the movement of aerosol structures between the beams. Aerosol density fluctuations are cross-correlated between successive scans to obtain the displacements of the aerosol features along the three axes. Using the range resolved elastic backscatter data from each laser beam, which is scanned over the volume of interest, a three-dimensional map of aerosol density can be generated in a short time span. The performance of the ABC wind lidar prototype, validated using sonic anemometer measurements, is discussed.

  14. Solar wind structure out of the ecliptic plane over solar cycles

    Science.gov (United States)

    Sokol, J. M.; Bzowski, M.; Tokumaru, M.

    2017-12-01

    Sun constantly emits a stream of plasma known as solar wind. Ground-based observations of the solar wind speed through the interplanetary scintillations (IPS) of radio flux from distant point sources and in-situ measurements by Ulysses mission revealed that the solar wind flow has different characteristics depending on the latitude. This latitudinal structure evolves with the cycle of solar activity. The knowledge on the evolution of solar wind structure is important for understanding the interaction between the interstellar medium surrounding the Sun and the solar wind, which is responsible for creation of the heliosphere. The solar wind structure must be taken into account in interpretation of most of the observations of heliospheric energetic neutral atoms, interstellar neutral atoms, pickup ions, and heliospheric backscatter glow. The information on the solar wind structure is not any longer available from direct measurements after the termination of Ulysses mission and the only source of the solar wind out of the ecliptic plane is the IPS observations. However, the solar wind structure obtained from this method contains inevitable gaps in the time- and heliolatitude coverage. Sokół et al 2015 used the solar wind speed data out of the ecliptic plane retrieved from the IPS observations performed by Institute for Space-Earth Environmental Research (Nagoya University, Japan) and developed a methodology to construct a model of evolution of solar wind speed and density from 1985 to 2013 that fills the data gaps. In this paper we will present a refined model of the solar wind speed and density structure as a function of heliographic latitude updated by the most recent data from IPS observations. And we will discuss methods of extrapolation of the solar wind structure out of the ecliptic plane for the past solar cycles, when the data were not available, as well as forecasting for few years upward.

  15. Statistical analysis of wind speed using two-parameter Weibull distribution in Alaçatı region

    International Nuclear Information System (INIS)

    Ozay, Can; Celiktas, Melih Soner

    2016-01-01

    Highlights: • Wind speed & direction data from September 2008 to March 2014 has been analyzed. • Mean wind speed for the whole data set has been found to be 8.11 m/s. • Highest wind speed is observed in July with a monthly mean value of 9.10 m/s. • Wind speed with the most energy has been calculated as 12.77 m/s. • Observed data has been fit to a Weibull distribution and k &c parameters have been calculated as 2.05 and 9.16. - Abstract: Weibull Statistical Distribution is a common method for analyzing wind speed measurements and determining wind energy potential. Weibull probability density function can be used to forecast wind speed, wind density and wind energy potential. In this study a two-parameter Weibull statistical distribution is used to analyze the wind characteristics of Alaçatı region, located in Çeşme, İzmir. The data used in the density function are acquired from a wind measurement station in Alaçatı. Measurements were gathered on three different heights respectively 70, 50 and 30 m between 10 min intervals for five and half years. As a result of this study; wind speed frequency distribution, wind direction trends, mean wind speed, and the shape and the scale (k&c) Weibull parameters have been calculated for the region. Mean wind speed for the entirety of the data set is found to be 8.11 m/s. k&c parameters are found as 2.05 and 9.16 in relative order. Wind direction analysis along with a wind rose graph for the region is also provided with the study. Analysis suggests that higher wind speeds which range from 6–12 m/s are prevalent between the sectors 340–360°. Lower wind speeds, from 3 to 6 m/s occur between sectors 10–29°. Results of this study contribute to the general knowledge about the regions wind energy potential and can be used as a source for investors and academics.

  16. Wind energy in South Africa

    International Nuclear Information System (INIS)

    Linde, H.A. van der

    1996-01-01

    Wind, in South Africa, has been a source of energy for many years but at the same time it is taking as much time and effort to receive the recognition it deserves as anywhere else in the world. The wind resource is comparable to a number of areas in the world wind is exploited as a grid connected source of electrical energy. Although the environmental impact of conventional sources of energy is not as widespread as most of the industrial nations some areas should be looked at critically. Wind as a bulk generator of energy is tentatively being looked at with some demonstration projects being planned. (author)

  17. Wind energy - the right approach

    International Nuclear Information System (INIS)

    Wade-Smith, R.; Pitcher, K.; British Wind Energy Association, London; European Wind Energy Association)

    1992-01-01

    The improved climate afforded by the Electricity Act 1989 and in particular the so-called non-fossil fuel obligation (NFFO) has brought about a significant number of renewable energy proposals and in particular wind power projects. The 1990 Order included nine wind projects - five windfarms ranging from four to twenty four wind turbines and four single turbine proposals. The purpose of this article is to help the reader have a greater understanding of some of the planning issues concerned with a wind power project (in the UK), and the basis upon which obstacles can be overcome on the road to achieving planning approval. (author)

  18. Determination of the Rb atomic number density in dense rubidium vapors by absorption measurements of Rb2 triplet bands

    International Nuclear Information System (INIS)

    Horvatic, Vlasta; Veza, Damir; Niemax, Kay; Vadla, Cedomil

    2008-01-01

    A simple and accurate way of determining atom number densities in dense rubidium vapors is presented. The method relies on the experimental finding that the reduced absorption coefficients of the Rb triplet satellite bands between 740 nm and 750 nm and the triplet diffuse band between 600 nm and 610 nm are not temperature dependent in the range between 600 K and 800 K. Therefore, the absolute values of the reduced absorption coefficients of these molecular bands can provide accurate information about atomic number density of the vapor. The rubidium absorption spectrum was measured by spatially resolved white-light absorption in overheated rubidium vapor generated in a heat pipe oven. The absolute values for the reduced absorption coefficients of the triplet bands were determined at lower vapor densities, by using an accurate expression for the reduced absorption coefficient in the quasistatic wing of the Rb D1 line, and measured triplet satellite bands to the resonance wing optical depth ratio. These triplet satellite band data were used to calibrate in absolute scale the reduced absorption coefficients of the triplet diffuse band at higher temperatures. The obtained values for the reduced absorption coefficient of these Rb molecular features can be used for accurate determination of rubidium atomic number densities in the range from about 5 x 10 16 cm -3 to 1 x 10 18 cm -3

  19. A study of the solar wind deceleration in the Earth's foreshock region

    Science.gov (United States)

    Zhang, T.-L.; Schwingenschuh, K.; Russell, C. T.

    1995-01-01

    Previous observations have shown that the solar wind is decelerated and deflected in the earth's upstream region populated by long-period waves. This deceleration is corelated with the 'diffuse' but not with the 'reflected' ion population. The speed of the solar wind may decrease tens of km/s in the foreshock region. The solar wind dynamic pressure exerted on the magnetopause may vary due to the fluctuation of the solar wind speed and density in the foreshock region. In this study, we examine this solar wind deceleration and determine how the solar wind deceleration varies in the foreshock region.

  20. Quality-Controlled Wind Data from the Kennedy Space Center 915 Megahertz Doppler Radar Wind Profiler Network

    Science.gov (United States)

    Dryden, Rachel L.

    2011-01-01

    The National Aeronautics and Space Administration s (NASA) Kennedy Space Center (KSC) has installed a five-instrument 915-Megahertz (MHz) Doppler Radar Wind Profiler (DRWP) system that records atmospheric wind profile properties. The purpose of these profilers is to fill data gaps between the top of the KSC wind tower network and the lowest measurement altitude of the KSC 50-MHz DRWP. The 915-MHz DRWP system has the capability to generate three-dimensional wind data outputs from approximately 150 meters (m) to 6,000 m at roughly 15-minute (min) intervals. NASA s long-term objective is to combine the 915-MHz and 50-MHz DRWP systems to create complete vertical wind profiles up to 18,300 m to be used in trajectory and loads analyses of space vehicles and by forecasters on day-of-launch (DOL). This analysis utilizes automated and manual quality control (QC) processes to remove erroneous and unrealistic wind data returned by the 915-MHz DRWP system. The percentage of data affected by each individual QC check in the period of record (POR) (i.e., January to April 2006) was computed, demonstrating the variability in the amount of data affected by the QC processes. The number of complete wind profiles available at given altitude thresholds for each profiler in the POR was calculated and outputted graphically, followed by an assessment of the number of complete wind profiles available for any profiler in the POR. A case study is also provided to demonstrate the QC process on a day of a known weather event.

  1. IMPER: Characterization of the wind field over a large wind turbine rotor - final report; Improved performance

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt Paulsen, U.; Wagner, R.

    2012-01-15

    A modern wind turbine rotor with a contemporary rotor size would easily with the tips penetrate the air between 116 m and 30 m and herby experience effects of different wind. With current rules on power performance measurements such as IEC 61400-121 the reference wind speed is measured at hub height, an oversimplification of the wind energy power over the rotor disk area is carried out. The project comprised a number of innovative and coordinated measurements on a full scale turbine with remote sensing technology and simulations on a 500 kW wind turbine for the effects of wind field characterization. The objective with the present report is to give a short overview of the different experiments carried out and results obtained within the final phase of this project. (Author)

  2. Wind turbines and human health

    Directory of Open Access Journals (Sweden)

    Loren eKnopper

    2014-06-01

    Full Text Available The association between wind turbines and health effects is highly debated. Some argue that reported health effects are related to wind turbine operation (electromagnetic fields (EMF, shadow flicker, audible noise, low frequency noise, infrasound. Others suggest that when turbines are sited correctly, effects are more likely attributable to a number of subjective variables that result in an annoyed/stressed state. In this review we provide a bibliographic-like summary and analysis of the science around this issue specifically in terms of noise (including audible, low frequency noise and infrasound, EMF and shadow flicker. Now there are roughly 60 scientific peer-reviewed articles on this issue. The available scientific evidence suggests that EMF, shadow flicker, low frequency noise and infrasound from wind turbines are not likely to affect human health; some studies have found that audible noise from wind turbines can be annoying to some. Annoyance may be associated with some self-reported health effects (e.g., sleep disturbance especially at sound pressure levels >40 dB(A. Because environmental noise above certain levels is a recognized factor in a number of health issues, siting restrictions have been implemented in many jurisdictions to limit noise exposure. These setbacks should help alleviate annoyance from noise. Subjective variables (attitudes and expectations are also linked to annoyance and have the potential to facilitate other health complaints via the nocebo effect. Therefore, it is possible that a segment of the population may remain annoyed (or report other health impacts even when noise limits are enforced. Based on the findings and scientific merit of the available studies, the weight of evidence suggests that when sited properly, wind turbines are not related to adverse health. Stemming from this review, we provide a number of recommended best practices for wind turbine development in the context of human health.

  3. Wind turbines and human health.

    Science.gov (United States)

    Knopper, Loren D; Ollson, Christopher A; McCallum, Lindsay C; Whitfield Aslund, Melissa L; Berger, Robert G; Souweine, Kathleen; McDaniel, Mary

    2014-01-01

    The association between wind turbines and health effects is highly debated. Some argue that reported health effects are related to wind turbine operation [electromagnetic fields (EMF), shadow flicker, audible noise, low-frequency noise, infrasound]. Others suggest that when turbines are sited correctly, effects are more likely attributable to a number of subjective variables that result in an annoyed/stressed state. In this review, we provide a bibliographic-like summary and analysis of the science around this issue specifically in terms of noise (including audible, low-frequency noise, and infrasound), EMF, and shadow flicker. Now there are roughly 60 scientific peer-reviewed articles on this issue. The available scientific evidence suggests that EMF, shadow flicker, low-frequency noise, and infrasound from wind turbines are not likely to affect human health; some studies have found that audible noise from wind turbines can be annoying to some. Annoyance may be associated with some self-reported health effects (e.g., sleep disturbance) especially at sound pressure levels >40 dB(A). Because environmental noise above certain levels is a recognized factor in a number of health issues, siting restrictions have been implemented in many jurisdictions to limit noise exposure. These setbacks should help alleviate annoyance from noise. Subjective variables (attitudes and expectations) are also linked to annoyance and have the potential to facilitate other health complaints via the nocebo effect. Therefore, it is possible that a segment of the population may remain annoyed (or report other health impacts) even when noise limits are enforced. Based on the findings and scientific merit of the available studies, the weight of evidence suggests that when sited properly, wind turbines are not related to adverse health. Stemming from this review, we provide a number of recommended best practices for wind turbine development in the context of human health.

  4. Wind Turbines and Human Health

    Science.gov (United States)

    Knopper, Loren D.; Ollson, Christopher A.; McCallum, Lindsay C.; Whitfield Aslund, Melissa L.; Berger, Robert G.; Souweine, Kathleen; McDaniel, Mary

    2014-01-01

    The association between wind turbines and health effects is highly debated. Some argue that reported health effects are related to wind turbine operation [electromagnetic fields (EMF), shadow flicker, audible noise, low-frequency noise, infrasound]. Others suggest that when turbines are sited correctly, effects are more likely attributable to a number of subjective variables that result in an annoyed/stressed state. In this review, we provide a bibliographic-like summary and analysis of the science around this issue specifically in terms of noise (including audible, low-frequency noise, and infrasound), EMF, and shadow flicker. Now there are roughly 60 scientific peer-reviewed articles on this issue. The available scientific evidence suggests that EMF, shadow flicker, low-frequency noise, and infrasound from wind turbines are not likely to affect human health; some studies have found that audible noise from wind turbines can be annoying to some. Annoyance may be associated with some self-reported health effects (e.g., sleep disturbance) especially at sound pressure levels >40 dB(A). Because environmental noise above certain levels is a recognized factor in a number of health issues, siting restrictions have been implemented in many jurisdictions to limit noise exposure. These setbacks should help alleviate annoyance from noise. Subjective variables (attitudes and expectations) are also linked to annoyance and have the potential to facilitate other health complaints via the nocebo effect. Therefore, it is possible that a segment of the population may remain annoyed (or report other health impacts) even when noise limits are enforced. Based on the findings and scientific merit of the available studies, the weight of evidence suggests that when sited properly, wind turbines are not related to adverse health. Stemming from this review, we provide a number of recommended best practices for wind turbine development in the context of human health. PMID:24995266

  5. Galactic cluster winds in presence of a dark energy

    Science.gov (United States)

    Bisnovatyi-Kogan, G. S.; Merafina, M.

    2013-10-01

    We obtain a solution for the hydrodynamic outflow of the polytropic gas from the gravitating centre, in the presence of the uniform dark energy (DE). The antigravity of DE is enlightening the outflow and makes the outflow possible at smaller initial temperature, at the same density. The main property of the wind in the presence of DE is its unlimited acceleration after passing the critical point. In application of this solution to the winds from galaxy clusters, we suggest that collision of the strongly accelerated wind with another galaxy cluster, or with another galactic cluster wind, could lead to the formation of a highest energy cosmic rays.

  6. Coronal mass ejections and disturbances in solar wind plasma parameters in relation with geomagnetic storms

    International Nuclear Information System (INIS)

    Verma, P L; Singh, Puspraj; Singh, Preetam

    2014-01-01

    Coronal Mass Ejections (CMEs) are the drastic solar events in which huge amount of solar plasma materials are ejected into the heliosphere from the sun and are mainly responsible to generate large disturbances in solar wind plasma parameters and geomagnetic storms in geomagnetic field. We have studied geomagnetic storms, (Dst ≤-75 nT) observed during the period of 1997-2007 with Coronal Mass Ejections and disturbances in solar wind plasma parameters (solar wind temperature, velocity, density and interplanetary magnetic field) .We have inferred that most of the geomagnetic storms are associated with halo and partial halo Coronal Mass Ejections (CMEs).The association rate of halo and partial halo coronal mass ejections are found 72.37 % and 27.63 % respectively. Further we have concluded that geomagnetic storms are closely associated with the disturbances in solar wind plasma parameters. We have determined positive co-relation between magnitudes of geomagnetic storms and magnitude of jump in solar wind plasma temperature, jump in solar wind plasma density, jump in solar wind plasma velocity and jump in average interplanetary magnetic field with co-relation co-efficient 0 .35 between magnitude of geomagnetic storms and magnitude of jump in solar wind plasma temperature, 0.19 between magnitude of geomagnetic storms and magnitude of jump in solar wind density, 0.34 between magnitude of geomagnetic storms and magnitude of jump in solar wind plasma velocity, 0.66 between magnitude of geomagnetic storms and magnitude of jump in average interplanetary magnetic field respectively. We have concluded that geomagnetic storms are mainly caused by Coronal Mass Ejections and disturbances in solar wind plasma parameters that they generate.

  7. Pre- and post-construction studies of conflicts between birds and wind turbines in coastal Norway (BirdWind)

    Energy Technology Data Exchange (ETDEWEB)

    Bevanger, K.; Berntsen, F.; Clausen, S.; Dahl, E.L.; Flagstad, Oe.; Follestad, A.; Halley, D.; Hanssen, F.; Hoel, P.L.; Johnsen, L.; Kvaloey, P.; May, R.; Nygaard, T.; Pedersen, H.C.; Reitan, O.; Steinheim, Y.; Vang, R.

    2009-12-15

    The project is named Pre- and post-construction studies of conflicts between birds and wind turbines in coastal Norway (BirdWind). BirdWind is approaching its finalization; with 2010 as the last ordinary year where data-collecting activities takes place. In 2009 the project was significantly strengthened through a new PhD-position. The overall aim of the work conducted by the PhD-student is to model the future white-tailed eagle (WTE) population development based on reproduction and mortality data. Weekly searches with dogs for birds killed within the wind-power plant have been carried out throughout the year; in general searches are conducted every 7 days. 25 'primary turbines' are selected and searched together with one of two dogs. A full search of all turbines is performed at larger intervals. In 2009 31 specimens of at least 8 species have been re-corded. The most frequent victims are willow ptarmigan and WTE with 10 and 7 carcasses, respectively. Of waders 3 common snipes have been recorded. Five carcasses were recorded of hooded crow, and single carcasses of parrot crossbill, northern wheat ear, teal and mallard. Some records from earlier years have been revised as collision victims or not. Also in 2009 censuses for willow ptarmigan have been carried out in spring and autumn on Smoela and Hitra. The preliminary results do not indicate any obvious differences between the two areas, but autumn density in the wind-power plant area seems to be more stable compared to the control area. Interestingly the higher density within the wind-power plant area in autumn is evened out in spring each year, so also in spring 2009. To obtain data on habitat selection, movements, collision risks, survival of eggs, chicks and adults and general population dynamic parameters, willow ptarmigan specimen have been radio-tagged in 2008-2009. The activities regarding breeding waders and small birds (mainly passerines) have this year focused on the EIA-activities on Hitra in

  8. 'Wind in motion'. The rough guide to wind energy development

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-15

    This project, which will run from January 2005 to October 2005, aims to develop a promotional DVD to inform and reassure the public and specific audiences on controversial aspects of proposed new wind farms. The DVD would also be used as a tool to gain acceptance and contributions from bodies involved in wind energy developments. 'Wind in Motion' complements a number of other public relations campaigns being undertaken bor proposed by the Department of Trade and Industry (DTI) and the British Wind Energy Association (BWEA). The DVD would cover issues such as the impact of wind farms of wild birds, the visual impact of wind farms on the landscape, the impact on tourism in scenic areas, the impact of local house prices, the impact on local residents during the construction and operational phases, and comparisons with the capacity and efficiencies of other electricity generating systems such as coal, gas and nuclear. The project's objectives are to facilitate the deployment of wind energy by addressing information barriers and providing information to help industry with transferable skills to diversify in the supply chain. Work will include cataloguing the footage taken for the DVD to allow it to be made available to the industry and producing case studies of the benefits of skills transfer.

  9. [Particle Size and Number Density Online Analysis for Particle Suspension with Polarization-Differentiation Elastic Light Scattering Spectroscopy].

    Science.gov (United States)

    Chen, Wei-kang; Fang, Hui

    2016-03-01

    The basic principle of polarization-differentiation elastic light scattering spectroscopy based techniques is that under the linear polarized light incidence, the singlely scattered light from the superficial biological tissue and diffusively scattered light from the deep tissue can be separated according to the difference of polarization characteristics. The novel point of the paper is to apply this method to the detection of particle suspension and, to realize the simultaneous measurement of its particle size and number density in its natural status. We design and build a coaxial cage optical system, and measure the backscatter signal at a specified angle from a polystyrene microsphere suspension. By controlling the polarization direction of incident light with a linear polarizer and adjusting the polarization direction of collected light with another linear polarizer, we obtain the parallel polarized elastic light scattering spectrum and cross polarized elastic light scattering spectrum. The difference between the two is the differential polarized elastic light scattering spectrum which include only the single scattering information of the particles. We thus compare this spectrum to the Mie scattering calculation and extract the particle size. We then also analyze the cross polarized elastic light scattering spectrum by applying the particle size already extracted. The analysis is based on the approximate expressions taking account of light diffusing, from which we are able to obtain the number density of the particle suspension. We compare our experimental outcomes with the manufacturer-provided values and further analyze the influence of the particle diameter standard deviation on the number density extraction, by which we finally verify the experimental method. The potential applications of the method include the on-line particle quality monitoring for particle manufacture as well as the fat and protein density detection of milk products.

  10. Statistical analysis of wind speed for electrical power generation in ...

    African Journals Online (AJOL)

    Also, the results have shown that Jos, Kano and Minna fall in class 4 and therefore suitable for both off grid and grid connected modes. In addition, the effects of c and k parameters on the probability distribution functions have been presented. Keywords: Wind speed - probability - density function – wind energy conversion ...

  11. The dependence of C IV broad absorption line properties on accompanying Si IV and Al III absorption: relating quasar-wind ionization levels, kinematics, and column densities

    Energy Technology Data Exchange (ETDEWEB)

    Filiz Ak, N.; Brandt, W. N.; Schneider, D. P.; Trump, J. R. [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States); Hall, P. B. [Department of Physics and Astronomy, York University, 4700 Keele Street, Toronto, Ontario M3J 1P3 (Canada); Anderson, S. F. [Astronomy Department, University of Washington, Seattle, WA 98195 (United States); Hamann, F. [Department of Astronomy, University of Florida, Gainesville, FL 32611-2055 (United States); Myers, Adam D. [Department of Physics and Astronomy, University of Wyoming, Laramie, WY 82071 (United States); Pâris, I. [Departamento de Astronomía, Universidad de Chile, Casilla 36-D, Santiago (Chile); Petitjean, P. [Institut d' Astrophysique de Paris, Universite Paris 6, F-75014 Paris (France); Ross, Nicholas P. [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Shen, Yue [Carnegie Observatories, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); York, Don, E-mail: nfilizak@astro.psu.edu [Department of Astronomy and Astrophysics, The University of Chicago, Chicago, IL 60637 (United States)

    2014-08-20

    We consider how the profile and multi-year variability properties of a large sample of C IV Broad Absorption Line (BAL) troughs change when BALs from Si IV and/or Al III are present at corresponding velocities, indicating that the line of sight intercepts at least some lower ionization gas. We derive a number of observational results for C IV BALs separated according to the presence or absence of accompanying lower ionization transitions, including measurements of composite profile shapes, equivalent width (EW), characteristic velocities, composite variation profiles, and EW variability. We also measure the correlations between EW and fractional-EW variability for C IV, Si IV, and Al III. Our measurements reveal the basic correlated changes between ionization level, kinematics, and column density expected in accretion-disk wind models; e.g., lines of sight including lower ionization material generally show deeper and broader C IV troughs that have smaller minimum velocities and that are less variable. Many C IV BALs with no accompanying Si IV or Al III BALs may have only mild or no saturation.

  12. Report on a wind power development field test project (detailed wind condition investigation) in the city of Choshi; Choshishi ni okeru furyoku kaihatsu field test jigyo (fukyo seisa) hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-11-01

    This paper describes observation on the annual wind condition at the Yokka-ichibadai in the city of Choshi. The average wind velocities were 4.7 and 3.8 m/s at the ground height of 20 and 10 meters, respectively, not having reached the NEDO's criterion values 5.6 and 5.0 m/s. The annual wind direction emergence rate on the wind axis was 70%, meeting the criterion value of 60% or higher, and the wind direction is stable. The exponent for the vertical wind velocity distribution was 3.3, which is similar to that in the urban area. Disturbance in the wind condition was 0.18, meeting the criterion value of 0.30 or lower. The maximum momentary wind velocity was 31.9 m/s, which is well below the criterion of 60 m/s presenting no problem as a wind mill construction site. The wind energy density was 94 W/m{sup 2}, being only 63% of the criterion value, when all the azimuths were used as the object. The result of the investigation is that the average wind velocity is low and the wind energy density is also low. However, if the size of wind mill to be introduced is set to the class B (300 kW), it is possible to attain an annual operation rate of 58%, an annual energy acquisition amount of 515 MWh, and a facility utilization rate of 19.6%. If set to the class C (750 kW), an operation rate of 78%, an annual energy acquisition of 1296 MWh, and a facility utilization rate of 19.7% can be obtained, meeting the criterion value. (NEDO)

  13. Wind energy and Turkey.

    Science.gov (United States)

    Coskun, Aynur Aydin; Türker, Yavuz Özhan

    2012-03-01

    The global energy requirement for sustaining economic activities, meeting social needs and social development is increasing daily. Environmentally friendly, renewable energy resources are an alternative to the primary non-renewable energy resources, which devastate ecosystems in order to meet increasing demand. Among renewable energy sources such as hydropower, biopower, geothermal power and solar power, wind power offers distinct advantages to Turkey. There is an increasing tendency toward wind globally and the European Union adjusted its legal regulations in this regard. As a potential EU Member state, Turkey is going through a similar process. The number of institutional and legal regulations concerning wind power has increased in recent years; technical infrastructure studies were completed, and some important steps were taken in this regard. This study examines the way in which Turkey has developed support for wind power, presents a SWOT analysis of the wind power sector in Turkey and a projection was made for the concrete success expected to be accomplished in the future.

  14. Status of the French wind energy fleet - December 2010

    International Nuclear Information System (INIS)

    2010-12-01

    Maps, tables and graphs indicate the installed wind energy power in France at 1 October 2010, the evolution of the installed power and number of wind turbines, the distribution of installed power at the region and district levels, wind energy production in October 2010, and market shares of wind turbine manufacturers in France

  15. Radar Cross Section (RCS) Simulation for Wind Turbines

    Science.gov (United States)

    2013-06-01

    wind turbines are unsafe to operate. Also, helical wind turbines generally have less environmental concerns such as killing birds , especially in...SECTION (RCS) SIMULATION FOR WIND TURBINES by Cuong Ton June 2013 Thesis Advisor: David C. Jenn Second Reader: Ric Romero THIS PAGE...TITLE AND SUBTITLE RADAR CROSS SECTION (RCS) SIMULATION FOR WIND TURBINES 5. FUNDING NUMBERS 6. AUTHOR(S) Cuong Ton 7. PERFORMING ORGANIZATION

  16. Offshore wind resources at Danish measurement sites

    Energy Technology Data Exchange (ETDEWEB)

    Barthelmie, R J; Courtney, M S; Lange, B; Nielsen, M; Sempreviva, A M [Risoe National Lab., Dept. of Wind Energy and Atmospheric Physics, Roskilde (Denmark); Svenson, J; Olsen, F [SEAS, Haslev (Denmark); Christensen, T [Elsamprojekt, Fredericia (Denmark)

    1999-03-01

    In order to characterise wind and turbulence characteristics at prospective offshore wind energy sites, meteorological observations from a number of purpose-built offshore monitoring sites have been analyzed and compared with long wind speed time series. New analyses have been conducted on the data sets focussing on meteorology, turbulence, extreme winds and wind and wave interactions. Relationships between wind speed, turbulence and fetch are highly complex. Minimum turbulence intensity offshore is associated with wind speeds of about 12 m/s. At lower wind speeds, stability effects are important while at higher winds speeds wind and wave interactions appear to dominate. On average, turbulence intensity offshore at 48 m height is approximately 0.08 if no coastal effects are present. However, the effect of the coastal discontinuity persists in wind speed and turbulence characteristics for considerable distances offshore. The majority of the adjustment of appears to occur within 20 km of the coast. (au)

  17. Microtubule Protofilament Number Is Modulated in a Step-Wise Fashion By the Charge of Density of An Enveloping Layer

    International Nuclear Information System (INIS)

    Raviv, U.; Nguyen, T.; Ghafouri, R.; Needleman, D.J.; Li, Y.; Miller, H.P.; Wilson, L.; Bruinsma, R.F.; Safinya, C.R.; UC, Santa Barbara; UCLA

    2007-01-01

    Microtubules are able to adjust their protofilament (PF) number and, as a consequence, their dynamics and function, to the assembly conditions and presence of cofactors. However, the principle behind such variations is poorly understood. Using synchrotron x-ray scattering and transmission electron microscopy, we studied how charged membranes, which under certain conditions can envelop preassembled MTs, regulate the PF number of those MTs. We show that the mean PF number, , is modulated primarily by the charge density of the membranes. decreases in a stepwise fashion with increasing membrane charge density. does not depend on the membrane-protein stoichiometry or the solution ionic strength. We studied the effect of taxol and found that increases logarithmically with taxol/tubulin stoichiometry. We present a theoretical model, which by balancing the electrostatic and elastic interactions in the system accounts for the trends in our findings and reveals an effective MT bending stiffness of order 10-100 k B T/nm, associated with the observed changes in PF number

  18. Large Eddy Simulation of Turbulent Flows in Wind Energy

    DEFF Research Database (Denmark)

    Chivaee, Hamid Sarlak

    This research is devoted to the Large Eddy Simulation (LES), and to lesser extent, wind tunnel measurements of turbulent flows in wind energy. It starts with an introduction to the LES technique associated with the solution of the incompressible Navier-Stokes equations, discretized using a finite......, should the mesh resolution, numerical discretization scheme, time averaging period, and domain size be chosen wisely. A thorough investigation of the wind turbine wake interactions is also conducted and the simulations are validated against available experimental data from external sources. The effect...... Reynolds numbers, and thereafter, the fully-developed infinite wind farm boundary later simulations are performed. Sources of inaccuracy in the simulations are investigated and it is found that high Reynolds number flows are more sensitive to the choice of the SGS model than their low Reynolds number...

  19. Management of moderate wind energy coastal resources

    International Nuclear Information System (INIS)

    Karamanis, D.

    2011-01-01

    Research highlights: → Life cycle analysis reveals the viability of moderate wind fields utilization. → Wind turbine is the greenest electricity generator at a touristic site. → Wind parks should be collective applications of small hotel-apartments owners. -- Abstract: The feasibility of wind energy utilization at moderate wind fields was investigated for a typical touristic coastal site in Western Greece. Initially, the wind speed and direction as well as its availability, duration and diurnal variation were assessed. For an analysis period of eight years, the mean wind speed at ten meters was determined as 3.8 m s -1 with a small variation in monthly average wind speeds between 3.0 (January) and 4.4 m s -1 (October). The mean wind power density was less than 200 W m -2 at 10 m indicating the limiting suitability of the site for the usual renewable energy applications. However, life cycle analysis for wind turbine generators with lower cut-in, cut-out, and rated speeds revealed that the energy yield ratio can reach a value of six for a service life of 20 years while the energy pay-back period can be 3 years with 33 kt CO 2 -e of avoided greenhouse emissions. Therefore, the recent technological turbine improvements make wind power viable even at moderate wind fields. Moreover, the study of electricity supply of typical small hotel-apartments in the region of Western Greece indicated that the installation of 300 wind turbine generators in these moderate wind fields would cover the total consumption during the open touristic period with profits during the rest of the year. According to these results, wind turbine generators are the 'greenest' way of generating electricity in touristic coastal sites, even of moderate wind speeds.

  20. Effects of wind and simulated acid mist on leaf cuticles

    International Nuclear Information System (INIS)

    Hoad, S.P.; Jeffree, C.E.; Grace, J.

    1994-01-01

    The combined effect of wind and simulated acid mist on leaf cuticles was investigated in beech (Fagus sylvatica L.) and birch (Betula pubescens Ehr.). Macroscopic and microscopic features of wind damage are described. Visibly damaged leaf area and the numbers of microscopic cuticular lesions were measured. The cuticular conductance to water vapour (g c ) of the astomatous adaxial surfaces of the leaves was measured by a gravimetric method. Field experimenntal sites were selected to provide either: 1. Direct wind action on widely-spaced plants caused by high speed and impaction of wind-blown particles, but with minimal mutual leaf abrasion 2. Indirect wind action via a high degree of mutual abrasion between closely-spaced plants. Direct wind action increased water loss via the leaf adaxial cuticle two- to three-fold in each species, by increasing the numbers of microscopic cuticular lesions. Indirect wind action caused more visible damage to leaves than direct wind action, increased g c by about threefold compared with complete shelter, and induced the most cuticular lesions. Acid mists at pH 3 or pH 5 were applied to the plants in situ at weekly intervals over a 100-day period. In sheltered plants, no effect of acid mist was detected on visibly damaged leaf area, the numbers of microscopic cuticular lesions, or on g c . However, acid mists in combination with wind exposure caused significant effects on cuticular integrity that were dependent on the type of wind action. Direct wind action combined with pH 3 acid mist resulted in the largest numbers of microscopic cuticular lesions, and the highest g c . By contrast, indirect wind action combined with pH 3 acid mist caused most visible damage to leaf tissue, but fewer microscopic lesions, and lower g c , than in plants treated with water mist. In severely-abraded leaves exposed to indirect wind action and low-pH acid rain, g c may be reduced by wound-isolation of blocks of non-functional leaf tissue. (orig.)

  1. On the continuum theory of the one-fluid solar wind for small Prandtl number

    International Nuclear Information System (INIS)

    Johnson, R.S.

    1976-01-01

    The continuum theory for a single-species gas expanding into a vacuum (or near vacuum) is considered. The gas is assumed compressible, viscous and heat conducting with a constant Prandtl number and viscosity proportional to (temperature) sup(ω), ω > 1. The gas is under the influence of a gravitational field centred on the Sun. For small Prandtl number (which is realistic for the one-fluid solar wind), the method of matched asymptotic expansions is used to construct a solution describing the complete flow field from the surface of the Sun to infinity. The first two regions correspond to those found by Roberts and Soward (Proc. R. Soc. Lond.; A328:185 (1972)) for large thermal conductivity; the next involves the viscous terms, and in the fourth the viscous terms dominate. It it shown from the fourth region that either the flow remains supersonic but terminates at a finite point, or the flow becomes subsonic through a diffuse shock layer and approaches a non-zero pressure at infinity. It is seen that the existence of a critical point (subsonic/supersonic transition) together with a known pressure at infinity can uniquely determine the complete solution. However, to correspond with typical results near the Sun and at the Earth's orbit the pressure at infinity is found to be very much larger than that generally accepted. (author)

  2. Synoptic maps of solar wind parameters from in situ spacecraft observations

    Science.gov (United States)

    Gazis, P. R.

    1995-01-01

    Solar wind observations from the Interplanetary Monitoring Platform-8 (IMP-8) and Pioneer Venus Orbiter (PVO) spacecraft from 1982 until 1988 are combined to construct synoptic maps of solar wind parameters near 1 AU. Each map consists of 6 months of hourly averaged solar wind data, binned by heliographic latitude and Carrington longitude and projected back to the Sun. These maps show the structure and time evolution of solar wind streams near 1 AU in the heliographic latitudes of +/- 7.25 deg and provide and explicit picture of several phenomena, such as gradients, changes in the inclination of the heliospheric current sheet, and the relative positions of various structures in the inner heliosphere, that is difficult to obtain from single-spacecraft observations. The stream structure varied significantly during the last solar cycle. Between 1982 and early 1985, solar wind parameters did not depend strongly on heliographic latitude. During the last solar minimum, the solar wind developed significant latitudinal structure, and high-speed streams were excluded from the vicinity of the solar equator. The interplanetary magnetic field was strongly correlated with the coronal field, and the current sheet tended to coincide with the coronal neutral line. The solar wind speed showed the expected correlations with temperature, interplanetary magnetic field, and distance from the current sheet. The solar wind speed was anticorrelated with density, but the regions of highest density occurred east of the heliospheric current sheet and the regions of lowest solar wind speed. This is consistent with compression at the leading edge of high-speed streams.

  3. Pair-density waves, charge-density waves, and vortices in high-Tc cuprates

    Science.gov (United States)

    Dai, Zhehao; Zhang, Ya-Hui; Senthil, T.; Lee, Patrick A.

    2018-05-01

    A recent scanning tunneling microscopy (STM) experiment reports the observation of a charge-density wave (CDW) with a period of approximately 8a in the halo region surrounding the vortex core, in striking contrast to the approximately 4a period CDWs that are commonly observed in the cuprates. Inspired by this work, we study a model where a bidirectional pair-density wave (PDW) with period 8 is at play. This further divides into two classes: (1) where the PDW is a competing state of the d -wave superconductor and can exist only near the vortex core where the d -wave order is suppressed and (2) where the PDW is the primary order, the so-called "mother state" that persists with strong phase fluctuations to high temperature and high magnetic field and lies behind the pseudogap phenomenology. We study the charge-density wave structures near the vortex core in these models. We emphasize the importance of the phase winding of the d -wave order parameter. The PDW can be pinned by the vortex core due to this winding and become static. Furthermore, the period-8 CDW inherits the properties of this winding, which gives rise to a special feature of the Fourier transform peak, namely, it is split in certain directions. There is also a line of zeros in the inverse Fourier transform of filtered data. We propose that these are key experimental signatures that can distinguish between the PDW-driven scenario from the more mundane option that the period-8 CDW is primary. We discuss the pro's and con's of the options considered above. Finally, we attempt to place the STM experiment in the broader context of pseudogap physics of underdoped cuprates and relate this observation to the unusual properties of x-ray scattering data on CDW carried out to very high magnetic field.

  4. TRNSYS HYBRID wind diesel PV simulator

    Energy Technology Data Exchange (ETDEWEB)

    Quinlan, P.J.A.; Mitchell, J.W.; Klein, S.A.; Beckman, W.A.; Blair, N.J. [Univ. of Wisconsin, Madison, WI (United States)

    1996-12-31

    The Solar Energy Laboratory (SEL) has developed a wind diesel PV hybrid systems simulator, UW-HYBRID 1.0, an application of the TRNSYS 14.2 time-series simulation environment. An AC/DC bus links up to five diesels and wind turbine models, along with PV modules, a battery bank, and an AC/DC converter. Multiple units can be selected. PV system simulations include solar angle and peak power tracking options. Weather data are Typical Meteorological Year data, parametrically generated synthesized data, or external data files. PV performance simulations rely on long-standing SEL-developed algorithms. Loads data are read as scalable time series. Diesel simulations include estimated fuel-use and waste heat output, and are dispatched using a least-cost of fuel strategy. Wind system simulations include varying air density, wind shear and wake effects. Time step duration is user-selectable. UW-HYBRID 1.0 runs in Windows{reg_sign}, with TRNSED providing a customizable user interface. 12 refs., 6 figs.

  5. Applications of wind turbines in Canada

    Energy Technology Data Exchange (ETDEWEB)

    South, P; Rangi, R S; Templin, R J

    1977-01-01

    There are differing views as to the role of wind energy in the overall requirements. While some people tend to ignore it there are others who think that wind could be a major source of energy. In this paper an effort has been made to determine the wind power potential and also the amount that is economically usable. From the existing wind data a map showing the distribution of wind power density has been prepared. This map shows that the maritime provinces and the west coast of Hudson Bay have high wind power potential. These figures show that the wind power potential is of the same order as the installed electrical generating capacity in Canada (58 x 10/sup 6/kW in 1974). However, in order to determine how much of this power is usable the economics of adding wind energy to an existing system must be considered. A computer program has been developed at NRC to analyze the coupling of wind turbines with mixed power systems. Using this program and making certain assumptions about the cost of WECS and fuel the maximum amount of usable wind energy has been calculated. It is shown that if an installed capacity of 420 megawatts of wind power was added to the existing diesel capacity it would result in a savings of 60,000,000 gallons of fuel oil per year. On the other hand it is shown that if the existing installed hydro electric capacity of 37,000 megawatts (1976) was increased to 60,000 megawatts without increasing the average water flow rate, an installed capacity of 60,000 megawatts of wind power could be added to the system. This would result in an average of 14,000 megawatts from the wind. Using projected manufacturing costs for vertical axis wind turbines, the average cost of wind energy could be in the range of 1.4 cents/kwh to 3.6 cents/kwh.

  6. Wind Powering America

    Energy Technology Data Exchange (ETDEWEB)

    Flowers, L. (NREL); Dougherty, P. J. (DOE)

    2001-07-07

    At the June 1999 Windpower Conference, the Secretary of Energy launched the Office of Energy Efficiency and Renewable Energy's Wind Powering America (WPA) initiative. The goals of the initiative are to meet 5% of the nation's energy needs with wind energy by 2020 (i.e., 80,000 megawatts installed), to double the number of states that have more than 20 megawatts (MW) of wind capacity to 16 by 2005 and triple it to 24 by 2010, and to increase wind's contribution to Federal electricity use to 5% by 2010. To achieve the Federal government's goal, DOE would take the leadership position and work with its Federal partners. Subsequently, the Secretary accelerated the DOE 5% commitment to 2005. Achieving the 80,000 MW goal would result in approximately $60 billion investment and $1.5 billion of economic development in our rural areas (where the wind resources are the greatest). The purpose of this paper is to provide an update on DOE's strategy for achieving its goals and the activities it has undertaken since the initiative was announced.

  7. Open circuit V-I characteristics of a coreless ironless electric generator for low density wind power generation

    Science.gov (United States)

    Razali, Akhtar; Rahman, Fadhlur; Azlan, Syaiful; Razali Hanipah, Mohd; Azri Hizami, Mohd

    2018-04-01

    Cogging is an attraction of magnetism between permanent magnets and soft ironcore lamination in a conventional electric ironcore generator. The presence of cog in the generator is seen somehow restricted the application of the generator in an application where low rotational torque is required. Cog torque requires an additional input power to overcome, hence became one of the power loss sources. With the increasing of power output, the cogging is also proportionally increased. This leads to the increasing of the supplied power of the driver motor to overcome the cog. Therefore, this research is embarked to study fundamentally about the possibility of removing ironcore lamination in an electric generator. This research deals with removal of ironcore lamination in electric generator to eliminate cog torque. A confinement technique is proposed to confine and focus magnetic flux by introducing opposing permanent magnets arrangement. The concept is then fabricated and experimentally validated to qualify its no-load characteristics. The rotational torque and power output are measured and efficiency is then analyzed. Results indicated that the generator produced RMS voltage of 416VAC at rotational speed of 1762 RPM. Torque required to rotate the generator was at 2Nm for various rotational speed. The generator has shown 30% lesser rotational torque compared to the conventional ironcore type generator due to the absent of cogging torque in the system. Lesser rotational torque required to rotate has made this type of generator has a potential to be used for low wind density wind turbine application.

  8. Effective atomic numbers, electron densities and kinetic energy released in matter of vitamins for photon interaction

    Science.gov (United States)

    Shantappa, A.; Hanagodimath, S. M.

    2014-01-01

    Effective atomic numbers, electron densities of some vitamins (Retinol, Riboflavin, Niacin, Biotin, Folic acid, Cobalamin, Phylloquinone and Flavonoids) composed of C, H, O, N, Co, P and S have been calculated for total and partial photon interactions by the direct method for energy range 1 keV-100 GeV by using WinXCOM and kinetic energy released in matter (Kerma) relative to air is calculated in energy range of 1 keV-20 MeV. Change in effective atomic number and electron density with energy is calculated for all photon interactions. Variation of photon mass attenuation coefficients with energy are shown graphically only for total photon interaction. It is observed that change in mass attenuation coefficient with composition of different chemicals is very large below 100 keV and moderate between 100 keV and 10 MeV and negligible above 10 MeV. Behaviour of vitamins is almost indistinguishable except biotin and cobalamin because of large range of atomic numbers from 1(H) to 16 (S) and 1(H) to 27(Co) respectively. K a value shows a peak due to the photoelectric effect around K-absorption edge of high- Z constituent of compound for biotin and cobalamin.

  9. Extreme Response for Wind Turbines

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Sørensen, John Dalsgaard

    2009-01-01

    The characteristic load on wind turbines during operation are among others dependent on the mean wind speed, the turbulence intensity and type and settings of the control system. The characteristic load during operation is normally estimated by statistical extrapolation of a limited number...... of simulated 10min time series of the response according to the wind turbine standard IEC 61400-1. However, this method assumes that the individual 10min time series and the extracted peaks from the time series are independent. In the present paper is this assumption investigated based on field measurements...

  10. DUSTY WINDS: EXTRAPLANAR POLYCYCLIC AROMATIC HYDROCARBON FEATURES OF NEARBY GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    McCormick, Alexander; Veilleux, Sylvain [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Rupke, David S. N., E-mail: alexm@astro.umd.edu, E-mail: veilleux@astro.umd.edu, E-mail: rupked@rhodes.edu [Rhodes College, 2000 North Parkway, Memphis, TN 38112 (United States)

    2013-09-10

    Recent observations have shown the presence of dust and molecular material in galactic winds, but relatively little is known about the distribution of these outflow components. To shed some light on this issue, we have used IRAC images from the Spitzer Space Telescope archive to investigate polycyclic aromatic hydrocarbon (PAH) emission from a sample of 16 local galaxies with known winds. Our focus on nearby sources (median distance 8.6 Mpc) has revealed detailed PAH structure in the winds and allowed us to measure extraplanar PAH emission. We have identified extraplanar PAH features on scales of {approx}0.8-6.0 kpc. We find a nearly linear correlation between the amount of extraplanar PAH emission and the total infrared flux, a proxy for star formation activity in the disk. Our results also indicate a correlation between the height of extraplanar PAH emission and star formation rate surface density, which supports the idea of a surface density threshold on the energy or momentum injection rate for producing detectable extraplanar wind material.

  11. Applying micro scales of horizontal axis wind turbines for operation in low wind speed regions

    International Nuclear Information System (INIS)

    Pourrajabian, Abolfazl; Ebrahimi, Reza; Mirzaei, Masoud

    2014-01-01

    Highlights: • Three micro-turbines with output power less than 1 kW were designed for operation in low wind speed regions. • In addition to the output power, starting time was considered as a key parameter during the design. • The effects of generator resistive torque and number of blades on the performance of the turbines were investigated. - Abstract: Utilizing the micro scales of wind turbines could noticeably supply the demand for the electricity in low wind speed regions. Aerodynamic design and optimization of the blade, as a main part of a wind turbine, were addressed in the study. Three micro scales of horizontal axis wind turbines with output power of 0.5, 0.75 and 1 kW were considered and the geometric optimization of the blades in terms of the two involved parameters, chord and twist, was undertaken. In order to improve the performance of the turbines at low wind speeds, starting time was included in an objective function in addition to the output power – the main and desirable goal of the wind turbine blade design. A purpose-built genetic algorithm was employed to maximize both the output power and the starting performance which were calculated by the blade-element momentum theory. The results emphasize that the larger values of the chord and twist at the root part of the blades are indispensable for the better performance when the wind speed is low. However, the noticeable value of the generator resistive torque could largely delay the starting of the micro-turbines especially for the considered smaller size, 0.5 kW, where the starting aerodynamic torque could not overcome the generator resistive torque. For that size, an increase in the number of blades improved both the starting performance and also output power

  12. Wind energy and aviation interests - interim guidelines

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    The impact on aviation of increasing the number of wind farms in the United Kingdom is discussed by the Wind Energy, Defence and Civil Aviation Interests Working Group, comprising the Department of Trade and Industry, the Civil Aviation Authority, the Ministry of Defence, and the British Wind Energy Association. The report offers guidance to wind farm developers, local authorities and statutory consultees within the aviation community: the main thrust of the guidelines is to support the UK Government's wind energy targets. Although the document does not contain in-depth technical discussions, it does provide references to such information.

  13. Adaptive neuro-fuzzy optimization of wind farm project net profit

    International Nuclear Information System (INIS)

    Shamshirband, Shahaboddin; Petković, Dalibor; Ćojbašić, Žarko; Nikolić, Vlastimir; Anuar, Nor Badrul; Mohd Shuib, Nor Liyana; Mat Kiah, Miss Laiha; Akib, Shatirah

    2014-01-01

    Highlights: • Analyzing of wind farm project investment. • Net present value (NPV) maximization of the wind farm project. • Adaptive neuro-fuzzy (ANFIS) optimization of the number of wind turbines to maximize NPV. • The impact of the variation in the wind farm parameters. • Adaptive neuro fuzzy application. - Abstract: A wind power plant which consists of a group of wind turbines at a specific location is also known as wind farm. To maximize the wind farm net profit, the number of turbines installed in the wind farm should be different in depend on wind farm project investment parameters. In this paper, in order to achieve the maximal net profit of a wind farm, an intelligent optimization scheme based on the adaptive neuro-fuzzy inference system (ANFIS) is applied. As the net profit measures, net present value (NPV) and interest rate of return (IRR) are used. The NPV and IRR are two of the most important criteria for project investment estimating. The general approach in determining the accept/reject/stay in different decision for a project via NPV and IRR is to treat the cash flows as known with certainty. However, even small deviations from the predetermined values may easily invalidate the decision. In the proposed model the ANFIS estimator adjusts the number of turbines installed in the wind farm, for operating at the highest net profit point. The performance of proposed optimizer is confirmed by simulation results. Some outstanding properties of this new estimator are online implementation capability, structural simplicity and its robustness against any changes in wind farm parameters. Based on the simulation results, the effectiveness of the proposed optimization strategy is verified

  14. Wind turbines - generating noise or electricity?

    International Nuclear Information System (INIS)

    Russell, Eric

    1999-01-01

    Wind turbine technology has made great strides in the past few years. Annual energy output is up by two orders of magnitude and nacelle weight and noise has been halved. Computational fluid dynamics has paid a part in advancing knowledge of air flow and turbulence around wind generators. Current research is focused on how to increase turbine size and improve efficiency. A problem is that while larger wind turbines will produce cheaper electricity, the noise problem will mean that the number of acceptable sites will decrease. The biggest wind generators will need about 800 m clearance from the nearest house. (UK)

  15. Class Generation for Numerical Wind Atlases

    DEFF Research Database (Denmark)

    Cutler, N.J.; Jørgensen, B.H.; Ersbøll, Bjarne Kjær

    2006-01-01

    A new optimised clustering method is presented for generating wind classes for mesoscale modelling to produce numerical wind atlases. It is compared with the existing method of dividing the data in 12 to 16 sectors, 3 to 7 wind-speed bins and dividing again according to the stability...... of the atmosphere. Wind atlases are typically produced using many years of on-site wind observations at many locations. Numerical wind atlases are the result of mesoscale model integrations based on synoptic scale wind climates and can be produced in a number of hours of computation. 40 years of twice daily NCEP...... adapting to the local topography. The purpose of forming classes is to minimise the computational time for the mesoscale model while still representing the synoptic climate features. Only tried briefly in the past, clustering has traits that can be used to improve the existing class generation method...

  16. Wind power forecasting accuracy and uncertainty in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Holttinen, H.; Miettinen, J.; Sillanpaeae, S.

    2013-04-15

    forecasts for short horizons like the following hour, more advanced combining techniques than simple average, such as Kalmar filtering or recursive least squares provided better results. Two different uncertainty quantification methods, based on empirical cumulative density function and kernel densities, were analysed for 3 sites. Aggregation of wind power production will not only decrease relative prediction errors, but also decreases the variation and uncertainty of prediction errors. (orig.)

  17. Mapping seabird sensitivity to offshore wind farms.

    Directory of Open Access Journals (Sweden)

    Gareth Bradbury

    Full Text Available We present a Geographic Information System (GIS tool, SeaMaST (Seabird Mapping and Sensitivity Tool, to provide evidence on the use of sea areas by seabirds and inshore waterbirds in English territorial waters, mapping their relative sensitivity to offshore wind farms. SeaMaST is a freely available evidence source for use by all connected to the offshore wind industry and will assist statutory agencies in assessing potential risks to seabird populations from planned developments. Data were compiled from offshore boat and aerial observer surveys spanning the period 1979-2012. The data were analysed using distance analysis and Density Surface Modelling to produce predicted bird densities across a grid covering English territorial waters at a resolution of 3 km×3 km. Coefficients of Variation were estimated for each grid cell density, as an indication of confidence in predictions. Offshore wind farm sensitivity scores were compiled for seabird species using English territorial waters. The comparative risks to each species of collision with turbines and displacement from operational turbines were reviewed and scored separately, and the scores were multiplied by the bird density estimates to produce relative sensitivity maps. The sensitivity maps reflected well the amassed distributions of the most sensitive species. SeaMaST is an important new tool for assessing potential impacts on seabird populations from offshore development at a time when multiple large areas of development are proposed which overlap with many seabird species' ranges. It will inform marine spatial planning as well as identifying priority areas of sea usage by marine birds. Example SeaMaST outputs are presented.

  18. The Electromagnetic Impact of Wind Turbines

    Science.gov (United States)

    2015-07-06

    Applied Project 4. TITLE AND SUBTITLE THE ELECTROMAGNETIC IMPACT OF WIND TURBINES 5. FUNDING NUMBERS 6. AUTHOR(S) Gregory Sasarita and Charles R...DISTRIBUTION CODE A 13. ABSTRACT (maximum 200 words) The objective of this project was to investigate the impact that a wind turbine can have on

  19. SMES for wind energy systems

    Science.gov (United States)

    Paul Antony, Anish

    Renewable energy sources are ubiquitous, wind energy in particular is one of the fastest growing forms of renewable energy, yet the stochastic nature of wind creates fluctuations that threaten the stability of the electrical grid. In addition to stability with increased wind energy, the need for additional load following capability is a major concern hindering increased wind energy penetration. Improvements in power electronics are required to increase wind energy penetration, but these improvements are hindered by a number of limitations. Changes in physical weather conditions, insufficient capacity of the transmission line and inaccurate wind forecasting greatly stymie their effect and ultimately lead to equipment damage. With this background, the overall goal of this research effort is to pitch a case for superconducting magnetic energy storage (SMES) by (1) optimally designing the SMES to be coupled with wind turbines thus reducing wind integration challenges and (2) to help influence decision makers in either increasing superconducting wire length/fill factor or improving superconducting splice technology thereby increasing the storage capacity of the SMES. Chapter 1 outlines the scope of this thesis by answering the following questions (1) why focus on wind energy? (2) What are the problems associated with increasing wind energy on the electric grid? (3) What are the current solutions related to wind integration challenges and (4) why SMES? Chapter 2, presents a detailed report on the study performed on categorizing the challenges associated with integrating wind energy into the electric grid. The conditions under which wind energy affected the electric grid are identified both in terms of voltage stability and excess wind generation. Chapter 3, details a comprehensive literature review on the different superconducting wires. A technology assessment of the five selected superconductors: [Niobium Titanium (NbTi), Niobium Tin (Nb3Sn), Bismuth strontium calcium

  20. Electrode/Dielectric Strip For High-Energy-Density Capacitor

    Science.gov (United States)

    Yen, Shiao-Ping S.

    1994-01-01

    Improved unitary electrode/dielectric strip serves as winding in high-energy-density capacitor in pulsed power supply. Offers combination of qualities essential for high energy density: high permittivity of dielectric layers, thinness, and high resistance to breakdown of dielectric at high electric fields. Capacitors with strip material not impregnated with liquid.

  1. Conflict Resolution for Wind-Optimal Aircraft Trajectories in North Atlantic Oceanic Airspace with Wind Uncertainties

    Science.gov (United States)

    Rodionova, Olga; Sridhar, Banavar; Ng, Hok K.

    2016-01-01

    Air traffic in the North Atlantic oceanic airspace (NAT) experiences very strong winds caused by jet streams. Flying wind-optimal trajectories increases individual flight efficiency, which is advantageous when operating in the NAT. However, as the NAT is highly congested during peak hours, a large number of potential conflicts between flights are detected for the sets of wind-optimal trajectories. Conflict resolution performed at the strategic level of flight planning can significantly reduce the airspace congestion. However, being completed far in advance, strategic planning can only use predicted environmental conditions that may significantly differ from the real conditions experienced further by aircraft. The forecast uncertainties result in uncertainties in conflict prediction, and thus, conflict resolution becomes less efficient. This work considers wind uncertainties in order to improve the robustness of conflict resolution in the NAT. First, the influence of wind uncertainties on conflict prediction is investigated. Then, conflict resolution methods accounting for wind uncertainties are proposed.

  2. Coordinated control of wind power and energy storage

    DEFF Research Database (Denmark)

    Zhao, Haoran

    the coordinated control of wind power and ESS. Due to the different technical characteristics, such as power and energy density, ESS can play different roles either in generation-side, grid-side or demand side. This thesis focuses on the following two scenarios:• Scenario 1: As a part of wind farm, the ESS plays......Nowadays, wind power has become one of the fastest growing sources of electricity in the world. Due to the inherent variability and uncertainty, wind power integration into the grid brings challenges for power systems, particularly when the wind power penetration level is high. The challenges exist...... in many aspects, such as reliability, power quality and stability. With the rapid development of energy storage technology, the application of Energy Storage System (ESS) is considered as an effective solution to handle the aforementioned challenges. The main objective of this study is to investigate...

  3. Proceedings of a workshop on wind turbine noise

    International Nuclear Information System (INIS)

    Legerton, M.

    1993-08-01

    Noise generated by wind turbines is an environmental constraint on the exploitation of wind energy. It is a major consideration when seeking planning consent for the siting of machines due to the high population density in the UK and low levels of background noise in rural areas. There is, therefore, a need to identify the sources and characteristics of noise emitted by wind turbine generators, assess the influences on the propagation of noise through the atmosphere, and provide information to both wind farm developers and planning regulators on noise levels. A one day workshop was organised to provide an opportunity for experts in the field of wind turbine noise to present the current thoughts on the subject and so allow a wide ranging discussion of particular issues of interest. This volume contains the 10 papers presented at the workshop for each of which a separate abstract has been prepared. (author)

  4. 2015 wind energy observatory. Analysis of market, jobs and future of the wind energy sector in France

    International Nuclear Information System (INIS)

    Perot, Olivier; Autier, Emmanuel

    2015-11-01

    This Power Point presentation proposes graphs, figures, tables and comments on the status and evolution of jobs in the wind energy sector (a growing sector, analysis of job locations), of the wind energy market (assessment of a growing market, dynamic French regions, competitive context, evolution of technologies with higher machines, larger wind farms and a growing production), and on the future of wind energy (a growing number of training courses, an active R and D all over the country, a structuring sector). Sheets presenting actors per categories, and maps of regional activity location are provided in appendix

  5. A Joint Evaluation of the Wind and Wave Energy Resources Close to the Greek Islands

    Directory of Open Access Journals (Sweden)

    Daniel Ganea

    2017-06-01

    Full Text Available The objective of this work is to analyze the wind and wave energy potential in the proximity of the Greek islands. Thus, by evaluating the synergy between wind and waves, a more comprehensive picture of the renewable energy resources in the target area is provided. In this study, two different data sources are considered. The first data set is provided by the European Centre for Medium-Range Weather Forecasts (ECMWF through the ERA-Interim project and covers an 11-year period, while the second data set is Archiving, Validation and Interpretation of Satellite Oceanographic data (AVISO and covers six years of information. Using these data, parameters such as wind speed, significant wave height (SWH and mean wave period (MWP are analyzed. The following marine areas are targeted: Ionian Sea, Aegean Sea, Sea of Crete, Libyan Sea and Levantine Sea, near the coastal environment of the Greek islands. Initially, 26 reference points were considered. For a more detailed analysis, the number of reference points was narrowed down to 10 that were considered more relevant. Since in the island environments the resources are in general rather limited, the proposed work provides some outcomes concerning the wind and wave energy potential and the synergy between these two natural resources in the vicinity of the Greek islands. From the analysis performed, it can be noticed that the most energetic wind conditions are encountered west of Cios Island, followed by the regions east of Tinos and northeast of Crete. In these locations, the annual average values of the wind power density (Pwind are in the range of 286–298.6 W/m2. Regarding the wave power density (Pwave, the most energetic locations can be found in the vicinity of Crete, north, south and southeast of the island. There, the wave energy potential is in the range of 2.88–2.99 kW/m.

  6. Pulsar wind model for the spin-down behavior of intermittent pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Li, L.; Tong, H.; Yan, W. M.; Yuan, J. P.; Wang, N. [Xinjiang Astronomical Observatory, Chinese Academy of Sciences, Urumqi, Xinjiang 830011 (China); Xu, R. X., E-mail: tonghao@xao.ac.cn [School of Physics, Peking University, Beijing (China)

    2014-06-10

    Intermittent pulsars are part-time radio pulsars. They have higher slow down rates in the on state (radio-loud) than in the off state (radio-quiet). This gives evidence that particle wind may play an important role in pulsar spindown. The effect of particle acceleration is included in modeling the rotational energy loss rate of the neutron star. Applying the pulsar wind model to the three intermittent pulsars (PSR B1931+24, PSR J1841–0500, and PSR J1832+0029) allows their magnetic fields and inclination angles to be calculated simultaneously. The theoretical braking indices of intermittent pulsars are also given. In the pulsar wind model, the density of the particle wind can always be the Goldreich-Julian density. This may ensure that different on states of intermittent pulsars are stable. The duty cycle of particle wind can be determined from timing observations. It is consistent with the duty cycle of the on state. Inclination angle and braking index observations of intermittent pulsars may help to test different models of particle acceleration. At present, the inverse Compton scattering induced space charge limited flow with field saturation model can be ruled out.

  7. An analytical investigation: Effect of solar wind on lunar photoelectron sheath

    Science.gov (United States)

    Mishra, S. K.; Misra, Shikha

    2018-02-01

    The formation of a photoelectron sheath over the lunar surface and subsequent dust levitation, under the influence of solar wind plasma and continuous solar radiation, has been analytically investigated. The photoelectron sheath characteristics have been evaluated using the Poisson equation configured with population density contributions from half Fermi-Dirac distribution of the photoemitted electrons and simplified Maxwellian statistics of solar wind plasma; as a consequence, altitude profiles for electric potential, electric field, and population density within the photoelectron sheath have been derived. The expression for the accretion rate of sheath electrons over the levitated spherical particles using anisotropic photoelectron flux has been derived, which has been further utilized to characterize the charging of levitating fine particles in the lunar sheath along with other constituent photoemission and solar wind fluxes. This estimate of particle charge has been further manifested with lunar sheath characteristics to evaluate the altitude profile of the particle size exhibiting levitation. The inclusion of solar wind flux into analysis is noticed to reduce the sheath span and altitude of the particle levitation; the dependence of the sheath structure and particle levitation on the solar wind plasma parameters has been discussed and graphically presented.

  8. Linear wind generator

    International Nuclear Information System (INIS)

    Kozarov, A.; Petrov, O.; Antonov, J.; Sotirova, S.; Petrova, B.

    2006-01-01

    The purpose of the linear wind-power generator described in this article is to decrease the following disadvantages of the common wind-powered turbine: 1) large bending and twisting moments to the blades and the shaft, especially when strong winds and turbulence exist; 2) significant values of the natural oscillation period of the construction result in the possibility of occurrence of destroying resonance oscillations; 3) high velocity of the peripheral parts of the rotor creating a danger for birds; 4) difficulties, connected with the installation and the operation on the mountain ridges and passages where the wind energy potential is the largest. The working surfaces of the generator in questions driven by the wind are not connected with a joint shaft but each moves along a railway track with few oscillations. So the sizes of each component are small and their number can be rather large. The mechanical trajectory is not a circle but a closed outline in a vertical plain, which consists of two rectilinear sectors, one above the other, connected in their ends by semi-circumferences. The mechanical energy of each component turns into electrical on the principle of the linear electrical generator. A regulation is provided when the direction of the wind is perpendicular to the route. A possibility of effectiveness is shown through aiming of additional quantities of air to the movable components by static barriers

  9. The Local ISM and its Interaction with the Winds of Nearby Late-type Stars

    Science.gov (United States)

    Wood, Brian E.; Linsky, Jeffrey L.

    1998-01-01

    We present new Goddard High-Resolution Spectrograph (GHRS) observations of the Ly-alpha and Mg II absorption lines seen toward the nearby stars 61 Cyg A and 40 Eri A. We use these data to measure interstellar properties along these lines of sight and to search for evidence of circumstellar hydrogen walls, which are produced by collisions between the stellar winds and the Local InterStellar Medium (LISM). We were able to model the Ly-alpha lines of both stars without hydrogen-wall absorption components, but for 61 Cyg A the fit required a stellar Ly-alpha, line profile with an improbably deep self-reversal, and for 40 Eri A the fit required a very low deuterium-to-hydrogen ratio that is inconsistent with previous GHRS measurements. Since these problems could be rectified simply by including stellar hydrogen-wall components with reasonable attributes, our preferred fits to the data include these components. We have explored several ways in which the hydrogen-wall properties measured here and in previous work can be used to study stellar winds and the LISM. We argue that the existence of a hydrogen wall around 40 Eri A and a low H I column density along that line of sight imply that either the interstellar density must decrease toward 40 Eri A or the hydrogen ionization fraction (chi) must increase. We find that hydrogen-wall temperatures are larger for stars with faster velocities through the LISM. The observed temperature-velocity relation is consistent with the predictions of hydromagnetic shock jump conditions. More precise comparison of the data and the jump conditions suggests crude upper limits for both chi and the ratio of magnetic to thermal pressure in the LISM (alpha): chi less than 0.6 and alpha less than 2. The latter upper limit corresponds to a limit on the LISM magnetic field of B less than 5 micro G. These results imply that the plasma Mach number of the interstellar wind flowing into the heliosphere is M(sub A) greater than 1.3, which indicates that

  10. Calculating wind profiles above a pine forest

    International Nuclear Information System (INIS)

    Murphy, C.E.; Dexter, A.H.

    1978-01-01

    A major part of the environmental transport work at the Savannah River Laboratory (SRL) involves the dispersion of airborne pollutants (aerosols and gases). A major part of the Savannah River Plant (SRP) site is covered with pine forests. Because forests are ''rough'' surfaces which increase turbulence and surface shear stress and, hence, alter the dispersion patterns, the nature of the wind profiles above the forests is being investigated. Two methods for determining the surface shear caused by the atmospheric wind field over a pine plantation were compared. Friction velocity [the square root of the ratio of shearing stress over the density of air; U/sub */ = (stress/density)1/2] calculated by eddy correlation was compared with friction velocity calculated from wind profiles. Data from the first five meters above the pine forest were compared. The data indicated that there was no significant difference in the mean friction velocity measured by each method. However, there were large differences in individual values calculated by the two methods for many of the measurement periods. An attempt was made to reconcile the differences in the measured values, but no satisfactory method was found

  11. Climate change impacts on wind energy resources in northern Europe

    International Nuclear Information System (INIS)

    Pryor, S.C.; Barthelmie, R.J.; Kjellstroem, E.

    2005-01-01

    Energy is a fundamental human need. Heat, light and transport for individuals combined with the needs of industry have created a demand for energy which for the last 100-200 years has been met largely through consumption of fossil fuels leading to altered atmospheric composition and modification of the global climate. These effects will be realised on local scales affecting not just temperature and precipitation but also wind, radiation and other parameters. Annual mean wind speeds and wind energy density over northern Europe were significantly higher at the end of twentieth century than during the middle portion of that century, with the majority of the change being focused on the winter season. To address questions regarding possible future wind climates we employ dynamical and empirical downscaling techniques that seek to take coarse resolution output from General Circulation Models (GCM), run to provide scenarios of future climate, and develop higher resolution regional wind climates. Analyses of the wind climate during the historical record indicate that both the dynamical approach and the empirical approach are capable of generating accurate, robust and quantitative assessments of the wind climate and energy density in northern Europe, and hence that they may be of great utility to those seeking financing for, or risk management of, wind farms in the face of climate uncertainty. The synthesis of application of these downscaling tools to climate projections for northern Europe is that there is no evidence of major changes in the wind energy resource. However, more research is required to quantify the uncertainties in developing these projections and to reduce those uncertainties. Further work should also be conducted to assess the validity of these downscaling approaches in other geographical locations. (BA)

  12. Is the distribution and abundance of waterbirds altered in and around Danish Offshore wind farms?

    DEFF Research Database (Denmark)

    Petersen, Ib Krag

    programmes for Horns Rev 1 and the Nysted offshore wind farms were initiated, and after the erection of the turbines post-construction monitoring programmes were initiated. Data from these investigations will be touched upon. At Nysted offshore wind farm common eiders (Somateria mollissima) avoided flying...... and the near surroundings. Common scoters (Melanitta nigra) initially showed signs of avoidance, but in the spring of 2007 birds were seen in densities within the Horns Rev 1 wind farm that was equal to the densities found around the wind farm. Very recent findings from Horns Rev 2 indicate that this have......In 1999 a Danish demonstration programme concerning offshore wind farms was initiated. The aim was to evaluate environmental and technical aspects in relation to introducing these new structures at sea. Aarhus University was involved in ornithological investigations in that respect. Monitoring...

  13. Analysis of trends between solar wind velocity and energetic electron fluxes at geostationary orbit using the reverse arrangement test

    Science.gov (United States)

    Aryan, Homayon; Boynton, Richard J.; Walker, Simon N.

    2013-02-01

    A correlation between solar wind velocity (VSW) and energetic electron fluxes (EEF) at the geosynchronous orbit was first identified more than 30 years ago. However, recent studies have shown that the relation between VSW and EEF is considerably more complex than was previously suggested. The application of process identification technique to the evolution of electron fluxes in the range 1.8 - 3.5 MeV has also revealed peculiarities in the relation between VSW and EEF at the geosynchronous orbit. It has been revealed that for a constant solar wind density, EEF increase with VSW until a saturation velocity is reached. Beyond the saturation velocity, an increase in VSW is statistically not accompanied with EEF enhancement. The present study is devoted to the investigation of saturation velocity and its dependency upon solar wind density using the reverse arrangement test. In general, the results indicate that saturation velocity increases as solar wind density decreases. This implies that solar wind density plays an important role in defining the relationship between VSW and EEF at the geosynchronous orbit.

  14. Solving the Turbine Positioning Problem for Large Offshore Wind Farms by Simulated Annealing

    DEFF Research Database (Denmark)

    Rivas, Rajai Aghabi; Clausen, Jens; Hansen, Kurt Schaldemose

    2009-01-01

    search operations are performed recursively until the system converges. The effectiveness of the proposed algorithm is demonstrated on a suite of real life test cases, including Horns Rev offshore wind farm. The results are verified using a commercial wind resource software indicating that this method...... is negligible while, as the wind farm's size reduces, the differences start becoming significant. A sensitivity analysis is also performed showing that greater density of turbines in the perimeter of the optimized wind farm reduces the wake losses even if the wind climate changes....

  15. Development of a generic wind farm SCADA system

    Energy Technology Data Exchange (ETDEWEB)

    Smith, G.

    2001-07-01

    The aim of the project is to develop a 'Generic Wind Farm Supervisory Control and Data Acquisition (SCADA) System' for the wind energy industry. A SCADA is a computer-based system that allows local and remote control of basic wind turbine functions and collects data from the wind farm that can be used to analyse and report on the operational performance. As wind farm size, complexity and remoteness of location increase an industry standard SCADA is vitally important to allow effective operation, monitoring, control and reporting. Turbine manufacturers offer a number of existing systems but these do not always fully meet the needs of wind farm operators and owners. Operators and owners who are involved with more than one turbine supplier end up with a number of incompatible systems. This causes operational difficulties and makes it hard to compared performance data from different turbines. This project aims to address these issues and develop a system that will communicate with all turbine types and calculate and store performance data in a consistent way. (Author)

  16. Lidar for Wind and Optical Turbulence Profiling

    Directory of Open Access Journals (Sweden)

    Fastig Shlomo

    2018-01-01

    Full Text Available A field campaign for the comparison investigation of systems to measure wind and optical turbulence profiles was conducted in northern Germany. The experimental effort was to compare the performance of the LIDAR, SODAR-RASS and ultrasonic anemometers for the measurement of the above mentioned atmospheric parameters. Soreq's LIDAR is a fiber laser based system demonstrator for the vertical profiling of the wind and turbulence, based on the correlation of aerosol density variations. It provides measurements up to 350m with 20m resolution.

  17. The Physics of Wind-Fed Accretion

    International Nuclear Information System (INIS)

    Mauche, Christopher W.; Liedahl, Duane A.; Akiyama, Shizuka; Plewa, Tomasz

    2008-01-01

    We provide a brief review of the physical processes behind the radiative driving of the winds of OB stars and the Bondi-Hoyle-Lyttleton capture and accretion of a fraction of the stellar wind by a compact object, typically a neutron star, in detached high-mass X-ray binaries (HMXBs). In addition, we describe a program to develop global models of the radiatively-driven photoionized winds and accretion flows of HMXBs, with particular attention to the prototypical system Vela X-l. The models combine XSTAR photoionization calculations, HULLAC emission models appropriate to X-ray photoionized plasmas, improved models of the radiative driving of photoionized winds, FLASH time-dependent adaptive-mesh hydrodynamics calculations, and Monte Carlo radiation transport. We present two- and three-dimensional maps of the density, temperature, velocity, ionization parameter, and emissivity distributions of representative X-ray emission lines, as well as synthetic global Monte Carlo X-ray spectra. Such models help to better constrain the properties of the winds of HMXBs, which bear on such fundamental questions as the long-term evolution of these binaries and the chemical enrichment of the interstellar medium.

  18. Solar wind flows associated with hot heavy ions

    International Nuclear Information System (INIS)

    Fenimore, E.E.

    1980-05-01

    Solar wind heavy ion spectra measured with the Vela instrumentation have been studied with the goal of determining the solar origins of various solar wind structures which contain anomalously high ionization states. Since the ionization states freeze-in close to the sun they are good indicators of the plasma conditions in the low and intermediate corona. Heavy ion spectra from three different periods throughout the solar cycle have been analyzed. These data are consistent with freezing-in temperatures ranging from approx. 1.5 x 10 6 K to higher than 9 x 10 6 . The spectra indicating hot coronal conditions occur in roughly 1/7 of all measurements and almost exclusively in postshock flows (PSFs), nonshock related helium abundance enhancements (HAEs), or noncompressive density enhancements (NCDEs). The PSFs and HAEs are both probably interplanetary manifestations of solar flares. The observation of several flare-related HAEs which were not preceded by an interplanetary shock suggests that the flare-heated plasma can evolve into the solar wind without producing a noticeable shock at 1 AU. The NCDEs with hot heavy ions differ from the PSF-HAEs in several ways implying that they evolve from events or places with lower temperatures and less energy than those associated with the flares, but with higher temperatures and densities than the quiet corona. Active regions, coronal mass ejections, and equatorial streamers are possible sources for the NCDEs with spectra indicating hot coronal conditions. These events owe their enhanced densities to coronal processes as opposed to interplanetary dynamical processes. Models of the solar wind expansion demonstrate how some NCDEs can have extreme, nonequilibrium ionization distributions

  19. Constraining the cosmic radiation density due to lepton number with Big Bang Nucleosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Mangano, Gianpiero; Miele, Gennaro; Pisanti, Ofelia; Sarikas, Srdjan [Istituto Nazionale di Fisica Nucleare – Sezione di Napoli, Complesso Universitario di Monte S. Angelo, I-80126 Napoli (Italy); Pastor, Sergio, E-mail: mangano@na.infn.it, E-mail: miele@na.infn.it, E-mail: pastor@ific.uv.es, E-mail: pisanti@na.infn.it, E-mail: sarikas@na.infn.it [Instituto de Física Corpuscular (CSIC-Universitat de València), Ed. Institutos de Investigación, Apdo. correos 22085, E-46071 Valencia (Spain)

    2011-03-01

    The cosmic energy density in the form of radiation before and during Big Bang Nucleosynthesis (BBN) is typically parameterized in terms of the effective number of neutrinos N{sub eff}. This quantity, in case of no extra degrees of freedom, depends upon the chemical potential and the temperature characterizing the three active neutrino distributions, as well as by their possible non-thermal features. In the present analysis we determine the upper bounds that BBN places on N{sub eff} from primordial neutrino-antineutrino asymmetries, with a careful treatment of the dynamics of neutrino oscillations. We consider quite a wide range for the total lepton number in the neutrino sector, η{sub ν} = η{sub ν{sub e}}+η{sub ν{sub μ}}+η{sub ν{sub τ}} and the initial electron neutrino asymmetry η{sub ν{sub e}{sup in}}, solving the corresponding kinetic equations which rule the dynamics of neutrino (antineutrino) distributions in phase space due to collisions, pair processes and flavor oscillations. New bounds on both the total lepton number in the neutrino sector and the ν{sub e}−ν-bar {sub e} asymmetry at the onset of BBN are obtained fully exploiting the time evolution of neutrino distributions, as well as the most recent determinations of primordial {sup 2}H/H density ratio and {sup 4}He mass fraction. Note that taking the baryon fraction as measured by WMAP, the {sup 2}H/H abundance plays a relevant role in constraining the allowed regions in the η{sub ν}−η{sub ν{sub e}{sup in}} plane. These bounds fix the maximum contribution of neutrinos with primordial asymmetries to N{sub eff} as a function of the mixing parameter θ{sub 13}, and point out the upper bound N{sub eff}∼<3.4. Comparing these results with the forthcoming measurement of N{sub eff} by the Planck satellite will likely provide insight on the nature of the radiation content of the universe.

  20. The New WindForS Wind Energy Test Site in Southern Germany

    Science.gov (United States)

    Clifton, A. J.

    2017-12-01

    Wind turbines are increasingly being installed in complex terrain where patchy landcover, forestry, steep slopes, and complex regional and local atmospheric conditions lead to major challenges for traditional numerical weather prediction methods. In this presentation, the new WindForS complex terrain test site will be introduced. WindForS is a southern Germany-based research consortium of more than 20 groups at higher education and research institutes, with strong links to regional government and industry. The new test site will be located in the hilly, forested terrain of the Swabian Alps between Stuttgart and Germany, and will consist of two wind turbines with four meteorological towers. The test site will be used for accompanying ecological research and will also have mobile eddy covariance measurement stations as well as bird and bat monitoring systems. Seismic and noise monitoring systems are also planned. The large number of auxiliary measurements at this facility are intended to allow the complete atmosphere-wind turbine-environment-people system to be characterized. This presentation will show some of the numerical weather prediction work and measurements done at the site so far, and inform the audience about WindForS' plans for the future. A major focus of the presentation will be on opportunities for collaboration through field campaigns or model validation.

  1. Turbulence in the solar wind: spectra from Voyager 2 data at 5 AU

    International Nuclear Information System (INIS)

    Fraternale, F; Gallana, L; Iovieno, M; Tordella, D; Opher, M; Richardson, J D

    2016-01-01

    Fluctuations in the flow velocity and magnetic fields are ubiquitous in the Solar System. These fluctuations are turbulent, in the sense that they are disordered and span a broad range of scales in both space and time. The study of solar wind turbulence is motivated by a number of factors all keys to the understanding of the Solar Wind origin and thermodynamics. The solar wind spectral properties are far from uniformity and evolve with the increasing distance from the sun. Most of the available spectra of solar wind turbulence were computed at 1 astronomical unit, while accurate spectra on wide frequency ranges at larger distances are still few. In this paper we consider solar wind spectra derived from the data recorded by the Voyager 2 mission during 1979 at about 5 AU from the sun. Voyager 2 data are an incomplete time series with a voids/signal ratio that typically increases as the spacecraft moves away from the sun (45% missing data in 1979), making the analysis challenging. In order to estimate the uncertainty of the spectral slopes, different methods are tested on synthetic turbulence signals with the same gap distribution as V2 data. Spectra of all variables show a power law scaling with exponents between −2.1 and −1.1, depending on frequency subranges. Probability density functions (PDFs) and correlations indicate that the flow has a significant intermittency. (invited comment)

  2. THREE-DIMENSIONAL EVOLUTION OF SOLAR WIND DURING SOLAR CYCLES 22–24

    International Nuclear Information System (INIS)

    Manoharan, P. K.

    2012-01-01

    This paper presents an analysis of three-dimensional evolution of solar wind density turbulence and speed at various levels of solar activity between solar cycles 22 and 24. The solar wind data used in this study have been obtained from the interplanetary scintillation (IPS) measurements made at the Ooty Radio Telescope, operating at 327 MHz. Results show that (1) on average, there was a downward trend in density turbulence from the maximum of cycle 22 to the deep minimum phase of cycle 23; (2) the scattering diameter of the corona around the Sun shrunk steadily toward the Sun, starting from 2003 to the smallest size at the deepest minimum, and it corresponded to a reduction of ∼50% in the density turbulence between the maximum and minimum phases of cycle 23; (3) the latitudinal distribution of the solar wind speed was significantly different between the minima of cycles 22 and 23. At the minimum phase of solar cycle 22, when the underlying solar magnetic field was simple and nearly dipole in nature, the high-speed streams were observed from the poles to ∼30° latitudes in both hemispheres. In contrast, in the long-decay phase of cycle 23, the sources of the high-speed wind at both poles, in accordance with the weak polar fields, occupied narrow latitude belts from poles to ∼60° latitudes. Moreover, in agreement with the large amplitude of the heliospheric current sheet, the low-speed wind prevailed in the low- and mid-latitude regions of the heliosphere. (4) At the transition phase between cycles 23 and 24, the high levels of density and density turbulence were observed close to the heliospheric equator and the low-speed solar wind extended from the equatorial-to-mid-latitude regions. The above results in comparison with Ulysses and other in situ measurements suggest that the source of the solar wind has changed globally, with the important implication that the supply of mass and energy from the Sun to the interplanetary space has been significantly reduced

  3. Wind Energy literature survey no. 20

    DEFF Research Database (Denmark)

    Henriksen, Lars Christian

    2011-01-01

    As a service to readers, Wind Energy regularly conducts literature surveys and publishes lists of relevant articles drawn from recent issues of a large number of periodicals including the following: Journal of Wind Engineering and Industrial Aerodynamics, International Journal of Energy Research......, Renewable Energy, Energy Sources, Journal of Solar Energy Engineering, American Institute of Aeronautics and Astronautics Journal and Electric Power Components and Systems along with a number of periodicals published by the Institute of Electrical and Electronics Engineers. The list is limited exclusively...... to journals not specifi cally devoted to wind energy and its applications. To assist the reader, the list is separated into broad categories. Although many papers fi t several categories, each paper is listed only once under the category thought most appropriate. Please note that the inclusion in the list...

  4. Wind Energy Literature Survey No. 16

    DEFF Research Database (Denmark)

    Henriksen, Lars Christian

    2010-01-01

    As a service to readers, Wind Energy regularly conducts literature surveys and publishes lists of relevant articles drawn from recent issues of a large number of periodicals including: Journal of Wind Engineering and Industrial Aerodynamics, International Journal of Energy Research, Renewable...... Energy, Energy Sources, Journal of Solar Energy Engineering, American Institute of Aeronautics and Astronautics Journal, Electric Power Components and Systems along with a number of periodicals published by the Institute of Electrical and Electronics Engineers etc. The list is limited exclusively...... to journals not specifically devoted to wind energy and its applications. To assist the reader, the list is separated into broad categories. Although many papers fit several categories, each paper is listed only once under the category thought most appropriate. Please note that the inclusion in the list...

  5. Wind Energy literature survey no. 24

    DEFF Research Database (Denmark)

    Henriksen, Lars Christian

    2012-01-01

    As a service to readers, Wind Energy regularly conducts literature surveys and publishes lists of relevant articles drawn from recent issues of a large number of periodicals including the Journal of Wind Engineering and Industrial Aerodynamics, International Journal of Energy Research, Renewable...... Energy, Energy Sources, Journal of Solar Energy Engineering, American Institute of Aeronautics and Astronautics Journal, and Electric Power Components and Systems along with a number of periodicals published by the Institute of Electrical and Electronics Engineers, and so on. The list is limited...... exclusively to journals not specifically devoted to wind energy and its applications. For the reader to be assisted, the list is separated into broad categories. Although many papers fit several categories, each paper is listed only once under the category thought most appropriate. Please note...

  6. Wind energy literature survey no. 10

    DEFF Research Database (Denmark)

    Henriksen, Lars Christian

    2008-01-01

    As a service to readers, Wind Energy regularly conducts literature surveys and publishes lists of relevant articles drawn from recent issues of a large number of periodicals including: Journal of Wind Engineering and Industrial Aerodynamics, International Journal of Energy Research, Renewable...... Energy, Energy Sources, Journal of Solar Energy Engineering, American Institute of Aeronautics and Astronautics Journal, Electric Power Components and Systems along with a number of periodicals published by the Institute of Electrical and Electronics Engineers etc. The list is limited exclusively...... to journals not specifically devoted to wind energy and its applications. To assist the reader, the list is separated into broad categories. Although many papers fit several categories, each paper is listed only once under the category thought most appropriate. Please note that the inclusion in the list...

  7. Wind Energy literature survey no. 19

    DEFF Research Database (Denmark)

    Henriksen, Lars Christian

    2011-01-01

    As a service to readers, Wind Energy regularly conducts literature surveys and publishes lists of relevant articles drawn from recent issues of a large number of periodicals including Journal of Wind Engineering and Industrial Aerodynamics, International Journal of Energy Research, Renewable Energy......, Energy Sources, Journal of Solar Energy Engineering, American Institute of Aeronautics and Astronautics Journal, Electric Power Components and Systems along with a number of periodicals published by the Institute of Electrical and Electronics Engineers, etc. The list is limited exclusively to journals...... not specifi cally devoted to wind energy and its applications. To assist the reader, the list is separated into broad categories. Although many papers fi t several categories, each paper is listed only once under the category thought most appropriate. Please note that the inclusion in the list...

  8. Wind Energy Literature Survey No. 14

    DEFF Research Database (Denmark)

    Henriksen, Lars Christian

    2009-01-01

    As a service to readers, Wind Energy regularly conducts literature surveys and publishes lists of relevant articles drawn from recent issues of a large number of periodicals including: Journal of Wind Engineering and Industrial Aerodynamics, International Journal of Energy Research, Renewable...... Energy, Energy Sources, Journal of Solar Energy Engineering, American Institute of Aeronautics and Astronautics Journal, Electric Power Components and Systems along with a number of periodicals published by the Institute of Electrical and Electronics Engineers etc. The list is limited exclusively...... to journals not specifically devoted to wind energy and its applications. To assist the reader, the list is separated into broad categories. Although many papers fit several categories, each paper is listed only once under the category thought most appropriate. Please note that the inclusion in the list...

  9. Wind Energy Literature Survey No. 13

    DEFF Research Database (Denmark)

    Henriksen, Lars Christian

    2009-01-01

    As a service to readers, Wind Energy regularly conducts literature surveys and publishes lists of relevant articles drawn from recent issues of a large number of periodicals including: Journal of Wind Engineering & Industrial Aerodynamics, International Journal of Energy Research, Renewable Energy......, Energy Sources, Journal of Solar Energy Engineering, American Institute of Aeronautics and Astronautics Journal, Electric Power Components and Systems, along with a number of periodicals published by the Institute of Electrical and Electronics Engineers, etc. The list is limited exclusively to journals...... not specifically devoted to wind energy and its applications. To assist the reader, the list is separated into broad categories. Although many papers fit several categories, each paper is listed only once under the category thought most appropriate. Please note that the inclusion in the list is not an endorsement...

  10. Wind energy literature survey no. 8

    DEFF Research Database (Denmark)

    Henriksen, Lars Christian

    2008-01-01

    To keep readers up-to-date in the field, each issue of Wind Energy will contain a list of relevant published articles drawn from recent issues of a large number of periodicals including Journal of Wind Engineering and Industrial Aerodynamics, International Journal of Energy Research, Renewable...... Energy, Energy Sources, Journal of Solar Energy Engineering, American Institute of Aeronautics and Astronautics Journal, Electric Power Components and Systems along with a number of periodicals published by the Institute of Electrical and Electronics Engineers, etc. The list is limited exclusively...... to journals not specifically devoted to wind energy and its applications. To assist the reader, the list is separated into broad categories. Although many papers fit several categories, each paper is listed only once under the category thought most appropriate. Also note that the inclusion in the list...

  11. Wind energy literature survey no. 18

    DEFF Research Database (Denmark)

    Henriksen, Lars Christian

    2010-01-01

    As a service to readers, Wind Energy regularly conducts literature surveys and publishes lists of relevant articles drawn from recent issues of a large number of periodicals including: Journal of Wind Engineering and Industrial Aerodynamics, International Journal of Energy Research, Renewable...... Energy, Energy Sources, Journal of Solar Energy Engineering, American Institute of Aeronautics and Astronautics Journal, Electric Power Components and Systems along with a number of periodicals published by the Institute of Electrical and Electronics Engineers, etc. The list is limited exclusively...... to journals not specifically devoted to wind energy and its applications. To assist the reader, the list is separated into broad categories. Although many papers fit several categories, each paper is listed only once under the category thought most appropriate. Please note that the inclusion in the list...

  12. Wind energy literature survey no. 17

    DEFF Research Database (Denmark)

    Henriksen, Lars Christian

    2010-01-01

    As a service to readers, Wind Energy regularly conducts literature surveys and publishes lists of relevant articles drawn from recent issues of a large number of periodicals including: Journal of Wind Engineering and Industrial Aerodynamics, International Journal of Energy Research, Renewable...... Energy, Energy Sources, Journal of Solar Energy Engineering, American Institute of Aeronautics and Astronautics Journal, Electric Power Components and Systems along with a number of periodicals published by the Institute of Electrical and Electronics Engineers etc. The list is limited exclusively...... to journals not specifically devoted to wind energy and its applications. To assist the reader, the list is separated into broad categories. Although many papers fit several categories, each paper is listed only once under the category thought most appropriate. Please note that the inclusion in the list...

  13. Wind energy literature survey no. 11

    DEFF Research Database (Denmark)

    Henriksen, Lars Christian

    2009-01-01

    As a service to readers, Wind Energy regularly conducts literature surveys and publishes lists of relevant articles drawn from recent issues of a large number of periodicals including: Journal of Wind Engineering and Industrial Aerodynamics, International Journal of Energy Research, Renewable...... Energy, Energy Sources, Journal of Solar Energy Engineering, American Institute of Aeronautics and Astronautics Journal, Electric Power Components and Systems along with a number of periodicals published by the Institute of Electrical and Electronics Engineers, etc. The list is limited exclusively...... to journals not specifically devoted to wind energy and its applications. To assist the reader, the list is separated into broad categories. Although many papers fit several categories, each paper is listed only once under the category thought most appropriate. Please note that the inclusion in the list...

  14. Wind Energy literature survey no. 21

    DEFF Research Database (Denmark)

    Henriksen, Lars Christian

    2012-01-01

    As a service to readers, Wind Energy regularly conducts literature surveys and publishes lists of relevant articles drawn from recent issues of a large number of periodicals including the following: Journal of Wind Engineering and Industrial Aerodynamics, International Journal of Energy Research......, Renewable Energy, Energy Sources, Journal of Solar Energy Engineering, American Institute of Aeronautics and Astronautics Journal, Electric Power Components and Systems along with a number of periodicals published by the Institute of Electrical and Electronics Engineers and others. The list is limited...... exclusively to journals not specifically devoted to wind energy and its applications. To assist the reader, the list is separated into broad categories. Although many papers fit several categories, each paper is listed only once under the category thought most appropriate. Please note that the inclusion...

  15. Wind Energy literature survey no. 22

    DEFF Research Database (Denmark)

    Henriksen, Lars Christian

    2012-01-01

    As a service to readers, Wind Energy regularly conducts literature surveys and publishes lists of relevant articles drawn from recent issues of a large number of periodicals including the following: Journal of Wind Engineering and Industrial Aerodynamics, International Journal of Energy Research......, Renewable Energy, Energy Sources, Journal of Solar Energy Engineering, American Institute of Aeronautics and Astronautics Journal, Electric Power Components and Systems along with a number of periodicals published by the Institute of Electrical and Electronics Engineers and others. The list is limited...... exclusively to journals not specifically devoted to wind energy and its applications. To assist the reader, the list is separated into broad categories. Although many papers fit several categories, each paper is listed only once under the category thought most appropriate. Please note that the inclusion...

  16. Wind Energy Literature Survey No. 15

    DEFF Research Database (Denmark)

    Henriksen, Lars Christian

    2010-01-01

    As a service to readers, Wind Energy regularly conducts literature surveys and publishes lists of relevant articles drawn from recent issues of a large number of periodicals including: Journal of Wind Engineering and Industrial Aerodynamics, International Journal of Energy Research, Renewable...... Energy, Energy Sources, Journal of Solar Energy Engineering, American Institute of Aeronautics and Astronautics Journal, Electric Power Components and Systems along with a number of periodicals published by the Institute of Electrical and Electronics Engineers etc. The list is limited exclusively...... to journals not specifically devoted to wind energy and its applications. To assist the reader, the list is separated into broad categories. Although many papers fit several categories, each paper is listed only once under the category thought most appropriate. Please note that the inclusion in the list...

  17. Wind Energy literature survey no. 30

    DEFF Research Database (Denmark)

    Henriksen, Lars Christian

    2013-01-01

    As a service to readers, Wind Energy regularly conducts literature surveys and publishes lists of relevant articles drawn from recent issues of a large number of periodicals including Journal of Wind Engineering and Industrial Aerodynamics, International Journal of Energy Research, Renewable Energy......, Energy Sources, Journal of Solar Energy Engineering, American Institute of Aeronautics and Astronautics Journal, Electric Power Components and Systems along with a number of periodicals published by the Institute of Electrical and Electronics Engineers, etc. The list is limited exclusively to journals...... not specifically devoted to wind energy and its applications. To assist the reader, the list is separated into broad categories. Although many papers fit several categories, each paper is listed only once under the category thought most appropriate. Please note that the inclusion in the list is not an endorsement...

  18. Wind Energy literature survey no. 29

    DEFF Research Database (Denmark)

    Henriksen, Lars Christian

    2013-01-01

    As a service to readers, Wind Energy regularly conducts literature surveys and publishes lists of relevant articles drawn from recent issues of a large number of periodicals including the following: Journal of Wind Engineering and Industrial Aerodynamics, International Journal of Energy Research......, Renewable Energy, Energy Sources, Journal of Solar Energy Engineering, American Institute of Aeronautics and Astronautics Journal and Electric Power Components and Systems along with a number of periodicals published by the Institute of Electrical and Electronics Engineers, etc. The list is limited...... exclusively to journals not specifically devoted to wind energy and its applications. To assist the reader, the list is separated into broad categories. Although many papers fit several categories, each paper is listed only once under the category thought most appropriate. Please note that the inclusion...

  19. Wind Energy literature survey no. 23

    DEFF Research Database (Denmark)

    Henriksen, Lars Christian

    2012-01-01

    As a service to readers, Wind Energy regularly conducts literature surveys and publishes lists of relevant articles drawn from recent issues of a large number of periodicals including the Journal of Wind Engineering and Industrial Aerodynamics, International Journal of Energy Research, Renewable...... Energy, Energy Sources, Journal of Solar Energy Engineering, American Institute of Aeronautics and Astronautics Journal, and Electric Power Components and Systems along with a number of periodicals published by the Institute of Electrical and Electronics Engineers, and so on. The list is limited...... exclusively to journals not specifically devoted to wind energy and its applications. For the reader to be assisted, the list is separated into broad categories. Although many papers fit several categories, each paper is listed only once under the category thought most appropriate. Please note...

  20. Wind Energy literature survey no. 25

    DEFF Research Database (Denmark)

    Henriksen, Lars Christian

    2012-01-01

    As a service to readers, Wind Energy regularly conducts literature surveys and publishes lists of relevant articles drawn from recent issues of a large number of periodicals including Journal of Wind Engineering and Industrial Aerodynamics, International Journal of Energy Research, Renewable Energy......, Energy Sources, Journal of Solar Energy Engineering, American Institute of Aeronautics and Astronautics Journal, Electric Power Components and Systems along with a number of periodicals published by the Institute of Electrical and Electronics Engineers and so on. The list is limited exclusively...... to journals not specifically devoted to wind energy and its applications. To assist the reader, the list is separated into broad categories. Although many papers fit several categories, each paper is listed only once under the category thought most appropriate. Please note that the inclusion in the list...