WorldWideScience

Sample records for wind nebula pwn

  1. Multiwavelength Studies of the Mouse Pulsar Wind Nebula

    Science.gov (United States)

    Klingler, Noel; Kargaltsev, Oleg; Pavlov, George G.; Ng, C.-Y.; Beniamini, Paz; O'Sullivan, Samantha

    2018-01-01

    PSR J1747-2958 is a young and energetic pulsar at an estimated distance of ~5 kpc. It is moving supersonically through the ISM and powers the famous Mouse pulsar wind nebula (PWN; G359.23-0.82): a tail spanning 45" in X-rays and 12' in radio. We discuss the results of our analysis of deep Chandra observations (as well as archival radio and IR data) of the Mouse PWN. We present a spatially-resolved spectral map of the PWN, which displays a photon index which varies strongly with distance from the pulsar over the 45" extent of the X-ray tail as the result of synchrotron cooling. We discuss the shape of the multiwavelength spectrum, the PWN physical properties (e.g., we infer a high magnetic field B~200 μG), and the connection between PWN morphology and radio/gamma-ray light curves which we use to constrain the viewing angle and identify structures in the PWN. We compare the Mouse pulsar with the population of other pulsars with measured (or inferred) velocities.

  2. Modelling pulsar wind nebulae

    CERN Document Server

    2017-01-01

    In view of the current and forthcoming observational data on pulsar wind nebulae, this book offers an assessment of the theoretical state of the art of modelling them. The expert authors also review the observational status of the field and provide an outlook for future developments. During the last few years, significant progress on the study of pulsar wind nebulae (PWNe) has been attained both from a theoretical and an observational perspective, perhaps focusing on the closest, more energetic, and best studied nebula: the Crab, which appears in the cover. Now, the number of TeV detected PWNe is similar to the number of characterized nebulae observed at other frequencies over decades of observations. And in just a few years, the Cherenkov Telescope Array will increase this number to several hundreds, actually providing an essentially complete account of TeV emitting PWNe in the Galaxy. At the other end of the multi-frequency spectrum, the SKA and its pathfinder instruments, will reveal thousands of new pulsa...

  3. Multiband nonthermal radiative properties of pulsar wind nebulae

    Science.gov (United States)

    Zhu, Bo-Tao; Zhang, Li; Fang, Jun

    2018-01-01

    Aims: The nonthermal radiative properties of 18 pulsar wind nebulae (PWNe) are studied in the 1D leptonic model. Methods: The dynamical and radiative evolution of a PWN in a nonradiative supernova remnant are self-consistently investigated in this model. The leptons (electrons/positrons) are injected with a broken power-law form, and nonthermal emission from a PWN is mainly produced by time-dependent relativistic leptons through synchrotron radiation and inverse Compton process. Results: Observed spectral energy distributions (SEDs) of all 18 PWNe are reproduced well, where the indexes of low-energy electron components lie in the range of 1.0-1.8 and those of high-energy electron components in the range of 2.1-3.1. Our results show that FX/Fγ > 10 for young PWNe; 1 particle-dominated. Statistical analysis for the sample of 14 PWNe further indicate that (1) not all pulsar parameters have correlations with electron injection parameters, but electron maximum energy and PWN magnetic field correlate with the magnetic field at the light cylinder, the potential difference at the polar cap, and the spin-down power; (2) the spin-down power positively correlates with radio, X-ray, bolometric, and synchrotron luminosities, but does not correlate with gamma-ray luminosity; (3) the spin-down power positively correlates with radio, X-ray, and γ-band surface brightness; and (4) the PWN radius and the PWN age negatively correlate with X-ray luminosity, the ratio of X-ray to gamma-ray luminosities, and the synchrotron luminosity.

  4. Radio Emission from Pulsar Wind Nebulae without Surrounding Supernova Ejecta: Application to FRB 121102

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Z. G.; Wang, J. S. [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China); Yu, Y. W., E-mail: dzg@nju.edu.cn [Institute of Astrophysics, Central China Normal University, Wuhan 430079 (China)

    2017-03-20

    In this paper, we propose a new scenario in which a rapidly rotating strongly magnetized pulsar without any surrounding supernova ejecta repeatedly produces fast radio bursts (FRBs) via a range of possible mechanisms; simultaneously, an ultra-relativistic electron/positron pair wind from the pulsar sweeps up its ambient dense interstellar medium, giving rise to a non-relativistic pulsar wind nebula (PWN). We show that the synchrotron radio emission from such a PWN is bright enough to account for the recently discovered persistent radio source associated with the repeating FRB 121102 within reasonable ranges of the model parameters. Our PWN scenario is consistent with the non-evolution of the dispersion measure inferred from all of the repeating bursts observed in four years.

  5. High-energy X-ray imaging of the pulsar wind nebula MSH 15-52: constraints on particle acceleration and transport

    DEFF Research Database (Denmark)

    An, Hongjun; Madsen, Kristin K.; Reynolds, Stephen P.

    2014-01-01

    We present the first images of the pulsar wind nebula (PWN) MSH 15−52 in the hard X-ray band (8 keV), as measured with the Nuclear Spectroscopic Telescope Array (NuSTAR). Overall, the morphology of the PWN as measured by NuSTAR in the 3–7 keV band is similar to that seen in Chandra high-resolutio......We present the first images of the pulsar wind nebula (PWN) MSH 15−52 in the hard X-ray band (8 keV), as measured with the Nuclear Spectroscopic Telescope Array (NuSTAR). Overall, the morphology of the PWN as measured by NuSTAR in the 3–7 keV band is similar to that seen in Chandra high...

  6. High-energy X-rays from J174545.5-285829, the cannonball: a candidate pulsar wind nebula associated with SGR a east

    DEFF Research Database (Denmark)

    Nynka, Melania; Hailey, Charles J.; Mori, Kaya

    2013-01-01

    pulsar wind nebula (PWN) located ~ 2' north-east from Sgr A*, just outside the radio shell of the supernova remnant Sagittarius A (Sgr A) East. Its non-thermal X-ray spectrum, measured up to 30 keV, is well characterized by a Γ ~ 1.6 power law, typical of a PWN, and has an X-ray luminosity of L (3-30 ke...

  7. A BROADBAND EMISSION MODEL OF MAGNETAR WIND NEBULAE

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Shuta J. [Department of Physics, Faculty of Science and Engineering, Konan University, 8-9-1 Okamoto, Kobe, Hyogo 658-8501 (Japan)

    2016-08-20

    Angular momentum loss by the plasma wind is considered as a universal feature of isolated neutron stars including magnetars. The wind nebulae that are powered by magnetars allow us to compare the wind properties and the spin evolution of magnetars with those of rotation-powered pulsars (RPPs). In this paper, we construct a broadband emission model of magnetar wind nebulae (MWNe). This model is similar to past studies of young pulsar wind nebulae (PWNe) around RPPs, but is modified for the application to MWNe that have far less observational information than the young PWNe. We apply the model to the MWN around the youngest (∼1 kyr) magnetar, 1E 1547.0-5408, which has the largest spin-down power L {sub spin} among all the magnetars. However, the MWN is faint because of the low L {sub spin} of 1E 1547.0-5408 when compared to the young RPPs. Since most parameters are not well constrained by only an X-ray flux upper limit of the MWN, we adopt the model’s parameters from the young PWN Kes 75 around PSR J1846-0258, which is a peculiar RPP showing magnetar-like behaviors. The model predicts that γ -ray flux will be detected in a future TeV γ -ray observation by CTA (Cherenkov Telescope Array). The MWN spectrum does not allow us to test the hypothesis that 1E 1547.0-5408 had a period of milliseconds at its birth because the particles injected during the early phase of evolution suffered from severe adiabatic and synchrotron losses. Furthermore, both observational and theoretical studies of the wind nebulae around magnetars are required to constrain the wind and the spin-down properties of magnetars.

  8. Expansion and Brightness Changes in the Pulsar-wind Nebula in the Composite Supernova Remnant Kes 75

    Science.gov (United States)

    Reynolds, Stephen P.; Borkowski, Kazimierz J.; Gwynne, Peter H.

    2018-04-01

    We report new Chandra X-ray observations of the shell supernova remnant Kes 75 (G29.7‑0.3) containing a pulsar and pulsar-wind nebula (PWN). Expansion of the PWN is apparent across four epochs—2000, 2006, 2009, and 2016. We find an expansion rate between 2000 and 2016 of the northwest edge of the PWN of 0.249% ± 0.023% yr‑1, for an expansion age R/(dR/dt) of 400 ± 40 yr and an expansion velocity of about 1000 km s‑1. We suggest that the PWN is expanding into an asymmetric nickel bubble in a conventional Type IIP supernova. Some acceleration of the PWN expansion is likely, giving a true age of 480 ± 50 yr. The pulsar’s birth luminosity was larger than the current value by a factor of 3–8, while the initial period was within a factor of 2 of its current value. We confirm directly that Kes 75 contains the youngest known PWN, and hence the youngest known pulsar. The pulsar PSR J1846‑0258 has a spindown-inferred magnetic field of 5 × 1013 G; in 2006, it emitted five magnetar-like short X-ray bursts, but its spindown luminosity has not changed significantly. However, the flux of the PWN has decreased by about 10% between 2009 and 2016, almost entirely in the northern half. A bright knot has declined by 30% since 2006. During this time, the photon indices of the power-law models did not change. This flux change is too rapid to be due to normal PWN evolution in one-zone models.

  9. CONSTRAINTS ON THE GALACTIC POPULATION OF TeV PULSAR WIND NEBULAE USING FERMI LARGE AREA TELESCOPE OBSERVATIONS

    International Nuclear Information System (INIS)

    Acero, F.; Brandt, T. J.; Ackermann, M.; Ajello, M.; Allafort, A.; Bechtol, K.; Blandford, R. D.; Bloom, E. D.; Bottacini, E.; Buehler, R.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Buson, S.; Bellazzini, R.; Bregeon, J.; Bonamente, E.; Brigida, M.; Bruel, P.

    2013-01-01

    Pulsar wind nebulae (PWNe) have been established as the most populous class of TeV γ-ray emitters. Since launch, the Fermi Large Area Telescope (LAT) has identified five high-energy (100 MeV < E < 100 GeV) γ-ray sources as PWNe and detected a large number of PWN candidates, all powered by young and energetic pulsars. The wealth of multi-wavelength data available and the new results provided by Fermi-LAT give us an opportunity to find new PWNe and to explore the radiative processes taking place in known ones. The TeV γ-ray unidentified (UNID) sources are the best candidates for finding new PWNe. Using 45 months of Fermi-LAT data for energies above 10 GeV, an analysis was performed near the position of 58 TeV PWNe and UNIDs within 5° of the Galactic plane to establish new constraints on PWN properties and find new clues on the nature of UNIDs. Of the 58 sources, 30 were detected, and this work provides their γ-ray fluxes for energies above 10 GeV. The spectral energy distributions and upper limits, in the multi-wavelength context, also provide new information on the source nature and can help distinguish between emission scenarios, i.e., between classification as a pulsar candidate or as a PWN candidate. Six new GeV PWN candidates are described in detail and compared with existing models. A population study of GeV PWN candidates as a function of the pulsar/PWN system characteristics is presented

  10. CONSTRAINTS ON THE GALACTIC POPULATION OF TeV PULSAR WIND NEBULAE USING FERMI LARGE AREA TELESCOPE OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Acero, F.; Brandt, T. J. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Ackermann, M. [Deutsches Elektronen Synchrotron DESY, D-15738 Zeuthen (Germany); Ajello, M. [Space Sciences Laboratory, University of California, 7 Gauss Way, Berkeley, CA 94720-7450 (United States); Allafort, A.; Bechtol, K.; Blandford, R. D.; Bloom, E. D.; Bottacini, E.; Buehler, R. [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Baldini, L. [Universita di Pisa and Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, I-56127 Pisa (Italy); Ballet, J. [Laboratoire AIM, CEA-IRFU/CNRS/Universite Paris Diderot, Service d' Astrophysique, CEA Saclay, F-91191 Gif sur Yvette (France); Barbiellini, G. [Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, I-34127 Trieste (Italy); Bastieri, D.; Buson, S. [Istituto Nazionale di Fisica Nucleare, Sezione di Padova, I-35131 Padova (Italy); Bellazzini, R.; Bregeon, J. [Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, I-56127 Pisa (Italy); Bonamente, E. [Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, I-06123 Perugia (Italy); Brigida, M. [Dipartimento di Fisica ' ' M. Merlin' ' dell' Universita e del Politecnico di Bari, I-70126 Bari (Italy); Bruel, P., E-mail: funk@slac.stanford.edu, E-mail: joshualande@gmail.com, E-mail: lemoine@cenbg.in2p3.fr, E-mail: rousseau@cenbg.in2p3.fr [Laboratoire Leprince-Ringuet, Ecole polytechnique, CNRS/IN2P3, F-91128 Palaiseau (France); and others

    2013-08-10

    Pulsar wind nebulae (PWNe) have been established as the most populous class of TeV {gamma}-ray emitters. Since launch, the Fermi Large Area Telescope (LAT) has identified five high-energy (100 MeV < E < 100 GeV) {gamma}-ray sources as PWNe and detected a large number of PWN candidates, all powered by young and energetic pulsars. The wealth of multi-wavelength data available and the new results provided by Fermi-LAT give us an opportunity to find new PWNe and to explore the radiative processes taking place in known ones. The TeV {gamma}-ray unidentified (UNID) sources are the best candidates for finding new PWNe. Using 45 months of Fermi-LAT data for energies above 10 GeV, an analysis was performed near the position of 58 TeV PWNe and UNIDs within 5 Degree-Sign of the Galactic plane to establish new constraints on PWN properties and find new clues on the nature of UNIDs. Of the 58 sources, 30 were detected, and this work provides their {gamma}-ray fluxes for energies above 10 GeV. The spectral energy distributions and upper limits, in the multi-wavelength context, also provide new information on the source nature and can help distinguish between emission scenarios, i.e., between classification as a pulsar candidate or as a PWN candidate. Six new GeV PWN candidates are described in detail and compared with existing models. A population study of GeV PWN candidates as a function of the pulsar/PWN system characteristics is presented.

  11. RADIO POLARIZATION OBSERVATIONS OF THE SNAIL: A CRUSHED PULSAR WIND NEBULA IN G327.1–1.1 WITH A HIGHLY ORDERED MAGNETIC FIELD

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Y. K.; Ng, C.-Y. [Department of Physics, The University of Hong Kong, Pokfulam Road (Hong Kong); Bucciantini, N. [INAF—Osservatorio Astrofisico di Arcetri, L.go E. Fermi 5, I-50125 Firenze (Italy); Slane, P. O. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Gaensler, B. M. [Dunlap Institute for Astronomy and Astrophysics, The University of Toronto, Toronto, ON M5S 3H4 (Canada); Temim, T., E-mail: ncy@bohr.physics.hku.hk [Observational Cosmology Lab, Code 665, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2016-04-01

    Pulsar wind nebulae (PWNe) are suggested to be acceleration sites of cosmic rays in the Galaxy. While the magnetic field plays an important role in the acceleration process, previous observations of magnetic field configurations of PWNe are rare, particularly for evolved systems. We present a radio polarization study of the “Snail” PWN inside the supernova remnant G327.1−1.1 using the Australia Telescope Compact Array. This PWN is believed to have been recently crushed by the supernova (SN) reverse shock. The radio morphology is composed of a main circular body with a finger-like protrusion. We detected a strong linear polarization signal from the emission, which reflects a highly ordered magnetic field in the PWN and is in contrast to the turbulent environment with a tangled magnetic field generally expected from hydrodynamical simulations. This could suggest that the characteristic turbulence scale is larger than the radio beam size. We built a toy model to explore this possibility, and found that a simulated PWN with a turbulence scale of about one-eighth to one-sixth of the nebula radius and a pulsar wind filling factor of 50%–75% provides the best match to observations. This implies substantial mixing between the SN ejecta and pulsar wind material in this system.

  12. The Asymmetric Bow Shock/Pulsar Wind Nebula of PSR J2124–3358

    Science.gov (United States)

    Romani, Roger W.; Slane, Patrick; Green, Andrew W.

    2017-12-01

    We describe new measurements of the remarkable Hα/UV/X-ray bow shock and pulsar wind nebula (PWN) of the isolated millisecond pulsar (MSP) PSR J2124‑3358. Chandra X-ray Observatory imaging shows a one-sided jet structure with a softer equatorial outflow. KOALA integral field unit spectroscopy shows that non-radiative emission dominates the bow shock and that the Hα nebula is asymmetric about the pulsar velocity with an elongation into the plane of the sky. We extend analytic models of the contact discontinuity to accommodate such shapes and compare these to the data. Using Hubble Space Telescope UV detections of the pulsar and bow shock, radio timing distance, proper motion measurements, and the CXO-detected projected spin axis, we model the 3D PWN momentum flux distribution. The integrated momentum flux depends on the ionization of the ambient ISM, but for an expected ambient warm neutral medium, we infer I=2.4× {10}45 {{g}} {{cm}}2. This implies {M}{NS}=1.6{--}2.1 {M}ȯ , depending on the equation of state, which in turn suggests that the MSP gained significant mass during recycling and then lost its companion. However, this conclusion is at present tentative, since lower ionization allows ∼ 30 % lower masses, and uncertainty in the parallax allows up to 50% error.

  13. Evolution of a Pulsar Wind Nebula within a Composite Supernova Remnant

    Science.gov (United States)

    Kolb, Christopher; Blondin, John; Slane, Patrick; Temim, Tea

    2017-07-01

    The interaction between a pulsar wind nebula (PWN) and its host supernova remnant (SNR) can produce a vast array of observable structures. Asymmetry present within these structures derives from the complexity of the composite system, where many factors take turns playing a dominating hand throughout the stages of composite SNR evolution. Of particular interest are systems characterized by blastwave expansion within a nonuniform interstellar medium (ISM), which contain an active pulsar having a substantial “kick” velocity (upward of 300 {km} {{{s}}}-1), because these systems tend to produce complex morphologies. We present a numerical model that employs these and several other factors in an effort to generate asymmetry similar to that seen in various X-ray and radio observations. We find that the main parameters driving structure are ISM uniformity and total pulsar spin-down energy, with secondary contributions from factors such as pulsar trajectory and initial spin-down luminosity. We also investigate the dynamics behind PWN “tails,” which may form to link active pulsars to a crushed, relic nebula as the reverse shock passes. We find that the directions of such tails are not good indicators of pulsar motion, but direction does reveal the flow of ejecta created by the passage of a reverse shock.

  14. The VELA-X-Pulsar Wind Nebula Revisited with Four Years of Fermi Large Area Telescope Observations

    Science.gov (United States)

    Grondin, M. -H.; Romani, R. W.; Lemoine-Goumard, M.; Guillemot, L.; Harding, Alice K.; Reposeur, T.

    2013-01-01

    The Vela supernova remnant (SNR) is the closest SNR to Earth containing an active pulsar, the Vela pulsar (PSR B0833-45). This pulsar is an archetype of the middle-aged pulsar class and powers a bright pulsar wind nebula (PWN), Vela-X, spanning a region of 2deg × 3deg south of the pulsar and observed in the radio, X-ray, and very high energy ?-ray domains. The detection of the Vela-X PWN by the Fermi Large Area Telescope (LAT) was reported in the first year of the mission. Subsequently, we have reinvestigated this complex region and performed a detailed morphological and spectral analysis of this source using 4 yr of Fermi-LAT observations. This study lowers the threshold for morphological analysis of the nebula from 0.8 GeV to 0.3 GeV, allowing for the inspection of distinct energy bands by the LAT for the first time. We describe the recent results obtained on this PWN and discuss the origin of the newly detected spatial features.

  15. Discovery of TeV gamma-ray emission from the pulsar wind nebula 3C 58 by MAGIC

    Directory of Open Access Journals (Sweden)

    López-Coto Rubén

    2016-01-01

    Full Text Available The pulsar wind nebula (PWN 3C 58 is one of the historical very-high-energy (VHE; E>100 GeV gamma-ray source candidates. It has been compared to the Crab Nebula due to their morphological similarities. This object was detected by Fermi-LAT with a spectrum extending beyond 100 GeV. We analyzed 81 hours of 3C 58 data taken with the MAGIC telescopes and we detected VHE gamma-ray emission for the first time at TeV energies with a significance of 5.7 sigma and an integral flux of 0.65% C.U. above 1 TeV. According to our results 3C 58 is the least luminous PWN ever detected at VHE and the one with the lowest flux at VHE to date. We compare our results with the expectations of time-dependent models in which electrons up-scatter photon fields. The best representation favors a distance to the PWN of 2 kpc and Far Infrared (FIR comparable to CMB photon fields. Hadronic contribution from the hosting supernova remnant (SNR requires unrealistic energy budget given the density of the medium, disfavoring cosmic ray acceleration in the SNR as origin of the VHE gamma-ray emission.

  16. Turbulent Magnetic Relaxation in Pulsar Wind Nebulae

    Science.gov (United States)

    Zrake, Jonathan; Arons, Jonathan

    2017-09-01

    We present a model for magnetic energy dissipation in a pulsar wind nebula. A better understanding of this process is required to assess the likelihood that certain astrophysical transients may be powered by the spin-down of a “millisecond magnetar.” Examples include superluminous supernovae, gamma-ray bursts, and anticipated electromagnetic counterparts to gravitational wave detections of binary neutron star coalescence. Our model leverages recent progress in the theory of turbulent magnetic relaxation to specify a dissipative closure of the stationary magnetohydrodynamic (MHD) wind equations, yielding predictions of the magnetic energy dissipation rate throughout the nebula. Synchrotron losses are self-consistently treated. To demonstrate the model’s efficacy, we show that it can reproduce many features of the Crab Nebula, including its expansion speed, radiative efficiency, peak photon energy, and mean magnetic field strength. Unlike ideal MHD models of the Crab (which lead to the so-called σ-problem), our model accounts for the transition from ultra to weakly magnetized plasma flow and for the associated heating of relativistic electrons. We discuss how the predicted heating rates may be utilized to improve upon models of particle transport and acceleration in pulsar wind nebulae. We also discuss implications for the Crab Nebula’s γ-ray flares, and point out potential modifications to models of astrophysical transients invoking the spin-down of a millisecond magnetar.

  17. Late-Time Evolution of Composite Supernova Remnants: Deep Chandra Observations and Hydrodynamical Modeling of a Crushed Pulsar Wind Nebula in SNR G327.1-1.1

    Science.gov (United States)

    Temim, Tea; Slane, Patrick; Kolb, Christopher; Blondin, John; Hughes, John P.; Bucciantini, Niccolo

    2015-01-01

    In an effort to better understand the evolution of composite supernova remnants (SNRs) and the eventual fate of relativistic particles injected by their pulsars, we present a multifaceted investigation of the interaction between a pulsar wind nebula (PWN) and its host SNR G327.1-1.1. Our 350 ks Chandra X-ray observations of SNR G327.1-1.1 reveal a highly complex morphology; a cometary structure resembling a bow shock, prong-like features extending into large arcs in the SNR interior, and thermal emission from the SNR shell. Spectral analysis of the non-thermal emission offers clues about the origin of the PWN structures, while enhanced abundances in the PWN region provide evidence for mixing of supernova ejecta with PWN material. The overall morphology and spectral properties of the SNR suggest that the PWN has undergone an asymmetric interaction with the SNR reverse shock(RS) that can occur as a result of a density gradient in the ambient medium and or a moving pulsar that displaces the PWN from the center of the remnant. We present hydrodynamical simulations of G327.1-1.1 that show that its morphology and evolution can be described by a approx. 17,000 yr old composite SNR that expanded into a density gradient with an orientation perpendicular to the pulsar's motion. We also show that the RSPWN interaction scenario can reproduce the broadband spectrum of the PWN from radio to gamma-ray wavelengths. The analysis and modeling presented in this work have important implications for our general understanding of the structure and evolution of composite SNRs.

  18. High resolution radio imaging study of the Pulsar Wind Nebula MSH 15-52

    Science.gov (United States)

    Leung, W.-Y.; Ng, C.-Y.

    2016-06-01

    We present a new high-resolution radio imaging study of the pulsar wind nebula (PWN) MSH 15-52, also dubbed as "the hand of God", with the Australia Telescope Compact Array observations. The system is powered by a young and energetic radio pulsar B1509-58 with high spin down luminosity of E(dot) = 2 x 10^37 erg/s. Previous X-ray images have shown that the PWN has a complex hand-shape morphology extending over 10 pc with features like jets, arc, filaments and enhanced emission knots in the HII region RCW 89. The new 6cm and 3cm radio images show different morphology than the X-ray counterpart. No radio counterpart of the X-ray jet is detected, instead we found enhanced emission in a sheath surrounding the jet. Additional small-scale features including a polarized linear filament next to the pulsar have also been discovered. Our polarisation measurements show that the intrinsic orientation of magnetic field aligns with the sheath. Finally, spectral analysis results indicate a steep spectrum for the system, which is rather unusual among PWNe. Implications of these findings will be discussed. The Australia Telescope Compact Array is part of the Australia Telescope National Facility which is funded by the Commonwealth of Australia for operation as a National Facility managed by CSIRO. This work is supported by an ECS grant under HKU 709713P.

  19. Gamma-rays and neutrinos from the pulsar wind nebulae

    International Nuclear Information System (INIS)

    Bednarek, W.; Bartosik, M.

    2005-01-01

    We construct the time-dependent radiation model for the pulsar wind nebulae (PWNe), assuming that leptons are accelerated in resonant scattering with heavy nuclei, which are injected into the nebula by the pulsar. The equilibrium spectra of these particles inside the nebula are calculated taking into account their radiation and adiabatic energy losses. The spectra of γ-rays produced by these particles are compared with the observations of the PWNe emitting TeV γ-rays and predictions are made for the expected γ-ray fluxes from other PWNe. Expected neutrino fluxes and neutrino event rates in a 1 km 2 neutrino detector from these nebulae are also calculated. It is concluded that only the Crab Nebula can produce a detectable neutrino event rate in the 1 km 2 neutrino detector. Other PWNe can emit TeV γ-rays on the level of a few percent of that observed from the Crab Nebula

  20. DA 495: An Aging Pulsar Wind Nebula with Possible TeV Gamma-Ray Counterpart

    Science.gov (United States)

    Coerver, Anna; Mori, Kaya; Hailey, Charles; Gotthelf, Eric; Mukherjee, Reshmi; Hui, Michelle; Dingus, Brenda; Goodman, Jordan; NuSTAR, HAWC, VERITAS

    2018-01-01

    A pulsar wind nebula is created when a high-mass star collapses and forms an isolated neutron star surrounded by a relativistic particle wind. DA 495 is thought to be such an object, although no pulsations have been detected. DA 495 was first detected in the radio band and is characterized by an annular radio morphology with a radio emission dip in the center. It has been theorized that the wind nebula has an unusually high magnetization of 1.3 mG, and the age of the PWN has been estimated from the 1.3 GHz energy break to be approximately 20 kyr. With such a high wind magnetization, one would expect synchrotron radiation to fall off fairly quickly, yet NuSTAR (the Nuclear Spectroscopic Telescope Array) detected hard X-rays at energies greater than 10 keV, and a study of the Galactic Plane by the HAWC very-high-energy (VHE) gamma-ray telescope revealed a source coincident with DA 495 at energies greater than 10 TeV. This source was also detected at TeV energies by the VERITAS gamma-ray telescope. DA 495 was detected in the X-ray up to 10 keV by both Chandra and XMM-Newton X-ray telescopes before NuSTAR performed follow-up observations of the region in June 2017. DA 495 is one of the first TeV sources observed by the NuSTAR-HAWC-VERITAS Galactic Legacy collaboration. We carried out spectral and imaging analysis of both NuSTAR and Chandra data on DA 495 and will present results of our study of DA 495.

  1. Hitomi X-ray observation of the pulsar wind nebula G21.5-0.9

    Science.gov (United States)

    Aharonian, Felix; Akamatsu, Hiroki; Akimoto, Fumie; Allen, Steven W.; Angelini, Lorella; Audard, Marc; Awaki, Hisamitsu; Axelsson, Magnus; Bamba, Aya; Bautz, Marshall W.; Blandford, Roger; Brenneman, Laura W.; Brown, Gregory V.; Bulbul, Esra; Cackett, Edward M.; Chernyakova, Maria; Chiao, Meng P.; Coppi, Paolo S.; Costantini, Elisa; de Plaa, Jelle; de Vries, Cor P.; den Herder, Jan-Willem; Done, Chris; Dotani, Tadayasu; Ebisawa, Ken; Eckart, Megan E.; Enoto, Teruaki; Ezoe, Yuichiro; Fabian, Andrew C.; Ferrigno, Carlo; Foster, Adam R.; Fujimoto, Ryuichi; Fukazawa, Yasushi; Furuzawa, Akihiro; Galeazzi, Massimiliano; Gallo, Luigi C.; Gandhi, Poshak; Giustini, Margherita; Goldwurm, Andrea; Gu, Liyi; Guainazzi, Matteo; Haba, Yoshito; Hagino, Kouichi; Hamaguchi, Kenji; Harrus, Ilana M.; Hatsukade, Isamu; Hayashi, Katsuhiro; Hayashi, Takayuki; Hayashida, Kiyoshi; Hiraga, Junko S.; Hornschemeier, Ann; Hoshino, Akio; Hughes, John P.; Ichinohe, Yuto; Iizuka, Ryo; Inoue, Hajime; Inoue, Yoshiyuki; Ishida, Manabu; Ishikawa, Kumi; Ishisaki, Yoshitaka; Iwai, Masachika; Kaastra, Jelle; Kallman, Tim; Kamae, Tsuneyoshi; Kataoka, Jun; Katsuda, Satoru; Kawai, Nobuyuki; Kelley, Richard L.; Kilbourne, Caroline A.; Kitaguchi, Takao; Kitamoto, Shunji; Kitayama, Tetsu; Kohmura, Takayoshi; Kokubun, Motohide; Koyama, Katsuji; Koyama, Shu; Kretschmar, Peter; Krimm, Hans A.; Kubota, Aya; Kunieda, Hideyo; Laurent, Philippe; Lee, Shiu-Hang; Leutenegger, Maurice A.; Limousin, Olivier; Loewenstein, Michael; Long, Knox S.; Lumb, David; Madejski, Greg; Maeda, Yoshitomo; Maier, Daniel; Makishima, Kazuo; Markevitch, Maxim; Matsumoto, Hironori; Matsushita, Kyoko; McCammon, Dan; McNamara, Brian R.; Mehdipour, Missagh; Miller, Eric D.; Miller, Jon M.; Mineshige, Shin; Mitsuda, Kazuhisa; Mitsuishi, Ikuyuki; Miyazawa, Takuya; Mizuno, Tsunefumi; Mori, Hideyuki; Mori, Koji; Mukai, Koji; Murakami, Hiroshi; Mushotzky, Richard F.; Nakagawa, Takao; Nakajima, Hiroshi; Nakamori, Takeshi; Nakashima, Shinya; Nakazawa, Kazuhiro; Nobukawa, Kumiko K.; Nobukawa, Masayoshi; Noda, Hirofumi; Odaka, Hirokazu; Ohashi, Takaya; Ohno, Masanori; Okajima, Takashi; Ota, Naomi; Ozaki, Masanobu; Paerels, Frits; Paltani, Stéphane; Petre, Robert; Pinto, Ciro; Porter, Frederick S.; Pottschmidt, Katja; Reynolds, Christopher S.; Safi-Harb, Samar; Saito, Shinya; Sakai, Kazuhiro; Sasaki, Toru; Sato, Goro; Sato, Kosuke; Sato, Rie; Sawada, Makoto; Schartel, Norbert; Serlemtsos, Peter J.; Seta, Hiromi; Shidatsu, Megumi; Simionescu, Aurora; Smith, Randall K.; Soong, Yang; Stawarz, Łukasz; Sugawara, Yasuharu; Sugita, Satoshi; Szymkowiak, Andrew; Tajima, Hiroyasu; Takahashi, Hiromitsu; Takahashi, Tadayuki; Takeda, Shin'ichiro; Takei, Yoh; Tamagawa, Toru; Tamura, Takayuki; Tanaka, Takaaki; Tanaka, Yasuo; Tanaka, Yasuyuki T.; Tashiro, Makoto S.; Tawara, Yuzuru; Terada, Yukikatsu; Terashima, Yuichi; Tombesi, Francesco; Tomida, Hiroshi; Tsuboi, Yohko; Tsujimoto, Masahiro; Tsunemi, Hiroshi; Tsuru, Takeshi Go; Uchida, Hiroyuki; Uchiyama, Hideki; Uchiyama, Yasunobu; Ueda, Shutaro; Ueda, Yoshihiro; Uno, Shin'ichiro; Urry, C. Megan; Ursino, Eugenio; Watanabe, Shin; Werner, Norbert; Wilkins, Dan R.; Williams, Brian J.; Yamada, Shinya; Yamaguchi, Hiroya; Yamaoka, Kazutaka; Yamasaki, Noriko Y.; Yamauchi, Makoto; Yamauchi, Shigeo; Yaqoob, Tahir; Yatsu, Yoichi; Yonetoku, Daisuke; Zhuravleva, Irina; Zoghbi, Abderahmen; Sato, Toshiki; Nakaniwa, Nozomu; Murakami, Hiroaki; Guest, Benson

    2018-04-01

    We present results from the Hitomi X-ray observation of a young composite-type supernova remnant (SNR) G21.5-0.9, whose emission is dominated by the pulsar wind nebula (PWN) contribution. The X-ray spectra in the 0.8-80 keV range obtained with the Soft X-ray Spectrometer (SXS), Soft X-ray Imager, and Hard X-ray Imager (HXI) show a significant break in the continuum as previously found with the NuSTAR observation. After taking into account all known emissions from the SNR other than the PWN itself, we find that the Hitomi spectra can be fitted with a broken power law with photon indices of Γ1 = 1.74 ± 0.02 and Γ2 = 2.14 ± 0.01 below and above the break at 7.1 ± 0.3 keV, which is significantly lower than the NuSTAR result (˜9.0 keV). The spectral break cannot be reproduced by time-dependent particle injection one-zone spectral energy distribution models, which strongly indicates that a more complex emission model is needed, as suggested by recent theoretical models. We also search for narrow emission or absorption lines with the SXS, and perform a timing analysis of PSR J1833-1034 with the HXI and the Soft Gamma-ray Detector. No significant pulsation is found from the pulsar. However, unexpectedly, narrow absorption line features are detected in the SXS data at 4.2345 keV and 9.296 keV with a significance of 3.65 σ. While the origin of these features is not understood, their mere detection opens up a new field of research and was only possible with the high resolution, sensitivity, and ability to measure extended sources provided by an X-ray microcalorimeter.

  2. Discovery of a radio nebula around PSR J0855-4644

    Science.gov (United States)

    Maitra, C.; Roy, S.; Acero, F.; Gupta, Y.

    2018-03-01

    We report the discovery of a diffuse radio emission around PSR J0855-4644 using an upgraded GMRT (uGMRT) observation at 1.35 GHz. The radio emission is spatially coincident with the diffuse X-ray pulsar wind nebula (PWN) seen with XMM-Newton but is much larger in extent compared to the compact axisymmetric PWN seen with Chandra. The morphology of the emission, with a bright partial ring-like structure and two faint tail-like features strongly resembles a bow shock nebula, and indicates a velocity of 100 km/s through the ambient medium. We conclude that the emission is most likely to be associated with the radio PWN of PSR J0855-4644. From the integrated flux density, we estimate the energetics of the PWN.

  3. High-Energy X-rays from J174545.5-285829, the Cannonball: a Candidate Pulsar Wind Nebula Associated with Sgr a East

    Science.gov (United States)

    Nynka, Melania; Hailey, Charles J.; Mori, Kaya; Baganoff, Frederick K.; Bauer, Franz E.; Boggs, Steven E.; Craig, William W.; Christensen, Finn E.; Gotthelf, Eric V.; Harrison, Fiona A.; hide

    2013-01-01

    We report the unambiguous detection of non-thermal X-ray emission up to 30 keV from the Cannonball, a few arcsecond long diffuse X-ray feature near the Galactic Center, using the NuSTAR X-ray observatory. The Cannonball is a high-velocity (v(proj) approximately 500 km s(exp -1)) pulsar candidate with a cometary pulsar wind nebula (PWN) located approximately 2' north-east from Sgr A*, just outside the radio shell of the supernova remnant Sagittarius A (Sgr A) East. Its non-thermal X-ray spectrum, measured up to 30 keV, is well characterized by a Gamma is approximately 1.6 power law, typical of a PWN, and has an X-ray luminosity of L(3-30 keV) = 1.3 × 10(exp 34) erg s(exp -1). The spectral and spatial results derived from X-ray and radio data strongly suggest a runaway neutron star born in the Sgr A East supernova event. We do not find any pulsed signal from the Cannonball. The NuSTAR observations allow us to deduce the PWN magnetic field and show that it is consistent with the lower limit obtained from radio observations.

  4. High-Energy X-Ray Imaging of the Pulsar Wind Nebula MSH 15-52: Constraints on Particle Acceleration and Transport

    Science.gov (United States)

    An, Hongjun; Madsen, Kristin K.; Reynolds, Stephen P.; Kaspi, Victoria M.; Harrison, Fiona A.; Boggs, Steven E.; Christensen, Finn E.; Craig, William W.; Fryer, Chris L.; Grefenstette, Brian W.; hide

    2014-01-01

    We present the first images of the pulsar wind nebula (PWN) MSH 15-52 in the hard X-ray band (8 keV), as measured with the Nuclear Spectroscopic Telescope Array (NuSTAR). Overall, the morphology of the PWN as measured by NuSTAR in the 3-7 keV band is similar to that seen in Chandra high-resolution imaging. However, the spatial extent decreases with energy, which we attribute to synchrotron energy losses as the particles move away from the shock. The hard-band maps show a relative deficit of counts in the northern region toward the RCW 89 thermal remnant, with significant asymmetry. We find that the integrated PWN spectra measured with NuSTAR and Chandra suggest that there is a spectral break at 6 keV, which may be explained by a break in the synchrotron emitting electron distribution at approximately 200 TeV and/or imperfect cross calibration. We also measure spatially resolved spectra, showing that the spectrum of the PWN softens away from the central pulsar B1509-58, and that there exists a roughly sinusoidal variation of spectral hardness in the azimuthal direction. We discuss the results using particle flow models. We find non-monotonic structure in the variation with distance of spectral hardness within 50 of the pulsar moving in the jet direction, which may imply particle and magnetic-field compression by magnetic hoop stress as previously suggested for this source. We also present two-dimensional maps of spectral parameters and find an interesting shell-like structure in the N(sub H) map. We discuss possible origins of the shell-like structure and their implications.

  5. The intriguing double torus-jet PWN around PSR J0855-4644

    Science.gov (United States)

    Maitra, C.; Acero, F.; Venter, C.

    2016-06-01

    PSR J0855-4644 is a nearby, fast spinning, and energetic radio pulsar spatially coincident with the rim of the supernova remnant RX J0852.0-4622 (aka Vela Jr). XMM Newton observations of the pulsar region have shown an arcmin scale extended emission, the pulsar wind nebula (PWN), around the X-ray counterpart of the pulsar. Here, we present results from the small scale structure of the nebula provided by a Chandra observation of this source. This observation has revealed an arc second scale compact PWN around the pulsar showing a possible double torus+jet morphology. This makes it only the third source of its kind, and being an nearby object provides us with the golden opportunity to investigate the physics of equatorial and polar outflows in PWNe. Modeling the geometry of this source is also crucial to understand why no gamma-ray pulsations have been detected by the Fermi-LAT telescope for this high E(dot)/d^2 pulsar. In order to constrain the pulsar spin inclination angle, we model the double torus morphology and then compare it with theoretical phase-plots to understand this radio loud, gamma-ray quiet system.

  6. TeV γ-ray source MGRO J2019+37 : PWN or SNR?

    Science.gov (United States)

    Saha, Lab; Bhattacharjee, Pijushpani

    2014-01-01

    Milagro has recently reported an extended TeV γ-ray source MGRO J2019+37 in the Cygnus region. It is the second brightest TeV source after Crab nebula in their source catalogue. No confirmed counterparts of this source are known although possible associations with several known sources have been suggested. We study leptonic as well as hadronic models of TeV emission within the context of Pulsar Wind Nebulae (PWN) and Supernova Remnant (SNR) type sources, using constraints from multi-wavelength data from observations made on sources around MGRO J2019+37. These include radio upper limit given by GMRT, GeV observations by Fermi-LAT, EGRET and AGILE and very high energy data taken from Milagro. We find that, within the PWN scenario, while both leptonic as well as hadronic models can explain the TeV flux from this source, the GMRT upper limit imposes a stringent upper limit on the size of the emission region in the case of leptonic model. In the SNR scenario, on the other hand, a purely leptonic origin of TeV flux is inconsistent with the GMRT upper limit. At the same time, a dominantly hadronic origin of the TeV flux is consistent with all observations, and the required hadronic energy budget is comparable to that of typical supernovae explosions.

  7. DEEP CHANDRA OBSERVATIONS OF THE CRAB-LIKE PULSAR WIND NEBULA G54.1+0.3 AND SPITZER SPECTROSCOPY OF THE ASSOCIATED INFRARED SHELL

    International Nuclear Information System (INIS)

    Temim, Tea; Slane, Patrick; Raymond, John C.; Reynolds, Stephen P.; Borkowski, Kazimierz J.

    2010-01-01

    G54.1+0.3 is a young pulsar wind nebula (PWN), closely resembling the Crab, for which no thermal shell emission has been detected in X-rays. Recent Spitzer observations revealed an infrared (IR) shell containing a dozen point sources arranged in a ring-like structure, previously proposed to be young stellar objects. An extended knot of emission located in the NW part of the shell appears to be aligned with the pulsar's X-ray jet, suggesting a possible interaction with the shell material. Surprisingly, the IR spectrum of the knot resembles the spectrum of freshly formed dust in Cas A, and is dominated by an unidentified dust emission feature at 21 μm. The spectra of the shell also contain various emission lines and show that some are significantly broadened, suggesting that they originate in rapidly expanding supernova (SN) ejecta. We present the first evidence that the PWN is driving shocks into expanding SN ejecta and we propose an alternative explanation for the origin of the IR emission in which the shell is composed entirely of SN ejecta. In this scenario, the freshly formed SN dust is being heated by early-type stars belonging to a cluster in which the SN exploded. Simple dust models show that this interpretation can give rise to the observed shell emission and the IR point sources.

  8. The Crab nebula's ''wisps'' as shocked pulsar wind

    International Nuclear Information System (INIS)

    Gallant, Y.A.; Arons, J.; Langdon, A.B.

    1992-01-01

    The Crab synchrotron nebula has been successfully modelled as the post-shock region of a relativistic, magnetized wind carrying most of the spindown luminosity from the central pulsar. While the Crab is the best-studied example, most of the highest spindown luminosity pulsars are also surrounded by extended synchrotron nebulae, and several additional supernova remnants with ''plerionic'' morphologies similar to the Crab are known where the central object is not seen. All these objects have nonthermal, power-law spectra attributable to accelerated high-energy particles thought to originate in a Crab-like relativistic pulsar wind. However, proposed models have so far treated the wind shock as an infinitesimally thin discontinuity, with an arbitrarily ascribed particle acceleration efficiency. To make further progress, investigations resolving the shock structure seemed in order. Motivated by these considerations, we have performed ''particle-in-cell (PIC) simulations of perpendicularly magnetized shocks in electron-positron and electron-positron-ion plasmas. The shocks in pure electron-positron plasmas were found to produce only thermal distributions downstream, and are thus poor candidates as particle acceleration sites. When the upstream plasma flow also contained a smaller population of positive ions, however, efficient acceleration of positrons, and to a lesser extent of electrons, was observed in the simulations

  9. Gigahertz-peaked spectra pulsars in Pulsar Wind Nebulae

    Science.gov (United States)

    Basu, R.; RoŻko, K.; Kijak, J.; Lewandowski, W.

    2018-04-01

    We have carried out a detailed study of the spectral nature of six pulsars surrounded by pulsar wind nebulae (PWNe). The pulsar flux density was estimated using the interferometric imaging technique of the Giant Metrewave Radio Telescope at three frequencies 325, 610, and 1280 MHz. The spectra showed a turnover around gigahertz frequency in four out of six pulsars. It has been suggested that the gigahertz-peaked spectrum (GPS) in pulsars arises due to thermal absorption of the pulsar emission in surrounding medium like PWNe, H II regions, supernova remnants, etc. The relatively high incidence of GPS behaviour in pulsars surrounded by PWNe imparts further credence to this view. The pulsar J1747-2958 associated with the well-known Mouse nebula was also observed in our sample and exhibited GPS behaviour. The pulsar was detected as a point source in the high-resolution images. However, the pulsed emission was not seen in the phased-array mode. It is possible that the pulsed emission was affected by extreme scattering causing considerable smearing of the emission at low radio frequencies. The GPS spectra were modelled using the thermal free-free absorption and the estimated absorber properties were largely consistent with PWNe. The spatial resolution of the images made it unlikely that the point source associated with J1747-2958 was the compact head of the PWNe, but the synchrotron self-absorption seen in such sources was a better fit to the estimated spectral shape.

  10. Constraints on the synchrotron self-Compton mechanism of TeV gamma ray emission from the Milagro TeV source MGRO J2019+37 within the pulsar wind nebula scenario

    Science.gov (United States)

    Saha, Lab; Bhattacharjee, Pijushpani

    2015-03-01

    Origin of the TeV gamma ray emission from MGRO J2019+37 discovered by the Milagro experiment is investigated within the pulsar wind nebula (PWN) scenario using multiwavelength information on sources suggested to be associated with this object. We find that the synchrotron self-Compton (SSC) mechanism of origin of the observed TeV gamma rays within the PWN scenario is severely constrained by the upper limit on the radio flux from the region around MGRO J2019+37 given by the Giant Metrewave Radio Telescope (GMRT) as well as by the x-ray flux upper limit from SWIFT/XRT. Specifically, for the SSC mechanism to explain the observed TeV flux from MGRO J2019+37 without violating the GMRT and/or Swift/XRT flux upper limits in the radio and x-ray regions, respectively, the emission region must be extremely compact with the characteristic size of the emission region restricted to ≲ O (10-4 pc) for an assumed distance of ˜ few kpc to the source. This is at least four orders of magnitude less than the characteristic size of the emission region typically invoked in explaining the TeV emission through the SSC mechanism within the PWN scenario. On the other hand, inverse Compton (IC) scattering of the nebular high energy electrons on the cosmic microwave background (CMB) photons can, for reasonable ranges of values of various parameters, explain the observed TeV flux without violating the GMRT and/or SWIFT/XRT flux bounds.

  11. Detection of gamma-ray emission from the Vela pulsar wind nebula with AGILE.

    Science.gov (United States)

    Pellizzoni, A; Trois, A; Tavani, M; Pilia, M; Giuliani, A; Pucella, G; Esposito, P; Sabatini, S; Piano, G; Argan, A; Barbiellini, G; Bulgarelli, A; Burgay, M; Caraveo, P; Cattaneo, P W; Chen, A W; Cocco, V; Contessi, T; Costa, E; D'Ammando, F; Del Monte, E; De Paris, G; Di Cocco, G; Di Persio, G; Donnarumma, I; Evangelista, Y; Feroci, M; Ferrari, A; Fiorini, M; Fuschino, F; Galli, M; Gianotti, F; Hotan, A; Labanti, C; Lapshov, I; Lazzarotto, F; Lipari, P; Longo, F; Marisaldi, M; Mastropietro, M; Mereghetti, S; Moretti, E; Morselli, A; Pacciani, L; Palfreyman, J; Perotti, F; Picozza, P; Pittori, C; Possenti, A; Prest, M; Rapisarda, M; Rappoldi, A; Rossi, E; Rubini, A; Santolamazza, P; Scalise, E; Soffitta, P; Striani, E; Trifoglio, M; Vallazza, E; Vercellone, S; Verrecchia, F; Vittorini, V; Zambra, A; Zanello, D; Giommi, P; Colafrancesco, S; Antonelli, A; Salotti, L; D'Amico, N; Bignami, G F

    2010-02-05

    Pulsars are known to power winds of relativistic particles that can produce bright nebulae by interacting with the surrounding medium. These pulsar wind nebulae are observed by their radio, optical, and x-ray emissions, and in some cases also at TeV (teraelectron volt) energies, but the lack of information in the gamma-ray band precludes drawing a comprehensive multiwavelength picture of their phenomenology and emission mechanisms. Using data from the AGILE satellite, we detected the Vela pulsar wind nebula in the energy range from 100 MeV to 3 GeV. This result constrains the particle population responsible for the GeV emission and establishes a class of gamma-ray emitters that could account for a fraction of the unidentified galactic gamma-ray sources.

  12. Spatially-Dependent Modelling of Pulsar Wind Nebula G0.9+0.1

    Science.gov (United States)

    van Rensburg, C.; Krüger, P. P.; Venter, C.

    2018-03-01

    We present results from a leptonic emission code that models the spectral energy distribution of a pulsar wind nebula by solving a Fokker-Planck-type transport equation and calculating inverse Compton and synchrotron emissivities. We have created this time-dependent, multi-zone model to investigate changes in the particle spectrum as they traverse the pulsar wind nebula, by considering a time and spatially-dependent B-field, spatially-dependent bulk particle speed implying convection and adiabatic losses, diffusion, as well as radiative losses. Our code predicts the radiation spectrum at different positions in the nebula, yielding the surface brightness versus radius and the nebular size as function of energy. We compare our new model against more basic models using the observed spectrum of pulsar wind nebula G0.9+0.1, incorporating data from H.E.S.S. as well as radio and X-ray experiments. We show that simultaneously fitting the spectral energy distribution and the energy-dependent source size leads to more stringent constraints on several model parameters.

  13. Very-high-energy gamma-ray observations of pulsar wind nebulae and cataclysmic variable stars with MAGIC and development of trigger systems for IACTs

    Science.gov (United States)

    Lopez-Coto, Ruben

    2015-07-01

    lowest possible energy threshold with the LSTs of CTA. Together with this work, the trigger of the MAGIC telescopes was improved. We have simulated, tested and commissioned a new concept of stereoscopic trigger. This new system, that uses the information of the position of the showers on each of the MAGIC cameras, is dubbed "Topo-trigger". The scientific fraction of the thesis deals with galactic sources observed with the MAGIC telescopes. In Part III, I talk about the analysis of the VHE γ-ray emission of Pulsar Wind Nebulae (PWNe): the discovery of VHE γ-ray emission from the puzzling PWN 3C 58, the likely remnant of the SN 1181 AD and the weakest PWN detected at VHE to date; the characterization of the VHE tail of the Crab nebula by observing it at the highest zenith angles; and the search for an additional inverse Compton component during the Crab nebula flares reported by Fermi-LAT in the synchrotron regime. Part IV is concerned with searches for VHE γ-ray emission of cataclysmic variable stars. I studied, on a multiwavelength context, the VHE γ-ray nature of the previously claimed pulsed γ-ray emission of the cataclysmic variable AE Aqr. I also performed observations of novae and a dwarf nova to pinpoint the ac- celeration mechanisms taking place in this kind of objects and to discover a putative hadronic component of the soft γ-ray emission. A conclusion chapter summarizes all the work performed and lists prospects related with the topics treated in this thesis.

  14. A ROTATIONALLY POWERED MAGNETAR NEBULA AROUND SWIFT J1834.9–0846

    Energy Technology Data Exchange (ETDEWEB)

    Torres, Diego F. [Institute of Space Sciences (IEEC-CSIC), Campus UAB, Carrer de Magrans s/n, E-08193 Barcelona (Spain)

    2017-01-20

    A wind nebula generating extended X-ray emission was recently detected surrounding Swift J1834.9–0846. This is the first magnetar for which such a wind nebula was found. Here, we investigate whether there is a plausible scenario where the pulsar wind nebula (PWN) can be sustained without the need of advocating for additional sources of energy other than rotational. We do this by using a detailed radiative and dynamical code that studies the evolution of the nebula and its particle population in time. We find that such a scenario indeed exists: Swift J1834.9–0846's nebula can be explained as being rotationally powered, as all other known PWNe are, if it is currently being compressed by the environment. The latter introduces several effects, the most important of which is the appearance of adiabatic heating, being increasingly dominant over the escape of particles as reverberation goes by. The need of reverberation naturally explains why this is the only magnetar nebula detected and provides estimates for Swift 1834.9–0846's age.

  15. Spatially-resolved Spectroscopy of the IC443 Pulsar Wind Nebula and Environs

    Science.gov (United States)

    Swartz, D. A.; Weisskopf, M. C.; Zavlin, V. E.; Bucciantini, N.; Clarke, T. E.; Karovska, M.; Pavlov, G. G.; O'Dell, S. L.; vanderHorst, A J.; Yukita, M.

    2013-01-01

    Deep Chandra ACIS observations of the region around the putative pulsar, CXOU J061705.3+222117, in the supernova remnant IC443 reveal, for the first time, a ring-like morphology surrounding the pulsar and a jet-like structure oriented roughly north-south across the ring and through the pulsar location. The observations further confirm that (1) the spectrum and flux of the central object are consistent with a rotation-powered pulsar interpretation, (2) the non-thermal surrounding nebula is likely powered by the pulsar wind, and (3) the thermal-dominated spectrum at greater distances is consistent with emission from the supernova remnant. The cometary shape of the nebula, suggesting motion towards the southwest (or, equivalently, flow of ambient medium to the northeast), appears to be subsonic; there is no evidence for a strong bow shock, and the circular ring is not distorted by motion through the ambient medium.

  16. The Geminga pulsar wind nebula in the mid-infrared and submillimetre

    Science.gov (United States)

    Greaves, J. S.; Holland, W. S.

    2017-10-01

    The nearby middle-aged Geminga pulsar has crossed the Galactic plane within the last ∼0.1 Myr. We present archival data from Wide-field Infrared Survey Explorer and from SCUBA and SCUBA-2 on the James Clerk Maxwell Telescope to assess whether any mid-infrared and submillimetre emission arises from interaction of the pulsar wind nebula with the interstellar medium. A candidate shell and bow shock are reported. Given the low pulsar velocity and local density, dust grains appear able to penetrate into the nebula. A compact source seen towards the pulsar is fitted with a dust spectrum. If confirmed as a real association at higher resolution, this could be a circum-pulsar disc of at least a few Earth-masses, in which future planets could form.

  17. Shaping of planetary nebulae

    International Nuclear Information System (INIS)

    Balick, B.

    1987-01-01

    The phases of stellar evolution and the development of planetary nebulae are examined. The relation between planetary nebulae and red giants is studied. Spherical and nonspherical cases of shaping planetaries with stellar winds are described. CCD images of nebulae are analyzed, and it is determined that the shape of planetary nebulae depends on ionization levels. Consideration is given to calculating the distances of planetaries using radio images, and molecular hydrogen envelopes which support the wind-shaping model of planetary nebulae

  18. Relativistic MHD modeling of magnetized neutron stars, pulsar winds, and their nebulae

    Science.gov (United States)

    Del Zanna, L.; Pili, A. G.; Olmi, B.; Bucciantini, N.; Amato, E.

    2018-01-01

    Neutron stars are among the most fascinating astrophysical sources, being characterized by strong gravity, densities about the nuclear one or even above, and huge magnetic fields. Their observational signatures can be extremely diverse across the electromagnetic spectrum, ranging from the periodic and low-frequency signals of radio pulsars, up to the abrupt high-energy gamma-ray flares of magnetars, where energies of ∼ {10}46 {erg} are released in a few seconds. Fast-rotating and highly magnetized neutron stars are expected to launch powerful relativistic winds, whose interaction with the supernova remnants gives rise to the non-thermal emission of pulsar wind nebulae, which are known cosmic accelerators of electrons and positrons up to PeV energies. In the extreme cases of proto-magnetars (magnetic fields of ∼ {10}15 G and millisecond periods), a similar mechanism is likely to provide a viable engine for the still mysterious gamma-ray bursts. The key ingredient in all these spectacular manifestations of neutron stars is the presence of strong magnetic fields in their constituent plasma. Here we will present recent updates of a couple of state-of-the-art numerical investigations by the high-energy astrophysics group in Arcetri: a comprehensive modeling of the steady-state axisymmetric structure of rotating magnetized neutron stars in general relativity, and dynamical 3D MHD simulations of relativistic pulsar winds and their associated nebulae.

  19. The population of TeV pulsar wind nebulae in the H.E.S.S. Galactic Plane Survey

    Science.gov (United States)

    H.E.S.S. Collaboration; Abdalla, H.; Abramowski, A.; Aharonian, F.; Ait Benkhali, F.; Akhperjanian, A. G.; Andersson, T.; Angüner, E. O.; Arrieta, M.; Aubert, P.; Backes, M.; Balzer, A.; Barnard, M.; Becherini, Y.; Becker Tjus, J.; Berge, D.; Bernhard, S.; Bernlöhr, K.; Blackwell, R.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bordas, P.; Bregeon, J.; Brun, F.; Brun, P.; Bryan, M.; Bulik, T.; Capasso, M.; Carr, J.; Carrigan, S.; Casanova, S.; Cerruti, M.; Chakraborty, N.; Chalme-Calvet, R.; Chaves, R. C. G.; Chen, A.; Chevalier, J.; Chrétien, M.; Colafrancesco, S.; Cologna, G.; Condon, B.; Conrad, J.; Couturier, C.; Cui, Y.; Davids, I. D.; Degrange, B.; Deil, C.; Devin, J.; deWilt, P.; Dirson, L.; Djannati-Ataï, A.; Domainko, W.; Donath, A.; Drury, L. O.'C.; Dubus, G.; Dutson, K.; Dyks, J.; Edwards, T.; Egberts, K.; Eger, P.; Ernenwein, J.-P.; Eschbach, S.; Farnier, C.; Fegan, S.; Fernandes, M. V.; Fiasson, A.; Fontaine, G.; Förster, A.; Funk, S.; Füßling, M.; Gabici, S.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Giavitto, G.; Giebels, B.; Glicenstein, J. F.; Gottschall, D.; Goyal, A.; Grondin, M.-H.; Hadasch, D.; Hahn, J.; Haupt, M.; Hawkes, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hervet, O.; Hillert, A.; Hinton, J. A.; Hofmann, W.; Hoischen, C.; Holler, M.; Horns, D.; Ivascenko, A.; Jacholkowska, A.; Jamrozy, M.; Janiak, M.; Jankowsky, D.; Jankowsky, F.; Jingo, M.; Jogler, T.; Jouvin, L.; Jung-Richardt, I.; Kastendieck, M. A.; Katarzyński, K.; Katz, U.; Kerszberg, D.; Khélifi, B.; Kieffer, M.; King, J.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Kolitzus, D.; Komin, Nu.; Kosack, K.; Krakau, S.; Kraus, M.; Krayzel, F.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lau, J.; Lees, J.-P.; Lefaucheur, J.; Lefranc, V.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Leser, E.; Lohse, T.; Lorentz, M.; Liu, R.; López-Coto, R.; Lypova, I.; Marandon, V.; Marcowith, A.; Mariaud, C.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; Meintjes, P. J.; Meyer, M.; Mitchell, A. M. W.; Moderski, R.; Mohamed, M.; Mohrmann, L.; Morå, K.; Moulin, E.; Murach, T.; de Naurois, M.; Niederwanger, F.; Niemiec, J.; Oakes, L.; O'Brien, P.; Odaka, H.; Öttl, S.; Ohm, S.; de Oña Wilhelmi, E.; Ostrowski, M.; Oya, I.; Padovani, M.; Panter, M.; Parsons, R. D.; Paz Arribas, M.; Pekeur, N. W.; Pelletier, G.; Perennes, C.; Petrucci, P.-O.; Peyaud, B.; Pita, S.; Poon, H.; Prokhorov, D.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Rieger, F.; Romoli, C.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Salek, D.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schwanke, U.; Schwemmer, S.; Settimo, M.; Seyffert, A. S.; Shafi, N.; Shilon, I.; Simoni, R.; Sol, H.; Spanier, F.; Spengler, G.; Spies, F.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stinzing, F.; Stycz, K.; Sushch, I.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tibaldo, L.; Tiziani, D.; Tluczykont, M.; Trichard, C.; Tuffs, R.; Uchiyama, Y.; Valerius, K.; van der Walt, D. J.; van Eldik, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Viana, A.; Vincent, P.; Vink, J.; Voisin, F.; Völk, H. J.; Vuillaume, T.; Wadiasingh, Z.; Wagner, S. J.; Wagner, P.; Wagner, R. M.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Yang, R.; Zabalza, V.; Zaborov, D.; Zacharias, M.; Zdziarski, A. A.; Zech, A.; Zefi, F.; Ziegler, A.; Żywucka, N.

    2018-04-01

    The nine-year H.E.S.S. Galactic Plane Survey (HGPS) has yielded the most uniform observation scan of the inner Milky Way in the TeV gamma-ray band to date. The sky maps and source catalogue of the HGPS allow for a systematic study of the population of TeV pulsar wind nebulae found throughout the last decade. To investigate the nature and evolution of pulsar wind nebulae, for the first time we also present several upper limits for regions around pulsars without a detected TeV wind nebula. Our data exhibit a correlation of TeV surface brightness with pulsar spin-down power Ė. This seems to be caused both by an increase of extension with decreasing Ė, and hence with time, compatible with a power law RPWN(Ė) Ė-0.65±0.20, and by a mild decrease of TeV gamma-ray luminosity with decreasing Ė, compatible with L1-10 TeV Ė0.59±0.21. We also find that the offsets of pulsars with respect to the wind nebula centre with ages around 10 kyr are frequently larger than can be plausibly explained by pulsar proper motion and could be due to an asymmetric environment. In the present data, it seems that a large pulsar offset is correlated with a high apparent TeV efficiency L1-10 TeV/Ė. In addition to 14 HGPS sources considered firmly identified pulsar wind nebulae and 5 additional pulsar wind nebulae taken from literature, we find 10 HGPS sources that are likely TeV pulsar wind nebula candidates. Using a model that subsumes the present common understanding of the very high-energy radiative evolution of pulsar wind nebulae, we find that the trends and variations of the TeV observables and limits can be reproduced to a good level, drawing a consistent picture of present-day TeV data and theory.

  20. Halo Emission of the Cat's Eye Nebula, NGC 6543 Shock Excitation by Fast Stellar Winds

    Directory of Open Access Journals (Sweden)

    Siek Hyung

    2002-09-01

    Full Text Available Images taken with the Chandra X-ray telescope have for the the first time revealed the central, wind-driven, hot bubble (Chu et al. 2001, while Hubble Space Telescope (HST WFPC2 images of the Cat's Eye nebula, NGC 6543, show that the temperature of the halo region of angular radius ~ 20'', is much higher than that of the inner bright H II region. With the coupling of a photoionization calculation to a hydrodynamic simulation, we predict the observed [O III] line intensities of the halo region with the same O abundance as in the core H II region: oxygen abundance gradient does not appear to exist in the NGC 6543 inner halo. An interaction between a (leaky fast stellar wind and halo gas may cause the higher excitation temperatures in the halo region and the inner hot bubble region observed with the Chandra X-ray telescope.

  1. HIGH SPATIAL RESOLUTION X-RAY SPECTROSCOPY OF THE IC 443 PULSAR WIND NEBULA AND ENVIRONS

    Energy Technology Data Exchange (ETDEWEB)

    Swartz, Douglas A.; Zavlin, Vyacheslav E. [USRA, Astrophysics Office, NASA Marshall Space Flight Center, ZP12, Huntsville, AL 35812 (United States); Pavlov, George G. [Department of Astronomy and Astrophysics, Pennsylvania State University, 525 Davey Lab, University Park, PA 16802 (United States); Clarke, Tracy [Remote Sensing Division, Code 7213, Naval Research Laboratory, 4555 Overlook Avenue, SW, Washington, DC (United States); Castelletti, Gabriela [Instituto de Astronomía y Física del Espacio (IAFE, CONICET-UBA), CC67, Suc. 28, 1428, Buenos Aires (Argentina); Bucciantini, Niccolò [INAF—Osservatorio Astrofisico di Arcetri, L. go E. Fermi 5, I-50125 Firenze (Italy); Karovska, Margarita [Smithsonian Astrophysical Observatory, MS 4, 60 Garden Street, Cambridge, MA 02138 (United States); Horst, Alexander J. van der [Department of Physics, The George Washington University, 725 21 Street NW, Washington, DC 20052 (United States); Yukita, Mihoko [The Johns Hopkins University, Homewood Campus, Baltimore, MD 21218 (United States); Weisskopf, Martin C. [Astrophysics Office, NASA Marshall Space Flight Center, ZP12, Huntsville, AL 35812 (United States)

    2015-07-20

    Deep Chandra ACIS observations of the region around the putative pulsar, CXOU J061705.3+222127, in the supernova remnant (SNR) IC 443 reveal an ∼5″ radius ring-like structure surrounding the pulsar and a jet-like feature oriented roughly north–south across the ring and through the pulsar's location at 06{sup h}17{sup m}5.{sup s}200 + 22°21′27.″52 (J2000.0 coordinates). The observations further confirm that (1) the spectrum and flux of the central object are consistent with a rotation-powered pulsar, (2) the non-thermal spectrum and morphology of the surrounding nebula are consistent with a pulsar wind, and (3) the spectrum at greater distances is consistent with thermal emission from the SNR. The cometary shape of the nebula, suggesting motion toward the southwest, appears to be subsonic: There is no evidence either spectrally or morphologically for a bow shock or contact discontinuity; the nearly circular ring is not distorted by motion through the ambient medium; and the shape near the apex of the nebula is narrow. Comparing this observation with previous observations of the same target, we set a 99% confidence upper limit to the proper motion of CXOU J061705.3+222127 to be less than 44 mas yr{sup −1} (310 km s{sup −1} for a distance of 1.5 kpc), with the best-fit (but not statistically significant) projected direction toward the west.

  2. Future X-ray Polarimetry of Relativistic Accelerators: Pulsar Wind Nebulae and Supernova Remnants

    Directory of Open Access Journals (Sweden)

    Niccolò Bucciantini

    2018-03-01

    Full Text Available Supernova remnants (SNRs and pulsar wind nebulae (PWNs are among the most significant sources of non-thermal X-rays in the sky, and the best means by which relativistic plasma dynamics and particle acceleration can be investigated. Being strong synchrotron emitters, they are ideal candidates for X-ray polarimetry, and indeed the Crab nebula is up to present the only object where X-ray polarization has been detected with a high level of significance. Future polarimetric measures will likely provide us with crucial information on the level of turbulence that is expected at particle acceleration sites, together with the spatial and temporal coherence of magnetic field geometry, enabling us to set stronger constraints on our acceleration models. PWNs will also allow us to estimate the level of internal dissipation. I will briefly review the current knowledge on the polarization signatures in SNRs and PWNs, and I will illustrate what we can hope to achieve with future missions such as IXPE/XIPE.

  3. A new mechanical stellar wind feedback model for the Rosette Nebula

    Science.gov (United States)

    Wareing, C. J.; Pittard, J. M.; Wright, N. J.; Falle, S. A. E. G.

    2018-04-01

    The famous Rosette Nebula has an evacuated central cavity formed from the stellar winds ejected from the 2-6 Myr old codistant and comoving central star cluster NGC 2244. However, with upper age estimates of less than 110 000 yr, the central cavity is too young compared to NGC 2244 and existing models do not reproduce its properties. A new proper motion study herein using Gaia data reveals the ejection of the most massive star in the Rosette, HD 46223, from NGC 2244 occurred 1.73 (+0.34, -0.25) Myr (1σ uncertainty) in the past. Assuming this ejection was at the birth of the most massive stars in NGC 2244, including the dominant centrally positioned HD 46150, the age is set for the famous ionized region at more than 10 times that derived for the cavity. Here, we are able to reproduce the structure of the Rosette Nebula, through simulation of mechanical stellar feedback from a 40 M⊙ star in a thin sheet-like molecular cloud. We form the 135 000 M⊙ cloud from thermally unstable diffuse interstellar medium (ISM) under the influence of a realistic background magnetic field with thermal/magnetic pressure equilibrium. Properties derived from a snapshot of the simulation at 1.5 Myr, including cavity size, stellar age, magnetic field, and resulting inclination to the line of sight, match those derived from observations. An elegant explanation is thus provided for the stark contrast in age estimates based on realistic diffuse ISM properties, molecular cloud formation and stellar wind feedback.

  4. FERMI LARGE AREA TELESCOPE OBSERVATIONS OF THE VELA-X PULSAR WIND NEBULA

    International Nuclear Information System (INIS)

    Abdo, A. A.; Ackermann, M.; Ajello, M.; Allafort, A.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Bouvier, A.; Baldini, L.; Bellazzini, R.; Bregeon, J.; Brez, A.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bonamente, E.; Brigida, M.; Bruel, P.

    2010-01-01

    We report on gamma-ray observations in the off-pulse window of the Vela pulsar PSR B0833-45 using 11 months of survey data from the Fermi Large Area Telescope (LAT). This pulsar is located in the 8 deg. diameter Vela supernova remnant, which contains several regions of non-thermal emission detected in the radio, X-ray, and gamma-ray bands. The gamma-ray emission detected by the LAT lies within one of these regions, the 2 deg. x 3 deg. area south of the pulsar known as Vela-X. The LAT flux is significantly spatially extended with a best-fit radius of 0. 0 88 ± 0. 0 12 for an assumed radially symmetric uniform disk. The 200 MeV to 20 GeV LAT spectrum of this source is well described by a power law with a spectral index of 2.41 ± 0.09 ± 0.15 and integral flux above 100 MeV of (4.73 ± 0.63 ± 1.32) x 10 -7 cm -2 s -1 . The first errors represent the statistical error on the fit parameters, while the second ones are the systematic uncertainties. Detailed morphological and spectral analyses give strong constraints on the energetics and magnetic field of the pulsar wind nebula system and favor a scenario with two distinct electron populations.

  5. ELECTRON ACCELERATION IN PULSAR-WIND TERMINATION SHOCKS: AN APPLICATION TO THE CRAB NEBULA GAMMA-RAY FLARES

    Energy Technology Data Exchange (ETDEWEB)

    Kroon, John J.; Becker, Peter A.; Dermer, Charles D. [Department of Physics and Astronomy, George Mason University, Fairfax, VA 22030-4444 (United States); Finke, Justin D., E-mail: jkroon@gmu.edu, E-mail: pbecker@gmu.edu, E-mail: charlesdermer@outlook.com, E-mail: justin.finke@nrl.navy.mil [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States)

    2016-12-20

    The γ -ray flares from the Crab Nebula observed by AGILE and Fermi -LAT reaching GeV energies and lasting several days challenge the standard models for particle acceleration in pulsar-wind nebulae because the radiating electrons have energies exceeding the classical radiation-reaction limit for synchrotron. Previous modeling has suggested that the synchrotron limit can be exceeded if the electrons experience electrostatic acceleration, but the resulting spectra do not agree very well with the data. As a result, there are still some important unanswered questions about the detailed particle acceleration and emission processes occurring during the flares. We revisit the problem using a new analytical approach based on an electron transport equation that includes terms describing electrostatic acceleration, stochastic wave-particle acceleration, shock acceleration, synchrotron losses, and particle escape. An exact solution is obtained for the electron distribution, which is used to compute the associated γ -ray synchrotron spectrum. We find that in our model the γ -ray flares are mainly powered by electrostatic acceleration, but the contributions from stochastic and shock acceleration play an important role in producing the observed spectral shapes. Our model can reproduce the spectra of all the Fermi -LAT and AGILE flares from the Crab Nebula, using magnetic field strengths in agreement with the multi-wavelength observational constraints. We also compute the spectrum and duration of the synchrotron afterglow created by the accelerated electrons, after they escape into the region on the downstream side of the pulsar-wind termination shock. The afterglow is expected to fade over a maximum period of about three weeks after the γ -ray flare.

  6. Constraining the geometry of PSR J0855-4644: A nearby pulsar wind nebula with double torus/jet morphology

    Science.gov (United States)

    Maitra, C.; Acero, F.; Venter, C.

    2017-01-01

    Aims: PSR J0855-4644 is a fast-spinning, energetic pulsar discovered at radio wavelengths near the south-eastern rim of the supernova remnant RX J0852.0-4622. A follow-up XMM-Newton observation revealed the X-ray counterpart of the pulsar and a slightly asymmetric pulsar wind nebula, which suggests possible jet structures. Lying at a distance d ≤ 900 pc, PSR J0855-4644 is a pulsar with one of the highest Ė/d2 from which no GeV γ-ray pulsations have been detected. With a dedicated Chandra observation we aim to further resolve the possible jet structures of the nebula and study the pulsar geometry to understand the lack of γ-ray pulsations. Methods: We performed detailed spatial modelling to constrain the geometry of the pulsar wind nebula and in particular the pulsar line of sight (observer angle) ζPSR, which is defined as the angle between the direction of the observer and the pulsar spin axis. We also performed geometric radio and γ-ray light-curve modelling using a hollow-cone radio beam model together with two-pole caustic and outer gap models to further constrain ζPSR and the magnetic obliquity α defined as the angle between the magnetic and spin axes of the pulsar. Results: The Chandra observation reveals that the compact XMM source, thought to be the X-ray pulsar, can be further resolved into a point source surrounded by an elongated axisymmetric nebula with a longitudinal extent of 10''. The pulsar flux represents only 1% of the XMM compact source, and its spectrum is well described by a blackbody of temperature kT = 0.2 keV, while the surrounding nebula has a much harder spectrum (Γ = 1.1 for a power-law model). Assuming the origin of the extended emission is a double torus yields ζPSR = 32.5° ± 4.3°. The detection of thermal X-rays from the pulsar may point to a low value of | ζ-α | if this emission originates from a heated polar cap. Independent constraints from geometric light-curve modelling yield α ≲ 55° and ζ ≲ 55°, and 10°

  7. EXTENDED X-RAY EMISSION IN THE VICINITY OF THE MICROQUASAR LS 5039: PULSAR WIND NEBULA?

    International Nuclear Information System (INIS)

    Durant, Martin; Kargaltsev, Oleg; Pavlov, George G.; Chang, Chulhoon; Garmire, Gordon P.

    2011-01-01

    LS 5039 is a high-mass binary with a period of 4 days, containing a compact object and an O-star, one of the few high-mass binaries detected in γ-rays. Our Chandra Advanced CCD Imaging Spectrometer observation of LS 5039 provided a high-significance (∼10σ) detection of extended emission clearly visible for up to 1' from the point source. The spectrum of this emission can be described by an absorbed power-law model with photon index Γ = 1.9 ± 0.3, somewhat softer than the point-source spectrum Γ = 1.44 ± 0.07, with the same absorption, N H = (6.4 ± 0.6) x 10 21 cm -2 . The observed 0.5-8 keV flux of the extended emission is ≅ 8.8 x 10 -14 erg s -1 cm -2 or 5% of the point-source flux; the latter is a factor of ∼2 lower than the lowest flux detected so far. Fainter extended emission with comparable flux and a softer (Γ ∼ 3) spectrum is detected at even greater radii (up to 2'). Two possible interpretations of the extended emission are a dust scattering halo and a synchrotron nebula powered by energetic particles escaping the binary. We discuss both of these scenarios and favor the nebula interpretation, although some dust contribution is possible. We have also found transient sources located within a narrow stripe south of LS 5039. We discuss the likelihood of these sources to be related to LS 5039.

  8. Ant nebula

    Science.gov (United States)

    1999-01-01

    A new Hubble Space Telescope image of a celestial object called the Ant Nebula may shed new light on the future demise of our Sun. The image is available at http://www.jpl.nasa.gov/pictures/wfpc . The nebula, imaged on July 20, 1997, and June 30, 1998, by Hubble's Wide Field and Planetary Camera 2, was observed by Drs. Raghvendra Sahai and John Trauger of NASA's Jet Propulsion Laboratory, Pasadena, Calif.; Bruce Balick of the University of Washington in Seattle; and Vincent Icke of Leiden University in the Netherlands. JPL designed and built the camera. The Ant Nebula, whose technical name is Mz3, resembles the head and thorax of an ant when observed with ground-based telescopes. The new Hubble image, with 10 times the resolution revealing 100 times more detail, shows the 'ant's' body as a pair of fiery lobes protruding from a dying, Sun- like star. The Ant Nebula is located between 3,000 and 6,000 light years from Earth in the southern constellation Norma. The image challenges old ideas about what happens to dying stars. This observation, along with other pictures of various remnants of dying stars called planetary nebulae, shows that our Sun's fate will probably be much more interesting, complex and dramatic than astronomers previously believed. Although the ejection of gas from the dying star in the Ant Nebula is violent, it does not show the chaos one might expect from an ordinary explosion, but instead shows symmetrical patterns. One possibility is that the central star has a closely orbiting companion whose gravitational tidal forces shape the outflowing gas. A second possibility is that as the dying star spins, its strong magnetic fields are wound up into complex shapes like spaghetti in an eggbeater. Electrically charged winds, much like those in our Sun's solar wind but millions of times denser and moving at speeds up to 1,000 kilometers per second (more than 600 miles per second) from the star, follow the twisted field lines on their way out into space

  9. Wolf-Rayet nebulae

    International Nuclear Information System (INIS)

    Chu, You-Hua

    2016-01-01

    Since the discovery of nebulae around Wolf-Rayet (WR) stars in the 1960s, it has been established that WR stars are massive stars at advanced evolutionary stages and that their surrounding nebulae result from the interactions between the stellar mass loss and the ambient interstellar medium. Surveys of WR nebulae have been made in the Galaxy, Magellanic Clouds, and other nearby galaxies in the Local Group. Some WR nebulae exhibit He II λ4686 line emission, indicating stellar effective temperatures of 90 — 100 x 10 3 K. The shocked fast stellar winds from WR nebulae have been detected in soft X-rays, but theoretical models have not been able to reproduce the observed X-ray spectral properties. Elemental abundances of WR nebulae consisting of synthesized stellar material can constrain stellar evolution models, but high-dispersion spectra are needed to kinematically separate the expanding shell of a WR nebula and the background interstellar medium for accurate abundance analyses. (paper)

  10. Planetary nebulae

    International Nuclear Information System (INIS)

    Amnuehl', P.R.

    1985-01-01

    The history of planetary nebulae discovery and their origin and evolution studies is discussed in a popular way. The problem of planetary nebulae central star is considered. The connection between the white-draft star and the planetary nebulae formulation is shown. The experimental data available acknowledge the hypothesis of red giant - planetary nebula nucleus - white-draft star transition process. Masses of planetary nebulae white-draft stars and central stars are distributed practically similarly: the medium mass is close to 0.6Msub(Sun) (Msub(Sun) - is the mass of the Sun)

  11. Gaseous nebulae

    International Nuclear Information System (INIS)

    Williams, R.E.

    1976-01-01

    Gaseous nebulae are large, tenuous clouds of ionized gas that are associated with hot stars and that emit visible light because of the energy that they receive from the ultraviolet radiation of the stars. Examples include H II regions, planetary nebulae, and nova/supernova remnants. The emphasis is on the physical processes that occur in gaseous nebulae as opposed to a study of the objects themselves. The introduction discusses thermodynamic vs. steady-state equilibrium and excitation conditions in a dilute radiation field. Subsequent sections take up important atomic processes in gaseous nebulae (particle--particle collision rates, radiative interaction rates, cross sections), the ionization equilibrium (sizes of H II regions, ionization of the heavier elements), kinetic temperature and energy balance (heating of the electrons, cooling of the electrons), and the spectra of gaseous nebulae (line fluxes in nebulae). 7 figures, 5 tables

  12. From red giants to planetary nebulae

    International Nuclear Information System (INIS)

    Kwok, S.

    1982-01-01

    The transition from red giants to planetary nebulae is studied by comparing the spectral characteristics of red giant envelopes and planetary nebulae. Observational and theoretical evidence both suggest that remnants of red giant envelopes may still be present in planetary nebula systems and should have significant effects on their formation. The dynamical effects of the interaction of stellar winds from central stars of planetary nebulae with the remnant red giant envelopes are evaluated and the mechanism found to be capable of producing the observed masses and momenta of planetary nebulae. The observed mass-radii relation of planetary nebulae may also be best explained by the interacting winds model. The possibility that red giant mass loss, and therefore the production of planetary nebulae, is different between Population I and II systems is also discussed

  13. Model for the broadband Crab nebula spectrum with injection of a log-parabola electron distribution at the wind termination shock

    Science.gov (United States)

    Fraschetti, F.; Pohl, M.

    2017-10-01

    We develop a model of the steady-state spectrum of the Crab nebula encompassing both the radio/soft X-ray and the GeV/multi-TeV observations. By solving the transport equation for TeV electrons injected at the wind termination shock as a log-parabola momentum distribution and evolved via energy losses, we determine analytically the resulting photon differential energy spectrum. We find an impressive agreement with the observations in the synchrotron region. The predicted synchrotron self-Compton accommodates the previously unsolved origin of the broad 200 GeV peak that matches the Fermi/LAT data beyond 1 GeV with the MAGIC data. A natural interpretation of the deviation from power-law of the photon spectrum customarily fit with empirical broken power-laws is provided. This model can be applied to the radio-to- multi-TeV spectra of a variety of astrophysical outflows, including pulsar wind nebulae and supernova remnants. We also show that MeV-range energetic particle distribution at interplanetary shocks typically fit with broken-power laws or Band function can be accurately reproduced by log-parabolas.

  14. Particle acceleration inside PWN: Simulation and observational constraints with INTEGRAL

    International Nuclear Information System (INIS)

    Forot, M.

    2006-12-01

    The context of this thesis is to gain new constraints on the different particle accelerators that occur in the complex environment of neutron stars: in the pulsar magnetosphere, in the striped wind or wave outside the light cylinder, in the jets and equatorial wind, and at the wind terminal shock. An important tool to constrain both the magnetic field and primary particle energies is to image the synchrotron ageing of the population, but it requires a careful modelling of the magnetic field evolution in the wind flow. The current models and understanding of these different accelerators, the acceleration processes and open questions have been reviewed in the first part of the thesis. The instrumental part of this work involves the IBIS imager, on board the INTEGRAL satellite, that provides images with 12' resolution from 17 keV to MeV where the SPI spectrometer takes over up, to 10 MeV, but with a reduced 2 degrees resolution. A new method for using the double-layer IBIS imager as a Compton telescope with coded mask aperture. Its performance has been measured. The Compton scattering information and the achieved sensitivity also open a new window for polarimetry in gamma rays. A method has been developed to extract the linear polarization properties and to check the instrument response for fake polarimetric signals in the various backgrounds and projection effects

  15. Observing nebulae

    CERN Document Server

    Griffiths, Martin

    2016-01-01

    This book enables anyone with suitable instruments to undertake an examination of nebulae and see or photograph them in detail. Nebulae, ethereal clouds of gas and dust, are among the most beautiful objects to view in the night sky. These star-forming regions are a common target for observers and photographers. Griffiths describes many of the brightest and best nebulae and includes some challenges for the more experienced observer. Readers learn the many interesting astrophysical properties of these clouds, which are an important subject of study in astronomy and astrobiology. Non-mathematical in approach, the text is easily accessible to anyone with an interest in the subject. A special feature is the inclusion of an observational guide to 70 objects personally observed or imaged by the author. The guide also includes photographs of each object for ease of identification along with their celestial coordinates, magnitudes and other pertinent information. Observing Nebulae provides a ready resource to allow an...

  16. X-Ray Analysis of the Proper Motion and Pulsar Wind Nebula for PSR J1741-2054

    Science.gov (United States)

    Auchettl, Katie; Slane, Patrick; Romani, Roger W.; Posselt, Bettina; Pavlov, George G.; Kargaltsev, Oleg; Ng, C-Y.; Temim, Tea; Weisskopf, Martin C.; Bykov, Andrei; hide

    2015-01-01

    We obtained six observations of PSR J1741-2054 using the Chandra ACIS-S detector totaling approx.300 ks. By registering this new epoch of observations to an archival observation taken 3.2 yr earlier using X-ray point sources in the field of view, we have measured the pulsar proper motion at micron = 109 +/- 10 mas yr(exp. -1) in a direction consistent with the symmetry axis of the observed H(alpha) nebula. We investigated the inferred past trajectory of the pulsar but find no compelling association with OB associations in which the progenitor may have originated. We confirm previous measurements of the pulsar spectrum as an absorbed power law with photon index gamma = 2.68 +/- 0.04, plus a blackbody with an emission radius of (4.5(+3.2/-2.5))d(0.38) km, for a DM-estimated distance of 0.38d(0.38) kpc and a temperature of 61.7 +/- 3.0 eV. Emission from the compact nebula is well described by an absorbed power law model with a photon index of gamma = 1.67 +/- 0.06, while the diffuse emission seen as a trail extending northeast of the pulsar shows no evidence of synchrotron cooling. We also applied image deconvolution techniques to search for small-scale structures in the immediate vicinity of the pulsar, but found no conclusive evidence for such structures.

  17. Very high energy gamma-ray astronomy with H.E.S.S. Development of a multivariate analysis and application to study of pulsar wind nebulae

    International Nuclear Information System (INIS)

    Dubois, Florent

    2009-01-01

    H.E.S.S. (High Energy Stereoscopic System) is one of the leading systems of four Imaging Atmospheric Cherenkov Telescopes that investigates very high energy (VHE) cosmic gamma-rays in the 100 GeV to 100 TeV energy range. H.E.S.S. is located in Namibia, near the Gamsberg mountain and operational since December 2003. The H.E.S.S. experiment is mainly aimed to the observation of the southern sky including the galactic plan and the numerous astrophysics sources therein. Three analysis methods have been developed using various properties of the electromagnetic showers generated by the interaction of primary cosmic gamma-rays within the Earth atmosphere. The first goal of this thesis was to combine the information from these methods for the selection and the energy and direction reconstruction of gamma-ray events. The new analysis called X eff improves significantly the quality of the selection and the precision of the reconstruction. This analysis has been afterwards applied to the study of pulsar wind nebulae like Vela X, G0.9+0.1 and MSH 15-52. New results were found concerning the source extension (Vela X) or spectral analysis (G0.9+0.1 and MSH 15-52) at TeV energies, thanks to additional data and to the improved efficiency of the new method. In 2010, a new phase will begin with the achievement of a fifth telescope dedicated to gamma-ray observation from tens GeV. The calibration processes of the photomultipliers equipping the camera of the new telescope, as well as the results of the tests, are also described in this thesis. (author)

  18. X-ray Emission from the Guitar Nebula

    OpenAIRE

    Romani, Roger W.; Cordes, James M.; Yadigaroglu, I. -A.

    1997-01-01

    We have detected weak soft X-ray emission from the Pulsar Wind Nebula trailing the high velocity star PSR 2224+65 (the `Guitar Nebula'). This X-ray flux gives evidence of \\gamma~10^7 eV particles in the pulsar wind and constrains the properties of the post-shock flow. The X-ray emission is most easily understood if the shocked pulsar wind is partly confined in the nebula and if magnetic fields in this zone can grow to near equipartition values.

  19. X-Ray Emission from the Guitar Nebula

    Science.gov (United States)

    Romani, Roger W.; Cordes, James M.; Yadigaroglu, I.-A.

    1997-01-01

    We have detected weak soft X-ray emission from the pulsar wind nebula trailing the high-velocity star PSR 2224+65 (the "Guitar Nebula"). This X-ray flux gives evidence of gamma approximately 10(exp 7) eV particles in the pulsar wind and constrains the properties of the postshock flow. The X-ray emission is most easily understood if the shocked pulsar wind is partly confined in the nebula and if magnetic fields in this zone can grow to near-equipartition values.

  20. N44C nebula

    Science.gov (United States)

    1999-01-01

    Resembling the hair in Botticelli's famous portrait of the birth of Venus, an image from NASA's Hubble Space Telescope has captured softly glowing filaments streaming from hot young stars in a nearby nebula. The image, presented by the Hubble Heritage Project, was taken in 1996 by Hubble's Wide Field and Planetary Camera 2, designed and built by NASA's Jet Propulsion Laboratory, Pasadena, Calif. The image is available online at http://heritage.stsci.edu , http://oposite.stsci.edu/pubinfo/pr/2002/12 orhttp://www.jpl.nasa.gov/images/wfpc . On the top right of the image is a source of its artistic likeness, a network of nebulous filaments surrounding the Wolf-Rayet star. This type of rare star is characterized by an exceptionally vigorous 'wind' of charged particles. The shock of the wind colliding with the surrounding gas causes the gas to glow. The Wolf-Rayet star is part of N44C, a nebula of glowing hydrogen gas surrounding young stars in the Large Magellanic Cloud. Visible from the Southern Hemisphere, the Large Magellanic Cloud is a small companion galaxy to the Milky Way. What makes N44C peculiar is the temperature of the star that illuminates it. The most massive stars -- those that are 10 to 50 times more massive than the Sun -- have maximum temperatures of 30,000 to 50,000 degrees Celsius (54,000 to 90,000 degrees Fahrenheit). The temperature of this star is about 75,000 degrees Celsius (135,000 degrees Fahrenheit). This unusually high temperature may be due to a neutron star or black hole that occasionally produces X-rays but is now inactive. N44C is part of a larger complex that includes young, hot, massive stars, nebulae, and a 'superbubble' blown out by multiple supernova explosions. Part of the superbubble is seen in red at the very bottom left of the Hubble image. The Space Telescope Science Institute is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract with the Goddard Space Flight Center, Greenbelt

  1. The Crab Nebula

    International Nuclear Information System (INIS)

    Mitton, S.

    1979-01-01

    The subject is covered in chapters, as follows: A.D.1054, a star explodes (historical account of observations of the supernova of which the Crab Nebula is the remnant); the telescope takes over (discovery and subsequent observation of the Crab Nebula); the message of the fiery remnant (detailed structure and its interpretation); the invisible nebula (electromagnetic radiation from the Crab Nebula and its interpretation); a beacon in the night (the discovery of pulsars, with special reference to the pulsar in the Crab Nebula; observation and theory); the strange world of a neutron star (theory, prediction and observation); magnetic fields and energy flow from the pulsar (stellar magnetosphere; luminosity of the nebula); how does the pulsar pulse (observation; models to explain beaming); outburst and aftermath (types of supernovae and their evolution; nucleosynthesis); supernovae and their remnants (account of observations since early records); the Crab Nebula and modern astronomy. (U.K.)

  2. Dust in planetary nebulae

    International Nuclear Information System (INIS)

    Kwok, S.

    1980-01-01

    A two-component dust model is suggested to explain the infrared emission from planetary nebulae. A cold dust component located in the extensive remnant of the red-giant envelope exterior to the visible nebula is responsible for the far-infrared emission. A ward dust component, which is condensed after the formation of the planetary nebula and confined within the ionized gas shell, emits most of the near- and mid-infrared radiation. The observations of NGC 7027 are shown to be consisten with such a model. The correlation of silicate emission in several planetary nebulae with an approximately +1 spectral index at low radio frequencies suggests that both the silicate and radio emissions originate from the remnant of the circumstellar envelope of th precursor star and are observable only while the planetary nebula is young. It is argued that oxygen-rich stars as well as carbon-rich stars can be progenitors of planetary nebulae

  3. HM Sagittae as a young planetary nebula

    International Nuclear Information System (INIS)

    Kwok, S.; Purton, C.R.

    1979-01-01

    HM Sagittae is suggested to be a very young planetary nebula recently transformed from a red-giant star through continuous mass loss. The observational data for HM Sge have been analyzed in terms of the interacting stellar wind model of planetary nebula formation. The model is in accord with virtually all the spectral data available--radio, optical, and infrared--as well as with the remarkable brightening of HM Sge observed in 1975. In particular, all three gaseous components predicted by the model are observed in the optical spectrum. The density in the newly formed shell is found to be at least 5 x 10 7 cm -3 , a value considerably higher than that found by the conventional analysis, which assumes a single-component homogeneous nebula. The radio spectrum is dominated by free-free emission from the remnant red-giant wind. The infrared spectrum suggests the presence of two dust components, one consisting of silicate grains left over from the red-giant stage and the other of grains newly formed after the 1975 brightening. The low observed shell mass is consistent with the interacting stellar wind model but is not consistent with the conventional sudden-ejection model of planetary nebula formation

  4. A SOFIA FORCAST Grism Study of the Mineralogy of Dust in the Winds of Proto-planetary Nebulae: RV Tauri Stars and SRd Variables

    International Nuclear Information System (INIS)

    Arneson, R. A.; Gehrz, R. D.; Woodward, C. E.; Shenoy, D.; Helton, L. A.; Evans, A.; Keller, L. D.; Hinkle, K. H.; Jura, M.; Lebzelter, T.; Lisse, C. M.; Rushton, M. T.; Mizrachi, J.

    2017-01-01

    We present a SOFIA FORCAST grism spectroscopic survey to examine the mineralogy of the circumstellar dust in a sample of post-asymptotic giant branch (post-AGB) yellow supergiants that are believed to be the precursors of planetary nebulae. Our mineralogical model of each star indicates the presence of both carbon-rich and oxygen-rich dust species—contrary to simple dredge-up models—with a majority of the dust in the form of amorphous carbon and graphite. The oxygen-rich dust is primarily in the form of amorphous silicates. The spectra do not exhibit any prominent crystalline silicate emission features. For most of the systems, our analysis suggests that the grains are relatively large and have undergone significant processing, supporting the hypothesis that the dust is confined to a Keplerian disk and that we are viewing the heavily processed, central regions of the disk from a nearly face-on orientation. These results help to determine the physical properties of the post-AGB circumstellar environment and to constrain models of post-AGB mass loss and planetary nebula formation.

  5. A SOFIA FORCAST Grism Study of the Mineralogy of Dust in the Winds of Proto-planetary Nebulae: RV Tauri Stars and SRd Variables

    Energy Technology Data Exchange (ETDEWEB)

    Arneson, R. A.; Gehrz, R. D.; Woodward, C. E.; Shenoy, D. [Minnesota Institute for Astrophysics, School of Physics and Astronomy, University of Minnesota, 106 Pleasant Street S.E., Minneapolis, MN 55455 (United States); Helton, L. A. [USRA-SOFIA Science Center, NASA Ames Research Center, Moffett Field, CA 94035 (United States); Evans, A. [Astrophysics Group, Lennard Jones Laboratory, Keele University, Keele, Staffordshire ST5 5BG (United Kingdom); Keller, L. D. [Department of Physics and Astronomy, 264 Center for Natural Sciences, Ithaca College, Ithaca, NY 14850 (United States); Hinkle, K. H. [National Optical Astronomy Observatory, P.O. Box 26732, Tucson, AZ 85726 (United States); Jura, M. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States); Lebzelter, T. [Institute for Astrophysics (IfA), University of Vienna, Türkenschanzstrasse 17, A-1180 Vienna (Austria); Lisse, C. M. [Solar System Exploration Branch, Space Department, Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723 (United States); Rushton, M. T. [Astronomical Institute of the Romanian Academy, Str. Cutitul de Argint 5, Bucharest, 040557 (Romania); Mizrachi, J., E-mail: arneson@astro.umn.edu [Biomedical Engineering Department, Stony Brook University, Stony Brook, NY 11794 (United States)

    2017-07-01

    We present a SOFIA FORCAST grism spectroscopic survey to examine the mineralogy of the circumstellar dust in a sample of post-asymptotic giant branch (post-AGB) yellow supergiants that are believed to be the precursors of planetary nebulae. Our mineralogical model of each star indicates the presence of both carbon-rich and oxygen-rich dust species—contrary to simple dredge-up models—with a majority of the dust in the form of amorphous carbon and graphite. The oxygen-rich dust is primarily in the form of amorphous silicates. The spectra do not exhibit any prominent crystalline silicate emission features. For most of the systems, our analysis suggests that the grains are relatively large and have undergone significant processing, supporting the hypothesis that the dust is confined to a Keplerian disk and that we are viewing the heavily processed, central regions of the disk from a nearly face-on orientation. These results help to determine the physical properties of the post-AGB circumstellar environment and to constrain models of post-AGB mass loss and planetary nebula formation.

  6. Dust in planetary nebulae

    International Nuclear Information System (INIS)

    Mathis, J.S.

    1978-01-01

    The author's review concentrates on theoretical aspects of dust in planetary nebulae (PN). He considers the questions: how much dust is there is PN; what is its composition; what effects does it have on the ionization structure, on the dynamics of the nebula. (Auth.)

  7. Nebulae and interstellar matter

    International Nuclear Information System (INIS)

    1987-01-01

    The South African Astronomical Observatory (SAAO) has investigated the IRAS source 1912+172. This source appears to be a young planetary nebula with a binary central star. During 1986 SAAO has also studied the following: hydrogen deficient planetary nebulae; high speed flows in HII regions, and the wavelength dependence of interstellar polarization. 2 figs

  8. Proto-planetary nebulae

    International Nuclear Information System (INIS)

    Zuckerman, B.

    1978-01-01

    A 'proto-planetary nebula' or a 'planetary nebula progenitor' is the term used to describe those objects that are losing mass at a rate >approximately 10 -5 Msolar masses/year (i.e. comparable to mass loss rates in planetary nebulae with ionized masses >approximately 0.2 Msolar masses) and which, it is believed, will become planetary nebulae themselves within 5 years. It is shown that most proto-planetary nebulae appear as very red objects although a few have been 'caught' near the middle of the Hertzsprung-Russell diagram. The precursors of these proto-planetaries are the general red giant population, more specifically probably Mira and semi-regular variables. (Auth.)end

  9. Wybrane błędy językowe na przykładzie analizy funkcjonowania Poradni Językowej PWN

    Directory of Open Access Journals (Sweden)

    Katarzyna Ostrowska

    2016-03-01

    Full Text Available The article presents the theme of linguistic counseling and online guidance on the basis of Poradnia Językowa PWN. The primary aim of this essay is presenting problematic issues for contemporary Polish (wrong meanings of words: not in the least and at least, technique and technology, reliable, showing expert’s opinions and dictionary analysis (on the basis of Słownik języka polskiego edited by Witold Doroszewski and Wielki słownik poprawnej polszczyzny PWN edited by Andrzej Markowski.

  10. Charge transfer in astrophysical nebulae

    International Nuclear Information System (INIS)

    Shields, G.A.

    1990-01-01

    Charge transfer has become a standard ingredient in models of ionized nebulae, supernovae remnants and active galactic nuclei. Charge transfer rate coefficients and the physics of ionized nebulae are considered. Charge transfer is applied to the ionization structure and line emission of ionized nebulae. Photoionized nebulae observations are used to test theoretical predictions of charge transfer rates. (author)

  11. Multiband observations of the Crab Nebula

    International Nuclear Information System (INIS)

    Krassilchtchikov, A M; Bykov, A M; Castelletti, G M; Dubner, G M; Kargaltsev, O Yu; Pavlov, G G

    2017-01-01

    Results of simultaneous imaging of the Crab Nebula in the radio (JVLA), optical ( HST ), and X-ray ( Chandra ) bands are presented. The images show a variety of small-scale structures, including wisps mainly located to the north-west of the pulsar and knots forming a ring-like structure associated with the termination shock of the pulsar wind. The locations of the structures in different bands do not coincide with each other. (paper)

  12. Three-Dimensional Adaptive Mesh Refinement Simulations of Point-Symmetric Nebulae

    NARCIS (Netherlands)

    Rijkhorst, E.-J.; Icke, V.; Mellema, G.; Meixner, M.; Kastner, J.H.; Balick, B.; Soker, N.

    2004-01-01

    Previous analytical and numerical work shows that the generalized interacting stellar winds model can explain the observed bipolar shapes of planetary nebulae very well. However, many circumstellar nebulae have a multipolar or point-symmetric shape. With two-dimensional calculations, Icke showed

  13. Cool gaseous nebulae

    CERN Document Server

    Shaver, P A; Pottasch, S R

    1979-01-01

    The electron temperatures of diffuse gaseous nebulae have long been thought to be close to 10/sup 4/K. Much lower temperatures were derived from some of the early radio continuum and recombination line work, but these were generally considered to be wrong for a variety of reasons. While there is little doubt that the bright nebulae do indeed have temperatures of approximately 8000-9000K, there are strong indications that some nebulae of lower densities have much lower temperatures, nebulae were made in order to determine electron temperatures in the absence of such effects as collisional de-excitation, stimulated emission, and pressure broadening. Several of these nebulae have been found to have temperatures below 5000K and for two of them which are discussed (RCW94 and G339.1-0.2) absolute upper limits of approximately 4700 K are imposed by the line widths alone. (11 refs).

  14. New and misclassified planetary nebulae

    International Nuclear Information System (INIS)

    Kohoutek, L.

    1978-01-01

    Since the 'Catalogue of Galactic Planetary Nebulae' 226 new objects have been classified as planetary nebulae. They are summarized in the form of designations, names, coordinates and the references to the discovery. Further 9 new objects have been added and called 'proto-planetary nebulae', but their status is still uncertain. Only 34 objects have been included in the present list of misclassified planetary nebulae although the number of doubtful cases is much larger. (Auth.)

  15. The filamentary nebulae S 188

    International Nuclear Information System (INIS)

    Rosado, M.; Kwitter, K.B.

    1982-01-01

    The crescent shaped nebula S 188 is identified as a planetary nebula (PN) of Peimbert's Type I on the basis of its observed nebula spectrum. New FP interferometric work allows to determine the systemic motion of this nebula. The derived kinematical distance exceeds Cudworth's distance estimate supporting the idea that Peimbert's Type I PNs have larger ejected masses than typical PNs. A discussion about the origin of its non-spherical shape is also given. (author)

  16. Can planetary nebulae rotate

    International Nuclear Information System (INIS)

    Grinin, V.P.

    1982-01-01

    It is shown that the inclination of spectral lines observed in a number of planetary nebulae when the spectrograph slit is placed along the major axis, which is presently ascribed to nonuniform expansion of the shells, actually may be due to rotation of the nebulae about their minor axes, as Campbell and Moore have suggested in their reports. It is assumed that the rotation of the central star (or, if the core is a binary system, circular motions of gas along quasi-Keplerian orbits) serves as the source of the original rotation of a protoplanetary nebula. The mechanism providing for strengthening of the original rotation in the process of expansion of the shell is the tangential pressure of L/sub α/ radiation due to the anisotropic properties of the medium and radiation field. The dynamic effect produced by them is evidently greatest in the epoch when the optical depth of the nebula in the L/sub c/ continuum becomes on the order of unity in the course of its expansion

  17. Evidence for an Opportunistic and Endophytic Lifestyle of the Bursaphelenchus xylophilus-Associated Bacteria Serratia marcescens PWN146 Isolated from Wilting Pinus pinaster.

    Science.gov (United States)

    Vicente, Cláudia S L; Nascimento, Francisco X; Barbosa, Pedro; Ke, Huei-Mien; Tsai, Isheng J; Hirao, Tomonori; Cock, Peter J A; Kikuchi, Taisei; Hasegawa, Koichi; Mota, Manuel

    2016-10-01

    Pine wilt disease (PWD) results from the interaction of three elements: the pathogenic nematode, Bursaphelenchus xylophilus; the insect-vector, Monochamus sp.; and the host tree, mostly Pinus species. Bacteria isolated from B. xylophilus may be a fourth element in this complex disease. However, the precise role of bacteria in this interaction is unclear as both plant-beneficial and as plant-pathogenic bacteria may be associated with PWD. Using whole genome sequencing and phenotypic characterization, we were able to investigate in more detail the genetic repertoire of Serratia marcescens PWN146, a bacterium associated with B. xylophilus. We show clear evidence that S. marcescens PWN146 is able to withstand and colonize the plant environment, without having any deleterious effects towards a susceptible host (Pinus thunbergii), B. xylophilus nor to the nematode model C. elegans. This bacterium is able to tolerate growth in presence of xenobiotic/organic compounds, and use phenylacetic acid as carbon source. Furthermore, we present a detailed list of S. marcescens PWN146 potentials to interfere with plant metabolism via hormonal pathways and/or nutritional acquisition, and to be competitive against other bacteria and/or fungi in terms of resource acquisition or production of antimicrobial compounds. Further investigation is required to understand the role of bacteria in PWD. We have now reinforced the theory that B. xylophilus-associated bacteria may have a plant origin.

  18. Planetary nebulae with UVIT: Far ultra-violet halo around the Bow Tie nebula (NGC 40)

    Science.gov (United States)

    Kameswara Rao, N.; Sutaria, F.; Murthy, J.; Krishna, S.; Mohan, R.; Ray, A.

    2018-01-01

    Context. NGC 40 is a planetary nebula with diffuse X-ray emission, suggesting an interaction of the high-speed wind from WC8 central star (CS) with the nebula. It shows strong C IV 1550 Å emission that cannot be explained by thermal processes alone. We present here the first map of this nebula in C IV emission using broad band filters on the Ultra-Violet Imaging Telescope (UVIT). Aim. We aim to map the hot C IV-emitting gas and its correspondence with soft X-ray (0.3-8 keV) emitting regions in order to study the shock interaction between the nebula and the ISM. We also aim to illustrate the potential of UVIT for nebular studies. Methods: We carry out a morphological study of images of the nebula obtained at an angular resolution of about 1.3″ in four UVIT filter bands that include C IV 1550 Å and [C II] 2326 Å lines as well as UV continuum. We also make comparisons with X-ray, optical, and IR images from the literature. Results: The [C II] 2326 Å images show the core of the nebula with two lobes on either side of CS similar to [N II]. The C IV emission in the core shows similar morphology and extent to that of diffuse X-ray emission concentrated in nebular condensations. A surprising UVIT discovery is the presence of a large faint far UV (FUV) halo in an FUV filter with λeff of 1608 Å. The UV halo is not present in any other UV filter. The FUV halo is most likely due to UV fluorescence emission from the Lyman bands of H2 molecules. Unlike the optical and IR halo, the FUV halo trails predominantly towards the south-east side of the nebular core, opposite to the CS's proper motion direction. Conclusions: Morphological similarity of C IV 1550 Å and X-ray emission in the core suggests that it results mostly from the interaction of strong CS wind with the nebula. The FUV halo in NGC 40 highlights the extensive existence of H2 molecules in the regions even beyond the optical and IR halos. Thus UV studies are important to estimate the amount of H2, which is

  19. Galactic ring nebulae associated with Wolf-Rayet stars. VI - NGC 3199, anon /MR 26/, RCW 58, and RCW 104

    Science.gov (United States)

    Chu, Y.-H.

    1982-03-01

    Narrow-band interference filter photographs and high resolution Fabry-Perot spectra have been obtained for four galactic ring nebulae associated with Wolf-Rayet stars - NGC 3199, anon (MR 26), RCW 58, and RCW 104. All of these four nebulae show interaction between the stellar wind and the ambient interstellar medium. NGC 3199, anon (MR 26), and RCW 104 are classified as W-type nebulae. RCW 58, having a prominent ring of stellar ejecta, is classified as an E-type nebula. For most W-type nebulae, the kinetic energy in the shell is only about 1 percent of the total mechanical energy input from the stellar wind, while the ratio of the shell momentum to the total momentum injected by the stellar wind is about 0.5 and apparently increases with the nebular age.

  20. The Crab Nebula flaring activity

    Directory of Open Access Journals (Sweden)

    G. Montani

    2014-12-01

    Full Text Available The discovery made by AGILE and Fermi of a short time scale flaring activity in the gamma-ray energy emission of the Crab Nebula is a puzzling and unexpected feature, challenging particle acceleration theory. In the present work we propose the shock-induced magnetic reconnection as a viable mechanism to explain the Crab flares. We postulate that the emitting region is located at ∼1015 cm from the central pulsar, well inside the termination shock, which is exactly the emitting region size as estimated by the overall duration of the phenomenon ∼1 day. We find that this location corresponds to the radial distance at which the shock-induced magnetic reconnection process is able to accelerate the electrons up to a Lorentz factor ∼109, as required by the spectral fit of the observed Crab flare spectrum. The main merit of the present analysis is to highlight the relation between the observational constraints to the flare emission and the radius at which the reconnection can trigger the required Lorentz factor. We also discuss different scenarios that can induce the reconnection. We conclude that the existence of a plasma instability affecting the wind itself as the Weibel instability is the privileged scenario in our framework.

  1. The distribution of shocked gas in the bipolar nebulae CRL 2688 and CRL 618

    Science.gov (United States)

    Gatley, I.; Beckwith, S.; Beck, S. C.

    1984-01-01

    Maps of the H2 emission from the bipolar nebulae CRL 2688 and CRL 618 are presented, along with a map of the 2.1-micron continuum emission from CRL 2688. The H2 emission is seen in the direction of the lobes of each nebula and not in between the lobes. From the distribution of the H2 and continuum emission, it is argued that the H2 is excited in shock waves produced in the lobes of the visible nebulae by fast winds from the central stars which overtake slower moving material lost in a slow wind during the red-giant phase of each object. These shocks may be similar to those seen in Herbig-Haro objects. The mass-loss rates for the fast winds in each object are estimated from the H2 data, and a brief discussion is given of the origin of these winds.

  2. Infrared nebula in the Chamaeleon T association

    International Nuclear Information System (INIS)

    Schwartz, R.D.; Henize, K.G.

    1983-01-01

    Data are tabulated for seven nebulae in the Chamaeleon T association. Three, which are large and clearly related to illuminating stars, appear to be typical reflection nebulae. Three are small wisps attached to stars and are probably cometary-type reflection nebulae. The remaining nebula is a triangular wisp having an unusually red spectral energy distribution and showing no illuminating star on visual wavelength photographs. The western tip of this nebula coincides closely with the position of a recently reported infrared source. The nebula is probably one lobe of a bipolar nebula

  3. The origin of magnetic fields in protoplanetary nebulae

    Science.gov (United States)

    Pascoli, Gianni; Leclercq, Josette

    1989-04-01

    The hypothesis that the magnetic fields of protoplanetary nebulae are generated deep in the core of the progenitor, an evolved M-type red giant, is explored. An examination of the transport of magnetic field lines through the convective envelope and of diffusion in the stellar wind/photosphere transition zone reveals values of about 10 G for the subphotospheric magnetic field and of about 2-3 G at the base of the stellar wind. The results are in agreement with the findings of Pascoli (1987) and Pascoli and Macron (1987).

  4. The Toby Jug nebula (IC 2220): a bipolar and biconical nebula

    International Nuclear Information System (INIS)

    Perkins, H.G.; King, D.J.; Scarrott, S.M.

    1981-01-01

    An optical linear polarization map of IC 2220, the nebula surrounding the cool red giant HD 65750, is presented. The nebula appears to be bipolar and biconical in structure. The mass of the nebula is estimated to be 0.01 solar mass and is consistent with the nebula being formed from the current mass loss stage of the central star. (author)

  5. Red giants as precursors of planetary nebulae

    International Nuclear Information System (INIS)

    Renzini, A.

    1981-01-01

    It is generally accepted that Planetary Nebulae are produced by asymptotic giant-branch stars. Therefore, several properties of planetary nebulae are discussed in the framework of the current theory of stellar evolution. (Auth.)

  6. Optical polarization in the Serpens Nebula

    Energy Technology Data Exchange (ETDEWEB)

    King, D.J.; Scarrott, S.M. (Durham Univ. (UK). Dept. of Physics); Taylor, K.N.R. (New South Wales Univ., Kensington (Australia). School of Physics)

    1983-03-01

    Optical polarization maps are presented that indicate that the object is a reflection nebula illuminated by a highly obscured star that is itself seen through magnetically aligned grains. It is proposed that the dust grains overlying the central region of the nebula including the illuminating star are aligned by the local galactic magnetic field that permeates the dark cloud in which the nebula is situated. The formation of the nebula is discussed.

  7. Hydrodynamics of Antisymmetric Nebulae

    NARCIS (Netherlands)

    Icke, V.; Meixner, M.; Kastner, J.H.; Balick, B.; Soker, N.

    2004-01-01

    Balick's `generalized interacting stellar winds' model posits that the bipolar shape of most PNe is due to the interaction between a very fast tenuous outflow, and a disk-shaped denser atmosphere left over from an earlier slow phase of mass loss. Analytical and numerical work shows that this

  8. Models for circumstellar nebulae around red and blue supergiants

    Science.gov (United States)

    Chita, S. M.

    2011-10-01

    In this thesis, we model the circumstellar medium of stars with initial masses of 8, 12, 18 and 20 solar masses, over their entire life from the main sequence until their supernova explosion. During the post-main-sequence stages, stars can evolve through several blue and red supergiant stages depending on their initial mass, composition and rotation rate. The models considered in the second Chapter have long-lasting RSG stages starting after the MS. In this phase, they develop shells of RSG wind material at the location where the free streaming RSG wind is stalled by the thermal pressure of the hot MS bubble, close to the central star. The RSG shells develop violent Rayleigh-Taylor instabilities. Once these start to grow non-linear, the RSG shell becomes highly structured as clumps form, and shell material mixes with material in the hot bubble. Later, the stars evolve to the BSG stage, during which the RSG shells are completely destroyed. These models return to the RSG stage, and build new RSG shells, which are more massive than those formed earlier. RSG shells are essential for our understanding of bipolar emission nebulae around BSGs. In the third Chapter are shown the results of the wind-wind interaction model of single star with 12 solar masses. On a time scale of a few 10000 yr, a BSG hour-glas shaped nebula expands into the sphere defined by the RSG shell. The faster polar parts of the hour glass hit the inner edge of the RSG shell first. The collision creates a pair of hot and dense polar caps. As time passes, the collision zone moves to lower latitudes of the RSG shell and becomes more confined in latitude. At the same time, the interaction of the BSG wind with the equatorial disk defines a second, ring shaped collision zone in the equatorial plane. These structures are reminiscent of the observed nebulae around the blue supergiant Sher 25. In the Chapter 3 we present calculations that predict the properties of the circumstellar medium for rapidly rotating

  9. Kinematics of galactic planetary nebulae

    International Nuclear Information System (INIS)

    Kiosa, M.I.; Khromov, G.S.

    1979-01-01

    The classical method of determining the components of the solar motion relative to the centroid of the system of planetary nebulae with known radial velocities is investigated. It is shown that this method is insensitive to random errors in the radial velocities and that low accuracy in determining the coordinates of the solar apex and motion results from the insufficient number of planetaries with measured radial velocities. The planetary nebulae are found not to satisfy well the law of differential galactic rotation with circular orbits. This is attributed to the elongation of their galactic orbits. A method for obtaining the statistical parallax of planetary nebulae is considered, and the parallax calculated from the tau components of their proper motion is shown to be the most reliable

  10. Contraction of the solar nebula

    International Nuclear Information System (INIS)

    Rawal, J.J.

    1984-01-01

    The concept of Roche limit is applied to the Laplacian theory of the origin of the solar system to study the contraction of a spherical gas cloud (solar nebula). In the process of contraction of the solar nebula, it is assumed that the phenomenon of supersonic turbulent convection is operative and brings about the halt at various stages of contraction. It is found that the radius of the contracting solar nebula follows the Titius-Bode law. The consequences of the relation are also discussed. The aim is to attempt to explain, on the basis of the concept of Roche limit, the distribution of planets in the solar system and try to understand the physics underlying it. (Auth.)

  11. Circumnebular neutral hydrogen in planetary nebulae

    International Nuclear Information System (INIS)

    Taylor, A.R.; Gussie, G.T.; Pottasch, S.R.

    1990-01-01

    Centimeter line observations of six compact planetary nebulae are reported. Circumnebular atomic hydrogen absorption has been observed in NGC 6790, NGC 6886, IC 418, IC 5117, and BD +30 deg 3639, while H I was not observed to a high upper limit in NGC 6741. Hydrogen was also detected in emission from BD +30 deg 3639. The expansion velocities of the circumnebular envelopes are similar to the expansion velocities observed for the ionized nebula. The optical depth of circumnebular H I appears to decrease with increasing linear radius of the ionized nebulae, indicating that these nebulae are ionization bounded and that the amount of atomic hydrogen decreases as young nebulas evolve. 28 refs

  12. Dynamos in asymptotic-giant-branch stars as the origin of magnetic fields shaping planetary nebulae.

    Science.gov (United States)

    Blackman, E G; Frank, A; Markiel, J A; Thomas, J H; Van Horn, H M

    2001-01-25

    Planetary nebulae are thought to be formed when a slow wind from the progenitor giant star is overtaken by a subsequent fast wind generated as the star enters its white dwarf stage. A shock forms near the boundary between the winds, creating the relatively dense shell characteristic of a planetary nebula. A spherically symmetric wind will produce a spherically symmetric shell, yet over half of known planetary nebulae are not spherical; rather, they are elliptical or bipolar in shape. A magnetic field could launch and collimate a bipolar outflow, but the origin of such a field has hitherto been unclear, and some previous work has even suggested that a field could not be generated. Here we show that an asymptotic-giant-branch (AGB) star can indeed generate a strong magnetic field, having as its origin a dynamo at the interface between the rapidly rotating core and the more slowly rotating envelope of the star. The fields are strong enough to shape the bipolar outflows that produce the observed bipolar planetary nebulae. Magnetic braking of the stellar core during this process may also explain the puzzlingly slow rotation of most white dwarf stars.

  13. A Model for the Dynamical and Ionization Structure of Planetary Nebula IC 418

    Directory of Open Access Journals (Sweden)

    J. Ghanbari

    1997-04-01

    Full Text Available   The interacting two winds model and a spherical density distribution function are introduced to study the dynamical and ionization structure of the planetary nebula IC 418. A fast wind with a mechanical luminousity  2/34×1034erg.s-1 of interacts with a super wind with a mass-loss rate of  2×10-5M(°yr-1 and  a velocity of 10 , and produces a dense and luminous medium.   In this model, the expansion velocities of OI and HI lines are predicted to be 11 and 10.5kms-1 , respectively. The calculated dynamical time-scale 1033yr for the nebula is in good agreement with the evolution time of the central star after the interaction of the two winds. Our calculations give a luminosity  0.05M(°of for the central star

  14. Modeling radio circular polarization in the Crab nebula

    Science.gov (United States)

    Bucciantini, N.; Olmi, B.

    2018-03-01

    In this paper, we present, for the first time, simulated maps of the circularly polarized synchrotron emission from the Crab nebula, using multidimensional state of the art models for the magnetic field geometry. Synchrotron emission is the signature of non-thermal emitting particles, typical of many high-energy astrophysical sources, both Galactic and extragalactic ones. Its spectral and polarization properties allow us to infer key information on the particles distribution function and magnetic field geometry. In recent years, our understanding of pulsar wind nebulae has improved substantially thanks to a combination of observations and numerical models. A robust detection or non-detection of circular polarization will enable us to discriminate between an electron-proton plasma and a pair plasma, clarifying once for all the origin of the radio emitting particles, setting strong constraints on the pair production in pulsar magnetosphere, and the role of turbulence in the nebula. Previous attempts at measuring the circular polarization have only provided upper limits, but the lack of accurate estimates, based on reliable models, makes their interpretation ambiguous. We show here that those results are above the expected values, and that current polarimetric techniques are not robust enough for conclusive result, suggesting that improvements in construction and calibration of next generation radio facilities are necessary to achieve the desired sensitivity.

  15. Interferometric observations of planetary nebulae

    International Nuclear Information System (INIS)

    Atherton, P.D.

    1978-01-01

    Studies of the velocity field of planetary nebulae can be used to derive important information concerning their structure and dynamics. A description is given of the design, construction and operation of a servo-controlled Fabry Perot Interferometer, for the Cassegrain focus, which was built to perform these studies. New evidence is presented concerning the structure and internal motions of NGC 3242, NGC 6720 and NGC 7027. A technique is described which uses the velocity field to map variations in the electron temperature and density along the line of sight as well as across the face of the nebula. It is shown how a Fabry Perot may be used in conjunction with multi-element array detectors to facilitate this technique. Finally some extensions to the technique of capacitance micrometry are discussed which allow the operation of a single air-spaced etalon over a wide range of capacitor gaps

  16. The western Veil nebula (Image)

    Science.gov (United States)

    Glenny, M.

    2009-12-01

    The western Veil nebula in Cygnus. 15-part mosaic by Mike Glenny, Gloucestershire, taken over several months mostly in the autumn of 2008. 200mm LX90/f10 autoguided, Meade UHC filter, 0.3xFR/FF, Canon 20Da DSLR. Exposures each typically 10x360 secs at ISO1600, processed in Registax4, PixInsight (for flat field correction) & Photoshop CS.

  17. Electron densities in planetary nebulae

    International Nuclear Information System (INIS)

    Stanghellini, L.; Kaler, J.B.

    1989-01-01

    Electron densities for 146 planetary nebulae have been obtained for analyzing a large sample of forbidden lines by interpolating theoretical curves obtained from solutions of the five-level atoms using up-to-date collision strengths and transition probabilities. Electron temperatures were derived from forbidden N II and/or forbidden O III lines or were estimated from the He II 4686 A line strengths. The forbidden O II densities are generally lower than those from forbidden Cl III by an average factor of 0.65. For data sets in which forbidden O II and forbidden S II were observed in common, the forbidden O II values drop to 0.84 that of the forbidden S II, implying that the outermost parts of the nebulae might have elevated densities. The forbidden Cl II and forbidden Ar IV densities show the best correlation, especially where they have been obtained from common data sets. The data give results within 30 percent of one another, assuming homogeneous nebulae. 106 refs

  18. Evolution of planetary nebula nuclei

    International Nuclear Information System (INIS)

    Shaw, R.A.

    1985-01-01

    The evolution of planetary nebula nuclei (PNNs) is examined with the aid of the most recent available stellar evolution calculations and new observations of these objects. Their expected distribution in the log L-log T plane is calculated based upon the stellar evolutionary models of Paczynski, Schoenberner and Iben, the initial mass function derived by Miller and Scalo, and various assumptions concerning mass loss during post-main sequence evolution. The distribution is found to be insensitive both to the assumed range of main-sequence progenitor mass and to reasonable variations in the age and the star forming history of the galactic disk. Rather, the distribution is determined by the strong dependence of the rate of stellar evolution upon core mass, the steepness of the initial mass function, and to a lesser extent the finite lifetime of an observable planetary nebula. The theoretical distributions are rather different than any of those inferred from earlier observations. Possible observational selection effects that may be responsible are examined, as well as the intrinsic uncertainties associated with the theoretical model predictions. An extensive photometric and smaller photographic survey of southern hemisphere planetary nebulae (PNs) is presented

  19. X-ray observations of planetary nebulae

    International Nuclear Information System (INIS)

    Apparao, K.M.V.; Tarafdar, S.P.

    1990-01-01

    The Einstein satellite was used to observe 19 planetary nebulae and X-ray emission was detected from four planetary nebulae. The EXOSAT satellite observed 12 planetary nebulae and five new sources were detected. An Einstein HRI observation shows that NGC 246 is a point source, implying that the X-rays are from the central star. Most of the detected planetary nebulae are old and the X-rays are observed during the later stage of planetary nebulae/central star evolution, when the nebula has dispersed sufficiently and/or when the central star gets old and the heavy elements in the atmosphere settle down due to gravitation. However in two cases where the central star is sufficiently luminous X-rays were observed, even though they were young nebulae; the X-radiation ionizes the nebula to a degree, to allow negligible absorption in the nebula. Temperature T x is obtained using X-ray flux and optical magnitude and assuming the spectrum is blackbody. T x agrees with Zanstra temperature obtained from optical Helium lines. (author)

  20. Disks, Microjets, Windblown Bubbles, and Outflows in the Orion Nebula

    Science.gov (United States)

    Bally, John; O'Dell, C. R.; McCaughrean, Mark J.

    2000-06-01

    New deep narrowband images of the Orion Nebula obtained with WFPC2 on the Hubble Space Telescope (HST) and spectra taken with the HIRES spectrometer at the Keck Observatory are presented. We report eight new circumstellar disks seen in silhouette against the background nebular light and about 30 dark disks embedded within the bright proplyds rimmed by ionization fronts. Deep narrowband λ6300 Å images reveal skins of glowing [O I] emission associated with several disks embedded within bright proplyds. [O I] emission also surrounds one dark disk not surrounded by an ionization front; this object may be embedded within the photon-dominated, mostly neutral region behind the ionization front of the Orion Nebula. The intensity and morphology of the [O I] emission provides support for the photon-dominated-region models of externally irradiated circumstellar disks in which soft UV powers photoablation of the disk surface. Dozens of outflows powered by young stars have been discovered on the new images. More than 20 stellar jets emerge from the externally irradiated circumstellar disks or their associated young stars embedded within the Nebula. Most are one-sided (monopolar) subarcsecond-scale microjets, too small to be seen on ground-based images against the bright background nebular light. Additionally, wide-angle winds from 10 young stars in the outskirts of the Nebula power large-scale bow shocks facing the Trapezium OB stars. These shocks may be produced by wind-wind interactions where the T-Tauri winds interact with the outflow of plasma from the core of M42. The largest such structure, associated with the star LL Ori, contains a number of compact high-proper-motion clumps moving almost tangentially to the bow shock. The new data are combined with older HST images to determine proper motions for many nebular features. Neither the LL Ori type bow shocks in the outskirts of the nebula nor the Hα + [O III] arcs that surround many proplyds near the Trapezium show

  1. The Wolf-Rayet nebula NGC 6888 as a pressure driven bubble

    International Nuclear Information System (INIS)

    Marston, A.P.; Meaburn, J.

    1988-01-01

    Profiles of the Hα and [NII] emission lines have been obtained across the major axis of the Wolf-Rayet ring nebula NGC6888 with the Manchester echelle spectrometer combined with the Isaac Newton Telescope. Although triple profiles are found, this nebula is shown to approximate to a shell of radius 3pc expanding at 85 km s -1 . The ionized mass in the shell is 3.5 ± 1.2 M solar masses . IRAS survey maps also reveal a shell of neutral material containing 40 M solar masses , assuming the far infrared continuum emission from warm dust dominates the line emission. If it is assumed that this mass is also expanding at 85 km s -1 it is shown that the nebula is a pressure driven bubble, which conserves the kinetic energy of the driving stellar wind. (author)

  2. Spectroscopy of the ringlike nebula toward the open cluster NGC 3572

    Science.gov (United States)

    Noumaru, Junichi; Ogura, Katsuo

    1993-11-01

    Low-dispersion spectroscopy has been obtained for the ringlike nebula which Phelps and Janes (1991) found in the direction of the young open cluster NGC 3572 and suspected as a planetary nebula. Some nearby nebulosities have also been observed. Analyses of these data indicate that all of them, including the NGC 3572 ring, are H II regions. Morphological considerations of the region show that the nearby nebulosities are bright rims which are associated with the H II region BBW 342 and are partly hidden by the obscuring matter lying on this side. The NGC 3572 ring could be of the same nature. However, as the alternative interpretation, it could be a ring nebula (probably a wind-blown bubble) around a massive star (WR/Of star or LBV).

  3. Luminosity function for planetary nebulae and the number of planetary nebulae in local group galaxies

    International Nuclear Information System (INIS)

    Jacoby, G.H.

    1980-01-01

    Identifications of 19 and 34 faint planetary nebulae have been made in the central regions of the SMC and LMC, respectively, using on-line/off-line filter photography at [O III] and Hα. The previously known brighter planetary nebulae in these fields, eight in both the SMC and the LMC, were also identified. On the basis of the ratio of the numbers of faint to bright planetary nebulae in these fields and the numbers of bright planetary nebulae in the surrounding fields, the total numbers of planetary nebulae in the SMC and LMC are estimated to be 285 +- 78 and 996 +- 253, respectively. Corrections have been applied to account for omissions due to crowding confusion in previous surveys, spatial and detectability incompleteness, and obscuration by dust.Equatorial coordinates and finding charts are presented for all the identified planetary nebulae. The coordinates have uncertainties smaller than 0.''6 relative to nearby bright stars, thereby allowing acquisition of the planetary nebulae by bling offsetting.Monochromatic fluxes are derived photographically and used to determine the luminosity function for Magellanic Cloud planetary nebulae as faint as 6 mag below the brightest. The luminosity function is used to estimate the total numbers of planetary nebulae in eight Local Group galaxies in which only bright planetary nebulae have been identified. The dervied luminosity specific number of planetary nebulae per unit luminosity is nearly constant for all eight galaxies, having a value of 6.1 x 10 -7 planetary nebulae L -1 /sub sun/. The mass specific number, based on the three galaxies with well-determined masses, is 2.1 x 10 -7 planetary nebulae M -1 /sub sun/. With estimates for the luminosity and mass of our Galaxy, its total number of planetary nebulae is calculated to be 10,000 +- 4000, in support of the Cudworth distance scale

  4. Plerions and pulsar-powered nebulae

    OpenAIRE

    Gaensler, Bryan

    2000-01-01

    In this brief review, I discuss recent developments in the study of pulsar-powered nebulae ("plerions"). The large volume of data which has been acquired in recent years reveals a diverse range of observational properties, demonstrating how differing environmental and pulsar properties manifest themselves in the resulting nebulae.

  5. Abundances in planetary nebulae : Hb 5

    NARCIS (Netherlands)

    Pottasch, S. R.; Surendiranath, R.

    The ISO spectra of the bilobal planetary nebula Hb 5 are presented. These spectra are combined with the spectra in the visual wavelength region to obtain a complete, extinction corrected, spectrum. The chemical composition of the nebula is then calculated in several ways. First by directly

  6. Abundances of planetary nebula NGC 5315

    NARCIS (Netherlands)

    Pottasch, [No Value; Beintema, DA; Salas, JB; Koornneef, J; Feibelman, WA

    2002-01-01

    The ISO and IUE spectra of the elliptical nebula NGC 5315 is presented. These spectra are combined with the spectra in the visual wavelength region to obtain a complete, extinction corrected, spectrum. The chemical composition of the nebulae is then calculated and compared to previous

  7. Optical observations of southern planetary nebula candidates

    NARCIS (Netherlands)

    VandeSteene, GC; Sahu, KC; Pottasch, [No Value

    1996-01-01

    We present H alpha+[NII] images and low resolution spectra of 16 IRAS-selected, southern planetary nebula candidates previously detected in the radio continuum. The H alpha+[NII] images are presented as finding charts. Contour plots are shown for the resolved planetary nebulae. From these images

  8. A 'FIREWORK' OF H2 KNOTS IN THE PLANETARY NEBULA NGC 7293 (THE HELIX NEBULA)

    International Nuclear Information System (INIS)

    Matsuura, M.; Speck, A. K.; McHunu, B. M.; Tanaka, I.; Wright, N. J.; Viti, S.; Wesson, R.; Smith, M. D.; Zijlstra, A. A.

    2009-01-01

    We present a deep and wide field-of-view (4' x 7') image of the planetary nebula (PN) NGC 7293 (the Helix Nebula) in the 2.12 μm H 2 v = 1 → 0 S(1) line. The excellent seeing (0.''4) at the Subaru Telescope, allows the details of cometary knots to be examined. The knots are found at distances of 2.'2-6.'4 from the central star (CS). At the inner edge and in the inner ring (up to 4.'5 from the CS), the knot often show a 'tadpole' shape, an elliptical head with a bright crescent inside and a long tail opposite to the CS. In detail, there are variations in the tadpole shapes, such as narrowing tails, widening tails, meandering tails, or multipeaks within a tail. In the outer ring (4.'5-6.'4 from the CS), the shapes are more fractured, and the tails do not collimate into a single direction. The transition in knot morphology from the inner edge to the outer ring is clearly seen. The number density of knots governs the H 2 surface brightness in the inner ring: H 2 exists only within the knots. Possible mechanisms which contribute to the shaping of the knots are discussed, including photoionization and streaming motions. A plausible interpretation of our images is that inner knots are being overrun by a faster wind, but that this has not (yet) reached the outer knots. Based on H 2 formation and destruction rates, H 2 gas can survive in knots from formation during the late asymptotic giant branch phase throughout the PN phase. These observations provide new constraints on the formation and evolution of knots, and on the physics of molecular gas embedded within ionized gas.

  9. A Smoking Gun in the Carina Nebula

    Science.gov (United States)

    Hamaguchi, Kenji; Corcoran, Michael F.; Ezoe, Yuichiro; Townsley, Leisa; Broos, Patrick; Gruendl, Robert; Vaidya, Kaushar; White, Stephen M.; Petre, Rob; Chu, You-Hua

    2009-01-01

    The Carina Nebula is one of thc youngest, most active sites of massive star formation in our Galaxy. In this nebula, we have discovered a bright X-ray source that has persisted for approx.30 years. The soft X-ray spectrum. consistent with kT approx.130 eV blackbody radiation with mild extinction, and no counterpart in the near- and mid-infrared wavelengths indicate that it is a, approx. 10(exp 6)-year-old neutron star housed in the Carina Nebula. Current star formation theory does not suggest that the progenitor of the neutron star and massive stars in the Carina Nebula, in particular (eta)Car, are coeval. This result demonstrates that the Carina Nebula experienced at least two major episodes of massive star formation. The neutron star would be responsible for remnants of high energy activity seen in multiple wavelengths.

  10. The Making of a Pre-Planetary Nebula

    Science.gov (United States)

    Kohler, Susanna

    2017-07-01

    -planetary nebula, OH231, which lies 4,200 light-years away and is about 1.4 light-years long. This is a well studied nebula, so the team had many observations that their model needed to successfully replicate: the nebulas shapes, dimensions, overall geometry, locations of shocks, timescales, and even velocity gradients are known.The authors model included mass injection from the central source into the ambient gas in three different ways:clumps: spherical knots injected all at once,cylindrical jets: thin outflows with parallel streamlines, andsprays: conical outflows with diverging streamlines.Explanation from a Champagne BottlePanel A: best-fitting simulations of OH231 200, 400, and 800 yr after the clump and spray are launched. Panel B: example from the same family of solutions, in which the mass is reduced by a factor of 10. Click for a closer look. [Balick et al. 2017]Balick and collaborators found that by injecting the mass in these three ways with a specific order and spacing, they were able to find a family of solutions that very well replicated observations of OH231. In the best-fitting model, combinations of pairs of clumps are embedded within sprays of brief duration and launched into static ancient AGB winds. The authors compare the setup to the ejection of the cork and the spray of high-pressure fluid when a bottle of champagne is opened.These simulations successfully map out all but perhaps the first century of the nebulas evolution and give us some of the best insight yet into how these short-lived objects are formed. The authors are now working to reproduce these simulations for other pre-planetary nebulae, with the goal of piecing together common attributes of their ejection histories.CitationBruce Balick et al 2017 ApJ 843 108. doi:10.3847/1538-4357/aa77f0

  11. NIF Discovery Science Eagle Nebula

    Science.gov (United States)

    Kane, Jave; Martinez, David; Pound, Marc; Heeter, Robert; Casner, Alexis; Villette, Bruno; Mancini, Roberto

    2017-10-01

    The University of Maryland and and LLNL are investigating the origin and dynamics of the famous Pillars of the Eagle Nebula and similar parsec-scale structures at the boundaries of HII regions in molecular hydrogen clouds. The National Ignition Facility (NIF) Discovery Science program Eagle Nebula has performed NIF shots to study models of pillar formation. The shots feature a new long-duration x-ray source, in which multiple hohlraums mimicking a cluster of stars are driven with UV light in series for 10 to 15 ns each to create a 30 to 60 ns output x-ray pulse. The source generates deeply nonlinear hydrodynamics in the Eagle science package, a structure of dense plastic and foam mocking up a molecular cloud containing a dense core. Omega EP and NIF shots have validated the source concept, showing that earlier hohlraums do not compromise later ones by preheat or by ejecting ablated plumes that deflect later beams. The NIF shots generated radiographs of shadowing-model pillars, and also showed evidence that cometary structures can be generated. The velocity and column density profiles of the NIF shadowing and cometary pillars have been compared with observations of the Eagle Pillars made at the millimeter-wave BIMA and CARMA observatories. Prepared by LLNL under Contract DE-AC52-07NA27344.

  12. Reconstruction and visualization of planetary nebulae.

    Science.gov (United States)

    Magnor, Marcus; Kindlmann, Gordon; Hansen, Charles; Duric, Neb

    2005-01-01

    From our terrestrially confined viewpoint, the actual three-dimensional shape of distant astronomical objects is, in general, very challenging to determine. For one class of astronomical objects, however, spatial structure can be recovered from conventional 2D images alone. So-called planetary nebulae (PNe) exhibit pronounced symmetry characteristics that come about due to fundamental physical processes. Making use of this symmetry constraint, we present a technique to automatically recover the axisymmetric structure of many planetary nebulae from photographs. With GPU-based volume rendering driving a nonlinear optimization, we estimate the nebula's local emission density as a function of its radial and axial coordinates and we recover the orientation of the nebula relative to Earth. The optimization refines the nebula model and its orientation by minimizing the differences between the rendered image and the original astronomical image. The resulting model allows creating realistic 3D visualizations of these nebulae, for example, for planetarium shows and other educational purposes. In addition, the recovered spatial distribution of the emissive gas can help astrophysicists gain deeper insight into the formation processes of planetary nebulae.

  13. Planetary nebulae and the interstellar magnetic field

    International Nuclear Information System (INIS)

    Heiligman, G.M.

    1980-01-01

    Previous workers have found a statistical correlation between the projected directions of the interstellar magnetic field and the major axes of planetary nebulae. This result has been examined theoretically using a numerical hydromagnetic model of a cold plasma nebula expanding into a uniform vacuum magnetic field, with nebular gas accreting on the surface. It is found that magnetic pressure alone is probably not sufficient to shape most planetary nebulae to the observed degree. Phenomena are discussed which could amplify simple magnetic pressure, alter nebular morphology and account for the observed correlation. (author)

  14. Spatiokinematical models of five planetary nebulae

    International Nuclear Information System (INIS)

    Sabbadin, F.

    1984-01-01

    The [OOOI] and Hα expansion velocity fields in the planetary nebulae NGC6058 and 6804 and the [OIII], Hα and [NII] expansion velocity fields in NGC6309, 6751 and 6818, were obtained from high dispersion spectra. Spatiokinematical models of the nebulae were derived assuming an expansion velocity of the gas proportional to the distance from the central star and using the expansion velocity-radius correlation previously given. The observational parameters of the nebulae (radius, mass and expansion velocity) and of the exciting stars (temperature, radius and luminosity) closely fit the suggested evolutionary model for this class of objects. (author)

  15. Hot Gas in the Wolf–Rayet Nebula NGC 3199

    Energy Technology Data Exchange (ETDEWEB)

    Toalá, J. A.; Chu, Y.-H. [Institute of Astronomy and Astrophysics, Academia Sinica (ASIAA), Taipei 10617, Taiwan (China); Marston, A. P. [European Space Agency/STScI, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Guerrero, M. A. [Instituto de Astrofísica de Andalucía, IAA-CSIC, Glorieta de la Astronomía s/n, Granada E-18008 (Spain); Gruendl, R. A. [Department of Astronomy, University of Illinois, 1002 West Green Street, Urbana, IL 61801 (United States)

    2017-09-01

    The Wolf–Rayet (WR) nebula NGC 3199 has been suggested to be a bow shock around its central star, WR 18, which is presumably a runaway star, because optical images of the nebula show a dominating arc of emission southwest of the star. We present the XMM-Newton detection of extended X-ray emission from NGC 3199, unveiling the powerful effect of the fast wind from WR 18. The X-ray emission is brighter in the region southeast of the star and an analysis of the spectral properties of the X-ray emission reveals abundance variations: (i) regions close to the optical arc present nitrogen-rich gas enhanced by the stellar wind from WR 18 and (ii) gas at the eastern region exhibits abundances close to those reported for the nebular abundances derived from optical studies, which is a signature of an efficient mixing of the nebular material with the stellar wind. The dominant plasma temperature and electron density are estimated to be T ≈ 1.2 × 10{sup 6} K and n {sub e} = 0.3 cm{sup −3} with an X-ray luminosity in the 0.3–3.0 keV energy range of L {sub X} = 2.6 × 10{sup 34} erg s{sup −1}. Combined with information derived from Herschel and the recent Gaia first data release, we conclude that WR 18 is not a runaway star and that the formation, chemical variations, and the shape of NGC 3199 depend on the initial configuration of the interstellar medium.

  16. Nebulae and how to observe them

    CERN Document Server

    Coe, Steven

    2007-01-01

    This "Astronomers' Observing Guides" are designed for practical amateur astronomers who not only want to observe, but want to know the details of exactly what they are looking at. Nebulae are the places where the stars are born. For amateur astronomers, the many different kinds of nebulae vary from "easy" targets that can be seen with modest equipment under mediocre skies, to "challenging" objects that require experienced observers, large telescopes and excellent seeing. The concept of the book - and of the series - is to present an up-to-date detailed description and categorisation (part one); and then (part two) to consider how best to successfully observe and record the large range of astronomical objects that fall under the general heading of "nebulae". "Nebulae, and How to Observe Them" is a mine of information for all levels of amateur observers, from the beginner to the experienced.

  17. Is gas in the Orion nebula depleted

    International Nuclear Information System (INIS)

    Aiello, S.; Guidi, I.

    1978-01-01

    Depletion of heavy elements has been recognized to be important in the understanding of the chemical composition of the interstellar medium. This problem is also relevant to the study of H II regions. In this paper the gaseous depletion in the physical conditions of the Orion nebula is investigated. The authors reach the conclusion that very probably no depletion of heavy elements, due to sticking on dust grains, took place during the lifetime of the Orion nebula. (Auth.)

  18. Galaxy dynamics with the Planetary Nebula Spectrograph

    OpenAIRE

    Napolitano, N. R.; Romanowsky, A. J.; Douglas, N. G.; Capaccioli, M.; Arnaboldi, M.; Kuijken, K.; Merrifield, M. R.; Freeman, K. C.; Gerhard, O.

    2004-01-01

    The Planetary Nebula Spectrograph is a dedicated instrument for measuring radial velocity of individual Planetary Nebulae (PNe) in galaxies. This new instrument is providing crucial data with which to probe the structure of dark halos in the outskirts of elliptical galaxies in particular, which are traditionally lacking of easy interpretable kinematical tracers at large distance from the center. Preliminary results on a sample of intermediate luminosity galaxies have shown little dark matter ...

  19. Evolutionary sequence of models of planetary nebulae

    International Nuclear Information System (INIS)

    Vil'koviskij, Eh.Ya.; Kondrat'eva, L.N.; Tambovtseva, L.V.

    1983-01-01

    The evolutionary sequences of model planetary nebulae of different masses have been calculated. The computed emission line intensities are compared with the observed ones by means of the parameter ''reduced size of the nebula'', Rsub(n). It is shown that the evolution tracks of Schonberner for the central stars are consistent with the observed data. Part of ionized mass Mi in any nebulae does not not exceed 0.3 b and in the average Msu(i) 3 years at actual values of radius Rsub(i) <0.025 ps. Then the luminosity growth slows down to the maximum temperature which central star reaches and decreases with sharp decrease of the star luminosity. At that, the radius of ionized zone of greater mass nebulae can even decrease, inspite of the constant expansion of the nebula. As a result nebulae of great masses having undergone the evolution can be included in the number of observed compact objects (Rsub(n) < 0.1 ps)

  20. LMC X-1: A New Spectral Analysis of the O-star in the Binary and Surrounding Nebula

    Science.gov (United States)

    Hyde, E. A.; Russell, D. M.; Ritter, A.; Filipović, M. D.; Kaper, L.; Grieve, K.; O'Brien, A. N.

    2017-09-01

    We provide new observations of the LMC X-1 O star and its extended nebula structure using spectroscopic data from VLT/UVES as well as Hα imaging from the Wide Field Imager on the Max Planck Gesellschaft/European Southern Observatory 2.2 m telescope and ATCA imaging of the 2.1 GHz radio continuum. This nebula is one of the few known to be energized by an X-ray binary. We use a new spectrum extraction technique that is superior to other methods used to obtain both radial velocities and fluxes. This provides an updated spatial velocity of ≃ 21.0 +/- 4.8 km s-1 for the O star. The slit encompasses both the photo-ionized and shock-ionized regions of the nebula. The imaging shows a clear arc-like structure reminiscent of a wind bow shock in between the ionization cone and shock-ionized nebula. The observed structure can be fit well by the parabolic shape of a wind bow shock. If an interpretation of a wind bow shock system is valid, we investigate the N159-O1 star cluster as a potential parent of the system, suggesting a progenitor mass of ˜60 M ⊙ for the black hole. We further note that the radio emission could be non-thermal emission from the wind bow shock, or synchrotron emission associated with the jet-inflated nebula. For both wind- and jet-powered origins, this would represent one of the first radio detections of such a structure.

  1. High-energy x-ray detection of G359.89–0.08 (SGR A–E): magnetic flux tube emission powered by cosmic rays?

    DEFF Research Database (Denmark)

    Zhang, Shuo; Hailey, Charles J.; Baganoff, Frederick K.

    2014-01-01

    of 8.0 kpc. Based on theoretical predictions and observations, we conclude that Sgr A–E is unlikely to be a pulsar wind nebula (PWN) or supernova remnant-molecular cloud (SNR-MC) interaction, as previously hypothesized. Instead, the emission could be due to a magnetic flux tube which traps Te...

  2. NuSTAR discovery of a young, energetic pulsar associated with the luminous gamma-ray source Hess J1640-465

    DEFF Research Database (Denmark)

    Gotthelf, E. V.; Tomsick, J. A.; Halpern, J. P.

    2014-01-01

    and putative pulsar wind nebula (PWN) previously identified in XMM-Newton and Chandra images. It is spinning down rapidly with period derivative 9.758(44) × 10-13, yielding a spin-down luminosity 4.4 × 1036 erg s-1, characteristic age 3350 yr, and surface dipole magnetic field strength Bs = 1.4 × 1013 G...

  3. Evolutionary status of the Of?p star HD 148937 and of its surrounding nebula NGC 6164/5

    Science.gov (United States)

    Mahy, L.; Hutsemékers, D.; Nazé, Y.; Royer, P.; Lebouteiller, V.; Waelkens, C.

    2017-03-01

    Aims: The magnetic star HD 148937 is the only Galactic Of?p star surrounded by a nebula. The structure of this nebula is particularly complex and is composed, from the center out outwards, of a close bipolar ejecta nebula (NGC 6164/5), an ellipsoidal wind-blown shell, and a spherically symmetric Strömgren sphere. The exact formation process of this nebula and its precise relation to the star's evolution remain unknown. Methods: We analyzed infrared Spitzer IRS and far-infrared Herschel/PACS observations of the NGC 6164/5 nebula. The Herschel imaging allowed us to constrain the global morphology of the nebula. We also combined the infrared spectra with optical spectra of the central star to constrain its evolutionary status. We used these data to derive the abundances in the ejected material. To relate this information to the evolutionary status of the star, we also determined the fundamental parameters of HD 148937 using the CMFGEN atmosphere code. Results: The Hα image displays a bipolar or "8"-shaped ionized nebula, whilst the infrared images show dust to be more concentrated around the central object. We determine nebular abundance ratios of N/O = 1.06 close to the star, and N/O = 1.54 in the bright lobe constituting NGC 6164. Interestingly, the parts of the nebula located further from HD 148937 appear more enriched in stellar material than the part located closer to the star. Evolutionary tracks suggest that these ejecta have occured 1.2-1.3 and 0.6 Myr ago, respectively. In addition, we derive abundances of argon for the nebula compatible with the solar values and we find a depletion of neon and sulfur. The combined analyses of the known kinematics and of the new abundances of the nebula suggest either a helical morphology for the nebula, possibly linked to the magnetic geometry, or the occurrence of a binary merger. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important

  4. Nature versus nurture: Luminous blue variable nebulae in and near massive stellar clusters at the galactic center

    International Nuclear Information System (INIS)

    Lau, R. M.; Herter, T. L.; Adams, J. D.; Morris, M. R.

    2014-01-01

    Three luminous blue variables (LBVs) are located in and near the Quintuplet Cluster at the Galactic center: the Pistol Star, G0.120-0.048, and qF362. We present imaging at 19, 25, 31, and 37 μm of the region containing these three LBVs, obtained with SOFIA using FORCAST. We argue that Pistol and G0.120-0.048 are identical 'twins' that exhibit contrasting nebulae due to the external influence of their different environments. Our images reveal the asymmetric, compressed shell of hot dust surrounding the Pistol Star and provide the first detection of the thermal emission from the symmetric, hot dust envelope surrounding G0.120-0.048. However, no detection of hot dust associated with qF362 is made. Dust and gas composing the Pistol nebula are primarily heated and ionized by the nearby Quintuplet Cluster stars. The northern region of the Pistol nebula is decelerated due to the interaction with the high-velocity (2000 km s –1 ) winds from adjacent Wolf-Rayet Carbon (WC) stars. From fits to the spectral energy distribution (SED) of the Pistol nebula with the DustEM code we determine that the Pistol nebula is composed of a distribution of very small, transiently heated grains (10 to ∼ 35 Å) having a total dust mass of 0.03 M ☉ , and that it exhibits a gradient of decreasing grain size from south to north due to differential sputtering by the winds from the WC stars. The total IR luminosity of the Pistol nebula is 5.2 × 10 5 L ☉ . Dust in the G0.120-0.048 nebula is primarily heated by the central star; however, the nebular gas is ionized externally by the Arches Cluster. Unlike the Pistol nebula, the G0.120-0.048 nebula is freely expanding into the surrounding medium. A grain size distribution identical to that of the non-sputtered region of the Pistol nebula satisfies the constraints placed on the G0.120-0.048 nebula from DustEM model fits to its SED and implies a total dust mass of 0.021 M ☉ . The total IR luminosity of the G0.120-0.048 nebula is

  5. Nature versus nurture: Luminous blue variable nebulae in and near massive stellar clusters at the galactic center

    Energy Technology Data Exchange (ETDEWEB)

    Lau, R. M.; Herter, T. L.; Adams, J. D. [Astronomy Department, 202 Space Sciences Building, Cornell University, Ithaca, NY 14853-6801 (United States); Morris, M. R. [Department of Physics and Astronomy, University of California, Los Angeles, 430 Portola Plaza, Los Angeles, CA 90095-1547 (United States)

    2014-04-20

    Three luminous blue variables (LBVs) are located in and near the Quintuplet Cluster at the Galactic center: the Pistol Star, G0.120-0.048, and qF362. We present imaging at 19, 25, 31, and 37 μm of the region containing these three LBVs, obtained with SOFIA using FORCAST. We argue that Pistol and G0.120-0.048 are identical 'twins' that exhibit contrasting nebulae due to the external influence of their different environments. Our images reveal the asymmetric, compressed shell of hot dust surrounding the Pistol Star and provide the first detection of the thermal emission from the symmetric, hot dust envelope surrounding G0.120-0.048. However, no detection of hot dust associated with qF362 is made. Dust and gas composing the Pistol nebula are primarily heated and ionized by the nearby Quintuplet Cluster stars. The northern region of the Pistol nebula is decelerated due to the interaction with the high-velocity (2000 km s{sup –1}) winds from adjacent Wolf-Rayet Carbon (WC) stars. From fits to the spectral energy distribution (SED) of the Pistol nebula with the DustEM code we determine that the Pistol nebula is composed of a distribution of very small, transiently heated grains (10 to ∼ 35 Å) having a total dust mass of 0.03 M {sub ☉}, and that it exhibits a gradient of decreasing grain size from south to north due to differential sputtering by the winds from the WC stars. The total IR luminosity of the Pistol nebula is 5.2 × 10{sup 5} L {sub ☉}. Dust in the G0.120-0.048 nebula is primarily heated by the central star; however, the nebular gas is ionized externally by the Arches Cluster. Unlike the Pistol nebula, the G0.120-0.048 nebula is freely expanding into the surrounding medium. A grain size distribution identical to that of the non-sputtered region of the Pistol nebula satisfies the constraints placed on the G0.120-0.048 nebula from DustEM model fits to its SED and implies a total dust mass of 0.021 M {sub ☉}. The total IR luminosity of the G

  6. Photoionization modelling of planetary nebulae - II. Galactic bulge nebulae, a comparison with literature results

    NARCIS (Netherlands)

    van Hoof, PAM; Van de Steene, GC

    1999-01-01

    We have constructed photoionization models of five galactic bulge planetary nebulae using our automatic method, which enables a fully self-consistent determination of the physical parameters of a planetary nebula. The models are constrained using the spectrum, the IRAS and radio fluxes and the

  7. Abundance determinations in HII regions and planetary nebulae

    OpenAIRE

    Stasinska, Grazyna

    2002-01-01

    The methods of abundance determinations in HII regions and planetary nebulae are described, with emphasis on the underlying assumptions and inherent problems. Recent results on abundances in Galactic HII regions and in Galactic and extragalactic Planetary Nebulae are reviewed.

  8. The simplest models of the reflection nebulae

    International Nuclear Information System (INIS)

    Voshchinnikov, N.V.

    1977-01-01

    Some models of the reflection nebulue have been considered. The (U-B), (B-V) and (V-R) colors and the U, B, V and R polarization have been calculated for a model of a reflection nebula associated with a large dust cloud. For the cases in which the illuminating star is far from the surface of the cloud, the form of the nebula has been considered to be spherical. If the star is close to the surface of the cloud, a part of the nebura boundary has been considered to be flat. Single scattering within the homogeneous nebula has been assumed. All the calculations use the scattering by spheres as given by the Mie's theory. The effect of variations of chemical composition and size distribution function of the grains and the position of the illuminating star has been examined. Comparison of the theoretical results with the observations of the Merope nebula shows that the dirty ice grains with the refraction index m=1.30-0.02i and size parameter asub(o)=0.5μ represent satisfactorily the observation if the star is embedded 0.7 pc behind the front surface of the nebula

  9. Properties of interstellar dust in reflection nebulae

    International Nuclear Information System (INIS)

    Sellgren, K.

    1988-01-01

    Observations of interstellar dust in reflection nebulae are the closest analog in the interstellar medium to studies of cometary dust in our solar system. The presence of a bright star near the reflection nebula dust provides the opportunity to study both the reflection and emission characteristics of interstellar dust. At 0.1 to 1 micrometer, the reflection nebula emission is due to starlight scattered by dust. The albedo and scattering phase function of the dust is determined from observations of the scattered light. At 50 to 200 micrometers, thermal emission from the dust in equilibrium with the stellar radiation field is observed. The derived dust temperature determines the relative values of the absorption coefficient of the dust at wavelengths where the stellar energy is absorbed and at far infrared wavelengths where the absorbed energy is reradiated. These emission mechanisms directly relate to those seen in the near and mid infrared spectra of comets. In a reflection nebula the dust is observed at much larger distances from the star than in our solar system, so that the equilibrium dust temperature is 50 K rather than 300 K. Thus, in reflection nebulae, thermal emission from dust is emitted at 50 to 200 micrometer

  10. Lunar occultation observations of the Crab Nebula

    International Nuclear Information System (INIS)

    Maloney, F.P.

    1977-01-01

    Three lunar of occultations of the Crab Nebula were observed, two at 114 MHz and one at 26.3 MHz, during the 1974 series of events. The higher frequency observations were deconvolved of diffraction effects to yield four strip integrated brightness profiles of the Nebula, with an effective resolution of 30 arc-seconds. These four profiles were Fourier inverted and cleaned of sidelobe structure to synthesize a two-dimensional map of the Nebula. At 114 MHz, the Nebula is composed of a broad envelope of emission which contains several smaller sources. The attenuation of the low radio frequency radiation by the thermal hydrogen in the filaments is considered as a possible mechanism to explain these new data. The 26.3 MHz observations indicate the presence of a bright, localized source containing greater than 80% of the flux of the Nebula. The position of the source is confined by the data to a narrow strip centered at the pulsar position. Both sets of data are compared with past occultation observations

  11. Monitoring the Orion Nebula Cluster

    Science.gov (United States)

    Reipurth, Bo

    The VYSOS (Variable Young Stars Optical Survey) project has at its disposal five small telescopes: a 5-inch and a 20-inch robotic optical imaging telescope in Hawaii funded by the NSF, and a 6-inch robotic optical imaging telescope, a 32-inch robotic infrared imaging telescope, and a 60-inch optical spectroscopic telescope in Chile, funded and operated from Germany. Through an agreement between the leaders of the two sites (B. Reipurth and R. Chini), it has been decided to devote a significant fraction of time on these facilities to a large Key Project, conducting a massive monitoring survey of the Orion Nebula Cluster. The vast data streams are being reduced through automated customized pipelines. The applicant seeks funding to employ a postdoc and an undergraduate assistant to work at the University of Hawaii and collaborate on the analysis of the data. Virtually all young stars are variable, with a wide range of amplitudes and characteristic timescales. This is mainly due to accretion shocks as material from circumstellar disks fall onto the stars along magnetic funnel flows, but also giant star spots, magnetic flares, occultations by orbiting dust condensations, and eclipses by companions can modulate the light from the nascent star. It is increasingly recognized that the rather static view of pre-main sequence evolution that has prevailed for many years is misleading, and that time-dependent phenomena may hold the key to an understanding of the way young stars grow and their circumstellar environments evolve. The VYSOS project is designed to bring sophisticated modern techniques to bear on the long neglected problem of variability in young solar type stars. To interpret the observations they will be compared to sophisticated MHD models of circumstellar disks around young stars. The Orion Nebula Cluster is the nearest rich region of star formation, and numerous, albeit heterogeneous, studies exist of the cluster members. The present study will provide the first

  12. Monitoring the Crab Nebula with LOFT

    Science.gov (United States)

    Wilson-Hodge, Colleen A.

    2012-01-01

    From 2008-2010, the Crab Nebula was found to decline by 7% in the 15-50 keV band, consistently in Fermi GBM, INTEGRAL IBIS, SPI, and JEMX, RXTE PCA, and Swift BAT. From 2001-2010, the 15-50 keV flux from the Crab Nebula typically varied by about 3.5% per year. Analysis of RXTE PCA data suggests possible spectral variations correlated with the flux variations. I will present estimates of the LOFT sensitivity to these variations. Prior to 2001 and since 2010, the observed flux variations have been much smaller. Monitoring the Crab with the LOFT WFM and LAD will provide precise measurements of flux variations in the Crab Nebula if it undergoes a similarly active episode.

  13. Planetary Nebulae Beyond the Milky Way

    CERN Document Server

    Stanghellini, L; Douglas, N. G; Proceedings of the ESO Workshop held at Garching, Germany, 19-21 May, 2004

    2006-01-01

    In the last decade extra-galactic planetary nebulae (PNe) have gained increasing importance. Improved observational capabilities have allowed fainter and fainter PNe to be studied in galaxies well beyond the Milky Way. Planetary nebulae can be detected to at least 30Mpc. They are found in galaxies of all types and also between the galaxies in nearby galaxy clusters. They are valuable as probes, both for providing the velocity of their host stars and also the evolutionary status and relation to the stellar population from which they formed. This book contains the proceedings of a workshop held at ESO headquarters in Garching in 2004, the first meeting devoted entirely to Extra-galactic Planetary Nebulae. A wide range of topics is covered, from stellar and nebular astrophysics to galactic dynamics and galaxy clusters, making this volume a unique and timely reference of broad astrophysical interest.

  14. Hubble Space Telescope Image of Omega Nebula

    Science.gov (United States)

    2002-01-01

    This sturning image, taken by the newly installed Advanced Camera for Surveys (ACS) aboard the Hubble Space Telescope (HST), is an image of the center of the Omega Nebula. It is a hotbed of newly born stars wrapped in colorful blankets of glowing gas and cradled in an enormous cold, dark hydrogen cloud. The region of nebula shown in this photograph is about 3,500 times wider than our solar system. The nebula, also called M17 and the Swan Nebula, resides 5,500 light-years away in the constellation Sagittarius. The Swan Nebula is illuminated by ultraviolet radiation from young, massive stars, located just beyond the upper-right corner of the image. The powerful radiation from these stars evaporates and erodes the dense cloud of cold gas within which the stars formed. The blistered walls of the hollow cloud shine primarily in the blue, green, and red light emitted by excited atoms of hydrogen, nitrogen, oxygen, and sulfur. Particularly striking is the rose-like feature, seen to the right of center, which glows in the red light emitted by hydrogen and sulfur. As the infant stars evaporate the surrounding cloud, they expose dense pockets of gas that may contain developing stars. One isolated pocket is seen at the center of the brightest region of the nebula. Other dense pockets of gas have formed the remarkable feature jutting inward from the left edge of the image. The color image is constructed from four separate images taken in these filters: blue, near infrared, hydrogen alpha, and doubly ionized oxygen. Credit: NASA, H. Ford (JHU), G. Illingworth (USCS/LO), M. Clampin (STScI), G. Hartig (STScI), the ACS Science Team, and ESA.

  15. Hard x-ray to low energy gamma ray spectrum of the Crab Nebula

    International Nuclear Information System (INIS)

    Jung, G.V.

    1986-01-01

    The spectrum of the Crab Nebula has been determined in the energy range 10 keV to 5 MeV from the data of the UCSD/MIT Hard-X-ray and Low Energy Gamma Ray Experiment on the first High Energy Astronomy Observatory, HEAO-1. The x-ray to γ-ray portion of the continuous emission from the Crab is indicative of the electron spectrum, its transport through the nebula, and the physical conditions near the shocked interface between the nebular region and the wind which is the physical link between the nebula and the pulsar, NP0532. The power-law dependence of the spectrum found in the lower-energy decade of this observation (10 to 100 keV) is not continued without modification to higher energies. Evidence for this has been accumulating from previous observations in the γ-ray ranges of 1-10 MeV and above 35 MeV. The observations on which this dissertation is based further characterize the spectral change in the 100 keV to 1 MeV region. These observations provide a crucial connection between the x-ray and γ-ray spectrum of the non-pulsed emission of the Crab Nebula. The continuity of this spectrum suggests that the emission mechanism responsible for the non-pulsed γ-rays observed above 35 MeV is of the same origin as the emission at lower energies, i.e. that of synchrotron radiation in the magnetic field of the nebula

  16. Supernova remnants, pulsar wind nebulae and their interaction

    NARCIS (Netherlands)

    Swaluw, E. van der

    2001-01-01

    A supernova explosion marks the end of the evolution of a massive star. What remains of the exploded star is a high density neutron star or a black hole. The material which has been ejected by the supernova explosion will manifest itself as a supernova remnant: a hot bubble of gas expanding in the

  17. Particle acceleration inside PWN: Simulation and observational constraints with INTEGRAL; Acceleration de particules au sein des vents relativistes de pulsar: simulation et contraintes observationelles avec le satellite INTEGRAL

    Energy Technology Data Exchange (ETDEWEB)

    Forot, M

    2006-12-15

    The context of this thesis is to gain new constraints on the different particle accelerators that occur in the complex environment of neutron stars: in the pulsar magnetosphere, in the striped wind or wave outside the light cylinder, in the jets and equatorial wind, and at the wind terminal shock. An important tool to constrain both the magnetic field and primary particle energies is to image the synchrotron ageing of the population, but it requires a careful modelling of the magnetic field evolution in the wind flow. The current models and understanding of these different accelerators, the acceleration processes and open questions have been reviewed in the first part of the thesis. The instrumental part of this work involves the IBIS imager, on board the INTEGRAL satellite, that provides images with 12' resolution from 17 keV to MeV where the SPI spectrometer takes over up, to 10 MeV, but with a reduced 2 degrees resolution. A new method for using the double-layer IBIS imager as a Compton telescope with coded mask aperture. Its performance has been measured. The Compton scattering information and the achieved sensitivity also open a new window for polarimetry in gamma rays. A method has been developed to extract the linear polarization properties and to check the instrument response for fake polarimetric signals in the various backgrounds and projection effects.

  18. Models of the formation of the solar nebula

    Energy Technology Data Exchange (ETDEWEB)

    Cassen, P.; Summers, A.

    1983-01-01

    Protostellar cloud collapse and solar nebula formation models indicate that the size of the nebula produced will be larger in terms of both gas centrifugal balance R(CF) and collapse time diffusion length R(V). From this, it can be deduced that low mass nebulas are produced if (R(V)/R(CF))-squared is much greater than unity, while nebulas result for values lower than approximately unity. The total angular momentum value distinguishes most current models of the solar nebula. Analytic expressions for the surface density, nebular mass flux and photospheric temperature distributions during the formation stage are presented for simple modes illustrating and general properties of growing protostellar disks.

  19. From red giants to planetary nebulae: Asymmetries, dust, and polarization

    International Nuclear Information System (INIS)

    Johnson, J.J.

    1990-01-01

    In order to investigate the development of aspherical planetary nebulae, polarimetry was obtained for a group of planetary nebulae and for objects that will evolve into planetary nebulae, i.e., red giants, late asymptotic giant branch (AGB) objects, proto-planetary nebulae, and young planetary nebulae. To study the dust around the objects in our sample, we also used data from the Infrared Astronomy Satellite (IRAS) mission. The youngest objects in our survey, red giants, had the hottest dust temperatures while planetary nebulae had the coolest. Most of the objects were intrinsically polarized, including the red giants. This indicated that the circumstellar dust shells of these objects were aspherical. Both carbon- and oxygen-rich objects could be intrinsically polarized. The intrinsic polarizations of a sample of our objects were modeled using an ellipsoidal circumstellar dust shell. The findings of this study suggest that the asphericities that lead to an aspherical planetary nebula originate when a red giant begins to undergo mass loss. The polarization and thus the asphericity as the star evolves, with both reaching a maximum during the proto-planetary nebula stage. The circumstellar dust shell will dissipate after the proto-planetary nebulae stage since no new material is being added. The polarization of planetary nebulae will thus be low. In the most evolved planetary nebulae, the dust has either been destroyed or dissipated into the interstellar medium. In these objects no polarization was observed

  20. Angular diameters of Magellanic Cloud plantary nebulae. I. Speckle interferometry

    International Nuclear Information System (INIS)

    Wood, P.R.; Bessell, M.S.; Dopita, M.A.

    1986-01-01

    Speckle interferometric angular diameters of Magellanic Cloud planetary nebulae are presented. The mass of ionized gas in each nebula has been derived from the angular diameter and published H-beta line fluxes; the derives masses range from less than 0.006 to more than 0.19 solar mass. The planetary nebulae observed were the brightest in the Magellanic Clouds; consequently, they are all relatively small, young, bright, and dense. They are almost certainly only partially ionized, so that the masses derived for the ionized parts of the nebula are lower limits to the total nebula mass. The properties of the Magellanic Cloud nebulae are compared with those of planetary nebulae at the galactic center. 27 references

  1. Large proper motions in the Orion nebula

    International Nuclear Information System (INIS)

    Cudworth, K.M.; Stone, R.C.

    1977-01-01

    Several nebular features, as well as one faint star, with large proper motions were identified within the Orion nebula. The measured proper motions correspond to tangential velocities of up to approximately 70 km sec -1 . One new probable variable star was also found

  2. New View of Gas and Dust in the Solar Nebula

    Science.gov (United States)

    Taylor, G. J.

    2010-08-01

    The recognizable components in meteorites differ in their relative abundances of the three oxygen isotopes (16O, 17O, and 18O). In particular, the amount of 16O varies from being like that of the Earth to substantially enriched compared to the other two isotopes. The current explanation for this interesting range in isotopic composition is that dust and gas in the solar nebula (the cloud of gas and dust surrounding the primitive Sun) began with the same 16O-rich composition, but the solids evolved towards the terrestrial value. A new analysis of the problem by Alexander Krot (University of Hawaii) and colleagues at the University of Hawaii, the University of Chicago, Clemson University, and Lawrence Livermore National Laboratory leads to the bold assertion that primordial dust and gas differed in isotopic composition. The gas was rich in 16O as previously thought (possibly slightly richer in 16O than the measurements of the solar wind returned by the Genesis Mission), but that the dust had a composition close to the 16O-depleted terrestrial average. In this new view, the dust had a different history than did the gas before being incorporated into the Solar System. Solids with compositions near the terrestrial line may have formed in regions of the solar nebula where dust had concentrated compared to the mean solar dust/gas ratio (1 : ~100). The idea has great implications for understanding the oxygen-isotope composition of the inner Solar System and the origin of materials in the molecular cloud from which the Solar System formed.

  3. A dam around the Water Fountain Nebula? The dust shell of IRAS16342-3814 spatially resolved with VISIR/VLT

    NARCIS (Netherlands)

    Verhoelst, T.; Waters, L.B.F.M.; Verhoeff, A.; Dijkstra, C.; van Winckel, H.; Pel, J.W.; Peletier, R.F.

    2009-01-01

    Context. Bipolar morphologies in planetary nebulae (PNe) are believed to be closely linked to binary central stars. Either by collimating a fast stellar wind or by driving a jet via accretion in the central system, dusty torii or stable disks may be crucial ingredients for the shaping of PNe. Aims.

  4. A dam around the Water Fountain Nebula? The dust shell of IRAS16342-3814 spatially resolved with VISIR/VLT

    NARCIS (Netherlands)

    Verhoelst, T.; Waters, L. B. F. M.; Verhoeff, A.; Dijkstra, C.; Van Winckel, H.; Pel, J. W.; Peletier, R. F.

    Context. Bipolar morphologies in planetary nebulae (PNe) are believed to be closely linked to binary central stars. Either by collimating a fast stellar wind or by driving a jet via accretion in the central system, dusty torii or stable disks may be crucial ingredients for the shaping of PNe. Aims.

  5. The Orion Nebula: The Jewel in the Sword

    Science.gov (United States)

    2001-01-01

    /01 ESO PR Photo 03c/01 [Preview - JPEG: 400 x 452 pix - 57k] [Normal - JPEG: 800 x 904 pix - 488k] [Hires - JPEG: 2300 x 2600 pix - 3.3M] Caption : PR Photo 03b/01 and PR Photo 03c/01 show smaller, particularly interesting areas of PR Photo 03a/01 . Photo 03b/01 shows the traces of a massive outflow of gas from a very young object embedded in the dense molecular cloud behind the Orion Nebula. Shards of gas from the explosion create shocks and leave bow-waves as they move at speeds of up to 200 km/sec from the source. Photo 03c/01 shows the delicate tracery created at the so-called Bright Bar , as the intense UV-light and strong winds from the hot Trapezium stars eat their way into the surrounding molecular cloud. Also visible are a number of very young red objects partly hidden in the cloud, waiting to be revealed as new members of the Trapezium Cluster . Technical information about these photos is available below. Indeed, at visible wavelengths, the dense cluster of stars at the centre is drowned out by the light from the nebula and obscured by remnants of the dust in the gas from which they were formed. However, at longer wavelengths, these obscuring effects are reduced, and the cluster is revealed. In the past couple of years, several of the world's premier ground- and space-based telescopes have made new detailed infrared studies of the Orion Nebula and the Trapezium Cluster , but the VLT image shown here is the "deepest" wide-field image obtained so far. The large collecting area of the VLT and the excellent seeing of the Paranal site combined to yield this beautiful image, packed full of striking details. Powerful explosions and winds from the most massive stars in the region are evident, as well as the contours of gas sculpted by these stars, and more finely focused jets of gas flowing from the smaller stars. Sharper images from the VLT ESO PR Photo 03d/01 ESO PR Photo 03d/01 [Preview - JPEG: 400 x 490 pix - 28k] [Normal - JPEG: 800 x 980 pix - 192k] [Hi

  6. DISCOVERY OF A HALO AROUND THE HELIX NEBULA NGC 7293 IN THE WISE ALL-SKY SURVEY

    International Nuclear Information System (INIS)

    Zhang Yong; Hsia, Chih-Hao; Kwok, Sun

    2012-01-01

    We report the discovery of an extended halo (∼40' in diameter) around the planetary nebula NGC 7293 (the Helix Nebula) observed in the 12 μm band from the Wide-field Infrared Survey Explorer all-sky survey. The mid-infrared halo has an axisymmetric structure with a sharp boundary to the northeast and a more diffuse boundary to the southwest, suggesting an interaction between the stellar wind and the interstellar medium (ISM). The symmetry axis of the halo is well aligned with that of a northeast arc, suggesting that the two structures are physically associated. We have attempted to fit the observed geometry with a model of a moving steady-state stellar wind interacting with the ISM. Possible combinations of the ISM density and the stellar velocity are derived from these fittings. The discrepancies between the model and the observations suggest that the stellar mass loss has a more complicated history, including possible time and angle dependences.

  7. IDENTIFICATION OF AN OLD PLANETARY-NEBULA AROUND THE PG-1159 STAR - PG-1520+525

    NARCIS (Netherlands)

    JACOBY, GH; VANDESTEENE, G

    We have surveyed two PG 1159 class stars for the presence of ancient planetary nebulae by direct Her imaging. While we easily found an 11' diameter nebula around PG 1520+525, no nebula was detected around PG 1424+535. This nebula is the tenth member of the class of planetary nebulae surrounding PG

  8. Pulsar Wind Bubble Blowout from a Supernova

    Energy Technology Data Exchange (ETDEWEB)

    Blondin, John M. [Department of Physics, North Carolina State University, Raleigh, NC 27695-8202 (United States); Chevalier, Roger A., E-mail: blondin@ncsu.edu [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904-4325 (United States)

    2017-08-20

    For pulsars born in supernovae, the expansion of the shocked pulsar wind nebula is initially in the freely expanding ejecta of the supernova. While the nebula is in the inner flat part of the ejecta density profile, the swept-up, accelerating shell is subject to the Rayleigh–Taylor instability. We carried out two- and three-dimensional simulations showing that the instability gives rise to filamentary structure during this initial phase but does not greatly change the dynamics of the expanding shell. The flow is effectively self-similar. If the shell is powered into the outer steep part of the density profile, the shell is subject to a robust Rayleigh–Taylor instability in which the shell is fragmented and the shocked pulsar wind breaks out through the shell. The flow is not self-similar in this phase. For a wind nebula to reach this phase requires that the deposited pulsar energy be greater than the supernova energy, or that the initial pulsar period be in the ms range for a typical 10{sup 51} erg supernova. These conditions are satisfied by some magnetar models for Type I superluminous supernovae. We also consider the Crab Nebula, which may be associated with a low energy supernova for which this scenario applies.

  9. Starlight excitation of permitted lines in gaseous nebulae

    International Nuclear Information System (INIS)

    Grandi, S.A.

    1975-01-01

    The weak heavy element permitted lines observed in the spectra of gaseous nebula have, with only a few exceptions, been thought to be excited only by recombination. The accuracy of this assumption for individual lines in nebula spectra is investigated in detail via model nebula calculations. First, approximations and techniques of calculation are considered for the three possible excitation mechanisms: recombination, resonance fluorescence by the starlight continuum, and resonance fluorescence by other nebular emission lines. Next, the permitted lines of O I as observed in gaseous nebulae are discussed. Thirdly, it is shown that varying combinations of recombination, resonance fluorescence by starlight, and resonance fluorescence by other nebula lines can successfully account for the observed strengths in the Orion Nebula of lines of the following ions: C II, N I, N II, N III, O II, Ne II, Si II, Si III, and S III. A similar analysis is performed for the lines in the spectra of the planetary nebulae NGC7662 and NGC7027, and, with some exceptions, satisfactory agreement between the observed and predicted line strengths is found. Finally, observations of the far red spectra of the Orion Nebula, the planetary nebulae NGC3242, NGC6210, NGC2392, IC3568, IC4997, NGC7027, and MGC7662, and the reflection nebulae IC431 and NGC2068 are reported

  10. 'Peony Nebula' Star Settles for Silver Medal

    Science.gov (United States)

    2008-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] Poster Version Movie If our galaxy, the Milky Way, were to host its own version of the Olympics, the title for the brightest known star would go to a massive star called Eta Carina. However, a new runner-up now the second-brightest star in our galaxy has been discovered in the galaxy's dusty and frenzied interior. This image from NASA's Spitzer Space Telescope shows the new silver medalist, circled in the inset above, in the central region of our Milky Way. Dubbed the 'Peony nebula' star, this blazing ball of gas shines with the equivalent light of 3.2 million suns. The reigning champ, Eta Carina, produces the equivalent of 4.7 million suns worth of light though astronomers say these estimates are uncertain, and it's possible that the Peony nebula star could be even brighter than Eta Carina. If the Peony star is so bright, why doesn't it stand out more in this view? The answer is dust. This star is located in a very dusty region jam packed with stars. In fact, there could be other super bright stars still hidden deep in the stellar crowd. Spitzer's infrared eyes allowed it to pierce the dust and assess the Peony nebula star's true brightness. Likewise, infrared data from the European Southern Observatory's New Technology Telescope in Chile were integral in calculating the Peony nebula star's luminosity. The Peony nebula, which surrounds the Peony nebular star, is the reddish cloud of dust in and around the white circle. The movie begins by showing a stretch of the dusty and frenzied central region of our Milky Way galaxy. It then zooms in to reveal the 'Peony nebula' star the new second-brightest star in the Milky Way, discovered in part by NASA's Spitzer Space Telescope. This is a three-color composite showing infrared observations from two Spitzer instruments. Blue represents 3.6-micron light and green shows light of 8 microns, both captured by Spitzer's infrared array

  11. Formation of iron sulphide in solar nebula

    Science.gov (United States)

    Kerridge, J. F.

    1976-01-01

    Noting that the iron sulfide in the Orgueil carbonaceous meteorite is an Fe-deficient monosulfide (pyrrhotite), it is suggested that such mineral chemistry is inconsistent with equilibrium condensation of the solar nebula and that the course of condensation may have been modified by kinetic effects. The effect of Ni on the reaction between Fe and S to produce FeS is examined, and possible reasons are considered for the fact that the cited meteorite differs in both crystal structure and Ni content from the predictions of equilibrium condensation. It is proposed that sulfide formation in the solar nebula may have been inhibited by sluggish diffusion, so that sulfur began to react with previously condensed troilite to form pyrrhotite. On this basis, observations of the Orgueil sulfides are shown to suggest that the course of solar-system condensation was modified by kinetic effects below about 700 K and that equilibrium may not have been achieved.

  12. Morpho-kinematic modeling of planetary nebulae

    Science.gov (United States)

    Chan, Tsz-Pan (Henry)

    2009-11-01

    The Planetary Nebulae (PNe) are the transition phase between asymptotic giant branch (AGB) star and white dwarfs for stars with masses between 1 and 8 M⊙. They were originally thought to be well-studied and can be explained with simple models. With the advance of imaging technology especially on Space Telescope (HST), the shapes of PNe have been found to be much more complex than we assumed to be. We aimed to investigate on the basic but mysterious intrinsic three-dimensional structures using the newly developed modeling software. Astronomers usually use the morphological classification on group and classify different properties of PNe. Over the past century many attempts have been made for this classification to seek for explaining and understanding the threedimensional structure that is responsible for the observed images. There have been two beliefs in explaining the variety of shapes of PNe and among them the most amazing one is that the morphologies can be accounted by different orientations of a single structure (Khromov & Kohoutek, 1968). Motivated by the study of Ring Nebula on its intrinsic structure, we investigated the possibility that different types of morphology in PNe can be explained by a single model. We used the newly developed modeling code SHAPE (Steffen et al., 2006), which cooperates the use of spatial information as well as its kinematics, and aimed to quantitatively investigate the basic structure inside PNe. We investigated two classical nebulae: NGC 2346 and NGC 2440. We proposed a simple but adequate model for these nebulae. Stimulated optical images and the p-v arrays were derived by the modeling code SHAPE to make comparison with the observed data to seek for the correctness of the model. Hubble velocity field and inverse square law density distribution were assumed throughout the modeling process. This model provides insights in seeking further adequate intrinsic structure of PNe.

  13. Nebula observations. Catalogues and archive of photoplates

    Science.gov (United States)

    Shlyapnikov, A. A.; Smirnova, M. A.; Elizarova, N. V.

    2017-12-01

    A process of data systematization based on "Academician G.A. Shajn's Plan" for studying the Galaxy structure related to nebula observations is considered. The creation of digital versions of catalogues of observations and publications is described, as well as their presentation in HTML, VOTable and AJS formats and basic principles of work in the interactive application of International Virtual Observatory the Aladin Sky Atlas.

  14. Search for binary nuclei in planetary nebulae

    International Nuclear Information System (INIS)

    Jasniewicz, G.

    1987-01-01

    Two planetary nebulae with central stars of late spectral type were observed: LT 5 and Abell 35. The variation of the systemic velocity of the G-binary in HD 112313 gives strong support to the idea of a third body in the nucleus of LT 5. In addition, it is concluded that observed photometric variations of BD -22 deg 3467 (the central star of Abell 35) can best be explained by the binary nature of the star. 9 references

  15. Search for binary nuclei in planetary nebulae

    Science.gov (United States)

    Jasniewicz, G.

    Two planetary nebulae with central stars of late spectral type were observed: LT 5 and Abell 35. The variation of the systemic velocity of the G-binary in HD 112313 gives strong support to the idea of a third body in the nucleus of LT 5. In addition, it is concluded that observed photometric variations of BD -22 deg 3467 (the central star of Abell 35) can best be explained by the binary nature of the star.

  16. Nebulae at keratoconus--the result after excimer laser removal.

    Science.gov (United States)

    Fagerholm, P; Fitzsimmons, T; Ohman, L; Orndahl, M

    1993-12-01

    Ten patients underwent excimer laser ablation due to nebula formation at keratoconus. The nebulae interfered significantly with contact lens fit or wearing time. The mean follow-up time in these patients was 16.5 months. Following surgery all patients could be successfully fitted with a contact lens and thereby obtain good visual acuity. Furthermore, contact lens wearing time was 8 hours or more in all cases. In 2 patients the nebulae recurred but were successfully retreated.

  17. Astrophysics of gaseous nebulae and active galactic nuclei

    International Nuclear Information System (INIS)

    Osterbrock, D.E.

    1989-01-01

    A graduate-level text and reference book on gaseous nebulae and the emission regions in Seyfert galaxies, quasars, and other types of active galactic nuclei (AGN) is presented. The topics discussed include: photoionization equilibrium, thermal equilibrium, calculation of emitted spectrum, comparison of theory with observations, internal dynamics of gaseous nebulae, interstellar dust, regions in the galactic context, planetary nebulae, nova and supernova remnants, diagnostics and physics of AGN, observational results on AGN

  18. Environmental impact study of Orion Nebula dust

    International Nuclear Information System (INIS)

    Cardelli, J.A.; Clayton, G.C.

    1988-01-01

    In this paper, new high-quality extinction curves are presented for Theta-1 Ori A, C, and D, and Theta-2 Ori A and B, over the wavelength range 3300-6000 A. These are coupled with near-infrared and ultraviolet data to produce extinction curves from 0.12 to 3.5 microns. The Orion Nebula region is interesting in that most of the known processes of dust-grain growth, processing, and destruction may be operating nearly simultaneously in close proximity to one another. Each of these processes is considered with respect to the observed extinction curves and environmental conditions in the Orion Nebula and its associated molecular cloud. Plausible grain populations are fit to the observed extinction curves. A good fit to the average Theta Ori extinction curve can be obtained with: (1) a combination of larger than normal silicate grains produced through coagulation and accretion; (2) evaporation of volatile mantles; and (3) a reduction in the column density of small (smaller than 0.01 micron) grains responsible for the bump and far-ultraviolet extinction through differential acceleration due to radiation pressure and possible evaporation. It seems plausible to explain the observed peculiar extinction in the Orion Nebula simply by environmental effects on otherwise normal grains. 59 references

  19. of Planetary Nebulae III. NGC 6781

    Directory of Open Access Journals (Sweden)

    Hugo E. Schwarz

    2006-01-01

    Full Text Available Continuing our series of papers on the three-dimensional (3D structures and accurate distances to Planetary Nebulae (PNe, we present our study of the planetary nebula NGC6781. For this object we construct a 3D photoionization model and, using the constraints provided by observational data from the literature we determine the detailed 3D structure of the nebula, the physical parameters of the ionizing source and the first precise distance. The procedure consists in simultaneously fitting all the observed emission line morphologies, integrated intensities and the two-dimensional (2D density map from the [SII] (sulfur II line ratios to the parameters generated by the model, and in an iterative way obtain the best fit for the central star parameters and the distance to NGC6781, obtaining values of 950±143 pc (parsec – astronomic distance unit and 385 LΘ (solar luminosity for the distance and luminosity of the central star respectively. Using theoretical evolutionary tracks of intermediate and low mass stars, we derive the mass of the central star of NGC6781 and its progenitor to be 0.60±0.03MΘ (solar mass and 1.5±0.5MΘ respectively.

  20. A PHOTOMETRICALLY AND MORPHOLOGICALLY VARIABLE INFRARED NEBULA IN L483

    International Nuclear Information System (INIS)

    Connelley, Michael S.; Hodapp, Klaus W.; Fuller, Gary A.

    2009-01-01

    We present narrow and broad K-band observations of the Class 0/I source IRAS 18148-0440 that span 17 years. The infrared nebula associated with this protostar in the L483 dark cloud is both morphologically and photometrically variable on a timescale of only a few months. This nebula appears to be an infrared analog to other well known optically visible variable nebulae associated with young stars, such as Hubble's Variable Nebula. Along with Cepheus A, this is one of the first large variable nebulae to be found that is only visible in the infrared. The variability of this nebula is most likely due to changing illumination of the cloud rather than any motion of the structure in the nebula. Both morphological and photometric changes are observed on a timescale only a few times longer than the light crossing time of the nebula, suggesting very rapid intrinsic changes in the illumination of the nebula. Our narrowband observations also found that H 2 knots are found nearly twice as far to the east of the source as to its west, and that H 2 emission extends farther east of the source than the previously known CO outflow.

  1. Influence of stellar duplicity on the form of planetary nebulae

    International Nuclear Information System (INIS)

    Kolesnik, I.G.; Pilyugin, L.S.

    1986-01-01

    Formation of planetary nebulae's spatial structures is considered. Simple expression for angular distribution of density in planetary nebulae is obtained. Bipolar structures are formed effectively in binary systems in which the velocity of the expanding shell around the main star is smaller than the orbital velocity of the satellite. Masses of satellites lie in the range 0.1-0.4Msub(sun). Theoretical isophotal contour map for the model of the planetary nebula NGC 3587 is consistent with observational data. It is shown that central stars of planetary nebulae are usually binary systems

  2. The current research of planetary nebulae distance measurement

    Science.gov (United States)

    Yang, Yuan-yuan; Zhu, Hui; Tian, Wen-wu; Wu, Dan

    2015-08-01

    Planetary Nebula is an important tracer of Galactic chemical history and evolution, star and interstellar evolution. Distance as a basic physical parameter of planetary nebula, is crucial to study its size, luminosity, ionized mass, formation rate, space density and Galactic distribution. Distance of planetary nebula has been studied for several decades, but most of their distances are not well determined, e.g. only thirty-one planetary nebulae have distance measurement with uncertainty within 20%. We summarize major distance measurement methods of planetary nebulae, i.e., trigonometric parallax, cluster member, expansion parallax, spectroscopic parallax, reddening, Na D absorption, determinations of central star gravities, Shklovsky method, kinematics method, and then discuss the limitations and applications scope of each method in detail. Actually, applying different methods to the same planetary nebulae can have a huge difference in distance, and even the same method can lead to great difference for the same planetary nebula. We focus on the kinematics method applied to planetary nebulae either seriously effected by Galactic extinction or having no observable centra star but being radio bright. The kinematics distance has been used in our on-going project of radio planetary nebulae distance measurement.

  3. Proto-planetary nebulae. I. The extreme bipolar nebulae M2-9 and M1-91

    International Nuclear Information System (INIS)

    Goodrich, R.W.

    1991-01-01

    Results are presented on a long-slit optical spectroscopy measurements of the prototype bipolar planetary nebula M2-9 and the M1-91 bipolar nebula, performed in order to determine the nature of the morphology of the wings of these two nebulae. It is concluded that the overall bipolar morphologies of these nebulae might be due to the orbital motions of binaries, with the orbital angular momentum vector defining the axis of the nebula. Secondary symmetries in the nebulae, such as the point-symmetric knots in M1-91, could be due to other symmetries, such as the rotation axis of one of the individual stars or the polar axis of the accretion disk. 39 refs

  4. Multi-Zone Modeling of the Pulsar Win Nebula HESS J1825-137

    Energy Technology Data Exchange (ETDEWEB)

    Van Etten, Adam; Romani, Roger W.; /Stanford U., Phys. Dept.

    2011-11-08

    The pulsar wind nebula associated with PSR J1826-1334, HESS J1825-137, is a bright very high energy source with an angular extent of {approx} 1{sup o} and spatially-resolved spectroscopic TeV measurements. The gamma-ray spectral index is observed to soften with increasing distance from the pulsar, likely the result of cooling losses as electrons traverse the nebula. We describe analysis of X-ray data of the extended nebula, as well as 3-D time-dependent spectral energy distribution modeling, with emphasis on the spatial variations within HESS J1825-137. The multi-wavelength data places significant constraints on electron injection, transport, and cooling within the nebula. The large size and high nebular energy budget imply a relatively rapid initial pulsar spin period of 13 {+-} 7 ms and an age of 40 {+-} 9 kyr. The relative fluxes of each VHE zone can be explained by advective particle transport with a radially decreasing velocity profile with v(r) {proportional_to} r{sup -0.5}. The evolution of the cooling break requires an evolving magnetic field which also decreases radially from the pulsar, B(r, t) {proportional_to} r{sup -0.7} E(t){sup 1/2}. Detection of 10 TeV flux {approx} 80 pc from the pulsar requires rapid diffusion of high energy particles with {tau}{sub esc} {approx} 90 (R/10 pc){sup 2}(E{sub e}/100TeV){sup -1} year, contrary to the common assumption of toroidal magnetic fields with strong magnetic confinement. The model predicts a rather uniform Fermi LAT surface brightness out to {approx} 1{sup o} from the pulsar, in good agreement with the recently discovered LAT source centered 0.5{sup o} southwest of PSR J1826-1334 with extension 0.6 {+-} 0.1{sup o}.

  5. Compact continuum radio sources in the Orion Nebula

    International Nuclear Information System (INIS)

    Garay, G.; Moran, J.M.; Reid, M.J.; European Southern Observatory, Garching, West Germany)

    1987-01-01

    The Orion Nebula was observed with the VLA in order to search for radio emission from compact H II regions indicative of embedded OB stars or from winds associated with pre-main sequence, low-mass stars. Fourteen of the 21 detected radio sources are within 30 arcsec of Omega 1 Orionis C; 13 of these objects are probably neutral condensations surrounded by ionized envelopes that are excited by the star. If the temperature of the ionized envelopes is 10,000 K and their electron densities decrease as the square of the distance from the core center, then a typical neutral condensation has a radius of 10 to the 15th cm and a peak electron density of 400,000/cu cm. Seven sources are in or near the Orion molecular cloud. Four of the sources have optical counterparts. Two are highly variable radio sources associated with X-ray sources, and two have radio spectra indicative of thermal emission. Two of the three optically invisible sources have radio emission likely to arise in a dense ionized envelope surrounding and excited by an early B-type star. 46 references

  6. Starlight excitation of permitted lines in the Orion Nebula

    International Nuclear Information System (INIS)

    Grandi, S.A.

    1975-01-01

    From an idealized model of the Orion Nebula and from an analysis of line ratios it is shown that direct starlight excitation of the permitted O I line dominates over recombination and Lyman line fluorescence. The line strengths predicted by this mechanism agree reasonably well with those observed in the Orion Nebula. The application of direct starlight excitation to other ions is also discussed

  7. The Planetary Nebula Spectrograph : The green light for galaxy kinematics

    NARCIS (Netherlands)

    Douglas, NG; Arnaboldi, M; Freeman, KC; Kuijken, K; Merrifield, MR; Romanowsky, AJ; Taylor, K; Capaccioli, M; Axelrod, T; Gilmozzi, R; Hart, J; Bloxham, G; Jones, D

    2002-01-01

    Planetary nebulae (PNe) are now well established as probes of galaxy dynamics and as standard candles in distance determinations. Motivated by the need to improve the efficiency of planetary nebulae searches and the speed with which their radial velocities are determined, a dedicated instrument-the

  8. An Analysis of Spectra in the Red Rectangle Nebula

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... This paper presents an analysis of a series of spectra in the Red Rectangle nebula. Only the reddest part of the spectra can safely be attributed to light from the nebula, and indicates Rayleigh scattering by the gas, in conformity with the large angles of scattering involved and the proximity of the star. In the ...

  9. Abundances of planetary nebulae NGC 7662 and NGC 6741

    NARCIS (Netherlands)

    Pottasch, [No Value; Beintema, DA; Salas, JB; Feibelman, WA

    2001-01-01

    The ISO and IUE spectra of the elliptical nebulae NGC7662 and NGC6741 are presented. These spectra are combined with the spectra in the visual wavelength region to obtain a complete, extinction corrected, spectrum. The chemical composition of the nebulae is then calculated and compared to previous

  10. IRAS-22568+6141 - A NEW BIPOLAR PLANETARY-NEBULA

    NARCIS (Netherlands)

    LARIO, PG; MANCHADO, A; RIERA, A; MAMPASO, A; POTTASCH, [No Value

    When carrying out a survey of IRAS sources with infrared colours similar to those of planetary nebulae, IRAS 22568 + 6141 was found to be a new young planetary nebula. It shows an extension of 8" and a bipolar structure. From its optical low resolution spectrum we have derived a high extinction

  11. Optical observations of planetary nebula candidates from the northern hemisphere

    NARCIS (Netherlands)

    VandeSteene, GC; Jacoby, GH; Pottasch, [No Value

    We present H alpha+[N II] images of 17 and low resolution spectra of 14 IRAS-selected planetary nebula candidates. The H alpha+[N II] images are presented as finding charts. Contour plots are shown for the resolved planetary nebulae. From these images accurate optical positions and mean optical

  12. Abundances of the planetary nebula Hu 1-2

    NARCIS (Netherlands)

    Pottasch, [No Value; Hyung, S; Aller, LH; Beintema, DA; Bernard-Salas, J; Feibelman, WA; Klockner, HR

    The ISO and IUE spectra of the "elliptical" nebula Hu 1-2 are presented. These spectra are combined with new, high resolution spectra in the visual wavelength region to obtain a complete, extinction corrected, spectrum. The chemical composition of the nebula is then calculated and compared to

  13. On the Radio-emitting Particles of the Crab Nebula: Stochastic Acceleration Model

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Shuta J. [Department of Physics, Faculty of Science and Engineering, Konan University, 8-9-1 Okamoto, Kobe, Hyogo 658-8501 (Japan); Asano, Katsuaki, E-mail: sjtanaka@center.konan-u.ac.jp [Institute for Cosmic Ray Research, The University of Tokyo, 5-1-5 Kashiwa-no-ha, Kashiwa City, Chiba, 277-8582 (Japan)

    2017-06-01

    The broadband emission of pulsar wind nebulae (PWNe) is well described by non-thermal emissions from accelerated electrons and positrons. However, the standard shock acceleration model of PWNe does not account for the hard spectrum in radio wavelengths. The origin of the radio-emitting particles is also important to determine the pair production efficiency in the pulsar magnetosphere. Here, we propose a possible resolution for the particle energy distribution in PWNe; the radio-emitting particles are not accelerated at the pulsar wind termination shock but are stochastically accelerated by turbulence inside PWNe. We upgrade our past one-zone spectral evolution model to include the energy diffusion, i.e., the stochastic acceleration, and apply the model to the Crab Nebula. A fairly simple form of the energy diffusion coefficient is assumed for this demonstrative study. For a particle injection to the stochastic acceleration process, we consider the continuous injection from the supernova ejecta or the impulsive injection associated with supernova explosion. The observed broadband spectrum and the decay of the radio flux are reproduced by tuning the amount of the particle injected to the stochastic acceleration process. The acceleration timescale and the duration of the acceleration are required to be a few decades and a few hundred years, respectively. Our results imply that some unveiled mechanisms, such as back reaction to the turbulence, are required to make the energies of stochastically and shock-accelerated particles comparable.

  14. Particle acceleration model for the broad-band baseline spectrum of the Crab nebula

    Science.gov (United States)

    Fraschetti, F.; Pohl, M.

    2017-11-01

    We develop a simple one-zone model of the steady-state Crab nebula spectrum encompassing both the radio/soft X-ray and the GeV/multi-TeV observations. By solving the transport equation for GeV-TeV electrons injected at the wind termination shock as a log-parabola momentum distribution and evolved via energy losses, we determine analytically the resulting differential energy spectrum of photons. We find an impressive agreement with the observed spectrum of synchrotron emission, and the synchrotron self-Compton component reproduces the previously unexplained broad 200-GeV peak that matches the Fermi/Large Area Telescope (LAT) data beyond 1 GeV with the Major Atmospheric Gamma Imaging Cherenkov (MAGIC) data. We determine the parameters of the single log-parabola electron injection distribution, in contrast with multiple broken power-law electron spectra proposed in the literature. The resulting photon differential spectrum provides a natural interpretation of the deviation from power law customarily fitted with empirical multiple broken power laws. Our model can be applied to the radio-to-multi-TeV spectrum of a variety of astrophysical outflows, including pulsar wind nebulae and supernova remnants, as well as to interplanetary shocks.

  15. Young planetary nebula with OH molecules - NGC 6302

    International Nuclear Information System (INIS)

    Payne, H.E.; Phillips, J.A.; Terzian, Y.

    1988-01-01

    The results of a sensitive survey of planetary nebulae in all four ground-state OH lines are reported. The results confirm that evolved planetary nebulas are not OH sources in general. However, one interesting object was not detected: an OH 1612 MHz maser in the young planetary nebula NGC 6302. This nebula may be in a brief evolutionary stage, similar to the young and compact planetary nebula Vy 2-2, where OH has already been detected. In addition, the results of further observations of NGC 6302 are reported, including VLA observations of the 1612 MHz line and continuum emission and detections of rotationally excited OH lines at 5-cm wavelength in absorption. 28 references

  16. Relation between radius and expansion velocity in planetary nebulae

    International Nuclear Information System (INIS)

    Chu, Y.H.; Kwitter, K.B.; Kaler, J.B.

    1984-01-01

    The expansion velocity-radius (R-V) relation for planetary nebulae is examined using the existing measurements of expansion velocities and recent calculations of radii. It is found that some of the previously alleged R-V relations for PN are not convincingly established. The scatter in the R-V plots may be due largely to stratification of ions in individual nebulae and to heterogeneity in the planetary nebula population. In addition, from new echelle/CCD observations of planetary nebulae, it is found that spatial information is essential in deriving the internal kinematic properties. Future investigations of R-V relations should be pursued separately for groups of planetaries with similar physical properties, and they should employ observations of appropriate low excitation lines in order to measure the expansion velocity at the surface of the nebula. 26 references

  17. Galactic planetary nebulae and evolution of their nuclei

    International Nuclear Information System (INIS)

    Khromov, G.S.

    1980-01-01

    The galactic system of planetary nebulae is investigated using previously constructed distance scale and kinematics data. A strong effect of observational selection is established, which has the consequence that with increasing distance, ever brighter and younger objects are observed. More accurate determinations of the spatial and surface densities of the planetary nebulae system are obtained as well as a new estimate of their total number in the Galaxy, which is approximately 200,000. New estimates are also made of the masses of the nebulae, the absolute magnitudes of the nebulae and their nuclei, and other physical parameters of these objects. The spatial and kinematic characteristics of the planetary nebulae indicate that they are objects of the old type I population. It is possible that their remote ancestors are main sequence stars of the type B8-A5-F or as yet unidentified objects of the same galactic subsystem

  18. A large bubble around the Crab Nebula

    Science.gov (United States)

    Romani, Roger W.; Reach, William T.; Koo, Bon Chul; Heiles, Carl

    1990-01-01

    IRAS and 21 cm observations of the interstellar medium around the Crab nebula show evidence of a large bubble surrounded by a partial shell. If located at the canonical 2 kpc distance of the Crab pulsar, the shell is estimated to have a radius of about 90 pc and to contain about 50,000 solar masses of swept-up gas. The way in which interior conditions of this bubble can have important implications for observations of the Crab are described, and the fashion in which presupernova evolution of the pulsar progenitor has affected its local environment is described.

  19. Planetary nebulae and the interstellar medium

    Science.gov (United States)

    Aller, L. H.

    1986-01-01

    In addition to available published data on planetary nebulae (PN), some 40 objects largely concentrated towards the galactic center and anticenter regions were included. All were observed with the Lick 3(sup m) telescope and image tube scanner. Abundances of C, N, O, Ne, Cl, and Ar were determined by a procedure in which theoretical models were used to obtain ionization correction factors (ICF). Of the 106 PN, 66 are N-rich and 40 are N-poor. There appear to be no significant differences between the average compositions in the solar neighborhood and the average taken over the entire observable portion of the galaxy.

  20. ELEMENT MASSES IN THE CRAB NEBULA

    Energy Technology Data Exchange (ETDEWEB)

    Sibley, Adam R.; Katz, Andrea M.; Satterfield, Timothy J.; Vanderveer, Steven J.; MacAlpine, Gordon M. [Department of Physics and Astronomy, Trinity University, San Antonio, TX 78212 (United States)

    2016-10-01

    Using our previously published element abundance or mass-fraction distributions in the Crab Nebula, we derived actual mass distributions and estimates for overall nebular masses of hydrogen, helium, carbon, nitrogen, oxygen and sulfur. As with the previous work, computations were carried out for photoionization models involving constant hydrogen density and also constant nuclear density. In addition, employing new flux measurements for [Ni ii]  λ 7378, along with combined photoionization models and analytic computations, a nickel abundance distribution was mapped and a nebular stable nickel mass estimate was derived.

  1. EXTREME PARTICLE ACCELERATION IN MAGNETIC RECONNECTION LAYERS: APPLICATION TO THE GAMMA-RAY FLARES IN THE CRAB NEBULA

    International Nuclear Information System (INIS)

    Cerutti, Benoît; Uzdensky, Dmitri A.; Begelman, Mitchell C.

    2012-01-01

    The gamma-ray space telescopes AGILE and Fermi detected short and bright synchrotron gamma-ray flares at photon energies above 100 MeV in the Crab Nebula. This discovery suggests that electron-positron pairs in the nebula are accelerated to PeV energies in a milligauss magnetic field, which is difficult to explain with classical models of particle acceleration and pulsar wind nebulae. We investigate whether particle acceleration in a magnetic reconnection layer can account for the puzzling properties of the flares. We numerically integrate relativistic test-particle orbits in the vicinity of the layer, including the radiation reaction force, and using analytical expressions for the large-scale electromagnetic fields. As they get accelerated by the reconnection electric field, the particles are focused deep inside the current layer where the magnetic field is small. The electrons suffer less from synchrotron losses and are accelerated to extremely high energies. Population studies show that, at the end of the layer, the particle distribution piles up at the maximum energy given by the electric potential drop and is focused into a thin fan beam. Applying this model to the Crab Nebula, we find that the emerging synchrotron emission spectrum peaks above 100 MeV and is close to the spectral shape of a single electron. The flare inverse Compton emission is negligible and no detectable emission is expected at other wavelengths. This mechanism provides a plausible explanation for the gamma-ray flares in the Crab Nebula and could be at work in other astrophysical objects such as relativistic jets in active galactic nuclei.

  2. Wind energy

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This chapter discusses the role wind energy may have in the energy future of the US. The topics discussed in the chapter include historical aspects of wind energy use, the wind energy resource, wind energy technology including intermediate-size and small wind turbines and intermittency of wind power, public attitudes toward wind power, and environmental, siting and land use issues

  3. Dark nebulae, dark lanes, and dust belts

    CERN Document Server

    Cooke, Antony

    2012-01-01

    As probably the only book of its type, this work is aimed at the observer who wants to spend time with something less conventional than the usual fare. Because we usually see objects in space by means of illumination of one kind or another, it has become routine to see them only in these terms. However, part of almost everything that we see is the defining dimension of dark shading, or even the complete obscuration of entire regions in space. Thus this book is focused on everything dark in space: those dark voids in the stellar fabric that mystified astronomers of old; the dark lanes reported in many star clusters; the magical dust belts or dusty regions that have given so many galaxies their identities; the great swirling 'folds' that we associate with bright nebulae; the small dark feature detectable even in some planetary nebulae; and more. Many observers pay scant attention to dark objects and details. Perhaps they are insufficiently aware of them or of the viewing potential they hold, but also it may be...

  4. Si isotope homogeneity of the solar nebula

    Energy Technology Data Exchange (ETDEWEB)

    Pringle, Emily A.; Savage, Paul S.; Moynier, Frédéric [Department of Earth and Planetary Sciences and McDonnell Center for the Space Sciences, Washington University in St. Louis, One Brookings Drive, St. Louis, MO 63130 (United States); Jackson, Matthew G. [Department of Earth Science, University of California, Santa Barbara, CA 93109 (United States); Barrat, Jean-Alix, E-mail: eapringle@wustl.edu, E-mail: savage@levee.wustl.edu, E-mail: pringle@ipgp.fr, E-mail: moynier@ipgp.fr, E-mail: jackson@geol.ucsb.edu, E-mail: Jean-Alix.Barrat@univ-brest.fr [Université Européenne de Bretagne, Université de Brest, CNRS UMR 6538 (Domaines Océaniques), I.U.E.M., Place Nicolas Copernic, F-29280 Plouzané Cedex (France)

    2013-12-20

    The presence or absence of variations in the mass-independent abundances of Si isotopes in bulk meteorites provides important clues concerning the evolution of the early solar system. No Si isotopic anomalies have been found within the level of analytical precision of 15 ppm in {sup 29}Si/{sup 28}Si across a wide range of inner solar system materials, including terrestrial basalts, chondrites, and achondrites. A possible exception is the angrites, which may exhibit small excesses of {sup 29}Si. However, the general absence of anomalies suggests that primitive meteorites and differentiated planetesimals formed in a reservoir that was isotopically homogenous with respect to Si. Furthermore, the lack of resolvable anomalies in the calcium-aluminum-rich inclusion measured here suggests that any nucleosynthetic anomalies in Si isotopes were erased through mixing in the solar nebula prior to the formation of refractory solids. The homogeneity exhibited by Si isotopes may have implications for the distribution of Mg isotopes in the solar nebula. Based on supernova nucleosynthetic yield calculations, the expected magnitude of heavy-isotope overabundance is larger for Si than for Mg, suggesting that any potential Mg heterogeneity, if present, exists below the 15 ppm level.

  5. The Eagle Nebula Science on NIF experiment

    Science.gov (United States)

    Kane, Jave; Heeter, Robert; Martinez, David; Pound, Marc; Remington, Bruce; Ryutov, Dmitri; Smalyuk, Vladimir

    2012-10-01

    The Eagle Nebula NIF experiment was one of nine selected for laser time through the Science on NIF program. The goal of this scale laboratory experiment is to study the dynamic evolution of distinctive structures in star forming regions of astrophysical molecular clouds such as the Pillars of the Eagle Nebula. That evolution is driven by photoionizing radiation from nearby stars. A critical aspect of the radiation is its very directional nature at the photoionization front. The long duration of the drive and its directionality can generate new classes of instabilities and dynamic flows at the front that may be responsible for the shapes of Pillars and other structures. The experiment will leverage and modify the existing NIF Radiation Transport platform, replacing the target at the back end of the halfraum with a collimating aperture, and extending the existing 20 ns drive to longer times, using a combination of gas fill and other new design features. The apertured, quasi-collimated drive will be used to drive a target placed 2 mm away from the aperture. The astrophysical background and the status of the experimental design will be presented.

  6. On planetary nebulae as sources of carbon dust: Infrared emission from planetary nebulae of the galactic halo

    International Nuclear Information System (INIS)

    Dinerstein, H.L.; Lester, D.F.

    1990-01-01

    Researchers examine here the characteristics of the infrared emission from the four planetary nebulae which are believed on the basis of their low overall metallicities to belong to the halo population. These nebulae are of particular interest because they are the most metal-poor ionized nebulae known in our Galaxy, and offer the opportunity to probe possible dependences of the dust properties on nebular composition. Researchers present fluxes extracted from co-addition of the IRAS data, as well as ground-based near infrared measurements. Each of the four halo objects, including the planetary nebula in the globular cluster M15, is detected in at least one infrared band. Researchers compare the estimated infrared excesses of these nebulae (IRE, the ratio of measured infrared power to the power available in the form of resonantly-trapped Lyman alpha photons) to those of disk planetary nebulae with similar densities but more normal abundances. Three of the halo planetaries have IRE values similar to those of the disk nebulae, despite the fact that their Fe- and Si-peak gas phase abundances are factors of 10 to 100 lower. However, these halo nebulae have normal or elevated C/H ratios, due to nuclear processing and mixing in their red giant progenitors. Unlike the other halo planetaries, DDDM1 is deficient in carbon as well as in the other light metals. This nebula has a substantially lower IRE than the other halo planetaries, and may be truly dust efficient. Researchers suggest that the deficiency is due to a lack of the raw material for producing carbon-based grains, and that the main bulk constituent of the dust in these planetary nebulae is carbon

  7. A COMPREHENSIVE SEARCH FOR STELLAR BOWSHOCK NEBULAE IN THE MILKY WAY: A CATALOG OF 709 MID-INFRARED SELECTED CANDIDATES

    Energy Technology Data Exchange (ETDEWEB)

    Kobulnicky, Henry A.; Chick, William T.; Schurhammer, Danielle P.; Andrews, Julian E.; Munari, Stephan A.; Olivier, Grace M.; Sorber, Rebecca L.; Wernke, Heather N.; Dale, Daniel A. [Dept. of Physics and Astronomy, University of Wyoming, Laramie, WY 82070 (United States); Povich, Matthew S.; Dixon, Don M. [Department of Physics and Astronomy, California State Polytechnic University, 3801 West Temple Avenue, Pomona, CA 91768 (United States)

    2016-12-01

    We identify 709 arc-shaped mid-infrared nebula in 24 μ m Spitzer Space Telescope or 22 μ m Wide Field Infrared Explorer surveys of the Galactic Plane as probable dusty interstellar bowshocks powered by early-type stars. About 20% are visible at 8 μ m or at shorter mid-infrared wavelengths. The vast majority (660) have no previous identification in the literature. These extended infrared sources are strongly concentrated near the Galactic mid-plane, with an angular scale height of ∼0.°6. All host a symmetrically placed star implicated as the source of a stellar wind sweeping up interstellar material. These are candidate “runaway” stars potentially having high velocities in the reference frame of the local medium. Among the 286 objects with measured proper motions, we find an unambiguous excess with velocity vectors aligned with the infrared morphology—kinematic evidence that many of these are “runaway” stars with large peculiar motions responsible for the bowshock signature. We discuss a population of “in situ” bowshocks (∼103 objects) that face giant H ii regions where the relative motions between the star and ISM may be caused by bulk outflows from an overpressured bubble. We also identify ∼58 objects that face 8 μ m bright-rimmed clouds and apparently constitute a sub-class of in situ bowshocks where the stellar wind interacts with a photoevaporative flow (PEF) from an eroding molecular cloud interface (i.e., “PEF bowshocks”). Orientations of the arcuate nebulae exhibit a correlation over small angular scales, indicating that external influences such as H ii regions are responsible for producing some bowshock nebulae. However, the vast majority of the nebulae in this sample appear to be isolated (499 objects) from obvious external influences.

  8. Theoretical investigation into the existence of molecules in planetary nebulae

    International Nuclear Information System (INIS)

    Carlson, W.J.

    1980-01-01

    Calculations of chemical kinetic equilibrium molecular abundances in the neutral regions of planetary nebulae are presented. The development of these abundances during the expansion of the nebula is calculated. The physical parameters in the neutral regions following the formation of the nebula by the ejection of the envelope of a long peiod variable star have been taken from available dynamical models. Similarly, the temperature and luminosity of the central star as a function of time have been taken from available theoretical calculations. The thermal equilibrium has been solved independently. The temperatures in the shell and later in the condensations which develop are in the range from 30 to 250 K. Number densities range from 10 7 for the youngest model calculated to 2 x 10 4 for neutral condensations in a 10,000 year old nebula. It is shown that, for a typical nebula containing 0.2 Msub solar, molecules are expected to be the dominant form for only a short period early in the expansion phase. Subsequently, the condensations are not sufficiently optically thick to permit the continued existence of a preponderance of molecules. The molecular abundances in the later models are similar to those in diffuse interstellar clouds. The expectation arising from those results is that little molecular material will be injected into the interstellar medium by planetary nebulae. There is, however, a remarkable resemblance between the conditions in the model calculated at very early stages of the expansion and conditions deduced from observations for proto-planetary nebulae

  9. Estimating the Binary Fraction of Central Stars of Planetary Nebulae

    Science.gov (United States)

    Douchin, Dimitri

    2015-01-01

    Planetary nebulae are the end-products of intermediate-mass stars evolution, following a phase of expansion of their atmospheres at the end of their lives. Observationally, it has been estimated that 80% of them have non-spherical shapes. Such a high fraction is puzzling and has occupied the planetary nebula community for more than 30 years. One scenario that would allow to justify the observed shapes is that a comparable fraction of the progenitors of central stars of planetary nebula (CSPN) are not single, but possess a companion. The shape of the nebulae would then be the result of an interaction with this companion. The high fraction of non-spherical planetary nebulae would thus imply a high fraction of binary central stars of planetary nebulae, making binarity a preferred channel for planetary nebula formation. After presenting the current state of knowledge regarding planetary nebula formation and shaping and reviewing the diverse efforts to find binaries in planetary nebulae, I present my work to detect a near-infrared excess that would be the signature of the presence of cool companions. The first part of the project consists in the analysis of data and photometry acquired and conducted by myself. The second part details an attempt to make use of archived datasets: the Sloan Digital Sky Survey Data Release 7 optical survey and the extended database assembled by Frew (2008). I also present results from a radial velocity analysis of VLT/UVES spectra for 14 objects aiming to the detection of spectroscopic companions. Finally I give details of the analysis of optical photometry data from our observations associated to the detection of companions around central stars of planetary nebulae using the photometric variability technique. The main result of this thesis is from the near-infrared excess studies which I combine with previously published data. I conclude that if the detected red and NIR flux excess is indicative of a stellar companion then the binary

  10. OpenNebula KVM SR-IOV driver

    CSIR Research Space (South Africa)

    Macleod, D

    2013-05-01

    Full Text Available Version: 0.1 License: Apache 2.0 Web Links: Project Website: http://wiki.chpc.ac.za/acelab:opennebula_sr-iov_vmm_driver Demonstration Video: http://www.youtube.com/watch?v=wB-Z1o2jGaY OpenNebula Page: http...://opennebula.org/software:ecosystem:sr-iov Prerequisites and Limitations 1. This driver has been developed to support OpenNebula 4.0 and KVM. The driver should be backwards compatible the OpenNebula 3.x. 2. SR-IOV capable hardware and software is required. Before using...

  11. Nebular Spectroscopy: A Guide on Hii Regions and Planetary Nebulae

    Science.gov (United States)

    Peimbert, Manuel; Peimbert, Antonio; Delgado-Inglada, Gloria

    2017-08-01

    We present a tutorial on the determination of the physical conditions and chemical abundances in gaseous nebulae. We also include a brief review of recent results on the study of gaseous nebulae, their relevance for the study of stellar evolution, galactic chemical evolution, and the evolution of the universe. One of the most important problems in abundance determinations is the existence of a discrepancy between the abundances determined with collisionally excited lines and those determined by recombination lines: this is called abundance discrepancy factor (ADF) problem, and we review results related to it. Finally, we discuss the possible reasons for the large t 2 values observed in gaseous nebulae.

  12. Transition radiation and peculiar nebulas. [Emission lines, color indices

    Energy Technology Data Exchange (ETDEWEB)

    Gurzadyan, G.A.

    1975-01-01

    The transition radiation resulting from the electrodynamic interaction of fast electrons with dust particles may explain certain observations for peculiar galactic nebulas--Herbig--Haro objects, cometary nebulas, nebulas of the Barnard 10 type, T Tauri stars, FU Ori stars, etc. Equations are derived for the energetic and physical properties of peculiar objects. The probable energy of the fast electrons turns out to be on the order of 1.5 MeV. The excitation of emission lines, the color indices in the case of transition radiation, etc., are also discussed. A possible application of this theory to FUOR's is pointed out.

  13. ISO Spectroscopy of Proto-Planetary Nebulae

    Science.gov (United States)

    Hrivnak, Bruce J.

    2000-01-01

    The goal of this program was to determine the chemical properties of the dust shells around protoplanetary nebulae (PPNs) through a study of their short-wavelength (6-45 micron) infrared spectra. PPNs are evolved stars in transition from the asymptotic giant branch to the planetary nebula stages. Spectral features in the 10 to 20 gm region indicate the chemical nature (oxygen- or carbon-rich), and the strengths of the features relate to the physical properties of the shells. A few bright carbon-rich PPNs have been observed to show PAH features and an unidentified 21 micron emission feature. We used the Infrared Space Observatory (ISO) to observe a sample of IRAS sources that have the expected properties of PPNs and for which we have accurate positions. Some of these have optical counterparts (proposal SWSPPN01) and some do not (SWSPPN02). We had previously observed these from the ground with near-infrared photometry and, for those with visible counterparts, visible photometry and spectroscopy, which we have combined with these new ISO data in the interpretation of the spectra. We have completed a study of the unidentified emission feature at 21 micron in eight sources. We find the shape of the feature to be the same in all of the sources, with no evidence of any substructure. The ratio of the emission peak to continuum ranges from 0.13 to 1.30. We have completed a study of seven PPNs and two other carbon-rich objects for which we had obtained ISO 2-45 micron observations. The unidentified emission features at 21 and 30 micron were detected in six sources, including four new detections of the 30 micron feature. This previously unresolved 30 micron feature was resolved and found to consist of a broad feature peaking at 27.2 micron (the "30 micron" feature) and a narrower feature peaking at 25.5 micron (the "26 micron" feature). This new 26 micron feature is detected in eight sources and is particularly strong in IRAS Z02229+6208 and 16594-4656. The unidentified

  14. Shape, structure, and morphology in planetary nebulae

    Science.gov (United States)

    Shaw, Richard A.

    2012-08-01

    A revival over the past two decades in planetary nebula (PN) morphological studies springs from a combination of factors, including the advent of wide-area, high dynamic range detectors; the growing archives of high resolution images from the X-ray to the sub-mm; and the advent of sophisticated models of the co-evolution of PNe and their central stars. Yet the story of PN formation from their immediate precursors, the AGB stars, is not yet fully written. PN morphology continues to inspire, provide context for physical interpretation, and serve as an ultimate standard of comparison for many investigations in this area of astrophysics. After a brief review of the remarkable successes of PN morphology, I summarize how this tool has been employed over the last half-decade to advance our understanding of PNe.

  15. Discovery of a Circumstellar Disk in the Lagoon Nebula

    Science.gov (United States)

    1997-04-01

    and barely visible on the HST-WFPC2 images taken at far-red optical wavelengths, is indeed situated behind the bright bow which is most conspicuous in the light of the red H-alpha spectral line, emitted by hydrogen atoms. The appearance of this object is thus similar to that of the proplyd sources found in the Orion Nebula. Caption to ESO PR Photo 10/97 [GIF, 296k] This is quite obvious from ESO Press Photo 10/97 which shows a colour composite based on HST-WFPC2 images obtained through narrow-band optical filtres, isolating the light of doubly ionized oxygen atoms ([OIII]; blue) and atomic hydrogen (H-alpha; green) and in a far-red band (red). Two more faint stars are seen in this image while the bright star Her 36 is outside the border of the image (its location is at the lower left, at the intersection of the vertical, saturated CCD column and the 45 o line caused by the light diffracted in the telescope). In contrast to the Orion Nebula, the non-uniform distribution of light-absorbing dust in the foreground makes the detection of the ionised tail difficult. Note that the image is rotated clockwise by 146 o with respect to the astronomical coordinate system. A proplyd in the Lagoon Nebula The detailed description of these results is the subject of a forthcoming research paper [5]. The new understanding of G5.97-1.17, i.e. as harbouring an evaporating circumstellar disk heated by far-ultraviolet radiation from Her 36, is supported by the fact that a sufficient amount of high-energy ultraviolet light is received from that star to account for the radio emission observed from the ionised bow. This object therefore represents the first proplyd-type object detected outside Orion at a much larger distance . The full description of this phenomenon requires detailed knowledge on the physical conditions of the star Her 36 and the object itself. Unfortunately, sofar little is known about the properties of the stellar wind from Her 36, the mass-loss rate from G5.97-1.17 and the

  16. Distinguishing between symbiotic stars and planetary nebulae

    Science.gov (United States)

    Iłkiewicz, K.; Mikołajewska, J.

    2017-10-01

    Context. The number of known symbiotic stars (SySt) is still significantly lower than their predicted population. One of the main problems in finding the total population of SySt is the fact that their spectrum can be confused with other objects, such as planetary nebulae (PNe) or dense H II regions. This problem is reinforced by the fact that in a significant fraction of established SySt the emission lines used to distinguish them from other objects are not present. Aims: We aim at finding new diagnostic diagrams that could help separate SySt from PNe. Additionally, we examine a known sample of extragalactic PNe for candidate SySt. Methods: We employed emission line fluxes of known SySt and PNe from the literature. Results: We found that among the forbidden lines in the optical region of spectrum, only the [O III] and [N II] lines can be used as a tool for distinguishing between SySt and PNe, which is consistent with the fact that they have the highest critical densities. The most useful diagnostic that we propose is based on He I lines, which are more common and stronger in SySt than forbidden lines. All these useful diagnostic diagrams are electron density indicators that better distinguish PNe and ionized symbiotic nebulae. Moreover, we found six new candidate SySt in the Large Magellanic Cloud and one in M 81. If confirmed, the candidate in M 81 would be the farthest known SySt thus far.

  17. PROPERTIES AND SPATIAL DISTRIBUTION OF DUST EMISSION IN THE CRAB NEBULA

    Energy Technology Data Exchange (ETDEWEB)

    Temim, Tea; Sonneborn, George; Dwek, Eli; Arendt, Richard G. [Observational Cosmology Lab, Code 665, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Gehrz, Robert D. [Minnesota Institute for Astrophysics, University of Minnesota, 116 Church Street SE, Minneapolis, MN 55455 (United States); Slane, Patrick [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Roellig, Thomas L., E-mail: tea.temim@nasa.gov [NASA Ames Research Center, MS 245-6, Moffett Field, CA 94035-1000 (United States)

    2012-07-01

    Recent infrared (IR) observations of freshly formed dust in supernova remnants have yielded significantly lower dust masses than predicted by theoretical models and measured from high-redshift observations. The Crab Nebula's pulsar wind is thought to be sweeping up freshly formed supernova (SN) dust along with the ejected gas. The evidence for this dust was found in the form of an IR excess in the integrated spectrum of the Crab and in extinction against the synchrotron nebula that revealed the presence of dust in the filament cores. We present the first spatially resolved emission spectra of dust in the Crab Nebula acquired with the Infrared Spectrograph on board the Spitzer Space Telescope. The IR spectra are dominated by synchrotron emission and show forbidden line emission from S, Si, Ne, Ar, O, Fe, and Ni. We derived a synchrotron spectral map from the 3.6 and 4.5 {mu}m images, and subtracted this contribution from our data to produce a map of the residual continuum emission from dust. The dust emission appears to be concentrated along the ejecta filaments and is well described by an amorphous carbon or silicate grain compositions. We find a dust temperature of 55 {+-} 4 K for silicates and 60 {+-} 7 K for carbon grains. The total estimated dust mass is (1.2-12) Multiplication-Sign 10{sup -3} M{sub Sun }, well below the theoretical dust yield predicted for a core-collapse supernova. Our grain heating model implies that the dust grain radii are relatively small, unlike what is expected for dust grains formed in a Type IIP SN.

  18. Classification of ISO SWS 01 spectra of proto-planetary nebulae: a search for precursors of planetary nebulae with [WR] central stars

    OpenAIRE

    Szczerba, R.; Stasi{ń}ska, G.; Siódmiak, N.; Górny, S. K.

    2002-01-01

    We have analyzed ISO SWS 01 observations for 61 proto-planetary nebulae candidates and classified their spectra according to their dominant chemistry. On the basis of our classification and the more general classification of SWS 01 spectra by Kraemer et al. (2002) we discuss the connection between proto-planetary nebulae candidates and planetary nebulae, with emphasis on possible precursors of planetary nebulae with [WR] central stars.

  19. Statistical and physical study of one-sided planetary nebulae.

    Science.gov (United States)

    Ali, A.; El-Nawawy, M. S.; Pfleiderer, J.

    The authors have investigated the spatial orientation of one-sided planetary nebulae. Most of them if not all are interacting with the interstellar medium. Seventy percent of the nebulae in the sample have inclination angles larger than 45° to the Galactic plane and 30% of the inclination angles are less than 45°. Most of the selected objects are old, evolved planetary nebulae with large dimensions, and not far away from the Galactic plane. Seventy-five percent of the objects are within 160 pc from the Galactic plane. The enhanced concavity arc can be explained physically as a result of the 'planetary nebulae-interstellar matter' interaction. The authors discuss the possible effect of the interstellar magnetic field in the concavity regions.

  20. Possible mass distributions in the nebulae of other solar systems

    International Nuclear Information System (INIS)

    Brown, W.K.

    1987-01-01

    The supernova shell fragmentation model of solar system formation - previously shown to be successful in describing the mass distribution of our solar system - is used to calculate the mass distributions of other solar nebulae. (Auth.)

  1. On the evolution of central stars of planetary nebulae

    International Nuclear Information System (INIS)

    Yahel, R.Z.

    1977-01-01

    The evolution of nuclei of planetary nebulae has been calculated from the end of the ejection stage that produces the nebulae to the white dwarf stage. The structure of the central star is in agreement with the general picture of Finzi (1973) about the mass ejection from the progenitors of planetary nebulae. It has been found that in order to obtain evolutionary track consistent with the Harman-Seaton track (O'Dell, 1968) one has to assume that the masses of the nuclei stars are less than approximately 0.7 solar masses. The calculated evolutionary time scale of the central stars of planetary nebulae is approximately 2 x 10 4 yr. This time scale is negatively correlated with the stellar mass: the heavier the stellar mass, the shorter the evolutionary time scale. (Auth.)

  2. The [NeIV] Lines in High Excitation Gaseous Nebulae.

    Science.gov (United States)

    Aller, L H

    1970-04-01

    The "forbidden" lines of three times ionized neon are among the most precious indicators of electron temperature and excitation. They are also predicted to be among the strongest lines observed in the far ultraviolet spectra of high excitation nebulae.

  3. The carbon budget in the outer solar nebula

    International Nuclear Information System (INIS)

    Simonelli, D.P.; Pollack, J.B.; Mckay, C.P.; Reynolds, R.T.; Summers, A.L.

    1989-01-01

    The compositional contrast between the giant-planet satellites and the significantly rockier Pluto/Charon system is indicative of different formation mechanisms; cosmic abundance calculations, in conjunction with an assumption of the Pluto/Charon system's direct formation from solar nebula condensates, strongly suggest that most of the carbon in the outer solar nebula was in CO form, in keeping with both the inheritance from the dense molecular clouds in the interstellar medium, and/or the Lewis and Prinn (1980) kinetic-inhibition model of solar nebula chemistry. Laboratory studies of carbonaceous chondrites and Comet Halley flyby studies suggest that condensed organic material, rather than elemental carbon, is the most likely candidate for the small percentage of the carbon-bearing solid in the outer solar nebula. 71 refs

  4. From red giant to planetary nebula - Dust, asymmetry, and polarization

    International Nuclear Information System (INIS)

    Johnson, J.J.; Jones, T.J.

    1991-01-01

    The polarization characteristics of stars in the stages of evolution from red giant to planetary nebula are investigated. Polarization is found to be a characteristic of the majority of these stars. The maximum observed polarization increases with age as the star evolves up the asymptotic giant branch (AGB) to the protoplanetary nebula phase, where the polarization reaches a maximum. The polarization then decreases as the star further evolves into a planetary nebula. These results indicate that aspherical mass loss is likely to be a continual feature of the late stages of stellar evolution, maintaining a clear continuity throughout the life of a star from the moment it first develops a measurable dust shell. The aspherical morphology seen in planetary nebulae has its origin in an intrinsic property of the star that is present at least as early as its arrival at the base of the AGB. 77 refs

  5. Chemical composition of planetary nebulae : Including ISO results

    NARCIS (Netherlands)

    Pottasch, [No Value; Beintema, DA; Salas, JB; Feibelman, WA; Henney, WJ; Franco, J; Martos, M; Pena, M

    2002-01-01

    The method of determining abundances using Infrared Space Observatory spectra is discussed. The results for seven planetary nebula are given. Using these data, a preliminary discussion of their evolution is given.

  6. Interpretation of the [ClIII] Lines in Gaseous Nebulae.

    Science.gov (United States)

    Aller, L H; Czyzak, S J; Walker, M F; Krueger, T K

    1970-05-01

    The intensity ratio of the green lambdalambda5517 and 5537 lines of [ClIII] serves as an indicatrix of the electron density in many gaseous nebulae whose spectra can be observed with an image converter. Quantitative interpretation of the line ratio requires accurate values of the collisional strengths and transition probabilities. With improved values of these parameters we have revised electron densities for a number of nebulae; the results seem to be in good accord with those derived from other criteria.

  7. GIANT Hα NEBULA SURROUNDING THE STARBURST MERGER NGC 6240

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Michitoshi [Hiroshima Astrophysical Science Center, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526 (Japan); Yagi, Masafumi; Komiyama, Yutaka; Kashikawa, Nobunari [Optical and Infrared Astronomy Division, National Astronomical Observatory, Mitaka, Tokyo 181-8588 (Japan); Ohyama, Youichi [Institute of Astronomy and Astrophysics, Academia Sinica, 11F of Astronomy-Mathematics Building, AS/NTU No.1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan, R.O.C. (China); Tanaka, Hisashi [Department of Physical Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526 (Japan); Okamura, Sadanori, E-mail: yoshidam@hiroshima-u.ac.jp [Department of Advanced Sciences, Faculty of Science and Engineering, Hosei University, Koganei, Tokyo 184-8584 (Japan)

    2016-03-20

    We revealed the detailed structure of a vastly extended Hα-emitting nebula (“Hα nebula”) surrounding the starburst/merging galaxy NGC 6240 by deep narrow-band imaging observations with the Subaru Suprime-Cam. The extent of the nebula is ∼90 kpc in diameter and the total Hα luminosity amounts to L{sub Hα} ≈ 1.6 × 10{sup 42} erg s{sup −1}. The volume filling factor and the mass of the warm ionized gas are ∼10{sup −4}–10{sup −5} and ∼5 × 10{sup 8} M{sub ⊙}, respectively. The nebula has a complicated structure, which includes numerous filaments, loops, bubbles, and knots. We found that there is a tight spatial correlation between the Hα nebula and the extended soft-X-ray-emitting gas, both in large and small scales. The overall morphology of the nebula is dominated by filamentary structures radially extending from the center of the galaxy. A large-scale bipolar bubble extends along the minor axis of the main stellar disk. The morphology strongly suggests that the nebula was formed by intense outflows—superwinds—driven by starbursts. We also found three bright knots embedded in a looped filament of ionized gas that show head-tail morphologies in both emission-line and continuum, suggesting close interactions between the outflows and star-forming regions. Based on the morphology and surface brightness distribution of the Hα nebula, we propose the scenario that three major episodes of starburst/superwind activities, which were initiated ∼10{sup 2} Myr ago, formed the extended ionized gas nebula of NGC 6240.

  8. Complex molecules in the Orion Kleinmann-Low nebula

    Directory of Open Access Journals (Sweden)

    Despois D.

    2014-02-01

    Full Text Available In the framework of the delivery to the early Earth of extraterrestrial molecules, we have studied complex molecular species toward the Orion Kleinmann-Low nebula. This nebula is rich in molecules as well as in nascent stars and planetary systems. We focus here on HCOOCH3, CH3OCH3 and deuterated methanol. Upper limits on species of prebiotic interest like glycine were also obtained.

  9. Models for the structure and origin of bipolar nebulae

    International Nuclear Information System (INIS)

    Morris, M.

    1981-01-01

    The appearance of bipolar nebulae-symmetric reflection nebulae centered on evolved, mass-losing stars-can most simply be accounted for in terms of an axisymmetric distribution of outflowing dust in which the dust is concentrated towards an equatorial plane and declines monotonically with latitude above that plane. The symmetrically placed ''horns'' that can be seen radiating out of some bipolar nebulae, notably GL 2688, are a natural consequence of such a dust distribution if, at some latitude, the radial optical depth to starlight falls rapidly below unity. Several models of bipolar nebulae are presented. These structural models for bipolar nebulae lead in turn to an investigation of how such a geometry might arise. Although nonradial pulsation, rotationally forced mass ejection by a single star, and mass loss from a common envelope binary are all considered, the most attractive origin for bipolar nebulae is a binary star system in which the primary is evolving up the red giant branch to the point at which its radius approaches its tidal radius. If this occurs before corotation of the primary with the secondary's orbit can be achieved, then matter from the primary's enveloped can be gravitationally ejected from the system by the secondary, the ejected material being concentrated toward the system's equatorial plane. Numerical models of this phenomenon show that gravitational ejection from an asynchronous binary system easily leads to terminal outflow velocities in the observed range (20--50 km s -1 ), and that the rate of mass loss and the time scale over which the mass ejection takes place are consistent with observations if the particle density in the outer layers of the primary's atmosphere from which the material is extracted is in the range 10 14 --10 15 cm -3 . If this hypothesis is applicable, bipolar nebulae will probably become planetary nebulae, as previously suggested on observational grounds

  10. YOUNG PLANETARY NEBULAE: HUBBLE SPACE TELESCOPE IMAGING AND A NEW MORPHOLOGICAL CLASSIFICATION SYSTEM

    International Nuclear Information System (INIS)

    Sahai, Raghvendra; Villar, Gregory G.; Morris, Mark R.

    2011-01-01

    Using Hubble Space Telescope images of 119 young planetary nebulae (PNs), most of which have not previously been published, we have devised a comprehensive morphological classification system for these objects. This system generalizes a recently devised system for pre-planetary nebulae, which are the immediate progenitors of PNs. Unlike previous classification studies, we have focused primarily on young PNs rather than all PNs, because the former best show the influences or symmetries imposed on them by the dominant physical processes operating at the first and primary stage of the shaping process. Older PNs develop instabilities, interact with the ambient interstellar medium, and are subject to the passage of photoionization fronts, all of which obscure the underlying symmetries and geometries imposed early on. Our classification system is designed to suffer minimal prejudice regarding the underlying physical causes of the different shapes and structures seen in our PN sample, however, in many cases, physical causes are readily suggested by the geometry, along with the kinematics that have been measured in some systems. Secondary characteristics in our system, such as ansae, indicate the impact of a jet upon a slower-moving, prior wind; a waist is the signature of a strong equatorial concentration of matter, whether it be outflowing or in a bound Keplerian disk, and point symmetry indicates a secular trend, presumably precession, in the orientation of the central driver of a rapid, collimated outflow.

  11. HAWC Analysis of the Crab Nebula Using Neural-Net Energy Reconstruction

    Science.gov (United States)

    Marinelli, Samuel; HAWC Collaboration

    2017-01-01

    The HAWC (High-Altitude Water-Cherenkov) experiment is a TeV γ-ray observatory located 4100 m above sea level on the Sierra Negra mountain in Puebla, Mexico. The detector consists of 300 water-filled tanks, each instrumented with 4 photomuliplier tubes that utilize the water-Cherenkov technique to detect atmospheric air showers produced by cosmic γ rays. Construction of HAWC was completed in March, 2015. The experiment's wide field of view (2 sr) and high duty cycle (> 95 %) make it a powerful survey instrument sensitive to pulsar wind nebulae, supernova remnants, active galactic nuclei, and other γ-ray sources. The mechanisms of particle acceleration at these sources can be studied by analyzing their energy spectra. To this end, we have developed an event-by-event energy-reconstruction algorithm employing an artificial neural network to estimate energies of primary γ rays. The Crab Nebula, the brightest source of TeV photons, makes an excellent calibration source for this technique. We will present preliminary results from an analysis of the Crab energy spectrum using this new energy-reconstruction method. This work was supported by the National Science Foundation.

  12. A SNAPshot Emission-line Imaging Survey of Very Low Excitation Planetary Nebulae

    Science.gov (United States)

    Sahai, Raghvendra

    1996-07-01

    We propose a "snapshot" emission-line imaging survey of a set of 30 very young planetary nebulae {PNe} selected on the basis of their very low excitation {VLE} characteristics, as evidenced by their very low O IIILambda5007, 4959 to H Alpha line flux ratios. These data will provide a unique, comprehensive dataset of images to address the issue of how AGB stars evolve into PNe. Planetary nebulae show a dazzling variety of structures not apparent in the circumstellar envelopes of the AGB stars from which they evolve. It is believed that the physical phenomena which shape the PNe occur early in thee formation history, involving the hydrodynamic interaction of one or more fast winds with the slower AGB mass-outflow. However, since the youngest PNe, which retain the clearest visible signatures of these phenomena, are very compact {VLE PNe, which together with distances and expansion velocities, will allow detailed tests of stellar evolutionary models. Classification of the morphological structures observed in this sample of very young PNe, and statistical comparisons with more evolved PNe populations, will set new constraints on hydrodynamical models of nebular evolution.

  13. The Milky Way Project: A Citizen Science Catalog of Infrared Bow Shock Nebulae

    Science.gov (United States)

    Dixon, Don; Jayasinghe, Tharindu; Povich, Matthew S.

    2017-01-01

    We present preliminary results from the first citizen-science search for infrared stellar-wind bow shock candidates. This search uses the Milky Way project, hosted by the Zooniverse, an online platform with over 1 million volunteer citizen scientists. Milky Way Project volunteers examine 77,000 randomly-distributed Spitzer image cutouts at varying zoom levels. Volunteers mark the infrared arc of potential bow shock candidates as well as the star likely driving the nebula. We produce lists of candidates from bow shocks flagged by multiple volunteers, which after merging and final visual review form the basis for our catalog. Comparing our new catalog to a recently-published catalog of 709 infrared bow shock candidates identified by a small team of (primarily undergraduate) researchers will allow us to assess the effectiveness of citizen science for this type of search and should yield a more complete catalog. Planned studies using these large catalogs will improve constraints on the mass-loss rates for the massive stars that create these bow shock nebulae. Mass-loss rates are highly uncertain but are a critical component of evolutionary models for massive stars. This work is supported by the National Science Foundation under grants CAREER-1454334, AST-1411851 (RUI) and AST-1412845.

  14. The central object R 136 in the gas nebula 30 Doradus - Structure, color, mass and excitation parameter

    Science.gov (United States)

    Feitzinger, J. V.; Schlosser, W.; Schmidt-Kaler, T.; Winkler, C.

    1980-04-01

    Photographic observations with the 3,6 m ESO and 0,61 m Bochum telescopes in different colours of the central part of the 30 Doradus Nebula are presented. The structure of the central object R 136 is studied by image analysis methods, i.e. digitalisation and contrast enhancement. The central object R 136 of the supergiant gas nebula 30 Doradus consists of three components; the main component covers an area of (0.7 pc)2. The components show a colour gradient, R 136a being much bluer than R 136c. This composite structure is seen in photographic IR, U and V likewise. A plot of the spectral intensity distribution from λ = 73 cm to 1550 Å of the central 2'.5 × 2'.5 region of 30 Doradus is given. The main contribution in the UV can be attributed to R 136. This object dominates the of the central part of 30 Doradus. It determines together with 16 other bright stars in the center the excitation parameter of the nebula. Its effective temperature lies between 50000 and 55000K and the tipper and lower mass values are 250 and 103 solar masses. The bolometric magnitude is brighter than -l4m. The inner structure of 30 Doradus can be explained as the result of the stellar-wind of R 136.

  15. The Orion Nebula: Still Full of Surprises

    Science.gov (United States)

    2011-01-01

    This ethereal-looking image of the Orion Nebula was captured using the Wide Field Imager on the MPG/ESO 2.2-metre telescope at the La Silla Observatory, Chile. This nebula is much more than just a pretty face, offering astronomers a close-up view of a massive star-forming region to help advance our understanding of stellar birth and evolution. The data used for this image were selected by Igor Chekalin (Russia), who participated in ESO's Hidden Treasures 2010 astrophotography competition. Igor's composition of the Orion Nebula was the seventh highest ranked entry in the competition, although another of Igor's images was the eventual overall winner. The Orion Nebula, also known as Messier 42, is one of the most easily recognisable and best-studied celestial objects. It is a huge complex of gas and dust where massive stars are forming and is the closest such region to the Earth. The glowing gas is so bright that it can be seen with the unaided eye and is a fascinating sight through a telescope. Despite its familiarity and closeness there is still much to learn about this stellar nursery. It was only in 2007, for instance, that the nebula was shown to be closer to us than previously thought: 1350 light-years, rather than about 1500 light-years. Astronomers have used the Wide Field Imager on the MPG/ESO 2.2-metre telescope at ESO's La Silla Observatory in Chile to observe the stars within Messier 42. They found that the faint red dwarfs in the star cluster associated with the glowing gas radiate much more light than had previously been thought, giving us further insights into this famous object and the stars that it hosts. The data collected for this science project, with no original intention to make a colour image, have now been reused to create the richly detailed picture of Messier 42 shown here. The image is a composite of several exposures taken through a total of five different filters. Light that passed through a red filter as well as light from a filter that

  16. Signatures of Chemical Evolution in Protostellar Nebulae

    Science.gov (United States)

    Nuth, Joseph A., III; Johnson, Natasha

    2011-01-01

    A decade ago observers began to take serious notice of the presence of crystalline silicate grains in the dust flowing away from some comets. While crystallinity had been seen in such objects previously, starting with the recognitions by Campins and Ryan (1990) that the 10 micron feature of Comet Halley resembled that of the mineral forsterite, most such observations were either ignored or dismissed as no path to explain such crystalline grains was available in the literature. When it was first suggested that an outward flow must be present to carry annealed silicate grains from the innermost regions of the Solar Nebula out to the regions where comets could form (Nuth, 1999; 2001) this suggestion was also dismissed because no such transport mechanism was known at the time. Since then not only have new models of nebular dynamics demonstrated the reality of long distance outward transport (Ciesla, 2007; 2008; 2009) but examination of older models (Boss, 2004) showed that such transport had been present but had gone unrecognized for many years. The most unassailable evidence for outward nebular transport came with the return of the Stardust samples from Comet Wild2, a Kuiper-belt comet that contained micron-scale grains of high temperature minerals resembling the Calcium-Aluminum Inclusions found in primitive meteorites (Zolensky et aI., 2006) that formed at T > 1400K. Now that outward transport in protostellar nebulae has been firmly established, a re-examination of its consequences for nebular gas is in order that takes into account both the factors that regulate both the outward flow as well as those that likely control the chemical composition of the gas. Laboratory studies of surface catalyzed reactions suggest that a trend toward more highly reduced carbon and nitrogen compounds in the gas phase should be correlated with a general increase in the crystallinity of the dust (Nuth et aI., 2000), but is such a trend actually observable? Unlike the Fischer-Tropsch or

  17. Observations of the Crab Nebula with the Chandra X-Ray Observatory

    Science.gov (United States)

    Weisskopf, Martin C.

    2012-01-01

    The Crab Nebula and its pulsar has been the subject of a number of detailed observations with the Chandra X-ray Observatory. The superb angular resolution of Chandra s high-resolution telescope has made possible numerous remarkable results. Here we describe a number of specific studies of the Crab that I and my colleagues have undertaken. We discuss the geometry of the system, which indicates that the "inner X-ray ring", typically identified with the termination shock of the pulsar s particle wind, is most likely not in the equatorial plane of the pulsar. Other topics are the northern wisps and their evolution with time; the characterization of features in the jet to the southeast; pulse-phase spectroscopy and possible correlations with the features at other wavelengths, particularly the optical polarization; and a search for correlations of the X-ray flux with the recently-discovered gamma -ray flares.

  18. Scaled Eagle Nebula Experiments on NIF

    Energy Technology Data Exchange (ETDEWEB)

    Pound, Marc W. [Univ. of Maryland, College Park, MD (United States)

    2017-03-28

    We performed scaled laboratory experiments at the National Ignition Facility laser to assess models for the creation of pillar structures in star-forming clouds of molecular hydrogen, in particular the famous Pillars of the Eagle Nebula. Because pillars typically point towards nearby bright ultraviolet stars, sustained directional illumination appears to be critical to pillar formation. The experiments mock up illumination from a cluster of ultraviolet-emitting stars, using a novel long duration (30--60 ns), directional, laser-driven x-ray source consisting of multiple radiation cavities illuminated in series. Our pillar models are assessed using the morphology of the Eagle Pillars observed with the Hubble Space Telescope, and measurements of column density and velocity in Eagle Pillar II obtained at the BIMA and CARMA millimeter wave facilities. In the first experiments we assess a shielding model for pillar formation. The experimental data suggest that a shielding pillar can match the observed morphology of Eagle Pillar II, and the observed Pillar II column density and velocity, if augmented by late time cometary growth.

  19. Accounting for planet-shaped planetary nebulae

    Science.gov (United States)

    Sabach, Efrat; Soker, Noam

    2018-01-01

    By following the evolution of several observed exoplanetary systems, we show that by lowering the mass-loss rate of single solar-like stars during their two giant branches, these stars will swallow their planets at the tip of their asymptotic giant branch (AGB) phase. This will most likely lead the stars to form elliptical planetary nebulae (PNe). Under the traditional mass-loss rate these stars will hardly form observable PNe. Stars with a lower mass-loss rate as we propose, about 15 per cent of the traditional mass-loss rate of single stars, leave the AGB with much higher luminosities than what traditional evolution produces. Hence, the assumed lower mass-loss rate might also account for the presence of bright PNe in old stellar populations. We present the evolution of four exoplanetary systems that represent stellar masses in the range of 0.9-1.3 M⊙. The justification for this low mass-loss rate is our assumption that the stellar samples that were used to derive the traditional average single-star mass-loss rate were contaminated by stars that suffer binary interaction.

  20. Abundances in Eight M31 Planetary Nebulae

    Science.gov (United States)

    Hensley, Kerry G.; Kwitter, Karen B.; Corradi, Romano; Galera-Rosillo, R.; Balick, Bruce; Henry, Richard B. C.

    2014-06-01

    As part of a continuing project using planetary nebulae (PNe) to study the chemical evolution and formation history of M31 (see accompanying poster by Balick et al.), we obtained spectra of eight PNe in the fall of 2013 with the OSIRIS spectrograph on the GTC. All of these PNe are located outside M31’s inner disk and bulge. Spectral coverage extended from 3700-7800Å with a resolution of ~6 Å. Especially important in abundance determinations is the detection of the weak, temperature-sensitive auroral line of [O III], at 4363Å, which is often contaminated by Hg I 4358Å from streetlights; the remoteness of the GTC eliminated this difficulty. We reduced and measured the spectra using IRAF, and derived nebular diagnostics and abundances with ELSA, our in-house five-level-atom program. Here we report the chemical abundances determined from these spectra. The bottom line is that the oxygen abundances in these PNe are all within a factor of 2-3 of the solar value, (as are all the other M31 PNe our team has previously measured) despite the significant range of galactocentric distance. Future work will use these abundances to constrain models of the central star to estimate progenitor masses and ages. In particular we will use the results to investigate the hypothesis that these PNe might represent a population related to the encounter between M31 and M33 ~3 Gy ago. We gratefully acknowledge support from Williams College.

  1. Dynamical evolution of the Orion nebula cluster

    Science.gov (United States)

    Scally, Aylwyn; Clarke, Cathie; McCaughrean, Mark J.

    2005-04-01

    Observations of star formation in the Galaxy support the conclusion that most stars - including our own - form in an environment like the Orion nebula cluster (ONC). We construct a range of dynamical models of the ONC, using Aarseth's NBODY6 code, and explore their consequences for the origins of the cluster and its subsequent evolution. We find that the most acceptable fits to the cluster density profile are obtained in models where the cluster is set up in virial equilibrium and where the cluster extends well outside the limits of existing photometric surveys. However, current estimates of the virial ratio suggest the cluster is already unbound. We show that the size and age of the ONC in this case imply either that it became unbound only very recently, or else that it has expanded quasi-statically. In the latter case, its initial central density may have exceeded its current value by 1-2 orders of magnitude. We stress the importance of future proper motion experiments to distinguish between these possibilities.

  2. The Rapid Evolution of the Exciting Star of the Stingray Nebula

    Science.gov (United States)

    Reindl, N.; Rauch, T.; Parthasarathy, M.; Werner, K.; Kruk, J.W.; Hamann, W. R.; Sander, A.; Todt, H.

    2014-01-01

    Context: SAO244567, the exciting star of the Stingray nebula, is rapidly evolving. Previous analyses suggested that it has heated up from an effective temperature of about 21 kK in 1971 to over 50 kK in the 1990s. Canonical post-asymptotic giant branch evolution suggests a relatively high mass while previous analyses indicate a low-mass star. Aims: A comprehensive model-atmosphere analysis of UV and optical spectra taken during 1988-2006 should reveal the detailed temporal evolution of its atmospheric parameters and provide explanations for the unusually fast evolution. Methods: Fitting line profiles from static and expanding non-LTE model atmospheres to the observed spectra allowed us to study the temporal change of effective temperature, surface gravity, mass-loss rate, and terminal wind velocity. In addition, we determined the chemical composition of the atmosphere. Results: We find that the central star has steadily increased its effective temperature from 38 kK in 1988 to a peak value of 60 kK in 2002. During the same time, the star was contracting, as concluded from an increase in surface gravity from log g = 4.8 to 6.0 and a drop in luminosity. Simultaneously, the mass-loss rate declined from log(M/M (solar mass) yr (exp -1)) = -9.0 to -11.6 and the terminal wind velocity increased from v (infinity) = 1800 km s (exp -1) to 2800 km s (exp -1). Since around 2002, the star stopped heating and has cooled down again to 55 kK by 2006. It has a largely solar surface composition with the exception of slightly subsolar carbon, phosphorus, and sulfur. The results are discussed by considering different evolutionary scenarios. Conclusions: The position of SAO244567 in the log T (sub eff) -log g plane places the star in the region of sdO stars. By comparison with stellar-evolution calculations, we confirm that SAO244567 must be a low-mass star (M nebula with a kinematical age of only about 1000 years. We speculate that the star could be a late He-shell flash object

  3. Short-lived Isotopes from a Close-by AGB Star Triggering the Protosolar Nebula

    Science.gov (United States)

    Gallino, R.; Busso, M.; Wasserburg, G. J.; Straniero, O.

    The presence of short-lived isotopes in the early solar system, in particular 26Al, 41Ca, 60Fe, and 107Pd, point to a close-by and fresh nucleosynthesis source, possibly triggering the collapse of the protosolar nebula. We present the results of nucleosynthesis calculations based on an AGB polluting hypothesis. A general concordance of the predicted yields of the above radioactivities relative to 26Al can be obtained in the case of an intermediate mass AGB star with hot bottom burning in the envelope (thus producing 26Al), and mixing through a series of third dredge-up episodes a fraction of the C-rich and s-processed material from the He intershell with the extended envelope. Polution of the protosolar nebula with freshly synthesized material may derive from the efficient winds of the AGB star. In AGB stars, the s-process nucleosynthesis occurs both during the maximum phase of every thermal runaway, driven by the partial activation of the 22Ne(alpha,n)25Mg reaction, and in the interpulse phase, where the 13C nuclei are fully consumed in radiative conditions by the activation of the 13C(alpha,n)16O reaction. We have used different prescriptions for the amount of the 13C nuclei present in the intershell. A minimum amount of 13C is naturally expected in the ashes of H-shell burning. Possible formation of an extra "13C-pocket" derives from the injection of a small amount of protons from the envelope into the 12C-rich intershell during any third dredge-up episode, when the H-shell is inactivated. Prediction for other short-lived, 36Cl, 135Cs, and 205Pb, are given. General consequences for the pollution of the protosolar nebula with newly synthesized stable isotopes from the AGB winds are outlined. The origin of other detected short-lived nuclei, in particular 53Mn, 129I, and 182Hf, which cannot come from an AGB source, is analysed. The alternative trigger hypothesis by a close-by Supernova is discussed.

  4. The Herschel Planetary Nebula Survey (HerPlaNS)

    Science.gov (United States)

    Ueta, T.; Ladjal, D.; HerPlaNS Team

    2012-12-01

    The Herschel Planetary Nebula Survey (HerPlaNS, PI: T. Ueta) is one of the largest Herschel Open Time 1 program in which we explore the far-infrared aspects of 11 planetary nebulae (PNs) with the Herschel Space Observatory, exploiting its unprecedented capabilities in broadband photometry mapping, spectral mapping, and integral-field spectroscopy. We perform (1) deep PACS/SPIRE broadband mapping to account for the coldest dust component of the nebulae and determine the spatial distribution of the dusty haloes in the target PNs, (2) exhaustive PACS/SPIRE line mapping in far-IR atomic and molecular lines in two representative PNs to diagnose the energetics of the nebulae as a function of location in the nebulae, and (3) PACS/SPIRE spectral-energy-distribution spectroscopy at several positions in the target PNs to understand variations in the physical conditions as a function of location in the nebulae, to build a more complete picture of the interplay between the dust and gas components as a function of location in the nebulae. The HerPlaNS survey is distinguished from the existing guaranteed-time Key Program (KPGT), "Mass Loss of Evolved StarS" (MESS, PI: M. Groenewegen, including 10 PNs) by the extra dimension added by spectral mapping and integral-field spatio-spectroscopy that permit simultaneous probing of the gas and dust component in the target PNs. Through these investigations, we will consider the energetics of the entire gas-dust system as a function of location in the nebulae, which is a novel approach that has rarely been taken previously. HerPlaNS is conducted in collaboration with the Chandra Planetary Survey (ChanPlaNS, PI: J.H. Kastner) to furnish substantial PN data resources that would allow us—a community of PN astronomers—to tackle a multitude of unanswered issues in PN physics, from the shaping mechanisms of the nebulae to the energetics of the multi-phased gas-dust system surrounding the central white dwarf. These PN surveys, combined with

  5. High-energy Emission from the Composite Supernova Remnant MSH 15-56

    Science.gov (United States)

    Temim, Tea; Slane, Patrick; Castro, Daniel; Plucinsky, Paul; Gelfand, Joseph; Dickel, John R.

    2013-01-01

    MSH 1556 (G326.3-1.8) is a composite supernova remnant (SNR) that consists of an SNR shell and a displaced pulsar wind nebula (PWN) in the radio. We present XMM-Newton and Chandra X-ray observations of the remnant that reveal a compact source at the tip of the radio PWN and complex structures that provide evidence for mixing of the supernova (SN) ejecta with PWN material following a reverse shock interaction. The X-ray spectra are well fitted by a non-thermal power-law model whose photon index steepens with distance from the presumed pulsar, and a thermal component with an average temperature of 0.55 keV. The enhanced abundances of silicon and sulfur in some regions, and the similar temperature and ionization timescale, suggest that much of the X-ray emission can be attributed to SN ejecta that have either been heated by the reverse shock or swept up by the PWN. We find one region with a lower temperature of 0.3 keV that appears to be in ionization equilibrium.Assuming the Sedov model, we derive a number of SNR properties, including an age of 16,500 yr. Modeling of the gamma-ray emission detected by Fermi shows that the emission may originate from the reverse shock-crushed PWN.

  6. Wind Energy

    International Nuclear Information System (INIS)

    Rodriguez D, J.M.

    1998-01-01

    The general theory of the wind energy conversion systems is presented. The availability of the wind resource in Colombia and the ranges of the speed of the wind in those which is possible economically to use the wind turbines are described. It is continued with a description of the principal technological characteristics of the wind turbines and are split into wind power and wind-powered pumps; and its use in large quantities grouped in wind farms or in autonomous systems. Finally, its costs and its environmental impact are presented

  7. A turbulent two-phase flow model for nebula flows

    International Nuclear Information System (INIS)

    Champney, J.M.; Cuzzi, J.N.

    1990-01-01

    A new and very efficient turbulent two-phase flow numericaly model is described to analyze the environment of a protoplanetary nebula at a stage prior to the formation of planets. Focus is on settling processes of dust particles in flattened gaseous nebulae. The model employs a perturbation technique to improve the accuracy of the numerical simulations of such flows where small variations of physical quantities occur over large distance ranges. The particles are allowed to be diffused by gas turbulence in addition to settling under gravity. Their diffusion coefficients is related to the gas turbulent viscosity by the non-dimensional Schmidt number. The gas turbulent viscosity is determined by the means of the eddy viscosity hypothesis that assumes the Reynolds stress tensor proportional to the mean strain rate tensor. Zero- and two-equation turbulence models are employed. Modeling assumptions are detailed and discussed. The numerical model is shown to reproduce an existing analytical solution for the settling process of particles in an inviscid nebula. Results of nebula flows are presented taking into account turbulence effects of nebula flows. Diffusion processes are found to control the settling of particles. 24 refs

  8. Spectral and interferometric observation of four emission nebulas

    International Nuclear Information System (INIS)

    Lozinskaya, T.A.; Klement'eva, A.Yu.; Zhukov, G.V.; Shenavrin, V.I.

    1975-01-01

    Results of spectrophotometric and interferometric observations of four emission nebulae are presented; electron temperature Te and electron density Ne are estimated; mean beam velocities and parameters of the internal motion in the nebylae are determined. The following objects have been investigated: 1) a bright compact nebulae of unknown nature 2.5 in size which is identified with the non-thermal radiosource G6.4-0.5 in the region W28; 2) nebulae RCW171 5' in size which is identified with the radiosource G23.1+0.6; 3) the nebulae Simeiz 34/Sharpless 261/d 1950 =6sup(h)05sup(m), sigma 1950 =+15 deg 49'; its diameter is approximately 30 an extensive complex of bright emission fibres in the nebulae Swan, which are partially projected into a possible remainder of the outburst of a supernova W63; L 1950 =20sup(h)17sup(m); S 1950 =45 deg 30' its diameter is approximately 1 deg 5

  9. Continuous emission from the gaseous nebula beyond the Lyman limit

    International Nuclear Information System (INIS)

    Bolgova, G.T.; Khromov, G.S.

    1975-01-01

    Models of spherically-symmetric isothermic hydrogen nebula with an exciting star in the centre are considered. Spectra and energies of diffuse radiation of nebula and of direct radiation of its kernel are calculated in the Lyman continuum for the external boundary of the object. The spectrum of the diffuse radiation is shown to be to a great extent invariant in relation to all parameters of models except for Tsub(e). The total loss in energy of Lsub(c)-radiation of kernel through the external border of the ionized nebula, amounts to 20-30% in the average even at a considerable optical thickness of the object tausub(0). The greater part of this energy is transferred via direct ionizing radiation, though the relative contribution of the diffuse Lsub(c)-radiation of nebula reaches 30% at low temperatures of the exciting star and at large tausub(0). The results of this work may be applied to calculating the energy balance of the star-nebula system, the heating of dust particles and ionization of the neighbouring interstellar medium, and also for determining the conditions of observation of the far ultra-violet radiation of similar objects

  10. The discovery of a highly polarized bipolar nebula

    International Nuclear Information System (INIS)

    Wolstencroft, R.D.; Scarrott, S.M.; Menzies, J.

    1989-01-01

    During a search for the optical counterparts of IRAS sources whose flux peaks at 25 microns, a small faint bipolar nebula was discovered in Monoceros at the position of IRAS 07131-0147. The CCD images display the object's considerable structure. The central star seems relatively free of closeby nebulosity: the two lobes have a bow-tie structure with those parts nearest to the star consisting of series of small knots. The outer parts of the lobes seem to be made up of filaments streaming away from knots. On the basis of its optical spectrum, the central star was classified as a M5-6 giant. In the IRAS color classification scheme of Van der Veen and Habing (1988), the central star is VIb which indicates that there are distinct hot and cold components of circumstellar dust and that the mass loss process may have temporarily abated. Therefore, it is proposed that the object is in the post main sequence stage of evolution and is a protoplanetary nebulae. Young protoplanetary nebulae have totally obscured central stars illuminating reflective lobes whereas older ones such as M2-9 have lobes seen in emission from gas ionized by the central hot star which is clearly visible. Since the central object of IRAS07131-0147 is a relatively unobscured late type star and the lobes are seen only by reflection, it is suggested that this nebula is a protoplanetary nebula in an evolutionary stage intermediate between that of CRL2688 and M2-9

  11. On the injection of relativistic particles into the Crab Nebula

    International Nuclear Information System (INIS)

    Shklovskij, I.S.

    1977-01-01

    It is shown that a flux of relativistic electrons from the NP 0532 pulsar magnetosphere, responsible for its synchrotron emission, cannot provide the necessary energy pumping to the Crab Nebula. A conclusion is reached that such a pumping can be effectuated by a flow of relativistic electrons leaving the NP 0532 magnetosphere at small pitch angles and giving therefore no appreciable contribution to the synchrotron emission of the pulsar. An interpretation of the Crab Nebula synchrotron spectrum is given on the assumption of secular ''softening'' of the energy spectrum of the relativistic electrons injected into the Nebula. A possibility of explanation of the observed rapid variability of some features in the central part of the Nebula by ejection of free - neutron - rich dense gas clouds from the pulsar surface during ''starquakes'' is discussed. The clouds of rather dense (nsub(e) approximately 10 7 cm -3 ) plasma, thus formed at about 10 13 cm from pulsar, will be accelerated up to relativistic velocities by the pressure of the magneto-dipole radiation of NP 0532 and will deform the magnetic field in the inner part (R 17 cm) of the Crab Nebula, that is the cause of the variability observed. In this case, favourable conditions for the acceleration of the particles in the cloud up to relativistic energies are realized; that may be an additional source of injection

  12. Central Stars of Planetary Nebulae in the SMC

    Science.gov (United States)

    Bianchi, Luciana

    2004-01-01

    In FUSE cycle 3's program C056 we studied four Central Stars of Planetary Nebulae (CSPN) in the Small Magellanic Could. All FUSE observations have been successfully completed and have been reduced and analyzed. The observation of one object (SMP SMC 5) appeared to be off-target and no useful stellar flux was gathered. For another observation (SMP SMC 1) the voltage problems resulted in the loss of data from one of the SiC detectors, but we were still able to analyze the remaining data. The analysis and the results are summarized below. The FUSE data were reduced using the latest available version of the FUSE calibration pipeline (CALFUSE v2.4). The flux of these SMC post-AGB objects is at the threshold of FUSE S sensitivity, and the targets required many orbit-long exposures, each of which typically had low (target) count-rates. The background subtraction required special care during the reduction, and was done in a similar manner to our FUSE cycle 2 BOO1 objects. The resulting calibrated data from the different channels were compared in the overlapping regions for consistency. The final combined, extracted spectra of each target was then modeled to determine the stellar and nebular parameters. The FUSE spectra, combined with archival HST spectra, have been analyzed using stellar atmospheres codes such as TLUSTY and CMFGEN to derive photospheric and wind parameters of the central stars, and with ISM models to determine the amount and temperature of the surrounding atomic and molecular hydrogen. We have combined these results with those of our cycle 4 (D034) program (CSPN of the LMC) in Herald & Bianchi 2004a (paper in preparation, will be submitted to ApJ in June 2004). Two of the three SMC objects analyzed were found to have significantly lower stellar temperatures than had been predicted using nebular photoionization models, indicating either a hotter ionizing companion or the existence of strong shocks in the nebular environment. The analysis also revealed that

  13. Abundance in the planetary nebulae NGC 6537 and He2-111

    NARCIS (Netherlands)

    Pottasch, [No Value; Beintema, DA; Feibelman, WA

    2000-01-01

    The ISO and IUE spectra of the bipolar planetary nebulae NGC 6537 and He2-111 are presented. These spectra are combined with the spectrum in the visual wavelength region from the nebulae to obtain a complete spectrum that is corrected for extinction. The chemical abundance of the nebulae is then

  14. Layers in the Central Orion Nebula

    Science.gov (United States)

    O'Dell, C. R.

    2018-04-01

    The existence of multiple layers in the inner Orion Nebula has been revealed using data from an Atlas of spectra at 2″ and 12 km s-1 resolution. These data were sometimes grouped over Samples of 10″×10″ to produce high Signal to Noise spectra and sometimes grouped into sequences of pseudo-slit Spectra of 12{^''.}8 - 39″width for high spatial resolution studies. Multiple velocity systems were found: V_{MIF} traces the Main Ionization Front (MIF), V_{scat} arises from back-scattering of V_{MIF} emission by particles in the background Photon Dissociation Region (PDR), V_{low} is an ionized layer in front of the MIF and if it is the source of the stellar absorption lines seen in the Trapezium stars, it must lie between the foreground Veil and those stars, V_{new,[O III]} may represent ionized gas evaporating from the Veil away from the observer. There are features such as the Bright Bar where variations of velocities are due to changing tilts of the MIF, but velocity changes above about 25″ arise from variations in velocity of the background PDR. In a region 25″ ENE of the Orion-S Cloud one finds dramatic changes in the [O III] components, including the signals from the V_{low,[O III]} and V_{MIF,[O III]} becoming equal, indicating shadowing of gas from stellar photons of >24.6 eV. This feature is also seen in areas to the west and south of the Orion-S Cloud.

  15. Asymmetric Planetary Nebulae VI: the conference summary

    Science.gov (United States)

    De Marco, O.

    2014-04-01

    The Asymmetric Planetary Nebulae conference series, now in its sixth edition, aims to resolve the shaping mechanism of PN. Eighty percent of PN have non spherical shapes and during this conference the last nails in the coffin of single stars models for non spherical PN have been put. Binary theories abound but observational tests are lagging. The highlight of APN6 has been the arrival of ALMA which allowed us to measure magnetic fields on AGB stars systematically. AGB star halos, with their spiral patterns are now connected to PPN and PN halos. New models give us hope that binary parameters may be decoded from these images. In the post-AGB and pre-PN evolutionary phase the naked post-AGB stars present us with an increasingly curious puzzle as complexity is added to the phenomenologies of objects in transition between the AGB and the central star regimes. Binary central stars continue to be detected, including the first detection of longer period binaries, however a binary fraction is still at large. Hydro models of binary interactions still fail to give us results, if we make an exception for the wider types of binary interactions. More promise is shown by analytical considerations and models driven by simpler, 1D simulations such as those carried out with the code MESA. Large community efforts have given us more homogeneous datasets which will yield results for years to come. Examples are the ChanPlaN and HerPlaNe collaborations that have been working with the Chandra and Herschel space telescopes, respectively. Finally, the new kid in town is the intermediate-luminosity optical transient, a new class of events that may have contributed to forming several peculiar PN and pre-PN.

  16. Ultraviolet imaging of planetary nebulae with GALEX

    Science.gov (United States)

    Bianchi, Luciana; Thilker, David

    2018-05-01

    Over four hundred Galactic Planetary Nebulae (PNe) have been imaged by GALEX in two ultraviolet (UV) bands, far-UV (FUV, 1344-1786 Å, λ _{eff}= 1528 Å) and near-NUV (NUV, 1771-2831 Å, λ _{eff} = 2271 Å). We present examples of extended PNe, for which UV spectroscopy is also available, to illustrate the variety in UV morphology and color, which reflects ionization conditions. The depth of the GALEX imaging varies from flux ≈ 0.4/5× 10 ^{-18} ergs cm^{-2} s^{-1} Å^{-1} \\square ^'' -1} (FUV/NUV) for exposures of the order of ˜ 100 seconds, typical of the survey with the largest area coverage, to ˜ 0.3/8.3× 10^{-19} ergs cm^{-2} s^{-1} Å^{-1} \\square ^'' -1} (FUV/NUV) for ˜ 1500 sec exposures, typical of the second largest survey (see Bianchi in Astrophys. Space Sci. 320:11, 2009; Bianchi et al. in Adv. Space Res. 53:900, 2014). GALEX broad-band FUV and NUV fluxes include nebular emission lines and in some cases nebular continuum emission. The sensitivity of the GALEX instrument and the low sky background, especially in FUV, enable detection and mapping of very faint ionization regions and fronts, including outermost wisps and bow shocks. The FUV-NUV color of the central star provides a good indication of its T_{eff}, because the GALEX FUV-NUV color is almost reddening-free for Milky Way type dust (Bianchi et al. in Astrophys. J. Suppl. Ser. 230:24, 2017; Bianchi in Astrophys. Space Sci. 335:51, 2011, Bianchi in Astrophys. Space Sci. 354:103, 2014) and it is more sensitive to hot temperatures than optical colors.

  17. Abundance of carbon and magnesium in the Orion nebula

    International Nuclear Information System (INIS)

    Perinotto, M.; Patriarchi, P.

    1980-01-01

    The Orion nebula has been observed in two positions with IUE (International Ultraviolet Explorer) in the low-resolution mode (approx.7 A) and in the spectral range 1150--3200 A. Emission lines of C II], C III], [O II], and He I have been measured and used to determine what is probably the first reliable abundance of carbon in H II regions. The logarithmic total abundance of carbon is found to be 8.4 close to the solar value. In contrast with the situation in the planetary nebula of similar excitation, IC 418, where the resonance Mg II lambda2800 line is observed to be relatively strong, in the Orion nebula the lambda2800 line is not detectable. an upper limit for the magnesium abundance of the order of 10 times smaller than in the Sun is suggested

  18. Facilitating NASA Earth Science Data Processing Using Nebula Cloud Computing

    Science.gov (United States)

    Chen, A.; Pham, L.; Kempler, S.; Theobald, M.; Esfandiari, A.; Campino, J.; Vollmer, B.; Lynnes, C.

    2011-12-01

    Cloud Computing technology has been used to offer high-performance and low-cost computing and storage resources for both scientific problems and business services. Several cloud computing services have been implemented in the commercial arena, e.g. Amazon's EC2 & S3, Microsoft's Azure, and Google App Engine. There are also some research and application programs being launched in academia and governments to utilize Cloud Computing. NASA launched the Nebula Cloud Computing platform in 2008, which is an Infrastructure as a Service (IaaS) to deliver on-demand distributed virtual computers. Nebula users can receive required computing resources as a fully outsourced service. NASA Goddard Earth Science Data and Information Service Center (GES DISC) migrated several GES DISC's applications to the Nebula as a proof of concept, including: a) The Simple, Scalable, Script-based Science Processor for Measurements (S4PM) for processing scientific data; b) the Atmospheric Infrared Sounder (AIRS) data process workflow for processing AIRS raw data; and c) the GES-DISC Interactive Online Visualization ANd aNalysis Infrastructure (GIOVANNI) for online access to, analysis, and visualization of Earth science data. This work aims to evaluate the practicability and adaptability of the Nebula. The initial work focused on the AIRS data process workflow to evaluate the Nebula. The AIRS data process workflow consists of a series of algorithms being used to process raw AIRS level 0 data and output AIRS level 2 geophysical retrievals. Migrating the entire workflow to the Nebula platform is challenging, but practicable. After installing several supporting libraries and the processing code itself, the workflow is able to process AIRS data in a similar fashion to its current (non-cloud) configuration. We compared the performance of processing 2 days of AIRS level 0 data through level 2 using a Nebula virtual computer and a local Linux computer. The result shows that Nebula has significantly

  19. Kinetic model of ammonia synthesis in the solar nebula

    Science.gov (United States)

    Norris, T. L.

    1980-03-01

    Kinetic model of ammonia formation by iron catalysis in the primordial solar nebula is developed. The maximum time to reach equilibrium concentration is determined for various temperatures between 1000 and 200 K on the basis of reaction rates derived from industrial data on iron catalysts for ammonia. Application of the method for calculating the equilibrium time to an arbitrary nebula cooling model which maximizes the time available for ammonia synthesis results in an upper limit of 3% of the equilibrium value to the proportion of nitrogen in the form of ammonia at the time of planetary accretion, with ammonia abundance decreasing with distance from the sun. It is concluded that kinetic rather than equilibrium considerations control the abundance of ammonia in the solar nebula, and implications of the dominance of nitrogen for the evolution of the atmospheres of the terrestrial and Jovian planets and the composition of comets are indicated.

  20. The surprising Crab pulsar and its nebula: a review.

    Science.gov (United States)

    Bühler, R; Blandford, R

    2014-06-01

    The Crab nebula and its pulsar (referred to together as 'the Crab') have historically played a central role in astrophysics. True to this legacy, several unique discoveries have been made recently. The Crab was found to emit gamma-ray pulsations up to energies of 400 GeV, beyond what was previously expected from pulsars. Strong gamma-ray flares, of durations of a few days, were discovered from within the nebula, while the source was previously expected to be stable in flux on these time scales. Here we review these intriguing and suggestive developments. In this context we give an overview of the observational properties of the Crab and our current understanding of pulsars and their nebulae.

  1. Ring-shaped nebulae around FU Orionis stars

    International Nuclear Information System (INIS)

    Goodrich, R.W.

    1987-01-01

    Observational data on the morphology and spectra of the nebulae surrounding V1057 Cyg, V1515 Cyg, and V1735 Cyg stars are presented and studied. The data reveal that V1735 Cyg is more highly reddened than the nebula and the spectra of all three nebulae are from reflection. A simple model for the dust shell is proposed and it is argued that the shells may indicate a relatively advanced evolutionary state for the FU Orionis star. The relation between the shells and the evolution of the stars is examined. The models of Herbig (1977), Mould et al. (1978), Larson (1980), and Hartmann and Kenyon (1985), which are utilized to analyze the FU Orionis outburst phenomenon, are tested. 23 references

  2. Excimer laser superficial keratectomy for proud nebulae in keratoconus.

    Science.gov (United States)

    Moodaley, L; Liu, C; Woodward, E G; O'Brart, D; Muir, M K; Buckley, R

    1994-06-01

    Contact lens intolerance in keratoconus may be due to the formation of a proud nebula at or near the apex of the cone. Excimer laser superficial keratectomy was performed as an outpatients with proud nebulae as treatment patients with proud nebulae as treatment for their contact lens intolerance. The mean period of contact lens wear before the development of intolerance was 13.4 years (range 2 to 27 years). Following the development of intolerance, three patients abandoned contact lens wear in the affected eye while the remainder experienced a reduction in comfortable wearing time (mean = 3.75 hours; range: 0-14 hours). All patients had good potential Snellen visual acuity with a contact lens of 6/9 (nine eyes) and 6/12 (one eye). The proud nebulae were directly ablated with a 193 nm ArF excimer laser using a 1 mm diameter beam. Between 100-150 pulses were sufficient to ablate the raised area. Patients experienced no pain during the procedure and reported minimal discomfort postoperatively. In all cases flattening of the proud nebulae was achieved. Seven patients were able to resume regular contact lens wear (mean wearing time = 10.17 hours; range 8 to 16 hours). In three patients, resumption of contact lens wear was unsuccessful because of cone steepness. All patients achieved postoperative Snellen visual acuity of 6/12 or better with a contact lens. Four patients experienced a loss of one line in Snellen acuity. The mean follow up period was 8.3 months (range 2 to 17 months). Excimer laser superficial keratectomy is a useful technique for the treatment of contact lens intolerance caused by proud nebulae in patients with keratoconus. Penetrating keratoplasty is thus avoided.

  3. Proper-Motion Measurements of the Cygnus Egg Nebula

    Science.gov (United States)

    Ueta, Toshiya; Murakawa, Koji; Meixner, Margaret

    2006-04-01

    We present the results of proper-motion measurements of the dust shell structure in the Egg Nebula (AFGL 2688, CRL 2688, V1610 Cyg), based on the archived two-epoch data at 2 μm taken with the Hubble Space Telescope. We measured the amount of motion of local structures in the nebula by determining their relative shifts over an interval of 5.5 yr. The dynamical age of the nebula is found to be roughly 350 yr based on the overall Hubble-law-esque motion of the nebula. By adopting the deprojected velocity of 45 km s-1 at the tips of the bipolar lobes, our proper-motion measurements indicate that the distance to the Egg Nebula is about 420 pc and that the lobes are inclined at 7.7d with respect to the plane of the sky. The refined distance estimate yields a luminosity of the central star of 3.3×103 Lsolar, a total shell mass of 1.2 Msolar, and a mass-loss rate (the upper limit) of 3.6×10-3 Msolar yr-1. Assuming a 0.6 Msolar central post-AGB stellar mass, the initial mass of the Egg is 1.8 Msolar. Upon analysis, we also discovered that (1) the central star of the Egg Nebula has a proper motion of its own at a rate of 17 mas yr-1, (2) the tips of the lobes increased their velocity due to shock acceleration, and (3) the apparent bipolar lobes consist of multiple outflows at distinct inclination angles projected onto each other.

  4. Facilitating NASA Earth Science Data Processing Using Nebula Cloud Computing

    Science.gov (United States)

    Pham, Long; Chen, Aijun; Kempler, Steven; Lynnes, Christopher; Theobald, Michael; Asghar, Esfandiari; Campino, Jane; Vollmer, Bruce

    2011-01-01

    Cloud Computing has been implemented in several commercial arenas. The NASA Nebula Cloud Computing platform is an Infrastructure as a Service (IaaS) built in 2008 at NASA Ames Research Center and 2010 at GSFC. Nebula is an open source Cloud platform intended to: a) Make NASA realize significant cost savings through efficient resource utilization, reduced energy consumption, and reduced labor costs. b) Provide an easier way for NASA scientists and researchers to efficiently explore and share large and complex data sets. c) Allow customers to provision, manage, and decommission computing capabilities on an as-needed bases

  5. Observing by hand sketching the nebulae in the nineteenth century

    CERN Document Server

    Nasim, Omar W

    2014-01-01

    Today we are all familiar with the iconic pictures of the nebulae produced by the Hubble Space Telescope's digital cameras. But there was a time, before the successful application of photography to the heavens, in which scientists had to rely on handmade drawings of these mysterious phenomena.           Observing by Hand sheds entirely new light on the ways in which the production and reception of handdrawn images of the nebulae in the nineteenth century contributed to astronomical observation. Omar W. Nasim investigates hundreds of unpublished observing books and paper records from six ninete

  6. A radio search for planetary nebulae near the galactic center

    International Nuclear Information System (INIS)

    Isaacman, R.B.

    1980-01-01

    Because of galactic center is a hostile environment, and because planetaries are weak radio emitters, it is not clear a priori that one expects to detect any planetary nebulae at all in the nuclear region of the Galaxy. Therefore the expected lifetime and flux density distribution of galactic center nebulae is considered. The principal observational results from the Westerbork data, and the results of some pilot observations with the Very Large Array, which were intended to distinguish planetaries from other radio sources on an individual basis are given. (Auth.)

  7. International Ultraviolet Explorer satellite observations of seven high-excitation planetary nebulae.

    Science.gov (United States)

    Aller, L H; Keyes, C D

    1980-03-01

    Observations of seven high-excitation planetary nebulae secured with the International Ultraviolet Explorer (IUE) satellite were combined with extensive ground-based data to obtain electron densities, gas kinetic temperatures, and ionic concentrations. We then employed a network of theoretical model nebulae to estimate the factors by which observed ionic concentrations must be multiplied to obtain elemental abundances. Comparison with a large sample of nebulae for which extensive ground-based observations have been obtained shows nitrogen to be markedly enhanced in some of these objects. Possibly most, if not all, high-excitation nebulae evolve from stars that have higher masses than progenitors of nebulae of low-to-moderate excitation.

  8. The first frost in the Pipe Nebula

    Science.gov (United States)

    Goto, Miwa; Bailey, Jeffrey D.; Hocuk, Seyit; Caselli, Paola; Esplugues, Gisela B.; Cazaux, Stephanie; Spaans, Marco

    2018-02-01

    Context. Spectroscopic studies of ices in nearby star-forming regions indicate that ice mantles form on dust grains in two distinct steps, starting with polar ice formation (H2O rich) and switching to apolar ice (CO rich). Aims: We test how well the picture applies to more diffuse and quiescent clouds where the formation of the first layers of ice mantles can be witnessed. Methods: Medium-resolution near-infrared spectra are obtained toward background field stars behind the Pipe Nebula. Results: The water ice absorption is positively detected at 3.0 μm in seven lines of sight out of 21 sources for which observed spectra are successfully reduced. The peak optical depth of the water ice is significantly lower than those in Taurus with the same AV. The source with the highest water-ice optical depth shows CO ice absorption at 4.7 μm as well. The fractional abundance of CO ice with respect to water ice is 16-6+7%, and about half as much as the values typically seen in low-mass star-forming regions. Conclusions: A small fractional abundance of CO ice is consistent with some of the existing simulations. Observations of CO2 ice in the early diffuse phase of a cloud play a decisive role in understanding the switching mechanism between polar and apolar ice formation. Based on data collected by SpeX at the Infrared Telescope Facility, which is operated by the University of Hawaii under contract NNH14CK55B with the National Aeronautics and Space Administration.Based also on data obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation.The final reduced spectra (FITS format) are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/610

  9. Abundant Solar Nebula Solids in Comets

    Science.gov (United States)

    Messenger, S.; Keller, L. P.; Nakamura-Messenger, K.; Nguyen, A. N.; Clemett, S.

    2016-01-01

    Comets have been proposed to consist of unprocessed interstellar materials together with a variable amount of thermally annealed interstellar grains. Recent studies of cometary solids in the laboratory have shown that comets instead consist of a wide range of materials from across the protoplanetary disk, in addition to a minor complement of interstellar materials. These advances were made possible by the return of direct samples of comet 81P/Wild 2 coma dust by the NASA Stardust mission and recent advances in microscale analytical techniques. Isotopic studies of 'cometary' chondritic porous interplanetary dust particles (CP-IDPs) and comet 81P/Wild 2 Stardust samples show that preserved interstellar materials are more abundant in comets than in any class of meteorite. Identified interstellar materials include sub-micron-sized presolar silicates, oxides, and SiC dust grains and some fraction of the organic material that binds the samples together. Presolar grain abundances reach 1 weight percentage in the most stardust-rich CP-IDPs, 50 times greater than in meteorites. Yet, order of magnitude variations in presolar grain abundances among CP-IDPs suggest cometary solids experienced significant variations in the degree of processing in the solar nebula. Comets contain a surprisingly high abundance of nebular solids formed or altered at high temperatures. Comet 81P/Wild 2 samples include 10-40 micron-sized, refractory Ca- Al-rich inclusion (CAI)-, chondrule-, and ameboid olivine aggregate (AOA)-like materials. The O isotopic compositions of these refractory materials are remarkably similar to their meteoritic counterparts, ranging from 5 percent enrichments in (sup 16) O to near-terrestrial values. Comet 81P/Wild 2 and CP-IDPs also contain abundant Mg-Fe crystalline and amorphous silicates whose O isotopic compositions are also consistent with Solar System origins. Unlike meteorites, that are dominated by locally-produced materials, comets appear to be composed of

  10. Expansion patterns and parallaxes for planetary nebulae

    Science.gov (United States)

    Schönberner, D.; Balick, B.; Jacob, R.

    2018-02-01

    Aims: We aim to determine individual distances to a small number of rather round, quite regularly shaped planetary nebulae by combining their angular expansion in the plane of the sky with a spectroscopically measured expansion along the line of sight. Methods: We combined up to three epochs of Hubble Space Telescope imaging data and determined the angular proper motions of rim and shell edges and of other features. These results are combined with measured expansion speeds to determine individual distances by assuming that line of sight and sky-plane expansions are equal. We employed 1D radiation-hydrodynamics simulations of nebular evolution to correct for the difference between the spectroscopically measured expansion velocities of rim and shell and of their respective shock fronts. Results: Rim and shell are two independently expanding entities, driven by different physical mechanisms, although their model-based expansion timescales are quite similar. We derive good individual distances for 15 objects, and the main results are as follows: (i) distances derived from rim and shell agree well; (ii) comparison with the statistical distances in the literature gives reasonable agreement; (iii) our distances disagree with those derived by spectroscopic methods; (iv) central-star "plateau" luminosities range from about 2000 L⊙ to well below 10 000 L⊙, with a mean value at about 5000 L⊙, in excellent agreement with other samples of known distance (Galactic bulge, Magellanic Clouds, and K648 in the globular cluster M 15); (v) the central-star mass range is rather restricted: from about 0.53 to about 0.56 M⊙, with a mean value of 0.55 M⊙. Conclusions: The expansion measurements of nebular rim and shell edges confirm the predictions of radiation-hydrodynamics simulations and offer a reliable method for the evaluation of distances to suited objects. Results of this paper are based on observations made with the NASA/ESA Hubble Space Telescope in Cycle 16 (GO11122

  11. DETECTION OF DIFFUSE X-RAY EMISSION FROM PLANETARY NEBULAE WITH NEBULAR O VI

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz, N.; Guerrero, M. A. [Instituto de Astrofisica de Andalucia, IAA-CSIC, c/ Glorieta de la Astronomia s/n, E-18008 Granada (Spain); Chu, Y.-H.; Gruendl, R. A. [Department of Astronomy, University of Illinois, 1002 West Green Street, Urbana, IL 61801 (United States); Jacob, R.; Schoenberner, D.; Steffen, M., E-mail: nieves@iaa.es [Leibniz-Institut fuer Astrophysik Potsdam (AIP), An der Sternwarte 16, D-14482 Potsdam (Germany)

    2013-04-10

    The presence of O VI ions can be indicative of plasma temperatures of a few Multiplication-Sign 10{sup 5} K that are expected in heat conduction layers between the hot shocked stellar wind gas at several 10{sup 6} K and the cooler (10{sup 4} K) nebular gas of planetary nebulae (PNe). We have used FUSE observations of PNe to search for nebular O VI emission or absorption as a diagnostic of the conduction layer to ensure the presence of hot interior gas. Three PNe showing nebular O VI, namely IC 418, NGC 2392, and NGC 6826, have been selected for Chandra observations and diffuse X-ray emission is indeed detected in each of these PNe. Among the three, NGC 2392 has peculiarly high diffuse X-ray luminosity and plasma temperature compared with those expected from its stellar wind's mechanical luminosity and terminal velocity. The limited effects of heat conduction on the plasma temperature of a hot bubble at the low terminal velocity of the stellar wind of NGC 2392 may partially account for its high plasma temperature, but the high X-ray luminosity needs to be powered by processes other than the observed stellar wind, probably the presence of an unseen binary companion of the central star of the PN (CSPN) of NGC 2392. We have compiled relevant information on the X-ray, stellar, and nebular properties of PNe with a bubble morphology and found that the expectations of bubble models including heat conduction compare favorably with the present X-ray observations of hot bubbles around H-rich CSPNe, but have notable discrepancies for those around H-poor [WR] CSPNe. We note that PNe with more massive central stars can produce hotter plasma and higher X-ray surface brightness inside central hot bubbles.

  12. Wind Structure and Wind Loading

    DEFF Research Database (Denmark)

    Brorsen, Michael

    The purpose of this note is to provide a short description of wind, i.e. of the flow in the atmosphere of the Earth and the loading caused by wind on structures. The description comprises: causes to the generation of windhe interaction between wind and the surface of the Earthhe stochastic nature...... of windhe interaction between wind and structures, where it is shown that wind loading depends strongly on this interaction...

  13. Protostar Evolution in the Orion Nebula Cluster (ONC)

    Science.gov (United States)

    Sanchez, Michael Allan

    2018-01-01

    We present our preliminary analysis of the protostars within the Orion Nebula Cluster (ONC). We developed a pipeline to identify protostars in the ONC using the IRAC instrument aboard Spitzer. We verified our photometric measurements with the catalog provided by Megeath et al. (2012). We then classified the protostar evolution stages (0/I, Flatt, II, and III) based on their spectral slope.

  14. Warm molecular gas in the M17 SW nebula

    NARCIS (Netherlands)

    Pérez-Beaupuits, J. P.; Spaans, M.; Hogerheijde, M.; Güsten, R.; Corbett, IF

    2010-01-01

    High resolution maps of the (12)CO J = 6 -> 5 line and the [C I] (3) P(2) (3)P(1) (370 mu m) fine-structure transition in the Galactic nebula M17 SW are presented. The maps were obtained using the dual color multiple pixel receiver CHAMP(+) on the APEX dagger telescope.

  15. FORMING CHONDRITES IN A SOLAR NEBULA WITH MAGNETICALLY INDUCED TURBULENCE

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, Yasuhiro; Turner, Neal J.; Masiero, Joseph [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Wakita, Shigeru; Matsumoto, Yuji; Oshino, Shoichi, E-mail: yasuhiro@caltech.edu [Center for Computational Astrophysics, National Astronomical Observatory of Japan, Osawa, Mitaka, Tokyo 181-8588 (Japan)

    2016-03-20

    Chondritic meteorites provide valuable opportunities to investigate the origins of the solar system. We explore impact jetting as a mechanism of chondrule formation and subsequent pebble accretion as a mechanism of accreting chondrules onto parent bodies of chondrites, and investigate how these two processes can account for the currently available meteoritic data. We find that when the solar nebula is ≤5 times more massive than the minimum-mass solar nebula at a ≃ 2–3 au and parent bodies of chondrites are ≤10{sup 24} g (≤500 km in radius) in the solar nebula, impact jetting and subsequent pebble accretion can reproduce a number of properties of the meteoritic data. The properties include the present asteroid belt mass, the formation timescale of chondrules, and the magnetic field strength of the nebula derived from chondrules in Semarkona. Since this scenario requires a first generation of planetesimals that trigger impact jetting and serve as parent bodies to accrete chondrules, the upper limit of parent bodies’ masses leads to the following implications: primordial asteroids that were originally ≥10{sup 24} g in mass were unlikely to contain chondrules, while less massive primordial asteroids likely had a chondrule-rich surface layer. The scenario developed from impact jetting and pebble accretion can therefore provide new insights into the origins of the solar system.

  16. Multibaseline Observations of the Occultation of Crab Nebula by the ...

    Indian Academy of Sciences (India)

    tribpo

    Observations of the radio source Crab Nebula were made at the time of transit during. June 1986 and 1987. The fringe amplitude V(S) for a baseline S was calibrated using the corresponding baseline fringe amplitude of radio source 3C123 or 3C134 and normalised to the preoccultation value V(O). Normalised fringe ...

  17. Modern techniques in galaxy kinematics : Results from planetary nebula spectroscopy

    NARCIS (Netherlands)

    Romanowsky, AJ; Douglas, NG; Kuijken, K; Arnaboldi, M; Gerssen, J; Merrifield, MR; Kwok, S; Dopita, M; Sutherland, R

    2003-01-01

    We have observed planetary nebulae (PNe) in several early-type galaxies using new techniques on 4- to 8-meter-class telescopes. We obtain the first large data sets (greater than or similar to 100 velocities each) of PN kinematics in galaxies at greater than or similar to 15 Mpc, and present some

  18. An Analysis of Spectra in the Red Rectangle Nebula

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... Only the reddest part of the spectra can safely be attributed to light from the nebula, and indicates Rayleigh scattering by the gas, in conformity with the large angles of scattering involved and the proximity of the star. In the blue, light from HD 44179, refracted or scattered in the atmosphere, dominates the ...

  19. Hard X-ray Variations in the Crab Nebula

    Science.gov (United States)

    Wilson-Hodge, Colleen A.; Cherry, M. L.; Case, G. L.; Baumgartner, W. H.; Beklen, E.; Bhat, P. N.; Briggs, M. S.; Camero-Arranz, A.; Connaughton, V.; Finger, M. H.; hide

    2013-01-01

    In the first two years of science operations of the Fermi Gamma-ray Burst Monitor (GBM), August 2008 to August 2010, approximately 7% (70 mcrab) decline was discovered in the overall Crab Nebula flux in the 15 - 50 keV band, measured with the Earth occultation technique. This decline was independently confirmed with four other instruments: the RXTE/PCA, Swift/BAT, INTEGRAL/IBIS, and INTEGRAL/SPI. The pulsed flux measured with RXTE/PCA from 1999-2010 was consistent with the pulsar spin-down, indicating that the observed changes were nebular. From 2001 to 2010, the Crab nebula flux measured with RXTE/ PCA was particularly variable, changing by up to approximately 3.5% per year in the 15-50 keV band. These variations were confirmed with INTEGRAL/SPI starting in 2003, Swift/BAT starting in 2005, and Fermi GBM starting in 2008. Before 2001 and since 2010, the Crab nebula flux has appeared more stable, varying by less than 2% per year. I will present updated light curves in multiple energy bands for the Crab Nebula, including recent data from Fermi GBM, Swift/BAT, INTEGRAL and MAXI, and a 16-year long light curve from RXTE/PCA.

  20. Ultraviolet spectroscopy of planetary nebulae in the Magellanic Clouds

    International Nuclear Information System (INIS)

    Maran, S.P.; Aller, L.H.; Gull, T.R.; Stecher, T.P.

    1982-01-01

    Ultraviolet spectra of three high excitation planetary nebulae in the Magellanic Clouds (LMC P40, SMC N2, SMC N5) were obtained with the International Ultraviolet Explorer. The results are analyzed together with new visual wavelength spectrophotometry of LMC P40 and published data on SMC N2 and SMC N5 to investigate chemical composition and in particular to make the first reliable estimates of the carbon abundance in extragalactic planetary nebulae. Although carbon is at most only slightly less abundant in the LMC and SMC planetary nebulae than in galactic planetaries, it is almost 40 times more abundant in the SMC planetaries than in the SMC interstellar medium, and is about 6 times more abundant in the LMC planetary than in the LMC interstellar medium. According to our limited sample, the net result of carbon synthesis and convective dredgeup in the progenitors of planetary nebulae, as reflected in the nebular carbon abundance, is roughly the same in the Galaxy, the LMC, and the SMC

  1. Crab Nebula Variations in Hard X-rays

    Science.gov (United States)

    Wilson-Hodge, Colleen A.

    2012-01-01

    The Crab Nebula was surprisingly variable from 2001-2010, with less variability before 2001 and since mid-2010. We presented evidence for spectral softening from RXTE, Swift/BAT, and Fermi GBM during the mid-2008-2010 flux decline. We see no clear connections between the hard X-ray variations and the GeV flares

  2. Preferrential Concentration of Particles in Protoplanetary Nebula Turbulence

    Science.gov (United States)

    Hartlep, Thomas; Cuzzi, Jeffrey N.

    2015-01-01

    Preferential concentration in turbulence is a process that causes inertial particles to cluster in regions of high strain (in-between high vorticity regions), with specifics depending on their stopping time or Stokes number. This process is thought to be of importance in various problems including cloud droplet formation and aerosol transport in the atmosphere, sprays, and also in the formation of asteroids and comets in protoplanetary nebulae. In protoplanetary nebulae, the initial accretion of primitive bodies from freely-floating particles remains a problematic subject. Traditional growth-by-sticking models encounter a formidable "meter-size barrier" [1] in turbulent nebulae. One scenario that can lead directly from independent nebula particulates to large objects, avoiding the problematic m-km size range, involves formation of dense clumps of aerodynamically selected, typically mm-size particles in protoplanetary turbulence. There is evidence that at least the ordinary chondrite parent bodies were initially composed entirely of a homogeneous mix of such particles generally known as "chondrules" [2]. Thus, while it is arcane, turbulent preferential concentration acting directly on chondrule size particles are worthy of deeper study. Here, we present the statistical determination of particle multiplier distributions from numerical simulations of particle-laden isotopic turbulence, and a cascade model for modeling turbulent concentration at lengthscales and Reynolds numbers not accessible by numerical simulations. We find that the multiplier distributions are scale dependent at the very largest scales but have scale-invariant properties under a particular variable normalization at smaller scales.

  3. Millimeter-wave molecular line observations of the Tornado nebula

    International Nuclear Information System (INIS)

    Sakai, D.; Oka, T.; Tanaka, K.; Matsumura, S.; Miura, K.; Takekawa, S.

    2014-01-01

    We report the results of millimeter-wave molecular line observations of the Tornado Nebula (G357.7-0.1), which is a bright radio source behind the Galactic center region. A 15' × 15' area was mapped in the J = 1-0 lines of CO, 13 CO, and HCO + with the Nobeyama Radio Observatory 45 m telescope. The Very Large Array archival data of OH at 1720 MHz were also reanalyzed. We found two molecular clouds with separate velocities, V LSR = –14 km s –1 and +5 km s –1 . These clouds show rough spatial anti-correlation. Both clouds are associated with OH 1720 MHz emissions in the area overlapping with the Tornado Nebula. The spatial and velocity coincidence indicates violent interaction between the clouds and the Tornado Nebula. Modestly excited gas prefers the position of the Tornado 'head' in the –14 km s –1 cloud, also suggesting the interaction. Virial analysis shows that the +5 km s –1 cloud is more tightly bound by self-gravity than the –14 km s –1 cloud. We propose a formation scenario for the Tornado Nebula; the +5 km s –1 cloud collided into the –14 km s –1 cloud, generating a high-density layer behind the shock front, which activates a putative compact object by Bondi-Hoyle-Lyttleton accretion to eject a pair of bipolar jets.

  4. A 100 kpc nebula associated with the `Teacup' fading quasar

    Science.gov (United States)

    Villar-Martín, M.; Cabrera-Lavers, A.; Humphrey, A.; Silva, M.; Ramos Almeida, C.; Piqueras-López, J.; Emonts, B.

    2018-02-01

    We report the discovery of an ˜100 kpc ionized nebula associated with the radio-quiet type 2 quasar (QSO2) nicknamed the `Teacup' (z = 0.085). The giant nebula is among the largest known around active galaxies at any z. We propose that it is part of the circumgalactic medium (CGM) of the QSO2 host, which has been populated with tidal debris by galactic interactions. This rich gaseous medium has been rendered visible due to the illumination by the powerful active nucleus (AGN). Subsolar abundances (˜0.5 Z⊙) are tentatively favoured by AGN photoionization models. We also report the detection of coronal emission (Fe+6) from the NE bubble, at ˜9 kpc from the AGN. The detection of coronal lines at such large distances from the AGN and the [N II] λ6583/Hα, [S II] λλ6716,6731/Hα, [O I] λ6300/Hα optical emission-line ratios of the giant nebula are consistent with the fading quasar scenario proposed by Gagne et al. The fading rate appears to have been faster in the last ˜46 000 yr. Deep wide field integral field spectroscopy of giant nebulae around powerful AGN such as the `Teacup's' with instruments such as MUSE on VLT opens up a way to detect and study the elusive material from the CGM around massive active galaxies thanks to the illumination by the luminous AGN.

  5. Physical conditions in Photo-Dissociation Regions around Planetary Nebulae

    NARCIS (Netherlands)

    Bernard-Salas, J; Tielens, A. G. G. M.

    We present observations of the infrared fine-structure lines of [Si II] (34.8 mum), [O I] (63.2 and 145.5 mum) and [C II] (157.7 mum) obtained with the ISO SWS and LWS spectrographs of nine Planetary Nebulae (PNe). These lines originate in the Photo-Dissociation Regions (PDRs) associated with the

  6. ON AN ALTERNATIVE STATISTICAL DISTANCE SCALE FOR PLANETARY-NEBULAE

    NARCIS (Netherlands)

    VANDESTEENE, GC; ZIJLSTRA, AA

    We propose to use the correlation between the distance-independent radio continuum brightness temperature and the distance-dependent radius to determine statistical distances to planetary nebulae. This correlation satisfies two objective criteria which define a statistical distance scale: (1) We

  7. The ISO-SWS spectrum of planetary nebula NGC 7027

    NARCIS (Netherlands)

    Salas, JB; Pottasch, [No Value; Beintema, DA; Wesselius, PR

    We present the infrared spectrum of the planetary nebula NGC7027 observed with the Short Wavelength Spectrometer (SWS), on board the Infrared Space Observatory (ISO). These data allow us to derive the electron density and, together with the IUE and optical spectra, the electron temperature for

  8. The central star of the Planetary Nebula NGC 6537

    NARCIS (Netherlands)

    Pottasch, [No Value

    2000-01-01

    The fact that Space Telescope WFPC2 images of the planetary nebula NGC 6537 fail to show the central star is used to derive a limit to its magnitude: it is fainter than a magnitude of 22.4 in the visible. This is used to derive a lower limit to the temperature of the star. The Zanstra temperature is

  9. The shape of the LoTr 5 planetary nebula

    NARCIS (Netherlands)

    Brosch, N; Hoffman, Y

    1999-01-01

    We observed the large and faint planetary nebula around IN Com in H alpha and N II light with a coronagraphic charge-coupled device on the Wise Observatory reflector, blocking the light from the central star. Our goal was to provide a second image of the object with which to confirm the features

  10. Protecting with nature (PwN) PwN concept (bio-) corrosion prevention

    NARCIS (Netherlands)

    Mijle Meijer, van der H.; Foekema, E.M.; Leon, F.

    2014-01-01

    Harbour infrastructures, civil engineering structures and offshore structures are exposed to a very aggressive maritime environment. The local corrosion mechanism bio-corrosion or microbial influenced corrosion (MIC) seems to be the life determining failure mechanism for these structures. There is a

  11. Studies of dust grain properties in infrared reflection nebulae.

    Science.gov (United States)

    Pendleton, Y J; Tielens, A G; Werner, M W

    1990-01-20

    We have developed a model for reflection nebulae around luminous infrared sources embedded in dense dust clouds. The aim of this study is to determine the sizes of the scattering grains. In our analysis, we have adopted an MRN-like power-law size distribution (Mathis, Rumpl, and Nordsieck) of graphite and silicate grains, but other current dust models would give results which were substantially the same. In the optically thin limit, the intensity of the scattered light is proportional to the dust column density, while in the optically thick limit, it reflects the grain albedo. The results show that the shape of the infrared spectrum is the result of a combination of the scattering properties of the dust, the spectrum of the illuminating source, and foreground extinction, while geometry plays a minor role. Comparison of our model results with infrared observations of the reflection nebula surrounding OMC-2/IRS 1 shows that either a grain size distribution like that found in the diffuse interstellar medium, or one consisting of larger grains, can explain the observed shape of the spectrum. However, the absolute intensity level of the scattered light, as well as the observed polarization, requires large grains (approximately 5000 angstroms). By adding water ice mantles to the silicate and graphite cores, we have modeled the 3.08 micrometers ice band feature, which has been observed in the spectra of several infrared reflection nebulae. We show that this ice band arises naturally in optically thick reflection nebulae containing ice-coated grains. We show that the shape of the ice band is diagnostic of the presence of large grains, as previously suggested by Knacke and McCorkle. Comparison with observations of the BN/KL reflection nebula in the OMC-1 cloud shows that large ice grains (approximately 5000 angstroms) contribute substantially to the scattered light.

  12. ON AN ALTERNATIVE STATISTICAL DISTANCE SCALE FOR PLANETARY-NEBULAE - CATALOG WITH STATISTICAL DISTANCES TO PLANETARY-NEBULAE

    NARCIS (Netherlands)

    VANDESTEENE, GC; ZIJLSTRA, AA

    1994-01-01

    We have proposed a statistical method to determine distances to planetary nebulae. The method is based on an empirical correlation between the radio-continuum brightness temperature and radius. Here we present a catalog of distance determinations calculated using this method.

  13. Measurements of Magnetic Fields in the Solar Nebula

    Science.gov (United States)

    Fu, R. R.; Andrade Lima, E.; Weiss, B. P.

    2013-12-01

    magnetization blocked up to 200 mT in addition to the MC component. The HC component is not present in surrounding bulk samples, suggesting that it pre-dates the accretion of the meteorite and likely records nebular magnetic fields. Using the anhysteretic remanent magnetization (ARM) normalization method, the HC component corresponds to a paleointensity of 6 μT. Analysis of additional dusty olivine-bearing chondrules, including thermal demagnetization, is ongoing. The existence of pre-accretional remanence in chondrules implies that magnetic fields during chondrule formation were stable on the timescale of chondrule cooling. The relatively low paleointensity of 6 μT, if confirmed by further experiments, is consistent with magnetic fields in the hypothesized "dead zone" at the mid-plane of the solar nebula where the MRI is expected to be weak. Chondrule records of dead zone magnetic fields imply that chondrule formation occurred near the disk mid-plane at between approximately 0.5 and 10 AU. Furthermore, this paleointensity may not be consistent with chondrule formation mechanisms that generate strong local magnetic fields, such as the nebular lightning and the X-winds models.

  14. Wind power

    International Nuclear Information System (INIS)

    Gipe, P.

    2007-01-01

    This book is a translation of the edition published in the USA under the title of ''wind power: renewable energy for home, farm and business''. In the wake of mass blackouts and energy crises, wind power remains a largely untapped resource of renewable energy. It is a booming worldwide industry whose technology, under the collective wing of aficionados like author Paul Gipe, is coming of age. Wind Power guides us through the emergent, sometimes daunting discourse on wind technology, giving frank explanations of how to use wind technology wisely and sound advice on how to avoid common mistakes. Since the mid-1970's, Paul Gipe has played a part in nearly every aspect of wind energy development from installing small turbines to promoting wind energy worldwide. As an American proponent of renewable energy, Gipe has earned the acclaim and respect of European energy specialists for years, but his arguments have often fallen on deaf ears at home. Today, the topic of wind power is cropping up everywhere from the beaches of Cape Cod to the Oregon-Washington border, and one wind turbine is capable of producing enough electricity per year to run 200 average American households. Now, Paul Gipe is back to shed light on this increasingly important energy source with a revised edition of Wind Power. Over the course of his career, Paul Gipe has been a proponent, participant, observer, and critic of the wind industry. His experience with wind has given rise to two previous books on the subject, Wind Energy Basics and Wind Power for Home and Business, which have sold over 50,000 copies. Wind Power for Home and Business has become a staple for both homeowners and professionals interested in the subject, and now, with energy prices soaring, interest in wind power is hitting an all-time high. With chapters on output and economics, Wind Power discloses how much you can expect from each method of wind technology, both in terms of energy and financial savings. The book updated models

  15. A Multi-wavelength Study of an Isolated MSP Bow Shock

    Science.gov (United States)

    Romani, Roger W.; Slane, Patrick; Green, Andrew

    2017-08-01

    PSR J2124-3358 is the only single MSP known to sport an Halpha bow shock. This shock, now also seen in the UV, encloses an unusual X-ray pulsar wind nebula (PWN) with a long off-axis trail. Combining the X-ray and UV images with AAT/KOALA integral field spectroscopy of the Halpha emission, we have an unusually complete picture of the pulsar's (101 km/s transverse) motion and the latitudinal distribution of its wind flux. These images reveal the 3-D orientation of a hard-spectrum PWN jet and a softer equatorial outflow. Within the context of a thin shock model, we can constrain the total energy output of the pulsar and the neutron star moment of inertia. The IFU spectra show extreme Balmer dominance, which also constrains the nature of the UV shock emission.

  16. A new planetary nebula in the outer reaches of the Galaxy

    DEFF Research Database (Denmark)

    Viironen, K.; Mampaso, A.; L. M. Corradi, R.

    2011-01-01

    A proper determination of the abundance gradient in the Milky Way requires the observation of objects at large galactiocentric distances. With this aim, we are exploring the planetary nebula population towards the Galactic Anticentre. In this article, the discovery and physico-chemical study...... of a new planetary nebula towards the Anticentre direction, IPHASX J052531.19+281945.1 (PNG 178.1-04.0), is presented. The planetary nebula was discovered from the IPHAS survey. Long-slit follow-up spectroscopy was carried out to confirm its planetary nebula nature and to calculate its physical...... and chemical characteristics. The newly discovered planetary nebula turned out to be located at a very large galactocentric distance (D_GC=20.8+-3.8 kpc), larger than any previously known planetary nebula with measured abundances. Its relatively high oxygen abundance (12+log(O/H) = 8.36+-0.03) supports...

  17. The jovian nebula: a post-voyager perspective.

    Science.gov (United States)

    Trauger, J T

    1984-10-19

    Voyager 1 carried a diverse collection of magnetospheric probes through the inner Jovian magnetosphere in March 1979. The ensuing data analysis and theoretical investigation provided a comprehensive description of the Jovian nebula, a luminous torus populated with newly released heavy ions drawn from Io's surface. Recent refinements in Earth-based imaging instrumentation are used to extend the Voyager in situ picture in temporal and spatial coverage. An analysis of [SIII] and [SII] optical emissions observed during the Jovian apparitions of 1981 through 1983 reveals three distinct torus components. Regularities have been identified in the ion partitioning and ion densities in the hot outer and inner tori, sharply defined radial structure is found in the plasma near Io, and the relative permanence of the cool inner torus is inferred. An extended cloud of neutral material is required as a source of fresh ions in the nebula.

  18. Catalysis by Dust Grains in the Solar Nebula

    Science.gov (United States)

    Kress, Monika E.; Tielens, Alexander G. G. M.

    1996-01-01

    In order to determine whether grain-catalyzed reactions played an important role in the chemistry of the solar nebula, we have applied our time-dependent model of methane formation via Fischer-Tropsch catalysis to pressures from 10(exp -5) to 1 bar and temperatures from 450 to 650 K. Under these physical conditions, the reaction 3H2 + CO yields CH4 + H2O is readily catalyzed by an iron or nickel surface, whereas the same reaction is kinetically inhibited in the gas phase. Our model results indicate that under certain nebular conditions, conversion of CO to methane could be extremely efficient in the presence of iron-nickel dust grains over timescales very short compared to the lifetime of the solar nebula.

  19. Spectrophotometry of Bowen resonance fluorescence lines in three planetary nebulae

    Science.gov (United States)

    O'Dell, C. R.; Miller, Christopher O.

    1992-01-01

    The results are presented of a uniquely complete, carefully reduced set of observations of the O III Bowen fluorescence lines in the planetary nebulae NGC 6210, NGC 7027, and NGC 7662. A detailed comparison with the predictions of radiative excitation verify that some secondary lines are enhanced by selective population by the charge exchange mechanism involving O IV. Charge exchange is most important in NGC 6210, which is of significantly lower ionization than the other nebulae. In addition to the principal Bowen lines arising from Ly-alpha pumping of the O III O1 line, lines arising from pumping of the O3 line are also observed. Comparison of lines produced by O1 and O3 with the theoretical predictions of Neufeld indicate poor agreement; comparison with the theoretical predictions of Harrington show agreement with NGC 7027 and NGC 7662.

  20. Probing Shocks of the Young Planetary Nebula NGC 7027

    Science.gov (United States)

    Montez, Rodolfo

    2013-09-01

    The rapid evolution of the planetary nebula NGC 7027 provides a rare glimpse at the evolution of the shocks. We propose a detailed spatial and spectroscopic study of the shock conditions in NGC 7027 that will enhance and bridge our understanding of the shocks seen in other planetary nebula. Comparison between the Cycle 1 observation and a new Cycle 15 observation will (i) confirm the presence of the two components in the extended X-ray emission, (ii) measure the changes (spatial and spectral) in the components, and, (iii) provide a valuable trove of tests and inputs for shock conditions and hydrodynamical simulations. We rely on the unprecedented spatial resolution and soft-sensitivity of Chandra.

  1. Gamma-ray flares from the Crab nebula

    International Nuclear Information System (INIS)

    Abdo, A.A.; Ackermann, M.; Ajello, M.; Allafort, A.; Baldini, L.; Ballet, J.; Casandjian, J.M.; Grenier, I.A.; Naumann-Godo, M.; Pierbattista, M.; Tibaldo, L.

    2011-01-01

    A young and energetic pulsar powers the well-known Crab Nebula. Here, we describe two separate gamma-ray (photon energy greater than 100 mega-electron volts) flares from this source detected by the Large Area Telescope on board the Fermi Gamma-ray Space Telescope. The first flare occurred in February 2009 and lasted approximately 16 days. The second flare was detected in September 2010 and lasted approximately 4 days. During these outbursts, the gamma-ray flux from the nebula increased by factors of four and six, respectively. The brevity of the flares implies that the gamma rays were emitted via synchrotron radiation from peta-electron-volt (10 15 electron volts) electrons in a region smaller than 1.4 * 10 -2 parsecs. These are the highest-energy particles that can be associated with a discrete astronomical source, and they pose challenges to particle acceleration theory. (authors)

  2. Al-Sufi's Investigation of Stars, Star Clusters and Nebulae

    Science.gov (United States)

    Hafez, Ihsan; Stephenson, F. R.; Orchiston, W.

    2011-01-01

    The distinguished Arabic astronomer, Al-Sufi (AD 903-986) is justly famous for his Book of the Fixed Stars, an outstanding Medieval treatise on astronomy that was assembled in 964. Developed from Ptolemy's Algamest, but based upon al-Sufi's own stellar observations, the Book of the Fixed Stars has been copied down through the ages, and currently 35 copies are known to exist in various archival repositories around the world. Among other things, this major work contains 55 astronomical tables, plus star charts for 48 constellations. For the first time a long-overdue English translation of this important early work is in active preparation. In this paper we provide biographical material about Al-Sufi and the contents of his Book of the Fixed Stars, before examining his novel stellar magnitude system, and his listing of star clusters and nebulae (including the first-ever mention of the Great Nebula in Andromeda).

  3. The FU Orionis Phenomenon and Solar Nebula Material

    Science.gov (United States)

    Bell, K. R.; Cassen, P. M.; Wasson, J. T.; Woolum, D. S.

    2001-01-01

    We summarize astronomical, meteoritic, and theoretical evidence relating to the FU Orionis phenomenon. This evidence suggests that at early times (the first few 10(exp 5) yr), the solar nebula experienced a hot phase characterized by high accretion rates (the "FU Ori epoch"), punctuated by episodic outbursts of enhanced mass flow through the inner part of the disk (less than or equal to 0.3 AU). Throughout this epoch, disk midplane temperatures exceeded 1000 K at 1 AU. Diminishing infall from the cloud core led to decreasing mass flux throughout the disk. When mass flow de creased below the value critical for outburst (5 x 10(exp -7) solar mass/yr, as suggested by thermal ionization instability models), outbursts ceased and the T Tauri epoch began. Outburst timescales are too long to explain calcium- and aluminum-rich inclusion (CAI) and chondrule formation. Volatility-dependent fractionation patterns seen in meteoritic materials suggest that solids formed beginning during a hot epoch when temperatures exceeded 1400 K, and the presence of volatiles in chondrites argues that this process continued until the nebula had cooled to below 400 K. The thermal ionization instability model for FU Ori outbursts is in quantitative agreement with astronomical observations. Its results imply that the terrestrial region of the nebula reached the hot end of this range only during a time when mass flow through the disk was high enough to trigger outbursts (i.e., the FU Ori epoch) and reached the cool end of this range only during the later T Tauri epoch. According to the models, heating of material in the terrestrial planet region during individual FU Ori outbursts would be limited to surface layers of the nebula, leaving midplane materials (which are at greater than or equal to 1000 K) largely unaffected. Alternative FU Ori models should be developed, particularly if compositional differences among chondrite clans are attributable to episodic heating.

  4. Hydrodynamics of photoionized columns in the Eagle Nebula, M 16

    OpenAIRE

    Williams, R. J. R.; Ward-Thompson, D.; Whitworth, A. P.

    2001-01-01

    We present hydrodynamical simulations of the formation, structure and evolution of photoionized columns, with parameters based on those observed in the Eagle Nebula. On the basis of these simulations we argue that there is no unequivocal evidence that the dense neutral clumps at heads of the columns were cores in the pre-existing molecular cloud. In our simulations, a variety of initial conditions leads to the formation and maintenance of near-equilibrium columns. Therefore, it is likely that...

  5. Two phases of the interstellar medium in nebulas around quasars

    Energy Technology Data Exchange (ETDEWEB)

    Zentsova, A.S.

    1988-05-01

    It is shown that for the interstellar gas in nebulas surrounding quasars the condition of thermal instability is satisfied, and the gas must separate into two phases: cold (T /approx equal/ 10/sup 4//degree/K) dense clouds and a hot (T /approx equal/ 10/sup 8//degree/K) rarefied medium. The density, size, and mass of the clouds formed by the development of the thermal instability are estimated.

  6. Identification of faint central stars in extended, low-surface-brightness planetary nebulae

    International Nuclear Information System (INIS)

    Kwitter, K.B.; Lydon, T.J.; Jacoby, G.H.

    1988-01-01

    As part of a larger program to study the properties of planetary nebula central stars, a search for faint central stars in extended, low-surface-brightness planetary nebulae using CCD imaging is performed. Of 25 target nebulae, central star candidates have been identified in 17, with certainties ranging from extremely probable to possible. Observed V values in the central star candidates extend to fainter than 23 mag. The identifications are presented along with the resulting photometric measurements. 24 references

  7. CO survey of the dark nebulae in Taurus and Perseus

    International Nuclear Information System (INIS)

    Baran, G.P.

    1986-01-01

    The thesis reports a large-scale survey of carbon monoxide ( 12 CO) emission (at λ = 2.6 mm) from dark nebulae in Taurus and Perseus. CO spectra at 4395 points were obtained within an area of about 800 square degrees generally west of the galactic anti-center. The spatial resolution of the instrument was eight arcminutes and velocity resolution was 2.6 km s -1 /. CO emission is strongest wherever extinction by dust is greatest, spilling over the apparent outer boundaries of the dust clouds observed optically. Combining CO velocity for the nebulae with optically determined distances shows that the clouds in the survey area form several layers. The molecular cloud mass closest to the sun is the Taurus and Auriga complex about 150 +/- 50 pc). Nearer to the Per )B2 OB association (at 350 +/- 100 pc) than the Taurus clouds are the Per OB2 molecular cloud (350 +/- 100 pc) and the California Nebula = NGC15979 molecular clouds (at 400 +/- 150 pc). Cloud masses were determined from integrated CO emission intensity alone by assuming that γ-ray emission intensities can be used to relate H 2 column densities to CO emission intensities

  8. The internal kinematics of the planetary nebula NGC 650/1

    International Nuclear Information System (INIS)

    Taylor, K.

    1979-01-01

    Hα and [N II], lambda 6584 line profiles from the bright lobes of planetary nebula NGC 650/1 have been obtained. These emission lines show a very strong symmetrical triple-peak velocity structure, not observed previously to the author's knowledge in planetary nebulae. Models are tentatively proposed to explain both the velocity data and the nebula's optical appearance. The velocity splitting amounts to approximately 62 km/s and the rest frame of the nebula is found to have a heliocentric radial velocity of -19 +- 2 km/s. (author)

  9. Collisional effects in He I lines and helium abundances in planetary nebulae

    International Nuclear Information System (INIS)

    Clegg, R.E.S.

    1987-01-01

    Attention is drawn to new, 19-state quantal calculations for collisional excitation by electron impact in neutral helium. Recommended empirical formulae are given for the collisional contribution to HeI recombination lines such as λλ4471, 5876 A in gaseous nebulae. Collisional ionization of metastable (2 3 S) He I is significant for high-temperature nebulae. Collisional transfers provide significant cooling in nebulae with low heavy-element abundances. Revised mean He/H ratios for three large samples of planetary nebulae are given. (author)

  10. The Herschel Planetary Nebula Survey (HerPlaNS): A Comprehensive Dusty Photoionization Model of NGC6781.

    Science.gov (United States)

    Otsuka, Masaaki; Ueta, Toshiya; van Hoof, Peter A M; Sahai, Raghvendra; Aleman, Isabel; Zijlstra, Albert A; Chu, You-Hua; Villaver, Eva; Leal-Ferreira, Marcelo L; Kastner, Joel; Szczerba, Ryszard; Exter, Katrina M

    2017-08-01

    We perform a comprehensive analysis of the planetary nebula (PN) NGC 6781 to investigate the physical conditions of each of its ionized, atomic, and molecular gas and dust components and the object's evolution, based on panchromatic observational data ranging from UV to radio. Empirical nebular elemental abundances, compared with theoretical predictions via nucleosynthesis models of asymptotic giant branch (AGB) stars, indicate that the progenitor is a solar-metallicity, 2.25-3.0 M ⊙ initial-mass star. We derive the best-fit distance of 0.46 kpc by fitting the stellar luminosity (as a function of the distance and effective temperature of the central star) with the adopted post-AGB evolutionary tracks. Our excitation energy diagram analysis indicates high-excitation temperatures in the photodissociation region (PDR) beyond the ionized part of the nebula, suggesting extra heating by shock interactions between the slow AGB wind and the fast PN wind. Through iterative fitting using the Cloudy code with empirically derived constraints, we find the best-fit dusty photoionization model of the object that would inclusively reproduce all of the adopted panchromatic observational data. The estimated total gas mass (0.41 M ⊙ ) corresponds to the mass ejected during the last AGB thermal pulse event predicted for a 2.5 M ⊙ initial-mass star. A significant fraction of the total mass (about 70%) is found to exist in the PDR, demonstrating the critical importance of the PDR in PNe that are generally recognized as the hallmark of ionized/H + regions.

  11. The Intricate Structure of HH 508, the Brightest Microjet in the Orion Nebula

    Science.gov (United States)

    Wu, Ya-Lin; Close, Laird M.; Kim, Jinyoung Serena; Males, Jared R.; Morzinski, Katie M.

    2018-02-01

    We present Magellan adaptive optics Hα imaging of HH 508, which has the highest surface brightness among protostellar jets in the Orion Nebula. We find that HH 508 actually has a shorter component to the west, and a longer and knotty component to the east. The east component has a kink at 0.″3 from the jet-driving star θ 1 Ori B2, so it may have been deflected by the wind/radiation from the nearby θ 1 Ori B1B5. The origin of both components is unclear, but if each of them is a separate jet, then θ 1 Ori B2 may be a tight binary. Alternatively, HH 508 may be a slow-moving outflow, and each component represents an illuminated cavity wall. The ionization front surrounding θ 1 Ori B2B3 does not directly face θ 1 Ori B1B5, suggesting that the EUV radiation from θ 1 Ori C plays a dominant role in affecting the morphology of proplyds even in the vicinity of θ 1 Ori B1B5. Finally, we report an Hα blob that might be ejected by the binary proplyd LV 1.

  12. A detailed study of the structure of the nested planetary nebula, Hb 12, the Matryoshka nebula

    Energy Technology Data Exchange (ETDEWEB)

    Clark, D. M.; López, J. A. [Instituto de Astronomía, Universidad Nacional Autónoma de México, Campus Ensenada, Ensenada, Baja California, 22860 (Mexico); Edwards, M. L. [LBT Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Winge, C., E-mail: dmclark@astrosen.unam.mx, E-mail: jal@astrosen.unam.mx, E-mail: medwards@lbto.org, E-mail: cwinge@gemini.edu [Gemini Observatory, Southern Operations Center, c/o AURA Inc., Casilla 603, La Serena (Chile)

    2014-11-01

    We present near-IR, integral field spectroscopic observations of the planetary nebula (PN) Hb 12 using Near-infrared Integral Field Spectrograph (NIFS) on Gemini-North. Combining NIFS with the adaptive optics system Altair, we provide a detailed study of the core and inner structure of this PN. We focus the analysis in the prominent emission lines [Fe II] (1.6436 μm), He I (2.0585 μm), H{sub 2} (2.1214 μm), and Br{sub γ} (2.16553 μm). We find that the [Fe II] emission traces a tilted system of bipolar lobes, with the northern lobe being redshifted and the southern lobe blueshifted. The [Fe II] emission is very faint at the core and only present close to the systemic velocity. There is no H{sub 2} emission in the core, whereas the core is prominent in the He I and Br{sub γ} recombination lines. The H{sub 2} emission is concentrated in equatorial arcs of emission surrounding the core and expanding at ∼30 km s{sup –1}. These arcs are compared with Hubble Space Telescope images and shown to represent nested loops belonging to the inner sections of a much larger bipolar structure that replicates the inner one. The He I and Br{sub γ} emission from the core clearly show a cylindrical central cavity that seems to represent the inner walls of an equatorial density enhancement or torus. The torus is 0.''2 wide (≡200 AU radius at a distance of 2000 pc) and expanding at ≤30 km s{sup –1}. The eastern wall of the inner torus is consistently more intense than the western wall, which could indicate the presence of an off-center star, such as is observed in the similar hourglass PN, MyCn 18. A bipolar outflow is also detected in Br{sub γ} emerging within 0.''1 from the core at ∼ ± 40 km s{sup –1}.

  13. The fast, massive outflow of the pre-planetary nebula IRAS 19374+2356

    Science.gov (United States)

    Sánchez Contreras, C.; Martin, S.; Sahai, R.

    2013-05-01

    At some point in the late-AGB stage, a process (or processes) becomes operative that accelerates and imposes bipolarity upon the slow, spherical AGB winds. What produces bipolarity in these objects and at what stage does bipolarity manifest itself are key questions that remain yet poorly understood. We present CO (115 & 230 GHz) emission maps of IRAS19374+2359, an extreme pre-PN with an unparalleledly massive, fast molecular outflow discovered in our OVRO Post-AGB CO 1-0 emission Survey (referred to as OPACOS; Sánchez Contreras & Sahai 2012, ApJS, 203, 16). We present sub-arcsecond resolution ^{(12,13)}CO 2-1 and 1.3 mm-continuum interferometric maps recently obtained with the Submillimeter Array (SMA) together with our discovery ˜8s-resolution ^{(12,13)}CO 1-0 OVRO data. The prominent ˜300 km s^{-1}-broad wings and the lack of an intense, low-velocity CO line core in IRAS 19374 indicate that most or all of the molecular gas participates in the high-velocity flow. From our CO data, we estimate a total mass in the molecular outflow of ˜ 1 msun and an unprecedentedly large value for the linear momemtum carried of ≥ 45 msun km s^{-1}. Our SMA maps show CO emission arising from a ˜3s×2s hourglass-shaped molecular flow aligned with the optical lobes; a linear velocity gradient along the lobes as well as equatorial expansion at the nebula waist are found. The spatio-kinematic structure of this object is in support of a jet-envelope entrainment scenario in which a substantial amount of directed momentum is transferred to large parts of the dense AGB wind by interaction with fast, collimated post-AGB jets.

  14. Tracing the star stream through M31 using planetary nebula kinematics

    NARCIS (Netherlands)

    Merrett, HR; Kuijken, K; Merrifield, MR; Romanowsky, AJ; Douglas, NG; Napolitano, NR; Arnaboldi, M; Capaccioli, M; Freeman, KC; Gerhard, O; Evans, NW; Wilkinson, MI; Halliday, C; Bridges, TJ; Carter, D

    2003-01-01

    We present a possible orbit for the Southern Stream of stars in M31, which connects it to the Northern Spur. Support for this model comes from the dynamics of planetary nebulae (PNe) in the disc of M31: analysis of a new sample of 2611 PNe obtained using the Planetary Nebula Spectrograph reveals

  15. Evolution of extra-galactic nebulae and the origin of metagalactic radio noise

    International Nuclear Information System (INIS)

    Bruce, C.E.R.

    1975-01-01

    It is pointed out that the discovery of the 'jet' in the radio source NGC 4486 fulfils a prediction made many years ago that such 'jets' would exist in some globular or elliptical nebulae. They are the channels of electrical discharges on a nebular scale then postulated, which will last for about 10 million years. It is emphasized that the discharge hypothesis would account for - 1. the existence of irregular nebulae; 2. the 'cataclysmic action' which Hubble regarded as required to account for the transition from nebulae of Type E to Type Sa; 3. the fact that the arms of spiral nebulae are never seen in process of formation; 4. the gathering of the matter towards the discharge channels by magnetic pinch effect; 5. the frequent occurrence of two diametrically opposed major arms; 6. the origin of radio waves throughout an extensive volume of space surrounding the 'jet' or discharge channel in NGC 4486; 7. the effect of one extra galactic nebula, NGC 3187, on another, NGC 3190; 8. the existence of diffuse patches of luminosity, 'emission nebulae', in the spiral arms of our own galaxy and in those of the 'Andromeda Nebula'. On the discharge theory about one per cent of all nebulae will be passing through the discharge phase at any one time, i.e., the number required to account for the observed intensity of metagalactic radio noise. (author)

  16. A 'variable' stellar object in a variable blue nebula V-V 1-7

    International Nuclear Information System (INIS)

    Rao, N.K.; Gilra, D.P.

    1981-01-01

    V-V 1-7 is supposed to be one of the few planetary nebulae with Ao central stars and was included in the planetary-nebula catalogue as PK 235 + 1 0 1. The nebula was seen on the blue Palomar Observatory Sky Survey (POSS) print but not on the red print; as a result it was thought that it might be a reflection nebula. However, the symmetry of the nebula around the central star (HD 62001), and also the ultraviolet photometric variability of this central star led others to suggest that the nebula might be a nova shell. Subsequently it was found that the nebula V-V 1-7 has disappeared. It is not seen on any direct plate known to us except the POSS blue plate. In this paper the disappearance is reported (along with the nebula) of a stellar object, which appears within the 'nebular shell' of V-V 1-7 on the POSS blue plate, but not on the red plate. (author)

  17. Abundances of Planetary Nebulae IC 418, IC 2165 and NGC 5882

    NARCIS (Netherlands)

    Pottasch, [No Value; Bernard-Salas, J; Beintema, DA; Feibelman, WA

    The ISO and IUE spectra of the elliptical nebulae NGC 5882, IC 418 and IC 2165 are presented. These spectra are combined with the spectra in the visual wavelength region to obtain a complete, extinction corrected, spectrum. The chemical composition of the nebulae is then calculated and compared to

  18. An Analysis of Spectra in the Red Rectangle Nebula Frédéric Zagury

    Indian Academy of Sciences (India)

    Abstract. This paper presents an analysis of a series of spectra in the. Red Rectangle nebula. Only the reddest part of the spectra can safely be attributed to light from the nebula, and indicates Rayleigh scattering by the gas, in conformity with the large angles of scattering involved and the prox- imity of the star. In the blue ...

  19. Dark-Matter Content of Early-Type Galaxies with Planetary Nebulae

    NARCIS (Netherlands)

    Napolitano, N.R.; Romanowsky, A.J.; Coccato, L; Capaccioli, M.; Douglas, N.G.; Noordermeer, E.; Merrifield, M.R.; Kuijken, K.; Arnaboldi, M.; Gerhard, O.; Freeman, K.C.; De Lorenzi, F.; Das, P.

    2007-01-01

    Abstract. We examine the dark matter properties of nearby early-type galaxies using plane- tary nebulae (PNe) as mass probes. We have designed a specialised instrument, the Planetary Nebula Spectrograph (PN.S) operating at the William Herschel telescope, with the purpose of measuring PN velocities

  20. The Spitzer IRS infrared spectrum and abundances of the planetary nebula IC 2448

    NARCIS (Netherlands)

    Guiles, S.; Bernard-Salas, J.; Pottasch, S. R.; Roellig, T. L.

    2007-01-01

    We present the mid-infrared spectrum of the planetary nebula IC 2448. In order to determine the chemical composition of the nebula, we use the infrared line fluxes from the Spitzer spectrum along with optical line fluxes from the literature and ultraviolet line fluxes from archival IUE spectra. We

  1. Radio synthesis observations of planetary nebulae. II. A search for sub-arcsecond structure

    International Nuclear Information System (INIS)

    Balick, B.; Terzian, Y.

    1976-01-01

    Observations of 11 planetary nebulae with spatial resolutions from 0''.2 to 2'' at 2695 and 8085 MHz failed to show any very bright structure smaller than about 2''. The observations are shown to be consistent with the present understanding of the temperatures and density distributions thought to typify most planetary nebulae

  2. PPAK integral field spectroscopy survey of the Orion nebula. Data release

    NARCIS (Netherlands)

    Sánchez, S. F.; Cardiel, N.; Verheijen, M. A. W.; Martín-Gordón, D.; Vilchez, J. M.; Alves, J.

    2007-01-01

    Aims:We present a low-resolution spectroscopic survey of the Orion nebula. The data are released for public use. We show the possible applications of this dataset analyzing some of the main properties of the nebula. Methods: We perform an integral field spectroscopy mosaic of an area of ~5 arcmin× 6

  3. Models of the Mass-ejection Histories of Pre-planetary Nebulae. II. The Formation of Minkowski’s Butterfly and its Proboscis in M2–9

    Science.gov (United States)

    Balick, Bruce; Frank, Adam; Liu, Baowei; Corradi, Romano

    2018-02-01

    M2–9, or the “Minkowski’s Butterfly,” is one of the most iconic outflow sources from an evolved star. In this paper we present a hydrodynamic model of M2–9 in which the nebula is formed and shaped by a steady, low-density (“light”), mildly collimated “spray” of gas injected at 200 km s‑1 that interacts with a far denser, intrinsically simple pre-existing AGB wind that has slowly formed all of the complex features within M2–9’s lobes (including the knot pairs N3/S3 and N4/S4 at their respective leading edges, and the radial gradient of Doppler shifts within 20″ of the nucleus). We emphasize that the knot pairs are not ejected from the star but formed in situ. In addition, the observed radial speed of the knots is only indirectly related to the speed of the gas injected by the star. The model allows us to probe the early history of the wind geometry and lobe formation. We also formulate a new estimate of the nebular distance D = 1.3 kpc. The physical mechanism that accounts for the linear radial speed gradient in M2–9 applies generally to many other pre-planetary nebulae whose hollow lobes exhibit similar gradients along their edges.

  4. UNUSUAL DUST EMISSION FROM PLANETARY NEBULAE IN THE MAGELLANIC CLOUDS

    International Nuclear Information System (INIS)

    Bernard-Salas, J.; Sloan, G. C.; Gutenkunst, S.; Houck, J. R.; Peeters, E.; Matsuura, M.; Tielens, A. G. G. M.; Zijlstra, A. A.

    2009-01-01

    We present a Spitzer Space Telescope spectroscopic study of a sample of 25 planetary nebulae (PNe) in the Magellanic Clouds (MCs). The low-resolution modules are used to analyze the dust features present in the infrared spectra. This study complements a previous work by the same authors where the same sample was analyzed in terms of neon and sulfur abundances. Over half of the objects (14) show emission of polycyclic aromatic hydrocarbons, typical of carbon-rich dust environments. We compare the hydrocarbon emission in our objects to those of Galactic H II regions and PNe, and Large Magellanic Cloud/Small Magellanic Cloud H II regions. Amorphous silicates are seen in just two objects, enforcing the now well known fact that oxygen-rich dust is less common at low metallicities. Besides these common features, some PNe show very unusual dust. Nine objects show a strong silicon carbide feature at 11 μm and 12 of them show magnesium sulfide emission starting at 25 μm. The high percentage of spectra with silicon carbide in the MCs is not common. Two objects show a broadband which may be attributed to hydrogenated amorphous carbon and weak low-excitation atomic lines. It is likely that these nebulae are very young. The spectra of the remaining eight nebulae are dominated by the emission of fine-structure lines with a weak continuum due to thermal emission of dust, although in a few cases the signal-to-noise ratio in the spectra is low, and weak dust features may not have been detected.

  5. Timing of Solar Nebula Dispersal Constrained by Early Solar System Paleomagnetism

    Science.gov (United States)

    Wang, H.; Weiss, B. P.; Downey, B. G.; Bai, X. N.; Wang, J.; Suavet, C. R.; Fu, R. R.; Lima, E. A.; Zucolotto, M. E.

    2015-12-01

    The formation of the solar system/extrasolar planets largely takes place in the gas-rich solar nebular/protoplanetary disks. Nebular magnetic fields are thought to play a dominant role in global disk evolution by driving angular momentum transport via the magneto-rotational instability and/or magnetized disk winds, with the magnetically-driven accretion rate proportional to the square of the field strength. Previous paleomagnetic analyses of the Semarkona meteorite found evidence for a ~5-50 μT solar nebular field at ~2-3 My after the formation of calcium-aluminum-rich inclusions (CAIs), which consist of the first solids condensed from the cooling protoplanetary disk. These field strengths are consistent with stellar accretion rates of ~10-8 Msun/yr as typically observed for Sun-like stars. A key remaining question is the time when the nebular magnetic field and solar nebula itself dispersed. To address this, we analyzed the paleomagnetism of angrites, a class of exceptionally well-preserved igneous rocks that should retain magnetic records beginning just ~4 My after CAI formation. Here we present paleomagnetic, rock magnetic, and synchrotron-based transmission X-ray microscopic analyses of the quenched angrites D'Orbigny, Sahara 99555 and Asuka 881371. Our data show that the magnetic field at the angrite parent body region was < ~0.1 µT at ~4 My after CAI formation. This indicates that the nebular magnetic field had rapidly declined by at least a factor of ~50 by that time, such that the magnetically driven solar accretion rate was well below 10-11 Msun/yr. Because a strong nebular magnetic field was likely present throughout most of the gaseous disk lifetime, our results suggest that the solar nebula itself had probably already dispersed by ~4 My after CAI formation. This dispersal time agrees with typical protoplanetary disk lifetimes inferred from infrared excesses for Sun-like protostars. Our results suggest that the formation of the solar system giant

  6. The complete Einstein Observatory X-ray survey of the Orion Nebula region.

    Science.gov (United States)

    Gagne, Marc; Caillault, Jean-Pierre

    1994-01-01

    We have analyzed archival Einstein Observatory images of a roughly 4.5 square degree region centered on the Orion Nebula. In all, 245 distinct X-ray sources have been detected in six High Resolution Imager (HRI) and 17 Imaging Proportional Counter (IPC) observations. An optical database of over 2700 stars has been assembled to search for candidate counterparts to the X-ray sources. Roughly half the X-ray sources are identified with a single Orion Nebula cluster member. The 10 main-sequence O6-B5 cluster stars detected in Orion have X-ray activity levels comparable to field O and B stars. X-ray emission has also been detected in the direction of four main-sequence late-B and early-A type stars. Since the mechanisms producing X-rays in late-type coronae and early-type winds cannot operate in the late-B and early-A type atmospheres, we argue that the observed X-rays, with L(sub X) approximately = 3 x 10(exp 30) ergs/s, are probably produced in the coronae of unseen late-type binary companions. Over 100 X-ray sources have been associated with late-type pre-main sequence stars. The upper envelope of X-ray activity rises sharply from mid-F to late-G, with L(sub x)/L(sub bol) in the range 10(exp -4) to 2 x 10(exp -3) for stars later than approximately G7. We have looked for variability of the late-type cluster members on timescales of a day to a year and find that 1/4 of the stars show significantly variable X-ray emission. A handful of the late-type stars have published rotational periods and spectroscopic rotational velocities; however, we see no correlation between X-ray activity and rotation. Thus, for this sample of pre-main-sequence stars, the large dispersion in X-ray activity does not appear to be caused by the dispersion in rotation, in contrast with results obtained for low-mass main-sequence stars in the Pleiades and pre-main-sequence stars in Taurus-Auriga.

  7. Helium shell flashes and ionization of planetary nebulae. Pt. 2. FG Sge

    International Nuclear Information System (INIS)

    Tylenda, R.

    1980-01-01

    Theoretical models have been constructed to study time-dependent effects in the nebulae (He 1-5) associated with FG Sge. Two cases have been considered: recombination of an initially stationary nebula of moderate excitation (Case A), and nonequilibrium ionization (and subsequent recombination) of an initially neutral nebula by a thermal pulse in the central star (Case B). Comparison with the observed spectrum does not allow to distinguish definitely between both cases. There are slight indications that the present state of He 1-5 is better reproduced in Case B which is also preferable from the point of view of the present theoretical knowledge of observational appearances of helium shell flashes in planetary nebula nuclei. The nebula has a normal chemical composition. (author)

  8. Emission lines of Mg2 and Ca2 in planetary nebulae

    International Nuclear Information System (INIS)

    Gurzadyan, G.A.

    1979-01-01

    Conditions of exciting resonance lines in the emission of ionized magnesium (lambda lambda 2796+2803 Mg2) and calcium (lambda lambda 3934+3968 Ca2) in planetary nebulae have been analyzed. It is shown that the allowed lines are excited with the same mechanism, as the forbidden lines, i.e. inelastic electron collisions, but not with common fluorescence. The emission line lambda 2800 Mg2 of enough force can be observed only in the spectra of planetary nebulae with mean excitation (IC 2149) as well as in the spectra of diffuse nebulae. The line must not be observed in high-excited planetary nebulae (NGC 7026, 7662). The absence of emission lines H and K Ca2 in planetary nebulae spectra results from the fact, that their expected intensity is by 3-4 orders less than the intensity of the line lambda 2800 Mg2 or Hsub(β) hydrogen

  9. The Radio Spectral Index of the Crab Nebula

    Science.gov (United States)

    1997-11-20

    provision of law , no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid...Nebula either, so the spectrum near the edge maintains its power law form at least down to 74 MHz. The uniformity of the spectral index throughout the... Walra -(Oort ven This feature is moving outward,1956 ; Scargle 1969). and in the radio, it seems to have a sharp outward edge (BK92). Since our 327

  10. N III line emission in planetary nebulae - Not Bowen fluorescence

    Science.gov (United States)

    Kastner, S. O.; Bhatia, A. K.

    1991-01-01

    A direct comparison of photometrically observed line ratios in the N III 4640 and 4100 A multiplets emitted by planetary nebulae with theoretically predicted ratios expected from the postulated Bowen process of selective photoexcitation by an O III resonance line shows that the N III lines are not produced by the Bowen process as has been commonly accepted. This will have consequences for the interpretation of these lines in other astrophysical sources. A further, unexpected result is that the N III level populations involved are found to be essentially in statistical equilibrium. Possible populating mechanisms are briefly discussed.

  11. Early-type objects in NGC6611 and Eagle Nebula

    OpenAIRE

    Martayan, Christophe; Floquet, Michele; Hubert, Anne-Marie; Neiner, Coralie; Fremat, Yves; Baade, Dietrich; Fabregat, Juan

    2008-01-01

    An important question about Be stars is whether Be stars are born as Be stars or not. It is necessary to observe young clusters to answer this question. Observations of stars in NGC6611 and the star-formation region of Eagle Nebula have been carried out with the ESO-WFI in slitless spectroscopic mode and at the VLT-GIRAFFE. The targets for the GIRAFFE observations were pre-selected from the literature and our catalogue of emission-line stars (ELS) based on the WFI study. GIRAFFE observations ...

  12. Interstellar Organics, the Solar Nebula, and Saturn's Satellite Phoebe

    Science.gov (United States)

    Pendleton, Y. J.; Cruikshank, D. P.

    2014-01-01

    The diffuse interstellar medium inventory of organic material (Pendleton et al. 1994, Pendleton & Allamandola 2002) was likely incorporated into the molecular cloud in which the solar nebula condensed. This provided the feedstock for the formation of the Sun, major planets, and the smaller icy bodies in the region outside Neptune's orbit (transneptunian objects, or TNOs). Saturn's satellites Phoebe, Iapetus, and Hyperion open a window to the composition of one class of TNO as revealed by the near-infrared mapping spectrometer (VIMS) on the Cassini spacecraft at Saturn. Phoebe (mean diameter 213 km) is a former TNO now orbiting Saurn. VIMS spaectral maps of PHoebe's surface reveal a complex organic spectral signature consisting of prominent aromatic (CH) and alophatic hydrocarbon (CH2, CH3) absorption bands (3.2-3.6 micrometers). Phoebe is the source of a huge debris ring encircling Saturn, and from which particles (approximately 5-20 micrometer size) spiral inward toward Saturn. They encounter Iapetus and Hperion where they mix with and blanket the native H2O ice of those two bodies. Quantitative analysis of the hydrocarbon bands on Iapetus demonstrates that aromatic CH is approximately 10 times as abundant as aliphatic CH2+CH3, significantly exceeding the strength of the aromatic signature in interplanetary dust particles, comet particles, ad in carbonaceous meteorites (Cruikshank et al. 2013). A similar excess of aromatics over aliphatics is seen in the qualitative analysis of Hyperion and Phoebe itself (Dalle Ore et al. 2012). The Iapetus aliphatic hydrocarbons show CH2/CH3 approximately 4, which is larger than the value found in the diffuse ISM (approximately 2-2.5). In so far as Phoebe is a primitive body that formed in the outer regions of the solar nebula and has preserved some of the original nebula inventory, it can be key to understanding the content and degree of procesing of the nebular material. There are other Phoebe-like TNOs that are presently

  13. Wind energy

    CERN Document Server

    Woll, Kris

    2016-01-01

    Across the country, huge open spaces are covered in gently turning wind turbines. In Wind Energy, explore how these machines generate electricity, learn about the history of wind power, and discover the latest advances in the field. Easy-to-read text, vivid images, and helpful back matter give readers a clear look at this subject. Features include a table of contents, infographics, a glossary, additional resources, and an index. Aligned to Common Core Standards and correlated to state standards. Core Library is an imprint of Abdo Publishing, a division of ABDO.

  14. Bi-Abundance Ionisation Structure of the Wolf-Rayet Planetary Nebula PB 8

    Science.gov (United States)

    Danehkar, A.

    2018-01-01

    The planetary nebula PB 8 around a [WN/WC]-hybrid central star is one of planetary nebulae with moderate abundance discrepancy factors (ADFs 2-3), which could be an indication of a tiny fraction of metal-rich inclusions embedded in the nebula (bi-abundance). In this work, we have constructed photoionisation models to reproduce the optical and infrared observations of the planetary nebula PB 8 using a non-LTE stellar model atmosphere ionising source. A chemically homogeneous model initially used cannot predict the optical recombination lines. However, a bi-abundance model provides a better fit to most of the observed optical recombination lines from N and O ions. The metal-rich inclusions in the bi-abundance model occupy 5.6% of the total volume of the nebula, and are roughly 1.7 times cooler and denser than the mean values of the surrounding nebula. The N/H and O/H abundance ratios in the metal-rich inclusions are 1.0 and 1.7 dex larger than the diffuse warm nebula, respectively. To reproduce the Spitzer spectral energy distribution of PB 8, dust grains with a dust-to-gas ratio of 0.01 (by mass) were also included. It is found that the presence of metal-rich inclusions can explain the heavy element optical recombination lines, while a dual-dust chemistry with different grain species and discrete grain sizes likely produces the infrared continuum of this planetary nebula. This study demonstrates that the bi-abundance hypothesis, which was examined in a few planetary nebulae with large abundance discrepancies (ADFs > 10), could also be applied to those typical planetary nebulae with moderate abundance discrepancies.

  15. World Wind

    Data.gov (United States)

    National Aeronautics and Space Administration — World Wind allows any user to zoom from satellite altitude into any place on Earth, leveraging high resolution LandSat imagery and SRTM elevation data to experience...

  16. 78 FR 29364 - Exelon Corporation, Exelon Wind 1, LLC, Exelon Wind 2, LLC, Exelon Wind 3, LLC, Exelon Wind 4...

    Science.gov (United States)

    2013-05-20

    ...-005, QF07-257-004] Exelon Corporation, Exelon Wind 1, LLC, Exelon Wind 2, LLC, Exelon Wind 3, LLC, Exelon Wind 4, LLC, Exelon Wind 5, LLC, Exelon Wind 6, LLC, Exelon Wind 7, LLC, Exelon Wind 8, LLC, Exelon Wind 9, LLC, Exelon Wind 10, LLC, Exelon Wind 11, LLC, High Plains Wind Power, LLC v. Xcel Energy...

  17. The Integral Field View of the Orion Nebula

    Directory of Open Access Journals (Sweden)

    Adal Mesa-Delgado

    2014-01-01

    Full Text Available This paper reviews the major advances achieved in the Orion Nebula through the use of integral field spectroscopy (IFS. Since the early work of Vasconcelos and collaborators in 2005, this technique has facilitated the investigation of global properties of the nebula and its morphology, providing new clues to better constrain its 3D structure. IFS has led to the discovery of shock-heated zones at the leading working surfaces of prominent Herbig-Haro objects as well as the first attempt to determine the chemical composition of Orion protoplanetary disks, also known as proplyds. The analysis of these morphologies using IFS has given us new insights into the abundance discrepancy problem, a long-standing and unresolved issue that casts doubt on the reliability of current methods used for the determination of metallicities in the universe from the analysis of H II regions. Results imply that high-density clumps and high-velocity flows may play an active role in the production of such discrepancies. Future investigations based on the large-scale IFS mosaic of Orion will be very valuable for exploring how the integrated effect of small-scale structures may have impact at larger scales in the framework of star-forming regions.

  18. Two different sources of water for the early solar nebula.

    Science.gov (United States)

    Kupper, Stefan; Tornow, Carmen; Gast, Philipp

    2012-06-01

    Water is essential for life. This is a trivial fact but has profound implications since the forming of life on the early Earth required water. The sources of water and the related amount of delivery depend not only on the conditions on the early Earth itself but also on the evolutionary history of the solar system. Thus we ask where and when water formed in the solar nebula-the precursor of the solar system. In this paper we explore the chemical mechanics for water formation and its expected abundance. This is achieved by studying the parental cloud core of the solar nebula and its gravitational collapse. We have identified two different sources of water for the region of Earth's accretion. The first being the sublimation of the icy mantles of dust grains formed in the parental cloud. The second source is located in the inner region of the collapsing cloud core - the so-called hot corino with a temperature of several hundred Kelvin. There, water is produced efficiently in the gas phase by reactions between neutral molecules. Additionally, we analyse the dependence of the production of water on the initial abundance ratio between carbon and oxygen.

  19. Observation and Spectral Measurements of the Crab Nebula with Milagro

    Science.gov (United States)

    Abdo, A. A.; Allen, B. T.; Aune, T.; Benbow, W.; Berley, D.; Chen, C.; Christopher, G. E.; DeYoung, T.; Dingus, B. L.; Falcone, A.; hide

    2011-01-01

    The Crab Nebula was detected with the Milagro experiment at a statistical significance of 17 standard deviations over the lifetime of the experiment. The experiment was sensitive to approximately 100 GeV - 100 TeV gamma ray air showers by observing the particle footprint reaching the ground. The fraction of detectors recording signals from photons at the ground is a suitable proxy for the energy of the primary particle and has been used to measure the photon energy spectrum of the Crab Nebula between 1 and 100 TeV. The TeV emission is believed to be caused by inverse-Compton up-scattering scattering of ambient photons by an energetic electron population. The location of a Te V steepening or cutoff in the energy spectrum reveals important details about the underlying electron population. We describe the experiment and the technique for distinguishing gamma-ray events from the much more-abundant hadronic events. We describe the calculation of the significance of the excess from the Crab and how the energy spectrum is fit.

  20. A 15N-poor isotopic composition for the solar system as shown by Genesis solar wind samples.

    Science.gov (United States)

    Marty, B; Chaussidon, M; Wiens, R C; Jurewicz, A J G; Burnett, D S

    2011-06-24

    The Genesis mission sampled solar wind ions to document the elemental and isotopic compositions of the Sun and, by inference, of the protosolar nebula. Nitrogen was a key target element because the extent and origin of its isotopic variations in solar system materials remain unknown. Isotopic analysis of a Genesis Solar Wind Concentrator target material shows that implanted solar wind nitrogen has a (15)N/(14)N ratio of 2.18 ± 0.02 × 10(-3) (that is, ≈40% poorer in (15)N relative to terrestrial atmosphere). The (15)N/(14)N ratio of the protosolar nebula was 2.27 ± 0.03 × 10(-3), which is the lowest (15)N/(14)N ratio known for solar system objects. This result demonstrates the extreme nitrogen isotopic heterogeneity of the nascent solar system and accounts for the (15)N-depleted components observed in solar system reservoirs.

  1. The chemical composition of three planetary nebulae in the Magellanic clouds

    International Nuclear Information System (INIS)

    Dufour, R.J.; Killen, R.M.

    1977-01-01

    Emission-line intensities in the planetary nebulae Henize 67 in the Small Magellanic Cloud (SMC) and Henize 97 and 153 in the LMC along with the small SMC H II regions Henize 9, 61, and 81 were measured from photographic image-tube spectra taken with the 1.5 m telescope at Cerro Tololo. The relative abundances of H, He, N, O, Ne, S, and Ar in the nebulae were estimated and compared with the compositions of galactic planetary nebulae and previously studied H II regions in the Clouds. The results show that (1) the N/O ratios in the planetary nebulae are substantially higher than found in the H II regions of each Cloud; (2) He/H approx. = 0.18 in the SMC planetary nebula, but seems normal (approx.0.10) in the two LMC planetaries; and (3) the compositions of the three small SMC H II regions are similar to that of larger SMC H II regions studied previously. It is concluded that the N/H values in the shells of planetary nebulae may not depend on the metal content of the progenitor star as much as recent theoretical models suggest and that the N content of the gas in the Magellanic Clouds arises primarily from sources other than planetary nebulae

  2. Model planetary nebulae: the effect of shadowed filaments on low ionization potential ion radiation

    International Nuclear Information System (INIS)

    Katz, A.

    1977-01-01

    Previous homogeneous model planetary nebulae calculations No. 4 have yielded emission strengths for low ionization potential No. 4 ions which are considerably lower than those observed. Several attempts were to correct this problem by the inclusion of optically thin condensations, the use of energy flux distributions from stellar model calculations instead of blackbody spectrum stars, and the inclusion of dust in the nebulae. The effect that shadowed filaments have on the ionization and thermal structure of model nebulae and the resultant line strengths are considered. These radial filaments are shielded from the direct stellar ionizing radiation by optically thick condensations in the nebula. Theoretical observational evidence exists for the presence of condensations and filaments. Since the only source of ionizing photons in the shadowed filaments is due to diffuse photons produced by recombination, ions of lower ionization potential are expected to exist there in greater numbers than those found in the rest of the nebula. This leads to increased line strengths from these ions and increases their values to match the observational values. It is shown that these line strengths in the filaments increase by over one to two orders of magnitude relative to values found in homogeneous models. This results in an increase of approximately one order of magnitude for these lines when contributions from both components of the nebula are considered. The parameters that determine the exact value of the increase are the radial location of the filaments in the nebula and the fraction of the nebular volume occupied by the filaments

  3. A Self-Perpetuating Catalyst for the Production of Complex Organic Molecules in Protostellar Nebulae

    Science.gov (United States)

    Nuth, Joseph A.; Johnson, N. M.

    2010-01-01

    The formation of abundant carbonaceous material in meteorites is a long standing problem and an important factor in the debate on the potential for the origin of life in other stellar systems. Many mechanisms may contribute to the total organic content in protostellar nebulae, ranging from organics formed via ion-molecule and atom-molecule reactions in the cold dark clouds from which such nebulae collapse, to similar ion-molecule and atom-molecule reactions in the dark regions of the nebula far from the proto star, to gas phase reactions in sub-nebulae around growing giant planets and in the nebulae themselves. The Fischer-Tropsch-type (FTT) catalytic reduction of CO by hydrogen was once the preferred model for production of organic materials in the primitive solar nebula. The Haber-Bosch catalytic reduction of N2 by hydrogen was thought to produce the reduced nitrogen found in meteorites. However, the clean iron metal surfaces that catalyze these reactions are easily poisoned via reaction with any number of molecules, including the very same complex organics that they produce and both reactions work more efficiently in the hot regions of the nebula. We have demonstrated that many grain surfaces can catalyze both FTT and HB-type reactions, including amorphous iron and magnesium silicates, pure silica smokes as well as several minerals. Although none work as well as pure iron grains, and all produce a wide range of organic products rather than just pure methane, these materials are not truly catalysts.

  4. Registration of H2O and SiO masers in the Calabash Nebula to confirm the planetary nebula paradigm

    Science.gov (United States)

    Dodson, R.; Rioja, M.; Bujarrabal, V.; Kim, J.; Cho, S. H.; Choi, Y. K.; Youngjoo, Y.

    2018-05-01

    We report on the astrometric registration of very long baseline interferometry images of the SiO and H2O masers in OH 231.8+4.2, the iconic proto-planetary nebula also known as the Calabash nebula, using the Korean VLBI Network and source frequency phase referencing. This, for the first time, robustly confirms the alignment of the SiO masers, close to the asymptotic giant branch star, driving the bilobe structure with the water masers in the outflow. We are able to trace the bulk motions for the H2O masers over the last few decades to be 19 km s-1 and deduce that the age of this expansion stage is 38 ± 2 yr. The combination of this result with the distance allows a full 3D reconstruction and confirms that the H2O masers lie on and expand along the known large-scale symmetry axis and that the outflow is only a few decades old, so mass loss is almost certainly ongoing. Therefore, we conclude that the SiO emission marks the stellar core of the nebular, the H2O emission traces the expansion, and there must be multiple epochs of ejection to drive the macro-scale structure.

  5. Registration of H2O and SiO masers in the Calabash Nebula, to confirm the Planetary Nebula paradigm

    Science.gov (United States)

    Dodson, R.; Rioja, M.; Bujarrabal, V.; Kim, J.; Cho, SH; Choi, YK; Youngjoo, Y.

    2018-01-01

    We report on the astrometric registration of VLBI images of the SiO and H2O masers in OH 231.8+4.2, the iconic Proto-Planetary Nebula also known as the Calabash nebula, using the KVN and Source/Frequency Phase Referencing. This, for the first time, robustly confirms the alignment of the SiO masers, close to the AGB star, driving the bi-lobe structure with the water masers in the out-flow. We are able to trace the bulk motions for the H2O masers over the last few decades to be 19 km s-1 and deduce that the age of this expansion stage is 38±2 years. The combination of this result with the distance allows a full 3D reconstruction, and confirms that the H2O masers lie on and expand along the known large-scale symmetry axis and that the outflow is only a few decades old, so mass loss is almost certainly on-going. Therefore we conclude that the SiO emission marks the stellar core of the nebular, the H2O emission traces the expansion, and that there must be multiple epochs of ejection to drive the macro-scale structure.

  6. Structure of the solar nebula, growth and decay of magnetic fields and effects of magnetic and turbulent viscosities on the nebula

    International Nuclear Information System (INIS)

    Hayashi, Chushiro

    1982-01-01

    First, distributions of surface densities of dust materials and gases in a preplanetary solar nebula, which give a good fit to the distribution of the planetary mass, are presented and the over-all structure of this nebula, which is in thermal and gravitational equilibrium, is studied. Second, in order to see magnetic effect on the structure, electric conductivity of a gas ionized by cosmic rays and radioactivities contained in dust grains is estimated for each region of the nebula and, then, the growth and decay of seed magnetic fields, which are due to differential rotation of the nebula and to the Joule dissipation, respectively, are calculated. The results indicate that, in regions of the terrestrial planets, magnetic fields decay much faster than they grow and magnetic effects can be ignored, except for the outermost layers of very low density. This is not the case for regions of Uranus and Neptune where magnetic fields can be amplified to considerable extents. Third, the transport of angular momentum due to magnetic and mechanical turbulent viscosities and the resultant redistribution of surface density in the nebula are investigated. The results show that the density redistribution occurs, in general, in a direction to attain a distribution of surface density which has nearly the same ν-dependence as that obtained from the present distribution of the planetary mass. This redistribution seems to be possible if it occurs at a formation stage of the nebula where the presence of large viscosities is expected. Finally, a comment is given on the initial condition of a collapsing interstellar cloud from which the solar nebula is formed at the end of the collapse. (author)

  7. The interaction of the halo around the butterfly planetary nebula NGC 650-1 with the interstellar medium

    Science.gov (United States)

    Ramos-Larios, G.; Guerrero, M. A.; Nigoche-Netro, A.; Olguín, L.; Gómez-Muñoz, M. A.; Sabin, L.; Vázquez, R.; Akras, S.; Ramírez Vélez, J. C.; Chávez, M.

    2018-03-01

    With its bright and wide equatorial waist seen almost edge-on (`the butterfly body') and the faint and broad bipolar extensions (`the butterfly wings'), NGC 650-1 is the archetypical example of bipolar planetary nebula (PN) with butterfly morphology. We present here deep high-resolution broad- and narrow-band optical images that expose the rich and intricate fine structure of this bipolar PN, with small-scale bubble-like features and collimated outflows. A SHAPE spatio-kinematic model indicates that NGC 650-1 has a broad central torus with an inclination angle of 75° with respect to the line of sight, whereas that of the bipolar lobes, which are clearly seen in the position-velocity maps, is 85°. Large field of view deep images show, for first time, an arc-like diffuse envelope in low- and high-excitation emission lines located up to 180 arcsec towards the east-south-east of the central star, well outside the main nebula. This morphological component is confirmed by Spitzer MIPS and WISE infrared imaging, as well as by long-slit low- and high-dispersion optical spectroscopic observations. Hubble Space Telescope images of NGC 650-1 obtained at two different epochs ˜14 yr apart reveal the proper motion of the central star along this direction. We propose that this motion of the star through the interstellar medium compresses the remnant material of a slow asymptotic giant branch wind, producing this bow-shock-like feature.

  8. WIND TURBINES FOR WIND POWER INSTALLATIONS

    Directory of Open Access Journals (Sweden)

    Barladean A.S.

    2008-04-01

    Full Text Available The problem of wind turbine choice for wind power stations is examined in this paper. It is shown by comparison of parameters and characteristics of wind turbines, that for existing modes and speeds of wind in territory of Republic of Moldova it is necessary to use multi-blade small speed rotation wind turbines of fan class.

  9. Planetary nebulae: understanding the physical and chemical evolution of dying stars.

    Science.gov (United States)

    Weinberger, R; Kerber, F

    1997-05-30

    Planetary nebulae are one of the few classes of celestial objects that are active in every part of the electromagnetic spectrum. These fluorescing and often dusty expanding gaseous envelopes were recently found to be quite complex in their dynamics and morphology, but refined theoretical models can account for these discoveries. Great progress was also made in understanding the mechanisms that shape the nebulae and the spectra of their central stars. In addition, applications for planetary nebulae have been worked out; for example, they have been used as standard candles for long-range distances and as tracers of the enigmatic dark matter.

  10. Wind turbine

    Science.gov (United States)

    Cheney, Jr., Marvin C.

    1982-01-01

    A wind turbine of the type having an airfoil blade (15) mounted on a flexible beam (20) and a pitch governor (55) which selectively, torsionally twists the flexible beam in response to wind turbine speed thereby setting blade pitch, is provided with a limiter (85) which restricts unwanted pitch change at operating speeds due to torsional creep of the flexible beam. The limiter allows twisting of the beam by the governor under excessive wind velocity conditions to orient the blades in stall pitch positions, thereby preventing overspeed operation of the turbine. In the preferred embodiment, the pitch governor comprises a pendulum (65,70) which responds to changing rotor speed by pivotal movement, the limiter comprising a resilient member (90) which engages an end of the pendulum to restrict further movement thereof, and in turn restrict beam creep and unwanted blade pitch misadjustment.

  11. Spectroscopic Binaries in the Orion Nebula Cluster and NGC 2264

    Science.gov (United States)

    Kounkel, Marina; Hartmann, Lee; Tobin, John J.; Mateo, Mario; Bailey, John I., III; Spencer, Meghin

    2016-04-01

    We examine the spectroscopic binary population for two massive nearby regions of clustered star formation, the Orion Nebula Cluster (ONC) and NGC 2264, supplementing the data presented by Tobin et al. with more recent observations and more extensive analysis. The inferred multiplicity fraction up to 10 au based on these observations is 5.3 ± 1.2% for NGC 2264 and 5.8 ± 1.1% for the ONC; these values are consistent with the distribution of binaries in the field in the relevant parameter range. Eight of the multiple systems in the sample have enough epochs to perform an initial fit for the orbital parameters. Two of these sources are double-lined spectroscopic binaries; for them, we determine the mass ratio. Our reanalysis of the distribution of stellar radial velocities toward these clusters presents a significantly better agreement between stellar and gas kinematics than was previously thought.

  12. The ultraviolet extinction properties of the 30 Dor Nebula

    Science.gov (United States)

    De Marchi, Guido; Panagia, Nino

    2018-01-01

    Recent investigation of the extinction law in 30 Dor and the Tarantula Nebula, at optical and near infrared wavelengths, has revealed a ratio of total to selective extinction RV=AV/E(B-V) of about 4.5. This indicates a larger proportion of large grains than in the Galactic diffuse interstellar medium. Possible origins include coalescence of small grains, grain growth, selective destruction of small grains, and fresh injection of large grains. From a study of the ultraviolet extinction properties of three Wolf-Rayet stars in 30 Dor (R 139, R 140, R 145), observed with the International Ultraviolet Explorer, we show that the excess of large grains does not come at the expense of small grains, which are still present. Fresh injection of large grains by supernova explosions appears to be the dominant mechanism.

  13. Protoplanetary Nebula Evolution using the Beta Viscosity Model

    Science.gov (United States)

    Davis, Sanford S.

    2003-01-01

    The evolutionary dynamics of a protoplanetary disk is an important component of the planet formation process. In particular, the dynamic and thermodynamic field plays a critical role in chemical evolution, the migration of dust particles in the nebula, and the radial transport of meteoritic components. The dynamic evolution is investigated using analytical solutions of the surface density transport equations using a turbulence model based on hydrodynamic generation of turbulence. It captures the major properties of the disk including region of separation between radial inflow and-outflow and the evolution of the central plane temperature. The analytical formulas are compared with available numerical solutions based on the alpha viscosity model. The beta viscosity model, heretofore used for steady-state disks, is shown to be a useful approximation for unsteady problems.

  14. An earlier explosion date for the Crab Nebula supernova

    Science.gov (United States)

    Abt, Helmut A.; Fountain, John W.

    2018-04-01

    The Chinese first reported the Crab Nebula supernova on 1054 July 5. Ecclesiastical documents from the near east reported it in April and May of 1054. More than 33 petroglyphs made by Native Americans in the US and Mexico are consistent with sightings both before and after conjunction with the Sun on 1054 May 27. We found a petroglyph showing the new star close to Venus and the Moon, which occurred on 1054 April 12 and April 13, respectively. Collins et al., using the four historical dates, derived a light curve that is like that of a Type Ia supernova. The only remaining problem with this identification is that this supernova was near maximum light for 85 d, which is unlike the behavior of any known supernova.

  15. The Σ − D relation for planetary nebulae: Preliminary analysis

    Directory of Open Access Journals (Sweden)

    Urošević D.

    2007-01-01

    Full Text Available An analysis of the relation between radio surface brightness and diameter, so-called Σ − D relation, for planetary nebulae (PNe is presented: i the theoretical Σ − D relation for the evolution of bremsstrahlung surface brightness is derived; ii contrary to the results obtained earlier for the Galactic supernova remnant (SNR samples, our results show that the updated sample of Galactic PNe does not severely suffer from volume selection effect - Malmquist bias (same as for the extragalactic SNR samples and; iii we conclude that the empirical S − D relation for PNe derived in this paper is not useful for valid determination of distances for all observed PNe with unknown distances. .

  16. Two-dimensional spectrophotometry of planetary nebulae by CCD imaging

    International Nuclear Information System (INIS)

    Jacoby, G.H.; Africano, J.L.; Quigley, R.J.; Western Washington Univ., Bellingham, WA)

    1987-01-01

    The spatial distribution of the electron temperature and density and the ionic abundances of O(+), O(2+), N(+), and S(+) have been derived from CCD images of the planetary nebulae NGC 40 and NGC 6826 taken in the important emission lines of forbidden O II, forbidden O III, H-beta, forbidden N II, and forbidden S II. The steps required in the derivation of the absolute fluxes, line, ratios, and ionic abundances are outlined and then discussed in greater detail. The results show that the CCD imaging technique for two-dimensional spectrophotometry can effectively compete with classical spectrophotometry, providing the added benefits of complete spatial coverage at seeing-disk spatial resolution. The multiplexing in the spatial dimension, however, results in a loss of spectral information, since only one emission line is observed at any one time. 37 references

  17. The radial velocities of planetary nebulae in NGC 3379

    Science.gov (United States)

    Ciardullo, Robin; Jacoby, George H.; Dejonghe, Herwig B.

    1993-09-01

    We present the results of a radial velocity survey of planetary nebulae (PNs) in the normal elliptical galaxy NGC 3379 performed with the Kitt Peak 4 m telescope and the NESSIE multifiber spectrograph. In two half-nights, we measured 29 PNs with projected galactocentric distances between 0.4 and 3.8 effective radii with an observational uncertainty of about 7 km/s. These data extend three times farther into the halo than any previous absorption-line velocity study. The velocity dispersion and photometric profile of the galaxy agrees extremely well with that expected from a constant mass-to-light ratio, isotropic orbit Jaffe model with M/L(B) about 7; the best-fitting anisotropic models from a quadratic programming algorithm also give M/L(B) about 7. The data are consistent with models that contain no dark matter within 3.5 effective radii of the galaxy's nucleus.

  18. ROTATING STARS AND THE FORMATION OF BIPOLAR PLANETARY NEBULAE. II. TIDAL SPIN-UP

    Energy Technology Data Exchange (ETDEWEB)

    García-Segura, G. [Instituto de Astronomía, Universidad Nacional Autónoma de Mexico, Km. 103 Carr. Tijuana-Ensenada, 22860, Ensenada, B. C. (Mexico); Villaver, E. [Departamento de Física Teórica, Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid (Spain); Manchado, A. [Instituto de Astrofísica de Canarias, Via Láctea s/n, E-38200 La Laguna, Tenerife (Spain); Langer, N. [Argelander-Institut für Astronomie, Universität Bonn, D-53121 Bonn (Germany); Yoon, S.-C., E-mail: ggs@astrosen.unam.mx [Astronomy Program, Department of Physics and Astronomy, Seoul National University, Seoul, 151-747 (Korea, Republic of)

    2016-06-01

    We present new binary stellar evolution models that include the effects of tidal forces, rotation, and magnetic torques with the goal of testing planetary nebulae (PNs) shaping via binary interaction. We explore whether tidal interaction with a companion can spin-up the asymptotic giant brach (AGB) envelope. To do so, we have selected binary systems with main-sequence masses of 2.5 M {sub ⊙} and 0.8 M {sub ⊙} and evolve them allowing initial separations of 5, 6, 7, and 8 au. The binary stellar evolution models have been computed all the way to the PNs formation phase or until Roche lobe overflow (RLOF) is reached, whatever happens first. We show that with initial separations of 7 and 8 au, the binary avoids entering into RLOF, and the AGB star reaches moderate rotational velocities at the surface (∼3.5 and ∼2 km s{sup −1}, respectively) during the inter-pulse phases, but after the thermal pulses it drops to a final rotational velocity of only ∼0.03 km s{sup −1}. For the closest binary separations explored, 5 and 6 au, the AGB star reaches rotational velocities of ∼6 and ∼4 km s{sup −1}, respectively, when the RLOF is initiated. We conclude that the detached binary models that avoid entering the RLOF phase during the AGB will not shape bipolar PNs, since the acquired angular momentum is lost via the wind during the last two thermal pulses. This study rules out tidal spin-up in non-contact binaries as a sufficient condition to form bipolar PNs.

  19. a Surprise from the Pulsar in the Crab Nebula

    Science.gov (United States)

    1995-11-01

    New observations of the spectrum of the rapidly spinning neutron star (the `pulsar') in the Crab Nebula have been carried out with the ESO 3.5-metre New Technology Telescope (NTT) by a group of Italian astronomers [1]. Because of greatly improved spectral resolution which allows to register even very fine details in the pulsar's spectrum, they are able to determine for the first time with high accuracy the overall dependance of the emission on wavelength, i.e. the `shape' of the spectrum. Quite unexpectedly, they also detect a hitherto unknown 100 A (10 nm) broad `absorption dip', which can be securely attributed to the pulsar. These results open an exciting new window for the study of the extreme physical processes close to a pulsar. The Nature of Pulsars It is estimated that there may be as many as 100 million neutron stars in our Galaxy. A neutron star is the superdense remnant of the extremely violent supernova explosion that occurs at the end of the life of a comparatively massive star. In fact, all stars that are more than about 6 times heavier than the Sun are believed to end their lives as supernovae. During the explosion, the central core of the dying star collapses in a few milliseconds and the matter at the centre is compressed to a density comparable to that of an atomic nucleus. Due to the enormous inward pressure, the atomic particles are squeezed together into a kind of neutron jam. The outcome is the formation of a neutron star with a diameter of 10-15 kilometres, weighing as much as the Sun. In accordance with the physical law that implies that the rotation momentum of the exploding star must be conserved, newborn neutron stars will rotate very rapidly around their axis, in some cases as fast as 100 times per second. In the same way, the new neutron star is expected to possess a strong magnetic field. Of these myriads of neutron stars, about 700 have been observed to emit radio pulses (hence the name `pulsar'). A few of these can also be detected

  20. Resolving the Disk-Halo Degeneracy using Planetary Nebulae

    Science.gov (United States)

    Aniyan, S.; Freeman, K. C.; Arnaboldi, M.; Gerhard, O.; Coccato, L.; Fabricius, M.; Kuijken, K.; Merrifield, M.

    2017-10-01

    The decomposition of the 21 cm rotation curve of galaxies into contribution from the disk and dark halo depends on the adopted mass to light ratio (M/L) of the disk. Given the vertical velocity dispersion (σ z ) of stars in the disk and its scale height (h z ), the disk surface density and hence the M/L can be estimated. Earlier works have used this technique to conclude that galaxy disks are submaximal. Here we address an important conceptual problem: star-forming spirals have an old (kinematically hot) disk population and a young cold disk population. Both of these populations contribute to the integrated light spectra from which σ z is measured. The measured scale height h z is for the old disk population. In the Jeans equation, σ z and h z must pertain to the same population. We have developed techniques to extract the velocity dispersion of the old disk from integrated light spectra and from samples of planetary nebulae. We present the analysis of the disk kinematics of the galaxy NGC 628 using IFU data in the inner regions and planetary nebulae as tracers in the outer regions of the disk. We demonstrate that using the scale height of the old thin disk with the vertical velocity dispersion of the same population, traced by PNe, results in a maximal disk for NGC 628. Our analysis concludes that previous studies underestimate the disk surface mass density by ~ 2, sufficient to make a maximal disk for NGC 628 appear like a submaximal disk.

  1. Synthesis of Organics in the Early Solar Nebula

    Science.gov (United States)

    Johnson, Natasha M.; Manning, S.; Nuth, J. A., III

    2007-10-01

    It is unknown what process or processes made the organics that are found or detected in extraterrestrial materials. One process that forms organics are Fischer-Tropsch type (FTT) reactions. Fischer-Tropsch type synthesis produces complex hydrocarbons by hydrogenating carbon monoxide via surface mediated reactions. The products of these reactions have been well-studied using `natural’ catalysts [1] and calculations of the efficiency of FTT synthesis in the Solar Nebula suggest that these types of reactions could make significant contributions to material near three AU [2]. We use FTT synthesis to coat Fe-silicate amorphous grains with organic material to simulate the chemistry in the early Solar Nebula. These coatings are composed of macromolecular organic phases [3]. Previous work also showed that as the grains became coated, Haber-Bosch type reactions took place resulting in nitrogen-bearing organics [4]. Our experiments consist of circulating CO, N2, and H2 gas through Fe- amorphous silicate grains that are maintained at a specific temperature in a closed system. The gases are passed through an FTIR spectrometer and are measured to monitor the reaction progress. Samples are analyzed using FTIR, and GCMS (including pyrolysis) and extraction techniques are used to analyze the organic coatings. These experiments show that these types of reactions are an effective means to produce complex hydrocarbons. We present the analysis of the produced organics (solid and gas phase) and the change in the production rate of several compounds as the grains become coated. Organics generated by this technique could represent the carbonaceous material incorporated in comets and meteorites. References: [1] Hayatsu and Anders 1981. Topics in Current Chemistry 99:1-37. [2] Kress and Tielens 2001. MAPS 36:75-91. [3] Johnson et al. 2004. #1876. 35th LPSC. [4] Hill and Nuth 2003. Astrobiology 3:291-304. This work was supported by a grant from NASA.

  2. Cloud structure and feedback effects in the Carina Nebula Complex

    Science.gov (United States)

    Roccatagliata, Veronica; Preibisch, Thomas; Gaczkowski, Benjamin; Ratzka, Thorsten

    2013-07-01

    The star formation process in large clusters/associations can be strongly influenced by the feedback from high mass stars. Whether the resulting net effect of the feedback is predominantly negative (cloud dispersal) or positive (triggering of star formation due to cloud compression) is still an open question. The Carina Nebula complex (CNC) represents one of the most massive star-forming regions in our Galaxy. We use our Herschel far-infrared observations to study the properties of the clouds over the entire CNC and LABOCA/APEX telescope on the central part of the CNC.Our Herschel maps resolve, for the first time, the small-scale structure of the dense clouds over the entire spatial extent of the CNC. Several particularly interesting regions, including the prominent pillars south of eta Car, are analyzed in detail. Our maps also reveal a peculiar 'wave'-like pattern in the northern part of the Carina Nebula. The total mass of the clouds seen by Herschel in the central region is about 656 000 Msun. We derive the global spectral energy distribution in the mid-infrared to mm wavelength range and derive a total mass of stars, rather than random turbulence. Comparing the cloud mass and the star formation rate derived for the CNC to other Galactic star forming regions suggests that the CNC is forming stars very efficiently. We suggest this to be a consequence of triggered star formation by radiative cloud compression.In our LABOCA sub-mm map, we identify about 600 individual clumps. We analyze and interpret the clump initial mass function (CIMF) as signature of turbulent pre-stellar clouds or star-forming clouds.

  3. Wind power

    International Nuclear Information System (INIS)

    2006-06-01

    This road-map proposes by the Group Total aims to inform the public on the wind power. It presents the principles, the technology takes off, its applications and technology focus, the global market trends and the outlooks and Total commitments in the domain. (A.L.B.)

  4. Wind energy

    International Nuclear Information System (INIS)

    Portilla S, L.A.

    1995-01-01

    The wind energy or eolic energy is a consequence of solar energy, the one which is absorbed by the atmosphere and is transformed into energy of movement of large bulks of air. In this process the atmosphere acts as the filter to the solar radiation and demotes the ultraviolet beams that result fatal to life in the Earth. The ionosphere is the most external cap and this is ionized by means of absorption process of ultraviolet radiation arising to the Sun. The atmosphere also acts as a trap to the infrared radiation, it that results from the continual process of energetic degradation. In this way, the interaction between Earth - Atmospheres, is behaved as a great greenhouse, maintaining the constant temperatures, including in the dark nights. Processes as the natural convection (that occur by the thermodynamic phenomenon), equatorial calmness, trade winds and against trade winds and global distribution of the air currents are described. The other hand, techniques as the transformation of the wind into energy and its parameters also are shown

  5. Wind Energy Japan

    Energy Technology Data Exchange (ETDEWEB)

    Komatsubara, Kazuyo [Embassy of the Kingdom of the Netherlands, Tokyo (Japan)

    2012-06-15

    An overview is given of wind energy in Japan: Background; Wind Energy in Japan; Japanese Wind Energy Industry; Government Supports; Useful Links; Major Japanese Companies; Profiles of Major Japanese Companies; Major Wind Energy Projects in Japan.

  6. VizieR Online Data Catalog: Abundances in Magellanic Cloud planetary nebulae (Monk+ 1988)

    Science.gov (United States)

    Monk, D. J.; Barlow, M. J.; Clegg, R. E. S.

    1996-10-01

    Optical spectroscopic data for 71 Planetary Nebulae (PN) in the Large and Small Magellanic Clouds have been analysed. The line fluxes have been used to determine nebular temperatures, densities, and the abundances of He, N, O, Ne and Ar, relative to H. In our sample there are 12 nebulae with N/O>=0.5, resembling Peimbert's Type I PN; six low-excitation objects [1VLE) nebulae [I(Hβ)>I(5007)], similar to the Galactic VLE class. Mean abundances have been calculated for the nebulae not in these special groups. After correction for collisional excitation contributions to the nebular He I lines, PN in the SMC and LMC yield mass fractions of Y=0.249+/-0.025 and Y=0.258+/-0.012, respectively. (4 data files).

  7. Resonance-enhanced two-photon ionization of ions by Lyman alpha radiation in gaseous nebulae.

    Science.gov (United States)

    Johansson, S; Letokhov, V

    2001-01-26

    One of the mysteries of nebulae in the vicinity of bright stars is the appearance of bright emission spectral lines of ions, which imply fairly high excitation temperatures. We suggest that an ion formation mechanism, based on resonance-enhanced two-photon ionization (RETPI) by intense H Lyman alpha radiation (wavelength of 1215 angstroms) trapped inside optically thick nebulae, can produce these spectral lines. The rate of such an ionization process is high enough for rarefied gaseous media where the recombination rate of the ions formed can be 10(-6) to 10(-8) per second for an electron density of 10(3) to 10(5) per cubic centimeter in the nebula. Under such conditions, the photo-ions formed may subsequently undergo further RETPI, catalyzed by intense He i and He ii radiation, which also gets enhanced in optically thick nebulae that contain enough helium.

  8. Colorimetry of the diffuse nebulas S 156, S 157A, S 158, and NGC 7635

    Energy Technology Data Exchange (ETDEWEB)

    Parsamian, E.S.; Petrosian, V.M.

    1984-11-01

    The results of a colorimetric investigation of the diffuse nebulas S 156, S 157A, S 158, and NGC 7635, which are excited by O stars, are presented. The nebulas S 156, S 157A, and NGC 7635 are very bright in U due to the presence in them of strong ultraviolet doublet forbidden O II 3727 A. These values correspond effectively to the monochromatic image of the nebulas at this wavelength. The measurements show that the B-V color index does not change significantly with distance from the star except for S 158, where a weak dependence is observed. The results indicate that the physical properties of these nebulas differ little. It is concluded that the gas masses in this association are remnants of star formation that have a common origin with the stars. The age of the association is estimated at 100,000-1,000,000 yr. 13 references.

  9. The ISO spectrum of the planetary nebula NGC 6302 - I. Observations

    NARCIS (Netherlands)

    Beintema, DA; Pottasch, [No Value

    The spectrum of the planetary nebula NGC 6302 is presented, as it was observed by the ISO short-wavelength spectrometer. The IUE spectrum observed at the same position with the same aperture is also presented.

  10. Gas capture and rare gas retention by accreting planets in the solar nebula

    International Nuclear Information System (INIS)

    Mizuno, H.; Nakazawa, K.; Hayashi, C.

    1982-01-01

    In this paper, the physico-chemical effects of the nebula gas on the planets are reviewed from a standpoint of planetary formation in the solar nebula. The proto-Earth growing in the nebula was surrounded by a primordial atmosphere with a solar chemical composition and solar isotopic composition. When the mass of the proto-Earth was greater than 0.3 times the present Earth mass, the surface was molten because of the blanketing effect of the atmosphere. Therefore, the primordial rare gases contained in the primordial atmosphere dissolved into the molten Earth material without fractionation and in particular the dissolved neon is expected to be conserved in the present Earth material. Hence, if dissolved neon with a solar isotopic ratio is discovered in the Earth material, it will indicate that the Earth was formed in the nebula and that the dissolved rare gases were one of the sources which degassed to form the present atmosphere. (author)

  11. The distribution of mass in the planetary system and solar nebulae

    International Nuclear Information System (INIS)

    Weidenschilling, S.J.

    1977-01-01

    A model 'solar nebula' is constructed by adding the solar complement of light elements to each planet, using recent models of planetary compositions. Uncertainties in this approach are estimated. The computed surface density varies approximately as rsup(-3/2). Mercury, Mars and the asteroid belt are anomalously low in mass, but processes exist which would preferentially remove matter from these regions. Planetary masses and compositions are generally consistent with a monotonic density distribution in the primordial solar nebula. (Auth.)

  12. ABOUT TEMPERATURE FIELDS AND CONDITIONS OF GASEOUS CONDENSATION OF NEBULAES IN THE PLANETARY VORTEX

    Directory of Open Access Journals (Sweden)

    L. V. Klyuchinskaya

    2014-01-01

    Full Text Available New exact solution of the spherically-axissymmetric Eiler's equations, called as plan­etary vortex, is applied to the problem of formation in planetary nebula germs of planets due to the condensation of gases in the areas of vortex instability which calls the rings of planetary vortex. It is shown that the vortex perturbations causes changes in preassure and temperature at which the gases of nebula condense themselves, forming the germs of the planets.

  13. The Light and Dark Face of a Star-Forming Nebula

    Science.gov (United States)

    2010-03-01

    through at least parts of the dust. The furnace that fuels Gum 19's luminosity is a gigantic, superhot star called V391 Velorum. Shining brightest in the scorching blue range of visible light, V391 Velorum boasts a surface temperature in the vicinity of 30 000 degrees Celsius. This massive star has a temperamental nature, however, and is categorised as a variable star accordingly. V391 Velorum's brightness can fluctuate suddenly as a result of strong activity that can include ejections of shells of matter, which contribute to Gum 19's composition and light emissions. Stars on the grand scale of V391 Velorum do not burn bright for long, and after a relatively short lifetime of about ten million years these titans blow up as supernovae. These explosions, which temporarily rival whole galaxies in their light intensity, blast heated matter in surrounding space, an event that can radically change the colour and shape of its enclosing nebula. As such, V391 Velorum's death throes may well leave Gum 19 unrecognisable. Within the neighbourhood of this fitful supergiant, new stars nonetheless continue to grow. HII regions denote sites of active star formation wherein great quantities of gas and dust have begun to collapse under their own gravity. In several million years - a blink of an eye in cosmic time - these shrinking knots of matter will eventually reach the high density at their centres necessary to ignite nuclear fusion. The fresh outpouring of energy and stellar winds from these newborn stars will also modify the gaseous landscape of Gum 19. More information ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design

  14. IRAS surface brightness maps of visible reflection nebulae: evidence for non-equilibrium infrared emission

    International Nuclear Information System (INIS)

    Castelaz, M.W.; Werner, M.W.; Sellgren, K.

    1986-01-01

    Surface brightness maps at 12, 25, 60, and 100 microns of 16 visible reflection nebulae were extracted from the Infrared Astronomy Satellite (IRAS) database. The maps were produced by coadding IRAS survey scans over areas centered on the illuminating stars, and have spatial resolutions of 0.9' x 4' at 12 and 25 microns, 1.8' x 4.5' at 60 microns, and 3.6' x 5' at 100 microns. Extended emission in the four IRAS bandpasses was detected in fourteen of the reflection nebulae. The IRAS data were used to measure the flux of the infrared emission associated with each source. The energy distributions show that the 12 micron flux is greater than the 25 micron flux in 11 of the nebulae, and the peak flux occurs in the 60 or 100 micron bandpass in all 16 nebular. The 60 and 100 micron flux can be approximated by blackbodies with temperatures between 30 and 50 K, consistent with temperatures expected from extrapolation of greybody fits to the 60 and 100 micron data. The excess 12 and 25 micron emission is attributed to a nonequilibrium process such as emission from thermal fluctuations of very small grains excited by single ultraviolet photons, or emission from polycyclic aromatic hydrocarbons (PAHs) excited by ultraviolet radiation. The common features of the energy distributions of the 16 reflection nebulae, also seen in the reflection nebulae associated with the Pleiades, suggest that PAHs or very small grains may be found in most reflection nebulae

  15. Wind Loads on Structures

    DEFF Research Database (Denmark)

    Dyrbye, Claes; Hansen, Svend Ole

    Wind loads have to be taken into account when designing civil engineering structures. The wind load on structures can be systematised by means of the wind load chain: wind climate (global), terrain (wind at low height), aerodynamic response (wind load to pressure), mechanical response (wind...... pressure to structural response) and design criteria. Starting with an introduction of the wind load chain, the book moves on to meteorological considerations, atmospheric boundary layer, static wind load, dynamic wind load and scaling laws used in wind-tunnel tests. The dynamic wind load covers vibrations...... induced by wind turbulence, vortex shedding, flutter and galloping. The book gives a comprehensive treatment of wind effects on structures and it will be useful for consulting engineers designing wind-sensitive structures. It will also be valuable for students of civil engineering as textbook...

  16. Stellar winds

    International Nuclear Information System (INIS)

    Weymann, R.J.

    1978-01-01

    It is known that a steady outflow of material at comparable rates of mass loss but vastly different speeds is now known to be ubiquitous phenomenon among both the luminous hot stars and the luminous but cool red giants. The flows are probably massive enough in both cases to give rise to significant effects on stellar evolution and the mass balance between stars and the interstellar medium. The possible mechanisms for these phenomena as well as the methods of observation used are described. In particular, the mass-loss processes in stars other than the sun that also involve a steady flow of matter are considered. The evidence for their existence is described, and then the question of whether the process thought to produce the solar wind is also responsible for producing these stellar winds is explored

  17. Wind conditions for wind turbine design

    Energy Technology Data Exchange (ETDEWEB)

    Maribo Pedersen, B.

    1999-04-01

    Delegates from Europe and USA attended the meeting and discussed general aspects of wind conditions for wind turbine design. The subjects and the presented papers covered a very broad range of aspects of wind conditions and related influence on the wind turbine. (EHS)

  18. Turbulent Concentration of mm-Size Particles in the Protoplanetary Nebula: Scale-Dependent Cascades

    Science.gov (United States)

    Cuzzi, J. N.; Hartlep, T.

    2015-01-01

    The initial accretion of primitive bodies (here, asteroids in particular) from freely-floating nebula particles remains problematic. Traditional growth-by-sticking models encounter a formidable "meter-size barrier" (or even a mm-to-cm-size barrier) in turbulent nebulae, making the preconditions for so-called "streaming instabilities" difficult to achieve even for so-called "lucky" particles. Even if growth by sticking could somehow breach the meter size barrier, turbulent nebulae present further obstacles through the 1-10km size range. On the other hand, nonturbulent nebulae form large asteroids too quickly to explain long spreads in formation times, or the dearth of melted asteroids. Theoretical understanding of nebula turbulence is itself in flux; recent models of MRI (magnetically-driven) turbulence favor low-or- no-turbulence environments, but purely hydrodynamic turbulence is making a comeback, with two recently discovered mechanisms generating robust turbulence which do not rely on magnetic fields at all. An important clue regarding planetesimal formation is an apparent 100km diameter peak in the pre-depletion, pre-erosion mass distribution of asteroids; scenarios leading directly from independent nebula particulates to large objects of this size, which avoid the problematic m-km size range, could be called "leapfrog" scenarios. The leapfrog scenario we have studied in detail involves formation of dense clumps of aerodynamically selected, typically mm-size particles in turbulence, which can under certain conditions shrink inexorably on 100-1000 orbit timescales and form 10-100km diameter sandpile planetesimals. There is evidence that at least the ordinary chondrite parent bodies were initially composed entirely of a homogeneous mix of such particles. Thus, while they are arcane, turbulent concentration models acting directly on chondrule size particles are worthy of deeper study. The typical sizes of planetesimals and the rate of their formation can be

  19. OBSERVATION AND SPECTRAL MEASUREMENTS OF THE CRAB NEBULA WITH MILAGRO

    Energy Technology Data Exchange (ETDEWEB)

    Abdo, A. A. [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Allen, B. T.; Chen, C. [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Atkins, R. [Department of Physics, University of Wisconsin, 1150 University Ave, Madison, WI 53706 (United States); Aune, T.; Benbow, W.; Coyne, D. G.; Dorfan, D. E. [Santa Cruz Institute for Particle Physics, University of California, Santa Cruz, CA 95064 (United States); Berley, D.; Blaufuss, E.; Bussons, J. [Department of Physics, University of Maryland, College Park, MD 20742 (United States); Bonamente, E.; Galbraith-Frew, J. [Department of Physics, Michigan Technological University, Houghton, MI 49931 (United States); Christopher, G. E.; Fleysher, L.; Fleysher, R. [Department of Physics, New York University, New York, NY 10003 (United States); DeYoung, T.; Falcone, A. [Department of Physics, Pennsylvania State University, University Park, PA 16802 (United States); Dingus, B. L. [Group P-23, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Ellsworth, R. W. [School of Physics, Astronomy and Computational Sciences, George Mason University, Fairfax, VA 22030 (United States); and others

    2012-05-01

    The Crab Nebula was detected with the Milagro experiment at a statistical significance of 17 standard deviations over the lifetime of the experiment. The experiment was sensitive to approximately 100 GeV-100 TeV gamma-ray air showers by observing the particle footprint reaching the ground. The fraction of detectors recording signals from photons at the ground is a suitable proxy for the energy of the primary particle and has been used to measure the photon energy spectrum of the Crab Nebula between {approx}1 and {approx}100 TeV. The TeV emission is believed to be caused by inverse-Compton upscattering of ambient photons by an energetic electron population. The location of a TeV steepening or cutoff in the energy spectrum reveals important details about the underlying electron population. We describe the experiment and the technique for distinguishing gamma-ray events from the much more-abundant hadronic events. We describe the calculation of the significance of the excess from the Crab and how the energy spectrum is fitted. The differential photon energy spectrum, including the statistical errors from the fit, obtained using a simple power-law hypothesis for data between 2005 September and 2008 March is (6.5 {+-} 0.4) Multiplication-Sign 10{sup -14}(E/10 TeV){sup -3.1{+-}0.1}(cm{sup 2} s TeV ){sup -1} between {approx}1 TeV and {approx}100 TeV. Allowing for a possible exponential cutoff, the photon energy spectrum is fitted as (2.5{sup +0.7}{sub -0.4}) Multiplication-Sign 10{sup -12}(E/3 TeV){sup -2.5{+-}0.4}exp (- E/32{sup +39}{sub -18} TeV) (cm{sup 2} s TeV){sup -1}. The results are subject to an {approx}30% systematic uncertainty in the overall flux and an {approx}0.1 systematic uncertainty in the power-law indices quoted. Uncertainty in the overall energy scale has been absorbed into these errors. Fixing the spectral index to values that have been measured below 1 TeV by IACT experiments (2.4-2.6), the fit to the Milagro data suggests that Crab exhibits a

  20. CRAB NEBULA: FIVE-YEAR OBSERVATION WITH ARGO-YBJ

    Energy Technology Data Exchange (ETDEWEB)

    Bartoli, B.; Catalanotti, S.; D' Ettorre Piazzoli, B.; Di Girolamo, T. [Dipartimento di Fisica dell' Università di Napoli " Federico II," Complesso Universitario di Monte Sant' Angelo, via Cinthia, I-80126 Napoli (Italy); Bernardini, P.; D' Amone, A.; De Mitri, I. [Dipartimento Matematica e Fisica " Ennio De Giorgi," Università del Salento, via per Arnesano, I-73100 Lecce (Italy); Bi, X. J.; Cao, Z.; Chen, S. Z. [Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, P.O. Box 918, 100049 Beijing (China); Branchini, P.; Budano, A. [Istituto Nazionale di Fisica Nucleare, Sezione di Roma Tre, via della Vasca Navale 84, I-00146 Roma (Italy); Camarri, P. [Dipartimento di Fisica dell' Università di Roma " Tor Vergata," via della Ricerca Scientifica 1, I-00133 Roma (Italy); Cardarelli, R.; Di Sciascio, G. [Istituto Nazionale di Fisica Nucleare, Sezione di Roma Tor Vergata, via della Ricerca Scientifica 1, I-00133 Roma (Italy); Chen, T. L.; Danzengluobu [Tibet University, 850000 Lhasa, Xizang (China); Creti, P. [Istituto Nazionale di Fisica Nucleare, Sezione di Lecce, via per Arnesano, I-73100 Lecce (Italy); Cui, S. W. [Hebei Normal University, Shijiazhuang 050016 Hebei (China); Dai, B. Z., E-mail: vernetto@to.infn.it [Yunnan University, 2 North Cuihu Rd., 650091 Kunming, Yunnan (China); Collaboration: ARGO-YBJ Collaboration; and others

    2015-01-10

    The ARGO-YBJ air shower detector monitored the Crab Nebula gamma-ray emission from 2007 November to 2013 February. The integrated signal, consisting of ∼3.3 × 10{sup 5} events, reached the statistical significance of 21.1 standard deviations. The obtained energy spectrum in the energy range 0.3-20 TeV can be described by a power law function dN/dE = I {sub 0} (E/2 TeV){sup –α}, with a flux normalization I {sub 0} = (5.2 ± 0.2) × 10{sup –12} photons cm{sup –2} s{sup –1} TeV{sup –1} and α = 2.63 ± 0.05, corresponding to an integrated flux above 1 TeV of 1.97 × 10{sup –11} photons cm{sup –2} s{sup –1}. The systematic error is estimated to be less than 30% for the flux normalization and 0.06 for the spectral index. Assuming a power law spectrum with an exponential cutoff dN/dE = I {sub 0} (E/2 TeV){sup –α} exp (–E/E {sub cut}), the lower limit of the cutoff energy E {sub cut} is 12 TeV, at 90% confidence level. Our extended data set allows the study of the TeV emission over long timescales. Over five years, the light curve of the Crab Nebula in 200-day bins is compatible with a steady emission with a probability of 7.3 × 10{sup –2}. A correlated analysis with Fermi-LAT data over ∼4.5 yr using the light curves of the two experiments gives a Pearson correlation coefficient r = 0.56 ± 0.22. Concerning flux variations on timescales of days, a ''blind'' search for flares with a duration of 1-15 days gives no excess with a significance higher than four standard deviations. The average rate measured by ARGO-YBJ during the three most powerful flares detected by Fermi-LAT is 205 ± 91 photons day{sup –1}, consistent with the average value of 137 ± 10 day{sup –1}.

  1. G25.5 + 0.2: a very young supernova remnant or a galactic planetary nebula?

    International Nuclear Information System (INIS)

    White, R.L.; Becker, R.H.

    1990-01-01

    G25.5 + 0.2, a radio source suggested by previous authors to be a very young galactic supernova remnant, is more likely to be a planetary nebula. Its IRAS colours and fluxes and its radio spectrum and morphology are all consistent with the properties of planetary nebulae; its radio flux and distance imply a large mass of ionized gas, which is expected from a Type I planetary nebula lying in the galactic plane. We suggest some definitive observations which should be able to determine whether this interesting object is a planetary nebula or a supernova remnant. (author)

  2. Wind Technologies & Evolving Opportunities (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Robichaud, R.

    2014-07-01

    This presentation covers opportunities for wind technology; wind energy market trends; an overview of the National Wind Technology Center near Boulder, Colorado; wind energy price and cost trends; wind turbine technology improvements; and wind resource characterization improvements.

  3. Wind Power Meteorology

    DEFF Research Database (Denmark)

    Lundtang Petersen, Erik; Mortensen, Niels Gylling; Landberg, Lars

    Wind power meteorology has evolved as an applied science, firmly founded on boundary-layer meteorology, but with strong links to climatology and geography. It concerns itself with three main areas: siting of wind turbines, regional wind resource assessment, and short-term prediction of the wind...... resource. The history, status and perspectives of wind power meteorology are presented, with emphasis on physical considerations and on its practical application. Following a global view of the wind resource, the elements of boundary layer meteorology which are most important for wind energy are reviewed......: wind profiles and shear, turbulence and gust, and extreme winds. The data used in wind power meteorology stem mainly from three sources: onsite wind measurements, the synoptic networks, and the re-analysis projects. Wind climate analysis, wind resource estimation and siting further require a detailed...

  4. The spatial distribution of shocked gas in the Orion nebula

    Science.gov (United States)

    Beck, S. C.; Beckwith, S.

    1983-01-01

    Observations of the spatial distribution of extinction and excitation temperature toward the molecular hydrogen emission in the Orion molecular cloud OMC-1 are presented. Most, although not all, of the observed structure in the near-infrared line intensities results from variations in the column density of vibrationally excited H2 and is not due to variable extinction or temperature. The extinction toward the center of the emission region is between 1 and 2 mag at 4712/cm, the frequency of the v = 1-0 S(1) line, but increases toward the edges. The lack of emission from the eastern part of the nebula may result from increased extinction in that direction. Variations in the extinction temperature are less than the observational uncertainties of + or - 200 K at all but one position observed. Therefore, the excitation temperature of the hydrogen molecules is probably not a strong function of either the shock velocity or the density of the gas. Observations of the v = 3-2 S(3) line in the direction of strongest emission indicate the presence of gas temperatures about 2700 K and place constraints on the column density of gas which is at higher temperature.

  5. Central stars of planetary nebulae: New spectral classifications and catalogue

    Science.gov (United States)

    Weidmann, W. A.; Gamen, R.

    2011-02-01

    Context. There are more than 3000 confirmed and probable known Galactic planetary nebulae (PNe), but central star spectroscopic information is available for only 13% of them. Aims: We undertook a spectroscopic survey of central stars of PNe at low resolution and compiled a large list of central stars for which information was dispersed in the literature. Methods: We observed 45 PNs using the 2.15 m telescope at Casleo, Argentina. Results: We present a catalogue of 492 confirmed and probable CSPN and provide a preliminary spectral classification for 45 central star of PNe. This revises previous values of the proportion of CSPN with atmospheres poor in hydrogen in at least 30% of cases and provide statistical information that allows us to infer the origin of H-poor stars. Based on data collected at the Complejo Astronómico El Leoncito (CASLEO), which is operated under agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina y Universidades Nacionales de La Plata, Córdoba y San Juan, Argentina.

  6. Determination of helium and oxygen abundances in gaseous nebulae

    International Nuclear Information System (INIS)

    Pronik, V.I.

    1975-01-01

    A new method of determining the abudance of helium and oxygen is proposed. It is based on the statement that functions of atomic distribution with states of ionization may be determined to the sufficient precision by the amount of atoms in two states of ionization. The abudance of helium atoms in nebulae is determined with most probability, since of three possible states of ionization two states with the overwhelming majority atoms may be directly observed. The amount of He++ ions is determined from He 2 recombination lines, and the amount of He+ ions is from He1 lines. The total abudance of He atoms can be found from the observed ratios of I(4686)/I(Hsub(β)) and I(4471)/I(Hsub(β)) at any degree of ionization. These ratios slightly depend on the electron temperature. For oxygen, unlike helium, the observed ratios depend on the electron temperature of gas, and at high densities they also depend on the density of electrons (it is necessary to take account of deactivation of the excited level by electron impacts). Constructed are curves of equal abundance He/H=const for determining He/H according to the ratios observed I(4686)/I(Hsub(β)) and I(4471)/I(Hsub(β)) and curves of equal abudance O/H=const for determining O/H according to the ratios observed I(3727)/I(Hsub(/b)) and I(Nsub(1)+Nsub(2))/I(Hsub(β)), corrected preliminarily for density and temperature

  7. A FairShare Scheduling Service for OpenNebula

    Science.gov (United States)

    Bagnasco, S.; Vallero, S.; Zaccolo, V.

    2017-10-01

    In the ideal limit of infinite resources, multi-tenant applications are able to scale in/out on a Cloud driven only by their functional requirements. While a large Public Cloud may be a reasonable approximation of this condition, small scientific computing centres usually work in a saturated regime. In this case, an advanced resource allocation policy is needed in order to optimize the use of the data centre. The general topic of advanced resource scheduling is addressed by several components of the EU-funded INDIGO-DataCloud project. In this contribution, we describe the FairShare Scheduler Service (FaSS) for OpenNebula (ONE). The service must satisfy resource requests according to an algorithm which prioritizes tasks according to an initial weight and to the historical resource usage of the project. The software was designed to be less intrusive as possible in the ONE code. We keep the original ONE scheduler implementation to match requests to available resources, but the queue of pending jobs to be processed is the one ordered according to priorities as delivered by the FaSS. The FaSS implementation is still being finalized and in this contribution we describe the functional and design requirements the module should satisfy, as well as its high-level architecture.

  8. Giant Ly α Nebulae in the Illustris Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Gronke, Max [Institute of Theoretical Astrophysics, University of Oslo, Postboks 1029 Blindern, NO-0315 Oslo (Norway); Bird, Simeon, E-mail: maxbg@astro.uio.no [Department of Physics and Astronomy, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218 (United States)

    2017-02-01

    Several “giant” Ly α nebulae with an extent ≳300 kpc and observed Ly α luminosity of ≳10{sup 44} erg s{sup −1} cm{sup −2} arcsec{sup −2} have recently been detected, and it has been speculated that their presence hints at a substantial cold gas reservoir in small cool clumps not resolved in modern hydrodynamical simulations. We use the Illustris simulation to predict the Ly α emission emerging from large halos ( M > 10{sup 11.5} M {sub ⊙}) at z ∼ 2 and thus test this model. We consider both active galactic nucleus (AGN) and star driven ionization, and compare the simulated surface brightness maps, profiles, and Ly α spectra to a model where most gas is clumped below the simulation resolution scale. We find that with Illustris, no additional clumping is necessary to explain the extents, luminosities, and surface brightness profiles of the “giant Ly α nebulae” observed. Furthermore, the maximal extents of the objects show a wide spread for a given luminosity and do not correlate significantly with any halo properties. We also show how the detected size depends strongly on the employed surface brightness cutoff, and predict that further examples of such objects will be found in the near future.

  9. UV Timing and Spectroscopy of the Crab Nebula Pulsar

    Science.gov (United States)

    Gull, Theodore R.; Lunqvist, Peter; Sollerman, Jesper; Lindler, Don; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    We have used the Hubble Space Telescope and Space Telescope Imaging Spectrograph to obtain Near Ultraviolet (NUV) (1600-3200 Angstroms) and Far Ultraviolet (FUV) (1140-1720 Angstroms) spectra and pulse profiles of the Crab Nebula's pulsar. The pulse period agrees well with the radio predictions. The NUV and FUV pulse profiles are little changed from the visible wavelength profile. Spectra obtained with the Nordic Optical Telescope were combined with the UV spectra for full coverage from 1140-9250Angstoms. Dereddening the spectrum with a standard extinction curve achieves a flat spectrum for E(B-V)=0.52, R=3.1. Lyman alpha absorption indicates a column density of 3.0=/-0.5 x 10(exp 21) cm -2, consistent with the E(B-V) of 0.52. The dereddened spectrum can be fitted by a power law with spectral index alpha=0.11+/-0.04. A broad, blueshifted absorption is seen in CIV (1550Angstroms), reaching a velocity of about 2500 kilometer per second.

  10. Life after stellar death: Planetary Nebulae and Supernova Remnants

    Science.gov (United States)

    Boumis, P.

    2013-09-01

    Planetary nebulae (PNe) are powerful tracers of our Galaxy's star formation history. Their study can provide insight to the late stages of stellar evolution, the nucleosynthesis in low and intermediate mass stars (1-8Mo) and the chemical evolution of galaxies. Supernova explosions belong to the most spectacular events in the Universe. Supernova remnants (SNRs), which are the consequent results of these events and come from the late stages of massive stars (>8Mo), are among the strongest radio sources observed. They have a major influence on both the properties of the interstellar medium (ISM) and the evolution of galaxies as a whole. They enrich the ISM with heavy elements, release about 1051 ergs of energy, heat the ISM, compress the magnetic field, and efficiently accelerate, by their shock waves, energetic cosmic rays observed throughout the Galaxy. I will present results of our work on PNe and SNRs, which aims to (a) discover optical SNRs in the Galaxy, (b) study their morphology and kinematics, (c) characterize their properties (such as density, shock velocity etc.) and (d) provide information on their interaction with the ISM, using the "Aristarchos" among other telescopes.

  11. Helix Nebula: sunshine and clouds on the CERN computing horizon

    CERN Multimedia

    Joannah Caborn Wengler

    2012-01-01

    23 petabytes is how much data CERN recorded during 2011, and this number will rise in 2012. In order to respond to the challenge, the IT department is upping its game, amongst other things by participating in the Helix Nebula project, a public-private partnership to create a European cloud-computing platform, as announced in a recent CERN press release.   “We’re not replacing the Grid,” clarifies Bob Jones, responsible for CERN openlab who is also responsible for EC-funded projects in IT, “but looking at three complementary ways of increasing CERN’s computing capacity, so that as demand goes up we can continue to satisfy our users.” “First we are upgrading the electrical and cooling infrastructure of the computer centre in order to increase the availability of critical IT services needed for the Laboratory. This will also provide more floor space in the area called The Barn, allowing for more servers to fit in.”...

  12. Prospecting for Wind

    Science.gov (United States)

    Swapp, Andy; Schreuders, Paul; Reeve, Edward

    2011-01-01

    Many people use wind to help meet their needs. Over the years, people have been able to harness or capture the wind in many different ways. More recently, people have seen the rebirth of electricity-generating wind turbines. Thus, the age-old argument about technology being either good or bad can also be applied to the wind. The wind can be a…

  13. Careers in Wind Energy

    Science.gov (United States)

    Liming, Drew; Hamilton, James

    2011-01-01

    As a common form of renewable energy, wind power is generating more than just electricity. It is increasingly generating jobs for workers in many different occupations. Many workers are employed on wind farms: areas where groups of wind turbines produce electricity from wind power. Wind farms are frequently located in the midwestern, western, and…

  14. MAGNETIC NESTED-WIND SCENARIOS FOR BIPOLAR OUTFLOWS: PREPLANETARY AND YSO NEBULAR SHAPING

    International Nuclear Information System (INIS)

    Dennis, Timothy J.; Frank, Adam; Blackman, Eric G.; DeMarco, Orsola; Balick, Bruce; Mitran, Sorin

    2009-01-01

    We present results of a series of magnetohydrodynamic (MHD) and hydrodynamic (HD) 2.5 dimensional simulations of the morphology of outflows driven by nested wide-angle winds, i.e., winds that emanate from a central star as well as from an orbiting accretion disk. While our results are broadly relevant to nested-wind systems, we have tuned the parameters of the simulations to touch on issues in both young stellar objects and planetary nebula (PN) studies. In particular, our studies connect to open issues in the early evolution of PNs. We find that nested MHD winds exhibit marked morphological differences from the single MHD wind case along both dimensions of the flow. Nested HD winds, on the other hand, give rise mainly to geometric distortions of an outflow that is topologically similar to the flow arising from a single stellar HD wind. Our MHD results are insensitive to changes in ambient temperature between ionized and un-ionized circumstellar environments. The results are sensitive to the relative mass-loss rates and the relative speeds of the stellar and disk winds. We also present synthetic emission maps of both nested MHD and HD simulations. We find that nested MHD winds show knots of emission appearing on-axis that do not appear in the HD case.

  15. Turbulent Concentration of MM-Size Particles in the Protoplanetary Nebula: Scaled-Dependent Multiplier Functions

    Science.gov (United States)

    Cuzzi, Jeffrey N.; Hartlep, Thomas; Weston, B.; Estremera, Shariff Kareem

    2014-01-01

    The initial accretion of primitive bodies (asteroids and TNOs) from freely-floating nebula particles remains problematic. Here we focus on the asteroids where constituent particle (read "chondrule") sizes are observationally known; similar arguments will hold for TNOs, but the constituent particles in those regions will be smaller, or will be fluffy aggregates, and are unobserved. Traditional growth-bysticking models encounter a formidable "meter-size barrier" [1] (or even a mm-cm-size barrier [2]) in turbulent nebulae, while nonturbulent nebulae form large asteroids too quickly to explain long spreads in formation times, or the dearth of melted asteroids [3]. Even if growth by sticking could somehow breach the meter size barrier, other obstacles are encountered through the 1-10km size range [4]. Another clue regarding planetesimal formation is an apparent 100km diameter peak in the pre-depletion, pre-erosion mass distribution of asteroids [5]; scenarios leading directly from independent nebula particulates to this size, which avoid the problematic m-km size range, could be called "leapfrog" scenarios [6-8]. The leapfrog scenario we have studied in detail involves formation of dense clumps of aerodynamically selected, typically mm-size particles in turbulence, which can under certain conditions shrink inexorably on 100-1000 orbit timescales and form 10-100km diameter sandpile planetesimals. The typical sizes of planetesimals and the rate of their formation [7,8] are determined by a statistical model with properties inferred from large numerical simulations of turbulence [9]. Nebula turbulence can be described by its Reynolds number Re = L/eta sup(4/3), where L = ETA alpha sup (1/2) the largest eddy scale, H is the nebula gas vertical scale height, and a the nebula turbulent viscosity parameter, and ? is the Kolmogorov or smallest scale in turbulence (typically about 1km), with eddy turnover time t?. In the nebula, Re is far larger than any numerical simulation can

  16. A SUCCESSFUL BROADBAND SURVEY FOR GIANT Ly{alpha} NEBULAE. I. SURVEY DESIGN AND CANDIDATE SELECTION

    Energy Technology Data Exchange (ETDEWEB)

    Prescott, Moire K. M. [Department of Physics, Broida Hall, Mail Code 9530, University of California, Santa Barbara, CA 93106 (United States); Dey, Arjun; Jannuzi, Buell T., E-mail: mkpresco@physics.ucsb.edu [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States)

    2012-04-01

    Giant Ly{alpha} nebulae (or Ly{alpha} 'blobs') are likely sites of ongoing massive galaxy formation, but the rarity of these powerful sources has made it difficult to form a coherent picture of their properties, ionization mechanisms, and space density. Systematic narrowband Ly{alpha} nebula surveys are ongoing, but the small redshift range covered and the observational expense limit the comoving volume that can be probed by even the largest of these surveys and pose a significant problem when searching for such rare sources. We have developed a systematic search technique designed to find large Ly{alpha} nebulae at 2 {approx}< z {approx}< 3 within deep broadband imaging and have carried out a survey of the 9.4 deg{sup 2} NOAO Deep Wide-Field Survey Booetes field. With a total survey comoving volume of Almost-Equal-To 10{sup 8} h{sup -3}{sub 70} Mpc{sup 3}, this is the largest volume survey for Ly{alpha} nebulae ever undertaken. In this first paper in the series, we present the details of the survey design and a systematically selected sample of 79 candidates, which includes one previously discovered Ly{alpha} nebula.

  17. A SUCCESSFUL BROADBAND SURVEY FOR GIANT Ly{alpha} NEBULAE. II. SPECTROSCOPIC CONFIRMATION

    Energy Technology Data Exchange (ETDEWEB)

    Prescott, Moire K. M. [Department of Physics, University of California, Broida Hall, Mail Code 9530, Santa Barbara, CA 93106 (United States); Dey, Arjun; Jannuzi, Buell T., E-mail: mkpresco@physics.ucsb.edu [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States)

    2013-01-01

    Using a systematic broadband search technique, we have carried out a survey for large Ly{alpha} nebulae (or Ly{alpha} {sup b}lobs{sup )} at 2 {approx}< z {approx}< 3 within 8.5 deg{sup 2} of the NOAO Deep Wide-Field Survey Booetes field, corresponding to a total survey comoving volume of Almost-Equal-To 10{sup 8} h {sup -3} {sub 70} Mpc{sup 3}. Here, we present our spectroscopic observations of candidate giant Ly{alpha} nebulae. Of 26 candidates targeted, 5 were confirmed to have Ly{alpha} emission at 1.7 {approx}< z {approx}< 2.7, 4 of which were new discoveries. The confirmed Ly{alpha} nebulae span a range of Ly{alpha} equivalent widths, colors, sizes, and line ratios, and most show spatially extended continuum emission. The remaining candidates did not reveal any strong emission lines, but instead exhibit featureless, diffuse, blue continuum spectra. Their nature remains mysterious, but we speculate that some of these might be Ly{alpha} nebulae lying within the redshift desert (i.e., 1.2 {approx}< z {approx}< 1.6). Our spectroscopic follow-up confirms the power of using deep broadband imaging to search for the bright end of the Ly{alpha} nebula population across enormous comoving volumes.

  18. A SUCCESSFUL BROADBAND SURVEY FOR GIANT Lyα NEBULAE. I. SURVEY DESIGN AND CANDIDATE SELECTION

    International Nuclear Information System (INIS)

    Prescott, Moire K. M.; Dey, Arjun; Jannuzi, Buell T.

    2012-01-01

    Giant Lyα nebulae (or Lyα 'blobs') are likely sites of ongoing massive galaxy formation, but the rarity of these powerful sources has made it difficult to form a coherent picture of their properties, ionization mechanisms, and space density. Systematic narrowband Lyα nebula surveys are ongoing, but the small redshift range covered and the observational expense limit the comoving volume that can be probed by even the largest of these surveys and pose a significant problem when searching for such rare sources. We have developed a systematic search technique designed to find large Lyα nebulae at 2 ∼ 2 NOAO Deep Wide-Field Survey Boötes field. With a total survey comoving volume of ≈10 8 h –3 70 Mpc 3 , this is the largest volume survey for Lyα nebulae ever undertaken. In this first paper in the series, we present the details of the survey design and a systematically selected sample of 79 candidates, which includes one previously discovered Lyα nebula.

  19. Evolution of those nuclei of planetary nebulae that experience a final helium shell flash

    International Nuclear Information System (INIS)

    Iben, I. Jr.; Kaler, J.B.; Truran, J.W.; Renzini, A.

    1983-01-01

    We suggest that some of the central stars of planetary nebulae experience a final thermal pulse having achieved a white dwarf configuration and begun their descent along a cooling white dwarf sequence of nearly constant radius. A concrete theoretical calculation demonstrates that, during such a pulse, most of the hydrogen remaining in the star at pulse onset is incorporated into the helium-burning convective shell and completely burned, and that, following the pulse, the star swells briefly to red giant dimensions. The model then proceeds to burn helium on a long time scale, retracing in the H-R diagram approximately the same path that it followed while burning hydrogen during the initial excitation of the nebula, which has by now expanded considerably in extent. We identify as being in the postpulse, quiescent helium burning phase the central stars of the planetary nebulae d Abell 78, and the central stars of a group of related high-excitation objects. These nebulae all have the large radii often found in conjunction with central stars of low luminosity that are thought to be cooling along the white dwarf sequence; however, they have the high luminosities that are characteristic of much smaller nebulae whose nuclei are thought to be proceeding for the first time through the planetary nucleus regime in the (log L, log T/sub e/)-plane

  20. A Study of Planetary Nebulae using the Faint Object Infrared Camera for the SOFIA Telescope

    Science.gov (United States)

    Davis, Jessica

    2012-01-01

    A planetary nebula is formed following an intermediate-mass (1-8 solar M) star's evolution off of the main sequence; it undergoes a phase of mass loss whereby the stellar envelope is ejected and the core is converted into a white dwarf. Planetary nebulae often display complex morphologies such as waists or torii, rings, collimated jet-like outflows, and bipolar symmetry, but exactly how these features form is unclear. To study how the distribution of dust in the interstellar medium affects their morphology, we utilize the Faint Object InfraRed CAmera for the SOFIA Telescope (FORCAST) to obtain well-resolved images of four planetary nebulae--NGC 7027, NGC 6543, M2-9, and the Frosty Leo Nebula--at wavelengths where they radiate most of their energy. We retrieve mid infrared images at wavelengths ranging from 6.3 to 37.1 micron for each of our targets. IDL (Interactive Data Language) is used to perform basic analysis. We select M2-9 to investigate further; analyzing cross sections of the southern lobe reveals a slight limb brightening effect. Modeling the dust distribution within the lobes reveals that the thickness of the lobe walls is higher than anticipated, or rather than surrounding a vacuum surrounds a low density region of tenuous dust. Further analysis of this and other planetary nebulae is needed before drawing more specific conclusions.

  1. THE RADIO-2 mm SPECTRAL INDEX OF THE CRAB NEBULA MEASURED WITH GISMO

    International Nuclear Information System (INIS)

    Arendt, R. G.; George, J. V.; Staguhn, J. G.; Benford, D. J.; Fixsen, D. J.; Maher, S. F.; Moseley, S. H.; Sharp, E.; Wollack, E. J.; Devlin, M. J.; Dicker, S. R.; Korngut, P. M.; Irwin, K. D.; Jhabvala, C. A.; Miller, T. M.; Kovacs, A.; Mason, B. S.; Navarro, S.; Sievers, A.; Sievers, J. L.

    2011-01-01

    We present results of 2 mm observations of the Crab Nebula, obtained using the Goddard-IRAM Superconducting 2 Millimeter Observer (GISMO) bolometer camera on the IRAM 30 m telescope. Additional 3.3 mm observations with the MUSTANG bolometer array on the Green Bank Telescope are also presented. The integrated 2 mm flux density of the Crab Nebula provides no evidence for the emergence of a second synchrotron component that has been proposed. It is consistent with the radio power-law spectrum, extrapolated up to a break frequency of log (ν b [GHz]) = 2.84 ± 0.29 or ν b = 695 +651 -336 GHz. The Crab Nebula is well resolved by the ∼16.''7 beam (FWHM) of GISMO. Comparison to radio data at comparable spatial resolution enables us to confirm significant spatial variation of the spectral index between 21 cm and 2 mm. The main effect is a spectral flattening in the inner region of the Crab Nebula, correlated with the toroidal structure at the center of the nebula that is prominent in the near-IR through X-ray regime.

  2. THE EVOLUTION OF THE KINEMATICS OF NEBULAR SHELLS IN PLANETARY NEBULAE IN THE MILKY WAY BULGE

    International Nuclear Information System (INIS)

    Richer, Michael G.; Lopez, Jose Alberto; Garcia-Diaz, Maria Teresa; Clark, David M.; Pereyra, Margarita; Diaz-Mendez, Enrique

    2010-01-01

    We study the line widths in the [O III]λ5007 and Hα lines for two groups of planetary nebulae in the Milky Way bulge based upon spectroscopy obtained at the Observatorio Astronomico Nacional in the Sierra San Pedro Martir (OAN-SPM) using the Manchester Echelle Spectrograph. The first sample includes objects early in their evolution, having high Hβ luminosities, but [O III]λ5007/Hβ 0.5. These planetary nebulae represent evolutionary phases preceding and following those of the objects studied by Richer et al. in 2008. Our sample of planetary nebulae with weak [O III]λ5007 has a line width distribution similar to that of the expansion velocities of the envelopes of asymptotic giant branch stars and shifted to systematically lower values as compared to the less evolved objects studied by Richer et al. The sample with strong He II λ4686 has a line width distribution indistinguishable from that of the more evolved objects from Richer et al., but a distribution in angular size that is systematically larger and so they are clearly more evolved. These data and those of Richer et al. form a homogeneous sample from a single Galactic population of planetary nebulae, from the earliest evolutionary stages until the cessation of nuclear burning in the central star. They confirm the long-standing predictions of hydrodynamical models of planetary nebulae, where the kinematics of the nebular shell are driven by the evolution of the central star.

  3. Photometric investigation of possible binary occurrence in the central stars of seventeen planetary nebulae

    International Nuclear Information System (INIS)

    Drummond, J.D. III.

    1980-01-01

    A comprehensive literature search was conducted for all possible bihary central stars in planetary nebulae. The results, which include all known and suspected visual, spectroscopic, and spectrum binaries, as well as all reported variable central stars, are presented in a series of tables. A photoelectric study was conducted in order to determine the status of short period (on the order of hours) variability of the central regions of seventeen planetary nebulae. Only the stellar appearing planetary nebula M1-2 (PK 133-8 0 1) was found to be variable. Its short (4.0002 hours) period suggests that it may be only the second eclipsing binary found among central stars to date. A method of concentric apertures was developed to determine the amount of light contributed by the central star vis-a-vis the nebula through a given aperture and filter. The procedure enabled UBV magnitudes and colors (and the errors) of central stars to be measured, including some in the sample of seventeen for which no previous values have been published. Mean nebular UBV magnitudes, surface brightnesses, and color indices were also found with the technique, and represent the first such published measurements. Various UBV two-parameter were constructed, revealing possible nebular/stellar sequences; a star-plus-nebula two-color diagram identifies three spectral classes of central stars, and two suspected binaries in the seventeen studied

  4. A study of the compact nebulae VV 8 and M3-27

    International Nuclear Information System (INIS)

    Adams, T.F.

    1975-01-01

    New photometric observations of the lines and continuum in the compact nebulae VV 8 and M3-27 are presented. The data for VV 8 are very similar to those obtained by O'Dell nearly 10 years ago. Both nebulae have high electron densities and are self-absorbed in Hα. Parameters describing the physical conditions are estimated using the observed Balmer and O iii line strengths. By comparing the observations with suitable models for young planetary nebulae, the abundances of helium, oxygen, and neon are shown to be normal. The N ii lines are stronger than predicted. The continuum in M3-27 is shown to be in good agreement with theory, while the continuum in VV 8 in the visible and infrared is much brighter than predicted. The similarity between the line spectra and inferred properties of the nebulae suggests that the optical continuum in VV 8 is unrelated to the nebula, and may come from a late-type companion in a binary. Serious difficulties remain, however, concerning the absolute magnitude and color of the companion in the binary model. Some implications of Zipoy's shell star model are also examined

  5. Influence of wind loading

    OpenAIRE

    MAVLONOV RAVSHANBEK ABDUJABBOROVICH; VAKKASOV KHAYRULLO SAYFULLAHANOVICH

    2015-01-01

    Each wind load is determined by a probabilistic-statistical method based on the concept of “equivalent static wind load”, on the assumption that structural frames and components/cladding behave elastically in strong wind.

  6. Tower Winds - Cape Kennedy

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Digitized data taken from Wind Gust Charts. Record contains hourly wind directions and speed with a peak wind recorded at the end of each day. Sorted by: station,...

  7. Wind energy program overview

    International Nuclear Information System (INIS)

    1992-02-01

    This overview emphasizes the amount of electric power that could be provided by wind power rather than traditional fossil fuels. New wind power markets, advances in technology, technology transfer, and wind resources are some topics covered in this publication

  8. Modelling Wind for Wind Farm Layout Optimization Using Joint Distribution of Wind Speed and Wind Direction

    OpenAIRE

    Ju Feng; Wen Zhong Shen

    2015-01-01

    Reliable wind modelling is of crucial importance for wind farm development. The common practice of using sector-wise Weibull distributions has been found inappropriate for wind farm layout optimization. In this study, we propose a simple and easily implementable method to construct joint distributions of wind speed and wind direction, which is based on the parameters of sector-wise Weibull distributions and interpolations between direction sectors. It is applied to the wind measurement data a...

  9. Denmark Wind Energy Programme

    DEFF Research Database (Denmark)

    Shen, Wen Zhong

    2014-01-01

    In this paper, a summary of some ongoing wind energy projects in Denmark is given. The research topics comprise computational model development, wind turbine design, low noise airfoil and blade design, control device development, wake modelling, and wind farm layout optimization.......In this paper, a summary of some ongoing wind energy projects in Denmark is given. The research topics comprise computational model development, wind turbine design, low noise airfoil and blade design, control device development, wake modelling, and wind farm layout optimization....

  10. Superconducting Wind Turbine Generators

    OpenAIRE

    Yunying Pan; Danhzen Gu

    2016-01-01

    Wind energy is well known as a renewable energy because its clean and less polluted characteristic, which is the foundation of development modern wind electricity. To find more efficient wind turbine is the focus of scientists around the world. Compared from conventional wind turbines, superconducting wind turbine generators have advantages at zero resistance, smaller size and lighter weight. Superconducting wind turbine will inevitably become the main trends in this area. This paper intends ...

  11. Wind turbines, is it just wind?

    International Nuclear Information System (INIS)

    Boiteux, M.

    2012-01-01

    The author first outlines that wind energy is not only random, but almost absent in extreme situations when it would be needed (for example and notably, very cold weather without wind). He suggests the association of a gas turbine to each wind turbine, so that the gas turbine will replace non operating wind turbines. He notices that wind turbines are not proximity energy as they were said to be, and that profitability in fact requires tens of grouped giant wind turbines. He also outlines the high cost of construction of grids for the connection of these wind turbines. Thus, he states that wind energy is far from being profitable in the present conditions of electricity tariffs in France

  12. SYNCHROTRON HEATING BY A FAST RADIO BURST IN A SELF-ABSORBED SYNCHROTRON NEBULA AND ITS OBSERVATIONAL SIGNATURE

    International Nuclear Information System (INIS)

    Yang, Yuan-Pei; Dai, Zi-Gao; Zhang, Bing

    2016-01-01

    Fast radio bursts (FRBs) are mysterious transient sources. If extragalactic, as suggested by their relative large dispersion measures, their brightness temperatures must be extremely high. Some FRB models (e.g., young pulsar model, magnetar giant flare model, or supra-massive neutron star collapse model) suggest that they may be associated with a synchrotron nebula. Here we study a synchrotron-heating process by an FRB in a self-absorbed synchrotron nebula. If the FRB frequency is below the synchrotron self-absorption frequency of the nebula, electrons in the nebula would absorb FRB photons, leading to a harder electron spectrum and enhanced self-absorbed synchrotron emission. In the meantime, the FRB flux is absorbed by the nebula electrons. We calculate the spectra of FRB-heated synchrotron nebulae, and show that the nebula spectra would show a significant hump in several decades near the self-absorption frequency. Identifying such a spectral feature would reveal an embedded FRB in a synchrotron nebula

  13. IRAS-17423-1755 - A MASSIVE POST-AGE STAR EVOLVING INTO THE PLANETARY-NEBULA STAGE

    NARCIS (Netherlands)

    RIERA, A; GARCIALARIO, P; MANCHADO, A; POTTASCH, [No Value; RAGA, AC

    1995-01-01

    IRAS 17423-1755 has been recognized as a new bipolar nebula during a multi-wavelength observational program of unidentified IRAS sources with far infrared colours similar to those of known planetary nebulae. B, V, R and H alpha CCD images show a clearly marked bipolar structure with a total

  14. A second list of new planetary nebulae found on United Kingdom 1.2-m Schmidt telescope plates

    International Nuclear Information System (INIS)

    Longmore, A.J.; Tritton, S.B.

    1980-01-01

    Positions, photographs and descriptions are given for 11 new planetary nebulae discovered on United Kingdom Schmidt plates. One of the planetary nebulae has the highest galactic latitude of any known planetary, and may be associated with a magnitude 9 G5 star. Near-infrared (J,H,K) magnitudes are given for the star. (author)

  15. Interstellar and Solar Nebula Materials in Cometary Dust

    Science.gov (United States)

    Messenger, Scott; Nakamura-Messenger, Keiko; Keller, Lindsay; Nguyen, Ann; Clemett, Simon

    2017-01-01

    Laboratory studies of cometary dust collected in the stratosphere and returned from comet 81P/Wild 2 by the Stardust spacecraft have revealed ancient interstellar grains and molecular cloud organic matter that record a range of astrophysical processes and the first steps of planetary formation. Presolar materials are rarer meteorites owing to high temperature processing in the solar nebula and hydrothermal alteration on their asteroidal parent bodies. The greater preservation of presolar materials in comets is attributed to their low accretion temperatures and limited planetary processing. Yet, comets also contain a large complement of high temperature materials from the inner Solar System. Owing to the limited and biased sampling of comets to date, the proportions of interstellar and Solar System materials within them remains highly uncertain. Interstellar materials are identified by coordinated isotopic, mineralogical, and chemical measurements at the scale of individual grains. Chondritic porous interplanetary dust particles (CP IDPs) that likely derive from comets are made up of 0.1 - 10 micron-sized silicates, Fe-Ni-sulfides, oxides, and other phases bound by organic material. As much as 1% of the silicates are interstellar grains that have exotic isotopic compositions imparted by nucleosynthetic processes in their parent stars. Crystalline silicates in CP IDPs dominantly have normal isotopic compositions and probably formed in the Solar System. 81P samples include isotopically normal refractory minerals that resemble Ca-Al rich inclusions and chondrules common in meteorites. The origins of sub-micron amorphous silicates in IDPs are not certain, but at least a few % of them are interstellar grains. The remainder have isotopic compositions consistent with Solar System origins and elemental compositions that are inconsistent with interstellar grain properties, thus favoring formation in the solar nebula [4]. The organic component in comets and primitive

  16. Rosette nebula globules: Seahorse giving birth to a star

    Science.gov (United States)

    Mäkelä, M. M.; Haikala, L. K.; Gahm, G. F.

    2017-09-01

    Context. The Rosette nebula is an H II region ionized mainly by the stellar cluster NGC 2244. Elephant trunks, globules, and globulettes are seen at the interface where the H II region and the surrounding molecular shell meet. Aims: We have observed a field in the northwestern part of the Rosette nebula where we study the small globules protruding from the shell. Our aim is to measure their properties and study their star-formation history in continuation of our earlier study of the features of the region. Methods: We imaged the region in broadband near-infrared (NIR) JsHKs filters and narrowband H2 1-0 S(1), Pβ, and continuum filters using the SOFI camera at the ESO/NTT. The imaging was used to study the stellar population and surface brightness, create visual extinction maps, and locate star formation. Mid-infrared (MIR) Spitzer IRAC and WISE and optical NOT images were used to further study the star formation and the structure of the globules. The NIR and MIR observations indicate an outflow, which is confirmed with CO observations made with APEX. Results: The globules have mean number densities of 4.6 × 104 cm-3. Pβ is seen in absorption in the cores of the globules where we measure visual extinctions of 11-16 mag. The shell and the globules have bright rims in the observed bands. In the Ks band 20 to 40% of the emission is due to fluorescent emission in the 2.12 μmH2 line similar to the tiny dense globulettes we studied earlier in a nearby region. We identify several stellar NIR excess candidates and four of them are also detected in the Spitzer IRAC 8.0 μm image and studied further. We find an outflow with a cavity wall bright in the 2.124 μmH2 line and at 8.0 μm in one of the globules. The outflow originates from a Class I young stellar object (YSO) embedded deep inside the globule. An Hα image suggests the YSO drives a possible parsec-scale outflow. Despite the morphology of the globule, the outflow does not seem to run inside the dusty fingers

  17. Advanced structural wind engineering

    CERN Document Server

    Kareem, Ahsan

    2013-01-01

    This book serves as a textbook for advanced courses as it introduces state-of-the-art information and the latest research results on diverse problems in the structural wind engineering field. The topics include wind climates, design wind speed estimation, bluff body aerodynamics and applications, wind-induced building responses, wind, gust factor approach, wind loads on components and cladding, debris impacts, wind loading codes and standards, computational tools and computational fluid dynamics techniques, habitability to building vibrations, damping in buildings, and suppression of wind-induced vibrations. Graduate students and expert engineers will find the book especially interesting and relevant to their research and work.

  18. Wind for Schools (Poster)

    Energy Technology Data Exchange (ETDEWEB)

    Baring-Gould, I.

    2010-05-01

    As the United States dramatically expands wind energy deployment, the industry is challenged with developing a skilled workforce and addressing public resistance. Wind Powering America's Wind for Schools project addresses these issues by developing Wind Application Centers (WACs) at universities; WAC students assist in implementing school wind turbines and participate in wind courses, by installing small wind turbines at community "host" schools, by implementing teacher training with interactive curricula at each host school. This poster provides an overview of the first two years of the Wind for Schools project, primarily supporting activities in Colorado, Kansas, Nebraska, South Dakota, Montana, and Idaho.

  19. Dusty disks around central stars of planetary nebulae

    Energy Technology Data Exchange (ETDEWEB)

    Clayton, Geoffrey C. [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803 (United States); De Marco, Orsola [Department of Physics and Astronomy, Macquarie University, Sydney, NSW 2109 (Australia); Nordhaus, Jason [Center for Computational Relativity and Gravitation, and National Technical Institute for the Deaf, Rochester Institute of Technology, Rochester, NY 14623 (United States); Green, Joel [Department of Astronomy, The University of Texas, 1 University Station, C1400, Austin, TX 78712-0259 (United States); Rauch, Thomas; Werner, Klaus [Institute for Astronomy and Astrophysics, Kepler Center for Astro and Particle Physics, Eberhard Karls University, Sand 1, D-72076 Tübingen (Germany); Chu, You-Hua, E-mail: gclayton@fenway.phys.lsu.edu, E-mail: orsola@science.mq.edu.au, E-mail: nordhaus@astro.rit.edu, E-mail: joel@astro.as.utexas.edu, E-mail: rauch@astro.uni-tuebingen.de, E-mail: werner@astro.uni-tuebingen.de, E-mail: chu@astro.uiuc.edu [Department of Astronomy, University of Illinois at Urbana-Champaign, 1002 West Green Street, Urbana, IL 61801 (United States)

    2014-06-01

    Only a few percent of cool, old white dwarfs (WDs) have infrared excesses interpreted as originating in small hot disks due to the infall and destruction of single asteroids that come within the star's Roche limit. Infrared excesses at 24 μm were also found to derive from the immediate vicinity of younger, hot WDs, most of which are still central stars of planetary nebulae (CSPNe). The incidence of CSPNe with this excess is 18%. The Helix CSPN, with a 24 μm excess, has been suggested to have a disk formed from collisions of Kuiper belt-like objects (KBOs). In this paper, we have analyzed an additional sample of CSPNe to look for similar infrared excesses. These CSPNe are all members of the PG 1159 class and were chosen because their immediate progenitors are known to often have dusty environments consistent with large dusty disks. We find that, overall, PG 1159 stars do not present such disks more often than other CSPNe, although the statistics (five objects) are poor. We then consider the entire sample of CSPNe with infrared excesses and compare it to the infrared properties of old WDs, as well as cooler post-asymptotic giant branch (AGB) stars. We conclude with the suggestion that the infrared properties of CSPNe more plausibly derive from AGB-formed disks rather than disks formed via the collision of KBOs, although the latter scenario cannot be ruled out. Finally, there seems to be an association between CSPNe with a 24 μm excess and confirmed or possible binarity of the central star.

  20. The PAH Emission Characteristics of the Reflection Nebula NGC 2023

    Energy Technology Data Exchange (ETDEWEB)

    Peeters, Els [Department of Physics and Astronomy, University of Western Ontario, London, ON N6A 3K7 (Canada); Bauschlicher, Charles W. Jr. [Entry Systems and Technology Division, Mail Stop 230-3, NASA Ames Research Center, Moffett Field, CA 94035 (United States); Allamandola, Louis J. [NASA Ames Research Center, Space Science Division, Mail Stop 245-6, Moffett Field, CA 94035 (United States); Tielens, Alexander G. G. M. [Leiden Observatory, P.O. Box 9513, 2300 RA Leiden (Netherlands); Ricca, Alessandra [Carl Sagan Center, SETI Institute, 189 N. Bernardo Avenue, Suite 100, Mountain View, CA 94043 (United States); Wolfire, Mark G., E-mail: epeeters@uwo.ca [Astronomy Department, University of Maryland, College Park, MD 20742 (United States)

    2017-02-20

    We present 5–20 μ m spectral maps of the reflection nebula NGC 2023 obtained with the Infrared Spectrograph SL and SH modes on board the Spitzer Space Telescope, which reveal emission from polycyclic aromatic hydrocarbons (PAHs), C{sub 60}, and H{sub 2} superposed on a dust continuum. We show that several PAH emission bands correlate with each other and exhibit distinct spatial distributions that reveal a spatial sequence with distance from the illuminating star. We explore the distinct morphology of the 6.2, 7.7, and 8.6 μ m PAH bands and find that at least two spatially distinct components contribute to the 7–9 μ m PAH emission in NGC 2023. We report that the PAH features behave independently of the underlying plateaus. We present spectra of compact, oval PAHs ranging in size from C{sub 66} to C{sub 210}, determined computationally using density functional theory, and we investigate trends in the band positions and relative intensities as a function of PAH size, charge, and geometry. Based on the NASA Ames PAH database, we discuss the 7–9 μ m components in terms of band assignments and relative intensities. We assign the plateau emission to very small grains with possible contributions from PAH clusters and identify components in the 7–9 μ m emission that likely originate in these structures. Based on the assignments and the observed spatial sequence, we discuss the photochemical evolution of the interstellar PAH family as the PAHs are more and more exposed to the radiation field of the central star in the evaporative flows associated with the Photo-Dissociation Regions in NGC 2023.

  1. Submillimeter and Far-Infrared Observations of the Carina Nebula

    Science.gov (United States)

    Oberst, Thomas E.; Parshley, S. C.; Nikola, T.; Stacey, G. J.; Loehr, A.; Lane, A. P.; Stark, A. A.; Kamenetzky, J.

    2011-05-01

    We present the results of a 250 arcmin2 mapping of the 205 μm [NII] fine-structure emission over the northern Carina Nebula, including the Car I and Car II HII regions. Spectra were obtained using the South Pole Imaging Fabry-Perot Interferometer (SPIFI) at the Antarctic Submillimeter Telescope and Remote Observatory (AST/RO) at South Pole. We supplement the 205 μm data with new reductions of far-IR fine-structure spectra from the Infrared Space Observatory (ISO) in 63 μm [OI], 122 μm [NII], 146 μm [OI], and 158 μm [CII]. Morphological comparisons are made with optical, radio continuum and CO maps. The 122 [NII] / 205 [NII] line ratio is used to probe the density of the low-ionization gas, and the 158 [C II] / 205 [NII] line ratio is used to probe the fraction of C+ arising from photodissociation regions (PDRs). From the [OI] and [CII] data, we construct a PDR model of Carina following Kaufman et al. (1999). When the PDR properties are compared with other sources, Carina is found to be more akin to 30 Doradus than Galactic star-forming regions such as the Orion Bar, M17, or W49; this is consistent with the view of Carina as a more evolved region, where much of the parent molecular cloud has been ionized or swept away. These data constitute the first ever ground-based detection of the 205 μm [NII] line, and only the third detection overall since those of the COBE FIRAS and the KAO in the early 1990s.

  2. NEUTRON-CAPTURE ELEMENT ABUNDANCES IN MAGELLANIC CLOUD PLANETARY NEBULAE

    Energy Technology Data Exchange (ETDEWEB)

    Mashburn, A. L.; Sterling, N. C. [Department of Physics, University of West Georgia, 1601 Maple Street, Carrollton, GA 30118 (United States); Madonna, S. [Instituto de Astrofísica de Canarias, Departamento Astrofísica, Universidad de La Laguna, E-38206 La Laguna, Tenerife (Spain); Dinerstein, Harriet L. [Department of Astronomy, University of Texas, 2515 Speedway, C1400, Austin, TX 78712-1205 (United States); Roederer, I. U. [Department of Astronomy, University of Michigan, 1085 South University Avenue, Ann Arbor, MI 48109 (United States); Geballe, T. R., E-mail: awhite15@my.westga.edu, E-mail: nsterlin@westga.edu, E-mail: smadonna@iac.es, E-mail: harriet@astro.as.utexas.edu, E-mail: iur@umich.edu, E-mail: tgeballe@gemini.edu [Gemini Observatory, 670 N. A’ohoku Place, Hilo, HI 96720 (United States)

    2016-11-01

    We present near-infrared spectra of 10 planetary nebulae (PNe) in the Large and Small Magellanic Clouds (LMC and SMC), acquired with the FIRE and GNIRS spectrometers on the 6.5 m Baade and 8.1 m Gemini South Telescopes, respectively. We detect Se and/or Kr emission lines in eight of these objects, the first detections of n -capture elements in Magellanic Cloud PNe. Our abundance analysis shows large s -process enrichments of Kr (0.6–1.3 dex) in the six PNe in which it was detected, and Se is enriched by 0.5–0.9 dex in five objects. We also estimate upper limits to Rb and Cd abundances in these objects. Our abundance results for the LMC are consistent with the hypothesis that PNe with 2–3 M {sub ⊙} progenitors dominate the bright end of the PN luminosity function in young gas-rich galaxies. We find no significant correlations between s -process enrichments and other elemental abundances, central star temperature, or progenitor mass, though this is likely due to our small sample size. We determine S abundances from our spectra and find that [S/H] agrees with [Ar/H] to within 0.2 dex for most objects, but is lower than [O/H] by 0.2–0.4 dex in some PNe, possibly due to O enrichment via third dredge-up. Our results demonstrate that n -capture elements can be detected in PNe belonging to nearby galaxies with ground-based telescopes, allowing s -process enrichments to be studied in PN populations with well-determined distances.

  3. CO survey of the dark nebulae in Perseus, Taurus, and Auriga

    International Nuclear Information System (INIS)

    Ungerechts, H.; Thaddeus, P.

    1987-01-01

    A new SIS receiver with extremely low noise temperature, used on the Columbia 1.2-m telescope has permitted mapping CO rapidly with full sampling. Results are presented of a survey for which the angular resolution of the telescope was reduced to 0.5 deg, allowing the observations for the complete region of 750 square degrees to be finished within four months, while retaining sufficient resolution to see significant substructure. Most positions with emission are in the Taurus-Auriga dark nebulae, a cloud associated with IC 348 and NGC 1333, and a cloud associated with the California nebula (NGC 1499) and NGC 1579, which overlaps the northern Taurus-Auriga nebulae but is separated from them in velocity. Also seen were several small clouds at Galactic latitude -25 deg to -35 deg southwest of the Taurus clouds, and the L1558 and L1551 clouds in the south. 89 references

  4. Periodic Light Variability in Twelve Carbon-rich Proto-Planetary Nebulae

    Science.gov (United States)

    Hrivnak, Bruce J.; Lu, Wenxian; Maupin, Richard E.; Spitzbart, Bradley D.

    2009-09-01

    We present the results of a long-term (14 year) photometric monitoring program of 12 carbon-rich proto-planetary nebulae (PPNs). PPNs are objects in the evolutionary transition between the AGB and planetary nebula phases. These 12 have bright central stars (V = 8-14 mag) with F-G spectral types and faint nebulae (as seen with the HST). All of the objects show a periodicity in their light variations, although there is also evidence for multiple periods or small period changes. The pulsation periods range from 35 to 153 days, with the longer periods correlated with later spectral types. In fact, a tight correlation is seen between the period and effective temperature. The light variations range from 0.15 to 0.7 mag and are larger for the cooler objects.

  5. Spectral analysis of the Crab Pulsar and Nebula with the Fermi Large Area Telescope

    International Nuclear Information System (INIS)

    Loparco, F.

    2011-01-01

    The Crab Pulsar is a relatively young neutron star. The Pulsar is the central star in the Crab Nebula, a remnant of the supernova SN 1054, which was observed on Earth in the year 1054. The Crab Pulsar has been extensively observed in the gamma-ray energy band by the Large Area Telescope (LAT), the main instrument onboard the Fermi gamma-ray space telescope, during its first months of data taking. The LAT data have been used to reconstruct the fluxes and the energy spectra of the pulsed gamma-ray component and of the gamma-rays from the Nebula. The results on the pulsed component are in good agreement with the previous measurement from EGRET, while the results on the Nebula are consistent with the observations from Earth based telescopes.

  6. Absolute spectrophotometry of the IC 2149, 4593, and NGC 6210 planetary nebulae in near infrared region

    International Nuclear Information System (INIS)

    Noskova, R.I.

    1976-01-01

    The absolute monochromatic energy flux (in ergs.cm -2 sec -1 ) was determined for the emission lines of the planetary nebulae IC2149, 4593 and NGC 6210 in the spectral interval lambda 6300-11000 A. The interstellar extinction Asub(β)=1.sup(m)3; O.sup(m)4; O.sup(m)6, accordingly, was estimated by using spectral lines HI of the Paschen and Balmer series. The energy distribution (in ergsxcm -2 xsec -1 1A -1 ) was found in summary continuous spectrum in the interval lambda 4000-10000 A. The attempt was made to separate the continuum of the nucleus and the nebula. The theoretical nebula continuous spectrum was calculated from lambda 3000 A to the radio range. The continuum, calibrated by menas of the flat part of the radiospectrum, linked well enough with the optical spectrum calculated here

  7. Planck intermediate results XXXIV. The magnetic field structure in the Rosette Nebula

    DEFF Research Database (Denmark)

    Aghanim, N.; Alves, M. I. R.; Arnaud, M.

    2016-01-01

    , the Rosette Nebula in the Monoceros molecular cloud, to study its magnetic field structure and the impact of an expanding H II region on the morphology of the field. We derive an analytical solution for the magnetic field, assumed to evolve from an initially uniform configuration following the expansion...... of ionized gas and the formation of a shell of swept-up ISM. From the RM data we estimate a mean value of the line-of-sight component of the magnetic field of about 3 mu G (towards the observer) in the Rosette Nebula, for a uniform electron density of about 12 cm(-3). The dust shell that surrounds...... molecular cloud is in the range 6.5-9 mu G. The present analytical model is able to reproduce the RM distribution across the ionized nebula, as well as the mean dust polarization properties of the swept-up shell, and can be directly applied to other similar objects....

  8. Two-zone model for the broadband Crab nebula spectrum: microscopic interpretation

    Directory of Open Access Journals (Sweden)

    Fraschetti F.

    2017-01-01

    Full Text Available We develop a simple two-zone interpretation of the broadband baseline Crab nebula spectrum between 10−5 eV and ~ 100 TeV by using two distinct log-parabola energetic electrons distributions. We determine analytically the very-high energy photon spectrum as originated by inverse-Compton scattering of the far-infrared soft ambient photons within the nebula off a first population of electrons energized at the nebula termination shock. The broad and flat 200 GeV peak jointly observed by Fermi/LAT and MAGIC is naturally reproduced. The synchrotron radiation from a second energetic electron population explains the spectrum from the radio range up to ~ 10 keV. We infer from observations the energy dependence of the microscopic probability of remaining in proximity of the shock of the accelerating electrons.

  9. Mass and motion of globulettes in the Rosette Nebula

    Science.gov (United States)

    Gahm, G. F.; Persson, C. M.; Mäkelä, M. M.; Haikala, L. K.

    2013-07-01

    Context. Tiny molecular clumps are abundant in many H ii regions surrounding newborn stellar clusters. In optical images these so-called globulettes appear as dark patches against the background of bright nebulosity. The majority of the globulettes were found to be of planetary mass in a previous optical investigation, while the largest objects may contain more than half a solar mass. Aims: We aim to clarify the physical nature of globulettes by deriving densities and masses, and to determine their velocities as a function of position over the nebula. This information will provide clues to the question of origins, evolution, and fate of globulettes. The Rosette Nebula is relatively rich in globulettes, and we selected a sample of well-confined objects of different sizes for the present investigation. Methods: Radio observations were made of molecular line emission from 16 globulettes combined with near-infrared (NIR) broad-band JHKs and narrow-band Paschen β and H2 imaging. Ten objects, for which we collected information from several transitions in 12CO and 13CO, were modelled using a spherically symmetric model. Results: Practically all globulettes were detected in our CO survey. The observed 12CO (3-2) and (2-1) line temperatures range from 0.6 K to 6 K, the 13CO being a third of this. As a rule, the lines are narrow, ~1.0 km s-1. The best fit to observed line ratios and intensities was obtained by assuming a model composed of a cool and dense centre and warm and dense surface layer. This model provides estimates of maximum and minimum mass; the average masses range from about 50 to 500 Jupiter masses, which is similar to earlier estimates based on extinction measures. The selected globulettes are dense, nH ~ 104 cm-3, with very thin layers of fluorescent H2 emission, showing that the gas is in molecular form just below the surface. The NIR data show that several globulettes are very opaque and contain dense cores. No infrared-excess stars in the fields are

  10. Multi-wavelength imaging of the peculiar Vela Molecular Ridge nebula BBW 192E

    Science.gov (United States)

    Burkert, A.; Stecklum, B.; Henning, Th.; Fischer, O.

    2000-01-01

    We present the first images of the nebula BBW 192E at near- and mid-infrared wavelengths as well as a 1.3 mm continuum map. The nebula BBW 192E is associated with the IRAS point source 08513-4201 which has a luminosity of about 1400 L_sun and a strongly rising spectral energy distribution towards mid-infrared wavelengths. The infrared images show a pronounced bipolar nebula, which is offset by about 10arcsec from the known optical emission, as well as several point sources. We interpret this morphology as evidence for an inclined disk-like structure and scattered light emerging from the lobes. This is supported by our near-infrared imaging polarimetry at sub-arcsecond resolution which furthermore indicates that the central energy source is seen directly at near-infrared wavelengths. At 1.3 millimetre, we detected a cometary shaped source in the dust continuum radiation, 151arcsec x 55arcsec in size, with a total mass of 180 M_sun as well as average hydrogen column and number densities of 4.5x1022 cm-2 and 2.6x105 cm-3, respectively. This dust cloud is also responsible for the strong spatial variation of the extinction across the nebula. We discuss the physical properties of the infrared point sources and conclude that some might be young, low-mass pre-main sequence stars. The main energy source of the nebula is an embedded intermediate-mass young stellar object. These observations are among the first infrared detections of a disk-like system associated with a bipolar nebula surrounding an intermediate-mass young stellar object. Based on observations collected at the European Southern Observatory, La Silla, Chile (Proposal-IDs: 57.B-0392, 52.7-0086, 57.D-0260, 58.D-0213, and 63.I-0173)

  11. DIFFERENTIAL PROPER-MOTION MEASUREMENTS OF THE CYGNUS EGG NEBULA: THE PRESENCE OF EQUATORIAL OUTFLOWS

    Energy Technology Data Exchange (ETDEWEB)

    Ueta, Toshiya; Tomasino, Rachael L. [Department of Physics and Astronomy, MS 6900, University of Denver, Denver, CO 80208 (United States); Ferguson, Brian A. [Space Telescope Science Institute, Baltimore, MD 21218 (United States)

    2013-08-01

    We present the results of differential proper-motion analyses of the Egg Nebula (RAFGL 2688, V1610 Cyg) based on the archived two-epoch optical data taken with the Hubble Space Telescope. First, we determined that the polarization characteristics of the Egg Nebula are influenced by the higher optical depth of the central regions of the nebula (i.e., the 'dustsphere' of {approx}10{sup 3} AU radius), causing the nebula to illuminate in two steps-the direct starlight is first channeled into bipolar cavities and then scattered off to the rest of the nebula. We then measured the amount of motion of local structures and the signature concentric arcs by determining their relative shifts over the 7.25 yr interval. Based on our analysis, which does not rely on the single-scattering assumption, we concluded that the lobes have been excavated by a linear expansion along the bipolar axis for the past {approx}400 yr, while the concentric arcs have been generated continuously and moving out radially at about 10 km s{sup -1} for the past {approx}5500 yr, and there appears to be a colatitudinally increasing trend in the radial expansion velocity field of the concentric arcs. Numerical investigations into the mass-loss modulation by the central binary system exist, which predict such a colatitudinally increasing expansion velocity field in the spiral-shock trails of the mass-loss ejecta. Therefore, the Egg Nebula may represent a rare edge-on case of the binary-modulated circumstellar environs, corroborating the previous theoretical predictions.

  12. Search of a cyclotron line at 70 keV from Crab Nebula

    International Nuclear Information System (INIS)

    Ubertini, P.; Bazzano, A.; La Padula, C.D.; Polcaro, V.F.

    1980-01-01

    An observation of Crab Nebula was made during a transmediterranean balloon flight launched on August 26, 1979 from Milo Base. The hard x-ray experiment carried a payload consisting of two multiwire proportional counters having a geometric area of 900 cm 2 each. A single transit scan of the source was performed on the Crab Nebula region at a float altitude of 2.9 mbs. The preliminary results indicate the existence of an excess flux between 64 - 76 keV above the expected value of Esup(-2.0) power law

  13. The spectrophotometry and chemical composition of the oxygen-poor bipolar nebula NGC 6164-5

    Science.gov (United States)

    Dufour, Reginald J.; Parker, Robert A. R.; Henize, Karl G.

    1988-01-01

    The paper presents new ground-based and IUE spectrophotometry of several positions in NGC 6164-5 surrounding the Population I Of star HD 148937. Electron temperatures, densities, and abundances are derived for the various positions in the nebula using spectral line information. For all of the regions observed, Ne/H is depleted by an amount comparable to O/H, while S/H and Ar/H have normal values. The results suggest that the nebula consists partly of material ejected from inner shell-burning regions of the Of star. In effect, HD 148937 is older and more advanced than what was previously thought.

  14. Spectrophotometry and chemical composition of the oxygen-poor bipolar nebula NGC 6164-5

    International Nuclear Information System (INIS)

    Dufour, R.J.; Parker, R.A.R.; Henize, K.G.

    1988-01-01

    The paper presents new ground-based and IUE spectrophotometry of several positions in NGC 6164-5 surrounding the Population I Of star HD 148937. Electron temperatures, densities, and abundances are derived for the various positions in the nebula using spectral line information. For all of the regions observed, Ne/H is depleted by an amount comparable to O/H, while S/H and Ar/H have normal values. The results suggest that the nebula consists partly of material ejected from inner shell-burning regions of the Of star. In effect, HD 148937 is older and more advanced than what was previously thought. 34 references

  15. Model nebulae and determination of the chemical composition of the Magellanic Clouds.

    Science.gov (United States)

    Aller, L H; Keyes, C D; Czyzak, S J

    1979-04-01

    An analysis of previously presented photoelectric spectrophotometry of HII regions (emission-line diffuse nebulae) in the two Magellanic Clouds is carried out with the aid of theoretical nebular models, which are used primarily as interpolation devices. Some advantages and limitations of such theoretical models are discussed. A comparison of the finally obtained chemical compositions with those found by other observers shows generally a good agreement, suggesting that it is possible to obtain reliable chemical compositions from low excitation gaseous nebulae in our own galaxy as well as in distant stellar systems.

  16. Detection of C60 and C70 in a young planetary nebula.

    Science.gov (United States)

    Cami, Jan; Bernard-Salas, Jeronimo; Peeters, Els; Malek, Sarah Elizabeth

    2010-09-03

    In recent decades, a number of molecules and diverse dust features have been identified by astronomical observations in various environments. Most of the dust that determines the physical and chemical characteristics of the interstellar medium is formed in the outflows of asymptotic giant branch stars and is further processed when these objects become planetary nebulae. We studied the environment of Tc 1, a peculiar planetary nebula whose infrared spectrum shows emission from cold and neutral C60 and C70. The two molecules amount to a few percent of the available cosmic carbon in this region. This finding indicates that if the conditions are right, fullerenes can and do form efficiently in space.

  17. Planck intermediate results XVIII. The millimetre and sub-millimetre emission from planetary nebulae

    DEFF Research Database (Denmark)

    Cardoso, J.-F.; Delabrouille, J.; Ganga, K.

    2015-01-01

    Late stages of stellar evolution are characterized by copious mass-loss events whose signature is the formation of circumstellar envelopes (CSE). Planck multi-frequency measurements have provided relevant information on a sample of Galactic planetary nebulae (PNe) in the important and relatively...... observed in its radio and millimetre emission has previously prevented constructing its SED. A morphological study of the Helix Nebula was also performed. Planck maps reveal, for the first time, the spatial distribution of the dust inside the envelope, allowing us to identify different components, the most...

  18. Magnetic fields and star formation: evidence from imaging polarimetry of the Serpens Reflection Nebula

    Energy Technology Data Exchange (ETDEWEB)

    Warren-Smith, R.F.; Draper, P.W.; Scarrott, S.M.

    1987-08-01

    CCD imaging of the Serpens bipolar reflection nebula shows it to be surrounded by dark material having spiral density structure. Multi-colour polarization mapping also reveals details of the surrounding magnetic field, indicating that this also has spiral structure. These observations are discussed along with current ideas about the role of magnetic fields during star formation. An interpretation involving the non-axisymmetric magnetically braked collapse of a protostellar cloud is proposed and a resulting magnetic field configuration is described which can account for the observations. Evidence is also discussed for the formation of a binary star system within the nebula, resulting from the fragmentation of a magnetized protostellar disc.

  19. Medium-resolution échelle spectroscopy of the Red Square Nebula, MWC 922

    Science.gov (United States)

    Wehres, N.; Ochsendorf, B. B.; Tielens, A. G. G. M.; Cox, N. L. J.; Kaper, L.; Bally, J.; Snow, T. P.

    2017-05-01

    Context. Medium-resolution échelle spectra of the Red Square Nebula surrounding the star MWC 922 are presented. The spectra have been obtained in 2010 and 2012 using the X-shooter spectrograph mounted on the Very Large Telescope (VLT) in Paranal, Chile. The spectrum covers a wavelength range between 300 nm-2.5 μm and shows that the nebula is rich in emission lines. Aims: We aim to identify the emission lines and use them as a tool to determine the physical and chemical characteristics of the nebula. The emission lines are also used to put constraints on the structure of the nebula and on the nature of the central stars. Methods: We analyzed and identified emission lines that indicated that the Red Square Nebula consists of a low density bipolar outflow, eminent in the broad emission component seen in [Fe II], as well as in P Cygni line profiles indicative of fast outflowing material. The narrow component in the [Fe II] lines is most likely formed in the photosphere of a surrounding disk. Some of the emission lines show a pronounced double peaked profile, such as Ca II, indicating an accretion disk in Keplerian rotation around the central star. [O I] emission lines are formed in the neutral atomic zone separating the ionized disk photosphere from the molecular gas in the interior of the disk, which is prominent in molecular CO emission in the near-IR. [N II] and [S II] emission clearly originates in a low density but fairly hot (7 000-10 000 K) nebular environment. H I recombination lines trace the extended nebula as well as the photosphere of the disk. Results: These findings put constraints on the evolution of the central objects in MWC 922. The Red Square shows strong similarities to the Red Rectangle Nebula, both in morphology and in its mid-IR spectroscopic characteristics. As for the Red Rectangle, the observed morphology of the nebula reflects mass-loss in a binary system. Specifically, we attribute the biconical morphology and the associated rung

  20. Ammonia observations in the LBV nebula G79.29+0.46. Discovery of a cold ring and some warm spots

    Science.gov (United States)

    Rizzo, J. R.; Palau, Aina; Jiménez-Esteban, F.; Henkel, C.

    2014-04-01

    Context. The surroundings of luminous blue variable (LBV) stars are excellent laboratories to study the effects of their high UV radiation, powerful winds, and strong ejection events onto the surrounding gas and dust. Aims: We aim at determining the physical parameters of the dense gas near G79.29+0.46, an LBV-candidate located at the centre of two concentric infrared rings, which may interact with the infrared dark cloud (IRDC) G79.3+0.3. Methods: The Effelsberg 100 m telescope was used to observe the NH3 (1, 1) and (2, 2) emission in a field of view of 7' × 7' including the infrared rings and a part of the IRDC. In addition, we observed particular positions in the NH3 (3,3) transition toward the strongest region of the IRDC, which is also closest to the ring nebula. Results: We report here the first coherent ring-like structure of dense NH3 gas associated with an evolved massive star. It is well traced in both ammonia lines, surrounding an already known infrared ring nebula; its column density is two orders of magnitude lower than the IRDC. The NH3 emission in the IRDC is characterized by a low and uniform rotational temperature (Trot~10 K) and moderately high opacities in the (1, 1) line. The rest of the observed field is spotted by warm or hot zones (Trot>30 K) and characterized by optically thin emission of the (1, 1) line. The NH3 abundances are about 10-8 in the IRDC, and 10-10-10-9 elsewhere. The warm temperatures and low abundances of NH3 in the ring suggest that the gas is being heated and photo-dissociated by the intense UV field of the LBV star. An outstanding region is found to the south-west (SW) of the LBV star within the IRDC. The NH3 (3, 3) emission at the centre of the SW region reveals two velocity components tracing gas at temperatures >30 K. Of particular interest is the northern edge of the SW region, which coincides with the border of the ring nebula and a region of strong 6 cm continuum emission; here, the opacity of the (1, 1) line and the

  1. Wind engineering in Africa

    NARCIS (Netherlands)

    Wisse, J.A.; Stigter, C.J.

    2007-01-01

    The International Association for Wind Engineering (IAWE) has very few contacts in Africa, the second-largest continent. This paper reviews important wind-related African issues. They all require data on wind climate, which are very sparse in Africa. Wind engineering in Africa can assist in

  2. Wind energy; Energie eolienne

    Energy Technology Data Exchange (ETDEWEB)

    Vachey, C.

    2000-05-01

    This public information paper presents the wind energy resource in the Languedoc Roussillon region, explains how a wind turbine works, the different types of utilization and the cost of the wind energy. The environmental impacts of the wind energy, on the noise and the landscape, are also discussed. (A.L.B.)

  3. Offshore Wind Farms

    DEFF Research Database (Denmark)

    Lundtang Petersen, Erik; Hasager, Charlotte Bay; Courtney, Michael

    2015-01-01

    The technology behind constructing wind farms offshore began to develop in 1991 when the Vindeby wind farm was installed off the Danish coast (11 Bonus 450 kW turbines). Resource assessment, grid connection, and wind farm operation are significant challenges for offshore wind power just...... concern are the problems associated with locating the turbines close together in a wind farm and the problems of placing several large wind farms in a confined area. The environmental impacts of offshore wind farms are also treated, but not the supply chain, that is, the harbors, the installation vessels...

  4. Wind power. [electricity generation

    Science.gov (United States)

    Savino, J. M.

    1975-01-01

    A historical background on windmill use, the nature of wind, wind conversion system technology and requirements, the economics of wind power and comparisons with alternative systems, data needs, technology development needs, and an implementation plan for wind energy are presented. Considerable progress took place during the 1950's. Most of the modern windmills feature a wind turbine electricity generator located directly at the top of their rotor towers.

  5. Search for thermal X-ray features from the Crab nebula with the Hitomi soft X-ray spectrometer

    Science.gov (United States)

    Hitomi Collaboration; Aharonian, Felix; Akamatsu, Hiroki; Akimoto, Fumie; Allen, Steven W.; Angelini, Lorella; Audard, Marc; Awaki, Hisamitsu; Axelsson, Magnus; Bamba, Aya; Bautz, Marshall W.; Blandford, Roger; Brenneman, Laura W.; Brown, Gregory V.; Bulbul, Esra; Cackett, Edward M.; Chernyakova, Maria; Chiao, Meng P.; Coppi, Paolo S.; Costantini, Elisa; de Plaa, Jelle; de Vries, Cor P.; den Herder, Jan-Willem; Done, Chris; Dotani, Tadayasu; Ebisawa, Ken; Eckart, Megan E.; Enoto, Teruaki; Ezoe, Yuichiro; Fabian, Andrew C.; Ferrigno, Carlo; Foster, Adam R.; Fujimoto, Ryuichi; Fukazawa, Yasushi; Furuzawa, Akihiro; Galeazzi, Massimiliano; Gallo, Luigi C.; Gandhi, Poshak; Giustini, Margherita; Goldwurm, Andrea; Gu, Liyi; Guainazzi, Matteo; Haba, Yoshito; Hagino, Kouichi; Hamaguchi, Kenji; Harrus, Ilana M.; Hatsukade, Isamu; Hayashi, Katsuhiro; Hayashi, Takayuki; Hayashida, Kiyoshi; Hiraga, Junko S.; Hornschemeier, Ann; Hoshino, Akio; Hughes, John P.; Ichinohe, Yuto; Iizuka, Ryo; Inoue, Hajime; Inoue, Yoshiyuki; Ishida, Manabu; Ishikawa, Kumi; Ishisaki, Yoshitaka; Kaastra, Jelle; Kallman, Tim; Kamae, Tsuneyoshi; Kataoka, Jun; Katsuda, Satoru; Kawai, Nobuyuki; Kelley, Richard L.; Kilbourne, Caroline A.; Kitaguchi, Takao; Kitamoto, Shunji; Kitayama, Tetsu; Kohmura, Takayoshi; Kokubun, Motohide; Koyama, Katsuji; Koyama, Shu; Kretschmar, Peter; Krimm, Hans A.; Kubota, Aya; Kunieda, Hideyo; Laurent, Philippe; Lee, Shiu-Hang; Leutenegger, Maurice A.; Limousin, Olivier; Loewenstein, Michael; Long, Knox S.; Lumb, David; Madejski, Greg; Maeda, Yoshitomo; Maier, Daniel; Makishima, Kazuo; Markevitch, Maxim; Matsumoto, Hironori; Matsushita, Kyoko; McCammon, Dan; McNamara, Brian R.; Mehdipour, Missagh; Miller, Eric D.; Miller, Jon M.; Mineshige, Shin; Mitsuda, Kazuhisa; Mitsuishi, Ikuyuki; Miyazawa, Takuya; Mizuno, Tsunefumi; Mori, Hideyuki; Mori, Koji; Mukai, Koji; Murakami, Hiroshi; Mushotzky, Richard F.; Nakagawa, Takao; Nakajima, Hiroshi; Nakamori, Takeshi; Nakashima, Shinya; Nakazawa, Kazuhiro; Nobukawa, Kumiko K.; Nobukawa, Masayoshi; Noda, Hirofumi; Odaka, Hirokazu; Ohashi, Takaya; Ohno, Masanori; Okajima, Takashi; Ota, Naomi; Ozaki, Masanobu; Paerels, Frits; Paltani, Stéphane; Petre, Robert; Pinto, Ciro; Porter, Frederick S.; Pottschmidt, Katja; Reynolds, Christopher S.; Safi-Harb, Samar; Saito, Shinya; Sakai, Kazuhiro; Sasaki, Toru; Sato, Goro; Sato, Kosuke; Sato, Rie; Sato, Toshiki; Sawada, Makoto; Schartel, Norbert; Serlemtsos, Peter J.; Seta, Hiromi; Shidatsu, Megumi; Simionescu, Aurora; Smith, Randall K.; Soong, Yang; Stawarz, Łukasz; Sugawara, Yasuharu; Sugita, Satoshi; Szymkowiak, Andrew; Tajima, Hiroyasu; Takahashi, Hiromitsu; Takahashi, Tadayuki; Takeda, Shin'ichiro; Takei, Yoh; Tamagawa, Toru; Tamura, Takayuki; Tanaka, Takaaki; Tanaka, Yasuo; Tanaka, Yasuyuki T.; Tashiro, Makoto S.; Tawara, Yuzuru; Terada, Yukikatsu; Terashima, Yuichi; Tombesi, Francesco; Tomida, Hiroshi; Tsuboi, Yohko; Tsujimoto, Masahiro; Tsunemi, Hiroshi; Tsuru, Takeshi Go; Uchida, Hiroyuki; Uchiyama, Hideki; Uchiyama, Yasunobu; Ueda, Shutaro; Ueda, Yoshihiro; Uno, Shin'ichiro; Urry, C. Megan; Ursino, Eugenio; Watanabe, Shin; Werner, Norbert; Wilkins, Dan R.; Williams, Brian J.; Yamada, Shinya; Yamaguchi, Hiroya; Yamaoka, Kazutaka; Yamasaki, Noriko Y.; Yamauchi, Makoto; Yamauchi, Shigeo; Yaqoob, Tahir; Yatsu, Yoichi; Yonetoku, Daisuke; Zhuravleva, Irina; Zoghbi, Abderahmen; Tominaga, Nozomu; Moriya, Takashi J.

    2018-03-01

    The Crab nebula originated from a core-collapse supernova (SN) explosion observed in 1054 AD. When viewed as a supernova remnant (SNR), it has an anomalously low observed ejecta mass and kinetic energy for an Fe-core-collapse SN. Intensive searches have been made for a massive shell that solves this discrepancy, but none has been detected. An alternative idea is that SN 1054 is an electron-capture (EC) explosion with a lower explosion energy by an order of magnitude than Fe-core-collapse SNe. X-ray imaging searches were performed for the plasma emission from the shell in the Crab outskirts to set a stringent upper limit on the X-ray emitting mass. However, the extreme brightness of the source hampers access to its vicinity. We thus employed spectroscopic technique using the X-ray micro-calorimeter on board the Hitomi satellite. By exploiting its superb energy resolution, we set an upper limit for emission or absorption features from as yet undetected thermal plasma in the 2-12 keV range. We also re-evaluated the existing Chandra and XMM-Newton data. By assembling these results, a new upper limit was obtained for the X-ray plasma mass of ≲ 1 M⊙ for a wide range of assumed shell radius, size, and plasma temperature values both in and out of collisional equilibrium. To compare with the observation, we further performed hydrodynamic simulations of the Crab SNR for two SN models (Fe-core versus EC) under two SN environments (uniform interstellar medium versus progenitor wind). We found that the observed mass limit can be compatible with both SN models if the SN environment has a low density of ≲ 0.03 cm-3 (Fe core) or ≲ 0.1 cm-3 (EC) for the uniform density, or a progenitor wind density somewhat less than that provided by a mass loss rate of 10-5 M⊙ yr-1 at 20 km s-1 for the wind environment.

  6. The Eighty Six Hα Spectra from the Orion Nebula (M42, Sh2-281)

    Indian Academy of Sciences (India)

    ∼40′×40′) of the Orion Nebula (NGC1976, M42, Sh2-281) have been obtained using DEFPOS spectrometer with a circular field of view of 4′ at TUBITAK National Observatory (TUG, Antalya, Turkey). Measurements provide information ...

  7. Properties of dust grains in planetary nebulae. I. The ionized region of NGC 6445

    NARCIS (Netherlands)

    van Hoof, PAM; Van de Steene, GC; Beintema, DA; Martin, PG; Pottasch, [No Value

    2000-01-01

    One of the factors influencing the spectral evolution of a planetary nebula is the fate of the dust grains that are emitting the infrared continuum. Several processes have been proposed that either destroy the grains or remove them from the ionized region. To test whether these processes are

  8. An Application-Based Performance Evaluation of NASAs Nebula Cloud Computing Platform

    Science.gov (United States)

    Saini, Subhash; Heistand, Steve; Jin, Haoqiang; Chang, Johnny; Hood, Robert T.; Mehrotra, Piyush; Biswas, Rupak

    2012-01-01

    The high performance computing (HPC) community has shown tremendous interest in exploring cloud computing as it promises high potential. In this paper, we examine the feasibility, performance, and scalability of production quality scientific and engineering applications of interest to NASA on NASA's cloud computing platform, called Nebula, hosted at Ames Research Center. This work represents the comprehensive evaluation of Nebula using NUTTCP, HPCC, NPB, I/O, and MPI function benchmarks as well as four applications representative of the NASA HPC workload. Specifically, we compare Nebula performance on some of these benchmarks and applications to that of NASA s Pleiades supercomputer, a traditional HPC system. We also investigate the impact of virtIO and jumbo frames on interconnect performance. Overall results indicate that on Nebula (i) virtIO and jumbo frames improve network bandwidth by a factor of 5x, (ii) there is a significant virtualization layer overhead of about 10% to 25%, (iii) write performance is lower by a factor of 25x, (iv) latency for short MPI messages is very high, and (v) overall performance is 15% to 48% lower than that on Pleiades for NASA HPC applications. We also comment on the usability of the cloud platform.

  9. Measurement of the He II radiation field in planetary nebulae through Bowen fluorescence

    Science.gov (United States)

    Bhatia, A. K.; Kastner, S. O.

    1987-01-01

    Excitation of O III by He II is treated for sources over a useful range of densities to give accurate predictions of Bowen/non-Bowen line ratios. These are applied to recent observations of planetary nebulae to show that Bowen excitation increases monotonically with excitation class, and to deduce other important consequences.

  10. An Analysis of Spectra in the Red Rectangle Nebula Frédéric Zagury

    Indian Academy of Sciences (India)

    a review of the problem on a more simple and pragmatic basis. It will also explain the similarity outlined by Zagury & Fujii (2003) between the spectrum of a red horizon at sunrise and the spectra of red nebulae. Both spectra result from a combination of. Rayleigh scattering by a gas (nitrogen for the red horizon, hydrogen for ...

  11. THE NATURE AND FREQUENCY OF OUTFLOWS FROM STARS IN THE CENTRAL ORION NEBULA CLUSTER

    Energy Technology Data Exchange (ETDEWEB)

    O’Dell, C. R. [Department of Physics and Astronomy, Vanderbilt University, Box 1807-B, Nashville, TN 37235 (United States); Ferland, G. J. [Department of Physics and Astronomy, University of Kentucky, Lexington, KY 40506 (United States); Henney, W. J. [Instituto de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México, Apartado Postal 3-72, 58090 Morelia, Michoacán, México (Mexico); Peimbert, M. [Instituto de Astronomia, Universidad Nacional Autónoma de México, Apdo, Postal 70-264, 04510 México D. F., México (Mexico); García-Díaz, Ma. T. [Instituto de Astronomia, Universidad Nacional Autónoma de México, Km 103 Carretera Tijuana-Ensenada, 22860 Ensenada, B.C., México (Mexico); Rubin, Robert H., E-mail: cr.odell@vanderbilt.edu [NASA/Ames Research Center, Moffett Field, CA 94035-0001 (United States)

    2015-10-15

    Recent Hubble Space Telescope images have allowed the determination with unprecedented accuracy of motions and changes of shocks within the inner Orion Nebula. These originate from collimated outflows from very young stars, some within the ionized portion of the nebula and others within the host molecular cloud. We have doubled the number of Herbig–Haro objects known within the inner Orion Nebula. We find that the best-known Herbig–Haro shocks originate from relatively few stars, with the optically visible X-ray source COUP 666 driving many of them. While some isolated shocks are driven by single collimated outflows, many groups of shocks are the result of a single stellar source having jets oriented in multiple directions at similar times. This explains the feature that shocks aligned in opposite directions in the plane of the sky are usually blueshifted because the redshifted outflows pass into the optically thick photon-dominated region behind the nebula. There are two regions from which optical outflows originate for which there are no candidate sources in the SIMBAD database.

  12. Co-accretion of chondrules and dust in the solar nebula

    NARCIS (Netherlands)

    Ormel, C. W.; Cuzzi, J. N.; Tielens, A. G. G. M.

    2008-01-01

    We present a mechanism for chondrules to stick together by means of compaction of a porous dust rim they sweep up as they move through the dusty nebula gas. It is shown that dust aggregates formed out of micron-size grains stick to chondrules, forming a porous dust rim. When chondrules collide, this

  13. RAPID GAMMA-RAY FLUX VARIABILITY DURING THE 2013 MARCH CRAB NEBULA FLARE

    International Nuclear Information System (INIS)

    Mayer, M.; Buehler, R.; Hays, E.; Cheung, C. C.; Grove, J. E.; Dutka, M. S.; Kerr, M.; Ojha, R.

    2013-01-01

    We report on a bright flare in the Crab Nebula detected by the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope. The period of significantly increased luminosity occurred in 2013 March and lasted for approximately two weeks. During this period, we observed flux variability on timescales of approximately 5 hr. The combined photon flux above 100 MeV from the pulsar and its nebula reached a peak value of (12.5 ± 0.8) · 10 –6 cm –2 s –1 on 2013 March 6. This value exceeds the average flux by almost a factor of six and implies a ∼20 times higher flux for the synchrotron component of the nebula alone. This is the second brightest flare observed from this source. Spectral and temporal analysis of the LAT data collected during the outburst reveal a rapidly varying synchrotron component of the Crab Nebula while the pulsar emission remains constant in time

  14. High-speed knots in the hourglass shaped planetary nebula Hubble 12

    DEFF Research Database (Denmark)

    Vaytet, N. M. H.; Rushton, A. P.; Lloyd, M.

    2009-01-01

    We present a detailed kinematical analysis of the young compact hourglass-shaped planetary nebula Hb 12. We performed optical imaging and longslit spectroscopy of Hb 12 using the Manchester echelle spectrometer with the 2.1m San Pedro Martir telescope. We reveal, for the first time, the presence...... of end caps (or knots) aligned with the bipolar lobes of the planetary nebula shell in a deep [NII]6584 image of Hb 12. We measured from our spectroscopy radial velocities of 120 km/s for these knots. We have derived the inclination angle of the hourglass shaped nebular shell to be 65 degrees to the line...... of sight. It has been suggested that Hb 12's central star system is an eclipsing binary (Hsia et al. 2006) which would imply a binary inclination of at least 80 degrees. However, if the central binary has been the major shaping influence on the nebula then both nebula and binary would be expected to share...

  15. Chemical abundances and dust in planetary nebulae in the Galactic bulge

    NARCIS (Netherlands)

    Gutenkunst, S.; Bernard-Salas, J.; Pottasch, S. R.; Sloan, G. C.; Houck, J. R.

    2008-01-01

    We present mid-infrared Spitzer spectra of 11 planetary nebulae in the Galactic bulge. We derive argon, neon, sulfur, and oxygen abundances for them using mainly infrared line fluxes combined with some optical line fluxes from the literature. Due to the high extinction toward the bulge, the infrared

  16. DETAILED INTERSTELLAR POLARIMETRIC PROPERTIES OF THE PIPE NEBULA AT CORE SCALES

    International Nuclear Information System (INIS)

    Franco, G. A. P.; Alves, F. O.; Girart, J. M.

    2010-01-01

    We use R-band CCD linear polarimetry collected for about 12,000 background field stars in 46 fields of view toward the Pipe nebula to investigate the properties of the polarization across this dark cloud. Based on archival Two Micron All Sky Survey data, we estimate that the surveyed areas present total visual extinctions in the range 0.6 mag ≤ A V ≤ 4.6 mag. While the observed polarizations show a well-ordered large-scale pattern, with polarization vectors almost perpendicularly aligned to the cloud's long axis, at core scales one sees details that are characteristics of each core. Although many observed stars present degrees of polarization that are unusual for the common interstellar medium (ISM), our analysis suggests that the dust grains constituting the diffuse parts of the Pipe nebula seem to have the same properties as the normal Galactic ISM. Estimates of the second-order structure function of the polarization angles suggest that most of the Pipe nebula is magnetically dominated and that turbulence is sub-Alvenic. The Pipe nebula is certainly an interesting region to investigate the processes that prevailed during the initial phases of low-mass stellar formation.

  17. A Large Bubble External to the Wolf-Rayet Ring Nebula NGC 6888

    Science.gov (United States)

    Marston, A. P.

    1995-05-01

    We present high spatial resolution IRAS images (HIRES) of a 2° field surrounding the Wolf-Rayet ring nebula NGC 6888. This shows the presence of an elliptical shell 1.7° × 1.4° in size and with a position angle at 45° relative to that of NGC 6888 which is also observed in our images. IRAS fluxes indicate the outer large bubble has a cooler dust temperature than NGC 6888 and has an implied gas mass of approximately 8000 Msun. It is proposed that the outer shell represents the extent of a bubble 19 pc across created in the O star phase of the Wolf-Rayet star WR 136 (HD 192163), presently at the center of NGC 6888. This bubble is estimated as being 1.9 × 106 yr old with an associated O star phase of 1.6-1.9 × 106 yr. The high spatial resolution in our IRAS images has also allowed better fluxes to be determined for the ring nebula NGC 6888 which are consistent with the previous results of Marston & Meaburn (1988). We illustrate how the nebulae around the star WR 136 are consistent with a three phase evolution for Wolf-Rayet stars. With the large mass lost in the ring nebula we suggest that a massive (>40 Msun) O star has evolved through a luminous blue variable phase before becoming the Wolf-Rayet star WR 136.

  18. When a Standard Candle Flickers: Crab Nebula Variations in Hard X-rays

    Science.gov (United States)

    Wilson-Hodge, Colleen A.

    2012-01-01

    The Crab Nebula was surprisingly variable from 2001-2010, with less variability before 2001 and since mid-2010. We presented evidence for spectral softening from RXTE, Swift/BAT, and Fermi GBM during the mid-2008-2010 flux decline. We will miss RXTE, but will continue our monitoring program using Fermi/GBM, MAXI, and Swift/BAT.

  19. Testing models of low-excitation photodissociation regions with far-infrared observations of reflection nebulae

    NARCIS (Netherlands)

    Owl, RCY; Meixner, MM; Fong, D; Haas, MR; Rudolph, AL; Tielens, AGGM

    2002-01-01

    This paper presents Kuiper Airborne Observatory observations of the photodissociation regions ( PDRs) in nine reflection nebulae. These observations include the far-infrared atomic fine-structure lines of [O I] 63 and 145 mum, [C II] 158 mum, and [Si II] 35 mum and the adjacent far-infrared

  20. Multiple outflows in the bipolar planetary nebula M1-16: A molecular line study

    NARCIS (Netherlands)

    Sahai, Raghvendra; Wootten, Alwyn; Schwarz, Hugo E.; Wild, W.

    1994-01-01

    Extensive observations of the molecular gas in the young, compact planetary nebula M1-16 have been made, using the Swedish-ESO-Submillimeter Telescope. A map of the CO J = 2-1 emission shows that the molecular envelope contains both a slow and a fast outflow with expansion velocities of 19 km/s and

  1. Planetary nebula velocities in the disc and bulge of M31

    NARCIS (Netherlands)

    Halliday, C.; Carter, D.; Bridges, T. J.; Jackson, Z. C.; Wilkinson, M. I.; Quinn, D. P.; Evans, N. W.; Douglas, N. G.; Merrett, H. R.; Merrifield, M. R.; Romanowsky, A. J.; Kuijken, K.; Irwin, M. J.

    2006-01-01

    We present radial velocities for a sample of 723 planetary nebulae in the disc and bulge of M31, measured using the WYFFOS fibre spectrograph on the William Herschel Telescope. Velocities are determined using the [OIII] lambda 5007 emission line. Rotation and velocity dispersion are measured to a

  2. KINEMATICS OF THE IONIZED-GAS IN PUPPIS-VELA INCLUDING THE GUM NEBULA

    NARCIS (Netherlands)

    SAHU, MS; SAHU, KC

    1993-01-01

    We present a high resolution spectroscopic study of the ionised gas in Puppis-Vela, which includes the Gum Nebula and the IRAS Vela Shell, in the emission lines of Halpha lambda6563 angstrom, [NII] lambdalambda6548, 6584 angstrom and the [OIII] lambda5007 angstrom. Line profiles were obtained at 18

  3. The role of Fischer-Tropsch catalysis in solar nebula chemistry

    NARCIS (Netherlands)

    Kress, ME; Tielens, AGGM

    Fischer-Tropsch catalysis, the iron/nickel catalyzed conversion of CO and H(2) to hydrocarbons, would have been the only thermally-driven pathway available in the solar nebula to convert CO into other forms of carbon. A major issue in meteoritics is to determine the origin of meteoritic organics:

  4. IUE observations of DQ Herculis and its nebula, and the nature of the cold nova shells

    Science.gov (United States)

    Ferland, G. J.; Williams, R. E.; Lambert, D. L.; Slovak, M.; Gondhalekar, P. M.; Truran, J. W.; Shields, G. A.

    1984-01-01

    The nebula ejected in the 1934 outburst of the classical nova DQ Her is remarkable for its unprecedentedly low temperature of Te 500 K as measured by Williams et al. (1978). In this paper, IUE observations are combined with Steward optical spectra. It is confirmed that the gas is quite cold. It is further shown that the gas is ionized by the radiation field of the central object. X-ray, ultraviolet, optical and infrared observations of the underlying binary are combined with the extreme-ultraviolet continuum deduced from the level of ionization of the nebula to obtain a composite energy distribution for the central object. This energy distribution bears no resemblance to that predicted by theoretical models of accretion disks. Photoionization models of the nebula using the deduced continuum, as well as theoretical accretion disk continua, are presented to show that the low electron temperature is the result of the very high metal abundances which characterize nova shells. Infrared fine-structure lines are efficient coolants, and low temperatures are achieved for a wide variety of radiation fields. The implications of these results for nebulae surrounding other old novae are discussed.

  5. The Importance of Physical Models for Deriving Dust Masses and Grain Size Distributions in Supernova Ejecta. I. Radiatively Heated Dust in the Crab Nebula

    Science.gov (United States)

    Temim, Tea; Dwek, Eli

    2013-01-01

    Recent far-infrared (IR) observations of supernova remnants (SNRs) have revealed significantly large amounts of newly condensed dust in their ejecta, comparable to the total mass of available refractory elements. The dust masses derived from these observations assume that all the grains of a given species radiate at the same temperature, regardless of the dust heating mechanism or grain radius. In this paper, we derive the dust mass in the ejecta of the Crab Nebula, using a physical model for the heating and radiation from the dust. We adopt a power-law distribution of grain sizes and two different dust compositions (silicates and amorphous carbon), and calculate the heating rate of each dust grain by the radiation from the pulsar wind nebula. We find that the grains attain a continuous range of temperatures, depending on their size and composition. The total mass derived from the best-fit models to the observed IR spectrum is 0.019-0.13 Solar Mass, depending on the assumed grain composition. We find that the power-law size distribution of dust grains is characterized by a power-law index of 3.5-4.0 and a maximum grain size larger than 0.1 micron. The grain sizes and composition are consistent with what is expected for dust grains formed in a Type IIP supernova (SN). Our derived dust mass is at least a factor of two less than the mass reported in previous studies of the Crab Nebula that assumed more simplified two-temperature models. These models also require a larger mass of refractory elements to be locked up in dust than was likely available in the ejecta. The results of this study show that a physical model resulting in a realistic distribution of dust temperatures can constrain the dust properties and affect the derived dust masses. Our study may also have important implications for deriving grain properties and mass estimates in other SNRs and for the ultimate question of whether SNe are major sources of dust in the Galactic interstellar medium and in

  6. Climatic wind tunnel for wind engineering tasks

    Czech Academy of Sciences Publication Activity Database

    Kuznetsov, Sergeii; Pospíšil, Stanislav; Král, Radomil

    2015-01-01

    Roč. 112, 2-B (2015), s. 303-316 ISSN 1897-628X R&D Projects: GA ČR(CZ) GA14-12892S Keywords : climatic tunnel * wind tunnel * atmospheric boundary layer * flow resistance * wind tunnel contraction Subject RIV: JM - Building Engineering https://suw.biblos.pk.edu.pl/resources/i5/i6/i6/i7/i6/r56676/KuznetsovS_ClimaticWind.pdf

  7. Meteoritic Constraints on Models of the Solar Nebula: The Abundances of Moderately Volatile Elements

    Science.gov (United States)

    Cassen, P.; Cuzzi, Jeffrey N. (Technical Monitor)

    1994-01-01

    The "moderately volatile" elements are those which condense (or evaporate) in the temperature range 650 - 1350 K, as a mix of material with solar abundances is cooled (or heated) under equilibrium conditions. Their relative abundances in chondritic meteorites are solar (or "cosmic", as defined by tile composition of CI meteorites) to within a factor of several, but vary within that range in a way that correlates remarkably well with condensation temperature, independent of chemical affinity. It has been argued that this correlation reflects a systematically selective process which favored the accretion of refractory material over volatile material from a cooling nebula. Wasson and Chou suggested that condensation and settling of solids contemporaneously with the cooling and removal of nebular gas could produce tile observed abundance patterns, but a quantitative model has been lacking. We show that the abundance patterns of the moderately volatile elements in chondritic meteorites can be produced, in some degree of quantitative detail, by models of the solar nebula that are designed to conform to observations of T Tauri stars and the global conservation laws. For example, even if the local surface density of the nebula is not decreasing, condensation and accretion of solids from radially inflowing gas in a cooling nebula can result in depletions of volatiles, relative to refractories, like those observed. The details of the calculated abundance patterns depend on (but are not especially sensitive to) model parameters, and can exhibit the variations that distinguish the meteorite classes. Thus it appears that nebula characteristics Such as cooling rates, radial flow velocities, and particle accumulation rates can be quantitatively constrained by demanding that they conform to meteoritic data; and the models, in turn, can produce testable hypotheses regarding the time and location of the formation of the chondrite parent bodies and the planets.

  8. Meteoritic Constraints on Models of the Solar Nebula: The Abundances of Moderately Volatile Elements

    Science.gov (United States)

    Cassen, Patrick; Cuzzi, Jeff (Technical Monitor)

    1994-01-01

    The "moderately volatile" elements are those which condense (or evaporate) in the temperature range 650 - 1350 K, as a mix of material with solar abundances is cooled (or heated) tinder equilibrium conditions. Their relative abundances in chondritic meteorites are solar (or "cosmic", as defined by the composition of Cl meteorites) to within a factor of several, but vary within that range in a way that correlates remarkably well with condensation temperature, independent of chemical affinity. It has been argued that this correlation reflects a systematically selective process which favored the accretion of refractory material over volatile material from a cooling nebula. Wasson and Chou (Meteoritics 9, 69-94, 1974, and Wasson and co-authors in subsequent papers) suggested that condensation and settling of solids contemporaneously with the cooling and removal of nebular gas could produce the observed abundance patterns, but a quantitative model has been lacking. We show that the abundance patterns of the moderately volatile elements in chondritic meteorites can be produced, in some degree of quantitative detail, by models of the solar nebula that are designed to conform to observations of T Tauri stars and the global conservation laws. For example, even if the local surface density of the nebula is not decreasing, condensation and accretion of solids from radially inflowing gas in a cooling nebula can result in depletions of volatiles, relative to refractories, like those observed, The details of the calculated abundance patterns depend on (but are not especially sensitive to) model parameters, and can exhibit the variations that distinguish the meteorite classes. Thus it appears that nebula characteristics such as cooling rates, radial flow velocities, and particle accumulation rates can be quantitatively constrained by demanding that they conform to meteoritic data; and the models, in turn, can produce testable hypotheses regarding the time and location of the

  9. GLOBAL MODELING OF NEBULAE WITH PARTICLE GROWTH, DRIFT, AND EVAPORATION FRONTS. I. METHODOLOGY AND TYPICAL RESULTS

    International Nuclear Information System (INIS)

    Estrada, Paul R.; Cuzzi, Jeffrey N.; Morgan, Demitri A.

    2016-01-01

    We model particle growth in a turbulent, viscously evolving protoplanetary nebula, incorporating sticking, bouncing, fragmentation, and mass transfer at high speeds. We treat small particles using a moments method and large particles using a traditional histogram binning, including a probability distribution function of collisional velocities. The fragmentation strength of the particles depends on their composition (icy aggregates are stronger than silicate aggregates). The particle opacity, which controls the nebula thermal structure, evolves as particles grow and mass redistributes. While growing, particles drift radially due to nebula headwind drag. Particles of different compositions evaporate at “evaporation fronts” (EFs) where the midplane temperature exceeds their respective evaporation temperatures. We track the vapor and solid phases of each component, accounting for advection and radial and vertical diffusion. We present characteristic results in evolutions lasting 2 × 10 5 years. In general, (1) mass is transferred from the outer to the inner nebula in significant amounts, creating radial concentrations of solids at EFs; (2) particle sizes are limited by a combination of fragmentation, bouncing, and drift; (3) “lucky” large particles never represent a significant amount of mass; and (4) restricted radial zones just outside each EF become compositionally enriched in the associated volatiles. We point out implications for millimeter to submillimeter SEDs and the inference of nebula mass, radial banding, the role of opacity on new mechanisms for generating turbulence, the enrichment of meteorites in heavy oxygen isotopes, variable and nonsolar redox conditions, the primary accretion of silicate and icy planetesimals, and the makeup of Jupiter’s core

  10. GLOBAL MODELING OF NEBULAE WITH PARTICLE GROWTH, DRIFT, AND EVAPORATION FRONTS. I. METHODOLOGY AND TYPICAL RESULTS

    Energy Technology Data Exchange (ETDEWEB)

    Estrada, Paul R. [Carl Sagan Center, SETI Institute, 189 N. Bernardo Avenue # 100, Mountain View, CA 94043 (United States); Cuzzi, Jeffrey N. [Ames Research Center, NASA, Mail Stop 245-3, Moffett Field, CA 94035 (United States); Morgan, Demitri A., E-mail: Paul.R.Estrada@nasa.gov [USRA, NASA Ames Research Center, Mail Stop 245-3, Moffett Field, CA 94035 (United States)

    2016-02-20

    We model particle growth in a turbulent, viscously evolving protoplanetary nebula, incorporating sticking, bouncing, fragmentation, and mass transfer at high speeds. We treat small particles using a moments method and large particles using a traditional histogram binning, including a probability distribution function of collisional velocities. The fragmentation strength of the particles depends on their composition (icy aggregates are stronger than silicate aggregates). The particle opacity, which controls the nebula thermal structure, evolves as particles grow and mass redistributes. While growing, particles drift radially due to nebula headwind drag. Particles of different compositions evaporate at “evaporation fronts” (EFs) where the midplane temperature exceeds their respective evaporation temperatures. We track the vapor and solid phases of each component, accounting for advection and radial and vertical diffusion. We present characteristic results in evolutions lasting 2 × 10{sup 5} years. In general, (1) mass is transferred from the outer to the inner nebula in significant amounts, creating radial concentrations of solids at EFs; (2) particle sizes are limited by a combination of fragmentation, bouncing, and drift; (3) “lucky” large particles never represent a significant amount of mass; and (4) restricted radial zones just outside each EF become compositionally enriched in the associated volatiles. We point out implications for millimeter to submillimeter SEDs and the inference of nebula mass, radial banding, the role of opacity on new mechanisms for generating turbulence, the enrichment of meteorites in heavy oxygen isotopes, variable and nonsolar redox conditions, the primary accretion of silicate and icy planetesimals, and the makeup of Jupiter’s core.

  11. Wind Atlas for Egypt

    DEFF Research Database (Denmark)

    Mortensen, Niels Gylling; Said Said, Usama; Badger, Jake

    2006-01-01

    The results of a comprehensive, 8-year wind resource assessment programme in Egypt are presented. The objective has been to provide reliable and accurate wind atlas data sets for evaluating the potential wind power output from large electricityproducing wind turbine installations. The regional wind...... climates of Egypt have been determined by two independent methods: a traditional wind atlas based on observations from more than 30 stations all over Egypt, and a numerical wind atlas based on long-term reanalysis data and a mesoscale model (KAMM). The mean absolute error comparing the two methods is about...... 10% for two large-scale KAMM domains covering all of Egypt, and typically about 5% for several smaller-scale regional domains. The numerical wind atlas covers all of Egypt, whereas the meteorological stations are concentrated in six regions. The Wind Atlas for Egypt represents a significant step...

  12. Wind Atlas for Egypt

    DEFF Research Database (Denmark)

    The results of a comprehensive, 8-year wind resource assessment programme in Egypt are presented. The objective has been to provide reliable and accurate wind atlas data sets for evaluating the potential wind power output from large electricityproducing wind turbine installations. The regional wind...... climates of Egypt have been determined by two independent methods: a traditional wind atlas based on observations from more than 30 stations all over Egypt, and a numerical wind atlas based on long-term reanalysis data and a mesoscale model (KAMM). The mean absolute error comparing the two methods is about...... 10% for two large-scale KAMM domains covering all of Egypt, and typically about 5% for several smaller-scale regional domains. The numerical wind atlas covers all of Egypt, whereas the meteorological stations are concentrated in six regions. The Wind Atlas for Egypt represents a significant step...

  13. Extreme wind estimate for Hornsea wind farm

    DEFF Research Database (Denmark)

    Larsén, Xiaoli Guo

    The purpose of this study is to provide estimation of the 50-year winds of 10 min and 1-s gust value at hub height of 100 m, as well as the design parameter shear exponent for the Hornsea offshore wind farm. The turbulence intensity required for estimating the gust value is estimated using two ap....... The greatest sector-wise extreme winds are from west to northwest. Different data, different periods and different methods have provided a range of values of the 50-year wind and accordingly the gust values, as summarized in Table 15.......The purpose of this study is to provide estimation of the 50-year winds of 10 min and 1-s gust value at hub height of 100 m, as well as the design parameter shear exponent for the Hornsea offshore wind farm. The turbulence intensity required for estimating the gust value is estimated using two...... approaches. One is through the measurements from the wind Doppler lidar, WindCube, which implies serious uncertainty, and the other one is through similarity theory for the atmospheric surface layer where the hub height is likely to belong to during strong storms. The turbulence intensity for storm wind...

  14. Offshore wind energy developments

    DEFF Research Database (Denmark)

    Stolpe, Mathias; Buhl, Thomas; Sumer, B. Mutlu

    2014-01-01

    This chapter will give a brief overview of a few of the activities within offshore wind energy research, specifically 1) Support structure optimization, 2) Blade coatings for wind turbines; 3) Scour protection of foundations, 4) Offshore HVDC and 5) Offshore wind services.......This chapter will give a brief overview of a few of the activities within offshore wind energy research, specifically 1) Support structure optimization, 2) Blade coatings for wind turbines; 3) Scour protection of foundations, 4) Offshore HVDC and 5) Offshore wind services....

  15. Wind energy information guide

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-04-01

    This book is divided into nine chapters. Chapters 1--8 provide background and annotated references on wind energy research, development, and commercialization. Chapter 9 lists additional sources of printed information and relevant organizations. Four indices provide alphabetical access to authors, organizations, computer models and design tools, and subjects. A list of abbreviations and acronyms is also included. Chapter topics include: introduction; economics of using wind energy; wind energy resources; wind turbine design, development, and testing; applications; environmental issues of wind power; institutional issues; and wind energy systems development.

  16. Wind Power Career Chat

    Energy Technology Data Exchange (ETDEWEB)

    2011-01-01

    This document will teach students about careers in the wind energy industry. Wind energy, both land-based and offshore, is expected to provide thousands of new jobs in the next several decades. Wind energy companies are growing rapidly to meet America's demand for clean, renewable, and domestic energy. These companies need skilled professionals. Wind power careers will require educated people from a variety of areas. Trained and qualified workers manufacture, construct, operate, and manage wind energy facilities. The nation will also need skilled researchers, scientists, and engineers to plan and develop the next generation of wind energy technologies.

  17. Arctic wind energy

    International Nuclear Information System (INIS)

    Peltola, E.; Holttinen, H.; Marjaniemi, M.; Tammelin, B.

    1998-01-01

    Arctic wind energy research was aimed at adapting existing wind technologies to suit the arctic climatic conditions in Lapland. Project research work included meteorological measurements, instrument development, development of a blade heating system for wind turbines, load measurements and modelling of ice induced loads on wind turbines, together with the development of operation and maintenance practices in arctic conditions. As a result the basis now exists for technically feasible and economically viable wind energy production in Lapland. New and marketable products, such as blade heating systems for wind turbines and meteorological sensors for arctic conditions, with substantial export potential, have also been developed. (orig.)

  18. Arctic wind energy

    Energy Technology Data Exchange (ETDEWEB)

    Peltola, E. [Kemijoki Oy (Finland); Holttinen, H.; Marjaniemi, M. [VTT Energy, Espoo (Finland); Tammelin, B. [Finnish Meteorological Institute, Helsinki (Finland)

    1998-12-31

    Arctic wind energy research was aimed at adapting existing wind technologies to suit the arctic climatic conditions in Lapland. Project research work included meteorological measurements, instrument development, development of a blade heating system for wind turbines, load measurements and modelling of ice induced loads on wind turbines, together with the development of operation and maintenance practices in arctic conditions. As a result the basis now exists for technically feasible and economically viable wind energy production in Lapland. New and marketable products, such as blade heating systems for wind turbines and meteorological sensors for arctic conditions, with substantial export potential, have also been developed. (orig.)

  19. Wind power today

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-04-01

    This publication highlights initiatives of the US DOE`s Wind Energy Program. 1997 yearly activities are also very briefly summarized. The first article describes a 6-megawatt wind power plant installed in Vermont. Another article summarizes technical advances in wind turbine technology, and describes next-generation utility and small wind turbines in the planning stages. A village power project in Alaska using three 50-kilowatt turbines is described. Very brief summaries of the Federal Wind Energy Program and the National Wind Technology Center are also included in the publication.

  20. Evolution of wind towards wind turbine

    NARCIS (Netherlands)

    Giyanani, A.H.; Bierbooms, W.A.A.M.; Van Bussel, G.J.W.

    2015-01-01

    Remote sensing of the atmospheric variables with the use of LiDAR is a relatively new technology field for wind resource assessment in wind energy. The validation of LiDAR measurements and comparisons is of high importance for further applications of the data.

  1. Broadband x-ray imaging and spectroscopy of the crab nebula and pulsar with NuSTAR

    DEFF Research Database (Denmark)

    Madsen, Kristin K.; Reynolds, Stephen; Harrison, Fiona

    2015-01-01

    We present broadband (3-78 keV) NuSTAR X-ray imaging and spectroscopy of the Crab nebula and pulsar. We show that while the phase-averaged and spatially integrated nebula + pulsar spectrum is a power law in this energy band, spatially resolved spectroscopy of the nebula finds a break at ~9 ke...... and measure the size of the nebula as a function of energy in seven bands. These results find that the rate of shrinkage with energy of the torus size can be fitted by a power law with an index of γ = 0.094 ± 0.018, consistent with the predictions of Kennel and Coroniti. The change in size is more rapid...

  2. Wind Tunnel Measurements at LM Wind Power

    DEFF Research Database (Denmark)

    Bertagnolio, Franck

    2012-01-01

    The optimization of airfoil profiles specifically designed for wind turbine application was initiated in the late 80’s [67, 68, 30, 15]. The first attempts to reduce airfoil noise for wind turbines made use of airfoil trailing edge serration. Themodification of airfoil shapes targeted at noise...... reduction is more recent. An important effort was produced in this direction within the SIROCCO project. This latter work involved measurements on full size wind turbines and showed that trailing edge serration may proved a viable solution for mitigating wind turbine noise though it has not been implemented...... on commercial wind turbine yet. It should be mentioned here that the attenuation of turbulent inflow noise using wavy leading edge has recently been investigated [55], but this technique has still to be further validated for practical applications. In this paper, it is proposed to optimize an airfoil which...

  3. An evaluation of the WindEye wind lidar

    DEFF Research Database (Denmark)

    Dellwik, Ebba; Sjöholm, Mikael; Mann, Jakob

    Prevision of the wind field by remote sensing wind lidars has the potential to improve the performance of wind turbines. The functionality of a WindEye lidar developed by Windar Photonics A/S (Denmark) for the wind energy market was tested in a two months long field experiment. The WindEye sensor...... with a high accuracy during the whole campaign....

  4. Transformation of Graphitic and Amorphous Carbon Dust to Complex Organic Molecules in a Massive Carbon Cycle in Protostellar Nebulae

    Science.gov (United States)

    Nuth, Joseph A., III; Johnson, Natasha M.

    2012-01-01

    More than 95% of silicate minerals and other oxides found in meteorites were melted, or vaporized and recondensed in the Solar Nebula prior to their incorporation into meteorite parent bodies. Gravitational accretion energy and heating via radioactive decay further transformed oxide minerals accreted into planetesimals. In such an oxygen-rich environment the carbonaceous dust that fell into the nebula as an intimate mixture with oxide grains should have been almost completely converted to CO. While some pre-collapse, molecular-cloud carbonaceous dust does survive, much in the same manner as do pre-solar oxide grains, such materials constitute only a few percent of meteoritic carbon and are clearly distinguished by elevated D/H, N-15/N-16, C-13/C-12 ratios or noble gas patterns. Carbonaceous Dust in Meteorites: We argue that nearly all of the carbon in meteorites was synthesized in the Solar Nebula from CO and that this CO was generated by the reaction of carbonaceous dust with solid oxides, water or OH. It is probable that some fraction of carbonaceous dust that is newly synthesized in the Solar Nebula is also converted back into CO by additional thermal processing. CO processing might occur on grains in the outer nebula through irradiation of CO-containing ice coatings or in the inner nebula via Fischer-Tropsch type (FTT) reactions on grain surfaces. Large-scale transport of both gaseous reaction products and dust from the inner nebula out to regions where comets formed would spread newly formed carbonaceous materials throughout the solar nebula. Formation of Organic Carbon: Carbon dust in the ISM might easily be described as inorganic graphite or amorphous carbon, with relatively low structural abundances of H, N, O and S . Products of FTT reactions or organics produced via irradiation of icy grains contain abundant aromatic and aliphatic hydrocarbons. aldehydes, keytones, acids, amines and amides.. The net result of the massive nebular carbon cycle is to convert

  5. Wind electric power generation

    International Nuclear Information System (INIS)

    Koch, M.K.; Wind, L.; Canter, B.; Moeller, T.

    2001-01-01

    The monthly statistics of wind electric power generation in Denmark are compiled from information given by the owners of the private wind turbines. For each wind turbine the name of the site and of the type of turbine is given, and the power generation data are given for the month in question together with the total production in 1999 and 2000. Also the data of operation start are given. On the map of Denmark the sites of the wind turbines are marked. (CLS)

  6. The Irish Wind Atlas

    Energy Technology Data Exchange (ETDEWEB)

    Watson, R. [Univ. College Dublin, Dept. of Electronic and Electrical Engineering, Dublin (Ireland); Landberg, L. [Risoe National Lab., Meteorology and Wind Energy Dept., Roskilde (Denmark)

    1999-03-01

    The development work on the Irish Wind Atlas is nearing completion. The Irish Wind Atlas is an updated improved version of the Irish section of the European Wind Atlas. A map of the irish wind resource based on a WA{sup s}P analysis of the measured data and station description of 27 measuring stations is presented. The results of previously presented WA{sup s}P/KAMM runs show good agreement with these results. (au)

  7. Turbulence and wind turbines

    DEFF Research Database (Denmark)

    Brand, Arno J.; Peinke, Joachim; Mann, Jakob

    2011-01-01

    The nature of turbulent flow towards, near and behind a wind turbine, the effect of turbulence on the electricity production and the mechanical loading of individual and clustered wind turbines, and some future issues are discussed.......The nature of turbulent flow towards, near and behind a wind turbine, the effect of turbulence on the electricity production and the mechanical loading of individual and clustered wind turbines, and some future issues are discussed....

  8. X-ray observations of two lunar occultations of the Crab Nebula

    International Nuclear Information System (INIS)

    Ku, W.H.M.

    1976-01-01

    The x-ray source in the Crab nebula was observed during two lunar occultations. The combined results of the two scans of the nebula indicate that the spatial distribution of the X-ray flux from the nebula is centered on a region 10'' to 15'' NW of the pulsar. The half-intensity size, as measured by the FWHM of the best Gaussian representation of each strip flux distribution, is 46.7'' +- 1.5'' along p.a. = 300 0 , and is 42'' +- 2'' along p.a. = 255 0 . A closer examination of the size of the nebular emission region measured along p.a. = 300 0 reveals that the size decreases significantly with increasing photon energy. A power-law function with an exponent of γ = -0.148 +- 0.012 characterizes the optical (approximately 2 eV) to X-ray (approximately 50 keV) size measurements well, but it fails to predict the observed sizes of the radio nebula. Power-law spectral indices derived for different regions of the nebula support this finding. These results are interpreted in terms of existing theoretical models for the motion of electrons in the nebula. The data obtained on 28 December 1974 also provide strong evidence for the existence of a low-luminosity soft X-ray component more than 60'' W of the pulsar. Such emission was not detected in data from the first scan, but the upper limit derived from those data is consistent with the existence of a soft extended source. Several plausible explanations for the origin of this radiation are considered including the interesting possibility of thermal emission from a supernova remnant shell. Data obtained near the time of emergence of the pulsar for both observations are examined for possible flux contribution from a discrete steady radiation source. The null result allows an upper limit of 4.7 x 10 6 0 K (99 percent confidence) to be established on the surface temperature of the neutron star associated with NP 0532. This result is used to set limits on some physical parameters of a neutron star

  9. BLACK HOLE POWERED NEBULAE AND A CASE STUDY OF THE ULTRALUMINOUS X-RAY SOURCE IC 342 X-1

    International Nuclear Information System (INIS)

    Cseh, Dávid; Corbel, Stéphane; Kaaret, Philip; Lang, Cornelia; Grisé, Fabien; Paragi, Zsolt; Tzioumis, Anastasios; Tudose, Valeriu; Feng Hua

    2012-01-01

    We present new radio, optical, and X-ray observations of three ultraluminous X-ray sources (ULXs) that are associated with large-scale nebulae. We report the discovery of a radio nebula associated with the ULX IC 342 X-1 using the Very Large Array (VLA). Complementary VLA observations of the nebula around Holmberg II X-1, and high-frequency Australia Telescope Compact Array and Very Large Telescope spectroscopic observations of NGC 5408 X-1 are also presented. We study the morphology, ionization processes, and the energetics of the optical/radio nebulae of IC 342 X-1, Holmberg II X-1, and NGC 5408 X-1. The energetics of the optical nebula of IC 342 X-1 is discussed in the framework of standard bubble theory. The total energy content of the optical nebula is 6 × 10 52 erg. The minimum energy needed to supply the associated radio nebula is 9.2 × 10 50 erg. In addition, we detected an unresolved radio source at the location of IC 342 X-1 at the VLA scales. However, our Very Long Baseline Interferometry (VLBI) observations using the European VLBI Network likely rule out the presence of any compact radio source at milliarcsecond (mas) scales. Using a simultaneous Swift X-ray Telescope measurement, we estimate an upper limit on the mass of the black hole in IC 342 X-1 using the 'fundamental plane' of accreting black holes and obtain M BH ≤ (1.0 ± 0.3) × 10 3 M ☉ . Arguing that the nebula of IC 342 X-1 is possibly inflated by a jet, we estimate accretion rates and efficiencies for the jet of IC 342 X-1 and compare with sources like S26, SS433, and IC 10 X-1.

  10. Wind Power Now!

    Science.gov (United States)

    Inglis, David Rittenhouse

    1975-01-01

    The government promotes and heavily subsidizes research in nuclear power plants. Federal development of wind power is slow in comparison even though much research with large wind-electric machines has already been conducted. Unless wind power programs are accelerated it will not become a major energy alternative to nuclear power. (MR)

  11. Power from the Wind

    Science.gov (United States)

    Roman, Harry T.

    2004-01-01

    Wind energy is the fastest-growing renewable energy source in the world. Over the last 20 years, the wind industry has done a very good job of engineering machines, improving materials, and economies of production, and making this energy source a reality. Like all renewable energy forms, wind energy's successful application is site specific. Also,…

  12. Extreme winds in Denmark

    DEFF Research Database (Denmark)

    Kristensen, L.; Rathmann, O.; Hansen, S.O.

    1999-01-01

    Wind-speed data from four sites in Denmark have been analyzed in order to obtain estimates of the basic wind velocity, defined as the 50-year wind speed (ten minute averages) under standard conditions, i.e. 10 meter over a homogeneous terrain with the roughness length 0.05 m. The sites are Skjern...

  13. Extreme winds in Denmark

    DEFF Research Database (Denmark)

    Kristensen, L.; Rathmann, Ole; Hansen, S.O.

    1999-01-01

    Wind-speed data from four sites in Denmark have been analyzed in order to obtain estimates of the basic wind velocity which is defined as the 50-year wind speed under standard conditions, i.e. ten-minute averages at the height 10 m over a uniform terrainwith the roughness length 0.05 m. The sites...

  14. Modelling Wind for Wind Farm Layout Optimization Using Joint Distribution of Wind Speed and Wind Direction

    DEFF Research Database (Denmark)

    Feng, Ju; Shen, Wen Zhong

    2015-01-01

    Reliable wind modelling is of crucial importance for wind farm development. The common practice of using sector-wise Weibull distributions has been found inappropriate for wind farm layout optimization. In this study, we propose a simple and easily implementable method to construct joint distribu......Reliable wind modelling is of crucial importance for wind farm development. The common practice of using sector-wise Weibull distributions has been found inappropriate for wind farm layout optimization. In this study, we propose a simple and easily implementable method to construct joint...... quite well in terms of the coefficient of determination R-2. Then, the best of these joint distributions is used in the layout optimization of the Horns Rev 1 wind farm and the choice of bin sizes for wind speed and wind direction is also investigated. It is found that the choice of bin size for wind...... direction is especially critical for layout optimization and the recommended choice of bin sizes for wind speed and wind direction is finally presented....

  15. Wind and Yaw correlation

    DEFF Research Database (Denmark)

    Federici, Paolo; Kock, Carsten Weber

    The report describes measurements carried out on a given turbine and period. The measurements are carried out in accordance to Ref. [1]. A comparison between wind speed and wind direction on the met mast and nacelle wind speed and yaw direction is made in accordance to Ref. [2] and the results...... are presented on graphs and in a table....

  16. Wind power soars

    Energy Technology Data Exchange (ETDEWEB)

    Flavin, C. [Worldwatch Inst., Washington, DC (United States)

    1996-12-31

    Opinions on the world market for wind power are presented in this paper. Some data for global wind power generating capacity are provided. European and other markets are discussed individually. Estimated potential for wind power is given for a number of countries. 3 figs.

  17. Wind power outlook 2006

    Energy Technology Data Exchange (ETDEWEB)

    anon.

    2006-04-15

    This annual brochure provides the American Wind Energy Association's up-to-date assessment of the wind industry in the United States. This 2006 general assessment shows positive signs of growth, use and acceptance of wind energy as a vital component of the U.S. energy mix.

  18. Wind and Yaw correlation

    DEFF Research Database (Denmark)

    Federici, Paolo; Kock, Carsten Weber

    The report describes measurements carried out on a given turbine and period. The measurements are carried out in accordance to Ref. [1]. A comparison between wind speed and wind direction on the met mast and nacelle wind speed and yaw direction is made in accordance to Ref. [2] and the results...

  19. Wind: French revolutions

    International Nuclear Information System (INIS)

    Jones, C.

    2006-01-01

    Despite having the second best wind resources in Europe after the UK, the wind industry in France lags behind its European counterparts with just 6 W of installed wind capacity per person. The electricity market in France is dominated by the state-owned Electricite de France (EdF) and its nuclear power stations. However, smaller renewable generators are now in theory allowed access to the market and France has transposed the EU renewables directive into national law. The French governement has set a target of generating 10,000 MW of renewable capacity by 2010. The announcement of an increased feed-in tariff and the introduction of 'development zones' (ZDEs) which could allow fast-tracking of planning for wind projects are also expected to boost wind projects. But grid access and adminstrative burdens remain major barriers. In addition, French politicians and local authorities remain committed to nuclear, though encouraged by the European Commission, wind is beginning to gain acceptance; some 325 wind farms (representing 1557 MW of capacity) were approved between February 2004 and January 2005. France is now regarded by the international wind energy sector as a target market. One of France's leading independent wind developers and its only listed wind company, Theolia, is expected to be one of the major beneficiaries of the acceleration of activity in France, though other companies are keen to maximise the opportunities for wind. France currently has only one indigenous manufacturer of wind turbines, but foreign suppliers are winning orders

  20. Denmark Wind Energy Programme

    DEFF Research Database (Denmark)

    Shen, Wen Zhong

    2015-01-01

    In this chapter, a summary of some ongoing wind energy projects in Denmark is given. The research topics comprise computational model development, wind turbine (WT) design, low-noise airfoil and blade design, control device development, wake modelling and wind farm layout optimization....

  1. Wind energy in Mediterranean Basin

    International Nuclear Information System (INIS)

    Gaudiosi, G.

    1991-01-01

    In its examination of wind energy potential in the Mediterranean Basin, this paper provides brief notes on the Basin's geography; indicates power production and demand; describes the area's wind characteristics and wind monitoring activities; illustrates wind velocity distributions; estimates local wind power production potential; reviews the Basin's wind energy marketing situation and each bordering country's wind energy programs; surveys installed wind energy farms; and assesses national research and commercialization efforts

  2. Offshore wind resource estimation for wind energy

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Badger, Merete; Mouche, A.

    2010-01-01

    Satellite remote sensing from active and passive microwave instruments is used to estimate the offshore wind resource in the Northern European Seas in the EU-Norsewind project. The satellite data include 8 years of Envisat ASAR, 10 years of QuikSCAT, and 23 years of SSM/I. The satellite observati......Satellite remote sensing from active and passive microwave instruments is used to estimate the offshore wind resource in the Northern European Seas in the EU-Norsewind project. The satellite data include 8 years of Envisat ASAR, 10 years of QuikSCAT, and 23 years of SSM/I. The satellite...... observations are compared to selected offshore meteorological masts in the Baltic Sea and North Sea. The overall aim of the Norsewind project is a state-of-the-art wind atlas at 100 m height. The satellite winds are all valid at 10 m above sea level. Extrapolation to higher heights is a challenge. Mesoscale...... modeling of the winds at hub height will be compared to data from wind lidars observing at 100 m above sea level. Plans are also to compare mesoscale model results and satellite-based estimates of the offshore wind resource....

  3. Potentials of wind power

    International Nuclear Information System (INIS)

    Bezrukikh, P.P.; Bezrukikh, P.P.

    2000-01-01

    The ecological advantages of the wind power facilities (WPF) are considered. The possibilities of small WPF, generating the capacity from 40 W up to 10 kW, are discussed. The basic technical data on the national and foreign small WPF are presented. The combined wind power systems are considered. Special attention is paid to the most perspective wind-diesel systems, which provide for all possible versions of the electro-power supply. Useful recommendations and information on the wind power engineering are given for those, who decided to build up a wind facility [ru

  4. Visualization of wind farms

    International Nuclear Information System (INIS)

    Pahlke, T.

    1994-01-01

    With the increasing number of wind energy installations the visual impact of single wind turbines or wind parks is a growing problem for landscape preservation, leading to resistance of local authorities and nearby residents against wind energy projects. To increase acceptance and to form a basis for planning considerations, it is necessary to develop instruments for the visualization of planned wind parks, showing their integration in the landscape. Photorealistic montages and computer animation including video sequences may be helpful in 'getting the picture'. (orig.)

  5. Mapping Wind Energy Controversies

    DEFF Research Database (Denmark)

    Munk, Anders Kristian

    As part the Wind2050 project funded by the Danish Council for Strategic Research we have mapped controversies on wind energy as they unfold online. Specifically we have collected two purpose built datasets, a web corpus containing information from 758 wind energy websites in 6 different countries......, and a smaller social media corpus containing information from 14 Danish wind energy pages on Facebook. These datasets have been analyzed to answer questions like: How do wind proponents and opponents organize online? Who are the central actors? And what are their matters of concern? The purpose of this report...

  6. Wind energy applications guide

    Energy Technology Data Exchange (ETDEWEB)

    anon.

    2001-01-01

    The brochure is an introduction to various wind power applications for locations with underdeveloped transmission systems, from remote water pumping to village electrification. It includes an introductory section on wind energy, including wind power basics and system components and then provides examples of applications, including water pumping, stand-alone systems for home and business, systems for community centers, schools, and health clinics, and examples in the industrial area. There is also a page of contacts, plus two specific example applications for a wind-diesel system for a remote station in Antarctica and one on wind-diesel village electrification in Russia.

  7. Wind energy systems

    International Nuclear Information System (INIS)

    Richardson, R.D.; McNerney, G.M.

    1993-01-01

    Wind energy has matured to a level of development where it is ready to become a generally accepted utility generation technology. A brief discussion of this development is presented, and the operating and design principles are discussed. Alternative designs for wind turbines and the tradeoffs that must be considered are briefly compared. Development of a wind energy system and the impacts on the utility network including frequency stability, voltage stability, and power quality are discussed. The assessment of wind power station economics and the key economic factors that determine the economic viability of a wind power plant are presented

  8. Abundances in Planetary Nebulae: an Autopsy of Low and Intermediate Mass Stars

    Science.gov (United States)

    Buell, James Francis

    In this work we report on the results of synthetic thermally pulsing asymptotic giant branch models (TP-AGB) and compare the results to the abundance ratios in a sample of planetary nebulae. We use updated the input parameters for mass-loss, the stellar luminosity, and dredge-up. We calculated models with masses between 0.8 solar masses and 8 solar masses. We also calculated models with (Fe/H) between -2.5 and 0.3. The effect of the first, second, and third dredge-up as well as hot-bottom burning are reported on. The analysis of a sample of Galactic bulge and disk planetary nebulae is also reported on.

  9. Aerodynamic properties of fractal grains: implications for the primordial solar nebula

    International Nuclear Information System (INIS)

    Meakin, P.; Donn, B.

    1988-01-01

    Under conditions in the primordial solar nebula and dense interstellar clouds, small grains have low relative velocities. This is the condition for efficient sticking and formation of fractal aggregates. A calculation of the ratio of cross section, sigma, to number of primary particles, N, for fractal clusters yielded 1n sigma/N = 0.2635 + 0.5189N sup (-0.1748). This ratio decreases slowly with N and approaches a constant for large N. Under the usual assumption of collisions producing spherical compact, uniform density aggregates, sigma/N varies as N sup -1/3 and decreases rapidly. Fractal grains are therefore much more closely coupled to the gas than are compact aggregates. This has a significant effect on the aerodynamic behavior of aggregates and consequently on their evolution and that of the nebula

  10. Imaging Obsearvations of Jupiter's Sodium Magneto-Nebula During the Ulysses Encounter.

    Science.gov (United States)

    Mendillo, M; Flynn, B; Baumgardner, J

    1992-09-11

    Jupiter's great sodium nebula represents the largest visible structure traversed by the Ulysses spacecraft during its encounter with the planet in February 1992. Ground-based imaging conducted on Mount Haleakala, Hawaii, revealed a nebula that extended to at least +/-300 Jovian radii (spanning approximately 50 million kilometers); it was somewhat smaller in scale and less bright than previously observed. Analysis of observations and results of modeling studies suggest reduced volcanic activity on the moon lo, higher ion temperatures in the plasma torus, lower total plasma content in the torus, and fast neutral atomic clouds along the Ulysses inbound trajectory through the magnetosphere. Far fewer neutrals were encountered by the spacecraft along its postencounter, out-of-ecliptic trajectory.

  11. Helix Nebula and CERN: A Symbiotic approach to exploiting commercial clouds

    CERN Document Server

    Barreiro Megino, Fernando Harald; Kucharczyk, Katarzyna; Medrano Llamas, Ramón; van der Ster, Daniel

    2014-01-01

    The recent paradigm shift toward cloud computing in IT, and general interest in "Big Data" in particular, have demonstrated that the computing requirements of HEP are no longer globally unique. Indeed, the CERN IT department and LHC experiments have already made significant R&D investments in delivering and exploiting cloud computing resources. While a number of technical evaluations of interesting commercial offerings from global IT enterprises have been performed by various physics labs, further technical, security, sociological, and legal issues need to be address before their large-scale adoption by the research community can be envisaged. Helix Nebula - the Science Cloud is an initiative that explores these questions by joining the forces of three European research institutes (CERN, ESA and EMBL) with leading European commercial IT enterprises. The goals of Helix Nebula are to establish a cloud platform federating multiple commercial cloud providers, along with new business models, which can sustain ...

  12. Exploring Infiniband Hardware Virtualization in OpenNebula towards Efficient High-Performance Computing

    Energy Technology Data Exchange (ETDEWEB)

    Pais Pitta de Lacerda Ruivo, Tiago [IIT, Chicago; Bernabeu Altayo, Gerard [Fermilab; Garzoglio, Gabriele [Fermilab; Timm, Steven [Fermilab; Kim, Hyun-Woo [Fermilab; Noh, Seo-Young [KISTI, Daejeon; Raicu, Ioan [IIT, Chicago

    2014-11-11

    has been widely accepted that software virtualization has a big negative impact on high-performance computing (HPC) application performance. This work explores the potential use of Infiniband hardware virtualization in an OpenNebula cloud towards the efficient support of MPI-based workloads. We have implemented, deployed, and tested an Infiniband network on the FermiCloud private Infrastructure-as-a-Service (IaaS) cloud. To avoid software virtualization towards minimizing the virtualization overhead, we employed a technique called Single Root Input/Output Virtualization (SRIOV). Our solution spanned modifications to the Linux’s Hypervisor as well as the OpenNebula manager. We evaluated the performance of the hardware virtualization on up to 56 virtual machines connected by up to 8 DDR Infiniband network links, with micro-benchmarks (latency and bandwidth) as well as w a MPI-intensive application (the HPL Linpack benchmark).

  13. Helix Nebula and CERN: A Symbiotic approach to exploiting commercial clouds

    CERN Multimedia

    Barreiro Megino, Fernando Harald; Kucharczyk, Katarzyna; Medrano Llamas, Ramón; van der Ster, Daniel

    2013-01-01

    The recent paradigm shift toward cloud computing in IT, and general interest in "Big Data" in particular, have demonstrated that the computing requirements of HEP are no longer globally unique. Indeed, the CERN IT department and LHC experiments have already made significant R&D; investments in delivering and exploiting cloud computing resources. While a number of technical evaluations of interesting commercial offerings from global IT enterprises have been performed by various physics labs, further technical, security, sociological, and legal issues need to be address before their large-scale adoption by the research community can be envisaged. Helix Nebula - the Science Cloud is an initiative that explores these questions by joining the forces of three European research institutes (CERN, ESA and EMBL) with leading European commercial IT enterprises. The goals of Helix Nebula are to establish a cloud platform federating multiple commercial cloud providers, along with new business models, which can sustain...

  14. Dark-Matter Content of Early-Type Galaxies with Planetary Nebulae

    Science.gov (United States)

    Napolitano, N. R.; Romanowsky, A. J.; Coccato, L.; Capaccioli, M.; Douglas, N. G.; Noordermeer, E.; Merrifield, M. R.; Kuijken, K.; Arnaboldi, M.; Gerhard, O.; Freeman, K. C.; De Lorenzi, F.; Das, P.

    2008-05-01

    We examine the dark matter properties of nearby early-type galaxies using planetary nebulae (PNe) as mass probes. We have designed a specialised instrument, the Planetary Nebula Spectrograph (PN.S) operating at the William Herschel telescope, with the purpose of measuring PN velocities with best efficiency. The primary scientific objective of this custom-built instrument is the study of the PN kinematics in 12 ordinary round galaxies. Preliminary results showing a dearth of dark matter in ordinary galaxies (Romanowsky et al. 2003) are now confirmed by the first complete PN.S datasets. On the other hand early-type galaxies with a “regular” dark matter content are starting to be observed among the brighter PN.S target sample, thus confirming a correlation between the global dark-to-luminous mass virial ratio (fDM = MDM M*) and the galaxy luminosity and mass.

  15. The interstellar medium, expanding nebulae and triggered star formation theory and simulations

    CERN Document Server

    Bisbas, Thomas G

    2016-01-01

    This brief brings together the theoretical aspects of star formation and ionized regions with the most up-to-date simulations and observations. Beginning with the basic theory of star formation, the physics of expanding HII regions is reviewed in detail and a discussion on how a massive star can give birth to tens or hundreds of other stars follows. The theoretical description of star formation is shown in simplified and state-of-the-art numerical simulations, describing in a more clear way how feedback from massive stars can trigger star and planet formation. This is also combined with spectacular images of nebulae taken by talented amateur astronomers. The latter is very likely to stimulate the reader to observe the structure of nebulae from a different point of view, and better understand the associated star formation therein.

  16. A D'-type symbiotic binary in the planetary nebula SMP LMC 88

    Science.gov (United States)

    Iłkiewicz, Krystian; Mikołajewska, Joanna; Miszalski, Brent; Kozłowski, Szymon; Udalski, Andrzej

    2018-05-01

    SMP LMC 88 is one of the planetary nebulae (PNe) in the Large Magellanic Cloud. We identify in its spectrum Raman scattered O VI lines at 6825 and 7083 Å. This unambiguously classifies the central object of the nebula as a symbiotic star (SySt). We identified the cold component to be a K-type giant, making this the first D'-type (yellow) SySt discovered outside the Galaxy. The photometric variability in SMP LMC 88 resembles the orbital variability of Galactic D'-type SySt with its low amplitude and sinusoidal light-curve shape. The SySt classification is also supported by the He I diagnostic diagram.

  17. Galaxy evolution. Quasar quartet embedded in giant nebula reveals rare massive structure in distant universe.

    Science.gov (United States)

    Hennawi, Joseph F; Prochaska, J Xavier; Cantalupo, Sebastiano; Arrigoni-Battaia, Fabrizio

    2015-05-15

    All galaxies once passed through a hyperluminous quasar phase powered by accretion onto a supermassive black hole. But because these episodes are brief, quasars are rare objects typically separated by cosmological distances. In a survey for Lyman-α emission at redshift z ≈ 2, we discovered a physical association of four quasars embedded in a giant nebula. Located within a substantial overdensity of galaxies, this system is probably the progenitor of a massive galaxy cluster. The chance probability of finding a quadruple quasar is estimated to be ∼10(-7), implying a physical connection between Lyman-α nebulae and the locations of rare protoclusters. Our findings imply that the most massive structures in the distant universe have a tremendous supply (≃10(11) solar masses) of cool dense (volume density ≃ 1 cm(-3)) gas, which is in conflict with current cosmological simulations. Copyright © 2015, American Association for the Advancement of Science.

  18. Physical conditions in the partially ionized zone of the Orion nebula

    Science.gov (United States)

    Esteban, César; Peimbert, Manuel; Torres-Peimbert, Silvia

    1999-02-01

    We report the first reliable measurement of the nebular [O i] lambda 5577 emission line in the Orion nebula. Diagnostic diagrams based on the [O i] lambda lambda 5577, 6300, and [N i] lambda lambda 3467, 5198, 5200 emission lines indicate that the bulk of the nebular emission in the partially ionized zone of the Orion nebula is produced in regions with low to moderate electron densities (2x10(3) - 4x10(4) cm(-3) ) and with electron temperatures in the 8900 to 12400 K range. This result implies that models based on emission originating in high-density partially ionized zones are not applicable to explain the observed [Fe II] spectrum in the optical region. Based on data obtained at the Observatorio Astronómico Nacional, SPM, B.C., México

  19. Bursts of the Crab Nebula gamma-ray emission at high and ultra-high energies

    Directory of Open Access Journals (Sweden)

    Lidvansky A.S.

    2017-01-01

    Full Text Available Characteristics of the flares of gamma rays detected from the Crab Nebula by the AGILE and Fermi-LAT satellite instruments are compared with those of a gamma ray burst recorded by several air shower arrays on February 23, 1989 and with one recent observation made by the ARGO-YBJ array. It is demonstrated that though pulsar-periodicity and energy spectra of emissions at 100 MeV (satellite gamma ray telescopes and 100 TeV (EAS arrays are different, their time structures seem to be similar. Moreover, maybe the difference between “flares” and “waves” recently found in the Crab Nebula emission by the AGILE team also exists at ultra-high energies.

  20. Fault Tolerant Wind Farm Control

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Stoustrup, Jakob

    2013-01-01

    In the recent years the wind turbine industry has focused on optimizing the cost of energy. One of the important factors in this is to increase reliability of the wind turbines. Advanced fault detection, isolation and accommodation are important tools in this process. Clearly most faults are dealt...... with best at a wind turbine control level. However, some faults are better dealt with at the wind farm control level, if the wind turbine is located in a wind farm. In this paper a benchmark model for fault detection and isolation, and fault tolerant control of wind turbines implemented at the wind farm...... control level is presented. The benchmark model includes a small wind farm of nine wind turbines, based on simple models of the wind turbines as well as the wind and interactions between wind turbines in the wind farm. The model includes wind and power references scenarios as well as three relevant fault...