WorldWideScience

Sample records for wind generation technology

  1. ARE660 Wind Generator: Low Wind Speed Technology for Small Turbine Development

    Energy Technology Data Exchange (ETDEWEB)

    Robert W. Preus; DOE Project Officer - Keith Bennett

    2008-04-23

    This project is for the design of a wind turbine that can generate most or all of the net energy required for homes and small businesses in moderately windy areas. The purpose is to expand the current market for residential wind generators by providing cost effective power in a lower wind regime than current technology has made available, as well as reduce noise and improve reliability and safety. Robert W. Preus’ experience designing and/or maintaining residential wind generators of many configurations helped identify the need for an improved experience of safety for the consumer. Current small wind products have unreliable or no method of stopping the wind generator in fault or high wind conditions. Consumers and their neighbors do not want to hear their wind generators. In addition, with current technology, only sites with unusually high wind speeds provide payback times that are acceptable for the on-grid user. Abundant Renewable Energy’s (ARE) basic original concept for the ARE660 was a combination of a stall controlled variable speed small wind generator and automatic fail safe furling for shutdown. The stall control for a small wind generator is not novel, but has not been developed for a variable speed application with a permanent magnet alternator (PMA). The fail safe furling approach for shutdown has not been used to our knowledge.

  2. Wind power. [electricity generation

    Science.gov (United States)

    Savino, J. M.

    1975-01-01

    A historical background on windmill use, the nature of wind, wind conversion system technology and requirements, the economics of wind power and comparisons with alternative systems, data needs, technology development needs, and an implementation plan for wind energy are presented. Considerable progress took place during the 1950's. Most of the modern windmills feature a wind turbine electricity generator located directly at the top of their rotor towers.

  3. Techno-economic evaluation of hybrid energy storage technologies for a solar–wind generation system

    International Nuclear Information System (INIS)

    Ren, L.; Tang, Y.; Shi, J.; Dou, J.; Zhou, S.; Jin, T.

    2013-01-01

    Highlights: ► The techno-economic feasibility of four ESSs is studied. ► The hybrid ESS applied on a renewable energy generation system is feasible. ► From the technical and economic viewpoint, case 3 is the optimal hybrid ESS. -- Abstract: Huazhong University of Science and Technology is planning to establish a hybrid solar–wind generation dynamic simulation laboratory. Energy storage technologies will be vital to this system for load leveling, power quality control and stable output. In this paper, the technical feasibility of energy storage technologies for renewable intermittent sources like wind and solar generation is analyzed. Furthermore, the different combination modes of energy storage technologies are proposed. The involved energy storage technologies include superconducting magnetic energy storage systems (SMESs), flywheels (FWs), electrochemical super-capacitors (SCs) and redox flow batteries (RFBs). Based on that, the economic analysis of hybrid energy storage technologies is conducted

  4. Wind Turbine Technologies

    DEFF Research Database (Denmark)

    Hansen, Anca Daniela

    2017-01-01

    The wind turbine technology is a very complex technology involving multidisciplinary and broad technical disciplines such as aerodynamics, mechanics, structure dynamics, meteorology as well as electrical engineering addressing the generation, transmission, and integration of wind turbines...... into the power system. Wind turbine technology has matured over the years and become the most promising and reliable renewable energy technology today. It has moved very fast, since the early 1980s, from wind turbines of a few kilowatts to today’s multimegawatt-sized wind turbines [13]. Besides their size......, the design of wind turbines has changed from being convention driven to being optimized driven within the operating regime and market environment. Wind turbine designs have progressed from fixed speed, passive controlled and with drive trains with gearboxes, to become variable speed, active controlled...

  5. Advances in wind energy conversion technology

    CERN Document Server

    Sathyajith, Mathew

    2011-01-01

    The technology of generating energy from wind has significantly changed during the past five years. The book brings together all the latest aspects of wind energy conversion technology - from wind resource analysis to grid integration of generated electricity.

  6. Superconducting Wind Turbine Generators

    OpenAIRE

    Yunying Pan; Danhzen Gu

    2016-01-01

    Wind energy is well known as a renewable energy because its clean and less polluted characteristic, which is the foundation of development modern wind electricity. To find more efficient wind turbine is the focus of scientists around the world. Compared from conventional wind turbines, superconducting wind turbine generators have advantages at zero resistance, smaller size and lighter weight. Superconducting wind turbine will inevitably become the main trends in this area. This paper intends ...

  7. Next Generation Wind Turbine

    Energy Technology Data Exchange (ETDEWEB)

    Cheraghi, S. Hossein [Western New England Univ., Springfield, MA (United States); Madden, Frank [FloDesign Wind Turbine Corp., Waltham, MA (United States)

    2012-09-01

    The goal of this collaborative effort between Western New England University's College of Engineering and FloDesign Wind Turbine (FDWT) Corporation to wok on a novel areodynamic concept that could potentially lead to the next generation of wind turbines. Analytical studies and early scale model tests of FDWT's Mixer/Ejector Wind Turbine (MEWT) concept, which exploits jet-age advanced fluid dynamics, indicate that the concept has the potential to significantly reduce the cost of electricity over conventional Horizontal Axis Wind Turbines while reducing land usage. This project involved the design, fabrication, and wind tunnel testing of components of MEWT to provide the research and engineering data necessary to validate the design iterations and optimize system performance. Based on these tests, a scale model prototype called Briza was designed, fabricated, installed and tested on a portable tower to investigate and improve the design system in real world conditions. The results of these scale prototype efforts were very promising and have contributed significantly to FDWT's ongoing development of a product scale wind turbine for deployment in multiple locations around the U.S. This research was mutually beneficial to Western New England University, FDWT, and the DOE by utilizing over 30 student interns and a number of faculty in all efforts. It brought real-world wind turbine experience into the classroom to further enhance the Green Engineering Program at WNEU. It also provided on-the-job training to many students, improving their future employment opportunities, while also providing valuable information to further advance FDWT's mixer-ejector wind turbine technology, creating opportunities for future project innovation and job creation.

  8. Wind electric power generation

    International Nuclear Information System (INIS)

    Koch, M.K.; Wind, L.; Canter, B.; Moeller, T.

    2001-01-01

    The monthly statistics of wind electric power generation in Denmark are compiled from information given by the owners of the private wind turbines. For each wind turbine the name of the site and of the type of turbine is given, and the power generation data are given for the month in question together with the total production in 1999 and 2000. Also the data of operation start are given. On the map of Denmark the sites of the wind turbines are marked. (CLS)

  9. Wind Technologies & Evolving Opportunities (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Robichaud, R.

    2014-07-01

    This presentation covers opportunities for wind technology; wind energy market trends; an overview of the National Wind Technology Center near Boulder, Colorado; wind energy price and cost trends; wind turbine technology improvements; and wind resource characterization improvements.

  10. Technology of VAr Compensators for Induction Generator Applications in Wind Energy Conversion Systems

    OpenAIRE

    A. F. Zobaa; K. A. Nigim; R. C. Bansal

    2006-01-01

    Many of today utility interconnected wind farms use induction generator (IG) to convert the captured wind mechanical power into electricity. Induction generator has some advantages over the synchronous generator (SG). The main advantages are its robustness and its capability to be synchronized directly to the grid. The main disadvantage, however, is its dependency on the grid for supplying its own reactive power ‘VAr’. Whether fixed or adjustable VAr systems are connected across its terminal,...

  11. Superconducting wind turbine generators

    DEFF Research Database (Denmark)

    Abrahamsen, Asger Bech; Mijatovic, Nenad; Seiler, Eugen

    2010-01-01

    We have examined the potential of 10 MW superconducting direct drive generators to enter the European offshore wind power market and estimated that the production of about 1200 superconducting turbines until 2030 would correspond to 10% of the EU offshore market. The expected properties of future...... offshore turbines of 8 and 10 MW have been determined from an up-scaling of an existing 5 MW turbine and the necessary properties of the superconducting drive train are discussed. We have found that the absence of the gear box is the main benefit and the reduced weight and size is secondary. However......, the main challenge of the superconducting direct drive technology is to prove that the reliability is superior to the alternative drive trains based on gearboxes or permanent magnets. A strategy of successive testing of superconducting direct drive trains in real wind turbines of 10 kW, 100 kW, 1 MW and 10...

  12. Technology of VAr Compensators for Induction Generator Applications in Wind Energy Conversion Systems

    Directory of Open Access Journals (Sweden)

    A. F. Zobaa

    2006-09-01

    Full Text Available Many of today utility interconnected wind farms use induction generator (IG to convert the captured wind mechanical power into electricity. Induction generator has some advantages over the synchronous generator (SG. The main advantages are its robustness and its capability to be synchronized directly to the grid. The main disadvantage, however, is its dependency on the grid for supplying its own reactive power ‘VAr’. Whether fixed or adjustable VAr systems are connected across its terminal, IG must operate at unity power factor at the rated loading while the wind power varies. With supervised control and appropriate coordination, VAr can be used to the benefits of both the wind farm developer and the hosting utility. The incorporation of today adjustable reactive power compensators such as the Static VAr Compensation (SVC and Static Synchronous Compensator (STATCOM with IG are vital ingredient toward a successful penetration of wind energy in today distribution grid to ensure voltage stability during the steady state and transient periods.

  13. Wind Generation Feasibility Study in Bethel, AK

    Energy Technology Data Exchange (ETDEWEB)

    Tom Humphrey, YKHC; Lance Kincaid, EMCOR Energy & Technologies

    2004-07-31

    This report studies the wind resources in the Yukon-Kuskokwim Health Corporation (YKHC) region, located in southwestern Alaska, and the applicability of wind generation technologies to YKHC facilities.

  14. Gearless wind power generator

    Energy Technology Data Exchange (ETDEWEB)

    Soederlund, L.; Ridanpaeae, P.; Vihriaelae, H.; Peraelae, R. [Tampere Univ. of Technology (Finland). Lab. of Electricity and Magnetism

    1998-12-31

    During the wind power generator project a design algorithm for a gearless permanent magnet generator with an axially orientated magnetic flux was developed and a 10 kW model machine was constructed. Utilising the test results a variable wind speed system of 100 kW was designed that incorporates a permanent magnet generator, a frequency converter and a fuzzy controller. This system produces about 5-15% more energy than existing types and stresses to the blades are minimised. The type of generator designed in the project represents in general a gearless solution for slow-speed electrical drives. (orig.)

  15. Superconducting wind turbine generators

    DEFF Research Database (Denmark)

    Mijatovic, Nenad

    in this thesis is a part of a larger endeavor, the Superwind project that focused on identifying the potentials that HTS machines could offer to the wind industry and addressing some of the challenges in the process. In order to identify these challenges, I have designed and constructed an HTS machine......A HTS machine could be a way to address some of the technical barriers offshore wind energy is about to face. Due to the superior power density of HTS machines, this technology could become a milestone on which many, including the wind industry, will rely on in the future. The work presented...... experimental setup which is made to serve as precursor, leading towards an optimized HTS machine concept proposed for wind turbines. In part, the work presented in this thesis will focus on the description of the experimental setup and reasoning behind the choices made during the design. The setup comprises...

  16. Emerging wind energy technologies

    DEFF Research Database (Denmark)

    Rasmussen, Flemming; Grivel, Jean-Claude; Faber, Michael Havbro

    2014-01-01

    This chapter will discuss emerging technologies that are expected to continue the development of the wind sector to embrace new markets and to become even more competitive.......This chapter will discuss emerging technologies that are expected to continue the development of the wind sector to embrace new markets and to become even more competitive....

  17. Wind Energy Conversion Systems Technology and Trends

    CERN Document Server

    2012-01-01

    Wind Energy Conversion System covers the technological progress of wind energy conversion systems, along with potential future trends. It includes recently developed wind energy conversion systems such as multi-converter operation of variable-speed wind generators, lightning protection schemes, voltage flicker mitigation and prediction schemes for advanced control of wind generators. Modeling and control strategies of variable speed wind generators are discussed, together with the frequency converter topologies suitable for grid integration. Wind Energy Conversion System also describes offshore farm technologies including multi-terminal topology and space-based wind observation schemes, as well as both AC and DC based wind farm topologies. The stability and reliability of wind farms are discussed, and grid integration issues are examined in the context of the most recent industry guidelines. Wind power smoothing, one of the big challenges for transmission system operators, is a particular focus. Fault ride th...

  18. Superconducting Wind Turbine Generators

    DEFF Research Database (Denmark)

    Mijatovic, Nenad

    in this thesis is a part of a larger endeavor, the Superwind project that focused on identifying the potentials that HTS machines could offer to the wind industry and addressing some of the challenges in the process. In order to identify these challenges, I have design and constructed a HTS machine experimental...... still be optimized towards more competitive alternative to conventional machines. Additionally, by constructing the HTS machine setup we went through most of the issues related to the HTS machine design which we managed to address in rather simple manner using everyday materials and therefore proving......A HTS machine could be a way to address some of the technical barriers offshore wind energy is about to face. Due to the superior power density of HTS machines, this technology could become a milestone on which many, including the wind industry, will rely in the future. The work presented...

  19. Gearless wind power generator

    Energy Technology Data Exchange (ETDEWEB)

    Soederlund, L.; Ridanpaeae, P.; Vihriaelae, H.; Peraelae, R. [Tampere Univ. of Technology (Finland). Lab. of Electricity and Magnetism

    1998-10-01

    In the project a 100 kW axial flux permanent magnet wind power generator has been designed. The toroidal stator with air gap winding is placed between two rotating discs with permanent magnets. The magnet material is NdBFe due to its excellent magnetic properties compared to other materials. This type of topology enables a very large number of poles compared to conventional machine of the same size. A large number of poles is required to achieve a low rotational speed and consequently a direct driven system. The stator winding is formed by rectangular coils. The end winding is very short leading to small resistive losses. On the other hand, the absence of iron teeth causes eddy current losses in the conductors. These can be restricted to an acceptable level by keeping the wire diameter and flux density small. This means that the number of phases should be large. Several independent three phase systems may be used. The toothless stator also means that the iron losses are small and there exists no cogging torque

  20. Wind Generators and Market Power

    DEFF Research Database (Denmark)

    Misir, Nihat

    Electricity production from wind generators holds significant importance in European Union’s 20% renewable energy target by 2020. In this paper, I show that ownership of wind generators affects market outcomes by using both a Cournot oligopoly model and a real options model. In the Cournot...... oligopoly model, ownership of the wind generators by owners of fossil-fueled (peakload) generators decreases total peakload production and increases the market price. These effects increase with total wind generation and aggregate wind generator ownership. In the real options model, start up and shut down...

  1. Wind Generators and Market Power

    DEFF Research Database (Denmark)

    Misir, Nihat

    Electricity production from wind generators holds significant importance in European Union’s 20% renewable energy target by 2020. In this paper, I show that ownership of wind generators affects market outcomes by using both a Cournot oligopoly model and a real options model. In the Cournot...... oligopoly model, ownership of the wind generators by owners of fossil-fueled (peakload) generators decreases total peakload production and increases the market price. These effects increase with total wind generation and aggregate wind generator ownership. In the real options model, start up and shut down...... price thresholds are significantly higher when the monopolist at the peakload level owns both types of generators. Furthermore, when producing electricity with the peakload generator, the monopolist can avoid facing prices below marginal cost by owning a certain share of the wind generators....

  2. Direct Drive Technology for Wind Turbine Applications

    OpenAIRE

    Azar, Ziad

    2014-01-01

    Siemens Wind Power have developed direct-drive (DD) wind turbine technology over the past decade to meet the future demand for cost effective and reliable onshore and offshore wind power. The increasing power requirements from the industry resulting in higher torque requirements in the drive train, has made it necessary to reduce the complexity and improve reliability of wind turbines by going to DD generator technology.

  3. Study of Green Shipping Technologies - Harnessing Wind, Waves and Solar Power in New Generation Marine Propulsion Systems

    Directory of Open Access Journals (Sweden)

    Grzegorz Rutkowski

    2016-12-01

    Full Text Available The purpose and scope of this paper is to describe the complexity of the new generation marine propulsion technologies implemented in the shipping industry to promote green ships concept and change the view of sea transportation to a more ecological and environment-friendly. Harnessing wind, waves and solar power in shipping industry can help the ship’s owners reduce the operational costs. Reducing fuel consumption results in producing less emissions and provides a clean source of renewable energy. Green shipping technologies can also effectively increase the operating range of vessels and help drive sea transportation towards a greener future and contribute to the global reduction of harmful gas emissions from the world's shipping fleets.

  4. Technology Roadmaps: Wind Energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    Wind energy is perhaps the most advanced of the 'new' renewable energy technologies, but there is still much work to be done. This roadmap identifies the key tasks that must be undertaken in order to achieve a vision of over 2 000 GW of wind energy capacity by 2050. Governments, industry, research institutions and the wider energy sector will need to work together to achieve this goal. Best technology and policy practice must be identified and exchanged with emerging economy partners, to enable the most cost-effective and beneficial development.

  5. Data book on new energy technology in FY 1997. Wind power generation; Shin energy gijutsu kaihatsu kankei data shu sakusei chosa. Furyoku hatsuden

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    It is an urgent necessity for Japan to promote the technological development and accelerate the introduction and diffusion of new energy. In order to diffuse and enlighten the introduction of new energy technology efficiently, it is necessary to compile various information regarding new energy in a comprehensive and systematic way, and formulate a database. Aiming at the systematic formulation of data on new energy, this survey focuses on the field of wind power generation system (WPS) and provides a collection of the latest published data on WPS, particularly regarding the worldwide installed wind power capacity, support plan and government policies, current situations of WPS market, and major technical characteristics of typical wind turbines. This report consists of the significance of wind energy, world market of wind turbines, government policies, international wind energy development, subsidies for wind energy, procedures of wind turbine system installation, governmental measures for wind energy development, subsidiary companies and organizations, basis of wind energy, and Japan`s wind energy development in 1997

  6. Power generation technologies

    CERN Document Server

    Breeze, Paul

    2014-01-01

    The new edition of Power Generation Technologies is a concise and readable guide that provides an introduction to the full spectrum of currently available power generation options, from traditional fossil fuels and the better established alternatives such as wind and solar power, to emerging renewables such as biomass and geothermal energy. Technology solutions such as combined heat and power and distributed generation are also explored. However, this book is more than just an account of the technologies - for each method the author explores the economic and environmental costs and risk factor

  7. Prediction of velocity of the wind generation in Kobe City College of Technology; Kobe Kosen ni okeru furyoku hatsuden no yosoku

    Energy Technology Data Exchange (ETDEWEB)

    Akamatsu, K.; Kanemura, M.; Amako, K.

    1997-11-25

    Wind conditions, such as average wind velocity for 10 minutes, maximum instantaneous wind velocity and wind directions, are measured by the anemometer and anemoscope installed 3m above the roof of the Kobe City College of Technology`s Information Processing Center building, to collect the data necessary to validate possibility of wind power generation, if the wind system is installed in the college site. Monthly availability of power is estimated from the output power characteristics curve for a generator having a rated capacity of 200W and wind velocity data collected for 9 months. It will generate power of only 144kWh, even when operated to give the rated output, or approximately 8.5kWh at the highest in a month, because of availability of wind power limited to around 30% of the total as estimated from the relative frequency distribution. It is therefore desirable to install a number of units having a rated capacity of 200W or else a smaller number of larger units. Assuming that days that give the highest output for 24 hours last 1 month, a power of 54.3kWh will be generated. It is estimated, based on these results, that a hybrid unit, in which a wind power generator installed at a high place is combined with a solar unit, can provide power required for nighttime lighting, if a wind power unit having a rated capacity of 2kW is field-controlled under an optimum condition. 13 figs., 3 tabs.

  8. Generators of Modern Wind Turbines

    DEFF Research Database (Denmark)

    Chen, Zhe

    2008-01-01

    In this paper, various types of wind generator configurations, including power electronic grid interfaces, drive trains, are described The performance in power systems is briefed. Then the optimization of generator system is presented. Some investigation results are presented and discussed....

  9. Wind turbine technology principles and design

    CERN Document Server

    Adaramola, Muyiwa

    2014-01-01

    IntroductionPart I: AerodynamicsWind Turbine Blade Design; Peter J. Schubel and Richard J. CrossleyA Shrouded Wind Turbine Generating High Output Power with Wind-Lens Technology; Yuji Ohya and Takashi KarasudaniEcomoulding of Composite Wind Turbine Blades Using Green Manufacturing RTM Process; Brahim AttafAerodynamic Shape Optimization of a Vertical-Axis Wind Turbine Using Differential Evolution; Travis J. Carrigan, Brian H. Dennis, Zhen X. Han, and Bo P. WangPart II: Generators and Gear Systems

  10. Magnet Free Generators - 3rd Generation Wind Turbine Generators

    DEFF Research Database (Denmark)

    Jensen, Bogi Bech; Mijatovic, Nenad; Henriksen, Matthew Lee

    2013-01-01

    This paper presents an introduction to superconducting wind turbine generators, which are often referred to as 3rd generation wind turbine generators. Advantages and challenges of superconducting generators are presented with particular focus on possible weight and efficiency improvements. A comp....... A comparison of the rare earth usage in different topologies of permanent magnet generators and superconducting generators is also presented....

  11. 2015 Wind Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Wiser, Ryan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Electricity Markets and Policy Group; Bolinger, Mark [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Electricity Markets and Policy Group; Barbose, Galen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Darghouth, Naim [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hoen, Ben [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Mills, Andrew [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Rand, Joe [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Millstein, Dev [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Porter, Kevin [Exeter Associates, Columbia, MD (United States); Widiss, Rebecca [Exeter Associates, Columbia, MD (United States); Oteri, Frank [National Renewable Energy Lab. (NREL), Golden, CO (United States); Tegen, Suzanne [National Renewable Energy Lab. (NREL), Golden, CO (United States); Tian, Tian [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-08-03

    Annual wind power capacity additions in the United States surged in 2015 and are projected to continue at a rapid clip in the coming five years. Recent and projected near-term growth is supported by the industry’s primary federal incentive—the production tax credit (PTC)—having been extended for several years (though with a phase-down schedule, described further on pages 68-69), as well as a myriad of state-level policies. Wind additions are also being driven by improvements in the cost and performance of wind power technologies, yielding low power sales prices for utility, corporate, and other purchasers. At the same time, the prospects for growth beyond the current PTC cycle remain uncertain: growth could be blunted by declining federal tax support, expectations for low natural gas prices, and modest electricity demand growth. This annual report—now in its tenth year—provides a detailed overview of developments and trends in the U.S. wind power market, with a particular focus on 2015. The report begins with an overview of key installation-related trends: trends in U.S. wind power capacity growth; how that growth compares to other countries and generation sources; the amount and percentage of wind energy in individual states; the status of offshore wind power development; and the quantity of proposed wind power capacity in various interconnection queues in the United States. Next, the report covers an array of wind power industry trends: developments in turbine manufacturer market share; manufacturing and supply-chain developments; wind turbine and component imports into and exports from the United States; project financing developments; and trends among wind power project owners and power purchasers. The report then turns to a summary of wind turbine technology trends: turbine size, hub height, rotor diameter, specific power, and IEC Class. After that, the report discusses wind power performance, cost, and pricing trends. In so doing, it describes

  12. 2016 Wind Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Wiser, Ryan H. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bolinger, Mark [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-08-10

    The U.S. Department of Energy (DOE)’s Wind Technologies Market Report provides an annual overview of trends in the U.S. wind power market. You can find the report, a presentation, and a data file on the Files tab, below. Additionally, several data visualizations are available in the Data Visualizations tab. Highlights of this year’s report include: -Wind power additions continued at a rapid clip in 2016: $13 billion was invested in new wind power plants in 2016. In 2016, wind energy contributed 5.6% of the nation’s electricity supply, more than 10% of total electricity generation in fourteen states, and 29% to 37% in three of those states—Iowa, South Dakota, and Kansas. -Bigger turbines are enhancing wind project performance: Increased blade lengths, in particular, have dramatically increased wind project capacity factors, one measure of project performance. For example, the average 2016 capacity factor among projects built in 2014 and 2015 was 42.6%, compared to an average of 32.1% among projects built from 2004 to 2011 and 25.4% among projects built from 1998 to 2001. -Low wind turbine pricing continues to push down installed project costs: Wind turbine prices have fallen from their highs in 2008, to $800–$1,100/kW. Overall, the average installed cost of wind projects in 2016 was $1,590/kW, down $780/kW from the peak in 2009 and 2010. -Wind energy prices remain low: After topping out at nearly 7¢/kWh for power purchase agreements (PPAs) executed in 2009, the national average price of wind PPAs has dropped to around 2¢/kWh—though this nationwide average is dominated by projects that hail from the lowest-priced Interior region of the country (such as Texas, Iowa, Oklahoma). These prices, which are possible in part due to federal tax support, compare favorably to the projected future fuel costs of gas-fired generation. -The supply chain continued to adjust to swings in domestic demand for wind equipment: Wind sector employment reached a new high of

  13. Final Technical Report: The Incubation of Next-Generation Radar Technologies to Lower the Cost of Wind Energy

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, John [Texas Tech Univ., Lubbock, TX (United States); Hirth, Brian [Texas Tech Univ., Lubbock, TX (United States); Guynes, Jerry [Texas Tech Univ., Lubbock, TX (United States)

    2017-03-15

    The National Wind Institute (NWI) at Texas Tech University (TTU) has had an impressive and well documented 46-year history of wind related research activities (http://www.depts.ttu.edu/nwi/). In 2011 with funding from the United States Department of Energy (DOE), an NWI team applied radar technologies and techniques to document the complex flows occurring across a wind plant. The resulting efforts yielded measurements that exceeded the capabilities of commercial lidar technologies with respect to maximum range, range resolution and scan speed. The NWI team was also the first to apply dual-Doppler synthesis and objective analysis techniques to resolve the full horizontal wind field (i.e. not just the line-of-sight wind speeds) to successfully define turbine inflow and wake flows across large segments of wind plants. While these successes advanced wind energy interests, the existing research radar platforms were designed to serve a diversity of meteorological applications, not specifically wind energy. Because of this broader focus and the design choices made during their development, the existing radars experienced technical limitations that inhibited their commercial viability and wide spread adoption. This DOE project enabled the development of a new radar prototype specifically designed for the purpose of documenting wind farm complex flows. Relative to other “off the shelf” radar technologies, the specialized transmitter and receiver chains were specifically designed to enhance data availability in non-precipitating atmospheres. The new radar prototype was integrated at TTU using components from various suppliers across the world, and installed at the Reese Technology Center in May 2016. Following installation, functionality and performance testing were completed, and subsequent comparative analysis indicated that the new prototype greatly enhances data availability by a factor of 3.5-50 in almost all atmospheric conditions. The new prototype also provided

  14. Wind power production: from the characterisation of the wind resource to wind turbine technologies

    International Nuclear Information System (INIS)

    Beslin, Guy; Multon, Bernard

    2016-01-01

    Illustrated by graphs and tables, this article first describes the various factors and means related to the assessment of wind resource in the World, in Europe, and the factors which characterize a local wind resource. In this last respect, the authors indicate how local topography is taken into account to calculate wind speed, how time variations are taken into account (at the yearly, seasonal or daily level), the different methods used to model a local wind resource, how to assess the power recoverable by a wind turbine with horizontal axis (notion of Betz limit). In the second part, the authors present the different wind turbines, their benefits and drawbacks: vertical axis, horizontal axis (examples of a Danish-type wind turbine, of wind turbines designed for extreme conditions). Then, they address the technology of big wind turbines: evolution of technology and of commercial offer, aerodynamic characteristics of wind turbine and benefit of a varying speed (technological solutions, importance of the electric generator). They describe how to choose a wind turbine, how product lines are organised, how the power curve and energy capacity are determined. The issue of integration of wind energy into the power system is then addressed. The next part addressed the economy of wind energy production (annualized production cost, order of magnitude of wind electric power production cost). Future trends are discussed and offshore wind energy production is briefly addressed

  15. Wind Technologies and Evolving Opportunities (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Robi Robichaud

    2014-03-01

    This presentation provides an overview of wind energy research being conducted at the National Wind Technology Center, market and technology trends in wind energy, and opportunities for wind technology.

  16. Wind technology development: Large and small turbines

    Science.gov (United States)

    Thresher, R. W.; Hock, S. M.; Loose, R. R.; Goldman, P.

    1994-12-01

    Wind technology has developed rapidly over the last decade with the design and development of advanced systems with improved performance, higher reliability, and lower costs. During the past several years, substantial gains have been made in wind turbine designs, lowering costs to an average of $0.05/kWh while further technology development is expected to allow the cost to drop below $0.04/kWh by 2000. As a result, wind is expected to be one of the least expensive forms of new electric generation in the next century. This paper will present the technology developments for both utility-scale wind turbines and remote, small-village wind turbines that are currently available or in development. Technology innovations are being adapted for remote and stand-alone power applications with smaller wind turbines. Hybrid power systems using smaller 1 to 50 (kW) wind turbines are being developed for non-grid-connected electrical generation applications. These village power systems typically use wind energy, photovoltaics, battery storage, and conventional diesel generators to power remote communities. Smaller turbines are being explored for application as distributed generation sources on utility grids to supply power during periods of peak demand, avoiding costly upgrades in distribution equipment. New turbine designs now account for turbulence-induced loads, unsteady aerodynamic stall effects, and complex fatigue loads, making use of new technology developments such as advanced airfoils. The new airfoils increase the energy capture, improve the operating efficiency, and reduce the sensitivity of the airfoils to operation roughness. Electronic controls are allowing variable rotor speed operation; while aerodynamic control devices, such as ailerons and flaps, are used to modulate power or stop the rotor in high-speed conditions. These technology trends and future turbine configurations are being sponsored and explored by the U.S. Department of Energy's Wind Energy Program.

  17. Small Wind Turbine Technology Assessment

    International Nuclear Information System (INIS)

    Avia Aranda, F.; Cruz Cruz, I.

    1999-01-01

    The result of the study carried out under the scope of the ATYCA project Test Plant of Wind Systems for Isolated Applications, about the state of art of the small wind turbine technology (wind turbines with swept area smaller than 40 m 2 ) is presented. The study analyzes the collected information on 60 models of wind turbines from 23 manufacturers in the worldwide market. Data from Chinese manufacturers, that have a large participation in the total number of small wind turbines in operation, are not included, due to the unavailability of the technical information. (Author) 15 refs

  18. Wind Turbine Generator System Acoustic Noise Test Report for the Gaia Wind 11-kW Wind Turbine

    Energy Technology Data Exchange (ETDEWEB)

    Huskey, A.

    2011-11-01

    This report details the acoustic noise test conducted on the Gaia-Wind 11-kW wind turbine at the National Wind Technology Center. The test turbine is a two- bladed, downwind wind turbine with a rated power of 11 kW. The test turbine was tested in accordance with the International Electrotechnical Commission standard, IEC 61400-11 Ed 2.1 2006-11 Wind Turbine Generator Systems -- Part 11 Acoustic Noise Measurement Techniques.

  19. 2013 Wind Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Wiser, R.; Bolinger, M.; Barbose, G.; Darghouth, N.; Hoen, B.; Mills, A.; Weaver, S.; Porter, K.; Buckley, M.; Oteri, F.; Tegen, S.

    2014-08-01

    This annual report provides a detailed overview of developments and trends in the U.S. wind power market, with a particular focus on 2013. This 2013 edition updates data presented in previous editions while highlighting key trends and important new developments. The report includes an overview of key installation-related trends; trends in wind power capacity growth; how that growth compares to other countries and generation sources; the amount and percentage of wind energy in individual states; the status of offshore wind power development and the quantity of proposed wind power capacity in various interconnection queues in the United States.

  20. Design Optimization and Evaluation of Different Wind Generator Systems

    DEFF Research Database (Denmark)

    Chen, Zhe; Li, Hui

    2008-01-01

    With rapid development of wind power technologies and significant growth of wind power capacity installed worldwide, various wind generator systems have been developed and built. The objective of this paper is to evaluate various wind generator systems by optimization designs and comparisons...... and power electronic converter are presented; design optimizations of the investigated wind generator systems are developed with an improved genetic algorithm. Next, the optimization designs are implemented of various wind generator systems at 0.75-MW, 1.5-MW, 3.0-MW, 5.0-MWand 10MW, respectively....... In this paper, seven variable speed constant frequency (VSCF) wind generator systems are investigated, namely permanent magnet synchronous generators with the direct-driven (PMSG_DD), the single-stage gearbox (PMSG_1G) and three-stage gearbox (PMSG_3G) concepts, doubly fed induction generators with the three...

  1. 2016 Wind Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Wiser, Ryan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bolinger, Mark [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-08-08

    Wind power capacity in the United States experienced strong growth in 2016. Recent and projected near-term growth is supported by the industry’s primary federal incentive—the production tax credit (PTC)—as well as a myriad of state-level policies. Wind additions have also been driven by improvements in the cost and performance of wind power technologies, yielding low power sales prices for utility, corporate, and other purchasers.

  2. Technology Roadmap: Wind Energy. 2013 edition

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-07-01

    The IEA Wind Power Technology Roadmap 2013 Edition recognises the very significant progress made since the first edition was published in 2009. The technology continues to improve rapidly, and costs of generation from land-based wind installations continue to fall. Wind power is now being deployed in countries with good resources without any dedicated financial incentives. The 2013 Edition targets an increased share (15% to 18%) of global electricity to be provided by wind power in 2050, compared to 12% in the original roadmap of 2009. However, increasing levels of low-cost wind still require predictable, supportive regulatory environments and appropriate market designs. The challenges of integrating higher levels of variable wind power into the grid need to be addressed. For offshore wind, much remains to be done to develop appropriate large-scale systems and to reduce costs. The 2013 Wind Power Roadmap also provides updated analysis on the barriers that exist for the technology and suggests ways to address them, including legal and regulatory recommendations.

  3. Investigation of surge protective devices operation of a wind generator

    International Nuclear Information System (INIS)

    Dimitrov, D.; Vasileva, M.

    2008-01-01

    The interest to the investments in a wind energetics increases in the last years. The wind energetics is the fastest developing direction in the energetics in global scale. The wind energy is more attractive because its prices are lower in comparison of the other technologies for generating energy. The right choice of the surge protective devices has the important meaning on building and exploitation of the wind generators. The aim of this paper is investigation of the surge protective devices operation when they are installation to a wind generator. (authors)

  4. 2014 Wind Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Wiser, R; Bolinger, M.

    2015-08-01

    According to the 2014 Wind Technologies Market Report, total installed wind power capacity in the United States grew at a rate of eight percent in 2014, bringing the United States total installed capacity to nearly 66 gigawatts (GW), which ranks second in the world and meets 4.9 percent of U.S. end-use electricity demand in an average year. In total, 4,854 MW of new wind energy capacity were installed in the United States in 2014. The 2014 Wind Technologies Market Report also finds that wind energy prices are at an all-time low and are competitive with wholesale power prices and traditional power sources across many areas of the United States. Additionally, a new trend identified by the 2014 Wind Technologies Market Report shows utility-scale turbines with larger rotors designed for lower wind speeds have been increasingly deployed across the country in 2014. The findings also suggest that the success of the U.S. wind industry has had a ripple effect on the American economy, supporting 73,000 jobs related to development, siting, manufacturing, transportation, and other industries.

  5. 2015 Wind Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Wiser, Ryan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bolinger, Mark [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Barbose, Galen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Darghouth, Naim [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hoen, Ben [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Mills, Andrew [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Rand, Joe [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Millstein, Dev [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Porter, Kevin [Exeter Associates, Columbia, MD (United States); Widiss, Rebecca [Exeter Associates, Columbia, MD (United States); Oteri, Frank [National Renewable Energy Lab. (NREL), Golden, CO (United States); Tegen, Suzanne [National Renewable Energy Lab. (NREL), Golden, CO (United States); Tian, Tian [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-08-01

    This annual report--now in its tenth year--provides a detailed overview of developments and trends in the U.S. wind power market, with a particular focus on 2015. The report begins with an overview of key installation trends and then covers an array of industry and technology trends. The report also discusses project performance, wind turbine prices, project costs, operations and maintenance expenses, and prices paid for wind power in the United States. The report examines policy and market factors impacting the domestic wind power market and provides a preview of possible near-term market developments, expenses, and prices paid for wind power in the United States. The report examines policy and market factors impacting the domestic wind power market and provides a preview of possible near-term market developments.

  6. Wind energy technology developments

    DEFF Research Database (Denmark)

    Madsen, Peter Hauge; Hansen, Morten Hartvig; Pedersen, Niels Leergaard

    2014-01-01

    turbine blades and towers are very large series-produced components, which costs and quality are strongly dependent on the manufacturing methods. The industrial wind energy sector is well developed in Denmark, and the competitive advantage of the Danish sector and the potential for job creation...

  7. 2008 WIND TECHNOLOGIES MARKET REPORT

    Energy Technology Data Exchange (ETDEWEB)

    Wiser, Ryan H.; Bolinger, Mark; Barbose, G.; Mills, A.; Rosa, A.; Porter, K.; Fink, S.; Tegen, S.; Musial, W.; Oteri, F.; Heimiller, D.; Rberts, B.; Belyeu, K.; Stimmel, R.

    2009-07-15

    The U.S. wind industry experienced a banner year in 2008, again surpassing even optimistic growth projections from years past. At the same time, the last year has been one of upheaval, with the global financial crisis impacting near-term growth prospects for the wind industry, and with federal policy changes enacted to push the industry towards continued aggressive expansion. This rapid pace of development has made it difficult to keep up with trends in the marketplace. Yet, the need for timely, objective information on the industry and its progress has never been greater. This report - the third of an ongoing annual series - attempts to meet this need by providing a detailed overview of developments and trends in the U.S. wind power market, with a particular focus on 2008. As with previous editions, this report begins with an overview of key wind power installation-related trends: trends in wind capacity growth in the U.S., how that growth compares to other countries and generation sources, the amount and percentage of wind in individual states and serving specific utilities, and the quantity of proposed wind capacity in various interconnection queues in the United States. Next, the report covers an array of wind industry trends, including developments in turbine manufacturer market share, manufacturing and supply-chain investments, wind turbine and wind project size, project financing developments, and trends among wind power developers, project owners, and power purchasers. The report then turns to a discussion of wind project price, cost, and performance trends. In so doing, it reviews the price of wind power in the United States, and how those prices compare to the cost of fossil-fueled generation, as represented by wholesale power prices. It also describes trends in installed wind project costs, wind turbine transaction prices, project performance, and operations and maintenance expenses. Next, the report examines other policy and market factors impacting the

  8. 2014 Wind Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Wiser, Ryan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bolinger, Mark [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Barbose, Galen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Daghouth, Naim [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hoen, Ben [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Mills, Andrew [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hamachi LaCommare, Kristina [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Millstein, Dev [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hansen, Dana [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Porter, Kevin [Exeter Associates, Columbia, MD (United States); Widiss, Rebecca [Exeter Associates, Columbia, MD (United States); Buckley, Michael [Exeter Associates, Columbia, MD (United States); Oteri, Frank [National Renewable Energy Lab. (NREL), Golden, CO (United States); Smith, Aaron [National Renewable Energy Lab. (NREL), Golden, CO (United States); Tegen, Suzanne [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-08-06

    Wind power capacity additions in the United States rebounded in 2014, and continued growth through 2016 is anticipated. Recent and projected near-term growth is supported by the industry’s primary federal incentive—the production tax credit (PTC)—which is available for projects that began construction by the end of 2014. Wind additions are also being driven by recent improvements in the cost and performance of wind power technologies, which have resulted in the lowest power sales prices ever seen in the U.S. wind sector. Growing corporate demand for wind energy and state-level policies play important roles as well. Expectations for continued technological advancements and cost reductions may further boost future growth. At the same time, the prospects for growth beyond 2016 are uncertain. The PTC has expired, and its renewal remains in question. Continued low natural gas prices, modest electricity demand growth, and limited near-term demand from state renewables portfolio standards (RPS) have also put a damper on growth expectations. These trends, in combination with increasingly global supply chains, have limited the growth of domestic manufacturing of wind equipment. What they mean for wind power additions through the end of the decade and beyond will be dictated in part by future natural gas prices, fossil plant retirements, and policy decisions.

  9. DESIGN ASPECTS OF A RESIDENTIAL WIND GENERATOR

    Directory of Open Access Journals (Sweden)

    C. BRAD

    2017-03-01

    Full Text Available In this paper we present some aspects about the design of a small permanent magnet wind generator with axial magnetic flux often used in residential wind turbine. There are summarised the main steps of the magnetic and electric calculations with applications to a particular case: 0.6 kVA wind generator. The axial flux wind generator design starts with the characteristics of the rare earths permanent magnet existing on the market.

  10. Research and technological development in the subject of the wind power generation; Investigacion y desarrollo tecnologico en el tema de la generacion eoloelectrica

    Energy Technology Data Exchange (ETDEWEB)

    Borja Diaz, Marco A.; Gonzalez Galarza, Raul [Instituto de Investigaciones Electricas, Temixco, Morelos (Mexico)

    2000-07-01

    The wind power technology has advanced in an important way during the last decade. In the industrialized countries the annual sales of aero generators reach surprising numbers and increase annually at a rate of 30%. But, is this the direct product of the maturity of this technology?, is at the moment the wind power technology economically competitive with the conventional options? Do necessities exist of Research and Technological Development in the subject? This article presents some facts and indicators that will help the reader to deduce his own conclusions. [Spanish] La tecnologia eoloelectrica ha avanzado de manera importante durante la ultima decada. En los paises industrializados las ventas anuales de aerogeneradores alcanzan cifras sorprendentes y se incrementan al 30% anual. Pero, es esto el producto directo de la madurez de esta tecnologia?, actualmente la tecnologia eoloelectrica es economicamente competitiva con las opciones convencionales?, existen necesidades de Investigacion y Desarrollo Tecnologico en el tema? Este articulo presenta algunos hechos e indicadores que ayudaran al lector a deducir sus propias conclusiones.

  11. 2011 Wind Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Wiser, Ryan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bolinger, Mark [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Barbose, Galen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Darghouth, Naim [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hoen, Ben [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Mills, Andrew [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Porter, Kevin [Exeter Associates, Columbia, MD (United States); Buckley, Michael [Exeter Associates, Columbia, MD (United States); Fink, Sari [Exeter Associates, Columbia, MD (United States); Oteri, Frank [National Renewable Energy Lab. (NREL), Golden, CO (United States); Tegen, Suzanne [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2012-08-01

    The U.S. wind power industry is facing uncertain times. With 2011 capacity additions having risen from 2010 levels and with a further sizable increase expected in 2012, there are – on the surface – grounds for optimism. Key factors driving growth in 2011 included continued state and federal incentives for wind energy, recent improvements in the cost and performance of wind power technology, and the need to meet an end-of-year construction start deadline in order to qualify for the Section 1603 Treasury grant program. At the same time, the currently-slated expiration of key federal tax incentives for wind energy at the end of 2012 – in concert with continued low natural gas prices and modest electricity demand growth – threatens to dramatically slow new builds in 2013.

  12. Technology solutions for wind integration in ERCOT

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2015-01-03

    Texas has for more than a decade led all other states in the U.S. with the most wind generation capacity on the U.S. electric grid. The State recognized the value that wind energy could provide, and committed early on to build out the transmission system necessary to move power from the windy regions in West Texas to the major population centers across the state. It also signaled support for renewables on the grid by adopting an aggressive renewable portfolio standard (RPS). The joining of these conditions with favorable Federal tax credits has driven the rapid growth in Texas wind capacity since its small beginning in 2000. In addition to the major transmission grid upgrades, there have been a number of technology and policy improvements that have kept the grid reliable while adding more and more intermittent wind generation. Technology advancements such as better wind forecasting and deployment of a nodal market system have improved the grid efficiency of wind. Successful large scale wind integration into the electric grid, however, continues to pose challenges. The continuing rapid growth in wind energy calls for a number of technology additions that will be needed to reliably accommodate an expected 65% increase in future wind resources. The Center for the Commercialization of Electric Technologies (CCET) recognized this technology challenge in 2009 when it submitted an application for funding of a regional demonstration project under the Recovery Act program administered by the U.S. Department of Energy1. Under that program the administration announced the largest energy grid modernization investment in U.S. history, making available some $3.4 billion in grants to fund development of a broad range of technologies for a more efficient and reliable electric system, including the growth of renewable energy sources like wind and solar. At that time, Texas was (and still is) the nation’s leader in the integration of wind into the grid, and was investing heavily

  13. Technology solutions for wind integration in Ercot

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2015-02-23

    Texas has for more than a decade led all other states in the U.S. with the most wind generation capacity on the U.S. electric grid. The State recognized the value that wind energy could provide, and committed early on to build out the transmission system necessary to move power from the windy regions in West Texas to the major population centers across the state. It also signaled support for renewables on the grid by adopting an aggressive renewable portfolio standard (RPS). The joining of these conditions with favorable Federal tax credits has driven the rapid growth in Texas wind capacity since its small beginning in 2000. In addition to the major transmission grid upgrades, there have been a number of technology and policy improvements that have kept the grid reliable while adding more and more intermittent wind generation. Technology advancements such as better wind forecasting and deployment of a nodal market system have improved the grid efficiency of wind. Successful large scale wind integration into the electric grid, however, continues to pose challenges. The continuing rapid growth in wind energy calls for a number of technology additions that will be needed to reliably accommodate an expected 65% increase in future wind resources. The Center for the Commercialization of Electric Technologies (CCET) recognized this technology challenge in 2009 when it submitted an application for funding of a regional demonstration project under the Recovery Act program administered by the U.S. Department of Energy1. Under that program the administration announced the largest energy grid modernization investment in U.S. history, making available some $3.4 billion in grants to fund development of a broad range of technologies for a more efficient and reliable electric system, including the growth of renewable energy sources like wind and solar. At that time, Texas was (and still is) the nation’s leader in the integration of wind into the grid, and was investing heavily

  14. Large superconducting wind turbine generators

    DEFF Research Database (Denmark)

    Abrahamsen, Asger Bech; Magnusson, Niklas; Jensen, Bogi Bech

    2012-01-01

    and the rotation speed is lowered in order to limit the tip speed of the blades. The ability of superconducting materials to carry high current densities with very small losses might facilitate a new class of generators operating with an air gap flux density considerably higher than conventional generators...... and thereby having a smaller size and weight [1, 2]. A 5 MW superconducting wind turbine generator forms the basics for the feasibility considerations, particularly for the YBCO and MgB2 superconductors entering the commercial market. Initial results indicate that a 5 MW generator with an active weight of 34...... tons, diameter of 4.2 m and length of 1.2 m can be realized using superconductors carrying 300 A/mm2 in a magnetic field of 4 T and an air gap flux density of the order 2.5 T. The results are compared to the performance of available superconductors, as well as the near future forecasted performance....

  15. Wind Technology Advancements and Impacts on Western Wind Resources (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Robichaud, R.

    2014-09-01

    Robi Robichaud made this presentation at the Bureau of Land Management West-wide Wind Opportunities and Constraints Mapping (WWOCM) Project public meeting in Denver, Colorado in September 2014. This presentation outlines recent wind technology advancements, evolving turbine technologies, and industry challenges. The presentation includes maps of mean wind speeds at 50-m, 80-m, and 100-m hub heights on BLM lands. Robichaud also presented on the difference in mean wind speeds from 80m to 100m in Wyoming.

  16. Power Electronics for the Next Generation Wind Turbine System

    DEFF Research Database (Denmark)

    Ma, Ke

    The wind power generation has been steadily growing both for the total installed capacity and for the individual turbine size. Due to much more significant impacts to the power grid, the power electronics, which can change the behavior of wind turbines from an unregulated power source to an active...... generation unit, are becoming crucial in the wind turbine system. The objective of this project is to study the power electronics technology used for the next generation wind turbines. Some emerging challenges as well as potentials like the cost of energy and reliability are going to be addressed. First...... several potential converter topologies and power semiconductor devices for the future wind power application are presented in respect to the advantages/drawbacks. And then the criteria for evaluating the wind power converter are generally discussed, where the importance of thermal stress in the power...

  17. Wind power generation and dispatch in competitive power markets

    Science.gov (United States)

    Abreu, Lisias

    Wind energy is currently the fastest growing type of renewable energy. The main motivation is led by more strict emission constraints and higher fuel prices. In addition, recent developments in wind turbine technology and financial incentives have made wind energy technically and economically viable almost anywhere. In restructured power systems, reliable and economical operation of power systems are the two main objectives for the ISO. The ability to control the output of wind turbines is limited and the capacity of a wind farm changes according to wind speeds. Since this type of generation has no production costs, all production is taken by the system. Although, insufficient operational planning of power systems considering wind generation could result in higher system operation costs and off-peak transmission congestions. In addition, a GENCO can participate in short-term power markets in restructured power systems. The goal of a GENCO is to sell energy in such a way that would maximize its profitability. However, due to market price fluctuations and wind forecasting errors, it is essential for the wind GENCO to keep its financial risk at an acceptable level when constituting market bidding strategies. This dissertation discusses assumptions, functions, and methodologies that optimize short-term operations of power systems considering wind energy, and that optimize bidding strategies for wind producers in short-term markets. This dissertation also discusses uncertainties associated with electricity market environment and wind power forecasting that can expose market participants to a significant risk level when managing the tradeoff between profitability and risk.

  18. Wind turbine generator trends for site-specific tailoring

    Science.gov (United States)

    Jackson, K.; van Dam, C. P.; Yen-Nakafuji, D.

    2005-10-01

    Turbine optimization for specific wind regimes and climate conditions is becoming more common as the market expands into new territories (offshore, low-wind regimes) and as technology matures. Tailoring turbines for specific sites by varying rotor diameter, tower height and power electronics may be a viable technique to make wind energy more economic and less intermittent. By better understanding the wind resource trends and evaluating important wind turbine performance parameters such as specific power (ratio of rated power and rotor swept area), developers and operators can optimize plant output and better anticipate operational impacts. This article presents a methodology to evaluate site-specific wind data for turbine tailoring. Wind characteristics for the Tehachapi wind resource area in California were utilized for this study. These data were used to evaluate the performance of a range of wind turbine configurations. The goal was to analyse the variations in wind power output for the area, assess the changes in these levels with the time of day and season and determine how turbine configuration affects the output. Wind turbine output was compared with California statewide system electrical demand to evaluate the correlation of the wind resource site with local peak demand loads. A comparison of the commercial value of electricity and corresponding wind generation is also presented using a time-dependent valuation methodology. Copyright

  19. 2012 wind technologies market report

    Energy Technology Data Exchange (ETDEWEB)

    Wiser, Ryan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bolinger, Mark [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Barbose, Galen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Darghouth, Naim [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hoen, Ben [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Mills, Andrew [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Weaver, Samantha [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Porter, Kevin [Exeter Assoc., Columbia, MD (United States); Buckley, Michael [Exeter Assoc., Columbia, MD (United States); Fink, Sari [Exeter Assoc., Columbia, MD (United States); Oteri, Frank [National Renewable Energy Lab. (NREL), Golden, CO (United States); Tegen, Suzanne [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-07-01

    Annual wind power capacity additions in the United States achieved record levels in 2012, motivated by the then-planned expiration of federal tax incentives at the end of 2012 and recent improvements in the cost and performance of wind power technology. At the same time, even with a short-term extension of federal tax incentives now in place, the U.S. wind power industry is facing uncertain times. It will take time to rebuild the project pipeline, ensuring a slow year for new capacity additions in 2013. Continued low natural gas prices, modest electricity demand growth, and limited near-term demand from state renewables portfolio standards (RPS) have also put a damper on industry growth expectations. In combination with global competition within the sector, these trends continue to impact the manufacturing supply chain. What these trends mean for the medium to longer term remains to be seen, dictated in part by future natural gas prices, fossil plant retirements, and policy decisions, although recent declines in the price of wind energy have boost ed the prospects for future growth

  20. Directly driven generators for wind power applications

    Energy Technology Data Exchange (ETDEWEB)

    Lampola, P. [Helsinki Univ. of Technology, Espoo (Finland). Lab. of Electromechanics

    1995-12-31

    The article deals with an analysis of directly driven, low-speed wind generators. The generators studied were a permanent-magnet synchronous machine and an asynchronous machine. The machines were compared with a typical generator of a wind power plant. The electromagnetic optimization of the machines was done by the finite element method. The rated power of the generators was 500 kW and the rotational speed was 40 rpm. (author)

  1. Class Generation for Numerical Wind Atlases

    DEFF Research Database (Denmark)

    Cutler, N.J.; Jørgensen, B.H.; Ersbøll, Bjarne Kjær

    2006-01-01

    A new optimised clustering method is presented for generating wind classes for mesoscale modelling to produce numerical wind atlases. It is compared with the existing method of dividing the data in 12 to 16 sectors, 3 to 7 wind-speed bins and dividing again according to the stability...... adapting to the local topography. The purpose of forming classes is to minimise the computational time for the mesoscale model while still representing the synoptic climate features. Only tried briefly in the past, clustering has traits that can be used to improve the existing class generation method...... at specific sites. The sources are The New Irish Wind Resource Atlas and the Wind Atlas for the Gulf of Suez. The new clustering method has the ability to include wind-speed, direction and thermal stability from different heights for the classification. It is shown that the clustering method is able...

  2. Neural network based control of Doubly Fed Induction Generator in wind power generation

    Science.gov (United States)

    Barbade, Swati A.; Kasliwal, Prabha

    2012-07-01

    To complement the other types of pollution-free generation wind energy is a viable option. Previously wind turbines were operated at constant speed. The evolution of technology related to wind systems industry leaded to the development of a generation of variable speed wind turbines that present many advantages compared to the fixed speed wind turbines. In this paper the phasor model of DFIG is used. This paper presents a study of a doubly fed induction generator driven by a wind turbine connected to the grid, and controlled by artificial neural network ANN controller. The behaviour of the system is shown with PI control, and then as controlled by ANN. The effectiveness of the artificial neural network controller is compared to that of a PI controller. The SIMULINK/MATLAB simulation for Doubly Fed Induction Generator and corresponding results and waveforms are displayed.

  3. Wind turbine assisted diesel generator systems

    Science.gov (United States)

    Schienbein, L. A.

    1981-12-01

    The need to reduce the cost of energy in remote communities served by diesel generators has led to the investigation of the use of wind energy to replace some or all of the fuel consumed. The development of wind-turbine-assisted diesel generators in Canada has progressed from the design and testing of a 12-kW unit to the design of a prototype 100-kW wind turbine diesel hybrid. This paper presents the results of the 12-kW tests and the implementation of the test results, and the results of further engineering and cost analyses in the design of a prototype 100-kW wind turbine diesel hybrid system. The value of wind energy in a wind turbine diesel hybrid is greatly improved if the diesel generator system itself is designed to operate more efficiently at part load, with or without wind power assistance. Excess wind energy and wind turbine power fluctuations (which result in voltage and frequency fluctuations) can be minimized by selecting the best rotor operating speed.

  4. Wind energy technology development and diffusion: a case study of Inner Mongolia, China

    International Nuclear Information System (INIS)

    Zhang Xiliang; Liu Wenqiang; Gu Shuhua; Gan Lin

    2001-01-01

    This article reviews the spread of small household wind generators and the development of wind farms in Inner Mongolia, China with emphasis on policy and institutional perspectives. It analyzes the patterns of wind technology dissemination within social, economic, and environmental contexts. It also discusses international investment and technology transfer relating to wind energy technology. The economics of windfarm development are examined and the role of alternative policy instruments analyzed. Major constraints to wind technology development are identified and relevant policy recommendations suggested. (author)

  5. Wind energy technology development and diffusion: a case study of Inner Mongolia, China

    International Nuclear Information System (INIS)

    Xiliang Zhang; Shuhua Gu; Wenqiang Liu; Lin Gan

    2001-01-01

    This article reviews the spread of small household wind generators and the development of wind farms in Inner Mongolia, China with emphasis on policy and institutional perspectives. It analyses the patterns of wind technology dissemination within social, economic, and environmental contexts. It also discusses international investment and technology transfer relating to wind energy technology. The economics of windfarm development are examined and the role of alternative policy instruments analysed. Major constraints to wind technology development are identified and relevant policy recommendations suggested. (Author)

  6. Optimized power generation in offshore wind parks

    NARCIS (Netherlands)

    Oliveira Filho, J. de; Papp, Z.

    2011-01-01

    Electricity generation on offshore wind parks has an increasing economic importance - the European Commission foresees that 12% of the wind energy will be produced on offshore installations by 2020, and this share is likely to increase further in the following years. However, the continuously

  7. Wind Turbine Contingency Control Through Generator De-Rating

    Science.gov (United States)

    Frost, Susan; Goebel, Kai; Balas, Mark

    2013-01-01

    Maximizing turbine up-time and reducing maintenance costs are key technology drivers for wind turbine operators. Components within wind turbines are subject to considerable stresses due to unpredictable environmental conditions resulting from rapidly changing local dynamics. In that context, systems health management has the aim to assess the state-of-health of components within a wind turbine, to estimate remaining life, and to aid in autonomous decision-making to minimize damage to the turbine. Advanced contingency control is one way to enable autonomous decision-making by providing the mechanism to enable safe and efficient turbine operation. The work reported herein explores the integration of condition monitoring of wind turbines with contingency control to balance the trade-offs between maintaining system health and energy capture. The contingency control involves de-rating the generator operating point to achieve reduced loads on the wind turbine. Results are demonstrated using a high fidelity simulator of a utility-scale wind turbine.

  8. Wind turbines - facts from 20 years of technological progress

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, L.H.; Dannemand Andersen, P. [Risoe Ntaional Lab., Roskilde (Denmark)

    1999-03-01

    The first Danish commercial wind turbines were installed in the late 1970s. Over the last 20 years the Danish wind turbine market has been relatively stable concerning annual installations, and the wind turbine technology has been able to develop continuously. This gives a unique time track for technology analysts. The aim of this paper is to extract reliable information on this time track from existing archives and statistics. Seven generations of wind turbine technology have been identified mainly based on `characteristic` rotor diameters. The technological development of each generation is described using indicators such as: market share in Denmark, generator size, rotor diameter, hub height, electricity production and productivity. Economical indicators comprise: costs of turbine and standard foundation. (au)

  9. Integration of wind generation forecasts. Volume 2

    International Nuclear Information System (INIS)

    Ahlstrom, M.; Zavadil, B.; Jones, L.

    2005-01-01

    WindLogics is a company that specializes in atmospheric modelling, visualization and fine-scale forecasting systems for the wind power industry. A background of the organization was presented. The complexities of wind modelling were discussed. Issues concerning location and terrain, shear, diurnal and interannual variability were reviewed. It was suggested that wind power producers should aim to be mainstream, and that variability should be considered as intrinsic to fuel supply. Various utility operating impacts were outlined. Details of an Xcel NSP wind integration study were presented, as well as a studies conducted in New York state and Colorado. It was concluded that regulations and load following impacts with wind energy integration are modest. Overall impacts are dominated by costs incurred to accommodate wind generation variability and uncertainty in the day-ahead time frame. Cost impacts can be reduced with adjustments to operating strategies, improvements in wind forecasting and access to real-time markets. Details of WindLogic's wind energy forecast system were presented, as well as examples of day ahead and hour ahead forecasts and wind speed and power forecasts. Screenshots of control room integration, EMS integration and simulations were presented. Details of a utility-scale wind energy forecasting system funded by Xcel Renewable Development Fund (RDF) were also presented. The goal of the system was to optimize the way that wind forecast information is integrated into the control room environment. Project components were outlined. It was concluded that accurate day-ahead forecasting can lead to significant asset optimization. It was recommended that wind plants share data, and aim to resolve issues concerning grid codes and instrumentation. refs., tabs., figs

  10. Optimal prediction intervals of wind power generation

    DEFF Research Database (Denmark)

    Wan, Can; Wu, Zhao; Pinson, Pierre

    2014-01-01

    direct optimization of both the coverage probability and sharpness to ensure the quality. The proposed method does not involve the statistical inference or distribution assumption of forecasting errors needed in most existing methods. Case studies using real wind farm data from Australia have been...... penetration beforehand. This paper proposes a novel hybrid intelligent algorithm approach to directly formulate optimal prediction intervals of wind power generation based on extreme learning machine and particle swarm optimization. Prediction intervals with Associated confidence levels are generated through...

  11. Class generation for numerical wind atlases

    Energy Technology Data Exchange (ETDEWEB)

    Cutler, N.J.

    2005-07-01

    A new optimised clustering method is presented for generating wind classes for mesoscale modelling to produce numerical wind atlases. It is compared with the existing method of dividing the data in 12-16 sectors, 3-7 wind speed bins and dividing again on the stability of the atmosphere. Wind atlases are typically produced from many years of on-site measurements. Numerical wind atlases are the result of mesoscale model integrations based on synoptic scale wind climates and can be produced in as quickly as a day. 40 years of twice daily NCEPINCAR Reanalysis geostrophic wind data (200 km resolution) is represented in typically around 100 classes, each with a frequency of occurrence. The mean wind speeds and directions in each class is used as input data to force the mesoscale model, which down scales to 5 km resolution while adapting to the local topography. The number of classes is to minimise the computational time for the mesoscale model while still representing the synoptic climate features. Only tried briefly in the past, clustering has traits that can be used to improve the existing class generation method by optimising the representation of the data and by automating the procedure more. The Karlsruhe Atmospheric Mesoscale Model (KAMM) is combined with WASP to produce numerical wind atlases for two sites, Ireland and Egypt. The model results are compared with The New Irish Wind Resource Atlas and wind atlases made from meteorological station measurements in Egypt. The new clustering method has the ability to include wind data from different heights and thermal stability for the classification. The results show that the clustering method is able to produce results at least equivalent to the existing method results for both sites. A refined, general clustering procedure is devised which could improve the results for both sites, where the existing method requires two different parameter settings. (au)

  12. 2010 Wind Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Ryan Wiser, Mark Bolinger

    2011-06-01

    This report provides a comprehensive overview of trends in the U.S. wind power market in 2010. The report analyzes trends in wind power capacity, industry, manufacturing, turbines, installed project costs, project performance, and wind power prices. It also describes trends among wind power developers, project owners, and power purchasers, and discusses financing issues.

  13. Hybrid Test Bed of Wind Electric Generator with Photovoltaic Panels

    OpenAIRE

    G.D.Anbarasi Jebaselvi; S.Paramasivam

    2014-01-01

    Driven by the increasing costs of power production and decreasing fossil fuel reserves with the addition of global environmental concerns, renewable energy is now becoming significant fraction of total electricity production in the world. Advancements in the field of wind electric generator technology and power electronics help to achieve rapid progress in hybrid power system which mainly involves wind, solar and diesel energy with a good battery back-up. Here the discussion brings about the ...

  14. Short circuit signatures from different wind turbine generator types

    DEFF Research Database (Denmark)

    Martinez, Jorge; Kjær, Philip C.; Rodriguez, Pedro

    2011-01-01

    , with a synchronous generator, has been simulated. This paper addresses the difficulties that distance or overcurrent relays can experience when they are used in wind power plants. Whereas the short circuit contribution from power plants with synchronous generators can be calculated on the basis of the machine...... faults, and the consequent effects on substation protections, the aforementioned configurations have been simulated using PSCAD/EMTDC, with the same power plant configuration, electrical grid and generator data. Additionally, a comparison of these wind turbine technologies with a conventional power plant......Modern wind power plants are required and designed to ride through faults in the network, subjected to the fault clearance and following grid code demands. Beside voltage support during faults, the wind turbine fault current contribution is important to establish the correct settings for the relay...

  15. Different Models for Forecasting Wind Power Generation: Case Study

    Directory of Open Access Journals (Sweden)

    David Barbosa de Alencar

    2017-11-01

    Full Text Available Generation of electric energy through wind turbines is one of the practically inexhaustible alternatives of generation. It is considered a source of clean energy, but still needs a lot of research for the development of science and technologies that ensures uniformity in generation, providing a greater participation of this source in the energy matrix, since the wind presents abrupt variations in speed, density and other important variables. In wind-based electrical systems, it is essential to predict at least one day in advance the future values of wind behavior, in order to evaluate the availability of energy for the next period, which is relevant information in the dispatch of the generating units and in the control of the electrical system. This paper develops ultra-short, short, medium and long-term prediction models of wind speed, based on computational intelligence techniques, using artificial neural network models, Autoregressive Integrated Moving Average (ARIMA and hybrid models including forecasting using wavelets. For the application of the methodology, the meteorological variables of the database of the national organization system of environmental data (SONDA, Petrolina station, from 1 January 2004 to 31 March 2017, were used. A comparison among results by different used approaches is also done and it is also predicted the possibility of power and energy generation using a certain kind of wind generator.

  16. Conceptual survey of Generators and Power Electronics for Wind Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, L.H.; Helle, L.; Blaabjerg, F.; Ritchie, E.; Munk-Nielsen, S.; Bindner, H.; Soerensen, P.; Bak-Jensen, B.

    2001-12-01

    This report presents a survey on generator concepts and power electronic concepts for wind turbines. The report is aimed as a tool for decision-makers and development people with respect to wind turbine manufactures, utilities, and independent system operators as well as manufactures of generators and power electronics. The survey is focused on the electric development of wind turbines and it yields an overview on: State of the art on generators and power electronics; future concepts and technologies within generators and power electronics; market needs in the shape of requirements to the grid connection, and; consistent system solutions, plus an evaluation of these seen in the prospect of market needs. This survey on of generator and power electronic concepts was carried out in co-operation between Aalborg University and Risoe National Laboratory in the scope of the research programme Electric Design and Control. (au)

  17. Reactive power management of power networks with wind generation

    CERN Document Server

    Amaris, Hortensia; Ortega, Carlos Alvarez

    2012-01-01

    As the energy sector shifts and changes to focus on renewable technologies, the optimization of wind power becomes a key practical issue. Reactive Power Management of Power Networks with Wind Generation brings into focus the development and application of advanced optimization techniques to the study, characterization, and assessment of voltage stability in power systems. Recent advances on reactive power management are reviewed with particular emphasis on the analysis and control of wind energy conversion systems and FACTS devices. Following an introduction, distinct chapters cover the 5 key

  18. Class generation for numerical wind atlases

    Energy Technology Data Exchange (ETDEWEB)

    Cutler, N.J.; Joergensen, B.H.; Ersboell, B.K.; Badger, J.

    2006-10-15

    A new optimised clustering method is presented for generating wind classes for mesoscale modelling to produce numerical wind atlases. It is compared with the existing method of dividing the data in 12 to 16 sectors, 3 to 7 wind-speed bins and dividing again according to the stability of the atmosphere. Wind atlases are typically produced using many years of on-site wind observations at many locations. Numerical wind atlases are the result of mesoscale model integrations based on synoptic scale wind climates and can be produced in a number of hours of computation. 40 years of twice daily NCEP/NCAR Reanalysis geostrophic wind data (approximately 200 km resolution) are represented in typically around 150 classes, each with a frequency of occurrence. The mean wind-speed and direction in each class is used as input data to force the mesoscale model, which downscales the wind to a 5 km resolution while adapting to the local topography. The purpose of forming classes is to minimise the computational time for the mesoscale model while still representing the synoptic climate features. Only tried briefly in the past, clustering has traits that can be used to improve the existing class generation method by optimising the representation of the data and by automating the procedure more. The Karlsruhe Atmospheric Mesoscale Model (KAMM) is combined with the WAsP analysis to produce numerical wind atlases for two sites, Ireland and Egypt. The model results are compared with wind atlases made from measurements at specific sites. The sources are The New Irish Wind Resource Atlas and the Wind Atlas for the Gulf of Suez. The new clustering method has the ability to include wind-speed, direction and thermal stability from different heights for the classification. It is shown that the clustering method is able to produce results at least as accurate as the existing method for both sites. A refined, general clustering procedure is devised which could improve the results for both sites

  19. Development of arctic wind technology

    Energy Technology Data Exchange (ETDEWEB)

    Holttinen, H.; Marjaniemi, M.; Antikainen, P. [VTT Energy, Espoo (Finland)

    1998-10-01

    The climatic conditions of Lapland set special technical requirements for wind power production. The most difficult problem regarding wind power production in arctic regions is the build-up of hard and rime ice on structures of the machine

  20. Emergy-based sustainability evaluation of wind power generation systems

    International Nuclear Information System (INIS)

    Yang, Jin; Chen, Bin

    2016-01-01

    Highlights: • Emergy is used to quantify the sustainability level of wind farms. • A GHG-based indicator is incorporated into emergetic accounting. • Possible pathways to achieve sustainable wind farm management are analyzed. - Abstract: With large-scale commercialization of wind technology, one must investigate economical and sustainable wind resource utilization. In this paper, emergy analysis is used to quantify the environmental pressure, renewability, economic efficiency, and sustainability of a typical wind power system, considering the lifetime stages from extraction and processing of raw materials and resources to the final product (electricity) via material transportation, construction and operation. Possible pathways to achieve sustainable management of wind energy supply chain were also analyzed based on scenario analysis. Results show that wind power is a promising means of substituting traditional fossil fuel-based power generation systems, with the lowest transformity of 4.49 × 10 4 sej/J, smaller environmental loading ratio of 5.84, and lower greenhouse gas emission intensity of 0.56 kg/kWh. To shed light on potential pathways to achieve sustainable and low-carbon wind energy supply chain management and make informed choices, a sensitivity analysis was done by establishing scenarios from the perspectives of material recycling and technical development. Results suggest that using new materials of lower energy intensity or recycled materials in upstream wind turbine manufacturing and construction materials are the most effective measures.

  1. Wind turbines fundamentals, technologies, application, economics

    CERN Document Server

    Hau, Erich

    2013-01-01

    "Wind Turbines" addresses all those professionally involved in research, development, manufacture and operation of wind turbines. It provides a cross-disciplinary overview of modern wind turbine technology and an orientation in the associated technical, economic and environmental fields.  In its revised third edition, special emphasis has been given to the latest trends in wind turbine technology and design, such as gearless drive train concepts, as well as on new fields of application, in particular the offshore utilisation of wind energy. The author has gained experience over decades designing wind energy converters with a major industrial manufacturer and, more recently, in technical consulting and in the planning of large wind park installations, with special attention to economics.

  2. Grid code requirements for wind power generation

    International Nuclear Information System (INIS)

    Djagarov, N.; Filchev, S.; Grozdev, Z.; Bonev, M.

    2011-01-01

    In this paper production data of wind power in Europe and Bulgaria and plans for their development within 2030 are reviewed. The main characteristics of wind generators used in Bulgaria are listed. A review of the grid code in different European countries, which regulate the requirements for renewable sources, is made. European recommendations for requirements harmonization are analyzed. Suggestions for the Bulgarian gird code are made

  3. Wind energy. Technology and Planning

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    On this bilingual CD-ROM (English and German), we would like to offer you information on all different aspects of wind energy utilisation. Our aim is the worldwide spread of know-how on wind energy - one basic aim of WWEA. The CD-ROM and the correspondent website www.world-wind-energy.info addresses all who are interested in wind energy, especially on students and learners, staff members of administrations, companies, associations, etc, who want to inform themselves and further their education of wind energy. We hope that this CD-ROM may be use to you and we would appreciate your feedback and comments. (orig.)

  4. Renewable energy and sustainable communities: Alaska's wind generator experience.

    Science.gov (United States)

    Konkel, R Steven

    2013-01-01

    In 1984, the Alaska Department of Commerce and Economic Development (DCED) issued the State's first inventory/economic assessment of wind generators, documenting installed wind generator capacity and the economics of replacing diesel-fuel-generated electricity. Alaska's wind generation capacity had grown from hundreds of installed kilowatts to over 15.3 megawatts (MW) by January 2012. This article reviews data and conclusions presented in "Alaska's Wind Energy Systems; Inventory and Economic Assessment" (1). (Alaska Department of Commerce and Economic Development, S. Konkel, 1984). It provides a foundation and baseline for understanding the development of this renewable energy source. Today's technologies have evolved at an astonishing pace; a typical generator in an Alaska wind farm now is likely rated at 1.5-MW capacity, compared to the single-kilowatt (kW) machines present in 1984. Installed capacity has mushroomed, illustrated by Unalakleet's 600-kW wind farm dwarfing the original three 10-kW machines included in the 1984 inventory. Kodiak Electric had three 1.5-MW turbines installed at Pillar Mountain in 2009, with three additional turbines of 4.5-MW capacity installed in 2012. Utilities now actively plan for wind generation and compete for state funding. State of Alaska energy policy provides the context for energy project decision-making. Substantial renewable energy fund (REF) awards--$202,000,000 to date for 227 REF projects in the first 5 cycles of funding--along with numerous energy conservation programs--are now in place. Increasing investment in wind is driven by multiple factors. Stakeholders have interests both in public policy and meeting private investment objectives. Wind generator investors should consider project economics and potential impacts of energy decisions on human health. Specifically this article considers: changing environmental conditions in remote Alaska villages, impacts associated with climate change on human health, progress in

  5. Renewable energy and sustainable communities: Alaska's wind generator experience†

    Directory of Open Access Journals (Sweden)

    R. Steven Konkel

    2013-08-01

    Full Text Available Background . In 1984, the Alaska Department of Commerce and Economic Development (DCED issued the State's first inventory/economic assessment of wind generators, documenting installed wind generator capacity and the economics of replacing diesel-fuel-generated electricity. Alaska's wind generation capacity had grown from hundreds of installed kilowatts to over 15.3 megawatts (MW by January 2012. Method . This article reviews data and conclusions presented in “Alaska's Wind Energy Systems; Inventory and Economic Assessment” (1. (Alaska Department of Commerce and Economic Development, S. Konkel, 1984. It provides a foundation and baseline for understanding the development of this renewable energy source. Results . Today's technologies have evolved at an astonishing pace; a typical generator in an Alaska wind farm now is likely rated at 1.5-MW capacity, compared to the single-kilowatt (kW machines present in 1984. Installed capacity has mushroomed, illustrated by Unalakleet's 600-kW wind farm dwarfing the original three 10-kW machines included in the 1984 inventory. Kodiak Electric had three 1.5-MW turbines installed at Pillar Mountain in 2009, with three additional turbines of 4.5-MW capacity installed in 2012. Utilities now actively plan for wind generation and compete for state funding. Discussion . State of Alaska energy policy provides the context for energy project decision-making. Substantial renewable energy fund (REF awards – $202,000,000 to date for 227 REF projects in the first 5 cycles of funding – along with numerous energy conservation programs – are now in place. Increasing investment in wind is driven by multiple factors. Stakeholders have interests both in public policy and meeting private investment objectives. Wind generator investors should consider project economics and potential impacts of energy decisions on human health. Specifically this article considers: a. changing environmental conditions in remote Alaska

  6. Renewable energy and sustainable communities: Alaska's wind generator experience†

    Science.gov (United States)

    Konkel, R. Steven

    2013-01-01

    Background In 1984, the Alaska Department of Commerce and Economic Development (DCED) issued the State's first inventory/economic assessment of wind generators, documenting installed wind generator capacity and the economics of replacing diesel-fuel-generated electricity. Alaska's wind generation capacity had grown from hundreds of installed kilowatts to over 15.3 megawatts (MW) by January 2012. Method This article reviews data and conclusions presented in “Alaska's Wind Energy Systems; Inventory and Economic Assessment” (1). (Alaska Department of Commerce and Economic Development, S. Konkel, 1984). It provides a foundation and baseline for understanding the development of this renewable energy source. Results Today's technologies have evolved at an astonishing pace; a typical generator in an Alaska wind farm now is likely rated at 1.5-MW capacity, compared to the single-kilowatt (kW) machines present in 1984. Installed capacity has mushroomed, illustrated by Unalakleet's 600-kW wind farm dwarfing the original three 10-kW machines included in the 1984 inventory. Kodiak Electric had three 1.5-MW turbines installed at Pillar Mountain in 2009, with three additional turbines of 4.5-MW capacity installed in 2012. Utilities now actively plan for wind generation and compete for state funding. Discussion State of Alaska energy policy provides the context for energy project decision-making. Substantial renewable energy fund (REF) awards – $202,000,000 to date for 227 REF projects in the first 5 cycles of funding – along with numerous energy conservation programs – are now in place. Increasing investment in wind is driven by multiple factors. Stakeholders have interests both in public policy and meeting private investment objectives. Wind generator investors should consider project economics and potential impacts of energy decisions on human health. Specifically this article considers:changing environmental conditions in remote Alaska villages,impacts associated

  7. Synchronous generator wind energy conversion control system

    Energy Technology Data Exchange (ETDEWEB)

    Medeiros, A.L.R. [Wind Energy Group, Recife (Brazil); Lima, A.M.N.; Jacobina, C.B.; Simoes, F.J. [DEE, Campina Grande (Brazil)

    1996-12-31

    This paper presents the performance evaluation and the design of the control system of a WECS (Wind Energy Conversion System) that employs a synchronous generator based on its digital simulation. The WECS discussed in this paper is connected to the utility grid through two Pulse Width Modulated (PWM) power converters. The structure of the proposed WECS enables us to achieve high performance energy conversion by: (i) maximizing the wind energy capture and (ii) minimizing the reactive power flowing between the grid and the synchronous generator. 8 refs., 19 figs.

  8. Development of Superconducting Wind Turbine Generators

    DEFF Research Database (Denmark)

    Jensen, Bogi Bech; Mijatovic, Nenad; Abrahamsen, Asger Bech

    2012-01-01

    speeds, because high magnetic fields can be produced by coils with very little loss. Three different superconducting wind turbine generator topologies have been proposed by three different companies. One is based on low temperature superconductors (LTS); one is based on high temperature superconductors......In this paper the commercial activities in the field of superconducting machines, particularly superconducting wind turbine generators, are reviewed and presented. Superconducting generators have the potential to provide a compact and light weight drive train at high torques and slow rotational...... (HTS); and one is a fully superconducting generator based on MgB2. It is concluded that there is large commercial interest in superconducting machines, with an increasing patenting activity. Such generators are however not without their challenges. The superconductors have to be cooled down...

  9. Development of superconducting wind turbine generators

    DEFF Research Database (Denmark)

    Jensen, Bogi Bech; Mijatovic, Nenad; Abrahamsen, Asger Bech

    2013-01-01

    speeds, because high magnetic fields can be produced by coils with very little loss. Three different superconducting wind turbine generator topologies have been proposed by three different companies. One is based on low temperature superconductors; one is based on high temperature superconductors......In this paper, the commercial activities in the field of superconducting machines, particularly superconducting wind turbine generators, are reviewed and presented. Superconducting generators have the potential to provide a compact and light weight drive train at high torques and slow rotational......; and one is a fully superconducting generator based on MgB2. It is concluded that there is large commercial interest in superconducting machines, with an increasing patenting activity. Such generators are, however, not without their challenges. The superconductors have to be cooled down to somewhere...

  10. Trends in Wind Energy Technology Development

    DEFF Research Database (Denmark)

    Rasmussen, Flemming; Madsen, Peter Hauge; Tande, John O.

    2011-01-01

    . The development of new and larger turbines to some extent stagnated, and costs even rose due to high demand and rising materials costs. We believe, however – and this is supported by recent trends – that the next decade will be a new period of technology development and further scale-up, leading to more cost-effective....... The huge potential of wind, the rapid development of the technology and the impressive growth of the industry justify the perception that wind energy is changing its role to become the future backbone of a secure global energy supply. Between the mid-1980s, when the wind industry took off, and 2005 wind...... turbine technology has seen rapid development, leading to impressive increases in the size of turbines, with corresponding cost reductions. From 2005 to 2009 the industry’s focus seems to have been on increasing manufacturing capacity, meeting market demand and making wind turbines more reliable...

  11. Impact-generated winds on Mars

    Science.gov (United States)

    Schultz, Peter H.; Quintana, Stephanie N.

    2017-08-01

    Bright and dark wind streaks across Mars record wind patterns related to atmospheric circulation. In some cases these streaks represent erosion of a surface veneer; in others, they indicate sand grains mobilized by strong vortices shed off of positive relief, such as crater rims. While many streaks change length or orientation over time, others not only remain unchanged but also may indicate a completely different wind direction. These permanent streaks could reflect past circulation patterns in response to conditions related to orbital forcing (e.g., Thomas and Veverka, 1979; Veverka et al., 1981). Here, however, we focus on a subset of permanent wind streaks unrelated to global circulation, rather to impact-generated winds that can extend more than 500 km away from the crater. Nighttime images from the Mars Odyssey's Thermal Emission Imaging System (THEMIS) reveal certain large craters (> 15 km in diameter) having sets of thermally bright streaks that radiate from certain fresh impact craters. These streaks extend from pre-existing topographic highs (crater rims, wrinkle ridges) beyond the continuous ejecta deposits to more than 6 crater radii, unrelated to secondary craters. For illustration, this contribution primarily focuses on the 20 km-diameter Santa Fe crater in Chryse Planitia. Context Camera (CTX) images reveal that these streaks correspond to zones of erosion. The thermally bright rays in nighttime images correlate with regions where coarser materials have been exposed, not always resolved even in HiRISE images. Models of the impact process indicate impact-generated vapor most likely generated intense winds that scoured the region, well before arrival of secondary craters and later ejecta run-out flows. Pre-existing relief (such as crater rims) disturbed this flow and generated intense cross-flow instabilities resulting in long parallel streaks.

  12. Study of LANs access technologies in wind power system

    DEFF Research Database (Denmark)

    Wei, Mu; Chen, Zhe

    2010-01-01

    Due to the energy challenges in the world, new types of generation technologies, such as renewable energy based generators, attract great attention and are being quickly developed, which results in the dramatic developments and changes in modern power systems, the communication technologies play...... a increasingly important role in guaranteeing the power system’s stability, reliability, and security. In this paper the necessity of communication technologies employed in wind power system are introduced. According the International Standards Organization (ISO) reference 7-layered model, the communication...... power environment are explained and discussed. Furthermore the simulation of application of Ethernet in an offshore wind farm communication network by a software, OPNET, is elaborated. With the investigation of the communication technologies in this paper, the offshore wind farm SCADA system can...

  13. Wind Generator & Biomass No-draft Gasification Hybrid

    Science.gov (United States)

    Hein, Matthew R.

    or an anticipated 1,766 tonnes of biomass. The levelized cost of electricity (COE) ranged from 65.6/GJ (236/MWh) to 208.9/GJ (752/MWh) with the price of generated electricity being most sensitive to the biomass feedstock cost and the levelized COE being significantly impacted by the high cost of compressed storage. The resulting electrical energy available to the grid has an approximate wholesale value of 13.5/GJ (48.6/MWh) based on year 2007 Midwest Reliability Organization (MRO) regional averages [1]. Therefore, the annual average wholesale value of the generated electricity is lower than the cost to produce the electricity. A significant deficiency of this simple comparison is that it does not consider the fact that the proposed wind and biomass gasification hybrid is now a dispatchable source of electricity with a near net-zero lifetime carbon footprint and storage capability. Dispatchable power can profit from market fluctuations that dramatically increase the value of available electricity so that in addition to providing base power the hybrid facility can store energy during low price points in the market and generate at full capacity during points of high prices. Any financial incentive for energy generated from reduced carbon technologies will also increase the value of electricity produced. Also, alternative operational parameters that do not require the costly storage of synthetic natural gas (SNG) will likely result in a more competitive levelized COE. Additional benefits of the system are in the flexibility of transporting wind and biomass energy produced as well as the end use of the energy. Instead of high-voltage electrical transmission a gas line can now be used to transport energy produced by the wind. Syngas can also be further processed into higher energy density liquefied syngas. Liquid fuels can then be transported via commercial freight on existing road infrastructure.

  14. Technology Performance Report: Duke Energy Notrees Wind Storage Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Wehner, Jeff [Duke Energy Renewables, Charlotte, NC (United States); Mohler, David [Duke Energy Renewables, Charlotte, NC (United States); Gibson, Stuart [Duke Energy Renewables, Charlotte, NC (United States); Clanin, Jason [Duke Energy Renewables, Charlotte, NC (United States); Faris, Don [Duke Energy Renewables, Charlotte, NC (United States); Hooker, Kevin [Duke Energy Renewables, Charlotte, NC (United States); Rowand, Michael [Duke Energy Renewables, Charlotte, NC (United States)

    2015-11-01

    Duke Energy Renewables owns and operates the Notrees Wind Farm in west Texas’s Ector and Winkler counties. The wind farm, which was commissioned in April 2009, has a total capacity of 152.6 MW generated by 55 Vestas V82 turbines, one Vestas 1-V90 experimental turbine, and 40 GE 1.5-MW turbines. The Vestas V82 turbines have a generating capacity of 1.65 MW each, the Vestas V90 turbine has a generating capacity of 1.86 MW, and the GE turbines have a generating capacity of 1.5 MW each. The objective of the Notrees Wind Storage Demonstration Project is to validate that energy storage increases the value and practical application of intermittent wind generation and is commercially viable at utility scale. The project incorporates both new and existing technologies and techniques to evaluate the performance and potential of wind energy storage. In addition, it could serve as a model for others to adopt and replicate. Wind power resources are expected to play a significant part in reducing greenhouse gas emissions from electric power generation by 2030. However, the large variability and intermittent nature of wind presents a barrier to integrating it within electric markets, particularly when competing against conventional generation that is more reliable. In addition, wind power production often peaks at night or other times when demand and electricity prices are lowest. Energy storage systems can overcome those barriers and enable wind to become a valuable asset and equal competitor to conventional fossil fuel generation.

  15. Infrasound emission generated by wind turbines

    Science.gov (United States)

    Ceranna, Lars; Pilger, Christoph

    2014-05-01

    Aerodynamic noise emissions from the continuously growing number of wind turbines in Germany are creating increasing problems for infrasound recording systems. Such systems are equipped with highly sensitive micro pressure sensors, which are accurately measuring acoustic signals in a frequency range inaudible to humans. At infrasound station IGADE, north of Bremen, a constantly increasing background noise has been observed throughout the years since its installation in 2005. The spectral peaks are reflecting well the blade passing harmonics, which vary with prevailing wind speeds. Overall, a decrease is noted for the infrasound array's detection capability. This aspect is particularly important for the other two sites of the German infrasound stations I26DE in the Bavarian Forest and I27DE in Antarctica, because plans for installing wind turbines near these locations are being under discussion. These stations are part of the International Monitoring System (IMS) verifying compliance with the Comprehensive Nuclear-Test-Ban Treaty (CTBT), and have to meet stringent specifications with respect to infrasonic background noise. Therefore data obtained during a field experiment with mobile micro-barometer stations for measuring the infrasonic pressure level of a single horizontal-axis wind turbine have been revisited. The results of this experiment successfully validate a theoretical model which estimates the generated sound pressure level of wind turbines and makes it possible to specify the minimum allowable distance between wind turbines and infrasound stations for undisturbed recording. Since the theoretical model also takes wind turbine design parameters into account, suitable locations for planned infrasound stations outside the determined disturbance range can be found, which will be presented; and vice versa, the model calculations' results for fixing the minimum distance for wind turbines planned for installation in the vicinity of an existing infrasound array.

  16. Survey report for fiscal 1998 on the survey on preparation of data collection related to new energy technology development (wind power generation ); 1998 nendo shin energy gijutsu kaihatsu kankei data shu sakusei chosa (furyoku hatsuden) chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    As a result of heightening consciousness on assurance of energy security and global environment problems in recent years, it is urged in Japan to promote development of technologies to introduce and proliferate new energies, and work on acceleration of the introduction. On the other hand, in order to move forward effectively the introduction promoting project intended of proliferation and enlightenment, it is necessary to put into order comprehensively and systematically the different data on the new energies, and summarize them as the basic data. This report, focusing on a wind power generation system, collects and puts into order the latest published data on the wind power generation system, placing in the center the introduction examples in Japan and other countries, supporting measures, wind power generation system markets, and the specifications of major windmills. The major contents may be summarized as follows: significance of introducing the wind power generation system, the current status of the market, policies in different countries, status of introducing the system in other countries, subsidy institutions for the introduction, the introduction flow, efforts made by government related organizations and local governments, a list of window offices of the related corporations, the fundamental knowledge, and the movements in 1998. (NEDO)

  17. 2009 Wind Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Wiser, R.; Bolinger, M.

    2010-08-01

    The U.S. wind power industry experienced yet another record year in 2009, once again surpassing even optimistic growth projections from years past. At the same time, 2009 was a year of upheaval, with the global financial crisis impacting the wind power industry and with federal policy changes enacted to push the industry toward continued aggressive expansion. The year 2010, meanwhile, is anticipated to be one of some retrenchment, with expectations for fewer wind power capacity additions than seen in 2009. The rapid pace of development and change within the industry has made it difficult to keep up with trends in the marketplace, yet the need for timely, objective information on the industry and its progress has never been greater. This report - the fourth in an ongoing annual series - attempts to meet this need by providing a detailed overview of developments and trends in the United States wind power market, with a particular focus on 2009.

  18. 2008 Wind Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Wiser, R.; Bolinger, M.

    2009-07-01

    The U.S. wind industry experienced a banner year in 2008, once again surpassing even optimistic growth projections from years past. At the same time, the past year has been one of upheaval, with the global financial crisis impacting near-term growth prospects for the wind industry, and with significant federal policy changes enacted to push the industry toward continued aggressive expansion. This report examines key trends.

  19. Conditional prediction intervals of wind power generation

    DEFF Research Database (Denmark)

    Pinson, Pierre; Kariniotakis, Georges

    2010-01-01

    A generic method for the providing of prediction intervals of wind power generation is described. Prediction intervals complement the more common wind power point forecasts, by giving a range of potential outcomes for a given probability, their so-called nominal coverage rate. Ideally they inform...... of the situation-specific uncertainty of point forecasts. In order to avoid a restrictive assumption on the shape of forecast error distributions, focus is given to an empirical and nonparametric approach named adapted resampling. This approach employs a fuzzy inference model that permits to integrate expertise...

  20. 2016 Offshore Wind Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Musial, Walter; Beiter, Philipp; Schwabe, Paul; Tian, Tian; Stehly, Tyler; Spitsen, Paul; Robertson, Amy; Gevorgian, Vahan

    2017-08-08

    The 2016 Offshore Wind Technologies Market Report was developed by the National Renewable Energy Laboratory (NREL) for the U.S. Department of Energy (DOE) and is intended to provide offshore wind policymakers, regulators, developers, researchers, engineers, financiers, and supply chain participants, with quantitative information about the offshore wind market, technology, and cost trends in the United States and worldwide. In particular, this report is intended to provide detailed information on the domestic offshore wind industry to provide context to help navigate technical and market barriers and opportunities. The scope of the report covers the status of the 111 operating offshore wind projects in the global fleet through December 31, 2016, and provides the status and analysis on a broader pipeline of 593 projects at some stage of development. In addition, this report provides a wider assessment of domestic developments and events through the second quarter of 2017 to provide a more up-to-date discussion of this dynamically evolving industry.

  1. Trends in Wind Turbine Generator Systems

    DEFF Research Database (Denmark)

    Polinder, Henk; Ferreira, Jan Abraham; Jensen, Bogi Bech

    2013-01-01

    This paper reviews the trends in wind turbine generator systems. After discussing some important requirements and basic relations, it describes the currently used systems: the constant speed system with squirrel-cage induction generator, and the three variable speed systems with doubly fed...... induction generator (DFIG), with gearbox and fully rated converter, and direct drive (DD). Then, possible future generator systems are reviewed. Hydraulic transmissions are significantly lighter than gearboxes and enable continuously variable transmission, but their efficiency is lower. A brushless DFIG...... is a medium speed generator without brushes and with improved low-voltage ride-through characteristics compared with the DFIG. Magnetic pseudo DDs are smaller and lighter than DD generators, but need a sufficiently low and stable magnet price to be successful. In addition, superconducting generators can...

  2. New Generator Technology

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Roy S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-02-17

    New generator technology project is driven by the need to be able to remotely deploy generator technology where it is needed, when it is needed. Both the military and aid programs that provide assistance after disasters could use the ability to deploy energy generation that fits the needs of the situation. Currently, pre-specified generators are deployed, sometime more than half way around the world to provide electricity. Through our Phase-I to Phase III DARPA grant, we will provide a mechanism where a 3d print station and raw materials could be shipped to a deployment site and remotely deployed personnel. These remote personnel can collaborate with engineers at a home location where 3d print plans can be optimized for the remote purpose. The plans can then be sent electronically to the remote location for printing, much like NASA sent the plans for a socket wrench to the International Space Station for printing in . If multiple generators need to be deployed at different remote locations, within miles of each other the printer rig can be moved to print the generators where they are needed. 3d printing is growing in the field of manufacturing. 3d printing has matured to the point where many types of materials are now available for many types of manufacturing. Both magnetic and electrically conductive material materials have recently been developed which can now lead to 3d printing of engines and generators. Our project will provide a successful printer rig that can be remotely deployed, to print a generator design in the field as well as provide a process for deploying the printed generator as well. This Systems Engineering Management Plan(SEMP) will provide the planning required for a Phase I DARPA grant that may also include goals for Phase II and Phase II grants. The SEMP provides a proposed project schedule, references, system engineering processes, specialty engineering system deployment and product support sections. Each section will state how our company

  3. The noise generated by wind turbines

    International Nuclear Information System (INIS)

    Anon.

    2012-01-01

    Sound propagation damps down with distance and varies according to different parameters like wind direction and temperature. This article begins by recalling the basic physics of sound wave propagation and gives a list of common noises and corresponding decibels. The habitual noise of wind turbines 500 m away is 35 decibels which ranks it between a quiet bedroom (30 decibels) and a calm office (40 decibels). The question about whether wind turbines are a noise nuisance is all the more difficult as the feeling of a nuisance is so objective and personal. Any project of wind turbines requires a thorough study of its estimated acoustic impact. This study is a 3 step approach: first the initial noise environment is measured, secondly the propagation of the sound generated by the wind turbine farm is modelled and adequate mitigation measures are proposed to comply the law. The law stipulates that the increase of noise must be less than 5 db during daylight and less than 3 db during night. (A.C.)

  4. PREDICTION OF POWER GENERATION OF SMALL SCALE VERTICAL AXIS WIND TURBINE USING FUZZY LOGIC

    Directory of Open Access Journals (Sweden)

    Altab Hossain

    2009-01-01

    Full Text Available Renewable energy from the wind turbine has been focused for the alternative source of power generation due to the following advances of the of the wind turbine. Firstly, the wind turbine is highly efficient and eco-friendly. Secondly, the turbine has the ability to response for the changeable power generation based on the wind velocity and structural framework. However, the competitive efficiency of the wind turbine is necessary to successfully alternate the conventional power sources. The most relevant factor which affects the overall efficiency of the wind turbine is the wind velocity and the relative turbine dimensions. Artificial intelligence systems are widely used technology that can learn from examples and are able to deal with non-linear problems. Compared with traditional approach, fuzzy logic approach is more efficient for the representation, manipulation and utilization. Therefore, the primary purpose of this work was to investigate the relationship between wind turbine power generation and wind velocity, and to illustrate how fuzzy expert system might play an important role in prediction of wind turbine power generation. The main purpose of the measurement over the small scaled prototype vertical axis wind turbine for the wind velocity is to predict the performance of full scaled H-type vertical axis wind turbine. Prediction of power generation at the different wind velocities has been tested at the Thermal Laboratory of Faculty of Engineering, Universiti Industri Selangor (UNISEL and results concerning the daily prediction have been obtained.

  5. Wind Power predictability a risk factor in the design, construction and operation of Wind Generation Turbines

    Science.gov (United States)

    Thiesen, J.; Gulstad, L.; Ristic, I.; Maric, T.

    2010-09-01

    Summit: The wind power predictability is often a forgotten decision and planning factor for most major wind parks, both onshore and offshore. The results of the predictability are presented after having examined a number of European offshore and offshore parks power predictability by using three(3) mesoscale model IRIE_GFS and IRIE_EC and WRF. Full description: It is well known that the potential wind production is changing with latitude and complexity in terrain, but how big are the changes in the predictability and the economic impacts on a project? The concept of meteorological predictability has hitherto to some degree been neglected as a risk factor in the design, construction and operation of wind power plants. Wind power plants are generally built in places where the wind resources are high, but these are often also sites where the predictability of the wind and other weather parameters is comparatively low. This presentation addresses the question of whether higher predictability can outweigh lower average wind speeds with regard to the overall economy of a wind power project. Low predictability also tends to reduce the value of the energy produced. If it is difficult to forecast the wind on a site, it will also be difficult to predict the power production. This, in turn, leads to increased balance costs and a less reduced carbon emission from the renewable source. By investigating the output from three(3) mesoscale models IRIE and WRF, using ECMWF and GFS as boundary data over a forecasting period of 3 months for 25 offshore and onshore wind parks in Europe, the predictability are mapped. Three operational mesoscale models with two different boundary data have been chosen in order to eliminate the uncertainty with one mesoscale model. All mesoscale models are running in a 10 km horizontal resolution. The model output are converted into "day a head" wind turbine generation forecasts by using a well proven advanced physical wind power model. The power models

  6. Wind energy. Energy technologies in national, European and global perspective

    Energy Technology Data Exchange (ETDEWEB)

    Hauge Madsen, P.; Bjerregaard, E.T.D. [Risoe National Lab., Wind Energy Dept., Roskilde (Denmark)

    2002-10-01

    According to a recent study, global wind generating capacity increased by some 6800 MW in 2001, an annual growth of just over half the corresponding figure for 2000. 2001 was the third consecutive year in which new wind power capacity exceeded new nuclear power capacity, showing the maturity of wind power technology. Total installed wind power worldwide by the end of 2001 was close to 25.000 MW. Germany, Spain and Denmark are the main players, accounting for 56% of the world's capacity increase in 2001 and a total cumulative installed capacity of 14.750 MW, or 59% of the global total. The USA and India are also significant users of wind power; in 2001 the USA added 1700 MW of new installed capacity to become the world's second-largest market for wind power. The report Wind Force 10 outlines a scenario in which wind power provides 10% of the world's electricity by 2020, corresponding to a total installed capacity of 1200 GW. Risoe's System Analysis Department has looked at the possible future costs of electricity produced by wind turbines compared to conventional power. A learning curve analysis of historical data results in a progress ratio of 0,85. This means that for every doubling of the installed capacity, the cost of wind-generated electricity is reduced by 15%. Until recently the main driver for wind power has been a concern for greenhouse gases. Security of energy supply has now become an important issue, however, especially in Europe and the USA. Wind power plants can be erected at short notice and in a modular fashion that allows capacity to be added as required. The European Commission has supported wind power by sponsoring international research co-operation between institutes, universities and equipment manufacturers. The IEA supports worldwide co-operation, and has recently issued a report on the longterm R and D needs of wind energy. Denmark has, mainly financed by the Danish Energy Agency, taken part in the IEA's R and D Wind

  7. Wind energy. Energy technologies in national, European and global perspective

    International Nuclear Information System (INIS)

    Hauge Madsen, P.; Bjerregaard, E.T.D.

    2002-01-01

    According to a recent study, global wind generating capacity increased by some 6800 MW in 2001, an annual growth of just over half the corresponding figure for 2000. 2001 was the third consecutive year in which new wind power capacity exceeded new nuclear power capacity, showing the maturity of wind power technology. Total installed wind power worldwide by the end of 2001 was close to 25.000 MW. Germany, Spain and Denmark are the main players, accounting for 56% of the world's capacity increase in 2001 and a total cumulative installed capacity of 14.750 MW, or 59% of the global total. The USA and India are also significant users of wind power; in 2001 the USA added 1700 MW of new installed capacity to become the world's second-largest market for wind power. The report Wind Force 10 outlines a scenario in which wind power provides 10% of the world's electricity by 2020, corresponding to a total installed capacity of 1200 GW. Risoe's System Analysis Department has looked at the possible future costs of electricity produced by wind turbines compared to conventional power. A learning curve analysis of historical data results in a progress ratio of 0,85. This means that for every doubling of the installed capacity, the cost of wind-generated electricity is reduced by 15%. Until recently the main driver for wind power has been a concern for greenhouse gases. Security of energy supply has now become an important issue, however, especially in Europe and the USA. Wind power plants can be erected at short notice and in a modular fashion that allows capacity to be added as required. The European Commission has supported wind power by sponsoring international research co-operation between institutes, universities and equipment manufacturers. The IEA supports worldwide co-operation, and has recently issued a report on the longterm R and D needs of wind energy. Denmark has, mainly financed by the Danish Energy Agency, taken part in the IEA's R and D Wind international co

  8. 2010 Wind Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Exeter Associates; National Renewable Energy Laboratory; Energetics Incorporated; Wiser, Ryan; Bolinger, Mark; Barbose, Galen; Darghouth, Naim; Hoen, Ben; Mills, Andrew; Seel, Joachim; Porter, Kevin; Buckley, Michael; Fink, Sari; Oteri, Frank; Raymond, Russell

    2011-06-27

    The U.S. wind power industry experienced a trying year in 2010, with a significant reduction in new builds compared to both 2008 and 2009. The delayed impact of the global financial crisis, relatively low natural gas and wholesale electricity prices, and slumping overall demand for energy countered the ongoing availability of existing federal and state incentives for wind energy deployment. The fact that these same drivers did not impact capacity additions in 2009 can be explained, in part, by the 'inertia' in capital-intensive infrastructure investments: 2009 capacity additions were largely determined by decisions made prior to the economy-wide financial crisis that was at its peak in late 2008 and early 2009, whereas decisions on 2010 capacity additions were often made at the height of the financial crisis. Cumulative wind power capacity still grew by a healthy 15% in 2010, however, and most expectations are for moderately higher wind power capacity additions in 2011 than witnessed in 2010, though those additions are also expected to remain below the 2009 high.

  9. Assessment of U.S. Manufacturing Capability for Next-Generation Wind Turbine Drivetrains

    Energy Technology Data Exchange (ETDEWEB)

    Cotrell, J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Stelhy, T. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-09-01

    Robust U.S. wind turbine manufacturing capabilities and supply chains are important for the United States to reduce the cost of electricity generated from wind turbines. These capabilities and supply chains are also critical to the invention and commercialization of new wind turbine technologies while providing high-quality jobs. The development of advanced drivetrain technologies for windturbine applications is advancing the state of the art for drivetrain design by producing higher capacity and operating reliability than conventional drivetrains. Advanced drivetrain technologies such as medium-speed and direct-drive generators, silicon-carbide (SiC) IGBT-based power electronics, and high torque density speed increasers require different manufacturing and supply chaincapabilities that present both risks and opportunities for U.S. wind turbine manufacturers and the wind industry as a whole. The primary objective of this project is to assess how advanced drivetrain technologies and trends will impact U.S. wind turbine manufacturing and its supply chains. The U.S. Department of Energy and other industry participants will use the information from this study toidentify domestic manufacturing gaps, barriers, and opportunities for developing U.S. wind turbine manufacturing capabilities and supply chains for next-generation drivetrain technologies. This report also includes recommendations for prioritizing technology areas for possible investments by public, private, or nonprofit entities that will reduce the cost of wind-generated electricity. Suchinvestments foster opportunities to invent and commercialize new wind turbine technologies, and provide high-quality jobs in the United States.

  10. Wind energy - The facts. Vol. 1: Technology

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, P.; Garrad, A.; Jamieson, P.; Snodin, H.; Tindal, A. (comps.) [Gerrad Hassan and partners (United Kingdom)

    2004-02-01

    The politics and economics of wind energy have played an important role in the development of the industry and contributed to its present success. Engineering is, however, pivotal. As the wind industry has become better established, the central place of engineering has become overshadowed by other issues. This is a tribute to the success of the engineers and their turbines. This volume addresses the key engineering Issues: 1) The turbines - their past achievements and future challenges - a remarkable tale of technical endeavour and entrepreneurship. 2) The wind - its characteristics and reliability - how can it be measured, quantified and harnessed? 3) The wind farms - an assembly of individual turbines into wind power stations or wind farms - their optimisation and development. 4) The grid - transporting the energy from remote locations with plentiful wind energy to the loads - the key technical and strategic challenges. This volume provides an historical overview of turbine development, describes the present status and considers future challenges. This is a remarkable story starting in the nineteenth century and then accelerating through the last two decades of the twentieth century on a course very similar to the early days of aeronautics. The story is far from finished but it has certainly started with a vengeance. Wind must be treated with great respect. The speed of the wind on a site has a very powerful effect on the economics of a wind farm; it provides both the fuel to generate electricity and the loads to destroy the turbine. This volume describes how it can be quantified, harnessed and put to work in an economic and predictable manner. The long-term behaviour of the wind is described as well as its short-term behaviour. The latter can be successfully forecast to allow wind energy to participate in electricity markets. In order for wind to live up to its raw potential promise, individual turbines must be assembled into wind farms or wind power stations

  11. Stochastic model of wind-fuel cell for a semi-dispatchable power generation

    DEFF Research Database (Denmark)

    Alvarez-Mendoza, Fernanda; Bacher, Peder; Madsen, Henrik

    2017-01-01

    Hybrid systems are implemented to improve the efficiency of individual generation technologies by complementing each other. Intermittence is a challenge to overcome especially for renewable energy sources for electric generation, as in the case of wind power. This paper proposes a hybrid system...... for short-term wind power generation and electric generation as the outcome of the hybrid system. A method for a semi-dispatchable electric generation based on time series analysis is presented, and the implementation of wind power and polymer electrolyte membrane fuel cell models controlled by a model...... as an approach for reducing and overcoming the volatility of wind power, by implementing storage technology, forecasts and predictive control. The proposed hybrid system, which is suitable for the distributed generation level, consists of a wind generator, an electrolyzer, hydrogen storage and a polymer...

  12. Modulated Field Synchronous Generator for Wind Turbines

    Directory of Open Access Journals (Sweden)

    Petru Chioncel

    2013-01-01

    Full Text Available This paper presents a modern electromechanical conversion systemsolution as the modulated field synchronous generator, offering on theone hand, an output voltage with constant frequency in terms of speedvariation of the wind turbine and on the other hand an advantagepower / weight ratio due to the high frequency for which the magneticcircuit of the electric machine is sized. The mathematical model of the modulated field synchronous generator is implemented in MatLABmodeling language, highlighting the command structure on thetransistors bases of the inverter transistors, through which thefunctioning of the electric machine can be studied, especially in terms of the frequency of the delivered voltage.

  13. Wind power, distrubted generation and transmission

    DEFF Research Database (Denmark)

    Østergaard, Poul Alberg

    Denmark has the World?s highest penetration of wind power in electricity generation with a share of 15.0% of total domestic demand in 2002 (DEA, 2004). This is unevenly distributed in the two electricity systems of Denmark giving a share as high as 20.7% in Western Denmark in 2003 up from 18...... relying on import or export for power balancing. The impacts on the transmission system are furthermore analysed demonstrating that new strategies for balancing power generation and power demand (power balancing strategies) also influence grid losses and the requirements of the transmission grid. If new...

  14. Superconducting generator technology--an overview

    International Nuclear Information System (INIS)

    Edmonda, J.S.

    1979-01-01

    Application of superconducting technology to field windings of large ac generators provides virtually unlimited field capability without incurring resistive losses in the winding. Several small-scale superconducting generators have been built and tested demonstrating the feasibility of such concepts. For machines of much larger capacity, conceptual designs for 300 Mva and 1200 Mva have been completed. The development of a 300 Mva generator is projected. Designed, engineered and fabricated as a turbo generator, the superconducting machine is to be installed in a power plant, tested and operated in concert with a prime mover, the steam generator and the auxiliary support systems of the power plant. This will provide answers to the viability of operating a superconducting machine and its cryogenic handling systems in a full time, demanding environment. 21 refs

  15. Aggregated wind power generation probabilistic forecasting based on particle filter

    International Nuclear Information System (INIS)

    Li, Pai; Guan, Xiaohong; Wu, Jiang

    2015-01-01

    Highlights: • A new method for probabilistic forecasting of aggregated wind power generation. • A dynamic system is established based on a numerical weather prediction model. • The new method handles the non-Gaussian and time-varying wind power uncertainties. • Particle filter is applied to forecast predictive densities of wind generation. - Abstract: Probability distribution of aggregated wind power generation in a region is one of important issues for power system daily operation. This paper presents a novel method to forecast the predictive densities of the aggregated wind power generation from several geographically distributed wind farms, considering the non-Gaussian and non-stationary characteristics in wind power uncertainties. Based on a mesoscale numerical weather prediction model, a dynamic system is established to formulate the relationship between the atmospheric and near-surface wind fields of geographically distributed wind farms. A recursively backtracking framework based on the particle filter is applied to estimate the atmospheric state with the near-surface wind power generation measurements, and to forecast the possible samples of the aggregated wind power generation. The predictive densities of the aggregated wind power generation are then estimated based on these predicted samples by a kernel density estimator. In case studies, the new method presented is tested on a 9 wind farms system in Midwestern United States. The testing results that the new method can provide competitive interval forecasts for the aggregated wind power generation with conventional statistical based models, which validates the effectiveness of the new method

  16. Methods and apparatus for cooling wind turbine generators

    Science.gov (United States)

    Salamah, Samir A [Niskayuna, NY; Gadre, Aniruddha Dattatraya [Rexford, NY; Garg, Jivtesh [Schenectady, NY; Bagepalli, Bharat Sampathkumaran [Niskayuna, NY; Jansen, Patrick Lee [Alplaus, NY; Carl, Jr., Ralph James

    2008-10-28

    A wind turbine generator includes a stator having a core and a plurality of stator windings circumferentially spaced about a generator longitudinal axis. A rotor is rotatable about the generator longitudinal axis, and the rotor includes a plurality of magnetic elements coupled to the rotor and cooperating with the stator windings. The magnetic elements are configured to generate a magnetic field and the stator windings are configured to interact with the magnetic field to generate a voltage in the stator windings. A heat pipe assembly thermally engaging one of the stator and the rotor to dissipate heat generated in the stator or rotor.

  17. Optimized Generator Designs for the DTU 10-MW Offshore Wind Turbine using GeneratorSE: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Sethuraman, Latha; Maness, Michael; Dykes, Katherine

    2017-01-01

    Compared to land-based applications, offshore wind imposes challenges for the development of next generation wind turbine generator technology. Direct-drive generators are believed to offer high availability, efficiency, and reduced operation and maintenance requirements; however, previous research suggests difficulties in scaling to several megawatts or more in size. The resulting designs are excessively large and/or massive, which are major impediments to transportation logistics, especially for offshore applications. At the same time, geared wind turbines continue to sustain offshore market growth through relatively cheaper and lightweight generators. However, reliability issues associated with mechanical components in a geared system create significant operation and maintenance costs, and these costs make up a large portion of overall system costs offshore. Thus, direct-drive turbines are likely to outnumber their gear-driven counterparts for this market, and there is a need to review the costs or opportunities of building machines with different types of generators and examining their competitiveness at the sizes necessary for the next generation of offshore wind turbines. In this paper, we use GeneratorSE, the National Renewable Energy Laboratory's newly developed systems engineering generator sizing tool to estimate mass, efficiency, and the costs of different generator technologies satisfying the electromagnetic, structural, and basic thermal design requirements for application in a very large-scale offshore wind turbine such as the Technical University of Denmark's (DTU) 10-MW reference wind turbine. For the DTU reference wind turbine, we use the previously mentioned criteria to optimize a direct-drive, radial flux, permanent-magnet synchronous generator; a direct-drive electrically excited synchronous generator; a medium-speed permanent-magnet generator; and a high-speed, doubly-fed induction generator. Preliminary analysis of leveled costs of

  18. Optimized Generator Designs for the DTU 10-MW Offshore Wind Turbine using GeneratorSE

    Energy Technology Data Exchange (ETDEWEB)

    Sethuraman, Latha; Maness, Michael; Dykes, Katherine

    2017-01-09

    Compared to land-based applications, offshore wind imposes challenges for the development of next generation wind turbine generator technology. Direct-drive generators are believed to offer high availability, efficiency, and reduced operation and maintenance requirements; however, previous research suggests difficulties in scaling to several megawatts or more in size. The resulting designs are excessively large and/or massive, which are major impediments to transportation logistics, especially for offshore applications. At the same time, geared wind turbines continue to sustain offshore market growth through relatively cheaper and lightweight generators. However, reliability issues associated with mechanical components in a geared system create significant operation and maintenance costs, and these costs make up a large portion of overall system costs offshore. Thus, direct-drive turbines are likely to outnumber their gear-driven counterparts for this market, and there is a need to review the costs or opportunities of building machines with different types of generators and examining their competitiveness at the sizes necessary for the next generation of offshore wind turbines. In this paper, we use GeneratorSE, the National Renewable Energy Laboratory's newly developed systems engineering generator sizing tool to estimate mass, efficiency, and the costs of different generator technologies satisfying the electromagnetic, structural, and basic thermal design requirements for application in a very large-scale offshore wind turbine such as the Technical University of Denmark's (DTU) 10-MW reference wind turbine. For the DTU reference wind turbine, we use the previously mentioned criteria to optimize a direct-drive, radial flux, permanent-magnet synchronous generator; a direct-drive electrically excited synchronous generator; a medium-speed permanent-magnet generator; and a high-speed, doubly-fed induction generator. Preliminary analysis of leveled costs of

  19. On the integration of wind generators on weak grids and island grids

    International Nuclear Information System (INIS)

    Laverdure, N.

    2005-12-01

    Wind energy is now an energy that can not be ignored. Because of intrinsic characteristics (scattered primary energy, generators with different technologies, use of power electronics interface), wind energy system integration in distribution grids leads to real problems in terms of impacts. With recent standard changes, it is necessary to study the possibilities of each technology of wind turbines to answer or not to these new constraints. This PhD thesis focuses on a comparison of the main present wind turbines concerning three points of discussion: energy quality, fault ride through, ancillary services (voltage and frequency). It insists on the possibilities in terms of control laws for variable speed wind turbines. (author)

  20. The design of wind turbine for electrical power generation in Malaysian wind characteristics

    International Nuclear Information System (INIS)

    Abas Ab Wahab; Chong Wen Thong

    2000-01-01

    The paper describes the study of a wind turbine for electrical power generation in Malaysia wind characteristics. In this research, the wind turbine is designs based on the local wind characteristics and tries to avoid the problems faced in the past (turbine design, access, manpower and technical). The new wind turbine rotor design for a medium speed wind speed turbine utilises the concept of open-close type of horizontal axis (up-wind) wind turbine is intended to widen the optimum performance range for electrical generation in Malaysia wind characteristics. The wind turbine has been designed to cut-in at a lower speed, and to provide the rotation speed that high enough to run a generator. The analysis and design of new low speed wind turbine blades and open-close turbine rotor and prediction of turbine performance are being detailed in this paper. (Author)

  1. Generating wind fluctuations for Large Eddy Simulation inflow boundary condition

    International Nuclear Information System (INIS)

    Bekele, S.A.; Hangan, H.

    2004-01-01

    Large Eddy Simulation (LES) studies of flows over bluff bodies immersed in a boundary layer wind environment require instantaneous wind characteristics. The influences of the wind environment on the building pressure distribution are a well-established fact in the experimental study of wind engineering. Measured wind data of full or model scale are available only at a limited number of points. A method of obtaining instantaneous wind data at all mesh points of the inlet boundary for LES computation is necessary. Herein previous and new wind inflow generation techniques are presented. The generated wind data is then applied to a LES computation of a channel flow. The characteristics of the generated wind fluctuations in comparison to the measured data and the properties of the flow field computed from these two wind data are discussed. (author)

  2. Assessing the value of wind generation in future carbon constrained electricity industries

    International Nuclear Information System (INIS)

    Vithayasrichareon, Peerapat; MacGill, Iain F.

    2013-01-01

    This paper employs a novel Monte-Carlo based generation portfolio assessment tool to explore the implications of increasing wind penetration and carbon prices within future electricity generation portfolios under considerable uncertainty. This tool combines optimal generation mix techniques with Monte Carlo simulation and portfolio analysis methods to determine expected overall generation costs, associated cost uncertainty and expected CO 2 emissions for different possible generation portfolios. A case study of an electricity industry with coal, Combined Cycle Gas Turbines (CCGT), Open Cycle Gas Turbines (OCGT) and wind generation options that faces uncertain future fossil-fuel prices, carbon pricing, electricity demand and plant construction costs is presented to illustrate some of the key issues associated with growing wind penetrations. The case study uses half-hourly demand and wind generation data from South Eastern Australia, and regional estimates of new-build plant costs and characteristics. Results suggest that although wind generation generally increases overall industry costs, it reduces associated cost uncertainties and CO 2 emissions. However, there are some cases in which wind generation can reduce the overall costs of generation portfolios. The extent to which wind penetration affects industry expected costs and uncertainties depends on the level of carbon price and the conventional technology mix in the portfolios. - Highlights: ► A probabilistic portfolio analysis tool to assess generation portfolios with wind power. ► Explore the impacts of wind penetrations and carbon prices under uncertainties. ► Wind generation increases overall portfolio costs but reduces cost risks and emissions. ► The value of wind power depends on the carbon price and the technology mix. ► Complex interactions between wind penetration level and carbon pricing.

  3. Transient stability evaluation of wind farms implemented with induction generators

    OpenAIRE

    Najafi, Hamid Reza; Robinson, Francis; Dastyar, Farshad; Samadi, Ali Asghar

    2008-01-01

    The progress of wind-energy generation around the world in recent years has been consistently impressive. As more and more attention is paid to the increase of wind-turbine farms, a number of problems should be investigated in more detail. Among these problems, the transient stability of wind farms implemented with induction generators becomes necessary, especially when operating into a weak connection. The transient behavior and stability of wind farms with induction generators have been stu...

  4. An emerging technology for environmentally compatible wind plant siting

    International Nuclear Information System (INIS)

    Castellano, C.C.

    1994-01-01

    This paper discusses the development of an improved technique and method for undertaking wind site prospecting which offers the wind energy prospector a means for evaluation of a potential site prior to installation of meteorologic towers and avoiding the costs of continued tower movements. The US Department of Energy, working through the Pacific Northwest Laboratory (PNL), is developing a digitized terrain technology for detailed terrain mapping which offers a new and highly effective tool to wind energy prospectors, developers, consultants, planners, utilities, and states. PNL has developed computer programs for geoscience applications and has combined these programs with digital terrain data generated by the US Geological Survey (USGS), plus PNL data previously generated in the preparation of state wind power maps which have been published by PNL in their US Wind Energy Atlas. The availability of the USGS data base has provided PNL with a unique opportunity for developing low cost convenient and effective wind energy plant prospecting. By applying a shaded relief analysis for a grid of the USGS terrain height, a continuous computer-generated map of a given latitude-longitude area can be produced with detailed terrain features which are far more effective and revealing than any existing contour map. Only the abstract was published

  5. Offshore Wind Technology Depth Zones

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Coastal bathymetric depth, measured in meters at depth values of: -30, -60, -900 Shallow Zone (0-30m): Technology has been demonstrated on a commercial scale at...

  6. Wind Energy Workforce Development: Engineering, Science, & Technology

    Energy Technology Data Exchange (ETDEWEB)

    Lesieutre, George A.; Stewart, Susan W.; Bridgen, Marc

    2013-03-29

    Broadly, this project involved the development and delivery of a new curriculum in wind energy engineering at the Pennsylvania State University; this includes enhancement of the Renewable Energy program at the Pennsylvania College of Technology. The new curricula at Penn State includes addition of wind energy-focused material in more than five existing courses in aerospace engineering, mechanical engineering, engineering science and mechanics and energy engineering, as well as three new online graduate courses. The online graduate courses represent a stand-alone Graduate Certificate in Wind Energy, and provide the core of a Wind Energy Option in an online intercollege professional Masters degree in Renewable Energy and Sustainability Systems. The Pennsylvania College of Technology erected a 10 kilowatt Xzeres wind turbine that is dedicated to educating the renewable energy workforce. The entire construction process was incorporated into the Renewable Energy A.A.S. degree program, the Building Science and Sustainable Design B.S. program, and other construction-related coursework throughout the School of Construction and Design Technologies. Follow-on outcomes include additional non-credit opportunities as well as secondary school career readiness events, community outreach activities, and public awareness postings.

  7. Generation Expansion Planning Considering Integrating Large-scale Wind Generation

    DEFF Research Database (Denmark)

    Zhang, Chunyu; Ding, Yi; Østergaard, Jacob

    2013-01-01

    necessitated the inclusion of more innovative and sophisticated approaches in power system investment planning. A bi-level generation expansion planning approach considering large-scale wind generation was proposed in this paper. The first phase is investment decision, while the second phase is production...... optimization decision. A multi-objective PSO (MOPSO) algorithm was introduced to solve this optimization problem, which can accelerate the convergence and guarantee the diversity of Pareto-optimal front set as well. The feasibility and effectiveness of the proposed bi-level planning approach and the MOPSO...

  8. Simulation of an offshore wind farm using fluid power for centralized electricity generation

    Directory of Open Access Journals (Sweden)

    A. Jarquin Laguna

    2017-07-01

    Full Text Available A centralized approach for electricity generation within a wind farm is explored through the use of fluid power technology. This concept considers a new way of generation, collection and transmission of wind energy inside a wind farm, in which electrical conversion does not occur during any intermediate conversion step before the energy has reached the offshore central platform. A numerical model was developed to capture the relevant physics from the dynamic interaction between different turbines coupled to a common hydraulic network and controller. This paper presents a few examples of the time domain simulation results for a hypothetical hydraulic wind farm subject to turbulent wind conditions. The performance and operational parameters of individual turbines are compared with those of a reference wind farm based on conventional wind turbine generator technology using the same wind farm layout and environmental conditions. For the presented case studies, results indicate that the individual wind turbines are able to operate within operational limits. Despite the stochastic turbulent wind conditions and wake effects, the hydraulic wind farm is able to produce electricity with reasonable performance in both below and above rated conditions. With the current pressure control concept, a continuous operation of the hydraulic wind farm is shown including the full stop of one or more turbines.

  9. Most promising flexible generators for the wind dominated market

    International Nuclear Information System (INIS)

    Vorushylo, I.; Keatley, P.; Hewitt, NJ

    2016-01-01

    The intermittent nature of wind power and other forms of variable renewable energy requires complementary dispatchable flexible generators in order to guarantee the efficient, reliable and secure operation of electricity systems. The most popular solution to date has been peaking plant, usually in the form of open-cycle-gas- turbines (OCGT). Energy storage technologies have so far been considered too expensive, however technology development, as well as challenging renewable targets could potentially make storage economically viable. Although new advanced flexible combined-cycle gas turbines (CCGT) have been developed by some manufacturers, they have not yet been investigated in electricity market models. This paper describes a techno-economic assessment of the most suitable flexible technologies for the wind-dominated all Ireland electricity market (the Single Electricity Market (SEM)). The analysis is conducted by considering the impact of a series of policy scenarios which are compared in an electricity market model. The comparison is quantified using three primary metrics: technical benefits to the system, economic advantages to the consumer and investment viability. Modelling results suggest that advanced CCGT and energy storage solutions are the most advantageous, however they need strong governmental support to attract potential investors and guarantee deployment in the market. - Highlights: •Future efficiency and stability of the wind dominated require flexible generators. •Energy storage systems are the most technically advantageous flexible generators. •The advanced flexible CCGT is the most efficient solution from an economic point of view. •Traditional peaking plants (OCGT) is the least advantageous flexible generator. •The governments will play a key role in integration of the flexible technologies.

  10. Structural Flexibility of Large Direct Drive Generators for Wind Turbines

    NARCIS (Netherlands)

    Shrestha, G.

    2013-01-01

    The trend in wind energy is towards large offshore wind farms. This trend has led to the demand for high reliability and large single unit wind turbines. Different energy conversion topologies such as multiple stage geared generators, single stage geared generators and gearless (direct drive)

  11. Harnessing the Power of Wind Technology

    Science.gov (United States)

    Dotson, Tawny M.

    2009-01-01

    "Where the wind comes sweepin' down the plain" is more than just a song lyric for Oklahoma's career and technical education community. It's the acknowledgement of an untapped natural resource that has the potential to translate into both energy independence for the country and jobs for the state. Statewide, technology center instructors…

  12. Wind Energy Technology: Training a Sustainable Workforce

    Science.gov (United States)

    Krull, Kimberly W.; Graham, Bruce; Underbakke, Richard

    2009-01-01

    Through innovative teaching and technology, industry and educational institution partnerships, Cloud County Community College is preparing a qualified workforce for the emerging wind industry estimated to create 80,000 jobs by 2020. The curriculum blends on-campus, on-line and distance learning, land-lab, and field training opportunities for…

  13. Financing innovative technologies in wind projects

    International Nuclear Information System (INIS)

    Vaughan, C.

    2006-01-01

    Methods of market entry and the financing of new technologies were discussed from the perspective of Clipper Windpower, a wind energy company based in the northeastern United States and Canada. Many new technology companies only consider private equity when seeking financing for new product development. However, financing for projects and products is only the first step to market entry. Wind projects are the financial equivalent of a high yield bond with mechanical risk. Many wind power projects with company equity can also be seen as a long term bond with upside in any given year. It is therefore important for wind developers to seek out strategic buyers for both product development and project development, in addition to finding sources of private equity. Clipper Windpower Inc. has developed a partnership with British Petroleum (BP), who hold an equity interest in the company. Both companies are now partnering on projects with Clipper turbines, and firm orders are in place for 2007 and 2008. As a result of the partnership, Clipper now has increased its financial strength in cash flows, balance sheets, and projected revenue. It was concluded that a successful partnership can increase the scale of wind power development, and bring financial sophistication to smaller companies with limited resources. refs., tabs., figs

  14. International energy technology collaboration: wind power integration into electricity systems

    International Nuclear Information System (INIS)

    Justus, D.

    2006-01-01

    A rapid growth of wind power since the 1990s has led to notable market shares in some electricity markets. This growth is concentrated in a few countries with effective Research, Development and Demonstration (RD and D) programmes and with policies that support its diffusion into the market place. The speed and depth of its penetration in these electricity markets have amplified the need to address grid integration concerns, so as not to impede the further penetration of wind power. Research on technologies, tools and practices for integrating large amounts of wind power into electricity supply systems is attempting to respond to this need. In recent years, existing international collaborative research efforts have expanded their focus to include grid integration of wind power and new consortia have been formed to pool knowledge and resources. Effective results benefit a few countries that already have a significant amount of wind in their electricity supply fuel mix, as well as to the potential large markets worldwide. This paper focuses on the challenge of bringing significant amounts of intermittent generating sources into grids dominated by large central generating units. It provides a brief overview of the growth of wind power, mainly since 1990, the technical and operational issues related to integration and selected collaborative programmes underway to address grid integration concerns. (author)

  15. Wind turbine/generator set and method of making same

    Science.gov (United States)

    Bevington, Christopher M.; Bywaters, Garrett L.; Coleman, Clint C.; Costin, Daniel P.; Danforth, William L.; Lynch, Jonathan A.; Rolland, Robert H.

    2013-06-04

    A wind turbine comprising an electrical generator that includes a rotor assembly. A wind rotor that includes a wind rotor hub is directly coupled to the rotor assembly via a simplified connection. The wind rotor and generator rotor assembly are rotatably mounted on a central spindle via a bearing assembly. The wind rotor hub includes an opening having a diameter larger than the outside diameter of the central spindle adjacent the bearing assembly so as to allow access to the bearing assembly from a cavity inside the wind rotor hub. The spindle is attached to a turret supported by a tower. Each of the spindle, turret and tower has an interior cavity that permits personnel to traverse therethrough to the cavity of the wind rotor hub. The wind turbine further includes a frictional braking system for slowing, stopping or keeping stopped the rotation of the wind rotor and rotor assembly.

  16. Design Study of Fully Superconducting Wind Turbine Generators

    DEFF Research Database (Denmark)

    Song, Xiaowei (Andy); Mijatovic, Nenad; Jensen, Bogi Bech

    2015-01-01

    In this paper, two fully superconducting generators employing MgB2 armature winding, with YBCO and MgB2 field winding respectively, are presented and analyzed. The ac loss in armature winding is estimated, and a simple comparative study is carried out. The results show that both electromagnetic...... designs for fully superconducting generators are promising with respect to the power density. However, the cost of removing ac loss in armature winding is as high as $900 000. It is also noted that with the current price of YBCO tape, the generator employing MgB 2 field winding would have lower cost....

  17. Power Quality Improvements in Wind Diesel Power Generation System

    Directory of Open Access Journals (Sweden)

    Omar Feddaoui

    2015-08-01

    Full Text Available Generation of electricity using diesel is costly for small remote isolated communities. At remote location electricity generation from renewable energy such as wind can help reduce the overall operating costs by reducing the fuel costs. However, the penetration of wind power into small diesel-based grids is limited because of its effect on power quality and reliability. This paper focuses on the combination of Wind Turbine and Diesel Generator systems for sustained power generation, to improve the power quality of wind generation system. The performances of the optimal control structure are assessed and discussed by means of a set of simulations.

  18. Design of High Performance Permanent-Magnet Synchronous Wind Generators

    Directory of Open Access Journals (Sweden)

    Chun-Yu Hsiao

    2014-11-01

    Full Text Available This paper is devoted to the analysis and design of high performance permanent-magnet synchronous wind generators (PSWGs. A systematic and sequential methodology for the design of PMSGs is proposed with a high performance wind generator as a design model. Aiming at high induced voltage, low harmonic distortion as well as high generator efficiency, optimal generator parameters such as pole-arc to pole-pitch ratio and stator-slot-shoes dimension, etc. are determined with the proposed technique using Maxwell 2-D, Matlab software and the Taguchi method. The proposed double three-phase and six-phase winding configurations, which consist of six windings in the stator, can provide evenly distributed current for versatile applications regarding the voltage and current demands for practical consideration. Specifically, windings are connected in series to increase the output voltage at low wind speed, and in parallel during high wind speed to generate electricity even when either one winding fails, thereby enhancing the reliability as well. A PMSG is designed and implemented based on the proposed method. When the simulation is performed with a 6 Ω load, the output power for the double three-phase winding and six-phase winding are correspondingly 10.64 and 11.13 kW. In addition, 24 Ω load experiments show that the efficiencies of double three-phase winding and six-phase winding are 96.56% and 98.54%, respectively, verifying the proposed high performance operation.

  19. Analysis of wind energy generation possibilities with various rotor types at disadvantageous wind condition zones

    Science.gov (United States)

    Bieniek, Andrzej

    2017-10-01

    The paper describe possibilities of energy generation using various rotor types but especially with multi-blade wind engine operates in the areas with unfavourable wind condition. The paper presents also wind energy conversion estimation results presented based on proposed solution of multi-blade wind turbine of outer diameter of 4 m. Based on the wind distribution histogram from the disadvantage wind condition zones (city of Basel) and taking into account design and estimated operating indexes of the considered wind engine rotor an annual energy generation was estimated. Also theoretical energy generation using various types of wind turbines operates at disadvantage wind conditions zones were estimated and compared. The conducted analysis shows that introduction of multi-blade wind rotor instead of the most popular 3- blades or vertical axis rotors results of about 5% better energy generation. Simultaneously there are energy production also at very disadvantages wind condition at wind speed lower then 4 m s-1. Based on considered construction of multi-blade wind engine the rise of rotor mounting height from 10 to 30 m results with more then 300 % better results in terms of electric energy generation.

  20. Alternative methods of modeling wind generation using production costing models

    International Nuclear Information System (INIS)

    Milligan, M.R.; Pang, C.K.

    1996-08-01

    This paper examines the methods of incorporating wind generation in two production costing models: one is a load duration curve (LDC) based model and the other is a chronological-based model. These two models were used to evaluate the impacts of wind generation on two utility systems using actual collected wind data at two locations with high potential for wind generation. The results are sensitive to the selected wind data and the level of benefits of wind generation is sensitive to the load forecast. The total production cost over a year obtained by the chronological approach does not differ significantly from that of the LDC approach, though the chronological commitment of units is more realistic and more accurate. Chronological models provide the capability of answering important questions about wind resources which are difficult or impossible to address with LDC models

  1. Advanced Wind Turbine Program Next Generation Turbine Development Project: June 17, 1997--April 30, 2005

    Energy Technology Data Exchange (ETDEWEB)

    GE Wind Energy, LLC

    2006-05-01

    This document reports the technical results of the Next Generation Turbine Development Project conducted by GE Wind Energy LLC. This project is jointly funded by GE and the U.S. Department of Energy's National Renewable Energy Laboratory.The goal of this project is for DOE to assist the U.S. wind industry in exploring new concepts and applications of cutting-edge technology in pursuit of the specific objective of developing a wind turbine that can generate electricity at a levelized cost of energy of $0.025/kWh at sites with an average wind speed of 15 mph (at 10 m height).

  2. Wind Turbine Power Curve Design for Optimal Power Generation in Wind Farms Considering Wake Effect

    DEFF Research Database (Denmark)

    Tian, Jie; Zhou, Dao; Su, Chi

    2017-01-01

    In modern wind farms, maximum power point tracking (MPPT) is widely implemented. Using the MPPT method, each individual wind turbine is controlled by its pitch angle and tip speed ratio to generate the maximum active power. In a wind farm, the upstream wind turbine may cause power loss to its...... downstream wind turbines due to the wake effect. According to the wake model, downstream power loss is also determined by the pitch angle and tip speed ratio of the upstream wind turbine. By optimizing the pitch angle and tip speed ratio of each wind turbine, the total active power of the wind farm can...... be increased. In this paper, the optimal pitch angle and tip speed ratio are selected for each wind turbine by the exhausted search. Considering the estimation error of the wake model, a solution to implement the optimized pitch angle and tip speed ratio is proposed, which is to generate the optimal control...

  3. Quadrennial Technology Review 2015: Technology Assessments--Wind Power

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2015-10-07

    Wind power has become a mainstream power source in the U.S. electricity portfolio, supplying 4.9% of the nation’s electricity demand in 2014. With more than 65 GW installed across 39 states at the end of 2014, utility-scale wind power is a cost-effective source of low-emissions power generation throughout much of the nation. The United States has significant sustainable land-based and offshore wind resource potential, greater than 10 times current total U.S. electricity consumption. A technical wind resource assessment conducted by the Department of Energy (DOE) in 2009 estimated that the land-based wind energy potential for the contiguous United States is equivalent to 10,500 GW capacity at 80 meters (m) hub and 12,000 GW capacity at 100 meters (m) hub heights, assuming a capacity factor of at least 30%. A subsequent 2010 DOE report estimated the technical offshore wind energy potential to be 4,150 GW. The estimate was calculated from the total offshore area within 50 nautical miles of shore in areas where average annual wind speeds are at least 7 m per second at a hub height of 90 m.

  4. Assessment and analysis of wind energy generation and power ...

    African Journals Online (AJOL)

    147. Assessment and analysis of wind energy generation and power control of wind turbine system. Évaluation et analyse de la production d'énergie éolienne et contrôle de puissances d'un .... balance between the increasing demand in energy and notably in ... very well fits of the wind distribution; flexible and scalable ...

  5. Centralised control of wind farm with doubly fed induction generators

    DEFF Research Database (Denmark)

    Hansen, Anca-Daniela; Sorensen, Poul; Iov, Florin

    2005-01-01

    This paper describes the development of an advanced wind farm controller for a wind farm made-up exclusively of doubly-fed generators. The overall aim of such controller is to enable the wind farms to behave as active controllable components in the power system. The attention is mainly drawn to t...

  6. Assessment of wind energy potential for eletricity generation in ...

    African Journals Online (AJOL)

    Wind speed data from a site called Setchet is used to illustrate that the available wind energy can be harvested to generate electricity that can supplement the shortfall of electricity. The windy season, which is from July to November, coincides with the dry season. The annual average wind speed is 8.3 m/s, a value that is ...

  7. Mars Technologies Spawn Durable Wind Turbines

    Science.gov (United States)

    2014-01-01

    To develop and test wind power technology for use on Mars, Ames Research Center turned to Northern Power Systems (NPS), based in Barre, Vermont. Ames awarded NPS an SBIR contract so the company could enhance their turbine’s function. Today, over 200 NASA-derived Northern Power 100s are in operation on Earth and have reduced carbon emissions by 50,000 tons annually.

  8. An optimal design of coreless direct-drive axial flux permanent magnet generator for wind turbine

    International Nuclear Information System (INIS)

    Ahmed, D; Ahmad, A

    2013-01-01

    Different types of generators are currently being used in wind power technology. The commonly used are induction generator (IG), doubly-fed induction generator (DFIG), electrically excited synchronous generator (EESG) and permanent magnet synchronous generator (PMSG). However, the use of PMSG is rapidly increasing because of advantages such as higher power density, better controllability and higher reliability. This paper presents an innovative design of a low-speed modular, direct-drive axial flux permanent magnet (AFPM) generator with coreless stator and rotor for a wind turbine power generation system that is developed using mathematical and analytical methods. This innovative design is implemented in MATLAB / Simulink environment using dynamic modelling techniques. The main focus of this research is to improve efficiency of the wind power generation system by investigating electromagnetic and structural features of AFPM generator during its operation in wind turbine. The design is validated by comparing its performance with standard models of existing wind power generators. The comparison results demonstrate that the proposed model for the wind power generator exhibits number of advantages such as improved efficiency with variable speed operation, higher energy yield, lighter weight and better wind power utilization.

  9. An optimal design of coreless direct-drive axial flux permanent magnet generator for wind turbine

    Science.gov (United States)

    Ahmed, D.; Ahmad, A.

    2013-06-01

    Different types of generators are currently being used in wind power technology. The commonly used are induction generator (IG), doubly-fed induction generator (DFIG), electrically excited synchronous generator (EESG) and permanent magnet synchronous generator (PMSG). However, the use of PMSG is rapidly increasing because of advantages such as higher power density, better controllability and higher reliability. This paper presents an innovative design of a low-speed modular, direct-drive axial flux permanent magnet (AFPM) generator with coreless stator and rotor for a wind turbine power generation system that is developed using mathematical and analytical methods. This innovative design is implemented in MATLAB / Simulink environment using dynamic modelling techniques. The main focus of this research is to improve efficiency of the wind power generation system by investigating electromagnetic and structural features of AFPM generator during its operation in wind turbine. The design is validated by comparing its performance with standard models of existing wind power generators. The comparison results demonstrate that the proposed model for the wind power generator exhibits number of advantages such as improved efficiency with variable speed operation, higher energy yield, lighter weight and better wind power utilization.

  10. Wing/kite-based wind energy generation: An overview

    Science.gov (United States)

    Milanese, M.

    2013-06-01

    Several technologies, aimed at converting high-altitude wind into electricity, are actually being investigated by companies, research centers and universities worldwide, and the community of people working in this field has coined the term airborne wind energy (AWE) as a common umbrella for these concepts. Indeed, many basic ideas that are now being developed in the context of AWE were already present in patents and publications since the '70s. Then, these ideas remained somehow silent, until more recent years, when several research groups and companies started to carry out theoretical, numerical and experimental analyses, made possible by important advances in diverse fields like materials, aerodynamics, sensors, computation and control. In this lecture, the basic AWE concepts and results that have been up to date accomplished are overviewed, with a focus on a particular class of AWE generators, namely with flexible wings and ground level generators, and emphasis on optimization and control aspects. Finally, we delineate what challenges are still to be faced, in order to fully demonstrate the viability of airborne wind energy.

  11. Stability improvement of induction generator-based wind turbine systems

    DEFF Research Database (Denmark)

    Chen, Zhe; Hu, Y.; Blaabjerg, Frede

    2007-01-01

    affecting the stability are analysed. The characteristics of the induction-generator-based wind turbines are described, and possible methods of improving stability of the wind generators are discussed. The system modelling is presented, and then the discussed methods of improving stability are investigated......The stability improvement of induction-generator-based wind turbine systems under power system fault conditions has been studied. Two types of generators are considered, namely rotor short-circuited induction generators and dynamic slip-controlled wound rotor induction generators. The factors...

  12. Stability improvement of induction generator-based wind turbine systems

    DEFF Research Database (Denmark)

    Chen, Zhe; Hu, Y.; Blaabjerg, Frede

    2007-01-01

    The stability improvement of induction-generator-based wind turbine systems under power system fault conditions has been studied. Two types of generators are considered, namely rotor short-circuited induction generators and dynamic slip-controlled wound rotor induction generators. The factors...... affecting the stability are analysed. The characteristics of the induction-generator-based wind turbines are described, and possible methods of improving stability of the wind generators are discussed. The system modelling is presented, and then the discussed methods of improving stability are investigated....... Simulation results have been presented and the effectiveness of the stability improvement methods has been discussed....

  13. A fair wind blows for one green technology

    International Nuclear Information System (INIS)

    Marshall, E.

    1993-01-01

    The newest windmills are small and robust, typically capable of generating 50 to 500 kilowatts each. Sales have been helped along, both in Europe and the United States, by laws requiring utility companies to offer fixed purchase-price contracts to suppliers of wind electricity. Another boost comes from the National Energy Policy Act, signed into law last fall by George Bush. It permits a 1.5 cent per kilowatt-hour tax credit for generators of electricity from renewable sources. Emphasizing energy production is open-quotes a much smarter approachclose quotes than just rewarding construction of new windmills, says Alexander Ellis, an executive at Kenetech/US Windpower, because it encourages companies to deliver durable products. Today, the wind energy business seems to be booming, bearing out the Administration's faith that environmental technologies can open new markets. There are now more than 16,000 wind turbines installed in the United States, according to DeMeo, most of them still in California. Europe is also moving ahead. Although European countries have installed fewer machines to date, DeMeo says, the European Community has ambitious plans, calling for double the current US wind energy capacity by the end of the decade. About 10 major manufacturers in the United States and abroad are vying for this business. It took some fine-tuning, but government incentives to nurture this green technology seem to be working

  14. Wind Turbine Generator System Safety and Function Test Report for the Entegrity EW50 Wind Turbine

    Energy Technology Data Exchange (ETDEWEB)

    Smith, J.; Huskey, A.; Jager, D.; Hur, J.

    2012-11-01

    This report summarizes the results of a safety and function test that NREL conducted on the Entegrity EW50 wind turbine. This test was conducted in accordance with the International Electrotechnical Commissions' (IEC) standard, Wind Turbine Generator System Part 2: Design requirements for small wind turbines, IEC 61400-2 Ed.2.0, 2006-03.

  15. Wind Turbine Generator System Safety and Function Test Report for the Ventera VT10 Wind Turbine

    Energy Technology Data Exchange (ETDEWEB)

    Smith, J.; Huskey, A.; Jager, D.; Hur, J.

    2012-11-01

    This report summarizes the results of a safety and function test that NREL conducted on the Ventera VT10 wind turbine. This test was conducted in accordance with the International Electrotechnical Commissions' (IEC) standard, Wind Turbine Generator System Part 2: Design requirements for small wind turbines, IEC 61400-2 Ed.2.0, 2006-03.

  16. Mars Technologies Spawn Durable Wind Turbines

    Science.gov (United States)

    Bubenheim, David L.

    2013-01-01

    Sometimes referred to as regenerative life support systems, the concept includes an enclosed self-sufficient habitat that can independently support life for years on end. Such a system aims not only to produce its own food and water but to purify air and convert waste into useful byproducts. In the early 1990s, NASA was planning for an extended stay on Mars, and Bubenheim and his Ames colleagues were concentrating efforts on creating a complete ecological system to sustain human crewmembers during their time on the Red Planet. The main barrier to developing such a system, he says, is energy. Mars has no power plants, and a regenerative system requires equipment that runs on electricity to do everything from regulating humidity in the atmosphere to monitoring the quality of recycled water. The Ames group started looking at how to best make power on a planet that is millions of miles away from Earth and turned to a hybrid concept combining wind and solar power technologies. The reason was that Mars experiences frequent dust storms that can block nearly all sunlight. When theres a dust storm and the wind is blowing, the wind system could be the dominant power source. When the wind is not blowing and the sun is out, photovoltaics could be the dominant source, says Bubenheim.To develop and test the wind power technology, Ames turned to a remote, harsh environment here on Earth: the South Pole. The South Pole was a really good analog for Mars, says Bubenheim. The technology features for going to Mars were the same technology features needed to make something work at the South Pole.Around the same time that NASA started investigating energy technologies for the Red Planet, the National Science Foundation (NSF) was working on a redesign of their station at the South Pole. To power its operations, NSF used fuel that it flew to the remote location, but the Foundation recognized the benefits of also using onsite renewable energy technologies. In the winter they have small

  17. Hybrid biomass-wind power plant for reliable energy generation

    International Nuclear Information System (INIS)

    Perez-Navarro, A.; Alfonso, D.; Alvarez, C.; Ibanez, F.; Sanchez, C.; Segura, I.

    2010-01-01

    Massive implementation of renewable energy resources is a key element to reduce CO 2 emissions associated to electricity generation. Wind resources can provide an important alternative to conventional electricity generation mainly based on fossil fuels. However, wind generators are greatly affected by the restrictive operating rules of electricity markets because, as wind is naturally variable, wind generators may have serious difficulties on submitting accurate generation schedules on a day ahead basis, and on complying with scheduled obligations in real-time operation. In this paper, an innovative system combining a biomass gasification power plant, a gas storage system and stand-by generators to stabilize a generic 40 MW wind park is proposed and evaluated with real data. The wind park power production model is based on real data about power production of a Spanish wind park and a probabilistic approach to quantify fluctuations and so, power compensation needs. The hybrid wind-biomass system is analysed to obtain main hybrid system design parameters. This hybrid system can mitigate wind prediction errors and so provide a predictable source of electricity. An entire year cycle of hourly power compensations needs has been simulated deducing storage capacity, extra power needs of the biomass power plant and stand-by generation capacity to assure power compensation during critical peak hours with acceptable reliability. (author)

  18. Stochastic generation of hourly wind speed time series

    International Nuclear Information System (INIS)

    Shamshad, A.; Wan Mohd Ali Wan Hussin; Bawadi, M.A.; Mohd Sanusi, S.A.

    2006-01-01

    In the present study hourly wind speed data of Kuala Terengganu in Peninsular Malaysia are simulated by using transition matrix approach of Markovian process. The wind speed time series is divided into various states based on certain criteria. The next wind speed states are selected based on the previous states. The cumulative probability transition matrix has been formed in which each row ends with 1. Using the uniform random numbers between 0 and 1, a series of future states is generated. These states have been converted to the corresponding wind speed values using another uniform random number generator. The accuracy of the model has been determined by comparing the statistical characteristics such as average, standard deviation, root mean square error, probability density function and autocorrelation function of the generated data to those of the original data. The generated wind speed time series data is capable to preserve the wind speed characteristics of the observed data

  19. Power Smoothing and MPPT for Grid-connected Wind Power Generation with Doubly Fed Induction Generator

    Science.gov (United States)

    Kai, Takaaki; Tanaka, Yuji; Kaneda, Hirotoshi; Kobayashi, Daichi; Tanaka, Akio

    Recently, doubly fed induction generator (DFIG) and synchronous generator are mostly applied for wind power generation, and variable speed control and power factor control are executed for high efficiently for wind energy capture and high quality for power system voltage. In variable speed control, a wind speed or a generator speed is used for maximum power point tracking. However, performances of a wind generation power fluctuation due to wind speed variation have not yet investigated for those controls. The authors discuss power smoothing by those controls for the DFIG inter-connected to 6.6kV distribution line. The performances are verified using power system simulation software PSCAD/EMTDC for actual wind speed data and are examined from an approximate equation of wind generation power fluctuation for wind speed variation.

  20. Hybrid power generating systems of small wind power generators combined with solar cells or other generators.; Kogata furyoku to taiyoko, sonota tono haiburiddo hatsuden shisutemu

    Energy Technology Data Exchange (ETDEWEB)

    Koga, M. [Meidensha Corp., Ltd., Tokyo (Japan)

    2000-09-30

    Practical examples of the hybrid power generating system of small wind power generator combined with solar cells at a radio relay station at halfway up the mountain was outlined, and the effectiveness of a small hybrid power generating system of small wind power generator combined with micro hydraulic or micro gas turbine power generator was described. System interconnected large wind power generators are about to spread rapidly in Japan. But in terms of making good use of the small and unused natural energy, increasing uses of small independent and distributed power sources, as well as the international development assistance for un-electrified districts in developing countries, further technology developments and their support system are requested in small hybrid wind power generations as well. (NEDO)

  1. PSS Controller for Wind Power Generation Systems

    Science.gov (United States)

    Domínguez-García, J. L.; Gomis-Bellmunt, O.; Bianchi, F.; Sumper, A.

    2012-10-01

    Small signal stability analysis for power systems with wind farm interaction is presented. Power systems oscillation modes can be excited by disturbance or fault in the grid. Variable speed wind turbines can be regulated to reduce these oscillations, stabilising the power system. A power system stabiliser (PSS) control loop for wind power is designed in order to increase the damping of the oscillation modes. The proposed power system stabiliser controller is evaluated by small signal analysis.

  2. The Generated Power of Multipole Induction Generator with Secondary Winding on the Stator

    OpenAIRE

    Diļevs, G; Jākobsons, E

    2009-01-01

    This paper posses the construction of induction generator, which has the ability to operate at a low rotation speed. This generator can be applied for directly driven turbine without using the gearbox. The generator is multi pole with all of the windings placed on the stator. Rotor is tooth-like and has no windings on it. Primary winding is three phase, secondary winding is two phase.

  3. Three essays on the effect of wind generation on power system planning and operations

    Science.gov (United States)

    Davis, Clay Duane

    modified methodology achieves expected costs for the UC-ED problem that are as low as the full stochastic model and markedly lower than the deterministic model. The final essay focuses on valuing energy storage located at a wind site through multiple revenue streams, where energy storage is valued from the perspective of a profit maximizing investor. Given the current state of battery storage technology, a battery capacity of zero is optimal in the setting considered in this essay. The results presented in this essay are dependent on a technological breakthrough that substantially reduces battery cost and conclude that allowing battery storage to simultaneously participate in multiple wholesale markets is optimal relative to participating in any one market alone. Also, co-locating battery storage and wind provides value by altering the optimal transmission line capacity to the battery and wind site. This dissertation considers problems of wind integration from an economic perspective and builds on existing work in this area. The economics of wind integration and utilization are important because wind generation levels are already significant and will likely become more so in the future. While this dissertation adds to the existing literature, additional work is needed in this area to ensure wind generation adds as much value to the overall system as possible.

  4. Control of Permanent Magnet Synchronous Generator for large wind turbines

    DEFF Research Database (Denmark)

    Busca, Cristian; Stan, Ana-Irina; Stanciu, Tiberiu

    2010-01-01

    Direct Torque Control (DTC) and Field Oriented Control (FOC) are the most dominant control strategies used in generators for wind turbines. In this paper both control methods were implemented on a Permanent Magnet Synchronous Generator (PMSG). The variable speed wind turbine with full scale power...

  5. Asynchronous Generators for use in Gearless Wind Turbines

    DEFF Research Database (Denmark)

    Jensen, Bogi Bech; Henriksen, Matthew L.

    2011-01-01

    In this presentation the squirrel cage induction generator is proposed for a direct-drive wind turbine. The squirrel cage induction generator is proposed for direct drive wind turbines, because of its simple and rugged construction and because it does not require rare earth elements, which...

  6. Performance analysis of voltage regulation in diesel-wind generation

    African Journals Online (AJOL)

    generated by the two sources one source is the diesel engine generator and the other source is the wind energy conversion system the supply is provided to the isolated load. The voltage is regulated at the load side .The electrical energy produced by the wind turbine at constant speed is connected to the specific load by ...

  7. Low Cost Small Wind Turbine Generators for Developing Countries

    NARCIS (Netherlands)

    Ani, S.O.

    2013-01-01

    Wind energy accounts for an increasing percentage of the energy supplied to the electricity network. Electricity generation from wind is now cheaper than other renewables and almost cost competitive with other conventional sources of electricity generation. However, this impressive growth is largely

  8. Reliability analysis of wind embedded power generation system for ...

    African Journals Online (AJOL)

    This paper presents a method for Reliability Analysis of wind energy embedded in power generation system for Indian scenario. This is done by evaluating the reliability index, loss of load expectation, for the power generation system with and without integration of wind energy sources in the overall electric power system.

  9. Electric Generators and their Control for Large Wind Turbines

    DEFF Research Database (Denmark)

    Boldea, Ion; Tutelea, Lucian; Rallabandi, Vandana

    2017-01-01

    The electric generator and its power electronics interface for wind turbines (WTs) have evolved rapidly toward higher reliability and reduced cost of energy in the last 40 years. This chapter describes the up-to-date electric generators existing in the wind power industry, namely, the doubly fed...

  10. The General Electric MOD-1 wind turbine generator program

    Science.gov (United States)

    Poor, R. H.; Hobbs, R. B.

    1979-01-01

    The design, fabrication, installation and checkout of MOD-1, a megawatt class wind turbine generator which generates utility grade electrical power, is described. A MOD-1/MOD-1A tradeoff study is discussed.

  11. Effect of fall wind on wind power generation; Furyoku hatsuden ni okeru dashikaze no koka

    Energy Technology Data Exchange (ETDEWEB)

    Nagai, H. [Nihon University, Tokyo (Japan)

    1997-11-25

    Wind conditions in Arakawa Town, Niigata Prefecture, were surveyed by anemometers and anemoscopes installed at 3 different points, and the data are analyzed to develop the prediction model for investigating possibility of introduction of wind mills there. Outlined herein is power generated by fall wind by comparing predicted power availability with the actual results. In order to investigate possibility of power generation by fall wind, the wind conditions and power availability are simulated using the observed wind condition data. Predicted wind velocity involves a large error at a point where frequency of prevailing wind direction is high, and direction in which average wind velocity is high coincides with direction in which land is slanted at a high slope. Fall wind occurs locally for geographical reasons. Location of the wind mill must be carefully considered, because it is complex, although potentially gives a larger quantity of power. A wind mill of 400kW can produce power of around 600MWh annually, when it is located at the suited site confirmed by the wind condition analysis results. 6 refs., 5 figs., 6 tabs.

  12. Hi-Q Rotor - Low Wind Speed Technology

    Energy Technology Data Exchange (ETDEWEB)

    Todd E. Mills; Judy Tatum

    2010-01-11

    collected, the results of our first full-scale prototype wind turbine proved that higher energy can be captured at lower wind speeds with the new Hi-Q Rotor. The Hi-Q Rotor is almost 15% more productive than the Bergey from 6 m/s to 8 m/s, making it ideal in Class 3, 4, and 5 wind sites and has application in the critical and heretofore untapped areas that are closer to cities, 'load centers,' and may even be used directly in urban areas. The additional advantage of the Hi-Q Rotor's non-conventional blade tips, which eliminates most air turbulence, is noise reduction which makes it doubly ideal for populated urban areas. Hi-Q Products recommends one final stage of development to take the Hi-Q Rotor through Technology Readiness Levels 8-9. During this stage of development, the rotor will be redesigned to further increase efficiency, match the rotor to a more suitable generator, and lower the cost of manufacturing by redesigning the structure to allow for production in larger quantities at lower cost. Before taking the rotor to market and commercialization, it is necessary to further optimize the performance by finding a better generator and autofurling system, ones more suitable for lower wind speeds and rpms should be used in all future testing. The potential impact of this fully developed technology will be the expansion and proliferation of energy renewal into the heretofore untapped Class 2, 3, 4, and 5 Wind Sites, or the large underutilized sites where the wind speed is broken by physical features such as mountains, buildings, and trees. Market estimates by 2011, if low wind speed technology can be developed are well above: 13 million homes, 675,000 commercial buildings, 250,000 public facilities. Estimated commercial exploitation of the Hi-Q Rotor show potential increase in U.S. energy gained through the clean, renewable wind energy found in low and very low wind speed sites. This new energy source would greatly impact greenhouse emissions as well as the

  13. Blowing in the Wind: A Review of Wind Power Technology

    Science.gov (United States)

    Harris, Frank

    2014-01-01

    The use of wind as a replenishable energy resource has come back into favour in recent decades. It is much promoted as a viable, clean energy option that will help towards reducing CO[subscript 2] emissions in the UK. This article examines the history of wind power and considers the development of wind turbines, together with their economic,…

  14. Aerodynamical noise from wind turbine generators

    International Nuclear Information System (INIS)

    Jakobsen, J.; Andersen, B.

    1993-06-01

    Two extensive measurement series of noise from wind turbines have been made during different modifications of their rotors. One series focused on the influence from the tip shape on the noise, while the other series dealt with the influence from the trailing edge. The experimental layout for the two investigations was identical. The total A-weighted noise from the wind turbine was measured in 1/3 octave bands from 50 Hz to 10 kHz in 1-minute periods simultaneously with wind speed measurements. The microphone was mounted on a hard board on the ground about 40 m directly downwind of the wind turbine, and the wind speed meter was placed at the same distance upwind of the wind turbine 10 m above ground. Regression analysis was made between noise and wind speed in each 1/3 octave band to determine the spectrum at 8 m/s. During the measurements care was taken to avoid influence from background noise, and the influence from machinery noise was minimized and corrected for. Thus the results display the aerodynamic rotor noise from the wind turbines. By use of this measurement technique, the uncertainty has been reduced to 1.5 - 2 dB per 1/3 octave band in the relevant frequency range and to about 1 dB on the total A-weighted levels. (au) (10 refs.)

  15. Sun, wind and electric generation; Sol, viento y generacion electrica

    Energy Technology Data Exchange (ETDEWEB)

    Huacuz Villamar, Jorge M. [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1995-12-31

    A description is made of the electric generation known as the photovoltaic-wind power hybrid systems at the generation station of X-Calak which is located in the zone known as Punta Herrero-X-Calak Corridor, in the Southern coast of the Quintana Roo State. This is a technology in development, in which the solar and the wind energy are combined, to offer an alternative of electric generation that can be economical, reliable and of low impact on the environment. Mention is made of the experiences gathered in this station as well as the results obtained [Espanol] Se describe la tecnologia de generacion electrica conocida como sistemas hibridos fotovoltaico-eolico en la planta generadora de X-Calak, la cual esta localizada en la zona conocida como el corredor Punta Herrero-X-Calak, en la costa sur del estado de Quintana Roo. Esta es una tecnologia en desarrollo, en donde se combina la energia solar y energia eolica, para ofrecer una alternativa de generacion electrica que pretende ser economica, confiable y de bajo impacto sobre el medio ambiente. Se mencionan las experiencias obtenidas en esta planta asi como los resultados obtenidos

  16. Did accelerated depreciation result in lower generation efficiencies for wind plants in India: An empirical analysis

    International Nuclear Information System (INIS)

    Shrimali, Gireesh; Pusarla, Shreya; Trivedi, Saurabh

    2017-01-01

    India ranks fifth in wind energy installations in the world; with an installed wind capacity is 22 GW at the end of 2014. This has been made possible by a combination of federal financial incentives and state-level feed in tariffs. The federal policies are accelerated depreciation, which allows for higher depreciations in earlier years; and generation based incentive, which provides a premium for each unit of generation. Accelerated depreciation appears to be more effective from deployment and cost perspectives; whereas, generation based incentive is said to be more effective in incentivizing generation. In this paper, using multivariable linear regressions on a sample of approximately 40 wind plants, while controlling for wind regime and wind turbine technology, we investigate the incremental impact of generation based incentive compared to accelerated depreciation. We find that generation based incentive results in at least 3 percentage points higher plant load factors than accelerated depreciation. This indicates that, if higher generation is the goal of renewable policies, generation based incentive should be preferred to accelerated depreciation. This would be similar to the move from investment tax credit to production tax credit in the U.S. - Highlights: • We examine generation effectiveness of federal renewable policies in India. • We examine accelerated depreciation and generation based incentives. • We use a cross-sectional regression analysis on a sample of approx. 40 wind plants. • Generation based incentive results in 3 percentage points higher plant load factor.

  17. Wind energy for electricity generation in Sri Lanka

    Energy Technology Data Exchange (ETDEWEB)

    Fernando, W.J.

    1988-01-01

    Different aspects of the island Sri Lanka are discussed in relation to the use of wind energy to generate electric power. The electricity demand and supply are dealt with as well as geo-climatic features. Wind resources in different parts of Sri Lanka are determined. Further study is needed to achieve more data on wind potential and wind speeds. Finally a case study is discussed, carried out to assess the feasibility of integration of wind and hydro resources in combination to meet a predetermined load to be used in an optimal configuration. 7 figs., 1 tab.

  18. Next generation DNA led technologies

    CERN Document Server

    Jyothsna, G; Kashyap, Amita

    2016-01-01

    This brief highlights advances in DNA technologies and their wider applications. DNA is the source of life and has been studied since a generation, but very little is known as yet. Several sophisticated technologies of the current era have laid their foundations on the principle of DNA based mechanisms. DNA based technologies are bringing a new revolution of Advanced Science and Technology. Forensic Investigation, Medical Diagnosis, Paternity Disputes, Individual Identity, Health insurance, Motor Insurance have incorporated the DNA testing and profiling technologies for settling the issues.

  19. SimWIND: A geospatial infrastructure model for optimizing wind power generation and transmission

    International Nuclear Information System (INIS)

    Phillips, Benjamin R.; Middleton, Richard S.

    2012-01-01

    Wind is a clean, enduring energy resource with the capacity to satisfy 20% or more of U.S. electricity demand. Presently, wind potential is limited by a paucity of electrical transmission lines and/or capacity between promising wind resources and primary load centers. We present the model SimWIND to address this shortfall. SimWIND is an integrated optimization model for the geospatial arrangement and cost minimization of wind-power generation–transmission–delivery infrastructure. Given a set of possible wind-farm sites, the model simultaneously determines (1) where and how much power to generate and (2) where to build new transmission infrastructure and with what capacity in order to minimize the cost for delivering a targeted amount of power to load. Costs and routing of transmission lines consider geographic and social constraints as well as electricity losses. We apply our model to the Electric Reliability Council of Texas (ERCOT) Interconnection, considering scenarios that deliver up to 20 GW of new wind power. We show that SimWIND could potentially reduce ERCOT's projected ∼$5B transmission network upgrade line length and associated costs by 50%. These results suggest that SimWIND's coupled generation–transmission–delivery modeling approach could play a critical role in enhancing planning efforts and reducing costs for wind energy integration. - Highlights: ► Wind power is limited by transmission capacity between resources and demands. ► SimWIND is a coupled generation-transmission-delivery model for wind infrastructure. ► The model minimizes costs considering realistic transmission routing and networking. ► We show that SimWIND could save 50% of $5B costs for expanding the Texas grid. ► Results suggest SimWIND may play a critical role in enhancings wind planning efforts.

  20. Wind Generation on Winnebago Tribal Lands

    Energy Technology Data Exchange (ETDEWEB)

    Multiple

    2009-09-30

    The Winnebago Wind Energy Study evaluated facility-scale, community-scale and commercial-scale wind development on Winnebago Tribal lands in northeastern Nebraska. The Winnebago Tribe of Nebraska has been pursuing wind development in various forms for nearly ten years. Wind monitoring utilizing loaned met towers from NREL took place during two different periods. From April 2001 to April 2002, a 20-meter met tower monitored wind data at the WinnaVegas Casino on the far eastern edge of the Winnebago reservation in Iowa. In late 2006, a 50-meter tower was installed, and subsequently monitored wind data at the WinnaVegas site from late 2006 through late 2008. Significant challenges with the NREL wind monitoring equipment limited the availability of valid data, but based on the available data, average wind speeds between 13.6 – 14.3 miles were indicated, reflecting a 2+/3- wind class. Based on the anticipated cost of energy produced by a WinnaVegas wind turbine, and the utility policies and rates in place at this time, a WinnaVegas wind project did not appear to make economic sense. However, if substantial grant funding were available for energy equipment at the casino site, and if either Woodbury REC backup rates were lower, or NIPCO was willing to pay more for wind power, a WinnaVegas wind project could be feasible. With funding remaining in the DOE-funded project budget,a number of other possible wind project locations on the Winnebago reservation were considered. in early 2009, a NPPD-owned met tower was installed at a site identified in the study pursuant to a verbal agreement with NPPD which provided for power from any ultimately developed project on the Western Winnebago site to be sold to NPPD. Results from the first seven months of wind monitoring at the Western Winnebago site were as expected at just over 7 meters per second at 50-meter tower height, reflecting Class 4 wind speeds, adequate for commercial development. If wind data collected in the remaining

  1. Generation management using batteries in wind farms: Economical and technical analysis for Spain

    International Nuclear Information System (INIS)

    Dufo-Lopez, Rodolfo; Bernal-Agustin, Jose L.; Dominguez-Navarro, Jose A.

    2009-01-01

    This paper presents an hourly management method for energy generated in grid-connected wind farms using battery storage (Wind-Batteries systems). The method proposed is analysed technically and economically. Electricity generation in wind farms does not usually coincide with the electrical demand curve. If the wind-power penetration becomes high in the Spanish electrical grid, energy management will become necessary for some wind farms. A method is proposed in this paper to adjust the generation curve to the demand curve by storing electrical energy in batteries during off-peak hours (low demand) and selling stored energy to the grid during peak hours (high demand). With the results obtained and reported in this paper, for a Wind-Batteries system to be economically as profitable as a Wind-Only system, the selling price of the energy provided by the batteries during peak hours should be between 22 and 66 c Euro /kWh, depending on the technology and cost of the batteries. Comparison with flexible thermal generation has been performed. Additionally, the results are compared with those obtained if using hydrogen (Wind-Hydrogen system, which uses an electrolyser, hydrogen tank, and fuel cell instead of batteries), concluding that the Wind-Batteries system is both economically and energetically far more suitable

  2. Modeling of wind turbines with doubly fed generator system

    CERN Document Server

    Fortmann, Jens

    2014-01-01

    Jens Fortmann describes the deduction of models for the grid integration of variable speed wind turbines and the reactive power control design of wind plants. The modeling part is intended as background to understand the theory, capabilities and limitations of the generic doubly fed generator and full converter wind turbine models described in the IEC 61400-27-1 and as 2nd generation WECC models that are used as standard library models of wind turbines for grid simulation software. Focus of the reactive power control part is a deduction of the origin and theory behind the reactive current requ

  3. Design of a Small Scale Wind Generator for Low Wind Speed Areas ...

    African Journals Online (AJOL)

    Most small scale level wind turbine generators are directly driven system, variable speed, and partially connected power electronic converter system. Choice of such system is to avoid costs associated with gearbox. However, due to low wind speed in most of the tropical countries, synchronous generators with smaller or ...

  4. design of a small scale wind generator for low wind speed areas

    African Journals Online (AJOL)

    USER

    the complexity of the drive train there are experimental proposals in literature where a synchronous generator that be able to operate under low wind speed can be directly connected to the end user especially the off-grid population. Hence, the study designed a six pole pairs wind turbine generator using permanent magnet ...

  5. Preliminary Evaluation of a Multiple-Generator Drive-Train Configuration for Wind Turbines: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Cotrell, J.

    2002-01-01

    The recent trend toward large wind turbines has led to very expensive gearboxes that hinder their feasibility. The gearboxes for these wind turbines are more expensive per kilowatt (kW) of rated power than for smaller turbines because the torque increases more quickly than the power when increasing the rotor diameter. Multiple-generator drivetrain configurations can reduce the drivetrain cost for large wind turbines while increasing the energy capture and reliability. The National Renewable Energy Laboratory (NREL) is reexamining the benefits of multiple-generator configurations through the Wind Partnership for Advanced Component Technology (WindPACT) program. This paper qualitatively compares a multiple-generator drivetrain configuration to a conventional drivetrain.

  6. Capacity expansion model of wind power generation based on ELCC

    Science.gov (United States)

    Yuan, Bo; Zong, Jin; Wu, Shengyu

    2018-02-01

    Capacity expansion is an indispensable prerequisite for power system planning and construction. A reasonable, efficient and accurate capacity expansion model (CEM) is crucial to power system planning. In most current CEMs, the capacity of wind power generation is considered as boundary conditions instead of decision variables, which may lead to curtailment or over construction of flexible resource, especially at a high renewable energy penetration scenario. This paper proposed a wind power generation capacity value(CV) calculation method based on effective load-carrying capability, and a CEM that co-optimizes wind power generation and conventional power sources. Wind power generation is considered as decision variable in this model, and the model can accurately reflect the uncertainty nature of wind power.

  7. The state of the art of wind energy conversion systems and technologies: A review

    International Nuclear Information System (INIS)

    Cheng, Ming; Zhu, Ying

    2014-01-01

    Highlights: • This paper reviews the state of the art of wind energy conversion systems. • Different types of common wind energy conversion systems are classified and compared. • The four most popular MPPT control methods are reviewed and compared. • The latest development of wind energy conversion technologies is introduced. • Future trends of the wind energy conversion technologies are discussed. - Abstract: This paper gives a comprehensive review of the state of the art of wind energy conversion systems (WECS) and technologies, with an emphasis on wind power generator and control. First, different types of common WECSs are classified according to their features and drive train types. The WECSs are compared on the basis of the volume, weight, cost, efficiency, system reliability and fault ride through capability. The maximum power point tracking (MPPT) control, which aims to make the generator speed meet an optimum value to ensure the maximum energy yield, plays a key role in the variable speed WECSs. A comprehensive review and comparison of the four most popular MPPT control methods are carried out and improvements for each method are presented. Furthermore, the latest development of wind energy conversion technologies is introduced, such as the brushless doubly fed induction generator (BDFIG), the stator permanent magnet synchronous generators, the magnetic-geared generators, dual power flow WECS with the electrical variable transmission (EVT) machine, and direct grid-connected WECS. Finally, the future trends of the technologies are discussed

  8. Economic Selection of Generators for a Wind Farm

    Directory of Open Access Journals (Sweden)

    Omid Alavi

    2015-09-01

    Full Text Available The selection suitable generator for wind turbines will be done based on technical criteria and priorities of the project. In this paper, a method for determining the type of wind turbine generator with an example is explained. In the paper, for a 10kW wind turbine, two generators have been proposed. The first case is a squirrel-cage asynchronous generator coupled to the turbine through the gearbox and directly connected to three phase output. Other PM generators that are directly coupled to the turbine and it is connected to the grid using the inverter. The results show that according to wind conditions, a 10kW permanent magnet generator is more advantageous in terms of energy production.

  9. Superconducting generators for wind turbines: design considerations

    DEFF Research Database (Denmark)

    Mijatovic, Nenad; Abrahamsen, Asger Bech; Træholt, Chresten

    2010-01-01

    The harmonic content of high temperature superconductors (HTS) field winding in air-core high temperature superconducting synchronous machine (HTS SM) has been addressed in order to investigate tendency of HTS SM towards mechanical oscillation and additional loss caused by higher flux harmonic. B....... Both analytical expressions for flux distribution and current sheet distribution have been derived and analyzed. The two main contributors to the AC loss of HTS rotor winding are also identified and their influence addressed on general level....

  10. Market protocols in ERCOT and their effect on wind generation

    International Nuclear Information System (INIS)

    Sioshansi, Ramteen; Hurlbut, David

    2010-01-01

    Integrating wind generation into power systems and wholesale electricity markets presents unique challenges due to the characteristics of wind power, including its limited dispatchability, variability in generation, difficulty in forecasting resource availability, and the geographic location of wind resources. Texas has had to deal with many of these issues beginning in 2002 when it restructured its electricity industry and introduced aggressive renewable portfolio standards that helped spur major investments in wind generation. In this paper we discuss the issues that have arisen in designing market protocols that take account of these special characteristics of wind generation and survey the regulatory and market rules that have been developed in Texas. We discuss the perverse incentives some of the rules gave wind generators to overschedule generation in order to receive balancing energy payments, and steps that have been taken to mitigate those incentive effects. Finally, we discuss more recent steps taken by the market operator and regulators to ensure transmission capacity is available for new wind generators that are expected to come online in the future. (author)

  11. Contribution to the Chapter on Wind Power, in: Energy Technology Perspectives 2008, IEA

    DEFF Research Database (Denmark)

    Lemming, Jørgen Kjærgaard; Morthorst, Poul Erik; Clausen, Niels-Erik

    are being developed and better planning tools as well as other frameworks, which benefit the market for installation of wind turbines, are being implemented across all wind energy countries. The cost of wind-generated electricity has fallen steadily for the last two decades, driven largely by technological......Over the last 5 years the growth rate in wind energy has been as high as 30% an on average nearly 25% in all continents, and a considerable number of countries have very ambitious goals concerning their wind energy development, therefore it could be likely to cover as much as 20% of the world...... constraints are overcome. Onshore wind is considered commercial at sites with good wind resources and grid access. Cost reductions in both turbines and infrastructure are expected to bring investment costs to 0.88 mill. €/MW in 2030 and 0.8 mill. €/MW in 2050. On the other hand, offshore wind is in pre...

  12. Impacts of Wind Power Variability on Generation Costs - An Overview

    OpenAIRE

    M. H. Albadi; E. F. El-Saadany

    2010-01-01

    Although wind power is sustainable, environmental friendly and relatively inexpensive source of electricity, the effects of its intermittent nature on power systems need to be carefully investigated. This paper presents an up-to-date overview of the impacts of wind power variability on overall generation cost. Recent case studies from different utilities around the globe demonstrated that wind integration costs are much lower than anticipated by earlier studies.

  13. Impacts of Wind Power Variability on Generation Costs - An Overview

    Directory of Open Access Journals (Sweden)

    M. H. Albadi

    2010-12-01

    Full Text Available Although wind power is sustainable, environmental friendly and relatively inexpensive source of electricity, the effects of its intermittent nature on power systems need to be carefully investigated. This paper presents an up-to-date overview of the impacts of wind power variability on overall generation cost. Recent case studies from different utilities around the globe demonstrated that wind integration costs are much lower than anticipated by earlier studies.

  14. Evaluation of global onshore wind energy potential and generation costs.

    Science.gov (United States)

    Zhou, Yuyu; Luckow, Patrick; Smith, Steven J; Clarke, Leon

    2012-07-17

    In this study, we develop an updated global estimate of onshore wind energy potential using reanalysis wind speed data, along with updated wind turbine technology performance, land suitability factors, cost assumptions, and explicit consideration of transmission distance in the calculation of transmission costs. We find that wind has the potential to supply a significant portion of the world energy needs, although this potential varies substantially by region and with assumptions such as on what types of land can be used to site wind farms. Total global economic wind potential under central assumptions, that is, intermediate between optimistic and pessimistic, is estimated to be approximately 119.5 petawatt hours per year (13.6 TW) at less than 9 cents/kWh. A sensitivity analysis of eight key parameters is presented. Wind potential is sensitive to a number of input parameters, particularly wind speed (varying by -70% to +450% at less than 9 cents/kWh), land suitability (by -55% to +25%), turbine density (by -60% to +80%), and cost and financing options (by -20% to +200%), many of which have important policy implications. As a result of sensitivities studied here we suggest that further research intended to inform wind supply curve development focus not purely on physical science, such as better resolved wind maps, but also on these less well-defined factors, such as land-suitability, that will also have an impact on the long-term role of wind power.

  15. Technology, Performance, and Market of Wind-Diesel Applications for Remote and Island Communities (Poster)

    Energy Technology Data Exchange (ETDEWEB)

    Baring-Gould, E. I.; Dabo, M.

    2009-05-01

    The market for wind-diesel power systems in Alaska and other areas has proven that the integration of wind turbines with conventional isolated generation is a commercial reality. During the past few years, the use of wind energy to reduce diesel fuel consumption has increased, providing economic, environmental, social, and security benefits to communities' energy supply. This poster provides an overview of markets, project examples, technology advances, and industry challenges.

  16. Performance evaluation of stand alone hybrid PV-wind generator

    Energy Technology Data Exchange (ETDEWEB)

    Nasir, M. N. M.; Saharuddin, N. Z.; Sulaima, M. F.; Jali, Mohd Hafiz; Bukhari, W. M.; Bohari, Z. H. [Faculty of Electrical Engineering, Universiti Teknikal Malaysia Melaka (UTeM), Hang Tuah Jaya, 76100 Melaka (Malaysia); Yahaya, M. S. [Faculty of Engineering Technology, Universiti Teknikal Malaysia Melaka (UTeM), Hang Tuah Jaya, 76100 Melaka (Malaysia)

    2015-05-15

    This paper presents the performance evaluation of standalone hybrid system on Photovoltaic (PV)-Wind generator at Faculty of Electrical Engineering (FKE), UTeM. The hybrid PV-Wind in UTeM system is combining wind turbine system with the solar system and the energy capacity of this hybrid system can generate up to charge the battery and supply the LED street lighting load. The purpose of this project is to evaluate the performance of PV-Wind hybrid generator. Solar radiation meter has been used to measure the solar radiation and anemometer has been used to measure the wind speed. The effectiveness of the PV-Wind system is based on the various data that has been collected and compared between them. The result shows that hybrid system has greater reliability. Based on the solar result, the correlation coefficient shows strong relationship between the two variables of radiation and current. The reading output current followed by fluctuate of solar radiation. However, the correlation coefficient is shows moderate relationship between the two variables of wind speed and voltage. Hence, the wind turbine system in FKE show does not operate consistently to produce energy source for this hybrid system compare to PV system. When the wind system does not fully operate due to inconsistent energy source, the other system which is PV will operate and supply the load for equilibrate the extra load demand.

  17. Performance evaluation of stand alone hybrid PV-wind generator

    Science.gov (United States)

    Nasir, M. N. M.; Saharuddin, N. Z.; Sulaima, M. F.; Jali, Mohd Hafiz; Bukhari, W. M.; Bohari, Z. H.; Yahaya, M. S.

    2015-05-01

    This paper presents the performance evaluation of standalone hybrid system on Photovoltaic (PV)-Wind generator at Faculty of Electrical Engineering (FKE), UTeM. The hybrid PV-Wind in UTeM system is combining wind turbine system with the solar system and the energy capacity of this hybrid system can generate up to charge the battery and supply the LED street lighting load. The purpose of this project is to evaluate the performance of PV-Wind hybrid generator. Solar radiation meter has been used to measure the solar radiation and anemometer has been used to measure the wind speed. The effectiveness of the PV-Wind system is based on the various data that has been collected and compared between them. The result shows that hybrid system has greater reliability. Based on the solar result, the correlation coefficient shows strong relationship between the two variables of radiation and current. The reading output current followed by fluctuate of solar radiation. However, the correlation coefficient is shows moderate relationship between the two variables of wind speed and voltage. Hence, the wind turbine system in FKE show does not operate consistently to produce energy source for this hybrid system compare to PV system. When the wind system does not fully operate due to inconsistent energy source, the other system which is PV will operate and supply the load for equilibrate the extra load demand.

  18. Performance evaluation of stand alone hybrid PV-wind generator

    International Nuclear Information System (INIS)

    Nasir, M. N. M.; Saharuddin, N. Z.; Sulaima, M. F.; Jali, Mohd Hafiz; Bukhari, W. M.; Bohari, Z. H.; Yahaya, M. S.

    2015-01-01

    This paper presents the performance evaluation of standalone hybrid system on Photovoltaic (PV)-Wind generator at Faculty of Electrical Engineering (FKE), UTeM. The hybrid PV-Wind in UTeM system is combining wind turbine system with the solar system and the energy capacity of this hybrid system can generate up to charge the battery and supply the LED street lighting load. The purpose of this project is to evaluate the performance of PV-Wind hybrid generator. Solar radiation meter has been used to measure the solar radiation and anemometer has been used to measure the wind speed. The effectiveness of the PV-Wind system is based on the various data that has been collected and compared between them. The result shows that hybrid system has greater reliability. Based on the solar result, the correlation coefficient shows strong relationship between the two variables of radiation and current. The reading output current followed by fluctuate of solar radiation. However, the correlation coefficient is shows moderate relationship between the two variables of wind speed and voltage. Hence, the wind turbine system in FKE show does not operate consistently to produce energy source for this hybrid system compare to PV system. When the wind system does not fully operate due to inconsistent energy source, the other system which is PV will operate and supply the load for equilibrate the extra load demand

  19. Trading wind generation from short-term probabilistic forecasts of wind power

    DEFF Research Database (Denmark)

    Pinson, Pierre; Chevallier, Christophe; Kariniotakis, Georges

    2007-01-01

    Due to the fluctuating nature of the wind resource, a wind power producer participating in a liberalized electricity market is subject to penalties related to regulation costs. Accurate forecasts of wind generation are therefore paramount for reducing such penalties and thus maximizing revenue...... participation. Such strategies permit to further increase revenues and thus enhance competitiveness of wind generation compared to other forms of dispatchable generation. This paper formulates a general methodology for deriving optimal bidding strategies based on probabilistic forecasts of wind generation....... Despite the fact that increasing accuracy in spot forecasts may reduce penalties, this paper shows that, if such forecasts are accompanied with information on their uncertainty, i.e., in the form of predictive distributions, then this can be the basis for defining advanced strategies for market...

  20. Modeling and Parameter Estimation of a Small Wind Generation System

    Directory of Open Access Journals (Sweden)

    Carlos A. Ramírez Gómez

    2013-11-01

    Full Text Available The modeling and parameter estimation of a small wind generation system is presented in this paper. The system consists of a wind turbine, a permanent magnet synchronous generator, a three phase rectifier, and a direct current load. In order to estimate the parameters wind speed data are registered in a weather station located in the Fraternidad Campus at ITM. Wind speed data were applied to a reference model programed with PSIM software. From that simulation, variables were registered to estimate the parameters. The wind generation system model together with the estimated parameters is an excellent representation of the detailed model, but the estimated model offers a higher flexibility than the programed model in PSIM software.

  1. The Learning Process and Technological Change in Wind Power: Evidence from China's CDM Wind Projects

    OpenAIRE

    Tian Tang; David Popp

    2014-01-01

    The Clean Development Mechanism (CDM) is a project-based carbon trade mechanism that subsidizes the users of climate-friendly technologies and encourages technology transfer. The CDM has provided financial support for a large share of Chinese wind projects since 2002. Using pooled cross-sectional data of 486 registered CDM wind projects in China from 2002 to 2009, we examine the determinants of technological change in wind power from a learning perspective. We estimate the effects of differen...

  2. Power generation from wind turbines in a solar chimney

    Energy Technology Data Exchange (ETDEWEB)

    Foote, Tudor [Graduate Student, Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, Jolley Hall, Campus Box 1185, One Brookings Drive, St. Louis, Missouri, 63130 (United States); Agarwal, Ramesh K. [William Palm Professor, Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, Jolley Hall, Campus Box 1185, One Brookings Drive, St. Louis, Missouri, 63130 (United States)

    2013-07-01

    Recent studies have shown that shrouded wind turbines can generate greater power compared to bare turbines. A solar chimney generates an upward draft of wind inside a tower and a shroud around the wind turbine. There are numerous empty silos on farms in the U.S. that can be converted to solar chimneys with minor modifications at modest cost. The objective of this study is to determine the potential of these silos/chimneys for generating wind power. The study is conducted through analytical/computational approach by employing the commercial Computational Fluid Dynamics (CFD) software. Computations are performed for five different geometric configurations consisting of a turbine, a cylindrical silo, and/or a venturi and/or a diffuser using the dimensions of typical silos and assuming Class 3 wind velocity. The incompressible Navier-Stokes equations with the Boussinesq approximation and a two equation realizable {kappa}-{epsilon} model are employed in the calculations, and the turbine is modeled as an actuator disk. The power coefficient (Cp) and generated power are calculated for the five cases. Consistent with recent literature, it was found that the silos with diffusers increase the Cp beyond Betz’s limit significantly and thus the generated power. It should be noted that Cp is calculated by normalizing it by the turbine area swept by the wind. This study shows the potential of using abandoned silos in the mid-west and other parts of the country for localized wind power generation.

  3. Integrated, Automated Distributed Generation Technologies Demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Kevin [Atk Launch Systems Inc., Brigham City, UT (United States)

    2014-09-01

    The purpose of the NETL Project was to develop a diverse combination of distributed renewable generation technologies and controls and demonstrate how the renewable generation could help manage substation peak demand at the ATK Promontory plant site. The Promontory plant site is located in the northwestern Utah desert approximately 25 miles west of Brigham City, Utah. The plant encompasses 20,000 acres and has over 500 buildings. The ATK Promontory plant primarily manufactures solid propellant rocket motors for both commercial and government launch systems. The original project objectives focused on distributed generation; a 100 kW (kilowatt) wind turbine, a 100 kW new technology waste heat generation unit, a 500 kW energy storage system, and an intelligent system-wide automation system to monitor and control the renewable energy devices then release the stored energy during the peak demand time. The original goal was to reduce peak demand from the electrical utility company, Rocky Mountain Power (RMP), by 3.4%. For a period of time we also sought to integrate our energy storage requirements with a flywheel storage system (500 kW) proposed for the Promontory/RMP Substation. Ultimately the flywheel storage system could not meet our project timetable, so the storage requirement was switched to a battery storage system (300 kW.) A secondary objective was to design/install a bi-directional customer/utility gateway application for real-time visibility and communications between RMP, and ATK. This objective was not achieved because of technical issues with RMP, ATK Information Technology Department’s stringent requirements based on being a rocket motor manufacturing facility, and budget constraints. Of the original objectives, the following were achieved: • Installation of a 100 kW wind turbine. • Installation of a 300 kW battery storage system. • Integrated control system installed to offset electrical demand by releasing stored energy from renewable sources

  4. Generation of Kappa Distributions in Solar Wind at 1 au

    Science.gov (United States)

    Livadiotis, G.; Desai, M. I.; Wilson, L. B., III

    2018-02-01

    We examine the generation of kappa distributions in the solar wind plasma near 1 au. Several mechanisms are mentioned in the literature, each characterized by a specific relationship between the solar wind plasma features, the interplanetary magnetic field (IMF), and the kappa index—the parameter that governs the kappa distributions. This relationship serves as a signature condition that helps the identification of the mechanism in the plasma. In general, a mechanism that generates kappa distributions involves a single or a series of stochastic or physical processes that induces local correlations among particles. We identify three fundamental solar wind plasma conditions that can generate kappa distributions, noted as (i) Debye shielding, (ii) frozen IMF, and (iii) temperature fluctuations, each one prevailing in different scales of solar wind plasma and magnetic field properties. Moreover, our findings show that the kappa distributions, and thus, their generating mechanisms, vary significantly with solar wind features: (i) the kappa index has different dependence on the solar wind speed for slow and fast modes, i.e., slow wind is characterized by a quasi-constant kappa index, κ ≈ 4.3 ± 0.7, while fast wind exhibits kappa indices that increase with bulk speed; (ii) the dispersion of magnetosonic waves is more effective for lower kappa indices (i.e., further from thermal equilibrium); and (iii) the kappa and polytropic indices are positively correlated, as it was anticipated by the theory.

  5. Centralized electricity generation in offshore wind farms using hydraulic networks

    NARCIS (Netherlands)

    Jarquin Laguna, A.

    2017-01-01

    The work presented in this thesis explores a new way of generation, collection and transmission of wind energy inside a wind farm, in which the electrical conversion does not occur during any intermediate conversion step before the energy has reached the offshore central platform. A centralized

  6. Interpretation of nonlinearity in wind generated ocean surface waves

    Digital Repository Service at National Institute of Oceanography (India)

    Varkey, M.J.

    This study attempts to resolve a mix-up between a physical process and its mathematical interpretation in the context of wind waves on ocean surface. Wind generated wave systems, are conventionally interpreted as a result of interaction of a number...

  7. Assessment of wind energy potential for electricity generation

    African Journals Online (AJOL)

    fossil fuel for energy production has been estimated to contribute about 80. % of the total gses responsible for the green house effect of the atmosphere. Renewable energy sources such as wind, if thoroughly investigated, could be used to reduce the dependence on fossil fuels for electricity generation. Although wind ...

  8. Power Electronics as key technology in wind turbines

    DEFF Research Database (Denmark)

    Blaabjerg, Frede

    2005-01-01

    This paper discuss the development in wind turbines in a two-decade perspective looking at the technology based on track records. Different power electronic topologies for interfacing the wind turbine to the grid are discussed and related to the possibility for the wind turbine to act as a power...

  9. Condition monitoring of a wind turbine doubly-fed induction generator through current signature analysis

    Science.gov (United States)

    Artigao, Estefania; Honrubia-Escribano, Andres; Gomez-Lazaro, Emilio

    2017-11-01

    Operation and maintenance (O&M) of wind turbines is recently becoming the spotlight in the wind energy sector. While wind turbine power capacities continue to increase and new offshore developments are being installed, O&M costs keep raising. With the objective of reducing such costs, the new trends are moving from corrective and preventive maintenance toward predictive actions. In this scenario, condition monitoring (CM) has been identified as the key to achieve this goal. The induction generator of a wind turbine is a major contributor to failure rates and downtime where doubly-fed induction generators (DFIG) are the dominant technology employed in variable speed wind turbines. The current work presents the analysis of an in-service DFIG. A one-year measurement campaign has been used to perform the study. Several signal processing techniques have been applied and the optimal method for CM has been identified. A diagnosis has been reached, the DFIG under study shows potential gearbox damage.

  10. Influence of winding construction on starter-generator thermal processes

    Science.gov (United States)

    Grachev, P. Yu; Bazarov, A. A.; Tabachinskiy, A. S.

    2018-01-01

    Dynamic processes in starter-generators features high winding are overcurrent. It can lead to insulation overheating and fault operation mode. For hybrid and electric vehicles, new high efficiency construction of induction machines windings is proposed. Stator thermal processes need be considered in the most difficult operation modes. The article describes construction features of new compact stator windings, electromagnetic and thermal models of processes in stator windings and explains the influence of innovative construction on thermal processes. Models are based on finite element method.

  11. Power Maximization Control of Variable Speed Wind Generation System Using Permanent Magnet Synchronous Generator

    Science.gov (United States)

    Morimoto, Shigeo; Nakamura, Tomohiko; Takeda, Yoji

    This paper proposes the sensorless output power maximization control of the wind generation system. A permanent magnet synchronous generator (PMSG) is used as a variable speed generator in the proposed system. The generator torque is suitably controlled according to the generator speed and thus the power from a wind turbine settles down on the maximum power point by the proposed MPPT control method, where the information of wind velocity is not required. Moreover, the maximum available generated power is obtained by the optimum current vector control. The current vector of PMSG is optimally controlled according to the generator speed and the required torque in order to minimize the losses of PMSG considering the voltage and current constraints. The proposed wind power generation system can be achieved without mechanical sensors such as a wind velocity detector and a position sensor. Several experimental results show the effectiveness of the proposed control method.

  12. Wind Power Generation in India: Evolution, Trends and Prospects

    Directory of Open Access Journals (Sweden)

    M.F. Khan

    2013-10-01

    Full Text Available In the present context of shrinking conventional resources coupled with environmental perils, the wind power offers an attractive alternative. Wind power generation in India started way back in early 1980s with the installation of experimental wind turbines in western and southern states of Gujarat and Tamil Nadu. For first two decades of its existence until about 2000 the progress was slow but steady. In last one decade Indian wind electricity sector has grown at very rapid pace which has promoted the country to the fifth position as largest wind electric power generator and the third largest market in the world. The galvanization of wind sector has been achieved through some aggressive policy mechanisms and persistent support by government organizations such as MNRE and C-WET. This paper articulates the journey of Indian wind program right since its inception to the present trends and developments as well as the future prospects. Keywords: mnre, c-wet, renewable energy, wind power, wind turbines.

  13. Fluctuations of offshore wind generation: Statistical modelling

    DEFF Research Database (Denmark)

    Pinson, Pierre; Christensen, Lasse E.A.; Madsen, Henrik

    2007-01-01

    The magnitude of power fluctuations at large offshore wind farms has a significant impact on the control and management strategies of their power output. If focusing on the minute scale, one observes successive periods with smaller and larger power fluctuations. It seems that different regimes yi...

  14. Minimisation of Generation Variability of a Group of Wind Plants

    Directory of Open Access Journals (Sweden)

    Dubravko Sabolić

    2017-09-01

    Full Text Available Minimisation of variability of energy delivered from a group of wind plants into the power system using portfolio theory approach was studied. One of the assumptions of that theory is Gaussian distribution of the sample, which is not satisfied in case of wind generation. Therefore, optimisation of a “portfolio” of plants with different goal functions was studied. It was supposed that a decision on distribution of a fixed amount of generation capacity to be installed among a set of geographical locations with known wind statistics is to be made with minimised variability of generation as a goal. In that way the statistical cancellation of variability would be used in the best possible manner. This article is a brief report on results of such an investigation. An example of nine locations in Croatia was used. These locations’ wind statistics are known from historic generation data.

  15. Power Electronic Drives, Controls, and Electric Generators for Large Wind Turbines - An Overview

    DEFF Research Database (Denmark)

    Ma, Ke; Tutelea, L.; Boldea, Ion

    2015-01-01

    of power electronics, ranging from devices to circuit topologies, and similar matters for electric generators, together with results of optimal design studies are included. It is shown that the individual power rating of wind turbines has increased over the years, and technologies required to reach......Wind represents a major and growing source of renewable energy for the electric power systems. This article provides an overview of state-of-the-art technologies and anticipated developments in the area of power electronic drives, controls, and electric generators for large multi-megawatt wind...... turbine systems. The principal components employed in a turbine for energy conversion from wind to electricity are described, and the main solutions that are commercially available are briefly reviewed. The specific issues of complex mission profiles, power codes, and reliability are discussed. Topics...

  16. Comparison of superconducting generators and permanent magnet generators for 10-MW direct-drive wind turbines

    DEFF Research Database (Denmark)

    Liu, Dong; Polinder, Henk; Abrahamsen, Asger Bech

    2016-01-01

    Large offshore direct-drive wind turbines of 10-MW power levels are being extensively proposed and studied because of a reduced cost of energy. Conventional permanent magnet generators currently dominating the direct-drive wind turbine market are still under consideration for such large wind...

  17. An improved market penetration model for wind energy technology forecasting

    Energy Technology Data Exchange (ETDEWEB)

    Lund, P.D. [Helsinki Univ. of Technology, Espoo (Finland). Advanced Energy Systems

    1995-12-31

    An improved market penetration model with application to wind energy forecasting is presented. In the model, a technology diffusion model and manufacturing learning curve are combined. Based on a 85% progress ratio that was found for European wind manufactures and on wind market statistics, an additional wind power capacity of ca 4 GW is needed in Europe to reach a 30 % price reduction. A full breakthrough to low-cost utility bulk power markets could be achieved at a 24 GW level. (author)

  18. An improved market penetration model for wind energy technology forecasting

    International Nuclear Information System (INIS)

    Lund, P.D.

    1995-01-01

    An improved market penetration model with application to wind energy forecasting is presented. In the model, a technology diffusion model and manufacturing learning curve are combined. Based on a 85% progress ratio that was found for European wind manufactures and on wind market statistics, an additional wind power capacity of ca 4 GW is needed in Europe to reach a 30 % price reduction. A full breakthrough to low-cost utility bulk power markets could be achieved at a 24 GW level. (author)

  19. Modeling and Simulation of Generator Side Converter of Doubly Fed Induction Generator-Based Wind Power Generation System

    DEFF Research Database (Denmark)

    Guo, Yougui; Zeng, Ping; Blaabjerg, Frede

    2010-01-01

    A real wind power generation system is given in this paper. SVM control strategy and vector control is applied for generator side converter and doubly fed induction generator respectively. First the mathematical models of the wind turbine rotor, drive train, generator side converter are described....... Then the control strategy of generator side converter system is given in detail. Finally the simulation model of the generator side converter system is set up. The simulation results have verified that it is feasible to apply for generator side converter of wind power generation system and the generator side...

  20. Simulation of grid connected PM generator for wind turbines

    OpenAIRE

    Van Dessel, Michel; Deconinck, Geert; Gay, Michael

    2010-01-01

    This paper discusses the simulation of a power electronic converter used for grid connection of a permanent magnet generator designed for variable speed wind turbines. Previous work on the power converter is described, followed by the design parameters of the permanent magnet synchronous generator developed for wind turbines in the 10 kW range. The power electronic converter consisting of the Active Front End controlling the DC link voltage and Motion Control inverter controlling the ge...

  1. A community small-scale wind generation project in Peru

    OpenAIRE

    Ferrer Martí, Laia; Garwood, Anna; Chiroque, José; Escobar, Rafael; Coello, Javier; Castro, Miguel

    2010-01-01

    Electrification systems based on renewable energy have proven to be suitable for providing decentralized electricity to isolated communities. Electricity generated through wind power is one of the technical options available, although infrequently used to date. This article aims to describe the main aspects of technical design, implementation and management of the first small-scale community wind generation project for rural electrification in Peru. This project took place in t...

  2. Voltage Control in Wind Power Plants with Doubly Fed Generators

    DEFF Research Database (Denmark)

    Garcia, Jorge Martinez

    . To release the operation of the converters during steady-state disturbances, mechanically switched capacitors are installed in the wind power plant, which due to their characteristics, they are appropriate for permanent disturbances compensation. The mechanically switched capacitors are controlled to allow...... supplied by the doubly fed induction generator wind turbines is overcome by installing a reactive power compensator, i.e. a static compensator unit, which is coordinated with the plant control by a specific dispatcher. This dispatcher is set according to the result of the wind power plant load flow...... measured current at medium voltage, thus reducing the tap moving operations. Finally, due to the wind power plant reactive power is sized for maximum active power level, it is expected that a big amount of reactive power remains unused most of the time due to the wind power generation characteristics...

  3. Exploration of dispatch model integrating wind generators and electric vehicles

    International Nuclear Information System (INIS)

    Haque, A.N.M.M.; Ibn Saif, A.U.N.; Nguyen, P.H.; Torbaghan, S.S.

    2016-01-01

    Highlights: • A novel business model for the BRPs is analyzed. • Imbalance cost of wind generation is considered in the UC-ED model. • Smart charging of EVs is included into the UC-ED problem to mitigate the imbalance cost. • Effects of smart charging on generation cost, CO 2 emissions and total network load are assessed. - Abstract: In recent years, the share of renewable energy sources (RES) in the electricity generation mix has been expanding rapidly. However, limited predictability of the RES poses challenges for traditional scheduling and dispatching mechanisms based on unit commitment (UC) and economic dispatch (ED). This paper presents an advanced UC-ED model to incorporate wind generators as RES-based units alongside conventional centralized generators. In the proposed UC-ED model, an imbalance cost is introduced reflecting the wind generation uncertainty along with the marginal generation cost. The proposed UC-ED model aims to utilize the flexibility of fleets of plug-in electric vehicles (PEVs) to optimally compensate for the wind generation uncertainty. A case study with 15 conventional units and 3 wind farms along with a fixed-sized PEV fleet demonstrates that shifting of PEV fleets charging at times of high wind availability realizes generation cost savings. Nevertheless, the operational cost saving incurred by controlled charging appears to diminish when dispatched wind energy becomes considerably larger than the charging energy of PEV fleets. Further analysis of the results reveals that the effectiveness of PEV control strategy in terms of CO 2 emission reduction is strongly coupled with generation mix and the proposed control strategy is favored in cases where less pollutant-based plants like nuclear and hydro power are profoundly dominant.

  4. Generation Expansion Planning with High Penetration of Wind Power

    Science.gov (United States)

    Sharan, Ishan; Balasubramanian, R.

    2016-08-01

    Worldwide thrust is being provided in generation of electricity from wind. Planning for the developmental needs of wind based power has to be consistent with the objective and basic framework of overall resource planning. The operational issues associated with the integration of wind power must be addressed at the planning stage. Lack of co-ordinated planning of wind turbine generators, conventional generating units and expansion of the transmission system may lead to curtailment of wind power due to transmission inadequacy or operational constraints. This paper presents a generation expansion planning model taking into account fuel transportation and power transmission constraints, while addressing the operational issues associated with the high penetration of wind power. For analyzing the operational issues, security constrained unit commitment algorithm is embedded in the integrated generation and transmission expansion planning model. The integrated generation and transmission expansion planning problem has been formulated as a mixed integer linear problem involving both binary and continuous variables in GAMS. The model has been applied to the expansion planning of a real system to illustrate the proposed approach.

  5. Environmental Impact Assessment of Wind Generators in the Czech Republic

    Directory of Open Access Journals (Sweden)

    Vladimír Lapčík

    2008-11-01

    Full Text Available The article summarizes author´s experience with environmental impact assessment in branch of wind generators. The introductorypart of paper describes legislative obligations of the Czech Republic in frame of fulfilling the European Union´s limits in branch ofrenewable energy resources utilization. Next part of paper deals with analysis of impacts of wind generators on the environment.The final part of paper deals with experience with implementation of the environmental impact assessment process (pursuant to the ActNo. 100/2001 Coll. in the field of wind power in the Czech Republic.

  6. Effects of distributing wind energy generation over Europe

    Energy Technology Data Exchange (ETDEWEB)

    Giebel, G. [Risoe National Lab., Wind Energy and Atmospheric Physics Dept., Roskilde (Denmark)

    1999-03-01

    Using data from 60 meteorological stations distributed all over Europe in conjunction with the National Grid Model (NGM) from the Rutherford Appleton Laboratory, the effects of the large-scale distribution of wind energy generation are studied. In some regions of Europe, wind energy already covers a significant proportion of the electricity demand. But the intermittence of the wind resource is always a limiting factor when penetration levels are high. Studies for single countries have shown that distributing the generation over a large area reduces the variability of the output and hence makes wind energy more appealing to utilities, since the stability requirement of the network are easier to fulfil. The data are analysed in terms of absolute highs and lows, temporal and spatial correlations. To assess the financial benefits, the NGM is used to evaluate the match of electricity demand and generation as well as the possibel savings of fossil fuel in an electricity grid incorporating various capacities of wind energy generation. To assess the value of wind energy on a trans-national scale, the European plant mix is modelled, and the NGM is used to simulate the scheduling of these plants in the presence of different penetrations of wind energy. (au) EU-JOULE-3. 11 refs.

  7. Global potential for wind-generated electricity.

    Science.gov (United States)

    Lu, Xi; McElroy, Michael B; Kiviluoma, Juha

    2009-07-07

    The potential of wind power as a global source of electricity is assessed by using winds derived through assimilation of data from a variety of meteorological sources. The analysis indicates that a network of land-based 2.5-megawatt (MW) turbines restricted to nonforested, ice-free, nonurban areas operating at as little as 20% of their rated capacity could supply >40 times current worldwide consumption of electricity, >5 times total global use of energy in all forms. Resources in the contiguous United States, specifically in the central plain states, could accommodate as much as 16 times total current demand for electricity in the United States. Estimates are given also for quantities of electricity that could be obtained by using a network of 3.6-MW turbines deployed in ocean waters with depths <200 m within 50 nautical miles (92.6 km) of closest coastlines.

  8. Optimizing Wind And Hydropower Generation Within Realistic Reservoir Operating Policy

    Science.gov (United States)

    Magee, T. M.; Clement, M. A.; Zagona, E. A.

    2012-12-01

    Previous studies have evaluated the benefits of utilizing the flexibility of hydropower systems to balance the variability and uncertainty of wind generation. However, previous hydropower and wind coordination studies have simplified non-power constraints on reservoir systems. For example, some studies have only included hydropower constraints on minimum and maximum storage volumes and minimum and maximum plant discharges. The methodology presented here utilizes the pre-emptive linear goal programming optimization solver in RiverWare to model hydropower operations with a set of prioritized policy constraints and objectives based on realistic policies that govern the operation of actual hydropower systems, including licensing constraints, environmental constraints, water management and power objectives. This approach accounts for the fact that not all policy constraints are of equal importance. For example target environmental flow levels may not be satisfied if it would require violating license minimum or maximum storages (pool elevations), but environmental flow constraints will be satisfied before optimizing power generation. Additionally, this work not only models the economic value of energy from the combined hydropower and wind system, it also captures the economic value of ancillary services provided by the hydropower resources. It is recognized that the increased variability and uncertainty inherent with increased wind penetration levels requires an increase in ancillary services. In regions with liberalized markets for ancillary services, a significant portion of hydropower revenue can result from providing ancillary services. Thus, ancillary services should be accounted for when determining the total value of a hydropower system integrated with wind generation. This research shows that the end value of integrated hydropower and wind generation is dependent on a number of factors that can vary by location. Wind factors include wind penetration level

  9. Generators for gearless wind energy converters

    Energy Technology Data Exchange (ETDEWEB)

    Grauers, A. [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Electric Power Engineering

    1996-12-01

    This paper discusses some design alternatives for directly driven generators, and one specific generator type is investigated for a wide range of rated power. First, the specification for a directly driven generator is presented, then different design alternatives are discussed. A radial-flux permanent magnet generator for frequency converter connection has been chosen for a more detailed investigation. The design, optimization and performance of that generator type are presented. Generators from 30 kW to 3 MW are designed and compared with conventional four-pole generators with gear. It is found that a directly driven generator can be more efficient than a conventional generator and gear and have a rather small diameter and a low active weight. 8 refs, 7 figs, 2 tabs

  10. Electricity generating system. [Wind/diesel/flywheel system

    Energy Technology Data Exchange (ETDEWEB)

    Moody, R.L.

    1992-02-05

    An electricity generating system is described which includes a water tank with electric heating elements connected to the water cooling system of a diesel engine which is heated by excess output of the system. Power in excess of that required by a load which is generated by a wind turbine driven generator runs up a flywheel and further excess is absorbed in the tank. A fan associated with a radiator connected to the tank may be operated to dissipate further excess power. When the load requirements exceed the output of the generators linked to the wind turbine and the flywheel the engine operates a synchronous alternator. (author).

  11. Technology, Performance, and Market Report of Wind-Diesel Applications for Remote and Island Communities: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Baring-Gould, I.; Dabo, M.

    2009-05-01

    This paper describes the current status of wind-diesel technology and its applications, the current research activities, and the remaining system technical and commercial challenges. System architectures, dispatch strategies, and operating experience from a variety of wind-diesel systems will be discussed, as well as how recent development to explore distributed energy generation solutions for wind generation can benefit from the performance experience of operating systems. The paper also includes a detailed discussion of the performance of wind-diesel applications in Alaska, where 10 wind-diesel stations are operating and additional systems are currently being implemented. Additionally, because this application represents an international opportunity, a community of interest committed to sharing technical and operating developments is being formed. The authors hope to encourage this expansion while allowing communities and nations to investigate the wind-diesel option for reducing their dependence on diesel-driven energy sources.

  12. Technology, Performance, and Market Report of Wind-Diesel Applications for Remote and Island Communities: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Baring-Gould, I.; Dabo, M.

    2009-02-01

    This paper describes the current status of wind-diesel technology and its applications, the current research activities, and the remaining system technical and commercial challenges. System architectures, dispatch strategies, and operating experience from a variety of wind-diesel systems will be discussed, as well as how recent development to explore distributed energy generation solutions for wind generation can benefit from the performance experience of operating systems. The paper also includes a detailed discussion of the performance of wind-diesel applications in Alaska, where 10 wind-diesel stations are operating and additional systems are currently being implemented. Additionally, because this application represents an international opportunity, a community of interest committed to sharing technical and operating developments is being formed. The authors hope to encourage this expansion while allowing communities and nations to investigate the wind-diesel option for reducing their dependence on diesel-driven energy sources.

  13. The Learning Process and Technological Change in Wind Power: Evidence from China's CDM Wind Projects

    Science.gov (United States)

    Tang, Tian; Popp, David

    2016-01-01

    The Clean Development Mechanism (CDM) is a project-based carbon trade mechanism that subsidizes the users of climate-friendly technologies and encourages technology transfer. The CDM has provided financial support for a large share of Chinese wind projects since 2002. Using pooled cross-sectional data of 486 registered CDM wind projects in China…

  14. Solar and Wind Technologies for Hydrogen Production Report to Congress

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2005-12-01

    DOE's Solar and Wind Technologies for Hydrogen Production Report to Congress summarizes the technology roadmaps for solar- and wind-based hydrogen production. Published in December 2005, it fulfills the requirement under section 812 of the Energy Policy Act of 2005.

  15. Determining the impact of wind on system costs via the temporal patterns of load and wind generation

    International Nuclear Information System (INIS)

    Davis, Clay D.; Gotham, Douglas J.; Preckel, Paul V.; Liu, Andrew L.

    2013-01-01

    Ambitious targets have been set for expanding electricity generation from renewable sources, including wind. Expanding wind power impacts needs for other electricity generating resources. As states plan for increasing levels of wind generation in their portfolio of generation resources it is important to consider how this intermittent resource impacts the need for other generation resources. A case study for Indiana estimates the value of wind capacity and demonstrates how to optimize its level and the levels of other generation resources. Changes are driven by temporal patterns of wind power output and load. System wide impacts are calculated for energy, capacity, and costs under multiple wind expansion scenarios which highlight the geographic characteristics of a systems portfolio of wind generation. The impacts of carbon prices, as proposed in the Bingaman Bill, are considered. Finally, calculations showing the effect increasing levels of wind generation will have on end use Indiana retail rates are included. - Highlights: • We estimate the value of wind capacity. • We determine wind generation's impact on the optimal mix of non-wind generation. • Optimal levels of wind and non-wind generation are determined. • We consider the impact of a carbon price on the optimal mix of resources. • The impact of additional wind capacity on Indiana residential rates is calculated

  16. Comparison of superconducting generators and permanent magnet generators for 10-MW direct-drive wind turbines

    DEFF Research Database (Denmark)

    Liu, Dong; Polinder, Henk; Abrahamsen, Asger Bech

    2016-01-01

    Large offshore direct-drive wind turbines of 10-MW power levels are being extensively proposed and studied because of a reduced cost of energy. Conventional permanent magnet generators currently dominating the direct-drive wind turbine market are still under consideration for such large wind...... turbines. In the meantime, superconducting generators (SCSGs) have been of particular interest to become a significant competitor because of their compactness and light weight. This paper compares the performance indicators of these two direct-drive generator types in the same 10-MW wind turbine under...

  17. Multi-objective Generation Expansion Planning for Integrating Largescale Wind Generation

    DEFF Research Database (Denmark)

    Zhang, Chunyu; Ding, Yi; Kang, Chongqing

    2013-01-01

    Due to the growth of energy consumption, the extensive use of conventional fossil fuels from the exhaustible resources and the environmental concerns, high penetration of renewable energy resources is considerably observed worldwide. Wind power generation is holding the first rank in terms...... of utilization and importance. In the last decade, the growth rate of the global installed wind capacity has been about 30% per annum. Denmark, Germany, and Spain are the first few countries generating 20% of their electricity from wind turbines....

  18. Synchrophasor Applications for Wind Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Muljadi, E. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Zhang, Y. C. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Allen, A. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Singh, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Gevorgian, V. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Wan, Y. H. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2014-02-01

    The U.S. power industry is undertaking several initiatives that will improve the operations of the electric power grid. One of those is the implementation of wide-area measurements using phasor measurement units to dynamically monitor the operations and status of the network and provide advanced situational awareness and stability assessment. The overviews of synchrophasors and stability analyses in this report are intended to present the potential future applications of synchrophasors for power system operations under high penetrations of wind and other renewable energy sources.

  19. Modern wind energy technology for Russian applications. Main report

    DEFF Research Database (Denmark)

    Madsen, Peter Hauge; Winther-Jensen, Martin; Bindner, Henrik W.

    1999-01-01

    and modified wind turbines. The reporting of this project is made inone main report and four topical reports, all of them issued as Risø reports. This is the Main Report, (Risø-R-1069), summing up the activities and findings of phase 1 and outlining a strategy for Russian-Danish cooperation in wind energy......The general objective of the project is to establish a technical foundation for an intensified application of wind energy in Russia with medium to large wind turbines and transfer/adaptation of Danish and European wind turbine technology as a basis forfuture joint ventures and technology exports....... More specifically, the objective is to develop and establish the basic knowledge and design criteria for adaptation and development of Danish wind turbine technology for application under Russian conditions.The research programme is envisaged to be carried out in three phases, the first phase being...

  20. Dysprosium, the balance problem, and wind power technology

    International Nuclear Information System (INIS)

    Elshkaki, Ayman; Graedel, T.E.

    2014-01-01

    Highlights: • We investigate the impacts of the increasing market share of wind power on the demand and supply of REE. • The analysis is carried out using a dynamic material flow and stock model and three scenarios for Dy supply. • The supply of Dy from all deposits will likely lead to an oversupply of the total REEs, Nd, La, Ce and Y. • The supply of Dy from critical REE or Dy rich deposits will likely lead to an oversupply of Ce and Y only. • Large quantities of thorium will be co-produced as a result of Dy demand that needs to be managed carefully. - Abstract: Wind power technology is one of the cleanest electricity generation technologies that are expected to have a substantial share in the future electricity mix. Nonetheless, the expected increase in the market share of wind technology has led to an increasing concern of the availability, production capacity and geographical concentration of the metals required for the technology, especially the rear earth elements (REE) neodymium (Nd) and the far less abundant dysprosium (Dy), and the impacts associated with their production. Moreover, Nd and Dy are coproduced with other rare earth metals mainly from iron, titanium, zirconium, and thorium deposits. Consequently, an increase in the demand for Nd and Dy in wind power technology and in their traditional applications may lead to an increase in the production of the host metals and other companion REE, with possible implications on their supply and demand. In this regard, we have used a dynamic material flow and stock model to study the impacts of the increasing demand for Nd and Dy on the supply and demand of the host metals and other companion REE. In one scenario, when the supply of Dy is covered by all current and expected producing deposits, the increase in the demand for Dy leads to an oversupply of 255 Gg of total REE and an oversupply of the coproduced REE Nd, La, Ce and Y. In the second and third scenarios, however, when the supply of Dy is

  1. Wind generator with electronic variable-speed drives

    Energy Technology Data Exchange (ETDEWEB)

    David, A.; Buchheit, N.; Jakobsen, H.

    1996-12-31

    Variable speed drives have been inserted between the network and the generator on certain recent wind power facilities. They have the following advantages: the drive allows the wind generator to operate at low speed with a significant reduction in acoustic noise, an important point if the facilities are sited near populated areas; the drive optimizes energy transfer, providing a gain of 4 to 10 %; the drive can possibly replace certain mechanical parts (the starting system and it in some cases, the reduction gear); the drive not only provides better transient management in relation to the network for less mechanical stress on the wind generator, it is also able to control reactive power. One commercial drive design sold by several manufacturers has already been installed on several wind generators with outputs of between 150 and 600 kw. In addition, such a solution is extremely well suited to mixed renewable energy systems. This design uses two inverse rectifier type converters and can therefore exchange energy in both directions. The equivalent drive with a single IGBT converter on the motor side and a diode converter on the network side is the solution most widely adopted throughout industry (with more than 50, 000 units installed in France per year). It still remains to be seen whether such a solution could be profitable in wind generator application (since the cost of the drive is quite high). This technical analysis is more destined for the converter-machine assembly specialists and is presented in this document, paying particular attention as it does to the modelling of the `wind energy - generator - drive - network` assembly, the associated drive command and control strategies and the simulations obtained during various transients. A 7.5 kW test bed has been installed in the Laboratoire d`Electronique de Puissance de Clamart, enabling tests to be carried out which emulate the operation of a wind generator.

  2. Probabilistic forecasting of wind power generation using extreme learning machine

    DEFF Research Database (Denmark)

    Wan, Can; Xu, Zhao; Pinson, Pierre

    2014-01-01

    Accurate and reliable forecast of wind power is essential to power system operation and control. However, due to the nonstationarity of wind power series, traditional point forecasting can hardly be accurate, leading to increased uncertainties and risks for system operation. This paper proposes...... an extreme learning machine (ELM)-based probabilistic forecasting method for wind power generation. To account for the uncertainties in the forecasting results, several bootstrapmethods have been compared for modeling the regression uncertainty, based on which the pairs bootstrap method is identified...... with the best performance. Consequently, a new method for prediction intervals formulation based on theELMand the pairs bootstrap is developed.Wind power forecasting has been conducted in different seasons using the proposed approach with the historical wind power time series as the inputs alone. The results...

  3. A noise generation and propagation model for large wind farms

    DEFF Research Database (Denmark)

    Bertagnolio, Franck

    2016-01-01

    A wind turbine noise calculation model is combined with a ray tracing method in order to estimate wind farm noise in its surrounding assuming an arbitrary topography. The wind turbine noise model is used to generate noise spectra for which each turbine is approximated as a point source. However......, the detailed three-dimensional directivity features are taken into account for the further calculation of noise propagation over the surrounding terrain. An arbitrary number of turbines constituting a wind farm can be spatially distributed. The noise from each individual turbine is propagated into the far......-field using the ray tracing method. These results are added up assuming the noise from each turbine is uncorrelated. The methodology permits to estimate a wind farm noise map over the surrounding terrain in a reasonable amount of computational time on a personal computer....

  4. Low cost infrastructure solutions for small embedded wind generators

    Energy Technology Data Exchange (ETDEWEB)

    Robb, C.

    2003-07-01

    This report gives details of a project to demonstrate novel economic solutions to increase the potential for installing small-scale embedded wind generator systems at many UK sites which have so far been dismissed as too difficult. Details are given of the first phase of the study which examined current solutions to infrastructure problems and potential techniques. The use of drilled rock anchor foundations to minimise the need for delivery of ready-mix concrete to wind turbine sites, and the use of a winch and A-frame system for erecting a wind turbine to avoid the use of cranes are discussed. The demonstration of the installation of a 50kW wind turbine on the Isle of Luing in Scotland where there is no access for cranes or larger vehicles in the second phase of the project is described. The potential for the use of these techniques on larger wind turbines is considered.

  5. High Power Electronics - Key Technology for Wind Turbines

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Ma, Ke

    2014-01-01

    In this chapter the developments of technology and market trends in wind power application are discussed. Different wind turbine concepts as well as some dominant and promising power converter solutions are reviewed respectively. Furthermore the control methods, grid demands as well as the emerging...... reliability challenges for the future wind turbines are explained. It is concluded that the wind turbine behavior/performance can be significantly improved by introducing power electronics, and there will be higher requirements for the power electronics performances in wind power application....

  6. Potentiality of wind power generation along the Bangladesh coast

    Science.gov (United States)

    Shaikh, Md. Akramuzzaman; Chowdhury, K. M. Azam; Sen, Sukanta; Islam, Mohammad Masudul

    2017-12-01

    Nowadays Bangladesh is facing the problem with electricity as the production is less comparing to the demand. A significant amount of electricity is consumed in urban areas especially by industries whereas in rural or coastal areas most of the people are not having it. Around 40 millions of people living in the 724 km long coast in Bangladesh. Moreover, it is surprising that throughout the year there is sufficient wind blow in coastal areas by which we can produce a massive amount of electricity. However, day by day the utilization of wind energy is increasing in the world which reduces costs of renewable energy technology, improves efficiency. It would be a good alternative solution instead of dependency on natural gas. Wind energy is mainly potential in coastal and offshore areas with strong wind regimes. Wind energy is vital for ensuring a green energy for the future. The agricultural land of Bangladesh needs the supply of water at right time for better yielding. The installation of windmills will be very much convenient for operating the water supply pumps. This research highlights the possibility of wind energy and describes the necessary steps to implement and develop wind energy sector in Bangladesh by using other's successful ideas. Supportive policies, rules, and decree can be applied to make government, non-government organization, and donor organizations work together to develop wind energy sector in Bangladesh.

  7. Estimating the impact of wind generation and wind forecast errors on energy prices and costs in Ireland

    OpenAIRE

    Swinand, Gregory P; O'Mahoney, Amy

    2014-01-01

    This paper studies the impact of wind generation on system costs and prices in Ireland. The need to mitigate climate change, achieve renewables energy targets, and use renewable sources of energy means that many countries are considering greater levels of wind generation in their power generation mix. The overall impact of wind generation on system costs and performance has only been studied recently, and often with limited actual data from power systems with increased wind penetration. The p...

  8. ANALYSING SOLAR-WIND HYBRID POWER GENERATING SYSTEM

    Directory of Open Access Journals (Sweden)

    Mustafa ENGİN

    2005-02-01

    Full Text Available In this paper, a solar-wind hybrid power generating, system that will be used for security lighting was designed. Hybrid system was installed and solar cells, wind turbine, battery bank, charge regulators and inverter performance values were measured through the whole year. Using measured values of overall system efficiency, reliability, demanded energy cost per kWh were calculated, and percentage of generated energy according to resources were defined. We also include in the paper a discussion of new strategies to improve hybrid power generating system performance and demanded energy cost per kWh.

  9. Conceptual survey of generators and power electronics for wind turbines

    DEFF Research Database (Denmark)

    Hansen, L.H.; Helle, L.; Blaabjerg, F.

    2002-01-01

    This report presents a survey on generator concepts and power electronic concepts for wind turbines. The report is aimed as a tool for decision-makers and development people with respect to wind turbine manufactures, utilities, and independent systemoperators as well as manufactures of generators...... and power electronics. The survey is focused on the electric development of wind turbines and it yields an overview on: - State of the art on generators and power electronics. - future concepts andtechnologies within generators and power electronics. - market needs in the shape of requirements to the grid...... connection, and - consistent system solutions, plus an evaluation of these seen in the prospect of market needs. This survey on of generatorand power electronic concepts was carried out in co-operation between Aalborg University and Risø National Laboratory in the scope of the research programme Electric...

  10. Model of analysis of maximum loads in wind generators produced by extreme winds

    International Nuclear Information System (INIS)

    Herrera – Sánchez, Omar; Schellong, Wolfgang; González – Fernández, Vladimir

    2010-01-01

    The use of the wind energy by means of the wind turbines in areas of high risk of occurrence of Hurricanes comes being an important challenge for the designers of wind farm at world for some years. The wind generator is not usually designed to support this type of phenomena, for this reason the areas of high incidence of tropical hurricanes of the planning are excluded, that which, in occasions disables the use of this renewable source of energy totally, either because the country is very small, or because it coincides the area of more potential fully with that of high risk. To counteract this situation, a model of analysis of maxims loads has been elaborated taken place the extreme winds in wind turbines of great behavior. This model has the advantage of determining, in a chosen place, for the installation of a wind farm, the micro-areas with higher risk of wind loads above the acceptable for the standard classes of wind turbines. (author)

  11. Understanding wind power technology theory, deployment and optimisation

    CERN Document Server

    Schaffarczyk, Alois

    2014-01-01

    Wind energy technology has progressed enormously over the last decade. In coming years it will continue to develop in terms of power ratings, performance and installed capacity of large wind turbines worldwide, with exciting developments in offshore installations. Designed to meet the training needs of wind engineers, this introductory text puts wind energy in context, from the natural resource to the assessment of cost effectiveness and bridges the gap between theory and practice. The thorough coverage spans the scientific basics, practical implementations and the modern state of technology

  12. Feasibility of wind power generation in Ghana | Ayensu | Journal of ...

    African Journals Online (AJOL)

    For payback period of 10 years, the projected cost of the energy produced by a single turbine was estimated to be GHC 0.30 (~ 20 cents) per kWh (compared to 14 cents/kWh for photovoltaic generation and 10 cents/kWh for solar thermal), which therefore makes large scale optimized wind power generation competitive in ...

  13. Assessment of wind energy potential and optimal electricity generation in Borj-Cedria, Tunisia

    Energy Technology Data Exchange (ETDEWEB)

    Dahmouni, A.W.; Kerkeni, C. [Laboratoire de Maitrise de l' Energie Eolienne et de Valorisation Energetique des Dechets, Centre de Recherche et des Technologies de l' Energie, Technopole de Borj-Cedria, BP 95, Hammam Lif 2050 (Tunisia); Ben Salah, M. [Laboratoire des Procedees Thermiques, Centre de Recherche et technologies de l' Energie, Centre de Recherche et des Technologies de l' Energie, Technopole de Borj-Cedria, BP 95 Hammam Lif 2050 (Tunisia); Askri, F.; Ben Nasrallah, S. [Laboratoire d' Etudes des Systemes Thermiques et Energetiques, Ecole Nationale d' Ingenieurs de Monastir, avenue Ibn El Jazzar 5019, Monastir (Tunisia)

    2011-01-15

    In the last century, several climate changes have been observed in regions all over the world. The main cause of these climatic changes is the rise of fossil fuel uses, which is due to the important demographic and industrial development. These negative effects have forced scientists to draw attention to renewable energy sources, which are the most suitable solution in the future. In this paper, wind energy potential was estimated using the wind speed data collected by two meteorological stations installed in the Centre of Research and Technologies of Energy (CRTEn) in the Borj-Cedria area. The data collected at 30, 20 and 10 m height during 2008 and 2009, have permitted us to estimate the seasonal mean wind speed, wind speed distribution and wind power density. The results have been used to estimate the net energy output of seven 1.5 MW wind turbines with taken account the air density correction and the power losses in wind farm. This comparative simulation shows difference in wind generators production and allows us to choose the best wind turbine adapted to the site conditions. (author)

  14. Operations model for utilities using wind-generator arrays

    Science.gov (United States)

    Schlueter, R. A.; Park, G. L.; Dorsey, J.; Lotfalian, M.; Shayanfar, A.

    1981-05-01

    The effects that various combinations of wind regime, array configuration and penetrations, and system characteristics have on system variables such as area control error, frequency, interchange power and spinning reserve are discussed. The characteristics of the combinations causing system operating stress or operating problems are denoted and methods for estimating effects on a simplified and on a detailed simulation basis are reported. Methods for reducing operating problems are suggested and involve array configurations, penetration, unit commitment and dispatch changes, and wind generator controls.

  15. Development and Application of Advanced Weather Prediction Technologies for the Wind Energy Industry (Invited)

    Science.gov (United States)

    Mahoney, W. P.; Wiener, G.; Liu, Y.; Myers, W.; Johnson, D.

    2010-12-01

    Wind energy decision makers are required to make critical judgments on a daily basis with regard to energy generation, distribution, demand, storage, and integration. Accurate knowledge of the present and future state of the atmosphere is vital in making these decisions. As wind energy portfolios expand, this forecast problem is taking on new urgency because wind forecast inaccuracies frequently lead to substantial economic losses and constrain the national expansion of renewable energy. Improved weather prediction and precise spatial analysis of small-scale weather events are crucial for renewable energy management. In early 2009, the National Center for Atmospheric Research (NCAR) began a collaborative project with Xcel Energy Services, Inc. to perform research and develop technologies to improve Xcel Energy's ability to increase the amount of wind energy in their generation portfolio. The agreement and scope of work was designed to provide highly detailed, localized wind energy forecasts to enable Xcel Energy to more efficiently integrate electricity generated from wind into the power grid. The wind prediction technologies are designed to help Xcel Energy operators make critical decisions about powering down traditional coal and natural gas-powered plants when sufficient wind energy is predicted. The wind prediction technologies have been designed to cover Xcel Energy wind resources spanning a region from Wisconsin to New Mexico. The goal of the project is not only to improve Xcel Energy’s wind energy prediction capabilities, but also to make technological advancements in wind and wind energy prediction, expand our knowledge of boundary layer meteorology, and share the results across the renewable energy industry. To generate wind energy forecasts, NCAR is incorporating observations of current atmospheric conditions from a variety of sources including satellites, aircraft, weather radars, ground-based weather stations, wind profilers, and even wind sensors on

  16. FY 1998 Report on development of large-scale wind power generation systems. Research on the future prospects of wind power generation systems; 1998 nendo ogata furyoku hatsuden system kaihatsu. Furyoku hatsuden system no shorai tenbo ni kansuru chosa kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Current status of wind power generation in Japan and situations in foreign countries ahead of Japan are surveyed, in order to clarify the prospects for the future diffusion and expansion of wind power generation systems in Japan. The surveyed trends of wind power generation in Japan include those related to mandatory laws and regulations, e.g., the Electricity Enterprises Act, introductory and operation situations in local autonomies and electric power companies, and R and D efforts by academic and research organizations. The surveyed wind power generation situations in foreign countries include trends of international standardization for wind power generation, and global situations of introducing these systems. The on-the-spot oversea surveys include location/wind conditions in Greece's islands, cyclone-caused damages in India, World Renewable Energy Congress in Perth and advanced technologies in Europe for wind power generation systems, and the survey results are reported in detail. The surveyed R and D projects in Japan include the basic technological R and D plans (draft) for, e.g., wind power generation systems for isolated islands. (NEDO)

  17. Reliability, energy, and cost effects of wind-powered generation integrated with a conventional generating system

    Energy Technology Data Exchange (ETDEWEB)

    VanKuiken, J.C.; Buehring, W.A.; Huber, C.C.; Hub, K.A.

    1980-01-01

    The purpose of this investigation is to examine the potential impacts of incorporating wind turbines, without the aid of energy-storage devices, into a conventional electrical generating system. This study focuses on the contribution to generating-system reliability of wind turbines, and the methods used to calculate these benefits. In addition, a simple cost model was developed to estimate ranges of breakeven costs for wind turbines based on the sum of fuel cost savings, variable operation and maintenance (0 and M) cost savings, and reliability benefits of the wind turbines.

  18. Why is China’s wind power generation not living up to its potential?

    Science.gov (United States)

    Huenteler, Joern; Tang, Tian; Chan, Gabriel; Diaz Anadon, Laura

    2018-04-01

    Following a decade of unprecedented investment, China now has the world’s largest installed base of wind power capacity. Yet, despite siting most wind farms in the wind-rich Northern and Western provinces, electricity generation from Chinese wind farms has not reached the performance benchmarks of the United States and many other advanced economies. This has resulted in lower environmental, economic, and health benefits than anticipated. We develop a framework to explain the performance of the Chinese and US wind sectors, accounting for a comprehensive set of driving factors. We apply this framework to a novel dataset of virtually all wind farms installed in China and the United States through the end of 2013. We first estimate the wind sector’s technical potential using a methodology that produces consistent estimates for both countries. We compare this potential to actual performance and find that Chinese wind farms generated electricity at 37%–45% of their annual technical potential during 2006–2013 compared to 54%–61% in the United States. Our findings underscore that the larger gap between actual performance and technical potential in China compared to the United States is significantly driven by delays in grid connection (14% of the gap) and curtailment due to constraints in grid management (10% of the gap), two challenges of China’s wind power expansion covered extensively in the literature. However, our findings show that China’s underperformance is also driven by suboptimal turbine model selection (31% of the gap), wind farm siting (23% of the gap), and turbine hub heights (6% of the gap)—factors that have received less attention in the literature and, crucially, are locked-in for the lifetime of wind farms. This suggests that besides addressing grid connection delays and curtailment, China will also need policy measures to address turbine siting and technology choices to achieve its national goals and increase utilization up to US levels.

  19. Smart pitch control strategy for wind generation system using doubly fed induction generator

    Science.gov (United States)

    Raza, Syed Ahmed

    A smart pitch control strategy for a variable speed doubly fed wind generation system is presented in this thesis. A complete dynamic model of DFIG system is developed. The model consists of the generator, wind turbine, aerodynamic and the converter system. The strategy proposed includes the use of adaptive neural network to generate optimized controller gains for pitch control. This involves the generation of controller parameters of pitch controller making use of differential evolution intelligent technique. Training of the back propagation neural network has been carried out for the development of an adaptive neural network. This tunes the weights of the network according to the system states in a variable wind speed environment. Four cases have been taken to test the pitch controller which includes step and sinusoidal changes in wind speeds. The step change is composed of both step up and step down changes in wind speeds. The last case makes use of scaled wind data collected from the wind turbine installed at King Fahd University beach front. Simulation studies show that the differential evolution based adaptive neural network is capable of generating the appropriate control to deliver the maximum possible aerodynamic power available from wind to the generator in an efficient manner by minimizing the transients.

  20. Wind turbine integrated multipole permanent magnet generator (PMG)

    Energy Technology Data Exchange (ETDEWEB)

    Vilsboell, N.; Pinegin, A.; Goussarov, D.

    1996-01-01

    Designed permanent magnet generator (PMG - 20 kW) possesses a number of advantages: it makes possible to replace gearbox, the generator and possibly the hub of the wind turbine by combining wind rotor with external rotor of the generator; use of rare earth magnets Nd-Fe-B allows to reduce mass and dimensions of the generator; use of the PMG for wind turbines increases the reliability of the construction during the life time, comparing to the conventional design (gearbox, asynchronous generator). The test of the PMG -20 kW informs that design method, developed for calculation of multipole permanent magnet generators is correct in general and meets engineering requirements. The calculation uncertainty of the magnetic system and output characteristics does not exceed 2-3%. The test shows, that the maximum efficiency of the PGM - 20 kW with full load can be achieved as high as 90-91.5% and excels the efficiency of the traditional system `generator-gearbox` by 4-5.5%. Designing permanent magnet generator, it is recommended to take into account voltage stabilization (capacitance). Efficiency is expected to be higher, mass and production cost of the generator can be reduced by 25-30%. The frequency converter shall be used not only for control of rotational speed, but also to obtain sinusoidal capacitive current on the generator side. For PMG - 20 kW the angle between voltage and current should be within the range 0-23%. (au)

  1. Optimization of Multibrid Permanent-Magnet Wind Generator Systems

    DEFF Research Database (Denmark)

    Chen, Zhe; Li, H.; Polinder, H.

    2009-01-01

    This paper investigates the cost-effective ranges of gearbox ratios and power ratings of multibrid permanent-magnet (PM) wind generator systems by using a design optimization method. First, the analytical model of a multibrid wind turbine concept consisting of a single-stage gearbox and a three......-phase radial-flux PM synchronous generator with a back-to-back power converter is presented. The design optimization is adopted with a genetic algorithm forminimizing generator system cost. To demonstrate the effectiveness of the developed electromagnetic design model, the optimization results of a 500-k......W direct-drive PM generator and a 1.5-MW multibrid PM generator with various gear ratios are, respectively, compared with those from other methods. Then, the optimal design approach is further employed for a range from 750 kW up to 10 MW. The optimization results of PM generator systems including direct...

  2. Variability in large-scale wind power generation: Variability in large-scale wind power generation

    Energy Technology Data Exchange (ETDEWEB)

    Kiviluoma, Juha [VTT Technical Research Centre of Finland, Espoo Finland; Holttinen, Hannele [VTT Technical Research Centre of Finland, Espoo Finland; Weir, David [Energy Department, Norwegian Water Resources and Energy Directorate, Oslo Norway; Scharff, Richard [KTH Royal Institute of Technology, Electric Power Systems, Stockholm Sweden; Söder, Lennart [Royal Institute of Technology, Electric Power Systems, Stockholm Sweden; Menemenlis, Nickie [Institut de recherche Hydro-Québec, Montreal Canada; Cutululis, Nicolaos A. [DTU, Wind Energy, Roskilde Denmark; Danti Lopez, Irene [Electricity Research Centre, University College Dublin, Dublin Ireland; Lannoye, Eamonn [Electric Power Research Institute, Palo Alto California USA; Estanqueiro, Ana [LNEG, Laboratorio Nacional de Energia e Geologia, UESEO, Lisbon Spain; Gomez-Lazaro, Emilio [Renewable Energy Research Institute and DIEEAC/EDII-AB, Castilla-La Mancha University, Albacete Spain; Zhang, Qin [State Grid Corporation of China, Beijing China; Bai, Jianhua [State Grid Energy Research Institute Beijing, Beijing China; Wan, Yih-Huei [National Renewable Energy Laboratory, Transmission and Grid Integration Group, Golden Colorado USA; Milligan, Michael [National Renewable Energy Laboratory, Transmission and Grid Integration Group, Golden Colorado USA

    2015-10-25

    The paper demonstrates the characteristics of wind power variability and net load variability in multiple power systems based on real data from multiple years. Demonstrated characteristics include probability distribution for different ramp durations, seasonal and diurnal variability and low net load events. The comparison shows regions with low variability (Sweden, Spain and Germany), medium variability (Portugal, Ireland, Finland and Denmark) and regions with higher variability (Quebec, Bonneville Power Administration and Electric Reliability Council of Texas in North America; Gansu, Jilin and Liaoning in China; and Norway and offshore wind power in Denmark). For regions with low variability, the maximum 1 h wind ramps are below 10% of nominal capacity, and for regions with high variability, they may be close to 30%. Wind power variability is mainly explained by the extent of geographical spread, but also higher capacity factor causes higher variability. It was also shown how wind power ramps are autocorrelated and dependent on the operating output level. When wind power was concentrated in smaller area, there were outliers with high changes in wind output, which were not present in large areas with well-dispersed wind power.

  3. Wind Generation Participation in Power System Frequency Response: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Gevorgian, Vahan; Zhang, Yingchen

    2017-01-01

    The electrical frequency of an interconnected power system must be maintained close its nominal level at all times. Excessive under- and overfrequency excursions can lead to load shedding, instability, machine damage, and even blackouts. There is a rising concern in the electric power industry in recent years about the declining amount of inertia and primary frequency response (PFR) in many interconnections. This decline may continue due to increasing penetrations of inverter-coupled generation and the planned retirements of conventional thermal plants. Inverter-coupled variable wind generation is capable of contributing to PFR and inertia with a response that is different from that of conventional generation. It is not yet entirely understood how such a response will affect the system at different wind power penetration levels. The modeling work presented in this paper evaluates the impact of wind generation's provision of these active power control strategies on a large, synchronous interconnection. All simulations were conducted on the U.S. Western Interconnection with different levels of instantaneous wind power penetrations (up to 80%). The ability of wind power plants to provide PFR - and a combination of synthetic inertial response and PFR - significantly improved the frequency response performance of the system.

  4. Reducing storage of global wind ensembles with stochastic generators

    KAUST Repository

    Jeong, Jaehong

    2018-03-09

    Wind has the potential to make a significant contribution to future energy resources. Locating the sources of this renewable energy on a global scale is however extremely challenging, given the difficulty to store very large data sets generated by modern computer models. We propose a statistical model that aims at reproducing the data-generating mechanism of an ensemble of runs via a Stochastic Generator (SG) of global annual wind data. We introduce an evolutionary spectrum approach with spatially varying parameters based on large-scale geographical descriptors such as altitude to better account for different regimes across the Earth’s orography. We consider a multi-step conditional likelihood approach to estimate the parameters that explicitly accounts for nonstationary features while also balancing memory storage and distributed computation. We apply the proposed model to more than 18 million points of yearly global wind speed. The proposed SG requires orders of magnitude less storage for generating surrogate ensemble members from wind than does creating additional wind fields from the climate model, even if an effective lossy data compression algorithm is applied to the simulation output.

  5. Increasing the competitiveness of wind energy. New technologies for advanced wind predictability

    International Nuclear Information System (INIS)

    Bertolotti, Fabio

    2013-01-01

    The performance of thermal and nuclear power plants is assessed routinely and precisely, whereas the performance assessment of wind turbines is lagging far behind. This increases operational costs, reduces energy capture, and makes wind energy less competitive. The paper presents a technology and system with improved 24-h power forecasting, as well as condition monitoring of the rotor blades. The system can be employed by any wind power plant and offers potentials to increase the competitiveness of the power industry. (orig.)

  6. Increasing the competitiveness of wind energy. New technologies for advanced wind predictability

    Energy Technology Data Exchange (ETDEWEB)

    Bertolotti, Fabio [SSB Wind Systems GmbH und Co. KG, Salzbergen (Germany). Research and Technology

    2013-10-01

    The performance of thermal and nuclear power plants is assessed routinely and precisely, whereas the performance assessment of wind turbines is lagging far behind. This increases operational costs, reduces energy capture, and makes wind energy less competitive. The paper presents a technology and system with improved 24-h power forecasting, as well as condition monitoring of the rotor blades. The system can be employed by any wind power plant and offers potentials to increase the competitiveness of the power industry. (orig.)

  7. Integration of permanent magnet synchronous generator wind turbines into power grid

    Science.gov (United States)

    Abedini, Asghar

    The world is seeing an ever-increasing demand for electrical energy. The future growth of electrical power generation needs to be a mix of technologies including fossil fuels, hydro, nuclear, wind, and solar. The federal and state energy agencies have taken several proactive steps to increase the share of renewable energy in the total generated electrical power. In 2005, 11.1% of the total 1060 GW electricity generation capacity was from Renewable Energy Sources (RES) in the US. The power capacity portfolio included 9.2% from hydroelectric, 0.87% from wind, and 0.7% from biomass. Other renewable power capacity included 2.8 GW of geothermal, 0.4 GW of solar thermal, and 0.2 GW of solar PV. Although the share of renewable energy sources is small compared with the total power capacity, they are experiencing a high and steady growth. The US is leading the world in wind energy growth with a 27% increase in 2006 and a projected 26% increase in 2007, according to the American Wind Energy Association (AWEA). The US Department of Energy benchmarked a goal to meet 5% of the nation's energy need by launching the Wind Powering America (WPA) program. Although renewable energy sources have many benefits, their utilization in the electrical grid does not come without cost. The higher penetration of RES has introduced many technical and non-technical challenges, including power quality, reliability, safety and protection, load management, grid interconnections and control, new regulations, and grid operation economics. RES such as wind and PV are also intermittent in nature. The energy from these sources is available as long as there is wind or sunlight. However, these are energies that are abundant in the world and the power generated from these sources is pollution free. Due to high price of foundation of wind farms, employing variable speed wind turbines to maximize the extracted energy from blowing wind is more beneficial. On the other hand, since wind power is intermittent

  8. The role of research in the diffusion of wind technology

    International Nuclear Information System (INIS)

    Pirazzi, L.

    2009-01-01

    This last year for the first time in Europe the stunning global growth of wind technology has made wind energy to rank highest in diffusion among all energy sources. The role of research remains critical to achieve ever more ambitions E U goals. [it

  9. Study of Low Voltage Ride Through Performance for Wind Power Generation with Doubly Fed Induction Generator

    Science.gov (United States)

    Hirawata, Ryoya; Kai, Takaaki

    Recently, the introduction of wind power generation is increasing rapidly. The ratio of wind power generation to the capacity of a total generation is getting higher and higher. When the phase-to-phase fault occurs in the power system, the frequency of power system is lower due to disconnecting of the wind power generation with doubly fed induction generator (DFIG). Therefore, the power system might become unstable. This paper describes the LVRT (low voltage ride through) performance improvement scheme of the wind power generation with DFIG. The wind power generation is disconnected from the grid in case of the power system fault. It is independently in operation from the grid by controlling of the inverter equipped in the generation. After clearance of the power system fault, the wind power generation is immediately re-connected to the grid. As a result, instability in the power system disappears. The performance of LVRT is confirmed by using simulation software PSCAD/EMTDC. The simulation result shows an excellent result to the three-phase short-circuit fault of the voltage dip 100%.

  10. Testing of a direct drive generator for wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Sondergaard, L.M. [Riso National Laboratory, Roskilde (Denmark)

    1996-12-31

    The normal drive train of a wind turbine consists a gearbox and a 4 to 8 poles asynchronous generator. The gearbox is an expensive and unreliable components and this paper deals with testing of a direct drive synchronous generator for a gearless wind turbine. The Danish company Belt Electric has constructed and manufactured a 27 kW prototype radial flux PM-generator (DD600). They have used cheap hard ferrite magnets in the rotor of this PM-generator. This generator has been tested at Riso and the test results are investigated and analyzed in this paper. The tests have been done with three different load types (1: resistance; 2: diode rectifier, DC-capacitor, resistance; 3: AC-capacitor, diode rectifier, DC-capacitor, resistance). 1 ref., 9 figs., 5 tabs.

  11. Wind Turbine Generator System Duration Test Report for the Gaia-Wind 11 kW Wind Turbine

    Energy Technology Data Exchange (ETDEWEB)

    Huskey, A.; Bowen, A.; Jager, D.

    2010-09-01

    This test was conducted as part of the U.S. Department of Energy's (DOE) Independent Testing project. This project was established to help reduce the barriers of wind energy expansion by providing independent testing results for small turbines. In total, five turbines are being tested at the National Renewable Energy Laboratory's (NRELs) National Wind Technology Center (NWTC) as a part of this project. Duration testing is one of up to five tests that may be performed on the turbines, including power performance, safety and function, noise, and power quality tests. The results of the testing will provide the manufacturers with reports that may be used for small wind turbine certification. The test equipment includes a Gaia-Wind 11 kW wind turbine mounted on an 18 m monopole tower. Gaia-Wind Ltd. manufactured the turbine in Denmark, although the company is based in Scotland. The system was installed by the NWTC Site Operations group with guidance and assistance from Gaia-Wind.

  12. Fuzzy logic based variable speed wind generation system

    Energy Technology Data Exchange (ETDEWEB)

    Simoes, M.G. [Sao Paulo Univ., SP (Brazil). Escola Politecnica. PMC - Mecatronica; Bose, B.K. [Tennessee Univ., Knoxville, TN (United States). Dept. of Electrical Engineering; Spiegel, Ronal J. [Environmental Protection Agency, Research Triangle Park, NC (United States). Air and Energy Engineering Research Lab.

    1996-12-31

    This work demonstrates the successful application of fuzzy logic to enhance the performance and control of a variable speed wind generation system. A maximum power point tracker control is performed with three fuzzy controllers, without wind velocity measurement, and robust to wind vortex and turbine torque ripple. A squirrel cage induction generator feeds the power to a double-sided PWM converter system which pumps the power to a utility grid or supplies to an autonomous system. The fuzzy logic controller FLC-1 searches on-line the generator speed so that the aerodynamic efficiency of the wind turbine is optimized. A second fuzzy controller FLC-2 programs the machine flux by on-line search so as to optimize the machine-converter system wind vortex. Detailed analysis and simulation studies were performed for development of the control strategy and fuzzy algorithms, and a DSP TMS320C30 based hardware with C control software was built for the performance evaluation of a laboratory experimental set-up. The theoretical development was fully validated and the system is ready to be reproduced in a higher power installation. (author) 7 refs., 3 figs., 1 tab.

  13. Technology Roadmaps: How2Guide for Wind Energy Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-03-01

    Whether in OECD, emerging or developing country economies, governments are increasingly looking to diversify their energy mix beyond simply fossil fuels. While wind energy is developing towards a mainstream, competitive and reliable technology, a range of barriers can delay progress, such as financing, grid integration, social acceptance and aspects of planning processes. National and regional technology roadmaps can play a key role in supporting wind energy development and implementation, helping countries to identify priorities and pathways tailored to local resources and markets. Recognising this, the IEA has started the How2Guides - a new series co-ordinated by the International Low-Carbon Energy Technology Platform to address the need for more focused guidance in the development of national roadmaps, or strategies, for specific low-carbon technologies. This builds on the success of the IEA global technology roadmap series and responds to a growing number of requests for IEA guidance to adapt the findings of the IEA global technology roadmaps to national circumstances. A successful roadmap contains a clear statement of the desired outcome, followed by a specific pathway for reaching it. The How2Guide for Wind Energy builds on the IEA well established methodology for roadmap development and shares wind specific recommendations on how to address the four phases to developing and implementing a wind energy roadmap: Planning; Visioning; Development; and Implementation. The manual also offers menus of recommendations on policy and technical options for deployment of utility-scale wind energy installations. A matrix of barriers-versus-realistic solutions options is cross-listed with considerations such as planning, development, electricity market and system, infrastructure, and finance and economics. Drawing on several case studies from around the globe, as well as on the IEA Technology Roadmap for Wind Energy, the How2Guide for Wind Energy it is intended as a

  14. Early stages of wind wave and drift current generation under non-stationary wind conditions.

    Science.gov (United States)

    Robles-Diaz, Lucia; Ocampo-Torres, Francisco J.; Branger, Hubert

    2016-04-01

    Generation and amplification mechanisms of ocean waves are well understood under constant wind speed or limited fetch conditions. Under these situations, the momentum and energy transfers from air to water are also quite well known. However during the wind field evolution over the ocean, we may observe sometime high wind acceleration/deceleration situations (e.g. Mexican Tehuano or Mediterranean Mistral wind systems). The evolution of wave systems under these conditions is not well understood. The purpose of these laboratory experiments is to better understand the early stages of water-waves and surface-drift currents under non-stationary wind conditions and to determine the balance between transfers creating waves and surface currents during non-equilibrium situations. The experiments were conducted in the Institut Pythéas wind-wave facility in Marseille-France. The wave tank is 40 m long, 2.7 m wide and 1 m deep. The air section is 50 m long, 3 m wide and 1.8 m height. We used 11 different resistive wave-gauges located along the tank. The momentum fluxes in the air column were estimated from single and X hot-film anemometer measurements. The sampling frequency for wind velocity and surface displacement measurements was 256 Hz. Water-current measurements were performed with a profiling velocimeter. This device measures the first 3.5 cm of the water column with a frequency rate of 100Hz. During the experiments, the wind intensity was abruptly modified with a constant acceleration and deceleration over time. We observed that wind drag coefficient values for accelerated wind periods are lower than the ones reported in previous studies for constant wind speed (Large and Pond 1981; Ocampo-Torres et al. 2010; Smith 1980; Yelland and Taylor 1996). This is probably because the turbulent boundary layer is not completely developed during the increasing-wind sequence. As it was reported in some theoretical studies (Miles 1957; Phillips 1957; Kahma and Donelan 1988), we

  15. Wind turbine generators having wind assisted cooling systems and cooling methods

    Science.gov (United States)

    Bagepalli, Bharat [Niskayuna, NY; Barnes, Gary R [Delanson, NY; Gadre, Aniruddha D [Rexford, NY; Jansen, Patrick L [Scotia, NY; Bouchard, Jr., Charles G.; Jarczynski, Emil D [Scotia, NY; Garg, Jivtesh [Cambridge, MA

    2008-09-23

    A wind generator includes: a nacelle; a hub carried by the nacelle and including at least a pair of wind turbine blades; and an electricity producing generator including a stator and a rotor carried by the nacelle. The rotor is connected to the hub and rotatable in response to wind acting on the blades to rotate the rotor relative to the stator to generate electricity. A cooling system is carried by the nacelle and includes at least one ambient air inlet port opening through a surface of the nacelle downstream of the hub and blades, and a duct for flowing air from the inlet port in a generally upstream direction toward the hub and in cooling relation to the stator.

  16. Description and evaluation of foreign wind turbine technology

    International Nuclear Information System (INIS)

    1995-06-01

    It is stated that sales of Danish-manufactured wind turbines abroad are decreasing due to an increase in production, marketing and technology research in other countries. The aim was to give an account of this international development which could form the basis for the future strategies of the Danish Wind turbine industry. The study is based on a survey of relevant literature, interviews with experts on the subject and the collection of the latest data. The survey is limited to wind turbines with a larger capacity than 50 kW. Recommendations are given as to how to conserve and develop the market for Danish wind turbines. (AB) 17 refs

  17. Testing Active Power Control from Wind Power at the National Wind Technology Center (NWTC) (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Ela, E.

    2011-05-01

    In order to keep the electricity grid stable and the lights on, the power system relies on certain responses from its generating fleet. This presentation evaluates the potential for wind turbines and wind power plants to provide these services and assist the grid during critical times.

  18. Multi-Pole HTS Generators for Direct Drive Wind Turbines

    DEFF Research Database (Denmark)

    Jensen, Bogi Bech; Abrahamsen, Asger Bech; Seiler, Eugen

    In this presentation the feasibility of installing a 5MW direct drive superconducting generator for an offshore wind turbine is presented. The reference turbine is a geared 5MW wind turbine that has been installed offshore and has been documented extensively by the National Renewable Energy...... on two different types of coated conductor. In the specific design the allowable current density was 300A/mm^2 for tape 1 and 70A/mm^2 for tape 2. The design is analytical, based on magnetic circuit analysis, which is validated by finite element modelling. The conclusion is that the either price...... or the performance of the coated conductor has to improve significantly (by a factor of 10 or more) in order for HTS generators to become feasible in direct drive offshore wind turbines. This price/performance improvement is not unrealistic in the coming decade. Additionally the reliability of such machines...

  19. Output power control of two coupled wind generators

    Directory of Open Access Journals (Sweden)

    A Boukhelifa

    2016-09-01

    Full Text Available In this paper we are interested to the power control of two wind generators coupled to the network through power converters. Every energy chain conversion is composed of a wind turbine, a gearbox, a Double Fed Induction Generator (DFIG, two PWM converters and a DC bus. The power exchange and the DC voltage are controlled by the use of proportional integral correctors. For our study, initially we have modeled all the components of the one system energy conversion, and then we have simulated its behavior using Matlab/Simulink. In another part of this paper we present the analysis of the interaction and the powerflow between the two aerogenerators following a disturbance due to wind speed on every turbine. Also we have considered a connection fault to the DC bus. In each case the assessment of power brought into play is checked. Simulation tests are established.

  20. Issues and regulatory requirements for the connection of wind generation

    Energy Technology Data Exchange (ETDEWEB)

    Gimenez Alvarez, J.M. [National University of San Juan (Argentina)], E-mail: jgimenez@unsj.edu.ar; Gomez Targarona, J.C. [National University of Rio Cuarto, Cordoba (Argentina). Electric Power Systems Protection Institute (IPSEP)], E-mail: jcgomez@ing.unrc.edu.ar

    2009-07-01

    Pollution problems such as greenhouse effect as well as the high value and volatility of fuel prices have forced and accelerated the development and use of renewable energy sources. In this work a complete revision of wind generation is presented. In the first part a brief history of the wind energy developments is detailed. Next, some commentaries related to the present and future state are made. Then, a revision of the modern structures of wind generation is realized. In fourth place it is included a brief comparison between small and big size turbines. Then, different types of energy storage are mentioned. Finally regulatory aspects are discussed, respect to the treatment of the technical problems. (author)

  1. Resolving the generation of starburst winds in Galaxy mergers

    Science.gov (United States)

    Hopkins, Philip F.; Kereš, Dusan; Murray, Norman; Hernquist, Lars; Narayanan, Desika; Hayward, Christopher C.

    2013-07-01

    We study galaxy superwinds driven in major mergers, using pc-scale resolution simulations with detailed models for stellar feedback that can self-consistently follow the generation of winds. The models include molecular cooling, star formation at high densities in giant molecular clouds, and gas recycling and feedback from supernovae (I and II), stellar winds and radiation pressure. We study mergers of systems from Small-Magellanic-Cloud-like dwarfs and Milky Way analogues to z ˜ 2 starburst discs. Multiphase superwinds are generated in all passages, with outflow rates up to ˜1000 M⊙ yr-1. However, the wind mass-loading efficiency (outflow rate divided by star formation rate, SFR) is similar to that in the isolated galaxy counterparts of each merger: it depends more on global galaxy properties (mass, size and escape velocity) than on the dynamical state or orbital parameters of the merger. Winds tend to be bi- or unipolar, but multiple `events' build up complex morphologies with overlapping, differently oriented bubbles and shells at a range of radii. The winds have complex velocity and phase structure, with material at a range of speeds up to ˜1000 km s-1 (forming a Hubble-like flow), and a mix of molecular, ionized and hot gas that depends on galaxy properties. We examine how these different phases are connected to different feedback mechanisms. These simulations resolve a problem in some `subgrid' models, where simple wind prescriptions can dramatically suppress merger-induced starbursts, often making it impossible to form Ultra Luminous Infrared Galaxies (ULIRGs). Despite large mass-loading factors (≳10-20) in the winds simulated here, the peak SFRs are comparable to those in `no wind' simulations. Wind acceleration does not act equally, so cold dense gas can still lose angular momentum and form stars, while these stars blow out gas that would not have participated in the starburst in the first place. Considerable wind material is not unbound, and falls

  2. Techno-economic analysis of key renewable energy technologies (PV, CSP and wind)

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez Guevara, H.; Tuebke, A. [Joint Research Centre JRC, Institute for Prospective Technological Studies IPTS, Sevilla (Spain); Folkerts, W. [Ecofys, Utrecht (Netherlands); Brizard, N. [Enerdata, Lyon (France); Lako, P. [Unit Policy Studies, Energy research Centre of the Netherlands ECN, Petten (Netherlands)

    2011-09-15

    This report shows the results of a techno-economic analysis of key renewable energy technologies: Solar Photovoltaics (PV), Concentrating Solar Power (CSP), and Wind Energy Technologies (wind). For this purpose, bottom-up company-data were collected, market supply and demand factors addressed, the regulatory framework examined, and EU industry compared against its main competitors. Personal interviews with 10 key industrialists from these sectors were undertaken to generate first-hand feedback from companies. The information generated was validated in a workshop with selected study participants, industrialists and policymakers.

  3. Floating wind generators offshore wind farm: Implications for structural loads and control actions

    International Nuclear Information System (INIS)

    Garcia, E.; Morant F, Quiles E.; Correcher, A.

    2009-01-01

    This paper describes the work currently carried out in the design of floating wind generators and their involvement in the future development of power generation in marine farms in depths exceeding 20 m. We discuss the main issues to be taken into account in the design of floating platforms, including the involvement of structural loads they bear. Also from a standpoint of control engineering are discussed strategies to reduce structural loads such a system to ensure adequate durability and therefore ensuring their economic viability. Finally, the abstract modeling tools for floating wind turbines that can be used in both structural design and the design of appropriate control algorithms

  4. Assessment of research needs for wind turbine rotor materials technology

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    Wind-driven power systems is a renewable energy technology that is still in the early stages of development. Wind power plants installed in early 1980s suffered structural failures chiefly because of incomplete understanding of wind forces (turbulent), in some cases because of poor product quality. Failures of rotor blades are now somewhat better understood. This committee has examined the experience base accumulated by wind turbines and the R and D programs sponsored by DOE. It is concluded that a wind energy system such as is described is within the capability of engineering practice; however because of certain gaps in knowledge, and the presence of only one major integrated manufacturer of wind power machines in the USA, a DOE R and D investment is still required.

  5. A Vector Control for Grid-connected Wind Power Generation with Doubly Fed Induction Generator

    Science.gov (United States)

    Kai, Takaaki; Tanaka, Yuji; Kaneda, Hirotoshi; Kobayashi, Daichi; Tanaka, Akio

    Recently, doubly fed induction generator (DFIG) and synchronous generator are mostly applied for wind power generation due to high efficiently for wind energy capture. An inverter system is required to control wind turbine speed and power factor in those generators. The inverter rating of the synchronous generator equals to generator rating. However, DFIG has the advantage that the inverter rating is about 25% to the generator rating. The paper describes a vector control of DFIG inter-connected to power line. The performance of proposed vector control is examined using power system simulation software PSCAD/EMTDC for the DFIG inter-connected to 6.6kv distribution line. The results show good dynamic responses and high accuracy to the stator active power control and the stator reactive power control.

  6. High Power Wind Generator Designs with Less or No PMs

    DEFF Research Database (Denmark)

    Boldea, Ion; Tutelea, Lucian; Blaabjerg, Frede

    2014-01-01

    The recent steep increase in high energy permanent magnet (PM) price (above 130$/kg and more) triggered already strong R&D efforts to develop wind generators with less PMs (less weight in NdFeB magnets/kW or the use of ferrite PMs) or fully without PMs. All these by optimizing existing dc excited...

  7. Computation of Superconducting Generators for Wind Turbine Applications

    DEFF Research Database (Denmark)

    Rodriguez Zermeno, Victor Manuel

    The idea of introducing a superconducting generator for offshore wind turbine applications has received increasing support. It has been proposed as a way to meet energy market requirements and policies demanding clean energy sources in the near future. However, design considerations have to take ...

  8. Design Tool for Direct Drive Wind Turbine Generators

    DEFF Research Database (Denmark)

    Leban, Krisztina Monika

    The current work offers a comparison of the proposed machine geometries for 6 [MW] direct drive wind generator candidates with the prospective of up scaling to 20MW. The suggestions are based on a design tool especially built for this investigation. The in-built flexibility of the design tool gives...

  9. 5MW Direct Drive Wind Turbine Generator Design

    DEFF Research Database (Denmark)

    Zaidi, Arsalan; Senn, Lucile; Ortega, Iratxe

    2012-01-01

    A 5MW direct drive offshore wind turbine generator was studied and simulated using Vector Fields OPERA. This software allows calculation of the flux density, force, torque, and eddy currents in the machine at different rotor positions. Based on the data obtained from the model, initial assumptions...

  10. Phase spectral composition of wind generated ocean surface waves

    Digital Repository Service at National Institute of Oceanography (India)

    Varkey, M.J.

    A study of the composition of the phase spectra of wind generated ocean surface waves is carried out using wave records collected employing a ship borne wave recorder. It is found that the raw phase spectral estimates could be fitted by the Uniform...

  11. Induction Generators for Direct-Drive Wind Turbines

    DEFF Research Database (Denmark)

    Henriksen, Matthew Lee; Jensen, Bogi Bech

    2011-01-01

    This paper considers the use of a squirrel cage induction generator for a direct-drive wind turbine. Advantages of this topology include a simple/rugged construction, and no need for permanent magnets. A major focus of this paper is the choice of an appropriate pole number. An iterative, analytical...

  12. Interconnector capacity allocation in offshore grids with variable wind generation

    DEFF Research Database (Denmark)

    Schröder, Sascha Thorsten

    2013-01-01

    its generation flows only to the high-price market. Granting the high-price market income for wind generation as the opposite design option reduces congestion rents. Otherwise, compensation measures through support schemes or different balancing responsibilities may be discussed....... with onshore installations to reduce balancing demand. This is not necessarily the case if the interconnector capacity is sold through implicit or explicit auctions. Different design options are discussed and quantified for a number of examples based on Danish, Dutch, German and Norwegian power markets....... It is concluded that treating offshore generation as a single price zone within the interconnector reduces the wind operator’s ability to pool it with other generation. Furthermore, a single offshore price zone between two markets will always receive the lower spot market price of the neighbouring zones, although...

  13. 2012 Market Report on Wind Technologies in Distributed Applications

    Energy Technology Data Exchange (ETDEWEB)

    Orrell, Alice C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-08-01

    An annual report on U.S. wind power in distributed applications – expanded to include small, mid-size, and utility-scale installations – including key statistics, economic data, installation, capacity, and generation statistics, and more.

  14. A small - signal stability analysis of DFIG wind generation

    OpenAIRE

    Vittal, Eknath; O'Malley, Mark; Keane, Andrew

    2009-01-01

    This paper examines the small-signal stability impacts of high penetrations of doubly-fed induction generator (DFIG) wind turbines on power systems. It provides a basic overview of small-signal stability concepts and then examines the response of DFIG generation to two local contingency event. Using the New England 39 bus test system, this paper will demonstrate the stability implications of DFIG turbines utilizing terminal voltage control and fixed power factor control in response...

  15. Feasibility study of 5MW superconducting wind turbine generator

    DEFF Research Database (Denmark)

    Abrahamsen, Asger Bech; Jensen, Bogi Bech; Seiler, E.

    2011-01-01

    The feasibility of installing a direct drive superconducting generator in the 5MW reference offshore wind turbine of the National Renewable Energy Laboratory (NREL) has been examined. The engineering current densities Je obtained in a series of race track coils have been combined with magnetization...... measurements to estimate the properties of suitable field coils for a synchronous generator, which is more light weight than the conventional used combination of a gear box and a fast rotating generator. An analytical model and finite element simulations have been used to estimate the active mass of generators...

  16. Concentrated Windings in Compact Permanent Magnet Synchronous Generators: Managing Efficiency

    Directory of Open Access Journals (Sweden)

    Olivier Barré

    2016-01-01

    Full Text Available In electric power generation, customers want generators with high efficiency. Nowadays, modern turbo-generators have efficiencies greater than 98%. Although this amount should not be obtained for all kind of machines, efficiency will remain one of the main parameters for customer choice. Efficiency is also linked to the life of the machine: the higher the efficiency is, the longer the machine’s lifetime. During the past decade, new forms of energy production have appeared and generators have been developed to fit well into this market. For example, wind generators evolved towards permanent magnet generators having high polarity and running at low speed. Nevertheless, their structure is not fixed. An industrial company has built a prototype of such a generator which uses fractional-slot concentrated-windings (FSCW. This kind of winding is not the structure used by default in such electrical machines. Another field of interest is in autonomous generators which can be used on boats. Even if everyone has in mind large merchant ships, we must not forget smaller ships, such as fishing boats and short-range cruise ships, which spend the most of their time near the coast. This kind of ship does nothave large areas for installing the electric generation or the electric propulsion. It is the reason why, in this article, we focus on the efficiency of machines using fractional-slot concentrated-windings. In many publications which compare performances between distributed and concentrated windings, the result is almost the same. The efficiency of FSCW is not as high as the efficiency associated to the machines which are using distributed windings. Design methods have to be redrawn to integrate, as soon as possible, the loss mitigation in order to provide the best efficiency in power conversion. The following discussion, step by step, introduces the loss mitigation in every part of a machine using FSCW. To close the discussion, a design is produced and it

  17. Contribution of VSC-HVDC to Frequency Regulation of Power Systems With Offshore Wind Generation

    DEFF Research Database (Denmark)

    Liu, Hongzhi; Chen, Zhe

    2015-01-01

    Modern large wind farms are required to provide frequency regulation service like conventional synchronous generation units. The frequency support capability of modern wind farms has been widely investigated and implemented. Remotely located large offshore wind farms are probably connected...

  18. Study on development system of increasing gearbox for high-performance wind-power generator

    Science.gov (United States)

    Xu, Hongbin; Yan, Kejun; Zhao, Junyu

    2005-12-01

    Based on the analysis of the development potentiality of wind-power generator and domestic manufacture of its key parts in China, an independent development system of the Increasing Gearbox for High-performance Wind-power Generator (IGHPWG) was introduced. The main elements of the system were studied, including the procedure design, design analysis system, manufacturing technology and detecting system, and the relative important technologies were analyzed such as mixed optimal joint transmission structure of the first planetary drive with two grade parallel axle drive based on equal strength, tooth root round cutting technology before milling hard tooth surface, high-precise tooth grinding technology, heat treatment optimal technology and complex surface technique, and rig test and detection technique of IGHPWG. The development conception was advanced the data share and quality assurance system through all the elements of the development system. The increasing Gearboxes for 600KW and 1MW Wind-power Generator have been successfully developed through the application of the development system.

  19. Modern wind energy technology for Russian applications. Main report

    Energy Technology Data Exchange (ETDEWEB)

    Hauge Madsen, P.; Winther-Jensen, M., Bindner, H.W. [and others

    1999-05-01

    The general objective of the project is to establish a technical foundation for an intensified application of wind energy in Russia with medium to large wind turbines and transfer/adaptation of Danish and European wind turbine technology as a basis for future joint ventures and technology exports. More specifically, the objective is to develop and establish the basic knowledge and design criteria for adaptation and development of Danish wind turbine technology for application under Russian conditions. The research programme is envisaged to be carried out in three phases, the first phase being the project reported herein. The main purpose of phase 1 is to assess the needs for modifications and adaptations of established standard (in casu Danish) wind turbine designs for decentralised energy systems with a limited number of medium sized wind turbines and for grid connected wind turbines in cold climate and in-land sites of Russia. As part of this work it is necessary to clarify the types of operational conditions and requirements that are to be met by wind turbines operating in such conditions, and to outline suitable test procedures and test set-up is for verifications of such adapted and modified wind turbines. The reporting of this project is made in one main report and four topical reports, all of them issued as Risoe reports. This is the Main Report, (Risoe-R-1069), summing up the activities and findings of phase 1 and outlining a strategy for Russian-Danish cooperation in wind energy as agreed upon between the Russian and the Danish parties. (au)

  20. Transient Stability Enhancement of the Power System with Wind Generation

    Directory of Open Access Journals (Sweden)

    Ashwani Kumar Chandel

    2011-08-01

    Full Text Available Transient stability analysis of a power system with wind generation has been addressed in this paper. The effects of automatic voltage regulators, power system stabilizers, and static synchronous compensators on transient stability of a power system are investigated. Various simulation results show that addition of power system stabilizer and static synchronous compensators reduce the rotor angle oscillations. However, the static synchronous compensator shows better damping characteristics and improves the stability of the wind integrated system. It has been established that the static synchronous compensator damps out the speed oscillations in the shaft of the constant speed wind turbine. A transient impact index has been proposed to prove that the static compensator damps out the rotor oscillations.

  1. Coastal and offshore wind energy generation: is it environmentally benign?

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, J. C.; Elliott, M.; Cutts, N. D.; Mander, L.; Mendao, V.; Perez-Dominguez, R.; Phelps, A. [Institute of Estuarine and Coastal Studies, University of Hull, Hull, HU6 7RX (United Kingdom); Wilson, J. C. [Amec, Booths Park, Chelford Road, Knutsford, Cheshire, WA16 8QZ (United Kingdom); Mendao, V. [Projecto Delfim, Centro Portugues de Estudo dos Mamiferos Marinhos, Rua Alto do Duque, 45, 1400-009 Lisboa (Portugal)

    2010-07-15

    Offshore and coastal wind power is one of the fastest growing industries in many areas, especially those with shallow coastal regions due to the preferable generation conditions available in the regions. As with any expanding industry, there are concerns regarding the potential environmental effects which may be caused by the installation of the offshore wind turbines and their associated infrastructure, including substations and subsea cables. These include the potential impacts on the biological, physical and human environments. This review discusses in detail the potential impacts arising from offshore wind farm construction, and how these may be quantified and addressed through the use of conceptual models. It concludes that while not environmentally benign, the environmental impacts are minor and can be mitigated through good siting practices. In addition, it suggests that there are opportunities for environmental benefits through habitat creation and conservation protection areas. (authors)

  2. Wind Turbine Generator System Acoustic Noise Test Report for the ARE 442 Wind Turbine

    Energy Technology Data Exchange (ETDEWEB)

    Huskey, A.; van Dam, J.

    2010-11-01

    This test was conducted on the ARE 442 as part of the U.S. Department of Energy's (DOE's) Independent Testing project. This project was established to help reduce the barriers of wind energy expansion by providing independent testing results for small turbines. In total, five turbines are being tested at the National Wind Technology Center (NWTC) as a part of this project. Acoustic noise testing is one of up to five tests that may be performed on the turbines, including duration, safety and function, power performance, and power quality tests. The acoustic noise test was conducted to the IEC 61400-11 Edition 2.1.

  3. New Energy-Saving Technologies Use Induction Generators

    Science.gov (United States)

    Nola, F.

    1982-01-01

    Two energy-saving technologies tested recently at Marshall Space Flight Center use an induction motor operated in reverse (as an induction generator). In the first, energy ordinarily dissipated during load testing of machinery is recovered and returned to powerline. In the second, efficiency of wind-driven induction generator is improved, and useful range of windspeed is broadened. Both technologies take advantage of ac voltage developed across terminals of an induction motor when rotated at higher than-synchronous speed in the direction it normally turns when power is appled.

  4. Effect of wind turbine generator model and siting on wind power changes out of large WECS arrays

    Science.gov (United States)

    Schleuter, R. A.; Park, G. L.; Lotfalian, M.; Dorsey, J.; Shayanfar, H.

    1981-01-01

    Methods of reducing the WECS generation change through selection of the wind turbine model for each site, selection of an appropriate siting configuration, and wind array controls are discussed. An analysis of wind generation change from an echelon and a farm for passage of a thunderstorm is presented. Reduction of the wind generation change over ten minutes is shown to reduce the increase in spinning reserve, unloadable generation and load following requirements on unit commitment when significant WECS generation is present and the farm penetration constraint is satisfied. Controls on the blade pitch angle of all wind turbines in an array or a battery control are shown to reduce both the wind generation change out of an array and the effective farm penetration in anticipation of a storm so that the farm penetration constraint may be satisfied.

  5. Wind power costs expected to decrease due to technological progress

    International Nuclear Information System (INIS)

    Williams, Eric; Hittinger, Eric; Carvalho, Rexon; Williams, Ryan

    2017-01-01

    The potential for future cost reductions in wind power affects adoption and support policies. Prior analyses of cost reductions give inconsistent results. The learning rate, or fractional cost reduction per doubling of production, ranges from −3% to +33% depending on the study. This lack of consensus has, we believe, contributed to high variability in forecasts of future costs of wind power. We find that learning rate can be very sensitive to the starting and ending years of datasets and the geographical scope of the study. Based on a single factor experience curve that accounts for capacity factor gains, wind quality decline, and exogenous shifts in capital costs, we develop an improved model with reduced temporal variability. Using a global adoption model, the wind-learning rate is between 7.7% and 11%, with a preferred estimate of 9.8%. Using global scenarios for future wind deployment, this learning rate range implies that the cost of wind power will decline from 5.5 cents/kWh in 2015 to 4.1–4.5 cents/kWh in 2030, lower than a number of other forecasts. If attained, wind power may be the cheapest form of new electricity generation by 2030, suggesting that support and investment in wind should be maintained or expanded. - Highlights: • Expectations for cost reductions in wind power is important for policy. • Wind learning rates are sensitive to data time period and regional choice. • We develop improved wind cost model with much reduced variability. • New model gives global wind learning rates between 7.7%-11%.

  6. A Condensed Introduction to the Doubly Fed Induction Generator Wind Energy Conversion Systems

    Directory of Open Access Journals (Sweden)

    Julius Mwaniki

    2017-01-01

    Full Text Available The increase in wind power penetration, at 456 GW as of June 2016, has resulted in more stringent grid codes which specify that the wind energy conversion systems (WECS must remain connected to the system during and after a grid fault and, furthermore, must offer grid support by providing reactive currents. The doubly fed induction generator (DFIG WECS is a well-proven technology, having been in use in wind power generation for many years and having a large world market share due to its many merits. Newer technologies such as the direct drive gearless permanent magnet synchronous generator have come up to challenge its market share, but the large number of installed machines ensures that it remains of interest in the wind industry. This paper presents a concise introduction of the DFIG WECS covering its construction, operation, merits, demerits, modelling, control types, levels and strategies, faults and their proposed solutions, and, finally, simulation. Qualities for the optimal control strategy are then proposed. The paper is intended to cover major issues related to the DFIG WECS that are a must for an overview of the system and hence serve as an introduction especially for new entrants into this area of study.

  7. 2014–2015 Offshore Wind Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Aaron Smith, Tyler Stehly, Walt Musial

    2015-09-30

    This report provides data and analysis to assess the status of the U.S. offshore wind industry through June 30, 2015. It builds on the foundation laid by the Navigant Consortium, which produced three market reports between 2012 and 2014. The report summarizes domestic and global market developments, technology trends, and economic data to help U.S. offshore wind industry stakeholders, including policymakers, regulators, developers, financiers, and supply chain participants, to identify barriers and opportunities.

  8. Private wind powered electricity generators for industry in the UK

    Science.gov (United States)

    Thabit, S. S.; Stark, J.

    This paper investigates the impact of the provisions of the new Energy Act, 1983 on industrial wind-powered private generators of electricity and the effects of published tariffs on various industrial working patterns. Up to 30 percent savings can be achieved in annual electricity bill costs for an industrial generator/user of electricity working a single daily shift, if located in a favorable, 7 m/s mean annual wind speed regime. Variation of the availability charge between Electricity Boards about a base value of 0.70 pounds sterling/kVA was found to have insignificant (+ or - 1.3 percent) impact on total electricity bill costs. It was also shown that for industrial users of electricity, the simpler two-rate purchase terms were commercially adequate when compared with the four-rate alternative where expensive metering becomes necessary.

  9. Turbine Inflow Characterization at the National Wind Technology Center: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Clifton, A.; Schreck, S.; Scott, G.; Kelley, N.; Lundquist, J.

    2012-01-01

    Utility-scale wind turbines operate in dynamic flows that can vary significantly over timescales from less than a second to several years. To better understand the inflow to utility-scale turbines, two inflow towers were installed and commissioned at the National Renewable Energy Laboratory's (NREL) National Wind Technology Center near Boulder, Colorado, in 2011. These towers are 135 m tall and instrumented with a combination of sonic anemometers, cup anemometers, wind vanes, and temperature measurements to characterize the inflow wind speed and direction, turbulence, stability and thermal stratification to two utility-scale turbines. Herein, we present variations in mean and turbulent wind parameters with height, atmospheric stability, and as a function of wind direction that could be important for turbine operation as well as persistence of turbine wakes. Wind speed, turbulence intensity, and dissipation are all factors that affect turbine performance. Our results shown that these all vary with height across the rotor disk, demonstrating the importance of measuring atmospheric conditions that influence wind turbine performance at multiple heights in the rotor disk, rather than relying on extrapolation from lower levels.

  10. Loss Minimizing Operation of Doubly Fed Induction Generator Based Wind Generation Systems Considering Reactive Power Provision

    DEFF Research Database (Denmark)

    Baohua, Zhang; Hu, Weihao; Chen, Zhe

    2014-01-01

    The paper deals with control techniques for minimizing the operating loss of doubly fed induction generator based wind generation systems when providing reactive power. The proposed method achieves its goal through controlling the rotor side q-axis current in the synchronous reference frame....... The formula for the control reference is explicitly deduced in this paper considering the losses of the generator, the power electronic devices and the filter. Three control strategies are compared with the proposed method under different wind speeds and different reactive power references. The simulation...

  11. Method for changing removable bearing for a wind turbine generator

    Science.gov (United States)

    Bagepalli, Bharat Sampathkumaran [Niskayuna, NY; Jansen, Patrick Lee , Gadre; Dattatraya, Aniruddha [Rexford, NY

    2008-04-22

    A wind generator having removable change-out bearings includes a rotor and a stator, locking bolts configured to lock the rotor and stator, a removable bearing sub-assembly having at least one shrunk-on bearing installed, and removable mounting bolts configured to engage the bearing sub-assembly and to allow the removable bearing sub-assembly to be removed when the removable mounting bolts are removed.

  12. Wind Power, Distributed Generation: New Challenges, New Solutions

    OpenAIRE

    MIRANDA, Vladimiro

    2014-01-01

    This paper discusses some issues related with the growing importance of wind power and in modern power systems and some challenges raised by the emergence of distributed generation, and how computational intelligence and other modern techniques have been able to provide valuable results in solving the new problems. It presents some solutions obtained with a number of computational intelligence techniques and their application to real cases.

  13. What a Sudden Downpour Reveals About Wind Wave Generation

    KAUST Repository

    Cavaleri, Luigi

    2018-04-12

    We use our previous numerical and measuring experience and the evidence from a rather unique episode at sea to summarise our doubts on the present physical approach in wave modelling. The evidence strongly suggests that generation by wind and dissipation by white-capping have a different physics than presently considered. Most of all they should be viewed as part of a single physical process.

  14. Removable bearing arrangement for a wind turbine generator

    Science.gov (United States)

    Bagepalli, Bharat Sampathkumaran; Jansen, Patrick Lee; Gadre, Aniruddha Dattatraya

    2010-06-15

    A wind generator having removable change-out bearings includes a rotor and a stator, locking bolts configured to lock the rotor and stator, a removable bearing sub-assembly having at least one shrunk-on bearing installed, and removable mounting bolts configured to engage the bearing sub-assembly and to allow the removable bearing sub-assembly to be removed when the removable mounting bolts are removed.

  15. Lightweight MgB2 superconducting 10 MW wind generator

    Science.gov (United States)

    Marino, I.; Pujana, A.; Sarmiento, G.; Sanz, S.; Merino, J. M.; Tropeano, M.; Sun, J.; Canosa, T.

    2016-02-01

    The offshore wind market demands a higher power rate and more reliable turbines in order to optimize capital and operational costs. The state-of-the-art shows that both geared and direct-drive conventional generators are difficult to scale up to 10 MW and beyond due to their huge size and weight. Superconducting direct-drive wind generators are considered a promising solution to achieve lighter weight machines. This work presents an innovative 10 MW 8.1 rpm direct-drive partial superconducting generator using MgB2 wire for the field coils. It has a warm iron rotor configuration with the superconducting coils working at 20 K while the rotor core and the armature are at ambient temperature. A cooling system based on cryocoolers installed in the rotor extracts the heat from the superconducting coils by conduction. The generator's main parameters are compared against a permanent magnet reference machine, showing a significant weight and size reduction. The 10 MW superconducting generator concept will be experimentally validated with a small-scale magnetic machine, which has innovative components such as superconducting coils, modular cryostats and cooling systems, and will have similar size and characteristics as the 10 MW generator.

  16. Distributed generation system using wind/photovoltaic/fuel cell

    Science.gov (United States)

    Buasri, Panhathai

    This dissertation investigates the performance and the operation of a distributed generation (DG) power system using wind/photovoltaic/fuel cell (W/PV/FC). The power system consists of a 2500 W photovoltaic array subsystem, a 500 W proton exchange membrane fuel cell (PEMFC) stack subsystem, 300 W wind turbine, 500 W wind turbine, and 1500 W wind energy conversion subsystems. To extract maximum power from the PV, a maximum power point tracker was designed and fabricated. A 4 kW single phase inverter was used to convert the DC voltage to AC voltage; also a 44 kWh battery bank was used to store energy and prevent fluctuation of the power output of the DG system. To connect the fuel cell to the batteries, a DC/DC controller was designed and fabricated. To monitor and study the performance of the DG system under variable conditions, a data acquisition system was designed and installed. The fuel cell subsystem performance was evaluated under standalone operation using a variable resistance and under interactive mode, connected to the batteries. The manufacturing data and the experimental data were used to develop an electrical circuit model to the fuel cell. Furthermore, harmonic analysis of the DG system was investigated. For an inverter, the AC voltage delivered to the grid changed depending on the time, load, and electronic equipment that was connected. The quality of the DG system was evaluated by investigating the harmonics generated by the power electronics converters. Finally, each individual subsystem of the DG system was modeled using the neuro-fuzzy approach. The model was used to predict the performance of the DG system under variable conditions, such as passing clouds and wind gust conditions. The steady-state behaviors of the model were validated by the experimental results under different operating conditions.

  17. Small wind generators for battery charging in Peru and Sri Lanka

    Energy Technology Data Exchange (ETDEWEB)

    Dunnett, S. [Intermediate Technology Development Group, Rugby (United Kingdom)

    2000-07-01

    The Intermediate Technology Development Group (ITDG) have developed a small wind generator (SWG) intended primarily for battery charging in Peru and Sri Lanka. The project is funded mainly by the Department for International Development (DfID) and aims to provide rural households and communities who do not have access to mains electricity with a form of electrification. This paper reports on progress to date and is correct at the time of going to press, but subsequent changes to specifications may occur. (Author)

  18. Technologies for production of electricity and heat in Sweden. Wind energy in perspective of international development

    Energy Technology Data Exchange (ETDEWEB)

    Clausen, Niels-Erik; Lawaetz, Henrik; Lemming, Joergen; Morthorst, Poul Erik

    2008-12-15

    The development of the wind energy technology has been very successful from the 1970s and up till now. Initially there was a battle between wind turbine concepts, but the commercial winner today is the three-bladed horizontal axis, upwind, electricity producing and grid connected wind turbine with availability on mature markets somewhere around 99%. An important contributor to the growth of the European market for wind energy technology has been EU framework legislation combined with legislation at the national level. The binding target for renewable energy in Sweden is proposed to be 49% of the final energy consumption in 2020 compared to 39.8% in 2005. To stimulate the development of wind energy and to promote a specific national goals Sweden is mainly using an electricity certificate system. The target is to increase the production of electricity from renewable sources by 17 TWh in 2016, relative to corresponding production in 2002. There is not at specific target for the use of wind energy. A future energy system that includes a high proportion of wind energy will be expected to meet the same requirements for security of supply and economic efficiency as the energy systems of today. The variability of wind power create a specific challenges for the future energy systems compared to those of today. The economics of wind power depends mainly of investment cost, operation and maintenance costs, electricity production and turbine lifetime. An average turbine installed in Europe has a total investment cost of 1.230 Euro/kW with a typically variation from approximately 1000 Euro/kW to approximately 1400 Euro/kW. The calculated costs per kWh wind generated power range from approximately 7-10 cEuro/kWh at sites with low average wind speeds to approximately 5-6.5 cEuro/kWh at good coastal positions, with an average of approximately 7cEuro/kWh at a medium wind site. Offshore costs are largely dependent on weather and wave conditions, water depth, and distance to the

  19. National Wind Technology Center sitewide, Golden, CO: Environmental assessment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-11-01

    The National Renewable Energy Laboratory (NREL), the nation`s primary solar and renewable energy research laboratory, proposes to expand its wind technology research and development program activities at its National Wind Technology Center (NWTC) near Golden, Colorado. NWTC is an existing wind energy research facility operated by NREL for the US Department of Energy (DOE). Proposed activities include the construction and reuse of buildings and facilities, installation of up to 20 wind turbine test sites, improvements in infrastructure, and subsequent research activities, technology testing, and site operations. In addition to wind turbine test activities, NWTC may be used to support other NREL program activities and small-scale demonstration projects. This document assesses potential consequences to resources within the physical, biological, and human environment, including potential impacts to: air quality, geology and soils, water resources, biological resources, cultural and historic resources, socioeconomic resources, land use, visual resources, noise environment, hazardous materials and waste management, and health and safety conditions. Comment letters were received from several agencies in response to the scoping and predecisional draft reviews. The comments have been incorporated as appropriate into the document with full text of the letters contained in the Appendices. Additionally, information from the Rocky Flats Environmental Technology Site on going sitewide assessment of potential environmental impacts has been reviewed and discussed by representatives of both parties and incorporated into the document as appropriate.

  20. National Wind Technology Center sitewide, Golden, CO: Environmental assessment

    International Nuclear Information System (INIS)

    1996-11-01

    The National Renewable Energy Laboratory (NREL), the nation's primary solar and renewable energy research laboratory, proposes to expand its wind technology research and development program activities at its National Wind Technology Center (NWTC) near Golden, Colorado. NWTC is an existing wind energy research facility operated by NREL for the US Department of Energy (DOE). Proposed activities include the construction and reuse of buildings and facilities, installation of up to 20 wind turbine test sites, improvements in infrastructure, and subsequent research activities, technology testing, and site operations. In addition to wind turbine test activities, NWTC may be used to support other NREL program activities and small-scale demonstration projects. This document assesses potential consequences to resources within the physical, biological, and human environment, including potential impacts to: air quality, geology and soils, water resources, biological resources, cultural and historic resources, socioeconomic resources, land use, visual resources, noise environment, hazardous materials and waste management, and health and safety conditions. Comment letters were received from several agencies in response to the scoping and predecisional draft reviews. The comments have been incorporated as appropriate into the document with full text of the letters contained in the Appendices. Additionally, information from the Rocky Flats Environmental Technology Site on going sitewide assessment of potential environmental impacts has been reviewed and discussed by representatives of both parties and incorporated into the document as appropriate

  1. Estimation of the future advances of wind power technology

    International Nuclear Information System (INIS)

    Andersen, P.D.; Fuglsang, P.

    1996-03-01

    The report estimates the future advances of wind power technology. Two trajectories are considered and described: a normal (business as usual) trajectory and a technology trajectory. Two types of plants are considered: 1500 kW turbines on land (roughness class 1.5) in small groups and 2500 kW turbines in large off-shore wind farms. In both cases cost of energy (in DKK/kWh) is estimated to be approximately halved during the next 25 years. For wind turbines in flat terrain cost is estimated to decrease from an average in 1995 of 0.43 DKK/kWh to an average in 2020 of 0.26 DKK/kWh on a normal trajectory and 0.21 DKK/kWh on a technology trajectory. For large off-shore (near coast) wind farms cost is estimated to decrease from an average in 1995 of 0.51 DKK/kWh to an average in 2020 of 0.27 DKK/kWh on a normal trajectory and 0.23 DKK/kWh on a technology trajectory. Increase in the total market volume for wind turbines is estimated as the most important factor for cost reductions. The market is anticipated to follow the most conservative scenario of World Energy Council (180,000 MW by 2020). (au) 17 tabs., 7 ills. 25 refs

  2. Review of DC System Technologies for Large Scale Integration of Wind Energy Systems with Electricity Grids

    Directory of Open Access Journals (Sweden)

    Sheng Jie Shao

    2010-06-01

    Full Text Available The ever increasing development and availability of power electronic systems is the underpinning technology that enables large scale integration of wind generation plants with the electricity grid. As the size and power capacity of the wind turbine continues to increase, so is the need to place these significantly large structures at off-shore locations. DC grids and associated power transmission technologies provide opportunities for cost reduction and electricity grid impact minimization as the bulk power is concentrated at single point of entry. As a result, planning, optimization and impact can be studied and carefully controlled minimizing the risk of the investment as well as power system stability issues. This paper discusses the key technologies associated with DC grids for offshore wind farm applications.

  3. Fuzzy generation scheduling for a generation company (GenCo) with large scale wind farms

    International Nuclear Information System (INIS)

    Siahkali, H.; Vakilian, M.

    2010-01-01

    Wind power is a promising alternative in power generation because of its tremendous environmental and social benefits. Generation scheduling (GS) is more important in a power system integrating wind farms. Unlike conventional power generation sources, wind power generators supply intermittent power because of uncertainty in resource. This paper presents a fuzzy approach to the generation scheduling problem of a GenCo considering uncertainties in parameters or constraints such as load, reserve and available wind power generation. The modeling of constraints is an important issue in power system scheduling. A fuzzy optimization approach is an approach that can be used to obtain the generation scheduling under an uncertain environment. In this paper, a fuzzy optimization-based method is developed to solve power system GS problem with fuzzy objective and constraints. The crisp formulation of this GS problem is firstly defined and is rearranged by introduction of a membership function of some constraints and objective function. Then, this fuzzy optimization problem is converted to a crisp optimization and solved using GAMS software by mixed integer nonlinear programming. Employing the fuzzy optimization GS, it is expected that in practice a higher profit would be achieved in the operation and cost management of a real power system with large scale wind farms in different level of constraints' satisfaction. The proposed approach is applied to a sample system (including six conventional units and two wind farms) and the results are compared with the results of crisp solution. This approach is also applied to a larger test case to demonstrate the robustness of this fuzzy optimization method.

  4. An Advanced Bayesian Method for Short-Term Probabilistic Forecasting of the Generation of Wind Power

    Directory of Open Access Journals (Sweden)

    Antonio Bracale

    2015-09-01

    Full Text Available Currently, among renewable distributed generation systems, wind generators are receiving a great deal of interest due to the great economic, technological, and environmental incentives they involve. However, the uncertainties due to the intermittent nature of wind energy make it difficult to operate electrical power systems optimally and make decisions that satisfy the needs of all the stakeholders of the electricity energy market. Thus, there is increasing interest determining how to forecast wind power production accurately. Most the methods that have been published in the relevant literature provided deterministic forecasts even though great interest has been focused recently on probabilistic forecast methods. In this paper, an advanced probabilistic method is proposed for short-term forecasting of wind power production. A mixture of two Weibull distributions was used as a probability function to model the uncertainties associated with wind speed. Then, a Bayesian inference approach with a particularly-effective, autoregressive, integrated, moving-average model was used to determine the parameters of the mixture Weibull distribution. Numerical applications also are presented to provide evidence of the forecasting performance of the Bayesian-based approach.

  5. Generating Local Needs through Technology

    DEFF Research Database (Denmark)

    á Rogvi, Sofie; Juul, Annegrete; Langstrup, Henriette

    2016-01-01

    . With this focus on the interrelations among technological innovation, local needs, and comparisons across global distances, we aim to contribute to critical discussions of the prospects of traveling technologies for global health, as well as drawing attention to the recipient’s agency in (re)shaping the capacity...... setting to another. Central to this process of a technology traveling, we suggest, is the role played by comparisons invoked by actors and the technology itself. These comparisons become instances of evaluating local practices, thus determining what is needed in tackling a health challenge locally...

  6. Enhancing information for solar and wind energy technology deployment in Brazil

    International Nuclear Information System (INIS)

    Ramos Martins, Fernando; Pereira, Enio Bueno

    2011-01-01

    Brazil's primary energy matrix is based on more than 47% of renewables, and more than 85% of its electricity is generated by hydro power sources. Despite this large fraction of renewable energy resources, less than 0.3% of the national energy supply comes from solar or wind sources. This paper presents a diagnostic review on the penetration of the solar and wind energy technologies in Brazil. It also includes a survey of the latest government policies and incentives for renewable energies deployment by entrepreneurs, industry and commercial and residential consumers. In addition, the paper analyses how to best meet the requirements for policy support and information technology to boost the deployment of solar technology and wind energy in Brazil. This study was mostly based on results of a widely distributed survey covering key issues, and also by personal interviews carried out with key stakeholders in order to better understand the issues highlighted in the survey responses. The study pointed out some of the main obstacles to effectively promote and improve government policies and actions for investment in solar and wind energy market in Brazil. - Highlights: → Current status on the solar and wind energy deployment in Brazil is presented. → Policy framework required to support solar and wind energy was discussed. → Study was based on responses for consultations with key stakeholders. → Worthiness Index was established to rank the stakeholders outlooks. → Energy price, human resources and tax reductions were indicated as priority.

  7. Enhancing information for solar and wind energy technology deployment in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Ramos Martins, Fernando, E-mail: fernando.martins@inpe.br [Centro de Ciencia do Sistema Terrestre-Instituto Nacisonal de Pesquisas Espaciais (Earth System Center-National Institute for Space Research), P.O. Box 515, 12245-970, Sao Jose dos Campos (Brazil); Pereira, Enio Bueno, E-mail: enio.pereira@inpe.br [Centro de Ciencia do Sistema Terrestre-Instituto Nacisonal de Pesquisas Espaciais (Earth System Center-National Institute for Space Research), P.O. Box 515, 12245-970, Sao Jose dos Campos (Brazil)

    2011-07-15

    Brazil's primary energy matrix is based on more than 47% of renewables, and more than 85% of its electricity is generated by hydro power sources. Despite this large fraction of renewable energy resources, less than 0.3% of the national energy supply comes from solar or wind sources. This paper presents a diagnostic review on the penetration of the solar and wind energy technologies in Brazil. It also includes a survey of the latest government policies and incentives for renewable energies deployment by entrepreneurs, industry and commercial and residential consumers. In addition, the paper analyses how to best meet the requirements for policy support and information technology to boost the deployment of solar technology and wind energy in Brazil. This study was mostly based on results of a widely distributed survey covering key issues, and also by personal interviews carried out with key stakeholders in order to better understand the issues highlighted in the survey responses. The study pointed out some of the main obstacles to effectively promote and improve government policies and actions for investment in solar and wind energy market in Brazil. - Highlights: > Current status on the solar and wind energy deployment in Brazil is presented. > Policy framework required to support solar and wind energy was discussed. > Study was based on responses for consultations with key stakeholders. > Worthiness Index was established to rank the stakeholders outlooks. > Energy price, human resources and tax reductions were indicated as priority.

  8. Influence of the characteristic and installation site of wind generator on quantity of produced energy

    International Nuclear Information System (INIS)

    Palge, V.; Lepa, J.; Tamm, T.

    2002-01-01

    In Estonia, especially in inland the wind speed is rather low. According to the Master thesis of Tonis Tamm the opportunities of use of several types of wind generators are analysed. It is found out, that the wind generator, beginning to produce energy at wind speed 2 m/s can in such conditions produce about four times more electricity energy than such having 'cut-in' wind speed 4 m/s. (author)

  9. Prospective of the Technology of Wind Power Generation (Annexe 5 in 'A vision of year 2030 on the use of the renewable energies in Mexico'); Prospectiva de la Tecnologia de Generacion Eoloelectrica (Anexo 5 en 'Una vision al 2030 de la utilizacion de las energias renovables en Mexico')

    Energy Technology Data Exchange (ETDEWEB)

    Borja Diaz, Marco A [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)

    2005-08-15

    At present, it is recognized that the advantage of the energy of the wind to generate electricity is an innovating activity of high technology that is being integrated to the electrical sectors of several countries in the context of the energy diversification. The basic concept of the wind power generators suggests simplicity; nevertheless, the enormous machines that nowadays turn the wind energy to electricity, are complex systems since they are integrated by aerodynamic, mechanical, electrical, hydraulic and electronic subsystems, whose development and integration have presented important challenges in the matter of investigation and technological development. It is for this reason that in the last 10 years several governments of industrialized countries and of some developing ones, have remarkably progressed in the restoration of elements of legislation, regulation, and fiscal measures that have opened and impelled the wind power market, in such a way that in those countries the wind power industry has become a very productive activity. [Spanish] En la actualidad, se reconoce que el aprovechamiento de la energia del viento para generar electricidad es una actividad innovadora de alta tecnologia que se esta integrando a los sectores electricos de varios paises en el contexto de la diversificacion energetica. El concepto basico de los aerogeneradores sugiere sencillez; sin embargo, las enormes maquinas que hoy en dia convierten la energia del viento en electricidad, son sistemas complejos ya que estan integrados por subsistemas aerodinamicos, mecanicos, electricos, hidraulicos y electronicos, cuyo desarrollo e integracion ha presentado retos importantes en materia de investigacion y desarrollo tecnologico. Es por ello que en los ultimos 10 anos varios gobiernos de paises industrializados y de algunos en vias de desarrollo, han progresado notablemente en la instauracion de elementos de legislacion, regulacion, y medidas fiscales que han abierto e impulsado el

  10. Wind energy for electricity generation; Generacion electrica con energia del viento

    Energy Technology Data Exchange (ETDEWEB)

    Huacuz Villamar, Jorge M.; Borja Diaz, Marco Antonio R. [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1998-09-01

    A description is made of electricity generation utilizing wind energy (Eoloelectric Generation). The case of Mexico is reviewed in respect to this technology, mentioning a small power plant of 1.5 Megawatts installed by the Comision Federal de Electricidad in the zone of La Ventosa in the State of Oaxaca. Mention is made of the possible causes why Mexico has not advanced in this type of power plants for power generation as in other countries like Germany, Spain and India. The advance in these countries is shown as well as the growth statistics of the wind power in the world. It is concluded that there is not in Mexico a strategy for wind energy utilization for electricity generation in spite of the potential benefits this technology offers [Espanol] Se describe el caso de la generacion electrica utilizando la energia del viento (Generacion Eoloelectrica). Se aborda el caso de Mexico respecto a esta tecnologia, mencionando una pequena central de 1.5 Megawatts (MW) instalada por la Comision Federal de Electricidad (CFE) en la zona de la Ventosa, Oaxaca. Se mencionan las posibles causas por las que en Mexico este tipo de centrales de generacion de energia no ha avanzado como en otros paises, por ejemplo: Alemania, Espana y la India. Se muestran los avances de estos paises, asi como una estadistica del crecimiento de la generacion eoloelectrica en el mundo. Se concluye en que no existe en Mexico una estrategia para la generacion eoloelectrica a pesar de los beneficios potenciales que ofrece esta tecnologia

  11. Stand-alone excitation synchronous wind power generators with power flow management strategy

    Directory of Open Access Journals (Sweden)

    Tzuen-Lih Chern

    2014-09-01

    Full Text Available This study presents a stand-alone excitation synchronous wind power generator (SESWPG with power flow management strategy (PFMS. The rotor speed of the excitation synchronous generator tracks the utility grid frequency by using servo motor tracking technologies. The automatic voltage regulator governs the exciting current of generator to achieve the control goals of stable voltage. When wind power is less than the needs of the consumptive loading, the proposed PFMS increases motor torque to provide a positive power output for the loads, while keeping the generator speed constant. Conversely, during the periods of wind power greater than output loads, the redundant power of generator production is charged to the battery pack and the motor speed remains constant with very low power consumption. The advantage of the proposed SESWPG is that the generator can directly output stable alternating current (AC electricity without using additional DC–AC converters. The operation principles with software simulation for the system are described in detail. Experimental results of a laboratory prototype are shown to verify the feasibility of the system.

  12. A Lightweight, Direct-Drive, Fully Superconducting Generator for Large Wind Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Meinke, Rainer [Advanced Magnet Lab, Palm Bay, FL (United States); Morrison, Darrell [Emerson Inc., St. Louis, MO (United States); Prince, Vernon Gregory [Advanced Magnet Lab, Palm Bay, FL (United States)

    2014-12-31

    The current trend in the offshore wind turbine industry favors direct-drive generators based on permanent magnets, as they allow for a simple and reliable drivetrain without a gearbox. These generators, however, do not scale very well to high power levels beneficial for offshore wind, and their use in wind turbines over 6 MW is questionable in terms of mass and economic feasibility. Moreover, rare earth materials composing the permanent magnets are becoming less available, more costly and potentially unavailable in the foreseeable future. A stated goal of the DOE is a critical materials strategy that pursues the development of substitute materials and technology for rare earth materials to improve supply chain flexibility and meet the needs of the clean energy economy.Therefore, alternative solutions are needed, in terms of both favorable up-scaling and minimizing or eliminating the use of permanent magnets. The generator design presented in this document addresses both these issues with the development of a fully superconducting generator (FSG) with unprecedented high specific torque. A full-scale, 10-MW, 10-rpm generator will weigh less about 150 metric tons, compared to 300 metric tons for an equivalent direct-drive, permanent magnet generator. The developed concept does not use any rare earth materials in its critical drive components, but rather relies on a superconductor composed of mainly magnesium and boron (MgB2), both of which are in abundant supply from multiple global sources.

  13. Prospecting for Wind

    Science.gov (United States)

    Swapp, Andy; Schreuders, Paul; Reeve, Edward

    2011-01-01

    Many people use wind to help meet their needs. Over the years, people have been able to harness or capture the wind in many different ways. More recently, people have seen the rebirth of electricity-generating wind turbines. Thus, the age-old argument about technology being either good or bad can also be applied to the wind. The wind can be a…

  14. On the integration of wind generators on weak grids and island grids; Sur l'integration des generateurs eoliens dans les reseaux faibles ou insulaires

    Energy Technology Data Exchange (ETDEWEB)

    Laverdure, N

    2005-12-15

    Wind energy is now an energy that can not be ignored. Because of intrinsic characteristics (scattered primary energy, generators with different technologies, use of power electronics interface), wind energy system integration in distribution grids leads to real problems in terms of impacts. With recent standard changes, it is necessary to study the possibilities of each technology of wind turbines to answer or not to these new constraints. This PhD thesis focuses on a comparison of the main present wind turbines concerning three points of discussion: energy quality, fault ride through, ancillary services (voltage and frequency). It insists on the possibilities in terms of control laws for variable speed wind turbines. (author)

  15. A viable technology to generate third-generation biofuel

    DEFF Research Database (Denmark)

    Singh, Anoop; Olsen, Stig Irving; Nigam, Poonam Singh

    2011-01-01

    First generation biofuels are commercialized at large as the production technologies are well developed. However, to grow the raw materials, there is a great need to compromise with food security, which made first generation biofuels not so much promising. The second generation of biofuels does n...

  16. Advanced technologies on steam generators

    Energy Technology Data Exchange (ETDEWEB)

    Sakata, Kaoru; Nakamura, Yuuki [Mitsubishi Heavy Industry Co., Takasago (Japan); Nakamori, Nobuo; Mizutani, Toshiyuki; Uwagawa, Seiichi; Saito, Itaru [Mitsubishi Heavy Industry Co., Kobe (Japan); Matsuoka, Tsuyoshi [Mitsubishi Heavy Industry Co., Yokohama (Japan)

    1997-12-31

    The thermal-hydraulic tests for a horizontal steam generator of a next-generation PWR (New PWR-21) were performed. The purpose of these tests is to understand the thermal-hydraulic behavior in the secondary side of horizontal steam generator during the plant normal operation. A test was carried out with cross section slice model simulated the straight tube region. In this paper, the results of the test is reported, and the effect of the horizontal steam generator internals on the thermalhydraulic behavior of the secondary side and the circulation characteristics of the secondary side are discussed. (orig.). 3 refs.

  17. Control of Next Generation Aircraft and Wind Turbines

    Science.gov (United States)

    Frost, Susan

    2010-01-01

    The first part of this talk will describe some of the exciting new next generation aircraft that NASA is proposing for the future. These aircraft are being designed to reduce aircraft fuel consumption and environmental impact. Reducing the aircraft weight is one approach that will be used to achieve these goals. A new control framework will be presented that enables lighter, more flexible aircraft to maintain aircraft handling qualities, while preventing the aircraft from exceeding structural load limits. The second part of the talk will give an overview of utility-scale wind turbines and their control. Results of collaboration with Dr. Balas will be presented, including new theory to adaptively control the turbine in the presence of structural modes, with the focus on the application of this theory to a high-fidelity simulation of a wind turbine.

  18. Application of Boost Converter to Increase the Speed Range of Dual-stator Winding Induction Generator in Wind Power Systems

    DEFF Research Database (Denmark)

    Kavousi, Ayoub; Fathi, S. Hamid; Milimonfared, Jafar

    2018-01-01

    In this paper, a topology using a Dual-stator Winding Induction Generator (DWIG) and a boost converter is proposed for the variable speed wind power application. At low rotor speeds, the generator saturation limits the voltage of the DWIG. Using a boost converter, higher DC voltage can be produce...

  19. Small scale wind power harnessing in Colombian oil industry facilities: Wind resource and technology issues

    Energy Technology Data Exchange (ETDEWEB)

    Giraldo, Mauricio; Nieto, Cesar; Escudero, Ana C.; Cobos, Juan C.; Delgado, Fernando

    2010-07-01

    Full text: Looking to improve its national and international standing, Colombia's national oil company, Ecopetrol, has set its goal on becoming involved on the production of energy from multiple sources, most importantly, on having an important percentage of its installed capacity from renewable sources. Part of this effort entices the evaluation of wind power potential on its facilities, including production, transportation and administrative, as well as identifying those technologies most suitable for the specific conditions of an equatorial country such as Colombia. Due to the lack of adequate site information, the first step consisted in superimposing national data to the facilities map of the company; this allowed for the selection of the first set of potential sites. From this set, the terminal at Covenas-Sucre was selected taking into account not only wind resource, but ease of access and power needs, as well as having a more or less representative wind potential in comparison to the rest of the country. A weather station was then installed to monitor wind variables. Measurements taken showed high variations in wind direction, and relatively low velocity profiles, making most commercially available wind turbines difficult to implement. In light of the above, a series of iterative steps were taken, first considering a range of individual Vertical Axis Wind Turbines (VAWT), given their capacity to adapt to changing wind directions. However, wind speed variations proved to be a challenge for individual VAWT's, i.e. Darriues turbines do not work well with low wind speeds, and Savonius turbines are not efficient of high wind speeds. As a result, a combined Darrieus- Savonius VAWT was selected given the capacity to adapt to both wind regimes, while at the same time modifying the size and shape of the blades in order to adapt to the lower average wind speeds present at the site. The resulting prototype is currently under construction and is scheduled to

  20. Wind Turbine Generator System Safety and Function Test Report for the Southwest Windpower H40 Wind Turbine

    Energy Technology Data Exchange (ETDEWEB)

    van Dam, J.; Link, H.; Meadors, M.; Bianchi, J.

    2002-06-01

    The objective of this test was to evaluate the safety and function characteristics of the Whisper H40 wind turbine. The general requirements of wind turbine safety and function tests are defined in the IEC standard WT01. The testing was conducted in accordance with the National Wind Technology Center (NWTC) Quality Assurance System, including the NWTC Certification Team Certification Quality Manual and the NWTC Certification Team General Quality Manual for the Testing of Wind Turbines, as well as subordinate documents. This safety and function test was performed as part of the U.S. Department of Energy's Field Verification Program for small wind turbines.

  1. Prospects for generating electricity by large onshore and offshore wind farms

    DEFF Research Database (Denmark)

    Volker, Patrick; Hahmann, Andrea N.; Badger, Jake

    2017-01-01

    The decarbonisation of energy sources requires additional investments in renewable technologies, including the installation of onshore and offshore wind farms. For wind energy to remain competitive, wind farms must continue to provide low-cost power even when covering larger areas. Inside very...... on the local free-stream wind speed, the surface characteristics, and the turbine density. In onshore regions with moderate winds the power density of very large wind farms reaches 1 W m−2, whereas in offshore regions with very strong winds it exceeds 3 W m−2. Despite a relatively low power density, onshore...... regions with moderate winds offer potential locations for very large wind farms. In offshore regions, clusters of smaller wind farms are generally preferable; under very strong winds also very large offshore wind farms become efficient....

  2. Doubly Fed Induction Generator Wind Turbines with Fuzzy Controller: A Survey

    Directory of Open Access Journals (Sweden)

    J. S. Sathiyanarayanan

    2014-01-01

    Full Text Available Wind energy is one of the extraordinary sources of renewable energy due to its clean character and free availability. With the increasing wind power penetration, the wind farms are directly influencing the power systems. The majority of wind farms are using variable speed wind turbines equipped with doubly fed induction generators (DFIG due to their advantages over other wind turbine generators (WTGs. Therefore, the analysis of wind power dynamics with the DFIG wind turbines has become a very important research issue, especially during transient faults. This paper presents fuzzy logic control of doubly fed induction generator (DFIG wind turbine in a sample power system. Fuzzy logic controller is applied to rotor side converter for active power control and voltage regulation of wind turbine.

  3. Doubly fed induction generator wind turbines with fuzzy controller: a survey.

    Science.gov (United States)

    Sathiyanarayanan, J S; Kumar, A Senthil

    2014-01-01

    Wind energy is one of the extraordinary sources of renewable energy due to its clean character and free availability. With the increasing wind power penetration, the wind farms are directly influencing the power systems. The majority of wind farms are using variable speed wind turbines equipped with doubly fed induction generators (DFIG) due to their advantages over other wind turbine generators (WTGs). Therefore, the analysis of wind power dynamics with the DFIG wind turbines has become a very important research issue, especially during transient faults. This paper presents fuzzy logic control of doubly fed induction generator (DFIG) wind turbine in a sample power system. Fuzzy logic controller is applied to rotor side converter for active power control and voltage regulation of wind turbine.

  4. New-generation radiofrequency technology.

    Science.gov (United States)

    Krueger, Nils; Sadick, Neil S

    2013-01-01

    Radiofrequency (RF) technology has become a standard treatment in aesthetic medicine with many indications due to its versatility, efficacy, and safety. It is used worldwide for cellulite reduction; acne scar revision; and treatment of hypertrophic scars and keloids, rosacea, and inflammatory acne in all skin types. However, the most common indication for RF technology is the nonablative tightening of tissue to improve skin laxity and reduce wrinkles. Radiofrequency devices are classified as unipolar, bipolar, or multipolar depending on the number of electrodes used. Additional modalities include fractional RF; sublative RF; phase-controlled RF; and combination RF therapies that apply light, massage, or pulsed electromagnetic fields (PEMFs). This article reviews studies and case series on these devices. Radiofrequency technology for aesthetic medicine has seen rapid advancements since it was used for skin tightening in 2003. Future developments will continue to keep RF technology at the forefront of the dermatologist's armamentarium for skin tightening and rejuvenation.

  5. Modeling Vortex Generators in the Wind-US Code

    Science.gov (United States)

    Dudek, Julianne C.

    2010-01-01

    A source term model which simulates the effects of vortex generators was implemented into the Wind-US Navier Stokes code. The source term added to the Navier-Stokes equations simulates the lift force which would result from a vane-type vortex generator in the flowfield. The implementation is user-friendly, requiring the user to specify only three quantities for each desired vortex generator: the range of grid points over which the force is to be applied and the planform area and angle of incidence of the physical vane. The model behavior was evaluated for subsonic flow in a rectangular duct with a single vane vortex generator, supersonic flow in a rectangular duct with a counterrotating vortex generator pair, and subsonic flow in an S-duct with 22 co-rotating vortex generators. The validation results indicate that the source term vortex generator model provides a useful tool for screening vortex generator configurations and gives comparable results to solutions computed using a gridded vane.

  6. Design Optimization and Site Matching of Direct-Drive Permanent Magnet Wind Generator Systems

    DEFF Research Database (Denmark)

    Li, H.; Chen, Zhe

    2009-01-01

    of the maximum wind energy capture, the rotor diameter and the rated wind speed of a direct-drive wind turbine with the optimum PM generator are determined. The annual energy output (AEO) is also presented using the Weibull density function. Finally, the maximum AEO per cost (AEOPC) of the optimized wind...

  7. Wind turbine generator interaction with diesel generators on an isolated power system

    Science.gov (United States)

    Scott, G. W.; Wilreker, V. F.; Shaltens, R. K.

    1983-07-01

    The results of a dynamic interaction investigation to characterize any disturbances caused by interfacing the Mod 0A wind turbine (150 kW configuration) with the Block Island utility diesel generator grid are reported. The tests were run when only two diesel generators were on line, and attention was given to power, frequency, and voltage time profiles. The interconnected system was examined in the start-up and synchronization phase, normal shutdown and cut-out of the wind turbine, during fixed pitch generation, and during variable pitch operation. Governors were installed on the diesel generators to accommodate the presence of wind-derived electricity. The blade pitch control was set to maintain power at 150 kW or below. Power and voltage transients were insignificant during start-up and shutdown, and frequency aberrations were within the range caused by load fluctuations. It is concluded that wind turbine generation can be successfully implemented by an isolated utility, even with a significant penetration to the total grid output.

  8. Coordinated control of wind generation and energy storage for power system frequency regulation

    Science.gov (United States)

    Baone, Chaitanya Ashok

    Large-scale centralized synchronous generators have long been the primary actors in exercising active power and frequency control, and much of the existing grid control framework is predicated upon their dynamic terminal characteristics. Important among these characteristics is the inertia of such generators. These play key roles in determining the electromechanical stability of the electric power grid. Modern wind generator systems are partially or fully connected to the grid through power electronic interfaces, and hence do not present the same level of inertial coupling. The absence of inertial frequency response from modern wind generator systems is a topic of growing concern in power engineering practice, as the penetration of wind generation is expected to grow dramatically in the next few years. Solutions proposed in the literature have sought to address this problem by seeking to mimic the inherent inertial response characteristics of traditional synchronous generators via control loops added to wind generators. Recent literature has raised concerns regarding this approach, and the work here will further examine its shortcomings, motivating approaches that seek to optimally design for the characteristics of the equipment exercising the control, rather than forcing new technologies to mimic the characteristics of synchronous machines. In particular, this work will develop a new approach to power system frequency regulation, with features suited to distributed energy storage devices such as grid-scale batteries and wind turbine speed and blade pitch control. The dynamic characteristics of these new technologies are treated along with existing mechanisms, such as synchronous machine governor control, to develop a comprehensive multi-input control design approach. To make the method practically feasible for geographically distributed power systems, an observer-based distributed control design utilizing phasor measurement unit (PMU) signals along with local

  9. Assessment of research needs for wind turbine rotor materials technology

    National Research Council Canada - National Science Library

    National Research Council Staff; Commission on Engineering and Technical Systems; Division on Engineering and Physical Sciences; National Research Council; National Academy of Sciences

    1991-01-01

    ... on Assessment of Research Needs for Wind Turbine Rotor Materials Technology Energy Engineering Board Commission on Engineering and Technical Systems National Research Council NATIONAL ACADEMY PRESS Washington, D.C. 1991 Copyrightthe true use are Please breaks Page inserted. accidentally typesetting been have may original the from errors not...

  10. Determination of recoverable wind energy for electricity generation ...

    African Journals Online (AJOL)

    fundamental step in planning a wind energy project and exhaustive knowledge of the wind characteristic at a site of installation is needed to estimate the performance of a wind energy conversion system. The current paper presents an investigation of the wind power potential using real wind data for five sites in Tunisia: ...

  11. New Technologies for de-icing Wind Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Baaaath, Lars; Loefgren, Hans

    2000-11-15

    This is a pilot study to investigate icing on wings of wind power turbines. In this report we present and discuss various ways and means to either heat water droplets or melt ice when formed on the wings of wind turbines. The situation is different from icing on wings of airplanes in that (1) the wings of wind turbines spend all of their time in the atmosphere where the risk of icing is highest and (2) the speed of wing to air varies over the wing where it is constant for an airplane. The form of the wind turbine wings also varies from tip to centre, to compensate for the varying relative air speed. We have concentrated on icing conditions at temperatures -10 deg C - 0 deg C and droplet sizes of 1-10 mum. Icing occurs also at much lower temperatures, but this will probably be because of direct freezing of water vapour to ice. This is presently outside the scope of our pilot project report. We conclude that - The form of the wing, especially on the contact area may be crucial to the icing problem. - Also the nano-metric structure of the wing surface can probably be designed so that the water droplets have a minimized contact area to the wing. Our pilot investigation also suggests the following: - Microwaves are much too inefficient to heat water or melt ice. Direct microwave devices should therefore not be developed. Indirect heating with microwaves is possible. - Millimeter waves are sufficiently efficient, but the generation is most probably too inefficient to be of any practical use. - Infrared waves are very efficient to heat water and melt ice and should be investigated. - Heat conduction is also efficient and should be pursued. Using microwaves to heat the wing surface which then conduct heat to the water/ice is a very efficient and robust method. Our pre-study suggests that the solution to avoid icing or de-ice wings of wind turbines most probably is not one single technology. The form and surface structure of the wings play important role for icing

  12. MPPT for PM wind generator using gradient approximation

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Ying-Yi; Lu, Shiue-Der; Chiou, Ching-Sheng [Department of Electrical Engineering, Chung Yuan Christian University, 200, Chung-Pei Road, Chung Li 320 (China)

    2009-01-15

    This paper applies new maximum-power-point tracking (MPPT) algorithms to a wind-turbine generator system (WTGS). In this paper, the WTGS is a direct-drive system and includes the wind-turbine, permanent-magnet (PM) synchronous generator, three-phase full bridge rectifier, buck-boost converter and load. The new MPPT method uses gradient approximation (GA) algorithm. Three methods based on GA for achieving MPPT are discussed in this paper: (1) full-sensor control with anemometer and tachometer, (2) rule-based method and (3) adaptive duty cycle method. The third method has merits of no PID parameters, proportional constant, anemometer, tachometer and characteristics of WTGS required. This method enables the permanent-magnet synchronous generator (PMSG) to operate at variable speeds to achieve good performance. Simulation results show that the tip-speed ratio (TSR) and power coefficient obtained by the adaptive duty cycle method with GA can be almost identical to the optimal values. (author)

  13. An overview of advanced power generation technologies

    International Nuclear Information System (INIS)

    Gardner, D.; Shaw, P.

    1993-01-01

    This paper is intended as a brief review of the technologies currently applied in Australian electricity generation and the technologies which are likely to be employed in the future. The paper opens with a review of the primary energy resources available for the generation of electricity in Australia, and the technologies currently employed. The development of advanced generation technologies around the world is reviewed, and the most likely technologies to be employed in Australia are described. There are a number of renewable and alternative technologies, such as generation from sewage digester, landfill or mine gases. Their impact would, however, be disproportionate because of the strong climate forcing effect of methane. Of the wide range of other emerging renewable technologies examined, solar thermal offers the best prospect of maturing into a financially-competitive technology for large scale generation in the next 20 years. However, will remain unable to compete with non-renewable technologies in normal financial terms, at least until 2005 and probably well beyond that date. Generation using the fission of nuclear fuels is a mature, proven technology. Based on the most likely fuel and other assumptions made in this study, the costs of nuclear generation are only moderately higher than conventional coal-fired options. Nuclear generation is thus a relatively low cost route to reductions in carbon dioxide emission for new plant, at $19/tonne CO 2 saved, in comparison with conventional black coal technology, and $13/tonne CO 2 compared with conventional brown coal firing. While major considerations of societal acceptance clearly exist, nuclear generation has the necessary technical and financial qualifications for serious consideration as an element in any greenhouse strategy. 5 tab., 2 figs

  14. Design of intelligent controllers for wind generation system with sensorless maximum wind energy control

    International Nuclear Information System (INIS)

    Lin, Whei-Min; Hong, Chih-Ming; Cheng, Fu-Sheng

    2011-01-01

    This paper presents the design of an on-line training recurrent fuzzy neural network (RFNN) controller with a high-performance model reference adaptive system (MRAS) observer for the sensorless control of a induction generator (IG). The modified particle swarm optimization (MPSO) is adopted in this study to adapt the learning rates in the back-propagation process of the RFNN to improve the learning capability. By using the proposed RFNN controller with MPSO, the IG system can work for stand-alone power application effectively. The proposed output maximization control is achieved without mechanical sensors such as the wind speed or position sensor, and the new control system will deliver maximum electric power with light weight, high efficiency, and high reliability. The estimation of the rotor speed is based on the MRAS control theory. A sensorless vector-control strategy for an IG operating in a grid-connected variable speed wind energy conversion system can be achieved.

  15. Feasibility of generating electricity for clinics using wind turbines

    CSIR Research Space (South Africa)

    Szewczuk, S

    2015-08-01

    Full Text Available turbines It is intended that all the power required to operate a clinic should be generated on site allowing the building to function off-grid. A review was done of wind turbine machines of less than 100kW in size. (Szewczuk et al, 2010) Topics covered... were:  Markets and applications  Market drivers and barriers  Review of common applications of SWT’s Small-scale remote and off-grid power (residential, village or remote) are used for supplying energy to rural, off-grid applications...

  16. Design Preliminaries for Direct Drive under Water Wind Turbine Generator

    DEFF Research Database (Denmark)

    Leban, Krisztina Monika; Ritchie, Ewen; Argeseanu, Alin

    2012-01-01

    This paper focuses on the preliminary design process of a 20 MW electric generator. The application calls for an offshore, vertical axis, direct drive wind turbine. Arguments for selecting the type of electric machine for the application are presented and discussed. Comparison criteria for deciding...... on a type of machine are listed. Additional constraints emerging from the direct drive, vertical axis concepts are considered. General rules and a preliminary algorithm are discussed for the machine selected to be most suitable for the imposed conditions....

  17. High penetration wind generation impacts on spot prices in the Australian national electricity market

    International Nuclear Information System (INIS)

    Cutler, Nicholas J.; Boerema, Nicholas D.; MacGill, Iain F.; Outhred, Hugh R.

    2011-01-01

    This paper explores wind power integration issues for the South Australian (SA) region of the Australian National Electricity Market (NEM) by assessing the interaction of regional wind generation, electricity demand and spot prices over 2 recent years of market operation. SA's wind energy penetration has recently surpassed 20% and it has only a limited interconnection with other regions of the NEM. As such, it represents an interesting example of high wind penetration in a gross wholesale pool market electricity industry. Our findings suggest that while electricity demand continues to have the greatest influence on spot prices in SA, wind generation levels have become a significant secondary influence, and there is an inverse relationship between wind generation and price. No clear relationship between wind generation and demand has been identified although some periods of extremely high demand may coincide with lower wind generation. Periods of high wind output are associated with generally lower market prices, and also appear to contribute to extreme negative price events. The results highlight the importance of electricity market and renewable policy design in facilitating economically efficient high wind penetrations. - Highlights: → In South Australia (SA) wind generation is having an influence on market prices. → Little or no correlation is found between wind generation and demand. → Wind farms in SA are receiving a lower average price than in other States. → The results highlight the importance of appropriate electricity market design.

  18. Offshore Code Comparison Collaboration (OC3) for IEA Wind Task 23 Offshore Wind Technology and Deployment

    Energy Technology Data Exchange (ETDEWEB)

    Jonkman, J.; Musial, W.

    2010-12-01

    This final report for IEA Wind Task 23, Offshore Wind Energy Technology and Deployment, is made up of two separate reports, Subtask 1: Experience with Critical Deployment Issues and Subtask 2: Offshore Code Comparison Collaborative (OC3). Subtask 1 discusses ecological issues and regulation, electrical system integration, external conditions, and key conclusions for Subtask 1. Subtask 2 included here, is the larger of the two volumes and contains five chapters that cover background information and objectives of Subtask 2 and results from each of the four phases of the project.

  19. 2014-2015 Offshore Wind Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Aaron [National Renewable Energy Lab. (NREL), Golden, CO (United States); Stehly, Tyler [National Renewable Energy Lab. (NREL), Golden, CO (United States); Musial, Walter [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-09-01

    This report provides data and analysis to assess the status of the U.S. offshore wind industry through June 30, 2015. It builds on the foundation laid by the Navigant Consortium, which produced three market reports between 2012 and 2014. The report summarizes domestic and global market developments, technology trends, and economic data to help U.S. offshore wind industry stakeholders, including policymakers, regulators, developers, financiers, and supply chain participants, to identify barriers and opportunities. Title page contains link to associated data tables posted at http://www.nrel.gov/docs/fy15osti/64283_data_tables.xlsx.

  20. Computer-generated slide technology.

    Science.gov (United States)

    Palmer, D S

    1994-03-01

    Presentation technology is available, and it does not have to be expensive. This article describes computer hardware and software concepts for graphics use, and recommends principles for making cost-effective buying decisions. Also included is a previously published technique for making custom computer graphic 35-mm slides at minimal expense. This information is vital to anyone lecturing without the support of a custom graphics laboratory.

  1. Co-generation of hydrogen from nuclear and wind: the effect on costs of realistic variations in wind generation. Paper no. IGEC-1-094

    International Nuclear Information System (INIS)

    Miller, A.I.; Duffey, R.B.

    2005-01-01

    Can electricity from high-capacity nuclear reactors be blended with the variable output of wind turbines to produce electrolytic hydrogen competitively? To be competitive with alternative sources, hydrogen produced by conventional electrolysis requires low-cost electricity (likely <2.5 cents US/kW.h). One approach is to operate interruptibly, allowing an installation to sell electricity when the grid price is high and to make hydrogen when it is low. Our previous studies show that this could be cost-competitive using nuclear power generator producing electricity around 3 cents US/kW.h. Although similar unit costs are projected for wind-generated electricity, idleness of the electrolysis facility due to the variability of wind-generated electricity imposes a significant cost penalty. This paper reports on ongoing work on the economics of blending electricity from nuclear and wind sources by using wind-generated power, when available, to augment the current through electrolysis equipment that is primarily nuclear-powered - a concept we call NuWind. A voltage penalty accompanies the higher current. A 10% increase in capital cost for electrolysis equipment to enable it to accommodate the higher rate of hydrogen generation is still substantially cheaper than the capital cost of wind-dedicated electrolysis. Real-time data for electricity costs have been combined with real-time wind variability. The variability in wind fields between sites was accommodated by assigning average wind speeds that produced an average electricity generation from wind of between 32 and 42% of peak capacity, which is typical of the expectations for superior wind-generation sites. (author)

  2. Modeling and simulation of matrix converter for wind power generation

    International Nuclear Information System (INIS)

    Masood, F.; Mahmood, T.; Choudhry, M.A.

    2013-01-01

    In this paper, a matrix converter structure is proposed which is suitable for wind power generation applications. The matrix converter (MC) is the most general converter type in the family of AC-AC converters. It is a single-stage converter which has an array of m x n bidirectional power switches to connect, directly, an m- phase voltage source to an n-Phase load. It does not have any DC-link circuit and does not need any large energy storage elements. The key element in a matrix converter is the fully controlled four quadrant bidirectional switch, which allows highfrequency operation. The proposed converter uses MOSFETs as bidirectional switches. The model has been implemented using MATLAB/SIMULINK. The results obtained are presented. The waveforms for input current and output voltage are sinusoidal with very low total harmonic distortion (THD). Low THD is an indication that the model is suitable for wind power generation applications. The simulation results confirm the reduction of conversion losses by 10% to 12% as compared to conventional two stage converters thereby increasing the overall conversion efficiency. The MOSFETs which have been used as switching devices have four to five times more switching frequency as compared to IGBTs thus improving the resulting wave shapes. (author)

  3. Model of a generator end-winding cage

    International Nuclear Information System (INIS)

    Leger, A.C.; Fanton, J.P.; Davies, C.

    1994-09-01

    This document presents some studies concerning the vibratory characterization of particular structures called: generator end-winding cages. These structures are mainly made up of the endings of armature windings. The question of their good mechanical behaviour is of prime importance, since they are submitted to high electromagnetic efforts during the different electrical ratings encountered during operation. The designer (GEC-Alsthom) and the user (EDF) have both undertaken numerical calculations in order to characterize a given machine, in this case a 600 MW bipolar generator; it appeared interesting to compare such calculations. The models realized respectively by GEC-Alsthom and EDF make use of different techniques and hypotheses. GEC-Alsthom represents the sets of rods and spacers by plates, which properties are determined by a pre-processor. The model is simplified to take into account the existing symmetries. It takes profit of previous experience and aims at a fast utilisation. The EDF model tends to allow a further comprehensive calculation, form the electromagnetic efforts to the determination of local stresses. The whole set of the constituting elements of the structure is modelled by beams, which leads to an important size for the model (21 000 degrees of freedom). The validation performed on the two models has been focused on the comparison between respective results and also with experimental results. Each model provides values for the first eigenfrequencies and the associated modes shapes. (authors). 3 refs., 3 figs., 2 tabs

  4. Practical Application of Eddy Currents Generated by Wind

    Energy Technology Data Exchange (ETDEWEB)

    Dirba, I; Kleperis, J, E-mail: imants.dirba@gmail.com [Institute of Solid State Physics of University of Latvia, 8 Kengaraga Street, Riga, LV-1063 (Latvia)

    2011-06-23

    When a conductive material is subjected to time-varying magnetic fluxes, eddy (Foucault) currents are generated in it and magnetic field of opposite polarity as the applied one arises. Due to the internal resistance of the conductive material, the eddy currents will be dissipated into heat (Joule heating). Conventional domestic water heaters utilize gas burners or electric resistance heating elements to heat the water in the tank and substantial part of the energy to use for it is wasted. In this paper the origin of electromagnetic induction heat generated by wind turbine in special heat exchange camera connected to water boiler is discussed and material evaluation performed using mathematical modelling (comparing the 2D finite element model with analytical and numerical calculation results).

  5. Practical Application of Eddy Currents Generated by Wind

    International Nuclear Information System (INIS)

    Dirba, I; Kleperis, J

    2011-01-01

    When a conductive material is subjected to time-varying magnetic fluxes, eddy (Foucault) currents are generated in it and magnetic field of opposite polarity as the applied one arises. Due to the internal resistance of the conductive material, the eddy currents will be dissipated into heat (Joule heating). Conventional domestic water heaters utilize gas burners or electric resistance heating elements to heat the water in the tank and substantial part of the energy to use for it is wasted. In this paper the origin of electromagnetic induction heat generated by wind turbine in special heat exchange camera connected to water boiler is discussed and material evaluation performed using mathematical modelling (comparing the 2D finite element model with analytical and numerical calculation results).

  6. Practical Application of Eddy Currents Generated by Wind

    Science.gov (United States)

    Dirba, I.; Kleperis, J.

    2011-06-01

    When a conductive material is subjected to time-varying magnetic fluxes, eddy (Foucault) currents are generated in it and magnetic field of opposite polarity as the applied one arises. Due to the internal resistance of the conductive material, the eddy currents will be dissipated into heat (Joule heating). Conventional domestic water heaters utilize gas burners or electric resistance heating elements to heat the water in the tank and substantial part of the energy to use for it is wasted. In this paper the origin of electromagnetic induction heat generated by wind turbine in special heat exchange camera connected to water boiler is discussed and material evaluation performed using mathematical modelling (comparing the 2D finite element model with analytical and numerical calculation results).

  7. Raising the accommodation ceiling for wind power by intelligent response of demand and distributed generation

    Energy Technology Data Exchange (ETDEWEB)

    MacDougall, Pamella; Kok, Koen [TNO (Netherlands). Smart Grid group; Warmer, Cor [Energy Research Centre of the Netherlands (ECN) (Netherlands)

    2011-07-01

    With the world becoming ever more conscious of the necessity for clean, sustainable energy sources, an increased proportion of energy produced by wind resources is expected. In the current power system, the integration of such large capacity of non-controllable and intermittent supply leads to several challenges, one of which is to control the balance between demand and supply. A large - not yet utilized - source that may provide flexibility to contribute to this balance is available at the household level. Efficient heating systems such as heat pumps, distributed generation from e.g. micro-CHP and storage facilities as provided by electric vehicles can be intelligently controlled in the future smart grid in order to adapt in near real-time to fluctuating wind power. One of these enabling technologies, the PowerMatcher, has already been proven in several field trials in real-life circumstances. This multi-agent-based system uses electronic markets to coordinate devices with the objective of matching electricity supply and demand. In this paper, the potential of the PowerMatcher technology is explored to accommodate mass integration of electricity produced by wind energy by adapting flexible household demand and supply to the availability of wind power. In this way the need for - fossil fuel based - extra reserve capacity will be minimized as compared to business as usual. These studies, from the European FP 7 project Smart House Smart Grid, have been achieved by running large-scale simulations, of one million households, under real-life conditions. In these simulation studies the Dutch WLO-SE scenario has been followed, that foresees a strong increase in capacity of off-shore wind energy from 3 GW in 2020 to 10 GW in 2040 in the Netherlands. Results have been extrapolated to even faster wind energy growth scenarios as envisioned by the wind energy industry (e.g. We rate at sea). We will show that by using demand response in homes we can accommodate mass integration

  8. Combined hydro-wind generation bids in a pool-based electricity market

    International Nuclear Information System (INIS)

    Angarita, Jorge L.; Usaola, Julio; Martinez-Crespo, Jorge

    2009-01-01

    Present regulatory trends are promoting the direct participation of wind energy in electricity markets. The final result of these markets sets the production scheduling for the operation time, including a power commitment from the wind generators. However, wind resources are uncertain, and the final power delivered usually differs from the initial power committed. This imbalance produces an overcost in the system, which must be paid by those who produce it, e.g., wind generators among others. As a result, wind farm revenue decreases, but it could increase by allowing wind farms to submit their bids to the markets together with a hydro generating unit, which may easily modify its production according to the expected imbalance. This paper presents a stochastic optimization technique that maximizes the joint profit of hydro and wind generators in a pool-based electricity market, taking into account the uncertainty of wind power prediction. (author)

  9. statistical analysis of wind speed for electrical power generation

    African Journals Online (AJOL)

    HOD

    Keywords: Wind speed - probability - density function – wind energy conversion system- statistical analyses. 1. INTRODUCTION. In order ..... "Statistical analysis of wind speed distribution based on six Weibull Methods for wind power evaluation in. Garoua, Cameroon," Revue des Energies. Renouvelables, vol. 18, no. 1, pp.

  10. Current R and D needs in wind energy technology

    International Nuclear Information System (INIS)

    Maribo Pedersen, B.

    1995-01-01

    The meeting, hosted by NOVEM, the Netherlands Agency for Energy and the Environment, was attended by 22 people. The purpose of the meeting was to get an impression of how far the efforts spent until now on worldwide research and development have brought the general understanding of, and possibly solutions to, the various problems within wind energy technology - thereby providing some guidance as to where to go from now. In 1994 it was estimated that more than 100 million U.S. dollars was spent on R, D and D by those OECD countries which have a wind energy program, and that since 1974 at least 1000 mil. U.S. dollars must have been spent. The necessity of continued basic research within certain areas was recognized, and it was emphasized that the size of the research teams should always be greater than 'the critical mass'. There seemed to be consensus among all participants that the areas for continued research were the following: aerodynamics, aeroelasticity and load calculations, aeroacoustics (verification of fatigue calculation procedures for 3D stress distribution, establishing a data base of material properties), lightning protection measures, offshore installations (combined wind/wave loading, dynamics of support structures, wind and turbulence over the open sea), power conversion and wind turbine - grid interaction. (EG)

  11. Coal based electric generation comparative technologies report

    Energy Technology Data Exchange (ETDEWEB)

    1989-10-26

    Ohio Clean Fuels, Inc., (OCF) has licensed technology that involves Co-Processing (Co-Pro) poor grade (high sulfur) coal and residual oil feedstocks to produce clean liquid fuels on a commercial scale. Stone Webster is requested to perform a comparative technologies report for grassroot plants utilizing coal as a base fuel. In the case of Co-Processing technology the plant considered is the nth plant in a series of applications. This report presents the results of an economic comparison of this technology with other power generation technologies that use coal. Technologies evaluated were:Co-Processing integrated with simple cycle combustion turbine generators, (CSC); Co-Processing integrated with combined cycle combustion turbine generators, (CCC); pulverized coal-fired boiler with flue gas desulfurization and steam turbine generator, (PC) and Circulating fluidized bed boiler and steam turbine generator, (CFB). Conceptual designs were developed. Designs were based on approximately equivalent net electrical output for each technology. A base case of 310 MWe net for each technology was established. Sensitivity analyses at other net electrical output sizes varying from 220 MWe's to 1770 MWe's were also performed. 4 figs., 9 tabs.

  12. Doubly-fed induction generator used in wind energy

    Science.gov (United States)

    Soloumah, Hany M. Jabr

    Wound-rotor induction generator has numerous advantages in wind power generation over other generators. One scheme for wound-rotor induction generator is realized when a converter cascade is used between the slip-ring terminals and the utility grid to control the rotor power. This configuration is called the doubly-fed induction generator (DFIG). In this work, a novel induction machine model is developed. This model includes the saturation in the main and leakage flux paths. It shows that the model which considers the saturation effects gives more realistic results. A new technique, which was developed for synchronous machines, was applied to experimentally measure the stator and rotor leakage inductance saturation characteristics on the induction machine. A vector control scheme is developed to control the rotor side voltage-source converter. Vector control allows decoupled or independent control of both active and reactive power of DFIG. These techniques are based on the theory of controlling the B- and q- axes components of voltage or current in different reference frames. In this work, the stator flux oriented rotor current control, with decoupled control of active and reactive power, is adopted. This scheme allows the independent control of the generated active and reactive power as well as the rotor speed to track the maximum wind power point. Conventionally, the controller type used in vector controllers is of the PI type with a fixed proportional and integral gain. In this work, different intelligent schemes by which the controller can change its behavior are proposed. The first scheme is an adaptive gain scheduler which utilizes different characteristics to generate the variation in the proportional and the integral gains. The second scheme is a fuzzy logic gain scheduler and the third is a neuro-fuzzy controller. The transient responses using the above mentioned schemes are compared analytically and experimentally. It has been found that although the

  13. Impact of wind generation on the operation and development of the UK electricity systems

    International Nuclear Information System (INIS)

    Strbac, Goran; Shakoor, Anser; Pudjianto, Danny; Black, Mary; Bopp, Thomas

    2007-01-01

    Although penetration of wind generation may displace a significant amount of energy produced by large conventional plant, there are issues associated with the extent to which wind generation will be able to replace the capacity and flexibility of conventional generating plant. This is important since wind power is variable, so it will be necessary to retain a significant proportion of conventional plant to ensure security of supply especially under conditions of high demand and low wind. Hence, the capacity value of wind generation will be limited as it will not be possible to displace conventional generation capacity on a ''megawatt for megawatt'' basis. Wind power is variable and not easy to predict, hence various forms of additional reserves will be needed to maintain the balance between supply and demand at all times. Additionally, if the majority of wind generation plant is located in Scotland and the North of England, reinforcement of the transmission network will be needed to accommodate the increases in the north-south flow of electricity. In this paper an assessment of the costs and benefits of wind generation on the UK electricity system is carried out, assuming different levels of wind power capacity. Overall, it is concluded that the system will be able to accommodate significant increases in wind power generation with relatively small increases in overall costs of supply, about 5% of the current domestic electricity price in case of 20% energy produced by wind power. (author)

  14. Novel Design for a Wind Tunnel Vertical Gust Generator

    Science.gov (United States)

    Smith, Zachary; Jones, Anya; Hrynuk, John

    2017-11-01

    Gust response of MAVs is a fundamental problem for flight stability and control of such aircraft. Current knowledge about the gust response of these vehicles is limited and gust interaction often results in damage to vehicles. Studying isolated gust effects on simple airfoil models in a controlled environment is a necessity for the further development of MAV control laws. Gusts have typically been generated by oscillating an airfoil causing the shedding of vortices to propagate through the system. While effective, this method provides only a transient up and downdraft behavior with small changes in angle of attack, not suitable for studying MAV scale gust interactions. To study these interactions, a gust that creates a change in flow angle larger than the static stall angle of typical airfoils was developed. This work was done in a low speed, low turbulence wind tunnel at base operating speed of 1.5 m/s, generating a Reynolds number of 12,000 on a NACA 0012 wing. It describes the fundamental mechanisms of how this gust was generated and the results obtained from the gust generator. The gust, which can alter the flow field in less than 1 second, was characterized using PIV and the interactions with a stationary airfoil at several angles of attack are evaluated.

  15. Indices for planning wind power generation; Furyoku hatsuden no keikaku shihyo

    Energy Technology Data Exchange (ETDEWEB)

    Takeuchi, H.

    1997-11-25

    Outlined herein are status of wind power generation development, indices for planning development, and actual development results. At present, wind power generates electric power of 6,781MW worldwide. USA has been rapidly developing wind power generation since enactment of the PURPA law, and accounted for 25% of the world output in the past. However, the county is recently unseated from the world top position by Germany, which has been extensively developing wind power generation since enactment of the EFL law to reach 1,799MW. In Japan, electric power companies, local governments and public institutions have been positively introducing wind mills since 1992, when Tohoku Electric Power Co. built Ryuhi Wind Park, now generating a total power of 15MW by 64 units located at 33 different points. According to the surveys by NEDO on wind conditions, there are a number of districts suited for wind mills in Hokkaido, Tohoku, Okinawa and sea areas in Honshu. The indices described herein for planning wind power generation include rotor diameter, tower height, speed of rotation, weight, power to be generated, utilization and service factors, noise level, and investment and running costs. In the present state of the development of wind power generation in Japan, development points are 33, generated ouptut 15,097kW and units 64. 14 figs.

  16. Contribution to the chapter on wind power in: Energy technology perspectives 2008, IEA

    Energy Technology Data Exchange (ETDEWEB)

    Lemming, J.; Morthorst, P.E.; Clausen, Niels-Erik; Hjuler Jensen, P.

    2009-01-15

    Over the last 5 years the growth rate in wind energy has been as high as 30% an on average nearly 25% in all continents, and a considerable number of countries have very ambitious goals concerning their wind energy development, therefore it could be likely to cover as much as 20% of the world's electricity consumption by wind in 2030 and 35% in 2050, although on the shorter term growth is expected to take place mainly in Europe, USA and China. The market is maturing, therefore achieving more stable economies in the wind energy sector. As a result, better electrical grids suited for wind power are being developed and better planning tools as well as other frameworks, which benefit the market for installation of wind turbines, are being implemented across all wind energy countries. The cost of wind-generated electricity has fallen steadily for the last two decades, driven largely by technological advances, increased production levels and the use of larger turbines. Between 1985 and 2005, production costs energy from of wind turbines decreased by nearly 100% in 2006 prices. The price rises seen in last three years due to capacity problems in the industry are expected to stop, once supply system constraints are overcome. Onshore wind is considered commercial at sites with good wind resources and grid access. Cost reductions in both turbines and infrastructure are expected to bring investment costs to 0.88 mill. Euro/MW in 2030 and 0.8 mill. Euro/MW in 2050. On the other hand, offshore wind is in pre-commercial development phase. Considerable costs improvements are expected in all areas making costs go down to 1. 4 mill. Euro/MW in 2030 and 1.3 mill. Euro/MW in 2050. Priority RD and D areas to foster continued growth in wind power are to increase the value and reduce uncertainties. This will mean further cost reductions on longer terms, enabling large-scale use by improved grid integration and storage facilities and minimizing environmental impact. (au)

  17. Challenges, problems and possible solutions in wind generator systems from the aspect of forecast, planning and delivery of wind energy

    International Nuclear Information System (INIS)

    Giovski, Nikola

    2014-01-01

    The fundamental difficulties of integrating wind energy into the power system arise from its large temporal variability and limited predictability. That's why the integration of wind power presents major challenge for today's operating and planning practices of the power system operators. Accurate predictions of the possible wind power output, in time intervals relevant for creating schedules for production and exchange capacity, allows to system operators and dispatching personnel more efficient power system management. Despite the challenges and problems that arise due to integration of wind power into power systems, which need to be solved or reduced, wind power has its advantages that should be utilized. The effective integration of wind power plants into the transmission grid should allow them to represent the backbone of future energy systems. Modern wind generators represent production units that have the ability to participate in the management of energy systems e.g. in the regulation of frequency, voltage and other network operating requirements. This paper provides a brief overview of global experiences with the challenges, problems and possible solutions that appear in wind generator systems from the aspect of forecasting, planning and delivery of wind energy. (author)

  18. Batteries for storage of wind-generated energy

    Science.gov (United States)

    Schwartz, H. J.

    1973-01-01

    Cost effectiveness characteristics of conventional-, metal gas-, and high energy alkali metal-batteries for wind generated energy storage are considered. A lead-acid battery with a power density of 20 to 30 watt/hours per pound is good for about 1500 charge-discharge cycles at a cost of about $80 per kilowatt hour. A zinc-chlorine battery that stores chlorine as solid chlorine hydrate at temperatures below 10 C eliminates the need to handle gaseous chlorine; its raw material cost are low and inexpensive carbon can be used for the chlorine electrode. This system has the best chance to replace lead-acid. Exotic alkali metal batteries are deemed too costly at the present stage of development.

  19. System frequency support of permanent magnet synchronous generator-based wind power plant

    Science.gov (United States)

    Wu, Ziping

    With ever-increasing penetration of wind power into modern electric grids all over the world, a trending replacement of conventional synchronous generators by large wind power plants will likely result in the poor overall frequency regulation performance. On the other hand, permanent magnet synchronous generator wind Turbine System (PMSG-WTG) with full power back to back converters tends to become one of the most promising wind turbine technologies thanks to various advantages. It possesses a significant amount of kinetic energy stored in the rotating mass of turbine blades, which can be utilized to enhance the total inertia of power system. Additionally, the deloaded operation and decoupled control of active and reactive power make it possible for PMSG-WTG to provide a fast frequency regulation through full-power converter. First of all, a comprehensive and in-depth survey is conducted to analyze the motivations for incorporating the inertial response and frequency regulation of VSWT into the system frequency regulation. Besides, control classifications, fundamental control concepts and advanced control schemes implemented for auxiliary frequency support of individual WT or wind power plant are elaborated along with a comparison of the potential frequency regulation capabilities of four major types of WTs. Secondly, a Controls Advanced Research Turbine2-Permanent Magnet Synchronous Generator wind turbine (CART2-PMSG) integrated model representing the typical configuration and operation characteristics of PMSG-WT is established in Matlab/Simulink,. Meanwhile, two different rotor-side converter control schemes, including rotor speed-based control and active power-based control, are integrated into this CART2-PMSG integrated model to perform Maximum Power Point Tracking (MPPT) operation over a wide range of wind speeds, respectively. Thirdly, a novel comprehensive frequency regulation (CFR) control scheme is developed and implemented into the CART2-PMSG model based

  20. Analysis and estimation of transient stability for a grid-connected wind turbine with induction generator

    DEFF Research Database (Denmark)

    Li, H.; Zhao, B.; Yang, C.

    2011-01-01

    of a grid-connected wind turbine with squirrel cage induction generator (SCIG). Firstly, by using an equivalent lump mass method, a three-mass wind turbine equivalent model is proposed considering both the blades and the shaft flexibility of the wind turbine drive train system. Combined with the detailed......Increasing levels of wind energy in modern electrical power system is initiating a need for accurate analysis and estimation of transient stability of wind turbine generation systems. This paper investigates the transient behaviors and possible direct methods for transient stability evaluation...... electromagnetic transient models of a SCIG, the transient behaviors of the wind turbine generation system during a three-phase fault are simulated and compared with the traditional models. Secondly, in order to quickly estimate the transient stability limit of the wind turbine generation system, a direct method...

  1. Generator technology for HTGR power plants

    International Nuclear Information System (INIS)

    Lomba, D.; Thiot, D.

    1997-01-01

    Approximately 15% of the worlds installed capacity in electric energy production is from generators developed and manufactured by GEC Alsthom. GEC Alsthom is now working on the application of generators for HTGR power conversion systems. The main generator characteristics induced by the different HTGR power conversion technology include helium immersion, high helium pressure, brushless excitation system, magnetic bearings, vertical lineshaft, high reliability and long periods between maintenance. (author)

  2. The Value of Wind Technology Innovation: Implications for the U.S. Power System, Wind Industry, Electricity Consumers, and Environment

    Energy Technology Data Exchange (ETDEWEB)

    Mai, Trieu T [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Lantz, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Mowers, Matthew [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Wiser, Ryan [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-09-21

    Improvements to wind technologies have, in part, led to substantial deployment of U.S. wind power in recent years. The degree to which technology innovation will continue is highly uncertain adding to uncertainties in future wind deployment. We apply electric sector modeling to estimate the potential wind deployment opportunities across a range of technology advancement projections. The suite of projections considered span a wide range of possible cost and technology innovation trajectories, including those from a recent expert elicitation of wind energy experts, a projection based on the broader literature, and one reflecting estimates based on a U.S. DOE research initiative. In addition, we explore how these deployment pathways may impact the electricity system, electricity consumers, the environment, and the wind-related workforce. Overall, our analysis finds that wind technology innovation can have consequential implications for future wind power development throughout the United States, impact the broader electricity system, lower electric system and consumer costs, provide potential environmental benefits, and grow the U.S. wind workforce.

  3. Improving Maryland’s Offshore Wind Energy Resource Estimate Using Doppler Wind Lidar Technology to Assess Microtmeteorology Controls

    Directory of Open Access Journals (Sweden)

    Pé Alexandra St.

    2016-01-01

    Compared to lidar measurements, power law extrapolation estimates and operational National Weather Service models underestimated hub-height wind speeds in the WEA. In addition, lidar observations suggest the frequent development of a low-level wind maximum (LLWM, with high turbinelayer wind shear and low turbulence intensity within a turbine’s rotor layer (40m-160m. Results elucidate the advantages of using Doppler wind lidar technology to improve offshore wind resource estimates and its ability to monitor under-sampled offshore meteorological controls impact on a potential turbine’s ability to produce power.

  4. Wind up with continuous intra-day electricity markets? The integration of large-share wind power generation in Denmark

    International Nuclear Information System (INIS)

    Karanfil, Fatih; Li, Yuanjing

    2015-01-01

    This paper suggests an innovative idea to examine the functionality of an electricity intra-day market by testing causality among its fundamental components. As fluctuations of poorly predicted wind power generation are challenging the stability of the current electricity system, an intra-day market design can play an important role in managing wind forecast errors. Using Danish and Nordic data, it investigates the main drivers of the price difference between the intra-day and day-ahead markets, and causality between wind forecast errors and their counterparts. Our results show that the wind and conventional generation forecast errors significantly cause the intra-day price to differ from the day-ahead price, and that the relative intra-day price decreases with the unexpected amount of wind generation. Cross-border electricity exchanges are found to be important to handle wind forecast errors. Additionally, some zonal differences with respect to both causality and impulse responses are detected. This paper provides the first evidence on the persuasive functioning of the intra-day market in the case of Denmark, whereby intermittent production deviations are effectively reduced, and wind forecast errors are jointly handled through the responses from demand, conventional generation, and intra-day international electricity trade. (authors)

  5. statistical analysis of wind speed for electrical power generation

    African Journals Online (AJOL)

    HOD

    1, 4, 5 DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING, UNIVERSITY OF ILORIN, KWARA STATE, NIGERIA. 2DEPARTMENT OF ... Keywords: Wind speed - probability - density function – wind energy conversion system- statistical analyses. 1. ..... weather data for energy assessments of hybrid.

  6. Improved inertial control for permanent magnet synchronous generator wind turbine generators

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Ziping; Gao, Wenzhong; Wang, Xiao; Kang, Moses; Hwang, Min; Kang, Yong Cheol; Gevogian, Vahan; Muljadi, Eduard

    2016-05-31

    With increasing integrations of large-scale systems based on permanent magnet synchronous generator wind turbine generators (PMSG-WTGs), the overall inertial response of a power system will tend to deteriorate as a result of the decoupling of rotor speed and grid frequency through the power converter as well as the scheduled retirement of conventional synchronous generators. Thus, PMSG-WTGs can provide value to an electric grid by contributing to the system's inertial response through the inherent kinetic energy stored in their rotating masses and fast power converter control. In this study, an improved inertial control method based on the maximum power point tracking operation curve is introduced to enhance the overall frequency support capability of PMSG-WTGs in the case of large supply-demand imbalances. Moreover, this method is implemented in the CART2-PMSG integrated model in MATLAB/Simulink to investigate its impact on the wind turbine's structural loads during the inertial response process. Simulation results indicate that the proposed method can effectively reduce the frequency nadir, arrest the rate of change of frequency, and alleviate the secondary frequency dip while imposing no negative impact on the major mechanical components of the wind turbine.

  7. 40 CFR 53.42 - Generation of test atmospheres for wind tunnel tests.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 5 2010-07-01 2010-07-01 false Generation of test atmospheres for wind... Testing Performance Characteristics of Methods for PM10 § 53.42 Generation of test atmospheres for wind... other information showing complete procedural details of the test atmosphere generation, verification...

  8. Comparison of Megawatt-Class Permanent Magnet Wind Turbine Generator Concepts

    DEFF Research Database (Denmark)

    Henriksen, Matthew Lee; Jensen, Bogi Bech

    2012-01-01

    This paper begins by investigating which permanent magnet synchronous generators are being used in wind turbines today. These are broken into three classes based on the ratio of speed between the blades and the generator. Four example gearbox/generator combinations are demonstrated to explore...... wind turbines....

  9. Space-time trajectories of wind power generation: Parameterized precision matrices under a Gaussian copula approach

    DEFF Research Database (Denmark)

    Tastu, Julija; Pinson, Pierre; Madsen, Henrik

    2015-01-01

    Emphasis is placed on generating space-time trajectories of wind power generation, consisting of paths sampled from high-dimensional joint predictive densities, describing wind power generation at a number of contiguous locations and successive lead times. A modelling approach taking advantage...

  10. Transient performances analysis of wind turbine system with induction generator including flux saturation and skin effect

    DEFF Research Database (Denmark)

    Li, H.; Zhao, B.; Han, L.

    2010-01-01

    In order to analyze correctly the effect of different models for induction generators on the transient performances of large wind power generation, Wind turbine driven squirrel cage induction generator (SCIG) models taking into account both main and leakage flux saturation and skin effect were...

  11. Understanding Dynamic Model Validation of a Wind Turbine Generator and a Wind Power Plant: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Muljadi, Eduard; Zhang, Ying Chen; Gevorgian, Vahan; Kosterev, Dmitry

    2016-09-01

    Regional reliability organizations require power plants to validate the dynamic models that represent them to ensure that power systems studies are performed to the best representation of the components installed. In the process of validating a wind power plant (WPP), one must be cognizant of the parameter settings of the wind turbine generators (WTGs) and the operational settings of the WPP. Validating the dynamic model of a WPP is required to be performed periodically. This is because the control parameters of the WTGs and the other supporting components within a WPP may be modified to comply with new grid codes or upgrades to the WTG controller with new capabilities developed by the turbine manufacturers or requested by the plant owners or operators. The diversity within a WPP affects the way we represent it in a model. Diversity within a WPP may be found in the way the WTGs are controlled, the wind resource, the layout of the WPP (electrical diversity), and the type of WTGs used. Each group of WTGs constitutes a significant portion of the output power of the WPP, and their unique and salient behaviors should be represented individually. The objective of this paper is to illustrate the process of dynamic model validations of WTGs and WPPs, the available data recorded that must be screened before it is used for the dynamic validations, and the assumptions made in the dynamic models of the WTG and WPP that must be understood. Without understanding the correct process, the validations may lead to the wrong representations of the WTG and WPP modeled.

  12. Assessing the Impact of Wind/PV Power Generation and Market Policies on Decentralized Hybrid Systems

    DEFF Research Database (Denmark)

    S.M. Arnoux, Luciana; Santiago, Leonardo

    In this paper, we offer a comprehensive approach to assess the impact of wind and photovoltaic power generation on decentralized hybrid systems. In particular, we focus on three performance measures of the energy system, namely reliability, costs, and efficiency. Most of the current studies focus...... technologies (e.g., smart metering) and policy design....... metering). Finally, we shed light on the performance metrics of the energy system: reliability, economy, and efficiency. We illustrate our approach by using data from a city in Brazil and analyze the behavior of system’s key parameters. We close by suggesting possible implications for managing new...

  13. Locally manufactured wind power technology for sustainable rural electrification

    International Nuclear Information System (INIS)

    Leary, J.; While, A.; Howell, R.

    2012-01-01

    To date, the use of wind power for rural electrification has been limited. However the fact that micro-wind turbines can be manufactured using only basic workshop tools, techniques and materials, and therefore can be produced locally is often overlooked. Local manufacture has the potential to boost the local economy, build local capacity, reduce costs and produce resilient and flexible energy systems. However, locally manufactured technology must be seen as socially embedded due to the variety of local knowledge, skills, equipment and materials needed to construct and maintain such systems, as well as the organisational structures needed to ensure their long term sustainability. Evidence from successful initiatives suggests that stable institutional support from intermediaries such as the local/national government or NGOs is necessary to foster the development of a wind power industry based on local manufacture. The roles of these intermediaries include identifying and targeting windy areas with favourable environmental conditions, conducting research and development, collecting feedback from end users, creating supply chains for new parts and materials and developing relevant knowledge and skills. In this paper, three case studies of specific initiatives are analysed to draw out the social, economic and technical factors that could facilitate wider adoption of the technology. - Highlights: ► Local manufacture of wind turbines often overlooked for rural electrification. ► Flexible to adapt to local context and benefits local economy, capacity and supply chain. ► Development of technology discussed and 3 case studies of dissemination analysed. ► Critical factors: institutional support, system level planning, continuity of supply. ► Dissemination successful in Inner Mongolia; work continues elsewhere.

  14. Integration of Hybrid PV/Wind Generation System Using Fuzzy MPPT in Grid Connected System for Remote Area

    Directory of Open Access Journals (Sweden)

    Soedibyo

    2016-01-01

    Full Text Available Photovoltaic and wind are renewable energy resources that widely used and grow rapidly in fulfilling electricity demand. Powers from both technologies depend on sunlight intensity and wind speed. For small scale power generation, DC voltage from both technologies is low and requires step-up converter to raise DC voltage ratio before converted into AC voltage. To optimize this system, step-up converter must have high ratio and efficiency to a distance of wide voltage input. This paper proposed an operation simulation and arrangement of DC-DC converter along with DC-AC from hybrid source PV-Wind which integrated to grid utilities without using storage device. High Gain Integrated Cascade Boost (HGICB is DC-DC converter that has quadratic voltage ratio and used in this research. Then DC link connected to Voltage Source Inverter (VSI which interconnected with utility grid and controlled by current control method. The total installed capacity of hybrid source is 4.4 kW. Wind turbine uses PMSG along with full bridge rectifier. To maximize and stabilize the generated power, MPPT fuzzy is used. Result from the simulation shows that converter capable to maintain maximum power whether from PV and wind turbine which canalized to utility grid in various irradiation condition, wind speed, and grid load alteration.

  15. Low Voltage Ride-Through of Variable Speed Wind Turbines with Permanent Magnet Synchronous Generator

    DEFF Research Database (Denmark)

    Hu, Weihao; Chen, Zhe; Wang, Yue

    2009-01-01

    This paper presents a simulation model of a MW-level variable speed wind turbine with a permanent magnet synchronous generator (PMSG) and a full-scale converter developed in the simulation tool of PSCAD/EMTDC. The low voltage ride-through (LVRT) capability of the wind turbine is investigated. A new...... speed wind turbines with PMSG....

  16. Comparing the Brushless DFIM to other Generator Systems for Wind Turbine Drive-Trains

    NARCIS (Netherlands)

    Strous, T.D.; Shipurkar, U.; Polinder, H.; Ferreira, J.A.

    2016-01-01

    In this paper, the brushless DFIM based wind turbine drive-train topology is compared to the DFIG based and PM generator based drive-train topologies, that are most commonly applied in modern wind turbines. The comparison will be based on a 3:2MW case study wind turbine. By using FE based

  17. Evaluation of a wind turbine electric power generator

    Science.gov (United States)

    Swim, W. B.

    1981-01-01

    A technical assessment of the aerodynamic performance of the wind wheel turbine (WWT) is reported. The potential of the WWT in utilizing wind as an alternate power source was evaluated. Scaling parameters were developed to predict the aerodynamic performance of WWT prototype sized to produce 3, 9, 30, and 100 kw outputs in a 6.7 m/sec wind.

  18. Determination of recoverable wind energy for electricity generation ...

    African Journals Online (AJOL)

    Utilization of renewable energy source, essentially the wind energy, has been growing rapidly in the whole world due to environmental pollution, consumption of the limited fossil fuels and global warming. Moreover, wind resource determination is a fundamental step in planning a wind energy project and exhaustive ...

  19. Assessment and analysis of wind energy generation and power ...

    African Journals Online (AJOL)

    This study concerns the evaluation of wind power potential and the choice of a wind turbine to be installed near Rabah Bitat international airport of Annaba. Furthermore, the performances of power control of this turbine are developed. For this, the wind speed data measured by meteorological station of th e airport are used.

  20. Determining optimal capacity of wind generation in a conventional power system

    Directory of Open Access Journals (Sweden)

    Shahrokh Shojaeian

    2014-12-01

    Full Text Available This paper investigates the effect of adding different capacities of wind power to the reliability of power systems using Monte Carlo method in order to obtain an optimum limit for that. At first, wind speed of the Swift Carnet Region in Canada, as a typical test area, is simulated and the amount of wind power output of the wind turbine generator is measured. Then, using the Monte Carlo Sequential Method, a model that involves energy generated by conventional and wind power generators is made. The power generated in Monte Carlo Sequence was compared with the system load in order to calculate risk indices. Then values of the ‘loss of load expectation’ and ‘loss of energy expectation’ indices are presented in the adequacy evaluation of the electric power system including the wind power generators.

  1. Comparison of 10 MW superconducting generator topologies for direct-drive wind turbines

    DEFF Research Database (Denmark)

    Liu, Dong; Polinder, Henk; Abrahamsen, Asger Bech

    2015-01-01

    Large wind turbines of 10 MW or higher power levels are desirable for reducing the cost of energy of offshore wind power conversion. Conventional wind generator systems will be costly if scaled up to 10 MW due to rather large size and weight. Direct drive superconducting generators have been...... proposed to address the problem with generator size, because the electrical machines with superconducting windings are capable of achieving a higher torque density of an electrical machine. However, the topology to be adopted for superconducting wind generators has not yet been settled, since the high...... magnetic field excitation allows for lightweight non-magnetic composite materials for machine cores instead of iron. A topology would probably not be a good option for an offshore wind turbine generator if it demands a far more expensive active material cost than others, even if it has other advantages...

  2. Effects of Capcitor Bank on Fault Ride Through Capibility of Induction Generator Based Wind Turbines

    DEFF Research Database (Denmark)

    Hu, Y; Chen, Zhe

    2010-01-01

    Wind turbine installation is increasing rapidly. In some networks, wind power penetration is significantly high and the performance of wind turbine plays an important role in power system operation and control. Especially, the behavior of wind turbines during a power system disturbance would affect...... power system stability and supply security. Some existing wind turbines are still based on fixed speed induction generators, the effects of capacitor bank on such generators are discussed in this paper. The simulation study shows the capacitor bank may costeffectively improve the dynamic performance...

  3. The Darrieus wind turbine for electrical power generation

    Science.gov (United States)

    Robinson, M. L.

    1981-06-01

    Aspects of wind as an energy source and the momentum theory of wind turbines are briefly examined. Types of Darrieus wind turbine are described; attention is given to a turbine with airfoil blades curved in troposkein form, and a turbine with straight blades of fixed or variable pitch. The Darrieus vertical-axis wind turbine is then considered with regard to aerodynamics, annual energy output, structures, control systems, and energy storage. Brief reviews of selected Darrieus wind turbine projects are given, including those at Magdalen Islands, Canada, Sandia Laboratories, Reading University, and Australia and New Zealand.

  4. Trends, Opportunities, and Challenges for Tall Wind Turbine and Tower Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Lantz, Eric; Roberts, Owen; Dykes, Katherine

    2017-06-28

    This presentation summarizes recent analysis focused on characterizing the opportunity for Tall Wind technologies generally and for tall tower technologies specifically. It seeks to illuminate and explain the concept of Tall Wind, its impact on the wind industry to date, and the potential value of Tall Wind in the future. It also explores the conditions and locations under which the impacts of Tall Wind offer the most significant potential to increase wind technology performance. In addition, it seeks to examine the status of tall tower technology as a key sub-component of Tall Wind, focusing on the potential for continued innovation in tubular steel wind turbine towers and the status and potential for a select set of alternative tall tower technologies.

  5. Tehachapi Wind Energy Storage Project - Technology Performance Report #3

    Energy Technology Data Exchange (ETDEWEB)

    Pinsky, Naum [Southern California Edison, Rosemead, CA (United States); O' Neill, Lori [Southern California Edison, Rosemead, CA (United States)

    2017-03-31

    The TSP is located at SCE’s Monolith Substation in Tehachapi, California. The 8 MW, 4 hours (32 MWh) BESS is housed in a 6,300 square foot facility and 2 x 4 MW/4.5 MVA smart inverters are on a concrete pad adjacent to the BESS facility. The project will evaluate the capabilities of the BESS to improve grid performance and assist in the integration of large-scale intermittent generation, e.g., wind. Project performance was measured by 13 specific operational uses: providing voltage support and grid stabilization, decreasing transmission losses, diminishing congestion, increasing system reliability, deferring transmission investment, optimizing renewable-related transmission, providing system capacity and resources adequacy, integrating renewable energy (smoothing), shifting wind generation output, frequency regulation, spin/non-spin replacement reserves, ramp management, and energy price arbitrage. Most of the operations either shift other generation resources to meet peak load and other electricity system needs with stored electricity, or resolve grid stability and capacity concerns that result from the interconnection of intermittent generation. SCE also demonstrated the ability of lithium ion battery storage to provide nearly instantaneous maximum capacity for supply-side ramp rate control to minimize the need for fossil fuel-powered back-up generation. The project began in October, 2010 and will continue through December, 2016.

  6. Adaptive Backstepping Control Based on Floating Offshore High Temperature Superconductor Generator for Wind Turbines

    Directory of Open Access Journals (Sweden)

    Feng Yang

    2014-01-01

    Full Text Available With the rapid development of offshore wind power, the doubly fed induction generator and permanent magnet synchronous generator cannot meet the increasing request of power capacity. Therefore, superconducting generator should be used instead of the traditional motor, which can improve generator efficiency, reduce the weight of wind turbines, and increase system reliability. This paper mainly focuses on nonlinear control in the offshore wind power system which is consisted of a wind turbine and a high temperature superconductor generator. The proposed control approach is based on the adaptive backstepping method. Its main purpose is to regulate the rotor speed and generator voltage, therefore, achieving the maximum power point tracking (MPPT, improving the efficiency of a wind turbine, and then enhancing the system’s stability and robustness under large disturbances. The control approach can ensure high precision of generator speed tracking, which is confirmed in both the theoretical analysis and numerical simulation.

  7. Models for Numerical Evaluation of Variable Speed Different Wind Generator Systems

    DEFF Research Database (Denmark)

    Li, Hui; Chen, Zhe; Polinder, H.

    2007-01-01

    -effective wind conversion system among the various possible configurations. The aim of this project is to evaluate the suitable cost- effective wind generator systems by using the optimization designs and the numerical comparison. The research report is made of two parts, one focus on the design models......, the analytical models include the wind turbine power characteristics; the single/threestage gearbox and the power electronic converter for possible wind turbine concepts are described. Finally, the electromagnetic design models of the investigated generator topologies are presented, including the squirrel cage...... induction generator (SCIG), the doubly-fed induction generator (DFIG), the electrically excited synchronous generator (EESG) and permanent magnet synchronous generator (PMSG). Numerical evaluation with optimized design and comparison of variable speed wind generator systems by using the presented models...

  8. Stochastic Prediction of Wind Generating Resources Using the Enhanced Ensemble Model for Jeju Island’s Wind Farms in South Korea

    OpenAIRE

    Deockho Kim; Jin Hur

    2017-01-01

    Due to the intermittency of wind power generation, it is very hard to manage its system operation and planning. In order to incorporate higher wind power penetrations into power systems that maintain secure and economic power system operation, an accurate and efficient estimation of wind power outputs is needed. In this paper, we propose the stochastic prediction of wind generating resources using an enhanced ensemble model for Jeju Island’s wind farms in South Korea. When selecting the poten...

  9. Low Voltage Ride-through in DFIG Wind Generators by Controlling the Rotor Current without Crowbars

    Directory of Open Access Journals (Sweden)

    Jaime Rodríguez Arribas

    2014-01-01

    Full Text Available Among all the different types of electric wind generators, those that are based on doubly fed induction generators, or DFIG technology, are the most vulnerable to grid faults such as voltage sags. This paper proposes a new control strategy for this type of wind generator, that allows these devices to withstand the effects of a voltage sag while following the new requirements imposed by grid operators. This new control strategy makes the use of complementary devices such as crowbars unnecessary, as it greatly reduces the value of currents originated by the fault. This ensures less costly designs for the rotor systems as well as a more economic sizing of the necessary power electronics. The strategy described here uses an electric generator model based on space-phasor theory that provides a direct control over the position of the rotor magnetic flux. Controlling the rotor magnetic flux has a direct influence on the rest of the electrical variables enabling the machine to evolve to a desired work point during the transient imposed by the grid disturbance. Simulation studies have been carried out, as well as test bench trials, in order to prove the viability and functionality of the proposed control strategy.

  10. Effects of voltage unbalance and system harmonics on the performance of doubly fed induction wind generators

    Science.gov (United States)

    Kiani, Morgan Mozhgan

    Inherent difficulties in management of electric power in the presence of an increasing demand for more energy, non-conventional loads such as digital appliances, and non-sustainable imported fossil fuels has initiated a multi-folded effort by many countries to restructure the way electric energy is generated, dispatched, and consumed. Smart power grid is the manifestation of many technologies that would eventually transforms the existing power grid into a more flexible, fault resilient, and intelligent system. Integration of distributed renewable energy sources plays a central role in successful implementation of this transformation. Among the renewable options, wind energy harvesting offers superior engineering and economical incentives with minimal environmental impacts. Doubly fed induction generators (DFIG) have turned into a serious contender for wind energy generators due to their flexibility in control of active and reactive power with minimal silicon loss. Significant presence of voltage unbalance and system harmonics in finite inertia transmission lines can potentially undermine the reliability of these wind generators. The present dissertation has investigated the impacts of system unbalances and harmonics on the performance of the DFIG. Our investigation indicates that these effects can result in an undesirable undulation in the rotor shaft which can potentially invoke mechanical resonance, thereby causing catastrophic damages to the installations and the power grid. In order to remedy the above issue, a control solution for real time monitoring of the system unbalance and optimal excitation of the three phase rotor currents in a DFIG is offered. The optimal rotor currents will create appropriate components of the magneto-motive force in the airgap that will actively compensate the undesirable magnetic field originated by the stator windings. Due to the iterative nature of the optimization procedure, field reconstruction method has been incorporated

  11. Wind for Schools: Developing Education Programs to Train the Next Generation of the Wind Energy Workforce

    Energy Technology Data Exchange (ETDEWEB)

    Baring-Gould, I.; Flowers, L.; Kelly, M.; Barnett, L.; Miles, J.

    2009-08-01

    This paper provides an overview of the Wind for Schools project elements, including a description of host and collegiate school curricula developed for wind energy and the status of the current projects. The paper also provides focused information on how schools, regions, or countries can become involved or implement similar projects to expand the social acceptance and understanding of wind energy.

  12. The next generation of ultraviolet light technologies

    International Nuclear Information System (INIS)

    Roy, K.A.

    1990-01-01

    According to this article, the next generation of ultraviolet (UV) light technologies into the environmental spotlight. Researchers have long recognized the potential of UV light, nestled between the longer radiation wavelengths of the visible spectrum and the shorter ones in the x-ray region, to effect chemical change. Environmentally, UV light made its debut as a water purification tool. As the technology improved, researchers incorporated UV light in wastewater treatment systems and, later, in remediation techniques

  13. Incorporation of a Wind Generator Model into a Dynamic Power Flow Analysis

    Directory of Open Access Journals (Sweden)

    Angeles-Camacho C.

    2011-07-01

    Full Text Available Wind energy is nowadays one of the most cost-effective and practical options for electric generation from renewable resources. However, increased penetration of wind generation causes the power networks to be more depend on, and vulnerable to, the varying wind speed. Modeling is a tool which can provide valuable information about the interaction between wind farms and the power network to which they are connected. This paper develops a realistic characterization of a wind generator. The wind generator model is incorporated into an algorithm to investigate its contribution to the stability of the power network in the time domain. The tool obtained is termed dynamic power flow. The wind generator model takes on account the wind speed and the reactive power consumption by induction generators. Dynamic power flow analysis is carried-out using real wind data at 10-minute time intervals collected for one meteorological station. The generation injected at one point into the network provides active power locally and is found to reduce global power losses. However, the power supplied is time-varying and causes fluctuations in voltage magnitude and power fl ows in transmission lines.

  14. Variable speed wind turbine generator system with current controlled voltage source inverter

    International Nuclear Information System (INIS)

    Muyeen, S.M.; Al-Durra, Ahmed; Tamura, J.

    2011-01-01

    highlights: → Current controlled voltage source inverter scheme for wind power application. → Low voltage ride through of wind farm. → Variable speed wind turbine driven permanent magnet synchronous generator-operation and control. -- Abstract: The present popular trend of wind power generation is to use variable speed wind turbine (VSWT) driving a doubly fed induction generator (DFIG), wound field synchronous generator (WFSG) or permanent magnet synchronous generator (PMSG). Among them, stability analyses of DFIG type of VSWT have already been reported in many literatures. However, transient stability and low voltage ride through (LVRT) characteristics analyses for synchronous generator type of VSWT is not sufficient enough. This paper focuses on detailed LVRT characteristic analysis of variable speed wind turbine driving a PMSG (VSWT-PMSG) with current controlled voltage source inverter (CC-VSI). Modeling and suitable control strategies for overall system are developed to augment the low voltage ride through capability of variable speed wind generator, considering recent wind farm grid code. Both symmetrical and unsymmetrical faults are analyzed as network disturbances in this paper. The permanent fault due to unsuccessful reclosing of circuit breakers is taken into consideration, which is a salient feature of this study. Moreover, the dynamic characteristic is analyzed using real wind speed data measured in Hokkaido Island, Japan. The proposed control scheme is simulated by using the standard power system simulation package PSCAD/EMTDC and results are verified by comparing that of voltage controlled voltage source inverter scheme available in power system literature.

  15. Variable speed wind turbine generator system with current controlled voltage source inverter

    Energy Technology Data Exchange (ETDEWEB)

    Muyeen, S.M., E-mail: muyeen0809@yahoo.co [Dept. of Electrical Engineering, Petroleum Institute, P.O. Box 2533, Abu Dhabi (United Arab Emirates); Al-Durra, Ahmed [Dept. of Electrical Engineering, The Petroleum Institute, P.O. Box 2533, Abu Dhabi (United Arab Emirates); Tamura, J. [Dept. of EEE, Kitami Institute of Technology, 165 Koen-cho, Kitami 090-8507 (Japan)

    2011-07-15

    highlights: {yields} Current controlled voltage source inverter scheme for wind power application. {yields} Low voltage ride through of wind farm. {yields} Variable speed wind turbine driven permanent magnet synchronous generator-operation and control. -- Abstract: The present popular trend of wind power generation is to use variable speed wind turbine (VSWT) driving a doubly fed induction generator (DFIG), wound field synchronous generator (WFSG) or permanent magnet synchronous generator (PMSG). Among them, stability analyses of DFIG type of VSWT have already been reported in many literatures. However, transient stability and low voltage ride through (LVRT) characteristics analyses for synchronous generator type of VSWT is not sufficient enough. This paper focuses on detailed LVRT characteristic analysis of variable speed wind turbine driving a PMSG (VSWT-PMSG) with current controlled voltage source inverter (CC-VSI). Modeling and suitable control strategies for overall system are developed to augment the low voltage ride through capability of variable speed wind generator, considering recent wind farm grid code. Both symmetrical and unsymmetrical faults are analyzed as network disturbances in this paper. The permanent fault due to unsuccessful reclosing of circuit breakers is taken into consideration, which is a salient feature of this study. Moreover, the dynamic characteristic is analyzed using real wind speed data measured in Hokkaido Island, Japan. The proposed control scheme is simulated by using the standard power system simulation package PSCAD/EMTDC and results are verified by comparing that of voltage controlled voltage source inverter scheme available in power system literature.

  16. Variability of Regional Wind Energy Generation on Intraseasonal to Interannual timescales

    Science.gov (United States)

    Kirk-Davidoff, D. B.; Jascourt, S. D.; Cassidy, C.

    2012-12-01

    We produce forecasts of wind energy electrical generation in a large number of electrical interconnections in the United States, Canada and Europe. Using our data base of wind farm locations, turbine numbers and types, we are able to use reanalyzed winds from NOAA's Climate Forecast System Reanalysis to calculate the electrical power that would have been generated by the existing wind farm network for the last thirty years. We will show these time series for several electrical interconnections in North America and Europe, and discuss their correlations with various indices of the global circulation, including the North Atlantic Oscillation and the Madden-Julian Oscillation on short time scales, and the the El Niño-Southern Oscillation on longer time scales. These studies allow analysis of the expected variations of wind powered electrical generation on monthly to interannual time scales, and set the stage for coupled-climate model prediction of wind energy generation, using the NOAA Climate Forecast System.

  17. Coordinated Control Strategies for a Permanent Magnet Synchronous Generator Based Wind Energy Conversion System

    Directory of Open Access Journals (Sweden)

    Ramji Tiwari

    2017-09-01

    Full Text Available In this paper, a novel co-ordinated hybrid maximum power point tracking (MPPT-pitch angle based on a radial basis function network (RBFN is proposed for a variable speed variable pitch wind turbine. The proposed controller is used to maximise output power when the wind speed is low and optimise the power when the wind speed is high. The proposed controller provides robustness to the nonlinear characteristic of wind speed. It uses wind speed, generator speed, and generator power as input variables and utilises the duty cycle and the reference pitch angle as the output control variables. The duty cycle is used to control the converter so as to maximise the power output and the reference pitch angle is used to control the generator speed in order to control the generator output power in the above rated wind speed region. The effectiveness of the proposed controller was verified using MATLAB/Simulink software.

  18. Output Power Control of Wind Turbine Generator by Pitch Angle Control using Minimum Variance Control

    Science.gov (United States)

    Senjyu, Tomonobu; Sakamoto, Ryosei; Urasaki, Naomitsu; Higa, Hiroki; Uezato, Katsumi; Funabashi, Toshihisa

    In recent years, there have been problems such as exhaustion of fossil fuels, e. g., coal and oil, and environmental pollution resulting from consumption. Effective utilization of renewable energies such as wind energy is expected instead of the fossil fuel. Wind energy is not constant and windmill output is proportional to the cube of wind speed, which cause the generated power of wind turbine generators (WTGs) to fluctuate. In order to reduce fluctuating components, there is a method to control pitch angle of blades of the windmill. In this paper, output power leveling of wind turbine generator by pitch angle control using an adaptive control is proposed. A self-tuning regulator is used in adaptive control. The control input is determined by the minimum variance control. It is possible to compensate control input to alleviate generating power fluctuation with using proposed controller. The simulation results with using actual detailed model for wind power system show effectiveness of the proposed controller.

  19. Gas-fired electric power generating technologies

    International Nuclear Information System (INIS)

    1994-09-01

    The workshop that was held in Madrid 25-27 May 1994 included participation by experts from 16 countries. They represented such diverse fields and disciplines as technology, governmental regulation, economics, and environment. Thus, the participants provided an excellent cross section of key areas and a diversity of viewpoints. At the workshop, a broad range of topics regarding gas-fired electric power generation was discussed. These included political, regulatory and financial issues as well as more specific technical questions regarding the environment, energy efficiency, advanced generation technologies and the status of competitive developments. Important technological advances in gas-based power and CHP technologies have already been achieved including higher energy efficiency and lower emissions, with further improvements expected in the near future. Advanced technology trends include: (a) The use of gas technology to reduce emissions from existing coal-fired power plants. (b) The wide-spread application of combined-cycle gas turbines in new power plants and the growing use of aero-derivative gas turbines in CHP applications. (c) Phosphoric acid fuel cells that are being introduced commercially. Their market penetration will grow over the next 10 years. The next generation of fuel cells (solid oxide and molten carbonate) is expected to enter the market around the year 2000. (EG)

  20. Generation of statistical scenarios of short-term wind power production

    DEFF Research Database (Denmark)

    Pinson, Pierre; Papaefthymiou, George; Klockl, Bernd

    2007-01-01

    Short-term (up to 2-3 days ahead) probabilistic forecasts of wind power provide forecast users with a paramount information on the uncertainty of expected wind generation. Whatever the type of these probabilistic forecasts, they are produced on a per horizon basis, and hence do not inform...... on the development of the forecast uncertainty through forecast series. This issue is addressed here by describing a method that permits to generate statistical scenarios of wind generation that accounts for the interdependence structure of prediction errors, in plus of respecting predictive distributions of wind...

  1. GeneratorSE: A Sizing Tool for Variable-Speed Wind Turbine Generators

    Energy Technology Data Exchange (ETDEWEB)

    Sethuraman, Latha [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Dykes, Katherine L [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-22

    This report documents a set of analytical models employed by the optimization algorithms within the GeneratorSE framework. The initial values and boundary conditions employed for the generation of the various designs and initial estimates for basic design dimensions, masses, and efficiency for the four different models of generators are presented and compared with empirical data collected from previous studies and some existing commercial turbines. These models include designs applicable for variable-speed, high-torque application featuring direct-drive synchronous generators and low-torque application featuring induction generators. In all of the four models presented, the main focus of optimization is electromagnetic design with the exception of permanent-magnet and wire-wound synchronous generators, wherein the structural design is also optimized. Thermal design is accommodated in GeneratorSE as a secondary attribute by limiting the winding current densities to acceptable limits. A preliminary validation of electromagnetic design was carried out by comparing the optimized magnetic loading against those predicted by numerical simulation in FEMM4.2, a finite-element software for analyzing electromagnetic and thermal physics problems for electrical machines. For direct-drive synchronous generators, the analytical models for the structural design are validated by static structural analysis in ANSYS.

  2. The Modeling and Simulation of Thermal Analysis at Hydro Generator Stator Winding Insulation

    Directory of Open Access Journals (Sweden)

    Mihaela Raduca

    2006-10-01

    Full Text Available This paper presents the modelling and simulation of thermal analysis at hydro generator stator winding. The winding stator is supplied at high voltage of 11 kV for high power hydro generator. To present the thermal analysis for stator winding is presented at supply of coil by 11 kV, when coil is heat and thermal transfer in insulation at ambient temperature.

  3. Development of Microcontroller-Based Inverter Control Circuit for Residential Wind Generator Application

    OpenAIRE

    Ahmad Firdaus Ahmad Zaidi; Riza Muhida; Ahmad Mujahid Ahmad Zaidi; Sazali Yaacob; Nur Hidayah Ahmad Zaidi

    2011-01-01

    The current usage level of wind power as alternative source of energy in Malaysia is very low. Ironically, some areas particularly coastal area has steady wind energy supply that is potential to generate electricity for residential use. There is urgent need to locally develop the low cost wind turbine generator that has the capability to not only supply electricity to respective household but can be connected to power grid so that excess power could be sold back to the local utility company. ...

  4. Performance Analysis of Doubly Fed Induction Generator Based Wind turbine under Faulty and RLC Load Conditions

    OpenAIRE

    Rekha Parashar; Shashikant

    2015-01-01

    This paper presents the performance of Doubly Fed Induction Generator based wind turbine system during different types of grid fault. The doubly fed induction generator (DFIG) based wind turbine (WT) system provides better power delivery towards the demand. The design and response of the DFIG based wind turbine system during different fault conditions, various load conditions and integrated system consisting of DFIG based WT system have been verified using MATLAB/ Simulink. The simulation re...

  5. Performance of Doubly-Fed Wind Power Generators During Voltage Dips

    DEFF Research Database (Denmark)

    Aparicio, N.; Chen, Zhe; Beltran, H.

    The growing of wind generation in Spain has forced its Transmission System Operator (TSO) to release new requirements that establish the amount of reactive power that a wind turbine has to supply to the grid during a voltage dip. Wind turbines equipped with doubly-fed induction generators (DFIG) ...... acting as STATCOM helps to improve the voltage profile sufficiently to permit rotor-side converter reconnection....

  6. Controllable Grid Interface for Testing Ancillary Service Controls and Fault Performance of Utility-Scale Wind Power Generation: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Gevorgian, Vahan; Koralewicz, Przemyslaw; Wallen, Robb; Muljadi, Eduard

    2017-02-01

    The rapid expansion of wind power has led many transmission system operators to demand modern wind power plants to comply with strict interconnection requirements. Such requirements involve various aspects of wind power plant operation, including fault ride-through and power quality performance as well as the provision of ancillary services to enhance grid reliability. During recent years, the National Renewable Energy Laboratory (NREL) of the U.S. Department of Energy has developed a new, groundbreaking testing apparatus and methodology to test and demonstrate many existing and future advanced controls for wind generation (and other renewable generation technologies) on the multimegawatt scale and medium-voltage levels. This paper describes the capabilities and control features of NREL's 7-MVA power electronic grid simulator (also called a controllable grid interface, or CGI) that enables testing many active and reactive power control features of modern wind turbine generators -- including inertial response, primary and secondary frequency responses, and voltage regulation -- under a controlled, medium-voltage grid environment. In particular, this paper focuses on the specifics of testing the balanced and unbalanced fault ride-through characteristics of wind turbine generators under simulated strong and weak medium-voltage grid conditions. In addition, this paper provides insights on the power hardware-in-the-loop feature implemented in the CGI to emulate (in real time) the conditions that might exist in various types of electric power systems under normal operations and/or contingency scenarios. Using actual test examples and simulation results, this paper describes the value of CGI as an ultimate modeling validation tool for all types of 'grid-friendly' controls by wind generation.

  7. Aerial sensor for wind turbines Design, implementation and demonstration of the technology

    DEFF Research Database (Denmark)

    Schmidt Paulsen, Uwe; Moñux, Oscar

    The EUDP‐2012 proposal, “Improved wind turbine efficiency using synchronized sensors” is a project which focuses on improving the efficiency of energy production, primarily for wind turbines, but as a spinoff, also traditional power plants. It builds on the experience and proven technology from...... three previous wind turbine projects: ‐ A wing mounted inflow sensor for wind turbines. This system has gone through multiple stages of development, and will be greatly enhanced by the synchronization technology from this project....

  8. Optimized Permanent Magnet Generator Topologies for Direct-Drive Wind Turbines

    NARCIS (Netherlands)

    Dubois, M.R.J.

    2004-01-01

    The thesis deals with the issue of cost reduction in direct-drive generators for wind turbines. Today, the combination gearbox-medium-speed (1000-2000 rpm) induction generator largely dominates the market of MW-scale wind turbines. This is due to the lower costs of the gearbox option compared to the

  9. Analysis and discussion on anti-thunder scheme of wind power generation system

    Science.gov (United States)

    Sun, Shuguang

    2017-01-01

    Anti-thunder scheme of wind power generation system is discussed in this paper. Through the research and analysis on the harm of the thunder, division of lightning protection zone and lightning protection measures are put forward, which has a certain practical significance on the design and application of wind power generation system.

  10. Improved cost of energy comparison of permanent magnet generators for large offshore wind turbines

    NARCIS (Netherlands)

    Hart, K.; McDonald, A.; Polinder, H.; Corr, E.; Carroll, J.

    2014-01-01

    This paper investigates geared and direct-drive permanent magnet generators for a typical offshore wind turbine, providing a detailed comparison of various wind turbine drivetrain configurations in order to minimise the Cost of Energy. The permanent magnet generator topologies considered include a

  11. Short Circuits of a 10-MW High-Temperature Superconducting Wind Turbine Generator

    DEFF Research Database (Denmark)

    Song, Xiaowei (Andy); Liu, Dong; Polinder, Henk

    2017-01-01

    Direct Drive high-temperature superconducting (HTS) wind turbine generators have been proposed to tackle challenges for ever increasing wind turbine ratings. Due to smaller reactances in HTS generators, higher fault currents and larger transient torques could occur if sudden short circuits take...... place at generator terminals. In this paper, a finite element model that couples magnetic fields and the generator's equivalent circuits is developed to simulate short-circuit faults. Afterward, the model is used to study the transient performance of a 10-MW HTS wind turbine generator under four...... show that the short circuits pose great challenges to the generator, and careful consideration should be given to protect the generator. The findings presented in this paper would be beneficial to the design, operation and protection of an HTS wind turbine generator....

  12. Short-term optimal wind power generation capacity in liberalized electricity markets

    International Nuclear Information System (INIS)

    Olsina, Fernando; Roescher, Mark; Larisson, Carlos; Garces, Francisco

    2007-01-01

    Mainly because of environmental concerns and fuel price uncertainties, considerable amounts of wind-based generation capacity are being added to some deregulated power systems. The rapid wind development registered in some countries has essentially been driven by strong subsidizing programs. Since wind investments are commonly isolated from market signals, installed wind capacity can be higher than optimal, leading to distortions of the power prices with a consequent loss of social welfare. In this work, the influence of wind generation on power prices in the framework of a liberalized electricity market has been assessed by means of stochastic simulation techniques. The developed methodology allows investigating the maximal wind capacity that would be profitably deployed if wind investments were subject to market conditions only. For this purpose, stochastic variables determining power prices are accurately modeled. A test system resembling the size and characteristics of the German power system has been selected for this study. The expected value of the optimal, short-term wind capacity is evaluated for a considerable number of random realizations of power prices. The impact of dispersing the wind capacity over statistical independent wind sites has also been evaluated. The simulation results reveal that fuel prices, installation and financing costs of wind investments are very influential parameters on the maximal wind capacity that might be accommodated in a market-based manner

  13. Entropy Generation Analysis of Desalination Technologies

    Directory of Open Access Journals (Sweden)

    John H. Lienhard V

    2011-09-01

    Full Text Available Increasing global demand for fresh water is driving the development and implementation of a wide variety of seawater desalination technologies. Entropy generation analysis, and specifically, Second Law efficiency, is an important tool for illustrating the influence of irreversibilities within a system on the required energy input. When defining Second Law efficiency, the useful exergy output of the system must be properly defined. For desalination systems, this is the minimum least work of separation required to extract a unit of water from a feed stream of a given salinity. In order to evaluate the Second Law efficiency, entropy generation mechanisms present in a wide range of desalination processes are analyzed. In particular, entropy generated in the run down to equilibrium of discharge streams must be considered. Physical models are applied to estimate the magnitude of entropy generation by component and individual processes. These formulations are applied to calculate the total entropy generation in several desalination systems including multiple effect distillation, multistage flash, membrane distillation, mechanical vapor compression, reverse osmosis, and humidification-dehumidification. Within each technology, the relative importance of each source of entropy generation is discussed in order to determine which should be the target of entropy generation minimization. As given here, the correct application of Second Law efficiency shows which systems operate closest to the reversible limit and helps to indicate which systems have the greatest potential for improvement.

  14. Partnership for electrical generation technology education

    International Nuclear Information System (INIS)

    Rasmussen, R. S.; Beaty, L.; Holman, R.

    2006-01-01

    This Engineering Technician education effort adapts an existing two-year Instrumentation and Control (I and C) education program into a model that is focused on electrical-generation technologies. It will also locally implement a program developed elsewhere with National Science Foundation funding, aimed at public schools, and adapt it to stimulate pre-college interest in pursuing energy careers in general. (authors)

  15. Assessment of technology generating institutions in biotechnology ...

    African Journals Online (AJOL)

    Assessment of technology generating institutions in biotechnology innovation system of South-Eastern Nigeria. ... Results of the study revealed that some of the institutions have been involved in biotechnology research for the past two decades but have only significantly invested on bio-processing (58.8%) and cell and ...

  16. Key factors affecting the deployment of electricity generation technologies in energy technology scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Ruoss, F.; Turton, H.; Hirschberg, S.

    2009-12-15

    This report presents the findings of a survey of key factors affecting the deployment of electricity generation technologies in selected energy scenarios. The assumptions and results of scenarios, and the different models used in their construction, are compared. Particular attention is given to technology assumptions, such as investment cost or capacity factors, and their impact on technology deployment. We conclude that the deployment of available technologies, i.e. their market shares, can only be explained from a holistic perspective, and that there are strong interactions between driving forces and competing technology options within a certain scenario. Already the design of a scenario analysis has important impacts on the deployment of technologies: the choice of the set of available technologies, the modeling approach and the definition of the storylines determine the outcome. Furthermore, the quantification of these storylines into input parameters and cost assumptions drives technology deployment, even though differences across the scenarios in cost assumptions are not observed to account for many of the observed differences in electricity technology deployment. The deployment can only be understood after a consideration of the interplay of technology options and the scale of technology deployment, which is determined by economic growth, end-use efficiency, and electrification. Some input parameters are of particular importance for certain technologies: CO{sub 2} prices, fuel prices and the availability of carbon capture and storage appear to be crucial for the deployment of fossil-fueled power plants; maximum construction rates and safety concerns determine the market share of nuclear power; the availability of suitable sites represents the most important factor for electricity generation from hydro and wind power plants; and technology breakthroughs are needed for solar photovoltaics to become cost-competitive. Finally, this analysis concludes with a

  17. Key factors affecting the deployment of electricity generation technologies in energy technology scenarios

    International Nuclear Information System (INIS)

    Ruoss, F.; Turton, H.; Hirschberg, S.

    2009-12-01

    This report presents the findings of a survey of key factors affecting the deployment of electricity generation technologies in selected energy scenarios. The assumptions and results of scenarios, and the different models used in their construction, are compared. Particular attention is given to technology assumptions, such as investment cost or capacity factors, and their impact on technology deployment. We conclude that the deployment of available technologies, i.e. their market shares, can only be explained from a holistic perspective, and that there are strong interactions between driving forces and competing technology options within a certain scenario. Already the design of a scenario analysis has important impacts on the deployment of technologies: the choice of the set of available technologies, the modeling approach and the definition of the storylines determine the outcome. Furthermore, the quantification of these storylines into input parameters and cost assumptions drives technology deployment, even though differences across the scenarios in cost assumptions are not observed to account for many of the observed differences in electricity technology deployment. The deployment can only be understood after a consideration of the interplay of technology options and the scale of technology deployment, which is determined by economic growth, end-use efficiency, and electrification. Some input parameters are of particular importance for certain technologies: CO 2 prices, fuel prices and the availability of carbon capture and storage appear to be crucial for the deployment of fossil-fueled power plants; maximum construction rates and safety concerns determine the market share of nuclear power; the availability of suitable sites represents the most important factor for electricity generation from hydro and wind power plants; and technology breakthroughs are needed for solar photovoltaics to become cost-competitive. Finally, this analysis concludes with a review

  18. Technology Innovations from NASA's Next Generation Launch Technology Program

    Science.gov (United States)

    Cook, Stephen A.; Morris, Charles E. K., Jr.; Tyson, Richard W.

    2004-01-01

    NASA's Next Generation Launch Technology Program has been on the cutting edge of technology, improving the safety, affordability, and reliability of future space-launch-transportation systems. The array of projects focused on propulsion, airframe, and other vehicle systems. Achievements range from building miniature fuel/oxygen sensors to hot-firings of major rocket-engine systems as well as extreme thermo-mechanical testing of large-scale structures. Results to date have significantly advanced technology readiness for future space-launch systems using either airbreathing or rocket propulsion.

  19. Statistical analysis of wind speed for electrical power generation in ...

    African Journals Online (AJOL)

    Also, the results have shown that Jos, Kano and Minna fall in class 4 and therefore suitable for both off grid and grid connected modes. In addition, the effects of c and k parameters on the probability distribution functions have been presented. Keywords: Wind speed - probability - density function – wind energy conversion ...

  20. Offshore winds from a new generation of European satellites

    DEFF Research Database (Denmark)

    Badger, Merete; Karagali, Ioanna; Ahsbahs, Tobias Torben

    /s as close as 1 km from the coastline. ESA’s Copernicus programme offers an Ocean Wind and Wave product (OWI), which allows users to bypass the processing of raw SAR data to wind and wave fields. The coverage is limited to the Mediterranean Sea at present but we can expect an expansion to other seas...

  1. Estonian company develops an enhanced wind power generator

    Index Scriptorium Estoniae

    2010-01-01

    Eesti firmas Goliath Wind OÜ töötatakse välja uut tüüpi energiasäästlikku tuulegeneraatorit, mis võimaldaks tuuleenergia hinda alandada kuni viiendiku võrra. Vt. samas intervjuud Goliath Wind OÜ juhatuse liikme Lars Machiga

  2. Improving Low Voltage Ride Through Capability of Wind Generators Using Dynamic Voltage Restorer

    Science.gov (United States)

    Sivasankar, Gangatharan; Suresh Kumar, Velu

    2014-08-01

    The increasing wind power integration with power grid has forced the situation to improve the reliability of wind generators for stable operation. One important problem with induction generator based wind farm is its low ride through capability to the grid voltage disturbance. Any disturbance such as voltage dip may cause wind farm outages. Since wind power contribution is in predominant percentage, such outages may lead to stability problem. The proposed strategy is to use dynamic voltage controller (DVR) to compensate the voltage disturbance. The DVR provides the wind generator the ability to remain connected in grid and improve the reliability. The voltage dips due to symmetrical and unsymmetrical faults are considered for analysis. The vector control scheme is employed for fault compensation which uses software phase locked loop scheme and park dq0 transformation technique. Extensive simulation results are included to illustrate the control and operation of DVR.

  3. Study on transient stability of wind turbine with induction generator based on variable pitch control strategy

    DEFF Research Database (Denmark)

    Zhao, B.; Li, H.; Han, L.

    2011-01-01

    In order to enhance and improve the transient stability of a grid-connected wind turbine generator system under the power grid fault, based on typical pitch control strategy of wind turbine, considering the wind turbine system oscillation caused by the drive-train shaft flexibility, Based on Matlab....../Simulink, electromagnetic transient state models of the wind tubine generator system and the pitch control models were presented, and the transient behaviors of the wind turbine genarator system using the typical and the proposed pitch control strategies were analyzed and compared when the power grid was subjected...... to a three-phase short-circuit fault. Also the results were compared with using reactive compensation device. The simulation results show that the proposed pitch control strategy can effectively improve the transient stability of wind turbine generator system....

  4. Study on transient stability of wind turbine with induction generator based on variable pitch control strategy

    DEFF Research Database (Denmark)

    Zhao, B.; Li, H.; Han, L.

    2011-01-01

    In order to enhance and improve the transient stability of a grid-connected wind turbine generator system under the power grid fault, based on typical pitch control strategy of wind turbine, considering the wind turbine system oscillation caused by the drive-train shaft flexibility, Based on Matlab...... to a three-phase short-circuit fault. Also the results were compared with using reactive compensation device. The simulation results show that the proposed pitch control strategy can effectively improve the transient stability of wind turbine generator system......./Simulink, electromagnetic transient state models of the wind tubine generator system and the pitch control models were presented, and the transient behaviors of the wind turbine genarator system using the typical and the proposed pitch control strategies were analyzed and compared when the power grid was subjected...

  5. Local inertial oscillations in the surface ocean generated by time-varying winds

    Science.gov (United States)

    Chen, Shengli; Polton, Jeff A.; Hu, Jianyu; Xing, Jiuxing

    2015-12-01

    A new relationship is presented to give a review study on the evolution of inertial oscillations in the surface ocean locally generated by time-varying wind stress. The inertial oscillation is expressed as the superposition of a previous oscillation and a newly generated oscillation, which depends upon the time-varying wind stress. This relationship is employed to investigate some idealized wind change events. For a wind series varying temporally with different rates, the induced inertial oscillation is dominated by the wind with the greatest variation. The resonant wind, which rotates anti-cyclonically at the local inertial frequency with time, produces maximal amplitude of inertial oscillations, which grows monotonically. For the wind rotating at non-inertial frequencies, the responses vary periodically, with wind injecting inertial energy when it is in phase with the currents, but removing inertial energy when it is out of phase. The wind rotating anti-cyclonically with time is much more favorable to generate inertial oscillations than the cyclonic rotating wind. The wind with a frequency closer to the inertial frequency generates stronger inertial oscillations. For a diurnal wind, the induced inertial oscillation is dependent on latitude and is most significant at 30 °. This relationship is also applied to examine idealized moving cyclones. The inertial oscillation is much stronger on the right-hand side of the cyclone path than on the left-hand side (in the northern hemisphere). This is due to the wind being anti-cyclonic with time on the right-hand side, but cyclonic on the other side. The inertial oscillation varies with the cyclone translation speed. The optimal translation speed generating the greatest inertial oscillations is 2 m/s at the latitude of 10 ° and gradually increases to 6 m/s at the latitude of 30 °.

  6. Adaptive Control and Parameter Identification of a Doubly-Fed Induction Generator for Wind Power

    Science.gov (United States)

    2011-09-01

    differential operator d/dt P The Number of poles of the generator PD Power extracted from the wind by the actuator disc PDF Probability Density Function...of the controllers as well as the basic model blocks in the Simulink environment.II. WIND TURBINES – DFIG A. WIND TURBINE THEORY Wind turbines are...distribution function ( PDF ) of the mean wind speed Vm over an area is modeled as a Weibull distribution [14] of the form: ( )kmk V cm m Vk P V e c c

  7. Power Control of Permanent Magnet Generator Based Variable Speed Wind Turbines

    DEFF Research Database (Denmark)

    Deng, Fujin; Chen, Zhe

    2009-01-01

    When the wind power accounts for a large portion of the grid, it will be required to regulate the active power and reactive power. This paper investigates a MWlevel variable speed wind turbine with a permanent magnet synchronous generator (PMSG). The power control capabilities of two kinds...... of control schemes conducted respectively on this wind turbine under two conditions, including rapid wind speed change and grids faults, are compared. The simulation study of the wind turbine system is conducted using PSCAD/EMTDC, and the results show the different power control capabilities of the two...... control schemes....

  8. Two methods for damping torsional vibrations in DFIG-based wind generators using power converters

    Science.gov (United States)

    Zhao, Zuyi; Lu, Yupu; Xie, Da; Yu, Songtao; Wu, Wangping

    2017-01-01

    This paper proposes novel damping control algorithms by using static synchronous compensator (STATCOM) and energy storage system (ESS) to damp torsional vibrations in doubly fed induction generator (DFIG) based wind turbine systems. It first analyses the operating characteristics of STATCOM and ESS for regulating power variations to increase grid voltage stability. Then, new control strategies for STATCOM and ESS are introduced to damp the vibrations. It is followed by illustration of their effectiveness to damp the drive train torsional vibrations of wind turbines, which can be caused by grid disturbances, such as voltage sags and frequency fluctuations. Results suggest that STATCOM is a promising technology to mitigate the torsional vibrations caused by grid voltage sags. By contrast, the ESS connected to the point of common coupling (PCC) of wind turbine systems shows even obvious advantages because of its capability of absorbing/releasing both active and reactive power. It can thus be concluded that STATCOM is useful for stabilizing power system voltage fluctuations, and ESS is more effective both in regulating PCC voltage fluctuations and damping torsional vibrations caused by grid voltage frequency fluctuations.

  9. Wind turbine generator interaction with conventional diesel generators on Block Island, Rhode Island. Volume 1: Executive summary

    Science.gov (United States)

    Wilreker, V. F.; Stiller, P. H.; Scott, G. W.; Kruse, V. J.; Smith, R. F.

    1984-02-01

    Primary results are summarized for a three-part study involving the effects of connecting a MOD-OA wind turbine generator to an isolated diesel power system. The MOD-OA installation considered was the third of four experimental nominal 200 kW wind turbines connected to various utilities under the Federal Wind Energy Program and was characterized by the highest wind energy penetration levels of four sites. The study analyses address: fuel displacement, dynamic interaction, and three modes of reactive power control. These analyses all have as their basis the results of the data acquisition program conducted on Block Island, Rhode Island.

  10. What's Powering Wind? Measuring the Environmental Benefits of Wind Generated Electricity

    OpenAIRE

    Cullen, Joseph

    2008-01-01

    Production subsidies for renewable energy have experienced intermittent support from the federal government. One reason for less than united support arises from uncertainty over the environmental impact of projects implemented because of such subsidies. Wind energy in particular has taken advantage of federal subsidies, but what has been the environmental impact? Taking investment in wind capacity as given, I am able to identify the short run substitution patterns between wind power and conve...

  11. "First generation" automated DNA sequencing technology.

    Science.gov (United States)

    Slatko, Barton E; Kieleczawa, Jan; Ju, Jingyue; Gardner, Andrew F; Hendrickson, Cynthia L; Ausubel, Frederick M

    2011-10-01

    Beginning in the 1980s, automation of DNA sequencing has greatly increased throughput, reduced costs, and enabled large projects to be completed more easily. The development of automation technology paralleled the development of other aspects of DNA sequencing: better enzymes and chemistry, separation and imaging technology, sequencing protocols, robotics, and computational advancements (including base-calling algorithms with quality scores, database developments, and sequence analysis programs). Despite the emergence of high-throughput sequencing platforms, automated Sanger sequencing technology remains useful for many applications. This unit provides background and a description of the "First-Generation" automated DNA sequencing technology. It also includes protocols for using the current Applied Biosystems (ABI) automated DNA sequencing machines. © 2011 by John Wiley & Sons, Inc.

  12. ANEMOS: Development of a next generation wind power forecasting system for the large-scale integration of onshore and offshore wind farms.

    Science.gov (United States)

    Kariniotakis, G.; Anemos Team

    2003-04-01

    offshore wind farms taking into account advances in marine meteorology (interaction between wind and waves, coastal effects). The benefits from the use of satellite radar images for modeling local weather patterns are investigated. A next generation forecasting software, ANEMOS, will be developed to integrate the various models. The tool is enhanced by advanced Information Communication Technology (ICT) functionality and can operate both in stand alone, or remote mode, or be interfaced with standard Energy or Distribution Management Systems (EMS/DMS) systems. Contribution: The project provides an advanced technology for wind resource forecasting applicable in a large scale: at a single wind farm, regional or national level and for both interconnected and island systems. A major milestone is the on-line operation of the developed software by the participating utilities for onshore and offshore wind farms and the demonstration of the economic benefits. The outcome of the ANEMOS project will help consistently the increase of wind integration in two levels; in an operational level due to better management of wind farms, but also, it will contribute to increasing the installed capacity of wind farms. This is because accurate prediction of the resource reduces the risk of wind farm developers, who are then more willing to undertake new wind farm installations especially in a liberalized electricity market environment.

  13. Flicker Study on Variable Speed Wind Turbines with Permanent Magnet Synchronous Generator

    DEFF Research Database (Denmark)

    Hu, Weihao; Chen, Zhe; Wang, Yue

    2008-01-01

    Grid connected wind turbines are fluctuating power sources that may produce flicker during continuous operation. This paper presents a simulation model of a MW-level variable speed wind turbines with a permanent magnet synchronous generator (PMSG) and a full-scale converter developed in the simul......Grid connected wind turbines are fluctuating power sources that may produce flicker during continuous operation. This paper presents a simulation model of a MW-level variable speed wind turbines with a permanent magnet synchronous generator (PMSG) and a full-scale converter developed...

  14. Control of variable speed wind turbines with doubly-fed induction generators

    DEFF Research Database (Denmark)

    Hansen, A. D.; Soerensen, Poul; Iov, Florin

    2004-01-01

    The paper presents an overall control method for variable speed pitch controlled wind turbines with double-feed induction generators (DFIG). Emphasis is on control strategies and algorithms applied at each hierarchical control level of the wind turbine. The objectives of the control system are: 1...... for normal continuous operations. The strongest feature of the implemented control method is that it allows the turbine to operate with the optimum power efficiency over a wider range of wind speeds. The model of the variable speed, variable pitch wind turbine with doubly-fed induction generator...

  15. Power train analysis for the DOE/NASA 100-kW wind turbine generator

    Science.gov (United States)

    Seidel, R. C.; Gold, H.; Wenzel, L. M.

    1978-01-01

    Progress in explaining variations of power experienced in the on-line operation of a 100 kW experimental wind turbine-generator is reported. Data are presented that show the oscillations tend to be characteristic of a wind-driven synchronous generator because of low torsional damping in the power train, resonances of its large structure, and excitation by unsteady and nonuniform wind flow. The report includes dynamic analysis of the drive-train torsion, the generator, passive driveline damping, and active pitch control as well as correlation with experimental recordings. The analysis assumes one machine on an infinite bus with constant generator-field excitation.

  16. Short Circuits of a 10 MW High Temperature Superconducting Wind Turbine Generator

    DEFF Research Database (Denmark)

    Song, Xiaowei (Andy); Liu, Dong; Polinder, Henk

    2016-01-01

    Direct drive high temperature superconducting (HTS) wind turbine generators have been proposed to tackle challenges for ever increasing wind turbine ratings. Due to smaller reactances in HTS generators, higher fault currents and larger transient torques could occur if sudden short circuits happen...... at generator terminals. In this paper, a finite element model that couples magnetic fields and the generator’s equivalent circuits is developed to simulate short circuit faults. Afterwards, the model is used to study the transient performance of a 10 MW HTS wind turbine generator under four different short...

  17. Microgrid optimal scheduling considering impact of high penetration wind generation

    Science.gov (United States)

    Alanazi, Abdulaziz

    The objective of this thesis is to study the impact of high penetration wind energy in economic and reliable operation of microgrids. Wind power is variable, i.e., constantly changing, and nondispatchable, i.e., cannot be controlled by the microgrid controller. Thus an accurate forecasting of wind power is an essential task in order to study its impacts in microgrid operation. Two commonly used forecasting methods including Autoregressive Integrated Moving Average (ARIMA) and Artificial Neural Network (ANN) have been used in this thesis to improve the wind power forecasting. The forecasting error is calculated using a Mean Absolute Percentage Error (MAPE) and is improved using the ANN. The wind forecast is further used in the microgrid optimal scheduling problem. The microgrid optimal scheduling is performed by developing a viable model for security-constrained unit commitment (SCUC) based on mixed-integer linear programing (MILP) method. The proposed SCUC is solved for various wind penetration levels and the relationship between the total cost and the wind power penetration is found. In order to reduce microgrid power transfer fluctuations, an additional constraint is proposed and added to the SCUC formulation. The new constraint would control the time-based fluctuations. The impact of the constraint on microgrid SCUC results is tested and validated with numerical analysis. Finally, the applicability of proposed models is demonstrated through numerical simulations.

  18. New England Wind Forum: A Wind Powering America Project, Newsletter #5 -- January 2010, Wind and Hydropower Technologies Program (WHTP)

    Energy Technology Data Exchange (ETDEWEB)

    Grace, R. C.; Gifford, J.

    2010-01-01

    Wind Powering America program launched the New England Wind Forum (NEWF) in 2005 to provide a single comprehensive source of up-to-date, Web-based information on a broad array of wind energy issues pertaining to New England. The NEWF newsletter provides New England stakeholders with updates on wind energy development in the region. In addition to regional updates, Issue #5 offers an interview with Angus King, former governor of Maine and co-founder of Independence Wind.

  19. Empirical Analysis of the Variability of Wind Generation in India: Implications for Grid Integration

    Energy Technology Data Exchange (ETDEWEB)

    Phadke, Amol; Abhyankar, NIkit; Rao, Poorvi

    2014-06-17

    We analyze variability in load and wind generation in India to assess its implications for grid integration of large scale wind projects using actual wind generation and load data from two states in India, Karnataka and Tamil Nadu. We compare the largest variations in load and net load (load ?wind, i.e., load after integrating wind) that the generation fleet has to meet. In Tamil Nadu, where wind capacity is about 53percent of the peak demand, we find that the additional variation added due to wind over the current variation in load is modest; if wind penetration reaches 15percent and 30percent by energy, the additional hourly variation is less than 0.5percent and 4.5percent of the peak demand respectively for 99percent of the time. For wind penetration of 15percent by energy, Tamil Nadu system is found to be capable of meeting the additional ramping requirement for 98.8percent of the time. Potential higher uncertainty in net load compared to load is found to have limited impact on ramping capability requirements of the system if coal plants can me ramped down to 50percent of their capacity. Load and wind aggregation in Tamil Nadu and Karnataka is found to lower the variation by at least 20percent indicating the benefits geographic diversification. These findings suggest modest additional flexible capacity requirements and costs for absorbing variation in wind power and indicate that the potential capacity support (if wind does not generate enough during peak periods) may be the issue that has more bearing on the economics of integrating wind

  20. Potential for increased wind-generated electricity utilization using heat pumps in urban areas

    International Nuclear Information System (INIS)

    Waite, Michael; Modi, Vijay

    2014-01-01

    Highlights: • Large-scale wind power and increased electric heat pumps were evaluated. • A deterministic model of wind power and electricity demand was developed. • Sub-models for space heating and domestic hot water demand were developed. • Increased use of heat pumps can improve the viability of large-scale wind power. • Larger wind power capacity can meet a target utilization rate with more heat pumps. - Abstract: The U.S. has substantial wind power potential, but given wind’s intermittent availability and misalignment with electricity demand profiles, large-scale deployment of wind turbines could result in high electricity costs due to energy storage requirements or low utilization rates. While fuel switching and heat pumps have been proposed as greenhouse gas (GHG) emissions and energy reduction strategies at the building scale, this paper shows that heat pump adoption could have additional system-wide benefits by increasing the utilization of wind-generated electricity. A model was developed to evaluate the effects of coupling large-scale wind power installations in New York State with increased use of electric heat pumps to meet a portion of space heating and domestic hot water (DHW) demands in New York City. The analysis showed significant increases in wind-generated electricity utilization with increased use of heat pumps, allowing for higher installed capacity of wind power. One scenario indicates that 78.5% annual wind-generated electricity utilization can be achieved with 3 GW of installed wind power capacity generated electricity equal to 20% of existing NYC annual electricity demand; if 20% of space heating and DHW demands are provided by heat pumps, the 78.5% utilization rate can be achieved with an increase of total wind power capacity to 5 GW. Therefore, this integrated supply–demand approach could provide additional system-wide emissions reductions

  1. Two methods for estimating limits to large-scale wind power generation.

    Science.gov (United States)

    Miller, Lee M; Brunsell, Nathaniel A; Mechem, David B; Gans, Fabian; Monaghan, Andrew J; Vautard, Robert; Keith, David W; Kleidon, Axel

    2015-09-08

    Wind turbines remove kinetic energy from the atmospheric flow, which reduces wind speeds and limits generation rates of large wind farms. These interactions can be approximated using a vertical kinetic energy (VKE) flux method, which predicts that the maximum power generation potential is 26% of the instantaneous downward transport of kinetic energy using the preturbine climatology. We compare the energy flux method to the Weather Research and Forecasting (WRF) regional atmospheric model equipped with a wind turbine parameterization over a 10(5) km2 region in the central United States. The WRF simulations yield a maximum generation of 1.1 We⋅m(-2), whereas the VKE method predicts the time series while underestimating the maximum generation rate by about 50%. Because VKE derives the generation limit from the preturbine climatology, potential changes in the vertical kinetic energy flux from the free atmosphere are not considered. Such changes are important at night when WRF estimates are about twice the VKE value because wind turbines interact with the decoupled nocturnal low-level jet in this region. Daytime estimates agree better to 20% because the wind turbines induce comparatively small changes to the downward kinetic energy flux. This combination of downward transport limits and wind speed reductions explains why large-scale wind power generation in windy regions is limited to about 1 We⋅m(-2), with VKE capturing this combination in a comparatively simple way.

  2. An Experimental Study of Lightning Overvoltages in Wind Turbine Generation Systems

    Science.gov (United States)

    Yamamoto, Kazuo; Ohta, Tomokatsu; Noda, Taku; Yokoyama, Shigeru; Ametani, Akihiro

    In order to obtain good wind conditions, wind turbine generation systems are built at places like hill countries and shorefronts where few tall structures are found. However, this increases the risk of lightning strikes. To promote wind power generation, lightning-protection methodologies for such wind turbine generation systems have to be established. This paper presents the results of an experimental study which investigates the lightning overvoltages in wind turbine generation systems. The experiments were carried out on actual ground soil using a reduced-size wind turbine model with its foundations. From the experiments, the following conclusions have been deduced: (i) Voltage rise due to the grounding impedance of the foundations can cause a significant overvoltage between the tower foot and an incoming cable like a power, a communication or a control line. (ii) The voltage rise of the foundations and that of the surrounding ground soil may cause an overvoltage at the outermost insulation layer of an incoming cable, which can result in a breakdown or a deterioration of the insulation (iii) Voltage and current waveforms to understand the traveling-wave phenomenon on a wind power generation system with its foundations were obtained. The data will be useful for developing an EMTP simulation model of a wind turbine generation system for lightning overvoltage studies.

  3. A Vertical-Axis Off-Grid Squirrel-Cage Induction Generator Wind Power System

    Directory of Open Access Journals (Sweden)

    Peifeng Xu

    2016-10-01

    Full Text Available In order to broaden the limited utilization range of wind power and improve the charging and discharging control performance of the storage battery in traditional small wind power generation systems, a wind power system based on a vertical-axis off-grid induction generator is proposed in this paper. The induction generator not only can run in a wide wind speed range but can also assist the vertical-axis wind turbine to realize self-starting at low wind speed. Combined with the maximum power point tracking method, the slip frequency control strategy is employed to regulate the pulse width modulation (PWM converter to control the output power of the proposed system when the wind speed and load change. The charge and discharge of the storage battery is realized by the segmented current-limiting control strategy by means of an electric power unloader device connected to the DC bus. All these implement a balanced and stable operation of the proposed power generation system. The experimental research on the 5.5 kW prototype system is developed, and the corresponding results verify the correctness and feasibility of the system design and control strategy. Some comparison experiments with a magnetic suspension permanent magnet synchronous generator (PMSG demonstrate the application prospect of the proposed vertical-axis off-grid induction generator wind power system.

  4. Final Technical Report, Wind Generator Project (Ann Arbor)

    Energy Technology Data Exchange (ETDEWEB)

    Geisler, Nathan [City of Ann Arbor, MI (United States)

    2017-03-20

    A Final Technical Report (57 pages) describing educational exhibits and devices focused on wind energy, and related outreach activities and programs. Project partnership includes the City of Ann Arbor, MI and the Ann Arbor Hands-on Museum, along with additional sub-recipients, and U.S. Department of Energy/Office of Energy Efficiency and Renewable Energy (EERE). Report relays key milestones and sub-tasks as well as numerous graphics and images of five (5) transportable wind energy demonstration devices and five (5) wind energy exhibits designed and constructed between 2014 and 2016 for transport and use by the Ann Arbor Hands-on Museum.

  5. Wind-generator influence to the power quality in the coupling point to the distribution network

    Directory of Open Access Journals (Sweden)

    Kostić Branka B.

    2011-01-01

    Full Text Available The paper presents the results of analysis of wind-generator and their influence to the power quality parameters in the coupling point to the distribution network. The specified results should be used as a starting point for distribution system operators (DSO for issuing permit for connecting renewable sources, mainly for wind-generators. As the case study, the results of measurements at the only one wind generator installed in Serbia, near town of Tutin, are used. The cases of wind-generator start and stop during low wind and consequently smaller value of the energy delivered to the network are particularly analyzed. Taking into consideration that law regulations in this field are not yet defined, EU standards and guidelines are used along with the newly adopted Technical recommendation No. 16 of Public Enterprise Electric Power Industry of Serbia.

  6. Wind turbines using self-excited three-phase induction generators: an innovative solution for voltage-frequency control

    Science.gov (United States)

    Brudny, J. F.; Pusca, R.; Roisse, H.

    2008-08-01

    A considerable number of communities throughout the world, most of them isolated, need hybrid energy solutions either for rural electrification or for the reduction of diesel use. Despite several research projects and demonstrations which have been conducted in recent years, wind-diesel technology remains complex and much too costly. Induction generators are the most robust and common for wind energy systems but this option is a serious challenge for electrical regulation. When a wind turbine is used in an off-grid configuration, either continuously or intermittently, precise and robust regulation is difficult to attain. The voltage parameter regulation option, as was experienced at several remote sites (on islands and in the arctic for example), is a safe, reliable and relatively simple technology, but does not optimize the wave quality and creates instabilities. These difficulties are due to the fact that no theory is available to describe the system, due to the inverse nature of the problem. In order to address and solve the problem of the unstable operation of this wind turbine generator, an innovative approach is described, based on a different induction generator single phase equivalent circuit.

  7. A 2MW 6-phase BLDC Generator Developed from a PM Synchronous Generator for Wind Energy Application

    DEFF Research Database (Denmark)

    Chen, Zhuihui; Chen, Zhe; Liu, Xiao

    2014-01-01

    In the direct drive wind turbine application, a PMSM generator often works together with a diode rectifier, which connects to a boost converter. In this paper, a six-phase BLDC generator is developed from the prototype design of three-phase permanent magnet synchronous generator. The diode...

  8. Estimation of uncertainty of wind energy predictions with application to weather routing and wind power generation

    CERN Document Server

    Zastrau, David

    2017-01-01

    Wind drives in combination with weather routing can lower the fuel consumption of cargo ships significantly. For this reason, the author describes a mathematical method based on quantile regression for a probabilistic estimate of the wind propulsion force on a ship route.

  9. Cost Estimation and Comparison of Carbon Capture and Storage Technology with Wind Energy

    Directory of Open Access Journals (Sweden)

    ABDULLAH MENGAL

    2017-04-01

    Full Text Available The CCS (Carbon Capture and Storage is one of the significant solutions to reduce CO2 emissions from fossil fuelled electricity generation plants and minimize the effect of global warming. Economic analysis of CCS technology is, therefore, essential for the feasibility appraisal towards CO2 reduction. In this paper LCOE (Levelized Cost of Electricity Generation has been estimated with and without CCS technology for fossil fuel based power plants of Pakistan and also further compared with computed LCOE of WE (Wind Energy based power plants of the Pakistan. The results of this study suggest that the electricity generation costs of the fossil fuel power plants increase more than 44% with CCS technology as compared to without CCS technology. The generation costs are also found to be 10% further on higher side when considering efficiency penalty owing to installation of CCS technology. In addition, the CO2 avoided costs from natural gas plant are found to be 40 and 10% higher than the local coal and imported coal plants respectively. As such, the electricity generation cost of 5.09 Rs/kWh from WE plants is found to be competitive even when fossil fuel based plants are without CCS technology, with lowest cost of 5.9 Rs./kWh of CCNG (Combined Cycle Natural Gas plant. Based on analysis of results of this study and anticipated future development of efficient and cheap WE technologies, it is concluded that WE based electricity generation would be most appropriate option for CO2 reduction for Pakistan.

  10. A flux-mnemonic permanent magnet brushless machine for wind power generation

    Science.gov (United States)

    Yu, Chuang; Chau, K. T.; Jiang, J. Z.

    2009-04-01

    In this paper, the concept of flux mnemonics is newly extended to the wind power generator. By incorporating a small magnetizing winding into an outer-rotor doubly salient AlNiCo permanent magnet (PM) machine, a new flux-mnemonic PM brushless wind power generator is proposed and implemented. This generator can offer effective and efficient air-gap flux control. First, the characteristics of the proposed generator are analyzed by using the finite element method. Second, the closed-loop flux control is devised to achieve a constant generated voltage under time-varying wind speeds. Finally, the experimental results are given to verify the validity of the proposed generator and control system.

  11. Variability in large-scale wind power generation

    DEFF Research Database (Denmark)

    Kiviluoma, Juha; Holttinen, Hannele; Weir, David

    2016-01-01

    The paper demonstrates the characteristics of wind power variability and net load variability in multiple power systems based on real data from multiple years. Demonstrated characteristics include probability distribution for different ramp durations, seasonal and diurnal variability and low net ...

  12. Distributed generation: remote power systems with advanced storage technologies

    International Nuclear Information System (INIS)

    Clark, Woodrow; Isherwood, William

    2004-01-01

    The paper discusses derived from an earlier hypothetical study of remote villiages. It considers the policy implications for communities who have their own local power resources rather than those distributed through transmission from distant sources such as dams, coal power plants or even renewables generation from wind farms, solar thermal or other resources. The issues today, post 911 and the energy crises in California, Northeast North America and Europe, signal the need for a new and different approach to energy supply(s), reliability and dissemination. Distributed generation (DG) as explored in the earlier paper appears to be one such approach that allows for local communities to become energy self-sufficient. Along with energy conservation, efficiency, and on-site generation, local power sources provide concrete definitions and understandings for heretofore ill defined concepts such as sustainability and eco-systems. The end result for any region and nation-state are 'agile energy systems' which use flexible DG, on-site generation and conservation systems meeting the needs of local communities. Now the challenge is to demonstrate and provide economic and policy structures for implementing new advanced technologies for local communities. For institutionalizing economically viable and sound environmental technologies then new finance mechanisms must be established that better reflect the true costs of clean energy distributed in local communities. For example, the aggregation of procurement contracts for on-site solar systems is far more cost effective than for each business owner, public building or household to purchase its own separate units. Thus mass purchasing contracts that are link technologies as hybrids can dramatically reduce costs. In short public-private partnerships can implement the once costly clean energy technologies into local DG systems

  13. Inventory of future power and heat production technologies. Partial report Wind Power; Inventering av framtidens el- och vaermeproduktionstekniker. Delrapport Vindkraft

    Energy Technology Data Exchange (ETDEWEB)

    Clausen, Niels-Erik; Lawaetz, Henrik; Lemming, Joergen; Morthorst, Poul Erik (Risoe National Laboratory, Roskilde (Denmark))

    2008-12-15

    The development of the wind energy technology has been very successful from the 1970s and up till now. Initially there was a battle between wind turbine concepts, but the commercial winner today is the three-bladed horizontal axis, upwind, electricity producing and grid connected wind turbine with availability on mature markets somewhere around 99%. An important contributor to the growth of the European market for wind energy technology has been EU framework legislation combined with legislation at the national level. The binding target for renewable energy in Sweden is proposed to be 49% of the final energy consumption in 2020 compared to 39.8% in 2005. To stimulate the development of wind energy and to promote a specific national goals Sweden is mainly using an electricity certificate system. The target is to increase the production of electricity from renewable sources by 17 TWh in 2016, relative to corresponding production in 2002. There is not at specific target for the use of wind energy. A future energy system that includes a high proportion of wind energy will be expected to meet the same requirements for security of supply and economic efficiency as the energy systems of today. The variability of wind power create a specific challenges for the future energy systems compared to those of today. The economics of wind power depends mainly of investment cost, operation and maintenance costs, electricity production and turbine lifetime. An average turbine installed in Europe has a total investment cost of 1.230 Euro/kW with a typically variation from approximately 1000 Euro/kW to approximately 1400 Euro/kW. The calculated costs per kWh wind generated power range from approximately 0.07-0.10 Euro/kWh at sites with low average wind speeds to approximately 0.05-0.065 Euro/kWh at good coastal positions, with an average of approximately 0.07 Euro/kWh at a medium wind site. Offshore costs are largely dependent on weather and wave conditions, water depth, and distance

  14. ARIMA-Based Time Series Model of Stochastic Wind Power Generation

    DEFF Research Database (Denmark)

    Chen, Peiyuan; Pedersen, Troels; Bak-Jensen, Birgitte

    2010-01-01

    This paper proposes a stochastic wind power model based on an autoregressive integrated moving average (ARIMA) process. The model takes into account the nonstationarity and physical limits of stochastic wind power generation. The model is constructed based on wind power measurement of one year from...... the Nysted offshore wind farm in Denmark. The proposed limited-ARIMA (LARIMA) model introduces a limiter and characterizes the stochastic wind power generation by mean level, temporal correlation and driving noise. The model is validated against the measurement in terms of temporal correlation...... and probability distribution. The LARIMA model outperforms a first-order transition matrix based discrete Markov model in terms of temporal correlation, probability distribution and model parameter number. The proposed LARIMA model is further extended to include the monthly variation of the stochastic wind power...

  15. Wind Turbine Generator Modeling and Simulation Where Rotational Speed is the Controlled Variable

    DEFF Research Database (Denmark)

    Mihet-Popa, Lucian; Blaabjerg, Frede; Boldea, Ion

    2004-01-01

    the interaction between a wind turbine and the power system. The model is intended to simulate the behaviour of the wind turbine using induction generators both during normal operation. Sample simulation results for two induction generators (2/0.5 MW) validate the fundamental issues.......To optimise the power produced in a wind turbine, the speed of the turbine should vary with the wind speed. A simple control method is proposed that will allow an induction machine to run a turbine at its maximum power coefficient. Various types of power control strategies have been suggested...... for application in variable speed wind turbines. The usual strategy is to control the power or the torque acting on the wind turbine shafts. This paper presents an alternative control strategy, where the rotational speed is the controlled variable. The paper describes a model, which is being developed to simulate...

  16. Investigation of slot discharge on a 239 MVA hydro generator stator winding

    Energy Technology Data Exchange (ETDEWEB)

    Li, S.; Hong, W. [BC Hydro and Power Authority, Vancouver, BC (Canada)

    2009-07-01

    This paper discussed a slot discharge investigation conducted on a 239 MVA generator stator winding. The generator in which the winding was located had experienced core split distortion, stator winding phase-to-phase failures, winding failures during Hipot testing, and high partial discharge (PD) activity. The results of on-line PD testing data were evaluated. The stator winding was subjected to visual inspections, bar dissections, and failure mechanism analyses. Eleven winding bars were removed from the stator slots in order to assess groundwall insulation conditions and identify the cause of the slot discharge activity. It was determined that the root cause of the slot discharge was a loose, non-uniform bar in the slot. The vibrating bar caused the semi-conductive coating to wear out and degraded the armour tape. Results of the study demonstrated the importance of on-line PD monitoring for detecting slot PD activity. 4 refs., 3 tabs., 11 figs.

  17. Performance of Generating Plant: Managing the Changes. Part 3: Renewable energy plant: reports on wind, photovoltaics and biomas energies

    Energy Technology Data Exchange (ETDEWEB)

    Manoha, Bruno; Cohen, Martin [Electricite de France (France)

    2008-05-15

    The WEC Committee on the Performance of Generating Plant (PGP) has been collecting and analysing power plant performance statistics worldwide for more than 30 years and has produced regular reports, which include examples of advanced techniques and methods for improving power plant performance through benchmarking. A series of reports from the various working groups was issued in 2008. This reference presents the results of Working Group 3 (WG3). WG3 will promote the introduction of performance indicators for renewable energy generating plant (wind, geothermal, solar and biomass) developed by the Committee. It will also assess selected transitional technology issues and environmental factors related to non-conventional technologies. The WG3 report includes sections on Wind Energy Today, Photovoltaics Energy Today, Biomass Electricity Today and appendices.

  18. Electric Generators Fitted to Wind Turbine Systems: An Up-to-Date Comparative Study

    OpenAIRE

    Lebsir, A; Bentounsi, A; Benbouzid, Mohamed; Mangel, H

    2015-01-01

    International audience; This paper describes a comparative study allowing the selection of the most appropriate innovative structures for electrical machines for a wind turbine system. This study is based on an exhaustive review of the state of the art and on an effective comparison of the performances of the three main conventional electric generator in wind energy application system that are the Doubly-Fed Induction Generator (DFIG), the Squirrel-Cage Induction Generator (SCIG), the Permane...

  19. Maturing Technologies for Stirling Space Power Generation

    Science.gov (United States)

    Wilson, Scott D.; Nowlin, Brentley C.; Dobbs, Michael W.; Schmitz, Paul C.; Huth, James

    2016-01-01

    Stirling Radioisotope Power Systems (RPS) are being developed as an option to provide power on future space science missions where robotic spacecraft will orbit, flyby, land or rove. A Stirling Radioisotope Generator (SRG) could offer space missions a more efficient power system that uses one fourth of the nuclear fuel and decreases the thermal footprint of the current state of the art. The RPS Program Office, working in collaboration with the U.S. Department of Energy (DOE), manages projects to develop thermoelectric and dynamic power systems, including Stirling Radioisotope Generators (SRGs). The Stirling Cycle Technology Development (SCTD) Project, located at Glenn Research Center (GRC), is developing Stirling-based subsystems, including convertors and controllers. The SCTD Project also performs research that focuses on a wide variety of objectives, including increasing convertor temperature capability to enable new environments, improving system reliability or fault tolerance, reducing mass or size, and developing advanced concepts that are mission enabling. Research activity includes maturing subsystems, assemblies, and components to prepare them for infusion into future convertor and generator designs. The status of several technology development efforts are described here. As part of the maturation process, technologies are assessed for readiness in higher-level subsystems. To assess the readiness level of the Dual Convertor Controller (DCC), a Technology Readiness Assessment (TRA) was performed and the process and results are shown. Stirling technology research is being performed by the SCTD Project for NASA's RPS Program Office, where tasks focus on maturation of Stirling-based systems and subsystems for future space science missions.

  20. Field evaluation of remote wind sensing technologies: Shore-based and buoy mounted LIDAR systems

    Energy Technology Data Exchange (ETDEWEB)

    Herrington, Thomas [Stevens Inst. of Technology, Hoboken, NJ (United States)

    2017-11-03

    In developing a national energy strategy, the United States has a number of objectives, including increasing economic growth, improving environmental quality, and enhancing national energy security. Wind power contributes to these objectives through the deployment of clean, affordable and reliable domestic energy. To achieve U.S. wind generation objectives, the Wind and Water Power Program within the Department of Energy’s (DOE) Office of Energy Efficiency and Renewable Energy (EERE) instituted the U.S. Offshore Wind: Removing Market Barriers Program in FY 2011. Accurate and comprehensive information on offshore wind resource characteristics across a range of spatial and temporal scales is one market barrier that needs to be addressed through advanced research in remote sensing technologies. There is a pressing need for reliable offshore wind-speed measurements to assess the availability of the potential wind energy resource in terms of power production and to identify any frequently occurring spatial variability in the offshore wind resource that may impact the operational reliability and lifetime of wind turbines and their components and to provide a verification program to validate the “bankability” of the output of these alternative technologies for use by finance institutions for the financing of offshore wind farm construction. The application of emerging remote sensing technologies is viewed as a means to cost-effectively meet the data needs of the offshore wind industry. In particular, scanning and buoy mounted LIDAR have been proposed as a means to obtain accurate offshore wind data at multiple locations without the high cost and regulatory hurdles associated with the construction of offshore meteorological towers. However; before these remote sensing technologies can be accepted the validity of the measured data must be evaluated to ensure their accuracy. The proposed research will establish a unique coastal ocean test-bed in the Mid-Atlantic for

  1. Wind Turbine Generator System Power Quality Test Report for the Gaia Wind 11-kW Wind Turbine

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, A.; Gevorgian, V.

    2011-07-01

    This report details the power quality test on the Gaia Wind 11-kW Wind Turbine as part of the U.S. Department of Energy's Independent Testing Project. In total five turbines are being tested as part of the project. Power quality testing is one of up to five test that may be performed on the turbines including power performance, safety and function, noise, and duration tests. The results of the testing provide manufacturers with reports that may be used for small wind turbine certification.

  2. Wind power integration into the automatic generation control of power systems with large-scale wind power

    DEFF Research Database (Denmark)

    Basit, Abdul; Hansen, Anca Daniela; Altin, Müfit

    2014-01-01

    Transmission system operators have an increased interest in the active participation of wind power plants (WPP) in the power balance control of power systems with large wind power penetration. The emphasis in this study is on the integration of WPPs into the automatic generation control (AGC......) of the power system. The present paper proposes a coordinated control strategy for the AGC between combined heat and power plants (CHPs) and WPPs to enhance the security and the reliability of a power system operation in the case of a large wind power penetration. The proposed strategy, described...... and exemplified for the future Danish power system, takes the hour-ahead regulating power plan for generation and power exchange with neighbouring power systems into account. The performance of the proposed strategy for coordinated secondary control is assessed and discussed by means of simulations for different...

  3. Quantifying the Opportunity Space for Future Electricity Generation: An Application to Offshore Wind Energy in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Marcy, Cara [National Renewable Energy Lab. (NREL), Golden, CO (United States); Beiter, Philipp [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-09-01

    This report provides a high-level indicator of the future electricity demand for additional electric power generation that is not met by existing generation sources between 2015 and 2050. The indicator is applied to coastal regions, including the Great Lakes, to assess the regional opportunity space for offshore wind. An assessment of opportunity space can be a first step in determining the prospects and the system value of a technology. The metric provides the maximal amount of additional generation that is likely required to satisfy load in future years.

  4. Assessing the Structural, Driver and Economic Impacts of Traffic Pole Mounted Wind Power Generator and Solar Panel Hybrid System

    Science.gov (United States)

    2012-06-01

    This project evaluates the physical and economic feasibility of using existing traffic infrastructure to mount wind power : generators. Some possible places to mount a light weight wind generator and solar panel hybrid system are: i) Traffic : signal...

  5. Biomass combustion technologies for power generation

    Energy Technology Data Exchange (ETDEWEB)

    Wiltsee, G.A. Jr. [Appel Consultants, Inc., Stevenson Ranch, CA (United States); McGowin, C.R.; Hughes, E.E. [Electric Power Research Institute, Palo Alto, CA (United States)

    1993-12-31

    Technology in power production from biomass has been advancing rapidly. Industry has responded to government incentives such as the PURPA legislation in the US and has recognized that there are environmental advantages to using waste biomass as fuel. During the 1980s many new biomass power plants were built. The relatively mature stoker boiler technology was improved by the introduction of water-cooled grates, staged combustion air, larger boiler sizes up to 60 MW, higher steam conditions, and advanced sootblowing systems. Circulating fluidized-bed (CFB) technology achieved full commercial status, and now is the leading process for most utility-scale power applications, with more complete combustion, lower emissions, and better fuel flexibility than stoker technology. Bubbling fluidized-bed (BFB) technology has an important market niche as the best process for difficult fuels such as agricultural wastes, typically in smaller plants. Other biomass power generation technologies are being developed for possible commercial introduction in the 1990s. Key components of Whole Tree Energy{trademark} technology have been tested, conceptual design studies have been completed with favorable results, and plans are being made for the first integrated process demonstration. Fluidized-bed gasification processes have advanced from pilot to demonstration status, and the world`s first integrated wood gasification/combined cycle utility power plant is starting operation in Sweden in early 1993. Several European vendors offer biomass gasification processes commercially. US electric utilities are evaluating the cofiring of biomass with fossil fuels in both existing and new plants. Retrofitting existing coal-fired plants gives better overall cost and performance results than any biomass technologies;but retrofit cofiring is {open_quotes}fuel-switching{close_quotes} that provides no new capacity and is attractive only with economic incentives.

  6. Generation and Validation of Spatial Distribution of Hourly Wind Speed Time-Series using Machine Learning

    International Nuclear Information System (INIS)

    Veronesi, F; Grassi, S

    2016-01-01

    Wind resource assessment is a key aspect of wind farm planning since it allows to estimate the long term electricity production. Moreover, wind speed time-series at high resolution are helpful to estimate the temporal changes of the electricity generation and indispensable to design stand-alone systems, which are affected by the mismatch of supply and demand. In this work, we present a new generalized statistical methodology to generate the spatial distribution of wind speed time-series, using Switzerland as a case study. This research is based upon a machine learning model and demonstrates that statistical wind resource assessment can successfully be used for estimating wind speed time-series. In fact, this method is able to obtain reliable wind speed estimates and propagate all the sources of uncertainty (from the measurements to the mapping process) in an efficient way, i.e. minimizing computational time and load. This allows not only an accurate estimation, but the creation of precise confidence intervals to map the stochasticity of the wind resource for a particular site. The validation shows that machine learning can minimize the bias of the wind speed hourly estimates. Moreover, for each mapped location this method delivers not only the mean wind speed, but also its confidence interval, which are crucial data for planners. (paper)

  7. Operational and Strategic Implementation of Dynamic Line Rating for Optimized Wind Energy Generation Integration

    Energy Technology Data Exchange (ETDEWEB)

    Gentle, Jake Paul [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-12-01

    One primary goal of rendering today’s transmission grid “smarter” is to optimize and better manage its power transfer capacity in real time. Power transfer capacity is affected by three main elements: stability, voltage limits, and thermal ratings. All three are critical, but thermal ratings represent the greatest opportunity to quickly, reliably and economically utilize the grid’s true capacity. With the “Smarter Grid”, new solutions have been sought to give operators a better grasp on real time conditions, allowing them to manage and extend the usefulness of existing transmission infrastructure in a safe and reliable manner. The objective of the INL Wind Program is to provide industry a Dynamic Line Rating (DLR) solution that is state of the art as measured by cost, accuracy and dependability, to enable human operators to make informed decisions and take appropriate actions without human or system overloading and impacting the reliability of the grid. In addition to mitigating transmission line congestion to better integrate wind, DLR also offers the opportunity to improve the grid with optimized utilization of transmission lines to relieve congestion in general. As wind-generated energy has become a bigger part of the nation’s energy portfolio, researchers have learned that wind not only turns turbine blades to generate electricity, but can cool transmission lines and increase transfer capabilities significantly, sometimes up to 60 percent. INL’s DLR development supports EERE and The Wind Energy Technology Office’s goals by informing system planners and grid operators of available transmission capacity, beyond typical Static Line Ratings (SLR). SLRs are based on a fixed set of conservative environmental conditions to establish a limit on the amount of current lines can safely carry without overheating. Using commercially available weather monitors mounted on industry informed custom brackets developed by INL in combination with Computational

  8. Low-Cost Superconducting Wire for Wind Generators: High Performance, Low Cost Superconducting Wires and Coils for High Power Wind Generators

    Energy Technology Data Exchange (ETDEWEB)

    None

    2012-01-01

    REACT Project: The University of Houston will develop a low-cost, high-current superconducting wire that could be used in high-power wind generators. Superconducting wire currently transports 600 times more electric current than a similarly sized copper wire, but is significantly more expensive. The University of Houston’s innovation is based on engineering nanoscale defects in the superconducting film. This could quadruple the current relative to today’s superconducting wires, supporting the same amount of current using 25% of the material. This would make wind generators lighter, more powerful and more efficient. The design could result in a several-fold reduction in wire costs and enable their commercial viability of high-power wind generators for use in offshore applications.

  9. Evaluation of the Impact of Wind Generation on the Electricity Market Prices and on the Profitability of New Wind Investments

    Science.gov (United States)

    Pereira, A. J.; Saraiva, J. T.

    2012-10-01

    This paper describes a Dynamic Model of the electricity sector that can be used to simulate the evolution of some key variables on the long term, namely the evolution of the electricity price, of the demand and of the capacity factors of the technologies in the generation mix. This model can be used in different ways and by several agents, for instance to estimate the impact on the electricity price of the increasing presence of renewable power stations, namely using wind power and PV systems. In several countries these stations are paid feed-in tariffs with a fixed price but in some cases this scheme is under discussion and there are opinions that payments determined by the market price are more adequate and would bring fewer costs to final consumers. Such a change has to be carefully evaluated given that the presence of renewable stations bidding at an infra marginal price will affect the price itself. The model described in this paper can be used in a profitable way both by governmental agencies when preparing or studying alternative remuneration schemes to renewable stations or by promoters themselves to get more insight to the profitability of their investments, namely if the fixed feed-in tariffs in force in several countries are changed.

  10. Evaluation of the Impact of Wind Generation on the Electricity Market Prices and on the Profitability of New Wind Investments

    Directory of Open Access Journals (Sweden)

    Saraiva J. T.

    2012-10-01

    Full Text Available This paper describes a Dynamic Model of the electricity sector that can be used to simulate the evolution of some key variables on the long term, namely the evolution of the electricity price, of the demand and of the capacity factors of the technologies in the generation mix. This model can be used in different ways and by several agents, for instance to estimate the impact on the electricity price of the increasing presence of renewable power stations, namely using wind power and PV systems. In several countries these stations are paid feed-in tariffs with a fixed price but in some cases this scheme is under discussion and there are opinions that payments determined by the market price are more adequate and would bring fewer costs to final consumers. Such a change has to be carefully evaluated given that the presence of renewable stations bidding at an infra marginal price will affect the price itself. The model described in this paper can be used in a profitable way both by governmental agencies when preparing or studying alternative remuneration schemes to renewable stations or by promoters themselves to get more insight to the profitability of their investments, namely if the fixed feed-in tariffs in force in several countries are changed.

  11. Using innovative technologies to ease wind resource penetration into power grid

    Energy Technology Data Exchange (ETDEWEB)

    Tholomier, D.; Rola, J.; Willemse, C. [Areva T and D Automation Canada Inc., Monteal, PQ (Canada)

    2008-07-01

    This paper summarized several innovative concepts brought through Substation Automation and Energy management software that help to improve the integration of wind generation to power grid systems. It addressed the need for coordinated control between wind generator excitation systems and static or dynamic VAR compensation equipment. The latest developments in the area of wind forecasting applications were also presented. In addition, the main features of the new International Electrotechnical Commission (IEC) 61400-25 standard were explained in terms of its benefits for the integration of wind farms into the electric system. This standard allows vendor-independent data access to, and command of, the wind farm via remote links. It was derived from IEC61850, and has been developed to modularize object models, to model information exchanges and map communication profiles related to wind turbines. The focus of IEC61400-25 is on the communications between wind power plant components such as wind turbines as well as SCADA and Substation Automation Systems. Energy management and trading and risk management were presented as other alternative soft methods for improving large wind farm dispatchability. It was concluded that regulators will need to establish suitable market frameworks for wind operators to receive financial incentives to invest, which would result in a better wind generation integration. This would also require a closer co-operation between real-time automation experts and wind turbine suppliers to progress into the development of innovative wind farm control strategies. 12 figs.

  12. Optimization and comparison of superconducting generator topologies for a 10 MW wind turbine application

    DEFF Research Database (Denmark)

    Liu, Dong; Polinder, Henk; Abrahamsen, Asger Bech

    2017-01-01

    A direct-drive superconducting generator (DDSCG) is proposed for 10 MW wind turbines in the INNWIND.EU project. To fit the generator into the "king-pin" conceptual nacelle design, the generator structure with inner stationary superconducting (SC) field winding and outer rotating copper armature...... winding is investigated in the first research phase. Since the cost is an important performance indicator for this application, this paper presents a method to minimize the active material cost of the "king-pin" fitted DDSCG. In this method a relatively fast optimization program is developed with 2D non...... with a guideline for selecting a suitable machine topology....

  13. Power Electronic Systems for Switched Reluctance Generator based Wind Farms and DC Networks

    DEFF Research Database (Denmark)

    Park, Kiwoo

    . Under these circumstances, research on dc network connection with a novel wind power generator system is presented in this thesis, which mainly consists of two major parts: control of a Switched Reluctance Generator (SRG) system and development of dc-dc converters for a dc network system in a wind farm...... for generators in wind turbine systems. However, despite all these advantageous features, the SRG has not been widely employed in wind energy applications. The most renowned technical disadvantages of the SRG are its nonlinearity and high torque ripples, which should be overcome to promote the application...... are presented to verify the feasibility and operational principles of the proposed converters. Finally, modelling and control of a dc-grid wind farm using one of the proposed dc-dc converters are presented. An average model provides insight into the overall performance of the system. Meanwhile, a switching...

  14. Simulation Tool to Assess Mechanical and Electrical Stresses on Wind Turbine Generators: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Singh, M.; Muljadi, E.; Gevorgian, V.; Jonkman, J.

    2013-10-01

    Wind turbine generators (WTGs) consist of many different components to convert kinetic energy of the wind into electrical energy for end users. Wind energy is accessed to provide mechanical torque for driving the shaft of the electrical generator. The conversion from wind power to mechanical power is governed by the aerodynamic conversion. The aerodynamic-electrical-conversion efficiency of a WTGis influenced by the efficiency of the blades, the gearbox, the generator, and the power converter. This paper describes the use of MATLAB/Simulink to simulate the electrical and grid-related aspects of a WTG coupled with the FAST aero-elastic wind turbine computer-aided engineering tool to simulate the aerodynamic and mechanical aspects of a WTG. The combination of the two enables studiesinvolving both electrical and mechanical aspects of a WTG. This digest includes some examples of the capabilities of the FAST and MATLAB coupling, namely the effects of electrical faults on the blade moments.

  15. Comparing the Brushless DFIM to other Generator Systems for Wind Turbine Drive-Trains

    Science.gov (United States)

    Strous, Tim D.; Shipurkar, Udai; Polinder, Henk; Ferreira, Jan A.

    2016-09-01

    In this paper, the brushless DFIM based wind turbine drive-train topology is compared to the DFIG based and PM generator based drive-train topologies, that are most commonly applied in modern wind turbines. The comparison will be based on a 3.2 MW case study wind turbine. By using FE based multi-objective optimization, optimized generator designs for the different topologies are generated. Then the capital expenditures of the resulting drive-train topologies are calculated and compared. Additionally, wind turbine drive-train configurations with 1, 2 and 3 stage gearboxes as well as a direct-drive configuration are taken into account. The resulting comparison shows that the brushless DFIM based drive-train with a 2 stage gearbox configuration provides a feasible alternative in commercial wind turbine drive-train applications.

  16. A Localized Meshless Technique for Generating 3-D Wind Fields

    Directory of Open Access Journals (Sweden)

    Darrell W. Pepper

    2018-02-01

    Full Text Available A localized meshless method is used to simulate 3-D atmospheric wind fields for wind energy assessment and emergency response. The meshless (or mesh-free method with radial basis functions (RBFs alleviates the need to create a mesh required by finite difference, finite volume, and finite element methods. The method produces a fast solution that converges with high accuracy, establishing 3-D wind estimates over complex terrain. The method does not require discretization of the domain or boundary and removes the need for domain integration. The meshless method converges exponentially for smooth boundary shapes and boundary data, and is insensitive to dimensional constraints. Coding of the method is very easy and can be done using MATLAB or MAPLE. By employing a localized RBF procedure, 3-D wind fields can be established from sparse meteorological data. The meshless method can be easily run on PCs and hand-held mobile devices. This article summarizes previous work where the meshless method has successfully simulated 3D wind fields over various environments, along with the equations used to obtain the simulations.

  17. Aerodynamic flow deflector to increase large scale wind turbine power generation by 10%.

    Science.gov (United States)

    2015-11-01

    The innovation proposed in this paper has the potential to address both the efficiency demands of wind farm owners as well as to provide a disruptive design innovation to turbine manufacturers. The aerodynamic deflector technology was created to impr...

  18. Spatial mapping of wind parks in Republic of Macedonia from aspect of power generation and connection to power grid

    International Nuclear Information System (INIS)

    Janchevska, Melita

    2012-01-01

    The master thesis “Spatial mapping of wind parks in Republic of Macedonia from aspect of power generation and connection to power grid” presents spatial aspects for setting of wind parks at favourable locations. The thesis presents a comprehensive analysis how to carry out the administrative procedures that are in force in Republic of Macedonia, a range of minimum allowed distances in setting of each of the wind plants within a wind parks, but also requirements for fulfilling the basic human rights in preserving quality of life of the people in rural areas where the wind parks are build. As a result, a compromise in setting of wind parks and a suitable solution of sustainable development should be reached. Therefore, the decision making process should be based on the following key factors: environmental, social and economic development of the area of concern. The production of wind power is strongly influenced by meteorological conditions and has an average factor of utilization of up to 30%. This low factor of utilization cannot be used for planning of the basic energy needs of the country, but it can contribute certainly towards the reduction of the participation of conventional power plants. Republic of Macedonia introduced feed-in tariffs as a subsiding mechanism for building and strong penetration of wind parks. Additional funding mechanisms include carbon financing and green-field credits, through development of projects in the framework of Clean Development Mechanism, which improves the economic feasibility of the project and increases the interest of the investors. The analysis of the relevant spatial aspects of setting wind parks in Republic of Macedonia based on balanced and sustainable spatial development is made with regards to the following thematic areas: exploiting the potential of wind energy, climate issues, geo morphological and geo seismically aspects, rational use of land, protection of agricultural land and forests, spatial allocation of

  19. Fluid power network for centralized electricity generation in offshore wind farms

    NARCIS (Netherlands)

    Jarquin-Laguna, A.

    2014-01-01

    An innovative and completely different wind-energy conversion system is studied where a centralized electricity generation within a wind farm is proposed by means of a hydraulic network. This paper presents the dynamic interaction of two turbines when they are coupled to the same hydraulic network.

  20. Review of PREPA Technical Requirements for Interconnecting Wind and Solar Generation

    Energy Technology Data Exchange (ETDEWEB)

    Gevorgian, Vahan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Booth, Sarah [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-11-01

    The Puerto Rico Electric Power Authority developed the minimum technical requirements for interconnection of wind turbine generation and photovoltaic power plants. NREL has conducted a review of these requirements based on generic technical aspects and electrical characteristics of wind and photovoltaic power plants, and on existing requirements from other utilities (both U.S. and European).