WorldWideScience

Sample records for wind flow variability

  1. Wind farm power optimization including flow variability

    DEFF Research Database (Denmark)

    Herp, Jürgen; Poulsen, Uffe Vestergaard; Greiner, Martin

    2015-01-01

    A model-based optimisation approach is used to investigate the potential gain of wind-farm power with a cooperative control strategy between the wind turbines. Based on the Jensen wake model with the Katic wake superposition rule, the potential gain for the Nysted offshore wind farm is calculated...... to be 1.4–5.4% for standard choices 0.4 ≥ k ≥ 0.25 of the wake expansion parameter. Wake model fits based on short time intervals of length 15sec ≤ T ≤ 10 min within three months of data reveal a strong wake flow variability, resulting in rather broad distributions for the wake expansion parameter. When...... an optimized wind-farm control strategy, derived from a fixed wake parameter, is facing this flow variability, the potential gain reduces to 0.3–0.5%. An omnipotent control strategy, which has real-time knowledge of the actual wake flow, would be able to increase the gain in wind-farm power to 4.9%....

  2. Load flow analysis for variable speed offshore wind farms

    DEFF Research Database (Denmark)

    Chen, Zhe; Zhao, Menghua; Blaabjerg, Frede

    2009-01-01

    A serial AC-DC integrated load flow algorithm for variable speed offshore wind farms is proposed. It divides the electrical system of a wind farm into several local networks, and different load flow methods are used for these local networks sequentially. This method is fast, more accurate, and many...... factors such as the different wind farm configurations, the control of wind turbines and the power losses of pulse width modulation converters are considered. The DC/DC converter model is proposed and integrated into load flow algorithm by modifying the Jacobian matrix. Two iterative methods are proposed...... and integrated into the load flow algorithm: one takes into account the control strategy of converters and the other considers the power losses of converters. In addition, different types of variable speed wind turbine systems with different control methods are investigated. Finally, the method is demonstrated...

  3. AC-DC integrated load flow calculation for variable speed offshore wind farms

    DEFF Research Database (Denmark)

    Zhao, Menghua; Chen, Zhe; Blaabjerg, Frede

    2005-01-01

    This paper proposes a sequential AC-DC integrated load flow algorithm for variable speed offshore wind farms. In this algorithm, the variable frequency and the control strategy of variable speed wind turbine systems are considered. In addition, the losses of wind turbine systems and the losses...... of converters are also integrated into the load flow algorithm. As a general algorithm, it can be applied to different types of wind farm configurations, and the load flow is related to the wind speed....

  4. Evaluation of the Wind Flow Variability Using Scanning Doppler Lidar Measurements

    Science.gov (United States)

    Sand, S. C.; Pichugina, Y. L.; Brewer, A.

    2016-12-01

    Better understanding of the wind flow variability at the heights of the modern turbines is essential to accurately assess of generated wind power and efficient turbine operations. Nowadays the wind energy industry often utilizes scanning Doppler lidar to measure wind-speed profiles at high spatial and temporal resolution.The study presents wind flow features captured by scanning Doppler lidars during the second Wind Forecast and Improvement Project (WFIP 2) sponsored by the Department of Energy (DOE) and National Oceanic and Atmospheric Administration (NOAA). This 18-month long experiment in the Columbia River Basin aims to improve model wind forecasts complicated by mountain terrain, coastal effects, and numerous wind farms.To provide a comprehensive dataset to use for characterizing and predicting meteorological phenomena important to Wind Energy, NOAA deployed scanning, pulsed Doppler lidars to two sites in Oregon, one at Wasco, located upstream of all wind farms relative to the predominant westerly flow in the region, and one at Arlington, located in the middle of several wind farms.In this presentation we will describe lidar scanning patterns capable of providing data in conical, or vertical-slice modes. These individual scans were processed to obtain 15-min averaged profiles of wind speed and direction in real time. Visualization of these profiles as time-height cross sections allows us to analyze variability of these parameters with height, time and location, and reveal periods of rapid changes (ramp events). Examples of wind flow variability between two sites of lidar measurements along with examples of reduced wind velocity downwind of operating turbines (wakes) will be presented.

  5. On Variable Reverse Power Flow-Part I: Active-Reactive Optimal Power Flow with Reactive Power of Wind Stations

    Directory of Open Access Journals (Sweden)

    Aouss Gabash

    2016-02-01

    Full Text Available It has recently been shown that using battery storage systems (BSSs to provide reactive power provision in a medium-voltage (MV active distribution network (ADN with embedded wind stations (WSs can lead to a huge amount of reverse power to an upstream transmission network (TN. However, unity power factors (PFs of WSs were assumed in those studies to analyze the potential of BSSs. Therefore, in this paper (Part-I, we aim to further explore the pure reactive power potential of WSs (i.e., without BSSs by investigating the issue of variable reverse power flow under different limits on PFs in an electricity market model. The main contributions of this work are summarized as follows: (1 Introducing the reactive power capability of WSs in the optimization model of the active-reactive optimal power flow (A-R-OPF and highlighting the benefits/impacts under different limits on PFs. (2 Investigating the impacts of different agreements for variable reverse power flow on the operation of an ADN under different demand scenarios. (3 Derivation of the function of reactive energy losses in the grid with an equivalent-π circuit and comparing its value with active energy losses. (4 Balancing the energy curtailment of wind generation, active-reactive energy losses in the grid and active-reactive energy import-export by a meter-based method. In Part-II, the potential of the developed model is studied through analyzing an electricity market model and a 41-bus network with different locations of WSs.

  6. Transient and steady state performance analysis of power flow control in a DFIG variable speed wind turbine

    Science.gov (United States)

    Nwosu, Cajethan M.; Oti, Stephen E.; Ogbuka, Cosmas U.

    2017-01-01

    This paper presents transient and steady state performance analysis of power flow control in a 5.0 kW Doubly-Fed Induction Generator (DFIG) Variable Speed Wind Turbine (VSWT) under sub synchronous speed, super synchronous speed and synchronous speed modes of operation. Stator flux orientation is used for the control of the rotor-side converter (RSC) and DFIG whereas the grid (or stator) voltage orientation is the preferred choice for the control of the grid-side converter (GSC). In each of the three speeds modes, power is always supplied to the grid through the stator of the DFIG. The magnitude of net power (stator power plus rotor power) is less than stator power during the sub synchronous speed mode; it is greater than stator power during the super synchronous speed mode while it is equal to the stator power during the synchronous speed mode. In synchronous speed mode, the rotor power is zero indicating that power is neither supplied to the grid from the rotor nor supplied to the rotor from the grid; here the magnitude of net power is equal to stator power. The simulation results thus obtained in a MATLAB/SIMULINK environment laid credence to the controllability of power flow reversal in a DFIG-VSWT through back-to-back power electronic converter.

  7. Wind flow through shrouded wind turbines

    Science.gov (United States)

    2017-03-01

    velocity and model angle were varied . Additionally, static wall pressures and cross section flow were studied with the addition of a screen. The pressure...the geometry of a wind lens or flange on the shroud and a gradually diverging shape, proved to accelerate the flow through the duct. 14. SUBJECT...Tunnel velocity and model angle were varied . Additionally, static wall pressures and cross section flow were studied with the addition of a screen. The

  8. Load alleviation on wind turbine blades using variable geometry

    DEFF Research Database (Denmark)

    Basualdo, Santiago

    2005-01-01

    ) wind turbines, which mainly operate under this flow condition. The results show evident reductions in the airfoil displacements by using simple control strategies having the airfoil position and its first and second derivatives as input, especially at the system's eigenfrequency. The use of variable...... in loads in real wind turbines. Keywords: Variable Geometry, Wind Turbine, Load Alleviation, Fatigue Load, Trailing Edge Flap....

  9. WIND VARIABILITY IN BZ CAMELOPARDALIS

    International Nuclear Information System (INIS)

    Honeycutt, R. K.; Kafka, S.; Robertson, J. W.

    2013-01-01

    Sequences of spectra of the nova-like cataclysmic variable (CV) BZ Cam were acquired on nine nights in 2005-2006 in order to study the time development of episodes of wind activity known to occur frequently in this star. We confirm the results of Ringwald and Naylor that the P-Cygni absorption components of the lines mostly evolve from higher expansion velocity to lower velocity as an episode progresses. We also commonly find blueshifted emission components in the Hα line profile, whose velocities and durations strongly suggest that they are also due to the wind. Curiously, Ringwald and Naylor reported common occurrences of redshifted Hα emission components in their BZ Cam spectra. We have attributed these emission components in Hα to occasions when gas concentrations in the bipolar wind (both front side and back side) become manifested as emission lines as they move beyond the disk's outer edge. We also suggest, based on changes in the P-Cygni profiles during an episode, that the progression from larger to smaller expansion velocities is due to the higher velocity portions of a wind concentration moving beyond the edge of the continuum light of the disk first, leaving a net redward shift of the remaining absorption profile. We derive a new orbital ephemeris for BZ Cam, using the radial velocity of the core of the He I λ5876 line, finding P = 0.15353(4). Using this period, the wind episodes in BZ Cam are found to be concentrated near the inferior conjunction of the emission line source. This result helps confirm that the winds in nova-like CVs are often phase dependent, in spite of the puzzling implication that such winds lack axisymmetry. We argue that the radiation-driven wind in BZ Cam receives an initial boost by acting on gas that has been lifted above the disk by the interaction of the accretion stream with the disk, thereby imposing flickering timescales onto the wind events, as well as leading to an orbital modulation of the wind due to the non

  10. Assessing the vegetation canopy influences on wind flow using wind ...

    Indian Academy of Sciences (India)

    The effectiveness of vegetation in reducing wind ... Wind erosion; roughness length; shear velocity ratio; shear stress ratio; roughness density; wind tunnel. J. Earth .... flow direction induced by its kinematic viscosity. An increase in shear stress causes a proportional increase in the height-dependent change in wind velocity.

  11. Estimation of power system variability due to wind power

    NARCIS (Netherlands)

    Papaefthymiou, G.; Verboomen, J.; Van der Sluis, L.

    2007-01-01

    The incorporation of wind power generation to the power system leads to an increase in the variability of the system power flows. The assessment of this variability is necessary for the planning of the necessary system reinforcements. For the assessment of this variability, the uncertainty in the

  12. Wind Turbines Adaptation to the Variability of the Wind Field

    Science.gov (United States)

    Ulianov, Yuriy; Martynenko, Gennadii; Misaylov, Vitaliy; Soliannikova, Iuliia

    2010-05-01

    WIND TURBINES ADAPTATION TO THE VARIABILITY OF THE WIND FIELD The subject of our scientific research is wind power turbines (WPT) with the horizontal axis which were now common in the world. Efficient wind turbines work is largely determined by non-stationarity of the wind field, expressed in its gustiness, the presence of vertical and horizontal shifts of wind speed and direction. At critical values of the wind parameters WPT has aerodynamic and mechanical overload, leading to breakdowns, premature wear and reduce the life of the wind turbine. To prevent accidents at the peak values of wind speed it is used the regulatory system of windwheels. WPT control systems provide a process orientation of the wind turbine rotor axis in the line of the mean wind. Wind turbines are also equipped with braking device used to protect against breakdowns when a significant increase in the wind. In general, all these methods of regulation are not always effective. Thus, in practice there may be situations when the wind speed is many times greater than the stated limit. For example, if there are microbursts in the atmospheric boundary layer, low-level wind shears caused by its gust front, storms, etc. It is required for a wind power turbine adaptation to intensive short-term wind impulses and considerable vertical wind shifts that the data about them shall be obtained ahead of time. To do this it is necessary to have the information on the real structure of the wind field in the area of the blade sweep for the minimum range against the wind that is determined by the mean speed and the system action time. The implementation of acoustic and laser traditional wind sounding systems is limited by ambient acoustic noise, by heavy rain, snowfall and by fog. There are free of these disadvantages the inclined radioacoustic sounding (IRASS) technique which works for a system of remote detection and control of wind gusts. IRASS technique is realized as low-potential Doppler pulse radar

  13. Virtual inertia for variable speed wind turbines

    DEFF Research Database (Denmark)

    Zeni, Lorenzo; Rudolph, Andreas Jakob; Münster-Swendsen, Janus

    2013-01-01

    Inertia provision for frequency control is among the ancillary services that different national grid codes will likely require to be provided by future wind turbines. The aim of this paper is analysing how the inertia response support from a variable speed wind turbine (VSWT) to the primary...

  14. Effect of variable winds on current structure and Reynolds stresses in a tidal flow: analysis of experimental data in the eastern English Channel

    Directory of Open Access Journals (Sweden)

    K. A. Korotenko

    2012-11-01

    Full Text Available Wind and wave effects on tidal current structure and turbulence throughout the water column are examined using an upward-looking acoustic Doppler current profiler (ADCP. The instrument has been deployed on the seafloor of 18-m mean depth, off the north-eastern French coast in the eastern English Channel, over 12 tidal cycles, and covered the period of the transition from mean spring to neap tide, and forcing regimes varied from calm to moderate storm conditions. During storms, we observed gusty winds with magnitudes reaching 15 m s−1 and wave heights reaching up to 1.3 m. Analysis of velocity spectra revealed a noticeable contribution of wind-induced waves to spectral structure of velocity fluctuations within the subsurface layer. Near the surface, stormy winds and waves produced a significant intensification of velocity fluctuations, particularly when the sustained wind blew against the ebb tide flow. As during wavy periods, the variance-derived Reynolds stress estimates might include a wave-induced contamination, we applied the Variance Fit method to obtain unbiased stresses and other turbulent quantities. Over calm periods, the turbulent quantities usually decreased with height above the seabed. The stresses were found to vary regularly with the predominantly semidiurnal tidal flow. The along-shore stress being generally greater during the flood flow (~2.7 Pa than during the ebb flow (~−0.6 Pa. The turbulent kinetic energy production rate, P, and eddy viscosity, Az, followed a nearly regular cycle with close to a quarter-diurnal period. As for the stresses, near the seabed, we found the maximum values of estimated quantities of P and Az to be 0.1 Wm−3 and 0.5 m2 s−1, respectively, during the flood flow. Over the storm periods, we found the highest unbiased stress values (~−2.6 Pa during ebb when tidal currents were opposite to the

  15. The variable nature of the solar wind

    Science.gov (United States)

    Jackson, B. V.; Yu, H. S.; Buffington, A.; Hick, P. P.

    2017-12-01

    When analyzing LASCO C2 and STEREO SECCHI COR2 coronagraph images, and using UCSD-developed two-dimensional (2D) correlation-tracking techniques, we found that the observed outflow is not a static well-ordered motion, but instead has highly variable speed structures. This outward motion of structures is also observed over the entire high-resolution STEREO HI-1 field of view, whether or not a CME is present. We have recently exploited the correlation-tracking techniques to measure the optical flow on HI-1A images. The analysis yields a wealth of information about the outward motion of large- and fine-scale structures in the heliosphere. These include the 2D speed of features, the level of the correlation, the brightness of the feature measured, and the structure non-radial 2D motion. Here we present the analysis of a well-observed fast-moving CME and the speed of different structures within it. The preliminary results of the heliospheric velocity determination using HI-1A images show the nature of the solar wind within the CME that is organized into a fast and patchy high-speed front followed by a slower internal region. From this we conclude that the Parker Solar Probe and ESA Solar Orbiter will measure this highly-variable structure in situ within CMEs, and we speculate that these structures will also show abundance and magnetic field differences related to this high variability.

  16. Wind Data Analysis and Wind Flow Simulation Over Large Areas

    Directory of Open Access Journals (Sweden)

    Terziev Angel

    2014-03-01

    Full Text Available Increasing the share of renewable energy sources is one of the core policies of the European Union. This is because of the fact that this energy is essential in reducing the greenhouse gas emissions and securing energy supplies. Currently, the share of wind energy from all renewable energy sources is relatively low. The choice of location for a certain wind farm installation strongly depends on the wind potential. Therefore the accurate assessment of wind potential is extremely important. In the present paper an analysis is made on the impact of significant possible parameters on the determination of wind energy potential for relatively large areas. In the analysis the type of measurements (short- and long-term on-site measurements, the type of instrumentation and the terrain roughness factor are considered. The study on the impact of turbulence on the wind flow distribution over complex terrain is presented, and it is based on the real on-site data collected by the meteorological tall towers installed in the northern part of Bulgaria. By means of CFD based software a wind map is developed for relatively large areas. Different turbulent models in numerical calculations were tested and recommendations for the usage of the specific models in flows modeling over complex terrains are presented. The role of each parameter in wind map development is made. Different approaches for determination of wind energy potential based on the preliminary developed wind map are presented.

  17. Variability in large-scale wind power generation: Variability in large-scale wind power generation

    Energy Technology Data Exchange (ETDEWEB)

    Kiviluoma, Juha [VTT Technical Research Centre of Finland, Espoo Finland; Holttinen, Hannele [VTT Technical Research Centre of Finland, Espoo Finland; Weir, David [Energy Department, Norwegian Water Resources and Energy Directorate, Oslo Norway; Scharff, Richard [KTH Royal Institute of Technology, Electric Power Systems, Stockholm Sweden; Söder, Lennart [Royal Institute of Technology, Electric Power Systems, Stockholm Sweden; Menemenlis, Nickie [Institut de recherche Hydro-Québec, Montreal Canada; Cutululis, Nicolaos A. [DTU, Wind Energy, Roskilde Denmark; Danti Lopez, Irene [Electricity Research Centre, University College Dublin, Dublin Ireland; Lannoye, Eamonn [Electric Power Research Institute, Palo Alto California USA; Estanqueiro, Ana [LNEG, Laboratorio Nacional de Energia e Geologia, UESEO, Lisbon Spain; Gomez-Lazaro, Emilio [Renewable Energy Research Institute and DIEEAC/EDII-AB, Castilla-La Mancha University, Albacete Spain; Zhang, Qin [State Grid Corporation of China, Beijing China; Bai, Jianhua [State Grid Energy Research Institute Beijing, Beijing China; Wan, Yih-Huei [National Renewable Energy Laboratory, Transmission and Grid Integration Group, Golden Colorado USA; Milligan, Michael [National Renewable Energy Laboratory, Transmission and Grid Integration Group, Golden Colorado USA

    2015-10-25

    The paper demonstrates the characteristics of wind power variability and net load variability in multiple power systems based on real data from multiple years. Demonstrated characteristics include probability distribution for different ramp durations, seasonal and diurnal variability and low net load events. The comparison shows regions with low variability (Sweden, Spain and Germany), medium variability (Portugal, Ireland, Finland and Denmark) and regions with higher variability (Quebec, Bonneville Power Administration and Electric Reliability Council of Texas in North America; Gansu, Jilin and Liaoning in China; and Norway and offshore wind power in Denmark). For regions with low variability, the maximum 1 h wind ramps are below 10% of nominal capacity, and for regions with high variability, they may be close to 30%. Wind power variability is mainly explained by the extent of geographical spread, but also higher capacity factor causes higher variability. It was also shown how wind power ramps are autocorrelated and dependent on the operating output level. When wind power was concentrated in smaller area, there were outliers with high changes in wind output, which were not present in large areas with well-dispersed wind power.

  18. Flow separation on wind turbines blades

    Science.gov (United States)

    Corten, G. P.

    2001-01-01

    In the year 2000, 15GW of wind power was installed throughout the world, producing 100PJ of energy annually. This contributes to the total electricity demand by only 0.2%. Both the installed power and the generated energy are increasing by 30% per year world-wide. If the airflow over wind turbine blades could be controlled fully, the generation efficiency and thus the energy production would increase by 9%. Power Control To avoid damage to wind turbines, they are cut out above 10 Beaufort (25 m/s) on the wind speed scale. A turbine could be designed in such a way that it converts as much power as possible in all wind speeds, but then it would have to be to heavy. The high costs of such a design would not be compensated by the extra production in high winds, since such winds are rare. Therefore turbines usually reach maximum power at a much lower wind speed: the rated wind speed, which occurs at about 6 Beaufort (12.5 m/s). Above this rated speed, the power intake is kept constant by a control mechanism. Two different mechanisms are commonly used. Active pitch control, where the blades pitch to vane if the turbine maximum is exceeded or, passive stall control, where the power control is an implicit property of the rotor. Stall Control The flow over airfoils is called "attached" when it flows over the surface from the leading edge to the trailing edge. However, when the angle of attack of the flow exceeds a certain critical angle, the flow does not reach the trailing edge, but leaves the surface at the separation line. Beyond this line the flow direction is reversed, i.e. it flows from the trailing edge backward to the separation line. A blade section extracts much less energy from the flow when it separates. This property is used for stall control. Stall controlled rotors always operate at a constant rotation speed. The angle of attack of the flow incident to the blades is determined by the blade speed and the wind speed. Since the latter is variable, it determines

  19. Predictability and Variability of Wave and Wind

    DEFF Research Database (Denmark)

    Chozas, Julia Fernandez; Kofoed, Jens Peter; Sørensen, Hans Christian

    This project covers two fields of study: a) Wave energy predictability and electricity markets. b) Variability of the power output of WECs in diversified systems : diversified renewable systems with wave and offshore wind production. See page 2-4 in the report for a executive summery.......This project covers two fields of study: a) Wave energy predictability and electricity markets. b) Variability of the power output of WECs in diversified systems : diversified renewable systems with wave and offshore wind production. See page 2-4 in the report for a executive summery....

  20. Wind-Driven Ecological Flow Regimes Downstream from Hydropower Dams

    Science.gov (United States)

    Kern, J.; Characklis, G. W.

    2012-12-01

    Conventional hydropower can be turned on and off quicker and less expensively than thermal generation (coal, nuclear, or natural gas). These advantages enable hydropower utilities to respond to rapid fluctuations in energy supply and demand. More recently, a growing renewable energy sector has underlined the need for flexible generation capacity that can complement intermittent renewable resources such as wind power. While wind power entails lower variable costs than other types of generation, incorporating it into electric power systems can be problematic. Due to variable and unpredictable wind speeds, wind power is difficult to schedule and must be used when available. As a result, integrating large amounts of wind power into the grid may result in atypical, swiftly changing demand patterns for other forms of generation, placing a premium on sources that can be rapidly ramped up and down. Moreover, uncertainty in wind power forecasts will stipulate increased levels of 'reserve' generation capacity that can respond quickly if real-time wind supply is less than expected. These changes could create new hourly price dynamics for energy and reserves, altering the short-term financial signals that hydroelectric dam operators use to schedule water releases. Traditionally, hourly stream flow patterns below hydropower dams have corresponded in a very predictable manner to electricity demand, whose primary factors are weather (hourly temperature) and economic activity (workday hours). Wind power integration has the potential to yield more variable, less predictable flows at hydro dams, flows that at times could resemble reciprocal wind patterns. An existing body of research explores the impacts of standard, demand-following hydroelectric dams on downstream ecological flows; but weighing the benefits of increased reliance on wind power against further impacts to ecological flows may be a novel challenge for the environmental community. As a preliminary step in meeting this

  1. Wind flow around a church - Case study

    Science.gov (United States)

    Jamińska-Gadomska, Paulina; Lipecki, Tomasz; Podgórski, Jerzy

    2018-01-01

    The paper presents results of CFD analysis performed to check the influence of wind action on a bell tower of a church. The geometry of the structure is quite complex therefore it is very hard to calculate wind load basing only on codes recommendations. The modelled geometry contains whole structure of the church including the bell tower. Results presented in this paper are focused on co-called "Venturi-effect" represented by the flow around the bell tower. CFD simulations were performed for two inflow wind directions of opposite senses. This led to two cases of converging and diverging walls of the bell tower in relation to the wind flow direction. Such analysis was performed to check if the wind speed increases between the walls of the bell tower.

  2. Wake flow characteristics at high wind speed

    DEFF Research Database (Denmark)

    Aagaard Madsen, Helge; Larsen, Torben J.; Larsen, Gunner Chr.

    2016-01-01

    Wake flow characteristic at high wind speeds is the main subject of this paper. Although the wake losses decrease at high wind speeds it has been found in a recent study that for multiple wake inflow the increase in loading due to wake effects are substantial even at wind speeds well above rated...... power. In the present study we simulate the wake flow for a row of turbines with the wind aligned with the row using a simplified approach. The velocity deficit, being a function of the thrust coefficient, is simulated based on the BEM solution for wake expansion. An axis-symmetric boundary layer...... equation model (the same as implemented in the DWM model) is subsequently used to develop the deficit down to the next turbine, and then the approach is successively repeated. Simulation results for four different spacing’s in a row with eight turbines show that there are two major flow regimes...

  3. Wind Tunnel Modeling Of Wind Flow Over Complex Terrain

    Science.gov (United States)

    Banks, D.; Cochran, B.

    2010-12-01

    This presentation will describe the finding of an atmospheric boundary layer (ABL) wind tunnel study conducted as part of the Bolund Experiment. This experiment was sponsored by Risø DTU (National Laboratory for Sustainable Energy, Technical University of Denmark) during the fall of 2009 to enable a blind comparison of various air flow models in an attempt to validate their performance in predicting airflow over complex terrain. Bohlund hill sits 12 m above the water level at the end of a narrow isthmus. The island features a steep escarpment on one side, over which the airflow can be expected to separate. The island was equipped with several anemometer towers, and the approach flow over the water was well characterized. This study was one of only two only physical model studies included in the blind model comparison, the other being a water plume study. The remainder were computational fluid dynamics (CFD) simulations, including both RANS and LES. Physical modeling of air flow over topographical features has been used since the middle of the 20th century, and the methods required are well understood and well documented. Several books have been written describing how to properly perform ABL wind tunnel studies, including ASCE manual of engineering practice 67. Boundary layer wind tunnel tests are the only modelling method deemed acceptable in ASCE 7-10, the most recent edition of the American Society of Civil Engineers standard that provides wind loads for buildings and other structures for buildings codes across the US. Since the 1970’s, most tall structures undergo testing in a boundary layer wind tunnel to accurately determine the wind induced loading. When compared to CFD, the US EPA considers a properly executed wind tunnel study to be equivalent to a CFD model with infinitesimal grid resolution and near infinite memory. One key reason for this widespread acceptance is that properly executed ABL wind tunnel studies will accurately simulate flow separation

  4. Variable Winds in Early-B Hypergiants

    Science.gov (United States)

    Wolf, Bernhard; Rivinius, Thomas

    Early-B hypergiants belong to the most luminous stars in the Universe. They are characterized by high mass-loss rates (dot M≈ 10-5 M⊙yr-1) and low terminal wind velocities (v ∞≈400 km s-1) implying very dense winds. They represent a short-lived evolutionary phase and are of particular interest for evolutionary theories of massive stars with mass loss. Due to their high luminosity they play a key role in connection with the "wind momentum — luminosity relation". Among the main interesting characteristics of early-B hypergiants are the various kinds of photometric and spectroscopic variations. In several recent campaigns our group has performed extensive high dispersion spectroscopy of galactic early-B hypergiants with our fiber-fed echelle spectrograph Flash/Heros at the ESO-50 cm telescope. The main outcome was that their dense winds behave hydrodynamically differently to the less luminous supergiants of comparable spectral type. Outwardly accelerated propagating discrete absorption components of the P Cyg-type lines are the typical features rather than rotationally modulated line profile variations. These discrete absorptions could be traced in different spectral lines from photospheric velocities up to 75% of the terminal velocity. The stellar absorption lines show a pulsation-like radial velocity variability pattern lasting up to two weeks as the typical time scale. The radius variations connected with this pulsation-like motions are correlated with the emission height of the P Cyg-type profiles.

  5. Wind and load variability in the Nordic countries

    DEFF Research Database (Denmark)

    Holttinen, Hannele; Rissanen, Simo; Larsén, Xiaoli Guo

    This publication analysed the variability of wind production and load in Denmark, Finland, Sweden, and the Nordic region as a whole, based on real data measured from large-scale wind power during 2009–2011. The Nordic-wide wind power time series was scaled up such that Sweden had same amount...... the three years analysed in this publication there were few storm incidents and they did not produce dramatic wind power ramps in the Nordic region. Wind and load variations are not correlated between the countries, which is beneficial from the viewpoint of wind integration. The smoothing effect is shown...... as reduction of variability from a single country to Nordic-wide wind power. The impact of wind power on the variability that the system experiences is evaluated by analysing the variability of net load with different wind power penetration levels. The Nordic-wide wind power production increases the highest...

  6. Improving urban wind flow predictions through data assimilation

    Science.gov (United States)

    Sousa, Jorge; Gorle, Catherine

    2017-11-01

    Computational fluid dynamic is fundamentally important to several aspects in the design of sustainable and resilient urban environments. The prediction of the flow pattern for example can help to determine pedestrian wind comfort, air quality, optimal building ventilation strategies, and wind loading on buildings. However, the significant variability and uncertainty in the boundary conditions poses a challenge when interpreting results as a basis for design decisions. To improve our understanding of the uncertainties in the models and develop better predictive tools, we started a pilot field measurement campaign on Stanford University's campus combined with a detailed numerical prediction of the wind flow. The experimental data is being used to investigate the potential use of data assimilation and inverse techniques to better characterize the uncertainty in the results and improve the confidence in current wind flow predictions. We consider the incoming wind direction and magnitude as unknown parameters and perform a set of Reynolds-averaged Navier-Stokes simulations to build a polynomial chaos expansion response surface at each sensor location. We subsequently use an inverse ensemble Kalman filter to retrieve an estimate for the probabilistic density function of the inflow parameters. Once these distributions are obtained, the forward analysis is repeated to obtain predictions for the flow field in the entire urban canopy and the results are compared with the experimental data. We would like to acknowledge high-performance computing support from Yellowstone (ark:/85065/d7wd3xhc) provided by NCAR.

  7. Variability and smoothing effect of wind power production compared to load variability in the Nordic countries

    DEFF Research Database (Denmark)

    Holttinen, Hannele; Rissanen, Simo; Giebel, Gregor

    2012-01-01

    the viewpoint of wind integration. The smoothing effect is shown as reduction of variability from a single country to Nordic wide wind power. The impact of wind power on the variability that the system sees is depicted by analysing the variability of net load with different wind power penetration levels...

  8. Observer Backstepping Control for Variable Speed Wind Turbine

    DEFF Research Database (Denmark)

    Galeazzi, Roberto; Gryning, Mikkel Peter Sidoroff; Blanke, Mogens

    2013-01-01

    This paper presents an observer backstepping controller as feasible solution to variable speed control of wind turbines to maximize wind power capture when operating between cut-in and rated wind speeds. The wind turbine is modeled as a two-mass drive-train system controlled by the generator torq...

  9. Observer Backstepping Control for Variable Speed Wind Turbine

    DEFF Research Database (Denmark)

    Galeazzi, Roberto; Gryning, Mikkel Peter Sidoroff; Blanke, Mogens

    2013-01-01

    This paper presents an observer backstepping controller as feasible solution to variable speed control of wind turbines to maximize wind power capture when operating between cut-in and rated wind speeds. The wind turbine is modeled as a two-mass drive-train system controlled by the generator torque...

  10. Control of Variable Speed Variable Pitch Wind Turbine at Above and Below Rated Wind Speed

    Directory of Open Access Journals (Sweden)

    Saravanakumar Rajendran

    2014-01-01

    Full Text Available The paper presents a nonlinear approach to wind turbine (WT using two-mass model. The main aim of the controller in the WT is to maximize the energy output at varying wind speed. In this work, a combination of linear and nonlinear controllers is adapted to variable speed variable pitch wind turbines (VSVPWT system. The major operating regions of the WT are below (region 2 and above rated (region 3 wind speed. In these regions, generator torque control (region 2 and pitch control (region 3 are used. The controllers in WT are tested for below and above rated wind speed for step and vertical wind speed profile. The performances of the controllers are analyzed with nonlinear FAST (Fatigue, Aerodynamics, Structures, and Turbulence WT dynamic simulation. In this paper, two nonlinear controllers, that is, sliding mode control (SMC and integral sliding mode control (ISMC, have been applied for region 2, whereas for pitch control in region 3 conventional PI control is used. In ISMC, the sliding manifold makes use of an integral action to show effective qualities of control in terms of the control level reduction and sliding mode switching control minimization.

  11. Variability in large-scale wind power generation

    DEFF Research Database (Denmark)

    Kiviluoma, Juha; Holttinen, Hannele; Weir, David

    2016-01-01

    The paper demonstrates the characteristics of wind power variability and net load variability in multiple power systems based on real data from multiple years. Demonstrated characteristics include probability distribution for different ramp durations, seasonal and diurnal variability and low net ...

  12. Analysis of North Sea Offshore Wind Power Variability

    Directory of Open Access Journals (Sweden)

    Aymeric Buatois

    2014-05-01

    Full Text Available This paper evaluates, for a 2030 scenario, the impact on onshore power systems in terms of the variability of the power generated by 81 GW of offshore wind farms installed in the North Sea. Meso-scale reanalysis data are used as input for computing the hourly power production for offshore wind farms, and this total production is analyzed to identify the largest aggregated hourly power variations. Based on publicly available information, a simplified representation of the coastal power grid is built for the countries bordering the North Sea. Wind farms less than 60 km from shore are connected radially to the mainland, while the rest are connected to a hypothetical offshore HVDC (High-Voltage Direct Current power grid, designed such that wind curtailment does not exceed 1% of production. Loads and conventional power plants by technology and associated cost curves are computed for the various national power systems, based on 2030 projections. Using the MATLAB-based MATPOWER toolbox, the hourly optimal power flow for this regional hybrid AC/DC grid is computed for high, low and medium years from the meso-scale database. The largest net load variations are evaluated per market area and related to the extra load-following reserves that may be needed from conventional generators.

  13. Fan array wind tunnel: a multifunctional, complex environmental flow manipulator

    Science.gov (United States)

    Dougherty, Christopher; Veismann, Marcel; Gharib, Morteza

    2017-11-01

    The recent emergence of small unmanned aerial vehicles (UAVs) has reshaped the aerospace testing environment. Traditional closed-loop wind tunnels are not particularly suited nor easily retrofit to take advantage of these coordinated, controls-based rotorcraft. As such, a highly configurable, novel wind tunnel aimed at addressing the unmet technical challenges associated with single or formation flight performance of autonomous drone systems is presented. The open-loop fan array wind tunnel features 1296 individually controllable DC fans arranged in a 2.88m x 2.88m array. The fan array can operate with and without a tunnel enclosure and is able to rotate between horizontal and vertical testing configurations. In addition to standard variable speed uniform flow, the fan array can generate both unsteady and shear flows. Through the aid of smaller side fan array units, vortex flows are also possible. Conceptual design, fabrication, and validation of the tunnel performance will be presented, including theoretical and computational predictions of flow speed and turbulence intensity. Validation of these parameters is accomplished through standard pitot-static and hot-wire techniques. Particle image velocimetry (PIV) of various complex flows will also be shown. This material is based upon work supported by the Center for Autonomous Systems and Technologies (CAST) at the Graduate Aerospace Laboratories of the California Institute of Technology (GALCIT).

  14. Wind power variability and power system reserves in South Africa

    DEFF Research Database (Denmark)

    Sørensen, Poul Ejnar; Litong-Palima, Marisciel; Hahmann, Andrea N.

    2017-01-01

    Variable renewable generation, primarily from wind and solar, introduces new uncertainties in the operation of power systems. This paper describes and applies a method to quantify how wind power development will affect the use of short-term automatic reserves in the future South African power...... system. The study uses a scenario for wind power development in South Africa, based on information from the South African transmission system operator (Eskom) and the Department of Energy. The scenario foresees 5% wind power penetration by 2025. Time series for wind power production and forecasts...... are simulated, and the duration curves for wind power ramp rates and wind power forecast errors are applied to assess the use of reserves due to wind power variability. The main finding is that the 5% wind power penetration in 2025 will increase the use of short-term automatic reserves by approximately 2%....

  15. The economics of a variable speed wind-diesel

    International Nuclear Information System (INIS)

    Moll, W.

    1992-01-01

    A remote community power supply system generating over 1,000 kWH/d will have at least one diesel generator running all the time. If one or more wind turbine generators are added to such a system, the diesel generator will produce less power when wind speeds are adequate, but its fuel efficiency will gradually decrease as load decreases. In the variable speed wind/diesel concept, the diesel rpm is reduced with decreasing load and a high fuel efficiency is maintained over virtually the full power range. The outputs of the diesel and wind turbine generators are fed into an inverter which synthesizes a desired voltage wave-shape with controlled magnitude and frequency. The variable speed wind/diesel concept may make vertical axis wind turbines suitable for remote community power supply because the inverter effectively isolates the power ripple of the wind turbine. A possible wind/diesel system configuration using the variable speed concept is illustrated. The economics of a 50-kW variable speed diesel and a 80-kW variable speed wind turbine generator was analyzed. Going from a constant speed diesel generator to a variable speed generator operating at 55% capacity factor, a 6% fuel saving was achieved. Adding one 80-kW wind turbine increased fuel savings to 32% at 5 m/s wind speed, but the unit energy cost rose 8.5%. At 7 m/s wind speed, fuel savings were 59% and energy savings were 7.8%. Economics are better for a peaking variable speed 50-kW wind/diesel system added to an existing diesel system to extend the installed capacity. At 7 m/s wind speed the fuel savings translate into ca $40,000 over 10 y and purchase of a $150,000 diesel generator is postponed. 7 figs., 1 tab

  16. Flow and wakes in large wind farms: Final report for UpWind WP8

    DEFF Research Database (Denmark)

    Barthelmie, Rebecca Jane; Frandsen, Sten Tronæs; Rathmann, Ole

    This report summarises the research undertaken through the European Commission funded project UpWind Wp8:Flow. The objective of the work was to develop understanding of flow in large wind farms and to evaluate models of power losses due to wind turbine wakes focusing on complex terrain and offsho...

  17. Seasonal and interannual variability in wind field and commercial ...

    African Journals Online (AJOL)

    The impact of deviations in the direction and strength of the wind field on the spatial, seasonal and interannual variability in catch rates of Agulhas sole Austroglossus pectoralis was investigated. Temporal variability in the wind cycle on the Agulhas Bank during the period 1981–1996 was deduced mainly from trends in the ...

  18. Addressing Spatial Variability of Surface-Layer Wind with Long-Range WindScanners

    DEFF Research Database (Denmark)

    Berg, Jacob; Vasiljevic, Nikola; Kelly, Mark C.

    2015-01-01

    This paper presents an analysis of mean wind measurements from a coordinated system of long-range WindScanners. From individual scan patterns the mean wind field was reconstructed over a large area, and hence it highlights the spatial variability. From comparison with sonic anemometers, the quality...

  19. Maps of mesoscale wind variability over the North Sea region

    DEFF Research Database (Denmark)

    Vincent, Claire Louise; Hahmann, Andrea N.; Badger, Jake

    with existing criteria such as the wind resource and proximity to grid connection points. We used the Weather Research and Forecasting (WRF) model to calculate the average wind variability over the North Sea for wind fluctuations with periods of 30 minutes to 8 hours. Modelled winds are saved every 10 minutes...... for a 1 year period. The model was run with a horizontal grid spacing of 2 km. The variability maps are created by integrating the average 24 hour spectra at every grid point over different time-scales....

  20. Wind farm electrical power production model for load flow analysis

    International Nuclear Information System (INIS)

    Segura-Heras, Isidoro; Escriva-Escriva, Guillermo; Alcazar-Ortega, Manuel

    2011-01-01

    The importance of renewable energy increases in activities relating to new forms of managing and operating electrical power: especially wind power. Wind generation is increasing its share in the electricity generation portfolios of many countries. Wind power production in Spain has doubled over the past four years and has reached 20 GW. One of the greatest problems facing wind farms is that the electrical power generated depends on the variable characteristics of the wind. To become competitive in a liberalized market, the reliability of wind energy must be guaranteed. Good local wind forecasts are therefore essential for the accurate prediction of generation levels for each moment of the day. This paper proposes an electrical power production model for wind farms based on a new method that produces correlated wind speeds for various wind farms. This method enables a reliable evaluation of the impact of new wind farms on the high-voltage distribution grid. (author)

  1. The Impact of Variable Wind Shear Coefficients on Risk Reduction of Wind Energy Projects

    Science.gov (United States)

    Thomson, Allan; Yoonesi, Behrang; McNutt, Josiah

    2016-01-01

    Estimation of wind speed at proposed hub heights is typically achieved using a wind shear exponent or wind shear coefficient (WSC), variation in wind speed as a function of height. The WSC is subject to temporal variation at low and high frequencies, ranging from diurnal and seasonal variations to disturbance caused by weather patterns; however, in many cases, it is assumed that the WSC remains constant. This assumption creates significant error in resource assessment, increasing uncertainty in projects and potentially significantly impacting the ability to control gird connected wind generators. This paper contributes to the body of knowledge relating to the evaluation and assessment of wind speed, with particular emphasis on the development of techniques to improve the accuracy of estimated wind speed above measurement height. It presents an evaluation of the use of a variable wind shear coefficient methodology based on a distribution of wind shear coefficients which have been implemented in real time. The results indicate that a VWSC provides a more accurate estimate of wind at hub height, ranging from 41% to 4% reduction in root mean squared error (RMSE) between predicted and actual wind speeds when using a variable wind shear coefficient at heights ranging from 33% to 100% above the highest actual wind measurement. PMID:27872898

  2. The predictability of large-scale wind-driven flows

    Directory of Open Access Journals (Sweden)

    A. Mahadevan

    2001-01-01

    Full Text Available The singular values associated with optimally growing perturbations to stationary and time-dependent solutions for the general circulation in an ocean basin provide a measure of the rate at which solutions with nearby initial conditions begin to diverge, and hence, a measure of the predictability of the flow. In this paper, the singular vectors and singular values of stationary and evolving examples of wind-driven, double-gyre circulations in different flow regimes are explored. By changing the Reynolds number in simple quasi-geostrophic models of the wind-driven circulation, steady, weakly aperiodic and chaotic states may be examined. The singular vectors of the steady state reveal some of the physical mechanisms responsible for optimally growing perturbations. In time-dependent cases, the dominant singular values show significant variability in time, indicating strong variations in the predictability of the flow. When the underlying flow is weakly aperiodic, the dominant singular values co-vary with integral measures of the large-scale flow, such as the basin-integrated upper ocean kinetic energy and the transport in the western boundary current extension. Furthermore, in a reduced gravity quasi-geostrophic model of a weakly aperiodic, double-gyre flow, the behaviour of the dominant singular values may be used to predict a change in the large-scale flow, a feature not shared by an analogous two-layer model. When the circulation is in a strongly aperiodic state, the dominant singular values no longer vary coherently with integral measures of the flow. Instead, they fluctuate in a very aperiodic fashion on mesoscale time scales. The dominant singular vectors then depend strongly on the arrangement of mesoscale features in the flow and the evolved forms of the associated singular vectors have relatively short spatial scales. These results have several implications. In weakly aperiodic, periodic, and stationary regimes, the mesoscale energy

  3. Apparatus and method for using radar to evaluate wind flow fields for wind energy applications

    Science.gov (United States)

    Schroeder, John; Hirth, Brian; Guynes, Jerry

    2017-02-21

    The present invention provides an apparatus and method for obtaining data to determine one or more characteristics of a wind flow field using one or more radars. Data is collected from the one or more radars, and analyzed to determine the one or more characteristics of the wind flow field. The one or more radars are positioned to have a portion of the wind flow field within a scanning sector of the one or more radars.

  4. Doubly Fed Drives for Variable Speed Wind Turbines

    DEFF Research Database (Denmark)

    Lindholm, Morten

    2004-01-01

    This thesis deals with the use of variable speed wind turbines. Different wind turbine generator topologies are described. In particular, the reduced variable speed turbine, which uses a doubly fed induction generator, is covered. An overview of the power electronic inverters of interest to the f...... is constructed. Adaptive active flters are used to reduce harmonics and slip harmonics in the stator current. The flters are implemented in both inverters. The active flters reduce the stator harmonics by 20-30 dB. The flters can reduce the slip harmonics at variable speed.......This thesis deals with the use of variable speed wind turbines. Different wind turbine generator topologies are described. In particular, the reduced variable speed turbine, which uses a doubly fed induction generator, is covered. An overview of the power electronic inverters of interest...

  5. Adaptive Torque Control of Variable Speed Wind Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, K. E.

    2004-08-01

    The primary focus of this work is a new adaptive controller that is designed to resemble the standard non-adaptive controller used by the wind industry for variable speed wind turbines below rated power. This adaptive controller uses a simple, highly intuitive gain adaptation law designed to seek out the optimal gain for maximizing the turbine's energy capture. It is designed to work even in real, time-varying winds.

  6. Impacts of Wind Power Variability on Generation Costs - An Overview

    OpenAIRE

    M. H. Albadi; E. F. El-Saadany

    2010-01-01

    Although wind power is sustainable, environmental friendly and relatively inexpensive source of electricity, the effects of its intermittent nature on power systems need to be carefully investigated. This paper presents an up-to-date overview of the impacts of wind power variability on overall generation cost. Recent case studies from different utilities around the globe demonstrated that wind integration costs are much lower than anticipated by earlier studies.

  7. Impacts of Wind Power Variability on Generation Costs - An Overview

    Directory of Open Access Journals (Sweden)

    M. H. Albadi

    2010-12-01

    Full Text Available Although wind power is sustainable, environmental friendly and relatively inexpensive source of electricity, the effects of its intermittent nature on power systems need to be carefully investigated. This paper presents an up-to-date overview of the impacts of wind power variability on overall generation cost. Recent case studies from different utilities around the globe demonstrated that wind integration costs are much lower than anticipated by earlier studies.

  8. Measurement and Assessment of Flow Quality in Wind Tunnels Project

    Data.gov (United States)

    National Aeronautics and Space Administration — New wind tunnel flow quality test and analysis procedures have been developed and will be used to establish standardized turbulent flow quality measurement...

  9. Flow Structure and Turbulence in Wind Farms

    NARCIS (Netherlands)

    Stevens, Richard Johannes Antonius Maria; Meneveau, Charles

    2017-01-01

    Similar to other renewable energy sources, wind energy is characterized by a low power density. Hence, for wind energy to make considerable contributions to the world's overall energy supply, large wind farms (on- and offshore) consisting of arrays of ever larger wind turbines are being envisioned

  10. Wind direction variability in Afternoon and Sunset Turbulence

    Science.gov (United States)

    Nilsson, Erik; Lothon, Marie; Lohou, Fabienne; Mahrt, Larry

    2014-05-01

    Understanding wind direction (WD) variability better is important for several reasons. Air pollution models need information about how variable wind direction is in different conditions (Davies and Thomson 1999). Accurate predictions of dispersion are important for human health and safety and allow for adaptation planning (Nagle et al. 2011). Other applications include horizontal diffusion, efficiency and fatigue of wind machines and air-sea interaction (Mahrt 2011). Most studies of wind direction variability have focused on nocturnal conditions because of greater variability in light winds. Modelling WD variability in transition periods when both mean wind speed and variance of the wind components are in a state of change can, however, also be very challenging and has not been the focus of earlier studies. The evening transitioning to the nocturnal boundary layer can play an important role in the diffusion process of pollutants and scalars emitted at surface and transported within the atmosphere. The Boundary Layer Late Afternoon and Sunset Turbulence (BLLAST) field campaign that took place in southern France in June and July 2011 focused on the decaying turbulence of the late afternoon boundary layer and related issues (Lothon et al. 2012). We analyse field measurements from BLLAST to investigate WD variability in the evening transition period. Standard deviations of horizontal wind direction fluctuations in the lowest 60 m of the boundary layer have been examined for dependence on mean wind speed, higher order moments and averaging time. Measurement results are interpreted using measured and idealized probability density functions of horizontal wind vectors. These are also used to develop analytical functions describing how WD variability depends on wind speed, variance and other controlling factors in the atmospheric boundary layer. References: Davies B.M., Thomson D.J., 1999. Comparison of some parameterizations of wind direction variability with observations

  11. Laboratory development of wind turbine simulator using variable ...

    African Journals Online (AJOL)

    The conventional synchronous generators in wind energy conversion system are now getting replaced by variable speed induction generator to extract maximum power with wide range of wind speed limit. The design and performance of such systems requires a simplified digital simulator, especially for the development of ...

  12. Temperature variability, intensity of wind speed and visibility during ...

    African Journals Online (AJOL)

    The study assessed the connections between temperature variability, intensity of wind speed and their effect on visibility of Makurdi town during the harmattan season. Data on mean monthly temperature of harmattan months of November, December, January and February (2001 to 2011), Wind speed and visibility records ...

  13. Analysis of North Sea Offshore Wind Power Variability

    NARCIS (Netherlands)

    Buatois, A.; Gibescu, M.; Rawn, B.G.; Van der Meijden, M.A.M.M.

    2014-01-01

    This paper evaluates, for a 2030 scenario, the impact on onshore power systems in terms of the variability of the power generated by 81 GW of offshore wind farms installed in the North Sea. Meso-scale reanalysis data are used as input for computing the hourly power production for offshore wind

  14. Flow adjustment inside large finite-size wind farms approaching the infinite wind farm regime

    Science.gov (United States)

    Wu, Ka Ling; Porté-Agel, Fernando

    2017-04-01

    Due to the increasing number and the growing size of wind farms, the distance among them continues to decrease. Thus, it is necessary to understand how these large finite-size wind farms and their wakes could interfere the atmospheric boundary layer (ABL) dynamics and adjacent wind farms. Fully-developed flow inside wind farms has been extensively studied through numerical simulations of infinite wind farms. The transportation of momentum and energy is only vertical and the advection of them is neglected in these infinite wind farms. However, less attention has been paid to examine the length of wind farms required to reach such asymptotic regime and the ABL dynamics in the leading and trailing edges of the large finite-size wind farms. Large eddy simulations are performed in this study to investigate the flow adjustment inside large finite-size wind farms in conventionally-neutral boundary layer with the effect of Coriolis force and free-atmosphere stratification from 1 to 5 K/km. For the large finite-size wind farms considered in the present work, when the potential temperature lapse rate is 5 K/km, the wind farms exceed the height of the ABL by two orders of magnitude for the incoming flow inside the farms to approach the fully-developed regime. An entrance fetch of approximately 40 times of the ABL height is also required for such flow adjustment. At the fully-developed flow regime of the large finite-size wind farms, the flow characteristics match those of infinite wind farms even though they have different adjustment length scales. The role of advection at the entrance and exit regions of the large finite-size wind farms is also examined. The interaction between the internal boundary layer developed above the large finite-size wind farms and the ABL under different potential temperature lapse rates are compared. It is shown that the potential temperature lapse rate plays a role in whether the flow inside the large finite-size wind farms adjusts to the fully

  15. Modelling and Measuring Flow and Wind Turbine Wakes in Large Wind Farms Offshore

    DEFF Research Database (Denmark)

    Barthelmie, Rebecca Jane; Hansen, Kurt Schaldemose; Frandsen, Sten Tronæs

    2009-01-01

    Average power losses due to wind turbine wakes are of the order of 10 to 20% of total power output in large offshore wind farms. Accurately quantifying power losses due to wakes is, therefore, an important part of overall wind farm economics. The focus of this research is to compare different types...... power losses due to wakes and loads. The research presented is part of the EC-funded UpWind project, which aims to radically improve wind turbine and wind farm models in order to continue to improve the costs of wind energy. Reducing wake losses, or even reduce uncertainties in predicting power losses...... from wakes, contributes to the overall goal of reduced costs. Here, we assess the state of the art in wake and flow modelling for offshore wind forms, the focus so for has been cases at the Horns Rev wind form, which indicate that wind form models require modification to reduce under-prediction of wake...

  16. Assessing the vegetation canopy influences on wind flow using wind ...

    Indian Academy of Sciences (India)

    Service. References. Brown S, Nickling W G and Gillies J A 2008 A wind tunnel examination of shear stress partitioning for an assortment of surface roughness distribution; J. Geophys. Res. 113. F02S06, doi: 10.1029/2007JF000790. Buckley R 1987 The effect of sparse vegetation on the transport of dune sand by wind; ...

  17. Coastal and rain-induced wind variability depicted by scatterometers

    Science.gov (United States)

    Portabella, M.; Lin, W.; Stoffelen, A.; Turiel, A.; Verhoef, A.; Verspeek, J.; Ballabrera, J.; Vogelzang, J.

    2012-04-01

    A detailed knowledge of local wind variability near the shore is very important since it strongly affects the weather and microclimate in coastal regions. Since coastal areas are densely populated and most activity at sea occurs near the shore, sea-surface wind field information is important for a number of applications. In the vicinity of land sea-breeze, wave fetch, katabatic and current effects are more likely than in the open ocean, thus enhancing air-sea interaction. Also very relevant for air-sea interaction are the rain-induced phenomena, such as downbursts and convergence. Relatively cold and dry air is effectively transported to the ocean surface and surface winds are enhanced. In general, both coastal and rain-induced wind variability are poorly resolved by Numerical Weather Prediction (NWP) models. Satellite real aperture radars (i.e., scatterometers) are known to provide accurate mesoscale (25-50 km resolution) sea surface wind field information used in a wide variety of applications. Nowadays, there are two operating scatterometers in orbit, i.e., the C-band Advanced Scatterometer (ASCAT) onboard Metop-A and the Ku-band scatterometer (OSCAT) onboard Oceansat-2. The EUMETSAT Ocean and Sea Ice Satellite Application Facility (OSI SAF) delivers several ASCAT level 2 wind products with 25 km and 12.5 km Wind Vector Cell (WVC) spacing, including a pre-operational coastal wind product as well as an OSCAT level 2 wind product with 50 km spacing in development status. Rain is known to both attenuate and scatter the microwave signal. In addition, there is a "splashing" effect. The roughness of the sea surface is increased because of splashing due to rain drops. The so-called "rain contamination" is larger for Ku-band scatterometer systems than for C-band systems. Moreover, the associated downdrafts lead to variable wind speeds and directions, further complicating the wind retrieval. The C-band ASCAT high resolution wind processing is validated under rainy

  18. Flow and wakes in large wind farms. Final report for UpWind WP8

    Energy Technology Data Exchange (ETDEWEB)

    Barthelmie, R.J.; Frandsen, S.T.; Rathmann, O. (Risoe DTU (Denmark)); Hansen, K. (Technical Univ. of Denmark (DTU), Kgs. Lyngby (Denmark)); Politis, E.; Prospathopoulos, J. (CRES (Greece)); Schepers, J.G. (ECN, Petten (Netherlands)); Rados, K. (NTUA, Athens (Greece)); Cabezon, D. (CENER, Sarriguren (Spain)); Schlez, W.; Neubert, A.; Heath, M. (Garrad Hassan and Partners (Germany) (United Kingdom))

    2011-02-15

    This report summarises the research undertaken through the European Commission funded project UpWind Wp8:Flow. The objective of the work was to develop understanding of flow in large wind farms and to evaluate models of power losses due to wind turbine wakes focusing on complex terrain and offshore. A crosscutting activity was to improve and compare the performance of computational fluid dynamics models with wind farm models. The report contains 6 deliverable reports and guideline to wind farm wake analysis as appendices. (Author)

  19. Turbulent Flow Inside and Above a Wind Farm: A Wind-Tunnel Study

    Directory of Open Access Journals (Sweden)

    Leonardo P. Chamorro

    2011-11-01

    Full Text Available Wind-tunnel experiments were carried out to better understand boundary layer effects on the flow pattern inside and above a model wind farm under thermally neutral conditions. Cross-wire anemometry was used to characterize the turbulent flow structure at different locations around a 10 by 3 array of model wind turbines aligned with the mean flow and arranged in two different layouts (inter-turbine separation of 5 and 7 rotor diameters in the direction of the mean flow by 4 rotor diameters in its span. Results suggest that the turbulent flow can be characterized in two broad regions. The first, located below the turbine top tip height, has a direct effect on the performance of the turbines. In that region, the turbulent flow statistics appear to reach equilibrium as close as the third to fourth row of wind turbines for both layouts. In the second region, located right above the first one, the flow adjusts slowly. There, two layers can be identified: an internal boundary layer where the flow is affected by both the incoming wind and the wind turbines, and an equilibrium layer, where the flow is fully adjusted to the wind farm. An adjusted logarithmic velocity distribution is observed in the equilibrium layer starting from the sixth row of wind turbines. The effective surface roughness length induced by the wind farm is found to be higher than that predicted by some existing models. Momentum recovery and turbulence intensity are shown to be affected by the wind farm layout. Power spectra show that the signature of the tip vortices, in both streamwise and vertical velocity components, is highly affected by both the relative location in the wind farm and the wind farm layout.

  20. On the Origins of the Intercorrelations Between Solar Wind Variables

    Science.gov (United States)

    Borovsky, Joseph E.

    2018-01-01

    It is well known that the time variations of the diverse solar wind variables at 1 AU (e.g., solar wind speed, density, proton temperature, electron temperature, magnetic field strength, specific entropy, heavy-ion charge-state densities, and electron strahl intensity) are highly intercorrelated with each other. In correlation studies of the driving of the Earth's magnetosphere-ionosphere-thermosphere system by the solar wind, these solar wind intercorrelations make determining cause and effect very difficult. In this report analyses of solar wind spacecraft measurements and compressible-fluid computer simulations are used to study the origins of the solar wind intercorrelations. Two causes are found: (1) synchronized changes in the values of the solar wind variables as the plasma types of the solar wind are switched by solar rotation and (2) dynamic interactions (compressions and rarefactions) in the solar wind between the Sun and the Earth. These findings provide an incremental increase in the understanding of how the Sun-Earth system operates.

  1. Wind resource in metropolitan France: assessment methods, variability and trends

    International Nuclear Information System (INIS)

    Jourdier, Benedicte

    2015-01-01

    France has one of the largest wind potentials in Europe, yet far from being fully exploited. The wind resource and energy yield assessment is a key step before building a wind farm, aiming at predicting the future electricity production. Any over-estimation in the assessment process puts in jeopardy the project's profitability. This has been the case in the recent years, when wind farm managers have noticed that they produced less than expected. The under-production problem leads to questioning both the validity of the assessment methods and the inter-annual wind variability. This thesis tackles these two issues. In a first part are investigated the errors linked to the assessment methods, especially in two steps: the vertical extrapolation of wind measurements and the statistical modelling of wind-speed data by a Weibull distribution. The second part investigates the inter-annual to decadal variability of wind speeds, in order to understand how this variability may have contributed to the under-production and so that it is better taken into account in the future. (author) [fr

  2. Downstream wind flow path diversion and its effects on the performance of vertical axis wind turbine

    International Nuclear Information System (INIS)

    Maganhar, A.L.

    2015-01-01

    In the present experimental study efforts have been made to analysis path diversion effect of downstream wind flow on performance of vertical axis wind turbine (VAWT). For the blockage of downstream wind flow path at various linear displaced positions, a normal erected flat wall, semi-circular and cylindrical shapes were tested for path diverting geometries. Performance of VAWT in terms of improved rotor speed up to 45% was achieved. (author)

  3. Meso-scale wind variability. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, S.; Larsen, X.; Vincent, C.; Soerensen, P.; Pinson, P.; Trombe, P.-J.; Madsen, H.; Cutululis, N.

    2011-11-15

    The project has aimed to characterize mesoscale meteorological phenomenon for the North Sea and the Inner Danish waters, and additionally aimed on improving the predictability and quality of the power production from offshore windfarms. The meso-scale meteorology has been characterized with respect to the physical processes, climatology, spectral characteristics and correlation properties based on measurements from wind farms, satellite data (SAR) and mesoscale numerical modeling (WRF). The abilities of the WRF model to characterize and predict relevant mesoscale phenomenon has been proven. Additionally application of statistical forecasting, using a Markov switching approach that can be related to the meteorological conditions, to analyze and short term predict the power production from an offshore wind farms have been documented. Two PhD studies have been conducted in connection with the project. The project has been a cooperative project between Risoe DTU, IMM DTU, DONG Energy, Vattenfall and VESTAS. It is registered as Energinet.dk, project no. 2007-1-7141. (Author)

  4. Uncertainty quantification in wind farm flow models

    DEFF Research Database (Denmark)

    Murcia Leon, Juan Pablo

    uncertainties through a model chain are presented and applied to several wind energy related problems such as: annual energy production estimation, wind turbine power curve estimation, wake model calibration and validation, and estimation of lifetime equivalent fatigue loads on a wind turbine. Statistical...

  5. Minimisation of Generation Variability of a Group of Wind Plants

    Directory of Open Access Journals (Sweden)

    Dubravko Sabolić

    2017-09-01

    Full Text Available Minimisation of variability of energy delivered from a group of wind plants into the power system using portfolio theory approach was studied. One of the assumptions of that theory is Gaussian distribution of the sample, which is not satisfied in case of wind generation. Therefore, optimisation of a “portfolio” of plants with different goal functions was studied. It was supposed that a decision on distribution of a fixed amount of generation capacity to be installed among a set of geographical locations with known wind statistics is to be made with minimised variability of generation as a goal. In that way the statistical cancellation of variability would be used in the best possible manner. This article is a brief report on results of such an investigation. An example of nine locations in Croatia was used. These locations’ wind statistics are known from historic generation data.

  6. Speed control at low wind speeds for a variable speed fixed pitch wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Rosmin, N.; Watson, S.J.; Tompson, M. [Loughborough Univ., Loughborough, Leicestershire (United Kingdom)

    2010-03-09

    The maximum power regulation below rated wind speed is regulated by changing the rotor/generator speed at large frequency range in a fixed pitch, variable speed, stall-regulated wind turbine. In order to capture the power at a maximum value the power coefficient is kept at maximum peak point by maintaining the tip speed ratio at its optimum value. The wind industry is moving from stall regulated fixed speed wind turbines to newer improved innovative versions with better reliability. While a stall regulated fixed pitch wind turbine is among the most cost-effective wind turbine on the market, its problems include noise, severe vibrations, high thrust loads and low power efficiency. Therefore, in order to improve such drawbacks, the rotation of the generator speed is made flexible where the rotation can be controlled in variable speed. This paper discussed the development of a simulation model which represented the behaviour of a stall regulated variable speed wind turbine at low wind speed control region by using the closed loop scalar control with adjustable speed drive. The paper provided a description of each sub-model in the wind turbine system and described the scalar control of the induction machine. It was concluded that by using a constant voltage/frequency ratio of the generator's stator side control, the generator speed could be regulated and the generator torque could be controlled to ensure the power coefficient could be maintained close to its maximum value. 38 refs., 1 tab., 10 figs.

  7. Wind tunnel experiments to prove a hydraulic passive torque control concept for variable speed wind turbines

    NARCIS (Netherlands)

    Diepeveen, N.F.B.; Jarquin-Laguna, A.

    2014-01-01

    In this paper the results are presented of experiments to prove an innovative concept for passive torque control of variable speed wind turbines using fluid power technology. It is demonstrated that by correctly configuring the hydraulic drive train, the wind turbine rotor operates at or near

  8. A New Fault Diagnosis Algorithm for PMSG Wind Turbine Power Converters under Variable Wind Speed Conditions

    Directory of Open Access Journals (Sweden)

    Yingning Qiu

    2016-07-01

    Full Text Available Although Permanent Magnet Synchronous Generator (PMSG wind turbines (WTs mitigate gearbox impacts, they requires high reliability of generators and converters. Statistical analysis shows that the failure rate of direct-drive PMSG wind turbines’ generators and inverters are high. Intelligent fault diagnosis algorithms to detect inverters faults is a premise for the condition monitoring system aimed at improving wind turbines’ reliability and availability. The influences of random wind speed and diversified control strategies lead to challenges for developing intelligent fault diagnosis algorithms for converters. This paper studies open-circuit fault features of wind turbine converters in variable wind speed situations through systematic simulation and experiment. A new fault diagnosis algorithm named Wind Speed Based Normalized Current Trajectory is proposed and used to accurately detect and locate faulted IGBT in the circuit arms. It is compared to direct current monitoring and current vector trajectory pattern approaches. The results show that the proposed method has advantages in the accuracy of fault diagnosis and has superior anti-noise capability in variable wind speed situations. The impact of the control strategy is also identified. Experimental results demonstrate its applicability on practical WT condition monitoring system which is used to improve wind turbine reliability and reduce their maintenance cost.

  9. Variability of load and net load in case of large scale distributed wind power

    OpenAIRE

    Holttinen, Hannele; Kiviluoma, J.; Estanqueiro, Ana; Gómez-Lázaro, E.; Raw, Barry; Dobschinski, Jan; Meibon, Peter; Lannoye, Eamonn; Aigner, Tobias; Wan, Yih H.; Milligan, Michael

    2011-01-01

    Large scale wind power production and its variability is one of the major inputs to wind integration studies. This paper analyses measured data from large scale wind power production. Comparisons of variability are made across several variables: time scale (10-60 minute ramp rates),number of wind farms, and simulated vs. modeled data. Ramp rates for Wind power production, Load (total system load) and Net load (load minus wind power production) demonstrate how wind power increases the...

  10. Variability of load and net load in case of large scale distributed wind power

    OpenAIRE

    Holttinen, Hannele; Kiviluoma, Juha; Estanqueiro, Ana; Aigner, Tobias; Wan, Yih-Huei; Milligan, Michael R.

    2010-01-01

    Large scale wind power production and its variability is one of the major inputs to wind integration studies. This paper analyses measured data from large scale wind power production. Comparisons of variability are made across several variables: time scale (10-60 minute ramp rates), number of wind farms, and simulated vs. modeled data. Ramp rates for Wind power production, Load (total system load) and Net load (load minus wind power production) demonstrate how wind power increases the net loa...

  11. Spectral variability in relativistic MHD winds

    Science.gov (United States)

    Thompson, Christopher

    1998-05-01

    Any cosmological GRB source with a rotation period of ~1 msec and the density of nuclear matter plausibly develops a very strong magnetic field B~1015 G, and disgorges ordered Poynting flux at the required rate of ~1051 erg s-1 [11,6]. This MHD wind advects outward an intense flux of thermal MeV photons which act as Compton seeds and regulate the thermodynamic state of matter. Electron-positron pairs created by photon collisions feed back strongly on the emergent spectrum, enhancing the efficiency of energy deposition in the leptonic component, and making regions of the wind with power-law high-energy spectra much brighter than regions with thermal spectra. By contrast, dissipation deep inside the electron-ion photosphere plausibly leads to quasi-thermal spectra, and may account for the soft X-ray tails seen by Ginga and soft subpulses seen by BATSE. Explicit solutions to the Kompaneets equation in an expanding wind containing isolated hotspots show that a broken power-law spectrum develops in a pair-dominated atmosphere that covers a very large range (~mp/me) in radius, and through which the integrated scattering depth significantly exceeds unity. The overall softening trend observed in many bursts may reflect gradual mixing between a high-Γ jet and surrounding lower-Γ material. We compare double Compton emission and cyclo-synchrotron radiation as sources of Compton seeds. The existence of bursts with soft high-energy cutoffs at rest frame energies much less than ~1 MeV indicates that quasi-thermal Comptonization is occuring. The γ-ray light-curve may provide interesting information about the central source if the asymptotic Lorentz factor is regulated by neutrino emission, yielding a characteristic luminosity of LP~1051 erg s-1. Off-axis material with Lorentz factor Γ∞~1-2 becomes optically thin to scattering with a delay of ~1 day(E/1052 erg)1/2, and can be a direct source of afterglow radiation.

  12. Filament winding cylinders. III - Selection of the process variables

    Science.gov (United States)

    Lee, Soo-Yong; Springer, George S.

    1990-01-01

    By using the Lee-Springer filament winding model temperatures, degrees of cure, viscosities, stresses, strains, fiber tensions, fiber motions, and void diameters were calculated in graphite-epoxy composite cylinders during the winding and subsequent curing. The results demonstrate the type of information which can be generated by the model. It is shown, in reference to these results, how the model, and the corresponding WINDTHICK code, can be used to select the appropriate process variables.

  13. Flow separation on wind turbines blades

    NARCIS (Netherlands)

    Corten, G.P.

    2001-01-01

    In the year 2000, 15GW of wind power was installed throughout the world, producing 100PJ of energy annually. This contributes to the total electricity demand by only 0.2%. Both the installed power and the generated energy are increasing by 30% per year world-wide. If the airflow over wind turbine

  14. Experimental Investigation of the Wind Turbine Blade Root Flow

    NARCIS (Netherlands)

    Akay, B.; Ferreira, C.S.; Van Bussel, G.J.W.

    2010-01-01

    Several methods from experimental to analytical are used to investigate the aerodynamics of a horizontal axis wind turbine. To understand 3D and rotational effects at the root region of a wind turbine blade, correct modeling of the flow field is essential. Aerodynamic models need to be validated by

  15. Chaos in the solar wind flow near Earth

    Indian Academy of Sciences (India)

    We have done a time series analysis of daily average data of solar wind velocity, density and temperature at 1 AU measured by ACE spacecraft for a period of nine years. We have used the raw data without filtering to give a faithful representation of the nonlinear behaviour of the solar wind flow which is a novel one.

  16. Chaos in the solar wind flow near Earth

    Indian Academy of Sciences (India)

    Abstract. We have done a time series analysis of daily average data of solar wind velocity, density and temperature at 1 AU measured by ACE spacecraft for a period of nine years. We have used the raw data without filtering to give a faithful representation of the nonlinear behaviour of the solar wind flow which is a novel one ...

  17. Intelligent Control for the Variable-Speed Variable-Pitch Wind Energy System

    Directory of Open Access Journals (Sweden)

    M. Heidari

    2017-09-01

    Full Text Available In this paper, a new type of multi-variable compensation control method for the wind energy conversion systems (WECS is presented. Based on wind energy conversion systems, combining artificial neural network (ANN control and PID, a new type of PID NN intelligent controller for steady state torque of the wind generator is designed, by which the steady state torque output is regulated to track the optimal curve of wind power factor and the blade pitch angle is regulated to keep the stable power output. Also, the LPV model of the WECS, LPV compensator for the wind generator is designed to effectively compensate output of the wind generator torque and the blade pitch angle. Finally, simulation models of the control system based on a realistic model of a 8kw wind turbines are built up based on the Dspace platform. The results show that the proposed method can reduce interferences caused by disturbed parameters of the WECS, mechanical shocks of the wind generator speed are reduced while capturing the largest wind energyfluctuation range of wind generator power output is reduced, and the working efficiency of the variable pitch servo system is improved.

  18. Numerical investigation of air flow in a supersonic wind tunnel

    Science.gov (United States)

    Drozdov, S. M.; Rtishcheva, A. S.

    2017-11-01

    In the framework of TsAGI’s supersonic wind tunnel modernization program aimed at improving flow quality and extending the range of test regimes it was required to design and numerically validate a new test section and a set of shaped nozzles: two flat nozzles with flow Mach number at nozzle exit M=4 and M=5 and two axisymmetric nozzles with M=5 and M=6. Geometric configuration of the nozzles, the test section (an Eiffel chamber) and the diffuser was chosen according to the results of preliminary calculations of two-dimensional air flow in the wind tunnel circuit. The most important part of the work are three-dimensional flow simulation results obtained using ANSYS Fluent software. The following flow properties were investigated: Mach number, total and static pressure, total and static temperature and turbulent viscosity ratio distribution, heat flux density at wind tunnel walls (for high-temperature flow regimes). It is demonstrated that flow perturbations emerging from the junction of the nozzle with the test section and spreading down the test section behind the boundaries of characteristic rhomb’s reverse wedge are nearly impossible to eliminate. Therefore, in order to perform tests under most uniform flow conditions, the model’s center of rotation and optical window axis should be placed as close to the center of the characteristic rhomb as possible. The obtained results became part of scientific and technical basis of supersonic wind tunnel design process and were applied to a generalized class of similar wind tunnels.

  19. Variable Ratio Hydrostatic Transmission Simulator for Optimal Wind Power Drivetrains

    Directory of Open Access Journals (Sweden)

    Jose M. Garcia-Bravo

    2017-01-01

    Full Text Available This work presents a hydromechanical transmission coupled to an electric AC motor and DC generator to simulate a wind power turbine drive train. The goal of this project was to demonstrate and simulate the ability of a hydrostatic variable ratio system to produce constant electric power at varying wind speeds. The experimental results show that the system can maintain a constant voltage when a 40% variation in input speed is produced. An accompanying computer simulation of the system was built and experimentally validated showing a discrete error no larger than 12%. Both the simulation and the experimental results show that the electrical power output can be regulated further if an energy storage device is used to absorb voltage spikes produced by abrupt changes in wind speed or wind direction.

  20. Multi-decadal Variability of the Wind Power Output

    Science.gov (United States)

    Kirchner Bossi, Nicolas; García-Herrera, Ricardo; Prieto, Luis; Trigo, Ricardo M.

    2014-05-01

    The knowledge of the long-term wind power variability is essential to provide a realistic outlook on the power output during the lifetime of a planned wind power project. In this work, the Power Output (Po) of a market wind turbine is simulated with a daily resolution for the period 1871-2009 at two different locations in Spain, one at the Central Iberian Plateau and another at the Gibraltar Strait Area. This is attained through a statistical downscaling of the daily wind conditions. It implements a Greedy Algorithm as classificator of a geostrophic-based wind predictor, which is derived by considering the SLP daily field from the 56 ensemble members of the longest homogeneous reanalysis available (20CR, 1871-2009). For calibration and validation purposes we use 10 years of wind observations (the predictand) at both sites. As a result, a series of 139 annual wind speed Probability Density Functions (PDF) are obtained, with a good performance in terms of wind speed uncertainty reduction (average daily wind speed MAE=1.48 m/s). The obtained centennial series allow to investigate the multi-decadal variability of wind power from different points of view. Significant periodicities around the 25-yr frequency band, as well as long-term linear trends are detected at both locations. In addition, a negative correlation is found between annual Po at both locations, evidencing the differences in the dynamical mechanisms ruling them (and possible complementary behavior). Furthermore, the impact that the three leading large-scale circulation patterns over Iberia (NAO, EA and SCAND) exert over wind power output is evaluated. Results show distinct (and non-stationary) couplings to these forcings depending on the geographical position and season or month. Moreover, significant non-stationary correlations are observed with the slow varying Atlantic Multidecadal Oscillation (AMO) index for both case studies. Finally, an empirical relationship is explored between the annual Po and the

  1. Quantile Forecasting of Wind Power Using Variability Indices

    Directory of Open Access Journals (Sweden)

    Patrick McSharry

    2013-02-01

    Full Text Available Wind power forecasting techniques have received substantial attention recently due to the increasing penetration of wind energy in national power systems. While the initial focus has been on point forecasts, the need to quantify forecast uncertainty and communicate the risk of extreme ramp events has led to an interest in producing probabilistic forecasts. Using four years of wind power data from three wind farms in Denmark, we develop quantile regression models to generate short-term probabilistic forecasts from 15 min up to six hours ahead. More specifically, we investigate the potential of using various variability indices as explanatory variables in order to include the influence of changing weather regimes. These indices are extracted from the same wind power series and optimized specifically for each quantile. The forecasting performance of this approach is compared with that of appropriate benchmark models. Our results demonstrate that variability indices can increase the overall skill of the forecasts and that the level of improvement depends on the specific quantile.

  2. Using wind speed from a blade-mounted flow sensor for power and load assessment on modern wind turbines

    Directory of Open Access Journals (Sweden)

    M. M. Pedersen

    2017-11-01

    Full Text Available In this paper an alternative method to evaluate power performance and loads on wind turbines using a blade-mounted flow sensor is investigated. The hypothesis is that the wind speed measured at the blades has a high correlation with the power and loads such that a power or load assessment can be performed from a few hours or days of measurements.In the present study a blade-mounted five-hole pitot tube is used as the flow sensor as an alternative to the conventional approach, where the reference wind speed is either measured at a nearby met mast or on the nacelle using lidar technology or cup anemometers. From the flow sensor measurements, an accurate estimate of the wind speed at the rotor plane can be obtained. This wind speed is disturbed by the presence of the wind turbine, and it is therefore different from the free-flow wind speed. However, the recorded wind speed has a high correlation with the actual power production as well as the flap-wise loads as it is measured close to the blade where the aerodynamic forces are acting.Conventional power curves are based on at least 180 h of 10 min mean values, but using the blade-mounted flow sensor both the observation average time and the overall assessment time can potentially be shortened. The basis for this hypothesis is that the sensor is able to provide more observations with higher accuracy, as the sensor follows the rotation of the rotor and because of the high correlation between the flow at the blades and the power production. This is the research question addressed in this paper.The method is first tested using aeroelastic simulations where the dependence of the radial position and effect of multiple blade-mounted flow sensors are also investigated. Next the method is evaluated on the basis of full-scale measurements on a pitch-regulated, variable-speed 3.6 MW wind turbine.It is concluded that the wind speed derived from the blade-mounted flow sensor is highly correlated with the

  3. Spectroscopy and Interferometry of the Winds of Luminous Blue Variables

    Science.gov (United States)

    Richardson, Noel D.

    2012-04-01

    Massive stars are rare, but emit most of the light we observe in the Universe and create many of the heavy elements in the Universe. In this dissertation, I explore the winds of the massive luminous blue variable (LBV) stars. New observational approaches and long time-series are utilized in order to examine the basic observable properties of the stars and the mass lost during their lifetimes. The mass lost through a hot star's wind impacts its long-term evolution. In order to study the winds and the long-term changes of the stars, hot stars with some of the strongest winds (the luminous blue variables or LBVs) were studied in detail with optical spectroscopy and photometry. A 25-year survey on the prototype P Cygni is presented, where the long-term changes are documented for many parameters that have not been examined before. In addition, we present a detailed study of the H-band emitting region through interferometric imaging with the CHARA Array and the MIRC beam combiner as well as spectrophotometry. A detailed study of the Hα line variability of the LBV η Carinae near its recent periastron is presented. The LBV candidate HDE 326823 is found to be a binary system with variability driven by the close binary companion and Roche lobe overflow. Finally, I present a three-year study of many LBVs in the Milky Way Galaxy and Magellanic Clouds for a statistically significant survey of the long-term variability properties of these rare stars as a population. These results show that all the sample stars exhibit similar types of variability, although with different amplitudes. Future studies of LBV winds are outlined, as well as a short discussion of Georgia State University's Hard Labor Creek Observatory for these types of studies.

  4. Survey of variable speed operation of wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, Ola; Hylander, J.; Thorborg, K. [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Electric Power Engineering

    1996-12-01

    During the last five years the production and operation of variable-speed wind turbines have advanced from a few experimental machines to a serial production of at least 10 MW of installed capacity of variable speed machines per week. The rated power of serial wind turbines is today around 600 kW and for the prototypes up to 3000 kW. Variable speed operation of wind turbines can be obtained with several different types of electrical generating systems, such as synchronous generators with diode rectifiers and thyristor inverters or induction generators with IGBT-converters, for the wide speed range. For the narrow speed range the wound motor induction generator with a rotor cascade or a controlled rotor resistance is preferable. The development of permanent magnetic material and the reduction of costs of the power electronic components have opened a possibility of designing cost-effective wind turbines with a directly driven generator. Pitch control together with variable speed will make it possible to limit the power variation within a few percent, 2 to 5 %, of the rated power. 7 refs, 4 figs, 2 tabs

  5. LQG Controller Design for Pitch Regulated Variable Speed Wind Turbine

    DEFF Research Database (Denmark)

    Imran, Raja Muhammed; Hussain, Dil Muhammad Akbar; Chen, Zhe

    2014-01-01

    Variable speed wind turbine is a complex and nonlinear system, a sophisticated control is required to meet the challenges posed by these systems. This paper is presenting a pitch regulation strategy based on LQG (Linear Quadratic Gaussian) to regulate turbine at its rated power and to reject...

  6. Variable Speed Wind Turbines Capability for Temporary Over-Production

    DEFF Research Database (Denmark)

    Tarnowski, Germán Claudio; Kjær, Philip Carne; Sørensen, Poul Ejnar

    2009-01-01

    New control systems for Variable Speed Wind Turbines (VSWT) need to be developed in order to provide inertia response and frequency control to support the grid. This work studies the behavior and capability of VSWT for providing temporary active power overproduction. The study is conducted...

  7. Aerodynamic Research of the Experimental Prototype of the Variable Geometry Wind Turbine

    Directory of Open Access Journals (Sweden)

    Urbahs Aleksandrs

    2017-12-01

    Full Text Available The aim of this research is to develop a vertical rotation axis variable geometry wind turbine (WT. The experimental prototype is being manufactured with the help of CAM (Computer-aided manufacturing technologies – computer-based preparation of the product manufacturing process. The Institute of Aeronautics of Riga Technical University is using CNC (Computer Numerical Control machines for manufacturing the innovative WT and its components. The aerodynamic research has been done in T-4 wind tunnel at an air flow rate from 5 m/s to 30 m/s. The power increase of the variable geometry WT is a topical issue. Installation of such WTs in wind farms is possible and is subject to further research.

  8. Grid impact of variable-speed wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Larsson, Aa. [Chalmers Univ. of Technology, Dept. of Electric Power Engineering, Goeteborg (Sweden); Soerensen, P. [Risoe National Lab., Roskilde (Denmark); Santjer, F. [German Wind Energy Inst., DEWI, Wilhelmshaven (Germany)

    1999-03-01

    In this paper the power quality of variable-speed wind turbines equipped with forced-commutated inverters is investigated. Measurements have been taken on the same type of variable-speed wind turbines in Germany and Sweden. The measurements have been analysed according to existing IEC standards. Special attention has been paid to the aggregation of several wind turbines on flicker emission and harmonics. The aggregation has been compared with the summation laws used in the draft IEC 61400-21 `Power Quality Requirements for Grid Connected wind turbines`. The methods for calculating and summing flicker proposed by IEC Standards are reliable. Harmonics and inter-harmonics are treated in IEC 61000-4-7 and IEC 61000-3-6. The methods for summing harmonics and inter-harmonics in IEC 61000-3-6 are applicable to wind turbines. In order to obtain a correct magnitude of the frequency components, the use of a well-defined window width, according to IEC 61000-4-7 Amendment 1 is of a great importance. (au)

  9. Mesoscale to microscale wind farm flow modeling and evaluation: Mesoscale to Microscale Wind Farm Models

    Energy Technology Data Exchange (ETDEWEB)

    Sanz Rodrigo, Javier [National Renewable Energy Centre (CENER), Sarriguren Spain; Chávez Arroyo, Roberto Aurelio [National Renewable Energy Centre (CENER), Sarriguren Spain; Moriarty, Patrick [National Renewable Energy Laboratory (NREL), Golden CO USA; Churchfield, Matthew [National Renewable Energy Laboratory (NREL), Golden CO USA; Kosović, Branko [National Center for Atmospheric Research (NCAR), Boulder CO USA; Réthoré, Pierre-Elouan [Technical University of Denmark (DTU), Roskilde Denmark; Hansen, Kurt Schaldemose [Technical University of Denmark (DTU), Lyngby Denmark; Hahmann, Andrea [Technical University of Denmark (DTU), Roskilde Denmark; Mirocha, Jeffrey D. [Lawrence Livermore National Laboratory, Livermore CA USA; Rife, Daran [DNV GL, San Diego CA USA

    2016-08-31

    The increasing size of wind turbines, with rotors already spanning more than 150 m diameter and hub heights above 100 m, requires proper modeling of the atmospheric boundary layer (ABL) from the surface to the free atmosphere. Furthermore, large wind farm arrays create their own boundary layer structure with unique physics. This poses significant challenges to traditional wind engineering models that rely on surface-layer theories and engineering wind farm models to simulate the flow in and around wind farms. However, adopting an ABL approach offers the opportunity to better integrate wind farm design tools and meteorological models. The challenge is how to build the bridge between atmospheric and wind engineering model communities and how to establish a comprehensive evaluation process that identifies relevant physical phenomena for wind energy applications with modeling and experimental requirements. A framework for model verification, validation, and uncertainty quantification is established to guide this process by a systematic evaluation of the modeling system at increasing levels of complexity. In terms of atmospheric physics, 'building the bridge' means developing models for the so-called 'terra incognita,' a term used to designate the turbulent scales that transition from mesoscale to microscale. This range of scales within atmospheric research deals with the transition from parameterized to resolved turbulence and the improvement of surface boundary-layer parameterizations. The coupling of meteorological and wind engineering flow models and the definition of a formal model evaluation methodology, is a strong area of research for the next generation of wind conditions assessment and wind farm and wind turbine design tools. Some fundamental challenges are identified in order to guide future research in this area.

  10. Variability of Wind Speeds and Power over Europe

    Science.gov (United States)

    Tambke, J.; von Bremen, L.; de Decker, J.; Schmidt, M.; Steinfeld, G.; Wolff, J.-O.

    2010-09-01

    of momentum through the air-sea interface is described by a common wave boundary layer with enhanced Charnock dynamics. 2.) Wind Field Variability Time series of wind speed and power from 400 potential offshore locations and 16,000 onshore sites in the 2020 and 2030 scenarios are part of the design basis of the EU-project www.OffshoreGrid.eu. This project investigates the grid integration of all planned offshore farms in Northern Europe and will serve as the basis for the "Blueprint for Offshore Grids" by the European Commission. The synchronous wind time series were calculated with the WRF-model. The simulation comprises four years and was validated with a number of wind measurements. We present detailed statistics of local, clustered and regional power production. The analysis quantifies spatial and temporal correlations, extreme events and ramps. Important results are the smoothing effects in a pan-European offshore grid. Key words: Offshore Wind Resource Assessment; Marine Meteorology; Wind Speed Profile; Marine Atmospheric Boundary Layer; Wind Variability, Spatio-temporal Correlation; Electricity Grid Integration

  11. The variable nature of the comet-solar wind interaction

    International Nuclear Information System (INIS)

    Flammer, K.R.

    1988-01-01

    The different modes of interaction of the solar wind with a Halley-type comet as it approaches the sun are discussed. At large heliocentric distances the solar wind penetrates unimpeded onto the surface of the comet nucleus. This causes electrostatic charging and expulsion of fine dust from the comet surface; a process which is modulated by the local solar wind flux. The observed irregular brightness variation of comet Halley between 11 and 8 AU (inbound) are explained in terms of this mechanism. As the comet moves closer to the sun (within 4 AU), mass loading of the solar wind by the heavy cometary ions causes the flow to slow down, thereby enhancing the convected interplanetary magnetic field significantly. This magnetic field enhancement is the earliest and most sensitive signature associated with the solar wind mass loading. Still farther in (≤ 3 AU), as the mass loading approaches a critical value, a weak collisionless standing shock forms, which recedes upstream of the nucleus as the comet approaches the sun. The cometary atmosphere becomes dense enough so that a well-defined ionopause forms which separates the cometary ionospheric plasma from the contaminated solar wind plasma only when the comet is within ∼ 2.2 AU from the sun. The stability of the ionopause is examined under the framework of linear magnetohydrodynamic taking into account the effects of ion-neutral drag, sources, curvature and compressibility. Both Kelvin-Helmholtz and Rayleigh Taylor modes are excited. The growth rates of these modes are determined from various shears and density jumps at the ionopause and under different solar wind conditions. A quasi-linear theory is then used to examine the evolution of the unstable modes to finite amplitudes

  12. Calculation of Wind Power Limit adjusting the Continuation Power Flow

    International Nuclear Information System (INIS)

    Santos Fuentefria, Ariel; Castro Fernández, Miguel; Martínez García, Antonio

    2012-01-01

    The wind power insertion in the power system is an important issue and can create some instability problems in voltage and system frequency due to stochastic origin of wind. Know the Wind Power Limit is a very important matter. Existing in bibliography a few methods for calculation of wind power limit. The calculation is based in static constrains, dynamic constraints or both. In this paper is developed a method for the calculation of wind power limit using some adjust in the continuation power flow, and having into account the static constrains. The method is complemented with Minimal Power Production Criterion. The method is proved in the Isla de la Juventud Electric System. The software used in the simulations was the Power System Analysis Toolbox (PSAT). (author)

  13. Improving transition between power optimization and power limitation of variable speed/variable pitch wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, A.D.; Bindner, H. [Risoe National Lab., Wind Energy and Atmospheric Physics Dept., Roskilde (Denmark); Rebsdorf, A. [Vestas Wind Systems A/S, Lem (Denmark)

    1999-03-01

    The paper summarises and describes the main results of a recently performed study of improving the transition between power optimization and power limitation for variable speed/variable pitch wind turbines. The results show that the capability of varying the generator speed also can be exploited in the transition stage to improve the quality of the generated power. (au)

  14. Wind generator with electronic variable-speed drives

    Energy Technology Data Exchange (ETDEWEB)

    David, A.; Buchheit, N.; Jakobsen, H.

    1996-12-31

    Variable speed drives have been inserted between the network and the generator on certain recent wind power facilities. They have the following advantages: the drive allows the wind generator to operate at low speed with a significant reduction in acoustic noise, an important point if the facilities are sited near populated areas; the drive optimizes energy transfer, providing a gain of 4 to 10 %; the drive can possibly replace certain mechanical parts (the starting system and it in some cases, the reduction gear); the drive not only provides better transient management in relation to the network for less mechanical stress on the wind generator, it is also able to control reactive power. One commercial drive design sold by several manufacturers has already been installed on several wind generators with outputs of between 150 and 600 kw. In addition, such a solution is extremely well suited to mixed renewable energy systems. This design uses two inverse rectifier type converters and can therefore exchange energy in both directions. The equivalent drive with a single IGBT converter on the motor side and a diode converter on the network side is the solution most widely adopted throughout industry (with more than 50, 000 units installed in France per year). It still remains to be seen whether such a solution could be profitable in wind generator application (since the cost of the drive is quite high). This technical analysis is more destined for the converter-machine assembly specialists and is presented in this document, paying particular attention as it does to the modelling of the `wind energy - generator - drive - network` assembly, the associated drive command and control strategies and the simulations obtained during various transients. A 7.5 kW test bed has been installed in the Laboratoire d`Electronique de Puissance de Clamart, enabling tests to be carried out which emulate the operation of a wind generator.

  15. Fuzzy logic based variable speed wind generation system

    Energy Technology Data Exchange (ETDEWEB)

    Simoes, M.G. [Sao Paulo Univ., SP (Brazil). Escola Politecnica. PMC - Mecatronica; Bose, B.K. [Tennessee Univ., Knoxville, TN (United States). Dept. of Electrical Engineering; Spiegel, Ronal J. [Environmental Protection Agency, Research Triangle Park, NC (United States). Air and Energy Engineering Research Lab.

    1996-12-31

    This work demonstrates the successful application of fuzzy logic to enhance the performance and control of a variable speed wind generation system. A maximum power point tracker control is performed with three fuzzy controllers, without wind velocity measurement, and robust to wind vortex and turbine torque ripple. A squirrel cage induction generator feeds the power to a double-sided PWM converter system which pumps the power to a utility grid or supplies to an autonomous system. The fuzzy logic controller FLC-1 searches on-line the generator speed so that the aerodynamic efficiency of the wind turbine is optimized. A second fuzzy controller FLC-2 programs the machine flux by on-line search so as to optimize the machine-converter system wind vortex. Detailed analysis and simulation studies were performed for development of the control strategy and fuzzy algorithms, and a DSP TMS320C30 based hardware with C control software was built for the performance evaluation of a laboratory experimental set-up. The theoretical development was fully validated and the system is ready to be reproduced in a higher power installation. (author) 7 refs., 3 figs., 1 tab.

  16. Numerical simulations of flow fields through conventionally controlled wind turbines and wind farms

    International Nuclear Information System (INIS)

    Yilmaz, Ali Emre; Meyers, Johan

    2014-01-01

    In the current study, an Actuator-Line Model (ALM) is implemented in our in-house pseudo-spectral LES solver SP-WIND, including a turbine controller. Below rated wind speed, turbines are controlled by a standard-torque-controller aiming at maximum power extraction from the wind. Above rated wind speed, the extracted power is limited by a blade pitch controller which is based on a proportional-integral type control algorithm. This model is used to perform a series of single turbine and wind farm simulations using the NREL 5MW turbine. First of all, we focus on below-rated wind speed, and investigate the effect of the farm layout on the controller calibration curves. These calibration curves are expressed in terms of nondimensional torque and rotational speed, using the mean turbine-disk velocity as reference. We show that this normalization leads to calibration curves that are independent of wind speed, but the calibration curves do depend on the farm layout, in particular for tightly spaced farms. Compared to turbines in a lone-standing set-up, turbines in a farm experience a different wind distribution over the rotor due to the farm boundary-layer interaction. We demonstrate this for fully developed wind-farm boundary layers with aligned turbine arrangements at different spacings (5D, 7D, 9D). Further we also compare calibration curves obtained from full farm simulations with calibration curves that can be obtained at a much lower cost using a minimal flow unit

  17. Large Eddy Simulation of Turbulent Flows in Wind Energy

    DEFF Research Database (Denmark)

    Chivaee, Hamid Sarlak

    Reynolds numbers, and thereafter, the fully-developed infinite wind farm boundary later simulations are performed. Sources of inaccuracy in the simulations are investigated and it is found that high Reynolds number flows are more sensitive to the choice of the SGS model than their low Reynolds number......This research is devoted to the Large Eddy Simulation (LES), and to lesser extent, wind tunnel measurements of turbulent flows in wind energy. It starts with an introduction to the LES technique associated with the solution of the incompressible Navier-Stokes equations, discretized using a finite...... volume method. The study is followed by a detailed investigation of the Sub-Grid Scale (SGS) modeling. New SGS models are implemented into the computing code, and the effect of SGS models are examined for different applications. Fully developed boundary layer flows are investigated at low and high...

  18. Flow variability within the Alaska Coastal Current in winter

    Science.gov (United States)

    Jarosz, Ewa; Wang, David; Wijesekera, Hemantha; Scott Pegau, W.; Moum, James N.

    2017-05-01

    Coastal circulation off Kayak Island in the northern Gulf of Alaska was explored in wintertime (October 2012 to March 2013) by deploying nine moorings within the Alaska Coastal Current (ACC). Hydrographic, bottom-pressure, and velocity observations depicted well the winter variability of the ACC. Atmospheric observations showed a net loss of heat, 30 W m-2 or more, from the ocean to the atmosphere and indicated that storms with downwelling-favorable winds over 10 m s-1 frequently passed over the area. Due to vigorous mixing during storms, the waters were well-mixed or weakly stratified whereas bottom-pressure anomalies were mainly related to surface-elevation fluctuations and indicated that there was also a cross-shelf surface-elevation gradient. Current observations showed along-shelf nearly barotropic subtidal flow of 40 cm s-1 or more throughout the water column. They also indicated that along-shelf flow was primarily driven by the cross-shelf pressure gradient resulting from the cross-shelf surface-elevation gradient and not by wind stress. Analyses suggested that flow dynamics within the ACC in winter were well-described by vertically averaged momentum equations and showed a dominance of the cross-shelf pressure gradient that was mainly balanced by the Coriolis term. Observations also showed that when winds relaxed, cold low-salinity waters moved offshore and stratification was reestablished. Consequently, near-shore waters were less dense, i.e., cooler and fresher than offshore waters resulting in the cross-shelf density gradient that may have contributed to the along-shelf flow by generating near-surface currents of ˜20 cm s-1.

  19. Wake flow control using a dynamically controlled wind turbine

    Science.gov (United States)

    Castillo, Ricardo; Wang, Yeqin; Pol, Suhas; Swift, Andy; Hussain, Fazle; Westergaard, Carsten; Texas Tech University Team

    2016-11-01

    A wind tunnel based "Hyper Accelerated Wind Farm Kinematic-Control Simulator" (HAWKS) is being built at Texas Tech University to emulate controlled wind turbine flow physics. The HAWKS model turbine has pitch, yaw and speed control which is operated in real model time, similar to that of an equivalent full scale turbine. Also, similar to that of a full scale wind turbine, the controls are developed in a Matlab Simulink environment. The current diagnostic system consists of power, rotor position, rotor speed measurements and PIV wake characterization with four cameras. The setup allows up to 7D downstream of the rotor to be mapped. The purpose of HAWKS is to simulate control strategies at turnaround times much faster than CFD and full scale testing. The fundamental building blocks of the simulator have been tested, and demonstrate wake steering for both static and dynamic turbine actuation. Parameters which have been studied are yaw, rotor speed and combinations hereof. The measured wake deflections for static yaw cases are in agreement with previously reported research implying general applicability of the HAWKS platform for the purpose of manipulating the wake. In this presentation the general results will be introduced followed by an analysis of the wake turbulence and coherent structures when comparing static and dynamic flow cases. The outcome of such studies could ultimately support effective wind farm wake flow control strategies. Texas Emerging Technology Fund (ETF).

  20. Reduction of the Random Variables of the Turbulent Wind Field

    DEFF Research Database (Denmark)

    Sichani, Mahdi Teimouri; Nielsen, Søren R.K.

    2012-01-01

    Applicability of the Probability Density Evolution Method (PDEM) for realizing evolution of the probability density for the wind turbines has rather strict bounds on the basic number of the random variables involved in the model. The efficiency of most of the Advanced Monte Carlo (AMC) methods, i...... of the integral domain; this becomes increasingly difficult as the dimensions of the integral domain increase. On the other hand efficiency of the AMC methods is closely dependent on the design points of the problem. Presence of many random variables may increase the number of the design points, hence affects.......e. Importance Sampling (IS) or Subset Simulation (SS), will be deteriorated on problems with many random variables. The problem with PDEM is that a multidimensional integral has to be carried out over the space defined by the random variables of the system. The numerical procedure requires discretization...

  1. The atmospheric transfer of pollution for a site with rapidly variable winds (low winds)

    International Nuclear Information System (INIS)

    Maigne, J.P.

    1980-01-01

    This paper firstly describes the ICAIR 2 computer model which takes into account the variability in space and time of wind speed and direction in estimating the dispersion of a pollutant in the atmosphere. This is done by breaking down each release into a series of separate puffs which continuously respond to the meteorological conditions applying at the point in time to the positions in which they are located. The law governing the change in each of the puffs is tri-Gaussian and the standard deviations used are a function of the transfer time and the wind speed for transfer times of less than 2000 seconds and of the transfer time alone beyond this period. Finally, the concentration patterns at various points calculated using ICAIR 2 are compared with those obtained during a series of experiments in situ using tracers at low wind speeds (< 1 m/s)

  2. Interconnector capacity allocation in offshore grids with variable wind generation

    DEFF Research Database (Denmark)

    Schröder, Sascha Thorsten

    2013-01-01

    its generation flows only to the high-price market. Granting the high-price market income for wind generation as the opposite design option reduces congestion rents. Otherwise, compensation measures through support schemes or different balancing responsibilities may be discussed....... with onshore installations to reduce balancing demand. This is not necessarily the case if the interconnector capacity is sold through implicit or explicit auctions. Different design options are discussed and quantified for a number of examples based on Danish, Dutch, German and Norwegian power markets....... It is concluded that treating offshore generation as a single price zone within the interconnector reduces the wind operator’s ability to pool it with other generation. Furthermore, a single offshore price zone between two markets will always receive the lower spot market price of the neighbouring zones, although...

  3. Fast Multilevel Panel Method for Wind Turbine Rotor Flow Simulations

    NARCIS (Netherlands)

    van Garrel, Arne; Venner, Cornelis H.; Hoeijmakers, Hendrik Willem Marie

    2017-01-01

    A fast multilevel integral transform method has been developed that enables the rapid analysis of unsteady inviscid flows around wind turbines rotors. A low order panel method is used and the new multi-level multi-integration cluster (MLMIC) method reduces the computational complexity for

  4. Control of variable speed variable pitch wind turbine based on a disturbance observer

    Science.gov (United States)

    Ren, Haijun; Lei, Xin

    2017-11-01

    In this paper, a novel sliding mode controller based on disturbance observer (DOB) to optimize the efficiency of variable speed variable pitch (VSVP) wind turbine is developed and analyzed. Due to the highly nonlinearity of the VSVP system, the model is linearly processed to obtain the state space model of the system. Then, a conventional sliding mode controller is designed and a DOB is added to estimate wind speed. The proposed control strategy can successfully deal with the random nature of wind speed, the nonlinearity of VSVP system, the uncertainty of parameters and external disturbance. Via adding the observer to the sliding mode controller, it can greatly reduce the chattering produced by the sliding mode switching gain. The simulation results show that the proposed control system has the effectiveness and robustness.

  5. Measurement of rotor centre flow direction and turbulence in wind farm environment

    DEFF Research Database (Denmark)

    Friis Pedersen, Troels; Demurtas, Giorgio; Sommer, A.

    2014-01-01

    The measurement of inflow to a wind turbine rotor was made with a spinner anemometer on a 2 MW wind turbine in a wind farm of eight wind turbines. The wind speed, yaw misalignment and flow inclination angle was measured during a five months measurement campaign. Angular measurements were calibrat...

  6. Composite Pressure Vessel Variability in Geometry and Filament Winding Model

    Science.gov (United States)

    Green, Steven J.; Greene, Nathanael J.

    2012-01-01

    Composite pressure vessels (CPVs) are used in a variety of applications ranging from carbon dioxide canisters for paintball guns to life support and pressurant storage on the International Space Station. With widespread use, it is important to be able to evaluate the effect of variability on structural performance. Data analysis was completed on CPVs to determine the amount of variation that occurs among the same type of CPV, and a filament winding routine was developed to facilitate study of the effect of manufacturing variation on structural response.

  7. Reducing Turbine Mechanical Loads Using Flow Model-Based Wind Farm Controller

    DEFF Research Database (Denmark)

    Kazda, Jonas; Cutululis, Nicolaos Antonio

    WindFarm [2]. SimWindFarm allows for the simultaneous simulation of the turbulent hub height flow field in the wind farm, the turbine dynamics and the wind farm control. The tests show a reduction of loads when compared to other optimal wind farm control approaches. Future work shall enhance the controller......Cumulated O&M costs of offshore wind farms are comparable with wind turbine CAPEX of such wind farm. In wind farms, wake effects can result in up to 80% higher fatigue loads at downstream wind turbines [1] and consequently larger O&M costs. The present work therefore investigates to reduce...... these loads during the provision of grid balancing services using optimal model-based wind farm control. Wind farm controllers coordinate the operating point of wind turbines in a wind farm in order to achieve a given objective. The investigated objective of the control in this work is to follow a total wind...

  8. An Analysis of Variable-Speed Wind Turbine Power-Control Methods with Fluctuating Wind Speed

    Directory of Open Access Journals (Sweden)

    Seung-Il Moon

    2013-07-01

    Full Text Available Variable-speed wind turbines (VSWTs typically use a maximum power-point tracking (MPPT method to optimize wind-energy acquisition. MPPT can be implemented by regulating the rotor speed or by adjusting the active power. The former, termed speed-control mode (SCM, employs a speed controller to regulate the rotor, while the latter, termed power-control mode (PCM, uses an active power controller to optimize the power. They are fundamentally equivalent; however, since they use a different controller at the outer control loop of the machine-side converter (MSC controller, the time dependence of the control system differs depending on whether SCM or PCM is used. We have compared and analyzed the power quality and the power coefficient when these two different control modes were used in fluctuating wind speeds through computer simulations. The contrast between the two methods was larger when the wind-speed fluctuations were greater. Furthermore, we found that SCM was preferable to PCM in terms of the power coefficient, but PCM was superior in terms of power quality and system stability.

  9. Wake Flow Simulation of a Vertical Axis Wind Turbine Under the Influence of Wind Shear

    Science.gov (United States)

    Mendoza, Victor; Goude, Anders

    2017-05-01

    The current trend of the wind energy industry aims for large scale turbines installed in wind farms. This brings a renewed interest in vertical axis wind turbines (VAWTs) since they have several advantages over the traditional Horizontal Axis Wind Tubines (HAWTs) for mitigating the new challenges. However, operating VAWTs are characterized by complex aerodynamics phenomena, presenting considerable challenges for modeling tools. An accurate and reliable simulation tool for predicting the interaction between the obtained wake of an operating VAWT and the flow in atmospheric open sites is fundamental for optimizing the design and location of wind energy facility projects. The present work studies the wake produced by a VAWT and how it is affected by the surface roughness of the terrain, without considering the effects of the ambient turbulence intensity. This study was carried out using an actuator line model (ALM), and it was implemented using the open-source CFD library OpenFOAM to solve the governing equations and to compute the resulting flow fields. An operational H-shaped VAWT model was tested, for which experimental activity has been performed at an open site north of Uppsala-Sweden. Different terrains with similar inflow velocities have been evaluated. Simulated velocity and vorticity of representative sections have been analyzed. Numerical results were validated using normal forces measurements, showing reasonable agreement.

  10. Wind tunnel study of a vertical axis wind turbine in a turbulent boundary layer flow

    Science.gov (United States)

    Rolin, Vincent; Porté-Agel, Fernando

    2015-04-01

    Vertical axis wind turbines (VAWTs) are in a relatively infant state of development when compared to their cousins the horizontal axis wind turbines. Very few studies have been carried out to characterize the wake flow behind VAWTs, and virtually none to observe the influence of the atmospheric boundary layer. Here we present results from an experiment carried out at the EPFL-WIRE boundary-layer wind tunnel and designed to study the interaction between a turbulent boundary layer flow and a VAWT. Specifically we use stereoscopic particle image velocimetry to observe and quantify the influence of the boundary layer flow on the wake generated by a VAWT, as well as the effect the VAWT has on the boundary layer flow profile downstream. We find that the wake behind the VAWT is strongly asymmetric, due to the varying aerodynamic forces on the blades as they change their position around the rotor. We also find that the wake adds strong turbulence levels to the flow, particularly on the periphery of the wake where vortices and strong velocity gradients are present. The boundary layer is also shown to cause greater momentum to be entrained downwards rather than upwards into the wake.

  11. CFD Calculations of the Flow Around a Wind Turbine Nacelle

    International Nuclear Information System (INIS)

    Varela, J.; Bercebal, D.

    1999-01-01

    The purpose of this work is to identify the influence of a MADE AE30 wind turbine nacelle on the site calibration anemometer placed on the upper back of the nacelle by means of flow simulations around the nacelle using FLUENT, a Commercial Computational Fluid Dynamics code (CFD), which provides modeling capabilities for the simulation of wide range laminar and turbulent fluid flow problems. Different 2D and 3D simulations were accomplished in order to estimate the effects of the complex geometry on the flow behavior. The speed up and braking values of the air flow at the anemometer position are presented for different flow conditions. Finally some conclusions about the accuracy of results are mentioned. (Author) 5 refs

  12. Modeling variability in porescale multiphase flow experiments

    Energy Technology Data Exchange (ETDEWEB)

    Ling, Bowen; Bao, Jie; Oostrom, Mart; Battiato, Ilenia; Tartakovsky, Alexandre M.

    2017-07-01

    Microfluidic devices and porescale numerical models are commonly used to study multiphase flow in biological, geological, and engineered porous materials. In this work, we perform a set of drainage and imbibition experiments in six identical microfluidic cells to study the reproducibility of multiphase flow experiments. We observe significant variations in the experimental results, which are smaller during the drainage stage and larger during the imbibition stage. We demonstrate that these variations are due to sub-porescale geometry differences in microcells (because of manufacturing defects) and variations in the boundary condition (i.e.,fluctuations in the injection rate inherent to syringe pumps). Computational simulations are conducted using commercial software STAR-CCM+, both with constant and randomly varying injection rate. Stochastic simulations are able to capture variability in the experiments associated with the varying pump injection rate.

  13. Modeling variability in porescale multiphase flow experiments

    Science.gov (United States)

    Ling, Bowen; Bao, Jie; Oostrom, Mart; Battiato, Ilenia; Tartakovsky, Alexandre M.

    2017-07-01

    Microfluidic devices and porescale numerical models are commonly used to study multiphase flow in biological, geological, and engineered porous materials. In this work, we perform a set of drainage and imbibition experiments in six identical microfluidic cells to study the reproducibility of multiphase flow experiments. We observe significant variations in the experimental results, which are smaller during the drainage stage and larger during the imbibition stage. We demonstrate that these variations are due to sub-porescale geometry differences in microcells (because of manufacturing defects) and variations in the boundary condition (i.e., fluctuations in the injection rate inherent to syringe pumps). Computational simulations are conducted using commercial software STAR-CCM+, both with constant and randomly varying injection rates. Stochastic simulations are able to capture variability in the experiments associated with the varying pump injection rate.

  14. MATHEMATICAL MODELING OF FLOW PARAMETERS FOR SINGLE WIND TURBINE

    Directory of Open Access Journals (Sweden)

    2016-01-01

    Full Text Available It is known that on the territory of the Russian Federation the construction of several large wind farms is planned. The tasks connected with design and efficiency evaluation of wind farm work are in demand today. One of the possible directions in design is connected with mathematical modeling. The method of large eddy simulation developed within the direction of computational hydrodynamics allows to reproduce unsteady structure of the flow in details and to determine various integrated values. The calculation of work for single wind turbine installation by means of large eddy simulation and Actuator Line Method along the turbine blade is given in this work. For problem definition the numerical method in the form of a box was considered and the adapted unstructured grid was used.The mathematical model included the main equations of continuity and momentum equations for incompressible fluid. The large-scale vortex structures were calculated by means of integration of the filtered equations. The calculation was carried out with Smagorinsky model for determination of subgrid scale turbulent viscosity. The geometrical parametersof wind turbine were set proceeding from open sources in the Internet.All physical values were defined at center of computational cell. The approximation of items in equations was ex- ecuted with the second order of accuracy for time and space. The equations for coupling velocity and pressure were solved by means of iterative algorithm PIMPLE. The total quantity of the calculated physical values on each time step was equal to 18. So, the resources of a high performance cluster were required.As a result of flow calculation in wake for the three-bladed turbine average and instantaneous values of velocity, pressure, subgrid kinetic energy and turbulent viscosity, components of subgrid stress tensor were worked out. The re- ceived results matched the known results of experiments and numerical simulation, testify the opportunity

  15. Transient analysis of variable-speed wind turbines at wind speed disturbances and a pitch control malfunction

    International Nuclear Information System (INIS)

    Melicio, R.; Mendes, V.M.F.; Catalao, J.P.S.

    2011-01-01

    As wind power generation undergoes rapid growth, new technical challenges emerge: dynamic stability and power quality. The influence of wind speed disturbances and a pitch control malfunction on the quality of the energy injected into the electric grid is studied for variable-speed wind turbines with different power-electronic converter topologies. Additionally, a new control strategy is proposed for the variable-speed operation of wind turbines with permanent magnet synchronous generators. The performance of disturbance attenuation and system robustness is ascertained. Simulation results are presented and conclusions are duly drawn.

  16. The impacts of wind power integration on sub-daily variation in river flows downstream of hydroelectric dams.

    Science.gov (United States)

    Kern, Jordan D; Patino-Echeverri, Dalia; Characklis, Gregory W

    2014-08-19

    Due to their operational flexibility, hydroelectric dams are ideal candidates to compensate for the intermittency and unpredictability of wind energy production. However, more coordinated use of wind and hydropower resources may exacerbate the impacts dams have on downstream environmental flows, that is, the timing and magnitude of water flows needed to sustain river ecosystems. In this paper, we examine the effects of increased (i.e., 5%, 15%, and 25%) wind market penetration on prices for electricity and reserves, and assess the potential for altered price dynamics to disrupt reservoir release schedules at a hydroelectric dam and cause more variable and unpredictable hourly flow patterns (measured in terms of the Richards-Baker Flashiness (RBF) index). Results show that the greatest potential for wind energy to impact downstream flows occurs at high (∼25%) wind market penetration, when the dam sells more reserves in order to exploit spikes in real-time electricity prices caused by negative wind forecast errors. Nonetheless, compared to the initial impacts of dam construction (and the dam's subsequent operation as a peaking resource under baseline conditions) the marginal effects of any increased wind market penetration on downstream flows are found to be relatively minor.

  17. Winds of Massive Magnetic Stars: Interacting Fields and Flow

    Science.gov (United States)

    Daley-Yates, S.; Stevens, I. R.

    2018-01-01

    We present results of 3D numerical simulations of magnetically confined, radiatively driven stellar winds of massive stars, conducted using the astrophysical MHD code Pluto, with a focus on understanding the rotational variability of radio and sub-mm emission. Radiative driving is implemented according to the Castor, Abbott and Klein theory of radiatively driven winds. Many magnetic massive stars posses a magnetic axis which is inclined with respect to the rotational axis. This misalignment leads to a complex wind structure as magnetic confinement, centrifugal acceleration and radiative driving act to channel the circumstellar plasma into a warped disk whose observable properties should be apparent in multiple wavelengths. This structure is analysed to calculate free-free thermal radio emission and determine the characteristic intensity maps and radio light curves.

  18. Vertical axis wind turbine wake in boundary layer flow in a wind tunnel

    Science.gov (United States)

    Rolin, Vincent; Porté-Agel, Fernando

    2016-04-01

    A vertical axis wind turbine is placed in a boundary layer flow in a wind tunnel, and its wake is investigated. Measurements are performed using an x-wire to measure two components of velocity and turbulence statistics in the wake of the wind turbine. The study is performed at various heights and crosswind positions in order to investigate the full volume of the wake for a range of tip speed ratios. The velocity deficit and levels of turbulence in the wake are related to the performance of the turbine. The asymmetric incoming boundary layer flow causes the rate of recovery in the wake to change as a function of height. Higher shear between the wake and unperturbed flow occurs at the top edge of the wake, inducing stronger turbulence and mixing in this region. The difference in flow relative to the blades causes the velocity deficit and turbulence level to change as a function of crosswind position behind the rotor. The relative difference diminishes with increasing tip speed ratio. Therefore, the wake becomes more homogeneous as tip speed ratio increases.

  19. MHD Flows in Compact Astrophysical Objects Accretion, Winds and Jets

    CERN Document Server

    Beskin, Vasily S

    2010-01-01

    Accretion flows, winds and jets of compact astrophysical objects and stars are generally described within the framework of hydrodynamical and magnetohydrodynamical (MHD) flows. Analytical analysis of the problem provides profound physical insights, which are essential for interpreting and understanding the results of numerical simulations. Providing such a physical understanding of MHD Flows in Compact Astrophysical Objects is the main goal of this book, which is an updated translation of a successful Russian graduate textbook. The book provides the first detailed introduction into the method of the Grad-Shafranov equation, describing analytically the very broad class of hydrodynamical and MHD flows. It starts with the classical examples of hydrodynamical accretion onto relativistic and nonrelativistic objects. The force-free limit of the Grad-Shafranov equation allows us to analyze in detail the physics of the magnetospheres of radio pulsars and black holes, including the Blandford-Znajek process of energy e...

  20. Power system integration and control of variable speed wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Eek, Jarle

    2009-12-15

    A wind power plant is a highly dynamic system that dependent on the type of technology requires a number of automatic control loops. This research deals with modelling, control and analysis related to power system integration of variable speed, pitch controlled wind turbines. All turbine components have been modelled and implemented in the power system simulation program SIMPOW, and a description of the modelling approach for each component is given. The level of model detail relates to the classical modelling of power system components for power system stability studies, where low frequency oscillations are of special importance. The wind turbine model includes a simplified representation of the developed rotor torque and the thrust force based on C{sub p-} and C{sub t} characteristic curves. The mechanical system model represents the fundamental torsional mode and the first mode of blades and tower movements. Two generator technologies have been investigated. The doubly fed induction generator (DFIG) and the stator converter interfaced permanent magnet synchronous generator (PMSG). A simplified model of a 2 level voltage source converter is used for both machine types. The generator converter controllers have been given special attention. All model components are linearized for the purpose of control system design and power system interaction related to small signal stability analysis. Different control strategies discussed in the literature have been investigated with regard to power system interaction aspects. All control parameters are identified using the internal model control approach. The analysis is focused on three main areas: 1. Identification of low damped oscillatory modes. This is carried out by the establishment and discussion of wind turbine modelling. 2. Interaction between control loops. A systematic approach is presented in order to analyse the influence of control loops used in variable speed wind turbines. 3.Impact on power system performance

  1. Free flow wind speed from a blade-mounted flow sensor

    DEFF Research Database (Denmark)

    Pedersen, Mads Mølgaard; Larsen, Torben Juul; Aagaard Madsen, Helge

    2018-01-01

    This paper presents a method for obtaining the free-inflow velocities from a 3-D flow sensor mounted on the blade of a wind turbine. From its position on the rotating blade, e.g. one-third from the tip, a blade-mounted flow sensor (BMFS) is able to provide valuable information about the turbulent...... and procedures to estimate the induced velocities, i.e. the disturbance of the flow field caused by the wind turbine. These velocities are subtracted from the flow velocities measured by the BMFS to obtain the free-inflow velocities. Aeroelastic codes, like HAWC2, typically use a similar approach to calculate...... the induction, but they use it for the reversed process, i.e. they add the induction to the free inflow to get the flow velocities at the blades, which are required to calculate the resulting aerodynamic forces. The aerodynamic models included in the current method comprise models based on blade element...

  2. Operational constraints and hydrologic variability limit hydropower in supporting wind integration

    Science.gov (United States)

    Fernandez, Alisha R.; Blumsack, Seth A.; Reed, Patrick M.

    2013-06-01

    Climate change mitigation will require rapid adoption of low-carbon energy resources. The integration of large-scale wind energy in the United States (US) will require controllable assets to balance the variability of wind energy production. Previous work has identified hydropower as an advantageous asset, due to its flexibility and low-carbon emissions production. While many dams currently provide energy and environmental services in the US and globally, we find that multi-use hydropower facilities would face significant policy conflicts if asked to store and release water to accommodate wind integration. Specifically, we develop a model simulating hydroelectric operational decisions when the electric facility is able to provide wind integration services through a mechanism that we term ‘flex reserves’. We use Kerr Dam in North Carolina as a case study, simulating operations under two alternative reservoir policies, one reflecting current policies and the other regulating flow levels to promote downstream ecosystem conservation. Even under perfect information and significant pricing incentives, Kerr Dam faces operational conflicts when providing any substantial levels of flex reserves while also maintaining releases consistent with other river management requirements. These operational conflicts are severely exacerbated during periods of drought. Increase of payments for flex reserves does not resolve these operational and policy conflicts.

  3. Operational constraints and hydrologic variability limit hydropower in supporting wind integration

    International Nuclear Information System (INIS)

    Fernandez, Alisha R; Blumsack, Seth A; Reed, Patrick M

    2013-01-01

    Climate change mitigation will require rapid adoption of low-carbon energy resources. The integration of large-scale wind energy in the United States (US) will require controllable assets to balance the variability of wind energy production. Previous work has identified hydropower as an advantageous asset, due to its flexibility and low-carbon emissions production. While many dams currently provide energy and environmental services in the US and globally, we find that multi-use hydropower facilities would face significant policy conflicts if asked to store and release water to accommodate wind integration. Specifically, we develop a model simulating hydroelectric operational decisions when the electric facility is able to provide wind integration services through a mechanism that we term ‘flex reserves’. We use Kerr Dam in North Carolina as a case study, simulating operations under two alternative reservoir policies, one reflecting current policies and the other regulating flow levels to promote downstream ecosystem conservation. Even under perfect information and significant pricing incentives, Kerr Dam faces operational conflicts when providing any substantial levels of flex reserves while also maintaining releases consistent with other river management requirements. These operational conflicts are severely exacerbated during periods of drought. Increase of payments for flex reserves does not resolve these operational and policy conflicts. (letter)

  4. Modelling and control of variable speed wind turbines for power system studies

    DEFF Research Database (Denmark)

    Michalke, Gabriele; Hansen, Anca Daniela

    2010-01-01

    and implemented in the power system simulation tool DIgSILENT. Important issues like the fault ride-through and grid support capabilities of these wind turbine concepts are addressed. The paper reveals that advanced control of variable speed wind turbines can improve power system stability. Finally......, it will be shown in the paper that wind parks consisting of variable speed wind turbines can help nearby connected fixed speed wind turbines to ride-through grid faults. Copyright © 2009 John Wiley & Sons, Ltd.......Modern wind turbines are predominantly variable speed wind turbines with power electronic interface. Emphasis in this paper is therefore on the modelling and control issues of these wind turbine concepts and especially on their impact on the power system. The models and control are developed...

  5. High-speed solar wind flow parameters at 1 AU

    International Nuclear Information System (INIS)

    Feldman, W.C.; Asbridge, J.R.; Bame, S.J.; Gosling, J.T.

    1976-01-01

    To develop a set of constraints for theories of solar wind high-speed streams, a detailed study was made of the fastest streams observed at 1 AU during the time period spanning March 1971 through July 1974. Streams were accepted for study only if (1) the maximum speed exceeded 650 km s -1 ; (2) effects of stream-stream dynamical interaction on the flow parameters could be safely separated from the intrinsic characteristics of the high-speed regions; (3) the full width at half maximum (FWHM) of the stream when mapped back to 20 solar radii by using a constant speed approximation was greater than 45degree in Carrington longitude; and (4) there were no obvious solar-activity-induced contaminating effects. Nineteen streams during this time interval satisfied these criteria. Average parameters at 1 AU for those portions of these streams above V=650 km s -1 are given.Not only is it not presently known why electrons are significantly cooler than the protons within high-speed regions, but also observed particle fluxes and convected energy fluxes for speed greater than 650 km s -1 are substantially larger than those values predicted by any of the existing theories of solar wind high-speed streams. More work is therefore needed in refining present solar wind models to see whether suitable modifications and/or combinations of existing theories based on reasonable coronal conditions can accommodate the above high-speed flow parameters

  6. Statistical Analysis of the Impact of Wind Power on Market Quantities and Power Flows

    DEFF Research Database (Denmark)

    Pinson, Pierre; Jónsson, Tryggvi; Zugno, Marco

    2012-01-01

    In view of the increasing penetration of wind power in a number of power systems and markets worldwide, we discuss some of the impacts that wind energy may have on market quantities and cross-border power flows. These impacts are uncovered through statistical analyses of actual market and flow da...... of load and wind power forecasts on Danish and German electricity markets....

  7. Low Voltage Ride-Through of Variable Speed Wind Turbines with Permanent Magnet Synchronous Generator

    DEFF Research Database (Denmark)

    Hu, Weihao; Chen, Zhe; Wang, Yue

    2009-01-01

    This paper presents a simulation model of a MW-level variable speed wind turbine with a permanent magnet synchronous generator (PMSG) and a full-scale converter developed in the simulation tool of PSCAD/EMTDC. The low voltage ride-through (LVRT) capability of the wind turbine is investigated. A new...... speed wind turbines with PMSG....

  8. Laboratory development of wind turbine simulator using variable ...

    African Journals Online (AJOL)

    user

    The wind energy conversion system simulates the steady state wind turbine behaviors in a controlled environment without dependence on natural wind resource and ..... The equation shows the relationship between rotor current and slip frequency at a given flux which is constant in constant torque operating region. 4.

  9. Flicker Mitigation by Individual Pitch Control of Variable Speed Wind Turbines With DFIG

    DEFF Research Database (Denmark)

    Zhang, Yunqian; Chen, Zhe; Hu, Weihao

    2014-01-01

    Due to the wind speed variation, wind shear and tower shadow effects, grid connected wind turbines are the sources of power fluctuations which may produce flicker during continuous operation. This paper presents a model of an MW-level variable-speed wind turbine with a doubly fed induction...... generatorto investigate the flicker emission and mitigation issues. An individual pitch control (IPC) strategy is proposed to reduce the flicker emission at different wind speed conditions. The IPC scheme is proposed and the individual pitch controller is designed according to the generator active power...... and the azimuth angle of the wind turbine. The simulations are performed on the NREL (National Renewable Energy Laboratory) 1.5-MW upwind reference wind turbine model. Simulation results show that damping the generator active power by IPC is an effective means for flicker mitigation of variable speed wind...

  10. Wake interaction and power production of variable height model wind farms

    DEFF Research Database (Denmark)

    Vested, Malene Hovgaard; Hamilton, N.; Sørensen, Jens Nørkær

    2014-01-01

    Understanding wake dynamics is an ongoing research topic in wind energy, since wakes have considerable effects on the power production when wind turbines are placed in a wind farm. Wind tunnel experiments have been conducted to study the wake to wake interaction in a model wind farm in tandem...... with measurements of the extracted power. The aim is to investigate how alternating mast height influences the interaction of the wakes and the power production. Via the use of stereo-particle image velocimetry, the flow field was obtained in the first and last rows of the wind turbine array as a basis...... of comparison. It was found that downstream of the exit row wind turbine, the power was increased by 25% in the case of a staggered height configuration. This is partly due to the fact that the taller turbines reach into a flow area with a softened velocity gradient. Another aspect is that the wake downstream...

  11. Control of variable speed wind turbines with doubly-fed induction generators

    DEFF Research Database (Denmark)

    Hansen, A. D.; Soerensen, Poul; Iov, Florin

    2004-01-01

    The paper presents an overall control method for variable speed pitch controlled wind turbines with double-feed induction generators (DFIG). Emphasis is on control strategies and algorithms applied at each hierarchical control level of the wind turbine. The objectives of the control system are: 1...... for normal continuous operations. The strongest feature of the implemented control method is that it allows the turbine to operate with the optimum power efficiency over a wider range of wind speeds. The model of the variable speed, variable pitch wind turbine with doubly-fed induction generator...

  12. Solar wind flows associated with hot heavy ions

    International Nuclear Information System (INIS)

    Fenimore, E.E.

    1980-05-01

    Solar wind heavy ion spectra measured with the Vela instrumentation have been studied with the goal of determining the solar origins of various solar wind structures which contain anomalously high ionization states. Since the ionization states freeze-in close to the sun they are good indicators of the plasma conditions in the low and intermediate corona. Heavy ion spectra from three different periods throughout the solar cycle have been analyzed. These data are consistent with freezing-in temperatures ranging from approx. 1.5 x 10 6 K to higher than 9 x 10 6 . The spectra indicating hot coronal conditions occur in roughly 1/7 of all measurements and almost exclusively in postshock flows (PSFs), nonshock related helium abundance enhancements (HAEs), or noncompressive density enhancements (NCDEs). The PSFs and HAEs are both probably interplanetary manifestations of solar flares. The observation of several flare-related HAEs which were not preceded by an interplanetary shock suggests that the flare-heated plasma can evolve into the solar wind without producing a noticeable shock at 1 AU. The NCDEs with hot heavy ions differ from the PSF-HAEs in several ways implying that they evolve from events or places with lower temperatures and less energy than those associated with the flares, but with higher temperatures and densities than the quiet corona. Active regions, coronal mass ejections, and equatorial streamers are possible sources for the NCDEs with spectra indicating hot coronal conditions. These events owe their enhanced densities to coronal processes as opposed to interplanetary dynamical processes. Models of the solar wind expansion demonstrate how some NCDEs can have extreme, nonequilibrium ionization distributions

  13. The variability of maximum wind gusts in the Czech Republic between 1961 and 2014

    Czech Academy of Sciences Publication Activity Database

    Brázdil, Rudolf; Hostýnek, J.; Řezníčková, Ladislava; Zahradníček, Pavel; Tolasz, R.; Dobrovolný, Petr; Štěpánek, Petr

    2017-01-01

    Roč. 37, č. 4 (2017), s. 1961-1978 ISSN 0899-8418 Institutional support: RVO:67179843 Keywords : Czech Republic * Emma windstorm * Homogenisation * Kyrill windstorm * Maximum wind gust * Spatial variability * Temporal variability * Wind measurement Subject RIV: DG - Athmosphere Sciences, Meteorology OBOR OECD: Meteorology and atmospheric sciences Impact factor: 3.760, year: 2016

  14. Long-term variability of wind patterns at hub-height over Texas

    Science.gov (United States)

    Jung, J.; Jeon, W.; Choi, Y.; Souri, A.

    2017-12-01

    Wind energy is getting more attention because of its environmentally friendly attributes. Texas is a state with significant capacity and number of wind turbines. Wind power generation is significantly affected by wind patterns, and it is important to understand this seasonal and decadal variability for long-term power generation from wind turbines. This study focused on the trends of changes in wind pattern and its strength at two hub-heights (80 m and 110 m) over 30-years (1986 to 2015). We only analyzed summer data(June to September) because of concentrated electricity usage in Texas. We extracted hub-height wind data (U and V components) from the three-hourly National Centers for Environmental Prediction-North American Regional Reanalysis (NCEP-NARR) and classified wind patterns properly by using nonhierarchical K-means method. Hub-height wind patterns in summer seasons of 1986 to 2015 were classified in six classes at day and seven classes at night. Mean wind speed was 4.6 ms-1 at day and 5.4 ms-1 at night, but showed large variability in time and space. We combined each cluster's frequencies and wind speed tendencies with large scale atmospheric circulation features and quantified the amount of wind power generation.

  15. Wind Patterns of Coastal Tanzania: Their Variability and Trends ...

    African Journals Online (AJOL)

    Generally, the wind speeds were significantly correlated with the El-Niño Southern Oscillation and the Pacific Decadal Oscillation, while at Mtwara the winds were also correlated with the Indian Ocean Dipole. These correlations were higher during the SE Monsoon than during the NE Monsoon. Trends in the monthly mean ...

  16. Spatial and temporal variability of winds in the Northern European Seas

    DEFF Research Database (Denmark)

    Karagali, Ioanna; Badger, Merete; Hahmann, Andrea N.

    2013-01-01

    Satellite data are used to characterize the near-surface winds over the Northern European Shelf Seas. We compare mean winds from QuikSCAT with reanalysis fields from the Weather Research and Forecasting (WRF) model and in situ data from the FINO-1 offshore research mast. The aim is to evaluate...... the identification of 3 sub-domains with similar intra-annual variability. Local characteristics observed from the long-term QuikSCAT wind rose distributions are depicted in high-resolution satellite Synthetic Aperture Radar (SAR) wind fields. The winds derived from the WRF reanalysis dataset miss seasonal features...

  17. Power Control of Permanent Magnet Generator Based Variable Speed Wind Turbines

    DEFF Research Database (Denmark)

    Deng, Fujin; Chen, Zhe

    2009-01-01

    When the wind power accounts for a large portion of the grid, it will be required to regulate the active power and reactive power. This paper investigates a MWlevel variable speed wind turbine with a permanent magnet synchronous generator (PMSG). The power control capabilities of two kinds...... of control schemes conducted respectively on this wind turbine under two conditions, including rapid wind speed change and grids faults, are compared. The simulation study of the wind turbine system is conducted using PSCAD/EMTDC, and the results show the different power control capabilities of the two...... control schemes....

  18. Multi-Time Scale Coordinated Scheduling Strategy with Distributed Power Flow Controllers for Minimizing Wind Power Spillage

    Directory of Open Access Journals (Sweden)

    Yi Tang

    2017-11-01

    Full Text Available The inherent variability and randomness of large-scale wind power integration have brought great challenges to power flow control and dispatch. The distributed power flow controller (DPFC has the higher flexibility and capacity in power flow control in the system with wind generation. This paper proposes a multi-time scale coordinated scheduling model with DPFC to minimize wind power spillage. Configuration of DPFCs is initially determined by stochastic method. Afterward, two sequential procedures containing day-head and real-time scales are applied for determining maximum schedulable wind sources, optimal outputs of generating units and operation setting of DPFCs. The generating plan is obtained initially in day-ahead scheduling stage and modified in real-time scheduling model, while considering the uncertainty of wind power and fast operation of DPFC. Numerical simulation results in IEEE-RTS79 system illustrate that wind power is maximum scheduled with the optimal deployment and operation of DPFC, which confirms the applicability and effectiveness of the proposed method.

  19. Flicker Study on Variable Speed Wind Turbines with Permanent Magnet Synchronous Generator

    DEFF Research Database (Denmark)

    Hu, Weihao; Chen, Zhe; Wang, Yue

    2008-01-01

    Grid connected wind turbines are fluctuating power sources that may produce flicker during continuous operation. This paper presents a simulation model of a MW-level variable speed wind turbines with a permanent magnet synchronous generator (PMSG) and a full-scale converter developed in the simul......Grid connected wind turbines are fluctuating power sources that may produce flicker during continuous operation. This paper presents a simulation model of a MW-level variable speed wind turbines with a permanent magnet synchronous generator (PMSG) and a full-scale converter developed...

  20. Annular flow film characteristics in variable gravity.

    Science.gov (United States)

    MacGillivray, Ryan M; Gabriel, Kamiel S

    2002-10-01

    Annular flow is a frequently occurring flow regime in many industrial applications. The need for a better understanding of this flow regime is driven by the desire to improve the design of many terrestrial and space systems. Annular two-phase flow occurs in the mining and transportation of oil and natural gas, petrochemical processes, and boilers and condensers in heating and refrigeration systems. The flow regime is also anticipated during the refueling of space vehicles, and thermal management systems for space use. Annular flow is mainly inertia driven with little effect of buoyancy. However, the study of this flow regime is still desirable in a microgravity environment. The influence of gravity can create an unstable, chaotic film. The absence of gravity, therefore, allows for a more stable and axisymmetric film. Such conditions allow for the film characteristics to be easily studied at low gas flow rates. Previous studies conducted by the Microgravity Research Group dealt with varying the gas or liquid mass fluxes at a reduced gravitational acceleration.(1,2) The study described here continues this work by examining the effect of changing the gravitational acceleration (hypergravity) on the film characteristics. In particular, the film thickness and the associated pressure drops are examined. The film thickness was measured using a pair of two-wire conductance probes. Experimental data was collected over a range of annular flow set points by changing the liquid and gas mass flow rates, the liquid-to-gas density ratio and the gravitational acceleration. The liquid-to-gas density ratio was varied by collecting data with helium-water and air-water at the same flow rates. The gravitational effect was examined by collecting data during the microgravity and pull-up (hypergravity) portions of the parabolic flights.

  1. Overall control strategy of variable speed doubly-fed induction generator wind turbine

    DEFF Research Database (Denmark)

    Hansen, A.D.; Iov, F.; Sørensen, Poul Ejnar

    2004-01-01

    The variable speed doubly-fed induction generator wind turbine is today the most widely used concept. The paper presents an overall control system of the variable speed DFIG wind turbine, with focus on the control strategies and algorithms applied at each hierarchical control level of the wind...... turbine. The present control method is designed for normal continuous operations. The strongest feature of the implemented control method is that it allows the turbine to operate with the optimum power efficiency over a wider range of wind speeds. The variable speed/variable pitch wind turbine with doubly......-fed induction generator is implemented in the dynamic power system simulation tool DIgSILENT. Simulation results are performed and analyzed in different normal operating conditions....

  2. LINCOM wind flow model: Application to complex terrain with thermal stratification

    DEFF Research Database (Denmark)

    Dunkerley, F.; Moreno, J.; Mikkelsen, T.

    2001-01-01

    LINCOM is a fast linearised and spectral wind flow model for use over hilly terrain. It is designed to rapidly generate mean wind field predictions which provide input to atmospheric dispersion models and wind engineering applications. The thermal module, LINCOM-T, has recently been improved to p...

  3. Temporal and spatial variability of wind resources in the United States as derived from the Climate Forecast System Reanalysis

    Science.gov (United States)

    Lejiang Yu; Shiyuan Zhong; Xindi Bian; Warren E. Heilman

    2015-01-01

    This study examines the spatial and temporal variability of wind speed at 80m above ground (the average hub height of most modern wind turbines) in the contiguous United States using Climate Forecast System Reanalysis (CFSR) data from 1979 to 2011. The mean 80-m wind exhibits strong seasonality and large spatial variability, with higher (lower) wind speeds in the...

  4. The influence of solar wind variability on magnetospheric ULF wave power

    International Nuclear Information System (INIS)

    Pokhotelov, D.; Rae, I.J.; Mann, I.R.

    2015-01-01

    Magnetospheric ultra-low frequency (ULF) oscillations in the Pc 4-5 frequency range play an important role in the dynamics of Earth's radiation belts, both by enhancing the radial diffusion through incoherent interactions and through the coherent drift-resonant interactions with trapped radiation belt electrons. The statistical distributions of magnetospheric ULF wave power are known to be strongly dependent on solar wind parameters such as solar wind speed and interplanetary magnetic field (IMF) orientation. Statistical characterisation of ULF wave power in the magnetosphere traditionally relies on average solar wind-IMF conditions over a specific time period. In this brief report, we perform an alternative characterisation of the solar wind influence on magnetospheric ULF wave activity through the characterisation of the solar wind driver by its variability using the standard deviation of solar wind parameters rather than a simple time average. We present a statistical study of nearly one solar cycle (1996-2004) of geosynchronous observations of magnetic ULF wave power and find that there is significant variation in ULF wave powers as a function of the dynamic properties of the solar wind. In particular, we find that the variability in IMF vector, rather than variabilities in other parameters (solar wind density, bulk velocity and ion temperature), plays the strongest role in controlling geosynchronous ULF power. We conclude that, although time-averaged bulk properties of the solar wind are a key factor in driving ULF powers in the magnetosphere, the solar wind variability can be an important contributor as well. This highlights the potential importance of including solar wind variability especially in studies of ULF wave dynamics in order to assess the efficiency of solar wind-magnetosphere coupling.

  5. Variable speed wind turbine generator system with current controlled voltage source inverter

    International Nuclear Information System (INIS)

    Muyeen, S.M.; Al-Durra, Ahmed; Tamura, J.

    2011-01-01

    highlights: → Current controlled voltage source inverter scheme for wind power application. → Low voltage ride through of wind farm. → Variable speed wind turbine driven permanent magnet synchronous generator-operation and control. -- Abstract: The present popular trend of wind power generation is to use variable speed wind turbine (VSWT) driving a doubly fed induction generator (DFIG), wound field synchronous generator (WFSG) or permanent magnet synchronous generator (PMSG). Among them, stability analyses of DFIG type of VSWT have already been reported in many literatures. However, transient stability and low voltage ride through (LVRT) characteristics analyses for synchronous generator type of VSWT is not sufficient enough. This paper focuses on detailed LVRT characteristic analysis of variable speed wind turbine driving a PMSG (VSWT-PMSG) with current controlled voltage source inverter (CC-VSI). Modeling and suitable control strategies for overall system are developed to augment the low voltage ride through capability of variable speed wind generator, considering recent wind farm grid code. Both symmetrical and unsymmetrical faults are analyzed as network disturbances in this paper. The permanent fault due to unsuccessful reclosing of circuit breakers is taken into consideration, which is a salient feature of this study. Moreover, the dynamic characteristic is analyzed using real wind speed data measured in Hokkaido Island, Japan. The proposed control scheme is simulated by using the standard power system simulation package PSCAD/EMTDC and results are verified by comparing that of voltage controlled voltage source inverter scheme available in power system literature.

  6. Variable speed wind turbine generator system with current controlled voltage source inverter

    Energy Technology Data Exchange (ETDEWEB)

    Muyeen, S.M., E-mail: muyeen0809@yahoo.co [Dept. of Electrical Engineering, Petroleum Institute, P.O. Box 2533, Abu Dhabi (United Arab Emirates); Al-Durra, Ahmed [Dept. of Electrical Engineering, The Petroleum Institute, P.O. Box 2533, Abu Dhabi (United Arab Emirates); Tamura, J. [Dept. of EEE, Kitami Institute of Technology, 165 Koen-cho, Kitami 090-8507 (Japan)

    2011-07-15

    highlights: {yields} Current controlled voltage source inverter scheme for wind power application. {yields} Low voltage ride through of wind farm. {yields} Variable speed wind turbine driven permanent magnet synchronous generator-operation and control. -- Abstract: The present popular trend of wind power generation is to use variable speed wind turbine (VSWT) driving a doubly fed induction generator (DFIG), wound field synchronous generator (WFSG) or permanent magnet synchronous generator (PMSG). Among them, stability analyses of DFIG type of VSWT have already been reported in many literatures. However, transient stability and low voltage ride through (LVRT) characteristics analyses for synchronous generator type of VSWT is not sufficient enough. This paper focuses on detailed LVRT characteristic analysis of variable speed wind turbine driving a PMSG (VSWT-PMSG) with current controlled voltage source inverter (CC-VSI). Modeling and suitable control strategies for overall system are developed to augment the low voltage ride through capability of variable speed wind generator, considering recent wind farm grid code. Both symmetrical and unsymmetrical faults are analyzed as network disturbances in this paper. The permanent fault due to unsuccessful reclosing of circuit breakers is taken into consideration, which is a salient feature of this study. Moreover, the dynamic characteristic is analyzed using real wind speed data measured in Hokkaido Island, Japan. The proposed control scheme is simulated by using the standard power system simulation package PSCAD/EMTDC and results are verified by comparing that of voltage controlled voltage source inverter scheme available in power system literature.

  7. Wind-induced flow velocity effects on nutrient concentrations at Eastern Bay of Lake Taihu, China.

    Science.gov (United States)

    Jalil, Abdul; Li, Yiping; Du, Wei; Wang, Jianwei; Gao, Xiaomeng; Wang, Wencai; Acharya, Kumud

    2017-07-01

    Shallow lakes are highly sensitive to respond internal nutrient loading due to wind-induced flow velocity effects. Wind-induced flow velocity effects on nutrient suspension were investigated at a long narrow bay of large shallow Lake Taihu, the third largest freshwater lake in China. Wind-induced reverse/compensation flow and consistent flow field probabilities at vertical column of the water were measured. The probabilities between the wind field and the flow velocities provided a strong correlation at the surface (80.6%) and the bottom (65.1%) layers of water profile. Vertical flow velocity profile analysis provided the evidence of delay response time to wind field at the bottom layer of lake water. Strong wind field generated by the west (W) and west-north-west (WNW) winds produced displaced water movements in opposite directions to the prevailing flow field. An exponential correlation was observed between the current velocities of the surface and the bottom layers while considering wind speed as a control factor. A linear model was developed to correlate the wind field-induced flow velocity impacts on nutrient concentration at the surface and bottom layers. Results showed that dominant wind directions (ENE, E, and ESE) had a maximum nutrient resuspension contribution (nutrient resuspension potential) of 34.7 and 43.6% at the surface and the bottom profile layers, respectively. Total suspended solids (TSS), total nitrogen (TN), and total phosphorus (TP) average concentrations were 6.38, 1.5, and 0.03 mg/L during our field experiment at Eastern Bay of Lake Taihu. Overall, wind-induced low-to-moderate hydrodynamic disturbances contributed more in nutrient resuspension at Eastern Bay of Lake Taihu. The present study can be used to understand the linkage between wind-induced flow velocities and nutrient concentrations for shallow lakes (with uniform morphology and deep margins) water quality management and to develop further models.

  8. A New Structure Based on Cascaded Multilevel Converter for Variable Speed Wind Turbine

    DEFF Research Database (Denmark)

    Deng, Fujin; Chen, Zhe

    2010-01-01

    An alternative structure for variable speed wind turbine, using multiple permanent magnet synchronous generators (PMSGs) drive-train configuration and cascaded multilevel converter is proposed in this paper. This study presents a power electronic solution for the wind turbine. A transformer......-less cascaded multilevel converter interface based on PMSGs is developed to synthesize a desired high ac sinusoidal output voltage. The benefits of high power and high ac voltage make this structure possible to be applied in the wind power generation. In addition, the bulky transformer could be omitted....... A simulation model of 10 MW variable speed wind turbine based on PMSGs developed in PSCAD/EMTDC is presented. The dynamic performance of grid-connected wind turbine is analyzed. Simulation results shows that the proposed structure may be attractive in wind power generation....

  9. Wind Turbine Generator Modeling and Simulation Where Rotational Speed is the Controlled Variable

    DEFF Research Database (Denmark)

    Mihet-Popa, Lucian; Blaabjerg, Frede; Boldea, Ion

    2004-01-01

    the interaction between a wind turbine and the power system. The model is intended to simulate the behaviour of the wind turbine using induction generators both during normal operation. Sample simulation results for two induction generators (2/0.5 MW) validate the fundamental issues.......To optimise the power produced in a wind turbine, the speed of the turbine should vary with the wind speed. A simple control method is proposed that will allow an induction machine to run a turbine at its maximum power coefficient. Various types of power control strategies have been suggested...... for application in variable speed wind turbines. The usual strategy is to control the power or the torque acting on the wind turbine shafts. This paper presents an alternative control strategy, where the rotational speed is the controlled variable. The paper describes a model, which is being developed to simulate...

  10. Variable frequency operation of active stall wind farms using a dc connection to grid

    DEFF Research Database (Denmark)

    Iov, Florin; Blaabjerg, Frede; Sorensen, Poul

    2005-01-01

    Currently, there is an increasing trend to connect large MW wind farms to the transmISSIon system. Requirements that focus on the influence of the farms on the grid stability and power quality, and on the control capabilities of wind farms have already been established. The main trends of modern...... wind turbines/farms are clearly the variable speed operation and a grid connection through a power electronic interface, especially using doubly-fed induction generators. Using power electronics the control capabilities of these wind turbines/farms are extended and thus the grid requirements...... are fulfilled. However, the traditional squirrel-cage generators based wind turbines/wind farms directly connected to the grid have less control capabilities. These wind turbines/farms cannot regulate their production and contribute to power system stability. A DC transmission system for connection...

  11. Hydrodynamical wind in magnetized accretion flows with convection

    International Nuclear Information System (INIS)

    Abbassi, Shahram; Mosallanezhad, Amin

    2012-01-01

    The existence of outflow and magnetic fields in the inner region of hot accretion flows has been confirmed by observations and numerical magnetohydrodynamic (MHD) simulations. We present self-similar solutions for radiatively inefficient accretion flows (RIAFs) around black holes in the presence of outflow and a global magnetic field. The influence of outflow is taken into account by adopting a radius that depends on mass accretion rate M-dot = M-dot 0 (r/r 0 ) s with s > 0. We also consider convection through a mixing length formula to calculate convection parameter α con . Moreover we consider the additional magnetic field parameters β r,φ,z [ = c 2 r,φ,z /(2c 2 s )], where c 2 r,φ,z are the Alfvén sound speeds in three directions of cylindrical coordinates. Our numerical results show that by increasing all components of the magnetic field, the surface density and rotational velocity increase, but the sound speed and radial infall velocity of the disk decrease. We have also found that the existence of wind will lead to reduction of surface density as well as rotational velocity. Moreover, the radial velocity, sound speed, advection parameter and the vertical thickness of the disk will increase when outflow becomes important in the RIAF. (research papers)

  12. Costs of solar and wind power variability for reducing CO2 emissions.

    Science.gov (United States)

    Lueken, Colleen; Cohen, Gilbert E; Apt, Jay

    2012-09-04

    We compare the power output from a year of electricity generation data from one solar thermal plant, two solar photovoltaic (PV) arrays, and twenty Electric Reliability Council of Texas (ERCOT) wind farms. The analysis shows that solar PV electricity generation is approximately one hundred times more variable at frequencies on the order of 10(-3) Hz than solar thermal electricity generation, and the variability of wind generation lies between that of solar PV and solar thermal. We calculate the cost of variability of the different solar power sources and wind by using the costs of ancillary services and the energy required to compensate for its variability and intermittency, and the cost of variability per unit of displaced CO(2) emissions. We show the costs of variability are highly dependent on both technology type and capacity factor. California emissions data were used to calculate the cost of variability per unit of displaced CO(2) emissions. Variability cost is greatest for solar PV generation at $8-11 per MWh. The cost of variability for solar thermal generation is $5 per MWh, while that of wind generation in ERCOT was found to be on average $4 per MWh. Variability adds ~$15/tonne CO(2) to the cost of abatement for solar thermal power, $25 for wind, and $33-$40 for PV.

  13. Structure of Turbulence in Katabatic Flows Below and Above the Wind-Speed Maximum

    Science.gov (United States)

    Grachev, Andrey A.; Leo, Laura S.; Sabatino, Silvana Di; Fernando, Harindra J. S.; Pardyjak, Eric R.; Fairall, Christopher W.

    2016-06-01

    Measurements of small-scale turbulence made in the atmospheric boundary layer over complex terrain during the Mountain Terrain Atmospheric Modeling and Observations (MATERHORN) Program are used to describe the structure of turbulence in katabatic flows. Turbulent and mean meteorological data were continuously measured on four towers deployed along the east lower slope (2-4°) of Granite Mountain near Salt Lake City in Utah, USA. The multi-level (up to seven) observations made during a 30-day long MATERHORN field campaign in September-October 2012 allowed the study of temporal and spatial structure of katabatic flows in detail, and herein we report turbulence statistics (e.g., fluxes, variances, spectra, and cospectra) and their variations in katabatic flow. Observed vertical profiles show steep gradients near the surface, but in the layer above the slope jet the vertical variability is smaller. It is found that the vertical (normal to the slope) momentum flux and horizontal (along-slope) heat flux in a slope-following coordinate system change their sign below and above the wind maximum of a katabatic flow. The momentum flux is directed downward (upward) whereas the along-slope heat flux is downslope (upslope) below (above) the wind maximum. This suggests that the position of the jet-speed maximum can be obtained by linear interpolation between positive and negative values of the momentum flux (or the along-slope heat flux) to derive the height where the flux becomes zero. It is shown that the standard deviations of all wind-speed components (and therefore of the turbulent kinetic energy) and the dissipation rate of turbulent kinetic energy have a local minimum, whereas the standard deviation of air temperature has an absolute maximum at the height of wind-speed maximum. We report several cases when the destructive effect of vertical heat flux is completely cancelled by the generation of turbulence due to the along-slope heat flux. Turbulence above the wind

  14. The Economics of Storage, Transmission and Drought: Integrating Variable Wind Power into Spatially Separated Electricity Grids

    NARCIS (Netherlands)

    Scora, H.; Sopinka, A.; Kooten, van G.C.

    2012-01-01

    To mitigate the high variability of wind and make it a more viable renewable energy source, observers recommend greater integration of spatially-separated electrical grids, with high transmission lines linking load centers, scattered wind farms and hydro storage sites. In this study, we examine the

  15. Dynamic Analysis of Fluid Power Drive-trains for Variable Speed Wind Turbines : A Parameter Study

    NARCIS (Netherlands)

    Jarquin Laguna, A.; Diepeveen, N.F.B.

    2013-01-01

    In the pursuit of making wind energy technology more economically attractive, the application of fluid power technology for the transmission of wind energy is being developed by several parties all over the world. This paper presents a dynamic model of a fluid power transmission for variable speed

  16. Flicker study on variable speed wind turbines with doubly fed induction generators

    DEFF Research Database (Denmark)

    Sun, Tao; Chen, Zhe; Blaabjerg, Frede

    2005-01-01

    to a conclusion that the factors mentioned above have different influences on flicker emission compared with that in the case of the fixed speed wind turbine. Flicker mitigation is realized by output reactive power control of the variable speed wind turbine with doubly fed induction generator. Simulation results...

  17. A disturbance decoupling nonlinear control law for variable speed wind turbines

    DEFF Research Database (Denmark)

    Thomsen, Sven Creutz; Poulsen, Niels Kjølstad

    2007-01-01

    This paper describes a nonlinear control law for controlling variable speed wind turbines using feedback linearization. The novel aspect of the control law is its ability to decouple the effect of wind fluctuations. Furthermore, the transformation to feedback linearizable coordinates is chosen...

  18. Low-Voltage Ride-Through of Variable Speed Wind Turbines with Permanent Magnet Synchronous Generator

    DEFF Research Database (Denmark)

    Deng, Fujin; Chen, Zhe

    2009-01-01

    This paper presents a simulation model of a MW-level variable speed wind turbine with a permanent magnet synchronous generator (PMSG) and a full-scale converter developed in the simulation tool of PSCAD/EMTDC. The low voltage ride-through (LVRT) capability of the wind turbine is investigated. A new...

  19. Flicker Mitigation by Speed Control of Permanent Magnet Synchronous Generator Variable-Speed Wind Turbines

    DEFF Research Database (Denmark)

    Hu, Weihao; Zhang, Yunqian; Chen, Zhe

    2013-01-01

    Grid-connected wind turbines are fluctuating power sources that may produce flicker during continuous operation. This paper presents a simulation model of a MW-level variable speed wind turbine with a full-scale back-to-back power converter and permanent magnet synchronous generator (PMSG...

  20. Wake interaction and power production of variable height model wind farms

    International Nuclear Information System (INIS)

    Vested, M H; Sørensen, J N; Hamilton, N; Cal, R B

    2014-01-01

    Understanding wake dynamics is an ongoing research topic in wind energy, since wakes have considerable effects on the power production when wind turbines are placed in a wind farm. Wind tunnel experiments have been conducted to study the wake to wake interaction in a model wind farm in tandem with measurements of the extracted power. The aim is to investigate how alternating mast height influences the interaction of the wakes and the power production. Via the use of stereo-particle image velocimetry, the flow field was obtained in the first and last rows of the wind turbine array as a basis of comparison. It was found that downstream of the exit row wind turbine, the power was increased by 25% in the case of a staggered height configuration. This is partly due to the fact that the taller turbines reach into a flow area with a softened velocity gradient. Another aspect is that the wake downstream of a tall wind turbine to some extent passes above the standard height wind turbine. Overall the experiments show that the velocity field downstream of the exit row changes considerably when the mast height is alternating

  1. Adaptive pitch control for variable speed wind turbines

    Science.gov (United States)

    Johnson, Kathryn E [Boulder, CO; Fingersh, Lee Jay [Westminster, CO

    2012-05-08

    An adaptive method for adjusting blade pitch angle, and controllers implementing such a method, for achieving higher power coefficients. Average power coefficients are determined for first and second periods of operation for the wind turbine. When the average power coefficient for the second time period is larger than for the first, a pitch increment, which may be generated based on the power coefficients, is added (or the sign is retained) to the nominal pitch angle value for the wind turbine. When the average power coefficient for the second time period is less than for the first, the pitch increment is subtracted (or the sign is changed). A control signal is generated based on the adapted pitch angle value and sent to blade pitch actuators that act to change the pitch angle of the wind turbine to the new or modified pitch angle setting, and this process is iteratively performed.

  2. Simulation of flow over double-element airfoil and wind tunnel test for use in vertical axis wind turbine

    DEFF Research Database (Denmark)

    Chougule, Prasad; Nielsen, Søren R.K.

    2014-01-01

    Nowadays, small vertical axis wind turbines are receiving more attention due to their suitability in micro-electricity generation. There are few vertical axis wind turbine designs with good power curve. However, the efficiency of power extraction has not been improved. Therefore, an attempt has...... been made to utilize high lift technology for vertical axis wind turbines in order to improve power efficiency. High lift is obtained by double-element airfoil mainly used in aeroplane wing design. In this current work a low Reynolds number airfoil is selected to design a double-element airfoil blade...... for use in vertical axis wind turbine to improve the power efficiency. Double-element airfoil blade design consists of a main airfoil and a slat airfoil. Orientation of slat airfoil is a parameter of investigation in this paper and air flow simulation over double-element airfoil. With primary wind tunnel...

  3. Non-radial solar wind flows and geomagnetic activity changes during 1973-2003

    Science.gov (United States)

    Pereira, B. F.; Girish, T. E.

    We have found an association between geomagnetic activity changes and non-radial solar wind flows during the period 1973-2003. The solar wind flow latitude in the GSE system is observed to be higher during intense geomagnetic storm periods. Northward-directed solar wind flows are observed to be higher and a correlation is obtained between this parameter and geomagnetic Ap index during the declining phases of the sunspot cycles. These results suggest an association of non-radial flows from coronal holes and geomagnetic activity during the declining phase of sunspot cycle.

  4. Decentralized & Adaptive Load-Frequency Control Scheme of Variable Speed Wind Turbines

    DEFF Research Database (Denmark)

    Hoseinzadeh, Bakhtyar; Silva, Filipe Miguel Faria da; Bak, Claus Leth

    2014-01-01

    In power systems with high penetration of Wind Power (WP), transferring a part of Load Frequency Control (LFC) burden to variable speed Wind Turbines (WTs) is inevitable. The conventional LFC schemes merely rely on frequency information and since frequency is a common variable throughout the netw......In power systems with high penetration of Wind Power (WP), transferring a part of Load Frequency Control (LFC) burden to variable speed Wind Turbines (WTs) is inevitable. The conventional LFC schemes merely rely on frequency information and since frequency is a common variable throughout...... and therefore determining the contribution factor of each individual WT to gain an adaptive LFC approach. The Electrical Distance (ED) concept confirms that the locally measured voltage decay is a proper criterion of closeness to the disturbance place. Numerical simulations carried out in DigSilent Power...

  5. The Impacts of Wind Speed Trends and 30-Year Variability in Relation to Hydroelectric Reservoir Inflows on Wind Power in the Pacific Northwest.

    Science.gov (United States)

    Cross, Benjamin D; Kohfeld, Karen E; Bailey, Joseph; Cooper, Andrew B

    2015-01-01

    In hydroelectric dominated systems, the value and benefits of energy are higher during extended dry periods and lower during extended or extreme wet periods. By accounting for regional and temporal differences in the relationship between wind speed and reservoir inflow behavior during wind farm site selection, the benefits of energy diversification can be maximized. The goal of this work was to help maximize the value of wind power by quantifying the long-term (30-year) relationships between wind speed and streamflow behavior, using British Columbia (BC) and the Pacific Northwest (PNW) as a case study. Clean energy and self-sufficiency policies in British BC make the benefits of increased generation during low streamflow periods particularly large. Wind density (WD) estimates from a height of 10m (North American Regional Reanalysis, NARR) were correlated with cumulative usable inflows (CUI) for BC (collected from BC Hydro) for 1979-2010. The strongest WD-CUI correlations were found along the US coast (r ~0.55), whereas generally weaker correlations were found in northern regions, with negative correlations (r ~ -0.25) along BC's North Coast. Furthermore, during the lowest inflow years, WD anomalies increased by up to 40% above average values for the North Coast. Seasonally, high flows during the spring freshet were coincident with widespread negative WD anomalies, with a similar but opposite pattern for low inflow winter months. These poorly or negatively correlated sites could have a moderating influence on climate related variability in provincial electricity supply, by producing greater than average generation in low inflow years and reduced generation in wet years. Wind speed and WD trends were also analyzed for all NARR grid locations, which showed statistically significant positive trends for most of the PNW and the largest increases along the Pacific Coast.

  6. Using Satellite SAR to Characterize the Wind Flow around Offshore Wind Farms

    Directory of Open Access Journals (Sweden)

    Charlotte Bay Hasager

    2015-06-01

    Full Text Available Offshore wind farm cluster effects between neighboring wind farms increase rapidly with the large-scale deployment of offshore wind turbines. The wind farm wakes observed from Synthetic Aperture Radar (SAR are sometimes visible and atmospheric and wake models are here shown to convincingly reproduce the observed very long wind farm wakes. The present study mainly focuses on wind farm wake climatology based on Envisat ASAR. The available SAR data archive covering the large offshore wind farms at Horns Rev has been used for geo-located wind farm wake studies. However, the results are difficult to interpret due to mainly three issues: the limited number of samples per wind directional sector, the coastal wind speed gradient, and oceanic bathymetry effects in the SAR retrievals. A new methodology is developed and presented. This method overcomes effectively the first issue and in most cases, but not always, the second. In the new method all wind field maps are rotated such that the wind is always coming from the same relative direction. By applying the new method to the SAR wind maps, mesoscale and microscale model wake aggregated wind-fields results are compared. The SAR-based findings strongly support the model results at Horns Rev 1.

  7. Performance comparison of control schemes for variable-speed wind turbines

    Science.gov (United States)

    Bottasso, C. L.; Croce, A.; Savini, B.

    2007-07-01

    We analyze the performance of different control schemes when applied to the regulation problem of a variable-speed representative wind turbine. In particular, we formulate and compare a wind-scheduled PID, a LQR controller and a novel adaptive non-linear model predictive controller, equipped with observers of the tower states and wind. The simulations include gusts and turbulent winds of varying intensity in nominal as well as off-design operating conditions. The experiments highlight the possible advantages of model-based non-linear control strategies.

  8. Performance comparison of control schemes for variable-speed wind turbines

    International Nuclear Information System (INIS)

    Bottasso, C L; Croce, A; Savini, B

    2007-01-01

    We analyze the performance of different control schemes when applied to the regulation problem of a variable-speed representative wind turbine. In particular, we formulate and compare a wind-scheduled PID, a LQR controller and a novel adaptive non-linear model predictive controller, equipped with observers of the tower states and wind. The simulations include gusts and turbulent winds of varying intensity in nominal as well as off-design operating conditions. The experiments highlight the possible advantages of model-based non-linear control strategies

  9. Annual and interannual variability of scatterometer ocean surface wind over the South China Sea

    DEFF Research Database (Denmark)

    Zhang, GS; Xu, Q.; Gong, Z.

    2014-01-01

    To investigate the annual and interannual variability of ocean surface wind over the South China Sea (SCS), the vector empirical orthogonal function (VEOF) method and the Hilbert-Huang transform (HHT) method were employed to analyze a set of combined satellite scatterometer wind data during...... the period from December 1992 to October 2009. The merged wind data were generated from European Remote Sensing Satellite (ERS)-1/2 Scatterometer, NASA Scatterometer (NSCAT) and NASA's Quick Scatterometer (QuikSCAT) wind products. The first VEOF mode corresponds to a winter-summer mode which accounts for 87...

  10. Variable speed control for Vertical Axis Wind Turbine

    DEFF Research Database (Denmark)

    Galinos, Christos; Larsen, Torben J.

    the Inflow project. The investigation of the VAWT performance under different control parameters such as the PI gains has been performed by Christos Galinos. Deterministic and turbulent wind speed steps of 2 m/s from 6 m/s to 24 m/s and back to 12 m/s are applied. The controller gives smooth transient...

  11. Spatial and temporal variability of mean daily wind speeds in the Czech Republic, 1961-2015

    Czech Academy of Sciences Publication Activity Database

    Brázdil, Rudolf; Zahradníček, Pavel; Řezníčková, Ladislava; Tolasz, R.; Štěpánek, Petr; Dobrovolný, Petr

    2017-01-01

    Roč. 72, č. 3 (2017), s. 197-216 ISSN 0936-577X R&D Projects: GA MŠk(CZ) LO1415; GA ČR(CZ) GA15-11805S Institutional support: RVO:67179843 Keywords : mean daily wind speed * spatial variability * temporal variability * wind stilling * Czech Republic Subject RIV: DG - Athmosphere Sciences, Meteorology OBOR OECD: Meteorology and atmospheric sciences Impact factor: 1.578, year: 2016

  12. A fuzzy based pitch angle control for variable speed wind turbines

    OpenAIRE

    C.Veeramani; G.Mohan

    2013-01-01

    The productivity of electricity increases with the necessity, which in turns pollutes the environment. There are certain methods to produce electricity in Eco-friendly manner. Wind turbine is one such application which is 100% pollution free, renewable and produces a lot of energy. In general wind turbines have two operating principles namely fixed speed and variable speed. In this paper we have designed the variable controller by using fuzzy algorithm. The neuro fuzzy controller monitors the...

  13. Spatial and temporal variability of mean daily wind speeds in the Czech Republic, 1961-2015

    Czech Academy of Sciences Publication Activity Database

    Brázdil, Rudolf; Zahradníček, Pavel; Řezníčková, Ladislava; Tolasz, R.; Štěpánek, Petr; Dobrovolný, Petr

    2017-01-01

    Roč. 72, č. 3 (2017), s. 197 -216 ISSN 0936-577X R&D Projects: GA MŠk(CZ) LO1415; GA ČR(CZ) GA15-11805S Institutional support: RVO:67179843 Keywords : mean daily wind speed * spatial variability * temporal variability * wind stilling * Czech Republic Subject RIV: DG - Athmosphere Sciences, Meteorology OBOR OECD: Meteorology and atmospheric sciences Impact factor: 1.578, year: 2016

  14. An oilspill trajectory analysis model with a variable wind deflection angle

    Science.gov (United States)

    Samuels, W.B.; Huang, N.E.; Amstutz, D.E.

    1982-01-01

    The oilspill trajectory movement algorithm consists of a vector sum of the surface drift component due to wind and the surface current component. In the U.S. Geological Survey oilspill trajectory analysis model, the surface drift component is assumed to be 3.5% of the wind speed and is rotated 20 degrees clockwise to account for Coriolis effects in the Northern Hemisphere. Field and laboratory data suggest, however, that the deflection angle of the surface drift current can be highly variable. An empirical formula, based on field observations and theoretical arguments relating wind speed to deflection angle, was used to calculate a new deflection angle at each time step in the model. Comparisons of oilspill contact probabilities to coastal areas calculated for constant and variable deflection angles showed that the model is insensitive to this changing angle at low wind speeds. At high wind speeds, some statistically significant differences in contact probabilities did appear. ?? 1982.

  15. DAC with LQR Control Design for Pitch Regulated Variable Speed Wind Turbine

    DEFF Research Database (Denmark)

    Imran, Raja Muhammad; Hussain, Dil Muhammad Akbar; Soltani, Mohsen

    2014-01-01

    and 5MW National Renewable Energy Laboratory (NREL) wind turbine is used in this research. We have shown comparison of results relating to pitch angle, drive train torsion and generator speed obtained by a PID controller and DAC. Simulations are performed in MATLAB/Simulink. The results are compared...... with PID controller for a step wind and also for turbulent wind disturbance. DAC method shows better regulation in output power and less fatigue of drive train in the presence of pitch actuator limits. Proposed controller tested on wind turbine shows better robustness and stability as compared to PID......Disturbance Accommodation Control (DAC) is used to model and simulate a system with known disturbance waveform. This paper presents a control scheme to mitigate the effect of disturbances by using collective pitch control for the aboverated wind speed (Region III) for a variable speed wind turbine...

  16. Variable Speed Wind Turbine Based on Multiple Generators Drive-Train Configuration

    DEFF Research Database (Denmark)

    Deng, Fujin; Chen, Zhe

    2010-01-01

    A variable speed wind turbine is presented in this paper, where multiple permanent magnet synchronous generators (MPMSGs) drive-train configuration is employed in the wind turbine. A cascaded multilevel converter interface based on the MPMSGs is developed to synthesize a desired high ac sinusoidal...... reduce the fluctuation of the electromagnetic torque sum and results in a good performance for the MPMSGs structure. The simulation study is conducted using PSCAD/EMTDC, and the results verify the feasibility of this variable speed wind turbine based on multiple generators drive-train configuration....

  17. Energy Storage on the Grid and the Short-term Variability of Wind

    Science.gov (United States)

    Hittinger, Eric Stephen

    Wind generation presents variability on every time scale, which must be accommodated by the electric grid. Limited quantities of wind power can be successfully integrated by the current generation and demand-side response mix but, as deployment of variable resources increases, the resulting variability becomes increasingly difficult and costly to mitigate. In Chapter 2, we model a co-located power generation/energy storage block composed of wind generation, a gas turbine, and fast-ramping energy storage. A scenario analysis identifies system configurations that can generate power with 30% of energy from wind, a variability of less than 0.5% of the desired power level, and an average cost around $70/MWh. While energy storage technologies have existed for decades, fast-ramping grid-level storage is still an immature industry and is experiencing relatively rapid improvements in performance and cost across a variety of technologies. Decreased capital cost, increased power capability, and increased efficiency all would improve the value of an energy storage technology and each has cost implications that vary by application, but there has not yet been an investigation of the marginal rate of technical substitution between storage properties. The analysis in chapter 3 uses engineering-economic models of four emerging fast-ramping energy storage technologies to determine which storage properties have the greatest effect on cost-of-service. We find that capital cost of storage is consistently important, and identify applications for which power/energy limitations are important. In some systems with a large amount of wind power, the costs of wind integration have become significant and market rules have been slowly changing in order to internalize or control the variability of wind generation. Chapter 4 examines several potential market strategies for mitigating the effects of wind variability and estimate the effect that each strategy would have on the operation and

  18. Examination of forced unsteady separated flow fields on a rotating wind turbine blade

    Energy Technology Data Exchange (ETDEWEB)

    Huyer, S [Univ. of Colorado, Boulder, CO (US)

    1993-04-01

    The wind turbine industry faces many problems regarding the construction of efficient and predictable wind turbine machines. Steady state, two-dimensional wind tunnel data are generally used to predict aerodynamic loads on wind turbine blades. Preliminary experimental evidence indicates that some of the underlying fluid dynamic phenomena could be attributed to dynamic stall, or more specifically to generation of forced unsteady separated flow fields. A collaborative research effort between the University of Colorado and the National Renewable Energy Laboratory was conducted to systematically categorize the local and global effects of three- dimensional forced unsteady flow fields.

  19. CFD and experimental data of closed-loop wind tunnel flow

    Directory of Open Access Journals (Sweden)

    John Kaiser Calautit

    2016-06-01

    Full Text Available The data presented in this article were the basis for the study reported in the research articles entitled ‘A validated design methodology for a closed loop subsonic wind tunnel’ (Calautit et al., 2014 [1], which presented a systematic investigation into the design, simulation and analysis of flow parameters in a wind tunnel using Computational Fluid Dynamics (CFD. The authors evaluated the accuracy of replicating the flow characteristics for which the wind tunnel was designed using numerical simulation. Here, we detail the numerical and experimental set-up for the analysis of the closed-loop subsonic wind tunnel with an empty test section.

  20. Wind speed dynamical model in a wind farm

    DEFF Research Database (Denmark)

    Soleimanzadeh, Maryam; Wisniewski, Rafal

    2010-01-01

    , the dynamic model for wind flow will be established. The state space variables are determined based on a fine mesh defined for the farm. The end goal of this method is to assist the development of a dynamical model of a wind farm that can be engaged for better wind farm control strategies.......This paper presents a model for wind speed in a wind farm. The basic purpose of the paper is to calculate approximately the wind speed in the vicinity of each wind turbine in a farm. In this regard the governing equations of flow will be solved for the whole wind farm. In ideal circumstances...

  1. Supervisory control of a variable speed wind turbine with doubly fed induction generator

    Directory of Open Access Journals (Sweden)

    C. Viveiros

    2015-11-01

    Full Text Available This paper is on an onshore variable speed wind turbine with doubly fed induction generator and under supervisory control. The control architecture is equipped with an event-based supervisor for the supervision level and fuzzy proportional integral or discrete adaptive linear quadratic as proposed controllers for the execution level. The supervisory control assesses the operational state of the variable speed wind turbine and sends the state to the execution level. Controllers operation are in the full load region to extract energy at full power from the wind while ensuring safety conditions required to inject the energy into the electric grid. A comparison between the simulations of the proposed controllers with the inclusion of the supervisory control on the variable speed wind turbine benchmark model is presented to assess advantages of these controls.

  2. Empirical Analysis of the Variability of Wind Generation in India: Implications for Grid Integration

    Energy Technology Data Exchange (ETDEWEB)

    Phadke, Amol; Abhyankar, NIkit; Rao, Poorvi

    2014-06-17

    We analyze variability in load and wind generation in India to assess its implications for grid integration of large scale wind projects using actual wind generation and load data from two states in India, Karnataka and Tamil Nadu. We compare the largest variations in load and net load (load ?wind, i.e., load after integrating wind) that the generation fleet has to meet. In Tamil Nadu, where wind capacity is about 53percent of the peak demand, we find that the additional variation added due to wind over the current variation in load is modest; if wind penetration reaches 15percent and 30percent by energy, the additional hourly variation is less than 0.5percent and 4.5percent of the peak demand respectively for 99percent of the time. For wind penetration of 15percent by energy, Tamil Nadu system is found to be capable of meeting the additional ramping requirement for 98.8percent of the time. Potential higher uncertainty in net load compared to load is found to have limited impact on ramping capability requirements of the system if coal plants can me ramped down to 50percent of their capacity. Load and wind aggregation in Tamil Nadu and Karnataka is found to lower the variation by at least 20percent indicating the benefits geographic diversification. These findings suggest modest additional flexible capacity requirements and costs for absorbing variation in wind power and indicate that the potential capacity support (if wind does not generate enough during peak periods) may be the issue that has more bearing on the economics of integrating wind

  3. Logjam Deformation: Experimental analogs with variable flow

    Science.gov (United States)

    Deshpande, N.; Crosby, B. T.

    2017-12-01

    Observed deformation of a massive, channel-spanning logjam in Big Creek, Idaho inspired a suite of physical experiments exploring logjam kinematics in a simplified but controlled setting. Using chopsticks as surrogates for logs, we conducted experiments in a 6 m long and 1.22 m wide channel with a semi-circular, textured bed. Nails driven into the bed restrain the chopsticks and initialize logjam formation. We conducted 24 hour experiments hours under two discharge conditions: (A) constant base discharge and (B) alternating discharge between the base flow and a doubled flow. After initial stabilization, we use high-resolution down-looking photographs at one-minute intervals to construct time-lapse videos and for Particle Image Velocimetry. Despite identical experimental protocols during stabilization, the starting configuration of chopsticks is markedly different for each run. In Experiment A, the orientations and packing of chopsticks is visibly less ordered than Experiment B. However, deformation in both experiments is accomplished by the same three mechanisms: rigid blocks that propagate downstream as v-shaped fronts bounded by shear planes, logjam-wide adjustments in response to the change in position of a key member, and independent logs whose trajectories either travel underneath the logjam or adjust unbounded in the backwater. Total compression is 46% and 80% for experiment A and B, respectively. Time-series of incremental displacements for both experiments decrease noisily over time, but zero displacement is never reached. Despite very different hydrologic forcings, cumulative rates of deformation for both experiments are similar, suggesting that the progressive deformation of disordered, elongate particles (chopsticks and logs) within a larger ensemble leads to denser packing, and that this mechanism best describes logjam deformation.

  4. The effect of long-distance interconnection on wind power variability

    International Nuclear Information System (INIS)

    Fertig, Emily; Apt, Jay; Jaramillo, Paulina; Katzenstein, Warren

    2012-01-01

    We use time- and frequency-domain techniques to quantify the extent to which long-distance interconnection of wind plants in the United States would reduce the variability of wind power output. Previous work has shown that interconnection of just a few wind plants across moderate distances could greatly reduce the ratio of fast- to slow-ramping generators in the balancing portfolio. We find that interconnection of aggregate regional wind plants would not reduce this ratio further but would reduce variability at all frequencies examined. Further, interconnection of just a few wind plants reduces the average hourly change in power output, but interconnection across regions provides little further reduction. Interconnection also reduces the magnitude of low-probability step changes and doubles firm power output (capacity available at least 92% of the time) compared with a single region. First-order analysis indicates that balancing wind and providing firm power with local natural gas turbines would be more cost-effective than with transmission interconnection. For net load, increased wind capacity would require more balancing resources but in the same proportions by frequency as currently, justifying the practice of treating wind as negative load. (letter)

  5. Wind Effects on Flow Patterns and Net Fluxes in Density-Driven High-Latitude Channel Flow

    Science.gov (United States)

    Huntley, Helga S.; Ryan, Patricia

    2018-01-01

    A semianalytic two-dimensional model is used to analyze the interplay between the different forces acting on density-driven flow in high-latitude channels. In particular, the balance between wind stress, viscous forces, baroclinicity, and sea surface slope adjustments under specified flux conditions is examined. Weak winds are found not to change flow patterns appreciably, with minimal (change the flow significantly, especially at the surface, by either strengthening the dual-jet pattern, established without wind, by a factor of 2-3 or initiating return flow at the surface. A nonzero flux does not result in the addition of a uniform velocity throughout the channel cross section, but modifies both along-channel and cross-channel velocities to become more symmetric, dominated by a down-channel jet centered in the domain and counter-clockwise lateral flow. We also consider formulations of the model that allow adjustments of the net flux in response to the wind. Flow patterns change, beyond uniform intensification or weakening, only for strong winds and high Ekman number. Comparisons of the model results to observational data collected in Nares Strait in the Canadian Archipelago in the summer of 2007 show rough agreement, but the model misses the upstream surface jet on the east side of the strait and propagates bathymetric effects too strongly in the vertical for this moderately high eddy viscosity. Nonetheless, the broad strokes of the observed high-latitude flow are reproduced.

  6. Estimating annoyance to calculated wind turbine shadow flicker is improved when variables associated with wind turbine noise exposure are considered.

    Science.gov (United States)

    Voicescu, Sonia A; Michaud, David S; Feder, Katya; Marro, Leonora; Than, John; Guay, Mireille; Denning, Allison; Bower, Tara; van den Berg, Frits; Broner, Norm; Lavigne, Eric

    2016-03-01

    The Community Noise and Health Study conducted by Health Canada included randomly selected participants aged 18-79 yrs (606 males, 632 females, response rate 78.9%), living between 0.25 and 11.22 km from operational wind turbines. Annoyance to wind turbine noise (WTN) and other features, including shadow flicker (SF) was assessed. The current analysis reports on the degree to which estimating high annoyance to wind turbine shadow flicker (HAWTSF) was improved when variables known to be related to WTN exposure were also considered. As SF exposure increased [calculated as maximum minutes per day (SFm)], HAWTSF increased from 3.8% at 0 ≤ SFm wind turbine-related features, concern for physical safety, and noise sensitivity. Reported dizziness was also retained in the final model at p = 0.0581. Study findings add to the growing science base in this area and may be helpful in identifying factors associated with community reactions to SF exposure from wind turbines.

  7. Flicker Mitigation by Speed Control of Permanent Magnet Synchronous Generator Variable-Speed Wind Turbines

    Directory of Open Access Journals (Sweden)

    Yanting Hu

    2013-07-01

    Full Text Available Grid-connected wind turbines are fluctuating power sources that may produce flicker during continuous operation. This paper presents a simulation model of a MW-level variable speed wind turbine with a full-scale back-to-back power converter and permanent magnet synchronous generator (PMSG developed in the simulation tool of PSCAD/EMTDC. Flicker emission of this system is investigated. The 3p (three times per revolution power oscillation due to wind shear and tower shadow effects is the significant part in the flicker emission of variable speed wind turbines with PMSG during continuous operation. A new method of flicker mitigation by controlling the rotational speed is proposed. It smoothes the 3p active power oscillations from wind shear and tower shadow effects of the wind turbine by varying the rotational speed of the PMSG. Simulation results show that damping the 3p active power oscillation by using the flicker mitigation speed controller is an effective means for flicker mitigation of variable speed wind turbines with full-scale back-to-back power converters and PMSG during continuous operation.

  8. TradeWind Deliverable 5.1: Effects of increasing wind power penetration on the power flows in European grids

    DEFF Research Database (Denmark)

    Lemström, Bettina; Uski-Joutsenvuo, Sanna; Holttinen, Hannele

    2008-01-01

    -border transmission. Risø has written section 4.2 about the impact of prediction errors of wind power production. VTT has carried out the model evaluation described in Chapter 3. Furthermore VTT has analysed the wind speed data, studied the moving weather effects and the capacity factor method presented in section 2...... flow simulations with a grid and market model developed in TradeWind Work Package 3, led by Sintef Energy Research. VTT, Sintef Energy Research and Risø have carried out the simulations of the different scenarios, analysed the results and written Chapter 4 about the impact of wind power on cross.......1, Chapter 5 and section 6.1, respectively. dena has made the calculations with the probabilistic method and written section 6.2....

  9. TRENDS IN VARIABILITY OF WATER FLOW OF TELEAJEN RIVER

    OpenAIRE

    N. JIPA; L. MEHEDINŢEANU

    2012-01-01

    TRENDS IN VARIABILITY OF WATER FLOW OF TELEAJEN RIVER. In the context of climate change at global and regional scale, this study intends to identify the trends in variability of the annual and monthly flow of Teleajen river. The study is based on processing the series of mean, maximum and minimum flows at Cheia and Moara Domnească hydrometric stations (these data were taken from the National Institute of Meteorology and Hydrology). The period of analysis is 1966-1998, statistical methods beei...

  10. Wind-type flows in astrophysical jets. I. The initial relativistic acceleration

    International Nuclear Information System (INIS)

    Ferrari, A.; Trussoni, E.; Rosner, R.; Tsinganos, K.; and Instituto di Cosmo-geofisica del Consiglio Nazionale delle Ricerche, Torino, Italy)

    1985-01-01

    We present transonic wind-type solutions of the relativistic quasi--two-dimensional Navier-Stokes fluid equations, which we assume to govern the initial acceleration of the plasma in astrophysical jets emerging from the funnel of an accretion disk orbiting a compact central object. The solutions depend on geometrical parameters characterizing the shape and height of the accretion funnel and on radiation parameters characterizing the luminosity and collimation of the radiation field inside this funnel. The two major results of our study are, first, that rapid expansion of the gas at the exit of the accretion funnel, which interacts synergistically with momentum deposition by radiation pressure, can lead to multiple critical points in the flow and to supersonic speeds very close to the central object; this main feature of our solution is consistent with observations that jets might already be accelerated to relativistic speeds on the sub--0.1 pc distance scale. Second, we show that for suitable values of the parameters characterizing the shape of the accretion funnel and its associated radiation field, multiple transonic solutions for the same initial conditions of the bulk flow speed are obtained, with shock transitions connecting some of these transonic solutions. Because of the sensitivity of the flow to slight variations of the disk and radiation parameters, such discontinuous transitions between distinct transonic flows might be related to the observed phenomenology and variability of active galactic nuclei

  11. Correlations between wind flow and population location at 67 light water nuclear power plant sites. [USA

    Energy Technology Data Exchange (ETDEWEB)

    Sprung, J.L.; Steck, G.P.; Frazier, A.W.

    1978-10-01

    Because wind flow and population location are both likely to be influenced by topography, it has been suggested that wind distributions and population distributions ought to be correlated and that the neglect of these correlations in the calculations of the Reactor Safety Study could have resulted in significant underestimates of accident consequences. This paper presents the results of an investigation of correlations between wind roses and population locations at 67 of the 68 power plant sites included in the Reactor Safety Study.

  12. Remote Sensing of Complex Flows by Doppler Wind Lidar: Issues and Preliminary Recommendations

    Energy Technology Data Exchange (ETDEWEB)

    Clifton, Andrew [National Renewable Energy Lab. (NREL), Golden, CO (United States); Boquet, Matthieu [Leosphere, Orsay (France); Burin Des Roziers, Edward [UL International Gmbh, Freemont, CA (United States); Westerhellweg, Annette [UL International Gmbh, Freemont, CA (United States); Hofsass, Martin [Univ. of Stuttgart (Germany). Stuttgart Wind Energy; Klaas, Tobias [Fraunhofer Inst. for Wind Energy and Energy System Technology, Freiburg (Germany); Vogstad, Klaus [Meventus, Hamburg (Germany); Clive, Peter [Sgurr Energy, Glasgow (United Kingdom); Harris, Mike [ZephIR Limited, Kirkcudbrightshire (United Kingdom); Wylie, Scott [ZephIR Limited, Kirkcudbrightshire (United Kingdom); Osler, Evan [Renewable NRG Systems, Hinesburg, VT (United States); Banta, Bob [National Oceanic and Atmospheric Administration (NOAA), Boulder, CO (United States); Choukulkar, Aditya [National Oceanic and Atmospheric Administration (NOAA), Boulder, CO (United States); Lundquist, Julie [Univ. of Colorado, Boulder, CO (United States); Aitken, Matthew [Univ. of Colorado, Boulder, CO (United States)

    2015-12-01

    Remote sensing of winds using lidar has become popular and useful in the wind energy industry. Extensive experience has been gained with using lidar for applications including land-based and offshore resource assessment, plant operations, and turbine control. Prepared by members of International Energy Agency Task 32, this report describes the state of the art in the use of Doppler wind lidar for resource assessment in complex flows. The report will be used as input for future recommended practices on this topic.

  13. Mitigation of Wind Power Fluctuation by Active Current Control of Variable Speed Wind Turbines

    DEFF Research Database (Denmark)

    Zhang, Yunqian; Chen, Zhe; Hu, Weihao

    2013-01-01

    converter in Simulink. A simple and effective method of wind power fluctuations mitigation by active current control of DFIG is proposed. It smoothes the generator output active power oscillations by adjusting the active current of the DFIG, such that the power oscillation is stored as the kinetic energy...

  14. Wind dependence on the flow rate in a natural draught cooling tower

    International Nuclear Information System (INIS)

    Baer, E.; Ernst, G.; Wurz, D.

    1981-01-01

    The efficiency of a natural draught cooling tower depends, among other things, on the effect of the wind on the flow in the tower stack. Determinations were made on a natural draught wet cooling tower 100 metres high, for the purpose of studying this effects. As characteristic quantity, a typical height was determined, the values of which were worked out from the results of the measurements. The efficiency of the stack is affected the most in the case of average wind velocities (when the velocity of the wind is about equal to the mean velocity of the plume). This effect diminishes when the velocity of the wind increases. In the case of average wind velocities, the direction of the wind has an effect, owing to the neighbouring buildings; for slightly greater wind velocities, no effect could be found [fr

  15. Mesoscale to microscale wind farm flow modeling and evaluation

    DEFF Research Database (Denmark)

    Sanz Rodrigo, Javier; Chávez Arroyo, Roberto Aurelio; Moriarty, Patrick

    2017-01-01

    The increasing size of wind turbines, with rotors already spanning more than 150m diameter and hub heights above 100m, requires proper modeling of the atmospheric boundary layer (ABL) from the surface to the free atmosphere. Furthermore, large wind farm arrays create their own boundary layer stru...

  16. Analysis of environmental dispersion in a wetland flow under the effect of wind: Extended solution

    Science.gov (United States)

    Wang, Huilin; Huai, Wenxin

    2018-02-01

    The accurate analysis of the contaminant transport process in wetland flows is essential for environmental assessment. However, dispersivity assessment becomes complicated when the wind strength and direction are taken into consideration. Prior studies illustrating the wind effect on environmental dispersion in wetland flows simply focused on the mean longitudinal concentration distribution. Moreover, the results obtained by these analyses are not accurate when done on a smaller scale, namely, the initial stage of the contaminant transport process. By combining the concentration moments method (the Aris' method) and Gill's expansion theory, the previous researches on environmental dispersion in wetland flows with effect of wind have been extended. By adopting up to 4th-order moments, the wind effect-as illustrated by dimensionless parameters Er (wind force) and ω (wind direction)-on kurtosis and skewness is discussed, the up to 4th-order vertical concentration distribution is obtained, and the two-dimensional concentration distribution is illustrated. This work demonstrates that wind intensity and direction can significantly affect the contaminant dispersion. Moreover, the study presents a more accurate analytical solution of environmental dispersion in wetland flows under various wind conditions.

  17. Design and numerical investigation of Savonius wind turbine with discharge flow directing capability

    DEFF Research Database (Denmark)

    Tahani, Mojtaba; Rabbani, Ali; Kasaeian, Alibakhsh

    2017-01-01

    Recently, Savonius vertical axis wind turbines due to their capabilities and positive properties have gained a significant attention. The objective of this study is to design and model a Savonius-style vertical axis wind turbine with direct discharge flow capability in order to ventilate building...

  18. Models for Numerical Evaluation of Variable Speed Different Wind Generator Systems

    DEFF Research Database (Denmark)

    Li, Hui; Chen, Zhe; Polinder, H.

    2007-01-01

    -effective wind conversion system among the various possible configurations. The aim of this project is to evaluate the suitable cost- effective wind generator systems by using the optimization designs and the numerical comparison. The research report is made of two parts, one focus on the design models......, the analytical models include the wind turbine power characteristics; the single/threestage gearbox and the power electronic converter for possible wind turbine concepts are described. Finally, the electromagnetic design models of the investigated generator topologies are presented, including the squirrel cage...... induction generator (SCIG), the doubly-fed induction generator (DFIG), the electrically excited synchronous generator (EESG) and permanent magnet synchronous generator (PMSG). Numerical evaluation with optimized design and comparison of variable speed wind generator systems by using the presented models...

  19. Modeling and control of PMSG-based variable-speed wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hong-Woo; Ko, Hee-Sang [Wind Energy Research Center, Korea Institute of Energy Research, Yuseong-gu Jang-Dong 71-2,305-343 Daejeon (Korea); Kim, Sung-Soo [Chungbuk National University (Korea)

    2010-01-15

    This paper presents a control scheme of a variable-speed wind turbine with a permanent-magnetic synchronous generator (PMSG) and full-scale back-to-back voltage source converter. A comprehensive dynamical model of the PMSG wind turbine and its control scheme is presented. The control scheme comprises both the wind-turbine control itself and the power-converter control. In addition, since the PMSG wind turbine is able to support actively the grid due to its capability to control independently active and reactive power production to the imposed set-values with taking into account its operating state and limits, this paper presents the supervisory reactive power control scheme in order to regulate/contribute the voltage at a remote location. The ability of the control scheme is assessed and discussed by means of simulations, based on a candidate site of the offshore wind farm in Jeju, Korea. (author)

  20. Power Maximization Control of Variable Speed Wind Generation System Using Permanent Magnet Synchronous Generator

    Science.gov (United States)

    Morimoto, Shigeo; Nakamura, Tomohiko; Takeda, Yoji

    This paper proposes the sensorless output power maximization control of the wind generation system. A permanent magnet synchronous generator (PMSG) is used as a variable speed generator in the proposed system. The generator torque is suitably controlled according to the generator speed and thus the power from a wind turbine settles down on the maximum power point by the proposed MPPT control method, where the information of wind velocity is not required. Moreover, the maximum available generated power is obtained by the optimum current vector control. The current vector of PMSG is optimally controlled according to the generator speed and the required torque in order to minimize the losses of PMSG considering the voltage and current constraints. The proposed wind power generation system can be achieved without mechanical sensors such as a wind velocity detector and a position sensor. Several experimental results show the effectiveness of the proposed control method.

  1. Power maximization of variable-speed variable-pitch wind turbines using passive adaptive neural fault tolerant control

    Science.gov (United States)

    Habibi, Hamed; Rahimi Nohooji, Hamed; Howard, Ian

    2017-09-01

    Power maximization has always been a practical consideration in wind turbines. The question of how to address optimal power capture, especially when the system dynamics are nonlinear and the actuators are subject to unknown faults, is significant. This paper studies the control methodology for variable-speed variable-pitch wind turbines including the effects of uncertain nonlinear dynamics, system fault uncertainties, and unknown external disturbances. The nonlinear model of the wind turbine is presented, and the problem of maximizing extracted energy is formulated by designing the optimal desired states. With the known system, a model-based nonlinear controller is designed; then, to handle uncertainties, the unknown nonlinearities of the wind turbine are estimated by utilizing radial basis function neural networks. The adaptive neural fault tolerant control is designed passively to be robust on model uncertainties, disturbances including wind speed and model noises, and completely unknown actuator faults including generator torque and pitch actuator torque. The Lyapunov direct method is employed to prove that the closed-loop system is uniformly bounded. Simulation studies are performed to verify the effectiveness of the proposed method.

  2. Critical Speed Control for a Fixed Blade Variable Speed Wind Turbine

    Directory of Open Access Journals (Sweden)

    Morgan Rossander

    2017-10-01

    Full Text Available A critical speed controller for avoiding a certain rotational speed is presented. The controller is useful for variable speed wind turbines with a natural frequency in the operating range. The controller has been simulated, implemented and tested on an open site 12 kW vertical axis wind turbine prototype. The controller is based on an adaptation of the optimum torque control. Two lookup tables and a simple state machine provide the control logic of the controller. The controller requires low computational resources, and no wind speed measurement is needed. The results suggest that the controller is a feasible method for critical speed control. The skipping behavior can be adjusted using only two parameters. While tested on a vertical axis wind turbine, it may be used on any variable speed turbine with the control of generator power.

  3. Sensorless Control for the EVT-Based New Dual Power Flow Wind Energy Conversion System

    Directory of Open Access Journals (Sweden)

    Ying Zhu

    2017-06-01

    Full Text Available The dual power flow wind energy conversion system (DPF-WECS is a novel system which is based on the electrical variable transmission (EVT machine. The proposed sensorless control for the DPF-WECS is based on the model reference adaptive system (MRAS observer by combining the sliding mode (SM theory. The SM-MRAS observer is on account of the calculations without the requirement of the proportional-integral (PI loop which exists in the classical MRAS observer. Firstly, the sensorless algorithm is applied in the maximum power point tracking (MPPT control considering the torque loss for the outer rotor of the EVT. Secondly, the sensorless control is adopted for the inner rotor control of the EVT machine. The proposed sensorless control method based on the SM-MRAS for the DPF-WECS is verified by the simulation and experimental results.

  4. Control and Health Monitoring of Variable Speed Wind Power Generation Systems; Period of Performance: 10 July 1997 - 10 July 2000

    Energy Technology Data Exchange (ETDEWEB)

    Song, Y. D.; Bikdash, M.; Schulz, M. J.

    2001-09-01

    This document reports accomplishments on variable speed control, furling analysis, and health monitoring of wind turbines. There are three parts, prepared by Song, Bikdash, and Schulz, respectively. The first part discusses variable-speed control of wind turbines, exploring a memory-based method for wind speed prediction and wind turbine control. The second part addresses the yaw dynamics of wind turbines, including modeling, analysis, and control. The third part of the report discusses new analytical techniques that were developed and tested to detect initial damage to prevent failures of wind turbine rotor blades.

  5. RAMSIM: A fast computer model for mean wind flow over hills

    Energy Technology Data Exchange (ETDEWEB)

    Corbett, J-F.

    2007-06-15

    The Riso Atmospheric Mixed Spectral-Integration Model (RAMSIM) is a micro-scale, linear flow model developed to quickly calculate the mean wind flow field over orography. It was designed to bridge the gap between WAsP and similar models that are fast but insufficiently accurate over steep slopes, and non-linear CFD models that are accurate but too computationally expensive for routine use on a PC. RAMSIM is governed by the RANS and E-{epsilon} turbulence closure equations, expressed in non-Cartesian coordinates. A terrain-following coordinate system is created from a simple analytical expression. The equations are linearized by a perturbation expansion about the flat-terrain case. The first-order equations, representing the spatial correction due to the presence of orography, are Fourier-transformed analytically in the two horizontal dimensions. The pressure and horizontal velocity components are eliminated, resulting in a set of four ordinary differential equations (ODEs). RAMSIM is currently implemented and tested in two-dimensional space; a 3D version has been formulated but not yet implemented. In the 2D case, there are only three ODEs, depending on only two non-dimensional parameters. This is exploited by solving the ODEs by Runge-Kutta integration for all useful combinations of these parameters, and storing the results in look-up tables (LUT). The flow field over any given orography is then quickly obtained by interpolating from the LUTs and scaling the value of the flow variables for each wavenumber component of the orography, and returning to real space by inverse Fourier transform. RAMSIM was tested against measurements, as well as other authors' flow models, in four test cases: two laboratory flows over idealized terrain, and two field experiments. RAMSIM calculations generally agree with measurements over upward slopes and hilltops, but overestimate the speed very near the ground at hilltops. RAMSIM appears to have an edge over other linear models

  6. H∞ Robust Controller Design for an Induction Generator Driven by a Variable-Speed Wind Turbine

    OpenAIRE

    Hoseini, Seyed Mohammad; Heidari, Seyed Vali

    2011-01-01

    This paper presents the modeling and robust controller design design for a wind-driven induction generator system. a  robust controller for the static synchronous compensator (STATCOM) and the variable blade pitch in a wind energy conversion system (WECS) is designed to be controlled voltage and mechanical power. This controller leading to satisfactory damping characteristics achieved for the closed loop system. Effects of various system disturbances on the dynamic performance have been simul...

  7. Wind regimes and their relation to synoptic variables using self-organizing maps

    Science.gov (United States)

    Berkovic, Sigalit

    2018-01-01

    This study exemplifies the ability of the self-organizing maps (SOM) method to directly define well known wind regimes over Israel during the entire year, except summer period, at 12:00 UTC. This procedure may be applied at other hours and is highly relevant to future automatic climatological analysis and applications. The investigation is performed by analysing surface wind measurements from 53 Israel Meteorological Service stations. The relation between the synoptic variables and the wind regimes is revealed from the averages of ECMWF ERA-INTERIM reanalysis variables for each SOM wind regime. The inspection of wind regimes and their average geopotential anomalies has shown that wind regimes relate to the gradient of the pressure anomalies, rather than to the specific isobars pattern. Two main wind regimes - strong western and the strong eastern or northern - are well known over this region. The frequencies of the regimes according to seasons is verified. Strong eastern regimes are dominant during winter, while strong western regimes are frequent in all seasons.

  8. Comparison of simulators for variable-speed wind turbine transient analysis

    DEFF Research Database (Denmark)

    Seman, S.; Iov, Florin; Niiranen, J.

    2006-01-01

    This paper presents a comparison of three variable-speed wind turbine simulators used for a 2 MW wind turbine short-term transient behaviour study during a symmetrical network disturbance. The simulator with doubly fed induction generator (DFIG) analytical model, the simulator with a finite element...... method (FEM) DFIG model and the wind turbine simulator with an analytical model of DFIG are compared. The comparison of the simulation results shows the influence of the different modelling approaches on the short-term transient simulation accuracy...

  9. Offshore Variability in Critical Weather Conditions in Large-Scale Wind Based Danish Power System

    DEFF Research Database (Denmark)

    Cutululis, Nicolaos Antonio; Litong-Palima, Marisciel; Sørensen, Poul Ejnar

    2013-01-01

    , the chances of losing several GW of wind power due to critical weather conditions in a very short time period could potentially jeopardize the whole system’s reliability and stability. Forecasting such events is not trivial and the results so far are not encouraging. When assessing the impact......Offshore wind power has a significant development potential, especially in North Europe. The geographical concentration of offshore wind power leads to increased variability and in the case of critical weather conditions it may lead to sudden and considerable loss of production. In this context...

  10. Offshore Variability in Critical Weather Conditions in Large-Scale Wind Based Danish Power System

    DEFF Research Database (Denmark)

    Cutululis, Nicolaos Antonio; Litong-Palima, Marisciel; Sørensen, Poul Ejnar

    2013-01-01

    Offshore wind power has a significant development potential, especially in North Europe. The geographical concentration of offshore wind power leads to increased variability and in the case of critical weather conditions it may lead to sudden and considerable loss of production. In this context......, the chances of losing several GW of wind power due to critical weather conditions in a very short time period could potentially jeopardize the whole system’s reliability and stability. Forecasting such events is not trivial and the results so far are not encouraging. When assessing the impact...

  11. Maximizing Energy Capture of Fixed-Pitch Variable-Speed Wind Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, K.; Migliore, P.

    2000-08-01

    Field tests of a variable-speed, stall-regulated wind turbine were conducted at a US Department of Energy Laboratory. A variable-speed generating system, comprising a doubly-fed generator and series-resonant power converter, was installed on a 275-kW, downwind, two-blade wind turbine. Gearbox, generator, and converter efficiency were measured in the laboratory so that rotor aerodynamic efficiency could be determined from field measurement of generator power. The turbine was operated at several discrete rotational speeds to develop power curves for use in formulating variable-speed control strategies. Test results for fixed-speed and variable-speed operation are presented along with discussion and comparison of the variable-speed control methodologies. Where possible, comparisons between fixed-speed and variable-speed operation are shown.

  12. TRENDS IN VARIABILITY OF WATER FLOW OF TELEAJEN RIVER

    Directory of Open Access Journals (Sweden)

    N. JIPA

    2012-03-01

    Full Text Available TRENDS IN VARIABILITY OF WATER FLOW OF TELEAJEN RIVER. In the context of climate change at global and regional scale, this study intends to identify the trends in variability of the annual and monthly flow of Teleajen river. The study is based on processing the series of mean, maximum and minimum flows at Cheia and Moara Domnească hydrometric stations (these data were taken from the National Institute of Meteorology and Hydrology. The period of analysis is 1966-1998, statistical methods beeing mostly used, among which the Mann – Kendall test, that identifies the liniar trend and its statistic significance, comes into focus. The trends in the variability of water annual and monthly flows are highlighted. The results obtained show downward trends for the mean and maximum annual flows, and for the minimum water discharge, a downward trend for Cheia station and an upward trend for Moara Domnească station. Knowing the trends in the variability of the rivers’ flow is important empirically in view of taking adequate administration measures of the water resources and managment measures for the risks lead by extreme hidrologic events (floods, low-water, according to the possible identified changes.

  13. A fundamental study of a variable critical nozzle flow

    International Nuclear Information System (INIS)

    Kim, Jea Hyung; Kim, Heuy Dong; Park, Kyung Am

    2003-01-01

    The mass flow rate of gas flow through critical nozzle depends on the nozzle supply conditions and the cross-sectional area at the nozzle throat. In order that the critical nozzle can be operated at a wide range of supply conditions, the nozzle throat diameter should be controlled to change the flow passage area. This can be achieved by means of a variable critical nozzle. In the present study, both experimental and computational works are performed to develop variable critical nozzle. A cone-cylinder with a diameter of d is inserted into conventional critical nozzle. It can move both upstream and downstream, thereby changing the cross-sectional area of the nozzle throat. Computational work using the axisymmetric, compressible Navier-Stokes equations is carried out to simulate the variable critical nozzle flow. An experiment is performed to measure the mass flow rate through variable critical nozzle. The present computational results are in close agreement with measured ones. The boundary layer displacement and momentum thickness are given as a function of Reynolds number. An empirical equation is obtained to predict the discharge coefficient of variable critical nozzle

  14. Variable Torque Control of Offshore Wind Turbine on Spar Floating Platform Using Advanced RBF Neural Network

    Directory of Open Access Journals (Sweden)

    Lei Wang

    2014-01-01

    Full Text Available Offshore floating wind turbine (OFWT has been a challenging research spot because of the high-quality wind power and complex load environment. This paper focuses on the research of variable torque control of offshore wind turbine on Spar floating platform. The control objective in below-rated wind speed region is to optimize the output power by tracking the optimal tip-speed ratio and ideal power curve. Aiming at the external disturbances and nonlinear uncertain dynamic systems of OFWT because of the proximity to load centers and strong wave coupling, this paper proposes an advanced radial basis function (RBF neural network approach for torque control of OFWT system at speeds lower than rated wind speed. The robust RBF neural network weight adaptive rules are acquired based on the Lyapunov stability analysis. The proposed control approach is tested and compared with the NREL baseline controller using the “NREL offshore 5 MW wind turbine” model mounted on a Spar floating platform run on FAST and Matlab/Simulink, operating in the below-rated wind speed condition. The simulation results show a better performance in tracking the optimal output power curve, therefore, completing the maximum wind energy utilization.

  15. IEA-Task 31 WAKEBENCH: Towards a protocol for wind farm flow model evaluation. Part 2: Wind farm wake models

    International Nuclear Information System (INIS)

    Moriarty, Patrick; Rodrigo, Javier Sanz; Gancarski, Pawel; Chuchfield, Matthew; Naughton, Jonathan W; Hansen, Kurt S; Machefaux, Ewan; Maguire, Eoghan; Castellani, Francesco; Terzi, Ludovico; Breton, Simon-Philippe; Ueda, Yuko

    2014-01-01

    Researchers within the International Energy Agency (IEA) Task 31: Wakebench have created a framework for the evaluation of wind farm flow models operating at the microscale level. The framework consists of a model evaluation protocol integrated with a web-based portal for model benchmarking (www.windbench.net). This paper provides an overview of the building-block validation approach applied to wind farm wake models, including best practices for the benchmarking and data processing procedures for validation datasets from wind farm SCADA and meteorological databases. A hierarchy of test cases has been proposed for wake model evaluation, from similarity theory of the axisymmetric wake and idealized infinite wind farm, to single-wake wind tunnel (UMN-EPFL) and field experiments (Sexbierum), to wind farm arrays in offshore (Horns Rev, Lillgrund) and complex terrain conditions (San Gregorio). A summary of results from the axisymmetric wake, Sexbierum, Horns Rev and Lillgrund benchmarks are used to discuss the state-of-the-art of wake model validation and highlight the most relevant issues for future development

  16. The role of wind field induced flow velocities in destratification and hypoxia reduction at Meiling Bay of large shallow Lake Taihu, China.

    Science.gov (United States)

    Jalil, Abdul; Li, Yiping; Du, Wei; Wang, Wencai; Wang, Jianwei; Gao, Xiaomeng; Khan, Hafiz Osama Sarwar; Pan, Baozhu; Acharya, Kumud

    2018-01-01

    Wind induced flow velocity patterns and associated thermal destratification can drive to hypoxia reduction in large shallow lakes. The effects of wind induced hydrodynamic changes on destratification and hypoxia reduction were investigated at the Meiling bay (N 31° 22' 56.4″, E 120° 9' 38.3″) of Lake Taihu, China. Vertical flow velocity profile analysis showed surface flow velocities consistency with the wind field and lower flow velocity profiles were also consistent (but with delay response time) when the wind speed was higher than 6.2 m/s. Wind field and temperature found the control parameters for hypoxia reduction and for water quality conditions at the surface and bottom profiles of lake. The critical temperature for hypoxia reduction at the surface and the bottom profile was ≤24.1C° (below which hypoxic conditions were found reduced). Strong prevailing wind field (onshore wind directions ESE, SE, SSE and E, wind speed ranges of 2.4-9.1 m/s) reduced the temperature (22C° to 24.1C°) caused reduction of hypoxia at the near surface with a rise in water levels whereas, low to medium prevailing wind field did not supported destratification which increased temperature resulting in increased hypoxia. Non-prevailing wind directions (offshore) were not found supportive for the reduction of hypoxia in study area due to less variable wind field. Daytime wind field found more variable (as compared to night time) which increased the thermal destratification during daytime and found supportive for destratification and hypoxia reduction. The second order exponential correlation found between surface temperature and Chlorophyll-a (R 2 : 0.2858, Adjusted R-square: 0.2144 RMSE: 4.395), Dissolved Oxygen (R 2 : 0.596, Adjusted R-square: 0.5942, RMSE: 0.3042) concentrations. The findings of the present study reveal the driving mechanism of wind induced thermal destratification and hypoxic conditions, which may further help to evaluate the wind role in eutrophication

  17. Remote Sensing of Complex Flows by Doppler Wind Lidar: Summary of Issues and Preliminary Recommendations from IEA Wind Task 32 Phase 1

    Energy Technology Data Exchange (ETDEWEB)

    Clifton, Andrew

    2017-06-21

    IEA Wind Task 32 seeks to identify and mitigate the barriers to the adoption of lidar for wind energy applications. In Phase 1 of the task, a working group looked at the state of the art of wind lidar in complex flow conditions. This presentation is a short summary of that work, given at the start of Phase 2.

  18. Evaluation of wind flow with a nacelle-mounted, continuous wave wind lidar

    DEFF Research Database (Denmark)

    Medley, John; Barker, Will; Harris, Mike

    2014-01-01

    IR, increasing the confidence in the ZephIR for measuring wind parameters in this configuration. SCADA data from the turbine was combined with measured wind speeds and directions to derive power curves from the mast data (hub-height) and from ZephIR data (hub-height and rotor-equivalent). The rotor...

  19. Impact analysis of flow variability in sizing kanbans

    Directory of Open Access Journals (Sweden)

    Isaac Pergher

    2014-02-01

    Full Text Available The aim of this paper is to analyze the effects of variability flow, advocated by Factory Physics, in sizing Kanban production systems. The variability of flow presupposes that the variability of activities performed by a process is dissipated throughout the productive flow system, causing variations in the lead time, the work-in-process levels and the equipment availability, among others. To conduct the research, we created a didactic model of discrete event computer simulation. The proposed model aims to present the possible impacts caused by the variability flow in a production system regarding the sizing of the number of Kanbans cards, by using the results supplied by two different investigated scenarios. The main results of the research allow concluding that, by comparing the two scenarios developed in the model, the presence of variability in the production system caused an average increase of 32% in the number of Kanban cards (p=0,000. This implies that, in real productive systems, the study of Kanban sizing should consider the variability of individual operations, a fact often relegated as an assumption in the formulation from classical literature on the definition of the number of Kanbans, thus providing opportunities for the development of future research.

  20. Upper Meter Processes: Short Wind, Waves, Surface Flow and Turbulence

    National Research Council Canada - National Science Library

    Klinke, Jochen

    2001-01-01

    This work is an extension of the early works on measuring short wind waves that have been funded by ONR for seven years, During this seven-year period, we have collected the only available systematic...

  1. Impact of Wind Power Generation on European Cross-Border Power Flows

    DEFF Research Database (Denmark)

    Zugno, Marco; Pinson, Pierre; Madsen, Henrik

    2013-01-01

    A statistical analysis is performed in order to investigate the relationship between wind power production and cross-border power transmission in Europe. A dataset including physical hourly cross-border power exchanges between European countries as dependent variables is used. Principal component...... wind power production and spot price in Germany have substantial nonlinear effects on power transmission on a European scale....

  2. Internal variability of the wind-driven ocean circulation

    NARCIS (Netherlands)

    Katsman, C.A.

    2001-01-01

    The ocean circulation is known to vary on a multitude of time and spatial scales. Due to the large heat capacity of the oceans, variations in its circulation have a profound impact on climate. Therefore, understanding the origin of this variability and its sensitivity to physical parameters is an

  3. Short Communication Short-term variability in alongshore winds and ...

    African Journals Online (AJOL)

    Swakopmund is a popular coastal resort in Namibia, especially during the summer holiday season when daily sea temperatures can fluctuate several degrees in a short period. Hourly measurements of the near bottom water temperature were collected off the Swakopmund Jetty to investigate the thermal variability in ...

  4. Natural wind variability triggered drop in German redispatch volume and costs from 2015 to 2016.

    Science.gov (United States)

    Wohland, Jan; Reyers, Mark; Märker, Carolin; Witthaut, Dirk

    2018-01-01

    Avoiding dangerous climate change necessitates the decarbonization of electricity systems within the next few decades. In Germany, this decarbonization is based on an increased exploitation of variable renewable electricity sources such as wind and solar power. While system security has remained constantly high, the integration of renewables causes additional costs. In 2015, the costs of grid management saw an all time high of about € 1 billion. Despite the addition of renewable capacity, these costs dropped substantially in 2016. We thus investigate the effect of natural climate variability on grid management costs in this study. We show that the decline is triggered by natural wind variability focusing on redispatch as a main cost driver. In particular, we find that 2016 was a weak year in terms of wind generation averages and the occurrence of westerly circulation weather types. Moreover, we show that a simple model based on the wind generation time series is skillful in detecting redispatch events on timescales of weeks and beyond. As a consequence, alterations in annual redispatch costs in the order of hundreds of millions of euros need to be understood and communicated as a normal feature of the current system due to natural wind variability.

  5. Natural wind variability triggered drop in German redispatch volume and costs from 2015 to 2016

    Science.gov (United States)

    Reyers, Mark; Märker, Carolin; Witthaut, Dirk

    2018-01-01

    Avoiding dangerous climate change necessitates the decarbonization of electricity systems within the next few decades. In Germany, this decarbonization is based on an increased exploitation of variable renewable electricity sources such as wind and solar power. While system security has remained constantly high, the integration of renewables causes additional costs. In 2015, the costs of grid management saw an all time high of about € 1 billion. Despite the addition of renewable capacity, these costs dropped substantially in 2016. We thus investigate the effect of natural climate variability on grid management costs in this study. We show that the decline is triggered by natural wind variability focusing on redispatch as a main cost driver. In particular, we find that 2016 was a weak year in terms of wind generation averages and the occurrence of westerly circulation weather types. Moreover, we show that a simple model based on the wind generation time series is skillful in detecting redispatch events on timescales of weeks and beyond. As a consequence, alterations in annual redispatch costs in the order of hundreds of millions of euros need to be understood and communicated as a normal feature of the current system due to natural wind variability. PMID:29329349

  6. Incorporation of a Wind Generator Model into a Dynamic Power Flow Analysis

    Directory of Open Access Journals (Sweden)

    Angeles-Camacho C.

    2011-07-01

    Full Text Available Wind energy is nowadays one of the most cost-effective and practical options for electric generation from renewable resources. However, increased penetration of wind generation causes the power networks to be more depend on, and vulnerable to, the varying wind speed. Modeling is a tool which can provide valuable information about the interaction between wind farms and the power network to which they are connected. This paper develops a realistic characterization of a wind generator. The wind generator model is incorporated into an algorithm to investigate its contribution to the stability of the power network in the time domain. The tool obtained is termed dynamic power flow. The wind generator model takes on account the wind speed and the reactive power consumption by induction generators. Dynamic power flow analysis is carried-out using real wind data at 10-minute time intervals collected for one meteorological station. The generation injected at one point into the network provides active power locally and is found to reduce global power losses. However, the power supplied is time-varying and causes fluctuations in voltage magnitude and power fl ows in transmission lines.

  7. On control strategies for power optimization and regulation of variable speed wind turbines

    International Nuclear Information System (INIS)

    Boukhezzar, B.

    2006-02-01

    The research work is dealing with variable speed wind turbines modelling and control design, in order to achieve the objectives of maximizing the extracted energy from the wind, below the rated power area in the one hand and in the other hand regulating the electric power production, above the rated power area, while reducing mechanical transient loads. For this purpose, we have studied various control strategies from linear to nonlinear based. some of the controllers that we have developed, herein appear for the first time in the relevant domain, the remaining others are an adaptation of well know controllers to the adopted wind turbine models. as matter of fact, we have derived two wind turbine models as well as a wind speed estimator. Indeed, the estimator allows obtaining the effective wind speed which cannot be measured, since the wind profile around the rotor is variable in time and space. As results, it has been shown that single input control by means of pitch angle or generator control cannot succeed to simultaneously drive the electric power output regulation and the rotor speed reference tracking. So then, our idea is to combine nonlinear dynamic state feedback torque control and pitch linear based control which turns out to be the best strategy. In addition, the validation of the controllers performance, using a high turbulence wind speed profile, has been performed through wind turbine simulators provided by nrel (national renewable energy laboratory, golden, co), has confirmed the theoretical results and has led to quite satisfactory conclusions in terms of energy capture optimization, power regulation and disturbances strong rejection as well. (author)

  8. Fast linear solvers for variable density turbulent flows

    Science.gov (United States)

    Pouransari, Hadi; Mani, Ali; Darve, Eric

    2015-11-01

    Variable density flows are ubiquitous in variety of natural and industrial systems. Two-phase and multi-phase flows in natural and industrial processes, astrophysical flows, and flows involved in combustion processes are such examples. For an ideal gas subject to low-Mach approximation, variations in temperature can lead to a non-uniform density field. In this work, we consider radiatively heated particle-laden turbulent flows as an example application in which density variability is resulted from inhomogeneities in the heat absorption by an inhomogeneous particle field. Under such conditions, the divergence constraint of the fluid is enforced through a variable coefficient Poisson equation. Inversion of the discretized variable coefficient Poisson operator is difficult using the conventional linear solvers as the size of the problem grows. We apply a novel hierarchical linear solve algorithm based on low-rank approximations. The proposed linear solver could be applied to variety of linear systems arising from discretized partial differential equations. It can be used as a standalone direct-solver with tunable accuracy and linear complexity, or as a high-accuracy pre-conditioner in conjunction with other iterative methods.

  9. Study of Flow Deformation around Wind-Vane Mounted Three-Dimensional Hot-Wire Probes

    DEFF Research Database (Denmark)

    Rømer Rasmussen, K.; Larsen, Søren Ejling; Jørgensen, F. E.

    1981-01-01

    Open wind tunnel tests on several different sensor systems consisting of triaxial hot-wire probes mounted on wind vanes (DISA and Riso vanes) have shown that flow deformation around the hot-wire sensor introduces errors in the measured velocity components. Though changes in the horizontal...... components proved to be negligible, flow deformation resulted in an overestimation of the vertical component from 1.1 to 1.5, depending on the direction of the vertical component. Turbulence and mean value data were adjusted by use of a linear correction derived from the wind tunnel tests. Wind vane...... construction must strike a compromise between minor flow disturbance and sufficient probe support. The final version of the DISA vane resulted in an acceptable vertical correction of about 10%....

  10. MAXIMUM PRINCIPLE FOR SUBSONIC FLOW WITH VARIABLE ENTROPY

    Directory of Open Access Journals (Sweden)

    B. Sizykh Grigory

    2017-01-01

    Full Text Available Maximum principle for subsonic flow is fair for stationary irrotational subsonic gas flows. According to this prin- ciple, if the value of the velocity is not constant everywhere, then its maximum is achieved on the boundary and only on the boundary of the considered domain. This property is used when designing form of an aircraft with a maximum critical val- ue of the Mach number: it is believed that if the local Mach number is less than unit in the incoming flow and on the body surface, then the Mach number is less then unit in all points of flow. The known proof of maximum principle for subsonic flow is based on the assumption that in the whole considered area of the flow the pressure is a function of density. For the ideal and perfect gas (the role of diffusion is negligible, and the Mendeleev-Clapeyron law is fulfilled, the pressure is a function of density if entropy is constant in the entire considered area of the flow. Shows an example of a stationary sub- sonic irrotational flow, in which the entropy has different values on different stream lines, and the pressure is not a function of density. The application of the maximum principle for subsonic flow with respect to such a flow would be unreasonable. This example shows the relevance of the question about the place of the points of maximum value of the velocity, if the entropy is not a constant. To clarify the regularities of the location of these points, was performed the analysis of the com- plete Euler equations (without any simplifying assumptions in 3-D case. The new proof of the maximum principle for sub- sonic flow was proposed. This proof does not rely on the assumption that the pressure is a function of density. Thus, it is shown that the maximum principle for subsonic flow is true for stationary subsonic irrotational flows of ideal perfect gas with variable entropy.

  11. Transient and dynamic control of a variable speed wind turbine with synchronous generator

    Energy Technology Data Exchange (ETDEWEB)

    Jauch, Clemens [Riso National Laboratory, Wind Energy Department, PO Box 49, DK 4000 Roskilde, (Denmark)

    2007-02-14

    In this article, a controller for dynamic and transient control of a variable speed wind turbine with a full-scale converter-connected high-speed synchronous generator is presented. First, the phenomenon of drive train oscillations in wind turbines with full-scale converter-connected generators is discussed. Based on this discussion, a controller is presented that dampens these oscillations without impacting on the power that the wind turbine injects into the grid. Since wind turbines are increasingly demanded to take over power system stabilizing and control tasks, the presented wind turbine design is further enhanced to support the grid in transient grid events. A controller is designed that allows the wind turbine to ride through transient grid faults. Since such faults often cause power system oscillations, another controller is added that enables the turbine to participate in the damping of such oscillations. It is concluded that the controllers presented keep the wind turbine stable under any operating conditions, and that they are capable of adding substantial damping to the power system. (Author).

  12. Spatio-Temporal Variability in Coastal Upwelling/Downwelling from Scatterometer Winds

    Science.gov (United States)

    Morey, S. L.

    2014-12-01

    The decade-plus near-continuous record from satellite scatterometers provides indirect measurements of vector winds over the global ocean with sampling largely determined by the satellite orbits. This allows investigation of wind-driven ocean processes even at remote locations that are poorly sampled by in situ measurements. Global satellite wind products are used to produce a database of time series of upwelling indices, similar to those typically produced using data from coastal ocean observing systems, at all coastal locations over the Earth. This database is analyzed to study spatial and temporal variability of coastal upwelling and downwelling throughout the world ocean. The upwelling index is typically a proxy for upwelling/downwelling across the slope assuming a simple local mass balance to the offshore surface Ekman transport. However, along-shore variations in winds and shelf geometry perturb this simple local balance via shelf wave dynamics. In particular, cross-slope velocities downcoast (in a shelf wave propagation sense) of changes in the topographic gradient orientation may respond preferentially to a wind direction not oriented along local isobaths. Data from numerical models are analyzed to illustrate this point and to clarify the relation between upwelling/downwelling and local wind direction throughout the global coastal ocean that may allow improvement in wind-derived upwelling indices.

  13. Modelling the day to day wind variability offshore central Chile at about 30 deg. south

    International Nuclear Information System (INIS)

    Rutllant, J.

    1994-07-01

    Cycles of strengthening and relaxation of the winds offshore 30 degrees S at central Chile, are related to the propagation of coastal-lows, a year-round phenomenon occurring with periodicities of about one in five days. Simple physical modelling of the day to day variability of the alongshore wind component at a coastal strip extending offshore up to the Rossby deformation radius of these wave perturbations, is presented in terms of the relevant horizontal pressure gradients and the ageostrophic components arising from the coastal-low propagation. The results of 5-day composites of 8 wind-events each, at the winter and summer halves of the annual cycle, respectively; lead to a good agreement between the observed phase-lag of the winds with respect to the pressure forcing field, stressing the importance of the ageostrophic wind components at the extremes of the pressure wave perturbation associated with the passage of coastal-lows over the Point Lengua de Vaca (30 15 S) area. A possible contribution of the upwelling-favorable wind enhancement at the time of the pressure rise and subsequent fall, ahead of the coastal-low, is postulated through an upwelling-front low-level jet, that would be carried onshore and closer to the surface by the combination of the enhanced coastal upwelling, the coastal depression of the subsidence inversion base and the coastal ageostrophic wind components during the passage of the leading edge of the coastal lows. (author). 26 refs, 5 figs, 1 tab

  14. Analysis of the short-term overproduction capability of variable speed wind turbines

    DEFF Research Database (Denmark)

    Hansen, Anca Daniela; Altin, Müfit; Margaris, Ioannis D.

    2014-01-01

    Emphasis in this article is on variable speed wind turbines (VSWTs) capability to provide short-term overproduction and better understanding of VSWTs’ mechanical and electrical limits to deliver such support. VSWTs’ short-term overproduction capability is of primary concern for the transmission...... system operators (TSOs) in the process of restoring critical situations during large frequency excursions in power systems with high wind power penetration. This study is conducted on a simplified generic model for VSWTs with full scale power converter (Type IV), which includes several adjustments...... and extensions of the Type IV standard wind turbine model proposed by the IEC Committee in IEC 61400-27-1. This modified standard model is able to account for dynamic features relevant for integrating active power ancillary services in wind power plants, such as frequency support capabilities. The performance...

  15. Dual stator winding variable speed asynchronous generator: optimal design and experiments

    International Nuclear Information System (INIS)

    Tutelea, L N; Deaconu, S I; Popa, G N

    2015-01-01

    In the present paper is carried out a theoretical and experimental study of dual stator winding squirrel cage asynchronous generator (DSWA) behavior in the presence of saturation regime (non-sinusoidal) due to the variable speed operation. The main aims are the determination of the relations of calculating the equivalent parameters of the machine windings to optimal design using a Matlab code. Issue is limited to three phase range of double stator winding cage-induction generator of small sized powers, the most currently used in the small adjustable speed wind or hydro power plants. The tests were carried out using three-phase asynchronous generator having rated power of 6 [kVA]. (paper)

  16. Control Method for Variable Speed Wind Turbines to Support Temporary Primary Frequency Control

    DEFF Research Database (Denmark)

    Wang, Haijiao; Chen, Zhe; Jiang, Quanyuan

    2014-01-01

    This paper develops a control method for variable speed wind turbines (VSWTs) to support temporary primary frequency control of power system. The control method contains two parts: (1) up-regulate support control when a frequency drop event occurs; (2) down-regulate support control when a frequency...... rise event occurs. The up-regulate support is achieved by adaptively utilizing the wind energy curtailed by the pitch control and the kinetic energy stored in the rotating mass of the turbine blades. The down-regulate support is achieved by the pitch control. Furthermore, the up- and down-regulate...... capabilities are quantified under different wind speeds. Finally, the whole control method is verified in a test power system established in MATLAB/Simulink, which contains a wind farm of 180 VSWTs....

  17. Numerical Analysis of Flow Field in Generator End-Winding Region

    Directory of Open Access Journals (Sweden)

    Wei Tong

    2008-01-01

    Full Text Available Cooling in an end-winding region of a high-powered, large-sized generator still remains a challenge today because of a number of factors: a larger number of parts/components with irregular geometries, complexity in cooling flow paths, flow splitting and mixing, and interactions between rotor-induced rotating flows and nonrotating flows from stationary sections. One of the key challenges is to model cooling flows passing through armature bars, which are made up of bundles of strands of insulated copper wires and are bent oppositely to cross each other. This work succeeded in modeling a complex generator end-winding region with great efforts to simplify the model by treating the armature bar region as a porous medium. The flow and pressure fields at the end-winding region were investigated numerically using an axial symmetric computational fluid dynamics (CFD model. Based on the analysis, the cooling flow rate at each flow branch (rotor-stator gap, rotor subslot, outside space block, and small ventilation holes to the heat exchanger was determined, and the high-pressure gradient zones were identified. The CFD results have been successfully used to optimize the flow path configuration for improving the generator operation performance, and the control of the cooling flow, as well as minimizing windage losses and flow-introduced noises.

  18. Variable Frequency Operations of an Offshore Wind Power Plant with HVDC-VSC: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Gevorgian, V.; Singh, M.; Muljadi, E.

    2011-12-01

    In this paper, a constant Volt/Hz operation applied to the Type 1 wind turbine generator. Various control aspects of Type 1 generators at the plant level and at the turbine level will be investigated. Based on DOE study, wind power generation may reach 330 GW by 2030 at the level of penetration of 20% of the total energy production. From this amount of wind power, 54 GW of wind power will be generated at offshore wind power plants. The deployment of offshore wind power plants requires power transmission from the plant to the load center inland. Since this power transmission requires submarine cable, there is a need to use High-Voltage Direct Current (HVDC) transmission. Otherwise, if the power is transmitted via alternating current, the reactive power generated by the cable capacitance may cause an excessive over voltage in the middle of the transmission distance which requires unnecessary oversized cable voltage breakdown capability. The use of HVDC is usually required for transmission distance longer than 50 kilometers of submarine cables to be economical. The use of HVDC brings another advantage; it is capable of operating at variable frequency. The inland substation will be operated to 60 Hz synched with the grid, the offshore substation can be operated at variable frequency, thus allowing the wind power plant to be operated at constant Volt/Hz. In this paper, a constant Volt/Hz operation applied to the Type 1 wind turbine generator. Various control aspects of Type 1 generators at the plant level and at the turbine level will be investigated.

  19. Enhanced Kalman Filtering for a 2D CFD NS Wind Farm Flow Model

    International Nuclear Information System (INIS)

    Doekemeijer, B M; Van Wingerden, J W; Boersma, S; Pao, L Y

    2016-01-01

    Wind turbines are often grouped together for financial reasons, but due to wake development this usually results in decreased turbine lifetimes and power capture, and thereby an increased levelized cost of energy (LCOE). Wind farm control aims to minimize this cost by operating turbines at their optimal control settings. Most state-of-the-art control algorithms are open-loop and rely on low fidelity, static flow models. Closed-loop control relying on a dynamic model and state observer has real potential to further decrease wind's LCOE, but is often too computationally expensive for practical use. In this paper two time-efficient Kalman filter (KF) variants are outlined incorporating the medium fidelity, dynamic flow model “WindFarmSimulator” (WFSim). This model relies on a discretized set of Navier-Stokes equations in two dimensions to predict the flow in wind farms at low computational cost. The filters implemented are an Ensemble KF and an Approximate KF. Simulations in which a high fidelity simulation model represents the true wind farm show that these filters are 10"1 —10"2 times faster than a regular KF with comparable or better performance, correcting for wake dynamics that are not modeled in WFSim (noticeably, wake meandering and turbine hub effects). This is a first big step towards real-time closed-loop control for wind farms. (paper)

  20. WAsP engineering flow model for wind over land and sea

    DEFF Research Database (Denmark)

    Astrup, P.; Larsen, Søren Ejling

    1999-01-01

    This report presents the basic wind flow model of WAsP Engineering. The model consists in principle of three parts: the LINCOM model for neutrally stable flow over terrain with hills and varying surface roughness, a sea surface roughness model, and anobstacle model. To better predict flow over...... of literature data for the Charnock parameter as function of the so called wave age, the ratio between wave velocity and friction velocity, plus a correlation ofwave age to the geometrically obtainable water fetch. A model for the influence on the wind of multiple, finite size, interacting obstacles with any...

  1. Power Flow Simulations of a More Renewable California Grid Utilizing Wind and Solar Insolation Forecasting

    Science.gov (United States)

    Hart, E. K.; Jacobson, M. Z.; Dvorak, M. J.

    2008-12-01

    Time series power flow analyses of the California electricity grid are performed with extensive addition of intermittent renewable power. The study focuses on the effects of replacing non-renewable and imported (out-of-state) electricity with wind and solar power on the reliability of the transmission grid. Simulations are performed for specific days chosen throughout the year to capture seasonal fluctuations in load, wind, and insolation. Wind farm expansions and new wind farms are proposed based on regional wind resources and time-dependent wind power output is calculated using a meteorological model and the power curves of specific wind turbines. Solar power is incorporated both as centralized and distributed generation. Concentrating solar thermal plants are modeled using local insolation data and the efficiencies of pre-existing plants. Distributed generation from rooftop PV systems is included using regional insolation data, efficiencies of common PV systems, and census data. The additional power output of these technologies offsets power from large natural gas plants and is balanced for the purposes of load matching largely with hydroelectric power and by curtailment when necessary. A quantitative analysis of the effects of this significant shift in the electricity portfolio of the state of California on power availability and transmission line congestion, using a transmission load-flow model, is presented. A sensitivity analysis is also performed to determine the effects of forecasting errors in wind and insolation on load-matching and transmission line congestion.

  2. Optimal Power Flow Management Control for Grid Connected Photovoltaic/Wind turbine/Diesel generator (GCPWD) Hybrid System with Batteries

    OpenAIRE

    Murugan, Bala; S., Manoharan

    2016-01-01

    This paper proposes a Optimal Power Flow Management control for Grid Connected Photovoltaic/Wind turbine/ Diesel generator (GCPWD) Hybrid System with hybrid storage system. The energy system having a photo voltaic (PV) panel, wind turbine (WT) and diesel generator (DG) for continuous power flow management. A diesel generator is added to ensure uninterrupted power supply due to the discontinuous nature of solar and wind resources. The developed Grid Connected Photovoltaic/Wind turbine/ Diesel ...

  3. Climate change enhances interannual variability of the Nile river flow

    Science.gov (United States)

    Siam, Mohamed S.; Eltahir, Elfatih A. B.

    2017-04-01

    The human population living in the Nile basin countries is projected to double by 2050, approaching one billion. The increase in water demand associated with this burgeoning population will put significant stress on the available water resources. Potential changes in the flow of the Nile River as a result of climate change may further strain this critical situation. Here, we present empirical evidence from observations and consistent projections from climate model simulations suggesting that the standard deviation describing interannual variability of total Nile flow could increase by 50% (+/-35%) (multi-model ensemble mean +/- 1 standard deviation) in the twenty-first century compared to the twentieth century. We attribute the relatively large change in interannual variability of the Nile flow to projected increases in future occurrences of El Niño and La Niña events and to observed teleconnection between the El Niño-Southern Oscillation and Nile River flow. Adequacy of current water storage capacity and plans for additional storage capacity in the basin will need to be re-evaluated given the projected enhancement of interannual variability in the future flow of the Nile river.

  4. The Unsteady Variable – Viscosity Free Convection Flow on a ...

    African Journals Online (AJOL)

    The unsteady variable-viscosity free convection flow of a viscous incompressible fluid near an infinite vertical plate (or wall) is investigated under an arbitrary timedependent heating of the plates, and the governing equations of motion and energy transformed into ordinary differential equations. Employing asymptotic ...

  5. Thermal ignition in a reactive variable viscosity Poiseuille flow ...

    African Journals Online (AJOL)

    In this paper, we investigate the thermal ignition in a strongly exothermic reaction of a variable viscosity combustible material flowing through a channel with isothermal walls under Arrhenius kinetics, neglecting the consumption of the material. Analytical solutions are constructed for the governing nonlinear boundary-value ...

  6. Evaluation of power flow solutions with fixed speed wind turbine generating systems

    International Nuclear Information System (INIS)

    Haque, M.H.

    2014-01-01

    Highlights: • The model of a wind generator is modified and incorporated into a power flow program. • Unlike previous methods, modification to source codes of the program is not required. • The turbine power curve is mathematically expressed using manufacturer’s data. • The power flow of the IEEE 118-bus system is successfully solved with 12 wind farms for 1000 random cases of wind speeds. • For a simple system, the load flow results are also compared with the corresponding steady state values of dynamic responses. - Abstract: An increased penetration of wind turbine generating systems into power grid calls for proper modeling of the systems and incorporating the model into various computational tools used in power system operation and planning studies. This paper proposes a simple method of incorporating the exact equivalent circuit of a fixed speed wind generator into conventional power flow program. The method simply adds two internal buses of the generator to include all parameters of the equivalent circuit. For a given wind speed, the active power injection into one of the internal buses is determined through wind turbine power curve supplied by the manufacturers. The internal buses of the model can be treated as a traditional P–Q bus and thus can easily be incorporated into any standard power flow program by simply augmenting the input data files and without modifying source codes of the program. The effectiveness of the proposed method is then evaluated on a simple system as well as on the IEEE 30- and 118-bus systems. The results of the simple system are also compared with those found through Matlab/Simulink using dynamic model of wind generating system given in SimPowerSystems blockset

  7. The economics of wind and solar variability. How the variability of wind and solar power affects their marginal value, optimal deployment, and integration costs

    Energy Technology Data Exchange (ETDEWEB)

    Hirth, Lion

    2014-11-14

    Variable renewable energy sources (VRE) for electricity generation, such as wind and solar power, are subject to inherent output fluctuations. This variability has significant impacts on power system and electricity markets if VRE are deployed at large scale. While on global average, wind and solar power currently supply only a minor share of electricity, they are expected to play a much larger role in the future - such that variability will become a major issue (which it already is in some regions). This thesis contributes to the literature that assesses these impacts the ''system and market integration'' literature. This thesis aims at answering the question: What is the impact of wind and solar power variability on the economics of these technologies? It will be laid out that the impact can be expressed in (at least) three ways: as reduction of value, as increase of cost, or as decrease of optimal deployment. Translating between these perspectives is not trivial, as evidenced by the confusion around the concept of ''integration costs''. Hence, more specifically: How does variability impact the marginal economic value of these power sources, their optimal deployment, and their integration costs? This is the question that this thesis addresses. This study comprises six papers, of which two develop a valuation framework that accounts for the specific characteristics of the good electricity, and the specific properties of wind and solar power versus ''dispatchable'' power plants. Three articles then assess quantitative questions and estimate marginal value, optimal deployment, and integration costs. These estimates stem from a newly developed numerical power market model, EMMA, market data, and quantitative literature reviews. The final paper addresses market design. In short, the principal findings of this thesis are as follows. Electricity is a peculiar economic good, being at the same time perfectly

  8. The economics of wind and solar variability. How the variability of wind and solar power affects their marginal value, optimal deployment, and integration costs

    International Nuclear Information System (INIS)

    Hirth, Lion

    2014-01-01

    Variable renewable energy sources (VRE) for electricity generation, such as wind and solar power, are subject to inherent output fluctuations. This variability has significant impacts on power system and electricity markets if VRE are deployed at large scale. While on global average, wind and solar power currently supply only a minor share of electricity, they are expected to play a much larger role in the future - such that variability will become a major issue (which it already is in some regions). This thesis contributes to the literature that assesses these impacts the ''system and market integration'' literature. This thesis aims at answering the question: What is the impact of wind and solar power variability on the economics of these technologies? It will be laid out that the impact can be expressed in (at least) three ways: as reduction of value, as increase of cost, or as decrease of optimal deployment. Translating between these perspectives is not trivial, as evidenced by the confusion around the concept of ''integration costs''. Hence, more specifically: How does variability impact the marginal economic value of these power sources, their optimal deployment, and their integration costs? This is the question that this thesis addresses. This study comprises six papers, of which two develop a valuation framework that accounts for the specific characteristics of the good electricity, and the specific properties of wind and solar power versus ''dispatchable'' power plants. Three articles then assess quantitative questions and estimate marginal value, optimal deployment, and integration costs. These estimates stem from a newly developed numerical power market model, EMMA, market data, and quantitative literature reviews. The final paper addresses market design. In short, the principal findings of this thesis are as follows. Electricity is a peculiar economic good, being at the same time perfectly

  9. Hydrate plugging or slurry flow : effect of key variables

    Energy Technology Data Exchange (ETDEWEB)

    Dellecase, E.; Geraci, G.; Barrios, L.; Estanga, D.; Domingues, R.; Volk, M. [Tulsa Univ., Tulsa, OK (United States)

    2008-07-01

    Although oil and gas companies have proven design criteria and proper operating procedures to prevent hydrate plugs from forming, hydrates remain the primary issue in flow assurance. The costs associated with hydrate prevention affect project economics, particularly in deepwater pipelines. As such, there is an interest in developing a technology that allows hydrates to be transported as a slurry, while avoiding plugs. The feasibility of managing such hydrate flow was investigated. This study used a hydrate flow loop to investigate the effects of flow conditions on the transportability of a slurry in both steady-state and restart conditions. For most cases, uninhibited steady-state slurry flow conditions above 25 per cent water-cut were marginal, and most likely not feasible at 50 per cent water-cut or above. Liquid loading and velocity appeared to have a marginal effect on plugging tendency. However, minimum velocity may be needed to guarantee slurry transportation. Some of the important parameters and key variables that determine if a plug will form, particularly in restart conditions, include oil-water dispersion properties; oil-water phase segregation on the plugging tendency of model fluids; the location and state of the water; and the flow pattern. It was concluded that the plugging behaviour of oil systems changes with these variables, and with the oil-water chemistry. As such, specific strategies must be developed for each field. 4 refs., 1 tab., 14 figs.

  10. Simulations and Observations of the Structured Variability in the Slow Solar Wind

    Science.gov (United States)

    Lynch, Benjamin J.; Higginson, Aleida K.; Zhao, Liang; Viall, Nicholeen; Lepri, Susan T.

    2017-08-01

    In addition to the long-term heliospheric evolution on timescales of months to years, the slow solar wind exhibits significant variability on much shorter timescales—from minutes to days. This short-term variability in the magnetic field, bulk plasma, and composition properties of the slow solar wind likely results from magnetic reconnection processes in the extended solar corona. Here, we continue our analysis of the Higginson et al. (2017, ApJ 840, L10) numerical MHD simulation to investigate the following sources of structured slow solar wind variability. First, we examine the formation and evolution of 3D “streamer blob” magnetic flux ropes from the cusp of the helmet streamer belt by reconnection in the heliospheric current sheet (HCS). Second, we examine the large-scale torsional Alfven wave that propagates to high latitudes along the Separatrix-Web (S-Web) arc. We argue that the in-situ Alfven wave signatures in our simulation should be representative of the field and plasma signatures associated with interchange reconnection process in the corona. Therefore, we predict that streamer blob magnetic island flux ropes should be found primarily near the HCS but the torsional Alfven wave signatures should be present in both the streamer belt/HCS slow wind and in the slow wind in the S-Web arcs of pseudostreamers. We present preliminary results of our analysis of the field, plasma, and composition variability in select intervals of slow solar wind in Carrington Rotation 2002 and show these are in excellent agreement with the numerical simulation predictions.

  11. Multilevel panel method for wind turbine rotor flow simulations

    NARCIS (Netherlands)

    van Garrel, Arne

    2016-01-01

    Simulation methods of wind turbine aerodynamics currently in use mainly fall into two categories: the first is the group of traditional low-fidelity engineering models and the second is the group of computationally expensive CFD methods based on the Navier-Stokes equations. For an engineering

  12. On the simulation of variable density flow at SFR, Sweden

    International Nuclear Information System (INIS)

    Stigsson, M.; Follin, S.; Andersson, Johan

    1998-12-01

    The main objective of this work is to investigate if variable-density groundwater flow during a continuous shore level displacement at SFR (Swedish Final Repository for Radioactive Waste at Forsmark - used for intermediate level radioactive wastes) can be treated as uniform-density flow where salinity is modelled as a tracer. If the difference between modelling the groundwater as a variable-density or uniform-density is small, or if small changes in other parameters with high uncertainty largely impact the result, then it is likely that a freshwater code may give equitable results of the groundwater conditions at SFR. The Finite Element code SUTRA is used for the 2-D studies. In all 52 cases are studied and the results from the most interesting and relevant cases are presented. Most of the cases are more or less generic to be able to study one parameter at the time. The changed parameters are: Permeability, Porosity, Change in long term evolution of the salinity in the sea water, Presence of vertical and/or horizontal structures. The last presented case is a case where data from Axelsson and Hansen has been used to make a model that is as real as possible. The most important conclusions are: The porosity has a large impact on the results since higher porosity means that the transport time is longer and that more saline water has to be flushed out. As the model becomes more complex (i.e., incorporating parameter heterogeneity, structures, etc.) the spatial differences in salinity and the difference in flow through the SFR, between variable-density and uniform-density flow, becomes less significant. Differences between modelling groundwater as a variable-density flow or a uniform-density flow with salt as a tracer at the SFR is negligible

  13. FUZZY LOGIC BASED INTELLIGENT CONTROL OF A VARIABLE SPEED CAGE MACHINE WIND GENERATION SYSTEM

    Science.gov (United States)

    The paper describes a variable-speed wind generation system where fuzzy logic principles are used to optimize efficiency and enhance performance control. A squirrel cage induction generator feeds the power to a double-sided pulse width modulated converter system which either pump...

  14. Global MHD Simulations of the Earth's Bow Shock Shape and Motion Under Variable Solar Wind Conditions

    Science.gov (United States)

    Mejnertsen, L.; Eastwood, J. P.; Hietala, H.; Schwartz, S. J.; Chittenden, J. P.

    2018-01-01

    Empirical models of the Earth's bow shock are often used to place in situ measurements in context and to understand the global behavior of the foreshock/bow shock system. They are derived statistically from spacecraft bow shock crossings and typically treat the shock surface as a conic section parameterized according to a uniform solar wind ram pressure, although more complex models exist. Here a global magnetohydrodynamic simulation is used to analyze the variability of the Earth's bow shock under real solar wind conditions. The shape and location of the bow shock is found as a function of time, and this is used to calculate the shock velocity over the shock surface. The results are compared to existing empirical models. Good agreement is found in the variability of the subsolar shock location. However, empirical models fail to reproduce the two-dimensional shape of the shock in the simulation. This is because significant solar wind variability occurs on timescales less than the transit time of a single solar wind phase front over the curved shock surface. Empirical models must therefore be used with care when interpreting spacecraft data, especially when observations are made far from the Sun-Earth line. Further analysis reveals a bias to higher shock speeds when measured by virtual spacecraft. This is attributed to the fact that the spacecraft only observes the shock when it is in motion. This must be accounted for when studying bow shock motion and variability with spacecraft data.

  15. Future-dependent Flow Policies with Prophetic Variables

    DEFF Research Database (Denmark)

    Li, Ximeng; Nielson, Flemming; Nielson, Hanne Riis

    2016-01-01

    Content-dependency often plays an important role in the information flow security of real world IT systems. Content dependency gives rise to informative policies and permissive static enforcement, and sometimes avoids the need for downgrading. We develop a static type system to soundly enforce fu...... and enforce a notion of future-dependent security for open systems, in the spirit of "non-deducibility on strategies". We also illustrate our approach in scenarios where future-dependency has advantages over present-dependency and avoids mixtures of upgradings and downgradings....... future-dependent flow policies- policies that can depend on not only the current values of variables, but also their final values. The final values are referred to using what we call prophetic variables, just as the initial values can be referenced using logical variables in Hoare logic. We develop...

  16. Surface Wind Observational Database in North Eastern North America: Quality Control Procedure and Climatological Variability

    Science.gov (United States)

    Lucio-Eceiza, Etor E.; Fidel González-Rouco, J.; Navarro, Jorge; Hidalgo, Ángela; Conte, Jorge; Beltrami, Hugo

    2015-04-01

    This work summarizes the design and application of a Quality Control (QC) procedure for an observational surface wind database located in North Eastern North America. It also presents some insights of the long-term climatological variability over the region. The database consists of 527 sites (487 land stations and 40 buoys) with varying resolutions of hourly, 3 hourly and 6 hourly data, compiled from three different source institutions. The records span from 1940 to 2010 and cover an approximate spatial extension of 2.2 × 106 km2. The QC process is composed of different phases focused either on problems related with the providing source institutions or measurement errors. Due to the size of the data set, a great effort has been made on the automation of the procedures. A number of problems are associated with data management and data conventions: unification of measurement units and recording times due to the variety of institutional sources; detection of erroneous data sequence duplications within a station or among different ones; and detection of errors related with physically unrealistic data measurements. From the other hand there is a variety of treated instrumental errors: problems related with low variability, placing particular emphasis on the detection of unrealistic low wind speed records with the help of regional references; high variability related erroneous records; wind speed biases on week to monthly timescales and homogenization of wind direction records. As a result, around 1.7% of wind speed records and 0.4% of wind direction records have been deleted, making a combined total of 1.9% of removed records. Around 2.4% of wind direction data have been also corrected. The already quality controlled database allows for subsequent climatological analyses. The intra and inter decadal variability of the monthly surface wind field in such a vast and orographically complex region as the North Eastern North America is explored. Several decades of quality

  17. Analysis of counter flow of corona wind for heat transfer enhancement

    Science.gov (United States)

    Shin, Dong Ho; Baek, Soo Hong; Ko, Han Seo

    2018-03-01

    A heat sink for cooling devices using the counter flow of a corona wind was developed in this study. Detailed information about the numerical investigations of forced convection using the corona wind was presented. The fins of the heat sink using the counter flow of a corona wind were also investigated. The corona wind generator with a wire-to-plate electrode arrangement was used for generating the counter flow to the fin. The compact and simple geometric characteristics of the corona wind generator facilitate the application of the heat sink using the counter flow, demonstrating the heat sink is effective for cooling electronic devices. Parametric studies were performed to analyze the effect of the counter flow on the fins. Also, the velocity and temperature were measured experimentally for the test mock-up of the heat sink with the corona wind generator to verify the numerical results. From a numerical study, the type of fin and its optimal height, length, and pitch were suggested for various heat fluxes. In addition, the correlations to calculate the mass of the developed heat sink and its cooling performance in terms of the heat transfer coefficient were derived. Finally, the cooling efficiencies corresponding to the mass, applied power, total size, and noise of the devices were compared with the existing commercial central processing unit (CPU) cooling devices with rotor fans. As a result, it was confirmed that the heat sink using the counter flow of the corona wind showed appropriate efficiencies for cooling electronic devices, and is a suitable replacement for the existing cooling device for high power electronics.

  18. A review of wind turbine-oriented active flow control strategies

    Science.gov (United States)

    Aubrun, Sandrine; Leroy, Annie; Devinant, Philippe

    2017-10-01

    To reduce the levelized cost of energy, the energy production, robustness and lifespan of horizontal axis wind turbines (HAWTs) have to be improved to ensure optimal energy production and operational availability during periods longer than 15-20 years. HAWTs are subject to unsteady wind loads that generate combinations of unsteady mechanical loads with characteristic time scales from seconds to minutes. This can be reduced by controlling the aerodynamic performance of the wind turbine rotors in real time to compensate the overloads. Mitigating load fluctuations and optimizing the aerodynamic performance at higher time scales need the development of fast-response active flow control (AFC) strategies located as close as possible to the torque generation, i.e., directly on the blades. The most conventional actuators currently used in HAWTs are mechanical flaps/tabs (similar to aeronautical accessories), but some more innovative concepts based on fluidic and plasma actuators are very promising since they are devoid of mechanical parts, have a fast response and can be driven in unsteady modes to influence natural instabilities of the flow. In this context, the present paper aims at giving a state-of-the-art review of current research in wind turbine-oriented flow control strategies applied at the blade scale. It provides an overview of research conducted in the last decade dealing with the actuators and devices devoted to developing AFC on rotor blades, focusing on the flow phenomena that they cause and that can lead to aerodynamic load increase or decrease. After providing some general background on wind turbine blade aerodynamics and on the atmospheric flows in which HAWTs operate, the review focuses on flow separation control and circulation control mainly through experimental investigations. It is followed by a discussion about the overall limitations of current studies in the wind energy context, with a focus on a few studies that attempt to provide a global

  19. Wind Forced Variability in Eddy Formation, Eddy Shedding, and the Separation of the East Australian Current

    Science.gov (United States)

    Bull, Christopher Y. S.; Kiss, Andrew E.; Jourdain, Nicolas C.; England, Matthew H.; van Sebille, Erik

    2017-12-01

    The East Australian Current (EAC), like many other subtropical western boundary currents, is believed to be penetrating further poleward in recent decades. Previous observational and model studies have used steady state dynamics to relate changes in the westerly winds to changes in the separation behavior of the EAC. As yet, little work has been undertaken on the impact of forcing variability on the EAC and Tasman Sea circulation. Here using an eddy-permitting regional ocean model, we present a suite of simulations forced by the same time-mean fields, but with different atmospheric and remote ocean variability. These eddy-permitting results demonstrate the nonlinear response of the EAC to variable, nonstationary inhomogeneous forcing. These simulations show an EAC with high intrinsic variability and stochastic eddy shedding. We show that wind stress variability on time scales shorter than 56 days leads to increases in eddy shedding rates and southward eddy propagation, producing an increased transport and southward reach of the mean EAC extension. We adopt an energetics framework that shows the EAC extension changes to be coincident with an increase in offshore, upstream eddy variance (via increased barotropic instability) and increase in subsurface mean kinetic energy along the length of the EAC. The response of EAC separation to regional variable wind stress has important implications for both past and future climate change studies.

  20. Flow Simulation of Modified Duct System Wind Turbines Installed on Vehicle

    Science.gov (United States)

    Rosly, N.; Mohd, S.; Zulkafli, M. F.; Ghafir, M. F. Abdul; Shamsudin, S. S.; Muhammad, W. N. A. Wan

    2017-10-01

    This study investigates the characteristics of airflow with a flow guide installed and output power generated by wind turbine system being installed on a pickup truck. The wind turbine models were modelled by using SolidWorks 2015 software. In order to investigate the characteristic of air flow inside the wind turbine system, a computer simulation (by using ANSYS Fluent software) is used. There were few models being designed and simulated, one without the rotor installed and another two with rotor installed in the wind turbine system. Three velocities being used for the simulation which are 16.7 m/s (60 km/h), 25 m/s (90 km/h) and 33.33 m/s (120 km/h). The study proved that the flow guide did give an impact to the output power produced by the wind turbine system. The predicted result from this study is the velocity of the air inside the ducting system of the present model is better that reference model. Besides, the flow guide implemented in the ducting system gives a big impact on the characteristics of the air flow.

  1. Emission-line widths and stellar-wind flows in T Tauri stars

    International Nuclear Information System (INIS)

    Sa, C.; Lago, M.T.V.T.

    1986-01-01

    Spectra are reported of T Tauri stars taken with the IPCS on the Isaac Newton Telescope at the Observatorio del Roque de los Muchachos at a dispersion of l7 A mm -1 . These were taken in order to determine emission-line widths and hence flow velocities in the winds of these stars following the successful modelling of the wind from RU Lupi using such data. Line widths in RW Aur suggest a similar pattern to the wind flow as in RU Lupi with velocities rising in the inner chromosphere of the star and then entering a 'ballistic' zone. The wind from DFTau is also similar but velocities are generally much lower and the lines sharper. (author)

  2. Asthma-like peak flow variability in various lung diseases

    Directory of Open Access Journals (Sweden)

    Virendra Singh

    2012-01-01

    Full Text Available Background and Objectives: Bronchodilator reversibility and diurnal peak flow variability are considered characteristic of asthma patients. Patients with chronic obstructive pulmonary disease (COPD show poor reversibility. But reversibility and variability in other pulmonary diseases manifesting with airflow obstruction in not known. Therefore, we assessed reversibility and peak flow variability in patients with various lung diseases to recognize the pattern. Materials and Methods : Seventy consecutive patients with a diagnosis of lung diseases manifesting with airflow obstruction were recruited in the study. These included 23 patients with asthma, 11 patients with bronchiectasis, 16 patients with post-tubercular lung disease (PTLD, and 20 patients with COPD. Ten healthy matched control subjects were also selected to pair with asthmatic patients. Bronchodilator reversibility test was done initially and peak expiratory flow rate (PEFR was measured for a duration of 1 week by patients themselves on a chart that was given to them. The mean amplitude percentage of these records were analyzed. Results : The mean values of peak flow variability were 14.73% ± 6.1% in asthmatic patients, 11.98% ± 7.5% in patients with bronchiectasis, and 10.54% ± 5.3% in PTLD. The difference in the mean values of peak flow variability between asthma and bronchiectasis, that is, 14.73 (6.1 vs 11.98 (7.5 was not statistically significant (P > 0.05. Forced expiratory volume one second (FEV 1 reversibility values were 14.77% ± 26.93%, 11.24% ± 20.43%, 10.85% ± 13.02%, 16.83% ± 22.84%, and 5.47% ± 4.99% in asthma, COPD, PTLD, bronchiectasis, and healthy subjects, respectively. Conclusion: Both reversibility and diurnal peak flow variability were higher in patients with various lung diseases compared with normal healthy subjects. Although these are characteristic of asthma, some cases of bronchiectasis and PTLD patients may also manifest asthma-like PEFR variability

  3. Wind effect on salt transport variability in the Bay of Bengal

    Science.gov (United States)

    Sandeep, K. K.; Pant, V.

    2017-12-01

    The Bay of Bengal (BoB) exhibits large spatial variability in sea surface salinity (SSS) pattern caused by its unique hydrological, meteorological and oceanographical characteristics. This SSS variability is largely controlled by the seasonally reversing monsoon winds and the associated currents. Further, the BoB receives substantial freshwater inputs through excess precipitation over evaporation and river discharge. Rivers like Ganges, Brahmaputra, Mahanadi, Krishna, Godavari, and Irawwady discharge annually a freshwater volume in range between 1.5 x 1012 and 1.83 x 1013 m3 into the bay. A major volume of this freshwater input to the bay occurs during the southwest monsoon (June-September) period. In the present study, a relative role of winds in the SSS variability in the bay is investigated by using an eddy-resolving three dimensional Regional Ocean Modeling System (ROMS) numerical model. The model is configured with realistic bathymetry, coastline of study region and forced with daily climatology of atmospheric variables. River discharges from the major rivers are distributed in the model grid points representing their respective geographic locations. Salt transport estimate from the model simulation for realistic case are compared with the standard reference datasets. Further, different experiments were carried out with idealized surface wind forcing representing the normal, low, high, and very high wind speed conditions in the bay while retaining the realistic daily varying directions for all the cases. The experimental simulations exhibit distinct dispersal patterns of the freshwater plume and SSS in different experiments in response to the idealized winds. Comparison of the meridional and zonal surface salt transport estimated for each experiment showed strong seasonality with varying magnitude in the bay with a maximum spatial and temporal variability in the western and northern parts of the BoB.

  4. Modeling, Simulation and Control of Matrix Convert for Variable Speed Wind Turbine System

    Directory of Open Access Journals (Sweden)

    M. Alizadeh Moghadam

    2015-09-01

    Full Text Available This paper presents modeling, simulation and control of matrix converter (MC for variable speed wind turbine (VSWT system including permanent magnet synchronous generator (PMSG. At a given wind velocity, the power available from a wind turbine is a function of its shaft speed. In order to track maximum power, the MC adjusts the PMSG shaft speed.The proposed control system allowing independent control maximum power point tracking (MPPT of generator side and regulate reactive power of grid side for the operation of the VSWT system. The MPPT is implemented by a new control system. This control system is based on control of zero d-axis current (ZDC. The ZDC control can be realized by transfer the three-phase stator current in the stationary reference frame into d-and q-axis components in the synchronous reference frame. Also this paper is presented, a novel control strategy to regulate the reactive power supplied by a variable speed wind energy conversion system. This control strategy is based on voltage oriented control (VOC. The simulation results based on Simulink/Matlab software show that the controllers can extract maximum power and regulate reactive power under varying wind velocities.

  5. Control of a Stand-Alone Variable Speed Wind Energy Supply System †

    Directory of Open Access Journals (Sweden)

    Mohamed M. Hamada

    2013-04-01

    Full Text Available This paper presents a simple control strategy for the operation of a variable speed stand-alone wind turbine with a permanent magnet synchronous generator (PMSG. The PMSG is connected to a three phase resistive load through a switch mode rectifier and a voltage source inverter. Control of the generator side converter is used to achieve maximum power extraction from the available wind power. Control of the DC-DC bidirectional buck-boost converter, which is connected between batteries bank and DC-link voltage, is used to maintain the DC-link voltage at a constant value. It is also used to make the batteries bank stores the surplus of wind energy and supplies this energy to the load during a wind power shortage. The load side voltage source inverter uses a relatively complex vector control scheme to control the output load voltage in terms of amplitude and frequency. The control strategy works under wind speed variation as well as with variable load. Extensive simulation results have been performed using MATLAB/SIMULINK.

  6. Tip Speed Ratio Based Maximum Power Tracking Control of Variable Speed Wind Turbines; A Comprehensive Design

    Directory of Open Access Journals (Sweden)

    Murat Karabacak

    2017-08-01

    Full Text Available The most primitive control method of wind turbines used to generate electric energy from wind is the fixed speed control method. With this method, it is not possible that turbine input power is transferred to grid at maximum rate. For this reason, Maximum Power Tracking (MPT schemes are proposed. In order to implement MPT, the propeller has to rotate at a different speed for every different wind speed. This situation has led MPT based systems to be called Variable Speed Wind Turbine (VSWT systems. In VSWT systems, turbine input power can be transferred to grid at rates close to maximum power. When MPT based control of VSWT systems is the case, two important processes come into prominence. These are instantaneously determination and tracking of MPT point. In this study, using a Maximum Power Point Tracking (MPPT method based on tip speed ratio, power available in wind is transferred into grid over a back to back converter at maximum rate via a VSWT system with permanent magnet synchronous generator (PMSG. Besides a physical wind turbine simulator is modelled and simulated. Results show that a time varying MPPT point is tracked with a high performance.

  7. A numerical study on the flow upstream of a wind turbine on complex terran

    DEFF Research Database (Denmark)

    Meyer Forsting, Alexander Raul; Bechmann, Andreas; Troldborg, Niels

    2016-01-01

    The interaction of a wind turbine with the upstream flow-field in complex and flat terrain is studied using Reynolds-averaged Navier-Stokes (RANS) simulations with a two equation turbulence closure. The complex site modelled is Perdigao (Portugal), where a turbine is located on one of two parallel...... the wind turbine wake trajectory which in turn governs the orientation of the induction zone...

  8. A Comparison Study between Two MPPT Control Methods for a Large Variable-Speed Wind Turbine under Different Wind Speed Characteristics

    Directory of Open Access Journals (Sweden)

    Dongran Song

    2017-05-01

    Full Text Available Variable speed wind turbines (VSWTs usually adopt a maximum power point tracking (MPPT method to optimize energy capture performance. Nevertheless, obtained performance offered by different MPPT methods may be affected by the impact of wind turbine (WT’s inertia and wind speed characteristics and it needs to be clarified. In this paper, the tip speed ratio (TSR and optimal torque (OT methods are investigated in terms of their performance under different wind speed characteristics on a 1.5 MW wind turbine model. To this end, the TSR control method based on an effective wind speed estimator and the OT control method are firstly presented. Then, their performance is investigated and compared through simulation test results under different wind speeds using Bladed software. Comparison results show that the TSR control method can capture slightly more wind energy at the cost of high component loads than the other one under all wind conditions. Furthermore, it is found that both control methods present similar trends of power reduction that is relevant to mean wind speed and turbulence intensity. From the obtained results, we demonstrate that, to further improve MPPT capability of large VSWTs, other advanced control methods using wind speed prediction information need to be addressed.

  9. MHD effects of the solar wind flow around planets

    Directory of Open Access Journals (Sweden)

    H. K. Biernat

    2000-01-01

    Full Text Available The study of the interaction of the solar wind with magnetized and unmagnetized planets forms a central topic of space research. Focussing on planetary magnetosheaths, we review some major developments in this field. Magnetosheath structures depend crucially on the orientation of the interplanetary magnetic field, the solar wind Alfvén Mach number, the shape of the obstacle (axisymmetric/non-axisymmetric, etc., the boundary conditions at the magnetopause (low/high magnetic shear, and the degree of thermal anisotropy of the plasma. We illustrate the cases of Earth, Jupiter and Venus. The terrestrial magnetosphere is axisymmetric and has been probed in-situ by many spacecraft. Jupiter's magnetosphere is highly non-axisymmetric. Furthermore, we study magnetohydrodynamic effects in the Venus magnetosheath.

  10. Utilizing a vanadium redox flow battery to avoid wind power deviation penalties in an electricity market

    International Nuclear Information System (INIS)

    Turker, Burak; Arroyo Klein, Sebastian; Komsiyska, Lidiya; Trujillo, Juan José; Bremen, Lueder von; Kühn, Martin; Busse, Matthias

    2013-01-01

    Highlights: • Vanadium redox flow battery utilized for wind power grid integration was studied. • Technical and financial analyses at single wind farm level were performed. • 2 MW/6 MW h VRFB is suitable for mitigating power deviations for a 10 MW wind farm. • Economic incentives might be required in the short-term until the VRFB prices drop. - Abstract: Utilizing a vanadium redox flow battery (VRFB) for better market integration of wind power at a single wind farm level was evaluated. A model which combines a VRFB unit and a medium sized (10 MW) wind farm was developed and the battery was utilized to compensate for the deviations resulting from the forecast errors in an electricity market bidding structure. VRFB software model which was introduced in our previous paper was integrated with real wind power data, power forecasts and market data based on the Spanish electricity market. Economy of the system was evaluated by financial assessments which were done by considering the VRFB costs and the amount of deviation penalty payments resulting from forecast inaccuracies

  11. 75 FR 2159 - In the Matter of Certain Variable Speed Wind Turbines and Components Thereof; Termination of...

    Science.gov (United States)

    2010-01-14

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-641] In the Matter of Certain Variable Speed Wind Turbines and Components Thereof; Termination of Investigation With Final Determination of No..., and the sale within the United States after importation of certain variable speed wind turbines and...

  12. An atmospheric turbulence model for spatiotemporal variability of geographically-diverse, aggregated wind-generated electricity to accelerate wide-scale wind energy deployment (Invited)

    Science.gov (United States)

    Lundquist, J. K.; Handschy, M.

    2013-12-01

    During the year 2012, the cumulative wind power capacity installed in the United States could provide roughly 4.4% of electricity demand. Although the wind resource can provide many times over the entire US electrical needs, and costs for onshore wind deployment are continually dropping, the variability of the wind represents one of the greatest remaining barriers to wide-scale wind deployment. This study focuses on the nature of this variability. We quantify the axiom 'geographic diversity reduces variability' (of wind generation) by relating resource variability characteristics to the well-understood physical phenomena of turbulence in the Earth's atmosphere. Many existing studies focus on datasets of a few years' duration in a particular geographic area; such results are difficult to generalize. Our approach builds on the fundamental nonlinear characteristics of turbulence in the atmosphere to characterize wind speed and power generation correlations between wind plants from local to continental scales. The resulting general principles enable estimation of the benefits of geographic aggregation absent detailed site-specific historical data, thereby enabling more efficient transmission grid models, expediting transmission plans, and providing a framework for evaluating the requirements and benefits of electric storage at higher wind penetrations. To validate these general principles, we compare them to observed inter-station correlations in a number of wind-speed data sets, including a 40-year Canadian dataset that spans the continent of North America, as well as shorter-duration datasets in smaller regions within the United States. This presentation will present general rules for the dependence of correlation between wind turbines on separation and time scale. We suggest these general rules could help shift renewable integration planning from simulation towards optimization.

  13. Experimental and Theoretical Study of Air Flow with Obstruction Through Test Section of Wind Tunnel

    Directory of Open Access Journals (Sweden)

    Hayder Kraidy Rashid

    2016-03-01

    Full Text Available This paper estimates the sound and flow generated by a turbulent air flow in a duct from the knowledge of mean quantities (average velocity and sound pressure level.The sound excitation by fluid flow through duct can be used to predict fluid behavior. This behavior can be carried out by discovering the relation between sound excitation and fluid flow parameters like Reynolds number, Strouhal number and frequencies of turbulent fluid flow. However, the fluid flow container stability has to be taken in account simultaneously with fluid flow effect on sound generation and propagation. The experimental system used in this work is air flow through subsonic wind tunnel duct.The sound pressure levels of air flows through test section of subsonic wind tunnel (at three air flow velocities2.5, 7.3 and 12.5 m/s respectively were carried out experimentally. The sound excitation or generation by air flow throughout the test section of subsonic wind tunnel without any obstruction can't be used to imagine the fluid behavior. To predict fluid flow properties,an infinite cylinder was immersed in order to obstruct the air flow and generate a new source of sound.This case is relevant to a wide range of engineering applications including aircraft landing gear, rail pantographs and automotive side-mirrors. Sound measurements have been taken in an anechoic room at Babylon University. ANSYS program software is used to simulate all experimental results.The experimental and theoretical data that were presented in this paper will give further insight into the underlying sound generation mechanism.In the presented work, the linkage between sound generation and CFD results using thepresented work results and ANSYS simulation results was done.The results discuss the effects of fluid flow parameters such as Reynolds and Strouhal numbers on the sound generation, propagation features and vice-versa. The results are compared with other researchers which give good agreements.

  14. Improving Fault Ride-Through Capability of Variable Speed Wind Turbines in Distribution Networks

    DEFF Research Database (Denmark)

    Mokryani, Geev; Siano, P.; Piccolo, Antonio

    2013-01-01

    In this paper, a fuzzy controller for improving the fault ride-through (FRT) capability of variable speed wind turbines (WTs) equipped with a doubly fed induction generator (DFIG) is presented. DFIGs can be used as reactive power sources to control the voltage at the point of common coupling (PCC......). The controller is designed to compensate for the voltage at the PCC by simultaneously regulating the reactive and active power generated by WTs. The performance of the controller is evaluated in different case studies considering a different number of wind farms in different locations. Simulations carried out...

  15. A Fuzzy Logic Controller to Increase Fault Ride-Through Capability of Variable Speed Wind Turbines

    Directory of Open Access Journals (Sweden)

    Geev Mokryani

    2012-01-01

    Full Text Available A fuzzy controller for improving Fault Ride-Through (FRT capability of Variable Speed Wind Turbines (WTs equipped with Doubly Fed Induction Generator (DFIG is presented. The controller is designed in order to compensate the voltage at the Point of Common Coupling (PCC by regulating the reactive and active power generated by WTs. The performances of the controller are evaluated in some case studies considering a different number of wind farms in different locations. Simulations, carried out on a real 37-bus Italian weak distribution system, confirmed that the proposed controller can enhance the FRT capability in many cases.

  16. Variability of sap flow on forest hillslopes: patterns and controls

    Science.gov (United States)

    Hassler, Sibylle; Blume, Theresa

    2013-04-01

    Sap flow in trees is an essential variable in integrated studies of hydrologic fluxes. It gives indication of transpiration rates for single trees and, with a suitable method of upscaling, for whole stands. This information is relevant for hydrologic and climate models, especially for the prediction of change in water fluxes in the soil-plant-atmosphere continuum under climate change. To this end, we do not only need knowledge concerning the response of sapflow to atmospheric forcing but also an understanding of the main controls on its spatial variability. Our study site consists of several subcatchments of the Attert basin in Luxembourg underlain by schists of the Ardennes massif. Within these subcatchments we measure sap flow in more than 20 trees on a range of forested hillslopes covered by a variety of temperate deciduous tree species such as beech, oak, hornbeam and maple as well as conifers such as firs. Our sap flow sensors are based on the heat pulse velocity method and consist of three needles, one needle acting as the heating device and the other two holding three thermistors each, enabling us to simultaneously measure sap flow velocity at three different depths within the tree. In close proximity to the trees we collect additional data on soil moisture, matric potential and groundwater levels. First results show that the sensor design seems promising for an upscaling of the measured sap flow velocities to sap flow at the tree level. The maximum depth of actively used sapwood as well as the decrease in sap flow velocity with increasing depth in the tree can be determined by way of the three thermistors. Marked differences in sap flow velocity profiles are visible between the different species, resulting in differences in sap flow for trees of similar diameter. We examine the range of tree sap flow values and variation due to species, size class, slope position and exposition and finally relate them to the dynamics of soil moisture conditions with the

  17. Non-radial solar wind flows and IMF B z during 1973-2003

    Science.gov (United States)

    Pereira, Felix B.; Girish, T. E.

    2009-03-01

    The characteristics of latitudinal angles of solar wind flow ( θv) observed near earth have been studied during the period 1973-2003. The average magnitude of θv shows distinct enhancements during the declining and maximum phases of the sunspot cycles. A close association of B z component of IMF in the GSE system and the orientation of meridional flows in the solar wind is found which depends on the IMF sector polarity. This effect has been studied in typical geomagnetic storm periods. The occurrence of non-radial flows is also found to exhibit heliolatitudinal dependence during the years 1975 and 1985 as a characteristic feature of non-radial solar wind expansion from polar coronal holes.

  18. Hillslope characteristics as controls of subsurface flow variability

    Directory of Open Access Journals (Sweden)

    S. Bachmair

    2012-10-01

    Full Text Available Hillslope hydrological dynamics, particularly subsurface flow (SSF, are highly variable and complex. A profound understanding of factors controlling this variability is needed. Therefore we investigated the relationship between variability of shallow water table dynamics and various hillslope characteristics. We ask whether measurable hillslope properties explain patterns of subsurface flow variability. To approach this question, shallow water table dynamics of three adjacent large-scale hillslopes were monitored with high spatial and temporal resolution over 18 months. The hillslopes are similar in terms of topography and parent material, but different in vegetation cover (grassland, coniferous forest, and mixed forest. We expect vegetation to be an important driver of water table dynamics at our study site, especially given the minor differences in topography. Various hillslope properties were determined in the field and via GIS analysis: common topography descriptors, well depth, soil properties via slug tests, and several vegetation parameters. Response variables characterizing the water table response per well were calculated for different temporal scales (entire time series, seasonal scale, event scale. Partial correlation analysis and a Random Forest machine learning approach were carried out to assess the explainability of SSF variability by measurable hillslope characteristics. We found a complex interplay of predictors, yet soil properties and topography showed the highest single explanatory power. Surprisingly, vegetation characteristics played a minor role. Solely throughfall and canopy cover exerted a slightly stronger control, especially in summer. Most importantly, the examined hillslope characteristics explained only a small proportion of the observed SSF variability. Consequently there must be additional important drivers not represented by current measurement techniques of the hillslope configuration (e.g. bedrock properties

  19. Optimal Power Flow Modelling and Analysis of Hybrid AC-DC Grids with Offshore Wind Power Plant

    DEFF Research Database (Denmark)

    Dhua, Debasish; Huang, Shaojun; Wu, Qiuwei

    2017-01-01

    , it is essential to develop a suitable model and apply optimization algorithms for different application scenarios. The objective of this work is to develop a generalized model and evaluate the Optimal Power Flow (OPF) solutions in a hybrid AC/DC system including HVDC (LCC based) and offshore WPP (VSC based......In order to develop renewables based energy systems, the installation of the offshore wind power plants (WPPs) is globally encouraged. However, wind power generation is intermittent and uncertain. An accurate modelling and evaluation reduces investment and provide better operation. Hence......). This paper also shows the significance and impact of control parameters in OPF applications. An integrated hybrid power system network is adopted in this paper and OPF techniques are applied on it by considering the impact of different control parameters. In addition to the impact of the control variables...

  20. The History and State of the Art of Variable-Speed Wind Turbine Technology

    Energy Technology Data Exchange (ETDEWEB)

    Carlin, P.W.; Laxson, A.S.; Muljadi, E.B.

    2001-03-09

    The National Renewable Energy Laboratory's (NREL's) National Wind Technology Center (NWTC), directed by the Department of Energy (DOE) is pursuing several research projects in variable speed. In the near future the laboratory will be reevaluating its ongoing experiments and plans. The starting point for this reevaluation will be a sound understanding of the current state of the art in design and application of variable-speed technology. This report, which outlines current technologies and historical applications of variable-speed, will provide a baseline in deciding the course of research in the upcoming years.

  1. Modeling of Fluctuating Mass Flux in Variable Density Flows

    Science.gov (United States)

    So, R. M. C.; Mongia, H. C.; Nikjooy, M.

    1983-01-01

    The approach solves for both Reynolds and Favre averaged quantities and calculates the scalar pdf. Turbulent models used to close the governing equations are formulated to account for complex mixing and variable density effects. In addition, turbulent mass diffusivities are not assumed to be in constant proportion to turbulent momentum diffusivities. The governing equations are solved by a combination of finite-difference technique and Monte-Carlo simulation. Some preliminary results on simple variable density shear flows are presented. The differences between these results and those obtained using conventional models are discussed.

  2. Frequency support capability of variable speed wind turbine based on electromagnetic coupler

    DEFF Research Database (Denmark)

    You, Rui; Barahona Garzón, Braulio; Chai, Jianyun

    2015-01-01

    capability has to be enhanced. In this paper, the frequency support capability of WT-EMC is studied at three typical wind conditions and with two control strategies-droop control and inertial control to enhance its frequency support capability. The synchronous generator speed, more stable than the grid......In the variable speed wind turbine based on electromagnetic coupler (WT-EMC), a synchronous generator is directly coupled with grid. So like conventional power plants WT-EMC is able to support grid frequency inherently. But due to the reduced inertia of synchronous generator, its frequency support...... frequency which is the input signal for Type 3 and Type 4 wind turbine frequency support controller, is used for the calculation of WT-EMC supplementary torque command. The integrated simulation environment based on the aeroelastic code HAWC2 and software Matlab/Simulink is used to build a 2 MW WT-EMC model...

  3. Radiative flow with variable thermal conductivity in porous medium

    Energy Technology Data Exchange (ETDEWEB)

    Hayat, Tasawar; Shehzad, Sabir Ali [Quaid-i-Azam Univ., Islamabad (Pakistan). Dept. of Mathematics; Qasim, Muhammad [COMSATS Institute of Information Technology, Islamabad (Pakistan). Dept. of Mathematics; Alsaedi, A. [King Abdul-Aziz Univ., Jeddah (Saudi Arabia). Dept. of Mathematics

    2012-03-15

    This article considers the radiation effect on the flow of a Jeffery fluid with variable thermal conductivity. Similarity transformations are employed to convert the partial differential equations into ordinary differential equations. The resulting equations have been computed by the homotopy analysis method (HAM). The numerical values of the local Nusselt numbers are also computed. The comparison with the numerical solutions of {theta}' (0) is presented. The obtained results are displayed and physical aspects have been examined in detail. (orig.)

  4. Magnetosonic Waveguide Model of Solar Wind Flow Tubes A. K. ...

    Indian Academy of Sciences (India)

    structured in the form of flow tubes has also been supported by the HELIOS spacecraft observations (Thieme et al. 1990). The wave propagation characteristics in such a magnetically-structured and inhomogeneous medium have been investigated by ...

  5. Modeling and Design Optimization of Variable-Speed Wind Turbine Systems

    Directory of Open Access Journals (Sweden)

    Ulas Eminoglu

    2014-01-01

    Full Text Available As a result of the increase in energy demand and government subsidies, the usage of wind turbine system (WTS has increased dramatically. Due to the higher energy production of a variable-speed WTS as compared to a fixed-speed WTS, the demand for this type of WTS has increased. In this study, a new method for the calculation of the power output of variable-speed WTSs is proposed. The proposed model is developed from the S-type curve used for population growth, and is only a function of the rated power and rated (nominal wind speed. It has the advantage of enabling the user to calculate power output without using the rotor power coefficient. Additionally, by using the developed model, a mathematical method to calculate the value of rated wind speed in terms of turbine capacity factor and the scale parameter of the Weibull distribution for a given wind site is also proposed. Design optimization studies are performed by using the particle swarm optimization (PSO and artificial bee colony (ABC algorithms, which are applied into this type of problem for the first time. Different sites such as Northern and Mediterranean sites of Europe have been studied. Analyses for various parameters are also presented in order to evaluate the effect of rated wind speed on the design parameters and produced energy cost. Results show that proposed models are reliable and very useful for modeling and optimization of WTSs design by taking into account the wind potential of the region. Results also show that the PSO algorithm has better performance than the ABC algorithm for this type of problem.

  6. 77 FR 485 - Wind Plant Performance-Public Meeting on Modeling and Testing Needs for Complex Air Flow...

    Science.gov (United States)

    2012-01-05

    ... of Energy Efficiency and Renewable Energy Wind Plant Performance--Public Meeting on Modeling and... validation techniques for complex flow phenomena in and around off- shore and on-shore utility-scale wind power plants. DOE is requesting this information to support the development of cost-effective wind power...

  7. Development and validation of a new fallout transport method using variable spectral winds

    International Nuclear Information System (INIS)

    Hopkins, A.T.

    1984-01-01

    A new method was developed to incorporate variable winds into fallout transport calculations. The method uses spectral coefficients derived by the National Meteorological Center. Wind vector components are computed with the coefficients along the trajectories of falling particles. Spectral winds are used in the two-step method to compute dose rate on the ground, downwind of a nuclear cloud. First, the hotline is located by computing trajectories of particles from an initial, stabilized cloud, through spectral winds to the ground. The connection of particle landing points is the hotline. Second, dose rate on and around the hotline is computed by analytically smearing the falling cloud's activity along the ground. The feasibility of using spectral winds for fallout particle transport was validated by computing Mount St. Helens ashfall locations and comparing calculations to fallout data. In addition, an ashfall equation was derived for computing volcanic ash mass/area on the ground. Ashfall data and the ashfall equation were used to back-calculate an aggregated particle size distribution for the Mount St. Helens eruption cloud

  8. Probabilistic Approach to Optimizing Active and Reactive Power Flow in Wind Farms Considering Wake Effects

    Directory of Open Access Journals (Sweden)

    Yong-Cheol Kang

    2013-10-01

    Full Text Available This paper presents a novel probabilistic optimization algorithm for simultaneous active and reactive power dispatch in power systems with significant wind power integration. Two types of load and wind-speed uncertainties have been assumed that follow normal and Weibull distributions, respectively. A PV bus model for wind turbines and the wake effect for correlated wind speed are used to achieve accurate AC power flow analysis. The power dispatch algorithm for a wind-power integrated system is modeled as a probabilistic optimal power flow (P-OPF problem, which is operated through fixed power factor control to supply reactive power. The proposed P-OPF framework also considers emission information, which clearly reflects the impact of the energy source on the environment. The P-OPF was tested on a modified IEEE 118-bus system with two wind farms. The results show that the proposed technique provides better system operation performance evaluation, which is helpful in making decisions about power system optimal dispatch under conditions of uncertainty.

  9. Unmanned air vehicle flow separation control using dielectric barrier discharge plasma at high wind speed

    Science.gov (United States)

    Zhang, Xin; Huang, Yong; Wang, WanBo; Wang, XunNian; Li, HuaXing

    2014-06-01

    The present paper described an experimental investigation of separation control of an Unmanned Aerial Vehicle (UAV) at high wind speeds. The plasma actuator was based on Dielectric Barrier Discharge (DBD) and operated in a steady manner. The flow over a wing of UAV was performed with smoke flow visualization in the ϕ0.75 m low speed wind tunnel to reveal the flow structure over the wing so that the locations of plasma actuators could be optimized. A full model of the UAV was experimentally investigated in the ϕ3.2 m low speed wind tunnel using a six-component internal strain gauge balance. The effects of the key parameters, including the locations of the plasma actuators, the applied voltage amplitude and the operating frequency, were obtained. The whole test model was made of aluminium and acted as a cathode of the actuator. The results showed that the plasma acting on the surface of UAV could obviously suppress the boundary layer separation and reduce the model vibration at the high wind speeds. It was found that the maximum lift coefficient of the UAV was increased by 2.5% and the lift/drag ratio was increased by about 80% at the wind speed of 100 m/s. The control mechanism of the plasma actuator at the test configuration was also analyzed.

  10. Characterization of the unsteady flow in the nacelle region of a modern wind turbine

    DEFF Research Database (Denmark)

    Zahle, Frederik; Sørensen, Niels N.

    2011-01-01

    A three-dimensional Navier–Stokes solver has been used to investigate the flow in the nacelle region of a wind turbine where anemometers are typically placed to measure the flow speed and the turbine yaw angle. A 500 kW turbine was modelled with rotor and nacelle geometry in order to capture...... the complex separated flow in the blade root region of the rotor. A number of steady state and unsteady simulations were carried out for wind speeds ranging from 6 m s−1 to 16 m s−1 as well as two yaw and tilt angles. The flow in the nacelle region was found to be highly unsteady, dominated by unsteady vortex...... anemometry showed significant dependence on both yaw and tilt angles with yaw errors of up to 10 degrees when operating in a tilted inflow. Copyright © 2010 John Wiley & Sons, Ltd....

  11. Study and experimental verification of control tuning strategies in a variable speed wind energy conversion system

    Energy Technology Data Exchange (ETDEWEB)

    Zaragoza, Jordi; Pou, Josep; Arias, Antoni [Electronic Engineering Dept., Technical University of Catalonia, Campus Terrassa, C. Colom 1, 08222 Terrassa (Spain); Spiteri, Cyril [Department of Industrial Electrical Power Conversion, University of Malta, Faculty of Engineering, Msida (Malta); Robles, Eider; Ceballos, Salvador [Energy Unit, Robotiker-Tecnalia Technology Corporation, Zamudio, Basque Country (Spain)

    2011-05-15

    This paper analyzes and compares different control tuning strategies for a variable speed wind energy conversion system (WECS) based on a permanent-magnet synchronous generator (PMSG). The aerodynamics of the wind turbine (WT) and a PMSG have been modeled. The control strategy used in this research is composed of three regulators, which may be based on either linear or nonlinear controllers. In this analysis, proportional-integral (PI) linear controllers have been used. Two different tuning strategies are analyzed and compared. The main goal is to enhance the overall performance by achieving a low sensitivity to disturbances and minimal overshoot under variable operating conditions. Finally, the results have been verified by an experimental WECS laboratory prototype. (author)

  12. Two-Dimensional Rotorcraft Downwash Flow Field Measurements by Lidar-Based Wind Scanners with Agile Beam Steering

    DEFF Research Database (Denmark)

    Sjöholm, Mikael; Angelou, Nikolas; Hansen, Per

    2014-01-01

    for agile beam steering, a wind scanner—WindScanner—has been developed at the Department ofWind Energy at the Technical University of Denmark (DTU) Risø campus. The WindScanner measures the line-of-sight component of the airflow remotely and by rapid steering, the line-of-sight direction and the focus...... and rescue helicopter are presented. Since the line-of-sight directions of the two synchronized WindScanners were scanned within the plane of interest, the influence of the wind component perpendicular to the plane was avoided. The results also demonstrate the possibilities within less demanding flows...

  13. Wind power merit-order and feed-in-tariffs effect: A variability analysis of the Spanish electricity market

    International Nuclear Information System (INIS)

    Azofra, D.; Jiménez, E.; Martínez, E.; Blanco, J.; Saenz-Díez, J.C.

    2014-01-01

    Highlights: • M5P algorithm-based model determines influence of wind power on Spanish spot market. • Assessment of the wind power influence for different levels of wind resource. • Cost-benefit analysis is developed, accounting feed-in-tariffs and merit order effect. • The worst and best levels of wind power production for the system are determined. - Abstract: The incipient large-scale energy-storage technologies are not sufficiently developed yet, which means that the wind power production depends on the wind speed at every moment. This, along with the fact that the wind resource is not constant over time, makes wind power production quite variable. Therefore, an artificial intelligence-based technique (M5P algorithm) is applied to empirical hourly data to determine the influence of wind power technology on the spot market for different levels of wind resource in 2012. It concludes that wind power depressed the spot prices between 7.42 and 10.94 €/MW h for a wind power production of 90% and 110% of the real one, respectively. Furthermore, taking into account the important presence of wind power in the Spanish generation mix, the above range has been extended up to 0% in order to determine the worst and best level of wind power production for the Spanish electrical system (from an economical point of view). To do so, both feed-in-tariffs and wind power impact on spot market (merit order effect) have been accounted in accordance with the different levels of wind power production. Since empirical data from 2012 have been used to conduct the research, the results presented in this paper may provide policy makers with a worst and best-case scenario to discuss about the convenience of the last cutting expenses over wind power technology in Spain

  14. Numerical simulation of flows around deformed aircraft model in a wind tunnel

    Science.gov (United States)

    Lysenkov, A. V.; Bosnyakov, S. M.; Glazkov, S. A.; Gorbushin, A. R.; Kuzmina, S. I.; Kursakov, I. A.; Matyash, S. V.; Ishmuratov, F. Z.

    2016-10-01

    To obtain accurate data of calculation method error requires detailed simulation of the experiment in wind tunnel with keeping all features of the model, installation and gas flow. Two examples of such detailed data comparison are described in this paper. The experimental characteristics of NASA CRM model obtained in the ETW wind tunnel (Cologne, Germany), and CFD characteristics of this model obtained with the use of EWT-TsAGI application package are compared. Following comparison is carried out for an airplane model in the T-128 wind tunnel (TsAGI, Russia). It is seen that deformation influence on integral characteristics grows with increasing Re number and, accordingly, the dynamic pressure. CFD methods application for problems of experimental research in the wind tunnel allows to separate viscosity and elasticity effects.

  15. Partial analysis of wind power limit in an electric micro system using continuation power flow

    International Nuclear Information System (INIS)

    Fiallo Guerrero, Jandry; Santos Fuentefria, Ariel; Castro Fernández, Miguel

    2013-01-01

    The wind power insertion in the power system is an important issue and can create some instability problems in voltage and system frequency due to stochastic origin of wind. Know the Wind Power Limit that can insert in an electric grid without losing stability is a very important matter. Existing in bibliography a few methods for calculation of wind power limit, some of them are based in static constrains, an example is a method based in a continuation power flow analysis. In the present work the method is applied in an electric micro system formed when the system is disconnected of the man grid, the main goal was prove the method in a weak and island network. The software used in the simulations was the Power System Analysis Toolbox (PSAT). (author)

  16. CFD modelling of nocturnal low-level jet effects on wind energy related variables

    Science.gov (United States)

    Sogachev, Andrey; Mann, Jakob; Dellwik, Ebba; Ejsing Jørgensen, Hans

    2010-05-01

    The development of a wind speed maximum in the nocturnal boundary layer, referred to as a low-level jet (LLJ), is a common feature of the vertical structure of the atmospheric boundary layer (ABL). Characterizing and understanding LLJ streams is growing in importance as wind turbines are being built larger and taller to take advantage of higher wind speeds at increased heights. We used a computational fluid dynamics (CFD) model to explore LLJs effect on wind speed, wind directional and speed shear inside the surface layer 40 - 130 m, where their physical measurements are not trivial and still rare today. We used the one-dimensional version of the ABL model SCADIS (Sogachev et al. 2002: Tellus 54:784-819). The unique feature of the model, based on a two-equation closure approach, is the treatment of buoyancy effects in a universal way, which overcomes the uncertainties with model coefficients for non-shear source/sink terms (Sogachev, 2009: Boundary Layer Meteor. 130:423-435). From a variety of mechanisms suggested for formation of LLJs, such as inertial oscillations, baroclinicity over sloping terrain, and land-sea breeze effects, the one-dimensional ABL model is capable of simulating only the first one. However, that mechanism, which is caused by the diurnal oscillation of eddy viscosity, is often responsible for jet formation. Sensitivity tests carried out showed that SCADIS captures the most prominent features of the LLJ, including its vertical structure as well as its diurnal phase and amplitude. We simulated ABL pattern under conditions typical for LLJ formation (a fair day on July 1, a flat low-roughness underlying surface) at 30 and 50o latitudes. Diurnal variability of wind speed and turbulence intensity at four levels of 40, 70, 100 and 130 m above ground and of wind and directional shear between those levels were analysed. Despite of small differences in LLJ structure the properties of LLJ important for wind energy production are still common for two

  17. Calibration of the Flow in the Test Section of the Research Wind Tunnel at DST Group

    Science.gov (United States)

    2015-10-01

    the tunnel. The calibration data are presented and analysed and explanations of flow behaviour are given. 2. Mean-Velocity Measurements 2.1...1073. Defence Science and Technology Organisation , Melbourne, Australia. Erm, L. P. 2003 Calibration of the flow in the extended test section...of the low-speed wind tunnel at DSTO. DSTO-TR-1384. Defence Science and Technology Organisation , Melbourne, Australia. Erm, L. P. 2015

  18. Comparison of the effectiveness of analytical wake models for wind farm with constant and variable hub heights

    International Nuclear Information System (INIS)

    Wang, Longyan; Tan, Andy C.C.; Cholette, Michael; Gu, Yuantong

    2016-01-01

    Highlights: • The effectiveness of three analytical wake models is studied. • The results of the analytical wake models are compared with the CFD simulations. • The results of CFD simulation are verified by comparison to the offshore wind farm observation data. • The onshore wind farm with both constant and different hub height turbines are analyzed. • PARK model is able to predict the total wind farm power production well with tuned surface roughness value. - Abstract: Extensive power losses of wind farm have been witnessed due to the wake interactions between wind turbines. By applying analytical wake models which describe the wind speed deficits in the wake quantitatively, the power losses can be regained to a large extent through wind farm layout optimization, and this has been extensively reported in literature. Nevertheless, the effectiveness of the analytical wake models in predicting the wind farm power production have rarely been studied and compared for wind farm with both constant and variable wind turbine hub heights. In this study, the effectiveness of three different analytical wake models (PARK model, Larsen model and B-P model) is thoroughly compared over a wide range of wake properties. After the validation with the observation data from offshore wind farm, CFD simulations are used to verify the effectiveness of the analytical wake models for an onshore wind farm. The results show that when using the PARK model the surface roughness value (z 0 ) must be carefully tuned to achieve good performance in predicting the wind farm power production. For the other two analytical wake models, their effectiveness varies depending on the situation of wind farm (offshore or onshore) and the wind turbine hub heights (constant or variable). It was found that the results of B-P model agree well with the CFD simulations for offshore wind farm, but not for the onshore wind farm. The Larsen model is more accurate for the wind farm with variable wind turbine

  19. Study on blade surface flow around wind turbine by using LDV measurements

    Science.gov (United States)

    Phengpom, Tinnapob; Kamada, Yasunari; Maeda, Takao; Murata, Junsuke; Nishimura, Shogo; Matsuno, Tasuku

    2015-04-01

    This paper has attempted to study a mechanism of three-dimensional flow around a horizontal axis wind turbine (HAWT) rotor blade. An experimental study of the flow phenomenon in the vicinity of the wind turbine blade is a challenging endeavor. In this research, the HAWT model with 2.4 m diameter was tested in the large wind tunnel. The flow around the rotating blade surface was measured simultaneously for three velocity components, and two probes were used for the synchronized measurement of three-dimensional flow components. The local velocity was detected for the single seeding particle measured in the point where three pairs of laser beams intersected. Blade sections of interest in this study are composed of radial positions r/R = 0.3, 0.5 and 0.7. Optimum and low tip speed ratio flow characteristics were also compared. The velocity flow vector, skin friction coefficient and bound circulation were calculated from LDV measurements, and the experimental research showed reasonably and clearly the experimental results.

  20. Granger causality estimate of information flow in temperature fields is consistent with wind direction

    Czech Academy of Sciences Publication Activity Database

    Jajcay, Nikola; Hlinka, Jaroslav; Hartman, David; Paluš, Milan

    2014-01-01

    Roč. 16, - (2014), EGU2014-12768 ISSN 1607-7962. [EGU General Assembly /11./. 27.04.2014-02.05.2014, Vienna] Institutional support: RVO:67985807 Keywords : Granger causality * climate * information flow * surface air temperature * wind Subject RIV: BB - Applied Statistics, Operational Research

  1. An Experimental Study on the Wind-Induced Response of Variable Message Signs

    Directory of Open Access Journals (Sweden)

    Debbie Meyer

    2017-11-01

    Full Text Available Variable message sign (VMS systems are widely used in motorways to provide traffic information to motorists. Such systems are subjected to wind-induced structural vibration that can lead to damage due to fatigue. The limited information that is available on the safe wind design of VMS motivated a large scale testing that was conducted at the wall of wind (WOW Experimental Facility at Florida International University (FIU. One of the objectives of the present study was to experimentally assess the wind-induced force coefficients on VMS of different geometries and utilize these results to provide improved design guidelines. A comprehensive range of VMS geometries was tested, and mean normal and lateral force coefficients, in addition to the twisting moment coefficient and eccentricity ratio, were determined using the measured data for each model, for wind directions of 0° and 45°. The results confirmed that the mean drag coefficient on a prismatic VMS is smaller than the value of 1.7 suggested by American Association of State Highway and Transportation Officials (AASHTO. An alternative to this value is presented in the form of a design matrix with coefficients ranging from 0.98 to 1.28, depending on the aspect and depth ratio of the VMS. Furthermore, results indicated that the corner modification on a VMS with chamfered edges demonstrated a reduction in the drag coefficient compared to sharper edges. Finally, the dynamic loading effects were considered by evaluating the gust effect factor, using the ASCE 7 formulations, for various VMS weights and geometries. The findings revealed a wide range of possible gust effect factors, both above and below the current AASHTO specification of 1.14. Future research may include different geometries of VMS and a wider range of wind directions.

  2. Influence of omni-directional guide vane on the performance of cross-flow rotor for urban wind energy

    Science.gov (United States)

    Wicaksono, Yoga Arob; Tjahjana, Dominicus Danardono Dwi Prija; Hadi, Syamsul

    2018-02-01

    Vertical axis wind turbine like cross-flow rotor have some advantage there are, high self-starting torque, low noise, and high stability; so, it can be installed in the urban area to produce electricity. But, the urban area has poor wind condition, so the cross-flow rotor needs a guide vane to increase its performance. The aim of this study is to determine experimentally the effect of Omni-Directional Guide Vane (ODGV) on the performance of a cross-flow wind turbine. Wind tunnel experiment has been carried out for various configurations. The ODGV was placed around the cross-flow rotor in order to increase ambient wind environment of the wind turbine. The maximum power coefficient is obtained as Cpmax = 0.125 at 60° wind direction. It was 21.46% higher compared to cross-flow wind turbine without ODGV. This result showed that the ODGV able to increase the performance of the cross-flow wind turbine.

  3. Investigation of gas particle flow in an erosion wind tunnel

    Energy Technology Data Exchange (ETDEWEB)

    Tabakoff, W.; Hamed, A.; Beacher, B.

    1983-04-01

    Trajectories of small particles approaching the test specimen in an erosion tunnel are analytically determined. The two-dimensional equations of motion are solved for a spherical particle under the sole influence of aerodynamic drag. The two-dimensional gradients of gas properties in the flow field are determined by a numerical solution of the equations describing a compressible inviscid fluid. At one inlet condition, the trajectories are computed for coal ash particles of various sizes approaching test specimens at several orientations. Trends are identified in the approaching characteristics that may be related to the observed erosion. The results indicate that, for ash particles with diameters less than 10 ..mu..m, significant numbers are deflected away from the specimen. These particles would otherwise impact with the specimen if they had to resist the turning effect of the flow field.

  4. Measurement Techniques for Flow Diagnostic in ITAM Impulse Wind Tunnels

    Science.gov (United States)

    2010-04-01

    inhomogeneity is focused by a lens in the plane of the Foucault knife where the slot image is formed. The so- called Toepler devices based on this principle...substantial constraints. In particular, the use of devices with the Foucault knife is ineffective in hypersonic flows, which are characterized by extremely...visualization transparent (AVT) instead of the Foucault knife [26, 27]. In this case, the transparent is made of a phototropic material (e.g., silica

  5. Structured Slow Solar Wind Variability: Streamer Blob Flux Ropes and Torsional Alfven Waves

    Science.gov (United States)

    Lynch, B. J.; Higginson, A. K.

    2017-12-01

    The slow solar wind exhibits strong variability on timescales from minutes to days, in addition to changing with the heliosphere on longer timescales from months to years. While the large-scale changes are likely due to the emerging or restructuring of coronal flux, the variability in magnetic field and plasma properties on the smaller timescales is likely related to magnetic reconnection processes in the extended solar corona. Higginson et al. (2017, ApJ 840, L10) presented a numerical magnetohydrodynamic simulation which showed that interchange magnetic reconnection is likely responsible for the release of much of the slow solar wind, including along topological features known as the Separatrix-web (S-web). Here, we continue our analysis of the Higginson et al. simulation, focusing now on two specific aspects of structured slow solar wind variability. First, we examine the formation and evolution of three-dimensional magnetic flux ropes that form at the top of the helmet streamer belt by reconnection in the heliospheric current sheet (HCS). Second, we examine the simulated remote and in situ signatures of the large-scale torsional Alfven wave (TAW) which propagates along an S-web arc to high latitudes. We describe the similarities and differences between the reconnection-generated flux ropes in the HCS, which resemble the well-known "streamer blob" observations, and the similarly structured TAW. We discuss the implications of our results for the complexity of the HCS and surrounding plasma sheet, and the potential for particle acceleration, as well as the interchange reconnection scenarios which may generate TAWs in the solar corona. We consider our simulation results within the context of the future Parker Solar Probe and Solar Orbiter observations, and make predictions for the dynamic slow solar wind in the extended corona and inner heliosphere.

  6. Control of variable speed pitch-regulated wind turbines in strong wind conditions using a combined feedforward and feedback technique

    DEFF Research Database (Denmark)

    Feng, Ju; Shen, Wen Zhong

    2012-01-01

    Due to the increasing penetration of wind energy into power systems, it becomes critical to reduce the impact of wind energy on the stability and reliability of the overall power system. In precedent works, Shen and his co-workers developed a re-designed operation schema to run wind turbines...

  7. Computational Design and Analysis of a Transonic Natural Laminar Flow Wing for a Wind Tunnel Model

    Science.gov (United States)

    Lynde, Michelle N.; Campbell, Richard L.

    2017-01-01

    A natural laminar flow (NLF) wind tunnel model has been designed and analyzed for a wind tunnel test in the National Transonic Facility (NTF) at the NASA Langley Research Center. The NLF design method is built into the CDISC design module and uses a Navier-Stokes flow solver, a boundary layer profile solver, and stability analysis and transition prediction software. The NLF design method alters the pressure distribution to support laminar flow on the upper surface of wings with high sweep and flight Reynolds numbers. The method addresses transition due to attachment line contamination/transition, Gortler vortices, and crossflow and Tollmien-Schlichting modal instabilities. The design method is applied to the wing of the Common Research Model (CRM) at transonic flight conditions. Computational analysis predicts significant extents of laminar flow on the wing upper surface, which results in drag savings. A 5.2 percent scale semispan model of the CRM NLF wing will be built and tested in the NTF. This test will aim to validate the NLF design method, as well as characterize the laminar flow testing capabilities in the wind tunnel facility.

  8. Climate and climate variability of the wind power resources in the Great Lakes region of the United States

    Science.gov (United States)

    X. Li; S. Zhong; X. Bian; W.E. Heilman

    2010-01-01

    The climate and climate variability of low-level winds over the Great Lakes region of the United States is examined using 30 year (1979-2008) wind records from the recently released North American Regional Reanalysis (NARR), a three-dimensional, high-spatial and temporal resolution, and dynamically consistent climate data set. The analyses focus on spatial distribution...

  9. Feasibility of a Simple Small Wind Turbine with Variable-Speed Regulation Made of Commercial Components

    Directory of Open Access Journals (Sweden)

    Jesús Peláez Vara

    2013-07-01

    Full Text Available The aim of this study was to propose and evaluate a very small wind turbine (VSWT that competes with commercial grid-connected VSWTs in terms of simplicity, robustness and price. Its main components are a squirrel-cage induction generator (SCIG driven by a frequency converter. The system has a direct-drive shaft, and may be constructed with commercial equipment. Simulation of the wind turbine effect is done with a motor. A control program regulates the variable-speed of rotation through three operational modes: (i to drive the turbine to its optimum operation point; (ii to limit its maximum rotational speed; and (iii to limit the maximum power it generates. Two tests were performed, in order to evaluate the dynamic response of this system under variable wind speeds. The tests demonstrate that the system operates at the optimum operational point of the turbine, and within the set limits of maximum rotational speed and maximum generated power. The drop in performance in relation to its nominal value is about 75%, when operating at 50% of the nominal power. In summary, this VSWT with its proposed control program is feasible and reliable for operating direct-shaft grid-connected VSWTs.

  10. A Case for Including Atmospheric Thermodynamic Variables in Wind Turbine Fatigue Loading Parameter Identification

    International Nuclear Information System (INIS)

    Kelley, Neil D.

    1999-01-01

    This paper makes the case for establishing efficient predictor variables for atmospheric thermodynamics that can be used to statistically correlate the fatigue accumulation seen on wind turbines. Recently, two approaches to this issue have been reported. One uses multiple linear-regression analysis to establish the relative causality between a number of predictors related to the turbulent inflow and turbine loads. The other approach, using many of the same predictors, applies the technique of principal component analysis. An examination of the ensemble of predictor variables revealed that they were all kinematic in nature; i.e., they were only related to the description of the velocity field. Boundary-layer turbulence dynamics depends upon a description of the thermal field and its interaction with the velocity distribution. We used a series of measurements taken within a multi-row wind farm to demonstrate the need to include atmospheric thermodynamic variables as well as velocity-related ones in the search for efficient turbulence loading predictors in various turbine-operating environments. Our results show that a combination of vertical stability and hub-height mean shearing stress variables meet this need over a period of 10 minutes

  11. Relation of solar wind fluctuations to differential flow between protons and alphas

    Science.gov (United States)

    Neugebauer, M.

    1974-01-01

    An analysis is made of the difference between the alpha particle and proton flow velocities in the solar wind as observed by the OGO 5 satellite. The alpha and proton velocities from each of 962 spectral scans are compared with the variance of 32 solar wind flux measurements made during the scans. The average velocity difference is plotted for each of 10 logarithmic variance intervals and is seen to decrease and approach zero when the variance is high. It is shown that such an anticorrelation may be due to the fact the wave/particle interactions provide the drag force between two streams of different velocity in a collisionless plasma.

  12. On the flow, thermal field and winds along the western continental shelf of India

    Digital Repository Service at National Institute of Oceanography (India)

    Antony, M.K.; Shenoi, S.S.C.

    January 1991; in revised form 30 July 1991 ; accepted 5 March 1992) Abstract--Short duration current meter recordings during May 1984, March 1986 and November 1986 along with wind and hydrographic data at a point (15°08'N and 73°16'E) in the western... these moorings were restricted to short durations of 10-15 days only. In this paper we present the general features of the measured flow and its relationship with the local wind and the density (thermal) structure. A description of the time-dependent motions...

  13. State variables for modelling thermohaline flow in rocks

    Energy Technology Data Exchange (ETDEWEB)

    Kroehn, Klaus-Peter

    2010-12-15

    Modelling thermohaline flow can easily involve complex physical interactions even if only the basic processes occurring in density-driven flow and heat transport are considered. In the light of these complexities it is of vital importance to know the thermal and hydraulic parameters required for the model and their dependencies as precise as possible. But also for designing a numerical simulator it is useful to know the dependencies of the parameters on the primary variables temperature, pressure and salinity in order to select an appropriate underlying mathematical model. The present report thus compiles the mathematical formulations for the fluid parameters from the literature. For each parameter the origin, at least one meaningful figure, a comment where necessary and conclusions about the influence of each primary variable on the thermo-hydraulic parameters are given. All required coefficients and auxiliary functions including dimensions are listed, too. Simulation of heat transport requires also information about some properties of the porous medium. Thus some complementary information about the properties of rocks is also given. In contrast to the properties for pure substances that are considered for the fluid the porous medium cannot be characterised as easily. Usually, the solids are a mixture of different materials with locally varying composition. Thus rather hints than exact values are provided for the rocks considered here. This compilation represents a complete set of mathematical formulations for fluid and solid properties to be used for thermohaline modelling that can directly used in the composing of a numerical simulator. (orig.)

  14. Using Free Flow Energy Cumulation in Wind and Hydro Power Production

    Directory of Open Access Journals (Sweden)

    Lev Ktitorov

    2016-09-01

    Full Text Available When approaching a conventional wind turbine, the air flow is slowed down and widened. This results in a loss of turbine efficiency. In order to exploit wind or water flow power as effectively as possible, it was suggested that the turbine should be placed inside a shroud, which consists of 4 wing-shaped surfaces. Two internal airfoils improve the turbine performance by speeding up the flow acting on the turbine blades, two external wings create a field of low pressure behind the turbine, thus, helping to draw more mass flow to the turbine and avoid the loss of efficiency due to flow deceleration.  The system accumulates kinetic energy of the flow in a small volume where the smaller (and, therefore, cheaper turbine can be installed. A smaller system can be installed inside the bigger one, which would help to accumulate even more kinetic energy on the turbine. We call this method the kinetic energy summation with local flow redistribution. Both experiments and CFD simulations demonstrate a significant increase in velocity and generated mechanical power in comparison of those for a bare turbine.

  15. Perturbations of the solar wind flow by radial and latitudinal pick-up ion pressure gradients

    Directory of Open Access Journals (Sweden)

    H. J. Fahr

    2004-06-01

    Full Text Available It has been found that pick-up ions at their dynamical incorporation into the solar wind modify the original conditions of the asymptotic solar wind plasma flow. In this respect, it has meanwhile been revealed in many papers that these type of solar wind modifications, i.e. deceleration and decrease of effective Mach number, are not only due to the pick-up ion loading effects, but also to the action of pick-up ion pressure gradients. Up to now only the effects of radial pick-up ion pressure gradients were considered, however, analogously but latitudinal pressure gradients also appear to be important. Here we study the effects of radial and latitudinal pick-up ion pressure gradients, occurring especially during solar minimum conditions at mid-latitude regions where slow solar wind streams change to fast solar wind streams. First, we give estimates of the latitudinal wind components connected with these gradients, and then after revealing its importance, present a more quantitative calculation of solar wind velocity and density perturbations resulting from these pressure forces. It is shown that the relative density perturbations near and in the ecliptic increase with radial distance and thus may well explain the measured non-spherically symmetric density decrease with distance. We also show that the solar wind decelerations actually seen with Voyager-1/2 are in conciliation with interstellar hydrogen densities of nH∞≥0.1cm-3, in contrast to earlier claims for nH∞=0.05cm-3.

  16. Perturbations of the solar wind flow by radial and latitudinal pick-up ion pressure gradients

    Directory of Open Access Journals (Sweden)

    H. J. Fahr

    2004-06-01

    Full Text Available It has been found that pick-up ions at their dynamical incorporation into the solar wind modify the original conditions of the asymptotic solar wind plasma flow. In this respect, it has meanwhile been revealed in many papers that these type of solar wind modifications, i.e. deceleration and decrease of effective Mach number, are not only due to the pick-up ion loading effects, but also to the action of pick-up ion pressure gradients. Up to now only the effects of radial pick-up ion pressure gradients were considered, however, analogously but latitudinal pressure gradients also appear to be important. Here we study the effects of radial and latitudinal pick-up ion pressure gradients, occurring especially during solar minimum conditions at mid-latitude regions where slow solar wind streams change to fast solar wind streams. First, we give estimates of the latitudinal wind components connected with these gradients, and then after revealing its importance, present a more quantitative calculation of solar wind velocity and density perturbations resulting from these pressure forces. It is shown that the relative density perturbations near and in the ecliptic increase with radial distance and thus may well explain the measured non-spherically symmetric density decrease with distance. We also show that the solar wind decelerations actually seen with Voyager-1/2 are in conciliation with interstellar hydrogen densities of nH∞≥0.1cm-3, in contrast to earlier claims for nH∞=0.05cm-3.

  17. Variable Structure Control of DFIG for Wind Power Generation and Harmonic Current Mitigation

    Directory of Open Access Journals (Sweden)

    BELMADANI, B.

    2010-11-01

    Full Text Available This paper focuses on wind energy conversion system (WECS analysis and control for power generation along with problems related to the mitigation of harmonic pollution in the grid using a variable-speed structure control of the doubly fed induction generator (DFIG. A control approach based on the so-called sliding mode control (SMC that is both efficient and suitable is used for power generation control and harmonic-current compensation. The WECS then behaves as an active power filter (APF. The method aims at improving the overall efficiency, dynamic performance and robustness of the wind power generation system. Simulation results obtained on a 20-kW, 380-V, 50-Hz DFIG confirm the effectiveness of the proposed approach.

  18. Robust Active Disturbance Rejection Control Approach to Maximize Energy Capture in Variable-Speed Wind Turbines

    Directory of Open Access Journals (Sweden)

    Horacio Coral-Enriquez

    2013-01-01

    Full Text Available This paper proposes an alternative robust observer-based linear control technique to maximize energy capture in a 4.8 MW horizontal-axis variable-speed wind turbine. The proposed strategy uses a generalized proportional integral (GPI observer to reconstruct the aerodynamic torque in order to obtain a generator speed optimal trajectory. Then, a robust GPI observer-based controller supported by an active disturbance rejection (ADR approach allows asymptotic tracking of the generator speed optimal trajectory. The proposed methodology controls the power coefficient, via the generator angular speed, towards an optimum point at which power coefficient is maximum. Several simulations (including an actuator fault are performed on a 4.8 MW wind turbine benchmark model in order to validate the proposed control strategy and to compare it to a classical controller. Simulation and validation results show that the proposed control strategy is effective in terms of power capture and robustness.

  19. Simultaneous visible and ultraviolet spectroscopy of stellar wind variability in Zeta Puppis

    Science.gov (United States)

    Wegner, G. A.; Snow, T. P., Jr.

    1978-01-01

    Spectra of He II 4686 A and H-alpha in Zeta Pup were obtained simultaneously with Copernicus ultraviolet scans of several P Cygni profiles in this O4 If supergiant with strong mass loss. The visible-wavelength data show significant variations in the profiles of both lines, consisting of doubling of the emission over times of less than a day. Recent theoretical calculations show that the observed profile variations in 4686 A can be produced by significant fluctuations in the wind density. The Copernicus data show less variability, although in one scan of the 1400-A Si IV doublet there appears to be a significant enhancement of the emission which may be correlated with one of the doublings observed in 4686 A and H-alpha, as though a density enhancement formed at low levels and then moved outward in the wind.

  20. Hydroelectric power plant with variable flow on drinking water adduction

    Science.gov (United States)

    Deaconu, S. I.; Babău, R.; Popa, G. N.; Gherman, P. L.

    2018-01-01

    The water feeding system of the urban and rural localities is mainly collected with feed pipes which can have different lengths and different levels. Before using, water must be treated. Since the treatment take place in the tanks, the pressure in the inlet of the station must be diminished. Many times the pressure must be reduced with 5-15 Barr and this is possible using valves, cavils, and so on. The flow capacity of the water consumption is highly fluctuating during one day, depending on the season, etc. This paper presents a method to use the hydroelectric potential of the feed pipes using a hydraulic turbine instead of the classical methods for decreasing the pressure. To avoid the dissipation of water and a good behavior of the power parameters it is used an asynchronous generator (AG) which is coupled at the electrical distribution network through a static frequency converter (SFC). The turbine has a simple structure without the classical devices (used to regulate the turbine blades). The speed of rotation is variable, depending on the necessary flow capacity in the outlet of the treatment station. The most important element of the automation is the static frequency converter (SFC) which allows speeds between 0 and 1.5 of the rated speed of rotation and the flow capacity varies accordingly with it.

  1. FLASH: A finite element computer code for variably saturated flow

    International Nuclear Information System (INIS)

    Baca, R.G.; Magnuson, S.O.

    1992-05-01

    A numerical model was developed for use in performance assessment studies at the INEL. The numerical model, referred to as the FLASH computer code, is designed to simulate two-dimensional fluid flow in fractured-porous media. The code is specifically designed to model variably saturated flow in an arid site vadose zone and saturated flow in an unconfined aquifer. In addition, the code also has the capability to simulate heat conduction in the vadose zone. This report presents the following: description of the conceptual frame-work and mathematical theory; derivations of the finite element techniques and algorithms; computational examples that illustrate the capability of the code; and input instructions for the general use of the code. The FLASH computer code is aimed at providing environmental scientists at the INEL with a predictive tool for the subsurface water pathway. This numerical model is expected to be widely used in performance assessments for: (1) the Remedial Investigation/Feasibility Study process and (2) compliance studies required by the US Department of Energy Order 5820.2A

  2. Stratified flows with variable density: mathematical modelling and numerical challenges.

    Science.gov (United States)

    Murillo, Javier; Navas-Montilla, Adrian

    2017-04-01

    Stratified flows appear in a wide variety of fundamental problems in hydrological and geophysical sciences. They may involve from hyperconcentrated floods carrying sediment causing collapse, landslides and debris flows, to suspended material in turbidity currents where turbulence is a key process. Also, in stratified flows variable horizontal density is present. Depending on the case, density varies according to the volumetric concentration of different components or species that can represent transported or suspended materials or soluble substances. Multilayer approaches based on the shallow water equations provide suitable models but are not free from difficulties when moving to the numerical resolution of the governing equations. Considering the variety of temporal and spatial scales, transfer of mass and energy among layers may strongly differ from one case to another. As a consequence, in order to provide accurate solutions, very high order methods of proved quality are demanded. Under these complex scenarios it is necessary to observe that the numerical solution provides the expected order of accuracy but also converges to the physically based solution, which is not an easy task. To this purpose, this work will focus in the use of Energy balanced augmented solvers, in particular, the Augmented Roe Flux ADER scheme. References: J. Murillo , P. García-Navarro, Wave Riemann description of friction terms in unsteady shallow flows: Application to water and mud/debris floods. J. Comput. Phys. 231 (2012) 1963-2001. J. Murillo B. Latorre, P. García-Navarro. A Riemann solver for unsteady computation of 2D shallow flows with variable density. J. Comput. Phys.231 (2012) 4775-4807. A. Navas-Montilla, J. Murillo, Energy balanced numerical schemes with very high order. The Augmented Roe Flux ADER scheme. Application to the shallow water equations, J. Comput. Phys. 290 (2015) 188-218. A. Navas-Montilla, J. Murillo, Asymptotically and exactly energy balanced augmented flux

  3. Adaptive sliding mode back-stepping pitch angle control of a variable-displacement pump controlled pitch system for wind turbines.

    Science.gov (United States)

    Yin, Xiu-xing; Lin, Yong-gang; Li, Wei; Liu, Hong-wei; Gu, Ya-jing

    2015-09-01

    A variable-displacement pump controlled pitch system is proposed to mitigate generator power and flap-wise load fluctuations for wind turbines. The pitch system mainly consists of a variable-displacement hydraulic pump, a fixed-displacement hydraulic motor and a gear set. The hydraulic motor can be accurately regulated by controlling the pump displacement and fluid flows to change the pitch angle through the gear set. The detailed mathematical representation and dynamic characteristics of the proposed pitch system are thoroughly analyzed. An adaptive sliding mode pump displacement controller and a back-stepping stroke piston controller are designed for the proposed pitch system such that the resulting pitch angle tracks its desired value regardless of external disturbances and uncertainties. The effectiveness and control efficiency of the proposed pitch system and controllers have been verified by using realistic dataset of a 750 kW research wind turbine. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  4. Decentralized robust frequency control for power systems subject to wind power variability

    Science.gov (United States)

    Liu, Juhua

    . In particular, we design H infinity PI controllers for generators to compensate the wind power variability. The Hinfinity PI problem is transformed into a static output feedback (SOF) problem and solved via a iterative linear matrix inequalities approach. For large-scale power systems with hundreds of generators, there is a need to identify suitable generators for implementing the new control design. We present a sensitivity measure based on the state-space representation of the dynamical system. Given the machine and network data, and the point of interconnection of the wind farm to the grid, generators that are in close electrical proximity to the wind farms and with smaller inertias are more sensitive to wind power fluctuations. By selecting generators that are high on the sensitivity list to install the new robust controllers, we compensate the wind power variability effectively and avoid the unnecessary power transfer through the network. In this way, the effects of the wind power fluctuations on the rest of the network can be reduced. We also present a passivity-preserving model order reduction technique to simplify the system model, which is especially important for large-scale power systems. The proposed technique reduces the complexity of the system while retaining its passive property. This reduce-order model can be used to synthesis robust passive controllers. We present a positive real synthesis technique that fits into the proposed passivity-based decentralized control framework. The passivity-preserving model order reduction technique and the positive real synthesis technique are combined to design robust low-order passive controllers. We consider both single generator control and multiple generator control cases. For the latter, we develop a sequential control design method and evaluate it using the IEEE New England 39-bus test system. The proposed method can effectively reduce the frequency deviation caused by wind power fluctuations. Finally, we

  5. Coupled simulations and comparison with multi-lidar measurements of the wind flow over a double-ridge

    DEFF Research Database (Denmark)

    Veiga Rodrigues, C.; Palma, J.M.L.M.; Vasiljevic, Nikola

    2016-01-01

    The wind flow over a double-ridge site has been numerically simulated with a nested model- chain coupling, down to horizontal resolutions of 40 m. The results were compared with field measurements attained using a triple-lidar instrument, the long-range WindScanner system, which allowed measureme......The wind flow over a double-ridge site has been numerically simulated with a nested model- chain coupling, down to horizontal resolutions of 40 m. The results were compared with field measurements attained using a triple-lidar instrument, the long-range WindScanner system, which allowed...

  6. Experimental Study on the Wake Meandering Within a Scale Model Wind Farm Subject to a Wind-Tunnel Flow Simulating an Atmospheric Boundary Layer

    Science.gov (United States)

    Coudou, Nicolas; Buckingham, Sophia; Bricteux, Laurent; van Beeck, Jeroen

    2018-04-01

    The phenomenon of meandering of the wind-turbine wake comprises the motion of the wake as a whole in both horizontal and vertical directions as it is advected downstream. The oscillatory motion of the wake is a crucial factor in wind farms, because it increases the fatigue loads, and, in particular, the yaw loads on downstream turbines. To address this phenomenon, experimental investigations are carried out in a wind-tunnel flow simulating an atmospheric boundary layer with the Coriolis effect neglected. A 3 × 3 scaled wind farm composed of three-bladed rotating wind-turbine models is subject to a neutral boundary layer over a slightly-rough surface, i.e. corresponding to offshore conditions. Particle-image-velocimetry measurements are performed in a horizontal plane at hub height in the wakes of the three wind turbines occupying the wind-farm centreline. These measurements allow determination of the wake centrelines, with spectral analysis indicating the characteristic wavelength of the wake-meandering phenomenon. In addition, measurements with hot-wire anemometry are performed along a vertical line in the wakes of the same wind turbines, with both techniques revealing the presence of wake meandering behind all three turbines. The spectral analysis performed with the spatial and temporal signals obtained from these two measurement techniques indicates a Strouhal number of ≈ 0.20 - 0.22 based on the characteristic wake-meandering frequency, the rotor diameter and the flow speed at hub height.

  7. Robust optimization-based DC optimal power flow for managing wind generation uncertainty

    Science.gov (United States)

    Boonchuay, Chanwit; Tomsovic, Kevin; Li, Fangxing; Ongsakul, Weerakorn

    2012-11-01

    Integrating wind generation into the wider grid causes a number of challenges to traditional power system operation. Given the relatively large wind forecast errors, congestion management tools based on optimal power flow (OPF) need to be improved. In this paper, a robust optimization (RO)-based DCOPF is proposed to determine the optimal generation dispatch and locational marginal prices (LMPs) for a day-ahead competitive electricity market considering the risk of dispatch cost variation. The basic concept is to use the dispatch to hedge against the possibility of reduced or increased wind generation. The proposed RO-based DCOPF is compared with a stochastic non-linear programming (SNP) approach on a modified PJM 5-bus system. Primary test results show that the proposed DCOPF model can provide lower dispatch cost than the SNP approach.

  8. Validation of the Actuator Line Model for Simulating Flows past Yawed Wind Turbine Rotors

    DEFF Research Database (Denmark)

    Shen, Wen Zhong; Zhu, Wei Jun; Yang, Hua

    2015-01-01

    The Actuator Line/Navier-Stokes model is validated against wind tunnel measurements for flows past the yawed MEXICO rotor and past the yawed NREL Phase VI rotor. The MEXICO rotor is operated at a rotational speed of 424 rpm, a pitch angle of −2.3˚, wind speeds of 10, 15, 24 m/s and yaw angles of 15......˚, 30˚ and 45˚. The computed loads as well as the velocity field behind the yawed MEXICO rotor are compared to the detailed pressure and PIV measurements which were carried out in the EU funded MEXICO project. For the NREL Phase VI rotor, computations were carried out at a rotational speed of 90.2 rpm......, a pitch angle of 3˚, a wind speed of 5 m/s and yaw angles of 10˚ and 30˚. The computed loads are compared to the loads measured from pressure measurement....

  9. Implementation of a Model Output Statistics based on meteorological variable screening for short‐term wind power forecast

    DEFF Research Database (Denmark)

    Ranaboldo, Matteo; Giebel, Gregor; Codina, Bernat

    2013-01-01

    A combination of physical and statistical treatments to post‐process numerical weather predictions (NWP) outputs is needed for successful short‐term wind power forecasts. One of the most promising and effective approaches for statistical treatment is the Model Output Statistics (MOS) technique....... In this study, a MOS based on multiple linear regression is proposed: the model screens the most relevant NWP forecast variables and selects the best predictors to fit a regression equation that minimizes the forecast errors, utilizing wind farm power output measurements as input. The performance of the method...... is evaluated in two wind farms, located in different topographical areas and with different NWP grid spacing. Because of the high seasonal variability of NWP forecasts, it was considered appropriate to implement monthly stratified MOS. In both wind farms, the first predictors were always wind speeds (at...

  10. Kinematics of a vertical axis wind turbine with a variable pitch angle

    Science.gov (United States)

    Jakubowski, Mateusz; Starosta, Roman; Fritzkowski, Pawel

    2018-01-01

    A computational model for the kinematics of a vertical axis wind turbine (VAWT) is presented. A H-type rotor turbine with a controlled pitch angle is considered. The aim of this solution is to improve the VAWT productivity. The discussed method is related to a narrow computational branch based on the Blade Element Momentum theory (BEM theory). The paper can be regarded as a theoretical basis and an introduction to further studies with the application of BEM. The obtained torque values show the main advantage of using the variable pitch angle.

  11. Modeling and control of a variable-speed wind turbine equipped with permanent magnet synchronous generator

    Energy Technology Data Exchange (ETDEWEB)

    Aliprantis, D.C.; Papathanassiou, S.A.; Papadopoulos, M.P.; Kladas, A.G. [Purdue University, Electrical and Computer Engineering, West Lafayette, IN (United States)

    2000-08-01

    In this paper the operation of a variable-speed, stall regulated wind turbine equipped with a permanent magnet synchronous generator (PMSG) is examined. The emphasis is placed on the analysis of the electric part of the system, i.e. the electrical generator, the power electronics converters and the control. The operational characteristics of the machine are investigated through a series of computer simulations and the speed control system is designed to maximize the power output and achieve a smooth torque and power profile. (orig.)

  12. A Computer Fallout Code Using Variable Winds for Operational Type Studies

    Science.gov (United States)

    1987-03-01

    h1a ILi men, George J . NumnericalI Wea ther PredictLion. John Wiley & Sons, Inc. New York. 1971. 12. Ihm i I’vii , I).m it -1 W . Dortitmeii i at...Wr ightL-Pa tterson AFB , O11, 1986. 143 25. Pugh, George E. and R.J. Galliano . An Analytic Model of Close-In Deposition of Fallout for Use in...and Atmospheric Administration, National Weather Service, Silver Springs, MD (May 1982). 30. St Ledger, John W. Incorporation of Hopkins’ Variable Wind

  13. Blob formation and acceleration in the solar wind: role of converging flows and viscosity

    Directory of Open Access Journals (Sweden)

    G. Lapenta

    2008-10-01

    Full Text Available The effect of viscosity and of converging flows on the formation of blobs in the slow solar wind is analysed by means of resistive MHD simulations. The regions above coronal streamers where blobs are formed (Sheeley et al., 1997 are simulated using a model previously proposed by Einaudi et al. (1999. The result of our investigation is two-fold. First, we demonstrate a new mechanism for enhanced momentum transfer between a forming blob and the fast solar wind surrounding it. The effect is caused by the longer range of the electric field caused by the tearing instability forming the blob. The electric field reaches into the fast solar wind and interacts with it, causing a viscous drag that is global in nature rather than local across fluid layers as it is the case in normal uncharged fluids (like water. Second, the presence of a magnetic cusp at the tip of a coronal helmet streamer causes a converging of the flows on the two sides of the streamer and a direct push of the forming island by the fast solar wind, resulting in a more efficient momentum exchange.

  14. Numerical analysis of the flow around the Bach-type Savonius wind turbine

    International Nuclear Information System (INIS)

    Kacprzak, K; Sobczak, K

    2014-01-01

    The performance of the Bach-type Savonius wind turbine with a constant cross-section is examined by means of quasi 2D and 3D flow predictions obtained from ANSYS CFX. Simulations were performed in a way allowing for a comparison with the wind tunnel data presented by Kamoji et al. The comparison with the experiment has revealed that 2D solutions give much higher deviation from the reference data than the 3D ones, which guarantees a good solution quality. It can be stated that even simplified (lack of laminar-turbulence transition modelling and a coarser mesh) 3D simulations can yield more accurate results than complex 2D solutions for turbines with a low aspect ratio. The paper also presents a systematic analysis of the most characteristic flow structures which are identified in the rotor.

  15. Numerical analysis of the flow around the Bach-type Savonius wind turbine

    Science.gov (United States)

    Kacprzak, K.; Sobczak, K.

    2014-08-01

    The performance of the Bach-type Savonius wind turbine with a constant cross-section is examined by means of quasi 2D and 3D flow predictions obtained from ANSYS CFX. Simulations were performed in a way allowing for a comparison with the wind tunnel data presented by Kamoji et al. The comparison with the experiment has revealed that 2D solutions give much higher deviation from the reference data than the 3D ones, which guarantees a good solution quality. It can be stated that even simplified (lack of laminar-turbulence transition modelling and a coarser mesh) 3D simulations can yield more accurate results than complex 2D solutions for turbines with a low aspect ratio. The paper also presents a systematic analysis of the most characteristic flow structures which are identified in the rotor.

  16. Analysis And Synthesis Of Model Reference Controller For Variable Speed Wind Generators Inertial Support

    Science.gov (United States)

    Bećirović, Elvisa; Osmić, Jakub; Kušljugić, Mirza; Perić, Nedjeljko

    2015-01-01

    Model Reference Controller (MRC) for contribution of Variable Speed Wind Generators (VSWG) in inertial response of Electrical Power System (EPS) is presented and analyzed in this paper. MRC is synthesized based on a model of Generating Unit With non-Reheat Steam Turbine (GUNRST) thus enabling VSWG to emulate GUNRST response during the initial stage of dynamic frequency response ie inertial phase. Very important property of conventional steam generating units is that its contribution to inertial phase response is independent from the initial generating power. By using MRC in VSWG it is accomplished that in most common wind speed region (3-12 m/s) VSWG inertial support is almost independent from wind speed. Since in most EPSs VSWG replaces conventional steam generators, application of MRC algorithm provides that the characteristics of EPS in terms of inertial response are preserved, regardless of the growing trend of introducing VSWG. Evaluation analysis of the proposed MRC is performed on modified nine bus power system when VSWG with MRC is connected to one of the power system buses.

  17. Seasonal Variability of Wind Sea and Swell Waves Climate along the Canary Current: The Local Wind Effect

    Directory of Open Access Journals (Sweden)

    Alvaro Semedo

    2018-03-01

    Full Text Available A climatology of wind sea and swell waves along the Canary eastern boundary current area, from west Iberia to Mauritania, is presented. The study is based on the European Centre for Medium-Range Weather Forecasts (ECMWF reanalysis ERA-Interim. The wind regime along the Canary Current, along west Iberia and north-west Africa, varies significantly from winter to summer. High summer wind speeds generate high wind sea waves, particularly along the coasts of Morocco and Western Sahara. Lower winter wind speeds, along with stronger extratropical storms crossing the North Atlantic sub-basin up north lead to a predominance of swell waves in the area during from December to February. In summer, the coast parallel wind interacts with the coastal headlands, increasing the wind speed and the locally generated waves. The spatial patterns of the wind sea or swell regional wave fields are shown to be different from the open ocean, due to coastal geometry, fetch dimensions, and island sheltering.

  18. Postglacial Records of Southern Hemisphere Westerly Wind Variability From the New Zealand Subantarctic Auckland Islands

    Science.gov (United States)

    Moy, C. M.; Vandergoes, M.; Gilmer, G. J.; Nichols, J. E.; Dagg, B. J.; Wilson, G. S.; Browne, I. M.; Curtin, L. G.; Aebig, C.; McGlone, M.

    2015-12-01

    The strength and latitudinal position of the Southern Hemisphere westerly winds (SHWW) play a fundamental role in influencing mid latitude climate and carbon dioxide exchange between the Southern Ocean and the atmosphere. Despite their importance, our understanding of past changes in the SHWW is limited by few paleoclimate records from the modern wind maximum that are often not in agreement. The New Zealand subantarctic Auckland Islands are located within the core of the modern wind belt (50°S) where the ocean-atmospheric linkages between the Antarctic and middle latitudes are strong. In contrast to other subantarctic islands on the Campbell Plateau, the Auckland Islands have protected fjord sub-basins, deep lakes, and peatlands that are advantageous for the development of high-resolution paleoclimate records. We will present ongoing work towards the establishment of multi-proxy and multi-site reconstructions of past SHWW variability from the Auckland Islands. Modern process and paleoclimate results from two research cruises in 2014 and 2015 suggest that in lacustrine and fjord settings, the degree of water column mixing, the stable isotopic composition of n-alkanes and benthic foraminifera, the influx of terrestrial organic matter are good indicators of wind-induced mixing of the water column or precipitation-driven erosion within catchments. In ombrotrophic peatlands, hydrogen isotope ratios of specific organic molecules allow reconstructions of the hydrogen isotope ratios of precipitation, which is related to precipitation source area and the latitudinal position of the SHWW. Using macrofossil counts paired with abundances of leaf wax biomarkers, we are able to estimate the moisture balance at peatland coring sites. Early results indicate an overall strengthening of the SHWW at the Auckland Islands through the Holocene. We will discuss these results within the context of complimentary records developed from New Zealand and southern South America to ultimately

  19. Optical Flow for Flight and Wind Tunnel Background Oriented Schlieren Imaging

    Science.gov (United States)

    Smith, Nathanial T.; Heineck, James T.; Schairer, Edward T.

    2017-01-01

    Background oriented Schlieren images have historically been generated by calculating the observed pixel displacement between a wind-on and wind-o image pair using normalized cross-correlation. This work uses optical flow to solve the displacement fields which generate the Schlieren images. A well established method used in the computer vision community, optical flow is the apparent motion in an image sequence due to brightness changes. The regularization method of Horn and Schunck is used to create Schlieren images using two data sets: a supersonic jet plume shock interaction from the NASA Ames Unitary Plan Wind Tunnel, and a transonic flight test of a T-38 aircraft using a naturally occurring background, performed in conjunction with NASA Ames and Armstrong Research Centers. Results are presented and contrasted with those using normalized cross-correlation. The optical flow Schlieren images are found to provided significantly more detail. We apply the method to historical data sets to demonstrate the broad applicability and limitations of the technique.

  20. Ionospheric cusp flows pulsed by solar wind Alfvén waves

    Directory of Open Access Journals (Sweden)

    P. Prikryl

    2002-02-01

    Full Text Available Pulsed ionospheric flows (PIFs in the cusp foot-print have been observed by the SuperDARN radars with periods between a few minutes and several tens of minutes. PIFs are believed to be a consequence of the interplanetary magnetic field (IMF reconnection with the magnetospheric magnetic field on the dayside magnetopause, ionospheric signatures of flux transfer events (FTEs. The quasiperiodic PIFs are correlated with Alfvénic fluctuations observed in the upstream solar wind. It is concluded that on these occasions, the FTEs were driven by Alfvén waves coupling to the day-side magnetosphere. Case studies are presented in which the dawn-dusk component of the Alfvén wave electric field modulates the reconnection rate as evidenced by the radar observations of the ionospheric cusp flows. The arrival of the IMF southward turning at the magnetopause is determined from multipoint solar wind magnetic field and/or plasma measurements, assuming plane phase fronts in solar wind. The cross-correlation lag between the solar wind data and ground magnetograms that were obtained near the cusp footprint exceeded the estimated spacecraft-to-magnetopause propagation time by up to several minutes. The difference can account for and/or exceeds the Alfvén propagation time between the magnetopause and ionosphere. For the case of short period ( < 13 min PIFs, the onset times of the flow transients appear to be further delayed by at most a few more minutes after the IMF southward turning arrived at the magnetopause. For the case of long period (30 – 40 min PIFs, the observed additional delays were 10–20 min. We interpret the excess delay in terms of an intrinsic time scale for reconnection (Russell et al., 1997 which can be explained by the surface-wave induced magnetic reconnection mechanism (Uberoi et al., 1999. Here, surface waves with wavelengths larger than the thickness of the neutral layer induce a tearing-mode instability whose rise time explains the

  1. Hybrid Simulations of the Interaction Between Solar Wind Flow and the Hermean Magnetosphere

    Science.gov (United States)

    Travnicek, P.; Hellinger, P.; Schriver, D.; Ashour-Abdalla, M.

    2003-12-01

    We examine the magnetosphere of Mercury using global three dimensional hybrid plasma simulations. Hybrid simulations treat ions as particles and electrons as a fluid. Having ions as particles allows ion kinetic behavior and waves to be included in the physical treatment of the plasma as compared to magnetohydrodynamic (MHD) modeling that treats the plasma as a single magnetized fluid and does not include such kinetic effects. Kinetic effects are essential for understanding magnetospheric physics. Hybrid simulations scale to the ion inertial length and thus on a global scale are somewhat limited in spatial extent compared to an MHD simulation. We note effects caused by the scalling of the numerical model of the magnetized obstacle interacting with the solar wind flow with the full scale simulation. Hermean magnetosphere is estimated to be only a few times the planetary radius, it can fit within a hybrid simulation system. The overal structure of the interaction between a magnetized obstacle in the solar wind flow is determined by few basic parameters (namely the solar wind density, background magnetic field, and the speed of solar wind, and also the strength of the magnetic dipole of the obstacle and its radius). The structure of the interaction of the solar wind flow with Mercury is to a large extend unique when compared to other planets. For example, the magnetic moment of the Mercury is over 1000 times smaller than that of the Earth and also the solar wind is stronger nearby Mercury than at Earth's vicinity. The typical magnetosperic scales are comparable to the ion gyroradii and hence kinetic effects are important for the overall structure of the interaction between the Hermean magnetospere and the solar wind. In this paper we shall focus on the study of the overal structure of the bow shock and magnetosheath of Mercury. We shall examine the formation of the magnetospheric tail. We shall study particle distribution functions in different locations of the

  2. Ionospheric cusp flows pulsed by solar wind Alfvén waves

    Directory of Open Access Journals (Sweden)

    P. Prikryl

    Full Text Available Pulsed ionospheric flows (PIFs in the cusp foot-print have been observed by the SuperDARN radars with periods between a few minutes and several tens of minutes. PIFs are believed to be a consequence of the interplanetary magnetic field (IMF reconnection with the magnetospheric magnetic field on the dayside magnetopause, ionospheric signatures of flux transfer events (FTEs. The quasiperiodic PIFs are correlated with Alfvénic fluctuations observed in the upstream solar wind. It is concluded that on these occasions, the FTEs were driven by Alfvén waves coupling to the day-side magnetosphere. Case studies are presented in which the dawn-dusk component of the Alfvén wave electric field modulates the reconnection rate as evidenced by the radar observations of the ionospheric cusp flows. The arrival of the IMF southward turning at the magnetopause is determined from multipoint solar wind magnetic field and/or plasma measurements, assuming plane phase fronts in solar wind. The cross-correlation lag between the solar wind data and ground magnetograms that were obtained near the cusp footprint exceeded the estimated spacecraft-to-magnetopause propagation time by up to several minutes. The difference can account for and/or exceeds the Alfvén propagation time between the magnetopause and ionosphere. For the case of short period ( < 13 min PIFs, the onset times of the flow transients appear to be further delayed by at most a few more minutes after the IMF southward turning arrived at the magnetopause. For the case of long period (30 – 40 min PIFs, the observed additional delays were 10–20 min. We interpret the excess delay in terms of an intrinsic time scale for reconnection (Russell et al., 1997 which can be explained by the surface-wave induced magnetic reconnection mechanism (Uberoi et al., 1999. Here, surface waves with wavelengths larger than the thickness of the neutral layer induce a tearing-mode instability whose rise time explains the

  3. Seasonality, interannual variability, and linear tendency of wind speeds in the northeast Brazil from 1986 to 2011.

    Science.gov (United States)

    Torres Silva dos Santos, Alexandre; Moisés Santos e Silva, Cláudio

    2013-01-01

    Wind speed analyses are currently being employed in several fields, especially in wind power generation. In this study, we used wind speed data from records of Universal Fuess anemographs at an altitude of 10 m from 47 weather stations of the National Institute of Meteorology (Instituto Nacional de Meteorologia-INMET) from January 1986 to December 2011. The objective of the study was to investigate climatological aspects and wind speed trends. To this end, the following methods were used: filling of missing data, descriptive statistical calculations, boxplots, cluster analysis, and trend analysis using the Mann-Kendall statistical method. The seasonal variability of the average wind speeds of each group presented higher values for winter and spring and lower values in the summer and fall. The groups G1, G2, and G5 showed higher annual averages in the interannual variability of wind speeds. These observed peaks were attributed to the El Niño and La Niña events, which change the behavior of global wind circulation and influence wind speeds over the region. Trend analysis showed more significant negative values for the G3, G4, and G5 groups for all seasons of the year and in the annual average for the period under study.

  4. Flow field and load characteristics of the whole MEXICO wind turbine

    DEFF Research Database (Denmark)

    Xu, Haoran; Yang, Hua; Liu, Chao

    2017-01-01

    CFD(Computational Fluid Dynamics) method was used to perform steady numerical simulation investigation on the flow field and load characteristics of MEXICO(Model EXperiment In Controlled cOnditions) wind turbine under non-yawed condition. Circumferentially-Averaged method was used to extract...... the calculated axial, radial and tangential components of velocity along the axial direction, then these components were compared with the experimental data, the compared results show that the computational components agree well with the experimental data and the computational results are reliable. The flow...... characteristics around the blade was analyzed and the points of flow separation were found along the blade, the results show that the points of flow separation move towards trailing edge with the increase of radius. The distribution of vorticity in the wake of MEXICO rotor was also analyzed. The distribution...

  5. State-Space Modeling and Performance Analysis of Variable-Speed Wind Turbine Based on a Model Predictive Control Approach

    Directory of Open Access Journals (Sweden)

    H. Bassi

    2017-04-01

    Full Text Available Advancements in wind energy technologies have led wind turbines from fixed speed to variable speed operation. This paper introduces an innovative version of a variable-speed wind turbine based on a model predictive control (MPC approach. The proposed approach provides maximum power point tracking (MPPT, whose main objective is to capture the maximum wind energy in spite of the variable nature of the wind’s speed. The proposed MPC approach also reduces the constraints of the two main functional parts of the wind turbine: the full load and partial load segments. The pitch angle for full load and the rotating force for the partial load have been fixed concurrently in order to balance power generation as well as to reduce the operations of the pitch angle. A mathematical analysis of the proposed system using state-space approach is introduced. The simulation results using MATLAB/SIMULINK show that the performance of the wind turbine with the MPC approach is improved compared to the traditional PID controller in both low and high wind speeds.

  6. Transient flows of the solar wind associated with small-scale solar activity in solar minimum

    Science.gov (United States)

    Slemzin, Vladimir; Veselovsky, Igor; Kuzin, Sergey; Gburek, Szymon; Ulyanov, Artyom; Kirichenko, Alexey; Shugay, Yulia; Goryaev, Farid

    The data obtained by the modern high sensitive EUV-XUV telescopes and photometers such as CORONAS-Photon/TESIS and SPHINX, STEREO/EUVI, PROBA2/SWAP, SDO/AIA provide good possibilities for studying small-scale solar activity (SSA), which is supposed to play an important role in heating of the corona and producing transient flows of the solar wind. During the recent unusually weak solar minimum, a large number of SSA events, such as week solar flares, small CMEs and CME-like flows were observed and recorded in the databases of flares (STEREO, SWAP, SPHINX) and CMEs (LASCO, CACTUS). On the other hand, the solar wind data obtained in this period by ACE, Wind, STEREO contain signatures of transient ICME-like structures which have shorter duration (<10h), weaker magnetic field strength (<10 nT) and lower proton temperature than usual ICMEs. To verify the assumption that ICME-like transients may be associated with the SSA events we investigated the number of weak flares of C-class and lower detected by SPHINX in 2009 and STEREO/EUVI in 2010. The flares were classified on temperature and emission measure using the diagnostic means of SPHINX and Hinode/EIS and were confronted with the parameters of the solar wind (velocity, density, ion composition and temperature, magnetic field, pitch angle distribution of the suprathermal electrons). The outflows of plasma associated with the flares were identified by their coronal signatures - CMEs (only in few cases) and dimmings. It was found that the mean parameters of the solar wind projected to the source surface for the times of the studied flares were typical for the ICME-like transients. The results support the suggestion that weak flares can be indicators of sources of transient plasma flows contributing to the slow solar wind at solar minimum, although these flows may be too weak to be considered as separate CMEs and ICMEs. The research leading to these results has received funding from the European Union’s Seventh Programme

  7. Observed flow variability along the thalweg, and on the coastal slopes of the Gulf of Finland, Baltic Sea

    Science.gov (United States)

    Lilover, Madis-Jaak; Elken, Jüri; Suhhova, Irina; Liblik, Taavi

    2017-08-01

    Bottom-mounted ADCP measurements from 10 installations, collected between 2009 and 2014 and each lasting several months, are analysed in order to distinguish between different flow regimes, and to detect variability (a) along the thalweg of the elongated basin, with different regimes in summer and in winter, and (b) on the coastal slopes. In the deep thalweg area the mean flow speed amounts to 6-13 cm s-1, whereas the maximum speeds appear in winter near the bottom of the basin, and in summer within the halocline (around 70 m depth). The mean zonal flow component reveals a nearly depth uniform inflow during winter, and a layered inflow-outflow during summer. In years where up-estuary (W to SW) winds are stronger during the summer, inflow dominates in upper layers, and anti-estuarine outflow dominates in deeper layers. This causes the export of a salt wedge, and the weakening of haline stratification. Infra-low frequency zonal currents (i.e. excluding topographic waves etc. with periods of less than 10 days) have a structure which is uniform with depth for 53% of the time in winter; in summer, a layered structure is present 65% of the time. However, during both periods the reversed estuarine flow (inflow in upper layers and outflow in the bottom layer) appears, on average, for 30% of the time. The deep flow zonal component is well correlated with westward winds during summer (r = 0.84), and south-westward winds during winter (r = 0.77). On the coastal slopes, the speed of the currents are lower than in the thalweg region, and they decay with depth. In the vertical the flow exhibits a layered structure in both the winter and summer seasons.

  8. Direct-phase-variable model of a synchronous reluctance motor including all slot and winding harmonics

    International Nuclear Information System (INIS)

    Obe, Emeka S.; Binder, A.

    2011-01-01

    A detailed model in direct-phase variables of a synchronous reluctance motor operating at mains voltage and frequency is presented. The model includes the stator and rotor slot openings, the actual winding layout and the reluctance rotor geometry. Hence, all mmf and permeance harmonics are taken into account. It is seen that non-negligible harmonics introduced by slots are present in the inductances computed by the winding function procedure. These harmonics are usually ignored in d-q models. The machine performance is simulated in the stator reference frame to depict the difference between this new direct-phase model including all harmonics and the conventional rotor reference frame d-q model. Saturation is included by using a polynomial fitting the variation of d-axis inductance with stator current obtained by finite-element software FEMAG DC (registered) . The detailed phase-variable model can yield torque pulsations comparable to those obtained from finite elements while the d-q model cannot.

  9. Intraseasonal Variability of the Equatorial Indian Ocean Observed from Sea Surface Height, Wind, and Temperature Data

    Science.gov (United States)

    Fu, Lee-Lueng

    2007-01-01

    The forcing of the equatorial Indian Ocean by the highly periodic monsoon wind cycle creates many interesting intraseasonal variabilities. The frequency spectrum of the wind stress observations from the European Remote Sensing Satellite scatterometers reveals peaks at the seasonal cycle and its higher harmonics at 180, 120, 90, and 75 days. The observations of sea surface height (SSH) from the Jason and Ocean Topography Experiment (TOPEX)/Poseidon radar altimeters are analyzed to study the ocean's response. The focus of the study is on the intraseasonal periods shorter than the annual period. The semiannual SSH variability is characterized by a basin mode involving Rossby waves and Kelvin waves traveling back and forth in the equatorial Indian Ocean between 10(deg)S and 10(deg)N. However, the interference of these waves with each other masks the appearance of individual Kelvin and Rossby waves, leading to a nodal point (amphidrome) of phase propagation on the equator at the center of the basin. The characteristics of the mode correspond to a resonance of the basin according to theoretical models. The theory also calls for similar modes at 90 and 60 days.

  10. Implementation of the Actuator Cylinder Flow Model in the HAWC2 code for Aeroelastic Simulations on Vertical Axis Wind Turbines

    DEFF Research Database (Denmark)

    Aagaard Madsen, Helge; Larsen, Torben J.; Schmidt Paulsen, Uwe

    2013-01-01

    The paper presents the implementation of the Actuator Cylinder (AC) flow model in the HAWC2 aeroelastic code originally developed for simulation of Horizontal Axis Wind Turbine (HAWT) aeroelasticity. This is done within the DeepWind project where the main objective is to explore the competitivene...

  11. Passive Acoustic Detection of Wind Turbine In-Flow Conditions for Active Control and Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Murray, Nathan E.

    2012-03-12

    Wind is a significant source of energy; however, the human capability to produce electrical energy still has many hurdles to overcome. One of these is the unpredictability of the winds in the atmospheric boundary layer (ABL). The ABL is highly turbulent in both stable and unstable conditions (based on the vertical temperature profile) and the resulting fluctuations can have a dramatic impact on wind turbine operation. Any method by which these fluctuations could be observed, estimated, or predicted could provide a benefit to the wind energy industry as a whole. Based on the fundamental coupling of velocity fluctuations to pressure fluctuations in the nearly incompressible flow in the ABL, This work hypothesizes that a ground-based array of infrasonic pressure transducers could be employed to estimate the vertical wind profile over a height relevant for wind turbines. To analyze this hypothesis, experiments and field deployments were conducted. Wind tunnel experiments were performed for a thick turbulent boundary layer over a neutral or heated surface. Surface pressure and velocity probe measurements were acquired simultaneously. Two field deployments yielded surface pressure data from a 49 element array. The second deployment at the Reese Technology Center in Lubbock, TX, also included data from a smaller aperture, 96-element array and a 200-meter tall meteorological tower. Analysis of the data successfully demonstrated the ability to estimate the vertical velocity profile using coherence data from the pressure array. Also, dynamical systems analysis methods were successful in identifying and tracking a gust type event. In addition to the passive acoustic profiling method, this program also investigated a rapid response Doppler SODAR system, the optimization of wind turbine blades for enhanced power with reduced aeroacoustic noise production, and the implementation of a wireless health monitoring system for the wind turbine blades. Each of these other objectives

  12. Inter-daily variability of a strong thermally-driven wind system over the Atacama Desert of South America: synoptic forcing and short-term predictability using the GFS global model

    Science.gov (United States)

    Jacques-Coper, Martín; Falvey, Mark; Muñoz, Ricardo C.

    2015-07-01

    Crucial aspects of a strong thermally-driven wind system in the Atacama Desert in northern Chile during the extended austral winter season (May-September) are studied using 2 years of measurement data from the Sierra Gorda 80-m meteorological mast (SGO, 22° 56' 24″ S; 69° 7' 58″ W, 2,069 m above sea level (a.s.l.)). Daily cycles of atmospheric variables reveal a diurnal (nocturnal) regime, with northwesterly (easterly) flow and maximum mean wind speed of 8 m/s (13 m/s) on average. These distinct regimes are caused by pronounced topographic conditions and the diurnal cycle of the local radiative balance. Wind speed extreme events of each regime are negatively correlated at the inter-daily time scale: High diurnal wind speed values are usually observed together with low nocturnal wind speed values and vice versa. The associated synoptic conditions indicate that upper-level troughs at the coastline of southwestern South America reinforce the diurnal northwesterly wind, whereas mean undisturbed upper-level conditions favor the development of the nocturnal easterly flow. We analyze the skill of the numerical weather model Global Forecast System (GFS) in predicting wind speed at SGO. Although forecasted wind speeds at 800 hPa do show the diurnal and nocturnal phases, observations at 80 m are strongly underestimated by the model. This causes a pronounced daily cycle of root-mean-squared error (RMSE) and bias in the forecasts. After applying a simple Model Output Statistics (MOS) post-processing, we achieve a good representation of the wind speed intra-daily and inter-daily variability, a first step toward reducing the uncertainties related to potential wind energy projects in the region.

  13. The impact of variable building height on drag, flow and turbulence over a realistic suburban surface

    Science.gov (United States)

    Giometto, M. G.; Christen, A.; Calaf, M.; Parlange, M. B.

    2014-12-01

    In urban environments, where buildings have variable configurations and heights, the tallest structures have a disproportional impact on drag, mean flow and turbulence. Although wind-engineering studies document well the effects of individual high-rise buildings on the immediate surrounding, the impact of varying building heights on the larger horizontally averaged flow has not been quantified systematically for realistic urban configurations. We use Large Eddy Simulation (LES) as a means to study the fully developed turbulent flow over and within a 512 x 512 m2 subset of the true urban geometry in the city of Basel, Switzerland. A periodic LES domain is centered on the location of a tower, where measurements of turbulence were performed in 2001/02, which allows a direct validation of the LES at a specific location in the domain. The Lagrangian scale-dependent LES model is adopted to parametrize the subgrid stresses in the bulk of the flow and buildings are taken into account adopting a discrete-forcing-approach immersed boundary method (IBM), with the geometry taken from a highly accurate digital building model. A series of high-resolution LES runs are performed for various directions of the approaching flow, and with all buildings included and then buildings above a certain height threshold progressively removed, to isolate the impact of tall structures. Results show how the presence of isolated tall buildings strongly modifies the roughness properties of the entire urban roughness sublayer, causing an increase in resolved pressure forces, which contributes to the overall surface induced drag. In the presence of tall buildings the local structure of the roughness sublayer is partitioned into two regimes: fine scale wake turbulence and elongated, high speed streak-like motions, locked between the position of isolated structures, with their axis aligned in the stream wise direction. For arrays with differing building heights statistics significantly differ from

  14. Free-stream turbulence effects on the flow around an S809 wind turbine airfoil

    Energy Technology Data Exchange (ETDEWEB)

    Torres-Nieves, Sheilla; Maldonado, Victor; Lebron, Jose [Rensselaer Polytechnic Institute, Troy, NY (United States); Kang, Hyung-Suk [United States Naval Academy, Annapolis, MD (United States); Meneveau, Charles [Johns Hopkins Univ., Baltimore, MD (United States); Castillo, Luciano [Texas Tech Univ., Lubbock, TX (United States)

    2012-07-01

    Two-dimensional Particle Image Velocimetry (2-D PIV) measurements were performed to study the effect of free-stream turbulence on the flow around a smooth and rough surface airfoil, specifically under stall conditions. A 0.25-m chord model with an S809 profile, common for horizontal-axis wind turbine applications, was tested at a wind tunnel speed of 10 m/s, resulting in Reynolds numbers based on the chord of Re{sub c} {approx} 182,000 and turbulence intensity levels of up to 6.14%. Results indicate that when the flow is fully attached, turbulence significantly decreases aerodynamic efficiency (from L/D {approx} 4.894 to L/D {approx} 0.908). On the contrary, when the flow is mostly stalled, the effect is reversed and aerodynamic performance is slightly improved (from L/D {approx} 1.696 to L/D {approx} 1.787). Analysis of the mean flow over the suction surface shows that, contrary to what is expected, free-stream turbulence is actually advancing separation, particularly when the turbulent scales in the free-stream are of the same order as the chord. This is a result of the complex dynamics between the boundary layer scales and the free-stream turbulence length scales when relatively high levels of active-grid generated turbulence are present. (orig.)

  15. Reduction of aerodynamic load fluctuation on wind turbine blades through active flow control

    Science.gov (United States)

    Velarde, John-Michael; Coleman, Thomas; Magstadt, Andrew; Aggarwal, Somil; Glauser, Mark

    2015-11-01

    The current set of experiments deals with implementing active flow control on a Bergey Excel 1, 1kW turbine. The previous work in our group demonstrated successfully that implementation of a simple closed-loop controller could reduce unsteady aerodynamic load fluctuation by 18% on a vertically mounted wing. Here we describe a similar flow control method adapted to work in the rotating frame of a 2.5m diameter wind turbine. Strain gages at the base of each blade measure the unsteady fluctuation in the blades and pressure taps distributed along the span of the blades feed information to the closed-loop control scheme. A realistic, unsteady flow field has been generated by placing a cylinder upstream of the turbine to induce shedding vortices at frequencies in the bandwidth of the first structural bending mode of the turbine blades. The goal of these experiments is to demonstrate closed-loop flow control as a means to reduce the unsteady fluctuation in the blades and increase the overall lifespan of the wind turbine.

  16. Field Test Results from a 10 kW Wind Turbine with Active Flow Control

    Science.gov (United States)

    Rice, Thomas; Bychkova, Veronika; Taylor, Keith; Clingman, Dan; Amitay, Michael

    2015-11-01

    Active flow control devices including synthetic jets and dynamic vortex generators were tested on a 10 kW wind turbine at RPI. Previous work has shown that load oscillations caused by dynamic stall could be modified through the use of active flow control by injecting momentum into the flow field near the leading edge of a dynamically pitching model. In this study, this work has been extended to its logical conclusion, field-testing active flow control on a real wind turbine. The blades in the current study have a 0.28m chord and 3.05m span, no twist or taper, and were retrofitted with six synthetic jets on one blade and ten dynamic vortex generators on a second blade. The third blade of this turbine was not modified, in order to serve as a control. Strain gauges were installed on each blade to measure blades' deflection. A simple closed loop control was demonstrated and preliminary results indicate reduced vibrational amplitude. Future testing will be conducted on a larger scale, 600kW machine at NREL, incorporating information collected during this study.

  17. Use of Solar and Wind as a Physical Hedge against Price Variability within a Generation Portfolio

    Energy Technology Data Exchange (ETDEWEB)

    Jenkin, T.; Diakov, V.; Drury, E.; Bush, B.; Denholm, P.; Milford, J.; Arent, D.; Margolis, R.; Byrne, R.

    2013-08-01

    This study provides a framework to explore the potential use and incremental value of small- to large-scale penetration of solar and wind technologies as a physical hedge against the risk and uncertainty of electricity cost on multi-year to multi-decade timescales. Earlier studies characterizing the impacts of adding renewable energy (RE) to portfolios of electricity generators often used a levelized cost of energy or simplified net cash flow approach. In this study, we expand on previous work by demonstrating the use of an 8760 hourly production cost model (PLEXOS) to analyze the incremental impact of solar and wind penetration under a wide range of penetration scenarios for a region in the Western U.S. We do not attempt to 'optimize' the portfolio in any of these cases. Rather we consider different RE penetration scenarios, that might for example result from the implementation of a Renewable Portfolio Standard (RPS) to explore the dynamics, risk mitigation characteristics and incremental value that RE might add to the system. We also compare the use of RE to alternative mechanisms, such as the use of financial or physical supply contracts to mitigate risk and uncertainty, including consideration of their effectiveness and availability over a variety of timeframes.

  18. Non-radial solar wind flows induced by the motion of interplanetary coronal mass ejections

    Directory of Open Access Journals (Sweden)

    M. Owens

    2004-12-01

    Full Text Available A survey of the non-radial flows (NRFs during nearly five years of interplanetary observations revealed the average non-radial speed of the solar wind flows to be ~30km/s, with approximately one-half of the large (>100km/s NRFs associated with ICMEs. Conversely, the average non-radial flow speed upstream of all ICMEs is ~100km/s, with just over one-third preceded by large NRFs. These upstream flow deflections are analysed in the context of the large-scale structure of the driving ICME. We chose 5 magnetic clouds with relatively uncomplicated upstream flow deflections. Using variance analysis it was possible to infer the local axis orientation, and to qualitatively estimate the point of interception of the spacecraft with the ICME. For all 5 events the observed upstream flows were in agreement with the point of interception predicted by variance analysis. Thus we conclude that the upstream flow deflections in these events are in accord with the current concept of the large-scale structure of an ICME: a curved axial loop connected to the Sun, bounded by a curved (though not necessarily circular cross section.

    Key words. Interplanetary physics (flare and stream dynamics; interplanetary magnetic fields; interplanetary shocks

  19. Low-frequency photospheric and wind variability in the early-B supergiant HD 2905

    Science.gov (United States)

    Simón-Díaz, S.; Aerts, C.; Urbaneja, M. A.; Camacho, I.; Antoci, V.; Fredslund Andersen, M.; Grundahl, F.; Pallé, P. L.

    2018-04-01

    Context. Despite important advances in space asteroseismology during the last decade, the early phases of evolution of stars with masses above 15 M⊙ (including the O stars and their evolved descendants, the B supergiants) have been only vaguely explored up to now. This is due to the lack of adequate observations for a proper characterization of the complex spectroscopic and photometric variability occurring in these stars. Aim. Our goal is to detect, analyze, and interpret variability in the early-B-type supergiant HD 2905 (κ Cas, B1 Ia) using long-term, ground-based, high-resolution spectroscopy. Methods: We gather a total of 1141 high-resolution spectra covering some 2900 days with three different high-performance spectrographs attached to 1-2.6m telescopes at the Canary Islands observatories. We complement these observations with the hipparcos light curve, which includes 160 data points obtained during a time span of 1200 days. We investigate spectroscopic variability of up to 12 diagnostic lines by using the zero and first moments of the line profiles. We perform a frequency analysis of both the spectroscopic and photometric dataset using Scargle periodograms. We obtain single snapshot and time-dependent information about the stellar parameters and abundances by means of the FASTWIND stellar atmosphere code. Results: HD 2905 is a spectroscopic variable with peak-to-peak amplitudes in the zero and first moments of the photospheric lines of up to 15% and 30 km s-1, respectively. The amplitude of the line-profile variability is correlated with the line formation depth in the photosphere and wind. All investigated lines present complex temporal behavior indicative of multi-periodic variability with timescales of a few days to several weeks. No short-period (hourly) variations are detected. The Scargle periodograms of the hipparcos light curve and the first moment of purely photospheric lines reveal a low-frequency amplitude excess and a clear dominant frequency

  20. Design and Numerical Calculation of Variable Test Section for Small Supersonic Wind Tunnel

    Directory of Open Access Journals (Sweden)

    Václav DVOŘÁK

    2010-12-01

    Full Text Available The paper is concerned with numerical modelling of transition in a separated boundary layer. The model of laminar/turbulent transition is based on the combination of empirical terms determining position of the transition and averaged Navier – Stokes equations closed by the k – ω SST turbulence model. The model of transition is applied in computation of 2D flow past NACA63A421 airfoil. Computation is performed using the commercial code ANSYS Fluent 6.3.26, in which the transition method is implemented as a User-Defined-Function. Computed distributions of Cp along the airfoil are verified by comparison with experimental data, which were obtained by measurements in a closed circuit wind tunnel at the constant Reynolds number and several angles of attack. Comparisons prove applicability of the implemented transitional model.

  1. Wind-generated Electricity in China: Decreasing Potential, Inter-annual Variability and Association with Changing Climate.

    Science.gov (United States)

    Sherman, Peter; Chen, Xinyu; McElroy, Michael B

    2017-11-24

    China hosts the world's largest market for wind-generated electricity. The financial return and carbon reduction benefits from wind power are sensitive to changing wind resources. Wind data derived from an assimilated meteorological database are used here to estimate what the wind generated electricity in China would have been on an hourly basis over the period 1979 to 2015 at a geographical resolution of approximately 50 km × 50 km. The analysis indicates a secular decrease in generating potential over this interval, with the largest declines observed for western Inner Mongolia (15 ± 7%) and the northern part of Gansu (17 ± 8%), two leading wind investment areas. The decrease is associated with long-term warming in the vicinity of the Siberian High (SH), correlated also with the observed secular increase in global average surface temperatures. The long-term trend is modulated by variability relating to the Pacific Decadal Oscillation (PDO) and the Arctic Oscillation (AO). A linear regression model incorporating indices for the PDO and AO, as well as the declining trend, can account for the interannual variability of wind power, suggesting that advances in long-term forecasting could be exploited to markedly improve management of future energy systems.

  2. Power generation and blade flow measurements of a full scale wind turbine

    Science.gov (United States)

    Gaunt, Brian

    Experimental research has been completed using a custom designed and built 4m wind turbine in a university operated wind facility. The primary goals of turbine testing were to determine the power production of the turbine and to apply the particle image velocimetry (PIV) technique to produce flow visualization images and velocity vector maps near the tip of a blade. These tests were completed over a wide range of wind speeds and turbine blade rotational speeds. This testing was also designed to be a preliminary study of the potential for future research using the turbine apparatus and to outline it's limitations. The goals and results of other large scale turbine tests are briefly discussed with a comparison outlining the unique aspects of the experiment outlined in this thesis. Power production tests were completed covering a range of mean wind speeds, 6.4 m/s to 11.1 m/s nominal, and rotational rates, 40 rpm to 220 rpm. This testing allowed the total power produced by the blades to be determined as a function of input wind speed, as traditionally found in power curves for commercial turbines. The coefficient of power, Cp, was determined as a function of the tip speed ratio which gave insight into the peak power production of the experimental turbine. It was found, as expected, that the largest power production occurred at the highest input wind speed, 11.1 m/s, and reached a mean value of 3080 W at a rotational rate of 220 rpm. Peak Cp was also found, as a function of the tip speed ratio, to approach 0.4 at the maximum measurable tip speed ratio of 8. Blade element momentum (BEM) theory was also implemented as an aerodynamic power and force prediction tool for the given turbine apparatus. Comparisons between the predictions and experimental results were made with a focus on the Cp power curve to verify the accuracy of the initial model. Although the initial predictions, based on lift and drag curves found in Abbot and Von Deonhoff 1, were similar to experimental

  3. Groundwater flow, quality (2007-10), and mixing in the Wind Cave National Park area, South Dakota

    Science.gov (United States)

    Long, Andrew J.; Ohms, Marc J.; McKaskey, Jonathan D.R.G.

    2012-01-01

    A study of groundwater flow, quality, and mixing in relation to Wind Cave National Park in western South Dakota was conducted during 2007-11 by the U.S. Geological Survey in cooperation with the National Park Service because of water-quality concerns and to determine possible sources of groundwater contamination in the Wind Cave National Park area. A large area surrounding Wind Cave National Park was included in this study because to understand groundwater in the park, a general understanding of groundwater in the surrounding southern Black Hills is necessary. Three aquifers are of particular importance for this purpose: the Minnelusa, Madison, and Precambrian aquifers. Multivariate methods applied to hydrochemical data, consisting of principal component analysis (PCA), cluster analysis, and an end-member mixing model, were applied to characterize groundwater flow and mixing. This provided a way to assess characteristics important for groundwater quality, including the differentiation of hydrogeologic domains within the study area, sources of groundwater to these domains, and groundwater mixing within these domains. Groundwater and surface-water samples collected for this study were analyzed for common ions (calcium, magnesium, sodium, bicarbonate, chloride, silica, and sulfate), arsenic, stable isotopes of oxygen and hydrogen, specific conductance, and pH. These 12 variables were used in all multivariate methods. A total of 100 samples were collected from 60 sites from 2007 to 2010 and included stream sinks, cave drip, cave water bodies, springs, and wells. In previous approaches that combined PCA with end-member mixing, extreme-value samples identified by PCA typically were assumed to represent end members. In this study, end members were not assumed to have been sampled but rather were estimated and constrained by prior hydrologic knowledge. Also, the end-member mixing model was quantified in relation to hydrogeologic domains, which focuses model results on

  4. North Atlantic atmospheric circulation and surface wind in the Northeast of the Iberian Peninsula: uncertainty and long term downscaled variability

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Bustamante, E.; Jimenez, P.A. [CIEMAT, Departamento de Energias Renovables, Madrid (Spain); Universidad Complutense de Madrid, Departamento de Astrofisica y CC. de la Atmosfera, Madrid (Spain); Gonzalez-Rouco, J.F. [Universidad Complutense de Madrid, Departamento de Astrofisica y CC. de la Atmosfera, Madrid (Spain); Navarro, J. [CIEMAT, Departamento de Energias Renovables, Madrid (Spain); Xoplaki, E. [University of Bern, Institute of Geography and Oeschger Centre for Climate Change Research, Bern (Switzerland); Montavez, J.P. [Universidad de Murcia, Departamento de Fisica, Murcia (Spain)

    2012-01-15

    The variability and predictability of the surface wind field at the regional scale is explored over a complex terrain region in the northeastern Iberian Peninsula by means of a downscaling technique based on Canonical Correlation Analysis. More than a decade of observations (1992-2005) allows for calibrating and validating a statistical method that elicits the main associations between the large scale atmospheric circulation over the North Atlantic and Mediterranean areas and the regional wind field. In an initial step the downscaling model is designed by selecting parameter values from practise. To a large extent, the variability of the wind at monthly timescales is found to be governed by the large scale circulation modulated by the particular orographic features of the area. The sensitivity of the downscaling methodology to the selection of the model parameter values is explored, in a second step, by performing a systematic sampling of the parameters space, avoiding a heuristic selection. This provides a metric for the uncertainty associated with the various possible model configurations. The uncertainties associated with the model configuration are considerably dependent on the spatial variability of the wind. While the sampling of the parameters space in the model set up moderately impact estimations during the calibration period, the regional wind variability is very sensitive to the parameters selection at longer timescales. This fact illustrates that downscaling exercises based on a single configuration of parameters should be interpreted with extreme caution. The downscaling model is used to extend the estimations several centuries to the past using long datasets of sea level pressure, thereby illustrating the large temporal variability of the regional wind field from interannual to multicentennial timescales. The analysis does not evidence long term trends throughout the twentieth century, however anomalous episodes of high/low wind speeds are identified

  5. Solution of wind integrated thermal generation system for environmental optimal power flow using hybrid algorithm

    Directory of Open Access Journals (Sweden)

    Ambarish Panda

    2016-09-01

    Full Text Available A new evolutionary hybrid algorithm (HA has been proposed in this work for environmental optimal power flow (EOPF problem. The EOPF problem has been formulated in a nonlinear constrained multi objective optimization framework. Considering the intermittency of available wind power a cost model of the wind and thermal generation system is developed. Suitably formed objective function considering the operational cost, cost of emission, real power loss and cost of installation of FACTS devices for maintaining a stable voltage in the system has been optimized with HA and compared with particle swarm optimization algorithm (PSOA to prove its effectiveness. All the simulations are carried out in MATLAB/SIMULINK environment taking IEEE30 bus as the test system.

  6. Stochastic Multi-Timescale Power System Operations With Variable Wind Generation

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Hongyu; Krad, Ibrahim; Florita, Anthony; Hodge, Bri-Mathias; Ibanez, Eduardo; Zhang, Jie; Ela, Erik

    2017-09-01

    This paper describes a novel set of stochastic unit commitment and economic dispatch models that consider stochastic loads and variable generation at multiple operational timescales. The stochastic model includes four distinct stages: stochastic day-ahead security-constrained unit commitment (SCUC), stochastic real-time SCUC, stochastic real-time security-constrained economic dispatch (SCED), and deterministic automatic generation control (AGC). These sub-models are integrated together such that they are continually updated with decisions passed from one to another. The progressive hedging algorithm (PHA) is applied to solve the stochastic models to maintain the computational tractability of the proposed models. Comparative case studies with deterministic approaches are conducted in low wind and high wind penetration scenarios to highlight the advantages of the proposed methodology, one with perfect forecasts and the other with current state-of-the-art but imperfect deterministic forecasts. The effectiveness of the proposed method is evaluated with sensitivity tests using both economic and reliability metrics to provide a broader view of its impact.

  7. Sliding mode direct power control of RSC for DFIGs driven by variable speed wind turbines

    Directory of Open Access Journals (Sweden)

    E.G. Shehata

    2015-12-01

    Full Text Available In spite of its several advantages, a classic direct power control (DPC of doubly fed induction generators (DFIGs driven by variable speed wind turbines has some drawbacks. In this paper, a simple and robust total sliding mode controller (TSMC is designed to improve the classical DPC performance without complicating the overall scheme. The TSMC is designed to regulate the DFIG stator active and reactive powers. Two integral switching functions are selected for describing the switching surfaces of the active and reactive powers. Reaching phase stability problem of the classical sliding mode controller is avoided in the proposed TSMC. Neither current control loops nor accurate values of machine parameters are required in the proposed scheme. In addition, axes transformation of the stator voltage and current are eliminated. The grid side converter is controlled based on DPC principle to regulate both DC-link voltage and total reactive power. The feasibility of the proposed DPC scheme is validated through simulation studies on a 1.5 MW wind power generation system. The performance of the proposed and conventional DPC schemes is compared under different operating conditions.

  8. The Variable Fast Soft X-Ray Wind in PG 1211+143

    Science.gov (United States)

    Reeves, J. N.; Lobban, A.; Pounds, K. A.

    2018-02-01

    The analysis of a series of seven observations of the nearby (z = 0.0809) QSO PG 1211+143, taken with the Reflection Grating Spectrometer (RGS) onboard XMM-Newton in 2014, are presented. The high-resolution soft X-ray spectrum, with a total exposure exceeding 600 ks, shows a series of blueshifted absorption lines from the He and H-like transitions of N, O, and Ne, as well as from L-shell Fe. The strongest absorption lines are all systematically blueshifted by ‑0.06c, originating in two absorption zones from low- and high-ionization gas. Both zones are variable on timescales of days, with the variations in absorber opacity effectively explained by either column density changes or the absorber ionization responding directly to the continuum flux. We find that the soft X-ray absorbers probably exist in a two-phase wind at a radial distance of ∼1017–1018 cm from the black hole with the lower-ionization gas as denser clumps embedded within a higher-ionization outflow. The overall mass outflow rate of the soft X-ray wind may be as high as 2{M}ȯ yr‑1, close to the Eddington rate for PG 1211+143 and similar to that previously deduced from the Fe K absorption.

  9. Flow Quality Measurements in the NASA Ames Upgraded 11-by 11-Foot Transonic Wind Tunnel

    Science.gov (United States)

    Amaya, Max A.; Murthy, Sreedhara V.; George, M. W. (Technical Monitor)

    2000-01-01

    Among the many upgrades designed and implemented in the NASA Ames 11-by 11-Foot Transonic Wind Tunnel over the past few years, several directly affect flow quality in the test section: a turbulence reduction system with a honeycomb and two screens, a flow smoothing system in the back leg diffusers, an improved drive motor control system, and a full replacement set of composite blades for the compressor. Prior to the shut-down of the tunnel for construction activities, an 8-foot span rake populated with flow instrumentation was traversed in the test section to fully document the flow quality and establish a baseline against which the upgrades could be characterized. A similar set of measurements was performed during the recent integrated system test trials, but the scope was somewhat limited in accordance with the primary objective of such tests, namely to return the tunnel to a fully operational status. These measurements clearly revealed substantial improvements in flow angularity and significant reductions in turbulence level for both full-span and semi-span testing configurations, thus making the flow quality of the tunnel one of the best among existing transonic facilities.

  10. The variable stellar wind of Rigel probed at high spatial and spectral resolution

    Science.gov (United States)

    Chesneau, O.; Kaufer, A.; Stahl, O.; Colvinter, C.; Spang, A.; Dessart, L.; Prinja, R.; Chini, R.

    2014-06-01

    Context. Luminous BA-type supergiants are the brightest stars in the visible that can be observed in distant galaxies and are potentially accurate distance indicators. The impact of the variability of the stellar winds on the distance determination remains poorly understood. Aims: Our aim is to probe the inhomogeneous structures in the stellar wind using spectro-interferometric monitoring. Methods: We present a spatially resolved, high-spectral resolution (R = 12 000) K-band temporal monitoring of the bright supergiant β Orionis (Rigel, B8 Iab) using AMBER at the Very Large Telescope Interferometer (VLTI). Rigel was observed in the Brγ line and its nearby continuum once per month over 3 months in 2006-2007, and 5 months in 2009-2010. These unprecedented observations were complemented by contemporaneous optical high-resolution spectroscopy. We analyse the near-IR spectra and visibilities with the 1D non-LTE radiative-transfer code CMFGEN. The differential and closure phase signals are evidence of asymmetries that are interpreted as perturbations of the wind. Results: A systematic visibility decrease is observed across the Brγ line indicating that at a radius of about 1.25 R∗ the photospheric absorption is filled by emission from the wind. During the 2006-2007 period the Brγ and likely the continuum forming regions were larger than in the 2009-2010 epoch. Using CMFGEN we infer a mass-loss rate change of about 20% between the two epochs. We also find time variations in the differential visibilities and phases. The 2006-2007 period is characterised by noticeable variations in the differential visibilities in Doppler position and width and by weak variations in differential and closure phase. The 2009-2010 period is much quieter with virtually no detectable variations in the dispersed visibilities but a strong S-shaped signal is observed in differential phase coinciding with a strong ejection event discernible in the optical spectra. The differential phase signal

  11. Numerical simulations of irregular wave ensembles affected by variable wind conditions

    Science.gov (United States)

    Slunyaev, Alexey; Sergeeva, Anna

    2014-05-01

    13603 (2009). [2]. S.Y. Annenkov, V.I. Shrira, "Fast" nonlinear evolution in wave turbulence. Phys. Rev. Lett. 102, 024502 (2009). [3]. A. Slunyaev, Freak wave events and the wave phase coherence. Eur. Phys. J. Special Topics 185, 67-80 (2010). [4]. M. Onorato, D. Proment, A. Toffoli, Triggering rogue waves in opposing currents. Phys. Rev. Lett. 107, 184502 (2011). [5]. A.V. Slunyaev, A.V. Sergeeva, Stochastic simulation of unidirectional intense waves in deep water applied to rogue waves. JETP Letters 94, 779-786 (2011). [6]. S. Leblanc, Amplification of nonlinear surface waves by wind, Phys. Fluids 19, 101705 (2007). [7]. A. Sergeeva, E. Pelinovsky, T. Talipova, Nonlinear random wave field in shallow water: variable Korteweg-de Vries framework. Nat. Hazards Earth Syst. Sci. 11, 323-330 (2011). [8]. K. Trulsen, H. Zeng, O. Gramstad, Laboratory evidence of freak waves provoked by non-uniform bathymetry. Phys. Fluids 24, 097101 (2012). [9]. H. Zeng, H., K. Trulsen, Evolution of skewness and kurtosis of weakly nonlinear unidirectional waves over a sloping bottom. Nat. Hazards Earth Syst. Sci. 12, 631-638 (2012). [10]. A. Sergeeva, A. Slunyaev, E. Pelinovsky, T. Talipova, and D.-J. Doong, Numerical modeling of rogue waves in coastal waters. Nat. Hazards Earth Syst. Sci. Discuss. 1, 5779-5804 (2013).

  12. Flow and turbulence control in a boundary layer wind tunnel using passive hardware devices

    Czech Academy of Sciences Publication Activity Database

    Kuznetsov, Sergeii; Ribičić, Mihael; Pospíšil, Stanislav; Plut, Mihael; Trush, Arsenii; Kozmar, H.

    2017-01-01

    Roč. 41, č. 6 (2017), s. 643-661 ISSN 0732-8818 R&D Projects: GA ČR(CZ) GA14-12892S; GA MŠk(CZ) LO1219 Keywords : turbulent flow * atmospheric boundary layer * wind-tunnel simulation * castellated barrier wall * Counihan vortex generators * surface roughness elements * hot-wire measurements Subject RIV: JM - Building Engineering OBOR OECD: Construction engineering, Municipal and structural engineering Impact factor: 0.932, year: 2016 https://link.springer.com/article/10.1007/s40799-017-0196-z

  13. Wind tunnel experiments to prove a hydraulic passive rotor speed control concept for variable speed wind turbines (poster)

    NARCIS (Netherlands)

    Diepeveen, N.F.B.; Jarquin Laguna, A.

    2012-01-01

    As alternative to geared and direct drive solutions, fluid power drive trains are being developed by several institutions around the world. The common configuration is where the wind turbine rotor is coupled to a hydraulic pump. The pump is connected through a high pressure line to a hydraulic motor

  14. Understanding IMF Bz and Space Weather Relations Near Geomagnetic Equator Related to Non-Radial Solar Wind Flows (P35)

    Science.gov (United States)

    Pereira, F.; Girish, T. E.

    2006-11-01

    We have reported earlier some new results related to the seasonal and solar cycle changes in the north-south component of IMF (Bz) observed near 1 A.U. A relationship between geomagnetic activity and non-radial solar wind flows were reported recently. In this connection, we are planning some studies for IHY 2007. We propose to identify non-radial flow structures in the interplanetary medium using IPS observations and predict the associated IMF Bz structures. The effect of geomagnetic storms near magnetic equator associated with non-radial solar wind flows will be studied using magnetometer observations in Trivandrum.

  15. Holocene variability in the intensity of wind-gap upwelling in the tropical eastern Pacific

    Science.gov (United States)

    Toth, Lauren T.; Aronson, Richard B.; Cheng, Hai; Edwards, R. Lawrence

    2015-01-01

    Wind-driven upwelling in Pacific Panamá is a significant source of oceanographic variability in the tropical eastern Pacific. This upwelling system provides a critical teleconnection between the Atlantic and tropical Pacific that may impact climate variability on a global scale. Despite its importance to oceanographic circulation, ecology, and climate, little is known about the long-term stability of the Panamanian upwelling system or its interaction with climatic forcing on millennial time scales. Using a combination of radiocarbon and U-series dating of fossil corals collected in cores from five sites across Pacific Panamá, we reconstructed the local radiocarbon reservoir correction, ΔR, from ~6750 cal B.P. to present. Because the ΔR of shallow-water environments is elevated by upwelling, our data set represents a millennial-scale record of spatial and temporal variability of the Panamanian upwelling system. The general oceanographic gradient from relatively strong upwelling in the Gulf of Panamá to weak-to-absent upwelling in the Gulf of Chiriquí was present throughout our record; however, the intensity of upwelling in the Gulf of Panamá varied significantly through time. Our reconstructions suggest that upwelling in the Gulf of Panamá is weak at present; however, the middle Holocene was characterized by periods of enhanced upwelling, with the most intense upwelling occurring just after of a regional shutdown in the development of reefs at ~4100 cal B.P. Comparisons with regional climate proxies suggest that, whereas the Intertropical Convergence Zone is the primary control on modern upwelling in Pacific Panamá, the El Niño–Southern Oscillation drove the millennial-scale variability of upwelling during the Holocene.

  16. An Electro-Thermal Analysis of a Variable-Speed Doubly-Fed Induction Generator in a Wind Turbine

    Directory of Open Access Journals (Sweden)

    Yingning Qiu

    2015-04-01

    Full Text Available This paper focuses on the electro-thermal analysis of a doubly-fed induction generator (DFIG in a wind turbine (WT with gear transmission configuration. The study of the thermal mechanism plays an important role in the development of cost-effective fault diagnostic techniques, design for reliability and premature failure prevention. Starting from an analysis of the DFIG system control and its power losses mechanism, a model that synthesizes the thermal mechanism of the DFIG and a WT system principle is developed to study the thermodynamics of generator stator winding. The transient-state and steady-state temperature characteristics of stator winding under constant and step-cycle patterns of wind speed are studied to show an intrinsic thermal process within a variable-speed WT generator. Thermal behaviors of two failure modes, i.e., generator ventilation system failure and generator stator winding under electric voltage unbalance, are examined in details and validated by both simulation and data analysis. The effective approach presented in this paper for generator fault diagnosis using the acquired SCADA data shows the importance of simulation models in providing guidance for post-data analysis and interpretation. WT generator winding lifetime is finally estimated based on a thermal ageing model to investigate the impacts of wind speed and failure mode.

  17. The Impact of Landscape Fragmentation on Atmospheric Flow: A Wind-Tunnel Study

    Science.gov (United States)

    Poëtte, Christopher; Gardiner, Barry; Dupont, Sylvain; Harman, Ian; Böhm, Margi; Finnigan, John; Hughes, Dale; Brunet, Yves

    2017-06-01

    Landscape discontinuities such as forest edges play an important role in determining the characteristics of the atmospheric flow by generating increased turbulence and triggering the formation of coherent tree-scale structures. In a fragmented landscape, consisting of surfaces of different heights and roughness, the multiplicity of edges may lead to complex patterns of flow and turbulence that are potentially difficult to predict. Here, we investigate the effects of different levels of forest fragmentation on the airflow. Five gap spacings (of length approximately 5 h, 10 h, 15 h, 20 h, 30 h, where h is the canopy height) between forest blocks of length 8.7 h, as well as a reference case consisting of a continuous forest after a single edge, were investigated in a wind tunnel. The results reveal a consistent pattern downstream from the first edge of each simulated case, with the streamwise velocity component at tree top increasing and turbulent kinetic energy decreasing as gap size increases, but with overshoots in shear stress and turbulent kinetic energy observed at the forest edges. As the gap spacing increases, the flow appears to change monotonically from a flow over a single edge to a flow over isolated forest blocks. The apparent roughness of the different fragmented configurations also decreases with increasing gap size. No overall enhancement of turbulence is observed at any particular level of fragmentation.

  18. Variable-Speed Wind Power Plant Operating With Reserve Power Capability: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Singh, M.; Gevorgian, V.; Muljadi, E.; Ela, E.

    2013-10-01

    As the level of wind penetration increases, wind turbine technology must move from merely generating power from wind to taking a role in supporting the bulk power system. Wind turbines should have the capability to provide inertial response and primary frequency (governor) response. Wind turbine generators with this capability can support the frequency stability of the grid. To provide governorresponse, wind turbines should be able to generate less power than the available wind power and hold the rest in reserves, ready to be accessed as needed. In this paper, we explore several ways to control wind turbine output to enable reserve-holding capability. The focus of this paper is on doubly-fed induction generator (also known as Type 3) and full-converter (also known as Type 4) windturbines.

  19. Intelligent approach to maximum power point tracking control strategy for variable-speed wind turbine generation system

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Whei-Min; Hong, Chih-Ming [Department of Electrical Engineering, National Sun Yat-Sen University, Kaohsiung 80424 (China)

    2010-06-15

    To achieve maximum power point tracking (MPPT) for wind power generation systems, the rotational speed of wind turbines should be adjusted in real time according to wind speed. In this paper, a Wilcoxon radial basis function network (WRBFN) with hill-climb searching (HCS) MPPT strategy is proposed for a permanent magnet synchronous generator (PMSG) with a variable-speed wind turbine. A high-performance online training WRBFN using a back-propagation learning algorithm with modified particle swarm optimization (MPSO) regulating controller is designed for a PMSG. The MPSO is adopted in this study to adapt to the learning rates in the back-propagation process of the WRBFN to improve the learning capability. The MPPT strategy locates the system operation points along the maximum power curves based on the dc-link voltage of the inverter, thus avoiding the generator speed detection. (author)

  20. Stand-alone excitation synchronous wind power generators with power flow management strategy

    Directory of Open Access Journals (Sweden)

    Tzuen-Lih Chern

    2014-09-01

    Full Text Available This study presents a stand-alone excitation synchronous wind power generator (SESWPG with power flow management strategy (PFMS. The rotor speed of the excitation synchronous generator tracks the utility grid frequency by using servo motor tracking technologies. The automatic voltage regulator governs the exciting current of generator to achieve the control goals of stable voltage. When wind power is less than the needs of the consumptive loading, the proposed PFMS increases motor torque to provide a positive power output for the loads, while keeping the generator speed constant. Conversely, during the periods of wind power greater than output loads, the redundant power of generator production is charged to the battery pack and the motor speed remains constant with very low power consumption. The advantage of the proposed SESWPG is that the generator can directly output stable alternating current (AC electricity without using additional DC–AC converters. The operation principles with software simulation for the system are described in detail. Experimental results of a laboratory prototype are shown to verify the feasibility of the system.

  1. Structural characterization of wind-sheared turbulent flow using self-organized mapping

    Science.gov (United States)

    Scott, Nicholas V.; Handler, Robert A.

    2016-05-01

    A nonlinear cluster analysis algorithm is used to characterize the spatial structure of a wind-sheared turbulent flow obtained from the direct numerical simulation (DNS) of the three-dimensional temperature and momentum fields. The application of self-organizing mapping to DNS data for data reduction is utilized because of the dimensional similitude in structure between DNS data and remotely sensed hyperspectral and multispectral data where the technique has been used extensively. For the three Reynolds numbers of 150, 180, and 220 used in the DNS, self-organized mapping is successful in the extraction of boundary layer streaky structures from the turbulent temperature and momentum fields. In addition, it preserves the cross-wind scale structure of the streaks exhibited in both fields which loosely scale with the inverse of the Reynolds number. Self-organizing mapping of the along wind component of the helicity density shows a layer of the turbulence field which is spotty suggesting significant direct coupling between the large and small-scale turbulent structures. The spatial correlation of the temperature and momentum fields allows for the possibility of the remote extrapolation of the momentum structure from thermal structure.

  2. Optimal power flow based TU/CHP/PV/WPP coordination in view of wind speed, solar irradiance and load correlations

    International Nuclear Information System (INIS)

    Azizipanah-Abarghooee, Rasoul; Niknam, Taher; Malekpour, Mostafa; Bavafa, Farhad; Kaji, Mahdi

    2015-01-01

    Highlights: • Formulate probabilistic OPF with VPE, multi-fuel options, POZs, FOR of CHP units. • Propose a new powerful optimization method based on enhanced black hole algorithm. • Coordinate of TUs, WPPs, PVs and CHP units together in the proposed problem. • Evaluate the impacts of inputs’ uncertainties and their correlations on the POPF. • Use the 2m + 1 point estimated method. - Abstract: This paper addresses a novel probabilistic optimisation framework for handling power system uncertainties in the optimal power flow (OPF) problem that considers all the essential factors of great impact in the OPF problem. The object is to study and model the correlation and fluctuation of load demands, photovoltaic (PV) and wind power plants (WPPs) which have an important influence on transmission lines and bus voltages. Moreover, as an important tool of saving waste heat energy in the thermoelectric power plant, the power networks share of combined heat and power (CHP) has increased dramatically in the past decade. So, the probabilistic OPF (POPF) problem considering valve point effects, multi-fuel options and prohibited zones of thermal units (TUs) is firstly formulated. The PV, WPP and CHP units are also modeled. Then, a new method utilizing enhanced binary black hole (EBBH) algorithm and 2m + 1 point estimated method is proposed to solve this problem and to handle the random nature of solar irradiance, wind speed and load of consumers. The correlation between input random variables is considered using a correlation matrix. Finally, numerical results are presented and considered regarding the IEEE 118-busses, including PV, WPP, CHP and TU at several busses. The simulation and comparison results obtained demonstrate the broad advantages and feasibility of the suggested framework in the presence of dependent non-Gaussian distribution of random variables

  3. Wind speed variability over the Canary Islands, 1948-2014: focusing on trend differences at the land-ocean interface and below-above the trade-wind inversion layer

    Science.gov (United States)

    Azorin-Molina, Cesar; Menendez, Melisa; McVicar, Tim R.; Acevedo, Adrian; Vicente-Serrano, Sergio M.; Cuevas, Emilio; Minola, Lorenzo; Chen, Deliang

    2017-08-01

    This study simultaneously examines wind speed trends at the land-ocean interface, and below-above the trade-wind inversion layer in the Canary Islands and the surrounding Eastern North Atlantic Ocean: a key region for quantifying the variability of trade-winds and its response to large-scale atmospheric circulation changes. Two homogenized data sources are used: (1) observed wind speed from nine land-based stations (1981-2014), including one mountain weather station (Izaña) located above the trade-wind inversion layer; and (2) simulated wind speed from two atmospheric hindcasts over ocean (i.e., SeaWind I at 30 km for 1948-2014; and SeaWind II at 15 km for 1989-2014). The results revealed a widespread significant negative trend of trade-winds over ocean for 1948-2014, whereas no significant trends were detected for 1989-2014. For this recent period wind speed over land and ocean displayed the same multi-decadal variability and a distinct seasonal trend pattern with a strengthening (late spring and summer; significant in May and August) and weakening (winter-spring-autumn; significant in April and September) of trade-winds. Above the inversion layer at Izaña, we found a predominance of significant positive trends, indicating a decoupled variability and opposite wind speed trends when compared to those reported in boundary layer. The analysis of the Trade Wind Index (TWI), the North Atlantic Oscillation Index (NAOI) and the Eastern Atlantic Index (EAI) demonstrated significant correlations with the wind speed variability, revealing that the correlation patterns of the three indices showed a spatio-temporal complementarity in shaping wind speed trends across the Eastern North Atlantic.

  4. IEA-Task 31 WAKEBENCH: Towards a protocol for wind farm flow model evaluation. Part 2: Wind farm wake models

    DEFF Research Database (Denmark)

    Moriarty, Patrick; Rodrigo, Javier Sanz; Gancarski, Pawel

    2014-01-01

    .windbench.net). This paper provides an overview of the building-block validation approach applied to wind farm wake models, including best practices for the benchmarking and data processing procedures for validation datasets from wind farm SCADA and meteorological databases. A hierarchy of test cases has been proposed...

  5. Tracer responses and control of vessels with variable flow and volume

    International Nuclear Information System (INIS)

    Niemi, A.J.

    1990-01-01

    Continuous flow vessels which are subject to variation of flow and volume are characterized by time-variable parameters. It is shown that their residence time distributions and weighting functions obtained by tracer testing are made invariant with regard to the integrated flow variables which are introduced. Under variable flow but constant volume, one such integrated variable is sufficient. Under variable volume, two different variables are suggested for the residence time distribution and weighting function, while the appropriate variable of the perfect mixer differs distinctly from that of vessels with a distinct velocity profile. It is shown through a number of example cases, that an agreement with their mathematical models is reached. The approach is extended to include also arbitrary, non-analytic response functions obtained by tracer measurements. Applications of the derived models and their incorporation in automatic control algorithms is discussed. (orig.) [de

  6. Wake effect on a uniform flow behind wind-turbine model

    DEFF Research Database (Denmark)

    Okulov, Valery; Naumov, I. V.; Mikkelsen, Robert Flemming

    2015-01-01

    LDA experiments were carried out to study the development of mean velocity profiles of the very far wake behind a wind turbine model in a water flume. The model of the rotor is placed in a middle of the flume. The initial flume flow is subjected to a very low turbulence level, limiting the influe......LDA experiments were carried out to study the development of mean velocity profiles of the very far wake behind a wind turbine model in a water flume. The model of the rotor is placed in a middle of the flume. The initial flume flow is subjected to a very low turbulence level, limiting...... the influence of external disturbances on the development of the inherent wake instability. The rotor is three-bladed and designed using Glauert’s optimum theory at a tip speed ratio λ =5 with a constant of the lift coefficient along the span, CL= 0.8. The wake development has been studied in the range of tip...

  7. Small wind turbine for variable speed with flexible blades and automatically mechanical pitching

    DEFF Research Database (Denmark)

    Rasmussen, Tonny Wederberg; Johansen, Arne

    2017-01-01

    Wind energy have for many years been a growing alternative to fossil energy. The sizes of turbines are increasing to megawatt level. Wind turbines operate in a wide range of wind speeds but are shot down for high wind speeds. Traditional concepts are relatively stiff and have a cause stress...... on the gearbox. The turbine described in this paper overcomes some of these challenges by having flexibly and pitchebly blades. This means that the turbine can operate at turbulent sites and withstand wind burst without high stress level on the gearbox. This paper describes the mechanical principle, electrical...

  8. Investigating the origin of cyclical wind variability in hot, massive stars - I. On the dipolar magnetic field hypothesis

    NARCIS (Netherlands)

    David-Uraz, A.; Wade, G.A.; Petit, V.; ud-Doula, A.; Sundqvist, J.O.; Grunhut, J.; Schultz, M.; Neiner, C.; Alecian, E.; Henrichs, H.F.; Bouret, J.-C.

    2014-01-01

    OB stars exhibit various types of spectral variability associated with wind structures, including the apparently ubiquitous discrete absorption components (DACs). These are proposed to be caused by either magnetic fields or non-radial pulsations. In this paper, we evaluate the possible relation

  9. Individual Pitch Control for Mitigation of Power Fluctuation of Variable Speed Wind Turbines

    DEFF Research Database (Denmark)

    Zhang, Yunqian; Hu, Weihao; Chen, Zhe

    2012-01-01

    the rated wind speed conditions. Three pitch angles are adjusted separately according to the generator output power and the azimuth angle of the wind turbine. The IPC strategy scheme is proposed and the individual pitch controller is designed. The simulations are performed on the NREL (National Renewable......Grid connected wind turbines are the sources of power fluctuations during continuous operation due to wind speed variation, wind shear and tower shadow effects. This paper presents an individual pitch control (IPC) strategy to mitigate the wind turbine power fluctuation at both above and below...... Energy Laboratory) 1.5MW upwind reference wind turbine model. The simulation results are presented and discussed to show the validity of the proposed control method....

  10. Estimation of the high-spatial-resolution variability in extreme wind speeds for forestry applications

    Science.gov (United States)

    Venäläinen, Ari; Laapas, Mikko; Pirinen, Pentti; Horttanainen, Matti; Hyvönen, Reijo; Lehtonen, Ilari; Junila, Päivi; Hou, Meiting; Peltola, Heli M.

    2017-07-01

    The bioeconomy has an increasing role to play in climate change mitigation and the sustainable development of national economies. In Finland, a forested country, over 50 % of the current bioeconomy relies on the sustainable management and utilization of forest resources. Wind storms are a major risk that forests are exposed to and high-spatial-resolution analysis of the most vulnerable locations can produce risk assessment of forest management planning. In this paper, we examine the feasibility of the wind multiplier approach for downscaling of maximum wind speed, using 20 m spatial resolution CORINE land-use dataset and high-resolution digital elevation data. A coarse spatial resolution estimate of the 10-year return level of maximum wind speed was obtained from the ERA-Interim reanalyzed data. Using a geospatial re-mapping technique the data were downscaled to 26 meteorological station locations to represent very diverse environments. Applying a comparison, we find that the downscaled 10-year return levels represent 66 % of the observed variation among the stations examined. In addition, the spatial variation in wind-multiplier-downscaled 10-year return level wind was compared with the WAsP model-simulated wind. The heterogeneous test area was situated in northern Finland, and it was found that the major features of the spatial variation were similar, but in some locations, there were relatively large differences. The results indicate that the wind multiplier method offers a pragmatic and computationally feasible tool for identifying at a high spatial resolution those locations with the highest forest wind damage risks. It can also be used to provide the necessary wind climate information for wind damage risk model calculations, thus making it possible to estimate the probability of predicted threshold wind speeds for wind damage and consequently the probability (and amount) of wind damage for certain forest stand configurations.

  11. Power Flow Management in a High Penetration Wind-Diesel Hybrid Power System with Short-Term Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    Drouilhet, S. M.

    1999-07-29

    This paper is intended as an introduction to some of the control challenges faced by developers of high penetration wind-diesel systems, with a focus on the management of power flows in order to achieve precise regulation of frequency and voltage in the face of rapidly varying wind power input and load conditions. The control algorithms presented herein are being implemented in the National Renewable Energy Laboratory (NREL) high penetration wind-diesel system controller that will be installed in the village of Wales, Alaska, in early 2000.

  12. Evaluation of different inertial control methods for variable-speed wind turbines simulated by fatigue, aerodynamic, structures and turbulence (FAST)

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiao; Gao, Wenzhong; Scholbrock, Andrew; Muljadi, Eduard; Gevorgian, Vahan; Wang, Jianhui; Yan, Weihang; Zhang, Huaguang

    2017-10-18

    To mitigate the degraded power system inertia and undesirable primary frequency response caused by large-scale wind power integration, the frequency support capabilities of variable-speed wind turbines is studied in this work. This is made possible by controlled inertial response, which is demonstrated on a research turbine - controls advanced research turbine, 3-bladed (CART3). Two distinct inertial control (IC) methods are analysed in terms of their impacts on the grids and the response of the turbine itself. The released kinetic energy in the IC methods are determined by the frequency measurement or shaped active power reference in the turbine speed-power plane. The wind turbine model is based on the high-fidelity turbine simulator fatigue, aerodynamic, structures and turbulence, which constitutes the aggregated wind power plant model with the simplified power converter model. The IC methods are implemented over the baseline CART3 controller, evaluated in the modified 9-bus and 14-bus testing power grids considering different wind speeds and different wind power penetration levels. The simulation results provide various insights on designing such kinds of ICs. The authors calculate the short-term dynamic equivalent loads and give a discussion about the turbine structural loadings related to the inertial response.

  13. Natural snowfall reveals large-scale flow structures in the wake of a 2.5-MW wind turbine.

    Science.gov (United States)

    Hong, Jiarong; Toloui, Mostafa; Chamorro, Leonardo P; Guala, Michele; Howard, Kevin; Riley, Sean; Tucker, James; Sotiropoulos, Fotis

    2014-06-24

    To improve power production and structural reliability of wind turbines, there is a pressing need to understand how turbines interact with the atmospheric boundary layer. However, experimental techniques capable of quantifying or even qualitatively visualizing the large-scale turbulent flow structures around full-scale turbines do not exist today. Here we use snowflakes from a winter snowstorm as flow tracers to obtain velocity fields downwind of a 2.5-MW wind turbine in a sampling area of ~36 × 36 m(2). The spatial and temporal resolutions of the measurements are sufficiently high to quantify the evolution of blade-generated coherent motions, such as the tip and trailing sheet vortices, identify their instability mechanisms and correlate them with turbine operation, control and performance. Our experiment provides an unprecedented in situ characterization of flow structures around utility-scale turbines, and yields significant insights into the Reynolds number similarity issues presented in wind energy applications.

  14. Analysis of unsteady flow over Offshore Wind Turbine in combination with different types of foundations

    Science.gov (United States)

    Alesbe, Israa; Abdel-Maksoud, Moustafa; Aljabair, Sattar

    2017-06-01

    Environmental effects have an important influence on Offshore Wind Turbine (OWT) power generation efficiency and the structural stability of such turbines. In this study, we use an in-house Boundary Element (BEM)— panMARE code—to simulate the unsteady flow behavior of a full OWT with various combinations of aerodynamic and hydrodynamic loads in the time domain. This code is implemented to simulate potential flows for different applications and is based on a three-dimensional first-order panel method. Three different OWT configurations consisting of a generic 5 MW NREL rotor with three different types of foundations (Monopile, Tripod, and Jacket) are investigated. These three configurations are analyzed using the RANSE solver which is carried out using ANSYS CFX for validating the corresponding results. The simulations are performed under the same environmental atmospheric wind shear and rotor angular velocity, and the wave properties are wave height of 4 m and wave period of 7.16 s. In the present work, wave environmental effects were investigated firstly for the two solvers, and good agreement is achieved. Moreover, pressure distribution in each OWT case is presented, including detailed information about local flow fields. The time history of the forces at inflow direction and its moments around the mudline at each OWT part are presented in a dimensionless form with respect to the mean value of the last three loads and the moment amplitudes obtained from the BEM code, where the contribution of rotor force is lower in the tripod case and higher in the jacket case and the calculated hydrodynamic load that effect on jacket foundation type is lower than other two cases.

  15. Influences of wind flow on stopover decisions: the case of the reed warbler Acrocephalus scirpaceus in the Western Mediterranean

    Science.gov (United States)

    Barriocanal, C.; Montserrat, D.; Robson, D.

    2002-06-01

    Wind directions measured at two different heights (850 hPa and 700 hPa) and at different hours of the night were analysed during the spring migration passage at a bird stopover site located in the western Mediterranean, in order to evaluate the importance of wind components for a stopover decision. From a huge ringing campaign of bird migration in north-east Spain, data from the reed warbler Acrocephalus scirpaceus have been used for the analysis. From a total of 2,478 reed warblers captured between 1993 and 1997 data recording significant days, with a high number of captures, and decrease days, with few captures, have been selected to develop an analysis of wind direction in relation to stopover and flight resumption. On days with a high capture the winds had mainly a fourth-quadrant flow (from the north, north-west and west), these being mainly head winds. Winds with westerly component (from the north-west, west and south-west), which enhance the flight, account for the majority of the days when there was a low capture of reed warblers. Wind direction therefore appears to be a determining factor for stopover decisions and resumption of flight for the reed warblers at an intermediate stage of their spring migration where topographical characteristics govern the winds.

  16. Variability of Regional Wind Energy Generation on Intraseasonal to Interannual timescales

    Science.gov (United States)

    Kirk-Davidoff, D. B.; Jascourt, S. D.; Cassidy, C.

    2012-12-01

    We produce forecasts of wind energy electrical generation in a large number of electrical interconnections in the United States, Canada and Europe. Using our data base of wind farm locations, turbine numbers and types, we are able to use reanalyzed winds from NOAA's Climate Forecast System Reanalysis to calculate the electrical power that would have been generated by the existing wind farm network for the last thirty years. We will show these time series for several electrical interconnections in North America and Europe, and discuss their correlations with various indices of the global circulation, including the North Atlantic Oscillation and the Madden-Julian Oscillation on short time scales, and the the El Niño-Southern Oscillation on longer time scales. These studies allow analysis of the expected variations of wind powered electrical generation on monthly to interannual time scales, and set the stage for coupled-climate model prediction of wind energy generation, using the NOAA Climate Forecast System.

  17. Study on transient stability of wind turbine with induction generator based on variable pitch control strategy

    DEFF Research Database (Denmark)

    Zhao, B.; Li, H.; Han, L.

    2011-01-01

    In order to enhance and improve the transient stability of a grid-connected wind turbine generator system under the power grid fault, based on typical pitch control strategy of wind turbine, considering the wind turbine system oscillation caused by the drive-train shaft flexibility, Based on Matlab....../Simulink, electromagnetic transient state models of the wind tubine generator system and the pitch control models were presented, and the transient behaviors of the wind turbine genarator system using the typical and the proposed pitch control strategies were analyzed and compared when the power grid was subjected...... to a three-phase short-circuit fault. Also the results were compared with using reactive compensation device. The simulation results show that the proposed pitch control strategy can effectively improve the transient stability of wind turbine generator system....

  18. Study on transient stability of wind turbine with induction generator based on variable pitch control strategy

    DEFF Research Database (Denmark)

    Zhao, B.; Li, H.; Han, L.

    2011-01-01

    In order to enhance and improve the transient stability of a grid-connected wind turbine generator system under the power grid fault, based on typical pitch control strategy of wind turbine, considering the wind turbine system oscillation caused by the drive-train shaft flexibility, Based on Matlab...... to a three-phase short-circuit fault. Also the results were compared with using reactive compensation device. The simulation results show that the proposed pitch control strategy can effectively improve the transient stability of wind turbine generator system......./Simulink, electromagnetic transient state models of the wind tubine generator system and the pitch control models were presented, and the transient behaviors of the wind turbine genarator system using the typical and the proposed pitch control strategies were analyzed and compared when the power grid was subjected...

  19. Torque control of synchronous and induction generators for variable speed operation of wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, Ola; Ulen, E. [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Electric Power Engineering

    1996-12-01

    The aim of this paper is to investigate variable speed electrical systems. Synchronous generators with diode rectifiers and line-commutated thyristor converters are compared with induction generators with force commutated transistor converters and scalar control. The system characteristics are examined regarding possible speed of response (bandwidth) of the torque control, including the sensitivity to disturbances for the drive train and also the possibility to get damping of the drive train resonance. Analyses, simulations and laboratory tests with a 40 kW machine set-up have been performed. The investigation shows that the system with synchronous generator is well suited for wind power applications. A rapid standard DC-current regulator is included in the torque control and can be used for damping of the resonance. The torque control has a bandwidth up to about 3 Hz and the DC-voltage controller up to about 1 Hz. The system with induction generator with scalar control (no transformations) is more difficult to control. A linear approach is only possible up to about 1.5 Hz. In this region it turns out that the behaviour can be visualized as an added inertia on the generator side that can be rather big. 4 refs, 9 figs

  20. Condition Monitoring for Roller Bearings of Wind Turbines Based on Health Evaluation under Variable Operating States

    Directory of Open Access Journals (Sweden)

    Lei Fu

    2017-10-01

    Full Text Available Condition monitoring (CM is used to assess the health status of wind turbines (WT by detecting turbine failure and predicting maintenance needs. However, fluctuating operating conditions cause variations in monitored features, therefore increasing the difficulty of CM, for example, the frequency-domain analysis may lead to an inaccurate or even incorrect prediction when evaluating the health of the WT components. In light of this challenge, this paper proposed a method for the health evaluation of WT components based on vibration signals. The proposed approach aimed to reduce the evaluation error caused by the impact of the variable operating condition. First, the vibration signal was decomposed into a set of sub-signals using variational mode decomposition (VMD. Next, the sub-signal energy and the probability distribution were obtained and normalized. Finally, the concept of entropy was introduced to evaluate the health condition of a monitored object to provide an effective guide for maintenance. In particular, the health evaluation for CM was based on a performance review over a range of operating conditions, rather than at a certain single operating condition. Experimental investigations were performed which verified the efficiency of the evaluation method, as well as a comparison with the previous method.

  1. GeneratorSE: A Sizing Tool for Variable-Speed Wind Turbine Generators

    Energy Technology Data Exchange (ETDEWEB)

    Sethuraman, Latha [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Dykes, Katherine L [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-22

    This report documents a set of analytical models employed by the optimization algorithms within the GeneratorSE framework. The initial values and boundary conditions employed for the generation of the various designs and initial estimates for basic design dimensions, masses, and efficiency for the four different models of generators are presented and compared with empirical data collected from previous studies and some existing commercial turbines. These models include designs applicable for variable-speed, high-torque application featuring direct-drive synchronous generators and low-torque application featuring induction generators. In all of the four models presented, the main focus of optimization is electromagnetic design with the exception of permanent-magnet and wire-wound synchronous generators, wherein the structural design is also optimized. Thermal design is accommodated in GeneratorSE as a secondary attribute by limiting the winding current densities to acceptable limits. A preliminary validation of electromagnetic design was carried out by comparing the optimized magnetic loading against those predicted by numerical simulation in FEMM4.2, a finite-element software for analyzing electromagnetic and thermal physics problems for electrical machines. For direct-drive synchronous generators, the analytical models for the structural design are validated by static structural analysis in ANSYS.

  2. Role of wind forcing and eddy activity in the intraseasonal variability of the barrier layer in the South China Sea

    Science.gov (United States)

    Liang, Zhanlin; Xie, Qiang; Zeng, Lili; Wang, Dongxiao

    2018-03-01

    In addition to widely discussed seasonal variability, the barrier layer (BL) of the South China Sea (SCS) also exhibits significant intraseasonal variability (ISV) and plays an important role in the upper heat and salt balances. The characteristics and mechanisms of spatiotemporal variations in the BL are investigated using an eddy-resolving ocean model OFES (OGCM For the Earth Simulator) ouput and related atmospheric and oceanic processes. The active intraseasonal BL variability in the SCS occurs mainly during the late summer/autumn and winter and exhibits remarkable differences between these two periods. The BL ISV in late summer/autumn occurs in the southern basin, while in winter, it is limited to the northwestern basin. To further discuss the evolution and driving thermodynamic mechanisms, we quantify the processes that control the variability of intraseasonal BL. Different mechanisms for the intraseasonal BL variability for these two active periods are investigated based on the case study and composite analysis. During late summer/autumn, the active BL in the southern basin is generated by advected and local freshwater, and then decays rapidly with the enhanced wind. In winter, anticyclonic eddy activity is associated with the evolution of the BL by affecting the thermocline and halocline variations, while wind stress and wind stress curl have no obvious influence on BL.

  3. High frequency resonance in DFIG-based wind farm with variable power capacity

    DEFF Research Database (Denmark)

    Song, Yipeng; Nian, Heng; Blaabjerg, Frede

    2017-01-01

    As wind power penetration has been gaining in the power grid for decades, a large number of the doubly fed induction generator(DFIG) based wind farms are being established around the globe. The power capacities of these wind farms may vary around hundreds of MW, and most of the wind farms are con...... weaker grid transmission capability. Simulation results based on Matlab/Simulink are given to validate the analysis of HFR.......As wind power penetration has been gaining in the power grid for decades, a large number of the doubly fed induction generator(DFIG) based wind farms are being established around the globe. The power capacities of these wind farms may vary around hundreds of MW, and most of the wind farms...... are connected to long transmission cables whose impedances can not be ignored and require careful attention. Several works have investigated the impedance interaction between the DFIG based wind farm and long transmission cables which may unfortunately cause high frequency resonance (HFR). The main contribution...

  4. Modeling dynamic stall on wind turbine blades under rotationally augmented flow fields

    Energy Technology Data Exchange (ETDEWEB)

    Guntur, S. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Schreck, S. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sorensen, N. N. [Technical Univ. of Denmark, Lyngby (Denmark); Bergami, L. [Technical Univ. of Denmark, Lyngby (Denmark)

    2015-04-22

    It is well known that airfoils under unsteady flow conditions with a periodically varying angle of attack exhibit aerodynamic characteristics different from those under steady flow conditions, a phenomenon commonly known as dynamic stall. It is also well known that the steady aerodynamic characteristics of airfoils in the inboard region of a rotating blade differ from those under steady two-dimensional (2D) flow conditions, a phenomenon commonly known as rotational augmentation. This paper presents an investigation of these two phenomena together in the inboard parts of wind turbine blades. This analysis is carried out using data from three sources: (1) the National Renewable Energy Laboratory’s Unsteady Aerodynamics Experiment Phase VI experimental data, including constant as well as continuously pitching blade conditions during axial operation, (2) data from unsteady Delayed Detached Eddy Simulations (DDES) carried out using the Technical University of Denmark’s in-house flow solver Ellipsys3D, and (3) data from a simplified model based on the blade element momentum method with a dynamic stall subroutine that uses rotationally augmented steady-state polars obtained from steady Phase VI experimental sequences, instead of the traditional 2D nonrotating data. The aim of this work is twofold. First, the blade loads estimated by the DDES simulations are compared to three select cases of the N sequence experimental data, which serves as a validation of the DDES method. Results show reasonable agreement between the two data in two out of three cases studied. Second, the dynamic time series of the lift and the moment polars obtained from the experiments are compared to those from the dynamic stall subroutine that uses the rotationally augmented steady polars. This allowed the differences between the stall phenomenon on the inboard parts of harmonically pitching blades on a rotating wind turbine and the classic dynamic stall representation in 2D flow to be

  5. Models for turbulent flows with variable density and combustion

    International Nuclear Information System (INIS)

    Jones, W.P.

    1980-01-01

    Models for transport processes and combustion in turbulent flows are outlined with emphasis on the situation where the fuel and air are injected separately. Attention is restricted to relatively simple flames. The flows investigated are high Reynolds number, single-phase, turbulent high-temperature flames in which radiative heat transfer can be considered negligible. Attention is given to the lower order closure models, algebraic stress and flux models, the k-epsilon turbulence model, the diffusion flame approximation, and finite rate reaction mechanisms

  6. Climatic variability of the mean flow and stationary planetary waves in the NCEP/NCAR reanalysis data

    Directory of Open Access Journals (Sweden)

    A. Yu. Kanukhina

    2008-05-01

    Full Text Available NCEP/NCAR (National Center for Environmental Prediction – National Center for Atmospheric Research data have been used to estimate the long-term variability of the mean flow, temperature, and Stationary Planetary Waves (SPW in the troposphere and lower stratosphere. The results obtained show noticeable climatic variabilities in the intensity and position of the tropospheric jets that are caused by temperature changes in the lower atmosphere. As a result, we can expect that this variability of the mean flow will cause the changes in the SPW propagation conditions. The simulation of the SPW with zonal wave number m=1 (SPW1, performed with a linearized model using the mean flow distributions typical for the 1960s and for the beginning of 21st century, supports this assumption and shows that during the last 40 years the amplitude of the SPW1 in the stratosphere and mesosphere increased substantially. The analysis of the SPW amplitudes extracted from the geopotential height and zonal wind NCEP/NCAR data supports the results of simulation and shows that during the last years there exists an increase in the SPW1 activity in the lower stratosphere. These changes in the amplitudes are accompanied by increased interannual variability of the SPW1, as well. Analysis of the SPW2 activity shows that changes in its amplitude have a different sign in the northern winter hemisphere and at low latitudes in the southern summer hemisphere. The value of the SPW2 variability differs latitudinally and can be explained by nonlinear interference of the primary wave propagation from below and from secondary SPW2.

  7. Data report: the wake of a horizontal-axis wind turbine model, measurements in uniform approach flow and in a simulated atmospheric boundary layer

    NARCIS (Netherlands)

    Talmon, A.M.

    1985-01-01

    Wake effects will cause power loss when wínd turbínes are grouped in so called wind turbine parks. Wind tunnel measurements of the wake of a wind turbíne model are conducted in order to refine calculatíons of wake effects. Wake effects caused by tower and nacelle are studied in uniform flow. Wake

  8. Detailed analysis of the blade root flow of a horizontal axis wind turbine

    Directory of Open Access Journals (Sweden)

    I. Herráez

    2016-07-01

    Full Text Available The root flow of wind turbine blades is subjected to complex physical mechanisms that influence significantly the rotor aerodynamic performance. Spanwise flows, the Himmelskamp effect, and the formation of the root vortex are examples of interrelated aerodynamic phenomena that take place in the blade root region. In this study we address those phenomena by means of particle image velocimetry (PIV measurements and Reynolds-averaged Navier–Stokes (RANS simulations. The numerical results obtained in this study are in very good agreement with the experiments and unveil the details of the intricate root flow. The Himmelskamp effect is shown to delay the stall onset and to enhance the lift force coefficient Cl even at moderate angles of attack. This improvement in the aerodynamic performance occurs in spite of the negative influence of the mentioned effect on the suction peak of the involved blade sections. The results also show that the vortex emanating from the spanwise position of maximum chord length rotates in the opposite direction to the root vortex, which affects the wake evolution. Furthermore, the aerodynamic losses in the root region are demonstrated to take place much more gradually than at the tip.

  9. Variability of flow rate when collecting stimulated human parotid saliva

    NARCIS (Netherlands)

    Burlage, FR; Pijpe, J; Coppes, RP; Hemels, MEW; Meertens, H; Canrinus, A; Vissink, A

    2005-01-01

    The aim of this study was to estimate the accuracy and reproducibility of citric-acid-stimulated parotid saliva sampling. In healthy volunteers a strong correlation (r(2) = 0.79) between flow rates from the left and right parotid gland was observed. In patients with Sjogren's syndrome this

  10. The coherent variability of African river flows : composite climate ...

    African Journals Online (AJOL)

    SST patterns reveal an inter-hemispheric dipole in the Atlantic (eg. warm - north) and below normal SST in the west Indian Ocean during years with high flow. The equatorial east Atlantic undergoes warming through the \\'composite year\\' in a manner consistent with its opposing response to the Indo-Pacific La Nina. Tropical ...

  11. Spatial variability in subsurface flow and transport: a review

    International Nuclear Information System (INIS)

    Gutjahr, A.L.; Bras, R.L.

    1993-01-01

    Stochastic models of spatial variations as they apply to both saturated and unsaturated flow and transport problems are examined in this paper. Both modeling and data interpretive geostatistical approaches are reviewed and an integrated discussion combining the two approaches given. The probabilistic content is of special interest for reliability and risk calculations for waste management and groundwater pollution studies. (author)

  12. Scalar statistics in variable property turbulent channel flows

    NARCIS (Netherlands)

    Patel, A.; Boersma, B.J.; Pecnik, R.

    2017-01-01

    Direct numerical simulation of fully developed, internally heated channel flows with isothermal walls is performed using the low-Mach-number approximation of Navier-Stokes equation to investigate the influence of temperature-dependent properties on turbulent scalar statistics. Different constitutive

  13. A Miniature Radial-Flow Wind Turbine Using Piezoelectric Transducers and Magnetic Excitation

    Science.gov (United States)

    Fu, H.; Yeatman, E. M.

    2015-12-01

    This paper presents a miniature radial-flow piezoelectric wind turbine for harvesting airflow energy. The turbine's transduction is achieved by magnetic “plucking”of a piezoelectric beam by the passing rotor. The magnetic coupling is formed by two magnets on the beam's free end and on the rotor plate. Frequency up-conversion is realized by the magnetic excitation, allowing the rotor to rotate at any low frequency while the beam can vibrate at its resonant frequency after each plucking. The operating range of the device is, therefore, expanded by this mechanism. Two arrangements of magnetic orientation have been investigated, showing that the repulsive arrangement has higher output power. The influence of the vertical gap between magnets was also examined, providing guidance for the final design. A prototype was built and tested in a wind tunnel. A peak power output of 159 μW was obtained with a 270 kΩ load at 2.7 m/s airflow speed. The device started working at 3.5 m/s and kept operating when the airflow speed fell to 1.84 m/s.

  14. Sliding Mode Control of a Variable- Speed Wind Energy Conversion System Using a Squirrel Cage Induction Generator

    Directory of Open Access Journals (Sweden)

    Mohamed Zribi

    2017-05-01

    Full Text Available This paper deals with the control of a variable-speed wind energy conversion (WEC system using a squirrel cage induction generator (SCIG connected to the grid through a back-to-back three phase (AC-DC-AC power converter. The sliding mode control technique is used to control the WEC system. The objective of the controllers is to force the states of the system to track their desired states. One controller is used to regulate the generator speed and the flux so that maximum power is extracted from the wind. Another controller is used to control the grid side converter, which controls the DC bus voltage and the active and reactive powers injected into the grid. The performance of the controlled wind energy conversion system is verified through MATLAB simulations, which show that the controlled system performs well.

  15. Options to Improve the Quality of Wind Generation Output Forecasting with the Use of Available Information as Explanatory Variables

    Directory of Open Access Journals (Sweden)

    Rafał Magulski

    2015-06-01

    Full Text Available Development of wind generation, besides its positive aspects related to the use of renewable energy, is a challenge from the point of view of power systems’ operational security and economy. The uncertain and variable nature of wind generation sources entails the need for the for the TSO to provide adequate reserves of power, necessary to maintain the grid’s stable operation, and the actors involved in the trading of energy from these sources incur additional of balancing unplanned output deviations. The paper presents the results of analyses concerning the options to forecast a selected wind farm’s output exercised by means of different methods of prediction, using a different range of measurement and forecasting data available on the farm and its surroundings. The analyses focused on the evaluation of forecast errors, and selection of input data for forecasting models and assessment of their impact on prediction quality improvement.

  16. AIR FLOW AND ENVIRONMENTAL WIND VISUALIZATION USING A CW DIODE PUMPED FREQUENCY DOUBLED Nd:YAG Laser

    Directory of Open Access Journals (Sweden)

    Mircea UDREA

    2009-09-01

    Full Text Available Preliminary results obtained in developing a visualisation technique for non-invasive analysis of air flow inside INCAS subsonic wind tunnel and its appendages are presented. The visualisation technique is based on using a green light sheet generated by a continuous wave (cw longitudinally diode pumped and frequency doubled Nd:YAG laser. The output laser beam is expanded on one direction and collimated on rectangular direction. The system is tailored to the requirements of qualitative analysis and vortex tracking requirements inside the INCAS 2.5m x 2.0m subsonic wind tunnel test section, for measurements performed on aircraft models. Also the developed laser techniques is used for non-invasive air flow field analysis into environmental facilities settling room (air flow calming area. Quantitative analysis is enabled using special image processing tools upon movies and pictures obtained during the experiments. The basic experimental layout in the wind tunnel takes advantage of information obtained from the investigation of various aircraft models using the developed visualisation technique. These results are further developed using a Particle Imaging Velocimetry (PIV experimental technique.The focus is on visualisation techniques to be used for wind flow characterization at different altitudes in indus-trial and civil buildings areas using a light sheet generated by a Nd:YAG cw pumped and doubled laser at 532 nm wave-length. The results are important for prevention of biological/chemical disasters such as spreading of extremely toxic pol-lutants due to wind. Numerical simulations of wind flow and experimental visualisation results are compared. A good agreement between these results is observed.

  17. Design and evaluation of an aeroacoustic wind tunnel for measurement of axial flow fans.

    Science.gov (United States)

    Bilka, M; Anthoine, J; Schram, C

    2011-12-01

    An anechoic wind tunnel dedicated to fan self-noise studies has been designed and constructed at the von Karman Institute The multi-chamber, mass flow driven design allows for all fan performance characteristics, aerodynamic quantities (e.g., wake turbulence measurements), and acoustic properties to be assessed in the same facility with the same conditions. The acoustic chamber performance is assessed using the optimum reference method and found to be within the ISO 3745 standards down to 150 Hz for pure tone and broadband source mechanisms. The additional influence of installation effects of an aerodynamic inlet was found to create a scattered sound field only near the source location, while still providing good anechoic results at more distant sound pressure measurement positions. It was found to have inflow properties, span-wise uniformity, and low turbulence intensity, consistent with those desired for fan self-noise studies. © 2011 Acoustical Society of America

  18. Cost-effective design and operation of variable speed wind turbines

    NARCIS (Netherlands)

    Molenaar, D.P.

    2003-01-01

    In the past decades, the wind industry has grown from a niche business serving the environmental aware into one that has established itself as the most competitive form of renewable energy. Wind has the potential to play a more important role in the future world electricity supply provided that the

  19. Impact of Offshore Wind Power Variability on the Frequency Stability of European Power System

    DEFF Research Database (Denmark)

    Cutululis, Nicolaos Antonio; Litong-Palima, Marisciel; Sørensen, Poul Ejnar

    2014-01-01

    Offshore wind power development scenarios are very ambitious. In Europe, it is expected to surpass 100 GW by 2030. As opposed to onshore, offshore wind will be concentrated in relatively small geographical areas, meaning that the geographical smoothening would be diminished. Being able to simulate...

  20. Quality Control and First Insights on the Variability of Surface Wind Observations for North Eastern North America

    Science.gov (United States)

    Lucio-Eceiza, E.; González-Rouco, F. J.; Navarro Montesinos, J.; Hidalgo; Jiménez, P.; García-Bustamante, E.; Conte, J.; Casabella, N.; Beltrami, H.

    2013-12-01

    Over the last decades, a policy change in energy sources has been fostered in Atlantic Canada. The purpose of this has been to reduce the dependency on energy produced abroad and to propose feasible alternatives with the aim of reducing greenhouse emissions. The region offers a high potential for the development of wind energy facilities and studies within the framework of wind resource assessment are encouraged. Studies of this nature rely on the quality of observational data. Henceforth, it is essential to develop procedures that ensure the reliability of observations before they are subjected to any subsequent analysis. This work summarizes the Quality Control process applied to an observational database of surface wind module and direction in North Eastern North America. The data set consists of 525 stations compiled from three different sources: 344 land sites from Environment Canada (EC; 1940-2009) located in the provinces of Atlantic Canada and Quebec; 40 buoys distributed over the East Coast and the Canadian Great Lakes provided by Fisheries and Oceans Canada (FOC; 1988-2008); and 141 land sites over both Eastern Canada and North Eastern USA provided by the National Center of Atmospheric Research (NCAR; 1975-2010). The process comprises different phases that: 1) unify measurement units and recording times; 2) find accidentally duplicated periods of data within a time series or between different stations; 3) check for physical consistency in the ranges of values; 4) detect time intervals of anomalous low and high variability; and 5) look for long term biases in mean and variance. The temporal extension and resolution of the quality controlled database allows to explore the wind variability at different temporal scales, from daily to multidecadal. This contribution will present a first assessment of the wind field climatology in the region, including a description of long term trends, analogous of wind circulation regimes and their relationship to large scale

  1. Modelling and Analysis of Variable Speed Wind Turbines with Induction Generator during Grid Fault

    DEFF Research Database (Denmark)

    Bolik, Sigrid Mechthild

    are stated. The main motivations are the challenges related to the grid connection of wind turbines. The second chapter elucidates recent thinking in the area of grid connection by discussing several grid codes or grid requirements. In the discussion it is tried to present the view of the transmission line...... production of several countries around the world. These developments raise a number of challenges to be dealt with now and in the future. The penetration of wind energy in the grid raises questions about the compatibility of the wind turbine power production with the grid. In particular, the contribution...... to grid stability, power quality and behaviour during fault situations plays therefore as important a role as the reliability. The introduction of the present work briefly presents the development of wind turbine technology. Several wind turbine types are discussed and the motivations for this project...

  2. Adaptive Voltage Control Strategy for Variable-Speed Wind Turbine Connected to a Weak Network

    DEFF Research Database (Denmark)

    Abulanwar, Elsayed; Hu, Weihao; Chen, Zhe

    2016-01-01

    and smoothness at the point of connection (POC) in order to maximise the wind power penetration into such networks. Intensive simulation case studies under different network topology and wind speed ranges reveal the effectiveness of the AVC scheme to effectively suppress the POC voltage variations particularly......Significant voltage fluctuations and power quality issues pose considerable constraints on the efficient integration of remotely located wind turbines into weak networks. Besides, 3p oscillations arising from the wind shear and tower shadow effects induce further voltage perturbations during...... continuous operation. This study investigates and analyses the repercussions raised by integrating a doubly-fed induction generator wind turbine into an ac network of different parameters and very weak conditions. An adaptive voltage control (AVC) strategy is proposed to retain voltage constancy...

  3. IEA-Task 31 WAKEBENCH: Towards a protocol for wind farm flow model evaluation. Part 1: Flow-over-terrain models

    DEFF Research Database (Denmark)

    Rodrigo, Javier Sanz; Gancarski, Pawel; Arroyo, Roberto Chavez

    2014-01-01

    The IEA Task 31 Wakebench is setting up a framework for the evaluation of wind farm flow models operating at microscale level. The framework consists on a model evaluation protocol integrated on a web-based portal for model benchmarking (www.windbench.net). This paper provides an overview of the ...

  4. Experimental tests of the effect of rotor diameter ratio and blade number to the cross-flow wind turbine performance

    Science.gov (United States)

    Susanto, Sandi; Tjahjana, Dominicus Danardono Dwi Prija; Santoso, Budi

    2018-02-01

    Cross-flow wind turbine is one of the alternative energy harvester for low wind speeds area. Several factors that influence the power coefficient of cross-flow wind turbine are the diameter ratio of blades and the number of blades. The aim of this study is to find out the influence of the number of blades and the diameter ratio on the performance of cross-flow wind turbine and to find out the best configuration between number of blades and diameter ratio of the turbine. The experimental test were conducted under several variation including diameter ratio between outer and inner diameter of the turbine and number of blades. The variation of turbine diameter ratio between inner and outer diameter consisted of 0.58, 0.63, 0.68 and 0.73 while the variations of the number of blades used was 16, 20 and 24. The experimental test were conducted under certain wind speed which are 3m/s until 4 m/s. The result showed that the configurations between 0.68 diameter ratio and 20 blade numbers is the best configurations that has power coefficient of 0.049 and moment coefficient of 0.185.

  5. Investigation of the spatial variability and possible origins of wind-induced air pressure fluctuations responsible for pressure pumping

    Science.gov (United States)

    Mohr, Manuel; Laemmel, Thomas; Maier, Martin; Zeeman, Matthias; Longdoz, Bernard; Schindler, Dirk

    2017-04-01

    The exchange of greenhouse gases between the soil and the atmosphere is highly relevant for the climate of the Earth. Recent research suggests that wind-induced air pressure fluctuations can alter the soil gas transport and therefore soil gas efflux significantly. Using a newly developed method, we measured soil gas transport in situ in a well aerated forest soil. Results from these measurements showed that the commonly used soil gas diffusion coefficient is enhanced up to 30% during periods of strong wind-induced air pressure fluctuations. The air pressure fluctuations above the forest floor are only induced at high above-canopy wind speeds (> 5 m s-1) and lie in the frequency range 0.01-0.1 Hz. Moreover, the amplitudes of air pressure fluctuations in this frequency range show a clear quadratic dependence on mean above-canopy wind speed. However, the origin of these wind-induced pressure fluctuations is still unclear. Airflow measurements and high-precision air pressure measurements were conducted at three different vegetation-covered sites (conifer forest, deciduous forest, grassland) to investigate the spatial variability of dominant air pressure fluctuations, their origin and vegetation-dependent characteristics. At the conifer forest site, a vertical profile of air pressure fluctuations was measured and an array consisting of five pressure sensors were installed at the forest floor. At the grassland site, the air pressure measurements were compared with wind observations made by ground-based LIDAR and spatial temperature observations from a fibre-optic sensing network (ScaleX Campaign 2016). Preliminary results show that at all sites the amplitudes of relevant air pressure fluctuations increase with increasing wind speed. Data from the array measurements reveal that there are no time lags between the air pressure signals of different heights, but a time lag existed between the air pressure signals of the sensors distributed laterally on the forest floor

  6. Observability of wind power

    International Nuclear Information System (INIS)

    Gonot, J.P.; Fraisse, J.L.

    2009-01-01

    The total installed capacity of wind power grows from a few hundred MW at the beginning of 2005 to 3400 MW at the end of 2008. With such a trend, a total capacity of 7000 MW could be reached by 2010. The natural variability of wind power and the difficulty of its predictability require a change in the traditional way of managing supply/demand balance, day-ahead margins and the control of electrical flows. As a consequence, RTE operators should be informed quickly and reliably of the real time output power of wind farms and of its evolvement some hours or days ahead to ensure the reliability of the French electrical power system. French specificities are that wind farms are largely spread over the territory, that 95 % of wind farms have an output power below 10 MW and that they are connected to the distribution network. In this context, new tools were necessary to acquire as soon as possible data concerning wind power. In two years long, RTE set up an observatory of wind production 'IPES system' enable to get an access to the technical characteristics of the whole wind farms, to observe in real time 75 % of the wind generation and to implement a forecast model related to wind generation. (authors)

  7. Greenland Ice Sheet flow response to runoff variability

    NARCIS (Netherlands)

    Stevens, Laura A.; Behn, Mark D.; Das, Sarah B.; Joughin, Ian; Noël, Brice P Y; van den Broeke, Michiel R.; Herring, Thomas

    2016-01-01

    We use observations of ice sheet surface motion from a Global Positioning System network operating from 2006 to 2014 around North Lake in west Greenland to investigate the dynamical response of the Greenland Ice Sheet's ablation area to interannual variability in surface melting. We find no

  8. Variable thickness transient groundwater flow model theory and numerical implementation

    International Nuclear Information System (INIS)

    Kipp, K.L.; Reisenauer, A.E.; Cole, C.R.; Bryan, C.A.

    1976-01-01

    Modeling of radionuclide movement in the groundwater system beneath the Hanford Reservation requires mathematical simulation of the two-dimensional flow in the unconfined aquifer. This was accomplished using the nonlinear, transient Boussinesq equation with appropriate initial and boundary conditions, including measured Columbia River stages and rates of wastewater disposal to the ground. The heterogeneous permeability (hydraulic conductivity) distribution was derived by solution of the Boussinesq equation along instantaneous streamtubes of flow employing a measured water table surface and a limited number of field-measured hydraulic conductivity values. Use of a successive line over-relaxation technique with unequal time steps resulted in a more rapid convergence of the numerical solution than with previous techniques. The model was used to simulate the water table changes for the period 1968 through 1973 using known inputs and boundary conditions. A comparison of calculated and measured water table elevations was made at specific well locations and the quality of the verification simulation was evaluated using a data retrieval and display system. Agreement between the model results and measured data was good over two-thirds of the Hanford Reservation. The capability of the model to simulate flow with time-varying boundary conditions, complex boundary shapes, and a heterogeneous distribution of aquifer properties was demonstrated

  9. Stochastic Dynamic AC Optimal Power Flow Based on a Multivariate Short-Term Wind Power Scenario Forecasting Model

    Directory of Open Access Journals (Sweden)

    Wenlei Bai

    2017-12-01

    Full Text Available The deterministic methods generally used to solve DC optimal power flow (OPF do not fully capture the uncertainty information in wind power, and thus their solutions could be suboptimal. However, the stochastic dynamic AC OPF problem can be used to find an optimal solution by fully capturing the uncertainty information of wind power. That uncertainty information of future wind power can be well represented by the short-term future wind power scenarios that are forecasted using the generalized dynamic factor model (GDFM—a novel multivariate statistical wind power forecasting model. Furthermore, the GDFM can accurately represent the spatial and temporal correlations among wind farms through the multivariate stochastic process. Fully capturing the uncertainty information in the spatially and temporally correlated GDFM scenarios can lead to a better AC OPF solution under a high penetration level of wind power. Since the GDFM is a factor analysis based model, the computational time can also be reduced. In order to further reduce the computational time, a modified artificial bee colony (ABC algorithm is used to solve the AC OPF problem based on the GDFM forecasting scenarios. Using the modified ABC algorithm based on the GDFM forecasting scenarios has resulted in better AC OPF’ solutions on an IEEE 118-bus system at every hour for 24 h.

  10. Effect of Wind Angle Direction on Carbon Monoxide (CO) Concentration Dispersion on Traffic Flow in Padang City

    Science.gov (United States)

    Bachtiar, V. S.; Purnawan, P.; Afrianita, R.; Dahlia, N.

    2018-01-01

    This study aims to analyze the relationship between CO concentration and wind direction. Wind direction in this context is the wind angle to the road on the traffic flow in Padang City. Sampling of CO concentration was conducted for 9 days at 3 monitoring points (each 3-day point) representing the wind angle to the road (a) i.e. at Jend. A. Yani road (0 degrees), Andalas road (30 degrees) and Prof. Dr. Hamka road (60 degrees), using impinger and analyzed by spectrophotometer. The results of the research in the three monitoring sites showed that the concentration of CO ranged between 137.217 and 600.525 μg/Nm3. The highest and lowest concentrations respectively on Prof. Dr. Hamka road and Jend. A. Yani road. The sampling showed that CO concentrations will be decreased if wind direction is changed from perpendicular wind direction (a 90°) to a 60°, 30°, and 0° respectively by 64.62%, 37.77% and 27.09%. It can be concluded that the wind angle direction to the road affects the CO concentrations in the roadside.

  11. The Impact of Reduced SST Gradients and MJO-like Tropical Variability on Surface Winds at Midlatitude Upwelling Sites

    Science.gov (United States)

    Arnold, N. P.; Tziperman, E.

    2012-12-01

    Sediment core data suggest that sea surface temperatures (SST) at present-day sites of wind-driven coastal upwelling were much warmer during the early Pliocene, and only cooled gradually over the last 3-4My. Several hypotheses have been advanced to explain the Pliocene warm anomalies, including a globally deeper thermocline and weaker upwelling-favorable winds, but it remains unclear if the SST anomalies reflect differences in upwelling intensity or in subsurface water properties. In this study we explore two factors which might affect the surface winds responsible for midlatitude upwelling: (1) differences in the large-scale SST distribution and their impact on the atmospheric general circulation, and (2) teleconnections from changes in tropical convective variability. We run the NCAR Community Atmosphere Model with a spectrum of meridional and zonal surface temperature gradients, ranging from a modern climatology to a low-gradient state reminiscent of the early Pliocene. A prescribed forcing is then added to the model to stimulate tropical convective variability based on the observed Madden-Julian Oscillation (MJO), which can impact midlatitude sites by exciting atmospheric Rossby waves. Quantitative metrics of along-shore wind stress at several midlatitude sediment core sites are presented as a function of the prescribed SST gradients and tropical forcing amplitude.

  12. Wind Structure and Wind Loading

    DEFF Research Database (Denmark)

    Brorsen, Michael

    The purpose of this note is to provide a short description of wind, i.e. of the flow in the atmosphere of the Earth and the loading caused by wind on structures. The description comprises: causes to the generation of windhe interaction between wind and the surface of the Earthhe stochastic nature...... of windhe interaction between wind and structures, where it is shown that wind loading depends strongly on this interaction...

  13. Lidar observations of low-level wind reversals over the Gulf of Lion and characterization of their impact on the water vapour variability

    Science.gov (United States)

    Di Girolamo, Paolo; Flamant, Cyrille; Cacciani, Marco; Summa, Donato; Stelitano, Dario; Richard, Evelyne; Ducrocq, Véronique; Fourrie, Nadia; Said, Frédérique

    2017-02-01

    Water vapour measurements from a ground-based Raman lidar and an airborne differential absorption lidar, complemented by high resolution numerical simulations from two mesoscale models (Arome-WMED and MESO-NH), are considered to investigate transition events from Mistral/Tramontane to southerly marine flow taking place over the Gulf of Lion in Southern France in the time frame September-October 2012, during the Hydrological Cycle in the Mediterranean Experiment (HyMeX) Special Observation Period 1 (SOP1). Low-level wind reversals associated with these transitions are found to have a strong impact on water vapour transport, leading to a large variability of the water vapour vertical and horizontal distribution. The high spatial and temporal resolution of the lidar data allow to monitor the time evolution of the three-dimensional water vapour field during these transitions from predominantly northerly Mistral/Tramontane flow to a predominantly southerly flow, allowing to identify the quite sharp separation between these flows, which is also quite well captured by the mesoscale models.

  14. Optimal Allocation of Wind Turbines in Active Distribution Networks by Using Multi-Period Optimal Power Flow and Genetic Algorithms

    DEFF Research Database (Denmark)

    Siano, P.; Chen, Peiyuan; Chen, Zhe

    2012-01-01

    a hybrid optimization method that aims of maximizing the Net Present Value related to the Investment made by Wind Turbines developers in an active distribution network. The proposed network combines a Genetic Algorithm with a multi-period optimal power flow. The method, integrating active management...

  15. Active Power and Flux Control of a Self-Excited Induction Generator for a Variable-Speed Wind Turbine Generation

    Energy Technology Data Exchange (ETDEWEB)

    Na, Woonki; Muljadi, Eduard; Leighty, Bill; Kim, Jonghoon

    2017-05-11

    A Self-Excited Induction Generation (SEIG) for a variable speed wind turbine generation(VS-WG) is normally considered to be a good candidate for implementation in stand-alone applications such as battery charging, hydrogenation, water pumping, water purification, water desalination, and etc. In this study, we have examined a study on active power and flux control strategies for a SEIG for a variable speed wind turbine generation. The control analysis for the proposed system is carried out by using PSCAD software. In the process, we can optimize the control design of the system, thereby enhancing and expediting the control design procedure for this application. With this study, this control design for a SEIG for VS-WG can become the industry standard for analysis and development in terms of SEIG.

  16. Horizontal axis Magnus wind turbine performance according to their geometric and kinematic variables

    OpenAIRE

    Richmond-Navarro, Gustavo

    2016-01-01

    This study covers the analysis of a horizontal axis wind turbine that uses rotating cylinders instead of blades. The working principle of this wind generator is the Magnus effect, which happens when the cylinders start rotating, giving rise to an interaction between the incident wind and the air dragged by the walls of the moving cylinders. This generates lift which puts the turbine in motion. The goal of this investigation was to characterize this type of turbine by means of numerical and ma...

  17. Development of sensor-less control strategies for grid connected PMSG based variable speed wind energy conversion system with improved power quality features

    Energy Technology Data Exchange (ETDEWEB)

    Chandra, A. [Quebec Univ., Montreal, PQ (Canada). Dept. of Electrical Engineering

    2010-07-01

    Interest in renewable energy sources has grown in recent years in response to concerns of increasing pollution levels and depleting fossil fuels. Among renewable energy sources, wind energy generation is the fastest growing technology and one of the most cost-effective and environmental friendly means to generate electricity from renewable sources. Modern wind turbines are ready to be deployed in large scale as a result of recent developments in wind power technology. Variable speed permanent magnet synchronous generators (PMSG) based wind energy conversion systems (WECS) are becoming more popular. The use of a permanent magnet reduces size, cost and weight of overall WECS. In addition, the absence of field winding and its excitation system avoids heat dissipation in the rotor winding, thereby improving overall efficiency of the WECS. This type of configuration is more appropriate for remote locations, particularly for off-shore wind application, where the geared doubly fed induction generator usually requires regular maintenance due to tearing-wearing in brushes, windings and gear box. This presentation discussed the development of sensor-less control strategies for grid connected PMSG based variable speed wind energy conversion system with improved power quality features. A novel adaptive network-based fuzzy inference system was used to estimate the speed and position of variable speed PMSG under fluctuating wind conditions. A novel control strategy was developed for the grid interfacing inverter incorporating power quality improvement features at point of common coupling.

  18. Finite analytic method for modeling variably saturated flows.

    Science.gov (United States)

    Zhang, Zaiyong; Wang, Wenke; Gong, Chengcheng; Yeh, Tian-Chyi Jim; Wang, Zhoufeng; Wang, Yu-Li; Chen, Li

    2018-04-15

    This paper develops a finite analytic method (FAM) for solving the two-dimensional Richards' equation. The FAM incorporates the analytic solution in local elements to formulate the algebraic representation of the partial differential equation of unsaturated flow so as to effectively control both numerical oscillation and dispersion. The FAM model is then verified using four examples, in which the numerical solutions are compared with analytical solutions, solutions from VSAFT2, and observational data from a field experiment. These numerical experiments show that the method is not only accurate but also efficient, when compared with other numerical methods. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Compressible fluid flow through rocks of variable permeability

    International Nuclear Information System (INIS)

    Lin, W.

    1977-01-01

    The effectiveness of course-grained igneous rocks as shelters for burying radioactive waste can be assessed by determining the rock permeabilities at their in situ pressures and stresses. Analytical and numerical methods were used to solve differential equations of one-dimensional fluid flow through rocks with permeabilities from 10 4 to 1 nD. In these calculations, upstream and downstream reservoir volumes of 5, 50, and 500 cm 3 were used. The optimal size combinations of the two reservoirs were determined for measurements of permeability, stress, strain, acoustic velocity, and electrical conductivity on low-porosity, coarse-grained igneous rocks

  20. Direct Torque Control in presence of Current sensor failure in Variable Speed Wind System: Effect analysis, detection and control reconfiguration

    Directory of Open Access Journals (Sweden)

    A. J. Arbi

    2008-03-01

    Full Text Available This paper presents a study of current sensor failure in a Direct Torque Control applied to a Double Fed Induction Generator based Variable Speed Wind System. The effect of scaling and offset current sensor errors is discussed through sensibility analysis. A control reconfiguration is then proposed to remedy this sensor failure. Simulation results emphasize the good performances of the proposed current sensor fault tolerant control

  1. Computer analysis of flow perturbations generated by placement of choke bumps in a wind tunnel

    Science.gov (United States)

    Campbell, R. L.

    1981-01-01

    An inviscid analytical study was conducted to determine the upstream flow perturbations caused by placing choke bumps in a wind tunnel. A computer program based on the stream-tube curvature method was used to calculate the resulting flow fields for a nominal free-stream Mach number range of 0.6 to 0.9. The choke bump geometry was also varied to investigate the effect of bump shape on the disturbance produced. Results from the study indicate that a region of significant variation from the free-stream conditions exists upstream of the throat of the tunnel. The extent of the disturbance region was, as a rule, dependent on Mach number and the geometry of the choke bump. In general, the upstream disturbance distance decreased for increasing nominal free-stream Mach number and for decreasing length-to-height ratio of the bump. A polynomial-curve choke bump usually produced less of a disturbance than did a circular-arc bump and going to an axisymmetric configuration (modeling choke bumps on all the tunnel walls) generally resulted in a lower disturbance than with the corresponding two dimensional case.

  2. Estimation of intersubject variability of cerebral blood flow measurements using MRI and positron emission tomography

    DEFF Research Database (Denmark)

    Henriksen, Otto Mølby; Larsson, Henrik B W; Hansen, Adam E

    2012-01-01

    PURPOSE: To investigate the within and between subject variability of quantitative cerebral blood flow (CBF) measurements in normal subjects using various MRI techniques and positron emission tomography (PET). MATERIALS AND METHODS: Repeated CBF measurements were performed in 17 healthy, young...

  3. Connectivity of the Apalachicola River flow variability and the physical and bio-optical oceanic properties of the northern West Florida Shelf

    Science.gov (United States)

    Morey, Steven L.; Dukhovskoy, Dmitry S.; Bourassa, Mark A.

    2009-05-01

    Maps of satellite-derived estimates of monthly averaged chlorophyll a concentration over the northern West Florida Shelf show interannual variations concentrated near the coastline, but also extending offshore over the shelf in a tongue-like pattern from the Apalachicola River during the late winter and early spring. These anomalies are significantly correlated with interannual variability in the flow rate of the Apalachicola River, which is linked to the precipitation anomalies over the watershed, over a region extending 150-200 km offshore out to roughly the 100 m isobath. This study examines the variability of the Apalachicola River and its impacts on the variability of water properties over the northern West Florida Shelf. A series of numerical model experiments show that episodic wind-driven offshore transport of the Apalachicola River plume is a likely physical mechanism for connecting the variability of the river discharge with oceanic variability over the middle and outer shelf.

  4. An adaptive control for a variable speed wind turbine using RBF neural network

    Directory of Open Access Journals (Sweden)

    El Mjabber E.

    2016-01-01

    Full Text Available In this work, a controller based on Radial Basis Functions (RBF for network adaptation is considered. The adaptive Neural Network (NN control approximates the nonlinear dynamics of the wind turbine based on input/output measurement and ensures smooth tracking of optimal tip speed-ratio at different wind speeds. The wind turbine system and this controller were modeled and a program to integrate the obtained coupled equations was developed under Matlab/Simulink software package. Then, performance of the controller was studied numerically. The proposed controller was found to effectively improve the control performance against large uncertainty of the wind turbine system. comparison with nonlinear dynamic State feedback control with Kalman filter controller was performed, and the obtained results have demonstrated the relevance of this RBFNN based controller.

  5. Large eddy simulation of fire-induced buoyancy driven plume dispersion in an urban street canyon under perpendicular wind flow.

    Science.gov (United States)

    Hu, L H; Huo, R; Yang, D

    2009-07-15

    The dispersion of fire-induced buoyancy driven plume in and above an idealized street canyon of 18 m (width) x 18 m (height) x 40 m (length) with a wind flow perpendicular to its axis was investigated by Fire Dynamics Simulator (FDS), Large Eddy Simulation (LES). Former studies, such as that by Oka [T.R. Oke, Street design and urban canopy layer climate, Energy Build. 11 (1988) 103-113], Gayev and Savory [Y.A. Gayev, E. Savory, Influence of street obstructions on flow processes within street canyons. J. Wind Eng. Ind. Aerodyn. 82 (1999) 89-103], Xie et al. [S. Xie, Y. Zhang, L. Qi, X. Tang, Spatial distribution of traffic-related pollutant concentrations in street canyons. Atmos. Environ. 37 (2003) 3213-3224], Baker et al. [J. Baker, H. L. Walker, X. M. Cai, A study of the dispersion and transport of reactive pollutants in and above street canyons--a large eddy simulation, Atmos. Environ. 38 (2004) 6883-6892] and Baik et al. [J.-J. Baik, Y.-S. Kang, J.-J. Kim, Modeling reactive pollutant dispersion in an urban street canyon, Atmos. Environ. 41 (2007) 934-949], focus on the flow pattern and pollutant dispersion in the street canyon with no buoyancy effect. Results showed that with the increase of the wind flow velocity, the dispersion pattern of a buoyant plume fell into four regimes. When the wind flow velocity increased up to a certain critical level, the buoyancy driven upward rising plume was re-entrained back into the street canyon. This is a dangerous situation as the harmful fire smoke will accumulate to pollute the environment and thus threaten the safety of the people in the street canyon. This critical re-entrainment wind velocity, as an important parameter to be concerned, was further revealed to increase asymptotically with the heat/buoyancy release rate of the fire.

  6. Controller Design For DFIG Driven By Variable Speed Wind Turbine Using Static Output Feedback Technique

    Directory of Open Access Journals (Sweden)

    O. P. Bharti

    2016-08-01

    Full Text Available This paper describes the controller design for a DFIG based wind energy generation system using the static output feedback technique through the LMI Toolbox. The features of the DFIG, its converters and their controllers are discussed. The lower order nominal representation of DFIG is obtained using numerical differentiation of the SIMULINK model which is subsequently used for PID controller design. The obtained results are compared with existing methods for performance enhancement of the DFIG and wind energy conversion systems.

  7. Variable cross-section windings for efficiency improvement of electric machines

    Science.gov (United States)

    Grachev, P. Yu; Bazarov, A. A.; Tabachinskiy, A. S.

    2018-02-01

    Implementation of energy-saving technologies in industry is impossible without efficiency improvement of electric machines. The article considers the ways of efficiency improvement and mass and dimensions reduction of electric machines with electronic control. Features of compact winding design for stators and armatures are described. Influence of compact winding on thermal and electrical process is given. Finite element method was used in computer simulation.

  8. VARIABLE FIRING RATE OIL BURNER USING PULSE FUEL FLOW CONTROL.

    Energy Technology Data Exchange (ETDEWEB)

    KRISHNA,C.R.; BUTCHER,T.A.; KAMATH,B.R.

    2004-10-01

    problem is to develop a burner, which can operate at two firing rates, with the lower rate being significantly lower than 0.5 gallons per hour. This paper describes the initial results of adopting this approach through a pulsed flow nozzle. It has been shown that the concept of flow modulation with a small solenoid valve is feasible. Especially in the second configuration tested, where the Lee valve was integrated with the nozzle, reasonable modulation in flow of the order of 1.7 could be achieved. For this first prototype, the combustion performance is still not quite satisfactory. Improvements in operation, for example by providing a sharp and positive shut-off so that there is no flow under low pressures with consequent poor atomization could lead to better combustion performance. This could be achieved by using nozzles that have shut off or check valves for example. It is recommended that more work in cooperation with the valve manufacturer could produce a technically viable system. Marketability is of course a far more complex problem to be addressed once a technically viable product is available.

  9. Assessing geotechnical centrifuge modelling in addressing variably saturated flow in soil and fractured rock.

    Science.gov (United States)

    Jones, Brendon R; Brouwers, Luke B; Van Tonder, Warren D; Dippenaar, Matthys A

    2017-05-01

    The vadose zone typically comprises soil underlain by fractured rock. Often, surface water and groundwater parameters are readily available, but variably saturated flow through soil and rock are oversimplified or estimated as input for hydrological models. In this paper, a series of geotechnical centrifuge experiments are conducted to contribute to the knowledge gaps in: (i) variably saturated flow and dispersion in soil and (ii) variably saturated flow in discrete vertical and horizontal fractures. Findings from the research show that the hydraulic gradient, and not the hydraulic conductivity, is scaled for seepage flow in the geotechnical centrifuge. Furthermore, geotechnical centrifuge modelling has been proven as a viable experimental tool for the modelling of hydrodynamic dispersion as well as the replication of similar flow mechanisms for unsaturated fracture flow, as previously observed in literature. Despite the imminent challenges of modelling variable saturation in the vadose zone, the geotechnical centrifuge offers a powerful experimental tool to physically model and observe variably saturated flow. This can be used to give valuable insight into mechanisms associated with solid-fluid interaction problems under these conditions. Findings from future research can be used to validate current numerical modelling techniques and address the subsequent influence on aquifer recharge and vulnerability, contaminant transport, waste disposal, dam construction, slope stability and seepage into subsurface excavations.

  10. Effect of Spatio-Temporal Variability of Rainfall on Stream flow Prediction of Birr Watershed

    Science.gov (United States)

    Demisse, N. S.; Bitew, M. M.; Gebremichael, M.

    2012-12-01

    The effect of rainfall variability on our ability to forecast flooding events was poorly studied in complex terrain region of Ethiopia. In order to establish relation between rainfall variability and stream flow, we deployed 24 rain gauges across Birr watershed. Birr watershed is a medium size mountainous watershed with an area of 3000 km2 and elevation ranging between 1435 m.a.s.l and 3400 m.a.s.l in the central Ethiopia highlands. One summer monsoon rainfall of 2012 recorded at high temporal scale of 15 minutes interval and stream flow recorded at an hourly interval in three sub-watershed locations representing different scales were used in this study. Based on the data obtained from the rain gauges and stream flow observations, we quantify extent of temporal and spatial variability of rainfall across the watershed using standard statistical measures including mean, standard deviation and coefficient of variation. We also establish rainfall-runoff modeling system using a physically distributed hydrological model: the Soil and Water Assessment Tool (SWAT) and examine the effect of rainfall variability on stream flow prediction. The accuracy of predicted stream flow is measured through direct comparison with observed flooding events. The results demonstrate the significance of relation between stream flow prediction and rainfall variability in the understanding of runoff generation mechanisms at watershed scale, determination of dominant water balance components, and effect of variability on accuracy of flood forecasting activities.

  11. Wind-tunnel study of the wake behind a vertical axis wind turbine in a boundary layer flow using stereoscopic particle image velocimetry

    Science.gov (United States)

    Rolin, V.; Porté-Agel, F.

    2015-06-01

    Stereo particle image velocimetry is used in a wind-tunnel to study boundary layer effects in the wake behind a vertical axis wind turbine. The turbine is a three-bladed giromill with a solidity of 1.18. The wake is studied for a tip speed ratio of 2 and an average chord Reynolds number of 1.6 × 104. The velocity deficit and turbulence levels in the horizontal plane are observed to be strongly asymmetrical with two strong peaks corresponding to the two halves of the rotor where blades move either towards the oncoming flow or away from it. The stronger peak is measured behind the blades moving upstream, however this region also benefits from a greater rate of re-energization. Due to the incoming boundary layer profile, momentum is also entrained downwards into the wake from above and aids with the recovery of the core of the wake.

  12. Velocity-intermittency structure for wake flow of the pitched single wind turbine under different inflow conditions

    Science.gov (United States)

    Crist, Ryan; Cal, Raul Bayoan; Ali, Naseem; Rockel, Stanislav; Peinke, Joachim; Hoelling, Michael

    2017-11-01

    The velocity-intermittency quadrant method is used to characterize the flow structure of the wake flow in the boundary layer of a wind turbine array. Multifractal framework presents the intermittency as a pointwise Hölder exponent. A 3×3 wind turbine array tested experimentally provided a velocity signal at a 21×9 downstream location, measured via hot-wire anemometry. The results show a negative correlation between the velocity and the intermittency at the hub height and bottom tip, whereas the top tip regions show a positive correlation. Sweep and ejection based on the velocity and intermittency are dominant downstream from the rotor. The pointwise results reflect large-scale organization of the flow and velocity-intermittency events corresponding to a foreshortened recirculation region near the hub height and the bottom tip.

  13. Seasonal and diurnal changes in wind variability from Flatland VHF profiler observations

    Energy Technology Data Exchange (ETDEWEB)

    Nastrom, G.D. [Saint Cloud State Univ., MN (United States). Dept. of Earth Sci.; Clark, W.L. [National Oceanic and Atmospheric Administration, Boulder, CO (United States). Aeronomy Lab.; Zandt, T.E. van [National Oceanic and Atmospheric Administration, Boulder, CO (United States). Aeronomy Lab.; Warnock, J.M. [National Oceanic and Atmospheric Administration, Boulder, CO (United States). Aeronomy Lab.

    1996-02-01

    Climatological results are presented on the hourly variance of the wind observed in the mid-troposphere (3 to 9 km MSL). This quantity roughly indicates the energy in the atmospheric wind field for variations with periods roughly less than 1 hour. Observations are from the Flatland VHF research wind profiler, located near Champaign/Urbana, Illinois, well away from significant orographic features. The period of record covers two years, September 1990 through August 1992. The values of the variance of the winds along vertical and oblique (15 degrees from zenith in the cardinal directions) beams are presented versus height, season, time-of-day, and beam pointing direction. It is found that the hourly variance values have approximately lognormal frequency distribution. The mean hourly variance is significantly larger for the oblique wind observations than for the vertical. Mean wind variances also tend to be larger in the east/west steering plane than in the north/south plane. The mean variance generally increases with height, but faster than would be expected if it were due solely to the decrease in atmospheric density, implying the presence of local source/sinks of wind energy. The rate of change with height is noticeably different for the vertical and oblique beams, being much less for the vertical beam, in some seasons even decreasing with height. With respect to season, the mean hourly variance is smallest in the summer and largest in the winter. With respect to diurnal changes, the variance is maximum during the afternoon for spring, summer, and autumn, with the maximum up to a factor of two larger than the minimum. In winter, the diurnal change is much smaller, with little indication of an afternoon maximum. (orig.)

  14. Wind Stress Variability Directly Measured at a Tidal Inlet from a Mobile Vessel

    Science.gov (United States)

    Ortiz-Suslow, D. G.; Haus, B. K.; Laxague, N.; Williams, N. J.; Graber, H. C.

    2014-12-01

    Tidal inlets are characterized by a dynamic coupling of waves, currents, wind, and topography and to better understand these processes the Riverine and Estuarine Transport (RIVET) experiment was conducted during the month of May 2012 at New River Inlet, North Carolina. As a part of that effort, the Surface Physics Experimental Catamaran (SPEC) was outfitted with a suite of concurrently sampled atmospheric and oceanographic sensors. These included a meteorological mast capable of measuring the air-sea momentum flux, paired subsurface ADV's, a downward looking ADCP, and a bow-mounted wave-staff array. Using a mobile platform enabled capturing the fine-scale dynamical features across this highly sheared zone, without compromising spatial or temporal resolution. The SPEC was deployed, in part, to make direct wind stress measurements and the eddy covariance method was used to calculate the 10 m neutral drag coefficients from the observed wind shear velocities. In general, for any given wind speed, measured drag coefficients were about 2.5 times greater than those derived from bulk relations (e.g. Smith, 1988). Observations of the wind stress angle show significant wind stress steering, up to about 70o off the mean wind direction, within 2 km off-shore of the inlet mouth. The causes for the departure of these observations from conventional open ocean results remains under investigation, although it is highly likely that these findings highlight processes unique to coastal waters that are not regarded in the well-established algorithms (e.g. depth-limited wave breaking and wave-current interactions). Preliminary results from the second installment in the RIVET campaign, which took place at the Mouth of the Columbia River during the spring of 2013, will also be shown.

  15. Raindrop and flow interactions for interrill erosion with wind-driven rain

    NARCIS (Netherlands)

    Erpul, G.; Gabriels, D.; Darell Norton, L.; Dennis, C.; Huang, C.H.; Visser, S.M.

    2013-01-01

    Wind-driven rain (WDR) experiments were conducted to evaluate the interrill component of the Water Erosion Prediction Project model with a two-dimensional experimental set-up in a wind tunnel. Synchronized wind and rain simulations were applied to soil surfaces on windward and leeward slopes of 7,

  16. DFIG-based offshore wind power plant connected to a single VSC-HVDC operated at variable frequency: Energy yield assessment

    International Nuclear Information System (INIS)

    De-Prada-Gil, Mikel; Díaz-González, Francisco; Gomis-Bellmunt, Oriol; Sumper, Andreas

    2015-01-01

    The existence of HVDC (High Voltage Direct Current) transmission systems for remote offshore wind power plants allows devising novel wind plant concepts, which do not need to be synchronized with the main AC grid. This paper proposes an OWPP (offshore wind power plant) design based on variable speed wind turbines driven by DFIGs (doubly fed induction generators) with reduced power electronic converters connected to a single VSC-HVDC converter which operates at variable frequency and voltage within the collection grid. It is aimed to evaluate the influence of the power converter size and wind speed variability within the WPP on energy yield efficiency, as well as to develop a coordinated control between the VSC-HVDC converter and the individual back-to-back reduced power converters of each DFIG-based wind turbine in order to provide control capability for the wind power plant at a reduced cost. To maximise wind power generation by the OWPP, an optimum electrical frequency search algorithm for the VSC-HVDC converter is proposed. Both central wind power plant control level and local wind turbine control level are presented and the performance of the system is validated by means of simulations using MATLAB/Simulink ® . - Highlights: • Influence of converter size and wind speed variability on energy capture efficiency. • Coordinated control between a VSC-HVDC and DFIG WTs with reduced power converters. • Static and dynamic analysis of the performance of the implemented control scheme. • Optimal variable frequency operation to maximize WPP generation at a reduced cost

  17. DNA flow cytometric analysis in variable types of hydropic placentas

    Directory of Open Access Journals (Sweden)

    Fatemeh Atabaki pasdar

    2015-05-01

    Full Text Available Background: Differential diagnosis between complete hydatidiform mole, partial hydatidiform mole and hydropic abortion, known as hydropic placentas is still a challenge for pathologists but it is very important for patient management. Objective: We analyzed the nuclear DNA content of various types of hydropic placentas by flowcytometry. Materials and Methods: DNA ploidy analysis was performed in 20 non-molar (hydropic and non-hydropic spontaneous abortions and 20 molar (complete and partial moles, formalin-fixed, paraffin-embedded tissue samples by flow cytometry. The criteria for selection were based on the histopathologic diagnosis. Results: Of 10 cases histologically diagnosed as complete hydatiform mole, 9 cases yielded diploid histograms, and 1 case was tetraploid. Of 10 partial hydatidiform moles, 8 were triploid and 2 were diploid. All of 20 cases diagnosed as spontaneous abortions (hydropic and non-hydropic yielded diploid histograms. Conclusion: These findings signify the importance of the combined use of conventional histology and ploidy analysis in the differential diagnosis of complete hydatidiform mole, partial hydatidiform mole and hydropic abortion.

  18. MPDATA: Third-order accuracy for variable flows

    Science.gov (United States)

    Waruszewski, Maciej; Kühnlein, Christian; Pawlowska, Hanna; Smolarkiewicz, Piotr K.

    2018-04-01

    This paper extends the multidimensional positive definite advection transport algorithm (MPDATA) to third-order accuracy for temporally and spatially varying flows. This is accomplished by identifying the leading truncation error of the standard second-order MPDATA, performing the Cauchy-Kowalevski procedure to express it in a spatial form and compensating its discrete representation-much in the same way as the standard MPDATA corrects the first-order accurate upwind scheme. The procedure of deriving the spatial form of the truncation error was automated using a computer algebra system. This enables various options in MPDATA to be included straightforwardly in the third-order scheme, thereby minimising the implementation effort in existing code bases. Following the spirit of MPDATA, the error is compensated using the upwind scheme resulting in a sign-preserving algorithm, and the entire scheme can be formulated using only two upwind passes. Established MPDATA enhancements, such as formulation in generalised curvilinear coordinates, the nonoscillatory option or the infinite-gauge variant, carry over to the fully third-order accurate scheme. A manufactured 3D analytic solution is used to verify the theoretical development and its numerical implementation, whereas global tracer-transport benchmarks demonstrate benefits for chemistry-transport models fundamental to air quality monitoring, forecasting and control. A series of explicitly-inviscid implicit large-eddy simulations of a convective boundary layer and explicitly-viscid simulations of a double shear layer illustrate advantages of the fully third-order-accurate MPDATA for fluid dynamics applications.

  19. Miniaturized compact water-cooled pitot-pressure probe for flow-field surveys in hypersonic wind tunnels

    Science.gov (United States)

    Ashby, George C.

    1988-01-01

    An experimental investigation of the design of pitot probes for flowfield surveys in hypersonic wind tunnels is reported. The results show that a pitot-pressure probe can be miniaturized for minimum interference effects by locating the transducer in the probe support body and water-cooling it so that the pressure-settling time and transducer temperature are compatible with hypersonic tunnel operation and flow conditions. Flowfield surveys around a two-to-one elliptical cone model in a 20-inch Mach 6 wind tunnel using such a probe show that probe interference effects are essentially eliminated.

  20. Dynamic Stability Enhancement and Power Flow Control of a Hybrid Wind and Marine-Current Farm Using SMES

    DEFF Research Database (Denmark)

    Wang, Li; Chen, Shiang-Shong; Lee, Wei-Jen

    2009-01-01

    This paper presents a control scheme based on a superconducting magnetic energy storage (SMES) unit to achieve both power flow control and damping enhancement of a novel hybrid wind and marine-current farm (MCF) connected to a large power grid. The performance of the studied wind farm (WF......) is simulated by an equivalent 80-MW induction generator (IG) while an equivalent 60-MW IG is employed to simulate the characteristics of theMCF. A damping controller for the SMES unit is designed by using modal control theory to contribute effective damping characteristics to the studied combined WF and MCF...

  1. Final Report for ALCC Allocation: Predictive Simulation of Complex Flow in Wind Farms

    Energy Technology Data Exchange (ETDEWEB)

    Barone, Matthew F. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ananthan, Shreyas [National Renewable Energy Lab. (NREL), Golden, CO (United States); Churchfield, Matt [National Renewable Energy Lab. (NREL), Golden, CO (United States); Domino, Stefan P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Henry de Frahan, Marc [National Renewable Energy Lab. (NREL), Golden, CO (United States); Knaus, Robert C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Melvin, Jeremy [Univ. of Texas, Austin, TX (United States); Moser, Robert [Univ. of Texas, Austin, TX (United States); Sprague, Michael [National Renewable Energy Lab. (NREL), Golden, CO (United States); Thomas, Stephen [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-08-01

    This report documents work performed using ALCC computing resources granted under a proposal submitted in February 2016, with the resource allocation period spanning the period July 2016 through June 2017. The award allocation was 10.7 million processor-hours at the National Energy Research Scientific Computing Center. The simulations performed were in support of two projects: the Atmosphere to Electrons (A2e) project, supported by the DOE EERE office; and the Exascale Computing Project (ECP), supported by the DOE Office of Science. The project team for both efforts consists of staff scientists and postdocs from Sandia National Laboratories and the National Renewable Energy Laboratory. At the heart of these projects is the open-source computational-fluid-dynamics (CFD) code, Nalu. Nalu solves the low-Mach-number Navier-Stokes equations using an unstructured- grid discretization. Nalu leverages the open-source Trilinos solver library and the Sierra Toolkit (STK) for parallelization and I/O. This report documents baseline computational performance of the Nalu code on problems of direct relevance to the wind plant physics application - namely, Large Eddy Simulation (LES) of an atmospheric boundary layer (ABL) flow and wall-modeled LES of a flow past a static wind turbine rotor blade. Parallel performance of Nalu and its constituent solver routines residing in the Trilinos library has been assessed previously under various campaigns. However, both Nalu and Trilinos have been, and remain, in active development and resources have not been available previously to rigorously track code performance over time. With the initiation of the ECP, it is important to establish and document baseline code performance on the problems of interest. This will allow the project team to identify and target any deficiencies in performance, as well as highlight any performance bottlenecks as we exercise the code on a greater variety of platforms and at larger scales. The current study is

  2. Sources of variability of resting cerebral blood flow in healthy subjects

    DEFF Research Database (Denmark)

    Henriksen, Otto Mølby; Kruuse, Christina Rostrup; Olesen, Jes

    2013-01-01

    Measurements of cerebral blood flow (CBF) show large variability among healthy subjects. The aim of the present study was to investigate the relative effect of established factors influencing CBF on the variability of resting CBF. We retrospectively analyzed spontaneous variability in 430 CBF...... measurements acquired in 152 healthy, young subjects using (133)Xe single-photon emission computed tomography. Cerebral blood flow was correlated positively with both end-tidal expiratory PCO2 (PETCO2) and female gender and inversely with hematocrit (Hct). Between- and within-subject CO2 reactivity...... when Hct was also accounted for. The present study confirms large between-subject variability in CBF measurements and that gender, Hct, and PETCO2 explain only a small part of this variability. This implies that a large fraction of CBF variability may be due to unknown factors such as differences...

  3. Evaluation of the Inertial Response of Variable-Speed Wind Turbines Using Advanced Simulation: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Scholbrock, Andrew K [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Muljadi, Eduard [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Gevorgian, Vahan [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Scholbrock, Andrew K [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Wang, Xiao [Northeastern University; Gao, Wenzhong [University of Denver; Yan, Weihang [University of Denver; Wang, Jianhui [Northeastern University

    2017-08-09

    In this paper, we focus on the temporary frequency support effect provided by wind turbine generators (WTGs) through the inertial response. With the implemented inertial control methods, the WTG is capable of increasing its active power output by releasing parts of the stored kinetic energy when the frequency excursion occurs. The active power can be boosted temporarily above the maximum power points, but the rotor speed deceleration follows and an active power output deficiency occurs during the restoration of rotor kinetic energy. In this paper, we evaluate and compare the inertial response induced by two distinct inertial control methods using advanced simulation. In the first stage, the proposed inertial control methods are analyzed in offline simulation. Using an advanced wind turbine simulation program, FAST with TurbSim, the response of the researched wind turbine is comprehensively evaluated under turbulent wind conditions, and the impact on the turbine mechanical components are assessed. In the second stage, the inertial control is deployed on a real 600-kW wind turbine, the three-bladed Controls Advanced Research Turbine, which further verifies the inertial control through a hardware-in-the-loop simulation. Various inertial control methods can be effectively evaluated based on the proposed two-stage simulation platform, which combines the offline simulation and real-time hardware-in-the-loop simulation. The simulation results also provide insights in designing inertial control for WTGs.

  4. Implementation of MRAC controller of a DFIG based variable speed grid connected wind turbine

    International Nuclear Information System (INIS)

    Abdeddaim, Sabrina; Betka, Achour; Drid, Said; Becherif, Mohamed

    2014-01-01

    Highlights: • Set-up of an experimental test emulating a wind turbine, driving a grid-connected conventional DFIG. • An optimal operation below rated speed is achieved by means of an appropriate maximum power-point tracking algorithm. • Design and implementation of an adaptive model reference controller (MRAC) of the active and reactive power regulation. - Abstract: This paper presents the design and the implementation of a model reference adaptive control of the active and reactive power regulation of a grid connected wind turbine based on a doubly fed induction generator. This regulation is achieved below the synchronous speed, by means of a maximum power-point tracking algorithm. The experiment was conducted on a 1 kW didactic wound rotor induction machine in association with a wind turbine emulator. This implementation is realized using a dSPACE 1104 single-board control and acquisition interface. The obtained results show a permanent track of the available maximum wind power, under a chosen wind speed profile. Furthermore the proposed controller exhibits a smooth regulation of the stator active and reactive power amounts exchanged between the machine and the grid

  5. able utilizando redes neuronales artificiales; UTILIZATION OF ARTIFICIAL NEURAL NETWORK IN THE SIMULATION AND CONTROL OF WIND TURBINE GENERATORS WITH VARIABLE SPEED AND VARIABLE PITCH.

    Directory of Open Access Journals (Sweden)

    Osley López González

    2011-02-01

    Full Text Available Con el objetivo de aprovechar al máximo la energía del viento y, a la vez, llevar a cabo un control rápido ypreciso de la potencia máxima suministrada al aumentar la misma se han venido utilizando cada vez mássistemas de control capaces de operar en el punto óptimo de entrega de potencia para determinadosvalores de velocidad del viento y limitarla cuando éste supera su valor máximo. Este sistema de control,considerado en su conjunto, debe responder con la exactitud, estabilidad y rapidez necesaria ante lavariabilidad y aleatoriedad del viento. La relación entre sus variables de salida (velocidad de la turbina ypaso de la pala y la de entrada (velocidad del viento que sea capaz de aprovechar la máxima potenciadisponible en el viento en una zona de trabajo y de limitarla en otra, es altamente complicada puesdepende de factores constructivos y de diseño de la turbina y del generador. Esta característica es muydifícil de representar (sea con el objetivo de simulación o con el de control mediante relacionesfuncionales matemáticas convencionales.En este trabajo los autores proponen representar dicha relaciónmediante la utilización de Redes Neuronales Artificiales entrenadas para ser capaces de responderadecuadamente ante cualquier entrada. Basados en los parámetros y características de un aerogeneradorreal de velocidad y paso variables y utilizando el toolbox de Redes Neuronales del MATLAB SIMULINK losautores obtuvieron un modelo neuronal del sistema de control de la velocidad y el paso de la turbinacomprobando su correcta operación ante diferentes perturbaciones de la red eléctrica mediante estemismo lenguaje de simulación. Se demostró que estas redes pueden ser utilizadas con éxito en lasimulación y el control de este tipo de máquinas en cualquier condición de operación. In order to capture the maximum energy from the wind, control systems operating always at an optimumpower has been utilized. This control system

  6. Role of Wind Filtering and Unbalanced Flow Generation in Middle Atmosphere Gravity Wave Activity at Chatanika Alaska

    Directory of Open Access Journals (Sweden)

    Colin C. Triplett

    2017-01-01

    Full Text Available The meteorological control of gravity wave activity through filtering by winds and generation by spontaneous adjustment of unbalanced flows is investigated. This investigation is based on a new analysis of Rayleigh LiDAR measurements of gravity wave activity in the upper stratosphere-lower mesosphere (USLM,40–50kmon 152 nights at Poker Flat Research Range (PFRR, Chatanika, Alaska (65◦ N, 147◦ W, over 13 years between 1998 and 2014. The LiDAR measurements resolve inertia-gravity waves with observed periods between 1 h and 4 h and vertical wavelengths between 2 km and 10 km. The meteorological conditions are defined by reanalysis data from the Modern-Era Retrospective Analysis for Research and Applications (MERRA. The gravity wave activity shows large night-to-night variability, but a clear annual cycle with a maximum in winter,and systematic interannual variability associated with stratospheric sudden warming events. The USLM gravity wave activity is correlated with the MERRA winds and is controlled by the winds in the lower stratosphere through filtering by critical layer filtering. The USLM gravity wave activity is also correlated with MERRA unbalanced flow as characterized by the residual of the nonlinear balance equation. This correlation with unbalanced flow only appears when the wind conditions are taken into account, indicating that wind filtering is the primary control of the gravity wave activity.

  7. Control design for a pitch-regulated, variable speed wind turbine

    DEFF Research Database (Denmark)

    Hansen, M.H.; Hansen, Anca Daniela; Larsen, Torben J.

    2005-01-01

    The three different controller designs presented herein are similar and all based on PI-regulation of rotor speed and power through the collective blade pitch angle and generator moment. The aeroelastic and electrical modelling used for the time-domainanalysis of these controllers are however...... different, which makes a directly quantitative comparison difficult. But there are some observations of similar behaviours should be mentioned: • Very similar step responses in rotor speed, pitch angle, and powerare seen for simulations with steps in wind speed. • All controllers show a peak in power...... for wind speed step-up over rated wind speed, which can be almost removed by changing the parameters of the frequency converter. • Responses of rotor speed, pitchangle, and power for different simulations with turbulent inflow are similar for all three controllers. Again, there seems to be an advantage...

  8. Volumetric characterization of the flow over miniature wind farms: An experimental study

    Science.gov (United States)

    Wing, Lai; Troolin, Dan; Hyun, Jin Kim; Tobin, Nicolas; Zuniga Zamalloa, Carlo; Chamorro, Leonardo P.

    2014-11-01

    An internal boundary layer is known to develop from the interaction between wind farms and the atmospheric boundary layer. It possesses characteristic features able to modulate the turbulence dynamics over large regions and eventually modify the micro climate in the vicinity of the wind farm. In this study, we examine the structure of the turbulence above various miniature wind farm configurations using 3D Particle Image velocimetry (PIV). Each miniature wind farm is placed in the boundary-layer wind tunnel at the Mechanical Science Engineering, UIUC. The turbines are fabricated using 3D printing and have a loading system that controls their tip-speed ratio and allows for characterizing the loads. Volumetric PIV is performed at various locations over and downstream a series of wind farm layouts. High-order turbulence statistics, turbulence structure and characteristic coherent motions are obtained and discussed in terms of the wind farm layout.

  9. Analysis of Causes of Non-Uniform Flow Distribution in Manifold Systems with Variable Flow Rate along Length

    Science.gov (United States)

    Zemlyanaya, N. V.; Gulyakin, A. V.

    2017-11-01

    The uniformity of flow distribution in perforated manifolds is a relevant task. The efficiency of water supply, sewerage and perflation systems is determined by hydraulics of the flow with a variable mass. The extensive study of versatile available information showed that achieving a uniform flow distribution through all of the outlets is almost impossible. The analysis of the studies conducted by other authors and our numerical experiments performed with the help of the software package ANSYS 16.1 were made in this work. The results allowed us to formulate the main causes of non-uniform flow distribution. We decided to suggest a hypothesis to explain the static pressure rise problem at the end of a perforated manifold.

  10. A global view of the accretion/ejection flow in AGN: the role of accretion disk winds

    Science.gov (United States)

    Giustini, M.; Done, C.; Proga, D.

    2017-10-01

    By merging theories and X-ray/UV observations we insert winds and failed winds into the geometrical and evolutionary scenarios for the inner regions of Active Galactic Nuclei (AGN). Physically and geometrically different mass accretion flow states onto supermassive black holes correspond to different photon outflows. The photon outflows determine the AGN spectral energy distribution intensity and shape, that affect the presence of different ejection flow states and the consequent mass outflows. The mass and photon accretion and ejection flows in AGN are coupled. We show how by mainly - but not only - varying the Eddington ratio, AGN display different accretion/ejection flows that can explain the observed phenomenology from LLAGN up to highly luminous, super-Eddington QSOs, going through e.g. Seyferts, mini-BAL and BAL QSOs. In particular, during the actively accreting Seyfert/QSO phase of AGN, the presence/absence of powerful line driven accretion disk winds is crucial to explain the observed X-ray/UV phenomenology, including the α_{ox}-L_{UV} correlation and the Baldwin effect.

  11. Large Scale Variability of Phytoplankton Blooms in the Arctic and Peripheral Seas: Relationships with Sea Ice, Temperature, Clouds, and Wind

    Science.gov (United States)

    Comiso, Josefino C.; Cota, Glenn F.

    2004-01-01

    Spatially detailed satellite data of mean color, sea ice concentration, surface temperature, clouds, and wind have been analyzed to quantify and study the large scale regional and temporal variability of phytoplankton blooms in the Arctic and peripheral seas from 1998 to 2002. In the Arctic basin, phytoplankton chlorophyll displays a large symmetry with the Eastern Arctic having about fivefold higher concentrations than those of the Western Arctic. Large monthly and yearly variability is also observed in the peripheral seas with the largest blooms occurring in the Bering Sea, Sea of Okhotsk, and the Barents Sea during spring. There is large interannual and seasonal variability in biomass with average chlorophyll concentrations in 2002 and 2001 being higher than earlier years in spring and summer. The seasonality in the latitudinal distribution of blooms is also very different such that the North Atlantic is usually most expansive in spring while the North Pacific is more extensive in autumn. Environmental factors that influence phytoplankton growth were examined, and results show relatively high negative correlation with sea ice retreat and strong positive correlation with temperature in early spring. Plankton growth, as indicated by biomass accumulation, in the Arctic and subarctic increases up to a threshold surface temperature of about 276-277 degree K (3-4 degree C) beyond which the concentrations start to decrease suggesting an optimal temperature or nutrient depletion. The correlation with clouds is significant in some areas but negligible in other areas, while the correlations with wind speed and its components are generally weak. The effects of clouds and winds are less predictable with weekly climatologies because of unknown effects of averaging variable and intermittent physical forcing (e.g. over storm event scales with mixing and upwelling of nutrients) and the time scales of acclimation by the phytoplankton.

  12. Dynamic Stability Enhancement and Power Flow Control of a Hybrid Wind and Marine-Current Farm Using SMES

    DEFF Research Database (Denmark)

    Wang, Li; Chen, Shiang-Shong; Lee, Wei-Jen

    2009-01-01

    be concluded from the simulated results that the proposed SMES unit combined with the designed damping controller is very effective to stabilize the studied combined WF and MCF under various wind speeds. The inherent fluctuations of the injected active power and reactive power of the WF and MCF to the power......This paper presents a control scheme based on a superconducting magnetic energy storage (SMES) unit to achieve both power flow control and damping enhancement of a novel hybrid wind and marine-current farm (MCF) connected to a large power grid. The performance of the studied wind farm (WF...... under different operating conditions. A frequency-domain approach based on a linearized system model using eigen techniques and a time-domain scheme based on a nonlinear system model subject to disturbance conditions are both employed to validate the effectiveness of the proposed control scheme. It can...

  13. Power flow control and damping enhancement of a large wind farm using a superconducting magnetic energy storage unit

    DEFF Research Database (Denmark)

    Chen, S. S.; Wang, L.; Lee, W. J.

    2009-01-01

    A novel scheme using a superconducting magnetic energy storage (SMES) unit to perform both power flow control and damping enhancement of a large wind farm (WF) feeding to a utility grid is presented. The studied WF consisting of forty 2 MW wind induction generators (IGs) is simulated...... by an equivalent 80 MW IG. A damping controller of the SMES unit is designed based on the modal control theory to contribute proper damping characteristics to the studied WF under different wind speeds. A frequency-domain approach based on a linearised system model using eigen techniques and a time-domain scheme...... based on a nonlinear system model subject to disturbance conditions are both employed to validate the effectiveness of the proposed SMES unit with the designed SMES damping controller. It can be concluded from the simulated results that the proposed SMES unit combined with the designed damping...

  14. Diurnal and seasonal variability in the radial distribution of sap flow: predicting total stem flow in Pinus taeda trees.

    Science.gov (United States)

    Ford, Chelcy R; Goranson, Carol E; Mitchell, Robert J; Will, Rodney E; Teskey, Robert O

    2004-09-01

    We monitored the radial distribution of sap flux density (v; g H2O m(-2) s(-1)) in the sapwood of six plantation-grown Pinus taeda L. trees during wet and dry soil periods. Mean basal diameter of the 32-year-old trees was 33.3 cm. For all trees, the radial distribution of sap flow in the base of the stem (i.e., radial profile) was Gaussian in shape. Sap flow occurred maximally in the outer 4 cm of sapwood, comprising 50-60% of total stem flow (F), and decreased toward the center, with the innermost 4 cm of sapwood (11-15 cm) comprising less than 10% of F. The percent of flow occurring in the outer 4 cm of sapwood was stable with time (average CV 40%). Diurnally, the radial profile changed predictably with time and with total stem flow. Seasonally, the radial profile became less steep as the soil water content (theta) declined from 0.38 to 0.21. Throughout the season, daytime sap flow also decreased as theta decreased; however, nighttime sap flow (an estimate of stored water use) remained relatively constant. As a result, the percentage of stored water use increased as theta declined. Time series analysis of 15-min values of F, theta, photosynthetically active radiation (PAR) and vapor pressure deficit (D) showed that F lagged behind D by 0-15 min and behind PAR by 15-30 min. Diurnally, the relationship between F and D was much stronger than the relationship between F and PAR, whereas no relationship was found between F and theta. An autoregressive moving average (ARIMA) model estimated that 97% of the variability in F could be predicted by D alone. Although total sap flow in all trees responded similarly to D, we show that the radial distribution of sap flow comprising total flow could change temporally, both on daily and seasonal scales.

  15. Analysis of Disturbance Source Inducing by The Variable Speed Wind Turbine System Forced Power Oscillations

    DEFF Research Database (Denmark)

    Tan, Jin; Hu, Weihao; Wang, Xiaoru

    2015-01-01

    The main focus of forced low frequency oscillations is to analyze the disturbance source and the origin of forced oscillations. In this paper, the origin of low-frequency periodical oscillations induced by wind turbines’ mechanical power is investigated and the mechanism is studied of fluctuating...

  16. Modular Multilevel Converters Based Variable Speed Wind Turbines for Grid Faults

    DEFF Research Database (Denmark)

    Deng, Fujin; Liu, Dong; Wang, Yanbo

    2016-01-01

    in the dc-link of the power converter to improve system performance, but also ensure the grid-side current balancing to increase the generated power of the wind turbine under the unbalanced grid fault, in comparison with the conventional VSWT based on BTB three-level NPC converters. The simulation studies...

  17. Control of variable speed wind turbines with doubly-fed induction generators

    DEFF Research Database (Denmark)

    Hansen, A. D.; Soerensen, Poul; Iov, Florin

    2004-01-01

    is implemented in the dynamic power system simulation tool DIgSILENT powerFactory which allows investigation of the dynamic performance of grid-connected wind turbines within realistic electrical grid models. Simulation results are presented and analysed in different normal operation conditions....

  18. Dynamics in the Modern Upper Atmosphere of Venus: Zonal Wind Transition to Subsolar-to-Antisolar Flow

    Science.gov (United States)

    Livengood, T. A.; Kostiuk, T.; Hewagama, T.; Fast, K. E.

    2017-12-01

    We observed Venus on 19-23 Aug 2010 (UT) to investigate equatorial wind velocities from above the cloud tops through the lower thermosphere. Measurements were made from the NASA Infrared Telescope Facility using the NASA Goddard Space Flight Center Heterodyne Instrument for Planetary Winds and Composition. High-resolution spectra were acquired on a CO2 pressure-broadened absorption feature that probes the lower mesosphere ( 70 km altitude) with a non-LTE core emission of the same transition that probes the lower thermosphere ( 110 km). The resolving power of λ/Δλ≈3×107 determines line-of-sight velocity from Doppler shifts to high precision. The altitude differential between the features enables investigating the transition from zonal wind flow near the cloud tops to subsolar-to-antisolar flow in the thermosphere. The fully-resolved carbon dioxide transition was measured near 952.8808 cm-1 (10.494 µm) rest frequency at the equator with 1 arcsec field-of-view on Venus (24 arcsec diameter) distributed about the central meridian and across the terminator at ±15° intervals in longitude. The non-LTE emission is solar-pumped and appears only on the daylight side, probing subsolar-to-antisolar wind velocity vector flowing radially from the subsolar point through the terminator, which was near the central meridian in these observations and had zero line-of-sight wind projection at the terminator. The velocity of the zonal flow is approximately uniform, with maximum line-of-sight projection at the limb, and can be measured by the frequency of the absorption line on both the daylight and dark side. Variations in Doppler shift between the observable features and the differing angular dependence of the contributing wind phenomena thus provide independent mechanisms to distinguish the dynamical processes at the altitude of each observed spectral feature. Winds up to >100 m/s were determined in previous investigations with uncertainties of order 10 m/s or less.

  19. Offshore wind mapping Mediterranean area using SAR

    DEFF Research Database (Denmark)

    Calaudi, Rosamaria; Arena, Felice; Badger, Merete

    2013-01-01

    Satellite observations of the ocean surface, for example from Synthetic Aperture Radars (SAR), provide information about the spatial wind variability over large areas. This is of special interest in the Mediterranean Sea, where spatial wind information is only provided by sparse buoys, often...... with long periods of missing data. Here, we focus on evaluating the use of SAR for offshore wind mapping. Preliminary results from the analysis of SAR-based ocean winds in Mediterranean areas show interesting large scale wind flow features consistent with results from previous studies using numerical models...

  20. Variability with xylem depth in sap flow in trunks and branches of mature olive trees.

    Science.gov (United States)

    Nadezhdina, Nadezhda; Nadezhdin, Valeriy; Ferreira, Maria Isabel; Pitacco, Andrea

    2007-01-01

    Knowledge of sap flow variability in tree trunks is important for up-scaling transpiration from the measuring point to the whole-tree and stand levels. Natural variability in sap flow, both radial and circumferential, was studied in the trunks and branches of mature olive trees (Olea europea L., cv Coratina) by the heat field deformation method using multi-point sensors. Sapwood depth ranged from 22 to 55 mm with greater variability in trunks than in branches. Two asymmetric types of sap flow radial patterns were observed: Type 1, rising to a maximum near the mid-point of the sapwood; and Type 2, falling continuously from a maximum just below cambium to zero at the inner boundary of the sapwood. The Type 1 pattern was recorded more often in branches and smaller trees. Both types of sap flow radial patterns were observed in trunks of the sample trees. Sap flow radial patterns were rather stable during the day, but varied with soil water changes. A decrease in sap flow in the outermost xylem was related to water depletion in the topsoil. We hypothesized that the variations in sap flow radial pattern in a tree trunk reflects a vertical distribution of water uptake that varies with water availability in different soil layers.

  1. Wind tunnel study of the wind turbine interaction with a boundary-layer flow: Upwind region, turbine performance, and wake region

    Science.gov (United States)

    Bastankhah, M.; Porté-Agel, F.

    2017-06-01

    Comprehensive wind tunnel experiments were carried out to study the interaction of a turbulent boundary layer with a wind turbine operating under different tip-speed ratios and yaw angles. Force and power measurements were performed to characterize the variation of thrust force (both magnitude and direction) and generated power of the wind turbine under different operating conditions. Moreover, flow measurements, collected using high-resolution particle-image velocimetry as well as hot-wire anemometry, were employed to systematically study the flow in the upwind, near-wake, and far-wake regions. These measurements provide new insights into the effect of turbine operating conditions on flow characteristics in these regions. For the upwind region, the results show a strong lateral asymmetry under yawed conditions. For the near-wake region, the evolution of tip and root vortices was studied with the use of both instantaneous and phase-averaged vorticity fields. The results suggest that the vortex breakdown position cannot be determined based on phase-averaged statistics, particularly for tip vortices under turbulent inflow conditions. Moreover, the measurements in the near-wake region indicate a complex velocity distribution with a speed-up region in the wake center, especially for higher tip-speed ratios. In order to elucidate the meandering tendency of far wakes, particular focus was placed on studying the characteristics of large turbulent structures in the boundary layer and their interaction with wind turbines. Although these structures are elongated in the streamwise direction, their cross sections are found to have a size comparable to the rotor area, so that they can be affected by the presence of the turbine. In addition, the study of spatial coherence in turbine wakes reveals that any statistics based on streamwise velocity fluctuations cannot provide reliable information about the size of large turbulent structures in turbine wakes due to the effect of wake

  2. Simulation of Time-Varying Spatially Uniform Pressure and Near-Surface Wind Flows on Building Components and Cladding

    Directory of Open Access Journals (Sweden)

    Seraphy Y. Shen

    2017-05-01

    Full Text Available This paper describes a new full-scale (FS testing apparatus for conducting performance evaluations of FS building envelope systems. The simulator can generate spatially uniform, time-varying pressure conditions associated with Saffir–Simpson Hurricane Wind Scale Category 5 winds while compensating for large air leakage through the specimen and also operate a high-speed wind tunnel, both with dynamic control. This paper presents system details, operating characteristics, and an early case study on the performance of large sectional door systems under wind pressure loading. Failure mechanisms are discussed, and finite element modeling is validated for two specimens. It demonstrates successful dynamic load control for large component and cladding systems, as well as simulation of flows near the building surface. These capabilities serve to complement other FS wind tunnel facilities by offering tools to generate ultimate load conditions on portions of the building. Further, the paper successfully demonstrates the utility of combining physical testing and computational analysis as a matter of routine, which underscores the potential of evolving FS testing to encompass cyber–physical approaches.

  3. Using wind speed from a blade-mounted flow sensor for power and load assessment on modern wind turbines

    DEFF Research Database (Denmark)

    Pedersen, Mads M.; Larsen, Torben J.; Madsen, Helge Aa

    2017-01-01

    with the actual power production as well as the flap-wise loads as it is measured close to the blade where the aerodynamic forces are acting. Conventional power curves are based on at least 180 h of 10 min mean values, but using the blade-mounted flow sensor both the observation average time and the overall...... assessment time can potentially be shortened. The basis for this hypothesis is that the sensor is able to provide more observations with higher accuracy, as the sensor follows the rotation of the rotor and because of the high correlation between the flow at the blades and the power production...

  4. Power Flow Analysis of HVAC and HVDC Transmission Systems for Offshore WindParks

    DEFF Research Database (Denmark)

    da Silva, Filipe Miguel Faria; Castro, Rui

    2009-01-01

    As the onshore wind resource is running shorter, wind power promoters are paying attention to the offshore resources. As in most cases there is no load offshore, wind power must be transmitted to the main land. To do so, two options are available: HVAC and HVDC transmission systems. In this paper...... that HVAC solution is limited by the distance to shore and by the wind transmitted power. HVDC options do not show these limitations, but are more expensive and more delicate to deal with, because there is a lack of operational experience, so far....

  5. Pulsatile flow of blood and heat transfer with variable viscosity under magnetic and vibration environment

    Energy Technology Data Exchange (ETDEWEB)

    Shit, G.C., E-mail: gopal_iitkgp@yahoo.co.in; Majee, Sreeparna

    2015-08-15

    Unsteady flow of blood and heat transfer characteristics in the neighborhood of an overlapping constricted artery have been investigated in the presence of magnetic field and whole body vibration. The laminar flow of blood is taken to be incompressible and Newtonian fluid with variable viscosity depending upon temperature with an aim to provide resemblance to the real situation in the physiological system. The unsteady flow mechanism in the constricted artery is subjected to a pulsatile pressure gradient arising from systematic functioning of the heart and from the periodic body acceleration. The numerical computation has been performed using finite difference method by developing Crank–Nicolson scheme. The results show that the volumetric flow rate, skin-friction and the rate of heat transfer at the wall are significantly altered in the downstream of the constricted region. The axial velocity profile, temperature and flow rate increases with increase in temperature dependent viscosity, while the opposite trend is observed in the case of skin-friction and flow impedance. - Highlights: • We have investigated the pulsatile MHD flow of blood and heat transfer in arteries. • The influence of periodic body acceleration has been taken into account. • The temperature dependent viscosity of blood is considered. • The variable viscosity has an increasing effect on blood flow and heat transfer. • The overall temperature distribution enhances in the presence of magnetic field.

  6. Modelling and Design of a 3 kW Permanent Magnet Synchronous Generator suitable for Variable Speed Small Wind Turbines

    Directory of Open Access Journals (Sweden)

    Acharya Parash

    2016-01-01

    Full Text Available This paper presents the modeling and design of a 3 kW Permanent Magnet Synchronous Generator (PMSG used for a variable speed wind turbine. Initially, the PMSG is modeled in the d-q reference frame. Different optimized parameters of the generator are extracted from the design and used in simulation of the PMSG. The generator output power is matched with the power of the turbine such that the generator is not either over-sized or under-sized.

  7. Influence of temporally variable groundwater flow conditions on point measurements and contaminant mass flux estimations

    DEFF Research Database (Denmark)

    Rein, Arno; Bauer, S; Dietrich, P

    2009-01-01

    information representing observation wells installed along control planes using different well frequencies and configurations. Results of the scenario simulations show that temporally variable flow conditions can lead to significant temporal fluctuations of the concentration and thus are a substantial source...... is present, the concentration variability due to a fluctuating groundwater flow direction varies significantly within the control plane and between the different realizations. Determination of contaminant mass fluxes is also influenced by the temporal variability of the concentration measurement, especially...... periods of groundwater flow fluctuation. For the determination of mass fluxes at heterogeneous sites, however, local fluxes, which may vary considerably along a control plane, have to be accounted for. Here, dosimeter sampling in combination with time integrated local water flux measurements can improve...

  8. Extension of SMAC scheme for variable density flows under strong temperature gradient

    Science.gov (United States)

    Anwer, S. F.; Khan, H. Naushad; Sanghi, S.; Ahmad, A.; Yahya, S. M.

    2012-06-01

    An extension of SMAC scheme is proposed for variable density flows under low Mach number approximation. The algorithm is based on a predictor-corrector time integration scheme that employs a projection method for the momentum equation. A constant-coefficient Poisson equation is solved for the pressure following both the predictor and corrector steps to satisfy the continuity equation at each time step. Spatial discretization is performed on a collocated grid system that offers computational simplicity and straight forward extension to curvilinear coordinate systems. To avoid the pressure odd-even decoupling that is typically encountered in such grids, a flux interpolation technique is introduced for the equations governing variable density flows. An important characteristic of the proposed algorithm is that it can be applied to flows in both open and closed domains. Its robustness and accuracy are illustrated with a non-isothermal, turbulent channel flow at temperature ratio of 1.01 and 2.

  9. Heat transfer and flow analysis of nanofluid flow between parallel plates in presence of variable magnetic field using HPM

    Energy Technology Data Exchange (ETDEWEB)

    Hatami, M., E-mail: m.hatami@tue.nl [Esfarayen University of Technology, Mechanical Engineering Department, Esfarayen, North Khorasan (Iran, Islamic Republic of); Jing, Dengwei; Song, Dongxing [International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi' an 710049 (China); Sheikholeslami, M.; Ganji, D.D. [Department of Mechanical Engineering, Babol University of Technology, Babol (Iran, Islamic Republic of)

    2015-12-15

    In this study, effect of variable magnetic field on nanofluid flow and heat transfer analysis between two parallel disks is investigated. By using the appropriate transformation for the velocity, temperature and concentration, the basic equations governing the flow, heat and mass transfer were reduced to a set of ordinary differential equations. These equations subjected to the associated boundary conditions were solved analytically using Homotopy perturbation method. The analytical investigation is carried out for different governing parameters namely: squeeze number, suction parameter, Hartmann number, Brownian motion parameter, thermophrotic parameter and Lewis number. Results show that Nusselt number has direct relationship with Brownian motion parameter and thermophrotic parameter but it is a decreasing function of squeeze number, suction parameter, Hartmann number and Lewis number. - Highlights: • Heat and mass transfer of nanofluids between parallel plates investigated. • A variable magnetic field is applied on the plates. • Governing equations are solved analytically. • Effects of physical parameters are discussed on the Nusselt number.

  10. Heat transfer and flow analysis of nanofluid flow between parallel plates in presence of variable magnetic field using HPM

    International Nuclear Information System (INIS)

    Hatami, M.; Jing, Dengwei; Song, Dongxing; Sheikholeslami, M.; Ganji, D.D.

    2015-01-01

    In this study, effect of variable magnetic field on nanofluid flow and heat transfer analysis between two parallel disks is investigated. By using the appropriate transformation for the velocity, temperature and concentration, the basic equations governing the flow, heat and mass transfer were reduced to a set of ordinary differential equations. These equations subjected to the associated boundary conditions were solved analytically using Homotopy perturbation method. The analytical investigation is carried out for different governing parameters namely: squeeze number, suction parameter, Hartmann number, Brownian motion parameter, thermophrotic parameter and Lewis number. Results show that Nusselt number has direct relationship with Brownian motion parameter and thermophrotic parameter but it is a decreasing function of squeeze number, suction parameter, Hartmann number and Lewis number. - Highlights: • Heat and mass transfer of nanofluids between parallel plates investigated. • A variable magnetic field is applied on the plates. • Governing equations are solved analytically. • Effects of physical parameters are discussed on the Nusselt number

  11. Fault-Ride through Strategy for Permanent-Magnet Synchronous Generators in Variable-Speed Wind Turbines

    Directory of Open Access Journals (Sweden)

    Mohamed Abdelrahem

    2016-12-01

    Full Text Available Currently, the electric power production by wind energy conversion systems (WECSs has increased significantly. Consequently, wind turbine (WT generators are requested to fulfill the grid code (GC requirements stated by network operators. In case of grid faults/voltage dips, a mismatch between the generated active power from the wind generator and the active power delivered to the grid is produced. The conventional approach is using a braking chopper (BC in the DC-link to dissipate this active power. This paper proposes a fault-ride through (FRT strategy for variable-speed WECSs based on permanent magnet synchronous generators (PMSGs. The proposed strategy exploits the rotor inertia of the WECS (inertia of the WT and PMSG to store the surplus active power during the grid faults/voltage dips. Thus, no additional hardware components are requested. Furthermore, a direct model predictive control (DMPC scheme for the PMSG is proposed in order to enhance the dynamic behavior of the WECS. The behavior of the proposed FRT strategy is verified and compared with the conventional BC approach for all the operation conditions by simulation results. Finally, the simulation results confirm the feasibility of the proposed FRT strategy.

  12. Power Smoothing of a Variable-Speed Wind Turbine Generator in Association With the Rotor-Speed-Dependent Gain

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yeonhee; Kang, Moses; Muljadi, Eduard; Park, Jung-Wook; Kang, Yong Cheol

    2017-07-01

    This paper proposes a power-smoothing scheme for a variable-speed wind turbine generator (WTG) that can smooth out the WTG's fluctuating power caused by varying wind speeds, and thereby keep the system frequency within a narrow range. The proposed scheme employs an additional loop based on the system frequency deviation that operates in conjunction with the maximum power point tracking (MPPT) control loop. Unlike the conventional, fixed-gain scheme, its control gain is modified with the rotor speed. In the proposed scheme, the control gain is determined by considering the ratio of the output of the additional loop to that of the MPPT loop. To improve the contribution of the scheme toward maintaining the frequency while ensuring the stable operation of WTGs, in the low rotor speed region, the ratio is set to be proportional to the rotor speed; in the high rotor speed region, the ratio remains constant. The performance of the proposed scheme is investigated under varying wind conditions for the IEEE 14-bus system. The simulation results demonstrate that the scheme successfully operates regardless of the output power fluctuation of a WTG by adjusting the gain with the rotor speed, and thereby improves the frequency-regulating capability of a WTG.

  13. Electrostatic lofting variability of lunar dust under solar wind and solar uv irradiance

    Science.gov (United States)

    Cihan Örger, Necmi; Rodrigo Cordova Alarcon, Jose; Cho, Mengu; Toyoda, Kazuhiro

    2016-07-01

    It has been considered that lunar horizon glow is produced by forward scattering of the sunlight above the terminator region by the electrically charged dust grains. Previous lunar missions showed that lunar horizon glow is highly varying phenomenon; therefore, it is required to understand how this physical mechanism fundamentally occurs in order to be able to observe it. Therefore, terminator region and the dayside of the moon are the focus areas of this study in order to explain forward scattering of the sunlight towards night side region in the future steps of this work. In this paper, the results of lunar dust height calculations are presented as a function of solar zenith angle and solar wind properties. First, equilibrium surface potential, Debye length and surface electric field have been calculated to be used in the dust model to predict the lofting of lunar dust under various solar wind conditions. Dependence of the dust lofting on different parameters such as electron temperature or plasma density can be explained from the initial results. In addition, these results showed that zero potential occurs between subsolar point and terminator region as it is expected, where the maximum height of dust particles are minimum, and its position changes according to the solar wind properties and photoemission electron temperature. Relative to this work, a CubeSat mission is currently being developed in Kyushu Institute of Technology to observe lunar horizon glow.

  14. The effect of water temperature and synoptic winds on the development of surface flows over narrow, elongated water bodies

    Science.gov (United States)

    Segal, M.; Pielke, R. A.

    1985-01-01

    Simulations of the thermally induced breeze involved with a relatively narrow, elongated water body is presented in conjunction with evaluations of sensible heat fluxes in a stable marine atmospheric surface layer. The effect of the water surface temperature and of the large-scale synoptic winds on the development of surface flows over the water is examined. As implied by the sensible heat flux patterns, the simulation results reveal the following trends: (1) when the synoptic flow is absent or light, the induced surface breeze is not affected noticeably by a reduction of the water surface temperature; and (2) for stronger synoptic flow, the resultant surface flow may be significantly affected by the water surface temperature.

  15. The response of source-bordering aeolian dunefields to sediment-supply changes 1: Effects of wind variability and river-valley morphodynamics

    Science.gov (United States)

    Sankey, Joel B.; Kasprak, Alan; Caster, Joshua; East, Amy; Fairley, Helen C.

    2018-01-01

    Source-bordering dunefields (SBDs), which are primarily built and maintained with river-derived sediment, are found in many large river valleys and are currently impacted by changes in sediment supply due to climate change, land use changes, and river regulation. Despite their importance, a physically based, applied approach for quantifying the response of SBDs to changes in sediment supply does not exist. To address this knowledge gap, here we develop an approach for quantifying the geomorphic responses to sediment-supply alteration based on the interpretation of dunefield morphodynamics from geomorphic change detection and wind characteristics. We use the approach to test hypotheses about the response of individual dunefields to variability in sediment supply at three SBDs along the Colorado River in Grand Canyon, Arizona, USA during the 11 years between 2002 and 2013 when several river floods rebuilt some river sandbars and channel margin deposits that serve as sediment source areas for the SBDs. We demonstrate that resupply of fluvially sourced aeolian sediment occurred at one of the SBDs, but not at the other two, and attribute this differential response to site-specific variability in geomorphology, wind, and sediment source areas. The approach we present is applied in a companion study to shorter time periods with high-resolution topographic data that bracket individual floods in order to infer the resupply of fluvially sourced aeolian sediment to SBDs by managed river flows. Such an applied methodology could also be useful for measuring sediment connectivity and anthropogenic alterations of connectivity in other coupled fluvial-aeolian environments.

  16. Evaluation of wind flow with a nacelle-mounted continuous-wave lidar

    DEFF Research Database (Denmark)

    Medley, John; Slinger, Chris; Barker, Will

    IR, increasing the confidence in the ZephIR for measuring wind parameters in this configuration. SCADA data from the turbine was combined with measured wind speeds and directions to derive power curves from the mast data (hub-height) and from ZephIR data (hub-height and rotor-equivalent). The rotor...

  17. Enhanced Kalman filtering for a 2D CFD NS wind farm flow model

    NARCIS (Netherlands)

    Doekemeijer, B.M.; van Wingerden, J.W.; Boersma, S.; Pao, L.Y

    2016-01-01

    Wind turbines are often grouped together for financial reasons, but due to wake development this usually results in decreased turbine lifetimes and power capture, and thereby an increased levelized cost of energy (LCOE). Wind farm control aims to minimize this cost by operating turbines at their

  18. Simulating variable-density flows with time-consistent integration of Navier-Stokes equations

    Science.gov (United States)

    Lu, Xiaoyi; Pantano, Carlos

    2017-11-01

    In this talk, we present several features of a high-order semi-implicit variable-density low-Mach Navier-Stokes solver. A new formulation to solve pressure Poisson-like equation of variable-density flows is highlighted. With this formulation of the numerical method, we are able to solve all variables with a uniform order of accuracy in time (consistent with the time integrator being used). The solver is primarily designed to perform direct numerical simulations for turbulent premixed flames. Therefore, we also address other important elements, such as energy-stable boundary conditions, synthetic turbulence generation, and flame anchoring method. Numerical examples include classical non-reacting constant/variable-density flows, as well as turbulent premixed flames.

  19. The impact of non-stationary flows on the surface stress in the weak-wind stable boundary layer

    Science.gov (United States)

    Thomas, Christoph; Mahrt, Larry

    2016-04-01

    The behaviour of turbulent transport in the weak-wind stably stratified boundary layer is examined in terms of the non-stationarity of the wind field based upon field observations. Extensive sonic anemometer measurements from horizontal networks and vertical towers ranging from 12 to 20 m height and innovative fiber-optic distributed temperature sensing observations were collected from three field programs in moderately sloped terrain with a varying degree of surface heterogeneity, namely the Shallow Cold Pool (SCP) and the Flow Over Snow Surfaces (FLOSS) II experiments in Colorado (USA), and the Advanced Canopy Resolution Experiment (ARCFLO) in Oregon (USA). The relationship of the friction velocity to the stratification and small non-stationary submeso motions is studied from several points of view and nominally quantified. The relationship of the turbulence to the stratification is less systematic than expected due to the important submeso-scale motions. Consequently, the roles of the wind speed and stratification are not adequately accommodated by a single non-dimensional combination, such as the bulk Richardson number. However, cause and effect relationships are difficult to isolate because the non-stationary momentum flux significantly modifies the profile of the non-stationary mean flow. The link between the turbulence and accelerations at the surface is examined in terms of the changing vertical structure of the wind profile and sudden increases of downward transport of momentum. The latter may be significant in explaining the small-scale weak turbulence during stable stratification and deviations from conventional flux-profile relationships. Contrary to expectations, the vertical coherence was strongest for weakest winds and declined fast with increasing velocities, which suggests that submeso-scale motions are much deeper than previously thought.

  20. Second Law Analysis for a Variable Viscosity Reactive Couette Flow under Arrhenius Kinetics

    Directory of Open Access Journals (Sweden)

    N. S. Kobo

    2010-01-01

    Full Text Available This study investigates the inherent irreversibility associated with the Couette flow of a reacting variable viscosity combustible material under Arrhenius kinetics. The nonlinear equations of momentum and energy governing the flow system are solved both analytically using a perturbation method and numerically using the standard Newton Raphson shooting method along with a fourth-order Runge Kutta integration algorithm to obtain the velocity and temperature distributions which essentially expedite to obtain expressions for volumetric entropy generation numbers, irreversibility distribution ratio, and the Bejan number in the flow field.