WorldWideScience

Sample records for willamette basin alternative

  1. Shallow aquifer storage and recovery (SASR): Initial findings from the Willamette Basin, Oregon

    Science.gov (United States)

    Neumann, P.; Haggerty, R.

    2012-12-01

    A novel mode of shallow aquifer management could increase the volumetric potential and distribution of groundwater storage. We refer to this mode as shallow aquifer storage and recovery (SASR) and gauge its potential as a freshwater storage tool. By this mode, water is stored in hydraulically connected aquifers with minimal impact to surface water resources. Basin-scale numerical modeling provides a linkage between storage efficiency and hydrogeological parameters, which in turn guides rulemaking for how and where water can be stored. Increased understanding of regional groundwater-surface water interactions is vital to effective SASR implementation. In this study we (1) use a calibrated model of the central Willamette Basin (CWB), Oregon to quantify SASR storage efficiency at 30 locations; (2) estimate SASR volumetric storage potential throughout the CWB based on these results and pertinent hydrogeological parameters; and (3) introduce a methodology for management of SASR by such parameters. Of 3 shallow, sedimentary aquifers in the CWB, we find the moderately conductive, semi-confined, middle sedimentary unit (MSU) to be most efficient for SASR. We estimate that users overlying 80% of the area in this aquifer could store injected water with greater than 80% efficiency, and find efficiencies of up to 95%. As a function of local production well yields, we estimate a maximum annual volumetric storage potential of 30 million m3 using SASR in the MSU. This volume constitutes roughly 9% of the current estimated summer pumpage in the Willamette basin at large. The dimensionless quantity lag #—calculated using modeled specific capacity, distance to nearest in-layer stream boundary, and injection duration—exhibits relatively high correlation to SASR storage efficiency at potential locations in the CWB. This correlation suggests that basic field measurements could guide SASR as an efficient shallow aquifer storage tool.

  2. Preliminary flood-duration frequency estimates using naturalized streamflow records for the Willamette River Basin, Oregon

    Science.gov (United States)

    Lind, Greg D.; Stonewall, Adam J.

    2018-02-13

    In this study, “naturalized” daily streamflow records, created by the U.S. Army Corps of Engineers and the Bureau of Reclamation, were used to compute 1-, 3-, 7-, 10-, 15-, 30-, and 60-day annual maximum streamflow durations, which are running averages of daily streamflow for the number of days in each duration. Once the annual maximum durations were computed, the floodduration frequencies could be estimated. The estimated flood-duration frequencies correspond to the 50-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent probabilities of their occurring or being exceeded each year. For this report, the focus was on the Willamette River Basin in Oregon, which is a subbasin of the Columbia River Basin. This study is part of a larger one encompassing the entire Columbia Basin.

  3. Thermal effects of dams in the Willamette River basin, Oregon

    Science.gov (United States)

    Rounds, Stewart A.

    2010-01-01

    where the annual maximum temperature typically occurred in September or October. Without-dam temperatures also tended to have more daily variation than with-dam temperatures. Examination of the without-dam temperature estimates indicated that dam sites could be grouped according to the amount of streamflow derived from high-elevation, spring-fed, and snowmelt-driven areas high in the Cascade Mountains (Cougar, Big Cliff/Detroit, River Mill, and Hills Creek Dams: Group A), as opposed to flow primarily derived from lower-elevation rainfall-driven drainages (Group B). Annual maximum temperatures for Group A ranged from 15 to 20 degree(s)C, expressed as the 7-day average of the daily maximum (7dADM), whereas annual maximum 7dADM temperatures for Group B ranged from 21 to 25 degrees C. Because summertime stream temperature is at least somewhat dependent on the upstream water source, it was important when estimating without-dam temperatures to use correlations to sites with similar upstream characteristics. For that reason, it also is important to maintain long-term, year-round temperature measurement stations at representative sites in each of the Willamette River basin's physiographic regions. Streamflow and temperature estimates downstream of the major dam sites and throughout the Willamette River were generated using existing CE-QUAL-W2 flow and temperature models. These models, originally developed for the Willamette River water-temperature Total Maximum Daily Load process, required only a few modifications to allow them to run under the greatly reduced without-dam flow conditions. Model scenarios both with and without upstream dams were run. Results showed that Willamette River streamflow without upstream dams was reduced to levels much closer to historical pre-dam conditions, with annual minimum streamflows approximately one-half or less of dam-augmented levels. Thermal effects of the dams varied according to the time of year, from cooling in mid-summer to warm

  4. Geologic features of dam sites in the Nehalem, Rogue, and Willamette River basins, Oregon, 1935-37

    Science.gov (United States)

    Piper, A.M.

    1947-01-01

    The present report comprises brief descriptions of geologic features at 19 potential dam sites in the Nehalem, Rogue, and Willamette River basins in western Oregon. The topography of these site and of the corresponding reservoir site was mapped in 1934-36 under an allocation of funds, by the Public Works Administration for river-utilization surveys by the Conservation Branch of the United States Geological Survey. The field program in Oregon has been under the immediate charge of R. O. Helland. The 19 dam sites are distributed as follows: three on the Nehalem River, on the west or Pacific slope of the Oregon Coast range; four on Little Butte Creek and two on Evans Creek, tributaries of the Rogue River in the eastern part of the Klamath Mountains; four on the South and Middle Santiam Rivers, tributaries of the Willamette River from the west slope of the Cascade mountains; and six on tributaries of the Willamette River from the east slope of the Coast Range. Except in the Evans Creek basin, all the rocks in the districts that were studied are of comparatively late geological age. They include volcanic rocks, crystalline rocks of several types, marine and nonmarine sedimentary rocks, and recent stream deposits. The study of geologic features has sought to estimate the bearing power and water-tightness of the rocks at each dam site, also to place rather broad limits on the type of dam for which the respective sites seem best suited. It was not considered necessary to study the corresponding reservoir sites in detail for excessive leakage appears to be unlikely. Except at three of the four site in the Santiam River basin, no test pits have been dug nor exploratory holes drilled, so that geologic features have been interpreted wholly from natural outcrops and from highway and railroad cuts. Because these outcrops and cuts are few, many problems related to the construction and maintenance of dams can not be answered at the this time and all critical features of the sites

  5. EVALUATING THE IMPACT OF POLICY OPTIONS ON AGRICULTURAL LANDSCAPES: AN ALTERNATIVE-FUTURES APPROACH

    Science.gov (United States)

    Alternative-futures analysis was used to analyze different scenarios of future growth patterns and attendant resource allocations on the agricultural system of Oregon's Willamette River Basin. A stakeholder group formulated three policy alternatives: a continuation of current tr...

  6. Geomorphic and vegetation processes of the Willamette River floodplain, Oregon: current understanding and unanswered science questions

    Science.gov (United States)

    Wallick, J. Rose; Jones, Krista L.; O'Connor, Jim E.; Keith, Mackenzie K.; Hulse, David; Gregory, Stanley V.

    2013-01-01

    This report summarizes the current understanding of floodplain processes and landforms for the Willamette River and its major tributaries. The area of focus encompasses the main stem Willamette River above Newberg and the portions of the Coast Fork Willamette, Middle Fork Willamette, McKenzie, and North, South and main stem Santiam Rivers downstream of U.S. Army Corps of Engineers dams. These reaches constitute a large portion of the alluvial, salmon-bearing rivers in the Willamette Basin. The geomorphic, or historical, floodplain of these rivers has two zones - the active channel where coarse sediment is mobilized and transported during annual flooding and overbank areas where fine sediment is deposited during higher magnitude floods. Historically, characteristics of the rivers and geomorphic floodplain (including longitudinal patterns in channel complexity and the abundance of side channels, islands and gravel bars) were controlled by the interactions between floods and the transport of coarse sediment and large wood. Local channel responses to these interactions were then shaped by geologic features like bedrock outcrops and variations in channel slope. Over the last 150 years, floods and the transport of coarse sediment and large wood have been substantially reduced in the basin. With dam regulation, nearly all peak flows are now confined to the main channels. Large floods (greater than 10-year recurrence interval prior to basinwide flow regulation) have been largely eliminated. Also, the magnitude and frequency of small floods (events that formerly recurred every 2–10 years) have decreased substantially. The large dams trap an estimated 50–60 percent of bed-material sediment—the building block of active channel habitats—that historically entered the Willamette River. They also trap more than 80 percent of the estimated bed material in the lower South Santiam River and Middle and Coast Forks of the Willamette River. Downstream, revetments further

  7. Synthesis of downstream fish passage information at projects owned by the U.S. Army Corps of Engineers in the Willamette River Basin, Oregon

    Science.gov (United States)

    Hansen, Amy C.; Kock, Tobias J.; Hansen, Gabriel S.

    2017-08-07

    The U.S. Army Corps of Engineers (USACE) operates the Willamette Valley Project (Project) in northwestern Oregon, which includes a series of dams, reservoirs, revetments, and fish hatcheries. Project dams were constructed during the 1950s and 1960s on rivers that supported populations of spring Chinook salmon (Oncorhynchus tshawytscha), winter steelhead (O. mykiss), and other anadromous fish species in the Willamette River Basin. These dams, and the reservoirs they created, negatively affected anadromous fish populations. Efforts are currently underway to improve passage conditions within the Project and enhance populations of anadromous fish species. Research on downstream fish passage within the Project has occurred since 1960 and these efforts are documented in numerous reports and publications. These studies are important resources to managers in the Project, so the USACE requested a synthesis of existing literature that could serve as a resource for future decision-making processes. In 2016, the U.S. Geological Survey conducted an extensive literature review on downstream fish passage studies within the Project. We identified 116 documents that described studies conducted during 1960–2016. Each of these documents were obtained, reviewed, and organized by their content to describe the state-of-knowledge within four subbasins in the Project, which include the North Santiam, South Santiam, McKenzie, and Middle Fork Willamette Rivers. In this document, we summarize key findings from various studies on downstream fish passage in the Willamette Project. Readers are advised to review specific reports of interest to insure that study methods, results, and additional considerations are fully understood.

  8. Pre-spawning migration of adult Pacific lamprey, Entosphenus tridentatus, in the Willamette River, Oregon, U.S.A.

    Science.gov (United States)

    Clemens, Benjamin J.; Mesa, Matthew G.; Magie, Robert J.; Young, Douglas A.; Schreck, Carl B.

    2012-01-01

    We describe the migration distances and timing of the adult Pacific lamprey, Entosphenus tridentatus, in the Willamette River Basin (Oregon, U.S.A.). We conducted aerial surveys to track radio-tagged fish upstream of a major waterfall and hydropower complex en route to spawning areas. We detected 24 out of the 43 fish that passed the waterfall-hydropower complex. Of the detected fish, 17 were detected multiple times. Their maximum migration distance upstream in the mainstem Willamette approximated a normal distribution. The maximum distance migrated upstream did not significantly correlate with total body length (r = −0.186, P = 0.385) or date that the fish passed Willamette Falls (r = −0.118, P = 0.582). Fish migrated primarily during the spring to early summer period before stopping during the summer, when peak river temperatures (≥20°C). However, at least three fish continued to migrate upstream after September. Behavior ranged from relatively slow migration, followed by holding; to rapid migration, followed by slow migration further up in the basin. This study provides a basis for informing more detailed research on Pacific lamprey in the future.

  9. Migratory characteristics of spring chinook salmon in the Willamette River

    International Nuclear Information System (INIS)

    Snelling, J.C.; Schreck, C.B.; Bradford, C.S.; Davis, L.E.; Slater, C.H.; Beck, M.T.; Ewing, S.K.

    1993-05-01

    This report documents our research to examine in detail the migration of juvenile and adult spring chinook salmon in the Willamette River. We seek to determine characteristics of seaward migration of spring chinook smolts in relation to oxygen supplementation practices at Willamette Hatchery, and to identify potential sources of adult spring chinook mortality in the Willamette River above Willamette Falls and use this information towards analysis of the study on efficiency of oxygen supplementation. The majority of juvenile spring chinook salmon released from Willamette hatchery in 1991 begin downstream movement immediately upon liberation. They travel at a rate of 1.25 to 3.5 miles per hour during the first 48 hours post-release. Considerably slower than the water velocities available to them. Juveniles feed actively during migration, primarily on aquatic insects. Na + /K + gill ATPase and cortisol are significantly reduced in juveniles reared in the third pass of the Michigan series with triple density and oxygen supplementation, suggesting that these fish were not as well developed as those reared under other treatments. Returning adult spring chinook salmon migrate upstream at an average rate of about 10 to 20 miles per day, but there is considerable between fish variation. Returning adults exhibit a high incidence of wandering in and out of the Willamette River system above and below Willamette Falls

  10. Summary Report for Bureau of Fisheries Stream Habitat Surveys : Willamette River Basin, 1934-1942, Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    McIntosh, Bruce A.; Clark, Sharon E.; Sedell, James R.

    1995-01-01

    This document contains summary reports of stream habitat-surveys, conducted in the Willamette River basin, by the Bureau of Fisheries (BOF, now National Marine Fisheries Service) from 1934-1942. These surveys were part of a larger project to survey streams in the Columbia River basin that provided, or had provided, spawning and rearing habitat for salmon and steelhead (Rich, 1948). The purpose of the survey was, as described by Rich, 'to determine the present condition of the various tributaries with respect to their availability and usefulness for the migration, breeding, and rearing of migratory fishes'. Current estimates of the loss of anadromous fish habitat in the Columbia River Basin are based on a series of reports published from 1949-1952 by the U.S. Fish and Wildlife Service. The reports were brief, qualitative accounts of over 5000 miles of stream surveys conducted by the BOF from 1934-1946 (Bryant, 1949; Bryant and Parkhurst, 1950; Parkhurst, 1950a-c; Parkhurst et al., 1950). Despite their brevity, these BOF reports have formed the basis for estimating fish habitat losses and conditions in the Columbia River Basin (Fulton, 1968, 1970; Thompson, 1976; NPPC, 1986). Recently, the field notebooks from the BOF surveys were discovered. The data is now archived and stored in the Forest Science DataBank at Oregon State University (Stafford et al., 1984; 1988). These records are the earliest and most comprehensive documentation available of the condition and extent of anadromous fish habitat before hydropower development in the Columbia River Basin. They provide the baseline data for quantifying changes and setting a benchmark for future restoration of anadromous fish habitat throughout the Basin. The summaries contained in this book are exact replicates of the originals. Due to discrepancies between the field data and the summaries, the database should be used to assess pool and substrate conditions. This data is available from the Bonneville Power

  11. Migratory Characteristics of Spring Chinook Salmon in the Willamette River : Annual Report 1991.

    Energy Technology Data Exchange (ETDEWEB)

    Snelling, John C.

    1993-05-01

    This report documents our research to examine in detail the migration of juvenile and adult spring chinook salmon in the Willamette River. We seek to determine characteristics of seaward migration of spring chinook smolts in relation to oxygen supplementation practices at Willamette Hatchery, and to identify potential sources of adult spring chinook mortality in the Willamette River above Willamette Falls and use this information towards analysis of the study on efficiency of oxygen supplementation. The majority of juvenile spring chinook salmon released from Willamette hatchery in 1991 begin downstream movement immediately upon liberation. They travel at a rate of 1.25 to 3.5 miles per hour during the first 48 hours post-release. Considerably slower than the water velocities available to them. Juveniles feed actively during migration, primarily on aquatic insects. Na{sup +}/K{sup +} gill ATPase and cortisol are significantly reduced in juveniles reared in the third pass of the Michigan series with triple density and oxygen supplementation, suggesting that these fish were not as well developed as those reared under other treatments. Returning adult spring chinook salmon migrate upstream at an average rate of about 10 to 20 miles per day, but there is considerable between fish variation. Returning adults exhibit a high incidence of wandering in and out of the Willamette River system above and below Willamette Falls.

  12. L-Reactor 186-basin cleaning alternatives

    International Nuclear Information System (INIS)

    Turcotte, M.D.S.

    1983-01-01

    Operation of L Reactor will necessitate annual cleaning of the L Area 186 basins. Alternatives are presented for sediment discharge due to 186-basin cleaning activities as a basis for choosing the optimal cleaning method. Current cleaning activities (i.e. removal of accumulated sediments) for the P, C and K-Area 186 basins result in suspended solids concentrations in the effluent waters above the NPDES limits, requiring an exemption from the NPDES permit for these short-term releases. The objective of mitigating the 186-basin cleaning activities is to decrease the suspended solids concentrations to within permit limits while continuing satisfactory operation of the basins

  13. 33 CFR 165.1312 - Security Zone; Portland Rose Festival on Willamette River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Security Zone; Portland Rose Festival on Willamette River. 165.1312 Section 165.1312 Navigation and Navigable Waters COAST GUARD... § 165.1312 Security Zone; Portland Rose Festival on Willamette River. (a) Location. The following area...

  14. 78 FR 4331 - Safety Zone; Sellwood Bridge Move; Willamette River, Portland, OR

    Science.gov (United States)

    2013-01-22

    ... Sellwood Bridge as it is being moved. This safety zone will also allow full maneuverability for... 1625-AA00 Safety Zone; Sellwood Bridge Move; Willamette River, Portland, OR AGENCY: Coast Guard, DHS... the Sellwood Bridge, located on the Willamette River in Portland, Oregon, while it is being relocated...

  15. Sediment oxygen demand in the lower Willamette River, Oregon, 1994

    Science.gov (United States)

    Caldwell, James M.; Doyle, Micelis C.

    1995-01-01

    An investigation of sediment oxygen demand (SOD) at the interface of the stream and stream bed was performed in the lower Willamette River (river mile 51 to river mile 3) during August, 1994, as part of a cooperative project with the Oregon Department of Environmental Quality. The primary goals of the investigation were to measure the spatial variability of SOD in the lower Willamette River and to relate SOD to bottom-sediment characteristics.

  16. 77 FR 15263 - Security Zone; Portland Rose Festival on Willamette River; Portland, OR

    Science.gov (United States)

    2012-03-15

    ... Zone; Portland Rose Festival on Willamette River; Portland, OR AGENCY: Coast Guard, DHS. ACTION: Notice of enforcement of regulation. SUMMARY: The Coast Guard will enforce the Portland Rose Festival... Willamette River during the Portland Rose festival. During the enforcement period, no person or vessel may...

  17. 78 FR 60220 - Safety Zone; Fireworks Display, Willamette River, Oregon City, OR

    Science.gov (United States)

    2013-10-01

    ... 1625-AA00 Safety Zone; Fireworks Display, Willamette River, Oregon City, OR AGENCY: Coast Guard, DHS... River south of the I-205 Bridge and north of the Oregon City Bridge, Oregon City, OR. The safety zone... safety zone: (1) Location. All waters of the Willamette River, Oregon City, OR, between the I-205 Bridge...

  18. 77 FR 62442 - Safety Zone; Oregon City Bridge Grand Opening Fireworks Display; Willamette River, Oregon City, OR

    Science.gov (United States)

    2012-10-15

    ... 1625-AA00 Safety Zone; Oregon City Bridge Grand Opening Fireworks Display; Willamette River, Oregon... establishing a safety zone on the Willamette River between the Oregon City Bridge and the Interstate 205 Bridge... established on the Willamette River from shore to shore between the Oregon City Bridge and the Interstate 205...

  19. 33 CFR 162.225 - Columbia and Willamette Rivers, Washington and Oregon; administration and navigation.

    Science.gov (United States)

    2010-07-01

    ... the river as appropriate such temporary speed regulations as he may deem necessary to protect the... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Columbia and Willamette Rivers... NAVIGATION REGULATIONS § 162.225 Columbia and Willamette Rivers, Washington and Oregon; administration and...

  20. Alternative concepts for spent fuel storage basin expansion at Morris Operation

    International Nuclear Information System (INIS)

    Graf, W.A. Jr.; King, C.E.; Miller, G.P.; Shadel, F.H.; Sloat, R.J.

    1980-08-01

    Alternative concepts for increasing basin capabilities for storage of spent fuel at the Morris Operation have been defined in a series of simplified flow diagrams and equipment schematics. Preliminary concepts have been outlined for (1) construction alternatives for an add-on basin, (2) high-density baskets for storage of fuel bundles or possible consolidated fuel rods in the existing or add-on basins, (3) modifications to the existing facility for increasing cask handling and fuel receiving capabilities and (4) accumulation, treatment and disposal of radwastes from storage operations. Preliminary capital and operating costs have been prepared and resource and schedule requirements for implementing the concepts have been estimated. The basin expansion alternatives would readily complement potential dry storage projects at the site in an integrated multi-stage program that could provide a total storage capacity of up to 7000 tonnes of spent fuel

  1. Migratory Characteristics of Juvenile Spring Chinook Salmon in the Willamette River : Completion Report 1994.

    Energy Technology Data Exchange (ETDEWEB)

    Schreck, Carl B.; Snelling, J.C.; Ewing, R.E.; Bradford, C.S.; Davis, L.E.; Slater, C.H.

    1994-01-01

    The objective of this research was to examine in detail the migration of juvenile spring chinook salmon (Oncorhynchus tshawytscha) in the Willamette River, Oregon. The authors wanted to determine characteristics of seaward migration of spring chinook smolts in relation to the oxygen supplementation practices at the Oregon Department of Fish and Wildlife (ODFW) Willamette Hatchery and use this information to strengthen the design of the oxygen supplementation project. There is little information available on the effects of oxygen supplementation at hatcheries on the migratory characteristics of juvenile salmon. Such information is required to assess the use of oxygen supplementation as a means of improving hatchery production, its effect on imprinting of juveniles, and finally the return of adults. In the event that oxygen supplementation provides for improved production and survival of juvenile chinook salmon at Willamette Hatchery, background information on the migration characteristics of these fish will be required to effectively utilize the increased production within the goals of the Willamette Fish Management Plan. Furthermore this technology may be instrumental in the goal of doubling the runs of spring Chinook salmon in the Columbia River. While evaluation of success is dependent on evaluation of the return of adults with coded wire tags, examination of the migratory characteristics of hatchery smolts may prove to be equally informative. Through this research it is possible to determine the rate at which individuals from various oxygenation treatment groups leave the Willamette River system, a factor which may be strongly related to adult return rate.

  2. Migratory characteristics of juvenile spring chinook salmon in the Willamette River. Completion report 1994

    International Nuclear Information System (INIS)

    Schreck, C.B.; Snelling, J.C.; Ewing, R.E.; Bradford, C.S.; Davis, L.E.; Slater, C.H.

    1994-01-01

    The objective of this research was to examine in detail the migration of juvenile spring chinook salmon (Oncorhynchus tshawytscha) in the Willamette River, Oregon. The authors wanted to determine characteristics of seaward migration of spring chinook smolts in relation to the oxygen supplementation practices at the Oregon Department of Fish and Wildlife (ODFW) Willamette Hatchery and use this information to strengthen the design of the oxygen supplementation project. There is little information available on the effects of oxygen supplementation at hatcheries on the migratory characteristics of juvenile salmon. Such information is required to assess the use of oxygen supplementation as a means of improving hatchery production, its effect on imprinting of juveniles, and finally the return of adults. In the event that oxygen supplementation provides for improved production and survival of juvenile chinook salmon at Willamette Hatchery, background information on the migration characteristics of these fish will be required to effectively utilize the increased production within the goals of the Willamette Fish Management Plan. Furthermore this technology may be instrumental in the goal of doubling the runs of spring Chinook salmon in the Columbia River. While evaluation of success is dependent on evaluation of the return of adults with coded wire tags, examination of the migratory characteristics of hatchery smolts may prove to be equally informative. Through this research it is possible to determine the rate at which individuals from various oxygenation treatment groups leave the Willamette River system, a factor which may be strongly related to adult return rate

  3. 78 FR 33224 - Safety Zone; Grain-Shipment and Grain-Shipment Assist Vessels, Columbia and Willamette Rivers

    Science.gov (United States)

    2013-06-04

    ... 1625-AA00 Safety Zone; Grain-Shipment and Grain-Shipment Assist Vessels, Columbia and Willamette Rivers... Guard is establishing a temporary safety zone around all inbound and outbound grain-shipment and grain-shipment assist vessels involved in commerce with the Columbia Grain facility on the Willamette River in...

  4. 78 FR 57261 - Safety Zone; Grain-Shipment and Grain-Shipment Assist Vessels, Columbia and Willamette Rivers

    Science.gov (United States)

    2013-09-18

    ... 1625-AA00 Safety Zone; Grain-Shipment and Grain-Shipment Assist Vessels, Columbia and Willamette Rivers... temporary safety zone around all inbound and outbound grain-shipment and grain-shipment assist vessels involved in commerce with the Columbia Grain facility on the Willamette River in Portland, OR, the United...

  5. Temperature Effects of Point Sources, Riparian Shading, and Dam Operations on the Willamette River, Oregon

    Science.gov (United States)

    Rounds, Stewart A.

    2007-01-01

    Water temperature is an important factor influencing the migration, rearing, and spawning of several important fish species in rivers of the Pacific Northwest. To protect these fish populations and to fulfill its responsibilities under the Federal Clean Water Act, the Oregon Department of Environmental Quality set a water temperature Total Maximum Daily Load (TMDL) in 2006 for the Willamette River and the lower reaches of its largest tributaries in northwestern Oregon. As a result, the thermal discharges of the largest point sources of heat to the Willamette River now are limited at certain times of the year, riparian vegetation has been targeted for restoration, and upstream dams are recognized as important influences on downstream temperatures. Many of the prescribed point-source heat-load allocations are sufficiently restrictive that management agencies may need to expend considerable resources to meet those allocations. Trading heat allocations among point-source dischargers may be a more economical and efficient means of meeting the cumulative point-source temperature limits set by the TMDL. The cumulative nature of these limits, however, precludes simple one-to-one trades of heat from one point source to another; a more detailed spatial analysis is needed. In this investigation, the flow and temperature models that formed the basis of the Willamette temperature TMDL were used to determine a spatially indexed 'heating signature' for each of the modeled point sources, and those signatures then were combined into a user-friendly, spreadsheet-based screening tool. The Willamette River Point-Source Heat-Trading Tool allows the user to increase or decrease the heating signature of each source and thereby evaluate the effects of a wide range of potential point-source heat trades. The predictions of the Trading Tool were verified by running the Willamette flow and temperature models under four different trading scenarios, and the predictions typically were accurate

  6. Origin, Extent, and Thickness of Quaternary Geologic Units in the Willamette Valley, Oregon

    Science.gov (United States)

    O'Connor, Jim E.; Sarna-Wojcicki, Andrei M.; Wozniak, Karl C.; Polette, Danial J.; Fleck, Robert J.

    2001-01-01

    Stratigraphic and chronologic information collected for Quaternary deposits in the Willamette Valley, Oregon, provides a revised stratigraphic framework that serves as a basis for a 1:250,000-scale map, as well as for thickness estimates of widespread Quaternary geologic units. We have mapped 11 separate Quaternary units that are differentiated on the basis of stratigraphic, topographic, pedogenic, and hydrogeologic properties. In summation, these units reflect four distinct episodes in the Quaternary geologic development of the Willamette Valley: 1) Fluvial sands and gravels that underlie terraces flanking lowland margins and tributary valleys were probably deposited between 2.5 and 0.5 million years ago. They are the oldest widespread surficial Quaternary deposits in the valley. Their present positions and preservation are undoubtedly due to postdepositional tectonic deformation - either by direct tectonic uplift of valley margins, or by regional tectonic controls on local base level. 2) Tertiary and Quaternary excavation or tectonic lowering of the Willamette Valley accommodated as much as 500 m (meters) of lacustrine and fluvial fill. Beneath the lowland floor, much of the upper 10 to 50 m of fill is Quaternary sand and gravel deposited by braided channel systems in subhorizontal sheets 2 to 10 m thick. These deposits grade to gravel fans 40 to 100 m thick where major Cascade Range rivers enter the valley and are traced farther upstream as much thinner valley trains of coarse gravel. The sand and gravel deposits have ages that range from greater than 420,000 to about 12,000 years old. A widely distributed layer of sand and gravel deposited at about 12 ka (kiloannum, thousands of years before the present) is looser and probably more permeable than older sand and gravel. Stratigraphic exposures and drillers' logs indicate that this late Pleistocene unit is mostly between 5 and 20 m thick where it has not been subsequently eroded by the Willamette River and its

  7. Quality of surface waters in the lower Columbia River Basin

    Science.gov (United States)

    Santos, John F.

    1965-01-01

    This report, made during 1959-60, provides reconnaissance data on the quality of waters in the lower Columbia River basin ; information on present and future water problems in the basin; and data that can be employed both in water-use studies and in planning future industrial, municipal, and agricultural expansion within this area. The lower Columbia River basin consists of approximately 46,000 square miles downstream from the confluence of the Snake and Columbia Rivers The region can be divided into three geographic areas. The first is the heavily forested, sparsely populated mountain regions in which quality of water in general is related to geologic and climatological factors. The second is a semiarid plateau east of the Cascade Mountains; there differences in geology and precipitation, together with more intensive use of available water for irrigation, bring about marked differences in water quality. The third is the Willamette-Puget trough area in which are concentrated most of the industry and population and in which water quality is influenced by sewage and industrial waste disposal. The majority of the streams in the lower Columbia River basin are calcium magnesium bicarbonate waters. In general, the rivers rising in the. Coast Range and on the west slope of the Cascade Range contain less than 100 parts per million of dissolved solids, and hardness of the water is less than 50 parts per million. Headwater reaches of the streams on the east slope of the Cascade Range are similar to those on the west slope; but, downstream, irrigation return flows cause the dissolved-solids content and hardness to increase. Most of the waters, however, remain calcium magnesium bicarbonate in type. The highest observed dissolved-solids concentrations and also some changes in chemical composition occur in the streams draining the more arid parts of the area. In these parts, irrigation is chiefly responsible for increasing the dissolved-solids concentration and altering the

  8. Oregon Trust Agreement Planning Project : Potential Mitigations to the Impacts on Oregon Wildlife Resources Associated with Relevant Mainstem Columbia River and Willamette River Hydroelectric Projects.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administration.

    1993-10-01

    A coalition of the Oregon wildlife agencies and tribes (the Oregon Wildlife Mitigation Coalition) have forged a cooperative effort to promote wildlife mitigation from losses to Oregon wildlife resources associated with the four mainstream Columbia River and the eight Willamette River Basin hydroelectric projects. This coalition formed a Joint Advisory Committee, made up of technical representatives from all of the tribes and agencies, to develop this report. The goal was to create a list of potential mitigation opportunities by priority, and to attempt to determine the costs of mitigating the wildlife losses. The information and analysis was completed for all projects in Oregon, but was gathered separately for the Lower Columbia and Willamette Basin projects. The coalition developed a procedure to gather information on potential mitigation projects and opportunities. All tribes, agencies and interested parties were contacted in an attempt to evaluate all proposed or potential mitigation. A database was developed and minimum criteria were established for opportunities to be considered. These criteria included the location of the mitigation site within a defined area, as well as other criteria established by the Northwest Power Planning Council. Costs were established for general habitats within the mitigation area, based on estimates from certified appraisers. An analysis of the cost effectiveness of various types of mitigation projects was completed. Estimates of operation and maintenance costs were also developed. The report outlines strategies for gathering mitigation potentials, evaluating them, determining their costs, and attempting to move towards their implementation.

  9. An Isotopic view of water and nitrogen transport through the vadose zone in Oregon's southern Willamette Valley's Groundwater Management Area

    Science.gov (United States)

    Background/Question/MethodsGroundwater nitrate contamination affects thousands of households in Oregon's southern Willamette Valley and many more across the Pacific Northwest. The southern Willamette Valley Groundwater Management Area (SWV GWMA) was established in 2004 due to nit...

  10. A New Hydrogeological Research Site in the Willamette River Floodplain

    Science.gov (United States)

    The Willamette River is a ninth-order tributary of the Columbia which passes through a productive and populous region in northwest Oregon. Where unconstrained by shoreline revetments, the floodplain of this river is a high-energy, dynamic system which supports a variety of ripari...

  11. 77 FR 3607 - Drawbridge Operation Regulation; Willamette River, Portland, OR

    Science.gov (United States)

    2012-01-25

    ... deviation from the regulation governing the operation of the Burlington Northern Santa Fe Railway Bridge... Northern Santa Fe (BNSF) Railway has requested to not open the BNSF Railroad Lift Bridge for vessels to... deviation allows the lift span of the BNSF Railway Bridge across the Willamette River, mile 6.9, to remain...

  12. 76 FR 28315 - Security Zone; Portland Rose Festival on Willamette River

    Science.gov (United States)

    2011-05-17

    ... Zone; Portland Rose Festival on Willamette River AGENCY: Coast Guard, DHS. ACTION: Notice of enforcement of regulation. SUMMARY: The Coast Guard will enforce the Portland Rose Festival Security Zone in... River during the Portland Rose festival. During the enforcement period, no person or vessel may enter or...

  13. An Isotopic View of Water and Nitrate Transport Through the Vadose Zone in Oregon’s Southern Willamette Valley’s Groundwater Management Area (S-GWMA)

    Science.gov (United States)

    Groundwater nitrate contamination affects thousands of households in Oregon’s southern Willamette Valley and many more across the USA. The southern Willamette Valley Groundwater Management Area (GWMA) was established in 2004 due to nitrate levels in the groundwater exceedi...

  14. Life-cycle cost and impacts: alternatives for managing KE basin sludge

    International Nuclear Information System (INIS)

    Johnson, L.M.

    1997-01-01

    This document presents the results of a life-cycle cost and impacts evaluation of alternatives for managing sludge that will be removed from the K Basins. The two basins are located in the 100-K Area of the Hanford Site. This evaluation was conducted by Fluor Daniel Hanford, Inc. (FDH) and its subcontractors to support decisions regarding the ultimate disposition of the sludge. The long-range plan for the Hanford Site calls for spent nuclear fuel (SNF), sludge, debris, and water to be removed from the K East (KE) and K West (KW) Basins. This activity will be conducted as a removal action under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). The scope of the CERCLA action will be limited to removing the SNF, sludge, debris, and water from the basins and transferring them to authorized facilities for interim storage and/or treatment and disposal. The scope includes treating the sludge and water in the 100-K Area prior to the transfer. Alternatives for the removal action are evaluated in a CERCLA engineering evaluation/cost analysis (EE/CA) and include different methods for managing sludge from the KE Basins. The scope of the removal action does not include storing, treating, or disposing of the sludge once it is transferred to the receiving facility and the EE/CA does not evaluate those downstream activities. This life-cycle evaluation goes beyond the EE/CA and considers the full life-cycle costs and impacts of dispositioning sludge

  15. Vegetation dynamics of restored and remnant Willamette Valley, OR wet prairie wetlands

    Science.gov (United States)

    Wet prairie wetlands are now one of the rarest habitat types in the Willamette Valley of Oregon, USA. Less than two percent of their historic extent remains, with most having been converted into agricultural fields (Christy and Alverson 2011, ONHP 1983). This habitat is the obl...

  16. Alternatives for water basin spent fuel storage: executive summary and comparative evaluation

    International Nuclear Information System (INIS)

    Viebrock, J.M.

    1979-09-01

    A five part report identifies and evaluates alternatives to conventional methods for water basin storage of irradiated light water reactor fuel assemblies (spent fuel). A recommendation is made for development or further evaluation of one attractive alternative: Proceed to develop fuel disassembly with subsequent high density storage of fuel pins (pin storage). The storage alternatives were evaluated for emplacement at reactor, in existing away-from-reactor storage facilities and in new away-from-reactor facilities. In the course of the study, the work effort necessarily extended beyond the pool wall in scope to properly assess the affects of storage alternatives on AFT systems

  17. DISTRIBUTION OF AQUATIC OFF-CHANNEL HABITATS AND ASSOCIATED RIPARIAN VEGETATION, WILLAMETTE RIVER, OREGON, USA

    Science.gov (United States)

    The extent of aquatic off-channel habitats such as secondary and side channels, sloughs, and alcoves, have been reduced more than 50% since the 1850s along the upper main stem of the Willamette River, Oregon, USA. Concurrently, the hydrogeomorphic potential, and associated flood...

  18. Ground-water pumpage in the Willamette lowland regional aquifer system, Oregon and Washington, 1990

    Science.gov (United States)

    Collins, Charles A.; Broad, Tyson M.

    1996-01-01

    Ground-water pumpage for 1990 was estimated for an area of about 5,700 square miles in northwestern Oregon and southwestern Washington as part of the Puget-Willamette Lowland Regional Aquifer System Analysis study. The estimated total ground-water pumpage in 1990 was about 340,000 acre-feet. Ground water in the study area is pumped mainly from Quaternary sediment; lesser amounts are withdrawn from Tertiary volcanic materials. Large parts of the area are used for agriculture, and about two and one-half times as much ground water was pumped for irrigation as for either public- supply or industrial needs. Estimates of ground- water pumpage for irrigation in the central part of the Willamette Valley were generated by using image-processing techniques and Landsat Thematic Mapper data. Field data and published reports were used to estimate pumpage for irrigation in other parts of the study area. Information on public- supply and industrial pumpage was collected from Federal, State, and private organizations and individuals.

  19. Methodology for the selection of alternatives to the waterfall division of hydro graphical basin, considering environmental impacts

    International Nuclear Information System (INIS)

    Cunha, S.H.F. da; Pires, S.H.; Rovere, E.L. La; Pereira, M.V.F.

    1993-01-01

    This paper presents the many stages of a new methodology propose to selection of alternatives of waterfall division of hydro graphical basin considering environmental impacts. The methodology uses the techniques of hierarchical analysis in evaluation of environmental impacts, simulation the individualized power plants in energy evaluation and multi-objective analysis in selection of better alternative of division of basin waterfall. The methodology still foresee moments and mechanisms to take into account the opinion of different social sectors. (C.M.)

  20. Willamette Valley Ecoregion: Chapter 3 in Status and trends of land change in the Western United States--1973 to 2000

    Science.gov (United States)

    Wilson, Tamara S.; Sorenson, Daniel G.

    2012-01-01

    The Willamette Valley Ecoregion (as defined by Omernik, 1987; U.S. Environmental Protection Agency, 1997) covers approximately 14,458 km² (5,582 mi2), making it one of the smallest ecoregions in the conterminous United States. The long, alluvial Willamette Valley, which stretches north to south more than 193 km and ranges from 32 to 64 km wide, is nestled between the sedimentary and metamorphic Coast Ranges (Coast Range Ecoregion) to the west and the basaltic Cascade Range (Cascades Ecoregion) to the east (fig. 1). The Lewis and Columbia Rivers converge at the ecoregion’s northern boundary in Washington state; however, the majority of the ecoregion falls within northwestern Oregon. Interstate 5 runs the length of the valley to its southern boundary with the Klamath Mountains Ecoregion. Topography here is relatively flat, with elevations ranging from sea level to 122 m. This even terrain, coupled with mild, wet winters, warm, dry summers, and nutrient-rich soil, makes the Willamette Valley the most important agricultural region in Oregon. Population centers are concentrated along the valley floor. According to estimates from the Oregon Department of Fish and Wildlife (2006), over 2.3 million people lived in Willamette Valley in 2000. Portland, Oregon, is the largest city, with 529,121 residents (U.S. Census Bureau, 2000). Other sizable cities include Eugene, Oregon; Salem (Oregon’s state capital); and Vancouver, Washington. Despite the large urban areas dotting the length of the Willamette Valley Ecoregion, agriculture and forestry products are its economic foundation (figs. 2,3). The valley is a major producer of grass seed, ornamental plants, fruits, nuts, vegetables, and grains, as well as poultry, beef, and dairy products. The forestry and logging industries also are primary employers of the valley’s rural residents (Rooney, 2008). These activities have affected the watershed significantly, with forestry and agricultural runoff contributing to river

  1. Virus incidence in orchardgrass (Dactylis glomerata L.) seed production fields in the Willamette Valley

    Science.gov (United States)

    A survey was conducted over the course of three years (2014-2016) for the presence of Barley yellow dwarf virus (BYDV-MAV and BYDV-PAV), Cereal yellow dwarf virus (CYDV-RPV), and Cocksfoot mottle virus (CfMV) in orchardgrass (Dactylis glomerata) fields in the Willamette Valley, Oregon. There was an ...

  2. 75 FR 20778 - Security Zone; Portland Rose Festival Fleet Week, Willamette River, Portland, OR

    Science.gov (United States)

    2010-04-21

    ...-AA87 Security Zone; Portland Rose Festival Fleet Week, Willamette River, Portland, OR AGENCY: Coast... during the Portland Rose Festival Fleet Week from June 2, 2010, through June 7, 2010. The security zone... is a need to provide a security zone for the 2010 Portland Rose Festival Fleet Week, and there is...

  3. An environmental streamflow assessment for the Santiam River basin, Oregon

    Science.gov (United States)

    Risley, John C.; Wallick, J. Rose; Mangano, Joseph F.; Jones, Krista L.

    2012-01-01

    The Santiam River is a tributary of the Willamette River in northwestern Oregon and drains an area of 1,810 square miles. The U.S. Army Corps of Engineers (USACE) operates four dams in the basin, which are used primarily for flood control, hydropower production, recreation, and water-quality improvement. The Detroit and Big Cliff Dams were constructed in 1953 on the North Santiam River. The Green Peter and Foster Dams were completed in 1967 on the South Santiam River. The impacts of the structures have included a decrease in the frequency and magnitude of floods and an increase in low flows. For three North Santiam River reaches, the median of annual 1-day maximum streamflows decreased 42–50 percent because of regulated streamflow conditions. Likewise, for three reaches in the South Santiam River basin, the median of annual 1-day maximum streamflows decreased 39–52 percent because of regulation. In contrast to their effect on high flows, the dams increased low flows. The median of annual 7-day minimum flows in six of the seven study reaches increased under regulated streamflow conditions between 60 and 334 percent. On a seasonal basis, median monthly streamflows decreased from February to May and increased from September to January in all the reaches. However, the magnitude of these impacts usually decreased farther downstream from dams because of cumulative inflow from unregulated tributaries and groundwater entering the North, South, and main-stem Santiam Rivers below the dams. A Wilcox rank-sum test of monthly precipitation data from Salem, Oregon, and Waterloo, Oregon, found no significant difference between the pre-and post-dam periods, which suggests that the construction and operation of the dams since the 1950s and 1960s are a primary cause of alterations to the Santiam River basin streamflow regime. In addition to the streamflow analysis, this report provides a geomorphic characterization of the Santiam River basin and the associated conceptual

  4. Integrating Economic Models with Biophysical Models in the Willamette Water 2100 Project

    Science.gov (United States)

    Jaeger, W. K.; Plantinga, A.

    2013-12-01

    This paper highlights the human system modeling components for Willamette Water 2100, a comprehensive, highly integrated study of hydrological, ecological, and human factors affecting water scarcity in the Willamette River Basin (WRB). The project is developing a spatiotemporal simulation model to predict future trajectories of water scarcity, and to evaluate mitigation policies. Economic models of land use and water use are the main human system models in WW2100. Water scarcity depends on both supply and demand for water, and varies greatly across time and space (Jaeger et al., 2013). Thus, the locations of human water use can have enormous influence on where and when water is used, and hence where water scarcity may arise. Modeling the locations of human uses of water (e.g., urban versus agricultural) as well as human values and choices, are the principal quantitative ways that social science can contribute to research of this kind. Our models are empirically-based models of human resource allocation. Each model reflects private behavior (choices by households, farms, firms), institutions (property rights, laws, markets, regulations), public infrastructure (dams, canals, highways), and also 'external drivers' that influence the local economy (migration, population growth, national markets and policies). This paper describes the main model components, emphasizing similarities between human and biophysical components of the overall project, and the model's linkages and feedbacks relevant to our predictions of changes in water scarcity between now and 2100. Results presented include new insights from individual model components as well as available results from the integrated system model. Issues include water scarcity and water quality (temperature) for out-of-stream and instream uses, the impact of urban expansion on water use and potential flood damage. Changes in timing and variability of spring discharge with climate change, as well as changes in human uses of

  5. The western pond turtle: Habitat and history. Final report

    International Nuclear Information System (INIS)

    Holland, D.C.

    1994-08-01

    The western pond turtle is known from many areas of Oregon. The majority of sightings and other records occur in the major drainages of the Klamath, Rogue, Umpqua, Willamette and Columbia River systems. A brief overview is presented of the evolution of the Willamette-Puget Sound hydrographic basin. A synopsis is also presented of the natural history of the western pond turtle, as well as, the status of this turtle in the Willamette drainage basin. The reproductive ecology and molecular genetics of the western pond turtle are discussed. Aquatic movements and overwintering of the western pond turtle are evaluated. The effect of introduced turtle species on the status of the western pond turtle was investigated in a central California Pond. Experiments were performed to determine if this turtle could be translocated as a mitigation strategy

  6. Outplanting Anadromous Salmonids, A Lilterature Study.

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Eugene M.

    1985-10-01

    This paper presents a list of more than 200 references on topics associated with offstation releases of hatchery stocks of anadromous fish used to supplement or reestablish wild rearing. The narrative briefly reviews influences of genetics, rearing density of fish in the natural environment, survival rates observed from outplanted stocks, and estimation procedures for stocking rates and rearing densities. We have attempted to summarize guidelines and recommendations for fishery managers to consider. Based on tagging studies, a typical smolt release from a Willamette River hatchery would return 0.29% of the smolts to the stream of release as adults. Catch to escapement ratios for adult Willamette chinook vary widely between broods, but on average two fish are caught for each fish that escapes. The catch is about evenly divided between offshore and freshwater harvest. British Columbia is the primary location of offshore harvest, and the lower Willamette River is the primary location of freshwater harvest. Review of departmental policy indicates that only Willamette stock spring chinook are currently acceptable for use in a proposed outplant study within the Willamette basin. Further, most Oregon Department of Fish and Wildlife district management biologists would prefer not to transfer any stocks of spring chinook between drainage subbasins. State fishery managers identified 16 Willamette basin streams as being suitable for supplementation with spring chinook from hatcheries. We reviewed the potential for rearing salmon in reservoirs throughout the basin. Use of the Carmen-Smith spawning channel, which was constructed on the upper McKenzie River in 1960, has generally declined with the decline in populations of chinook salmon in this river. The Carmen-Smith channel still provides a spawning place for those relatively few adult chinook that still return each year, but more fishery benefits may result from other uses of this facility. 7 figs., 8 tabs.

  7. Behavioral assumptions of conservation policy: conserving oak habitat on family-forest land in the Willamette Valley, Oregon

    Science.gov (United States)

    A. Paige Fischer; John C. Bliss

    2008-01-01

    Designing policies that harness the motivations of landowners is essential for conserving threatened habitats on private lands. Our goal was to understand how to apply ethnographic information about family-forest owners to the design of conservation policy for Oregon white oak (Quercus garryana) in the Willamette Valley, Oregon (U.S.A.). We examined...

  8. Tectonic evolution of the Tualatin basin, northwest Oregon, as revealed by inversion of gravity data

    Science.gov (United States)

    McPhee, Darcy K.; Langenheim, Victoria E.; Wells, Ray; Blakely, Richard J.

    2014-01-01

    The Tualatin basin, west of Portland (Oregon, USA), coincides with a 110 mGal gravity low along the Puget-Willamette lowland. New gravity measurements (n = 3000) reveal a three-dimensional (3-D) subsurface geometry suggesting early development as a fault-bounded pull-apart basin. A strong northwest-trending gravity gradient coincides with the Gales Creek fault, which forms the southwestern boundary of the Tualatin basin. Faults along the northeastern margin in the Portland Hills and the northeast-trending Sherwood fault along the southeastern basin margin are also associated with gravity gradients, but of smaller magnitude. The gravity low reflects the large density contrast between basin fill and the mafic crust of the Siletz terrane composing basement. Inversions of gravity data indicate that the Tualatin basin is ∼6 km deep, therefore 6 times deeper than the 1 km maximum depth of the Miocene Columba River Basalt Group (CRBG) in the basin, implying that the basin contains several kilometers of low-density pre-CRBG sediments and so formed primarily before the 15 Ma emplacement of the CRBG. The shape of the basin and the location of parallel, linear basin-bounding faults along the southwest and northeast margins suggest that the Tualatin basin originated as a pull-apart rhombochasm. Pre-CRBG extension in the Tualatin basin is consistent with an episode of late Eocene extension documented elsewhere in the Coast Ranges. The present fold and thrust geometry of the Tualatin basin, the result of Neogene compression, is superimposed on the ancestral pull-apart basin. The present 3-D basin geometry may imply stronger ground shaking along basin edges, particularly along the concealed northeast edge of the Tualatin basin beneath the greater Portland area.

  9. Phytolith analysis as a tool for palaeo-environmental studies: a case study of the reconstruction of the historical extent of oak savanna in the Willamette Valley, Oregon

    Science.gov (United States)

    Kirchholtes, Renske; van Mourik, Jan; Johnson, Bart

    2014-05-01

    Landscape-level restorations can be costly, so the effectiveness of the approach and the objectives of the restoration should be supported by a comprehensive investigation. The goal of the research presented here is to provide the basis for such a restoration effort using phytolith analyses. Fire suppression and loss of indigenous burning in the Willamette Valley, Oregon (USA) has led to near disappearance of the Oregon white oak savanna. Under suppressed fire regimes the shade-intolerant Garry oaks (Quercus garryana) are outcompeted by Douglas-fir (Pseudotsuga menziesii). As a consequence, the Oregon white oak savanna has been reduced to floristic reconstructions (pollen and spores) are seldom preserved in the dry, oxidized sediments of savannahs, meaning an alternative line of evidence is required for their historical study. Phytoliths are small yet robust silica particles produced by most plants. Many phytoliths take on cell shapes diagnostic of specific plant lineages, acting as indicators of their past presence. Unlike pollen grains, phytoliths readily preserve in well-drained soils during intermittent dry periods characteristic of sites such as the Jim's Creek research area. By reconstructing locality-scale pre-settlement vegetation patterns at the Jim's Creek Research Area using phytoliths, we confirm the broader-scale pattern of tree encroachment. However, phytolith assemblages from over 150 years ago document the presence of pines and firs, suggesting savannas in the Willamette Valley were not necessarily always dominated by oaks.

  10. Is it working? A look at the changing nutrient practices in Oregon's Southern Willamette Valley Groundwater Management Area

    Science.gov (United States)

    Pearlstein, S.; Compton, J.; Eldridge, A.; Henning, A.; Selker, J. S.; Brooks, J. R.; Schmitz, D.

    2016-12-01

    Groundwater nitrate contamination affects thousands of households in the southern Willamette Valley and many more across the Pacific Northwest. The southern Willamette Valley Groundwater Management Area (SWV GWMA) was established in 2004 due to nitrate levels in the groundwater exceeding the human health standard of 10 mg nitrate-N L-1. Much of the nitrogen inputs to the GWMA comes from agricultural nitrogen use, and thus efforts to reduce N inputs to groundwater are focused upon improving N management. Previous work in the 1990s in the Willamette Valley by researchers at Oregon State University determined the importance of cover crops and irrigation practices and made recommendations to the local farm community for reducing nitrogen (N) leaching. We are currently re-sampling many of the same fields studied by OSU to examine the influence of current crops and nutrient management practices on nitrate leaching below the rooting zone. This study represents important crops currently grown in the GWMA and includes four grass fields, three vegetable row-crop fields, two peppermint and wheat fields, and one each of hazelnuts and blueberries. New nutrient management practices include slow release fertilizers and precision agriculture approaches in some of the fields. Results from the first two years of sampling show nitrate leaching is lower in some crops like row crops grown for seed and higher in others like perennial rye grass seed when compared to the 1990s data. We will use field-level N input-output balances in order to determine the N use efficiency and compare this across crops and over time. The goal of this project is to provide information and tools that will help farmers, managers and conservation groups quantify the water quality benefits of management practices they are conducting or funding.

  11. EXAMINATION OF HABITAT USE AND DISPERSAL OF EXOTIC BULLFROGS AND THEIR POTENTIAL IMPACT ON NATIVE AMPHIBIAN COMMUNITIES IN THE WILLAMETTE VALLEY, OREGON

    Science.gov (United States)

    Bullfrogs (Rana catesbeiana) are exotic in the west and have been implicated in the decline of western pond turtles and native ranids. Habitat alterations that favor bullfrogs have enhanced populations, particularly in agricultural areas such as the Willamette Valley. I will pres...

  12. Willingness to Pay for Willamette Basin Spring Chinook and Winter Steelhead Recovery

    Science.gov (United States)

    Two of the primary goals of conducting economic valuation studies should be to improve the way in which communities frame choices regarding the allocation of scarce resources and to clarify the trade-offs between alternative outcomes. The challenge of quantifying public preferen...

  13. Fiscal Year 2014 United States Army Corps of Engineers -Civil Works Annual Financial Report: Maintaining Readiness Through Fiscal Responsibility

    Science.gov (United States)

    2014-01-01

    most prevalent deficiencies are vegetation, encroachments, and culverts; however, the largest risk drivers are flaws in the foundation and growing...Supply Hartwell Lake, GA & SC; Beaver Lake, AR; Greers Ferry Dam and Lake, AR; Willamette River Basin Review, OR (Coast Fork); and Sulphur River Basin, TX

  14. A water system model for exploring electric energy alternatives in southeastern US basins

    International Nuclear Information System (INIS)

    Flores-López, F; Yates, D

    2013-01-01

    Electric power generation often involves the use of water for power plant cooling and steam generation, which typically involves the release of cooling water to nearby rivers and lakes. The resulting thermal pollution may negatively impact the ecosystems of these water bodies. Water resource systems models enable the examination of the implications of alternative electric generation on regional water resources. This letter documents the development, calibration, and validation of a climate-driven water resource systems model of the Apalachicola–Chattahoochee–Flint, the Alabama–Coosa–Tallapoosa, and the Tombigbee River basins in the states of Georgia, Alabama, and Florida, in the southeastern US. The model represents different water users, including power plants, agricultural water users, and municipal users. The model takes into account local population, per-capita use estimates, and changes in population growth. The water resources planning model was calibrated and validated against the observed, managed flows through the river systems of the three basins. Flow calibration was performed on land cover, water capacity, and hydraulic conductivity of soil horizons; river water temperature calibration was performed on channel width and slope properties. Goodness-of-fit statistics indicate that under 1980–2010 levels of water use, the model robustly represents major features of monthly average streamflow and water temperatures. The application of this integrated electricity generation–water resources planning model can be used to explore alternative electric generation and water implications. The implementation of this model is explored in the companion paper of this focus issue (Yates et al 2013 Environ. Res. Lett. 8 035042). (letter)

  15. Thermal analysis of large diameter container (LDC) with alternate loadings of KE Basin sludge

    International Nuclear Information System (INIS)

    MILDON, D.T.

    2003-01-01

    A thermal analysis was performed to determine temperature distribution and hydrogen generation for a Large Diameter Container (LDC) having a two layer load configuration made up of a lower layer, consisting of sludge from the weasel pit, and an upper layer, consisting of the KE Basin canister sludge. For each alternate loading, the response of the LDC during shipping and storage in a T Plant cell was determined. Results for various alternate loadings were compared to the base case previously reported in SNF--9955 [Crea, 2002], 4 identical batches each with 60% floor, 40% canister sludge. Results for various cases are summarized in Table 5 and transient histories for each case are contained in figures as noted in the table. The thermal response and hydrogen generation rate of the base case bounds all alternate loadings except the third alternate loading, where 0.8 m 3 of canister sludge is loaded on the top of 1.2 m 3 of weasel pit sludge. For this case, the peak sludge temperature exceeded 100 C during shipping after 6.8 days (Note: sludge boiling does not occur in any case because the LDC pressurizes during transport and interstitial water is never saturated)

  16. The sociology of landowner interest in restoring fire-adapted, biodiverse habitats in the wildland-urban interface of Oregon's Willamette Valley ecoregion

    Science.gov (United States)

    Max Nielsen-Pincus; Robert G. Ribe; Bart R. Johnson

    2011-01-01

    In many parts of the world, the combined effects of wildfire, climate change, and population growth in the wildland-urban interface pose increasing risks to both people and biodiversity. These risks are exemplified in western Oregon's Willamette Valley Ecoregion, where population is projected to double by 2050 and climate change is expected to increase wildfire...

  17. New geologic mapping of the northwestern Willamette Valley, Oregon, and its American Viticultural Areas (AVAs)—A foundation for understanding their terroir

    Science.gov (United States)

    Wells, Ray E.; Haugerud, Ralph A.; Niem, Alan; Niem, Wendy; Ma, Lina; Madin, Ian; Evarts, Russell C.

    2018-04-10

    A geologic map of the greater Portland, Oregon, metropolitan area is planned that will document the region’s complex geology (currently in review: “Geologic map of the greater Portland metropolitan area and surrounding region, Oregon and Washington,” by Wells, R.E., Haugerud, R.A., Niem, A., Niem, W., Ma, L., Evarts, R., Madin, I., and others). The map, which is planned to be published as a U.S. Geological Survey Scientific Investigations Map, will consist of 51 7.5′ quadrangles covering more than 2,500 square miles, and it will represent more than 100 person-years of geologic mapping and studies. The region was mapped at the relatively detailed scale of 1:24,000 to improve understanding of its geology and its earthquake hazards. More than 100 geologic map units will record the 50-million-year history of volcanism, sedimentation, folding, and faulting above the Cascadia Subduction Zone. The geology contributes to the varied terroir of four American Viticultural Areas (AVAs) in the northwestern Willamette Valley: the Yamhill-Carlton, Dundee Hills, Chehalem Mountains, and Ribbon Ridge AVAs. Terroir is defined as the environmental conditions, especially climate and soils, that influence the quality and character of a region’s crops—in this case, grapes for wine.On this new poster (“New geologic mapping of the northwestern Willamette Valley, Oregon, and its American Viticultural Areas (AVAs)—A foundation for understanding their terroir”), we present the geologic map at a reduced scale (about 1:175,000) to show the general distribution of geologic map units, and we highlight, discuss, and illustrate six major geologic events that helped shape the region and form its terrior. We also discuss the geologic elements that contribute to the character of each of the four AVAs in the northwestern Willamette Valley.

  18. THE GAPS BETWEEN AN INTEGRATED UNDERSTANDING OF CHANNELIZATION, HYDROLOGY AND WATER QUALITY VERSUS HOLISTIC FUTURE MANAGEMENT: A CASE STUDY OF THE WILLAMETTE RIVER, OREGON

    Science.gov (United States)

    Over the last 150 years the main channel of the Willamette River has been drastically altered by human activity. It has changed from a generally meandering and anastamosing river with extensive reaches of broad, active and connected flood plain features to a river with 13 major ...

  19. Ecological interactions between hatchery summer steelhead and wild Oncorhynchus mykiss in the Willamette River basin, 2014

    Energy Technology Data Exchange (ETDEWEB)

    Harnish, Ryan A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Green, Ethan D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Vernon, Christopher R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Mcmichael, Geoffrey A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-12-01

    The purpose of this study was to determine the extent to which juvenile hatchery summer steelhead and wild winter steelhead overlap in space and time, to evaluate the extent of residualism among hatchery summer steelhead in the South Santiam River, and to evaluate the potential for negative ecological interactions among hatchery summer steelhead and wild winter steelhead. Because it is not possible to visually discern juvenile winter steelhead from resident rainbow trout, we treated all adipose-intact juvenile O. mykiss as one group that represented juvenile wild winter steelhead. The 2014 study objectives were to 1) estimate the proportion of hatchery summer steelhead that residualized in the South Santiam River in 2014, 2) determine the extent to which hatchery and naturally produced O. mykiss overlapped in space and time in the South Santiam River, and 3) characterize the behavioral interactions between hatchery-origin juvenile summer steelhead and naturally produced O. mykiss. We used a combination of radio telemetry and direct observations (i.e., snorkeling) to determine the potential for negative interactions between hatchery summer and wild winter steelhead juveniles in the South Santiam River. Data collected from these two independent methods indicated that a significant portion of the hatchery summer steelhead released as smolts did not rapidly emigrate from the South Santiam River in 2014. Of the 164 radio-tagged steelhead that volitionally left the hatchery, only 66 (40.2%) were detected outside of the South Santiam River. Forty-four (26.8% of 164) of the radio-tagged hatchery summer steelhead successfully emigrated to Willamette Falls. Thus, the last known location of the majority of the tagged fish (98 of 164 = 59.8%) was in the South Santiam River. Thirty-three of the tagged hatchery steelhead were detected in the South Santiam River during mobile-tracking surveys. Of those, 21 were found to be alive in the South Santiam River over three months after

  20. Phytoliths as indicators of plant community change: A case study of the reconstruction of the historical extent of the oak savanna in the Willamette Valley Oregon, USA

    NARCIS (Netherlands)

    Kirchholtes, R.P.J.; van Mourik, J.M.; Johnson, B.R.

    2015-01-01

    The Oregon white oak savanna, once common in Oregon's Willamette Valley, has been reduced to less than 1% of its former extent. For ecological restoration purposes, we used phytolith analysis to establish both historical vegetation composition and structure at the Jim's Creek research site in

  1. Spent LWR fuel storage costs: reracking, AR basins, and AFR basins

    International Nuclear Information System (INIS)

    1980-01-01

    Whenever possible, fuel storage requirements will be met by reracking existing reactor basins and/or transfer of fuel to available space in other reactor basins. These alternatives represent not only the lowest cost storage options but also the most timely. They are recognized to face environmental and regulatory obstacles. However, such obstacles should be less severe than those that would be encountered with AR or AFR basin storage. When storage requirements cannot be met by the first two options, the least costly alternative for most utilities will be use of a Federal AFR. Storage costs of $100,000 to $150,000 MTU at a AFR are less costly than charges of up to $320,000/MTU that could be incurred by the use of AR basins. AFR storage costs do not include transportation from the reactor to the AFR. This cost would be paid by the utility separately. Only when a utility requires annual storage capacity for 100 MTU of spent fuel can self-storage begin to compete with AFR costs. The large reactor complexes discharging these fuel quantities are not currently those that require relief from fuel storage problems

  2. Water in urban planning, Salt Creek Basin, Illinois water management as related to alternative land-use practices

    Science.gov (United States)

    Spieker, Andrew Maute

    1970-01-01

    Water management can be an integral part of urban comprehensive planning in a large metropolitan area. Water both imposes constraints on land use and offers opportunities for coordinated land and water management. Salt Creek basin in Cook and Du Page Counties of the Chicago metropolitan area is typical of rapidly developing suburban areas and has been selected to illustrate some of these constraints and opportunities and to suggest the effects of alternative solutions. The present study concentrates on the related problems of ground-water recharge, water quality, management of flood plains, and flood-control measures. Salt Creek basin has a drainage area of 150 square miles. It is in flat to. gently rolling terrain, underlain by glacial drift as much as 200 feet thick which covers a dolomite aquifer. In 1964, the population of the basin was about 400,000, and 40 percent of the land was in urban development. The population is expected to number 550,000 to 650,000 by 1990, and most of the land will be taken by urban development. Salt Creek is a sluggish stream, typical of small drainage channels in the headwaters area of northeastern Illinois. Low flows of 15 to 25 cubic feet per second in the lower part of the basin consist largely of sewage effluent. Nearly all the public water supplies in the basin depend on ground water. Of the total pumpage of 27.5 million gallons per day, 17.5 million gallons per day is pumped from the deep (Cambrian-Ordovician) aquifers and 10 million gallons per day is pumped from the shallow (Silurian dolomite and glacial drift) aquifers. The potential yield of the shallow aquifers, particularly glacial drift in the northern part of the basin, far exceeds present use. The largest concentration of pumpage from the shallow ,aquifers is in the Hinsdale-La Grange area. Salt Creek serves as an important source of recharge to these supplies, particularly just east of Hinsdale. The entire reach of Salt Creek south and east of Elmhurst can be

  3. Multi-temporal AirSWOT elevations on the Willamette river: error characterization and algorithm testing

    Science.gov (United States)

    Tuozzolo, S.; Frasson, R. P. M.; Durand, M. T.

    2017-12-01

    We analyze a multi-temporal dataset of in-situ and airborne water surface measurements from the March 2015 AirSWOT field campaign on the Willamette River in Western Oregon, which included six days of AirSWOT flights over a 75km stretch of the river. We examine systematic errors associated with dark water and layover effects in the AirSWOT dataset, and test the efficacies of different filtering and spatial averaging techniques at reconstructing the water surface profile. Finally, we generate a spatially-averaged time-series of water surface elevation and water surface slope. These AirSWOT-derived reach-averaged values are ingested in a prospective SWOT discharge algorithm to assess its performance on SWOT-like data collected from a borderline SWOT-measurable river (mean width = 90m).

  4. Disposal alternatives and recommendations for waste salt management for repository excavation in the Palo Duro Basin, Texas

    International Nuclear Information System (INIS)

    1987-01-01

    This report documents an evaluation of five alternatives for the disposal of waste salt that would be generated by the construction of a repository for radioactive waste in underground salt deposits at either of two sites in the Palo Duro Basin, Texas. The alternatives include commercial disposal, offsite deep-well injection, disposal in abandoned mines, ocean disposal, and land surface disposal on or off the site. For each alternative a reference case was rated - positive, neutral, or negative - in terms of environmental and dependability factors developed specifically for Texas sites. The factors constituting the environmental checklist relate to water quality impact, water- and land-use conflicts, ecological compatibility, conformity with air quality standards, and aesthetic impact. Factors on the dependability check-list relate to public acceptance, the adequacy of site characterization, permit and licensing requirements, technological requirements, and operational availability. A comparison of the ratings yielded the following viable alternatives, in order of preference: (1) land surface disposal, specifically disposal on tailings piles associated with abandoned potash mines; (2) disposal in abandoned mines, specifically potash mines; and (3) commercial disposal. Approaches to the further study of these three salt management techniques are recommended

  5. 78 FR 65609 - Medicine Bow-Routt National Forests and Thunder Basin National Grassland; Wyoming; Thunder Basin...

    Science.gov (United States)

    2013-11-01

    ... National Grassland; Wyoming; Thunder Basin National Grassland Prairie Dog Amendment Environmental Impact... Cooperating Agencies. No changes to the Proposed Action or Purpose of and Need for Action have been made... alternatives will be analyzed in the Thunder Basin National Grassland Prairie Dog Amendment EIS. The EIS will...

  6. 78 FR 39282 - Proposed Information Collection Request; Comment Request; Willingness to Pay Survey for Salmon...

    Science.gov (United States)

    2013-07-01

    ... the Office of Management and Budget (OMB) for review and approval in accordance with the Paperwork... Business Information (CBI) or other information whose disclosure is restricted by statute. FOR FURTHER... the number of wild origin Chinook salmon and steelhead that return annually to the Willamette basin...

  7. Effects of flood control alternatives on fish and wildlife resources of the Malheur-Harney lakes basin

    Science.gov (United States)

    Hamilton, David B.; Auble, Gregor T.; Ellison, Richard A.; Roelle, James E.

    1985-01-01

    Malheur Lake is the largest freshwater marsh in the western contiguous United States and is one of the main management units of the Malheur National Wildlife Refuge in southeastern Oregon. The marsh provides excellent waterfowl production habitat as well as vital migration habitats for birds in the Pacific flyway. Water shortages have typically been a problem in this semiarid area; however, record snowfalls and cool summers have recently caused Malheur Lake to rise to its highest level in recorded history. This has resulted in the loss of approximately 57,000 acres of important wildlife habitat as well as extensive flooding of local ranches, roads, and railroad lines. Because of the importance of the Refuge, any water management plan for the Malheur-Harney Lakes Basin needs to consider the impact of management alternatives on the hydrology of Malheur Lake. The facilitated modeling workshop described in this report was conducted January 14-18, 1985, under the joint sponsorship of the Portland Ecological Services Field Office and the Malheur National Wildlife Refuge, Region 1, U.S. Fish and Wildlife Service (FWS). The Portland Field Office is responsible for FWS reporting requirements on Federal water resource projects while the Refuge staff has management responsibility for much of the land affected by high water levels in the Malheur-Harney Lakes Basin. The primary objective of the workshop was to begin gathering and analyzing information concerning potential fish and wildlife impacts, needs, and opportunities associated with proposed U.S. Army Corps of Engineers (COE) flood control alternatives for Malheur Lake. The workshop was structured around the formulation of a computer model that would simulate the hydrologic effects of the various alternatives and any concommitant changes in vegetation communities and wildlife use patterns. The simulation model is composed of three connected submodels. The Hydrology submodel calculates changes in lake volume, elevation

  8. Burlington Bottoms Wildlife Mitigation Project. Final Environmental Assessment/Management Plan and Finding of No Significant Impact.

    Energy Technology Data Exchange (ETDEWEB)

    1994-12-01

    Bonneville Power Administration (BPA) proposes to fund wildlife management and enhancement activities for the Burlington bottoms wetlands mitigation site. Acquired by BPA in 1991, wildlife habitat at Burlington bottoms would contribute toward the goal of mitigation for wildlife losses and inundation of wildlife habitat due to the construction of Federal dams in the lower Columbia and Willamette River Basins. Target wildlife species identified for mitigation purposes are yellow warbler, great blue heron, black-capped chickadee, red-tailed hawk, valley quail, spotted sandpiper, wood duck, and beaver. The Draft Management Plan/Environmental Assessment (EA) describes alternatives for managing the Burlington Bottoms area, and evaluates the potential environmental impacts of the alternatives. Included in the Draft Management Plan/EA is an implementation schedule, and a monitoring and evaluation program, both of which are subject to further review pending determination of final ownership of the Burlington Bottoms property.

  9. Burlington Bottoms Wildlife Mitigation Project. Final environmental assessment/management plan and finding of no significant impact

    International Nuclear Information System (INIS)

    1994-12-01

    Bonneville Power Administration (BPA) proposes to fund wildlife management and enhancement activities for the Burlington bottoms wetlands mitigation site. Acquired by BPA in 1991, wildlife habitat at Burlington bottoms would contribute toward the goal of mitigation for wildlife losses and inundation of wildlife habitat due to the construction of Federal dams in the lower Columbia and Willamette River Basins. Target wildlife species identified for mitigation purposes are yellow warbler, great blue heron, black-capped chickadee, red-tailed hawk, valley quail, spotted sandpiper, wood duck, and beaver. The Draft Management Plan/Environmental Assessment (EA) describes alternatives for managing the Burlington Bottoms area, and evaluates the potential environmental impacts of the alternatives. Included in the Draft Management Plan/EA is an implementation schedule, and a monitoring and evaluation program, both of which are subject to further review pending determination of final ownership of the Burlington Bottoms property

  10. Abundance and Diversity of Native Bumble Bees Associated with Agricultural Crops: The Willamette Valley Experience

    Directory of Open Access Journals (Sweden)

    Sujaya Rao

    2010-01-01

    Full Text Available There are widespread concerns about declining populations of bumble bees due to conversion of native habitats to agroecosystems. Certain cropping systems, however, provide enormous foraging resources, and are beneficial for population build up of native bees, especially eusocial bees such as bumble bees. In this review, we present evidence of a flourishing bumble bee fauna in the Willamette Valley in western Oregon which we believe is sustained by cultivation of bee-pollinated crops which bloom in sequence, and in synchrony with foraging by queens and workers of a complex of bumble bee species. In support of our perspective, we describe the Oregon landscape and ascribe the large bumble bee populations to the presence of a pollen source in spring (cultivated blueberries followed by one in summer (red clover seed crops. Based on our studies, we recommend integration into conservation approaches of multiple agroecosystems that bloom in sequence for sustaining and building bumble bee populations.

  11. K Basin spent fuel sludge treatment alternatives study. Volume 2, Technical options

    International Nuclear Information System (INIS)

    Beary, M.M.; Honekemp, J.R.; Winters, N.

    1995-01-01

    Approximately 2100 metric tons of irradiated N Reactor fuel are stored in the KE and KW Basins at the Hanford Site, Richland, Washington. Corrosion of the fuel has led to the formation of sludges, both within the storage canisters and on the basin floors. Concern about the degraded condition of the fuel and the potential for leakage from the basins in proximity to the Columbia River has resulted in DOE's commitment in the Tri-Party Agreement (TPA) to Milestone M-34-00-T08 to remove the fuel and sludges by a December 2002 target date. To support the planning for this expedited removal action, the implications of sludge management under various scenarios are examined. This report, Volume 2 of two volumes, describes the technical options for managing the sludges, including schedule and cost impacts, and assesses strategies for establishing a preferred path

  12. K Basin spent fuel sludge treatment alternatives study. Volume 1, Regulatory options

    International Nuclear Information System (INIS)

    Beary, M.M.; Honekemp, J.R.; Winters, N.

    1995-01-01

    Approximately 2100 metric tons of irradiated N Reactor fuel are stored in the KE and KW Basins at the Hanford Site, Richland, Washington. Corrosion of the fuel has led to the formation of sludges, both within the storage canisters and on the basin floors. Concern about the degraded condition of the fuel and the potential for leakage from the basins in proximity to the Columbia River has resulted in DOE's commitment in the Tri-Party Agreement (TPA) to Milestone M-34-00-T08 to remove the fuel and sludges by a December 2002 target date. To support the planning for this expedited removal action, the implications of sludge management under various scenarios are examined. Volume 1 of this two-volume report describes the regulatory options for managing the sludges, including schedule and cost impacts, and assesses strategies for establishing a preferred path

  13. Comparison of spent fuel management fee collection alternatives

    International Nuclear Information System (INIS)

    White, M.K.; Engel, R.L.

    1979-01-01

    Five alternative methods for recovering the costs of spent fuel management were evaluated. These alternatives consist of collecting the fee for various components of spent fuel management cost (AFR basin storage, transportation from AFR basin to the repository, packaging, repository, R and D, and government overhead) at times ranging from generation of power to delivery of the spent fuel to the government. The five fee collection mechanisms were analyzed to determine how well they serve the interests of the public and the electricity ratepayer

  14. Impacts of biofuels production alternatives on water quantity and quality in the Iowa River Basin

    Science.gov (United States)

    Wu, Y.; Liu, S.

    2012-01-01

    Corn stover as well as perennial grasses like switchgrass (Panicum virgatum) and miscanthus are being considered as candidates for the second generation biofuel feedstocks. However, the challenges to biofuel development are its effects on the environment, especially water quality. This study evaluates the long-term impacts of biofuel production alternatives (e.g., elevated corn stover removal rates and the potential land cover change) on an ecosystem with a focus on biomass production, soil erosion, water quantity and quality, and soil nitrate nitrogen concentration at the watershed scale. The Soil and Water Assessment Tool (SWAT) was modified for setting land cover change scenarios and applied to the Iowa River Basin (a tributary of the Upper Mississippi River Basin). Results show that biomass production can be sustained with an increased stover removal rate as long as the crop demand for nutrients is met with appropriate fertilization. Although a drastic increase (4.7–70.6%) in sediment yield due to erosion and a slight decrease (1.2–3.2%) in water yield were estimated with the stover removal rate ranging between 40% and 100%, the nitrate nitrogen load declined about 6–10.1%. In comparison to growing corn, growing either switchgrass or miscanthus can reduce sediment erosion greatly. However, land cover changes from native grass to switchgrass or miscanthus would lead to a decrease in water yield and an increase in nitrate nitrogen load. In contrast to growing switchgrass, growing miscanthus is more productive in generating biomass, but its higher water demand may reduce water availability in the study area.

  15. K Basin spent fuel sludge treatment alternatives study. Volume 2, Technical options

    Energy Technology Data Exchange (ETDEWEB)

    Beary, M.M.; Honekemp, J.R.; Winters, N. [Science Applications International Corp., Richland, WA (United States)

    1995-01-01

    Approximately 2100 metric tons of irradiated N Reactor fuel are stored in the KE and KW Basins at the Hanford Site, Richland, Washington. Corrosion of the fuel has led to the formation of sludges, both within the storage canisters and on the basin floors. Concern about the degraded condition of the fuel and the potential for leakage from the basins in proximity to the Columbia River has resulted in DOE`s commitment in the Tri-Party Agreement (TPA) to Milestone M-34-00-T08 to remove the fuel and sludges by a December 2002 target date. To support the planning for this expedited removal action, the implications of sludge management under various scenarios are examined. This report, Volume 2 of two volumes, describes the technical options for managing the sludges, including schedule and cost impacts, and assesses strategies for establishing a preferred path.

  16. Water Clarity Simulant for K East Basin Filtration Testing

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Andrew J.

    2006-01-20

    This document provides a simulant formulation intended to mimic the behavior of the suspended solids in the K East (KE) Basin fuel storage pool. The simulant will be used to evaluate alternative filtration apparatus to improve Basin water clarity and to possibly replace the existing sandfilter. The simulant was formulated based on the simulant objectives, the key identified parameters important to filtration, the composition and character of the KE Basin suspended sludge particles, and consideration of properties of surrogate materials.

  17. An isotopic view of water and nitrate transport through the vadose zone in Oregon's southern Willamette Valley's Groundwater Management Area

    Science.gov (United States)

    Brooks, J. R.; Pearlstein, S.; Hutchins, S.; Faulkner, B. R.; Rugh, W.; Willard, K.; Coulombe, R.; Compton, J.

    2017-12-01

    Groundwater nitrate contamination affects thousands of households in Oregon's southern Willamette Valley and many more across the USA. The southern Willamette Valley Groundwater Management Area (GWMA) was established in 2004 due to nitrate levels in the groundwater exceeding the human health standard of 10 mg nitrate-N L-1. Much of the nitrogen (N) inputs to the GWMA comes from agricultural fertilizers, and thus efforts to reduce N inputs to groundwater are focused upon improving N management. However, the effectiveness of these improvements on groundwater quality is unclear because of the complexity of nutrient transport through the vadose zone and long groundwater residence times. Our objective was to focus on vadose zone transport and understand the dynamics and timing of N and water movement below the rooting zone in relation to N management and water inputs. Stable isotopes are a powerful tool for tracking water movement, and understanding N transformations. In partnership with local farmers and state agencies, we established lysimeters and groundwater wells in multiple agricultural fields in the GWMA, and have monitored nitrate, nitrate isotopes, and water isotopes weekly for multiple years. Our results indicate that vadose zone transport is highly complex, and the residence time of water collected in lysimeters was much longer than expected. While input precipitation water isotopes were highly variable over time, lysimeter water isotopes were surprisingly consistent, more closely resembling long-term precipitation isotope means rather than recent precipitation isotopic signatures. However, some particularly large precipitation events with unique isotopic signatures revealed high spatial variability in transport, with some lysimeters showing greater proportions of recent precipitation inputs than others. In one installation where we have groundwater wells and lysimeters at multiple depths, nitrate/nitrite concentrations decreased with depth. N concentrations

  18. Tools and Techniques for Basin-Scale Climate Change Assessment

    Science.gov (United States)

    Zagona, E.; Rajagopalan, B.; Oakley, W.; Wilson, N.; Weinstein, P.; Verdin, A.; Jerla, C.; Prairie, J. R.

    2012-12-01

    The Department of Interior's WaterSMART Program seeks to secure and stretch water supplies to benefit future generations and identify adaptive measures to address climate change. Under WaterSMART, Basin Studies are comprehensive water studies to explore options for meeting projected imbalances in water supply and demand in specific basins. Such studies could be most beneficial with application of recent scientific advances in climate projections, stochastic simulation, operational modeling and robust decision-making, as well as computational techniques to organize and analyze many alternatives. A new integrated set of tools and techniques to facilitate these studies includes the following components: Future supply scenarios are produced by the Hydrology Simulator, which uses non-parametric K-nearest neighbor resampling techniques to generate ensembles of hydrologic traces based on historical data, optionally conditioned on long paleo reconstructed data using various Markov Chain techniuqes. Resampling can also be conditioned on climate change projections from e.g., downscaled GCM projections to capture increased variability; spatial and temporal disaggregation is also provided. The simulations produced are ensembles of hydrologic inputs to the RiverWare operations/infrastucture decision modeling software. Alternative demand scenarios can be produced with the Demand Input Tool (DIT), an Excel-based tool that allows modifying future demands by groups such as states; sectors, e.g., agriculture, municipal, energy; and hydrologic basins. The demands can be scaled at future dates or changes ramped over specified time periods. Resulting data is imported directly into the decision model. Different model files can represent infrastructure alternatives and different Policy Sets represent alternative operating policies, including options for noticing when conditions point to unacceptable vulnerabilities, which trigger dynamically executing changes in operations or other

  19. EVALUASI RENCANA KINERJA KOLAM RETENSI (RETARDING BASIN DALAM UPAYA PENGENDALIAN BANJIR TUKAD MATI DI KOTA DENPASAR

    Directory of Open Access Journals (Sweden)

    I G. Suryadinata P

    2013-03-01

    Full Text Available Tukad Mati is one of the rivers in the province of Bali that unfolds and flows in Badung regency and Denpasar. Inundation due to flooding is a problem that often occurs in this region during the rainy season. In an effort to overcome problems of flooding have been many studies carried out so as to produce flood control alternatives such as normalization, diversion channels and retarding basins. Retarding basin is one of flood control alternative that has not been much studied. In this study conducted a simulation of flood prevention alternative with retarding basin at Tukad Mati, by the hydrology approach method and hydraulics using HEC-RAS 4.0 program applications. Simulations performed on the current river flow conditions (existing condition and to the existing conditions with the retarding basin, according to the detail design of retarding basin in the city of Denpasar and evaluate the effectiveness of the retarding basin in the river basin flood control of Tukad Mati. Flood control by retarding basin based on simulations with the 2 (two years flood return period, resulting in a reduction of water level by an average of 0.42 meters or an average of 12% of the maximum water level in the conditions without retarding basin, which occurred in along the grooves on the lower reaches of the retarding basin and inundation waters still occur in some places, particularly in the downstream of Umadui Dam. Economic analysis of both the analysis of Benefits/Cost produces a parameter of BCR, NPV and IRR are not meet the feasibility requirements. The effective retention of retarding basin based on simulation results are 282,630.00 m3 with the ability to flood accommodate for 3-4 hours. In terms of economic development retarding basin is not feasible in terms of comparative costs and benefits

  20. EVALUASI RENCANA KINERJA KOLAM RETENSI (RETARDING BASIN DALAM UPAYA PENGENDALIAN BANJIR TUKAD MATI DI KOTA DENPASAR

    Directory of Open Access Journals (Sweden)

    I G. Suryadinata P

    2013-01-01

    Full Text Available Tukad Mati is one of the rivers in the province of Bali that unfolds and flows in Badung regency and Denpasar. Inundation due to flooding is a problem that often occurs in this region during the rainy season. In an effort to overcome problems of flooding have been many studies carried out so as to produce flood control alternatives such as normalization, diversion channels and retarding basins. Retarding basin is one of flood control alternative that has not been much studied. In this study conducted a simulation of flood prevention alternative with retarding basin at Tukad Mati, by the hydrology approach method and hydraulics using HEC-RAS 4.0 program applications. Simulations performed on the current river flow conditions (existing condition and to the existing conditions with the retarding basin, according to the detail design of retarding basin in the city of Denpasar and evaluate the effectiveness of the retarding basin in the river basin flood control of Tukad Mati. Flood control by retarding basin based on simulations with the 2 (two years flood return period, resulting in a reduction of water level by an average of 0.42 meters or an average of 12% of the maximum water level in the conditions without retarding basin, which occurred in along the grooves on the lower reaches of the retarding basin and inundation waters still occur in some places, particularly in the downstream of Umadui Dam. Economic analysis of both the analysis of Benefits/Cost produces a parameter of BCR, NPV and IRR are not meet the feasibility requirements. The effective retention of retarding basin based on simulation results are 282,630.00 m3 with the ability to flood accommodate for 3-4 hours. In terms of economic development retarding basin is not feasible in terms of comparative costs and benefits

  1. Comparison of Extreme Precipitation Return Levels using Spatial Bayesian Hierarchical Modeling versus Regional Frequency Analysis

    Science.gov (United States)

    Love, C. A.; Skahill, B. E.; AghaKouchak, A.; Karlovits, G. S.; England, J. F.; Duren, A. M.

    2017-12-01

    We compare gridded extreme precipitation return levels obtained using spatial Bayesian hierarchical modeling (BHM) with their respective counterparts from a traditional regional frequency analysis (RFA) using the same set of extreme precipitation data. Our study area is the 11,478 square mile Willamette River basin (WRB) located in northwestern Oregon, a major tributary of the Columbia River whose 187 miles long main stem, the Willamette River, flows northward between the Coastal and Cascade Ranges. The WRB contains approximately two ­thirds of Oregon's population and 20 of the 25 most populous cities in the state. The U.S. Army Corps of Engineers (USACE) Portland District operates thirteen dams and extreme precipitation estimates are required to support risk­ informed hydrologic analyses as part of the USACE Dam Safety Program. Our intent is to profile for the USACE an alternate methodology to an RFA that was developed in 2008 due to the lack of an official NOAA Atlas 14 update for the state of Oregon. We analyze 24-hour annual precipitation maxima data for the WRB utilizing the spatial BHM R package "spatial.gev.bma", which has been shown to be efficient in developing coherent maps of extreme precipitation by return level. Our BHM modeling analysis involved application of leave-one-out cross validation (LOO-CV), which not only supported model selection but also a comprehensive assessment of location specific model performance. The LOO-CV results will provide a basis for the BHM RFA comparison.

  2. Operating history and environmental effects of seepage basins in chemical-separations areas of the Savannah River Plant

    International Nuclear Information System (INIS)

    Fenimore, J.W.; Horton, J.H.

    1973-01-01

    This report summarizes the history of operation and monitoring of the earthen seepage basins, presents results of a comprehensive study of radionuclide distribution in groundwater downgradient from the basins, and evaluates past performance and possible future alternatives for these basins

  3. K Basins environmental impact statement technical input document

    International Nuclear Information System (INIS)

    Bergsman, K.H.; Bergmann, D.W.; Costley, G.E.; Jansky, M.T.; McCormack, R.L.; Monthey, M.J.; Praga, A.N.; Ullah, J.K.; Willis, W.L.

    1995-10-01

    This document describes the technical input necessary to develop and evaluate the alternatives within the Environmental Impact Statement for the Management of Spent Nuclear Fuel From the K Basins at the Hanford Site

  4. Assessing roadway contributions to stormwater flows, concentrations, and loads with the StreamStats application

    Science.gov (United States)

    Stonewall, Adam; Granato, Gregory E.; Haluska, Tana L.

    2018-01-01

    The Oregon Department of Transportation (ODOT) and other state departments of transportation need quantitative information about the percentages of different land cover categories above any given stream crossing in the state to assess and address roadway contributions to water-quality impairments and resulting total maximum daily loads. The U.S. Geological Survey, in cooperation with ODOT and the FHWA, added roadway and land cover information to the online StreamStats application to facilitate analysis of stormwater runoff contributions from different land covers. Analysis of 25 delineated basins with drainage areas of about 100 mi2 indicates the diversity of land covers in the Willamette Valley, Oregon. On average, agricultural, developed, and undeveloped land covers comprise 15%, 2.3%, and 82% of these basin areas. On average, these basins contained about 10 mi of state highways and 222 mi of non-state roads. The Stochastic Empirical Loading and Dilution Model was used with available water-quality data to simulate long-term yields of total phosphorus from highways, non-highway roadways, and agricultural, developed, and undeveloped areas. These yields were applied to land cover areas obtained from StreamStats for the Willamette River above Wilsonville, Oregon. This analysis indicated that highway yields were larger than yields from other land covers because highway runoff concentrations were higher than other land covers and the highway is fully impervious. However, the total highway area was a fraction of the other land covers. Accordingly, highway runoff mitigation measures can be effective for managing water quality locally, they may have limited effect on achieving basin-wide stormwater reduction goals.

  5. Gondwana basins and their coal resources in Bangladesh

    International Nuclear Information System (INIS)

    Nehaluddin, M.; Sultan-ul-Islam, M.

    1994-01-01

    Fault bounded five Gondwana basins have been discovered in the north western Bangladesh. Among these basins show considerable amount of coal deposits. The Gondwana rocks are highly formed during the Permo-carboniferous diastrophism and later on acquired dynamic characters. In almost all basins, the Permian rocks overlie the Precambrian basement and underlie either the Tertiary or the Cretaceous sediments, structural, stratigraphic, and depositional history of these basins is more or less similar. The sedimentary sequences are composed of light to dark gray, fine to very coarse grained, sub angular to sub rounded felspathic sandstone, dark grey carbonaceous shale and sandstone, variegated conglomerate and thick coal seams (single seam max. 42.38m). The rocks are often alternated and bear the characteristics of cyclic sedimentation. The depositional environments varied from restricted drainage to open fluvial dominated low to moderate sinuous drainage system. The coal bearing basins were flanked by vegetated and swampy over bank. Age of these coals is suggested to be the late permian. Proved and probable reserves of coal in Jamalganj-Paharpur basin are 670 and 1,460 million metric tons, in Barapukuria basin 303 and 3899 million metric tons; in Barapukuria basin 303 and 389 million metric tons; and in Khalaspir basin 143 and 685 million metric tons respectively. The coal is high volatile, low sulphur, bituminous type. It can be used for different forms of thermal conversion. (author)

  6. Miocene block uplift and basin formation in the Patagonian foreland: The Gastre Basin, Argentina

    Science.gov (United States)

    Bilmes, A.; D'Elia, L.; Franzese, J. R.; Veiga, G. D.; Hernández, M.

    2013-08-01

    The intraplate fault-block mountains and intermontane deposits of the Gastre Basin, which are recorded more than 550 km east of the Andean trench in central Patagonia, Argentina, are analyzed. The Gastre Basin is one of the largest Patagonian intermontane basins, limited by uplifted blocks strongly oblique to the Andean chain. It was originated by reverse faulting and inversion of pre-existing normal faults associated with a Mesozoic rift basin and defined by older crustal heterogeneities. The deformational event occurred during the middle Miocene, related to a short contractional episode (16.1-14.86 Ma), probably in response to an eastward migration of the Andean fold and thrust belt. During Pliocene to Quaternary times, neither younger fault-block uplifts nor reconfigurations of the basin occurred. Similarities between the study area and other parts of the Patagonian foreland - such as the presence of Miocene reverse or inversion tectonics, as well as the accommodation of the Miocene sedimentary successions - suggest that the Gastre Basin is part of a major late early to middle Miocene broken foreland system (i.e. the Patagonian broken foreland) that exhumed discrete fault-block mountains and generated contemporary basins along more than 950 km parallel to the Andean trench (i.e. between 40°00' and 48°00' south latitude). Based on recent studies on the southern Andean Margin, this continental-scale contractional episode may be the result of a flat-slab subduction segment. Nevertheless, such a hypothesis is very difficult to support when analyzing such a large flat subduction segment along the entire Patagonian trench. This suggests the need to consider alternative flat-slab trigger mechanisms or other factors in the generation of broken foreland systems.

  7. Simulation of ground-water flow and evaluation of water-management alternatives in the upper Charles River basin, eastern Massachusetts

    Science.gov (United States)

    DeSimone, Leslie A.; Walter, Donald A.; Eggleston, John R.; Nimiroski, Mark T.

    2002-01-01

    Ground water is the primary source of drinking water for towns in the upper Charles River Basin, an area of 105 square miles in eastern Massachusetts that is undergoing rapid growth. The stratified-glacial aquifers in the basin are high yield, but also are thin, discontinuous, and in close hydraulic connection with streams, ponds, and wetlands. Water withdrawals averaged 10.1 million gallons per day in 1989?98 and are likely to increase in response to rapid growth. These withdrawals deplete streamflow and lower pond levels. A study was conducted to develop tools for evaluating water-management alternatives at the regional scale in the basin. Geologic and hydrologic data were compiled and collected to characterize the ground- and surface-water systems. Numerical flow modeling techniques were applied to evaluate the effects of increased withdrawals and altered recharge on ground-water levels, pond levels, and stream base flow. Simulation-optimization methods also were applied to test their efficacy for management of multiple water-supply and water-resource needs. Steady-state and transient ground-water-flow models were developed using the numerical modeling code MODFLOW-2000. The models were calibrated to 1989?98 average annual conditions of water withdrawals, water levels, and stream base flow. Model recharge rates were varied spatially, by land use, surficial geology, and septic-tank return flow. Recharge was changed during model calibration by means of parameter-estimation techniques to better match the estimated average annual base flow; area-weighted rates averaged 22.5 inches per year for the basin. Water withdrawals accounted for about 7 percent of total simulated flows through the stream-aquifer system and were about equal in magnitude to model-calculated rates of ground-water evapotranspiration from wetlands and ponds in aquifer areas. Water withdrawals as percentages of total flow varied spatially and temporally within an average year; maximum values were

  8. Macrofaunal diversity in the Central Indian Ocean Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Pavithran, S.; Ingole, B.S.; Nanajkar, M.; Nath, B.N.

    to the increasing interest of mankind in the non-living resources and destructive deep-sea fishing practices present in these areas. The polymetallic nodule is one such resource, looked upon as an alternative to land-based minerals. The Central Indian Ocean Basin...

  9. Burlington Bottoms Wildlife Mitigation Site : Five-Year Habitat Management Plan, 2001-2005, 2000-2001 Progress Report.

    Energy Technology Data Exchange (ETDEWEB)

    Beilke, Susan G.

    2001-09-01

    Historically the lower Columbia and Willamette River Basins were ecologically rich in both the habitat types and the species diversity they supported. This was due in part to the pattern of floods and periodic inundation of bottomlands that occurred, which was an important factor in creating and maintaining a complex system of wetland, meadow, and riparian habitats. This landscape has been greatly altered in the past 150 years, primarily due to human development and agricultural activities including cattle grazing, logging and the building of hydroelectric facilities for hydropower, navigation, flood control and irrigation in the Columbia and Willamette River Basins. The Burlington Bottoms (BB) wetlands contains some of the last remaining bottomlands in the area, supporting a diverse array of native plant and wildlife species. Located approximately twelve miles northwest of Portland and situated between the Tualatin Mountains to the west and Multnomah Channel and Sauvie Island to the east, the current habitats are remnant of what was once common throughout the region. In order to preserve and enhance this important site, a five-year habitat management plan has been written that proposes a set of actions that will carry out the goals and objectives developed for the site, which includes protecting, maintaining and enhancing wildlife habitat for perpetuity.

  10. Burlington Bottoms wildlife mitigation site : five-year habitat management plan, 2001-2005

    International Nuclear Information System (INIS)

    Beilke, Susan G.

    2001-01-01

    Historically the lower Columbia and Willamette River Basins were ecologically rich in both the habitat types and the species diversity they supported. This was due in part to the pattern of floods and periodic inundation of bottomlands that occurred, which was an important factor in creating and maintaining a complex system of wetland, meadow, and riparian habitats. This landscape has been greatly altered in the past 150 years, primarily due to human development and agricultural activities including cattle grazing, logging and the building of hydroelectric facilities for hydropower, navigation, flood control and irrigation in the Columbia and Willamette River Basins. The Burlington Bottoms (BB) wetlands contains some of the last remaining bottomlands in the area, supporting a diverse array of native plant and wildlife species. Located approximately twelve miles northwest of Portland and situated between the Tualatin Mountains to the west and Multnomah Channel and Sauvie Island to the east, the current habitats are remnant of what was once common throughout the region. In order to preserve and enhance this important site, a five-year habitat management plan has been written that proposes a set of actions that will carry out the goals and objectives developed for the site, which includes protecting, maintaining and enhancing wildlife habitat for perpetuity

  11. Investigation of potential alternate study areas in the Paradox Basin region, Utah

    International Nuclear Information System (INIS)

    Grant, T.A.

    1984-03-01

    The Paradox Basin was re-evaluated to determine if any parts of the Basin that had not been identified in previous studies might be suitable for a more detailed evaluation as a nuclear waste repository site. The factors used in this re-evaluation were depth to salt and dedicated lands, because these factors directly address the engineering and environmental feasibility of a repository. Six areas (Happy Canyon, Green River, Dolores River, Expectation Mountain, Dark Canyon, and Kane Springs Canyon) were identified on this basis as potentially suitable areas for further study. These areas were assessed in more detail to review the feasibility of siting a repository. None of the six areas was recommended for further study as a repository site because the size of the areas, thickness of the salt beds, topography, and engineering factors resulting from the loading of nearby mesas generally did not allow the construction of a feasible repository. The content of this report was effective as of May 1983. 41 references, 17 figures

  12. Basin Irrigation Design with Multi-Criteria Analysis Focusing on Water Saving and Economic Returns: Application to Wheat in Hetao, Yellow River Basin

    Directory of Open Access Journals (Sweden)

    Qingfeng Miao

    2018-01-01

    Full Text Available The sustainability of the Hetao Irrigation System, located in the water scarce upper Yellow River basin, is a priority considering the need for water saving, increased water productivity, and higher farmers’ incomes. The upgrading of basin irrigation, the main irrigation method, is essential and includes the adoption of precise land levelling, cut-off management, improved water distribution uniformity, and adequate irrigation scheduling. With this objective, the current study focuses on upgrading wheat basin irrigation through improved design using a decision support system (DSS model, which considers land parcels characteristics, crop irrigation scheduling, soil infiltration, hydraulic simulation, and environmental and economic impacts. Its use includes outlining water saving scenarios and ranking alternative designs through multi-criteria analysis considering the priorities of stakeholders. The best alternatives concern flat level basins with a 100 and 200 m length and inflow rates between 2 and 4 L s−1 m−1. The total irrigation cost of designed projects, including the cost of the autumn irrigation, varies between 2400 and 3300 Yuan ha−1; the major cost component is land levelling, corresponding to 33–46% of total irrigation costs. The economic land productivity is about 18,000 Yuan ha−1. The DSS modelling defined guidelines to be applied by an extension service aimed at implementing better performing irrigation practices, and encouraged a good interaction between farmers and the Water Users Association, thus making easier the implementation of appropriate irrigation management programs.

  13. Use of health services among vineyard and winery workers in the North Willamette Valley, Oregon.

    Science.gov (United States)

    Lopez-Cevallos, Daniel F; Garside, Leda I; Vazquez, Leticia; Polanco, Kristty

    2012-02-01

    Although agricultural work is considered one of the most dangerous and physically demanding jobs, the majority of farmworkers remain vulnerable to disease and injury, while use of health services is limited. The present study analyzes the use of health care services among vineyard and winery workers in the North Willamette Valley, Oregon. Data from 513 foreign-born workers collected during the summer of 2009 by ¡Salud! Services, was used to test the influence of relevant predisposing and enabling factors of the Behavioral Model of Health Care Utilization among Vulnerable Populations. The majority of participants were males (87%) with an average age of 33 years. Over half of the workers were either married or living with a partner (54%) and had children living with them (58%). Very few spoke English (5%) and only a third had more than 6 years of formal education. Two-thirds of workers (65%) had a full time job and shared housing (67%). Only one of every five workers (19%) had health insurance. Multivariate analyses show that use of health services in the past 2 years is more likely among females, those who have children, have more than 6 years of education, work full time, are insured, and are currently attending school. This study provides further insight for health care provision initiatives to reduce the many barriers faced by farmworkers and their families.

  14. Evaluation of water resource economics within the Pasco Basin, Washington

    International Nuclear Information System (INIS)

    Leaming, G.F.

    1981-01-01

    The Columbia River basalt beneath the Hanford Site in south-central Washington is being considered for possible use as a terminal repository medium for high-level nuclear waste. Such underground storage would require that the facility be contiguous to at least a portion of the ambient groundwater system of the Pasco Basin. This report attempts to evaluate the economic factors and conditions related to the water resources of the Pasco Basin and the probable economic effects associated with selected hypothetical changes in local water demand and supply as a basis for eventual selection of credible water supply alternatives and more detailed analyses of the consequences of such alternative selection. It is most likely that total demand for water for consumptive uses in the Pasco Basin will increase from nearly 2.0 million acre-feet per year in 1980 to almost 2.8 million acre-feet in 2010, with total demand slightly more than 3.6 million acre-feet per year in 2080. The Columbia River and other surface streams constitute the source of more than 99 percent of the water available each year for all uses, both consumptive and non-consumptive, in the Pasco Basin. It is estimated that pumped groundwater accounted for 3 percent of the value of all water supplied to consumers of water in the Pasco Basin in 1980. Groundwater's share of the total cost is proportionately higher than groundwater's share of total use because it is generally more costly to acquire than is surface water and the value of water is considered equivalent to its cost of acquisition. Because groundwater represents such a small part of the total water supply and demand within the Pasco Basin, it is concluded that if the development of a nuclear waste repository on the Hanford Site were to result in changes in the groundwater supply during the next 100 years, the economic impact on the overall water supply picture for the entire basin would be insignificant

  15. Status of Oregon's Bull Trout.

    Energy Technology Data Exchange (ETDEWEB)

    Buchanan, David V.; Hanson, Mary L.; Hooton, Robert M.

    1997-10-01

    Limited historical references indicate that bull trout Salvelinus confluentus in Oregon were once widely spread throughout at least 12 basins in the Klamath River and Columbia River systems. No bull trout have been observed in Oregon's coastal systems. A total of 69 bull trout populations in 12 basins are currently identified in Oregon. A comparison of the 1991 bull trout status (Ratliff and Howell 1992) to the revised 1996 status found that 7 populations were newly discovered and 1 population showed a positive or upgraded status while 22 populations showed a negative or downgraded status. The general downgrading of 32% of Oregon's bull trout populations appears largely due to increased survey efforts and increased survey accuracy rather than reduced numbers or distribution. However, three populations in the upper Klamath Basin, two in the Walla Walla Basin, and one in the Willamette Basin showed decreases in estimated population abundance or distribution.

  16. Flood-inundation maps for a 9.1-mile reach of the Coast Fork Willamette River near Creswell and Goshen, Lane County, Oregon

    Science.gov (United States)

    Hess, Glen W.; Haluska, Tana L.

    2016-04-13

    Digital flood-inundation maps for a 9.1-mile reach of the Coast Fork Willamette River near Creswell and Goshen, Oregon, were developed by the U.S. Geological Survey (USGS) in cooperation with the U.S. Army Corps of Engineers (USACE). The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected stages at the USGS streamgage at Coast Fork Willamette River near Goshen, Oregon (14157500), at State Highway 58. Current stage at the streamgage for estimating near-real-time areas of inundation may be obtained at http://waterdata.usgs.gov/or/nwis/uv/?site_no=14157500&PARAmeter_cd=00065,00060. In addition, the National Weather Service (NWS) forecasted peak-stage information may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation.In this study, areas of inundation were provided by USACE. The inundated areas were developed from flood profiles simulated by a one-dimensional unsteady step‑backwater hydraulic model. The profiles were checked by the USACE using documented high-water marks from a January 2006 flood. The model was compared and quality assured using several other methods. The hydraulic model was then used to determine eight water-surface profiles at various flood stages referenced to the streamgage datum and ranging from 11.8 to 19.8 ft, approximately 2.6 ft above the highest recorded stage at the streamgage (17.17 ft) since 1950. The intervals between stages are variable and based on annual exceedance probability discharges, some of which approximate NWS action stages.The areas of inundation and water depth grids provided to USGS by USACE were used to create interactive flood‑inundation maps. The availability of these maps with current stage from USGS streamgage and forecasted stream stages from the NWS provide emergency management

  17. Patterns and controls on historical channel change in the Willamette River, Oregon, USA

    Science.gov (United States)

    Jennifer Rose Wallick; Gordon E. Grant; Stephen T. Lancaster; John P. Bolte; Roger P. Denlinger

    2007-01-01

    Distinguishing human impacts on channel morphology from the natural behaviour of fluvial systems is problematic for large river basins. Large river basins, by virtue of their size, typically encompass wide ranges of geology and landforms resulting in diverse controls on channel form. They also inevitably incorporate long and complex histories of overlapping human and...

  18. 105KE and 105KW Basins fuel and sludge consolidation study, summary report

    International Nuclear Information System (INIS)

    Gant, R.G.

    1994-01-01

    This study is a summary report that examines and evaluates the feasibility of consolidating irradiated fuel and sludge currently in KE Basin with that in the KW Basin. This study was conducted in support of TPA Milestone (target date) M-34-00-T03. The report summarizes three supporting engineering studies involving: (1) spent fuel consolidation into the single basin, (2) transport of the encapsulated fuel between KE and KW Basins, and (3) dispositioning contaminated water remaining in KE Basin. From the three reports, and preferred storage method, transfer method and water disposition method were defined. These consolidation methods were then evaluated against the no action alternative of continued storage using both KE and KW Basins. The report concluded that the fuel and sludge currently stored in KE Basin not be consolidated in the KW Basin, primarily due to increased cost and radiation exposure required to consolidate the fuel and sludge. Consolidation is more attractive for storage periods beyond the year 2002, which is the study period of the report

  19. Regional economic impact assessment: Evaluating remedial alternatives for the Portland Harbor Superfund Site, Portland, Oregon, USA.

    Science.gov (United States)

    Harrison, David; Coughlin, Conor; Hogan, Dylan; Edwards, Deborah A; Smith, Benjamin C

    2018-01-01

    The present paper describes a methodology for evaluating impacts of Superfund remedial alternatives on the regional economy in the context of a broader sustainability evaluation. Although economic impact methodology is well established, some applications to Superfund remedial evaluation have created confusion because of seemingly contradictory results. This confusion arises from failure to be explicit about 2 opposing impacts of remediation expenditures: 1) positive regional impacts of spending additional money in the region and 2) negative regional impacts of the need to pay for the expenditures (and thus forgo other expenditures in the region). The present paper provides a template for economic impact assessment that takes both positive and negative impacts into account, thus providing comprehensive estimates of net impacts. The paper also provides a strategy for identifying and estimating major uncertainties in the net impacts. The recommended methodology was applied at the Portland Harbor Superfund Site, located along the Lower Willamette River in Portland, Oregon, USA. The US Environmental Protection Agency (USEPA) developed remedial alternatives that it estimated would cost up to several billion dollars, with construction durations possibly lasting decades. The economic study estimated regional economic impacts-measured in terms of gross regional product (GRP), personal income, population, and employment-for 5 of the USEPA alternatives relative to the "no further action" alternative. Integr Environ Assess Manag 2018;14:32-42. © 2017 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC). © 2017 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC).

  20. Predicting the ungauged basin: Model validation and realism assessment

    Directory of Open Access Journals (Sweden)

    Tim evan Emmerik

    2015-10-01

    Full Text Available The hydrological decade on Predictions in Ungauged Basins (PUB led to many new insights in model development, calibration strategies, data acquisition and uncertainty analysis. Due to a limited amount of published studies on genuinely ungauged basins, model validation and realism assessment of model outcome has not been discussed to a great extent. With this paper we aim to contribute to the discussion on how one can determine the value and validity of a hydrological model developed for an ungauged basin. As in many cases no local, or even regional, data are available, alternative methods should be applied. Using a PUB case study in a genuinely ungauged basin in southern Cambodia, we give several examples of how one can use different types of soft data to improve model design, calibrate and validate the model, and assess the realism of the model output. A rainfall-runoff model was coupled to an irrigation reservoir, allowing the use of additional and unconventional data. The model was mainly forced with remote sensing data, and local knowledge was used to constrain the parameters. Model realism assessment was done using data from surveys. This resulted in a successful reconstruction of the reservoir dynamics, and revealed the different hydrological characteristics of the two topographical classes. This paper does not present a generic approach that can be transferred to other ungauged catchments, but it aims to show how clever model design and alternative data acquisition can result in a valuable hydrological model for an ungauged catchment.

  1. Floods of December 1964 and January 1965 in the Far Western States; Part 1 Description

    Science.gov (United States)

    Waananen, A.O.; Harris, D.D.; Williams, R.C.

    1971-01-01

    The floods of December 1964 and January 1965 in the Far Western States were extreme; in many areas, the greatest in the history of recorded streamflow and substantially greater than those of December 1955. An unusually large area--Oregon, most of Idaho, northern California, southern Washington, and small areas in western and northern Nevada--was involved. It exceeded the area flooded in 1955. Outstanding features included recordbreaking peak discharges, high sediment concentrations, large sediment loads, and extensive flood damage. The loss of 47 lives and direct property damage of more than $430 million was attributable to the floods. Yet, storage in reservoirs and operation of flood-control facilities were effective in preventing far greater damages in many areas, particularly in the Central Valley in California and the Willamette River basin in Oregon. The floods were caused by three principal storms during the period December 19 to January 31. The December 19-23 storm was the greatest in overall intensity and areal extent. Crests occurred on many major streams December 23, 1964, 9 years to the day after the great flood of December 23, 1955. The January 2-7 storm produced extreme floods in some basins in California. The January 21-31 storm produced maximum stages in some streams in northeastern Oregon and southeastern Washington and a repetition of high flows in part of the Willamette River basin and in some basins in coastal Oregon. All the storms, and particularly the warm torrential rain December 21-23, reflected the combined effect of moist unstable airmasses, strong west-southwest winds, and mountain ranges oriented nearly at right angles to the flow of air. High air temperatures and strong winds associated with the storms caused melting of snow, and the meltwater augmented the rain that fell on frozen ground. The coastal areas of northern California and southern Oregon had measurable rain on as many as 50 days in December and January. A maximum

  2. Eco-environmental impact of inter-basin water transfer projects: a review.

    Science.gov (United States)

    Zhuang, Wen

    2016-07-01

    The objective reality of uneven water resource distribution and imbalanced water demand of the human society makes it inevitable to transfer water. It has been an age-old method to adopt the inter-basin water transfers (IBTs) for alleviating and even resolving the urgent demand of the water-deficient areas. A number of countries have made attempts and have achieved enormous benefits. However, IBTs inevitably involve the redistribution of water resources in relevant basins and may cause changes of the ecological environment in different basins. Such changes are two-sided, namely, the positive impacts, including adding new basins for water-deficient areas, facilitating water cycle, improving meteorological conditions in the recipient basins, mitigating ecological water shortage, repairing the damaged ecological system, and preserving the endangered wild fauna and flora, as well as the negative impacts, including salinization and aridification of the donor basins, damage to the ecological environment of the donor basins and the both sides of the conveying channel system, increase of water consumption in the recipient basins, and spread of diseases, etc. Because IBTs have enormous ecological risk, it is necessary to comprehensively analyze the inter-basin water balance relationship, coordinate the possible conflicts and environmental quality problems between regions, and strengthen the argumentation of the ecological risk of water transfer and eco-compensation measures. In addition, there are some effective alternative measures for IBTs, such as attaching importance to water cycle, improving water use efficiency, developing sea water desalination, and rainwater harvesting technology, etc.

  3. Real-time remote sensing driven river basin modeling using radar altimetry

    DEFF Research Database (Denmark)

    Pereira Cardenal, Silvio Javier; Riegels, Niels; Bauer-Gottwein, Peter

    2011-01-01

    Many river basins have a weak in-situ hydrometeorological monitoring infrastructure. However, water resources practitioners depend on reliable hydrological models for management purposes. Remote sensing (RS) data have been recognized as an alternative to in-situ hydrometeorological data in remote...

  4. Reconnaissance of pharmaceuticals and wastewater indicators in streambed sediments of the lower Columbia River basin, Oregon and Washington

    Science.gov (United States)

    Nilsen, Elena; Furlong, Edward T.; Rosenbauer, Robert

    2014-01-01

    One by-product of advances in modern chemistry is the accumulation of synthetic chemicals in the natural environment. These compounds include contaminants of emerging concern (CECs), some of which are endocrine disrupting compounds (EDCs) that can have detrimental reproductive effects. The role of sediments in accumulating these types of chemicals and acting as a source of exposure for aquatic organisms is not well understood. Here we present a small-scale reconnaissance of CECs in bed sediments of the lower Columbia River and several tributaries and urban streams. Surficial bed sediment samples were collected from the Columbia River, the Willamette River, the Tualatin River, and several small urban creeks in Oregon. Thirty-nine compounds were detected at concentrations ranging from 1,000 ng [g sediment]-1 dry weight basis. Columbia River mainstem, suggesting a higher risk of exposure to aquatic life in lower order streams. Ten known or suspected EDCs were detected during the study. At least one EDC was detected at 21 of 23 sites sampled; several EDCs were detected in sediment from most sites. This study is the first to document the occurrence of a large suite of CECs in the sediments of the Columbia River basin. A better understanding of the role of sediment in the fate and effects of emerging contaminants is needed.

  5. Agricultural Water Conservation in the Colorado River Basin: Alternatives to Permanent Fallowing Research Synthesis and Outreach Workshops

    Science.gov (United States)

    Udall, B. H.; Peterson, G.

    2017-12-01

    As increasing water scarcity occurs in the Colorado River Basin, water users have been looking for new sources of supply. The default solution is to transfer water from the cheapest and most plentiful source — agriculture — to supply new water demands in the region. However, if pursued in haste, and without sufficient information, the likely outcome may be permanent fallowing, along with serious economic disruption to agricultural communities, loss of valuable farmland, loss of important amenity values, and a loss of a sense of place in many rural communities within the basin. This project was undertaken to explore ways to minimize harm to agriculture if transfers out of agriculture were to occur. Four detailed synthesis reports of the four common methods used to temporarily transfer water from agriculture were produced by the project. The water saving methods covered by the reports are: (1) Deficit Irrigation of Alfalfa and other Forages; (2) Rotational Fallowing; (3) Crop Switching; and (4) Irrigation Efficiency and Water Conservation After the reports were drafted, three workshops were held, one in the Upper Basin in Grand Junction on November 4, 2016, one in the Lower Basin in Tucson on March 29, 2017, and one in Washington, DC on May 16, 2017 to disseminate the findings. Over 100 people attended these workshops.

  6. The Ogaden Basin, Ethiopia: an underexplored sedimentary basin

    Energy Technology Data Exchange (ETDEWEB)

    Teitz, H.H.

    1991-01-01

    A brief article examines the Ogaden Basin in Ethiopia in terms of basin origin, basin fill and the hydrocarbon exploration history and results. The natural gas find in pre-Jurassic sandstones, which appears to contain substantial reserves, justifies continuing investigations in this largely underexplored basin. (UK).

  7. Morphometric analysis of Martian valley network basins using a circularity function

    Science.gov (United States)

    Luo, Wei; Howard, Alan D.

    2005-12-01

    This paper employs a circularity function to quantify the internal morphology of Martian watershed basins in Margaritifer Sinus region and to infer the primary erosional processes that led to their current geomorphologic characteristics and possible climatic conditions under which these processes operated. The circularity function describes the elongation of a watershed basin at different elevations. We have used the circularity functions of terrestrial basins that were interpreted as having been modified by (1) erosion related to primarily groundwater sapping and (2) erosion related to primarily rainfall and surface run-off, as well as the circularity functions of cratering basins on the Moon, in order to formulate discriminant functions that are able to separate the three types of landforms. The spatial pattern of the classification of Martian basins based on discriminant functions shows that basins that look morphologically similar to terrestrial fluvial basins are mostly clustered near the mainstream at low elevation, while those that look morphologically similar to terrestrial basins interpreted as groundwater sapping origin are located near the tributaries and at higher elevation. There are more of the latter than the former. This spatial distribution is inconsistent with a continuous Earth-like warm and wet climate for early Mars. Instead, it is more aligned with an overall early dry climate punctuated with episodic wet periods. Alternatively, the concentrated erosion in the mainstream could also be caused by a change of water source from rainfall to snowfall or erosion cut through a duricrust layer.

  8. An agent-based model for water management and planning in the Lake Naivasha basin, Kenya

    Science.gov (United States)

    van Oel, Pieter; Mulatu, Dawit; Odongo, Vincent; Onyando, Japheth; Becht, Robert; van der Veen, Anne

    2013-04-01

    A variety of human and natural processes influence the ecological and economic state of the Lake Naivasha basin. The ecological wealth and recent economic developments in the area are strongly connected to Lake Naivasha which supports a rich variety of flora, mammal and bird species. Many human activities depend on clean freshwater from the lake whereas recently the freshwater availability of good quality is seriously influenced by water abstractions and the use of fertilizers in agriculture. Management alternatives include those aiming at limiting water abstractions and fertilizer use. A possible way to achieve reduced use of water and fertilizers is the introduction of Payment for Environmental Services (PES) schemes. As the Lake Naivasha basin and its population have experienced increasing pressures various disputes and disagreements have arisen about the processes responsible for the problems experienced, and the effectively of management alternatives. Beside conflicts of interest and disagreements on responsibilities there are serious factual disagreements. To share scientific knowledge on the effects of the socio-ecological system processes on the Lake Naivasha basin, tools may be used that expose information at temporal and spatial scales that are meaningful to stakeholders. In this study we use a spatially-explicit agent-based modelling (ABM) approach to depict the interactions between socio-economic and natural subsystems for supporting a more sustainable governance of the river basin resources. Agents consider alternative livelihood strategies and decide to go for the one they perceive as likely to be most profitable. Agents may predict and sense the availability of resources and also can observe economic performance achieved by neighbouring agents. Results are presented at the basin and subbasin level to provide relevant knowledge to Water Resources Users Associations which are important collective forums for water management through which PES schemes

  9. Data quality objectives summary report for 105-N Basin sediment disposition

    International Nuclear Information System (INIS)

    Pisarcik, D.J.

    1996-10-01

    During stabilization of the 105-N Basin, sediments that have accumulated on basin surfaces will be vacuumed, collected in the North Cask Pit of the basin complex, and eventually removed. The environmental assessment for the deactivation of the N Reactor Facilities describes two potential disposition paths for the 105-N Basin sediment: transfer in slurry form to a double-shell tank if determined to be a transuranic waste, or disposal in solid form as a low-level waste. Interim storage of the sediments may be required if a transfer to the Tank Waste Remediation System cannot meet scheduled milestones. Selection of a particular alternative depends on the final characterization of the accumulated sediment, regulatory requirements, cost/benefit analyses, and 105-N Stabilization Project schedule requirements. The 105-N Basin Sediment Process is being conducted in two phases. The scope of the first phase includes identification of the sampling requirements, and the specific analyses required to support evaluation of the sediment disposition options. The objectives of the first phase of the 105-N Basin Sediment DQO Process include the following: identify the relevant acceptance criteria for each of the disposition options; and develop a sampling and analysis plan (SAP) sufficiently through to allow evaluation of sediment analysis results against each set of acceptance criteria

  10. Summary status of K Basins sludge characterization

    International Nuclear Information System (INIS)

    Baker, R.B.

    1995-01-01

    A number of activities are underway as part of the Spent Nuclear Fuels Project (SNFP) related to the processing and disposing of sludge in the 105-K Basins (K Basins). Efforts to rigorously define data requirements for these activities are being made using the Data Quality Objectives (DQO) process. Summaries of current sludge characterization data are required to both help support this DQO process and to allow continued progress with on-going engineering activities (e.g., evaluations of disposal alternatives). This document provides the status of K Basins sludge characterization data currently available to the Nuclear Fuel Evaluations group. This group is tasked by the SNFP to help develop and maintain the characterization baseline for the K Basins. The specific objectives of this document are to: (1) provide a current summary (and set of references) of sludge characterization data for use by SNFP initiatives, to avoid unnecessary duplication of effort and to support on-going initiatives; (2) submit these data to an open forum for review and comment, and identify additional sources of significant data that may be available; (3) provide a summary of current data to use as part of the basis to develop requirements for additional sludge characterization data through the DQO process; (4) provide an overview of the intended activities that will be used to develop and maintain the sludge characterization baseline

  11. Assessment of the water supply:demand ratios in a Mediterranean basin under different global change scenarios and mitigation alternatives.

    Science.gov (United States)

    Boithias, Laurie; Acuña, Vicenç; Vergoñós, Laura; Ziv, Guy; Marcé, Rafael; Sabater, Sergi

    2014-02-01

    Spatial differences in the supply and demand of ecosystem services such as water provisioning often imply that the demand for ecosystem services cannot be fulfilled at the local scale, but it can be fulfilled at larger scales (regional, continental). Differences in the supply:demand (S:D) ratio for a given service result in different values, and these differences might be assessed with monetary or non-monetary metrics. Water scarcity occurs where and when water resources are not enough to meet all the demands, and this affects equally the service of water provisioning and the ecosystem needs. In this study we assess the value of water in a Mediterranean basin under different global change (i.e. both climate and anthropogenic changes) and mitigation scenarios, with a non-monetary metric: the S:D ratio. We computed water balances across the Ebro basin (North-East Spain) with the spatially explicit InVEST model. We highlight the spatial and temporal mismatches existing across a single hydrological basin regarding water provisioning and its consumption, considering or not, the environmental demand (environmental flow). The study shows that water scarcity is commonly a local issue (sub-basin to region), but that all demands are met at the largest considered spatial scale (basin). This was not the case in the worst-case scenario (increasing demands and decreasing supply), as the S:D ratio at the basin scale was near 1, indicating that serious problems of water scarcity might occur in the near future even at the basin scale. The analysis of possible mitigation scenarios reveals that the impact of global change may be counteracted by the decrease of irrigated areas. Furthermore, the comparison between a non-monetary (S:D ratio) and a monetary (water price) valuation metrics reveals that the S:D ratio provides similar values and might be therefore used as a spatially explicit metric to valuate the ecosystem service water provisioning. © 2013.

  12. Superfund record of decision (EPA Region 4): Savannah River Site (USDOE), F-Area Retention Basin (281-3F), Aiken, SC, September 4, 1998

    International Nuclear Information System (INIS)

    1999-05-01

    The F-Area Retention Basin (FRB) Operable Unit (OU) includes the retention basin (basin soils), the former process sewer line (pipeline sediment, and pipeline associated soils), and the groundwater associated with the unit. This decision document presents the selected remedial alternatives for the FRB OU located at the SRS south of Aiken, South Carolina

  13. 488-D Ash Basin Vegetative Cover Treatibility Study

    Energy Technology Data Exchange (ETDEWEB)

    Barton, Christopher; Marx, Don; Blake, John; Adriano, Domy; Koo, Bon-Jun; Czapka, Stephen

    2003-01-01

    The 488-D Ash Basin is an unlined containment basin that received ash and coal reject material from the operation of a powerhouse at the USDOE's Savannah River Site, SC. They pyretic nature of the coal rejects has resulted in the formation of acidic drainage (AD), which has contributed to groundwater deterioration and threatens biota in down gradient wetlands. Establishment of a vegetative cover was examined as a remedial alternative for reducing AD generation within this system by enhanced utilization of rainwater and subsequent non-point source water pollution control. The low nutrient content, high acidity, and high salinity of the basin material, however, was deleterious to plant survivability. As such, studies to identify suitable plant species and potential adaptations, and pretreatment techniques in the form of amendments, tilling, and/or chemical stabilization were needed. A randomized block design consisting of three subsurface treatments (blocks) and five duplicated surface amendments (treatments) was developed. One hundred inoculated pine trees were planted on each plot. Herbaceous species were also planted on half of the plots in duplicated 1-m2 beds. After two growing seasons, deep ripping, subsurface amendments and surface covers were shown to be essential for the successful establishment of vegetation on the basin. This is the final report of the study.

  14. Drought evolution characteristics and precipitation intensity changes during alternating dry-wet changes in the Huang-Huai-Hai River basin

    Science.gov (United States)

    Yan, D. H.; Wu, D.; Huang, R.; Wang, L. N.; Yang, G. Y.

    2013-03-01

    According to the Chinese climate divisions and the Huang-Huai-Hai River basin digital elevation map, the basin is divided into seven sub-regions by means of cluster analysis of the basin meteorological stations using the self-organizing map (SOM) neural network method. Based on the daily precipitation data of 171 stations for the years 1961-2011, the drought frequency changes with different magnitudes are analyzed and the number of consecutive days without precipitation is used to identify the drought magnitudes. The first precipitation intensity after a drought period is analyzed with the Pearson-III frequency curve, then the relationship between rainfall intensity and different drought magnitudes is observed, as are the drought frequency changes for different years. The results of the study indicated the following: (1) the occurrence frequency of different drought level shows an overall increasing trend; there is no clear interdecadal change shown, but the spatial difference is significant. The occurrence frequencies of severe and extraordinary drought are higher on the North China Plain, Hetao Plains in Ningxia-Inner Mongolia, as well as on the Inner Mongolia and the Loess Plateaus, and in the Fen-Wei Valley basin. (2) As the drought level increases, the probability of extraordinary rainstorm becomes lower, and the frequency of occurrence of spatial changes in different precipitation intensities vary. In the areas surrounding Bo Sea, the Shandong Peninsula and the Huai River downstream, as the drought level increases, the occurrence frequency of different precipitation intensities first shows a decreasing trend, which becomes an increasing trend when extraordinary drought occurs. In the middle and upper reaches of the Huai River basin, on the Hai River basin piedmont plain and Hetao Plains in Ningxia-Inner Mongolia, Inner Mongolia and Loess Plateaus, and in the Fen-Wei Valley basin, the probability of the different precipitation intensities shows an overall

  15. Faults architecture and growth in clay-limestone alternation. Examples in the S-E Basin alternations (France) and numerical modeling

    International Nuclear Information System (INIS)

    Roche, Vincent

    2011-01-01

    The following work has been carried out in the framework of the studies conducted by IRSN in support of its safety evaluation of the geological disposal programme of high and intermediate level, long-lived radioactive waste. Such a disposal is planned to be hosted by the Callovian-Oxfordian indurate clay formation between two limestone formations in eastern Paris basin, France. Hypothetical faults may cross-cut this layered section, decreasing the clay containment ability by creating preferential pathways for radioactive solute towards limestones. This study aims at characterising the fault architecture and the normal fault growth in clay/limestone layered sections. Structural analysis and displacement profiles have been carried out in normal faults crossing several decimetres to metre thick sedimentary alternations in the South-Eastern Basin (France) and petrophysical properties have been determined for each layer. The studied faults are simple fault planes or complex fault zones showing are significantly controlled by the layering. The analysis of the fault characteristics and the results obtained on numerical models enlighten several processes such as fault nucleation, fault restriction, and fault growth through layered section. Some studied faults nucleated in the limestone layers, without using pre-existing fractures such as joints, and according to our numerical analysis, a strong stiffness, a low strength contrast between the limestone and the clay layer, and/or s a greater thickness of the clay layer are conditions which favour nucleation of faults in limestone. The range of mechanical properties leading to the fault nucleation in one layer type or another was investigated using a 3D modelling approach. After its nucleation, the fault propagates within a homogeneous medium with a constant displacement gradient until its vertical propagation is stopped by a restrictor. The evidenced restrictors are limestone-clay interfaces or faults in clays, sub

  16. Stratigraphy of Guichon Formation (lower cretaceous) in litoral basin, Uruguay

    International Nuclear Information System (INIS)

    Goso, C.; Perea, D.; Perinotto, J.

    1999-01-01

    This report is about the stratigraphic al analysis of the Guichon Formation (lower cretaceous, litoral basin in Uruguay). The facies association is represented by conglomerates mainly fine sandstones and mud stones wi ch is interpreted as an alluvial system. A regional palaeogeography and a new geochronological alternative are established for this formation. (author).

  17. Development of CE-QUAL-W2 models for the Middle Fork Willamette and South Santiam Rivers, Oregon

    Science.gov (United States)

    Buccola, Norman L.; Stonewall, Adam J.; Sullivan, Annett B.; Kim, Yoonhee; Rounds, Stewart A.

    2013-01-01

    Hydrodynamic (CE-QUAL-W2) models of Hills Creek Lake (HCL), Lookout Point Lake (LOP), and Dexter Lake (DEX) on the Middle Fork Willamette River (MFWR), and models of Green Peter Lake and Foster Lake on the South Santiam River systems in western Oregon were updated and recalibrated for a wide range of flow and meteorological conditions. These CE-QUAL-W2 models originally were developed by West Consultants, Inc., for the U.S. Army Corps of Engineers. This study by the U.S. Geological Survey included a reassessment of the models’ calibration in more recent years—2002, 2006, 2008, and 2011—categorized respectively as low, normal, high, and extremely high flow calendar years. These years incorporated current dam-operation practices and more available data than the time period used in the original calibration. Modeled water temperatures downstream of both HCL and LOP-DEX on the MFWR were within an average of 0.68 degree Celsius (°C) of measured values; modeled temperatures downstream of Foster Dam on the South Santiam River were within an average of 0.65°C of measured values. A new CE-QUAL-W2 model was developed and calibrated for the riverine MFWR reach between Hills Creek Dam and the head of LOP, allowing an evaluation of the flow and temperature conditions in the entire MFWR system from HCL to Dexter Dam. The complex bathymetry and long residence time of HCL, combined with the relatively deep location of the power and regulating outlet structures at Hills Creek Dam, led to a HCL model that was highly sensitive to several outlet and geometric parameters related to dam structures (STR TOP, STR BOT, STR WIDTH). Release temperatures from HCL were important and often persisted downstream as they were incorporated in the MFWR model and the LOP-DEX model (downstream of MFWR). The models tended to underpredict the measured temperature of water releases from Dexter Dam during the late-September-through-December drawdown period in 2002, and again (to a lesser extent) in

  18. Water temperature effects from simulated dam operations and structures in the Middle Fork Willamette River, western Oregon

    Science.gov (United States)

    Buccola, Norman L.; Turner, Daniel F.; Rounds, Stewart A.

    2016-09-14

    Significant FindingsStreamflow and water temperature in the Middle Fork Willamette River (MFWR), western Oregon, have been regulated and altered since the construction of Lookout Point, Dexter, and Hills Creek Dams in 1954 and 1961, respectively. Each year, summer releases from the dams typically are cooler than pre-dam conditions, with the reverse (warmer than pre-dam conditions) occurring in autumn. This pattern has been detrimental to habitat of endangered Upper Willamette River (UWR) Chinook salmon (Oncorhynchus tshawytscha) and UWR winter steelhead (O. mykiss) throughout multiple life stages. In this study, scenarios testing different dam-operation strategies and hypothetical dam-outlet structures were simulated using CE-QUAL-W2 hydrodynamic/temperature models of the MFWR system from Hills Creek Lake (HCR) to Lookout Point (LOP) and Dexter (DEX) Lakes to explore and understand the efficacy of potential flow and temperature mitigation options.Model scenarios were run in constructed wet, normal, and dry hydrologic calendar years, and designed to minimize the effects of Hills Creek and Lookout Point Dams on river temperature by prioritizing warmer lake surface releases in May–August and cooler, deep releases in September–December. Operational scenarios consisted of a range of modified release rate rules, relaxation of power-generation constraints, variations in the timing of refill and drawdown, and maintenance of different summer maximum lake levels at HCR and LOP. Structural scenarios included various combinations of hypothetical floating outlets near the lake surface and hypothetical new outlets at depth. Scenario results were compared to scenarios using existing operational rules that give temperature management some priority (Base), scenarios using pre-2012 operational rules that prioritized power generation over temperature management (NoBlend), and estimated temperatures from a without-dams condition (WoDams).Results of the tested model scenarios led

  19. The economic value of drought information for water management under climate change: a case study in the Ebro basin

    Directory of Open Access Journals (Sweden)

    S. Quiroga

    2011-03-01

    Full Text Available Drought events in the Mediterranean are likely to increase in frequency, duration and intensity due to climate change, thereby affecting crop production. Information about drought is valuable for river basin authorities and the farmers affected by their decisions. The economic value of this information and the resulting decisions are of interest to these two stakeholder groups and to the information providers. Understanding the dynamics of extreme events, including droughts, in future climate scenarios for the Mediterranean is being improved continuously. This paper analyses the economic value of information on drought events taking into account the risk aversion of water managers. We consider the effects of drought management plans on rice production in the Ebro river basin. This enables us to compute the willingness to compensate the river basin authority for more accurate information allowing for better decision-making. If runoff is reduced, river basin planners can consider the reduction of water allocation for irrigation in order to eliminate the risk of water scarcity. Alternately, river basin planners may decide to maintain water allocation and accept a reduction of water supply reliability, leaving farmers exposed to drought events. These two alternatives offer different risk levels for crop production and farmers' incomes which determine the value of this information to the river basin authority. The information is relevant for the revision of River Basin Management Plans of the Water Framework Directive (WFD within the context of climate change.

  20. Integrated Hydrographical Basin Management. Study Case - Crasna River Basin

    Science.gov (United States)

    Visescu, Mircea; Beilicci, Erika; Beilicci, Robert

    2017-10-01

    Hydrographical basins are important from hydrological, economic and ecological points of view. They receive and channel the runoff from rainfall and snowmelt which, when adequate managed, can provide fresh water necessary for water supply, irrigation, food industry, animal husbandry, hydrotechnical arrangements and recreation. Hydrographical basin planning and management follows the efficient use of available water resources in order to satisfy environmental, economic and social necessities and constraints. This can be facilitated by a decision support system that links hydrological, meteorological, engineering, water quality, agriculture, environmental, and other information in an integrated framework. In the last few decades different modelling tools for resolving problems regarding water quantity and quality were developed, respectively water resources management. Watershed models have been developed to the understanding of water cycle and pollution dynamics, and used to evaluate the impacts of hydrotechnical arrangements and land use management options on water quantity, quality, mitigation measures and possible global changes. Models have been used for planning monitoring network and to develop plans for intervention in case of hydrological disasters: floods, flash floods, drought and pollution. MIKE HYDRO Basin is a multi-purpose, map-centric decision support tool for integrated hydrographical basin analysis, planning and management. MIKE HYDRO Basin is designed for analyzing water sharing issues at international, national and local hydrographical basin level. MIKE HYDRO Basin uses a simplified mathematical representation of the hydrographical basin including the configuration of river and reservoir systems, catchment hydrology and existing and potential water user schemes with their various demands including a rigorous irrigation scheme module. This paper analyzes the importance and principles of integrated hydrographical basin management and develop a case

  1. Conflicts and limitations in spatial development of mining basins

    Directory of Open Access Journals (Sweden)

    Spasić Nenad

    2009-01-01

    Full Text Available A relatively high degree of conflicts between development and developmental goals is an objective condition that one has to face in planning in large mining basins. Numerous conflicts exist: between wider public larger social interests (land occupation, removal-power production, short-term and long-term goals, specific and general aims, etc. Basic developmental conflicts exist in the relationship between the miming-energy-industrial system and its environment, and they are manifested in areas of regional development, incompatible production functions (mining-agriculture, lend use and organization, exploitation of natural resources, and environmental degradation. Thus, one of the most important planning task in large mining basins is to identify, evaluate, confront and compare development conflicts and developmental goals. The task of the planning process is to offer objective parameters (indices concerning the state of development, its potentials and limitations, as well as the concept of alternative strategies of future development, including their possible effects, conversion of larger social priorities into criteria for evaluating alternative strategies, i.e. to offer adequate analytical documents as a platform for the expression of goals and interests of numerous social subjects and their harmonization in the process of participation in planing decision making.

  2. The Removal Action Work Plan for CPP-603A Basin Facility

    International Nuclear Information System (INIS)

    B. T. Richards

    2006-01-01

    This revised Removal Action Work Plan describes the actions to be taken under the non-time-critical removal action recommended in the Action Memorandum for the Non-Time Critical Removal Action at the CPP-603A Basins, Idaho Nuclear Technology and Engineering Center, as evaluated in the Engineering Evaluation/Cost Analysis for the CPP-603A Basin Non-Time Critical Removal Action, Idaho Nuclear Technology and Engineering Center. The regulatory framework outlined in this Removal Action Work Plan has been modified from the description provided in the Engineering Evaluation/Cost Analysis (DOE/NE-ID-11140, Rev. 1, August 2004). The modification affects regulation of sludge removal, treatment, and disposal, but the end state and technical approaches have not changed. Revision of this document had been delayed until the basin sludge was successfully managed. This revision (Rev. 1) has been prepared to provide information that was not previously identified in Rev. 0 to describe the removal, treatment, and disposal of the basin water at the Idaho National Laboratory (INL) CERCLA Disposal Facility evaporation ponds and fill the basins with grout/controlled low strength material (CLSM) was developed. The Engineering Evaluation/Cost Analysis for the CPP-603A Basin Non-Time Critical Removal Action, Idaho Nuclear Technology and Engineering Center - conducted pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act - evaluated risks associated with deactivation of the basins and alternatives for addressing those risks. The decision to remove and dispose of the basin water debris not containing uranium grouted in place after the sludge has been removed and managed under the Hazardous Waste Management Act/Resource Conservation and Recovery Act has been documented in the Act Memorandum for the Non-Time Critical Removal Action at the CPP-603A Basins, Idaho Nuclear Technology and Engineering Center

  3. Hanford Spent Nuclear Fuel Project: Recommended path forward. Volume 2: Alternatives and path forward evaluation

    International Nuclear Information System (INIS)

    Fulton, J.C.

    1994-10-01

    The Hanford Spent Nuclear Fuel Project has completed an evaluation of four alternatives for expediting the removal of spent nuclear fuel from the K Basins and stabilizing and placing the fuel into interim storage. Four alternatives were compared: (1) Containerizing fuel in the K Basins, transporting fuel to a facility for stabilization, and interim storage of stabilized fuel in a dry storage facility (DSF); (2) Containerizing fuel in the K Basins, transporting fuel to a wet temporary staging facility, moving fuel to a facility for stabilization, and transporting stabilized fuel to an interim DSF; (3) Containerizing fuel in the K Basins in multi-canister overpacks, transporting fuel directly to a stabilization facility for passivation in the overpack, and interim storage of stabilized fuel in a DSF; (4) Packaging fuel for transport overseas and shipping fuel to a foreign reprocessing facility for reprocessing with eventual return of U, Pu and vitrified high level waste. The comparative evaluation consisted of a multi-attribute utility decision analysis, a public, worker and environmental health risk assessment, and a programmatic risk evaluation. The evaluation concluded that the best Path Forward combines the following concepts: Removal of K Basin fuel and sludge is uncoupled from the operation of a stabilization facility; A storage capability is provided to act as a lag storage or staging operation for overpack fuel containers as they are removed from the K Basins; Metal fuel drying and passivation should be maintained as the fuel stabilization process with the option of further refinements as more information becomes available; and The near term NEPA strategy should focus on expeditious removal of fuel and sludge from K Basins and placing overpacked fuel in temporary storage

  4. Descartes highlands: Possible analogs around the Orientale Basin, part D

    Science.gov (United States)

    Carroll, A. H.

    1972-01-01

    Two possible analogs, although not entirely satisfactory, offer reasonable alternatives to the volcanic interpretation of the Descartes highlands. Reconsideration of this complex terrain, prompted by the preliminary results of the Apollo 16 mission, will lead to the revision of some theories on lunar volcanism and also to a better understanding of the landforms caused by the formation of multi-ring basins.

  5. Engineering study: 105KE to 105KW Basin fuel and sludge transfer. Final report

    International Nuclear Information System (INIS)

    Gant, R.G.

    1994-01-01

    In the last five years, there have been three periods at the 105KE fuel storage basin (KE Basin) where the reported drawdown test rates were in excess of 25 gph. Drawdown rates in excess of this amount have been used during past operations as the primary indicators of leaks in the basin. The latest leak occurred in March, 1993. The reported water loss from the KE Basin was estimated at 25 gph. This engineering study was performed to identify and recommend the most feasible and practical method of transferring canisters of irradiated fuel and basin sludge from the KE Basin to the 105KW fuel storage basin (KW Basin). Six alternatives were identified during the performance of this study as possible methods for transferring the fuel and sludge from the KE Basin to the KW Basin. These methods were then assessed with regard to operations, safety, radiation exposure, packaging, environmental concerns, waste management, cost, and schedule; and the most feasible and practical methods of transfer were identified. The methods examined in detail in this study were based on shipment without cooling water except where noted: Transfer by rail using the previously used transfer system and water cooling; Transfer by rail using the previously used transfer system (without water cooling); Transfer by truck using the K Area fuel transfer cask (K Area cask); Transfer by truck using a DOE shipping cask; Transfer by truck using a commercial shipping cask; and Transfer by truck using a new fuel shipping cask

  6. Beyond water, beyond boundaries: spaces of water management in the Krishna river basin, South India.

    Science.gov (United States)

    Venot, Jean-Philippe; Bharati, Luna; Giordano, Mark; Molle, François

    2011-01-01

    As demand and competition for water resources increase, the river basin has become the primary unit for water management and planning. While appealing in principle, practical implementation of river basin management and allocation has often been problematic. This paper examines the case of the Krishna basin in South India. It highlights that conflicts over basin water are embedded in a broad reality of planning and development where multiple scales of decisionmaking and non-water issues are at play. While this defines the river basin as a disputed "space of dependence", the river basin has yet to acquire a social reality. It is not yet a "space of engagement" in and for which multiple actors take actions. This explains the endurance of an interstate dispute over the sharing of the Krishna waters and sets limits to what can be achieved through further basin water allocation and adjudication mechanisms – tribunals – that are too narrowly defined. There is a need to extend the domain of negotiation from that of a single river basin to multiple scales and to non-water sectors. Institutional arrangements for basin management need to internalise the political spaces of the Indian polity: the states and the panchayats. This re-scaling process is more likely to shape the river basin as a space of engagement in which partial agreements can be iteratively renegotiated, and constitute a promising alternative to the current interstate stalemate.

  7. Facies architecture of basin-margin units in time and space: Lower to Middle Miocene Sivas Basin, Turkey

    Science.gov (United States)

    Çiner, A.; Kosun, E.

    2003-04-01

    The Miocene Sivas Basin is located within a collision zone, forming one of the largest basins in Central Turkey that developed unconformably on a foundered Paleozoic-Mesozoic basement and Eocene-Oligocene deposits. The time and space relationships of sedimentary environments and depositional evolution of Lower to Middle Miocene rocks exposed between Zara and Hafik towns is studied. A 4 km thick continuous section is subdivided into the Agilkaya and Egribucak Formations. Each formation shows an overall fining upward trend and contains three members. Although a complete section is present at the western part (near Hafik) of the basin, to the east the uppermost two members (near Zara) are absent. The lower members of both formations are composed of fluvial sheet-sandstone and red mudstone that migrate laterally on a flood basin within a semi-arid fan system. In the Agilkaya Formation that crops out near Zara, alluvial fans composed of red-pink volcanic pebbles are also present. The middle members are composed of bedded to massive gypsum and red-green mudstone of a coastal and/or continental sabkha environment. While the massive gypsum beds reach several 10’s of m in Hafik area, near Zara, they are only few m thick and alternate with green mudstones. In Hafik, bedded gypsums are intercalated with lagoonal dolomitic limestone and bituminous shale in the Agilkaya Formation and with fluvial red-pink sandstone-red mudstone in the Egribucak Formation. The upper members are made up of fossiliferous mudstone and discontinuous sandy limestone beds with gutter casts, HCS, and 3-D ripples. They indicate storm-induced sedimentation in a shallow marine setting. The disorganized accumulations of ostreid and cerithiid shells, interpreted as coquina bars, are the products of storm generated reworking processes in brackish environments. Rapid vertical and horizontal facies changes and the facies associations in both formations reflect the locally subsiding nature of this molassic

  8. Habitat and co-occurrence of native and invasive crayfish in the Pacific Northwest, USA

    Science.gov (United States)

    Pearl, Christopher A.; Adams, Michael J.; McCreary, Brome

    2013-01-01

    Biological invasions can have dramatic effects on freshwater ecosystems and introduced crayfish can be particularly impacting. We document crayfish distribution in three large hydrographic basins (Rogue, Umpqua, Willamette/Columbia) in the Pacific Northwest USA. We used occupancy analyses to investigate habitat relationships and evidence for displacement of native Pacifastacus leniusculus (Dana, 1852) by two invaders. We found invasive Procambarus clarkii (Girard, 1852), in 51 of 283 sites and in all three hydrographic basins. We found invasive Orconectes n. neglectus (Faxon, 1885) at 68% of sites in the Rogue basin and provide first documentation of their broad distribution in the Umpqua basin. We found P. clarkii in both lentic and lotic habitats, and it was positively associated with manmade sites. P. leniusculus was positively associated with lotic habitats and negatively related to manmade sites. In the Rogue and Umpqua basins, O. n. neglectus and P. leniusculus were similar in their habitat associations. We did not find a negative relationship in site occupancy between O. n. neglectus and P. leniusculus. Our data suggest that P. clarkii has potential to locally displace P. leniusculus. There is still time for preventive measures to limit the spread of the invasive crayfish in this region.

  9. Willamette Hatchery Oxygen Supplementation Studies : Annual Report 1993.

    Energy Technology Data Exchange (ETDEWEB)

    Ewing, R.D.; Ewing, S.K.; Sheahan, J.E.

    1993-11-01

    Hydropower development and operations in the Columbia River basin have caused the loss of 5 million to 11 million salmonids. An interim goal of the Northwest Power Planning Council is to reestablish these historical numbers by doubling the present adult runs from 2.5 million to 5.0 million fish. This increase in production will be accomplished through comprehensive management of both wild and hatchery fish, but artificial propagation will play a major role in the augmentation process. The current husbandry techniques in existing hatcheries require improvements that may include changes in rearing densities, addition of oxygen, removal of excess nitrogen, and improvement in raceway design. Emphasis will be placed on the ability to increase the number of fish released from hatcheries that survive to return as adults.

  10. INTERLINKING OF RIVER BASINS A MYTH OR REALITY

    OpenAIRE

    PROF.B.SUNDARARAMAN; Dr.KL.MUTHURAMU

    2013-01-01

    When the climatic condition, especially rainfall is not very favourable in tropical country like India, and when most areas are water dependent for various sectors for combined development of the country, there is no other alternative except to go in for some other methods which will yield fruitful results. The inter basin transfer and participatory irrigation management are some of the areas suggested by various intellectuals. The present paper highlights some of the problems that would be e...

  11. Design flood hydrograph estimation procedure for small and fully-ungauged basins

    Science.gov (United States)

    Grimaldi, S.; Petroselli, A.

    2013-12-01

    The Rational Formula is the most applied equation in practical hydrology due to its simplicity and the effective compromise between theory and data availability. Although the Rational Formula is affected by several drawbacks, it is reliable and surprisingly accurate considering the paucity of input information. However, after more than a century, the recent computational, theoretical, and large-scale monitoring progresses compel us to try to suggest a more advanced yet still empirical procedure for estimating peak discharge in small and ungauged basins. In this contribution an alternative empirical procedure (named EBA4SUB - Event Based Approach for Small and Ungauged Basins) based on the common modelling steps: design hyetograph, rainfall excess, and rainfall-runoff transformation, is described. The proposed approach, accurately adapted for the fully-ungauged basin condition, provides a potentially better estimation of the peak discharge, a design hydrograph shape, and, most importantly, reduces the subjectivity of the hydrologist in its application.

  12. Environmental contaminants in great blue herons (Ardea herodias) from the lower Columbia and Willamette Rivers, Oregon and Washington, USA

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, C.M.; Anthony, R.G.

    1999-12-01

    Great blue heron (Ardea herodias) eggs and prey items were collected from six colonies in Oregon and Washington, USA, during 1994 to 1995. Contaminant concentrations, reproductive success, and biomagnification factors were determined and effects of residue levels were measured by H4IIE rat hepatoma bioassays. Mean residue concentrations in heron eggs and prey items were generally low. However, elevated concentrations of polychlorinated biphenyls (PCBs) were detected in eggs and prey from Ross Island on the Willamette River. Biomagnification factors varied among sites. Sites were not significantly different in H4IIE tetrachlorodibenzo-p-dioxin equivalents (TCDD-EQs), although the TCDD-EQ for Karlson Island was 9 to 20 times greater than that of any other site. Large differences existed between toxic equivalents calculated from egg residue concentrations and TCDD-EQs, which indicated nonadditive interactions among the compounds. Tetrachlorodibenzo-p-dioxin equivalents and nest failure were positively correlated with TCDD concentration. Fledging and reproductive rates were similar to those determined for healthy heron populations, however, indicating that any adverse effects were occurring at the individual level and not at the colony level. Their results support the use of great blue herons as a biomonitor for contamination in aquatic ecosystems. Their relatively low sensitivity to organochlorine contaminants and high trophic position allows contaminant accumulation and biomagnification without immediate adverse effects that are often seen in other, more sensitive species.

  13. Detrital fission-track-compositional signature of an orogenic chain-hinterland basin system: The case of the late Neogene Quaternary Valdelsa basin (Northern Apennines, Italy)

    Science.gov (United States)

    Balestrieri, M. L.; Benvenuti, M.; Tangocci, F.

    2013-05-01

    Detrital thermochronological data collected in syn-tectonic basin deposits are a promising tool for deciphering time and processes of the evolution of orogenic belts. Our study deals with the Valdelsa basin, one of the wider basins of central Tuscany, Italy. The Valdelsa basin is located at the rear of the Northern Apennines, a collisional orogen whose late Neogene Quaternary development is alternatively attributed to extensional and compressional regimes. These contrasting interpretations mostly rely on different reconstructions of the tectono-sedimentary evolution of several basins formed at the rear of the chain since the late Tortonian. Here, we explore the detrital thermochronological-compositional signature of tectonic and surface processes during the Valdelsa basin development. For this aim, detrital apatite fission-track analysis of 21 sand samples from the latest Messinian Gelasian fluvial to shallow marine basin deposits, has been accompanied by a clast composition analysis of 7 representative outcrops of the conglomerate facies. The grain-age distributions of the sediment samples are generally characterized by two distinct components, one younger peak (P1) varying between 5.5 ± 2.8 and 9.5 ± 1.0 Ma and one older peak (P2) varying from 15.0 ± 8.0 to 41.0 ± 10 Ma. By comparison with some bedrock ages obtained from the E-NE basin shoulder, we attributed the P2 peak to the Ligurian Units and the P1 peak to the Macigno Formation (Tuscan Units). These units are arranged one upon the other in the complex nappe pile forming the Northern Apennines orogen. While the gravel composition indicates a predominant feeding from the Ligurian units all along the sedimentary succession with a subordinate occurrence of Macigno pebbles slightly increasing upsection, the P1 peak is present even in the oldest collected sandy sediments. The early P1 occurrence reveals that the Macigno was exposed in the E-NE basin shoulder since at least the latest Messinian-early Zanclean

  14. Bifurcation of Safe Basins and Chaos in Nonlinear Vibroimpact Oscillator under Harmonic and Bounded Noise Excitations

    Directory of Open Access Journals (Sweden)

    Rong Haiwu

    2014-01-01

    Full Text Available The erosion of the safe basins and chaotic motions of a nonlinear vibroimpact oscillator under both harmonic and bounded random noise is studied. Using the Melnikov method, the system’s Melnikov integral is computed and the parametric threshold for chaotic motions is obtained. Using the Monte-Carlo and Runge-Kutta methods, the erosion of the safe basins is also discussed. The sudden change in the character of the stochastic safe basins when the bifurcation parameter of the system passes through a critical value may be defined as an alternative stochastic bifurcation. It is founded that random noise may destroy the integrity of the safe basins, bring forward the occurrence of the stochastic bifurcation, and make the parametric threshold for motions vary in a larger region, hence making the system become more unsafely and chaotic motions may occur more easily.

  15. Habitat Evaluation Procedures (HEP) Report; Burlington Bottoms, Technical Report 1993-2003.

    Energy Technology Data Exchange (ETDEWEB)

    Beilke, Susan

    1993-08-01

    Burlington Bottoms, consisting of approximately 417 acres of riparian and wetland habitat, was purchased by the Bonneville Power Administration in November 1991. The site is located approximately 1/2 mile north of the Sauvie Island Bridge (T2N R1W Sections 20, 21), and is bound on the east side by Multnomah Channel and on the west side by the Burlington Northern Railroad right-of-way and U.S. Highway 30 (Figures 1 and 2). Wildlife habitat values resulting from the purchase of this site will contribute toward the goal of mitigating for habitat lost as outlined in the Columbia and Willamette River Basin's Fish and Wildlife Program and Amendments. Under this Program, mitigation goals were developed as a result of the loss of wildlife habitat due to the development and operation of Federal hydro-electric facilities in the Columbia and Willamette River Basins. In 1993, an interdisciplinary team was formed to develop and implement quantitative Habitat Evaluation Procedures (HEP) to document the value of various habitats at Burlington Bottoms. Results of the HEP will be used to: (1) determine the current status and habitat enhancement potential of the site consistent with wildlife mitigation goals and objectives; and (2) develop a management plan for the area. HEP participants included; Charlie Craig, BPA; Pat Wright, Larry Rasmussen, and Ron Garst, U. S. Fish and Wildlife Service; John Christy, The Nature Conservancy; and Doug Cottam, Sue Beilke, and Brad Rawls, Oregon Department of Fish and Wildlife.

  16. The Central European Permian Basins; Rheological and structural controls on basin history and on inter-basin connectivity

    NARCIS (Netherlands)

    Smit, Jeroen; van Wees, Jan-Diederik; Cloetingh, Sierd

    2014-01-01

    We analyse the relative importance of the major crustal-scale fault zones and crustal architecture in controlling basin formation, deformation and the structural connections between basins. The North and South Permian Basins of Central Europe are usually defined by the extend of Rotliegend

  17. Statement of Basis/Proposed Plan for the Motor Shops Seepage Basin (716-A); FINAL

    International Nuclear Information System (INIS)

    Palmer, E.

    1998-01-01

    The purpose of this plan is to describe the preferred alternative for addressing the Motor Shops Seepage Basin located at the Savannah River site in Aiken County, Aiken, South Carolina and to provide an opportunity for public input into the remedial action selection process

  18. Comparative Research on River Basin Management in the Sagami River Basin (Japan and the Muda River Basin (Malaysia

    Directory of Open Access Journals (Sweden)

    Lay Mei Sim

    2018-05-01

    Full Text Available In the world, river basins often interwoven into two or more states or prefectures and because of that, disputes over water are common. Nevertheless, not all shared river basins are associated with water conflicts. Rivers in Japan and Malaysia play a significant role in regional economic development. They also play a significant role as water sources for industrial, domestic, agricultural, aquaculture, hydroelectric power generation, and the environment. The research aim is to determine the similarities and differences between the Sagami and Muda River Basins in order to have a better understanding of the governance needed for effectively implementing the lessons drawn from the Sagami River Basin for improving the management of the Muda River Basin in Malaysia. This research adopts qualitative and quantitative approaches. Semi-structured interviews were held with the key stakeholders from both basins and show that Japan has endeavored to present policy efforts to accommodate the innovative approaches in the management of their water resources, including the establishment of a river basin council. In Malaysia, there is little or no stakeholder involvement in the Muda River Basin, and the water resource management is not holistic and is not integrated as it should be. Besides that, there is little or no Integrated Resources Water Management, a pre-requisite for sustainable water resources. The results from this comparative study concluded that full support and participation from public stakeholders (meaning the non-government and non-private sector stakeholders is vital for achieving sustainable water use in the Muda River Basin. Integrated Water Resources Management (IWRM approaches such as the introduction of payments for ecosystems services and the development of river basin organization in the Muda River Basin should take place in the spirit of political willingness.

  19. Determination of Flood Reduction Alternatives for Climate Change Adaptation in Gyeongancheon basin

    Science.gov (United States)

    Han, D.; Joo, H. J.; Jung, J.; Kim, H. S.

    2017-12-01

    Recently, the frequency of extreme rainfall event has increased due to the climate change and the impermeable area in an urban watershed has also increased due to the rapid urbanization. Therefore, the flood risk is increasing and we ought to prepare countermeasures for flood damage reduction. For the determination of appropriate measures or alternatives, firstly, this study estimated the frequency based rainfall considering the climate change according to the each target period(reference : 1971˜2010, Target period Ⅰ : 2011˜2040, Target period Ⅱ : 2041˜2070, Target period Ⅲ : 2071˜2100). Then the future flood discharge was computed by using HEC-HMS model. We set 5 sizes of drainage pumps and detention ponds respectively as the flood reduction alternatives and the flood level in the river was obtained by each alternative through HEC-RAS model. The flood inundation map was constructed using topographical data and flood water level in the river and the economic analysis was conducted for the flood damage reduction studies using Multi Dimensional Flood Damage Analysis (MD-FDA) tool. As a result of the effectiveness analysis of the flood reduction alternatives, the flood level by drainage pump was reduced by 0.06m up to 0.44m while it was reduced by 0.01m up to 1.86m in the case of the detention pond. The flooded area was shrunk by up to 32.64% from 0.3% and inundation depth was also dropped. As a result of a comparison of the Benefit/Cost ratio estimated by the economic analysis, a detention pond E in the target period Ⅰ and the pump D in the periods Ⅱ and Ⅲ were considered as the appropriate alternatives for the flood damage reduction under the climate change. AcknowledgementsThis research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Science, ICT & Future Planning(2017R1A2B3005695)

  20. Integrating understanding of biophysical processes governing larval fish dispersal with basin-scale management decisions: lessons from the Missouri River, USA

    Science.gov (United States)

    Erwin, S. O.; Jacobson, R. B.; Fischenich, C. J.; Bulliner, E. A., IV; McDonald, R.; DeLonay, A. J.; Braaten, P.; Elliott, C. M.; Chojnacki, K.

    2017-12-01

    Management of the Missouri River—the longest river in the USA, with a drainage basin covering one sixth of the conterminous USA—is increasingly driven by the need to understand biophysical processes governing the dispersal of 8-mm long larval pallid sturgeon. In both the upper and lower basin, survival of larval sturgeon is thought to be a bottleneck limiting populations, but because of different physical processes at play, different modeling frameworks and resolutions are required to link management actions with population-level responses. In the upper basin, a series of impoundments reduce the length of river for the drifting larval sturgeon to complete their development. Downstream from the mainstem dams, recruitment is most likely diminished by channelization and reduced floodplain connectivity that limit the benthic habitat available for larval sturgeon to settle and initiate feeding. We present a synthesis of complementary field studies, laboratory observations, and numerical simulations that evaluate the physical processes related to larval dispersal of sturgeon in the Missouri River basin. In the upper basin, we use one-dimensional advection-dispersion models, calibrated with field experiments conducted in 2016-2017 using surrogate particles and tracers, to evaluate reservoir management alternatives. Results of field experimentation and numerical modeling show that proposed management alternatives in the upper basin may be limited by insufficient lengths of flowing river for drifting larvae to fully develop into their juvenile lifestage. In the intensively engineered lower basin, we employ higher resolution measurements and models to evaluate potential for channel reconfiguration and flow alteration to promote successful interception of drifting larvae into supportive benthic habitats for the initiation of feeding and transition to the juvenile life stage. We illustrate how refined understanding of small-scale biophysical process has been incorporated

  1. Drainage basins features and hydrological behaviour river Minateda basin

    International Nuclear Information System (INIS)

    Alonso-Sarria, F.

    1991-01-01

    Nine basin variables (shape, size and topology) have been analyzed in four small basins with non-permanent run off (SE of Spain). These geomorphological variables have been selected for their high correlation with the Instantaneous unit hydrograph parameters. It is shown that the variables can change from one small basin to another within a very short area; because of it, generalizations about the behaviour of the run off are not possible. In conclusion, it is stated that the variations in geomorphological aspects between different basins, caused mainly by geological constraints, are a very important factor to be controlled in a study of geoecological change derived from climatic change

  2. RESERVES IN WESTERN BASINS PART IV: WIND RIVER BASIN

    Energy Technology Data Exchange (ETDEWEB)

    Robert Caldwell

    1998-04-01

    Vast quantities of natural gas are entrapped within various tight formations in the Rocky Mountain area. This report seeks to quantify what proportion of that resource can be considered recoverable under today's technological and economic conditions and discusses factors controlling recovery. The ultimate goal of this project is to encourage development of tight gas reserves by industry through reducing the technical and economic risks of locating, drilling and completing commercial tight gas wells. This report is the fourth in a series and focuses on the Wind River Basin located in west central Wyoming. The first three reports presented analyses of the tight gas reserves and resources in the Greater Green River Basin (Scotia, 1993), Piceance Basin (Scotia, 1995) and the Uinta Basin (Scotia, 1995). Since each report is a stand-alone document, duplication of language will exist where common aspects are discussed. This study, and the previous three, describe basin-centered gas deposits (Masters, 1979) which contain vast quantities of natural gas entrapped in low permeability (tight), overpressured sandstones occupying a central basin location. Such deposits are generally continuous and are not conventionally trapped by a structural or stratigraphic seal. Rather, the tight character of the reservoirs prevents rapid migration of the gas, and where rates of gas generation exceed rates of escape, an overpressured basin-centered gas deposit results (Spencer, 1987). Since the temperature is a primary controlling factor for the onset and rate of gas generation, these deposits exist in the deeper, central parts of a basin where temperatures generally exceed 200 F and drill depths exceed 8,000 feet. The abbreviation OPT (overpressured tight) is used when referring to sandstone reservoirs that comprise the basin-centered gas deposit. Because the gas resources trapped in this setting are so large, they represent an important source of future gas supply, prompting studies

  3. Willamette oxygen supplementation studies. Annual progress report

    International Nuclear Information System (INIS)

    Ewing, R.D.; Ewing, S.K.; Sheahan, J.E.

    1994-09-01

    Hydropower development and operations in the Columbia River basin have caused the loss of 5 million to 11 million salmonids. An interim goal of the Northwest Power Planning Council is to reestablish these historical numbers by doubling the present runs from 2.5 million adult fish to 5.0 million adult fish. This increase in production will be accomplished through comprehensive management of both wild and hatchery fish, but artificial propagation will play a major role in the augmentation process. The current husbandry techniques in existing hatcheries require improvements that may include changes in rearing densities, addition of oxygen, removal of excess nitrogen, and improvement in raceway design. Emphasis will be placed on the ability to increase the number of fish released from hatcheries that survive to return as adults. Rearing density is one of the most important elements in fish culture. Fish culturists have attempted to rear fish in hatchery ponds at densities that most efficiently use the rearing space available. Such efficiency studies require a knowledge of cost of rearing and the return of adults to the fisheries and to the hatchery

  4. Willamette Oxygen Supplementation Studies : Annual Report 1994.

    Energy Technology Data Exchange (ETDEWEB)

    Ewing, R.D.; Ewing, S.K.; Sheahan, J.E.

    1994-09-01

    Hydropower development and operations in the Columbia River basin have caused the loss of 5 million to 11 million salmonids. An interim goal of the Northwest Power Planning Council is to reestablish these historical numbers by doubling the present runs from 2.5 million adult fish to 5.0 million adult fish. This increase in production will be accomplished through comprehensive management of both wild and hatchery fish, but artificial propagation will play a major role in the augmentation process. The current husbandry techniques in existing hatcheries require improvements that may include changes in rearing densities, addition of oxygen, removal of excess nitrogen, and improvement in raceway design. Emphasis will be placed on the ability to increase the number of fish released from hatcheries that survive to return as adults. Rearing density is one of the most important elements in fish culture. Fish culturists have attempted to rear fish in hatchery ponds at densities that most efficiently use the rearing space available. Such efficiency studies require a knowledge of cost of rearing and the return of adults to the fisheries and to the hatchery.

  5. Data quality objectives summary report for 105-N Basin sediment disposition

    International Nuclear Information System (INIS)

    Pisarcik, D.J.

    1998-01-01

    During stabilization of the 105-N Basin, sediments that have accumulated on 105-N Basin surfaces will be vacuumed, collected in the North Cask Pit of the basin complex, and eventually removed. The Environmental Assessment for the Deactivation of the N Reactor Facilities describes two potential disposition paths for the 105-N Basin sediment: transfer in slurry form to a double-shell tank if determined to be a transuranic waste, or disposal in solid form as a low-level waste. Interim storage of the sediments may be required if a transfer to the Tank Waste Remediation System cannot meet schedule milestones. Selection of a particular alternative depends on the final characterization of the accumulated sediment, regulatory requirements, cost/benefit analyses, and 105-N Stabilization Project schedule requirements. Revision 0 of this Data Quality Objectives (DQO) report was issued to describe a formal DQO process that was performed according to BHI-EE-01, Environmental Investigations Procedures, EIP 1.2, Data Quality Objectives, Revision 1. Since publication of Revision 0 of this report, important changes to the disposition strategy for 100-N Deactivation sediment material have been proposed, evaluated, discussed with the US Department of Energy and State of Washington Department of Ecology, and implemented. Revision 1 of this report documents these changes

  6. A fate model for nitrogen dynamics in the Scheldt basin

    Science.gov (United States)

    Haest, Pieter Jan; van der Kwast, Johannes; Broekx, Steven; Seuntjens, Piet

    2010-05-01

    literature data. Process-knowledge on the innovative rehabilitation technologies, i.e. wetlands and riparian zones, will be derived from lab and field scale experiments. Datasets provided at the EU level are used to calibrate the model when available. The fate model will be used to create a database driven Decision Support System (DSS) in which costs of measures and ecotoxicological effects are considered. The DSS can then be used to compare alternative combinations of rehabilitation technologies versus conventional measures in the Scheldt river basin taking into account the ecological status of the river basin.

  7. Morphostructural characterization of the Charco basin and its surrounding areas in the Chihuahua segment of north Mexican Basin and Range Province

    Science.gov (United States)

    Troiani, Francesco; Menichetti, Marco

    2014-05-01

    The Chihuahua Basin and Range (CBR) is the eastern branch of the northern Mexican Basin and Range Province that, from a morphostructural point of view, presently is one amongst the lesser-known zones of the southern portion of the North America Basin and Range Province. The study area covers an approximately 800 km2-wide portion of the CBR and encompasses the fault-bounded Charco basin and its surrounding areas. The bedrock of the area pertains to the large siliceous-igneous province of the Sierra Madre Occidental and consists of volcanoclastic rocks including Oligocene dacite, rhyolite, rhyolitic tuffs, and polimitic conglomerates. The region is characterized by a series of NW-SE oriented valleys delimited by tilted monoclinal blocks bounded by high angle, SW-dipping, normal faults. Abrupt changes in elevation, alternating between narrow faulted mountain chains and flat arid valleys or basins are the main morphological elements of the area. The valleys correspond to structural grabens filled with Plio-Pleistocene continental sediments. These grabens are about 10 km wide, while the extensional fault system extend over a distance of more than 15 km. The mountain ranges are in most cases continuous over distances that range from 10 to 70 km including different branches of the extensional and transfer faults. The morphogenesis is mainly erosive in character: erosional landforms (such as rocky scarps, ridges, strath-terraces, erosional pediment, reverse slopes, landslide scar zones, litho-structural flat surfaces) dominate the landscape. In contrast, Quaternary depositional landforms are mainly concentrated within the flat valleys or basins. The Quaternary deposits consist of wide alluvial fans extending to the foot of the main ridges, fluvial and debris-slope deposits. The morphostructural characterization of the area integrated different methodologies, including: i) geomorphological and structural field analyses; ii) remote sensing and geo-morphometric investigations

  8. Contrasting basin architecture and rifting style of the Vøring Basin, offshore mid-Norway and the Faroe-Shetland Basin, offshore United Kingdom

    Science.gov (United States)

    Schöpfer, Kateřina; Hinsch, Ralph

    2017-04-01

    The Vøring and the Faroe-Shetland basins are offshore deep sedimentary basins which are situated on the outer continental margin of the northeast Atlantic Ocean. Both basins are underlain by thinned continental crust whose structure is still debated. In particular the nature of the lower continental crust and the origin of high velocity bodies located at the base of the lower crust are a subject of discussion in recent literature. Regional interpretation of 2D and 3D seismic reflection data, combined with well data, suggest that both basins share several common features: (i) Pre-Cretaceous faults that are distributed across the entire basin width. (ii) Geometries of pre-Jurassic strata reflecting at least two extensional phases. (iii) Three common rift phases, Late Jurassic, Campanian-Maastrichtian and Palaeocene. (iv) Large pre-Cretaceous fault blocks that are buried by several kilometres of Cretaceous and Cenozoic strata. (iii). (v) Latest Cretaceous/Palaeocene inversion. (vi) Occurrence of partial mantle serpentinization during Early Cretaceous times, as proposed by other studies, seems improbable. The detailed analysis of the data, however, revealed significant differences between the two basins: (i) The Faroe-Shetland Basin was a fault-controlled basin during the Late Jurassic but also the Late Cretaceous extensional phase. In contrast, the Vøring Basin is dominated by the late Jurassic rifting and subsequent thermal subsidence. It exhibits only minor Late Cretaceous faults that are localised above intra-basinal and marginal highs. In addition, the Cretaceous strata in the Vøring Basin are folded. (ii) In the Vøring Basin, the locus of Late Cretaceous rifting shifted westwards, affecting mainly the western basin margin, whereas in the Faroe-Shetland Basin Late Cretaceous rifting was localised in the same area as the Late Jurassic phase, hence masking the original Jurassic geometries. (iii) Devono-Carboniferous and Aptian/Albian to Cenomanian rift phases

  9. Engineering evaluation/cost analysis for disposal of structural concrete and soil from the 183-H Solar Evaporation Basin

    International Nuclear Information System (INIS)

    Badden, J.W.; Miller, L.R.

    1996-08-01

    This engineering evaluation/cost analysis is intended to aid the US Department of Energy, Richland Operations Office in selecting a preferred response action alternative for removing contaminated structural concrete and soils stockpiled next to the 183-H evaporation basin, which was conducted under the Resource Conservation and Recovery Act of 1976. This EE/CA evaluates possible alternative response actions and documents the decision making process

  10. 78 FR 15973 - Notice of Public Scoping Meetings for the Pojoaque Basin Regional Water System Environmental...

    Science.gov (United States)

    2013-03-13

    ... Pojoaque Basin Regional Water System Environmental Impact Statement, New Mexico AGENCY: Bureau of... Environmental Policy Act of 1969, as amended, the Bureau of Reclamation is preparing an environmental impact... document, alternatives, concerns, and issues to be addressed in the environmental impact statement. DATES...

  11. Alternatives to control subsidence at low-level radioactive waste burial sites

    International Nuclear Information System (INIS)

    Phillips, S.J.; Carlson, R.A.

    1981-09-01

    A substantial quantity of low-level radioactive and hazardous wastes has been interred in shallow land burial structures throughout the United States. Many of these structures (trenches, pits, and landfills) have experienced geotechnical subsidence problems and may require stabilization. Ground surface manifestations of subsidence include: large cracks, basins, and cave-ins. Subsidence is primarily caused by void filling, and physicochemical degradation and solubilization of buried wastes. These surface features represent a potential for increased contamination transport to the biosphere via water, air, biologic, and direct pathways. Engineering alternatives for the reduction of buried waste and matrix materials voids are identified and discussed. The advantages, disadvantages, and costs of each alternative are evaluated. Falling mass, pile driving and in situ incineration engineering alternatives were selected for further development

  12. Assessment of the requirements for placing and maintaining Savannah River Site spent fuel storage basins under International Atomic Energy Agency safeguards

    International Nuclear Information System (INIS)

    Amacker, O.P. Jr.; Curtis, M.M.; Delegard, C.H.; Hsue, S.T.; Whitesel, R.N.

    1997-03-01

    The United States is considering the offer of irradiated research reactor spent fuel (RRSF) for international safeguards applied by the International Atomic Energy Agency (IAEA). The offer would be to add one or more spent fuel storage basins to the list of facilities eligible for IAEA safeguards. The fuel to be safeguarded would be stored in basins on the Savannah River Site (SRS). This RRSF potentially can include returns of Material Test Reactor (MTR) VAX fuel from Argentina, Brazil, and Chile (ABC); returns from other foreign research reactors; and fuel from domestic research reactors. Basins on the SRS being considered for this fuel storage are the Receiving Basin for Offsite Fuel (RBOF) and the L-Area Disassembly Basin (L-Basin). A working group of SRS, U.S. Department of Energy International Safeguards Division (NN-44), and National Laboratory personnel with experience in IAEA safeguards was convened to consider the requirements for applying the safeguards to this material. The working group projected the safeguards requirements and described alternatives

  13. Habitat Evaluation Procedures (HEP) Report; Big Island - The McKenzie River, Technical Report 1998-2001.

    Energy Technology Data Exchange (ETDEWEB)

    Sieglitz, Greg

    2001-03-01

    The Big Island site is located in the McKenzie River flood plain, containing remnant habitats of what was once more common in this area. A diverse array of flora and fauna, representing significant wildlife habitats, is present on the site. Stands of undisturbed forested wetlands, along with riparian shrub habitats and numerous streams and ponds, support a diversity of wildlife species, including neotropical migratory songbirds, raptors, mammals, reptiles, and amphibians (including two State-listed Sensitive Critical species). The project is located in eastern Springfield, Oregon (Figure 1). The project area encompasses 187 acres under several ownerships in Section 27 of Township 17S, Range 2W. Despite some invasion of non-native species, the site contains large areas of relatively undisturbed wildlife habitat. Over several site visits, a variety of wildlife and signs of wildlife were observed, including an active great blue heron rookery, red-Legged frog egg masses, signs of beaver, and a bald eagle, Wildlife habitat values resulting from the purchase of this site will contribute toward the goal of mitigating for habitat lost as outlined in the Bonneville Power Administration's (BPA) Mitigation and Enhancement Plan for the Willamette River Basin. Under this Plan, mitigation goals and objectives were developed as a result of the loss of wildlife habitat due to the construction of Federal hydroelectric facilities in the Willamette River Basin. Results of the Habitat Evaluation Procedures (HEP) will be used to: (1) determine the current habitat status of the study area and habitat enhancement potential of the site consistent with wildlife mitigation goals and objectives; and (2) develop a management plan for the area.

  14. Estimating tectonic history through basin simulation-enhanced seismic inversion: Geoinformatics for sedimentary basins

    Science.gov (United States)

    Tandon, K.; Tuncay, K.; Hubbard, K.; Comer, J.; Ortoleva, P.

    2004-01-01

    A data assimilation approach is demonstrated whereby seismic inversion is both automated and enhanced using a comprehensive numerical sedimentary basin simulator to study the physics and chemistry of sedimentary basin processes in response to geothermal gradient in much greater detail than previously attempted. The approach not only reduces costs by integrating the basin analysis and seismic inversion activities to understand the sedimentary basin evolution with respect to geodynamic parameters-but the technique also has the potential for serving as a geoinfomatics platform for understanding various physical and chemical processes operating at different scales within a sedimentary basin. Tectonic history has a first-order effect on the physical and chemical processes that govern the evolution of sedimentary basins. We demonstrate how such tectonic parameters may be estimated by minimizing the difference between observed seismic reflection data and synthetic ones constructed from the output of a reaction, transport, mechanical (RTM) basin model. We demonstrate the method by reconstructing the geothermal gradient. As thermal history strongly affects the rate of RTM processes operating in a sedimentary basin, variations in geothermal gradient history alter the present-day fluid pressure, effective stress, porosity, fracture statistics and hydrocarbon distribution. All these properties, in turn, affect the mechanical wave velocity and sediment density profiles for a sedimentary basin. The present-day state of the sedimentary basin is imaged by reflection seismology data to a high degree of resolution, but it does not give any indication of the processes that contributed to the evolution of the basin or causes for heterogeneities within the basin that are being imaged. Using texture and fluid properties predicted by our Basin RTM simulator, we generate synthetic seismograms. Linear correlation using power spectra as an error measure and an efficient quadratic

  15. 3-D basin modelling of the Paris Basin: diagenetic and hydrogeologic implications

    International Nuclear Information System (INIS)

    Violette, S.; Goncalves, J.; Jost, A.; Marsily, G. de

    2004-01-01

    A 3-D basin model of the Paris basin is presented in order to simulate through geological times fluid, heat and solute fluxes. This study emphasizes: i) the contribution of basin models to the quantitative hydrodynamic understanding of behaviour of the basin over geological times; ii) the additional use of Atmospheric General Circulation model (AGCM) to provide palaeo-climatic boundaries for a coupled flow and mass transfer modelling, constrained by geochemical and isotopic tracers and; iii) the integration of different types of data (qualitative and quantitative) to better constrain the simulations. Firstly, in a genetic way, basin model is used to reproduce geological, physical and chemical processes occurring in the course of the 248 My evolution of the Paris basin that ought to explain the present-day hydraulic properties at the regional scale. As basin codes try to reproduce some of these phenomena, they should be able to give a plausible idea of the regional-scale permeability distribution of the multi-layered system, of the pre-industrial hydrodynamic conditions within the aquifers and of the diagenesis timing and type of hydrodynamic processes involved. Secondly, climate records archived in the Paris basin groundwater suggest that climate and morphological features have an impact on the hydrogeological processes, particularly during the last 5 My. An Atmospheric General Circulation model is used with a refined spatial resolution centred on the Paris basin to reproduce the climate for the present, the Last Glacial Maximum (21 ky) and the middle Pliocene (3 My). These climates will be prescribed, through forcing functions to the hydrological code with the main objective of understanding the way aquifers and aquitards react under different climate conditions, the period and the duration of these effects. Finally, the Paris basin has been studied for a number of years by different scientific communities, thus a large amount of data has been collected. By

  16. Subproject plan for demonstration of 3M technology for treatment of N Basin water

    International Nuclear Information System (INIS)

    Plastino, J.C.

    1996-02-01

    A dissolved radionuclides removal demonstration is being conducted at the 105-N Basin as part of the 100-N Area Projects' policy of aggressively integrating innovative technologies to achieve more cost effective, faster, and/or safer deactivation operations. This subproject plan demonstrates new technology (marketed by the 3M trademark Company) that absorbs specific ions from water. The demonstration will take place at the spent fuel basin at the N Reactor facility. The 105-N Basin contains 1 million gal of water consisting of approximately 32 Ci of dissolved 90 Sr at a concentration of 8.4 uCi/L and 7.3 Ci of dissolved 137 Cs at a concentration of 1.92 uCi/L. The Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement [Ecology et al. 1990]) Milestone M-16-01E-T2 requires the initiation of pretreatment and removal of all N Reactor fuel storage basin waters by September 30, 1996, pursuant to the N Reactor Deactivation Program Plan (WHC 1993). 105-N Basin dewatering is on the critical path for overall deactivation of N Reactor by March 1997. The 105-N Basin Deactivation Program Plan (BHI 1995) includes removing debris, hardware, algae and sediment from the basin, followed by pretreatment (filtration) and removal of the 1005-N Basin water. Final water removal is currently scheduled for September 30, 1996. The recommended method of the 105-N Basin water is the treatment of the water at the Effluent Treatment Facility (ETF) in the 200 East Area. The demonstration of the 3M technology could be a feasible treatment alternative to the ETF if the ETF is not available to meet the project schedule or if additional pretreatment is needed to reduce the inventory of radioactive species to be handled at the ETF. Demonstration of this technology could be of value for other fuel basins at the Hanford Site and possibly other US Department of Energy (DOE) sites and non- DOE nuclear power plants

  17. Clay mineralogy of surface sediments as a tool for deciphering river contributions to the Cariaco Basin (Venezuela)

    Science.gov (United States)

    Bout-Roumazeilles, V.; Riboulleau, A.; du Châtelet, E. Armynot; Lorenzoni, L.; Tribovillard, N.; Murray, R. W.; Müller-Karger, F.; Astor, Y. M.

    2013-02-01

    The mineralogical composition of 95 surface sediment samples from the Cariaco Basin continental shelf and Orinoco delta was investigated in order to constrain the clay-mineral main provenance and distribution within the Cariaco Basin. The spatial variability of the data set was studied using a geo-statistical approach that allows drawing representative clay-mineral distribution maps. These maps are used to identify present-day dominant sources for each clay-mineral species in agreement with the geological characteristics of the main river watersheds emptying into the basin. This approach allows (1) identifying the most distinctive clay-mineral species/ratios that determine particle provenance, (2) evaluating the respective contribution of local rivers, and (3) confirming the minimal present-day influence of the Orinoco plume on the Cariaco Basin sedimentation. The Tuy, Unare, and Neveri Rivers are the main sources of clay particles to the Cariaco Basin sedimentation. At present, the Tuy River is the main contributor of illite to the western part of the southern Cariaco Basin continental shelf. The Unare River plume, carrying smectite and kaolinite, has a wide westward propagation, whereas the Neveri River contribution is less extended, providing kaolinite and illite toward the eastern Cariaco Basin. The Manzanares, Araya, Tortuga, and Margarita areas are secondary sources of local influence. These insights shed light on the origin of present-day terrigenous sediments of the Cariaco Basin and help to propose alternative explanations for the temporal variability of clay mineralogy observed in previously published studies.

  18. How Widely Applicable is River Basin Management? An Analysis of Wastewater Management in an Arid Transboundary Case

    Science.gov (United States)

    Dombrowsky, Ines; Almog, Ram; Becker, Nir; Feitelson, Eran; Klawitter, Simone; Lindemann, Stefan; Mutlak, Natalie

    2010-05-01

    The basin scale has been promoted universally as the optimal management unit that allows for the internalization of all external effects caused by multiple water uses. However, the basin scale has been put forward largely on the basis of experience in temperate zones. Hence whether the basin scale is the best scale for management in other settings remains questionable. To address these questions this paper analyzes the economic viability and the political feasibility of alternative management options in the Kidron/Wadi Nar region. The Kidron/Wadi Nar is a small basin in which wastewater from eastern Jerusalem flows through the desert to the Dead Sea. Various options for managing these wastewater flows were analyzed ex ante on the basis of both a cost benefit and a multi-criteria analysis. The paper finds that due to economies of scale, a pure basin approach is not desirable from a physical and economic perspective. Furthermore, in terms of political feasibility, it seems that the option which prompts the fewest objections from influential stakeholder groups in the two entities under the current asymmetrical political setting is not a basin solution either, but a two plant solution based on an outsourcing arrangement. These findings imply that the river basin management approach can not be considered the best management approach for the arid transboundary case at hand, and hence is not unequivocally universally applicable.

  19. Development of an Environmental Flow Framework for the McKenzie River Basin, Oregon

    Science.gov (United States)

    Risley, John; Wallick, J. Rose; Waite, Ian; Stonewall, Adam J.

    2010-01-01

    The McKenzie River is a tributary to the Willamette River in northwestern Oregon. The McKenzie River is approximately 90 miles in length and has a drainage area of approximately 1,300 square miles. Two major flood control dams, a hydropower dam complex, and two hydropower canals significantly alter streamflows in the river. The structures reduce the magnitude and frequency of large and small floods while increasing the annual 7-day minimum streamflows. Stream temperatures also have been altered by the dams and other anthropogenic factors, such as the removal of riparian vegetation and channel simplification. Flow releases from one of the flood control dams are cooler in the summer and warmer in the fall in comparison to unregulated flow conditions before the dam was constructed. In 2006, the Oregon Department of Environmental Quality listed a total of 112.4, 6.3, and 55.7 miles of the McKenzie River basin mainstem and tributary stream reaches as thermally impaired for salmonid rearing, salmonid spawning, and bull trout, respectively. The analyses in this report, along with previous studies, indicate that dams have altered downstream channel morphology and ecologic communities. In addition to reducing the magnitude and frequency of floods, dams have diminished sediment transport by trapping bed material. Other anthropogenic factors, such as bank stabilization, highway construction, and reductions of in-channel wood, also have contributed to the loss of riparian habitat. A comparison of aerial photography taken in 1939 and 2005 showed substantial decreases in secondary channels, gravel bars, and channel sinuosity, particularly along the lower alluvial reaches of the McKenzie River. In addition, bed armoring and incision may contribute to habitat degradation, although further study is needed to determine the extent of these processes. Peak streamflow reduction has led to vegetation colonization and stabilization of formerly active bar surfaces. The large flood control

  20. Fishes of the Taquari-Antas river basin (Patos Lagoon basin, southern Brazil

    Directory of Open Access Journals (Sweden)

    FG. Becker

    Full Text Available The aquatic habitats of the Taquari-Antas river basin (in the Patos Lagoon basin, southern Brazil are under marked environmental transformation because of river damming for hydropower production. In order to provide an information baseline on the fish fauna of the Taquari-Antas basin, we provide a comprehensive survey of fish species based on primary and secondary data. We found 5,299 valid records of fish species in the basin, representing 119 species and 519 sampling sites. There are 13 non-native species, six of which are native to other Neotropical river basins. About 24% of the total native species are still lacking a taxonomic description at the species level. Three native long-distance migratory species were recorded (Leporinus obtusidens, Prochilodus lineatus, Salminus brasiliensis, as well as two potential mid-distance migrators (Parapimelodus nigribarbis and Pimelodus pintado. Although there is only one officially endangered species in the basin (S. brasiliensis, restricted range species (21.7% of total species should be considered in conservation efforts.

  1. K-Basins design guidelines

    International Nuclear Information System (INIS)

    Roe, N.R.; Mills, W.C.

    1995-06-01

    The purpose of the design guidelines is to enable SNF and K Basin personnel to complete fuel and sludge removal, and basin water mitigation by providing engineering guidance for equipment design for the fuel basin, facility modifications (upgrades), remote tools, and new processes. It is not intended to be a purchase order reference for vendors. The document identifies materials, methods, and components that work at K Basins; it also Provides design input and a technical review process to facilitate project interfaces with operations in K Basins. This document is intended to compliment other engineering documentation used at K Basins and throughout the Spent Nuclear Fuel Project. Significant provisions, which are incorporated, include portions of the following: General Design Criteria (DOE 1989), Standard Engineering Practices (WHC-CM-6-1), Engineering Practices Guidelines (WHC 1994b), Hanford Plant Standards (DOE-RL 1989), Safety Analysis Manual (WHC-CM-4-46), and Radiological Design Guide (WHC 1994f). Documents (requirements) essential to the engineering design projects at K Basins are referenced in the guidelines

  2. Lithofacies-paleo-geography and uranium sedimentary facies in Hailar basin

    International Nuclear Information System (INIS)

    Qi Fucheng

    1992-01-01

    Cretaceous-Tertiary sedimentary paleo-structure and lithofacies-paleo-geography in Hailar Basin are described. Taking Chenqi coal field as an example, the sedimentary facies pattern of coal-bearing series characterized by alternating sedimentation of fluviatile and lacustrine-swampy facies is reconstructed. It is pointed out that this sedimentary facies not only controls the sedimentation and distribution of syngenetic uranium mineralization, but also is a favourable place that converges uranium-bearing solution and reduces and precipitates uranium for the second time in epigenetic mineralization

  3. An 11 000-year-long record of fire and vegetation history at Beaver Lake, Oregon, central Willamette Valley

    Science.gov (United States)

    Walsh, Megan K.; Pearl, Christopher A.; Whitlock, Cathy; Bartlein, Patrick J.; Worona, Marc A.

    2010-01-01

    High-resolution macroscopic charcoal and pollen analysis were used to reconstruct an 11??000-year-long record of fire and vegetation history from Beaver Lake, Oregon, the first complete Holocene paleoecological record from the floor of the Willamette Valley. In the early Holocene (ca 11??000-7500 calendar years before present [cal??yr??BP]), warmer, drier summers than at present led to the establishment of xeric woodland of Quercus, Corylus, and Pseudotsuga near the site. Disturbances (i.e., floods, fires) were common at this time and as a result Alnus rubra grew nearby. High fire frequency occurred in the early Holocene from ca 11??200-9300??cal??yr??BP. Riparian forest and wet prairie developed in the middle Holocene (ca 7500??cal??yr??BP), likely the result of a decrease in the frequency of flooding and a shift to effectively cooler, wetter conditions than before. The vegetation at Beaver Lake remained generally unchanged into the late Holocene (from 4000??cal??yr??BP to present), with the exception of land clearance associated with Euro-American settlement of the valley (ca 160??cal??yr BP). Middle-to-late Holocene increases in fire frequency, coupled with abrupt shifts in fire-episode magnitude and charcoal composition, likely indicate the influence anthropogenic burning near the site. The paleoecological record from Beaver Lake, and in particular the general increase in fire frequency over the last 8500??years, differs significantly from other low-elevation sites in the Pacific Northwest, which suggests that local controls (e.g., shifts in vegetation structure, intensification of human land-use), rather than regional climatic controls, more strongly influenced its environmental history. ?? 2010 Elsevier Ltd.

  4. Bulawayo water supplies: Sustainable alternatives for the next decade

    Science.gov (United States)

    Mkandla, Noel; Van der Zaag, Pieter; Sibanda, Peter

    Bulawayo is the second largest city in Zimbabwe with a population of nearly one million people. It is located on the watershed of Umzingwane and Gwayi catchments. The former is part of the Limpopo basin, while the latter drains into the Zambezi basin. Bulawayo has a good potential of economic development but has been stymied by lack of sufficient water. The city currently relies on five surface sources in the Umzingwane catchment where it has to compete with evaporation. The well field from the Nyamandlovu aquifer in the Gwayi catchment, which was constructed as an emergency measure during the 1992 drought, is currently not operational. Alternative water supply sources are far and expensive. A multilinear regression model was developed to analyse and quantify the factors affecting water consumption. It was found that per capita water consumption is very low, indicating suppressed demand. Water rationing, tariffs, rainfall, population growth and gross domestic product are the main factors influencing water consumption in Bulawayo. Assuming that these factors will continue to be influential, future water consumption was projected for intensive, regular and slack water demand management. Future water consumption was then compared with the current water supply capacity in order to determine the date by which the next water supply source is required. With slack demand management, the Nyamandlovu well field should have been operational by 2003, while by the year 2007 an additional source of water is required. With intensive demand management and assuming low population growth, current capacities may suffice to satisfy the suppressed demand until the year 2015, by which time Nyamandlovu wells should be operational again. The additional water supply sources that are currently being considered for Bulawayo (namely the Zambezi water pipeline; Gwayi Shangani dam; Mtshabezi dam; Lower Tuli dam; and Glass block dam) were then compared with an alternative water source not yet

  5. Intra- and inter-basin mercury comparisons: Importance of basin scale and time-weighted methylmercury estimates

    International Nuclear Information System (INIS)

    Bradley, Paul M.; Journey, Celeste A.; Brigham, Mark E.; Burns, Douglas A.; Button, Daniel T.; Riva-Murray, Karen

    2013-01-01

    To assess inter-comparability of fluvial mercury (Hg) observations at substantially different scales, Hg concentrations, yields, and bivariate-relations were evaluated at nested-basin locations in the Edisto River, South Carolina and Hudson River, New York. Differences between scales were observed for filtered methylmercury (FMeHg) in the Edisto (attributed to wetland coverage differences) but not in the Hudson. Total mercury (THg) concentrations and bivariate-relationships did not vary substantially with scale in either basin. Combining results of this and a previously published multi-basin study, fish Hg correlated strongly with sampled water FMeHg concentration (ρ = 0.78; p = 0.003) and annual FMeHg basin yield (ρ = 0.66; p = 0.026). Improved correlation (ρ = 0.88; p < 0.0001) was achieved with time-weighted mean annual FMeHg concentrations estimated from basin-specific LOADEST models and daily streamflow. Results suggest reasonable scalability and inter-comparability for different basin sizes if wetland area or related MeHg-source-area metrics are considered. - Highlights: ► National scale mercury assessments integrate small scale study results. ► Basin scale differences and representativeness of fluvial mercury samples are concerns. ► Wetland area, not basin size, predicts inter-basin methylmercury variability. ► Time-weighted methylmercury estimates improve the prediction of mercury in basin fish. - Fluvial methylmercury concentration correlates with wetland area not basin scale and time-weighted estimates better predict basin top predator mercury than discrete sample estimates.

  6. Using GRACE to constrain precipitation amount over cold mountainous basins

    Science.gov (United States)

    Behrangi, Ali; Gardner, Alex S.; Reager, John T.; Fisher, Joshua B.

    2017-01-01

    Despite the importance for hydrology and climate-change studies, current quantitative knowledge on the amount and distribution of precipitation in mountainous and high-elevation regions is limited due to instrumental and retrieval shortcomings. Here by focusing on two large endorheic basins in High Mountain Asia, we show that satellite gravimetry (Gravity Recovery and Climate Experiment (GRACE)) can be used to provide an independent estimate of monthly accumulated precipitation using mass balance equation. Results showed that the GRACE-based precipitation estimate has the highest agreement with most of the commonly used precipitation products in summer, but it deviates from them in cold months, when the other products are expected to have larger errors. It was found that most of the products capture about or less than 50% of the total precipitation estimated using GRACE in winter. Overall, Global Precipitation Climatology Project (GPCP) showed better agreement with GRACE estimate than other products. Yet on average GRACE showed 30% more annual precipitation than GPCP in the study basins. In basins of appropriate size with an absence of dense ground measurements, as is a typical case in cold mountainous regions, we find GRACE can be a viable alternative to constrain monthly and seasonal precipitation estimates from other remotely sensed precipitation products that show large bias.

  7. Identifying three-dimensional nested groundwater flow systems in a Tóthian basin

    Science.gov (United States)

    Wang, Xu-Sheng; Wan, Li; Jiang, Xiao-Wei; Li, Hailong; Zhou, Yangxiao; Wang, Junzhi; Ji, Xiaohui

    2017-10-01

    Nested groundwater flow systems have been revealed in Tóth's theory as the structural property of basin-scale groundwater circulation but were only well known with two-dimensional (2D) profile models. The method of searching special streamlines across stagnation points for partitioning flow systems, which has been successfully applied in the 2D models, has never been implemented for three-dimensional (3D) Tóthian basins because of the difficulty in solving the dual stream functions. Alternatively, a new method is developed to investigate 3D nested groundwater flow systems without determination of stagnation points. Connective indices are defined to quantify the connection between individual recharge and discharge zones along streamlines. Groundwater circulation cells (GWCCs) are identified according to the distribution of the connective indices and then grouped into local, intermediate and regional flow systems. This method requires existing solution of the flow velocity vector and is implemented via particle tracking technique. It is applied in a hypothetical 3D Tóthian basin with an analytical solution of the flow field and in a real-world basin with a numerical modeling approach. Different spatial patterns of flow systems compared to 2D profile models are found. The outcrops boundaries of GWCCs on water table may significantly deviate from and are not parallel to the nearby water table divides. Topological network is proposed to represent the linked recharge-discharge zones through closed and open GWCCs. Sensitivity analysis indicates that the development of GWCCs depends on the basin geometry, hydraulic parameters and water table shape.

  8. On the contribution of groundwater storage to interannual streamflow anomalies in the Colorado River basin

    Directory of Open Access Journals (Sweden)

    E. A. Rosenberg

    2013-04-01

    Full Text Available We assess the significance of groundwater storage for seasonal streamflow forecasts by evaluating its contribution to interannual streamflow anomalies in the 29 tributary sub-basins of the Colorado River. Monthly and annual changes in total basin storage are simulated by two implementations of the Variable Infiltration Capacity (VIC macroscale hydrology model – the standard release of the model, and an alternate version that has been modified to include the SIMple Groundwater Model (SIMGM, which represents an unconfined aquifer underlying the soil column. These estimates are compared to those resulting from basin-scale water balances derived exclusively from observational data and changes in terrestrial water storage from the Gravity Recovery and Climate Experiment (GRACE satellites. Changes in simulated groundwater storage are then compared to those derived via baseflow recession analysis for 72 reference-quality watersheds. Finally, estimates are statistically analyzed for relationships to interannual streamflow anomalies, and predictive capacities are compared across storage terms. We find that both model simulations result in similar estimates of total basin storage change, that these estimates compare favorably with those obtained from basin-scale water balances and GRACE data, and that baseflow recession analyses are consistent with simulated changes in groundwater storage. Statistical analyses reveal essentially no relationship between groundwater storage and interannual streamflow anomalies, suggesting that operational seasonal streamflow forecasts, which do not account for groundwater conditions implicitly or explicitly, are likely not detrimentally affected by this omission in the Colorado River basin.

  9. Drought evolution characteristics and precipitation intensity changes during alternating dry–wet changes in the Huang–Huai–Hai River basin

    Directory of Open Access Journals (Sweden)

    D. H. Yan

    2013-07-01

    Full Text Available Abrupt drought–flood change events caused by atmospheric circulation anomalies have occurred frequently and widely in recent years, which has caused great losses and casualties in China. In this paper, we focus on investigating whether there will be a rainfall occurrence with higher intensity after a drought period in the Huang–Huai–Hai River basin. Combined with the Chinese climate divisions and the basin's DEM (digital elevation model, the basin is divided into seven sub-regions by means of cluster analysis of the basin meteorological stations using the self-organizing map (SOM neural network method. Based on the daily precipitation data of 171 stations for the years 1961–2011, the changes of drought times with different magnitudes are analyzed, and the number of consecutive days without precipitation is used to identify the drought magnitudes. The first precipitation intensity after a drought period is analyzed with the Pearson-III frequency curve, then the relationship between rainfall intensity and different drought magnitudes is observed, as are the changes of drought times for different years. The results of the study indicated that the occurrence times of different drought levels show an overall increasing trend; there is no clear interdecadal change shown, but the spatial difference is significant. (2 As the drought level increases, the probability of extraordinary rainstorm becomes lower, and the frequency of occurrence of spatial changes in different precipitation intensities vary. In the areas I and II, as the drought level increases, the occurrence frequency of different precipitation intensities first shows a decreasing trend, which becomes an increasing trend when extraordinary drought occurs. In the area III, IV and V, the probability of the different precipitation intensities shows an overall decreasing trend. The areas VI and VII are located at the mountains with high altitudes where the variation of different

  10. Future Climate Change Impacts on Streamflows of Two Main West Africa River Basins: Senegal and Gambia

    Directory of Open Access Journals (Sweden)

    Ansoumana Bodian

    2018-03-01

    Full Text Available This research investigated the effect of climate change on the two main river basins of Senegal in West Africa: the Senegal and Gambia River Basins. We used downscaled projected future rainfall and potential evapotranspiration based on projected temperature from six General Circulation Models (CanESM2, CNRM, CSIRO, HadGEM2-CC, HadGEM2-ES, and MIROC5 and two scenarios (RCP4.5 and RCP8.5 to force the GR4J model. The GR4J model was calibrated and validated using observed daily rainfall, potential evapotranspiration from observed daily temperature, and streamflow data. For the cross-validation, two periods for each river basin were considered: 1961–1982 and 1983–2004 for the Senegal River Basin at Bafing Makana, and 1969–1985 and 1986–2000 for the Gambia River Basin at Mako. Model efficiency is evaluated using a multi-criteria function (Fagg which aggregates Nash and Sutcliffe criteria, cumulative volume error, and mean volume error. Alternating periods of simulation for calibration and validation were used. This process allows us to choose the parameters that best reflect the rainfall-runoff relationship. Once the model was calibrated and validated, we simulated streamflow at Bafing Makana and Mako stations in the near future at a daily scale. The characteristic flow rates were calculated to evaluate their possible evolution under the projected climate scenarios at the 2050 horizon. For the near future (2050 horizon, compared to the 1971–2000 reference period, results showed that for both river basins, multi-model ensemble predicted a decrease of annual streamflow from 8% (Senegal River Basin to 22% (Gambia River Basin under the RCP4.5 scenario. Under the RCP8.5 scenario, the decrease is more pronounced: 16% (Senegal River Basin and 26% (Gambia River Basin. The Gambia River Basin will be more affected by the climate change.

  11. A framework model for water-sharing among co-basin states of a river basin

    Science.gov (United States)

    Garg, N. K.; Azad, Shambhu

    2018-05-01

    A new framework model is presented in this study for sharing of water in a river basin using certain governing variables, in an effort to enhance the objectivity for a reasonable and equitable allocation of water among co-basin states. The governing variables were normalised to reduce the governing variables of different co-basin states of a river basin on same scale. In the absence of objective methods for evaluating the weights to be assigned to co-basin states for water allocation, a framework was conceptualised and formulated to determine the normalised weighting factors of different co-basin states as a function of the governing variables. The water allocation to any co-basin state had been assumed to be proportional to its struggle for equity, which in turn was assumed to be a function of the normalised discontent, satisfaction, and weighting factors of each co-basin state. System dynamics was used effectively to represent and solve the proposed model formulation. The proposed model was successfully applied to the Vamsadhara river basin located in the South-Eastern part of India, and a sensitivity analysis of the proposed model parameters was carried out to prove its robustness in terms of the proposed model convergence and validity over the broad spectrum values of the proposed model parameters. The solution converged quickly to a final allocation of 1444 million cubic metre (MCM) in the case of the Odisha co-basin state, and to 1067 MCM for the Andhra Pradesh co-basin state. The sensitivity analysis showed that the proposed model's allocation varied from 1584 MCM to 1336 MCM for Odisha state and from 927 to 1175 MCM for Andhra, depending upon the importance weights given to the governing variables for the calculation of the weighting factors. Thus, the proposed model was found to be very flexible to explore various policy options to arrive at a decision in a water sharing problem. It can therefore be effectively applied to any trans-boundary problem where

  12. Rainfall estimation in SWAT: An alternative method to simulate orographic precipitation

    Science.gov (United States)

    Galván, L.; Olías, M.; Izquierdo, T.; Cerón, J. C.; Fernández de Villarán, R.

    2014-02-01

    The input of water from precipitation is one of the most important aspects of a hydrologic model because it controls the basin's water budget. The model should reproduce the amount and distribution of rainfall in the basin, spatially and temporally. SWAT (Soil and Water Assessment Tool) is one of the most widely used hydrologic models. In this paper the rainfall estimation in SWAT is revised, focusing on the treatment of orographic precipitation. SWAT was applied to the Odiel river basin (SW Spain), with a surface of 2300 km2. Results show that SWAT does not reflect reallisticaly the spatial distribution of rainfall in the basin. In relation to orographic precipitation, SWAT estimates the daily precipitation in elevation bands by adding a constant amount to the recorded precipitation in the rain gauge, which depends on the increase in precipitation with altitude and the difference between the mean elevation of each band and the elevation of the recording gauge. This does not reflect rainfall in the subbasin because the increase in precipitation with altitude actually it is not constant, but depends on the amount of rainfall. An alternative methodology to represent the temporal distribution of orographic precipitation is proposed. After simulation, the deviation of runoff volume using the SWAT elevation bands was appreciably higher than that obtained with the proposed methodology.

  13. Basins in ARC-continental collisions

    Science.gov (United States)

    Draut, Amy E.; Clift, Peter D.; Busby, Cathy; Azor, Antonio

    2012-01-01

    Arc-continent collisions occur commonly in the plate-tectonic cycle and result in rapidly formed and rapidly collapsing orogens, often spanning just 5-15 My. Growth of continental masses through arc-continent collision is widely thought to be a major process governing the structural and geochemical evolution of the continental crust over geologic time. Collisions of intra-oceanic arcs with passive continental margins (a situation in which the arc, on the upper plate, faces the continent) involve a substantially different geometry than collisions of intra-oceanic arcs with active continental margins (a situation requiring more than one convergence zone and in which the arc, on the lower plate, backs into the continent), with variable preservation potential for basins in each case. Substantial differences also occur between trench and forearc evolution in tectonically erosive versus tectonically accreting margins, both before and after collision. We examine the evolution of trenches, trench-slope basins, forearc basins, intra-arc basins, and backarc basins during arc-continent collision. The preservation potential of trench-slope basins is low; in collision they are rapidly uplifted and eroded, and at erosive margins they are progressively destroyed by subduction erosion. Post-collisional preservation of trench sediment and trench-slope basins is biased toward margins that were tectonically accreting for a substantial length of time before collision. Forearc basins in erosive margins are usually floored by strong lithosphere and may survive collision with a passive margin, sometimes continuing sedimentation throughout collision and orogeny. The low flexural rigidity of intra-arc basins makes them deep and, if preserved, potentially long records of arc and collisional tectonism. Backarc basins, in contrast, are typically subducted and their sediment either lost or preserved only as fragments in melange sequences. A substantial proportion of the sediment derived from

  14. Evaluation of reservoir operation strategies for irrigation in the Macul Basin, Ecuador

    Directory of Open Access Journals (Sweden)

    Vicente Tinoco

    2016-03-01

    Full Text Available Study focus: An irrigation project is planned in the study basin for developing the agriculture as the main income in the region. The proposed water system comprises three large reservoirs damming the rivers Macul and Maculillo. The river basin planning and operation were investigated by modelling alternative reservoir operation strategies aiming at a sustainable balance between irrigation and river ecology by integrated reservoir/river management. New hydrological insights for the region: After simulation of long-term meteorological series in a model of the integrated water system, covering several historical extreme events, results indicate that the planned irrigation volumes are higher than the available water for a sustainable irrigation strategy. Two lines of action are suggested for reaching the target irrigation demands: design of a deficit irrigation system, and modifications to the reservoir's spillway height. Keywords: Reservoir operation, Conceptual model, Irrigation

  15. Comprehensive evaluation of the main technology for new sewage treatment plants in small towns along the Duliujian river basin

    Science.gov (United States)

    Chen, Yiming; Zhou, Beihai; Yuan, Rongfang; Bao, Xiangming; Li, Dongwei

    2018-02-01

    In recent years, water contamination problem has been becoming more and more serious due to increasing wastewater discharge. So our country has accelerated the pace of constructing sewage treatment plant in small towns. But in China it has not been issued any corresponding technical specifications about the choice of treatment technology. So the article is based on the basin of Duliujian river, through field research, data collection and analysis of relevant documentations, preliminarily elects seven kinds of technology: Improved A2/O, Integrated oxidation ditch, Orbal oxidation ditch, CASS, A/O+refined diatomite, BIOLAK and UNITANK as alternatives for Tianjin sewage discharge local standard.Then the article use the analytic hierarchy process (AHP) to evaluate the seven kinds of alternatives, finally it is concluded that CASS technology is most suitable for the main technology of new sewage treatment plants in small towns along the Duliujian River basin.

  16. Numerical simulation of groundwater flow for the Yakima River basin aquifer system, Washington

    Science.gov (United States)

    Ely, D.M.; Bachmann, M.P.; Vaccaro, J.J.

    2011-01-01

    A regional, three-dimensional, transient numerical model of groundwater flow was constructed for the Yakima River basin aquifer system to better understand the groundwater-flow system and its relation to surface-water resources. The model described in this report can be used as a tool by water-management agencies and other stakeholders to quantitatively evaluate proposed alternative management strategies that consider the interrelation between groundwater availability and surface-water resources.

  17. Superposition of tectonic structures leading elongated intramontane basin: the Alhabia basin (Internal Zones, Betic Cordillera)

    Science.gov (United States)

    Martínez-Martos, Manuel; Galindo-Zaldivar, Jesús; Martínez-Moreno, Francisco José; Calvo-Rayo, Raquel; Sanz de Galdeano, Carlos

    2017-10-01

    The relief of the Betic Cordillera was formed since the late Serravallian inducing the development of intramontane basins. The Alhabia basin, situated in the central part of the Internal Zones, is located at the intersection of the Alpujarran Corridor, the Tabernas basin, both trending E-W, and the NW-SE oriented Gádor-Almería basin. The geometry of the basin has been constrained by new gravity data. The basin is limited to the North by the Sierra de Filabres and Sierra Nevada antiforms that started to develop in Serravallian times under N-S shortening and to the south by Sierra Alhamilla and Sierra de Gádor antiforms. Plate convergence in the region rotated counter-clockwise in Tortonian times favouring the formation of E-W dextral faults. In this setting, NE-SW extension, orthogonal to the shortening direction, was accommodated by normal faults on the SW edge of Sierra Alhamilla. The Alhabia basin shows a cross-shaped depocentre in the zone of synform and fault intersection. This field example serves to constrain recent counter-clockwise stress rotation during the latest stages of Neogene-Quaternary basin evolution in the Betic Cordillera Internal Zones and underlines the importance of studying the basins' deep structure and its relation with the tectonic structures interactions.

  18. Numerical representation of rainfall field in the Yarmouk River Basin

    Science.gov (United States)

    Shentsis, Isabella; Inbar, Nimrod; Magri, Fabien; Rosenthal, Eliyahu

    2017-04-01

    Rainfall is the decisive factors in evaluating the water balance of river basins and aquifers. Accepted methods rely on interpolation and extrapolation of gauged rain to regular grid with high dependence on the density and regularity of network, considering the relief complexity. We propose an alternative method that makes up to those restrictions by taking into account additional physical features of the rain field. The method applies to areas with (i) complex plain- and mountainous topography, which means inhomogeneity of the rainfall field and (ii) non-uniform distribution of a rain gauge network with partial lack of observations. The rain model is implemented in two steps: 1. Study of the rainfall field, based on the climatic data (mean annual precipitation), its description by the function of elevation and other factors, and estimation of model parameters (normalized coefficients of the Taylor series); 2. Estimation of rainfall in each historical year using the available data (less complete and irregular versus climatic data) as well as the a-priori known parameters (by the basic hypothesis on inter-annual stability of the model parameters). The proposed method was developed by Shentsis (1990) for hydrological forecasting in Central Asia and was later adapted to the Lake Kinneret Basin. Here this model (the first step) is applied to the Yarmouk River Basin. The Yarmouk River is the largest tributary of the Jordan River. Its transboundary basin (6,833 sq. km) extends over Syria (5,257 sq.km), Jordan (1,379 sq. km) and Israel (197 sq. km). Altitude varies from 1800 m (and more) to -235 m asl. The total number of rain stations in use is 36 (17 in Syria, 19 in Jordan). There is evidently lack and non-uniform distribution of a rain gauge network in Syria. The Yarmouk Basin was divided into five regions considering typical relationship between mean annual rain and elevation for each region. Generally, the borders of regions correspond to the common topographic

  19. Willow Creek Wildlife Mitigation Project. Final environmental assessment

    International Nuclear Information System (INIS)

    1995-04-01

    Today's notice announces BPA's proposal to fund land acquisition or acquisition of a conservation easement and a wildlife management plan to protect and enhance wildlife habitat at the Willow Creek Natural Area in Eugene, Oregon. This action would provide partial mitigation for wildlife and wildlife habitat lost by the development of Federal hydroelectric projects in the Willamette River Basin. The project is consistent with BPA's obligations under provisions of the Pacific Northwest Electric Power Planning and Conservation Act of 1980 as outlined by the Northwest Power Planning Council's 1994 Columbia River Basin Fish and Wildlife Program. BPA has prepared an environmental assessment (DOE/EA-1023) evaluating the proposed project. Based on the analysis in the EA, BPA has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an environmental impact statement (EIS) is not required and BPA is issuing this FONSI

  20. Technical analysis of a river basin-based model of advanced power plant cooling technologies for mitigating water management challenges

    International Nuclear Information System (INIS)

    Stillwell, Ashlynn S; Clayton, Mary E; Webber, Michael E

    2011-01-01

    Thermoelectric power plants require large volumes of water for cooling, which can introduce drought vulnerability and compete with other water needs. Alternative cooling technologies, such as cooling towers and hybrid wet-dry or dry cooling, present opportunities to reduce water diversions. This case study uses a custom, geographically resolved river basin-based model for eleven river basins in the state of Texas (the Brazos and San Jacinto-Brazos, Colorado and Colorado-Brazos, Cypress, Neches, Nueces, Red, Sabine, San Jacinto, and Trinity River basins), focusing on the Brazos River basin, to analyze water availability during drought. We utilized two existing water availability models for our analysis: (1) the full execution of water rights-a scenario where each water rights holder diverts the full permitted volume with zero return flow, and (2) current conditions-a scenario reflecting actual diversions with associated return flows. Our model results show that switching the cooling technologies at power plants in the eleven analyzed river basins to less water-intensive alternative designs can potentially reduce annual water diversions by 247-703 million m 3 -enough water for 1.3-3.6 million people annually. We consider these results in a geographic context using geographic information system tools and then analyze volume reliability, which is a policymaker's metric that indicates the percentage of total demand actually supplied over a given period. This geographic and volume reliability analysis serves as a measure of drought susceptibility in response to changes in thermoelectric cooling technologies. While these water diversion savings do not alleviate all reliability concerns, the additional streamflow from the use of dry cooling alleviates drought concerns for some municipal water rights holders and might also be sufficient to uphold instream flow requirements for important bays and estuaries on the Texas Gulf coast.

  1. Using Hydraulic Modeling to Evaluate Lateral Connectivity Improvements under Alternative Restoration Scenarios in the Atchafalaya River Basin

    Science.gov (United States)

    Hayden-Lesmeister, A.; Remo, J. W.; Piazza, B.

    2017-12-01

    The Atchafalaya River (AR) in Louisiana is the principal distributary of the Mississippi River. Reach to system scale modifications on the AR and throughout its basin for regional flood mitigation, navigation, and hydrocarbon extraction have substantially altered the hydrologic connectivity between the river and its floodplain wetlands, threatening the ecological integrity of this globally-important ecosystem. Stakeholder groups agree that restoring flow connectivity is essential to maintaining the basin's water quality, and recent management efforts have focused on the 174 km2 Flat Lake Water Management Unit (WMU). Several flow-connectivity enhancement projects have been proposed by the Atchafalaya Basin Program's Technical Advisory Group, but none have been constructed. We collaborated with The Nature Conservancy and other agencies to obtain existing datasets and develop a 1D2D hydraulic model to examine whether proposed restoration projects improved lateral surface-water connectivity in the Flat Lake WMU. To do this, we employed a range of physical parameters (inundation extent, water depths, and rates of WSEL reduction) as potential indicators of improved connectivity with restoration. We ran simulations to examine two scenarios - a baseline scenario (S1) to examine current conditions (no restoration projects), and a full-implementation scenario (S2), where all restoration projects that could be examined at the model resolution were implemented. Potential indicators of improved lateral connectivity indicated that proposed projects may play an important role in improving water quality in the Flat Lake WMU. At the end of the constant-discharge portion of the run, average depths between S1 and S2 remained unchanged; however, depths and water levels were consistently lower for S2 during a drawdown. Volumetrically, up to 4.4 million m3 less water was in the Flat Lake system when projects were implemented. The results indicate that projects introduce nutrient

  2. Paleoclimate cycles and tectonic controls on fluvial, lacustrine, and eolian strata in upper Triassic Chinle Formation, San Juan basin

    Energy Technology Data Exchange (ETDEWEB)

    Dubiel, R.F. (Geological Survey, Denver, CO (USA))

    1989-09-01

    Sedimentologic study of the Upper Triassic Chinle Formation in the San Juan basin (SJB) indicates that Late Triassic paleoclimate and tectonic movements influenced the distribution of continental lithofacies. The Shinarump, Monitor Butte, and Petrified Forest Members in the lower part of the Chinle consist of complexly interfingered fluvial, floodplain, marsh, and lacustrine rocks; the Owl Rock and Rock Point Members in the upper part consists of lacustrine-basin and eolian sandsheet strata. Facies analysis, vertebrate and invertebrate paleontology, and paleoclimate models demonstrate that the Late Triassic was dominated by tropical monsoonal circulation, which provided abundant precipitation interspersed with seasonally dry periods. Owl Rock lacustrine strata comprise laminated limestones that reflect seasonal monsoonal precipitation and larger scale, interbedded carbonates and fine-grained clastics that represent longer term, alternating wet and dry climatic cycles. Overlying Rock Point eolian sand-sheet and dune deposits indicate persistent alternating but drier climatic cyclicity. Within the Chinle, upward succession of lacustrine, alternating lacustrine/eolian sand-sheet, and eolian sand-sheet/dune deposits reflects an overall decrease in precipitation due to the northward migration of Pangaea out of low latitudes dominated by monsoonal circulation.

  3. Urban land use: Remote sensing of ground-basin permeability

    Science.gov (United States)

    Tinney, L. R.; Jensen, J. R.; Estes, J. E.

    1975-01-01

    A remote sensing analysis of the amount and type of permeable and impermeable surfaces overlying an urban recharge basin is discussed. An effective methodology for accurately generating this data as input to a safe yield study is detailed and compared to more conventional alternative approaches. The amount of area inventoried, approximately 10 sq. miles, should provide a reliable base against which automatic pattern recognition algorithms, currently under investigation for this task, can be evaluated. If successful, such approaches can significantly reduce the time and effort involved in obtaining permeability data, an important aspect of urban hydrology dynamics.

  4. Revised ground-water monitoring compliance plan for the 183-H Solar Evaporation Basins

    International Nuclear Information System (INIS)

    1986-09-01

    This document contains ground-water monitoring plans for a mixed waste storage facility located on the Hanford Site in southeastern Washington State. This facility has been used since 1973 for storage of mixed wastes, which contain both chemicals and radionuclides. The ground-water monitoring plans presented here represent revision and expansion of an effort in June 1985. At that time, a facility-specific monitoring program was implemented at the 183-H Basins as part of the regulatory compliance effort being conducted on the Hanford Site. This monitoring program was based on the ground-water monitoring requirements for interimstatus facilities, which are those facilities that do not yet have final permits, but are authorized to continue interim operations while engaged in the permitting process. The program initially implemented for the 183-H Basins was designed to be an alternate program, which is required instead of the standard detection program when a facility is known or suspected to have contaminated the ground water in the uppermost aquifer. This effort, named the RCRA Compliance Ground-Water Monitoring Project for the 183-H Basins, was implemented. A supporting project involving ground-water flow modeling for the area surrounding the 183-H Basins was also initiated during 1985. Those efforts and the results obtained are described in subsequent chapters of this document. 26 refs., 55 figs., 14 tabs

  5. SimBasin: serious gaming for integrated decision-making in the Magdalena-Cauca basin

    Science.gov (United States)

    Craven, Joanne; Angarita, Hector; Corzo, Gerald

    2016-04-01

    The Magdalena-Cauca macrobasin covers 24% of the land area of Colombia, and provides more than half of the country's economic potential. The basin is also home a large proportion of Colombia's biodiversity. These conflicting demands have led to problems in the basin, including a dramatic fall in fish populations, additional flooding (such as the severe nationwide floods caused by the La Niña phenomenon in 2011), and habitat loss. It is generally believed that the solution to these conflicts is to manage the basin in a more integrated way, and bridge the gaps between decision-makers in different sectors and scientists. To this end, inter-ministerial agreements are being formulated and a decision support system is being developed by The Nature Conservancy Colombia. To engage stakeholders in this process SimBasin, a "serious game", has been developed. It is intended to act as a catalyst for bringing stakeholders together, an illustration of the uncertainties, relationships and feedbacks in the basin, and an accessible introduction to modelling and decision support for non-experts. During the game, groups of participants are led through a 30 year future development of the basin, during which they take decisions about the development of the basin and see the impacts on four different sectors: agriculture, hydropower, flood risk, and environment. These impacts are displayed through seven indicators, which players should try to maintain above critical thresholds. To communicate the effects of uncertainty and climate variability, players see the actual value of the indicator and also a band of possible values, so they can see if their decisions have actually reduced risk or if they just "got lucky". The game works as a layer on top of a WEAP water resources model of the basin, adapted from a basin-wide model already created, so the fictional game basin is conceptually similar to the Magdalena-Cauca basin. The game is freely available online, and new applications are being

  6. Reservoir Characterization for Unconventional Resource Potential, Pitsanulok Basin, Onshore Thailand

    Science.gov (United States)

    Boonyasatphan, Prat

    The Pitsanulok Basin is the largest onshore basin in Thailand. Located within the basin is the largest oil field in Thailand, the Sirikit field. As conventional oil production has plateaued and EOR is not yet underway, an unconventional play has emerged as a promising alternative to help supply the energy needs. Source rocks in the basin are from the Oligocene lacustrine shale of the Chum Saeng Formation. This study aims to quantify and characterize the potential of shale gas/oil development in the Chum Saeng Formation using advanced reservoir characterization techniques. The study starts with rock physics analysis to determine the relationship between geophysical, lithological, and geomechanical properties of rocks. Simultaneous seismic inversion is later performed. Seismic inversion provides spatial variation of geophysical properties, i.e. P-impedance, S-impedance, and density. With results from rock physics analysis and from seismic inversion, the reservoir is characterized by applying analyses from wells to the inverted seismic data. And a 3D lithofacies cube is generated. TOC is computed from inverted AI. Static moduli are calculated. A seismic derived brittleness cube is calculated from Poisson's ratio and Young's modulus. The reservoir characterization shows a spatial variation in rock facies and shale reservoir properties, including TOC, brittleness, and elastic moduli. From analysis, the most suitable location for shale gas/oil pilot exploration and development are identified. The southern area of the survey near the MD-1 well with an approximate depth around 650-850 m has the highest shale reservoir potential. The shale formation is thick, with intermediate brittleness and high TOC. These properties make it as a potential sweet spot for a future shale reservoir exploration and development.

  7. Relating petroleum system and play development to basin evolution: West African South Atlantic basins

    NARCIS (Netherlands)

    Beglinger, S.E.; Doust, H.; Cloetingh, S.A.P.L.

    2012-01-01

    Sedimentary basins can be classified according to their structural genesis and evolutionary history and the latter can be linked to petroleumsystem and playdevelopment. We propose an approach in which we use the established concepts in a new way: breaking basins down into their natural basin cycle

  8. Combining Remote Sensing and Multi-Agent Simulation to Assess Alternative Water Management Policies in Conflict-Prone Areas - The Case of the Yarmouk River Basin

    Science.gov (United States)

    Avisse, N.; Tilmant, A.; Zhang, H.; Talozi, S.; Muller, M. F.; Rajsekhar, D.; Yoon, J.; Gorelick, S.

    2016-12-01

    The Yarmouk River, the main tributary to the Jordan River, is shared but not jointly managed by three countries: Syria, Jordan and Israel. Political distrust and conflicts mean that the equitable sharing of its waters has never materialized despite the signature of bilateral agreements. This state of affairs culminated in the 90ies and led to a rapid change in the flow regime of the Yarmouk River, where both peak and base flows almost disappeared at the turn of the millennium. Jordan blames Syria for building more dams than agreed on in 1987, while Syria blames Israel for doing the same in the Golan Heights. Even though less water is available for downstream Jordan and Israel, these two countries keep exchanging water, following updated rules since the 1994 Peace Treaty. While both literature and stakeholders in the region concur that most freshwater resources are consumed in Syria, there is actually no study that tracks agricultural and storage changes, both legal and illegal, in the Yarmouk basin in relation to the flow regime. This exercise is compounded by unavailability of information on water uses due to the long-standing lack of cooperation in the region, an issue exacerbated more recently by the ongoing civil war in Syria. Using a modeling framework based on remote sensing and a multi-agent simulation model, changes in the Yarmouk River flow regime are explained for three different development stages corresponding to the years 1984, 1998 and 2014. Landsat images, coupled with the analysis of land surface temperature, made possible the distinction of rainfed and irrigated crops, as well as the estimation of reservoirs' storage. For each stage, the impact on downstream riparian countries is assessed using a simulation model of the Israel-Jordan Peace Treaty. Other scenarios are also analyzed to assess the effectiveness of alternative policy and cooperation scenarios including water demand management measures in Syria, the reoperation of illegal reservoirs and

  9. Hydraulic potential evaluation for micro - scale hydroelectric generation at Chicamocha River Basin - micro - scale hydroelectric plants

    International Nuclear Information System (INIS)

    Pacheco P, C.M.; Parga C, G.M.

    1995-01-01

    In development of technical and scientific cooperation treaty carried out between INEA (today Ingeominas) and Catholic University of Colombia, was elaborated the program: Potential Evaluation Hydraulic for Small hydroelectric plants; whose purpose is to carry electrical energy service to smaller populations and rural zones to all municipalities of country. To begin the program was selected the corresponding area to Chicamocha River Basin, the one which corresponds to 72 Municipalities of Boyaca and Santander Departments, due to the fact that is had good information area originating from diagnostic elaborated by INDERENA with the objective of formulating the Classification Plan and the Basin Managing. This Thesis consists of: 1. To identify all micro-basins; 2. To analyze energy demand on part of kernels of population seated in the study area; 3. To evaluate energy generating capacity of water currents and 4. As of the obtained results, to propose alternative for small hydroelectric plants design (PCH) according to defined needs

  10. On the origin of the Amerasia Basin and the High Arctic Large Igneous Province-Results of new aeromagnetic data

    DEFF Research Database (Denmark)

    Døssing, Arne; Jackson, H.R.; Matzka, Jürgen

    2013-01-01

    The history of the 2.5 million km2 Amerasia Basin (sensu lato) is in many ways the least known in the global tectonic system. Radically different hypotheses proposed to explain its origin are supported only by inconclusive and/or indirect observations and several outstanding issues on the origin...... and Lomonosov Ridges, enabling the tectonic origin of both the Amerasia Basin and the HALIP to be constrained. A landward Lower Cretaceous ( ~ 138 - 125(120) Ma) giant dyke swarm (minimum 350×800km2) and tentative oceanward Barremian (or alternatively lower Valanginian-Barremian) seafloor spreading anomalies...

  11. Basin Visual Estimation Technique (BVET) and Representative Reach Approaches to Wadeable Stream Surveys: Methodological Limitations and Future Directions

    Science.gov (United States)

    Lance R. Williams; Melvin L. Warren; Susan B. Adams; Joseph L. Arvai; Christopher M. Taylor

    2004-01-01

    Basin Visual Estimation Techniques (BVET) are used to estimate abundance for fish populations in small streams. With BVET, independent samples are drawn from natural habitat units in the stream rather than sampling "representative reaches." This sampling protocol provides an alternative to traditional reach-level surveys, which are criticized for their lack...

  12. Middle to Late Devonian–Carboniferous collapse basins on the Finnmark Platform and in the southwesternmost Nordkapp basin, SW Barents Sea

    Directory of Open Access Journals (Sweden)

    J.-B. P. Koehl

    2018-03-01

    Full Text Available The SW Barents Sea margin experienced a pulse of extensional deformation in the Middle–Late Devonian through the Carboniferous, after the Caledonian Orogeny terminated. These events marked the initial stages of formation of major offshore basins such as the Hammerfest and Nordkapp basins. We mapped and analyzed three major fault complexes, (i the Måsøy Fault Complex, (ii the Rolvsøya fault, and (iii the Troms–Finnmark Fault Complex. We discuss the formation of the Måsøy Fault Complex as a possible extensional splay of an overall NE–SW-trending, NW-dipping, basement-seated Caledonian shear zone, the Sørøya–Ingøya shear zone, which was partly inverted during the collapse of the Caledonides and accommodated top–NW normal displacement in Middle to Late Devonian–Carboniferous times. The Troms–Finnmark Fault Complex displays a zigzag-shaped pattern of NNE–SSW- and ENE–WSW-trending extensional faults before it terminates to the north as a WNW–ESE-trending, NE-dipping normal fault that separates the southwesternmost Nordkapp basin in the northeast from the western Finnmark Platform and the Gjesvær Low in the southwest. The WNW–ESE-trending, margin-oblique segment of the Troms–Finnmark Fault Complex is considered to represent the offshore prolongation of a major Neoproterozoic fault complex, the Trollfjorden–Komagelva Fault Zone, which is made of WNW–ESE-trending, subvertical faults that crop out on the island of Magerøya in NW Finnmark. Our results suggest that the Trollfjorden–Komagelva Fault Zone dies out to the northwest before reaching the western Finnmark Platform. We propose an alternative model for the origin of the WNW–ESE-trending segment of the Troms–Finnmark Fault Complex as a possible hard-linked, accommodation cross fault that developed along the Sørøy–Ingøya shear zone. This brittle fault decoupled the western Finnmark Platform from the southwesternmost Nordkapp basin and merged with the

  13. K Basin safety analysis

    International Nuclear Information System (INIS)

    Porten, D.R.; Crowe, R.D.

    1994-01-01

    The purpose of this accident safety analysis is to document in detail, analyses whose results were reported in summary form in the K Basins Safety Analysis Report WHC-SD-SNF-SAR-001. The safety analysis addressed the potential for release of radioactive and non-radioactive hazardous material located in the K Basins and their supporting facilities. The safety analysis covers the hazards associated with normal K Basin fuel storage and handling operations, fuel encapsulation, sludge encapsulation, and canister clean-up and disposal. After a review of the Criticality Safety Evaluation of the K Basin activities, the following postulated events were evaluated: Crane failure and casks dropped into loadout pit; Design basis earthquake; Hypothetical loss of basin water accident analysis; Combustion of uranium fuel following dryout; Crane failure and cask dropped onto floor of transfer area; Spent ion exchange shipment for burial; Hydrogen deflagration in ion exchange modules and filters; Release of Chlorine; Power availability and reliability; and Ashfall

  14. Melo carboniferous basin

    International Nuclear Information System (INIS)

    Flossdarf, A.

    1988-01-01

    This report is about of the Melo carboniferous basin which limits are: in the South the large and high Tupambae hill, in the west the Paraiso hill and the river mountains, in the North Yaguaron river basin to Candidata in Rio Grande del Sur in Brazil.

  15. An alternative approach for socio-hydrology: case study research

    Science.gov (United States)

    Mostert, Erik

    2018-01-01

    Currently the most popular approach in socio hydrology is to develop coupled human-water models. This article proposes an alternative approach, qualitative case study research, involving a systematic review of (1) the human activities affecting the hydrology in the case, (2) the main human actors, and (3) the main factors influencing the actors and their activities. Moreover, this article presents a case study of the Dommel Basin in Belgium and the Netherlands, and compares this with a coupled model of the Kissimmee Basin in Florida. In both basins a pendulum swing from water resources development and control to protection and restoration can be observed. The Dommel case study moreover points to the importance of institutional and financial arrangements, community values, and broader social, economic, and technical developments. These factors are missing from the Kissimmee model. Generally, case studies can result in a more complete understanding of individual cases than coupled models, and if the cases are selected carefully and compared with previous studies, it is possible to generalize on the basis of them. Case studies also offer more levers for management and facilitate interdisciplinary cooperation. Coupled models, on the other hand, can be used to generate possible explanations of past developments and quantitative scenarios for future developments. The article concludes that, given the limited attention they currently get and their potential benefits, case studies deserve more attention in socio-hydrology.

  16. An Isotopic view of water and nitrogen transport through the vadose zone.

    Science.gov (United States)

    Groundwater nitrate contamination affects thousands of households in Oregon’s southern Willamette Valley and many more across the Pacific Northwest. The southern Willamette Valley Groundwater Management Area (SWV GWMA) was established in 2004 due to nitrate levels in the g...

  17. Basin Hopping Graph

    DEFF Research Database (Denmark)

    Kucharik, Marcel; Hofacker, Ivo; Stadler, Peter

    2014-01-01

    of the folding free energy landscape, however, can provide the relevant information. Results We introduce the basin hopping graph (BHG) as a novel coarse-grained model of folding landscapes. Each vertex of the BHG is a local minimum, which represents the corresponding basin in the landscape. Its edges connect...

  18. Active intra-basin faulting in the Northern Basin of Lake Malawi from seismic reflection data

    Science.gov (United States)

    Shillington, D. J.; Chindandali, P. R. N.; Scholz, C. A.; Ebinger, C. J.; Onyango, E. A.; Peterson, K.; Gaherty, J. B.; Nyblade, A.; Accardo, N. J.; McCartney, T.; Oliva, S. J.; Kamihanda, G.; Ferdinand, R.; Salima, J.; Mruma, A. H.

    2016-12-01

    Many questions remain about the development and evolution of fault systems in weakly extended rifts, including the relative roles of border faults and intra-basin faults, and segmentation at various scales. The northern Lake Malawi (Nyasa) rift in the East African Rift System is an early stage rift exhibiting pronounced tectonic segmentation, which is defined by 100-km-long border faults. The basins also contain a series of intrabasinal faults and associated synrift sediments. The occurrence of the 2009 Karonga Earthquake Sequence on one of these intrabasinal faults indicates that some of them are active. Here we present new multichannel seismic reflection data from the Northern Basin of the Malawi Rift collected in 2015 as a part of the SEGMeNT (Study of Extension and maGmatism in Malawi aNd Tanzania) project. This rift basin is bound on its east side by the west-dipping Livingstone border fault. Over 650 km of seismic reflection profiles were acquired in the Northern Basin using a 500 to 1540 cu in air gun array and a 1200- to 1500-m seismic streamer. Dip lines image a series of north-south oriented west-dipping intra-basin faults and basement reflections up to 5 s twtt near the border fault. Cumulative offsets on intra-basin faults decrease to the west. The largest intra-basin fault has a vertical displacement of >2 s two-way travel time, indicating that it has accommodated significant total extension. Some of these intra-basin faults offset the lake bottom and the youngest sediments by up to 50 s twtt ( 37 m), demonstrating they are still active. The two largest intra-basin faults exhibit the largest offsets of young sediments and also correspond to the area of highest seismicity based on analysis of seismic data from the 89-station SEGMeNT onshore/offshore network (see Peterson et al, this session). Fault patterns in MCS profiles vary along the basin, suggesting a smaller scale of segmentation of faults within the basin; these variations in fault patterns

  19. Special repairs to the eroded joints of concrete slabs of Stilling Basin-3 and strengthening of splitter pier of Tunnel No. 3, Tarbela Dam Project

    Energy Technology Data Exchange (ETDEWEB)

    Khan, B.A. [WAPDA Tarbela DAM Project (Pakistan)

    1999-07-01

    Repair alternatives to correct erosion damage to the right side of the central longitudinal joint just downstream of the chute of Stilling Basin-3 are discussed. Three alternatives were considered: (1) provide a coffer dam around the plunge pool area and dewater the stilling basin prior to undertaking any repair work; (2) use Tremie concrete , or (3) use Hydrocrete, a regular concrete with some special additives to hold the aggregate, cement and water together in under-water repairs. Because of its erosion resistance in the plastic state, and its self-compacting and leveling properties, the Hydrocrete method was chosen. While repairing the erosion damage, Hilty anchors were also installed in the damaged slab portion, and the splitter pier was also strengthened by inserting mechanical anchors. The entire operation was monitored by a CCTV camera and surface to under-water communication. By choosing this method, the repairs have been completed without dewatering the stilling basin, thus achieving substantial savings. Subsequent under-water inspection by divers and video film proved the repairs to have been fully satisfactory.

  20. River basin administration

    Science.gov (United States)

    Management of international rivers and their basins is the focus of the Centre for Comparative Studies on (International) River Basin Administration, recently established at Delft University of Technology in the Netherlands. Water pollution, sludge, and conflicting interests in the use of water in upstream and downstream parts of a river basin will be addressed by studying groundwater and consumption of water in the whole catchment area of a river.Important aspects of river management are administrative and policy aspects. The Centre will focus on policy, law, planning, and organization, including transboundary cooperation, posing standards, integrated environmental planning on regional scale and environmental impact assessments.

  1. Revised conceptualization of the North China Basin groundwater flow system: Groundwater age, heat and flow simulations

    Science.gov (United States)

    Cao, Guoliang; Han, Dongmei; Currell, Matthew J.; Zheng, Chunmiao

    2016-09-01

    Groundwater flow in deep sedimentary basins results from complex evolution processes on geological timescales. Groundwater flow systems conceptualized according to topography and/or groundwater table configuration generally assume a near-equilibrium state with the modern landscape. However, the time to reach such a steady state, and more generally the timescales of groundwater flow system evolution are key considerations for large sedimentary basins. This is true in the North China Basin (NCB), which has been studied for many years due to its importance as a groundwater supply. Despite many years of study, there remain contradictions between the generally accepted conceptual model of regional flow, and environmental tracer data. We seek to reconcile these contractions by conducting simulations of groundwater flow, age and heat transport in a three dimensional model, using an alternative conceptual model, based on geological, thermal, isotope and historical data. We infer flow patterns under modern hydraulic conditions using this new model and present the theoretical maximum groundwater ages under such a flow regime. The model results show that in contrast to previously accepted conceptualizations, most groundwater is discharged in the vicinity of the break-in-slope of topography at the boundary between the piedmont and central plain. Groundwater discharge to the ocean is in contrast small, and in general there are low rates of active flow in the eastern parts of the basin below the central and coastal plain. This conceptualization is more compatible with geochemical and geothermal data than the previous model. Simulated maximum groundwater ages of ∼1 Myrs below the central and coastal plain indicate that residual groundwater may be retained in the deep parts of the basin since being recharged during the last glacial period or earlier. The groundwater flow system has therefore probably not reached a new equilibrium state with modern-day hydraulic conditions. The

  2. Spent unreprocessed fuel (SURF) facility evaluation plan of the alternative storage concepts

    International Nuclear Information System (INIS)

    Berry, S.M.

    1978-01-01

    Concepts were evaluated for the storage of unreprocessed spent fuel in a retrievable surface storage facility. This document provides a systematic format for making a concept selection from the seven alternative concepts presented in RHO-LD-2. Results of the evaluation was that the Drywell concept was rated highest with the Water Basin Concept and the Sealed Storage Cask concept with multiple canisters of SURF coming in a close second and third

  3. Sediment-hosted micro-disseminated gold mineralization constrained by basin paleo-topographic highs in the Youjiang basin, South China

    Science.gov (United States)

    Liu, Jianming; Ye, Jie; Ying, Hanlong; Liu, Jiajun; Zheng, Minghua; Gu, Xuexiang

    2002-06-01

    The Youjiang basin is a Devonian-Triassic rift basin on the southern margin of the Yangtze Craton in South China. Strong syndepositional faulting defined the basin-and-range style paleo-topography that further developed into isolated carbonate platforms surrounded by siliciclastic filled depressions. Finally, thick Triassic siliciclastic deposits covered the platforms completely. In the Youjiang basin, numerous sediment-hosted, micro-disseminated gold (SMG) deposits occur mainly in Permian-Triassic chert and siliciclastic rocks. SMG ores are often auriferous sedimentary rocks with relatively low sulfide contents and moderate to weak alteration. Similar to Carlin-type gold ores in North America, SMG ores in the Youjiang basin are characterized by low-temperature mineral assemblages of pyrite, arsenopyrite, realgar, stibnite, cinnabar, marcasite, chalcedony and carbonate. Most of the SMG deposits are remarkably distributed around the carbonate platforms. Accordingly, there are platform-proximal and platform-distal SMG deposits. Platform-proximal SMG deposits often occur in the facies transition zone between the underlying platform carbonate rocks and the overlying siliciclastic rocks with an unconformity (often a paleo-karst surface) in between. In the ores and hostrocks there are abundant synsedimentary-syndiagenetic fabrics such as lamination, convolute bedding, slump texture, soft-sediment deformation etc. indicating submarine hydrothermal deposition and syndepositional faulting. Numerous fluid-escape and liquefaction fabrics imply strong fluid migration during sediment basin evolution. Such large-scale geological and fabric evidence implies that SMG ores were formed during basin evolution, probably in connection with basinal fluids. It is well known that basinal fluids (especially sediment-sourced fluids) will migrate generally (1) upwards, (2) towards basin margins or basin topographic highs, (3) and from thicker towards thinner deposits during basin evolution

  4. Mapping Monthly Water Scarcity in Global Transboundary Basins at Country-Basin Mesh Based Spatial Resolution.

    Science.gov (United States)

    Degefu, Dagmawi Mulugeta; Weijun, He; Zaiyi, Liao; Liang, Yuan; Zhengwei, Huang; Min, An

    2018-02-01

    Currently fresh water scarcity is an issue with huge socio-economic and environmental impacts. Transboundary river and lake basins are among the sources of fresh water facing this challenge. Previous studies measured blue water scarcity at different spatial and temporal resolutions. But there is no global water availability and footprint assessment done at country-basin mesh based spatial and monthly temporal resolutions. In this study we assessed water scarcity at these spatial and temporal resolutions. Our results showed that around 1.6 billion people living within the 328 country-basin units out of the 560 we assessed in this study endures severe water scarcity at least for a month within the year. In addition, 175 country-basin units goes through severe water scarcity for 3-12 months in the year. These sub-basins include nearly a billion people. Generally, the results of this study provide insights regarding the number of people and country-basin units experiencing low, moderate, significant and severe water scarcity at a monthly temporal resolution. These insights might help these basins' sharing countries to design and implement sustainable water management and sharing schemes.

  5. New aerogeophysical study of the Eurasia Basin and Lomonosov Ridge: Implications for basin development

    DEFF Research Database (Denmark)

    Brozena, J.M.; Childers, V.A.; Lawver, L.A.

    2003-01-01

    In 1998 and 1999, new aerogeophysical surveys of the Arctic Ocean's Eurasia Basin produced the first collocated gravity and magnetic measurements over the western half of the basin. These data increase the density and extend the coverage of the U.S. Navy acromagnetic data from the 1970s. The new...... data reveal prominent bends in the isochrons that provide solid geometrical constraints for plate reconstructions. Tentative identification of anomaly 25 in the Eurasia Basin links early basin opening to spreading in the Labrador Sea before the locus of spreading in the North Atlantic shifted...... to the Norwegian-Greenland Sea. With the opening of the Labrador Sea, Greenland began similar to200 km of northward movement relative to North America and eventually collided with Svalbard, Ellesmere Island, and the nascent Eurasia ocean basin. Both gravity and magnetic data sets reconstructed to times prior...

  6. Great Basin Experimental Range: Annotated bibliography

    Science.gov (United States)

    E. Durant McArthur; Bryce A. Richardson; Stanley G. Kitchen

    2013-01-01

    This annotated bibliography documents the research that has been conducted on the Great Basin Experimental Range (GBER, also known as the Utah Experiment Station, Great Basin Station, the Great Basin Branch Experiment Station, Great Basin Experimental Center, and other similar name variants) over the 102 years of its existence. Entries were drawn from the original...

  7. Frequency and sources of basin floor turbidites in alfonso basin, Gulf of California, Mexico: Products of slope failures

    Science.gov (United States)

    Gonzalez-Yajimovich, Oscar E.; Gorsline, Donn S.; Douglas, Robert G.

    2007-07-01

    Alfonso Basin is a small margin basin formed by extensional tectonics in the actively rifting, seismically active Gulf of California. The basin is centered at 24°40' N and 110° 38' W, and is a closed depression (maximum depth 420 m) with an effective sill depth of about 320 m (deepest sill), a width of 20 km and length of 25 km. Basin floor area below a depth of 350 m is about 260 km 2. The climate is arid to semiarid but was wetter during the early (ca. 10,000-7000 Calendar years Before Present [BP]) and middle Holocene (ca. 7000-4000 Cal. Years BP). Basin-wide turbidity currents reach the floor of Alfonso Basin at centennial to millennial intervals. The peninsular drainages tributary to the basin are small and have maximum flood discharges of the order of 10 4m 3. The basin-floor turbidites thicker than 1 cm have volumes of the order of 10 6m 3 to 10 8m 3 and require a much larger source. The largest turbidite seen in our cores is ca. 1 m thick in the central basin floor and was deposited 4900 Calendar Years Before Present (BP). Two smaller major events occurred about 1500 and 2800 Cal. Years BP. Seismicity over the past century of record shows a clustering of larger epicenters along faults forming the eastern Gulf side of Alfonso Basin. In that period there have been four earthquakes with magnitudes above 7.0 but all are distant from the basin. Frequency of such earthquakes in the basin vicinity is probably millennial. It is concluded that the basin-wide turbidites thicker than 1 cm must be generated by slope failures on the eastern side of the basin at roughly millennial intervals. The thin flood turbidites have a peninsular source at centennial frequencies.

  8. Valuing tradeoffs between agricultural production and ecosystem services in the Heihe River Basin

    Science.gov (United States)

    Li, Z.; Deng, X.; Wu, F.

    2017-12-01

    Ecosystem services are faced with multiple stress from complex driving factors, such as climate change and human interventions. The Heihe River Basin (HRB), as the second largest inland river basin in China, is a typical semi-arid and arid region with fragile and sensitive ecological environment. For the past decades, agricultural production activities in the basin has affected ecosystem services in different degrees, leading to complex relations among "water-land-climate-ecology-human", in which hydrological process and water resource management is the key. In this context, managing trade-offs among water uses in the river basin to sustain multiple ecosystem services is crucial for healthy ecosystem and sustainable socioeconomic development. In this study, we analyze the trade-offs between different water uses in agricultural production and key ecosystem services in the HRB by applying production frontier analysis, with the aim to explore the potential for managing them. This method traces out joint production frontiers showing the combinations of ecosystem services and agricultural production that can be generated in a given area, and it deals with the economic problem of the allocation of scarce water resources under presumed objective, which aims to highlight synergies and reduce trade-offs between alternative water uses. Thus, management schemes that targets to both sustain agricultural production and increase the provision of key ecosystem services have to consider not only the technological or biological nature of interrelationships, but also the economic interdependencies among them.

  9. Constraining Basin Depth and Fault Displacement in the Malombe Basin Using Potential Field Methods

    Science.gov (United States)

    Beresh, S. C. M.; Elifritz, E. A.; Méndez, K.; Johnson, S.; Mynatt, W. G.; Mayle, M.; Atekwana, E. A.; Laó-Dávila, D. A.; Chindandali, P. R. N.; Chisenga, C.; Gondwe, S.; Mkumbwa, M.; Kalaguluka, D.; Kalindekafe, L.; Salima, J.

    2017-12-01

    The Malombe Basin is part of the Malawi Rift which forms the southern part of the Western Branch of the East African Rift System. At its southern end, the Malawi Rift bifurcates into the Bilila-Mtakataka and Chirobwe-Ntcheu fault systems and the Lake Malombe Rift Basin around the Shire Horst, a competent block under the Nankumba Peninsula. The Malombe Basin is approximately 70km from north to south and 35km at its widest point from east to west, bounded by reversing-polarity border faults. We aim to constrain the depth of the basin to better understand displacement of each border fault. Our work utilizes two east-west gravity profiles across the basin coupled with Source Parameter Imaging (SPI) derived from a high-resolution aeromagnetic survey. The first gravity profile was done across the northern portion of the basin and the second across the southern portion. Gravity and magnetic data will be used to constrain basement depths and the thickness of the sedimentary cover. Additionally, Shuttle Radar Topography Mission (SRTM) data is used to understand the topographic expression of the fault scarps. Estimates for minimum displacement of the border faults on either side of the basin were made by adding the elevation of the scarps to the deepest SPI basement estimates at the basin borders. Our preliminary results using SPI and SRTM data show a minimum displacement of approximately 1.3km for the western border fault; the minimum displacement for the eastern border fault is 740m. However, SPI merely shows the depth to the first significantly magnetic layer in the subsurface, which may or may not be the actual basement layer. Gravimetric readings are based on subsurface density and thus circumvent issues arising from magnetic layers located above the basement; therefore expected results for our work will be to constrain more accurate basin depth by integrating the gravity profiles. Through more accurate basement depth estimates we also gain more accurate displacement

  10. Three-dimensional modeling of pull-apart basins: implications for the tectonics of the Dead Sea Basin

    Science.gov (United States)

    Katzman, Rafael; ten Brink, Uri S.; Lin, Jian

    1995-01-01

    We model the three-dimensional (3-D) crustal deformation in a deep pull-apart basin as a result of relative plate motion along a transform system and compare the results to the tectonics of the Dead Sea Basin. The brittle upper crust is modeled by a boundary element technique as an elastic block, broken by two en echelon semi-infinite vertical faults. The deformation is caused by a horizontal displacement that is imposed everywhere at the bottom of the block except in a stress-free “shear zone” in the vicinity of the fault zone. The bottom displacement represents the regional relative plate motion. Results show that the basin deformation depends critically on the width of the shear zone and on the amount of overlap between basin-bounding faults. As the width of the shear zone increases, the depth of the basin decreases, the rotation around a vertical axis near the fault tips decreases, and the basin shape (the distribution of subsidence normalized by the maximum subsidence) becomes broader. In contrast, two-dimensional plane stress modeling predicts a basin shape that is independent of the width of the shear zone. Our models also predict full-graben profiles within the overlapped region between bounding faults and half-graben shapes elsewhere. Increasing overlap also decreases uplift near the fault tips and rotation of blocks within the basin. We suggest that the observed structure of the Dead Sea Basin can be described by a 3-D model having a large overlap (more than 30 km) that probably increased as the basin evolved as a result of a stable shear motion that was distributed laterally over 20 to 40 km.

  11. 75 FR 65299 - Endangered and Threatened Species; Recovery Plans

    Science.gov (United States)

    2010-10-22

    ... demographically independent populations of spring Chinook in the Upper Willamette River based on geography... streams cool and provide large woody debris, and managing land use by applying best management practices... potential of any population. Upper Willamette River Steelhead ``Steelhead'' is the name commonly applied to...

  12. Glyphosate and Dicamba Inhibit Flowering of Native Willamette Valley Plants

    Science.gov (United States)

    Successful flowering is essential for reproduction of native plants and production of food for herbivores. It is also an important alternative endpoint for assessment of ecological risks from chemical stressors such as herbicides. We evaluated flowering phenology after herbicide...

  13. EXPERIMENTAL STUDY AND DEVELOPMENT OF A WATER BASIN USED AS SOLAR SENSOR

    Directory of Open Access Journals (Sweden)

    S. E. Laouini

    2010-06-01

    Full Text Available Energy sources play an important role in the development of humanity, with the industrial and technological evolution of our century. Energy demand is increasing every year, for this reason we must seek an alternate source of energy more specifically new and renewable energy including solar energy. Note that solar energy is abundant, especially the south-eastern Algeria, where solar radiation is significant in any year. Given that it is the cheapest of all other energy, many researches and experiments have been conducted to recover the maximum amount of renewable energy and to address the problems of use and operation to reduce and save energy traditional.This work concerns the development of a new device is a basin filled with water used as a solar plane and a storage medium. The results obtained are very important in terms of heating water, the water temperature at outlet of basin reaches up to 74 ° C, also the inlet temperature is 29 ° C.

  14. Quantification and Postglacial evolution of an inner alpine sedimentary basin (Gradenmoos Basin, Hohe Tauern)

    International Nuclear Information System (INIS)

    Götz, J.

    2012-01-01

    The overall objective of this thesis is the quantification of sediment storage and the reconstruction of postglacial landscape evolution within the glacially overdeepened Gradenmoos Basin (subcatchment size: 4.1 km 2 ; basin floor elevation: 1920 m) in the central Gradenbach catchment (Schober Range, Hohe Tauern, Austrian Alps). Following the approach of denudation-accumulation-systems, most reliable results are obtained (1) if sediment output of a system can be neglected for an established period of time, (2) if sediment storage can be assessed with a high level of accuracy, (3) if the onset of sedimentation and amounts of initially stored sediments are known, and (4) if sediment contributing areas can be clearly delimited. Due to spatial scale and topographic characteristics, all mentioned aspects are fulfilled to a high degree within the studied basin. Applied methods include surface, subsurface and temporal investigations. Digital elevation data is derived from terrestrial laserscanning and geomorphologic mapping. The quantification of sediment storage is based on core drillings, geophysical methods (DC resistivity, refraction seismic, and ground penetrating radar), as well as GIS and 3D modelling. Radiocarbon dating and palynological analyses are additionally used to reconstruct the postglacial infilling progress of the basin. The study reveals that a continuous postglacial stratigraphic record is archived in the basin. As proposed by Lieb (1987) timing of basin deglaciation could be verified to late-Egesen times by means of radiocarbon ages (oldest sample just above basal till: 10.4 ka cal. BP) and first palynologic results. Lateglacial oscillations seem to have effectively scoured the basin, leaving only a shallow layer of basal till. The analysis of postglacial sedimentation in the basin is further improved by the existence of a former lake in the basin lasting for up to 7500 years until approx. 3.7 ka cal. BP. Both, the stratigraphic (fine, partly

  15. Stratigraphy of the Caloris Basin, Mercury: Implications for Volcanic History and Basin Impact Melt

    Science.gov (United States)

    Ernst, Carolyn M.; Denevi, Brett W.; Barnouin, Olivier S.; Klimczak, Christian; Chabot, Nancy L.; Head, James W.; Murchie, Scott L.; Neumann, Gregory A.; Prockter, Louis M.; Robinson, Mark S.; hide

    2015-01-01

    Caloris basin, Mercury's youngest large impact basin, is filled by volcanic plains that are spectrally distinct from surrounding material. Post-plains impact craters of a variety of sizes populate the basin interior, and the spectra of the material they have excavated enable the thickness of the volcanic fill to be estimated and reveal the nature of the subsurface. The thickness of the interior volcanic plains is consistently at least 2.5 km, reaching 3.5 km in places, with thinner fill toward the edge of the basin. No systematic variations in fill thickness are observed with long-wavelength topography or azimuth. The lack of correlation between plains thickness and variations in elevation at large horizontal scales within the basin indicates that plains emplacement must have predated most, if not all, of the changes in long-wavelength topography that affected the basin. There are no embayed or unambiguously buried (ghost) craters with diameters greater than 10 km in the Caloris interior plains. The absence of such ghost craters indicates that one or more of the following scenarios must hold: the plains are sufficiently thick to have buried all evidence of craters that formed between the Caloris impact event and the emplacement of the plains; the plains were emplaced soon after basin formation; or the complex tectonic deformation of the basin interior has disguised wrinkle-ridge rings localized by buried craters. That low-reflectance material (LRM) was exposed by every impact that penetrated through the surface volcanic plains provides a means to explore near-surface stratigraphy. If all occurrences of LRM are derived from a single layer, the subsurface LRM deposit is at least 7.5-8.5 km thick and its top likely once made up the Caloris basin floor. The Caloris-forming impact would have generated a layer of impact melt 3-15 km thick; such a layer could account for the entire thickness of LRM. This material would have been derived from a combination of lower crust

  16. Concerns about irrigation efficiency as an adaptation measure to cope with droughts and climate change in semi-arid basins

    Science.gov (United States)

    Vicuna, S.; Henriquez, L.; Melo, O.

    2016-12-01

    As expected in the late 1960s, the Paloma reservoir was built in the Limari basin in the semi-arid region in central Chile with the premise that climate conditions of the past, including the recurrence of dry and wet periods, were going to repeat in the future. That was in fact the case for almost 30 years after the reservoir was built. During this period water supplies from the reservoir were reliable and irrigation efficiency was improved with the result of irrigated land in the basin increasing four times especially with high value-permanent-water-consumption crops (fruits, orchards). Since 2003, during a mega-drought that has affected large proportions of central Chile, inflows to the Paloma reservoir have never again equaled or surpassed average historic flows. The refill of the reservoir, an event that happened every 3-4 years has not occurred in the last 13 years. And the capacity of the basin to accommodate to such a drastic reduction in water availability is no longer present because of the already large "efficient" and permanent use of water. The results in terms of agriculture losses and runoff at the outlet of the basin have been dramatic. Some 400 kms. south of the Limari basin, with higher precipitation levels but still in the semi-arid region in Chile is located the Maipo basin home to the 6 million people city of Santiago and around 250,000 has of irrigated land. Irrigation efficiency is also improving in this basin with savings being used mostly to supply drinking water supply shortages via transfer of water rights. Considering costly infrastructure alternatives, adaptation to climate change projections in this basin will likely extend the improvements in irrigation efficiency most likely affecting downstream environmental uses and reducing overall resilience of the basin to cope with droughts.

  17. Tectonic setting of Cretaceous basins on the NE Tibetan Plateau: Insights from the Jungong basin

    Science.gov (United States)

    Craddock, W.H.; Kirby, E.; Dewen, Z.; Jianhui, L.

    2012-01-01

    Quantifying the Cenozoic growth of high topography in the Indo-Asian collision zone remains challenging, due in part to significant shortening that occurred within Eurasia before collision. A growing body of evidence suggests that regions far removed from the suture zone experienced deformation before and during the early phases of Himalayan orogenesis. In the present-day north-eastern Tibetan Plateau, widespread deposits of Cretaceous sediment attest to significant basin formation; however, the tectonic setting of these basins remains enigmatic. We present a study of a regionally extensive network of sedimentary basins that are spatially associated with a system of SE-vergent thrust faults and are now exposed in the high ranges of the north-eastern corner of the Tibetan Plateau. We focus on a particularly well-exposed basin, located ~20km north of the Kunlun fault in the Anyemaqen Shan. The basin is filled by ~900m of alluvial sediments that become finer-grained away from the basin-bounding fault. Additionally, beds in the proximal footwall of the basin-bounding fault exhibit progressive, up-section shallowing and several intraformational unconformities which can be traced into correlative conformities in the distal part of the basin. The observations show sediment accumulated in the basin during fault motion. Regional constraints on the timing of sediment deposition are provided by both fossil assemblages from the Early Cretaceous, and by K-Ar dating of volcanic rocks that floor and cross-cut sedimentary fill. We argue that during the Cretaceous, the interior NE Tibetan Plateau experienced NW-SE contractional deformation similar to that documented throughout the Qinling-Dabie orogen to the east. The Songpan-Ganzi terrane apparently marked the southern limit of this deformation, such that it may have been a relatively rigid block in the Tibetan lithosphere, separating regions experiencing deformation north of the convergent Tethyan margin from regions deforming

  18. K Basin Sludge Conditioning Process Testing Project. Results from Test 4, ''Acid Digestion of Mixed-Bed Ion Exchange Resin''

    International Nuclear Information System (INIS)

    Pool, K.H.; Delegard, C.H.; Schmidt, A.J.; Thornton, B.M.; Silvers, K.L.

    1998-06-01

    Approximately 73 m 3 of heterogeneous solid material, ''sludge,'' (upper bound estimate, Packer 1997) have accumulated at the bottom of the K Basins in the 100 K Area of the Hanford Site. This sludge is a mixture of spent fuel element corrosion products, ion exchange materials (organic and inorganic), graphite-based gasket materials, iron and aluminum metal corrosion products, sand, and debris (Makenas et al. 1996, 1997). In addition, small amounts of polychlorinated biphenyls (PCBs) have been found. Ultimately, it is planned to transfer the K Basins sludge to the Hanford double shell tanks (DSTs). The Hanford Spent Nuclear Fuel (HSNF) project has conducted a number of evaluations to examine technology and processing alternatives to pretreat K Basin sludge to meet storage and disposal requirements. From these evaluations, chemical pretreatment has been selected to address criticality issues, reactivity, and the destruction or removal of PCBs before the K Basin sludge can be transferred to the DSTs. Chemical pretreatment, referred to as the K Basin sludge conditioning process, includes nitric acid dissolution of the sludge (with removal of acid insoluble solids), neutrons absorber addition, neutralization, and reprecipitation. Laboratory testing is being conducted by the Pacific Northwest National Laboratory (PNNL) to provide data necessary to develop the sludge conditioning process

  19. The use of coupled atmospheric and hydrological models for water-resources management in headwater basins

    Science.gov (United States)

    Leavesley, G.; Hay, L.

    1998-01-01

    Coupled atmospheric and hydrological models provide an opportunity for the improved management of water resources in headwater basins. Issues currently limiting full implementation of coupled-model methodologies include (a) the degree of uncertainty in the accuracy of precipitation and other meteorological variables simulated by atmospheric models, and (b) the problem of discordant scales between atmospheric and bydrological models. Alternative methodologies being developed to address these issues are reviewed.

  20. Mesozoic carbonate-siliciclastic platform to basin systems of a South Tethyan margin (Egypt, East Mediterranean)

    Science.gov (United States)

    Tassy, Aurélie; Crouzy, Emmanuel; Gorini, Christian; Rubino, Jean-Loup

    2015-04-01

    The Mesozoïc Egyptian margin is the south margin of a remnant of the Neo-Tethys Ocean, at the African northern plate boundary. East Mediterranean basin developed during the late Triassic-Early Jurassic rifting with a NW-SE opening direction (Frizon de Lamotte et al., 2011). During Mesozoïc, Egypt margin was a transform margin with a NW-SE orientation of transform faults. In the Eastern Mediterranean basin, Mesozoïc margins are characterized by mixed carbonate-siliciclastics platforms where subsidence and eustacy are the main parameters controlling the facies distribution and geometries of the platform-to-basin transition. Geometries and facies on the platform-slope-basin system, today well constrained on the Levant area, where still poorly known on the Egyptian margin. Geometries and stratigraphic architecture of the Egyptian margin are revealed, thanks to a regional seismic and well data-base provided by an industrial-academic group (GRI, Total). The objective is to understand the sismostratigraphic architecture of the platform-slope-basin system in a key area from Western Desert to Nile delta and Levant margin. Mapping of the top Jurassic and top Cretaceous show seismic geomorphology of the margin, with the cartography of the hinge line from Western Desert to Sinaï. During the Jurassic, carbonate platform show a prograding profile and a distally thickening of the external platform, non-abrupt slope profiles, and palaeovalleys incisions. Since the Cretaceous, the aggrading and retrograding mixed carbonate-siliciclastic platform show an alternation of steep NW-SE oblique segments and distally steepened segments. These structures of the platform edge are strongly controlled by the inherited tethyan transform directions. Along the hinge line, embayments are interpreted as megaslides. The basin infilling is characterised by an alternation of chaotic seismic facies and high amplitude reflectors onlaping the paleoslopes. MTC deposits can mobilize thick sedimentary

  1. Joint pattern of seasonal hydrological droughts and floods alternation in China's Huai River Basin using the multivariate L-moments

    Science.gov (United States)

    Wu, ShaoFei; Zhang, Xiang; She, DunXian

    2017-06-01

    Under the current condition of climate change, droughts and floods occur more frequently, and events in which flooding occurs after a prolonged drought or a drought occurs after an extreme flood may have a more severe impact on natural systems and human lives. This challenges the traditional approach wherein droughts and floods are considered separately, which may largely underestimate the risk of the disasters. In our study, the sudden alternation of droughts and flood events (ADFEs) between adjacent seasons is studied using the multivariate L-moments theory and the bivariate copula functions in the Huai River Basin (HRB) of China with monthly streamflow data at 32 hydrological stations from 1956 to 2012. The dry and wet conditions are characterized by the standardized streamflow index (SSI) at a 3-month time scale. The results show that: (1) The summer streamflow makes the largest contribution to the annual streamflow, followed by the autumn streamflow and spring streamflow. (2) The entire study area can be divided into five homogeneous sub-regions using the multivariate regional homogeneity test. The generalized logistic distribution (GLO) and log-normal distribution (LN3) are acceptable to be the optimal marginal distributions under most conditions, and the Frank copula is more appropriate for spring-summer and summer-autumn SSI series. Continuous flood events dominate at most sites both in spring-summer and summer-autumn (with an average frequency of 13.78% and 17.06%, respectively), while continuous drought events come second (with an average frequency of 11.27% and 13.79%, respectively). Moreover, seasonal ADFEs most probably occurred near the mainstream of HRB, and drought and flood events are more likely to occur in summer-autumn than in spring-summer.

  2. Sedimentary architecture of a Plio-Pleistocene proto-back-arc basin: Wanganui Basin, New Zealand

    Science.gov (United States)

    Proust, Jean-Noël; Lamarche, Geoffroy; Nodder, Scott; Kamp, Peter J. J.

    2005-11-01

    The sedimentary architecture of active margin basins, including back-arc basins, is known only from a few end-members that barely illustrate the natural diversity of such basins. Documenting more of these basins types is the key to refining our understanding of the tectonic evolution of continental margins. This paper documents the sedimentary architecture of an incipient back-arc basin 200 km behind the active Hikurangi subduction margin, North Island, New Zealand. The Wanganui Basin (WB) is a rapidly subsiding, Plio-Pleistocene sedimentary basin located at the southern termination of the extensional back-arc basin of the active Central Volcanic Region (TVZ). The WB is asymmetric with a steep, thrust-faulted, outer (arc-ward) margin and a gentle inner (craton-ward) margin. It contains a 4-km-thick succession of Plio-Pleistocene sediments, mostly lying offshore, composed of shelf platform sediments. It lacks the late molasse-like deposits derived from erosion of a subaerial volcanic arc and basement observed in classical back-arc basins. Detailed seismic stratigraphic interpretations from an extensive offshore seismic reflection data grid show that the sediment fill comprises two basin-scale mega-sequences: (1) a Pliocene (3.8 to 1.35 Ma), sub-parallel, regressive "pre-growth" sequence that overtops the uplifted craton-ward margin above the reverse Taranaki Fault, and (2) a Pleistocene (1.35 Ma to present), divergent, transgressive, "syn-growth" sequence that onlaps: (i) the craton-ward high to the west, and (ii) uplifted basement blocks associated with the high-angle reverse faults of the arc-ward margin to the east. Along strike, the sediments offlap first progressively southward (mega-sequence 1) and then southeastward (mega-sequence 2), with sediment transport funnelled between the craton- and arc-ward highs, towards the Hikurangi Trough through the Cook Strait. The change in offlap direction corresponds to the onset of arc-ward thrust faulting and the rise of

  3. Misrepresenting the Jordan River Basin

    Directory of Open Access Journals (Sweden)

    Clemens Messerschmid

    2015-06-01

    Full Text Available This article advances a critique of the UN Economic and Social Commission for West Asia’s (ESCWA’s representation of the Jordan River Basin, as contained in its recently published Inventory of Shared Water Resources in Western Asia. We argue that ESCWA’s representation of the Jordan Basin is marked by serious technical errors and a systematic bias in favour of one riparian, Israel, and against the Jordan River’s four Arab riparians. We demonstrate this in relation to ESCWA’s account of the political geography of the Jordan River Basin, which foregrounds Israel and its perspectives and narratives; in relation to hydrology, where Israel’s contribution to the basin is overstated, whilst that of Arab riparians is understated; and in relation to development and abstraction, where Israel’s transformation and use of the basin are underplayed, while Arab impacts are exaggerated. Taken together, this bundle of misrepresentations conveys the impression that it is Israel which is the main contributor to the Jordan River Basin, Arab riparians its chief exploiters. This impression is, we argue, not just false but also surprising, given that the Inventory is in the name of an organisation of Arab states. The evidence discussed here provides a striking illustration of how hegemonic hydro-political narratives are reproduced, including by actors other than basin hegemons themselves.

  4. Spatial Preference Heterogeneity for Integrated River Basin Management: The Case of the Shiyang River Basin, China

    Directory of Open Access Journals (Sweden)

    Fanus Asefaw Aregay

    2016-09-01

    Full Text Available Integrated river basin management (IRBM programs have been launched in most parts of China to ease escalating environmental degradation. Meanwhile, little is known about the benefits from and the support for these programs. This paper presents a case study of the preference heterogeneity for IRBM in the Shiyang River Basin, China, as measured by the Willingness to Pay (WTP, for a set of major restoration attributes. A discrete choice analysis of relevant restoration attributes was conducted. The results based on a sample of 1012 households in the whole basin show that, on average, there is significant support for integrated ecological restoration as indicated by significant WTP for all ecological attributes. However, residential location induced preference heterogeneities are prevalent. Generally, compared to upper-basin residents, middle sub-basin residents have lower mean WTP while lower sub-basin residents express higher mean WTP. The disparity in utility is partially explained by the difference in ecological and socio-economic status of the residents. In conclusion, estimating welfare benefit of IRBM projects based on sample responses from a specific sub-section of the basin only may either understate or overstate the welfare estimate.

  5. Area environmental characterization report of the Dalhart and Palo Duro basins in the Texas Panhandle. Volume I. Dalhart Basin

    International Nuclear Information System (INIS)

    1982-09-01

    This area report describes the environmental characteristics of the Dalhart and Palo Duro basins of the Texas Panhandle portion of the Permian basin. Both basins are rather sparsely populated, and the overall population is decreasing. The economic base is centered on agribusiness and manufacturing. Most of the potentially conflicting land uses in both basins (i.e., parks, historic sites) occupy small land areas, with the exception of a national grassland in the Dalhart and military air training routes in both basins. Ground transportation in the Dalhart basin is adequate, and it is well developed in the Palo Duro basin. In both basins irrigation constitutes the principal water use, and groundwater is the principal source. However, the dominant aquifer, the Ogallala, is being depleted. Both basins consist primarily of grasslands, rangelands, and agricultural areas. No critical terrestrial or aquatic habitats have been identified in the basins, though several endangered, threatened, or rare terrestrial species occur in or near the basins. Aquatic resources in both basins are limited because of the intermittent availability of water and the high salt content of some water bodies. Playa lakes are common, though usually seasonal or rain dependent. The climate of the area is semiarid, with low humidity, relatively high wind speeds, and highly variable prcipitation. Restrictive dispersion conditions are infrequent. National ambient secondary air quality standards for particulates are being exceeded in the area, largely because of fugitive dust, although there are some particulate point sources

  6. Basin Analysis and Petroleum System Characterisation of Western Bredasdorp Basin, Southern Offshore of South Africa: Insights from a 3d Crust-Scale Basin Model - (Phase 1)

    Science.gov (United States)

    Sonibare, W. A.; Scheck-Wenderoth, M.; Sippel, J.; Mikeš, D.

    2012-04-01

    In recent years, construction of 3D geological models and their subsequent upscaling for reservoir simulation has become an important tool within the oil industry for managing hydrocarbon reservoirs and increasing recovery rate. Incorporating petroleum system elements (i.e. source, reservoir and trap) into these models is a relatively new concept that seems very promising to play/prospect risk assessment and reservoir characterisation alike. However, yet to be fully integrated into this multi-disciplinary modelling approach are the qualitative and quantitative impacts of crust-scale basin dynamics on the observed basin-fill architecture and geometries. The focus of this study i.e. Western Bredasdorp Basin constitutes the extreme western section of the larger Bredasdorp sub-basin, which is the westernmost depocentre of the four southern Africa offshore sub-basins (others being Pletmos, Gamtoos and Algoa). These basins, which appear to be initiated by volcanically influenced continental rifting and break-up related to passive margin evolution (during the Mid-Late Jurassic to latest Valanginian), remain previously unstudied for crust-scale basin margin evolution, and particularly in terms of relating deep crustal processes to depo-system reconstruction and petroleum system evolution. Seismic interpretation of 42 2D seismic-reflection profiles forms the basis for maps of 6 stratigraphic horizons which record the syn-rift to post-rift (i.e. early drift and late drift to present-day seafloor) successions. In addition to this established seismic markers, high quality seismic profiles have shown evidence for a pre-rift sequence (i.e. older than Late Jurassic >130 Ma). The first goal of this study is the construction of a 3D gravity-constrained, crust-scale basin model from integration of seismics, well data and cores. This basin model is constructed using GMS (in-house GFZ Geo-Modelling Software) while testing its consistency with the gravity field is performed using IGMAS

  7. The evolution and performance of river basin management in the Murray-Darling Basin

    Directory of Open Access Journals (Sweden)

    Andrew Ross

    2016-09-01

    Full Text Available We explore bioregional management in the Murray-Darling Basin (MDB in Australia through the institutional design characteristics of the MDB River Basin Organization (RBO, the actors and organizations who supported and resisted the establishment of the RBO, and the effectiveness of the RBO. During the last 25 years, there has been a major structural reform in the MDB RBO, which has changed from an interstate coordinating body to an Australian government agency. Responsibility for basin management has been centralized under the leadership of the Australian government, and a comprehensive integrated Basin plan has been adopted. The driving forces for this centralization include national policy to restore river basins to sustainable levels of extraction, state government difficulties in reversing overallocation of water entitlements, the millennium drought and its effects, political expediency on the part of the Australian government and state governments, and a major injection of Australian government funding. The increasing hierarchy and centralization of the MDB RBO does not follow a general trend toward multilevel participative governance of RBOs, but decentralization should not be overstated because of the special circumstances at the time of the centralization and the continuing existence of some decentralized elements, such as catchment water plans, land use planning, and water quality. Further swings in the centralization-decentralization pendulum could occur. The MDB reform has succeeded in rebalancing Basin water allocations, including an allocation for the environment and reduced diversion limits. There are some longer term risks to the implementation of reform, including lack of cooperation by state governments, vertical coordination difficulties, and perceived reductions in the accountability and legitimacy of reform at the local level. If implementation of the Basin plan is diverted or delayed, a new institution, the Commonwealth

  8. Sustaining Exploration in Mature Basins

    International Nuclear Information System (INIS)

    Bayo, A.

    2002-01-01

    Exploration is a business like any other business driven by opportunity, resources and expectation of profit. Therefore, exploration will thrive anywhere the opportunities are significant, the resources are available and the outlook for profit (or value creation) is good. To sustain exploration activities anywhere, irrespective of the environment, there must be good understanding of the drivers of these key investment criteria. This paper will examine these investment criteria as they relate to exploration business and address the peculiarity of exploration in mature basin. Mature basins are unique environment that lends themselves a mix of fears, paradigms and realities, particularly with respect to the perception of value. To sustain exploration activities in a mature basin, we need to understand these perceptions relative to the true drivers of profitability. Exploration in the mature basins can be as profitable as exploration in emerging basins if the dynamics of value definition-strategic and fiscal values are understood by operators, regulators and co ventures alike. Some suggestions are made in this presentation on what needs to be done in addressing these dynamic investment parameters and sustaining exploration activities in mature basins

  9. Crustal characteristic variation in the central Yamato Basin, Japan Sea back-arc basin, deduced from seismic survey results

    Science.gov (United States)

    Sato, Takeshi; No, Tetsuo; Miura, Seiichi; Kodaira, Shuichi

    2018-02-01

    The crustal structure of the Yamato Bank, the central Yamato Basin, and the continental shelf in the southern Japan Sea back-arc basin is obtained based on a seismic survey using ocean bottom seismographs and seismic shot to elucidate the back-arc basin formation processes. The central Yamato Basin can be divided into three domains based on the crustal structure: the deep basin, the seamount, and the transition domains. In the deep basin domain, the crust without the sedimentary layer is about 12-13 km thick. Very few units have P-wave velocity of 5.4-6.0 km/s, which corresponds to the continental upper crust. In the seamount and transition domains, the crust without the sedimentary layer is about 12-16 km thick. The P-wave velocities of the upper and lower crusts differs among the deep basin, the seamount, and the transition domains. These results indicate that the central Yamato Basin displays crustal variability in different domains. The crust of the deep basin domain is oceanic in nature and suggests advanced back-arc basin development. The seamount domain might have been affected by volcanic activity after basin opening. In the transition domain, the crust comprises mixed characters of continental and oceanic crust. This crustal variation might represent the influence of different processes in the central Yamato Basin, suggesting that crustal development was influenced not only by back-arc opening processes but also by later volcanic activity. In the Yamato Bank and continental shelf, the upper crust has thickness of about 17-18 km and P-wave velocities of 3.3-4.1 to 6.6 km/s. The Yamato Bank and the continental shelf suggest a continental crustal character.

  10. Achieving partial nitrification in a novel six basins alternately operating activated sludge process treating domestic wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Mohammed, Rusul Naseer; Arab, Saad; Xiwu, Lu [Southeast University, Nanjing (China)

    2013-11-15

    A novel technology was developed to achieve partial nitrification at moderately low DO and short HRT, which would save the aeration cost and have the capacity to treat a wide range of low-strength real wastewater. The process enables a relatively stable whereas nitrite accumulation rate (NO{sub 2}-AR) was stabilized over 94% in the last aerobic basin on average of each phase through a combination of short HRT and low DO level. Low DO did not produce sludge with poorer settleability. The morphology and internal structure of the granular sludge was observed by using a scanning electron microscope (SEM) analysis during a long-term operation. The images indicated that thick clusters of spherical cells and small rod-shaped cells (NOB and AOB are rod-shaped to spherical cells) were the dominant population structure, rather than filamentous and other bacteria under a combination of low DO and short HRT, which gives a good indication of nitrite accumulation achievement. MPN method was used to correlate AOB numbers with nutrient removal. It showed that an ammonia-oxidizing bacterium (AOB) was the dominant nitrifying bacteria, whereas high NO{sub 2}-AR was achieved at AOB number of 5.33x10{sup 8} cell/g MLSS. Higher pollutant removal efficiency of 86.2%, 98% and 96.1%, for TN, NH{sub 4}{sup +}-N, and TP, respectively, was achieved by a novel six basin activated sludge process (SBASP) at low DO level and low C/N ratio which were approximately equal to the complete nitrification-denitrification with the addition of sodium acetate (NaAc) at normal DO level of (1.5-2.5 mg/L)

  11. Data evaluation technical memorandum on the K-1407C Retention Basin at the Oak Ridge K-25 Site, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Beal, D.; Bock, J.; Hatmaker, T.; Zolyniak, J.; Goddard, P.; Kucsmas, D.

    1991-10-01

    The K-1407-C Retention Basin was a surface impoundment at the Oak Ridge K-25 Site. The basin was used primarily for storing potassium hydroxide scrubber sludge generated at the K-25 Site. In addition, from 1960 to 1973, metal hydroxide sludges that were removed from the K-1407-B Holding Pond were discharged to the K-1407-C Retention Basin. The sludge in the K-1407-B Pond contained discharge from the K-1420 Decontamination and Uranium Recovery, the K-1501 Steam Plant, the K-1413 Laboratory, and the K-1401 Maintenance Building. Radioactive material is also present in the K-1407-C Retention Basin, probably the result of cleaning and decontamination activities at some of the aforementioned facilities. The discharge of waste materials to K-1407-C was discontinued before November of 1988, and all sludge was removed from the retention basin. Some of the sludge was stored, and the remainder was fixed in concrete. This report is specific to the K-1407-C Retention Basin and includes information pertinent to the evaluation of soil contamination. The focus of this evaluation is the effectiveness of the Phase 1 investigation of the K-1407-C Retention Basin to define site conditions adequately to support decisions regarding appropriate closure alternatives. This includes the physical characterization of the site area and the characterization of the nature and extent of contamination at the site in relation to risk characterization and statistical evaluation

  12. Neoproterozoic rift basins and their control on the development of hydrocarbon source rocks in the Tarim Basin, NW China

    Science.gov (United States)

    Zhu, Guang-You; Ren, Rong; Chen, Fei-Ran; Li, Ting-Ting; Chen, Yong-Quan

    2017-12-01

    The Proterozoic is demonstrated to be an important period for global petroleum systems. Few exploration breakthroughs, however, have been obtained on the system in the Tarim Basin, NW China. Outcrop, drilling, and seismic data are integrated in this paper to focus on the Neoproterozoic rift basins and related hydrocarbon source rocks in the Tarim Basin. The basin consists of Cryogenian to Ediacaran rifts showing a distribution of N-S differentiation. Compared to the Cryogenian basins, those of the Ediacaran are characterized by deposits in small thickness and wide distribution. Thus, the rifts have a typical dual structure, namely the Cryogenian rifting and Ediacaran depression phases that reveal distinct structural and sedimentary characteristics. The Cryogenian rifting basins are dominated by a series of grabens or half grabens, which have a wedge-shaped rapid filling structure. The basins evolved into Ediacaran depression when the rifting and magmatic activities diminished, and extensive overlapping sedimentation occurred. The distributions of the source rocks are controlled by the Neoproterozoic rifts as follows. The present outcrops lie mostly at the margins of the Cryogenian rifting basins where the rapid deposition dominates and the argillaceous rocks have low total organic carbon (TOC) contents; however, the source rocks with high TOC contents should develop in the center of the basins. The Ediacaran source rocks formed in deep water environment of the stable depressions evolving from the previous rifting basins, and are thus more widespread in the Tarim Basin. The confirmation of the Cryogenian to Ediacaran source rocks would open up a new field for the deep hydrocarbon exploration in the Tarim Basin.

  13. Review of ALARA plan for activities at the 105 K-East fuel storage basin

    International Nuclear Information System (INIS)

    Vargo, G.J.; Durham, J.S.; Hickey, E.E.; Stansbury, P.S.; Cicotte, G.R.

    1994-09-01

    As part of its ongoing efforts to reduce doses to workers to levels as low as reasonably achievable (ALARA), Westinghouse Hanford Company (WHC) tasked the Health Protection Department of the Pacific Northwest Laboratory (PNL) to review operations at the 105 K-East Fuel Storage Basin (105 K-East). This review included both routine operations and a proposed campaign to encapsulate N-Reactor fuel stored there. This report summarizes the results of PNL's reviews of policy, procedures, and practices for operations at 105 K-East as well as an evaluation of the major sources of occupational radiation exposures. Where possible, data previously collected by WHC and its predecessors were used. In addition, PNL staff developed a three-dimensional model of the radiological environment within 105 K-East to assess the relative contributions of different radiation sources to worker dose and to provide a decision tool for use in evaluating alternative methods of dose rate reduction. The model developed by PNL indicates that for most areas in the basin the primary source of occupational radiation exposure is the contaminated concrete surfaces of the basin near the waterline. Basin cooling water piping represents a significant source in a number of areas, particularly the Technical Viewing Pit. This report contains specific recommendations to reduce the impact of these sources of occupational radiation exposure in 105 K-East. Other recommendations to reduce doses to workers during activities such as filter changes and filter sampling are also included

  14. Geologic Basin Boundaries (Basins_GHGRP) GIS Layer

    Data.gov (United States)

    U.S. Environmental Protection Agency — This is a coverage shapefile of geologic basin boundaries which are used by EPA's Greenhouse Gas Reporting Program. For onshore production, the "facility" includes...

  15. Hydroclimatology of the Missouri River basin

    Science.gov (United States)

    Wise, Erika K.; Woodhouse, Connie A.; McCabe, Gregory; Pederson, Gregory T.; St. Jacques, Jeannine-Marie

    2018-01-01

    Despite the importance of the Missouri River for navigation, recreation, habitat, hydroelectric power, and agriculture, relatively little is known about the basic hydroclimatology of the Missouri River basin (MRB). This is of particular concern given the droughts and floods that have occurred over the past several decades and the potential future exacerbation of these extremes by climate change. Here, observed and modeled hydroclimatic data and estimated natural flow records in the MRB are used to 1) assess the major source regions of MRB flow, 2) describe the climatic controls on streamflow in the upper and lower basins , and 3) investigate trends over the instrumental period. Analyses indicate that 72% of MRB runoff is generated by the headwaters in the upper basin and by the lowest portion of the basin near the mouth. Spring precipitation and temperature and winter precipitation impacted by changes in zonal versus meridional flow from the Pacific Ocean play key roles in surface water supply variability in the upper basin. Lower basin flow is significantly correlated with precipitation in late spring and early summer, indicative of Atlantic-influenced circulation variability affecting the flow of moisture from the Gulf of Mexico. Although increases in precipitation in the lower basin are currently overriding the effects of warming temperatures on total MRB flow, the upper basin’s long-term trend toward decreasing flows, reduction in snow versus rain fraction, and warming spring temperatures suggest that the upper basin may less often provide important flow supplements to the lower basin in the future.

  16. Wind energy in Mediterranean Basin

    International Nuclear Information System (INIS)

    Gaudiosi, G.

    1991-01-01

    In its examination of wind energy potential in the Mediterranean Basin, this paper provides brief notes on the Basin's geography; indicates power production and demand; describes the area's wind characteristics and wind monitoring activities; illustrates wind velocity distributions; estimates local wind power production potential; reviews the Basin's wind energy marketing situation and each bordering country's wind energy programs; surveys installed wind energy farms; and assesses national research and commercialization efforts

  17. Hydrology of the Chicod Creek basin, North Carolina, prior to channel improvements

    Science.gov (United States)

    Simmons, Clyde E.; Aldridge, Mary C.

    1980-01-01

    Extensive modification and excavation of stream channels in the 6-square mile Chicod Creek basin began in mid-1979 to reduce flooding and improve stream runoff conditions. The effects of channel improvements on this Coastal Pain basin 's hydrology will be determined from data collected prior to, during, and for several years following channel alternations. This report summarizes the findings of data collected prior to these improvements. During the 3-year study period, flow data collected from four stream gaging stations in the basin show that streams are dry approximately 10 percent of the time. Chemical analyses of water samples from the streams and from eight shallow groundwater observation wells indicate that water discharge from the surficial aquifer is the primary source of streamflow during rainless periods. Concentrations of Kjeldahl nitrogen, total nitrogen, and total phosphorus were often 5 to 10 times greater at Chicod Creek sites than those at nearby baseline sites. It is probable that runoff from farming and livestock operations contributes significantly to these elevated concentrations in Chicod Creek. The only pesticides detected in stream water were low levels of DDT and dieldrin, which occurred during storm runoff. A much wider range of pesticides, however, are found associated with streambed materials. The ratio of fecal coliform counts to those of fecal streptococcus indicate that the streams receive fecal wastes from livestock and poultry operations.

  18. F/H Effluent Treatment Facility filtration upgrade alternative evaluations overview

    Energy Technology Data Exchange (ETDEWEB)

    Miles, W.C. Jr.; Poirier, M.R.; Brown, D.F.

    1992-01-01

    The F/H Effluent Treatment Facility (ETF) at the Savannah River Site (SRS) was designed to treat process wastewater from the 200-F/H Production Facilities (routine wastewater) as well as intermittent flows from the F/H Retention Basins and F/H Cooling Water Basins (nonroutine wastewater). Since start-up of the ETF at SRS in 1988, the treatment process has experienced difficulties processing routine and nonroutine wastewater. Studies have identified high bacteria and bacterial decomposition products in the wastewater as the cause for excessive fouling of the filtration system. In order to meet Waste Management requirements for the treatment of processed wastewater, an upgrade of the ETF filtration system is being developed. This upgrade must be able to process the nonroutine wastewater at design capacity. As a result, a study of alternative filter technologies was conducted utilizing simulated wastewater. The simulated wastewater tests have been completed. Three filter technologies, centrifugal polymeric ultrafilters, tubular polymeric ultrafilters, and backwashable cartridge filters have been selected for further evaluation utilizing actual ETF wastewater.

  19. F/H Effluent Treatment Facility filtration upgrade alternative evaluations overview

    Energy Technology Data Exchange (ETDEWEB)

    Miles, W.C. Jr.; Poirier, M.R.; Brown, D.F.

    1992-07-01

    The F/H Effluent Treatment Facility (ETF) at the Savannah River Site (SRS) was designed to treat process wastewater from the 200-F/H Production Facilities (routine wastewater) as well as intermittent flows from the F/H Retention Basins and F/H Cooling Water Basins (nonroutine wastewater). Since start-up of the ETF at SRS in 1988, the treatment process has experienced difficulties processing routine and nonroutine wastewater. Studies have identified high bacteria and bacterial decomposition products in the wastewater as the cause for excessive fouling of the filtration system. In order to meet Waste Management requirements for the treatment of processed wastewater, an upgrade of the ETF filtration system is being developed. This upgrade must be able to process the nonroutine wastewater at design capacity. As a result, a study of alternative filter technologies was conducted utilizing simulated wastewater. The simulated wastewater tests have been completed. Three filter technologies, centrifugal polymeric ultrafilters, tubular polymeric ultrafilters, and backwashable cartridge filters have been selected for further evaluation utilizing actual ETF wastewater.

  20. F/H effluent treatment facility filtration upgrade alternative evaluations overview

    International Nuclear Information System (INIS)

    Miles, W.C. Jr.; Poirier, M.R.; Brown, D.F.

    1992-01-01

    The F/H Effluent Treatment Facility (ETF) at the Savannah River Site (SRS) was designed to treat process wastewater from the 200-F/H Production Facilities (routine wastewater) as well as intermittent flows from the F/H Retention Basins and F/H Cooling Water Basins (nonroutine wastewater). Since start-up of the ETF at SRS in 1988, the treatment process has experienced difficulties processing routine and nonroutine wastewater. Studies have identified high bacteria and bacterial decomposition products in the wastewater as the cause for excessive fouling of the filtration system. In order to meet Waste Management requirements for the treatment of processed wastewater, an upgrade of the ETF filtration system is being developed. This upgrade must be able to process the nonroutine wastewater at design capacity. As a result, a study of alternative filter technologies was conducted utilizing simulated wastewater. The simulated wastewater tests have been completed. Three filter technologies, centrifugal polymeric ultrafilters, tubular polymeric ultrafilters, and backwashable cartridge filters have been selected for further evaluation utilizing actual ETF wastewater. (author)

  1. STRATIGRAPHIC EVOLUTION, PALEOENVIRONMENTS AND HYDROCARBON POTENTIALS OF THE BENUE/DAHOMEY BASINS, NIGERIAN AND POTIGUAR/CEARA BASINS, NE BRAZIL

    International Nuclear Information System (INIS)

    Akande, S.O; Adekeye, O.A.; Oj, O.J; Erdtmann, B.D.; Koutsokous, E.I.

    2004-01-01

    The stratigraphy, facies relationship and paleoenvironment of selected West African and the Brazillian rift basins permit the recognition of at least two major petroleum systems apart from the prolific Niger Delta petroleum system. The Lower Cretaceous fluivio-lacustrine petroleum system and Upper Cretaceous to Lower Tertiary, marine dominated petroleum system. Our combined studies of the stratigraphic, structural framework, paleoenvironment and time-space relationships of the petroleum systems in the Benue/Dahomey and the Potiguar/Ceara basins indicated that rifting and subsequent drifting during the opening of the South Atlantic controlled subsidence, sediment deposition and facies associations in individual basins. Whereas in the Potiguar/Ceara basins, the best developed source rocks are within the Neomacin-Aptian fluvio- lacustrine sequence of the Pendencia and Alagamar Formations which generated reserved hydrocarbon in the Acu Formation, empirical evidence for this petroleum system in the contiguous Benue/Dahomey basins are only based on the geochemical characteristics of the lower parts of the Bima Formation and the Abeokuta Group. In contrast, the Upper Cretaceous-Lower Tertiary marine petroleum system, which is constrained by poor development of reservoirs in the Potiguar/Ceara basin is productive in the Benue/Dahomey basins where source rocks, reservoir and sealing facies occur at this interval. Considering the recent hydrocarbon discoveries of the East Niger basin, the Doba (southern Chad), the Muglad basin (southern Sudan) sourced from the fluvio-lacustrine rift sequences, we suggest that this petroleum system needs more detailed exploration and has some potentials in the Benue/Dahomey frontier basins

  2. Area environmental characterization report of the Dalhart and Palo Duro basins in the Texas Panhandle. Volume II. Palo Duro basin

    International Nuclear Information System (INIS)

    1982-09-01

    This area report describes the environmental characteristics of the Dalhart and Palo Duro basins of the Texas Panhandle portion of the Permian basin. Both basins are rather sparsely populated, and the overall population is decreasing. The economic base is centered on agribusiness and manufacturing. Most of the potentially conflicting land uses in both basins (i.e., parks, historic sites) occupy small land areas, with the exception of a national grassland in the Dalhart and military air training routes in both basins. Ground transportation in the Dalhart basin is adequate, and it is well developed in the Palo Duro basin. In both basins irrigation constitutes the principal water use, and groundwater is the principal source. However, the dominant aquifer, the Ogallala, is being depleted. Both basins consist primarily of grasslands, rangelands, and agricultural areas. No critical terrestrial or aquatic habitats have been identified in the basins, though several endangered, threatened, or rare terrestrial species occur in or near the basins. Aquatic resources in both basins are limited because of the intermittent availability of water and the high salt content of some water bodies. Playa lakes are common, though usually seasonal or rain dependent. The climate of the area is semiarid, with low humidity, relatively high wind speeds, and high variable precipitation. Restrictive dispersion conditions are infrequent. National ambient secondary air quality standards for particulates are being exceeded in the area, largely because of fugitive dust, although there are some particulate point sources

  3. The Minorca Basin: a buffer zone between the Valencia and Liguro-Provençal Basins (NW Mediterranean Sea)

    Science.gov (United States)

    Pellen, Romain; Aslanian, Daniel; Rabineau, Marina; Leroux, Estelle; Gorini, Christian; Silenziario, Carmine; Blanpied, Christian; Rubino, Jean-Loup

    2017-04-01

    The present-day compartmented Mediterranean physiography is inherited from the last 250 Ma kinematic plate evolution (Eurasian, Africa, Iberic and Nubia plates) which implied the formation of orogenic chains, polyphased basins, and morphological - geodynamic thresholds. The interactions between these entities are strongly debated in the North-Western Mediterranean area. Several Neogene reconstructions have been proposed for the Valencia basin depending of the basin segmentation where each model imply a different subsidence, sedimentary, and palaeo-environmental evolution. Our study propose a new kinematic model for the Valencia Basin (VB) that encompasses the sedimentary infill, vertical movement and basin segmentation. Detailed analyses of seismic profiles and boreholes in the VB reveal a differentiated basin, the Minorca Basin (MB), lying between the old Mesozoic Valencia Basin sensu strico (VBss) and the young Oligocene Liguro-Provencal Basin (LPB) (Pellen et al., 2016). The relationship between these basins is shown through the correlation of four Miocene-to-present-day megasequences. The Central and North Balearic Fracture Zones (CFZ and NBFZ) that border the MB represent two morphological and geodynamical thresholds that created an accommodation in steps between the three domains. Little to no horizontal Neogene movements have been found for the Ibiza and Majorca Islands and imply a vertical "sag" subsidence. In contrast, the counterclockwise movement of the Corso-Sardinian blocks induced a counterclockwise movement of the Minorca block towards the SE along the CFZ and NBFZ, during the exhumation of lower continental crust in the LPB. The South-Eastward Minorca block translation stops when the first atypical oceanic crust occurs. The influence of the Neogene Betic compressional phase is thus limited to the VBss on the basis of a different MB origin. This new understanding places the AlKaPeCa blocks northeastward of the present-day Alboran Area. Both NW-SE and

  4. Hydrologic Sub-basins of Greenland

    Data.gov (United States)

    National Aeronautics and Space Administration — The Hydrologic Sub-basins of Greenland data set contains Geographic Information System (GIS) polygon shapefiles that include 293 hydrologic sub-basins of the...

  5. New understandings of the lithofacies paleogeography of the middle assemblage of Majiagou Fm in the Ordos Basin and its exploration significance

    Directory of Open Access Journals (Sweden)

    Jinhua Fu

    2017-07-01

    Full Text Available Accurate lithofacies-paleogeographic reconstruction is of great significance in predicting the dolomite reservoir distribution of the middle assemblage of Ordovician Majiagou Fm in the Ordos Basin. In this paper, the controlling effects of palaeotectonic background over sedimentation were first analyzed. Then the sedimentary mode of the middle assemblage was established and the lithofacies-paleogeography was reconstructed objectively for three intervals (Ma55, Ma57 and Ma59, based on the observation results of a large number of drilling cores and rock sections, together with the results of logging interpretation of rock composition and structure, single factor maps analysis and seismic data interpretation. The following findings were obtained. First, the middle assemblage of Majiagou Fm presents the uplift-depression alternation; two secondary low uplift zones extending in NS, i.e. Wushen Banner–Wuqi and Shenmu–Yulin–Yan'an, are developed in the eastern side of the central paleo-uplift, between which there is intraplatform depression, and lagoons are deposited in the Mizhi area in the east of the basin. Second, in the Ordos Basin, four NE-trending rift troughs are developed in the Proterozoic, which greatly affects the Ordovician sedimentary pattern and controls the distribution of intraplatform grain banks. Third, influenced jointly by the uplift-depression alternation and the intraplatform rift troughs of the Proterozoic, the intraplatform grain banks in the middle assemblage are mainly developed in the two low uplift zones, i.e. Shenmu–Yulin–Yan'an and Wushen Banner–Wuqi, trending NE in a similar echelon distribution. In conclusion, the two low uplift zones are the main development areas for high-quality carbonate reservoirs within the middle assemblage of Majiagou Fm in the basin.

  6. Petroleum geology of the Palo Duro Basin, Texas Panhandle

    International Nuclear Information System (INIS)

    Rose, P.R.

    1986-03-01

    The Palo Duro Basin, Permian Basin, Texas is an asymmetric, relatively shallow, intracratonic basin in the southern Texas Panhandle filled mostly by Mississippian, Pennsylvanian, and Permian sedimentary rocks. Although deeper and prolific prolific petroleum-producing basins adjoin it on the north (Anadarko Basin), south (Midland Basin), and east (Hardeman Basin), the Palo Duro Basin has produced remarkably small amounts of oil and gas to date. This is all the more noteworthy because the sedimentary sequence and rock types of the basin are similar to those of the adjacent basins. Analyses of the stratigraphic succession and structural configuration of the Palo Duro Basin suggest that adequate reservoir rocks, top-seals, and geologic structures are present. Most of the structures formed early enough to have trapped hydrocarbons if they were migrating in the rock column. Although additional work is under way to properly address the question of the petroleum source rocks, generation, and migration, the general absence of production in the basin may relate to an overall deficiency in hydrocarbon generation within the basin. Geologic information in this report will form part of the basis for further analysis and conclusions on hydrocarbon potential in the Palo Duro Basin

  7. Evolution of the Rembrandt impact basin on Mercury.

    Science.gov (United States)

    Watters, Thomas R; Head, James W; Solomon, Sean C; Robinson, Mark S; Chapman, Clark R; Denevi, Brett W; Fassett, Caleb I; Murchie, Scott L; Strom, Robert G

    2009-05-01

    MESSENGER's second Mercury flyby revealed a ~715-kilometer-diameter impact basin, the second-largest well-preserved basin-scale impact structure known on the planet. The Rembrandt basin is comparable in age to the Caloris basin, is partially flooded by volcanic plains, and displays a unique wheel-and-spoke-like pattern of basin-radial and basin-concentric wrinkle ridges and graben. Stratigraphic relations indicate a multistaged infilling and deformational history involving successive or overlapping phases of contractional and extensional deformation. The youngest deformation of the basin involved the formation of a approximately 1000-kilometer-long lobate scarp, a product of the global cooling and contraction of Mercury.

  8. A hybrid Delphi-SWOT paradigm for oil and gas pipeline strategic planning in Caspian Sea basin

    International Nuclear Information System (INIS)

    Tavana, Madjid; Pirdashti, Mohsen; Kennedy, Dennis T.; Belaud, Jean-Pierre; Behzadian, Majid

    2012-01-01

    The Caspian Sea basin holds large quantities of both oil and natural gas that could help meet the increasing global demand for energy resources. Consequently, the oil and gas potential of the region has attracted the attention of the international oil and gas industry. The key to realizing the energy producing potential of the region is the development of transnational export routes to take oil and gas from the landlocked Caspian Sea basin to world markets. The evaluation and selection of alternative transnational export routes is a complex multi-criteria problem with conflicting objectives. The decision makers (DMs) are required to consider a vast amount of information concerning internal strengths and weaknesses of the alternative routes as well as external opportunities and threats to them. This paper presents a hybrid model that combines strength, weakness, opportunity and threat (SWOT) analysis with the Delphi method. - Highlights: ► The evaluation and selection of the pipeline routes is a multi-criteria problem. ► A hybrid SWOT-Delphi method is proposed to evaluate five potential routes. ► The Southern and Northern routes are chosen as the best and second-best options. ► The second best option is identified to provide some degree of diversification.

  9. 5. Basin assessment and watershed analysis

    Science.gov (United States)

    Leslie M. Reid; Robert R. Ziemer

    1994-01-01

    Abstract - Basin assessment is an important component of the President's Forest Plan, yet it has received little attention. Basin assessments are intended both to guide watershed analyses by specifying types of issues and interactions that need to be understood, and, eventually, to integrate the results of watershed analyses occurring within a river basin....

  10. A Basin Approach to a Hydrological Service Delivery System in the Amur River Basin

    Directory of Open Access Journals (Sweden)

    Sergei Borsch

    2018-03-01

    Full Text Available This paper presents the basin approach to the design, development, and operation of a hydrological forecasting and early warning system in a large transboundary river basin of high flood potential, where accurate, reliable, and timely available daily water-level and reservoir-inflow forecasts are essential for water-related economic and social activities (the Amur River basin case study. Key aspects of basin-scale system planning and implementation are considered, from choosing efficient forecast models and techniques, to developing and operating data-management procedures, to disseminating operational forecasts using web-GIS. The latter, making the relevant forecast data available in real time (via Internet, visual, and well interpretable, serves as a good tool for raising awareness of possible floods in a large region with transport and industrial hubs located alongside the Amur River (Khabarovsk, Komsomolsk-on-Amur.

  11. Analysis of efficiency of pollution reduction measures in rural basin using MIKE Basin model. Case study: Olšava River Basin

    Directory of Open Access Journals (Sweden)

    Kaiglová Jana

    2014-03-01

    Full Text Available This paper presents the results of testing the applicability of the MIKE Basin model for simulating the efficiency of scenarios for reducing water pollution. The model has been tested on the Olšava River Basin (520 km2 which is a typical rural region with a heterogeneous mix of pollution sources with variable topography and land use. The study proved that the model can be calibrated successfully using even the limited amount of data typically available in rural basins. The scenarios of pollution reduction were based on implementation and intensification of municipal wastewater treatment and conversion of arable land on fields under the risk of soil erosion to permanent grassland. The application of simulation results of these scenarios with proposed measures proved decreasing concentrations in downstream monitoring stations. Due to the practical applicability of proposed measures, these could lead to fulfilment of the water pollution limits required by the Czech and EU legislation. However, there are factors of uncertainty that are discussed that may delay or limit the effect of adopted measures in small rural basins.

  12. Willow Creek Wildlife Mitigation Project. Final Environmental Assessment.

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    Today`s notice announces BPA`s proposal to fund land acquisition or acquisition of a conservation easement and a wildlife management plan to protect and enhance wildlife habitat at the Willow Creek Natural Area in Eugene, Oregon. This action would provide partial mitigation for wildlife and wildlife habitat lost by the development of Federal hydroelectric projects in the Willamette River Basin. The project is consistent with BPA`s obligations under provisions of the Pacific Northwest Electric Power Planning and Conservation Act of 1980 as outlined by the Northwest Power Planning Council`s 1994 Columbia River Basin Fish and Wildlife Program. BPA has prepared an environmental assessment (DOE/EA-1023) evaluating the proposed project. Based on the analysis in the EA, BPA has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an environmental impact statement (EIS) is not required and BPA is issuing this FONSI.

  13. Fault architecture and growth in clay-limestone alternations: insights from field observations in the SE Basin, France

    International Nuclear Information System (INIS)

    Rocher, M.; Roche, V.; Homberg, C.

    2012-01-01

    Document available in extended abstract form only. The Callovo-Oxfordian (COX) clayey formation is currently studied by Andra in 'Meuse/Haute- Marne' (MHM), eastern Paris basin (France), for hosting a disposal of high level and intermediate, long-lived radioactive waste. As an independent organisation performing safety reviews for the Nuclear Safety Authority, IRSN conducts studies in support of the review of this disposal project. This nearly 130 m-thick clayey formation is surrounded by two 250 m-thick limestone formations. In such limestone/clay alternations, tectonic fracturing is often observed within limestones and propagates in some cases to clay layers. Such a propagation through the COX within or close to the disposal area could diminish its containment ability by creating preferential pathways of radioactive solute towards limestones. Nevertheless, minor to moderate fracturing is difficult to investigate in hectometre scale multilayer systems such as COX: seismic reflexion surveys only provide data on major faults, drilling data are too localised and clays have a 'bad-land' aspect at surface. The aim of this study is to provide a model of fracturing across clay-limestone alternations so as to strengthen the assessment of their possible development. We thus investigated fracturing within decametre-sized clay-limestone alternations, located in the South-Eastern Basin (France), to determine the evolution of fault architecture during its growth. After analysis of the possible scale effects using data from other analogous fields, an application to the COX in MHM is presented. We studied minor normal faults that reflect various stages of development, from simple fault planes restricted to limestones to complex fault zones propagated across several clay-limestone layers. The analysis of the fault characteristics, the construction of displacement profiles and the results obtained using numerical models enlighten fault growth processes, i.e. nucleation

  14. California Basin Studies (CaBS)

    International Nuclear Information System (INIS)

    Gorsline, D.S.

    1991-01-01

    The California Continental Borderland's present configuration dates from about 4 to 5 X 10 6 years Before Present (B.P.) and is the most recent of several configurations of the southern California margin that have evolved after the North America Plate over-rode the East Pacific Rise about 30 X 10 6 years ago. The present morphology is a series of two to three northwest-southeast trending rows of depressions separated by banks and insular ridges. Two inner basins, Santa Monica and San Pedro, have been the site for the Department of Energy-funded California Basin Study (CaBS) Santa Monica and San Pedro Basins contain post-Miocene sediment thicknesses of about 2.5 and 1.5 km respectively. During the Holocene (past 10,000 years) about 10-12 m have accumulated. The sediment entered the basin by one or a combination of processes including particle infall (mainly as bioaggregates) from surface waters, from nepheloid plumes (surface, mid-depths and near-bottom), from turbidity currents, mass movements, and to a very minor degree direct precipitation. In Santa Monica Basin, during the last century, particle infall and nepheloid plume transport have been the most common processes. The former dominates in the central basin floor in water depths from 900 to 945 m. where a characteristic silt-clay with a typical mean diameter of about 0.006 mm, phi standard deviation

  15. Basalt stratigraphy - Pasco Basin

    International Nuclear Information System (INIS)

    Waters, A.C.; Myers, C.W.; Brown, D.J.; Ledgerwood, R.K.

    1979-10-01

    The geologic history of the Pasco Basin is sketched. Study of the stratigraphy of the area involved a number of techniques including major-element chemistry, paleomagnetic investigations, borehole logging, and other geophysical survey methods. Grande Ronde basalt accumulation in the Pasco Basin is described. An illustrative log response is shown. 1 figure

  16. Bottom water circulation in Cascadia Basin

    Science.gov (United States)

    Hautala, Susan L.; Paul Johnson, H.; Hammond, Douglas E.

    2009-10-01

    A combination of beta spiral and minimum length inverse methods, along with a compilation of historical and recent high-resolution CTD data, are used to produce a quantitative estimate of the subthermocline circulation in Cascadia Basin. Flow in the North Pacific Deep Water, from 900-1900 m, is characterized by a basin-scale anticyclonic gyre. Below 2000 m, two water masses are present within the basin interior, distinguished by different potential temperature-salinity lines. These water masses, referred to as Cascadia Basin Bottom Water (CBBW) and Cascadia Basin Deep Water (CBDW), are separated by a transition zone at about 2400 m depth. Below the depth where it freely communicates with the broader North Pacific, Cascadia Basin is renewed by northward flow through deep gaps in the Blanco Fracture Zone that feeds the lower limb of a vertical circulation cell within the CBBW. Lower CBBW gradually warms and returns to the south at lighter density. Isopycnal layer renewal times, based on combined lateral and diapycnal advective fluxes, increase upwards from the bottom. The densest layer, existing in the southeast quadrant of the basin below ˜2850 m, has an advective flushing time of 0.6 years. The total volume flushing time for the entire CBBW is 2.4 years, corresponding to an average water parcel residence time of 4.7 years. Geothermal heating at the Cascadia Basin seafloor produces a characteristic bottom-intensified temperature anomaly and plays an important role in the conversion of cold bottom water to lighter density within the CBBW. Although covering only about 0.05% of the global seafloor, the combined effects of bottom heat flux and diapycnal mixing within Cascadia Basin provide about 2-3% of the total required global input to the upward branch of the global thermohaline circulation.

  17. Lithospheric-scale centrifuge models of pull-apart basins

    Science.gov (United States)

    Corti, Giacomo; Dooley, Tim P.

    2015-11-01

    We present here the results of the first lithospheric-scale centrifuge models of pull-apart basins. The experiments simulate relative displacement of two lithospheric blocks along two offset master faults, with the presence of a weak zone in the offset area localising deformation during strike-slip displacement. Reproducing the entire lithosphere-asthenosphere system provides boundary conditions that are more realistic than the horizontal detachment in traditional 1 g experiments and thus provide a better approximation of the dynamic evolution of natural pull-apart basins. Model results show that local extension in the pull-apart basins is accommodated through development of oblique-slip faulting at the basin margins and cross-basin faults obliquely cutting the rift depression. As observed in previous modelling studies, our centrifuge experiments suggest that the angle of offset between the master fault segments is one of the most important parameters controlling the architecture of pull-apart basins: the basins are lozenge shaped in the case of underlapping master faults, lazy-Z shaped in case of neutral offset and rhomboidal shaped for overlapping master faults. Model cross sections show significant along-strike variations in basin morphology, with transition from narrow V- and U-shaped grabens to a more symmetric, boxlike geometry passing from the basin terminations to the basin centre; a flip in the dominance of the sidewall faults from one end of the basin to the other is observed in all models. These geometries are also typical of 1 g models and characterise several pull-apart basins worldwide. Our models show that the complex faulting in the upper brittle layer corresponds at depth to strong thinning of the ductile layer in the weak zone; a rise of the base of the lithosphere occurs beneath the basin, and maximum lithospheric thinning roughly corresponds to the areas of maximum surface subsidence (i.e., the basin depocentre).

  18. Alternative futures of dissolved inorganic nitrogen export from the Mississippi River Basin: influence of crop management, atmospheric deposition, and population growth

    Science.gov (United States)

    Nitrogen (N) export from the Mississippi River Basin contributes to seasonal hypoxia in the Gulf of Mexico (GOM). We explored monthly dissolved inorganic N (DIN) export to the GOM for a historical year (2002) and two future scenarios (year 2022) by linking macroeonomic energy, ag...

  19. The role of Mesozoic sedimentary basin tapers on the formation of Cenozoic crustal shortening structures and foredeep in the western Sichuan Basin, China

    Science.gov (United States)

    Wang, M.

    2017-12-01

    The foreland basin records important clues of tectonic and sedimentary process of mountain-building, thus to explore its dynamic mechanism on the formation is an important issue of the mountain-basin interaction. The Longmen Shan fold-and-thrust belt and its adjacent Sichuan basin located in the eastern margin of Tibetan Plateau, are one of the most-concerned regions of studying modern mountain-building and seismic process, and are also a natural laboratory of studying the dynamics of the formation and development of foreland basin. However, it still need further explore on the mechanics of the development of the Cenozoic foreland basin and thrust-belts in the western Sichuan Basin. The Longmen Shan thrust belt has experienced multi-stages of tectonics evolution, foreland basin formation and topography growth since Late Triassic, and whether the early formed basin architecture and large Mesozoic sedimentary basin taper can influence the formation and development of the Cenozoic foreland basin and thrust belts? To solve these issues, this project aim to focus on the Cenozoic foreland basin and internal crustal shortening structures in the western Sichuan basin, on the basis of growth critical wedge taper theory. We will reconstruct the shape of multi-phases of sedimentary basin tapers, the temporal-spatial distribution of crustal shortening and thrusting sequences, and analyze the control mechanism of Mesozoic sedimentary basin taper on the formation of Cenozoic foreland basins, and final explore the interaction between the tectonics geomorphology, stress field and dynamic propagation of foreland basin.

  20. A systems engineering analysis to examine the economic impact for treatment of tritiated water in the Hanford KE-Basin

    International Nuclear Information System (INIS)

    Villegas, A.; Clark, L.; Schmidt, A.

    1995-02-01

    Federal and state agencies have established a Tri-Party Agreement (TPA) to address some key environmental issues faced at the Hanford Site. Under the TPA, the Department of Energy is currently under a consent order to reduce the tritium concentration in the spent fuel storage basin for KE-Reactor from 3.0 μCi/L to 0.3 μCi/L in the KE spent fuel storage basin, starting in 1996. The 100KE and 100KW Area fuel storage basins (K-Basins) at Hanford were built in the early 1950s to receive and provide temporary storage for irradiated fuel from the now shutdown KE and KW production reactors. In 1977, the KE-Basin began to leak at a rate of 13.5 gpm (51 L/min.), but, decreased to 0.03 to 0.05 gpm (0. 13 to 0.19 L/min.) by 1980. In 1993, the leak increased to a rate of 0.42 gpm (1.6 L/min.). This engineering analysis examines the relative costs to reduce the tritium concentration KE-Basin water using a polyphosphazene polymer membrane under development at Pacific Northwest Laboratory. The estimated cost of using the membrane to reduce the tritium concentration is compared to three no-treatment alternatives that include: (1) disposing of the tritium-contaminated water directly to the Columbia River, (2) disposing of the contaminated water to the soil at the on-site Effluent Treatment Facility, and (3) disposing of the contaminated water by evaporation using solar evaporation ponds

  1. On the significance of ELF basins

    Indian Academy of Sciences (India)

    Unknown

    to complement to chemical intuition (see, e.g., refs. 2, 3). In a mathematically more rigorous way, such regions, ELF basins,4 were defined following the spirit of Bader's Atoms in Molecules (AIM). All points in space which lead to the a given maximum of ELF, by following the gradient of ELF, belong to the same basin. Basins ...

  2. Triangular facets of slope in the region of Tudela (Ebro Basin, Navarra, Spain)

    International Nuclear Information System (INIS)

    Marin, C.; Desir, G.; Gutierrez, M.

    2009-01-01

    Some triangular slope facets are localized to the south of Bardenas Reales (central-west of Ebro Basin), elaborated on Tudela Formation deposits, Aragonian in age. Three of them have been dated by OSL resulting on ages of 35,588±2,488 yr. BP, 35,355±2,446 yr. BP and 40.185±2,411 yr. BP. The origin of these facets is ought to an alternation between accumulation and incision phases produced by vegetation cover variation percentage. Those vegetation cover changes are estimated to be due to climatic changes. (Author) 21 refs.

  3. Transient electromagnetic study of basin fill sediments in the Upper San Pedro Basin, Mexico

    Science.gov (United States)

    Bultman, M.W.; Gray, F.

    2011-01-01

    The Upper San Pedro River Basin in Mexico and the United States is an important riparian corridor that is coming under increasing pressure from growing populations and the associated increase in groundwater withdrawal. Several studies have produced three-dimensional maps of the basin fill sediments in the US portion of the basin but little work has been done in the Mexican portion of the basin. Here, the results of a ground-based transient electromagnetic (TEM) survey in the Upper San Pedro Basin, Mexico are presented. These basin fill sediments are characterized by a 10-40 m deep unsaturated surficial zone which is composed primarily of sands and gravels. In the central portion of the basin this unsaturated zone is usually underlain by a shallow clay layer 20-50 m thick. Beneath this may be more clay, as is usually the case near the San Pedro River, or interbedded sand, silt, and clay to a depth of 200-250 m. As you move away from the river, the upper clay layer disappears and the amount of sand in the sediments increases. At 1-2 km away from the river, sands can occupy up to 50% of the upper 200-250 m of the sediment fill. Below this, clays are always present except where bedrock highs are observed. This lower clay layer begins at a depth of about 200 m in the central portion of the basin (250 m or more at distances greater than 1-2 km from the river) and extends to the bottom of most profiles to depths of 400 m. While the depth of the top of this lower clay layer is probably accurate, its thickness observed in the models may be overestimated due to the relatively low magnetic moment of the TEM system used in this study. The inversion routine used for interpretation is based on a one-dimensional geologic model. This is a layer based model that is isotropic in both the x and y directions. Several survey soundings did not meet this requirement which invalidates the inversion process and the resulting interpretation at these locations. The results from these

  4. BasinVis 1.0: A MATLAB®-based program for sedimentary basin subsidence analysis and visualization

    Science.gov (United States)

    Lee, Eun Young; Novotny, Johannes; Wagreich, Michael

    2016-06-01

    Stratigraphic and structural mapping is important to understand the internal structure of sedimentary basins. Subsidence analysis provides significant insights for basin evolution. We designed a new software package to process and visualize stratigraphic setting and subsidence evolution of sedimentary basins from well data. BasinVis 1.0 is implemented in MATLAB®, a multi-paradigm numerical computing environment, and employs two numerical methods: interpolation and subsidence analysis. Five different interpolation methods (linear, natural, cubic spline, Kriging, and thin-plate spline) are provided in this program for surface modeling. The subsidence analysis consists of decompaction and backstripping techniques. BasinVis 1.0 incorporates five main processing steps; (1) setup (study area and stratigraphic units), (2) loading well data, (3) stratigraphic setting visualization, (4) subsidence parameter input, and (5) subsidence analysis and visualization. For in-depth analysis, our software provides cross-section and dip-slip fault backstripping tools. The graphical user interface guides users through the workflow and provides tools to analyze and export the results. Interpolation and subsidence results are cached to minimize redundant computations and improve the interactivity of the program. All 2D and 3D visualizations are created by using MATLAB plotting functions, which enables users to fine-tune the results using the full range of available plot options in MATLAB. We demonstrate all functions in a case study of Miocene sediment in the central Vienna Basin.

  5. BASIN ANALYSIS AND PETROLEUM SYSTEM CHARACTERIZATION AND MODELING, INTERIOR SALT BASINS, CENTRAL AND EASTERN GULF OF MEXICO

    Energy Technology Data Exchange (ETDEWEB)

    Ernest A. Mancini; Donald A. Goddard; Ronald K. Zimmerman

    2005-05-10

    The principal research effort for Year 2 of the project has been data compilation and the determination of the burial and thermal maturation histories of the North Louisiana Salt Basin and basin modeling and petroleum system identification. In the first nine (9) months of Year 2, the research focus was on the determination of the burial and thermal maturation histories, and during the remainder of the year the emphasis has basin modeling and petroleum system identification. Existing information on the North Louisiana Salt Basin has been evaluated, an electronic database has been developed, regional cross sections have been prepared, structure and isopach maps have been constructed, and burial history, thermal maturation history and hydrocarbon expulsion profiles have been prepared. Seismic data, cross sections, subsurface maps and related profiles have been used in evaluating the tectonic, depositional, burial and thermal maturation histories of the basin. Oil and gas reservoirs have been found to be associated with salt-supported anticlinal and domal features (salt pillows, turtle structures and piercement domes); with normal faulting associated with the northern basin margin and listric down-to-the-basin faults (state-line fault complex) and faulted salt features; and with combination structural and stratigraphic features (Sabine and Monroe Uplifts) and monoclinal features with lithologic variations. Petroleum reservoirs are mainly Upper Jurassic and Lower Cretaceous fluvial-deltaic sandstone facies and Lower Cretaceous and Upper Cretaceous shoreline, marine bar and shallow shelf sandstone facies. Cretaceous unconformities significantly contribute to the hydrocarbon trapping mechanism capacity in the North Louisiana Salt Basin. The chief petroleum source rock in this basin is Upper Jurassic Smackover lime mudstone beds. The generation of hydrocarbons from Smackover lime mudstone was initiated during the Early Cretaceous and continued into the Tertiary

  6. Western Gas Sands Project. Quarterly Basin Activities Report

    Energy Technology Data Exchange (ETDEWEB)

    Atkinson, C H

    1979-01-31

    This report is a summation of 3 months' drilling and testing activities in the four primary WGSP study areas: Greater Green River Basin, Northern Great Plains Province, Piceance Basin, and Uinta Basin. The monitoring of basin activities is part of resource assessment. (DLC)

  7. Corelations between the landslides and the morphological and functional units of slopes in the Transylvanian Basin

    Directory of Open Access Journals (Sweden)

    Gh. ROȘIAN

    2016-11-01

    Full Text Available The presence of fluvial morphology in the Transylvanian Basin, in form of an alternation of water divides and valley corridors, indicates favourable conditions for the genesis of geomorphologic processes. Under this aspect two sections stand out within this type of processes: river beds and slopes. In this paper, the emphasis is on the processes, developed on slopes. Water erosion and mass movement processes can be observed on their surface. From all mass movement processes, the emphasis will be put on the landslides. They will be observed in correlation with the morphologic and functional units of the slopes from different regional units of Transylvanian Basin. Eight case studies were taken into consideration regarding this aspect. Thus, we noticed that landslides particularly develop in the median part of the slopes which is corresponding to the maximum processual dynamic and transfer unit.

  8. Faults architecture and growth in clay-limestone alternation. Examples in the S-E Basin alternations (France) and numerical modeling; Architecture et croissance des failles dans les alternances argilo-calcaires. Exemples dans les alternances du Bassin du Sud-Est (France) et modelisation numerique

    Energy Technology Data Exchange (ETDEWEB)

    Roche, Vincent

    2011-10-28

    The following work has been carried out in the framework of the studies conducted by IRSN in support of its safety evaluation of the geological disposal programme of high and intermediate level, long-lived radioactive waste. Such a disposal is planned to be hosted by the Callovian-Oxfordian indurate clay formation between two limestone formations in eastern Paris basin, France. Hypothetical faults may cross-cut this layered section, decreasing the clay containment ability by creating preferential pathways for radioactive solute towards limestones. This study aims at characterising the fault architecture and the normal fault growth in clay/limestone layered sections. Structural analysis and displacement profiles have been carried out in normal faults crossing several decimetres to metre thick sedimentary alternations in the South-Eastern Basin (France) and petrophysical properties have been determined for each layer. The studied faults are simple fault planes or complex fault zones showing are significantly controlled by the layering. The analysis of the fault characteristics and the results obtained on numerical models enlighten several processes such as fault nucleation, fault restriction, and fault growth through layered section. Some studied faults nucleated in the limestone layers, without using pre-existing fractures such as joints, and according to our numerical analysis, a strong stiffness, a low strength contrast between the limestone and the clay layer, and/or s a greater thickness of the clay layer are conditions which favour nucleation of faults in limestone. The range of mechanical properties leading to the fault nucleation in one layer type or another was investigated using a 3D modelling approach. After its nucleation, the fault propagates within a homogeneous medium with a constant displacement gradient until its vertical propagation is stopped by a restrictor. The evidenced restrictors are limestone-clay interfaces or faults in clays, sub

  9. The Value of Hydrograph Partitioning Curves for Calibrating Hydrological Models in Glacierized Basins

    Science.gov (United States)

    He, Zhihua; Vorogushyn, Sergiy; Unger-Shayesteh, Katy; Gafurov, Abror; Kalashnikova, Olga; Omorova, Elvira; Merz, Bruno

    2018-03-01

    This study refines the method for calibrating a glacio-hydrological model based on Hydrograph Partitioning Curves (HPCs), and evaluates its value in comparison to multidata set optimization approaches which use glacier mass balance, satellite snow cover images, and discharge. The HPCs are extracted from the observed flow hydrograph using catchment precipitation and temperature gradients. They indicate the periods when the various runoff processes, such as glacier melt or snow melt, dominate the basin hydrograph. The annual cumulative curve of the difference between average daily temperature and melt threshold temperature over the basin, as well as the annual cumulative curve of average daily snowfall on the glacierized areas are used to identify the starting and end dates of snow and glacier ablation periods. Model parameters characterizing different runoff processes are calibrated on different HPCs in a stepwise and iterative way. Results show that the HPC-based method (1) delivers model-internal consistency comparably to the tri-data set calibration method; (2) improves the stability of calibrated parameter values across various calibration periods; and (3) estimates the contributions of runoff components similarly to the tri-data set calibration method. Our findings indicate the potential of the HPC-based approach as an alternative for hydrological model calibration in glacierized basins where other calibration data sets than discharge are often not available or very costly to obtain.

  10. New TNX Seepage Basin: Environmental information document

    International Nuclear Information System (INIS)

    Dunaway, J.K.W.; Johnson, W.F.; Kingley, L.E.; Simmons, R.V.; Bledsoe, H.W.

    1986-12-01

    The New TNX Seepage Basin has been in operation at the Savannah River Plant (SRP) since 1980 and is located in the southeastern section of the TNX facility. The basin receives waste from pilot scale tests conducted at TNX in support of the Defense Waste Processing Facility (DWPF) and the plant Separations area. The basin is scheduled for closure after the TNX Effluent Treatment Plant (ETP) begins operation. The basin will be closed pursuant to all applicable state and federal regulations. A statistical analysis of monitoring data indicates elevated levels of sodium and zinc in the groundwater at this site. Closure options considered for the New TNX Seepage Basin include waste removal and closure, no waste removal and closure, and no action. The two predominant pathways for human exposure to chemical contaminants are through surface, subsurface, and atmospheric transport. Modeling calculations were made to determine the risks to human population via these general pathways for the three postulated closure options for the New TNX Seepage Basin. Cost estimates for each closure option at the basin have also been prepared. An evaluation of the environmental impacts from the New TNX Seepage Basin indicate that the relative risks to human health and ecosystems for the postulated closure options are low. The transport of six chemical and one radionuclide constituents through the environmental pathways from the basin were modeled. The maximum chemical carcinogenic risk and the noncarcinogenic risk for the groundwater pathways were from exposure to trichloromethane and nitrate

  11. Supplementary information on K-Basin sludges

    International Nuclear Information System (INIS)

    MAKENAS, B.J.

    1999-01-01

    Three previous documents in this series have been published covering the analysis of: K East Basin Floor and Pit Sludge, K East Basin Canister Sludge, and K West Basin Canister Sludge. Since their publication, additional data have been acquired and analyses performed. It is the purpose of this volume to summarize the additional insights gained in the interim time period

  12. Strike-slip tectonics and Quaternary basin formation along the Vienna Basin fault system inferred from Bouguer gravity derivatives

    NARCIS (Netherlands)

    Salcher, B. C.; Meurers, B.; Smit, J.; Decker, K.; HöLzel, M.; Wagreich, M.

    2012-01-01

    The Vienna Basin at the transition between the Alpine and Carpathian belt hosts a number of large Pleistocene sub-basins forming along an active continental scale strike-slip fault (Vienna Basin strike-slip fault). We utilize first-order derivatives from industrial Bouguer gravity data to unravel

  13. Tectonic evolution of the Anadyr Basin, northeastern Eurasia, and its petroleum resource potential

    Science.gov (United States)

    Antipov, M. P.; Bondarenko, G. E.; Bordovskaya, T. O.; Shipilov, E. V.

    2009-09-01

    The published data on the sedimentation conditions, structure, and tectonic evolution of the Anadyr Basin in the Mesozoic and Cenozoic are reviewed. These data are re-examined in the context of modern tectonic concepts concerning the evolution of the northwestern Circum-Pacific Belt. The re-examination allows us not only to specify the regional geology and tectonic history, but also to forecast of the petroleum resource potential of the sedimentary cover based on a new concept. The sedimentary cover formation in the Anadyr Basin is inseparably linked with the regional tectonic evolution. The considered portion of the Chukchi Peninsula developed in the Late Mesozoic at the junction of the ocean-type South Anyui Basin, the Asian continental margin, and convergent zones of various ages extending along the Asia-Pacific interface. Strike-slip faulting and pulses of extension dominated in the Cenozoic largely in connection with oroclinal bending of structural elements pertaining to northeastern Eurasia and northwestern North America against the background of accretion of terranes along the zone of convergence with the Pacific oceanic plates. Three main stages are recognized in the formation of the sedimentary cover in the Anadyr Basin. (1) The lower portion of the cover was formed in the Late Cretaceous-Early Eocene under conditions of alternating settings of passive and active continental margins. The Cenomanian-lower Eocene transitional sedimentary complex is located largely in the southern Anadyr Basin (Main River and Lagoonal troughs). (2) In the middle Eocene and Oligocene, sedimentation proceeded against the background of extension and rifting in the northern part of the paleobasin and compression in its southern part. The compression was caused by northward migration of the foredeep in front of the accretionary Koryak Orogen. The maximum thickness of the Eocene-Oligocene sedimentary complex is noted mainly in the southern part of the basin and in the Central and

  14. Insights upon upper crustal arhitecture of a subduction zone and its surroundings - Vrancea Zone and Focsani Basin - substantiated by geophysical studies

    Science.gov (United States)

    Bocin, A.; Stephenson, R.; Mocanu, V.

    2007-12-01

    The DACIA PLAN (Danube and Carpathian Integrated Action on Processes in the Lithosphere and Neotectonics) deep seismic reflection survey was performed in August-September 2001, with the proposed objective of obtaining new information on the deep structure of the external Carpathians nappes and the architecture of Tertiary/Quaternary basin developed within and adjacent to the Vrancea zone, including the rapidly subsiding Focsani Basin. The DACIA-PLAN profile is about 140 km long, having a roughly NW-SE direction, from near the southeast Transylvanian Basin, across the mountainous southeastern Carpathians and their foreland to near the Danube River. A high resolution 2.5D velocity model of the upper crust along the seismic profile has been determined from a tomographic inversion and a 2D ray tracing forward modelling of the DACIA PLAN first arrival data. Peculiar shallow high velocities indicate that pre-Tertiary basement in the Vrancea Zone (characterised by velocities greater than 5.6 km/s) is involved in Carpathian thrusting while rapid alternance, vertically or horizontally, of velocity together with narrowingly contemporary crustal events suggests uplifting. Further to the east, at the foreland basin-thrust belt transition zone (well defined within velocity values), the velocity model suggests a nose of the Miocene Subcarpathians nappe being underlain by Focsani Basin units. A Miocene and younger Focsani Basin sedimentary succession of ~10 km thickness is ascertained by a gradual increase of velocities and strongly defined velocity boundaries.

  15. 27 CFR 9.74 - Columbia Valley.

    Science.gov (United States)

    2010-04-01

    .... and T. 31 N. west of Alkali Lake; (22) Then northeast in a straight line for approximately 10.7 miles... Deschutes River; (50) Then north following the Deschutes River to the Willamette Base Line; (51) Then west following the Willamette Base Line to the township line between R. 12 E. and R. 13 E.; (52) Then north...

  16. Characteristic mega-basin water storage behavior using GRACE.

    Science.gov (United States)

    Reager, J T; Famiglietti, James S

    2013-06-01

    [1] A long-standing challenge for hydrologists has been a lack of observational data on global-scale basin hydrological behavior. With observations from NASA's Gravity Recovery and Climate Experiment (GRACE) mission, hydrologists are now able to study terrestrial water storage for large river basins (>200,000 km 2 ), with monthly time resolution. Here we provide results of a time series model of basin-averaged GRACE terrestrial water storage anomaly and Global Precipitation Climatology Project precipitation for the world's largest basins. We address the short (10 year) length of the GRACE record by adopting a parametric spectral method to calculate frequency-domain transfer functions of storage response to precipitation forcing and then generalize these transfer functions based on large-scale basin characteristics, such as percent forest cover and basin temperature. Among the parameters tested, results show that temperature, soil water-holding capacity, and percent forest cover are important controls on relative storage variability, while basin area and mean terrain slope are less important. The derived empirical relationships were accurate (0.54 ≤  E f  ≤ 0.84) in modeling global-scale water storage anomaly time series for the study basins using only precipitation, average basin temperature, and two land-surface variables, offering the potential for synthesis of basin storage time series beyond the GRACE observational period. Such an approach could be applied toward gap filling between current and future GRACE missions and for predicting basin storage given predictions of future precipitation.

  17. In situ characterization of Hanford K Basins fuel

    Energy Technology Data Exchange (ETDEWEB)

    Pitner, A.L.

    1998-01-06

    Irradiated N Reactor uranium metal fuel is stored underwater in the Hanford K East and K West Basins. In K East Basin, fuel is stored in open canisters and defected fuel is free to react with the basin water. In K West Basin, the fuel is stored in sealed canisters filled with water containing a corrosion inhibitor (potassium nitrite). To gain a better understanding of the physical condition of the fuel in these basins, visual surveys using high resolution underwater cameras were conducted. The inspections included detailed lift and look examinations of a number of fuel assemblies from selected canisters in each basin. These examinations formed the bases for selecting specific fuel elements for laboratory testing and analyses as prescribed in the characterization plan for Hanford K Basin Spent Nuclear Fuel.

  18. 105-KE basin pilot run relocation

    International Nuclear Information System (INIS)

    Crystal, J.B.

    1994-01-01

    The purpose of this document is to present the bases for selecting the exact in-facility location for installation of process equipment to support pilot testing activities in the 105-KE Basin at the United States Department of Energy Hanford Site, in southeastern Washington State. The 105-KE Basin was constructed during the early 1950s, as an integralcomponent of the 105-K East reactor building. Similar basins were provided in all Hanford weapons production reactor buildings to receive fuel elements discharged from the reactors and stage them for rail transport to 200 Area fuel reprocessing plants. The 105-KE reactor began operation in 1955. It was shut down in 1971. However, the 105-KE Basin was reactivated several years later to store spent fuel from the N-Reactor basin and permit its continued operation during outages at the Plutonium Uranium Extraction (PUREX) plant in the 200E Area

  19. Klamath River Basin water-quality data

    Science.gov (United States)

    Smith, Cassandra D.; Rounds, Stewart A.; Orzol, Leonard L.; Sobieszczyk, Steven

    2018-05-29

    The Klamath River Basin stretches from the mountains and inland basins of south-central Oregon and northern California to the Pacific Ocean, spanning multiple climatic regions and encompassing a variety of ecosystems. Water quantity and water quality are important topics in the basin, because water is a critical resource for farming and municipal use, power generation, and for the support of wildlife, aquatic ecosystems, and endangered species. Upper Klamath Lake is the largest freshwater lake in Oregon (112 square miles) and is known for its seasonal algal blooms. The Klamath River has dams for hydropower and the upper basin requires irrigation water to support agriculture and grazing. Multiple species of endangered fish inhabit the rivers and lakes, and the marshes are key stops on the Pacific flyway for migrating birds. For these and other reasons, the water resources in this basin have been studied and monitored to support their management distribution.

  20. Basin-scale simulation of current and potential climate changed hydrologic conditions in the Lake Michigan Basin, United States

    Science.gov (United States)

    Christiansen, Daniel E.; Walker, John F.; Hunt, Randall J.

    2014-01-01

    The Great Lakes Restoration Initiative (GLRI) is the largest public investment in the Great Lakes in two decades. A task force of 11 Federal agencies developed an action plan to implement the initiative. The U.S. Department of the Interior was one of the 11 agencies that entered into an interagency agreement with the U.S. Environmental Protection Agency as part of the GLRI to complete scientific projects throughout the Great Lakes basin. The U.S. Geological Survey, a bureau within the Department of the Interior, is involved in the GLRI to provide scientific support to management decisions as well as measure progress of the Great Lakes basin restoration efforts. This report presents basin-scale simulated current and forecast climatic and hydrologic conditions in the Lake Michigan Basin. The forecasts were obtained by constructing and calibrating a Precipitation-Runoff Modeling System (PRMS) model of the Lake Michigan Basin; the PRMS model was calibrated using the parameter estimation and uncertainty analysis (PEST) software suite. The calibrated model was used to evaluate potential responses to climate change by using four simulated carbon emission scenarios from eight general circulation models released by the World Climate Research Programme’s Coupled Model Intercomparison Project phase 3. Statistically downscaled datasets of these scenarios were used to project hydrologic response for the Lake Michigan Basin. In general, most of the observation sites in the Lake Michigan Basin indicated slight increases in annual streamflow in response to future climate change scenarios. Monthly streamflows indicated a general shift from the current (2014) winter-storage/snowmelt-pulse system to a system with a more equally distributed hydrograph throughout the year. Simulated soil moisture within the basin illustrates that conditions within the basin are also expected to change on a monthly timescale. One effect of increasing air temperature as a result of the changing

  1. A proposal for an administrative set up of river basin management in the Sittaung River Basin

    OpenAIRE

    Tun, Zaw Lwin; Ni, Bo; Tun, Sein; Nesheim, Ingrid

    2016-01-01

    The purpose of this report is to present a proposal for how an administrative approach based on River Basin Management can be implemented in Myanmar. The Sittaung River Basin has been used as an example area to investigate how the basin can be administered according to the IWRM principles of cooperation between the different sectors and the administrative units, including stakeholder involvement. Ministry of Natural Resource and Environmental Conservation, Myanmar Norwegian Ministry of For...

  2. Systematic impact assessment on inter-basin water transfer projects of the Hanjiang River Basin in China

    Science.gov (United States)

    Zhou, Yanlai; Guo, Shenglian; Hong, Xingjun; Chang, Fi-John

    2017-10-01

    China's inter-basin water transfer projects have gained increasing attention in recent years. This study proposes an intelligent water allocation methodology for establishing optimal inter-basin water allocation schemes and assessing the impacts of water transfer projects on water-demanding sectors in the Hanjiang River Basin of China. We first analyze water demands for water allocation purpose, and then search optimal water allocation strategies for maximizing the water supply to water-demanding sectors and mitigating the negative impacts by using the Standard Genetic Algorithm (SGA) and Adaptive Genetic Algorithm (AGA), respectively. Lastly, the performance indexes of the water supply system are evaluated under different scenarios of inter-basin water transfer projects. The results indicate that: the AGA with adaptive crossover and mutation operators could increase the average annual water transfer from the Hanjiang River by 0.79 billion m3 (8.8%), the average annual water transfer from the Changjiang River by 0.18 billion m3 (6.5%), and the average annual hydropower generation by 0.49 billion kW h (5.4%) as well as reduce the average annual unmet water demand by 0.40 billion m3 (9.7%), as compared with the those of the SGA. We demonstrate that the proposed intelligent water allocation schemes can significantly mitigate the negative impacts of inter-basin water transfer projects on the reliability, vulnerability and resilience of water supply to the demanding sectors in water-supplying basins. This study has a direct bearing on more intelligent and effectual water allocation management under various scenarios of inter-basin water transfer projects.

  3. Evolution of sedimentary architecture in retro-foreland basin: Aquitaine basin example from Paleocene to lower Eocene.

    Science.gov (United States)

    Ortega, Carole; Lasseur, Eric; Guillocheau, François; Serrano, Olivier; Malet, David

    2017-04-01

    The Aquitaine basin located in south western Europe, is a Pyrenean retro-foreland basin. Two main phases of compression are recorded in this retro-foreland basin during the Pyrenean orogeny. A first upper Cretaceous phase corresponding to the early stage of the orogeny, and a second one usually related to a Pyrenean paroxysmal phase during the middle Eocene. During Paleocene to lower Eocene deformations are less pronounced, interpreted as a tectonically quiet period. The aim of the study is to better constrain the sedimentary system of the Aquitaine basin during this period of Paleocene-lower Eocene, in order to discuss the evolution of the sedimentary architecture in response of the Pyrenean compression. This work is based on a compilation of a large set of subsurface data (wells logs, seismic lines and cores logs) represented by isopachs and facies map. Three main cycles were identified during this structural quiet period: (1) The Danian cycle, is recorded by the aggradation of carbonate reef-rimmed platform. This platform is characterized by proximal facies (oncoid carbonate and mudstone with thalassinoides) to the north, which leads to distal deposit facies southern (pelagic carbonate with globigerina and slump facies) and present a significant thickness variation linked to the platform-slope-basin morphology. (2) The upper Selandian-Thanetian cycle follows a non-depositional/erosional surface associated with a Selandian hiatus. The base of this cycle marked the transition between the last reef rimmed platform and a carbonate ramp. The transgressive cycle is characterized by proximal lagoon facies to the north that leads southward to distal hemipelagic facies interfingered by turbiditic Lowstand System Tracks (LST). The location of these LST is strongly controlled by inherited Danian topography. The regressive cycle ends with a major regression associated with an erosional surface. This surface is linked with a network of canyons in the north, an important

  4. Managing water quality under drought conditions in the Llobregat River Basin.

    Science.gov (United States)

    Momblanch, Andrea; Paredes-Arquiola, Javier; Munné, Antoni; Manzano, Andreu; Arnau, Javier; Andreu, Joaquín

    2015-01-15

    The primary effects of droughts on river basins include both depleted quantity and quality of the available water resources, which can render water resources useless for human needs and simultaneously damage the environment. Isolated water quality analyses limit the action measures that can be proposed. Thus, an integrated evaluation of water management and quality is warranted. In this study, a methodology consisting of two coordinated models is used to combine aspects of water resource allocation and water quality assessment. Water management addresses water allocation issues by considering the storage, transport and consumption elements. Moreover, the water quality model generates time series of concentrations for several pollutants according to the water quality of the runoff and the demand discharges. These two modules are part of the AQUATOOL decision support system shell for water resource management. This tool facilitates the analysis of the effects of water management and quality alternatives and scenarios on the relevant variables in a river basin. This paper illustrates the development of an integrated model for the Llobregat River Basin. The analysis examines the drought from 2004 to 2008, which is an example of a period when the water system was quantitative and qualitatively stressed. The performed simulations encompass a wide variety of water management and water quality measures; the results provide data for making informed decisions. Moreover, the results demonstrated the importance of combining these measures depending on the evolution of a drought event and the state of the water resources system. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Water, Energy, and Food Nexus: Modeling of Inter-Basin Resources Trading

    Science.gov (United States)

    KIm, T. W.; Kang, D.; Wicaksono, A.; Jeong, G.; Jang, B. J.; Ahn, J.

    2016-12-01

    The water, energy, and food (WEF) nexus is an emerging issue in the concern of fulfilling the human requirements with a lack of available resources. The WEF nexus concept arises to develop a sustainable resources planning and management. In the concept, the three valuable resources (i.e. water, energy, and food) are inevitably interconnected thus it becomes a challenge for researchers to understand the complicated interdependency. A few studies have been committed for interpreting and implementing the WEF nexus using a computer based simulation model. Some of them mentioned that a trade-off is one alternative solution that can be taken to secure the available resources. Taking a concept of inter-basin water transfer, this study attempts to introduce an idea to develop a WEF nexus model for inter-basin resources trading simulation. Using the trading option among regions (e.g., cities, basins, or even countries), the model provides an opportunity to increase overall resources availability without draining local resources. The proposed model adopted the calculation process of an amount of water, energy, and food from a nation-wide model, with additional input and analysis process to simulate the resources trading between regions. The proposed model is applied for a hypothetic test area in South Korea for demonstration purposes. It is anticipated that the developed model can be a decision tool for efficient resources allocation for sustainable resources management. Acknowledgements This study was supported by a grant (14AWMP-B082564-01) from Advanced Water Management Research Program funded by Ministry of Land, Infrastructure and Transport of the Korean government.

  6. Petroleum systems in rift basins – a collective approach in South-east Asian basins.

    NARCIS (Netherlands)

    Doust, H.; Sumner, D.

    2007-01-01

    This paper synthesizes some of the main conclusions reached in a recent regional review of the Tertiary basins of Southeast Asia, carried out by Shell. Four distinctive types of petroleum systems, correlating with the four main stages of basin evolution (early to late syn-rift and early to late

  7. Water Budget Closure Based on GRACE Measurements and Reconstructed Evapotranspiration Using GLDAS and Water Use Data over the Yellow River and Changjiang River Basins

    Science.gov (United States)

    Lv, M.; Ma, Z.; Yuan, X.

    2017-12-01

    It is important to evaluate the water budget closure on the basis of the currently available data including precipitation, evapotranspiration (ET), runoff, and GRACE-derived terrestrial water storage change (TWSC) before using them to resolve water-related issues. However, it remains challenging to achieve the balance without the consideration of human water use (e.g., inter-basin water diversion and irrigation) for the estimation of other water budget terms such as the ET. In this study, the terrestrial water budget closure is tested over the Yellow River Basin (YRB) and Changjiang River Basin (CJB, Yangtze River Basin) of China. First, the actual ET is reconstructed by using the GLDAS-1 land surface models, the high quality observation-based precipitation, naturalized streamflow, and the irrigation water (hereafter, ETrecon). The ETrecon, evaluated using the mean annual water-balance equation, is of good quality with the absolute relative errors less than 1.9% over the two studied basins. The total basin discharge (Rtotal) is calculated as the residual of the water budget among the observation-based precipitation, ETrecon, and the GRACE-TWSC. The value of the Rtotal minus the observed total basin discharge is used to evaluate the budget closure, with the consideration of inter-basin water diversion. After the ET reconstruction, the mean absolute imbalance value reduced from 3.31 cm/year to 1.69 cm/year and from 15.40 cm/year to 1.96 cm/year over the YRB and CJB, respectively. The estimation-to-observation ratios of total basin discharge improved from 180.8% to 86.8% over the YRB, and from 67.0% to 101.1% over the CJB. The proposed ET reconstruction method is applicable to other human-managed river basins to provide an alternative estimation.

  8. The Donets Basin (Ukraine/Russia): coalification and thermal history.

    NARCIS (Netherlands)

    Sachsenhofer, R.F.; Privalov, V.A.; Zhykalyak, M.V.; Bueker, C.; Panova, E.A.; Rainer, T.; Shymanovskyy, V.A.; Stephenson, R.A.

    2002-01-01

    The Donets Basin (Donbas) is one of the major late Paleozoic coal basins in the world. The Donbas Foldbelt is an inverted part of the Donets Basin characterized by WNW-ESE-trending folds and faults. The age of basin inversion is under discussion. Large parts of the Donets Basin host anthracite and

  9. Geotechnical reduction of void ratio in low-level radioactive waste burial sites: treatment alternatives

    International Nuclear Information System (INIS)

    Phillips, S.J.; Carlson, R.A.; McGuire, H.E.

    1981-01-01

    A substantial quantity of low-level radioactive and hazardous wastes has been interred in shallow land burial structures throughout the United States. Many of these structures (trenches, pits, and landfills) have proven to be unstable. Some surface feature manifestations such as large cracks, basins, and cave-ins are caused by voids filling and physico-chemical degradation and solubilization of the buried wastes which could result in the release of contamination. The surface features represent a potential for increased contamination transport to the biosphere via water, air, biologic, and direct pathways. Engineering alternatives for the reduction of buried waste and matrix materials voids are identified and discussed. As a guideline, a reduction of the voids within the waste to 80% or more of maximum relative dry density (a measure of in situ voids within the waste) is proposed. The advantages, disadvantages, and costs of each alternative are evaluated. Falling mass and pile driving engineering alternatives were selected for further development

  10. The geologic history of Margaritifer basin, Mars

    Science.gov (United States)

    Salvatore, M. R.; Kraft, M. D.; Edwards, Christopher; Christensen, P.R.

    2016-01-01

    In this study, we investigate the fluvial, sedimentary, and volcanic history of Margaritifer basin and the Uzboi-Ladon-Morava (ULM) outflow channel system. This network of valleys and basins spans more than 8000 km in length, linking the fluvially dissected southern highlands and Argyre Basin with the northern lowlands via Ares Vallis. Compositionally, thermophysically, and morphologically distinct geologic units are identified and are used to place critical relative stratigraphic constraints on the timing of geologic processes in Margaritifer basin. Our analyses show that fluvial activity was separated in time by significant episodes of geologic activity, including the widespread volcanic resurfacing of Margaritifer basin and the formation of chaos terrain. The most recent fluvial activity within Margaritifer basin appears to terminate at a region of chaos terrain, suggesting possible communication between surface and subsurface water reservoirs. We conclude with a discussion of the implications of these observations on our current knowledge of Martian hydrologic evolution in this important region.

  11. K Basin Hazard Analysis

    Energy Technology Data Exchange (ETDEWEB)

    PECH, S.H.

    2000-08-23

    This report describes the methodology used in conducting the K Basins Hazard Analysis, which provides the foundation for the K Basins Final Safety Analysis Report. This hazard analysis was performed in accordance with guidance provided by DOE-STD-3009-94, Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports and implements the requirements of DOE Order 5480.23, Nuclear Safety Analysis Report.

  12. K Basin Hazard Analysis

    International Nuclear Information System (INIS)

    PECH, S.H.

    2000-01-01

    This report describes the methodology used in conducting the K Basins Hazard Analysis, which provides the foundation for the K Basins Final Safety Analysis Report. This hazard analysis was performed in accordance with guidance provided by DOE-STD-3009-94, Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports and implements the requirements of DOE Order 5480.23, Nuclear Safety Analysis Report

  13. The Agost Basin (Betic Cordillera, Alicante province, Spain): a pull-apart basin involving salt tectonics

    Science.gov (United States)

    Martín-Martín, Manuel; Estévez, Antonio; Martín-Rojas, Ivan; Guerrera, Francesco; Alcalá, Francisco J.; Serrano, Francisco; Tramontana, Mario

    2018-03-01

    The Agost Basin is characterized by a Miocene-Quaternary shallow marine and continental infilling controlled by the evolution of several curvilinear faults involving salt tectonics derived from Triassic rocks. From the Serravallian on, the area experienced a horizontal maximum compression with a rotation of the maximum stress axis from E-W to N-S. The resulting deformation gave rise to a strike-slip fault whose evolution is characterized progressively by three stages: (1) stepover/releasing bend with a dextral motion of blocks; (2) very close to pure horizontal compression; and (3) restraining bend with a sinistral movement of blocks. In particular, after an incipient fracturing stage, faults generated a pull-apart basin with terraced sidewall fault and graben subzones developed in the context of a dextral stepover during the lower part of late Miocene p.p. The occurrence of Triassic shales and evaporites played a fundamental role in the tectonic evolution of the study area. The salty material flowed along faults during this stage generating salt walls in root zones and salt push-up structures at the surface. During the purely compressive stage (middle part of late Miocene p.p.) the salt walls were squeezed to form extrusive mushroom-like structures. The large amount of clayish and salty material that surfaced was rapidly eroded and deposited into the basin, generating prograding fan clinoforms. The occurrence of shales and evaporites (both in the margins of the basin and in the proper infilling) favored folding of basin deposits, faulting, and the formation of rising blocks. Later, in the last stage (upper part of late Miocene p.p.), the area was affected by sinistral restraining conditions and faults must have bent to their current shape. The progressive folding of the basin and deformation of margins changed the supply points and finally caused the end of deposition and the beginning of the current erosive systems. On the basis of the interdisciplinary results

  14. Geologic implications of gas hydrates in the offshore of India: Krishna-Godavari Basin, Mahanadi Basin, Andaman Sea, Kerala-Konkan Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Kumar, P.; Collett, T.S.; Boswell, R.; Cochran, J.R.; Lall, M.; Mazumdar, A.; Ramana, M.V.; Ramprasad, T.; Riedel, M.; Sain, K.; Sathe, A.V.; Vishwanath, K.; Yadav, U.S.

    history of the Mahanadi Basin is similar to that of the Krishna-Godavari Basin. The Late Jurassic rift structures along the eastern margin of India cut across older NW-SE-trending Permian-Triassic Gondwana grabens including the Mahanadi and Pranhita...-Godavari grabens (Sastri et al., 1981). The Mahanadi graben appears to have a continuation in Antarctica as the Lambert graben (Federov et al., 1982). These structures served to delineate the fluvial drainage system throughout the evolution of the margin...

  15. River and Reservoir Operations Model, Truckee River basin, California and Nevada, 1998

    Science.gov (United States)

    Berris, Steven N.; Hess, Glen W.; Bohman, Larry R.

    2001-01-01

    The demand for all uses of water in the Truckee River Basin, California and Nevada, commonly is greater than can be supplied. Storage reservoirs in the system have a maximum effective total capacity equivalent to less than two years of average river flows, so longer-term droughts can result in substantial water-supply shortages for irrigation and municipal users and may stress fish and wildlife ecosystems. Title II of Public Law (P.L.) 101-618, the Truckee?Carson?Pyramid Lake Water Rights Settlement Act of 1990, provides a foundation for negotiating and developing operating criteria, known as the Truckee River Operating Agreement (TROA), to balance interstate and interbasin allocation of water rights among the many interests competing for water from the Truckee River. In addition to TROA, the Truckee River Water Quality Settlement Agreement (WQSA), signed in 1996, provides for acquisition of water rights to resolve water-quality problems during low flows along the Truckee River in Nevada. Efficient execution of many of the planning, management, or environmental assessment requirements of TROA and WQSA will require detailed water-resources data coupled with sound analytical tools. Analytical modeling tools constructed and evaluated with such data could help assess effects of alternative operational scenarios related to reservoir and river operations, water-rights transfers, and changes in irrigation practices. The Truckee?Carson Program of the U.S. Geological Survey, to support U.S. Department of the Interior implementation of P.L. 101-618, is developing a modeling system to support efficient water-resources planning, management, and allocation. The daily operations model documented herein is a part of the modeling system that includes a database management program, a graphical user interface program, and a program with modules that simulate river/reservoir operations and a variety of hydrologic processes. The operations module is capable of simulating lake

  16. The Third Pacific Basin Biofuels Workshop: Proceedings

    Science.gov (United States)

    Among the many compelling reasons for the development of biofuels on remote Pacific islands, several of the most important include: (1) a lack of indigenous fossil fuels necessitates their import at great economic loss to local island economics, (2) ideal conditions for plant growth exist on many Pacific islands to produce yields of biomass feedstocks, (3) gaseous and liquid fuels such as methane, methanol and ethanol manufactured locally from biomass feedstocks are the most viable alternatives to gasoline and diesel fuels for transportation, and (4) the combustion of biofuels is cleaner than burning petroleum products and contributes no net atmospheric CO2 to aggravate the greenhouse effect and the subsequent threat of sea level rise to low islands. Dr. Vic Phillips, HNEI Program Manager of the Hawaii Integrated Biofuels Research Program welcomed 60 participants to the Third Pacific Basin Biofuels Workshop at the Sheraton Makaha Hotel, Waianae, Oahu, on March 27 and 28, 1989. The objectives of the workshop were to update progress since the Second Pacific Basin Biofuels Workshop in April 1987 and to develop a plan for action for biofuels R and D, technology transfer, and commercialization now (immediate attention), in the near-term (less than two years), in the mid-term (three to five years), and in the long-term (more than six years). An emerging theme of the workshop was how the production, conversion, and utilization of biofuels can help increase environmental and economic security locally and globally. Individual papers are processed separately for the data base.

  17. Sharing the cost of river basin adaptation portfolios to climate change: Insights from social justice and cooperative game theory

    Science.gov (United States)

    Girard, Corentin; Rinaudo, Jean-Daniel; Pulido-Velazquez, Manuel

    2016-10-01

    The adaptation of water resource systems to the potential impacts of climate change requires mixed portfolios of supply and demand adaptation measures. The issue is not only to select efficient, robust, and flexible adaptation portfolios but also to find equitable strategies of cost allocation among the stakeholders. Our work addresses such cost allocation problems by applying two different theoretical approaches: social justice and cooperative game theory in a real case study. First of all, a cost-effective portfolio of adaptation measures at the basin scale is selected using a least-cost optimization model. Cost allocation solutions are then defined based on economic rationality concepts from cooperative game theory (the Core). Second, interviews are conducted to characterize stakeholders' perceptions of social justice principles associated with the definition of alternatives cost allocation rules. The comparison of the cost allocation scenarios leads to contrasted insights in order to inform the decision-making process at the river basin scale and potentially reap the efficiency gains from cooperation in the design of river basin adaptation portfolios.

  18. EFFECTIVE ENVIRONMENTAL COMPLIANCE STRATEGY FOR THE CLEANUP OF K BASINS AT HANFORD SITE WASHINGTON

    International Nuclear Information System (INIS)

    AMBALAM, T.

    2004-01-01

    K Basins, consisting of two water-filled storage basins (KW and KE) for spent nuclear fuel (SNF), are part of the 100-K Area of the Hanford Site, along the shoreline of the Columbia River, situated approximately 40 km (25 miles) northwest of the City of Richland, Washington. The KW contained 964 metric tons of SNF in sealed canisters and the KE contained 1152 metric tons of SNF under water in open canisters. The cladding on much of the fuel was damaged allowing the fuel to corrode and degrade during storage underwater. An estimated 1,700 cubic feet of sludge, containing radionuclides and sediments, have accumulated in the KE basin. Various alternatives for removing and processing the SNF, sludge, debris and water were originally evaluated, by USDOE (DOE), in the Environmental Impact Statement (EIS) with a preferred alternative identified in the Record of Decision. The SNF, sludge, debris and water are ''hazardous substances'' under the Comprehensive, Environmental, Response, Compensation and Liability Act of 1980 (CERCLA). Leakage of radiologically contaminated water from one of the basins and subsequent detection of increased contamination in a down-gradient monitoring well helped to form the regulatory bases for cleanup action under CERCLA. The realization that actual or threatened release of hazardous substances from the waste sites and K Basins, if not addressed in a timely manner, may present an imminent and substantial endangerment to public health, welfare and environment led to action under CERCLA, with EPA as the lead regulatory agency. Clean-up of the K Basins as a CERCLA site required SNF retrieval, processing, packaging, vacuum drying and transport to a vaulted storage facility for storage, in conformance with a quality assurance program approved by the Office of Civilian Radioactive Waste Management (OCRWM). Excluding the facilities built for SNF drying and vaulted storage, the scope of CERCLA interim remedial action was limited to the removal of fuel

  19. Ecosystem services of runoff marshes in urban lowland basins: proposals for their management and conservation

    Directory of Open Access Journals (Sweden)

    Armendáriz Laura C.

    2017-01-01

    Full Text Available The city of La Plata, Argentina, is situated in a low alluvial zone, with streams having insufficient drainage into the Río de la Plata estuary. In April 2013, a prodigious storm front caused unprecedented flooding in the city and environs that resulted in extensive loss of life and property, especially in the Del Gato stream basin. Through an analysis of water quality and the conditions of the habitat on the basis of the macroinvertebrates present as bioindicators of environmental quality, this work aims to contribute to a reevaluation of the role of the marshes adjacent to the stream as flood-alleviation elements, and then propose alternatives for flooding management in the basin. Consequently, quantitative seasonal samples of vegetation, sediments, and benthic organic matter were taken and limnologic parameters measured in three sectors of the basin having different land uses: rural, periurban, and urban-industrial. The macroinvertebrate assemblages, as analyzed through the application of ecological indices, exhibited a marked decline in richness and in the Pampean Biotic Index towards the low-lying basin. Principal-components analysis associated Site 1 with the dissolved-oxygen concentration, Site 2 with high nitrate values, and Site 3 with oxygen demands. Redundancy analysis indicated a positive relationship between Baetidae and Aeolosomatidae with the dissolved-oxygen concentration and between Enchytraeidae and Stratiomyidae with the conductivity. These marshes are fundamental in maintaining good environmental conditions and attenuating the effects of the flooding that is predicted to become increasingly catastrophic in this region as the climate changes.

  20. Visualization of Flow Alternatives, Lower Missouri River

    Science.gov (United States)

    Jacobson, Robert B.; Heuser, Jeanne

    2002-01-01

    Background The U.S. Army Corps of Engineers (COE) 'Missouri River Master Water Control Manual' (Master Manual) review has resulted in consideration of many flow alternatives for managing the water in the river (COE, 2001; 1998a). The purpose of this report is to present flow-management alternative model results in a way that can be easily visualized and understood. This report was updated in October 2001 to focus on the specific flow-management alternatives presented by the COE in the 'Master Manual Revised Draft Environmental Impact Statement' (RDEIS; COE, 2001). The original version (February 2000) is available by clicking here. The COE, U.S. Fish and Wildlife Service (FWS), Missouri River states, and Missouri River basin tribes have been participating in discussions concerning water management of the Missouri River mainstem reservoir system (MRMRS), the Missouri River Bank Stabilization and Navigation Project, and the Kansas River reservoir system since 1986. These discussions include general input to the revision of the Master Manual as well as formal consultation under Section 7 of the Endangered Species Act. In 2000, the FWS issued a Biological Opinion that prescribed changes to reservoir management on the Missouri River that were believed to be necessary to preclude jeopardy to three endangered species, the pallid sturgeon, piping plover, and interior least tern (USFWS, 2000). The combined Missouri River system is large and complex, including many reservoirs, control structures, and free-flowing reaches extending over a broad region. The ability to assess future impacts of altered management scenarios necessarily involves complex, computational models that attempt to integrate physical, chemical, biological, and economic effects. Graphical visualization of the model output is intended to improve understanding of the differences among flow-management alternatives.

  1. Modeling the spatial-temporal dynamics of net primary production in Yangtze River Basin using IBIS model

    Science.gov (United States)

    Zhang, Z.; Jiang, H.; Liu, J.; Zhu, Q.; Wei, X.; Jiang, Z.; Zhou, G.; Zhang, X.; Han, J.

    2011-01-01

    The climate change has significantly affected the carbon cycling in Yangtze River Basin. To better understand the alternation pattern for the relationship between carbon cycling and climate change, the net primary production (NPP) were simulated in the study area from 1956 to 2006 by using the Integrated Biosphere Simulator (IBIS). The results showed that the average annual NPP per square meter was about 0.518 kg C in Yangtze River Basin. The high NPP levels were mainly distributed in the southeast area of Sichuan, and the highest value reached 1.05 kg C/m2. The NPP increased based on the simulated temporal trends. The spatiotemporal variability of the NPP in the vegetation types was obvious, and it was depended on the climate and soil condition. We found the drought climate was one of critical factor that impacts the alterations of the NPP in the area by the simulation. ?? 2011 IEEE.

  2. Decommissioning planning and the assessment of alternatives for the Hanford production reactors

    International Nuclear Information System (INIS)

    Miller, C.E. Jr.; Potter, R.F.

    1985-01-01

    Several years ago, the US Department of Energy began assessing alternatives and planning the decommissioning of eight shut-down plutonium production reactors located on the DOE Hanford Site in Washington State. The first of these graphite-moderated, water-cooled, reactors was built and started up in 1944 as part of the World War II Manhattan Project. The last of them started up in 1955. The eight reactors each operated for 12 to 24 years, with all eight operating simultaneously for about 10 years. In the 1960's, production needs declined and the reactors were one-by-one permanently shut down, the last of them in 1971. (A ninth Hanford production reactor, N Reactor, was started up in 1963; it is still operating and is not within the scope of the decommissioning planning and alternatives assessment work reported in this paper). This paper provides an overview description of the decommissioning plan for the eight shut-down Hanford production reactors and their associated fuel storage basins. Included are descriptions of the decommissioning alternatives considered for the facilities, along with discussions of National Environmental Policy Act (NEPA) process activities applicable to the Hanford decommissioning work. The criteria used in assessing decommissioning alternatives and the assumptions used in the decommissioning planning are identified. 4 refs., 8 figs., 3 tabs

  3. Geological exploration of uranium ores at Burgos' basin

    International Nuclear Information System (INIS)

    Cabrera Valdez, M.E.

    1975-01-01

    The outcrop sediments of the Burgos river basin cover the complete Cenozoic sequence from the Pallaeocene to recent date, and are arranged in the form of parallel strips with a regional dip towards the east, in which direction the sediments become steadily younger. Generally speaking they correspond to a regressive process the lithology of which is an alternation of shales, sandstones, tuffaceous material and conglomerates. The explorations and evaluations of sedimentary uranium deposits so far carried out in the north-east of Mexico show close relationships between the mineralization and the sedimentary processes of the enclosing rock. Analysis of the sedimentary-type uranium ore bodies in Mexico indicates characteristics very similar to those found in the deposits of the same type which were first studied and described in southern Texas and were used as a standard for the first exploratory studies. The uranium ore in the State of Texas is found in sands belonging mainly to the Jackson group of the Eocene and, to a lesser extent, the Catahoula formation of Miocene-Oligocene age. In the Burgos basin the existence of uranium deposits in the non-marine Frio formation of Oligocene age, with geological characteristics similar to the Texan deposits, has been demonstrated. This comparative analysis suggests very good prospects for uranium exploration in the region; it is recommended that priority be given to intensive study of the sediments of the non-marine member of the Frio formation, and the Jackson and Catahoula formations. (author)

  4. Implementing Integrated River Basin Management in China

    NARCIS (Netherlands)

    Boekhorst, D.G.J. te; Smits, A.J.M.; Yu, X.; Lifeng, L.; Lei, G.; Zhang, C.

    2010-01-01

    This paper examines the role of the World Wildlife Fund for Nature China as policy entrepreneur in China. It illustrates the ways in which the World Wildlife Fund for Nature is active in promoting integrated river basin management in the Yangtze River basin and how the efforts at basin level are

  5. The Mackenzie Basin impacts study

    International Nuclear Information System (INIS)

    Cohen, S.J.

    1993-01-01

    In 1989, a commitment was made to begin development of a framework for an integrated regional impact assessment of global warming scenarios in the Mackenzie Basin, the most populated region of Canada's north. The project, called Mackenzie Basin Impact Study (MBIS), is led by a multidisciplinary working group from government and non-governmental organizations with interests in the Basin. Objectives of MBIS include defining the direction and magnitude of regional-scale impacts of global warming scenarios on the physical, biological, and human systems of the Basin. MBIS will also identify regional sensitivities to climate, inter-system linkages, uncertainties, policy implications, and research needs. MBIS research activities as of March 1992 are outlined and policy concerns related to global warming are listed. Two new methodologies are being developed by MBIS to address particular economic and policy concerns: a socio-economic resource accounting framework and an integrated land assessment framework. Throughout MBIS, opportunities will be presented for western science and traditional native knowledge to be integrated

  6. 77 FR 45653 - Yakima River Basin Conservation Advisory Group; Yakima River Basin Water Enhancement Project...

    Science.gov (United States)

    2012-08-01

    ... Basin Conservation Advisory Group, Yakima River Basin Water Enhancement Project, established by the... Water Conservation Program. DATES: The meeting will be held on Tuesday, August 21, 2012, from 1 p.m. to... the implementation of the Water Conservation Program, including the applicable water conservation...

  7. Monitoring and Modeling the Fate and Transport of Nitrate in the Vadose Zone beneath a Suwannee River Basin Vegetable Farm

    Science.gov (United States)

    Albert, M. A.; Graham, W. D.; Graetz, D.

    2002-05-01

    The Suwannee River basin has received much attention in recent years due to increased nitrogen levels in the groundwater-fed rivers of the basin that could seriously affect the welfare of this ecosystem. Nitrogen levels have increased from 0.1mg/l NO3-N to more than 5 mg/L NO3-N in many springs in the Suwannee Basin over the past 40 years. Nitrate concentrations in the Suwannee River itself have been increasing at the rate of .02 mg/L per year over the past 20 years. Suwannee River nitrate loads increase from 2300 kg/day to 6000 kg/day over a 33 mile stretch of the river between Dowling Park and Branford, Florida. Within this stretch of river, 89% of the nitrate loading appeared to come from the lower two-thirds, where agriculture is the dominant land use. The objective of this research is to monitor and model the impacts of alternative nutrient and water management practices on soil water quality, groundwater quality and crop yield at a commercial vegetable farm in the Suwannee River Basin. Groundwater monitoring wells, suction lysimeters, soil cores and TDR probes are used to monitor water and nitrogen transport at the site. Periodic plant biomass sampling is conducted to determine nitrogen uptake by the plants and to estimate crop yield. Field data show that two-thirds of the nitrogen applied to the spring 2001 potato crop leached to groundwater due to excessive irrigation and poor nitrogen uptake efficiency by the potatoes. The DSSAT35-Potato Crop model and the LEACHM vadose-zone model were calibrated for the spring 2001 potato crop and used to predict nitrogen leaching and crop yield for alternative management practices. Simulation results show that by reducing the duration of irrigation, reducing the fertilizer application rate, and improving the timing of fertilizer applications, nitrogen leaching can be reduced by approximately 50% while maintaining acceptable crop yields. Results of this project will ultimately be used to develop best management practices

  8. Structural and microstructural evolution of fault zones in Cretaceous poorly lithified sandstones of the Rio do Peixe basin, Paraiba, NE Brazil

    Science.gov (United States)

    Balsamo, Fabrizio; Nogueira, Francisco; Storti, Fabrizio; Bezerra, Francisco H. R.; De Carvalho, Bruno R.; André De Souza, Jorge

    2017-04-01

    In this contribution we describe the structural architecture and microstructural features of fault zones developed in Cretaceous, poorly lithified sandstones of the Rio do Peixe basin, NE Brazil. The Rio do Peixe basin is an E-W-trending, intracontinental half-graben basin developed along the Precambrian Patos shear zone where it is abutted by the Porto Alegre shear zone. The basin formed during rifting between South America and Africa plates and was reactivated and inverted in a strike-slip setting during the Cenozoic. Sediments filling the basin consist of an heterolithic sequence of alternating sandstones, conglomerates, siltstone and clay-rich layers. These lithologies are generally poorly lithified far from the major fault zones. Deformational structures in the basin mostly consist of deformation band-dominated fault zones. Extensional and strike-slip fault zones, clusters of deformation bands, and single deformation bands are commonly well developed in the proximity of the basin-boundary fault systems. All deformation structures are generally in positive relief with respect to the host rocks. Extensional fault zones locally have growth strata in their hangingwall blocks and have displacement generally <10 m. In map view, they are organized in anastomosed segments with high connectivity. They strike E-W to NE-SW, and typically consist of wide fault cores (< 1 m in width) surrounded by up to few-meter wide damage zones. Fault cores are characterized by distributed deformation without pervasive strain localization in narrow shear bands, in which bedding is transposed into foliation imparted by grain preferred orientation. Microstructural observations show negligible cataclasis and dominant non-destructive particulate flow, suggesting that extensional fault zones developed in soft-sediment conditions in a water-saturated environment. Strike-slip fault zones commonly overprint the extensional ones and have displacement values typically lower than about 2 m. They

  9. Groundwater quality in the Northern Coast Ranges Basins, California

    Science.gov (United States)

    Mathany, Timothy M.; Belitz, Kenneth

    2015-01-01

    The Northern Coast Ranges (NOCO) study unit is 633 square miles and consists of 35 groundwater basins and subbasins (California Department of Water Resources, 2003; Mathany and Belitz, 2015). These basins and subbasins were grouped into two study areas based primarily on locality. The groundwater basins and subbasins located inland, not adjacent to the Pacific Ocean, were aggregated into the Interior Basins (NOCO-IN) study area. The groundwater basins and subbasins adjacent to the Pacific Ocean were aggregated into the Coastal Basins (NOCO-CO) study area (Mathany and others, 2011).

  10. K-Basin isolation barrier seal

    International Nuclear Information System (INIS)

    Ruff, E.S.

    1994-10-01

    This report documents various aspects of the design, analysis, procurement, and fabrication of the hydraulic seal on the isolation barriers to be installed in the 100-K Area spent nuclear fuel basin. The isolation barrier is used to keep water in the basin in the event of an earthquake

  11. Estimating Stream Discharge of Aboine River Basin of Southeast ...

    African Journals Online (AJOL)

    ADOWIE PERE

    of inter-basin parameters showed that the Aboine drainage basin is basically a flat surface. This ... on the fluvial system and also for predicting the basin output variables. Surface .... outflows of rainwater from the basin as has been done by ...

  12. The Heidelberg Basin Drilling Project - Sedimentology and Stratigraphy of the Quaternary succession

    Science.gov (United States)

    Ellwanger, Dietrich; Gabriel, Gerald; Hahne, Jürgen; Hoselmann, Christian; Menzies, John; Simon, Theo; Weidenfeller, Michael; Wielandt-Schuster, Ulrike

    2010-05-01

    Within the context of the Heidelberg Basin Drilling Project (Gabriel et al. 2008), a detailed sediment succession is presented here based upon deep drillings taken at Heidelberg UniNord and Mannheim Käfertal. Sediment structures, and micromorphological and pollen analyses were conducted and used to reconsider some of the climate transitions within the lower Pleistocene. A new and novel scenario is postulated regarding the preservation of Quaternary sediment packages within the Cenozoic Graben environment of the Heidelberg basin. The palynological evidence comprises the periods of warm climate of the Holsteinian (mainly Abies (fir), some Fagus (beech), Pterocarya & Azolla); the Cromerian (Pinus-Picea-QM (pine-spruce-QM)); the Bavelian (Abies, Tsuga (hemlock fir), QM & phases of increased NAP including Pinus); the Waalian (Abies, Tsuga, QM); and the Tiglian (Fagus & early Pleistocene taxa especially Sciadopytis, downward increasing Tertiary taxa). The sediment package was studied both macroscopically and microscopically. Both techniques provide evidence of fluvial, lacustrine and mass movement sedimentary processes. Some include evidence of periglacial processes (silt droplets within fine grained sands indicative of frozen ground conditions). The periglacial structures are often, not always, accompanied by pollen spectra dominated by pine and NAP. E.g. the Tiglian part of the succession shows periglacial sediment structures at its base and top but not in its middle sections. I.e. it appears not as a series of warm and cold phases but rather as a constant warm period with warm-cold-alternations at its bottom and top. All results illustrate sediment preservation in the Heidelberg basin almost throughout the Quaternary. This may be due to tectonic subsidence, but also to compaction by sediment loading of underlying fine sediments (Oligocene to Quaternary) leading to incomplete but virtually continuous sediment preservation (Tanner et al. 2009). References Gabriel, G

  13. Automatic design of basin-specific drought indexes for highly regulated water systems

    Science.gov (United States)

    Zaniolo, Marta; Giuliani, Matteo; Castelletti, Andrea Francesco; Pulido-Velazquez, Manuel

    2018-04-01

    Socio-economic costs of drought are progressively increasing worldwide due to undergoing alterations of hydro-meteorological regimes induced by climate change. Although drought management is largely studied in the literature, traditional drought indexes often fail at detecting critical events in highly regulated systems, where natural water availability is conditioned by the operation of water infrastructures such as dams, diversions, and pumping wells. Here, ad hoc index formulations are usually adopted based on empirical combinations of several, supposed-to-be significant, hydro-meteorological variables. These customized formulations, however, while effective in the design basin, can hardly be generalized and transferred to different contexts. In this study, we contribute FRIDA (FRamework for Index-based Drought Analysis), a novel framework for the automatic design of basin-customized drought indexes. In contrast to ad hoc empirical approaches, FRIDA is fully automated, generalizable, and portable across different basins. FRIDA builds an index representing a surrogate of the drought conditions of the basin, computed by combining all the relevant available information about the water circulating in the system identified by means of a feature extraction algorithm. We used the Wrapper for Quasi-Equally Informative Subset Selection (W-QEISS), which features a multi-objective evolutionary algorithm to find Pareto-efficient subsets of variables by maximizing the wrapper accuracy, minimizing the number of selected variables, and optimizing relevance and redundancy of the subset. The preferred variable subset is selected among the efficient solutions and used to formulate the final index according to alternative model structures. We apply FRIDA to the case study of the Jucar river basin (Spain), a drought-prone and highly regulated Mediterranean water resource system, where an advanced drought management plan relying on the formulation of an ad hoc state index is used

  14. Revised stratigraphy and reinterpretation of the Miocene Pohang basinfill, SE Korea: sequence development in response to tectonism and eustasy in a back-arc basin margin

    Science.gov (United States)

    Sohn, Y. K.; Rhee, C. W.; Shon, H.

    2001-09-01

    The Miocene Pohang Basin is a pull-apart basin formed along the eastern continental margin of Korea (ECMK) during the back-arc opening of the East Sea (Sea of Japan). The basin is filled by more than 1 km thick, nonmarine to deep-marine strata. These strata show extreme vertical and lateral lithofacies changes and have caused decades-long controversies on their nature and stratigraphy. Previous sedimentological studies suggest that the basinfill was deposited by a series of contemporaneously developed depositional systems, including fan delta, prodelta, slope apron, and basin plain. Detailed mapping and magnetotelluric surveying show, however, that the basinfill is composed of several packages of strata (sequences) that are bounded by distinct and laterally persistent stratigraphic discontinuities (sequence boundaries). This suggests that the depositional systems in the Pohang Basin developed sequentially rather than contemporaneously. Six packages of strata are identified in the basin: a nonmarine to shallow marine (transgressive) sequence (Sequence 1), a Gilbert-type-delta conglomerate (Sequence 2), and alternations of submarine conglomerates and hemipelagic mudstones (Sequences 3-6). The conglomerates and hemipelagic mudstones of the latter four sequences are interpreted to represent lowstand depositional systems (slope apron, submarine fan, and high-gradient delta) and condensed intervals, respectively. Compilation of geochronologic, paleomagnetic, and biostratigraphic data suggests that Sequence 1 formed during the gradual subsidence of the ECMK prior to 17 Ma, whereas Sequence 2 formed in response to abrupt downfaulting of the Pohang Basin at about 17 Ma. Both sequences are interpreted to have developed in response to the early Miocene back-arc-opening tectonism of the East Sea. On the other hand, Sequences 3-6 formed between 17 and about 10.5 Ma. The Pohang Basin was subject to only minor tectonism during this period and could record global sea

  15. Geomorphological characterization of endorheic basins in northern Chile

    Science.gov (United States)

    Dorsaz, J.; Gironas, J. A.; Escauriaza, C. R.; Rinaldo, A.

    2011-12-01

    Quantitative geomorphology regroups a large number of interesting tools to characterize natural basins across scales. The application of these tools to several river basins allows the description and comparison of geomorphological properties at different spatial scales as oppose to more traditional descriptors that are typically applied at a single scale, meaning the catchment scale. Most of the recent research using these quantitative geomorphological tools has focused on open catchments and no specific attention has been given to endorheic basins, and the possibility of having particular features that distinguish them from exorheic catchments. The main objective of our study is to characterize endorheic basins and investigate whether these special geomorphological features can be identified. Because scaling invariance is a widely observed and relatively well quantified property of open basins, it provides a suitable tool to characterize differences between the geomorphology of closed and open basins. Our investigation focuses on three closed basins located in northern Chile which describe well the diversity in the geomorphology and geology of this arid region. Results show that endhoreic basins exhibit different slope-area and flow paths sinuosity regimes compared to those observed in open basins. These differences are in agreement with the particular self-similar behavior across spatial scales of the Euclidean length of subcatchments, as well as the Hack's law and Horton's ratios. These regimes imply different physical processes inside the channel network regardless of the basin area, and they seem to be related to the endorheic character of these basins. The analysis of the probability density functions of contributing areas and lengths to the lower region shows that the hypothesis of self-similarity can also be applied to closed basins. Theoretical expressions for these distributions were derived and validated by the data. Future research will focus on (1

  16. Firewood harvest from forests of the Murray-Darling Basin, Australia. Part 1: Long-term, sustainable supply available from native forests

    International Nuclear Information System (INIS)

    West, P.W.; Cawsey, E.M.; Stol, J.; Freudenberger, D.

    2008-01-01

    The Murray-Darling Basin is a 1 million km 2 agricultural region of south-eastern Australia, although 29% of it retains native forests. Some are mallee eucalypt types, whilst the 'principal' types are dominated mainly by other eucalypt species. One-third of the 6-7 million oven-dry tonne of firewood burnt annually in Australia is obtained from these forests, principally through collection of coarse woody debris. There are fears that removal of this debris may prejudice the floral and faunal biodiversity of the Basin. The present work considers what silvicultural management practices will allow the long-term maintenance of the native forests of the Basin and their continued contribution to its biodiversity. It then estimates that the maximum, long-term, annual, sustainable yield of firewood which could be harvested, by collection of coarse woody debris, from principal forest types of the Basin would be 10 million oven-dry tonne yr -1 . An alternative, harvest of firewood from live trees by thinning the principal forests and clear-felling mallee forests, would be able to supply 2.3 million tonne yr -1 sustainably. Whilst coarse woody debris harvests could supply far more than the present demand for firewood from the Basin, they would lead to substantial reductions of the debris remaining in the forests; this may be detrimental to biodiversity maintenance. Live tree harvest does not lead to this problem, but would barely be able to supply existing firewood demand

  17. Evaluation Of Hydraulic Potentiality For The Generation Of Hydroelectric To Small Scale In The Basin Of The CHICAMOCHA River - Small Hydroelectric Centrals

    International Nuclear Information System (INIS)

    Pacheco P, Claudia M.; Parga C, Gloria M.

    1995-01-01

    In development of the agreement of technical and scientific cooperation established between the INEA and the Catholic University of Colombia, the program of Evaluation of Hydraulic Potentiality for Small Central was developed, whose purpose is to take the service to smaller population and villages of all the towns of the country. To begin the program the area corresponding to the basin of Chicamocha river was selected, since this region that corresponds to 72 towns of Boyaca and Santander, has good information, thanks to the diagnosis carried out by the Inderena with the purpose of formulating a Plan of Classification and Handling of the Basin. The work consisted on the identification of all the micro basins, the analysis of the demand of energy of the settled population, to evaluate the generating capacity of the flows of water and, according to the results, to propose alternatives for the design of small hydroelectric centrals (PCH) in accordance with the needs

  18. Vertical movement in mare basins: relation to mare emplacement, basin tectonics, and lunar thermal history

    International Nuclear Information System (INIS)

    Solomon, S.C.

    1979-01-01

    The spatial and temporal relationships of linear rilles and mare ridges in the Serenitatis basin region of the moon are explained by a combination of lithospheric flexure in response to basin loading by basalt fill and a time-dependent global stress due to the thermal evolution of the lunar interior. The pertinent tectonic observations are the radial distance of basin concentric rilles or graben from the mare center; the location and orientation of mare ridges, interpreted as compressive features; and the restriction of graben formation to times older than 3.6 +- 0.2 b.y. ago, while ridge formation continued after emplacement of the youngest mare basalt unit (approx.3 b.y. ago). The locations of the graben are consistent with the geometry of the mare basalt load expected from the dimensions of multiring basins for values of the thickness of the elastic lithosphere beneath Serenitatis in the range 25--50 km at 3.6--3.8 b.y. ago. The locations and orientations of mare ridges are consistent with the load inferred from surface mapping and subsurface radar reflections for values of the elastic lithosphere thickness near 100 km at 3.0--3.4 b.y. ago. The thickening of the lithosphere beneath a major basin during the evolution of mare volcanism is thus clearly evident in the tectonics. The cessation of rille formation and the prolonged period of ridge formation are attributed to a change in the global horizontal thermal stress from extension to compression as the moon shifted from net expansion to overall cooling and contraction. Severe limits as placed on the range of possible lunar thermal histories. The zone of horizontal extensional stresses peripheral to mare loads favors the edge of mare basins as the preferred sites for mare basalt magma eruption in the later stages of mare fill, although subsidence may lead to accumulation of such young lavas in basin centers

  19. Satellite altimetry over large hydrological basins

    Science.gov (United States)

    Calmant, Stephane

    2015-04-01

    The use of satellite altimetry for hydrological applications, either it is basin management or hydrological modeling really started with the 21st century. Before, during two decades, the efforts were concentrated on the data processing until a precision of a few decimeters could be achieved. Today, several web sites distribute hundreds of series spread over hundeds of rivers runing in the major basins of the world. Among these, the Amazon basin has been the most widely studied. Satellite altimetry is now routinely used in this transboundary basin to predict discharges ranging over 4 orders of magnitude. In a few years, satellite altimetry should evolve dramatically. This year, we should see the launchs of Jason-3 and that of Sentinel-3A operating in SAR mode. With SAR, the accuracy and resolution of a growing number of measurements should be improved. In 2020, SWOT will provide a full coverage that will join in a unique framework all the previous and forthcoming missions. These technical and thematical evolutions will be illustrated by examples taken in the Amazon and Congo basin.

  20. Two characteristics of planar intertwined basins of attraction

    International Nuclear Information System (INIS)

    Ding Changming

    2012-01-01

    Highlights: ► A new mathematical definition of intertwined basins of attraction is proposed. ► Basins are intertwined iff a limit set of stable manifold contains at least two points. ► Basins are intertwined iff the closure of stable manifold is not arc-connected. ► The intertwining property is preserved by topologically equivalent dynamical systems. - Abstract: In this paper, we investigate the intertwined basins of attraction for planar dynamical systems. We prove that the intertwining property is preserved by topologically equivalent systems. Two necessary and sufficient conditions for a planar system having intertwined basins are given.

  1. Climatic controls on arid continental basin margin systems

    Science.gov (United States)

    Gough, Amy; Clarke, Stuart; Richards, Philip; Milodowski, Antoni

    2016-04-01

    Alluvial fans are both dominant and long-lived within continental basin margin systems. As a result, they commonly interact with a variety of depositional systems that exist at different times in the distal extent of the basin as the basin evolves. The deposits of the distal basin often cycle between those with the potential to act as good aquifers and those with the potential to act as good aquitards. The interactions between the distal deposits and the basin margin fans can have a significant impact upon basin-scale fluid flow. The fans themselves are commonly considered as relatively homogeneous, but their sedimentology is controlled by a variety of factors, including: 1) differing depositional mechanisms; 2) localised autocyclic controls; 3) geometrical and temporal interactions with deposits of the basin centre; and, 4) long-term allocyclic climatic variations. This work examines the basin margin systems of the Cutler Group sediments of the Paradox Basin, western U.S.A and presents generalised facies models for the Cutler Group alluvial fans as well as for the zone of interaction between these fans and the contemporaneous environments in the basin centre, at a variety of scales. Small-scale controls on deposition include climate, tectonics, base level and sediment supply. It has been ascertained that long-term climatic alterations were the main control on these depositional systems. Models have been constructed to highlight how both long-term and short-term alterations in the climatic regime can affect the sedimentation in the basin. These models can be applied to better understand similar, but poorly exposed, alluvial fan deposits. The alluvial fans of the Brockram Facies, northern England form part of a once-proposed site for low-level nuclear waste decommissioning. As such, it is important to understand the sedimentology, three-dimensional geometry, and the proposed connectivity of the deposits from the perspective of basin-scale fluid flow. The developed

  2. Marketing San Juan Basin gas

    International Nuclear Information System (INIS)

    Posner, D.M.

    1988-01-01

    Marketing natural gas produced in the San Juan Basin of New Mexico and Colorado principally involves four gas pipeline companies with significant facilities in the basin. The system capacity, transportation rates, regulatory status, and market access of each of these companies is evaluated. Because of excess gas supplies available to these pipeline companies, producers can expect improved take levels and prices by selling gas directly to end users and utilities as opposed to selling gas to the pipelines for system supply. The complexities of transporting gas today suggest that the services of an independent gas marketing company may be beneficial to smaller producers with gas supplies in the San Juan Basin

  3. Western Canada Sedimentary Basin competitiveness

    International Nuclear Information System (INIS)

    Millar, R.H.G.

    1996-01-01

    Recent dramatic expansion of the natural gas industry in the Western Canada Sedimentary Basin provided ample proof of the potential of this area for further development of natural gas supply. However, the inherent competitive advantages provided by the Western Canada Sedimentary Basin were said to have been offset by low netback prices resulting in poor producer economics when competitiveness is measured by availability of opportunities to find and develop gas supply at costs low enough to ensure attractive returns. Technology was identified as one of the key elements in improving basin competitiveness, but the greatest potential lies in reduced transportation costs and increased access to North American market centres. 8 figs

  4. Application of multi-agent simulation to evaluate the influence of reservoir operation strategies on the distribution of water availability in the semi-arid Jaguaribe basin, Brazil

    NARCIS (Netherlands)

    van Oel, P.R.; Krol, Martinus S.; Hoekstra, Arjen Ysbert

    2012-01-01

    Studying the processes responsible for the distribution of water resources in a river basin over space and time is of great importance for spatial planning. In this study a multi-agent simulation approach is applied for exploring the influence of alternative reservoir operation strategies on water

  5. The geological setting of Santa Monica and San Pedro Basins, California Continental Borderland

    Science.gov (United States)

    Gorsline, D. S.

    (platykurtic). Calcium carbonate content averages 8-10% and organic carbon is about 4%. An estimate of the contemporary sedimentation rate was determined for a single box core of 25-29mg cm -2 yr 1 from the central basin near the present distributary margin; it cannot be considered necessarily to be representative. Mixing is indicated by the data. An important climatic factor is the alternation of multi-year wet and dry periods. The California Basin Study was conducted during an extended dry period of low river discharge. This undoubtedly will have affected the conclusions of the study related to sediment-water interactions and pollutant transport by suspended clays.

  6. Geodatabase of sites, basin boundaries, and topology rules used to store drainage basin boundaries for the U.S. Geological Survey, Colorado Water Science Center

    Science.gov (United States)

    Dupree, Jean A.; Crowfoot, Richard M.

    2012-01-01

    This geodatabase and its component datasets are part of U.S. Geological Survey Digital Data Series 650 and were generated to store basin boundaries for U.S. Geological Survey streamgages and other sites in Colorado. The geodatabase and its components were created by the U.S. Geological Survey, Colorado Water Science Center, and are used to derive the numeric drainage areas for Colorado that are input into the U.S. Geological Survey's National Water Information System (NWIS) database and also published in the Annual Water Data Report and on NWISWeb. The foundational dataset used to create the basin boundaries in this geodatabase was the National Watershed Boundary Dataset. This geodatabase accompanies a U.S. Geological Survey Techniques and Methods report (Book 11, Section C, Chapter 6) entitled "Digital Database Architecture and Delineation Methodology for Deriving Drainage Basins, and Comparison of Digitally and Non-Digitally Derived Numeric Drainage Areas." The Techniques and Methods report details the geodatabase architecture, describes the delineation methodology and workflows used to develop these basin boundaries, and compares digitally derived numeric drainage areas in this geodatabase to non-digitally derived areas. 1. COBasins.gdb: This geodatabase contains site locations and basin boundaries for Colorado. It includes a single feature dataset, called BasinsFD, which groups the component feature classes and topology rules. 2. BasinsFD: This feature dataset in the "COBasins.gdb" geodatabase is a digital container that holds the feature classes used to archive site locations and basin boundaries as well as the topology rules that govern spatial relations within and among component feature classes. This feature dataset includes three feature classes: the sites for which basins have been delineated (the "Sites" feature class), basin bounding lines (the "BasinLines" feature class), and polygonal basin areas (the "BasinPolys" feature class). The feature dataset

  7. K Basins Hazard Analysis

    International Nuclear Information System (INIS)

    WEBB, R.H.

    1999-01-01

    This report describes the methodology used in conducting the K Basins Hazard Analysis, which provides the foundation for the K Basins Safety Analysis Report (HNF-SD-WM-SAR-062/Rev.4). This hazard analysis was performed in accordance with guidance provided by DOE-STD-3009-94, Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports and implements the requirements of DOE Order 5480.23, Nuclear Safety Analysis Report

  8. K West basin isolation barrier leak rate test

    International Nuclear Information System (INIS)

    Whitehurst, R.; McCracken, K.; Papenfuss, J.N.

    1994-01-01

    This document establishes the procedure for performing the acceptance test on the two isolation barriers being installed in K West basin. This acceptance test procedure shall be used to: First establish a basin water loss rate prior to installation of the two isolation barriers between the main basin and the discharge chute in K-Basin West. Second, perform an acceptance test to verify an acceptable leakage rate through the barrier seals

  9. The Apollo peak-ring impact basin: Insights into the structure and evolution of the South Pole-Aitken basin

    Science.gov (United States)

    Potter, Ross W. K.; Head, James W.; Guo, Dijun; Liu, Jianzhong; Xiao, Long

    2018-05-01

    The 492 km-diameter Apollo impact basin post-dates, and is located at the inner edge of, the ∼2240 km-diameter South Pole-Aitken (SPA) basin, providing an opportunity to assess the SPA substructure and lateral heterogeneity. Gravity Recovery and Interior Laboratory gravity data suggest an average crustal thickness on the floor of SPA of ∼20 km and within the Apollo basin of ∼5 km, yet remote sensing data reveal no conclusive evidence for the presence of exposed mantle material. We use the iSALE shock physics code to model the formation of the Apollo basin and find that the observational data are best fit by the impact of a 40 km diameter body traveling at 15 km/s into 20-40 km thick crustal material. These results strongly suggest that the Apollo impact occurred on ejecta deposits and collapsed crustal material of the SPA basin and could help place constraints on the location, size and geometry of the SPA transient cavity. The peak ring in the interior of Apollo basin is plausibly interpreted to be composed of inwardly collapsed lower crustal material that experienced peak shock pressures in excess of 35 GPa, consistent with remote sensing observations that suggest shocked plagioclase. Proposed robotic and/or human missions to SPA and Apollo would present an excellent opportunity to test the predictions of this work and address many scientific questions about SPA basin evolution and structure.

  10. Thermal evolution of a hyperextended rift basin, Mauléon Basin, western Pyrenees

    Science.gov (United States)

    Hart, Nicole R.; Stockli, Daniel F.; Lavier, Luc L.; Hayman, Nicholas W.

    2017-06-01

    Onshore and offshore geological and geophysical observations and numerical modeling have greatly improved the conceptual understanding of magma-poor rifted margins. However, critical questions remain concerning the thermal evolution of the prerift to synrift phases of thinning ending with the formation of hyperextended crust and mantle exhumation. In the western Pyrenees, the Mauléon Basin preserves the structural and stratigraphic record of Cretaceous extension, exhumation, and sedimentation of the proximal-to-distal margin development. Pyrenean shortening uplifted basement and overlying sedimentary basins without pervasive shortening or reheating, making the Mauléon Basin an ideal locality to study the temporal and thermal evolution of magma-poor hyperextended rift systems through coupling bedrock and detrital zircon (U-Th)/He thermochronometric data from transects characterizing different structural rifting domains. These new data indicate that the basin was heated during early rifting to >180°C with geothermal gradients of 80-100°C/km. The proximal margin recorded rift-related exhumation/cooling at circa 98 Ma, whereas the distal margin remained >180°C until the onset of Paleocene Pyrenean shortening. Lithospheric-scale numerical modeling shows that high geothermal gradients, >80°C/km, and synrift sediments >180°C, can be reached early in rift evolution via heat advection by lithospheric depth-dependent thinning and blanketing caused by the lower thermal conductivity of synrift sediments. Mauléon Basin thermochronometric data and numerical modeling illustrate that reheating of basement and synrift strata might play an important role and should be considered in the future development of conceptual and numerical models for hyperextended magma-poor continental rifted margins.

  11. Rapid subsidence and stacked Gilbert-type fan deltas, Pliocene Loreto basin, Baja California Sur, Mexico

    Science.gov (United States)

    Dorsey, Rebecca J.; Umhoefer, Paul J.; Renne, Paul R.

    1995-08-01

    Pliocene nonmarine to marine sedimentary rocks exposed in the Loreto basin, Baja California Sur, provide a record of syntectonic subsidence and sedimentation in a transform-rift basin that developed along the western margin of the Gulf of California. A thick sequence of twelve Gilbert-type fan deltas, having a total measured thickness of about 615 m, accumulated near the fault-bounded southwestern margin of this basin. Based on stratal geometries and lithofacies associations, sedimentary rocks are divided into Gilbert-delta topset, foreset and bottomset strata, shell beds and background shallow-marine shelf deposits. Topset strata of each Gilbert-type delta cycle are capped by laterally persistent molluscan shell beds containing diverse assemblages of bivalves, pectens, oysters, gastropods and echinoids. These shell beds are interpreted to be condensed intervals that record sediment starvation during abandonment of the fan-delta plain. Delta abandonment may have been caused by large episodic faulting events, which submerged each pre-existing fan-delta plain, substantially slowed detrital input by drowning of alluvial feeder channels, and created new accommodation space for each new Gilbert-type fan delta. Alternatively, it is possible that delta-plain abandonment was caused by upstream avulsions and autocyclic lateral switching of fan-delta lobes during relatively uniform rates of slip along the basin-bounding fault. Two contrasting, plausible basin models are proposed for the Loreto basin: (1) asymmetric subsidence along a high-angle oblique-slip normal fault, producing a classic half-graben basin geometry with vertically stacked Gilbert-type fan deltas; or (2) lateral stacking and horizontal displacement of strata away from a relatively fixed depocenter due to fault movement in the releasing bend of a listric strike-slip fault. We favor the first model because field relations and simple geometric constraints suggest that most of the total measured section

  12. Analysis of Current and Future SPEI Droughts in the La Plata Basin Based on Results from the Regional Eta Climate Model

    Directory of Open Access Journals (Sweden)

    Alvaro Sordo-Ward

    2017-11-01

    Full Text Available We identified and analysed droughts in the La Plata Basin (divided into seven sub-basins for the current period (1961–2005 and estimated their expected evolution under future climate projections for the periods 2011–2040, 2041–2070, and 2071–2099. Future climate projections were analysed from results of the Eta Regional Climate Model (grid resolution of approximately 10 km forced by the global climate model HadGEM2-ES over the La Plata basin, and considering a RCP4.5 emission scenario. Within each sub-basin, we particularly focused our drought analyses on croplands and grasslands, due to their economic relevance. The three-month Standardized Precipitation Evapotranspiration Index (SPEI3 was used for drought identification and characterization. Droughts were evaluated in terms of time (percentage of time from the total length of each climate scenario, space (percentage of total area, and severity (SPEI3 values of cells characterized by cropland and grassland for each sub-basin and climate scenario. Drought-severity–area–frequency curves were developed to quantitatively relate the frequency distribution of drought occurrence to drought severity and area. For the period 2011–2040, droughts dominate the northern sub-basins, whereas alternating wet and short dry periods dominate the southern sub-basins. Wet climate spread from south to north within the La Plata Basin as more distant future scenarios were analysed, due to both a greater number of wet periods and fewer droughts. The area of each sub-basin affected by drought in all climate scenarios was highly varied temporally and spatially. The likelihood of the occurrence of droughts differed significantly between the studied cover types in the Lower Paraguay sub-basin, being higher for cropland than for grassland. Mainly in the Upper Paraguay and in the Upper Paraná basins the climate projections for all scenarios showed an increase of moderate and severe droughts over large regions

  13. Submarine landslides in Arctic sedimentation: Canada Basin

    Science.gov (United States)

    Mosher, David C.; Shimeld, John; Hutchinson, Deborah R.; Lebedova-Ivanova, N; Chapman, C.

    2016-01-01

    Canada Basin of the Arctic Ocean is the least studied ocean basin in the World. Marine seismic field programs were conducted over the past 6 years using Canadian and American icebreakers. These expeditions acquired more than 14,000 line-km of multibeam bathymetric and multi-channel seismic reflection data over abyssal plain, continental rise and slope regions of Canada Basin; areas where little or no seismic reflection data existed previously. Canada Basin is a turbidite-filled basin with flat-lying reflections correlateable over 100s of km. For the upper half of the sedimentary succession, evidence of sedimentary processes other than turbidity current deposition is rare. The Canadian Archipelago and Beaufort Sea margins host stacked mass transport deposits from which many of these turbidites appear to derive. The stratigraphic succession of the MacKenzie River fan is dominated by mass transport deposits; one such complex is in excess of 132,000 km2 in area and underlies much of the southern abyssal plain. The modern seafloor is also scarred with escarpments and mass failure deposits; evidence that submarine landsliding is an ongoing process. In its latest phase of development, Canada Basin is geomorphologically confined with stable oceanographic structure, resulting in restricted depositional/reworking processes. The sedimentary record, therefore, underscores the significance of mass-transport processes in providing sediments to oceanic abyssal plains as few other basins are able to do.

  14. Relationships between basin architecture, basin closure, and occurrence of sulphide-bearing schists

    DEFF Research Database (Denmark)

    Kalliomäki, Henrik; Torvela, Taija; Moreau, Julien

    2014-01-01

    We present field observations from the Palaeoproterozoic volcano-sedimentary Tampere palaeobasin, where the primary structures have been exceptionally well preserved. We use the observations to construct a new tectonic model for the southeastern margin of the Tampere basin during its inversion...... and subsequent closure. The observed volcano-sedimentary and structural features suggest a change in the local structural style from thick-skinned inversion to thin-skinned thrusting, in order to accommodate the crustal shortening during basin closure. Furthermore, it is suggested that there is a genetic...

  15. Detailed bathymetric surveys in the central Indian Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Kodagali, V.N.; KameshRaju, K.A.; Ramprasad, T.; George, P.; Jaisankar, S.

    Over 420,000 line kilometers of echo-sounding data was collected in the Central Indian Basin. This data was digitized, merged with navigation data and a detailed bathymetric map of the Basin was prepared. The Basin can be broadly classified...

  16. Real-time remote sensing driven river basin modeling using radar altimetry

    Directory of Open Access Journals (Sweden)

    S. J. Pereira-Cardenal

    2011-01-01

    Full Text Available Many river basins have a weak in-situ hydrometeorological monitoring infrastructure. However, water resources practitioners depend on reliable hydrological models for management purposes. Remote sensing (RS data have been recognized as an alternative to in-situ hydrometeorological data in remote and poorly monitored areas and are increasingly used to force, calibrate, and update hydrological models.

    In this study, we evaluate the potential of informing a river basin model with real-time radar altimetry measurements over reservoirs. We present a lumped, conceptual, river basin water balance modeling approach based entirely on RS and reanalysis data: precipitation was obtained from the Tropical Rainfall Measuring Mission (TRMM Multisatellite Precipitation Analysis (TMPA, temperature from the European Centre for Medium-Range Weather Forecast's (ECMWF Operational Surface Analysis dataset and reference evapotranspiration was derived from temperature data. The Ensemble Kalman Filter was used to assimilate radar altimetry (ERS2 and Envisat measurements of reservoir water levels. The modeling approach was applied to the Syr Darya River Basin, a snowmelt-dominated basin with large topographical variability, several large reservoirs and scarce hydrometeorological data that is located in Central Asia and shared between 4 countries with conflicting water management interests.

    The modeling approach was tested over a historical period for which in-situ reservoir water levels were available. Assimilation of radar altimetry data significantly improved the performance of the hydrological model. Without assimilation of radar altimetry data, model performance was limited, probably because of the size and complexity of the model domain, simplifications inherent in model design, and the uncertainty of RS and reanalysis data. Altimetry data assimilation reduced the mean absolute error of the simulated reservoir water levels from 4.7 to 1.9 m, and

  17. Hydrological implications of land-cover and land-use change: a proposal for spatial analysis at a regional level in the closed Cuitzeo-lake basin, Michoacán

    Directory of Open Access Journals (Sweden)

    Manuel Mendoza

    2012-03-01

    Full Text Available This study was undertaken to understand the implications of regional land-cover and land-use change (LCLUC in a spatially distributed water balance (SDWB within a poorly gauged basin in 1975 and 2000. Results from this work were derived by integrating remote sensing and geographic information system tools with a water-balance model, along with the application of a transitional matrix analysis. The analysis of changes in water-balance components, based on landforms and transitional matrices, indicated a small tendency towards improvement in the basin's hydrological conditions at a regional level. However, as a consequence of the increase in urban land-use, the basin's plains piedmonts showed a rice in runoff. In addition, the basins' lower areas exhibited a high demand for water resources due to an increased urban land-use in both years, along with the Cuitzeo lake degradation, particularly in terms of pollution and reduction of surface water inflow. The integrated approach used herein constitutes a viable alternative for understanding changes in the amount and spatial distribution of water available in poorly gauged water basins as a consequence of LCLUC.

  18. Environment, poverty and health linkages in the Wami River basin: A search for sustainable water resource management

    Science.gov (United States)

    Madulu, Ndalahwa F.

    in the basin in relation to poverty indicators, people’s lifestyle, and integrated water resource use in the Wami River basin. In the process of examining linkages and sources of conflicts, key strategies to harmonize the interests of various stakeholders and ensure integrated and sustainable use of the Wami River waters will be identified. As a conclusion to paper, issues related to population pressure, pollution, wildlife, pastoralism and many others will be discussed with the view of harmonizing the needs of various stakeholders and minimizing their effect on the river ecosystem. The discussion shows how poverty levels are linked to resources over-exploitation, hence limiting sustainability in the basin. Under the current poverty levels in almost all villages surrounding the Wami River basin, there is no alternative ways or technology to replace non-sustainable resource exploitation. Many villages depend on charcoal burning and selling as a survival strategy and source of income.

  19. Deformation around basin scale normal faults

    International Nuclear Information System (INIS)

    Spahic, D.

    2010-01-01

    Faults in the earth crust occur within large range of scales from microscale over mesoscopic to large basin scale faults. Frequently deformation associated with faulting is not only limited to the fault plane alone, but rather forms a combination with continuous near field deformation in the wall rock, a phenomenon that is generally called fault drag. The correct interpretation and recognition of fault drag is fundamental for the reconstruction of the fault history and determination of fault kinematics, as well as prediction in areas of limited exposure or beyond comprehensive seismic resolution. Based on fault analyses derived from 3D visualization of natural examples of fault drag, the importance of fault geometry for the deformation of marker horizons around faults is investigated. The complex 3D structural models presented here are based on a combination of geophysical datasets and geological fieldwork. On an outcrop scale example of fault drag in the hanging wall of a normal fault, located at St. Margarethen, Burgenland, Austria, data from Ground Penetrating Radar (GPR) measurements, detailed mapping and terrestrial laser scanning were used to construct a high-resolution structural model of the fault plane, the deformed marker horizons and associated secondary faults. In order to obtain geometrical information about the largely unexposed master fault surface, a standard listric balancing dip domain technique was employed. The results indicate that for this normal fault a listric shape can be excluded, as the constructed fault has a geologically meaningless shape cutting upsection into the sedimentary strata. This kinematic modeling result is additionally supported by the observation of deformed horizons in the footwall of the structure. Alternatively, a planar fault model with reverse drag of markers in the hanging wall and footwall is proposed. Deformation around basin scale normal faults. A second part of this thesis investigates a large scale normal fault

  20. Implications of diapir-derived detritus and gypsic paleosols in Lower Triassic strata near the Castle Valley salt wall, Paradox Basin, Utah

    Science.gov (United States)

    Lawton, Timothy F.; Buck, Brenda J.

    2006-10-01

    Gypsum-bearing growth strata and sedimentary facies of the Moenkopi Formation on the crest and NE flank of the Castle Valley salt wall in the Paradox Basin record salt rise, evaporite exposure, and salt-withdrawal subsidence during the Early Triassic. Detrital gypsum and dolomite clasts derived from the middle Pennsylvanian Paradox Formation were deposited in strata within a few kilometers of the salt wall and indicate that salt rise rates roughly balanced sediment accumulation, resulting in long-term exposure of mobile evaporite. Deposition took place primarily in flood-basin or inland sabkha settings that alternated between shallow subaqueous and subaerial conditions in a hyperarid climate. Matrix-supported and clast-supported conglomerates with gypsum fragments represent debris-flow deposits and reworked debris-flow deposits, respectively, interbedded with flood-basin sandstone and siltstone during development of diapiric topography. Mudstone-rich flood-basin deposits with numerous stage I to III gypsic paleosols capped by eolian gypsum sand sheets accumulated during waning salt-withdrawal subsidence. Association of detrital gypsum, eolian gypsum, and gypsic paleosols suggests that the salt wall provided a common source for gypsum in the surrounding strata. This study documents a previously unrecognized salt weld with associated growth strata containing diapir-derived detritus and gypsic palesols that can be used to interpret halokinesis.

  1. Evapotranspiration seasonality across the Amazon Basin

    Science.gov (United States)

    Eiji Maeda, Eduardo; Ma, Xuanlong; Wagner, Fabien Hubert; Kim, Hyungjun; Oki, Taikan; Eamus, Derek; Huete, Alfredo

    2017-06-01

    Evapotranspiration (ET) of Amazon forests is a main driver of regional climate patterns and an important indicator of ecosystem functioning. Despite its importance, the seasonal variability of ET over Amazon forests, and its relationship with environmental drivers, is still poorly understood. In this study, we carry out a water balance approach to analyse seasonal patterns in ET and their relationships with water and energy drivers over five sub-basins across the Amazon Basin. We used in situ measurements of river discharge, and remotely sensed estimates of terrestrial water storage, rainfall, and solar radiation. We show that the characteristics of ET seasonality in all sub-basins differ in timing and magnitude. The highest mean annual ET was found in the northern Rio Negro basin (˜ 1497 mm year-1) and the lowest values in the Solimões River basin (˜ 986 mm year-1). For the first time in a basin-scale study, using observational data, we show that factors limiting ET vary across climatic gradients in the Amazon, confirming local-scale eddy covariance studies. Both annual mean and seasonality in ET are driven by a combination of energy and water availability, as neither rainfall nor radiation alone could explain patterns in ET. In southern basins, despite seasonal rainfall deficits, deep root water uptake allows increasing rates of ET during the dry season, when radiation is usually higher than in the wet season. We demonstrate contrasting ET seasonality with satellite greenness across Amazon forests, with strong asynchronous relationships in ever-wet watersheds, and positive correlations observed in seasonally dry watersheds. Finally, we compared our results with estimates obtained by two ET models, and we conclude that neither of the two tested models could provide a consistent representation of ET seasonal patterns across the Amazon.

  2. An underground view of the Albuquerque Basin

    Energy Technology Data Exchange (ETDEWEB)

    Hawley, J.W.; Haase, C.S.; Lozinsky, R.P. [New Mexico Bureau of Mines and Mineral Resources, Socorro, NM (United States)

    1995-12-31

    Development of valid hydrogeologic models of New Mexico`s ``critical groundwater basins`` has been a long-term objective of the New Mexico Bureau of Mines and Mineral Resources (NMBMMR), a division of New Mexico Tech. The best possible information on basin hydrogeology is needed not only for incorporation in numerical models of groundwater-flow systems, which are necessary for proper management of limited water resources, but also for addressing public concerns relating to a wide range of important environmental issues. In the latter case, a hydrogeologist must be prepared to provide appropriate explanations of why groundwater systems behave physically and chemically as they do in both natural and man-disturbed situations. The paper describes the regional geologic setting, the geologic setting of the Albuquerque Basin, basin- and valley-fill stratigraphy, and the hydrogeologic model of the Albuquerque Basin. 77 refs., 6 figs., 1 tab.

  3. K Basins fuel encapsulation and storage hazard categorization

    International Nuclear Information System (INIS)

    Porten, D.R.

    1994-12-01

    This document establishes the initial hazard categorization for K-Basin fuel encapsulation and storage in the 100 K Area of the Hanford site. The Hazard Categorization for K-Basins addresses the potential for release of radioactive and non-radioactive hazardous material located in the K-Basins and their supporting facilities. The Hazard Categorization covers the hazards associated with normal K-Basin fuel storage and handling operations, fuel encapsulation, sludge encapsulation, and canister clean-up and disposal. The criteria categorizes a facility based on total curies per radionuclide located in the facility. Tables 5-3 and 5-4 display the results in section 5.0. In accordance with DOE-STD-1027 and the analysis provided in section 5.0, the K East Basin fuel encapsulation and storage activity and the K West Basin storage are classified as a open-quotes Category 2close quotes Facility

  4. Performance analysis of double basin solar still with evacuated tubes

    International Nuclear Information System (INIS)

    Hitesh N Panchal; Shah, P. K.

    2013-01-01

    Solar still is a very simple device, which is used for solar distillation process. In this research work, double basin solar still is made from locally available materials. Double basin solar still is made in such a way that, outer basin is exposed to sun and lower side of inner basin is directly connected with evacuated tubes to increase distillate output and reducing heat losses of a solar still. The overall size of the lower basin is about 1006 mm x 325 mm x 380 mm, the outer basin is about 1006 mm x 536 mm x 100 mm Black granite gravel is used to increase distillate output by reducing quantity of brackish or saline water in the both basins. Several experiments have conducted to determine the performance of a solar still in climate conditions of Mehsana (latitude of 23 degree 59' and longitude of 72 degree 38'), Gujarat, like a double basin solar still alone, double basin solar still with different size black granite gravel, double basin solar still with evacuated tubes and double basin solar still with evacuated tubes and different size black granite gravel. Experimental results show that, connecting evacuated tubes with the lower side of the inner basin increases daily distillate output of 56% and is increased by 60%, 63% and 67% with average 10 mm, 20 mm and 30 mm size black granite gravel. Economic analysis of present double basin solar still is 195 days. (authors)

  5. Geochemistry of the Late Paleozoic cherts in the Youjiang Basin: Implications for the basin evolution

    Directory of Open Access Journals (Sweden)

    Huang Hu

    2013-10-01

    Full Text Available We analyzed the major and rare earth element compositions of siliceous deposits from the Upper Devonian Liujiang Formation, Lower Carboniferous Luzhai Formation, Lower–Middle Permian Sidazhai Formation and Tapi Formation, which are widely distributed as bedded cherts in the interplatform basinal successions of the Youjiang Basin. The Liujiang Formation and Luzhai Formation cherts generally have high Al/(Al+Fe+Mn values (0.38–0.94 and are non-hydrothermal cherts. These cherts are generally characterized by moderately negative Ce anomalies and high Y/Ho values relatived to PAAS, indicating that the Youjiang Basin might have evolved into an open rift basin during the Late Devonian–Early Carboniferous. The Sidazhai Formation cherts from Ziyun generally have high Al/(Al+Fe+Mn values (0.60–0.78, suggesting negligible contribution from a hydrothermal component. The Sidazhai Formation cherts from Hechi and the Tapi Formation cherts from Malipo generally have low Al/(Al+Fe+Mn values (0.09–0.41, indicating an intense hydrothermal input. Relatived to the Sidazhai Formation cherts, the Tapi Formation cherts have higher Ce/Ce* values (0.68±0.19 and lower Y/Ho values (41.83±13.27, which may be affected by the terrigenous input from the Vietnam Block. The Sidazhai Formation cherts from Ziyun and Hechi exhibit negative Ce anomalies (0.43±0.12, 0.33±0.17, respectively with high Y/Ho values (57.44±16.20, 46.02±4.27, respectively, resembling the geochemical characteristics of open-ocean basin cherts. These cherts were deposited on a passive continental margin adjacent to the Babu branch ocean, which may have contributed to upwelling. Detailed spatial studies on geochemical characteristics of the Late Paleozoic cherts can unravel the evolution of the Youjiang Basin.

  6. Quantification of water resources uncertainties in the Luvuvhu sub-basin of the Limpopo river basin

    Science.gov (United States)

    Oosthuizen, N.; Hughes, D.; Kapangaziwiri, E.; Mwenge Kahinda, J.; Mvandaba, V.

    2018-06-01

    In the absence of historical observed data, models are generally used to describe the different hydrological processes and generate data and information that will inform management and policy decision making. Ideally, any hydrological model should be based on a sound conceptual understanding of the processes in the basin and be backed by quantitative information for the parameterization of the model. However, these data are often inadequate in many sub-basins, necessitating the incorporation of the uncertainty related to the estimation process. This paper reports on the impact of the uncertainty related to the parameterization of the Pitman monthly model and water use data on the estimates of the water resources of the Luvuvhu, a sub-basin of the Limpopo river basin. The study reviews existing information sources associated with the quantification of water balance components and gives an update of water resources of the sub-basin. The flows generated by the model at the outlet of the basin were between 44.03 Mm3 and 45.48 Mm3 per month when incorporating +20% uncertainty to the main physical runoff generating parameters. The total predictive uncertainty of the model increased when water use data such as small farm and large reservoirs and irrigation were included. The dam capacity data was considered at an average of 62% uncertainty mainly as a result of the large differences between the available information in the national water resources database and that digitised from satellite imagery. Water used by irrigated crops was estimated with an average of about 50% uncertainty. The mean simulated monthly flows were between 38.57 Mm3 and 54.83 Mm3 after the water use uncertainty was added. However, it is expected that the uncertainty could be reduced by using higher resolution remote sensing imagery.

  7. M-area basin closure-Savannah River Site

    International Nuclear Information System (INIS)

    McMullin, S.R.; Horvath, J.G.

    1991-01-01

    M-Area, on the Savannah River Site, processes raw materials and manufactures fuel and target rods for reactor use. Effluent from these processes were discharged into the M-Area settling basin and Lost Lake, a natural wetland. The closure of this basin began in 1988 and included the removal and stabilization of basin fluids, excavation of all contaminated soils from affected areas and Lost Lake, and placement of all materials in the bottom of the emptied basin. These materials were covered with a RCRA style cap, employing redundant barriers of kaolin clay and geosynthetic material. Restoration of excavated uplands and wetlands is currently underway

  8. Reconnaissance coal study in the Susitna basin, 2014

    Science.gov (United States)

    David L. LePain,; Stanley, Richard G.; Harun, Nina T.; Helmold, Kenneth T.; Tsigonis, Rebekah

    2015-01-01

    The Alaska Division of Geological & Geophysical Surveys (DGGS) conducted fieldwork during the summer of 2014 in the Susitna basin as part of an ongoing evaluation of the hydrocarbon potential of frontier basins, particularly those near the Railbelt region (for example, Decker and others, 2013; Gillis and others, 2013). Topical studies associated with this recent work include sedimentary facies analysis (LePain and others, 2015) and structural geology investigations (Gillis and others, 2015). The Susitna basin contains coal-bearing Paleogene and Neogene strata correlative with formations that host oil and gas in Cook Inlet basin to its south. Isotopic signatures of natural gas reservoired in the Miocene/Pliocene Sterling and Miocene Beluga Formations suggest a biogenic origin for Cook Inlet gas (Claypool and others, 1980). To assess the biogenic gas potential of the Susitna basin, it is important to obtain information from its coal-bearing units.Characteristics of coal, such as maturity/rank and cleat development are key parameters influencing viability of a biogenic gas system (Laubach and others, 1998). In an early study of the Susitna basin (Beluga–Yentna region), Barnes (1966) identified, analyzed, and recognized potentially valuable subbituminous coal resources at Fairview Mountain, Canyon Creek, and Johnson Creek. Merritt (1990), in a sedimentological study to evaluate surface coal mining potential of the Tertiary rocks of the Susitna basin (Susitna lowland), concluded that the basin contained several billion tons of mineable reserves. This preliminary report offers a brief summary of new information on coals in the Susitna Basin acquired during associated stratigraphic studies (see LePain and others, 2015). 

  9. Preparation and Characterization of Uranium Oxides in Support of the K Basin Sludge Treatment Project

    International Nuclear Information System (INIS)

    Sinkov, Sergey I.; Delegard, Calvin H.; Schmidt, Andrew J.

    2008-01-01

    Uraninite (UO2) and metaschoepite (UO3-2H2O) are the uranium phases most frequently observed in K Basin sludge. Uraninite arises from the oxidation of uranium metal by anoxic water and metaschoepite arises from oxidation of uraninite by atmospheric or radiolytic oxygen. Studies of the oxidation of uraninite by oxygen to form metaschoepite were performed at 21 C and 50 C. A uranium oxide oxidation state characterization method based on spectrophotometry of the solution formed by dissolving aqueous slurries in phosphoric acid was developed to follow the extent of reaction. This method may be applied to determine uranium oxide oxidation state distribution in K Basin sludge. The uraninite produced by anoxic corrosion of uranium metal has exceedingly fine particle size (6 nm diameter), forms agglomerates, and has the formula UO2.004 ± 0.007; i.e., is practically stoichiometric UO2. The metaschoepite particles are flatter and wider when prepared at 21 C than the particles prepared at 50 C. These particles are much smaller than the metaschoepite observed in prolonged exposure of actual K Basin sludge to warm moist oxidizing conditions. The uraninite produced by anoxic uranium metal corrosion and the metaschoepite produced by reaction of uraninite aqueous slurries with oxygen may be used in engineering and process development testing. A rapid alternative method to determine uranium metal concentrations in sludge also was identified.

  10. State of stress in exhumed basins and implications for fluid flow: insights from the Illizi Basin, Algeria

    KAUST Repository

    English, Joseph M.

    2017-05-31

    The petroleum prospectivity of an exhumed basin is largely dependent on the ability of pre-existing traps to retain oil and gas volumes during and after the exhumation event. Although faults may act as lateral seals in petroleum traps, they may start to become hydraulically conductive again and enable fluid flow and hydrocarbon leakage during fault reactivation. We constrain the present day in situ stresses of the exhumed Illizi Basin in Algeria and demonstrate that the primary north–south and NW–SE (vertical strike-slip) fault systems in the study area are close to critical stress (i.e. an incipient state of shear failure). By contrast, the overpressured and unexhumed Berkine Basin and Hassi Messaoud areas to the north do not appear to be characterized by critical stress conditions. We present conceptual models of stress evolution and demonstrate that a sedimentary basin with benign in situ stresses at maximum burial may change to being characterized by critical stress conditions on existing fault systems during exhumation. These models are supportive of the idea that the breaching of a closed, overpressured system during exhumation of the Illizi Basin may have been a driving mechanism for the regional updip flow of high-salinity formation water within the Ordovician reservoirs during Eocene–Miocene time. This work also has implications for petroleum exploration in exhumed basins. Fault-bounded traps with faults oriented at a high angle to the maximum principal horizontal stress direction in strike-slip or normal faulting stress regimes are more likely to have retained hydrocarbons in exhumed basins than fault-bounded traps with faults that are more optimally oriented for shear failure and therefore have a greater propensity to become critically stressed during exhumation.

  11. 3D Architecture and evolution of the Po Plain-Northern Adriatic Foreland basin during Plio-Pleistocene time

    Science.gov (United States)

    Amadori, Chiara; Toscani, Giovanni; Ghielmi, Manlio; Maesano, Francesco Emanuele; D'Ambrogi, Chiara; Lombardi, Stefano; Milanesi, Riccardo; Panara, Yuri; Di Giulio, Andrea

    2017-04-01

    The Pliocene-Pleistocene tectonic and sedimentary evolution of the eastern Po Plain and northern Adriatic Foreland Basin (PPAF) (extended ca. 35,000 km2) was the consequence of severe Northern Apennine compressional activity and climate-driven eustatic changes. According with the 2D seismic interpretation, facies analysis and sequence stratigraphy approach by Ghielmi et al. (2013 and references therein), these tectono-eustatic phases generated six basin-scale unconformities referred as Base Pliocene (PL1), Intra-Zanclean (PL2), Intra-Piacenzian (PL3), Gelasian (PL4), Base Calabrian (PS1) and Late Calabrian (PS2). We present a basin-wide detailed 3D model of the PPAF region, derived from the interpretation of these unconformities in a dense network of seismic lines (ca. 6,000 km) correlated with more than 200 well stratigraphies (courtesy of ENI E&P). The initial 3D time-model has been time-to-depth converted using the 3D velocity model created with Vel-IO 3D, a tool for 3D depth conversions and then validated and integrated with depth domain dataset from bibliography and well log. Resultant isobath and isopach maps are produced to inspect step-by-step the basin paleogeographic evolution; it occurred through alternating stages of simple and fragmented foredeeps. Changes in the basin geometry through time, from the inner sector located in the Emilia-Romagna Apennines to the outermost region (Veneto and northern Adriatic Sea), were marked by repeated phases of outward migration of two large deep depocenters located in front of Emilia arcs on the west, and in front of Ferrara-Romagna thrusts on the east. During late Pliocene-early Pleistocene, the inner side of the Emilia-Romagna arcs evolved into an elongated deep thrust-top basin due to a strong foredeep fragmentation then, an overall tectono-stratigraphic analysis shows also a decreasing trend of tectonic intensity of the Northern Apennine since Pleistocene until present.

  12. Syn-sedimentary tectonics and facies analysis in a rift setting: Cretaceous Dalmiapuram Formation, Cauvery Basin, SE India

    Directory of Open Access Journals (Sweden)

    Nivedita Chakraborty

    2018-04-01

    Full Text Available The Cretaceous (Albian–Cenomanian Dalmiapuram Formation is one of the economically significant constituents in the hydrocarbon-producing Cauvery rift basin, SE India that opened up during the Late Jurassic–Early Cretaceous Gondwanaland fragmentation. The fossil-rich Dalmiapuram Formation, exposed at Ariyalur within the Pondicherry sub-basin of Cauvery Basin, rests in most places directly on the Archean basement and locally on the Lower Cretaceous (Barremian–Aptian Basal Siliciclastic Formation. In the Dalmiapuram Formation, a facies association of tectonically-disturbed phase is sandwiched between two drastically quieter phases. The early syn-rift facies association (FA 1, records the first carbonate marine transgression within the basin, comprising a bar–lagoon system with occasionally storms affecting along the shore and a sheet-like non-recurrent biomicritic limestone bed on the shallow shelf that laterally grades into pyrite–glauconite-bearing dark-colored shale in the deeper shelf. Spectacular breccias together with varied kinds of mass-flow products comprise the syn-rift facies association (FA 2. While the breccias occur at the basin margin area, the latter extend in the deeper inland sea. Clast composition of the coarse clastics includes large, even block-sized limestone fragments and small fragments of granite and sandstone from the basement. Marl beds of quieter intervals between tectonic pulses occur in alternation with them. Faulted basal contact of the formation, and small grabens filled by multiple mass-flow packages bear the clear signature of the syntectonic activity localized contortions, slump folds, and pillow beds associated with mega slump/slide planes and joints, which corroborates this contention further. This phase of tectonic intervention is followed by another relatively quieter phase and accommodates the late syn-rift facies association (FA 3. A tidal bar–interbar shelf depositional system allowed a

  13. Water equivalent of snow survey of the Red River Basin and Heart/Cannonball River Basin, March 1978

    International Nuclear Information System (INIS)

    Feimster, E.L.

    1979-10-01

    The water equivalent of accumulated snow was estimated in the Red River and Heart/Cannonball River basins and surrounding areas in North Dakota during the period 8 to 17 March 1978. A total of 570 km were flown, covering a 274 km section of the Red River Basin watershed. These lines had been surveyed in March 1974. Twelve flight lines were flown over the North Dakota side of the Red River from a point 23 km south of the Canadian border southward to the city of Fargo, North Dakota. The eight flight lines flown over the Minnesota side of the Red River extended from 23 km south of the Canadian border southward to Breckenridge, Minnesota. Using six flight lines, a total of 120 km were flown in the Heart/Cannonball River Basin, an area southwest of the city of Bismark, North Dakota. This was the first such flight in the Heart/Cannonball River Basin area. Computed weighted average water equivalents on each flight line in the Red River Basin ranged from 4.8 cm to 12.7 cm of water, averaging 7.6 cm for all lines. In the Heart/Cannonball River Basin, the weighted water equivalent ranged from 8.9 cm to 19.1 cm of water, averaging 12.7 cm for all lines. The method used employs the measurement of the natural gamma rays both before and after snow covers the ground

  14. Modelling the Congo basin ecosystems with a dynamic vegetation model

    Science.gov (United States)

    Dury, Marie; Hambuckers, Alain; Trolliet, Franck; Huynen, Marie-Claude; Haineaux, Damien; Fontaine, Corentin M.; Fayolle, Adeline; François, Louis

    2014-05-01

    The scarcity of field observations in some parts of the world makes difficult a deep understanding of some ecosystems such as humid tropical forests in Central Africa. Therefore, modelling tools are interesting alternatives to study those regions even if the lack of data often prevents sharp calibration and validation of the model projections. Dynamic vegetation models (DVMs) are process-based models that simulate shifts in potential vegetation and its associated biogeochemical and hydrological cycles in response to climate. Initially run at the global scale, DVMs can be run at any spatial scale provided that climate and soil data are available. In the framework of the BIOSERF project ("Sustainability of tropical forest biodiversity and services under climate and human pressure"), we use and adapt the CARAIB dynamic vegetation model (Dury et al., iForest - Biogeosciences and Forestry, 4:82-99, 2011) to study the Congo basin vegetation dynamics. The field campaigns have notably allowed the refinement of the vegetation representation from plant functional types (PFTs) to individual species through the collection of parameters such as the specific leaf area or the leaf C:N ratio of common tropical tree species and the location of their present-day occurrences from literature and available database. Here, we test the model ability to reproduce the present spatial and temporal variations of carbon stocks (e.g. biomass, soil carbon) and fluxes (e.g. gross and net primary productivities (GPP and NPP), net ecosystem production (NEP)) as well as the observed distribution of the studied species over the Congo basin. In the lack of abundant and long-term measurements, we compare model results with time series of remote sensing products (e.g. vegetation leaf area index (LAI), GPP and NPP). Several sensitivity tests are presented: we assess consecutively the impacts of the level at which the vegetation is simulated (PFTs or species), the spatial resolution and the initial land

  15. Value of the principles of ''isolation of basins and their boundaries'' and ''isolation of basins and elevations'' in prospecting for oil and gas in the oil and gas basin of China

    Energy Technology Data Exchange (ETDEWEB)

    Chzhan, V.; Li, Yu.; Se, M.

    1982-01-01

    A feature of the Chinese oil and gas basins is their fracturing into a large number (to several dozen in one oil and gas basin) isolated basins which are controlled by fault disorders. In these basins in which thick masses of Mesozoic and mainly Cenozoic sedimentary rocks are developed, the main volumes of source rocks are concentrated. Migration of hydrocarbons usually occurs to short distances not exceeding tens of kilometers. From the experience of prospecting and exploration back in the 1950's it was established that thick masses in the central zones of the basins are favorable for processes of hydrocarbon generation, while accumulation occurs in the elevated peripheral parts of the basins and in the regions of the central elevations. The zones of articulation of the central elevations and the edges of the basins are very promising for prospecting for local structures. Examples of large fields which are subordinate to these laws are the largest oil fields in China, Lyakhoe, Dagan and Shenli which are located along the edges of the Bokhayvan basin in the North Chinese oil and gas basin and the Datsin field which is confined to the central elevation of the Sunlyao basin.

  16. Ecohydrological Controls on Intra-Basin Alpine Subarctic Water Balances

    Science.gov (United States)

    Carey, S. K.; Ziegler, C. M.

    2007-12-01

    In the mountainous Canadian subarctic, elevation gradients control the disposition of vegetation, permafrost, and characteristics of the soil profile. How intra-basin ecosystems combine to control catchment-scale water and biogeochimcal cycling is uncertain. To this end, a multi-year ecohydrological investigation was undertaken in Granger Basin (GB), a 7.6 km2 sub-basin of the Wolf Creek Research Basin, Yukon Territory, Canada. GB was divided into four sub-basins based on the dominant vegetation and permafrost status, and the timing and magnitude of hydrological processes were compared using hydrometric and hydrochemical methods. Vegetation plays an important role in end-of-winter snow accumulation as snow redistribution by wind is controlled by roughness length. In sub-basins of GB with tall shrubs, snow accumulation is enhanced compared with areas of short shrubs and tundra vegetation. The timing of melt was staggered with elevation, although melt-rates were similar among the sub-basins. Runoff was enhanced at the expense of infiltration in tall shrub areas due to high snow water equivalent and antecedent soil moisture. In the high-elevation tundra sub-basin, thin soils with cold ground temperatures resulted in increased surface runoff. For the freshet period, the lower and upper sub-basins accounted for 81 % of runoff while accounting for 58 % of the total basin area. Two-component isotopic hydrograph separation revealed that during melt, pre-event water dominated in all sub-basins, yet those with greater permafrost disposition and taller shrubs had increased event-water. Dissolved organic carbon (DOC) spiked prior to peak freshet in each sub-basin except for the highest with thin soils, and was associated with flushing of surficial organic soils. For the post-melt period, all sub-basins have similar runoff contributions. Solute and stable isotope data indicate that in sub-basins dominated by permafrost, supra-permafrost runoff pathways predominate as flow

  17. Distribution, Statistics, and Resurfacing of Large Impact Basins on Mercury

    Science.gov (United States)

    Fassett, Caleb I.; Head, James W.; Baker, David M. H.; Chapman, Clark R.; Murchie, Scott L.; Neumann, Gregory A.; Oberst, Juergen; Prockter, Louise M.; Smith, David E.; Solomon, Sean C.; hide

    2012-01-01

    The distribution and geological history of large impact basins (diameter D greater than or equal to 300 km) on Mercury is important to understanding the planet's stratigraphy and surface evolution. It is also informative to compare the density of impact basins on Mercury with that of the Moon to understand similarities and differences in their impact crater and basin populations [1, 2]. A variety of impact basins were proposed on the basis of geological mapping with Mariner 10 data [e.g. 3]. This basin population can now be re-assessed and extended to the full planet, using data from the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft. Note that small-to- medium-sized peak-ring basins on Mercury are being examined separately [4, 5]; only the three largest peak-ring basins on Mercury overlap with the size range we consider here. In this study, we (1) re-examine the large basins suggested on the basis of Mariner 10 data, (2) suggest additional basins from MESSENGER's global coverage of Mercury, (3) assess the size-frequency distribution of mercurian basins on the basis of these global observations and compare it to the Moon, and (4) analyze the implications of these observations for the modification history of basins on Mercury.

  18. Implementing Integrated River Basin Management in China

    Directory of Open Access Journals (Sweden)

    Dorri G. J. te Boekhorst

    2010-06-01

    Full Text Available This paper examines the role of the World Wildlife Fund for Nature China as policy entrepreneur in China. It illustrates the ways in which the World Wildlife Fund for Nature is active in promoting integrated river basin management in the Yangtze River basin and how the efforts at basin level are matched with the advice of the China Council for International Cooperation on Environment and Development task force on integrated river basin management to the national government of China. This article demonstrates that the World Wildlife Fund for Nature uses various strategies of different types to support a transition process towards integrated river basin management. Successful deployment of these strategies for change in environmental policy requires special skills, actions, and attitudes on the part of the policy entrepreneur, especially in China, where the government has a dominant role regarding water management and the position of policy entrepeneurs is delicate.

  19. Are calanco landforms similar to river basins?

    Science.gov (United States)

    Caraballo-Arias, N A; Ferro, V

    2017-12-15

    In the past badlands have been often considered as ideal field laboratories for studying landscape evolution because of their geometrical similarity to larger fluvial systems. For a given hydrological process, no scientific proof exists that badlands can be considered a model of river basin prototypes. In this paper the measurements carried out on 45 Sicilian calanchi, a type of badlands that appears as a small-scale hydrographic unit, are used to establish their morphological similarity with river systems whose data are available in the literature. At first the geomorphological similarity is studied by identifying the dimensionless groups, which can assume the same value or a scaled one in a fixed ratio, representing drainage basin shape, stream network and relief properties. Then, for each property, the dimensionless groups are calculated for the investigated calanchi and the river basins and their corresponding scale ratio is evaluated. The applicability of Hack's, Horton's and Melton's laws for establishing similarity criteria is also tested. The developed analysis allows to conclude that a quantitative morphological similarity between calanco landforms and river basins can be established using commonly applied dimensionless groups. In particular, the analysis showed that i) calanchi and river basins have a geometrically similar shape respect to the parameters Rf and Re with a scale factor close to 1, ii) calanchi and river basins are similar respect to the bifurcation and length ratios (λ=1), iii) for the investigated calanchi the Melton number assumes values less than that (0.694) corresponding to the river case and a scale ratio ranging from 0.52 and 0.78 can be used, iv) calanchi and river basins have similar mean relief ratio values (λ=1.13) and v) calanchi present active geomorphic processes and therefore fall in a more juvenile stage with respect to river basins. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Classification of Prairie basins by their hysteretic connected functions

    Science.gov (United States)

    Shook, K.; Pomeroy, J. W.

    2017-12-01

    Diagnosing climate change impacts in the post-glacial landscapes of the North American Prairies through hydrological modelling is made difficult by drainage basin physiography. The region is cold, dry and flat with poorly developed stream networks, and so the basin area that is hydrologically connected to the stream outlet varies with basin depressional storage. The connected area controls the contributing area for runoff reaching the stream outlet. As depressional storage fills, ponds spill from one to another; the chain of spilling ponds allows water to flow over the landscape and increases the connected area of the basin. As depressional storage decreases, the connected fraction drops dramatically. Detailed, fine-scale models and remote sensing have shown that the relationship between connected area and the depressional storage is hysteretic in Prairie basins and that the nature of hysteresis varies with basin physiography. This hysteresis needs to be represented in hydrological models to calculate contributing area, and therefore streamflow hydrographs. Parameterisations of the hysteresis are needed for large-scale models used for climate change diagnosis. However, use of parameterisations of hysteresis requires guidance on how to represent them for a particular basin. This study shows that it is possible to relate the shape of hysteretic functions as determined by detailed models to the overall physiography of the basin, such as the fraction of the basin below the outlet, and remote sensing estimates of depressional storage, using the size distribution and location of maximum ponded water areas. By classifying basin physiography, the hysteresis of connected area - storage relationships can be estimated for basins that do not have high-resolution topographic data, and without computationally-expensive high-resolution modelling.

  1. Petroleum prospectivity of the Canada Basin, Arctic Ocean

    Science.gov (United States)

    Grantz, A.; Hart, P.E.

    2011-01-01

    Reconnaissance seismic reflection data indicate that Canada Basin is a remnant of the Amerasia Basin of the Arctic Ocean that lies south of the Alpha-Mendeleev Large Igneous Province, which was constructed on the northern part of the Amerasia Basin between about 127 and 89-75 Ma. Canada Basin is filled with Early Jurassic to Holocene detritus from the Mackenzie River system, which drains the northern third of interior North America, with sizable contributions from Alaska and Northwest Canada. Except for the absence of a salt- and shale-bearing mobile substrate Canada Basin is analogous to the Mississippi Delta and the western Gulf of Mexico. Canada Basin contains about 7 to >14 km of sediment beneath the Mackenzie Prodelta on the southeast, 6 to 7 km of sediment beneath the abyssal plain on the west, and roughly 5 or 6 million cubic km of sediment. About three fourths of the basin fill generates low amplitude seismic reflections, interpreted to represent hemiplegic deposits, and a fourth of the fill generates interbedded lenses to extensive layers of moderate to high amplitude reflections interpreted to represent unconfined turbidite and amalgamated channel deposits. Extrapolation from Arctic Alaska and Northwest Canada suggests that three fourths of the section in Canada Basin may contain intervals of hydrocarbon source rocks and the apparent age of the basin suggests that it contains three of the six stratigraphic intervals that together provided >90?? of the World's discovered reserves of oil and gas.. Worldwide heat flow averages suggest that about two thirds of Canada Basin lies in the oil or gas window. At least five types of structural or stratigraphic features of local to regional occurrence offer exploration targets in Canada Basin. These consist of 1) a belt of late Eocene to Miocene shale-cored detachment folds containing with at least two anticlines that are capped by beds with bright spots, 2) numerous moderate to high amplitude reflection packets

  2. An Analytical Method for Deriving Reservoir Operation Curves to Maximize Social Benefits from Multiple Uses of Water in the Willamette River Basin

    Science.gov (United States)

    Moore, K. M.; Jaeger, W. K.; Jones, J. A.

    2013-12-01

    A central characteristic of large river basins in the western US is the spatial and temporal disjunction between the supply of and demand for water. Water sources are typically concentrated in forested mountain regions distant from municipal and agricultural water users, while precipitation is super-abundant in winter and deficient in summer. To cope with these disparities, systems of reservoirs have been constructed throughout the West. These reservoir systems are managed to serve two main competing purposes: to control flooding during winter and spring, and to store spring runoff and deliver it to populated, agricultural valleys during the summer. The reservoirs also provide additional benefits, including recreation, hydropower and instream flows for stream ecology. Since the storage capacity of the reservoirs cannot be used for both flood control and storage at the same time, these uses are traded-off during spring, as the most important, or dominant use of the reservoir, shifts from buffering floods to storing water for summer use. This tradeoff is expressed in the operations rule curve, which specifies the maximum level to which a reservoir can be filled throughout the year, apart from real-time flood operations. These rule curves were often established at the time a reservoir was built. However, climate change and human impacts may be altering the timing and amplitude of flood events and water scarcity is expected to intensify with anticipated changes in climate, land cover and population. These changes imply that reservoir management using current rule curves may not match future societal values for the diverse uses of water from reservoirs. Despite a broad literature on mathematical optimization for reservoir operation, these methods are not often used because they 1) simplify the hydrologic system, raising doubts about the real-world applicability of the solutions, 2) exhibit perfect foresight and assume stationarity, whereas reservoir operators face

  3. Petroleum geology framework, southeast Bowser Basin, British Columbia

    Energy Technology Data Exchange (ETDEWEB)

    Haggart, J.W. [Geological Survey of Canada, Vancouver, BC (Canada); Mahoney, J.B. [Wisconsin Univ., Eau Claire, WS (United States). Dept. of Geology

    2003-07-01

    There are significant coal resources in the northern regions of the Bowser basin in north-central British Columbia. However, the resource potential of the southern part of the basin has not been assessed, therefore the hydrocarbon potential is not known. Geological maps indicate several Mesozoic clastic and volcanic units across the southern part of the basin. Two stratigraphic intervals of the southern Bowser basin are considered to be potential source rocks within the Jurassic-Cretaceous strata. The fine-grained clastic rocks of the Bowser Lake Group contain significant amounts of carbonaceous material or organic matter. Well developed cleavage indicates that the rocks may be thermally over mature. This paper described potential reservoir rocks within the basin, along with their thermal maturation and conceptual play. 4 figs.

  4. Petroleum prospectivity of the Canada Basin, Arctic Ocean

    Science.gov (United States)

    Grantz, Arthur; Hart, Patrick E.

    2012-01-01

    Reconnaissance seismic reflection data indicate that Canada Basin is a >700,000 sq. km. remnant of the Amerasia Basin of the Arctic Ocean that lies south of the Alpha-Mendeleev Large Igneous Province, which was constructed across the northern part of the Amerasia Basin between about 127 and 89-83.5 Ma. Canada Basin was filled by Early Jurassic to Holocene detritus from the Beaufort-Mackenzie Deltaic System, which drains the northern third of interior North America, with sizable contributions from Alaska and Northwest Canada. The basin contains roughly 5 or 6 million cubic km of sediment. Three fourths or more of this volume generates low amplitude seismic reflections, interpreted to represent hemipelagic deposits, which contain lenses to extensive interbeds of moderate amplitude reflections interpreted to represent unconfined turbidite and amalgamated channel deposits.Extrapolation from Arctic Alaska and Northwest Canada suggests that three fourths of the section in Canada Basin is correlative with stratigraphic sequences in these areas that contain intervals of hydrocarbon source rocks. In addition, worldwide heat flow averages suggest that about two thirds of Canada Basin lies in the oil or gas windows. Structural, stratigraphic and combined structural and stratigraphic features of local to regional occurrence offer exploration targets in Canada Basin, and at least one of these contains bright spots. However, deep water (to almost 4000 m), remoteness from harbors and markets, and thick accumulations of seasonal to permanent sea ice (until its possible removal by global warming later this century) will require the discovery of very large deposits for commercial success in most parts of Canada Basin. ?? 2011 Elsevier Ltd.

  5. Hydrogeology of the West Siberian Basin

    International Nuclear Information System (INIS)

    Foley, M.G.; Bradley, D.J.; Cole, C.R.

    1996-01-01

    Nuclear fuel cycle activities of the former Soviet Union (FSU) have resulted in extensive radioactive contaminant releases to the environment in western Siberia. We are developing three-dimensional numerical models of the hydrogeology and potential contaminant migration in the West Siberian Basin. We have assumed that ground-water flow in the West Siberian Basin is topographically driven, with recharge to the basin occurring in the highlands on the west, east, and south, and internal discharge localized in numerous river valleys and lakes that ultimately discharge north to the ocean. We are modeling the regional hydrogeology as three-dimensional, steady-state, saturated flow that is recharged from above. We acquired topographic, geologic, hydrostratigraphic, hydrogeologic, and water-balance data for the West Siberian Basin and constructed a regional water table. We correlated and combined 70 different rock types derived from published descriptions of West Siberian Basin rocks into 17 rock types appropriate for assignment of hydrogeologic properties on the basis of spatial heterogeneity and constituent (i.e., sand, silt, and clay) diversity. Examination of resulting three-dimensional assemblages of rock types showed that they were consistent with published and inferred paleogeography and depositional processes. Calibrating the basin's moisture balance (i.e., recharge and discharge) to the derived water table determined plausible input parameter values for unknowns such as hydraulic conductivities. The general directions of calculated ground-water flow suggest that major rivers act as discharge areas, with upwelling below the rivers extending down into the basement rocks, and that ground-water divides that penetrate the entire thickness of the model are evident between major rivers

  6. GRAIL Gravity Observations of the Transition from Complex Crater to Peak-Ring Basin on the Moon: Implications for Crustal Structure and Impact Basin Formation

    Science.gov (United States)

    Baker, David M. H.; Head, James W.; Phillips, Roger J.; Neumann, Gregory A.; Bierson, Carver J.; Smith, David E.; Zuber, Maria T.

    2017-01-01

    High-resolution gravity data from the Gravity Recovery and Interior Laboratory (GRAIL) mission provide the opportunity to analyze the detailed gravity and crustal structure of impact features in the morphological transition from complex craters to peak-ring basins on the Moon. We calculate average radial profiles for free-air anomalies and Bouguer anomalies for peak-ring basins, proto-basins, and the largest complex craters. Complex craters and proto-basins have free-air anomalies that are positively correlated with surface topography, unlike the prominent lunar mascons (positive free-air anomalies in areas of low elevation) associated with large basins. The Bouguer gravity anomaly profiles of complex craters are highly irregular, with central positive anomalies that are generally absent or not clearly tied to interior morphology. In contrast, gravity profiles for peak-ring basins (approx. 200 km to 580 km) are much more regular and are highly correlated with surface morphology. A central positive Bouguer anomaly is confined within the peak ring and a negative Bouguer anomaly annulus extends from the edge of the positive anomaly outward to about the rim crest. A number of degraded basins lacking interior peak rings have diameters and gravity patterns similar to those of well-preserved peak-ring basins. If these structures represent degraded peak-ring basins, the number of peak-ring basins on the Moon would increase by more than a factor of two to 34. The gravity anomalies within basins are interpreted to be due to uplift of the mantle confined within the peak ring and an annulus of thickened crust between the peak ring and rim crest. We hypothesize that mantle uplift is influenced by interaction between the transient cavity and the mantle. Further, mascon formation is generally disconnected from the number of basin rings formed and occurs over a wide range of basin sizes. These observations have important implications for models of basin and mascon formation on the

  7. Proterozoic intracontinental basin: The Vindhyan example

    Indian Academy of Sciences (India)

    basins display marked similarities in their lithology, depositional setting and stratigraphic architecture. (Naqvi and Rogers 1987). This note sum- marises the stratigraphy, stratal architecture, sed- imentology and geochronology of the Vindhyan. Supergroup occurring in the Son valley region. (figure 1). 2. The Vindhyan basin.

  8. sedimentology, depositional environments and basin evolution

    African Journals Online (AJOL)

    Preferred Customer

    ABSTRACT: The Inter-Trappean coal and oil shale-bearing sedimentation in the Delbi-Moye Basin ... accompanied by passive subsidence. ... margins, whereas the concentration of fine-grained clastic sediments and ..... concentrated at the marginal areas of the basin. .... faults favoured the accumulation of alluvial fan.

  9. The tritium balance of the Ems river basin

    International Nuclear Information System (INIS)

    Krause, W.J.

    1989-01-01

    For the Ems river basin, as a fine example of a Central European lowland basin, an inventory of the tritium distribution is presented for the hydrologic years 1951 to 1983. On the basis of a balance model, the tritium contents in surface waters and groundwater of the Ems river basin are calculated, using known and extrapolated tritium input data and comparing them with the corresponding values measured since 1974. A survey of tritium flows occurring in this basin is presented, taking meteorologic and hydrologic facts into account. (orig.)

  10. Rifting Thick Lithosphere - Canning Basin, Western Australia

    Science.gov (United States)

    Czarnota, Karol; White, Nicky

    2016-04-01

    The subsidence histories and architecture of most, but not all, rift basins are elegantly explained by extension of ~120 km thick lithosphere followed by thermal re-thickening of the lithospheric mantle to its pre-rift thickness. Although this well-established model underpins most basin analysis, it is unclear whether the model explains the subsidence of rift basins developed over substantially thick lithosphere (as imaged by seismic tomography beneath substantial portions of the continents). The Canning Basin of Western Australia is an example where a rift basin putatively overlies lithosphere ≥180 km thick, imaged using shear wave tomography. Subsidence modelling in this study shows that the entire subsidence history of the account for the observed subsidence, at standard crustal densities, the lithospheric mantle is required to be depleted in density by 50-70 kg m-3, which is in line with estimates derived from modelling rare-earth element concentrations of the ~20 Ma lamproites and global isostatic considerations. Together, these results suggest that thick lithosphere thinned to > 120 km is thermally stable and is not accompanied by post-rift thermal subsidence driven by thermal re-thickening of the lithospheric mantle. Our results show that variations in lithospheric thickness place a fundamental control on basin architecture. The discrepancy between estimates of lithospheric thickness derived from subsidence data for the western Canning Basin and those derived from shear wave tomography suggests that the latter technique currently is limited in its ability to resolve lithospheric thickness variations at horizontal half-wavelength scales of <300 km.

  11. Effects of Cougar Predation and Nutrition on Mule Deer Population Declines in the IM Province of the Columbia Basin, Annual Report 2002-2003.

    Energy Technology Data Exchange (ETDEWEB)

    Wielgus, Robert; Shipley, Lisa; Myers, Woodrow

    2003-09-01

    Construction of the Grand Coulee and Chief Joseph dams has resulted in inundation and loss of 29,125 total habitat units for mule deer and irrigation agriculture in many parts the Intermountain Province (IM) of the Columbia Basin. Mule deer in the Shrub-Steppe are ranked high priority target species for mitigation and management and are declining in most portions of the sub basins of the IM. Reasons for the decline are unknown but believed to be related to habitat changes resulting from dams and irrigation agriculture. White-tailed deer are believed to be increasing throughout the basin because of habitat changes brought about by the dams and irrigation agriculture. Recent research (1997-2000) in the NE IM and adjacent Canadian portions of the Columbia Basin (conducted by this author and funded by the Columbia Basin Fish & Wildlife Compensation Program B.C.), suggest that the increasing white-tailed deer populations (because of dams and irrigation agriculture) are resulting in increased predation by cougars on mule deer (apparent competition or alternate prey hypothesis). The apparent competition hypothesis predicts that as alternate prey (white-tailed deer) densities increase, so do densities of predators, resulting in increased incidental predation on sympatric native prey (mule deer). Apparent competition can result in population declines and even extirpation of native prey in some cases. Such a phenomenon may account for declines of mule deer in the IM and throughout arid and semi-arid West where irrigation agriculture is practiced. We will test the apparent competition hypothesis by conducting a controlled, replicated 'press' experiment in at least 2 treatment and 2 control areas of the IM sub basins by reducing densities of white-tailed deer and observing any changes in cougar predation on mule deer. Deer densities will be monitored by WADFW personnel using annual aerial surveys and/or other trend indices. Predation rates and population growth rates

  12. Cenozoic North American Drainage Basin Evolution, Sediment Yield, and Accumulation in the Gulf of Mexico Basin

    Science.gov (United States)

    Galloway, W.; Ganey-Curry, P. E.

    2010-12-01

    The Cenozoic fill of the Gulf of Mexico basin contains a continuous record of sediment supply from the North American continental interior for the past 65 million years. Regional mapping of unit thickness and paleogeography for 18 depositional episodes defines patterns of shifting entry points of continental fluvial systems and quantifies the total volume of sediment supplied during each episode. Eight fluvio-deltaic depocenters, named for geographic similarities to entry points and drainage basins of modern rivers, are present. From southwest to northeast, they are the Rio Bravo, Rio Grande, Guadalupe, Colorado, Houston-Brazos, Red, Mississippi, and Tennessee axes. Sediment volume was calculated from hand-contoured unit thickness maps compiled from basin-wide well and seismic control. Using a GIS algorithm to sum volumes within polygons bounding interpreted North American river contribution, the total extant volume was then calculated. General compaction factors were used to convert modern volume to quantitative approximations of total grain volume. Grain volume rate of supply for each depositional episode was then calculated. Values vary by more than an order of magnitude. Supply rate has commonly varied by two-fold or more between successive depositional episodes. Sediment supply is a significant, independent variable in development of stratigraphic sequences within the Gulf basin. Paleogeographic maps of the continental interior for eleven Cenozoic time intervals display the evolving and complex interplay of intracontinental tectonism, climate change, and drainage basin evolution. Five tectono-climatic eras are differentiated: Paleocene late Laramide era; early to middle Eocene terminal Laramide era; middle Cenozoic (Late Eocene—Early Miocene) dry, volcanogenic era; middle Neogene (Middle—Late Miocene) arid, extensional era; and late Neogene (Plio—Pleistocene) monsoonal, epeirogenic uplift era. Sediment supply to the GOM reflects the interplay of (1

  13. Hydrologic Sub-basins of Greenland, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — The Hydrologic Sub-basins of Greenland data set contains Geographic Information System (GIS) polygon shapefiles that include 293 hydrologic sub-basins of the...

  14. Hydrological Cycle in the Heihe River Basin and Its Implication for Water Resource Management in Endorheic Basins

    Science.gov (United States)

    Li, Xin; Cheng, Guodong; Ge, Yingchun; Li, Hongyi; Han, Feng; Hu, Xiaoli; Tian, Wei; Tian, Yong; Pan, Xiaoduo; Nian, Yanyun; Zhang, Yanlin; Ran, Youhua; Zheng, Yi; Gao, Bing; Yang, Dawen; Zheng, Chunmiao; Wang, Xusheng; Liu, Shaomin; Cai, Ximing

    2018-01-01

    Endorheic basins around the world are suffering from water and ecosystem crisis. To pursue sustainable development, quantifying the hydrological cycle is fundamentally important. However, knowledge gaps exist in how climate change and human activities influence the hydrological cycle in endorheic basins. We used an integrated ecohydrological model, in combination with systematic observations, to analyze the hydrological cycle in the Heihe River Basin, a typical endorheic basin in arid region of China. The water budget was closed for different landscapes, river channel sections, and irrigation districts of the basin from 2001 to 2012. The results showed that climate warming, which has led to greater precipitation, snowmelt, glacier melt, and runoff, is a favorable factor in alleviating water scarcity. Human activities, including ecological water diversion, cropland expansion, and groundwater overexploitation, have both positive and negative effects. The natural oasis ecosystem has been restored considerably, but the overuse of water in midstream and the use of environmental flow for agriculture in downstream have exacerbated the water stress, resulting in unfavorable changes in surface-ground water interactions and raising concerns regarding how to fairly allocate water resources. Our results suggest that the water resource management in the region should be adjusted to adapt to a changing hydrological cycle, cropland area must be reduced, and the abstraction of groundwater must be controlled. To foster long-term benefits, water conflicts should be handled from a broad socioeconomic perspective. The findings can provide useful information on endorheic basins to policy makers and stakeholders around the world.

  15. Recharge and Groundwater Flow Within an Intracratonic Basin, Midwestern United States.

    Science.gov (United States)

    Panno, Samuel V; Askari, Zohreh; Kelly, Walton R; Parris, Thomas M; Hackley, Keith C

    2018-01-01

    The conservative nature of chloride (Cl - ) in groundwater and the abundance of geochemical data from various sources (both published and unpublished) provided a means of developing, for the first time, a representation of the hydrogeology of the Illinois Basin on a basin-wide scale. The creation of Cl - isocons superimposed on plan view maps of selected formations and on cross sections across the Illinois Basin yielded a conceptual model on a basin-wide scale of recharge into, groundwater flow within and through the Illinois Basin. The maps and cross sections reveal the infiltration and movement of freshwater into the basin and dilution of brines within various geologic strata occurring at basin margins and along geologic structures. Cross-formational movement of brines is also seen in the northern part of the basin. The maps and cross sections also show barriers to groundwater movement created by aquitards resulting in areas of apparent isolation/stagnation of concentrated brines within the basin. The distribution of Cl - within the Illinois Basin suggests that the current chemical composition of groundwater and distribution of brines within the basin is dependent on five parameters: (1) presence of bedrock exposures along basin margins; (2) permeability of geologic strata and their distribution relative to one another; (3) presence or absence of major geologic structures; (4) intersection of major waterways with geologic structures, basin margins, and permeable bedrock exposures; and (5) isolation of brines within the basin due to aquitards, inhomogeneous permeability, and, in the case of the deepest part of the basin, brine density effects. © 2017, National Ground Water Association.

  16. Geology and salt deposits of the Michigan Basin

    International Nuclear Information System (INIS)

    Johnson, K.S.; Gonzales, S.

    1976-07-01

    The Silurian-age Salina salt, one of the greatest deposits of bedded rock salt in the world, underlies most of the Michigan basin and parts of the Appalachian basin in Ohio. Pennsylvania, New York, and West Virginia. Interest in this salt deposit has increased in recent years because there may be one or more areas where it could be used safely as a repository for the underground storage of high-level radioactive wastes. The general geology of the Michigan basin is summarized and the major salt deposits are described in the hope that these data will be useful in determining whether there are any areas in the basin that are sufficiently promising to warrant further detailed study. Distribution of the important salt deposits in the basin is limited to the Southern Peninsula of Michigan

  17. Demonstration of risk-based decision analysis in remedial alternative selection and design

    International Nuclear Information System (INIS)

    Evans, E.K.; Duffield, G.M.; Massmann, J.W.; Freeze, R.A.; Stephenson, D.E.

    1993-01-01

    This study demonstrates the use of risk-based decision analysis (Massmann and Freeze 1987a, 1987b) in the selection and design of an engineering alternative for groundwater remediation at a waste site at the Savannah River Site, a US Department of Energy facility in South Carolina. The investigation focuses on the remediation and closure of the H-Area Seepage Basins, an inactive disposal site that formerly received effluent water from a nearby production facility. A previous study by Duffield et al. (1992), which used risk-based decision analysis to screen a number of ground-water remediation alternatives under consideration for this site, indicated that the most attractive remedial option is ground-water extraction by wells coupled with surface water discharge of treated effluent. The aim of the present study is to demonstrate the iterative use of risk-based decision analysis throughout the design of a particular remedial alternative. In this study, we consider the interaction between two episodes of aquifer testing over a 6-year period and the refinement of a remedial extraction well system design. Using a three-dimensional ground-water flow model, this study employs (1) geostatistics and Monte Carlo techniques to simulate hydraulic conductivity as a stochastic process and (2) Bayesian updating and conditional simulation to investigate multiple phases of aquifer testing. In our evaluation of a remedial alternative, we compute probabilistic costs associated with the failure of an alternative to completely capture a simulated contaminant plume. The results of this study demonstrate the utility of risk-based decision analysis as a tool for improving the design of a remedial alternative through the course of phased data collection at a remedial site

  18. Basin scale management of surface and ground water

    International Nuclear Information System (INIS)

    Tracy, J.C.; Al-Sharif, M.

    1993-01-01

    An important element in the economic development of many regions of the Great Plains is the availability of a reliable water supply. Due to the highly variable nature of the climate through out much of the Great Plains region, non-controlled stream flow rates tend to be highly variable from year to year. Thus, the primary water supply has tended towards developing ground water aquifers. However, in regions where shallow ground water is extracted for use, there exists the potential for over drafting aquifers to the point of depleting hydraulically connected stream flows, which could adversely affect the water supply of downstream users. To prevent the potential conflict that can arise when a basin's water supply is being developed or to control the water extractions within a developed basin requires the ability to predict the effect that water extractions in one region will have on water extractions from either surface or ground water supplies else where in the basin. This requires the ability to simulate ground water levels and stream flows on a basin scale as affected by changes in water use, land use practices and climatic changes within the basin. The outline for such a basin scale surface water-ground water model has been presented in Tracy (1991) and Tracy and Koelliker (1992), and the outline for the mathematical programming statement to aid in determining the optimal allocation of water on a basin scale has been presented in Tracy and Al-Sharif (1992). This previous work has been combined into a computer based model with graphical output referred to as the LINOSA model and was developed as a decision support system for basin managers. This paper will present the application of the LINOSA surface-ground water management model to the Rattlesnake watershed basin that resides within Ground Water Management District Number 5 in south central Kansas

  19. Geochemical Modeling Of F Area Seepage Basin Composition And Variability

    International Nuclear Information System (INIS)

    Millings, M.; Denham, M.; Looney, B.

    2012-01-01

    From the 1950s through 1989, the F Area Seepage Basins at the Savannah River Site (SRS) received low level radioactive wastes resulting from processing nuclear materials. Discharges of process wastes to the F Area Seepage Basins followed by subsequent mixing processes within the basins and eventual infiltration into the subsurface resulted in contamination of the underlying vadose zone and downgradient groundwater. For simulating contaminant behavior and subsurface transport, a quantitative understanding of the interrelated discharge-mixing-infiltration system along with the resulting chemistry of fluids entering the subsurface is needed. An example of this need emerged as the F Area Seepage Basins was selected as a key case study demonstration site for the Advanced Simulation Capability for Environmental Management (ASCEM) Program. This modeling evaluation explored the importance of the wide variability in bulk wastewater chemistry as it propagated through the basins. The results are intended to generally improve and refine the conceptualization of infiltration of chemical wastes from seepage basins receiving variable waste streams and to specifically support the ASCEM case study model for the F Area Seepage Basins. Specific goals of this work included: (1) develop a technically-based 'charge-balanced' nominal source term chemistry for water infiltrating into the subsurface during basin operations, (2) estimate the nature of short term and long term variability in infiltrating water to support scenario development for uncertainty quantification (i.e., UQ analysis), (3) identify key geochemical factors that control overall basin water chemistry and the projected variability/stability, and (4) link wastewater chemistry to the subsurface based on monitoring well data. Results from this study provide data and understanding that can be used in further modeling efforts of the F Area groundwater plume. As identified in this study, key geochemical factors affecting basin

  20. Quaternary base-level drops and trigger mechanisms in a closed basin: Geomorphic and sedimentological studies of the Gastre Basin, Argentina

    Science.gov (United States)

    Bilmes, Andrés; Veiga, Gonzalo D.; Ariztegui, Daniel; Castelltort, Sébastien; D'Elia, Leandro; Franzese, Juan R.

    2017-04-01

    Evaluating the role of tectonics and climate as possible triggering mechanisms of landscape reconfigurations is essential for paleoenvironmental and paleoclimatic reconstructions. In this study an exceptional receptive closed Quaternary system of Patagonia (the Gastre Basin) is described, and examined in order to analyze factors triggering base-level drops. Based on a geomorphological approach, which includes new tectonic geomorphology investigations combined with sedimentological and stratigraphic analysis, three large-scale geomorphological systems were identified, described and linked to two major lake-level highstands preserved in the basin. The results indicate magnitudes of base-level drops that are several orders of magnitude greater than present-day water-level fluctuations, suggesting a triggering mechanism not observed in recent times. Direct observations indicating the occurrence of Quaternary faults were not recorded in the region. In addition, morphometric analyses that included mountain front sinuosity, valley width-height ratio, and fan apex position dismiss tectonic fault activity in the Gastre Basin during the middle Pleistocene-Holocene. Therefore, we suggest here that upper Pleistocene climate changes may have been the main triggering mechanism of base-level falls in the Gastre Basin as it is observed in other closed basins of central Patagonia (i.e., Carri Laufquen Basin).

  1. sedimentology, depositional environments and basin evolution

    African Journals Online (AJOL)

    Preferred Customer

    ABSTRACT: The Inter-Trappean coal and oil shale-bearing sedimentation in the Delbi-Moye Basin took place in tectonically controlled grabens and half-grabens formed by extensional fault systems and accompanied by passive subsidence. The sedimentation history of the basin is related to the tectonic events that affected ...

  2. Observed changes in extremes of daily rainfall and temperature in Jemma Sub-Basin, Upper Blue Nile Basin, Ethiopia

    Science.gov (United States)

    Worku, Gebrekidan; Teferi, Ermias; Bantider, Amare; Dile, Yihun T.

    2018-02-01

    Climate variability has been a threat to the socio-economic development of Ethiopia. This paper examined the changes in rainfall, minimum, and maximum temperature extremes of Jemma Sub-Basin of the Upper Blue Nile Basin for the period of 1981 to 2014. The nonparametric Mann-Kendall, seasonal Mann-Kendall, and Sen's slope estimator were used to estimate annual trends. Ten rainfall and 12 temperature indices were used to study changes in rainfall and temperature extremes. The results showed an increasing trend of annual and summer rainfall in more than 78% of the stations and a decreasing trend of spring rainfall in most of the stations. An increase in rainfall extreme events was detected in the majority of the stations. Several rainfall extreme indices showed wetting trends in the sub-basin, whereas limited indices indicated dryness in most of the stations. Annual maximum and minimum temperature and extreme temperature indices showed warming trend in the sub-basin. Presence of extreme rainfall and a warming trend of extreme temperature indices may suggest signs of climate change in the Jemma Sub-Basin. This study, therefore, recommended the need for exploring climate induced risks and implementing appropriate climate change adaptation and mitigation strategies.

  3. SLUDGE TREATMENT PROJECT PHASE 1 SLUDGE STORAGE OPTIONS. ASSESSMENT OF T PLANT VERSUS ALTERNATE STORAGE FACILITY

    International Nuclear Information System (INIS)

    Rutherford, W.W.; Geuther, W.J.; Strankman, M.R.; Conrad, E.A.; Rhoadarmer, D.D.; Black, D.M.; Pottmeyer, J.A.

    2009-01-01

    The CH2M HILL Plateau Remediation Company (CHPRC) has recommended to the U.S. Department of Energy (DOE) a two phase approach for removal and storage (Phase 1) and treatment and packaging for offsite shipment (Phase 2) of the sludge currently stored within the 105-K West Basin. This two phased strategy enables early removal of sludge from the 105-K West Basin by 2015, allowing remediation of historical unplanned releases of waste and closure of the 100-K Area. In Phase 1, the sludge currently stored in the Engineered Containers and Settler Tanks within the 105-K West Basin will be transferred into sludge transport and storage containers (STSCs). The STSCs will be transported to an interim storage facility. In Phase 2, sludge will be processed (treated) to meet shipping and disposal requirements and the sludge will be packaged for final disposal at a geologic repository. The purpose of this study is to evaluate two alternatives for interim Phase 1 storage of K Basin sludge. The cost, schedule, and risks for sludge storage at a newly-constructed Alternate Storage Facility (ASF) are compared to those at T Plant, which has been used previously for sludge storage. Based on the results of the assessment, T Plant is recommended for Phase 1 interim storage of sludge. Key elements that support this recommendation are the following: (1) T Plant has a proven process for storing sludge; (2) T Plant storage can be implemented at a lower incremental cost than the ASF; and (3) T Plant storage has a more favorable schedule profile, which provides more float, than the ASF. Underpinning the recommendation of T Plant for sludge storage is the assumption that T Plant has a durable, extended mission independent of the K Basin sludge interim storage mission. If this assumption cannot be validated and the operating costs of T Plant are borne by the Sludge Treatment Project, the conclusions and recommendations of this study would change. The following decision-making strategy, which is

  4. SLUDGE TREATMENT PROJECT PHASE 1 SLUDGE STORAGE OPTIONS ASSESSMENT OF T PLANT VERSUS ALTERNATE STORAGE FACILITY

    Energy Technology Data Exchange (ETDEWEB)

    RUTHERFORD WW; GEUTHER WJ; STRANKMAN MR; CONRAD EA; RHOADARMER DD; BLACK DM; POTTMEYER JA

    2009-04-29

    The CH2M HILL Plateau Remediation Company (CHPRC) has recommended to the U.S. Department of Energy (DOE) a two phase approach for removal and storage (Phase 1) and treatment and packaging for offsite shipment (Phase 2) of the sludge currently stored within the 105-K West Basin. This two phased strategy enables early removal of sludge from the 105-K West Basin by 2015, allowing remediation of historical unplanned releases of waste and closure of the 100-K Area. In Phase 1, the sludge currently stored in the Engineered Containers and Settler Tanks within the 105-K West Basin will be transferred into sludge transport and storage containers (STSCs). The STSCs will be transported to an interim storage facility. In Phase 2, sludge will be processed (treated) to meet shipping and disposal requirements and the sludge will be packaged for final disposal at a geologic repository. The purpose of this study is to evaluate two alternatives for interim Phase 1 storage of K Basin sludge. The cost, schedule, and risks for sludge storage at a newly-constructed Alternate Storage Facility (ASF) are compared to those at T Plant, which has been used previously for sludge storage. Based on the results of the assessment, T Plant is recommended for Phase 1 interim storage of sludge. Key elements that support this recommendation are the following: (1) T Plant has a proven process for storing sludge; (2) T Plant storage can be implemented at a lower incremental cost than the ASF; and (3) T Plant storage has a more favorable schedule profile, which provides more float, than the ASF. Underpinning the recommendation of T Plant for sludge storage is the assumption that T Plant has a durable, extended mission independent of the K Basin sludge interim storage mission. If this assumption cannot be validated and the operating costs of T Plant are borne by the Sludge Treatment Project, the conclusions and recommendations of this study would change. The following decision-making strategy, which is

  5. Corrosion of aluminum alloys in a reactor disassembly basin

    International Nuclear Information System (INIS)

    Howell, J.P.; Zapp, P.E.; Nelson, D.Z.

    1992-01-01

    This document discusses storage of aluminum clad fuel and target tubes of the Mark 22 assembly takes place in the concrete-lined, light-water-filled, disassembly basins located within each reactor area at the Savannah River Site (SRS). A corrosion test program has been conducted in the K-Reactor disassembly basin to assess the storage performance of the assemblies and other aluminum clad components in the current basin environment. Aluminum clad alloys cut from the ends of actual fuel and target tubes were originally placed in the disassembly water basin in December 1991. After time intervals varying from 45--182 days, the components were removed from the basin, photographed, and evaluated metallographically for corrosion performance. Results indicated that pitting of the 8001 aluminum fuel clad alloy exceeded the 30-mil (0.076 cm) cladding thickness within the 45-day exposure period. Pitting of the 1100 aluminum target clad alloy exceeded the 30-mil (0.076 cm) clad thickness in 107--182 days exposure. The existing basin water chemistry is within limits established during early site operations. Impurities such as Cl - , NO 3 - and SO 4 - are controlled to the parts per million level and basin water conductivity is currently 170--190 μmho/cm. The test program has demonstrated that the basin water is aggressive to the aluminum components at these levels. Other storage basins at SRS and around the US have successfully stored aluminum components for greater than ten years without pitting corrosion. These basins have impurity levels controlled to the parts per billion level (1000X lower) and conductivity less than 1.0 μmho/cm

  6. K basins sludge removal sludge pretreatment system

    International Nuclear Information System (INIS)

    Chang, H.L.

    1997-01-01

    The Spent Nuclear Fuels Program is in the process of planning activities to remove spent nuclear fuel and other materials from the 100-K Basins as a remediation effort for clean closure. The 105 K- East and K-West Basins store spent fuel, sludge, and debris. Sludge has accumulated in the 1 00 K Basins as a result of fuel oxidation and a slight amount of general debris being deposited, by settling, in the basin water. The ultimate intent in removing the sludge and fuel is to eliminate the environmental risk posed by storing fuel at the K Basins. The task for this project is to disposition specific constituents of sludge (metallic fuel) to produce a product stream through a pretreatment process that will meet the requirements, including a final particle size acceptable to the Tank Waste Remediation System (TWRS). The purpose of this task is to develop a preconceptual design package for the K Basin sludge pretreatment system. The process equipment/system is at a preconceptual stage, as shown in sketch ES-SNF-01 , while a more refined process system and material/energy balances are ongoing (all sketches are shown in Appendix C). Thus, the overall process and 0535 associated equipment have been conservatively selected and sized, respectively, to establish the cost basis and equipment layout as shown in sketches ES- SNF-02 through 08

  7. Analysis of Ignition Testing on K-West Basin Fuel

    Energy Technology Data Exchange (ETDEWEB)

    J. Abrefah; F.H. Huang; W.M. Gerry; W.J. Gray; S.C. Marschman; T.A. Thornton

    1999-08-10

    Approximately 2100 metric tons of spent nuclear fuel (SNF) discharged from the N-Reactor have been stored underwater at the K-Basins in the 100 Area of the Hanford Site. The spent fuel has been stored in the K-East Basin since 1975 and in the K-West Basin since 1981. Some of the SNF elements in these basins have corroded because of various breaches in the Zircaloy cladding that occurred during fuel discharge operations and/or subsequent handling and storage in the basins. Consequently, radioactive material in the fuel has been released into the basin water, and water has leaked from the K-East Basin into the soil below. To protect the Columbia River, which is only 380 m from the basins, the SNF is scheduled to be removed and transported for interim dry storage in the 200 East Area, in the central portion of the Site. However, before being shipped, the corroded fuel elements will be loaded into Multi-Canister OverPacks and conditioned. The conditioning process will be selected based on the Integrated Process Strategy (IPS) (WHC 1995), which was prepared on the basis of the dry storage concept developed by the Independent Technical Assessment (ITA) team (ITA 1994).

  8. Analysis of Ignition Testing on K-West Basin Fuel

    International Nuclear Information System (INIS)

    Abrefah, J.; Huang, F.H.; Gerry, W.M.; Gray, W.J.; Marschman, S.C.; Thornton, T.A.

    1999-01-01

    Approximately 2100 metric tons of spent nuclear fuel (SNF) discharged from the N-Reactor have been stored underwater at the K-Basins in the 100 Area of the Hanford Site. The spent fuel has been stored in the K-East Basin since 1975 and in the K-West Basin since 1981. Some of the SNF elements in these basins have corroded because of various breaches in the Zircaloy cladding that occurred during fuel discharge operations and/or subsequent handling and storage in the basins. Consequently, radioactive material in the fuel has been released into the basin water, and water has leaked from the K-East Basin into the soil below. To protect the Columbia River, which is only 380 m from the basins, the SNF is scheduled to be removed and transported for interim dry storage in the 200 East Area, in the central portion of the Site. However, before being shipped, the corroded fuel elements will be loaded into Multi-Canister OverPacks and conditioned. The conditioning process will be selected based on the Integrated Process Strategy (IPS) (WHC 1995), which was prepared on the basis of the dry storage concept developed by the Independent Technical Assessment (ITA) team (ITA 1994)

  9. Oil and gas in the Ogaden Basin, Ethiopia

    Energy Technology Data Exchange (ETDEWEB)

    Du Toit, S.R.; Kurdy, S. [Alconsult International, Calgary, AB (Canada); Asfaw, S.H.; Gessesse, A.A. [Petroleum Operations Dept., Ministry of Mines and Energy, Addis Ababa (Ethiopia)

    1997-09-01

    To date, many of the 47 exploration and development wells drilled in the Ogaden Basin in Ethiopia have exhibited natural oil seeps and oil and gas shows. The Calub gas field and the Hilala oil field occurs in the central part of the 350,000 sq. km. basin. The various units within the basin consist of continental sediments, a regional organic-rich interval close to the Permo-Triassic boundary, organic-rich marine sediments and carbonates. The Ogaden Basin is dissected by several faults that are related to the Ethiopian Rift and may form a component of traps in the Calub-Hilala area.

  10. Watershed Planning Basins

    Data.gov (United States)

    Vermont Center for Geographic Information — The Watershed Planning Basin layer is part of a larger dataset contains administrative boundaries for Vermont's Agency of Natural Resources. The dataset includes...

  11. Basin-wide water accounting using remote sensing data: the case of transboundary Indus Basin

    Science.gov (United States)

    Karimi, P.; Bastiaanssen, W. G. M.; Molden, D.; Cheema, M. J. M.

    2012-11-01

    The paper describes the application of a new Water Accounting Plus (WA+) framework to produce spatial information on water flows, sinks, uses, storages and assets, in the Indus Basin, South Asia. It demonstrates how satellite-derived estimates of land use, land cover, rainfall, evaporation (E), transpiration (T), interception (I) and biomass production can be used in the context of WA+. The results for one selected year showed that total annual water depletion in the basin (502 km3) plus outflows (21 km3) exceeded total precipitation (482 km3). The deficit in supply was augmented through abstractions beyond actual capacity, mainly from groundwater storage (30 km3). The "landscape ET" (depletion directly from rainfall) was 344 km3 (69% of total consumption). "Blue water" depletion ("utilized flow") was 158 km3 (31%). Agriculture was the biggest water consumer and accounted for 59% of the total depletion (297 km3), of which 85% (254 km3) was through irrigated agriculture and the remaining 15% (44 km3) through rainfed systems. While the estimated basin irrigation efficiency was 0.84, due to excessive evaporative losses in agricultural areas, half of all water consumption in the basin was non-beneficial. Average rainfed crop yields were 0.9 t ha-1 and 7.8 t ha-1 for two irrigated crop growing seasons combined. Water productivity was low due to a lack of proper agronomical practices and poor farm water management. The paper concludes that the opportunity for a food-secured and sustainable future for the Indus Basin lies in focusing on reducing soil evaporation. Results of future scenario analyses suggest that by implementing techniques to convert soil evaporation to crop transpiration will not only increase production but can also result in significant water savings that would ease the pressure on the fast declining storage.

  12. Nutrient transport and transformation beneath an infiltration basin

    Science.gov (United States)

    Sumner, D.M.; Rolston, D.E.; Bradner, L.A.

    1998-01-01

    Field experiments were conducted to examine nutrient transport and transformation beneath an infiltration basin used for the disposal of treated wastewater. Removal of nitrogen from infiltrating water by denitrification was negligible beneath the basin, probably because of subsurface aeration as a result of daily interruptions in basin loading. Retention of organic nitrogen in the upper 4.6 m of the unsaturated zone (water table depth of approximately 11 m) during basin loading resulted in concentrations of nitrate as much as 10 times that of the applied treated wastewater, following basin 'rest' periods of several weeks, which allowed time for mineralization and nitrification. Approximately 90% of the phosphorus in treated wastewater was removed within the upper 4.6 m of the subsurface, primarily by adsorption reactions, with abundant iron and aluminum oxyhydroxides occurring as soil coatings. A reduction in the flow rate of infiltrating water arriving at the water table may explain the accumulation of relatively coarse (>0.45 ??m), organic forms of nitrogen and phosphorus slightly below the water table. Mineralization and nitrification reactions at this second location of organic nitrogen accumulation contributed to concentrations of nitrate as much as three times that of the applied treated wastewater. Phosphorus, which accumulated below the water table, was immobilized by adsorption or precipitation reactions during basin rest periods.Field experiments were conducted to examine nutrient transport and transformation beneath an infiltration basin used for the disposal of treated wastewater. Removal of nitrogen from infiltrating water by denitrification was negligible beneath the basin, probably because of subsurface aeration as a result of daily interruptions in basin loading. Retention of organic nitrogen in the upper 4.6 m of the unsaturated zone (water table depth of approximately 11 m) during basin loading resulted in concentrations of nitrate as much as 10

  13. Northern part, Ten Mile and Taunton River basins

    Science.gov (United States)

    Williams, John R.; Willey, Richard E.

    1967-01-01

    The northern part of the Ten Mile and Taunton River basins is an area of about 195 square miles within Norfolk, Plymouth, and Bristol Counties in southeastern Massachusetts. The northern boundary of the area (plate 1) is the drainage divide separating these basins from that of the Charles, Neponset, and Weymouth River basins. The western boundary is, for the most part, the divide separating the basins from the Blackstone River basin. The eastern boundary is at the edge of the Brockton-Pembroke area (Petersen, 1962; Petersen and Shaw, 1961). The southern boundary in Seekonk is the northern limit of the East Providence quadrangle, for which a ground-water map was prepared by Allen and Gorman (1959); eastward, the southern boundaries of the city of Attleboro and the towns of Norton, Easton, and West Bridgewater form the southern boundary of the area.

  14. Colorado River basin sensitivity to disturbance impacts

    Science.gov (United States)

    Bennett, K. E.; Urrego-Blanco, J. R.; Jonko, A. K.; Vano, J. A.; Newman, A. J.; Bohn, T. J.; Middleton, R. S.

    2017-12-01

    The Colorado River basin is an important river for the food-energy-water nexus in the United States and is projected to change under future scenarios of increased CO2emissions and warming. Streamflow estimates to consider climate impacts occurring as a result of this warming are often provided using modeling tools which rely on uncertain inputs—to fully understand impacts on streamflow sensitivity analysis can help determine how models respond under changing disturbances such as climate and vegetation. In this study, we conduct a global sensitivity analysis with a space-filling Latin Hypercube sampling of the model parameter space and statistical emulation of the Variable Infiltration Capacity (VIC) hydrologic model to relate changes in runoff, evapotranspiration, snow water equivalent and soil moisture to model parameters in VIC. Additionally, we examine sensitivities of basin-wide model simulations using an approach that incorporates changes in temperature, precipitation and vegetation to consider impact responses for snow-dominated headwater catchments, low elevation arid basins, and for the upper and lower river basins. We find that for the Colorado River basin, snow-dominated regions are more sensitive to uncertainties. New parameter sensitivities identified include runoff/evapotranspiration sensitivity to albedo, while changes in snow water equivalent are sensitive to canopy fraction and Leaf Area Index (LAI). Basin-wide streamflow sensitivities to precipitation, temperature and vegetation are variable seasonally and also between sub-basins; with the largest sensitivities for smaller, snow-driven headwater systems where forests are dense. For a major headwater basin, a 1ºC of warming equaled a 30% loss of forest cover, while a 10% precipitation loss equaled a 90% forest cover decline. Scenarios utilizing multiple disturbances led to unexpected results where changes could either magnify or diminish extremes, such as low and peak flows and streamflow timing

  15. Evaluating the State of Water Management in the Rio Grande/Bravo Basin

    Science.gov (United States)

    Ortiz Partida, Jose Pablo; Sandoval-Solis, Samuel; Diaz Gomez, Romina

    2017-04-01

    Water resource modeling tools have been developed for many different regions and sub-basins of the Rio Grande/Bravo (RGB). Each of these tools has specific objectives, whether it is to explore drought mitigation alternatives, conflict resolution, climate change evaluation, tradeoff and economic synergies, water allocation, reservoir operations, or collaborative planning. However, there has not been an effort to integrate different available tools, or to link models developed for specific reaches into a more holistic watershed decision-support tool. This project outlines promising next steps to meet long-term goals of improved decision support tools and modeling. We identify, describe, and synthesize water resources management practices in the RGB basin and available water resources models and decision support tools that represent the RGB and the distribution of water for human and environmental uses. The extent body of water resources modeling is examined from a perspective of environmental water needs and water resources management and thereby allows subsequent prioritization of future research and monitoring needs for the development of river system modeling tools. This work communicates the state of the RGB science to diverse stakeholders, researchers, and decision-makers. The products of this project represent a planning tool to support an integrated water resources management framework to maximize economic and social welfare without compromising vital ecosystems.

  16. BASIN-CENTERED GAS SYSTEMS OF THE U.S.

    Energy Technology Data Exchange (ETDEWEB)

    Marin A. Popov; Vito F. Nuccio; Thaddeus S. Dyman; Timothy A. Gognat; Ronald C. Johnson; James W. Schmoker; Michael S. Wilson; Charles Bartberger

    2000-11-01

    The USGS is re-evaluating the resource potential of basin-centered gas accumulations in the U.S. because of changing perceptions of the geology of these accumulations, and the availability of new data since the USGS 1995 National Assessment of United States oil and gas resources (Gautier et al., 1996). To attain these objectives, this project used knowledge of basin-centered gas systems and procedures such as stratigraphic analysis, organic geochemistry, modeling of basin thermal dynamics, reservoir characterization, and pressure analysis. This project proceeded in two phases which had the following objectives: Phase I (4/1998 through 5/1999): Identify and describe the geologic and geographic distribution of potential basin-centered gas systems, and Phase II (6/1999 through 11/2000): For selected systems, estimate the location of those basin-centered gas resources that are likely to be produced over the next 30 years. In Phase I, we characterize thirty-three (33) potential basin-centered gas systems (or accumulations) based on information published in the literature or acquired from internal computerized well and reservoir data files. These newly defined potential accumulations vary from low to high risk and may or may not survive the rigorous geologic scrutiny leading towards full assessment by the USGS. For logistical reasons, not all basins received the level of detail desired or required.

  17. Radioactive air emissions notice of construction for the 105N Basin Stabilization

    International Nuclear Information System (INIS)

    Coenenberg, E.T.

    1994-01-01

    The 105N Basin (basin) Stabilization will place the basin in a radiologically and environmentally safe condition so that it can be decommissioned at a later date. The basin is in the 105N Building, which is located in the 100N Area. The 100N Area is located in the Northern portion of the Hanford Site approximately 35 miles northwest of the city of Richland, Washington. The basin stabilization objectives are to inspect for Special Nuclear Material (SNM) (i.e., fuel assemblies and fuel pieces), remove the water from the basin and associated pits, and stabilize the basin surface. The stabilization will involve removal of basin hardware, removal of basin sediments, draining of basin water, and cleaning and stabilizing basin surfaces to prevent resuspension of radioactive emissions to the air. These activities will be conducted in accordance with all applicable regulations

  18. Dry/Wet Conditions Monitoring Based on TRMM Rainfall Data and Its Reliability Validation over Poyang Lake Basin, China

    Directory of Open Access Journals (Sweden)

    Xianghu Li

    2013-11-01

    Full Text Available Local dry/wet conditions are of great concern in regional water resource and floods/droughts disaster risk management. Satellite-based precipitation products have greatly improved their accuracy and applicability and are expected to offer an alternative to ground rain gauges data. This paper investigated the capability of Tropical Rainfall Measuring Mission (TRMM rainfall data for monitoring the temporal and spatial variation of dry/wet conditions in Poyang Lake basin during 1998–2010, and validated its reliability with rain gauges data from 14 national meteorological stations in the basin. The results show that: (1 the daily TRMM rainfall data does not describe the occurrence and contribution rates of precipitation accurately, but monthly TRMM data have a good linear relationship with rain gauges rainfall data; (2 both the Z index and Standardized Precipitation Index (SPI based on monthly TRMM rainfall data oscillate around zero and show a consistent interannual variability as compared with rain gauges data; (3 the spatial pattern of moisture status, either in dry months or wet months, based on both the Z index and SPI using TRMM data, agree with the observed rainfall. In conclusion, the monthly TRMM rainfall data can be used for monitoring the variation and spatial distribution of dry/wet conditions in Poyang Lake basin.

  19. TESTING TREE-CLASSIFIER VARIANTS AND ALTERNATE MODELING METHODOLOGIES IN THE EAST GREAT BASIN MAPPING UNIT OF THE SOUTHWEST REGIONAL GAP ANALYSIS PROJECT (SW REGAP)

    Science.gov (United States)

    We tested two methods for dataset generation and model construction, and three tree-classifier variants to identify the most parsimonious and thematically accurate mapping methodology for the SW ReGAP project. Competing methodologies were tested in the East Great Basin mapping un...

  20. Corrosion in ICPP fuel storage basins

    International Nuclear Information System (INIS)

    Dirk, W.J.

    1993-09-01

    The Idaho Chemical Processing Plant currently stores irradiated nuclear fuel in fuel storage basins. Historically, fuel has been stored for over 30 years. During the 1970's, an algae problem occurred which required higher levels of chemical treatment of the basin water to maintain visibility for fuel storage operations. This treatment led to higher levels of chlorides than seen previously which cause increased corrosion of aluminum and carbon steel, but has had little effect on the stainless steel in the basin. Corrosion measurements of select aluminum fuel storage cans, aluminum fuel storage buckets, and operational support equipment have been completed. Aluminum has exhibited good general corrosion rates, but has shown accelerated preferential attack in the form of pitting. Hot dipped zinc coated carbon steel, which has been in the basin for approximately 40 years, has shown a general corrosion rate of 4 mpy, and there is evidence of large shallow pits on the surface. A welded Type 304 stainless steel corrosion coupon has shown no attack after 13 years exposure. Galvanic couples between carbon steel welded to Type 304 stainless steel occur in fuel storage yokes exposed to the basin water. These welded couples have shown galvanic attack as well as hot weld cracking and intergranular cracking. The intergranular stress corrosion cracking is attributed to crevices formed during fabrication which allowed chlorides to concentrate

  1. Basin-Scale Opportunity Assessment Initiative Background Literature Review

    Energy Technology Data Exchange (ETDEWEB)

    Saulsbury, Bo [ORNL; Geerlofs, Simon H. [Pacific Northwest National Laboratory (PNNL); Cada, Glenn F [ORNL; Bevelhimer, Mark S [ORNL

    2010-10-01

    As called for in the March 24, 2010, Memorandum of Understanding (MOU) for Hydropower, the U.S. Department of Energy (DOE), the U.S. Department of the Interior (DOI), the U.S. Army Corps of Engineers (USACE), environmental stakeholders, and the hydropower industry are collaborating to identify opportunities to simultaneously increase electricity generation and improve environmental services in river basins of the United States. New analytical tools provide an improved ability to understand, model, and visualize environmental and hydropower systems. Efficiencies and opportunities that might not be apparent in site-by-site analyses can be revealed through assessments at the river-basin scale. Information from basin-scale assessments could lead to better coordination of existing hydropower projects, or to inform siting decisions (e.g., balancing the removal of some dams with the construction of others), in order to meet renewable energy production and environmental goals. Basin-scale opportunity assessments would inform energy and environmental planning and address the cumulative effects of hydropower development and operations on river basin environmental quality in a way that quantifies energy-environment tradeoffs. Opportunity assessments would create information products, develop scenarios, and identify specific actions that agencies, developers, and stakeholders can take to locate new sustainable hydropower projects, increase the efficiency and environmental performance of existing projects, and restore and protect environmental quality in our nation's river basins. Government agencies and non-governmental organizations (NGO) have done significant work to understand and assess opportunities for both hydropower and environmental protection at the basin scale. Some initiatives have been successful, others less so, and there is a need to better understand the legacy of work on which this current project can build. This background literature review is intended

  2. Assessing Vulnerability under Uncertainty in the Colorado River Basin: The Colorado River Basin Water Supply and Demand Study

    Science.gov (United States)

    Jerla, C.; Adams, P.; Butler, A.; Nowak, K.; Prairie, J. R.

    2013-12-01

    Spanning parts of the seven states, of Arizona, California, Colorado, New Mexico, Nevada, Utah, and Wyoming, the Colorado River is one of the most critical sources of water in the western United States. Colorado River allocations exceed the long-term supply and since the 1950s, there have been a number of years when the annual water use in the Colorado River Basin exceeded the yield. The Basin is entering its second decade of drought conditions which brings challenges that will only be compounded if projections of climate change are realized. It was against this backdrop that the Colorado River Basin Water Supply and Demand Study was conducted. The Study's objectives are to define current and future imbalances in the Basin over the next 50 years and to develop and analyze adaptation and mitigation strategies to resolve those imbalances. Long-term planning in the Basin involves the integration of uncertainty with respect to a changing climate and other uncertainties such as future demand and how policies may be modified to adapt to changing reliability. The Study adopted a scenario planning approach to address this uncertainty in which thousands of scenarios were developed to encompass a wide range of plausible future water supply and demand conditions. Using Reclamation's long-term planning model, the Colorado River Simulation System, the reliability of the system to meet Basin resource needs under these future conditions was projected both with and without additional future adaptation strategies in place. System reliability metrics were developed in order to define system vulnerabilities, the conditions that lead to those vulnerabilities, and sign posts to indicate if the system is approaching a vulnerable state. Options and strategies that reduce these vulnerabilities and improve system reliability were explored through the development of portfolios. Four portfolios, each with different management strategies, were analyzed to assess their effectiveness at

  3. Hydrogeology and water quality of the Chakari Basin, Afghanistan

    Science.gov (United States)

    Mack, Thomas J.; Chornack, Michael P.; Flanagan, Sarah M.; Chalmers, Ann T.

    2014-01-01

    The hydrogeology and water quality of the Chakari Basin, a 391-square-kilometer (km2) watershed near Kabul, Afghanistan, was assessed by the U.S. Geological Survey and the Afghanistan Geological Survey to provide an understanding of the water resources in an area of Afghanistan with considerable copper and other mineral resources. Water quality, chemical, and isotopic samples were collected at eight wells, four springs, one kareze, and the Chakari River in a basin-fill aquifer in the Chakari Basin by the Afghanistan Geological Survey. Results of water-quality analyses indicate that some water samples in the basin had concentrations of chemical constituents that exceeded World Health Organization guidelines for nitrate, sodium, and dissolved solids and some of the samples also had elevated concentrations of trace elements, such as copper, selenium, strontium, uranium, and zinc. Chemical and isotopic analyses, including for tritium, chlorofluorocarbons, and carbon-14, indicate that most wells contain water with a mixture of ages from young (years to decades) to old (several thousand years). Three wells contained groundwater that had modeled ages ranging from 7,200 to 7,900 years old. Recharge from precipitation directly on the basin-fill aquifer, which covers an area of about 150 km2, is likely to be very low (7 × 10-5 meters per day) or near zero. Most recharge to this aquifer is likely from rain and snowmelt on upland areas and seepage losses and infiltration of water from streams crossing the basin-fill aquifer. It is likely that the older water in the basin-fill aquifer is groundwater that has travelled along long and (or) slow flow paths through the fractured bedrock mountains surrounding the basin. The saturated basin-fill sediments in most areas of the basin are probably about 20 meters thick and may be about 30 to 60 meters thick in most areas near the center of the Chakari Basin. The combination of low recharge and little storage indicates that groundwater

  4. Colorado Basin Structure and Rifting, Argentine passive margin

    Science.gov (United States)

    Autin, Julia; Scheck-Wenderoth, Magdalena; Loegering, Markus; Anka, Zahie; Vallejo, Eduardo; Rodriguez, Jorge; Marchal, Denis; Reichert, Christian; di Primio, Rolando

    2010-05-01

    The Argentine margin presents a strong segmentation with considerable strike-slip movements along the fracture zones. We focus on the volcanic segment (between the Salado and Colorado transfer zones), which is characterized by seaward dipping reflectors (SDR) all along the ocean-continent transition [e.g. Franke et al., 2006; Gladczenko et al., 1997; Hinz et al., 1999]. The segment is structured by E-W trending basins, which differs from the South African margin basins and cannot be explained by classical models of rifting. Thus the study of the relationship between the basins and the Argentine margin itself will allow the understanding of their contemporary development. Moreover the comparison of the conjugate margins suggests a particular evolution of rifting and break-up. We firstly focus on the Colorado Basin, which is thought to be the conjugate of the well studied Orange Basin [Hirsch et al., 2009] at the South African margin [e.g. Franke et al., 2006]. This work presents results of a combined approach using seismic interpretation and structural, isostatic and thermal modelling highlighting the structure of the crust. The seismic interpretation shows two rift-related discordances: one intra syn-rift and the break-up unconformity. The overlying sediments of the sag phase are less deformed (no sedimentary wedges) and accumulated before the generation of oceanic crust. The axis of the Colorado Basin trends E-W in the western part, where the deepest pre-rift series are preserved. In contrast, the basin axis turns to a NW-SE direction in its eastern part, where mainly post-rift sediments accumulated. The most distal part reaches the margin slope and opens into the oceanic basin. The general basin direction is almost orthogonal to the present-day margin trend. The most frequent hypothesis explaining this geometry is that the Colorado Basin is an aborted rift resulting from a previous RRR triple junction [e.g. Franke et al., 2002]. The structural interpretation

  5. The water footprint of agricultural products in European river basins

    International Nuclear Information System (INIS)

    Vanham, D; Bidoglio, G

    2014-01-01

    This work quantifies the agricultural water footprint (WF) of production (WF prod, agr ) and consumption (WF cons, agr ) and the resulting net virtual water import (netVW i, agr ) of 365 European river basins for a reference period (REF, 1996–2005) and two diet scenarios (a healthy diet based upon food-based dietary guidelines (HEALTHY) and a vegetarian (VEG) diet). In addition to total (tot) amounts, a differentiation is also made between the green (gn), blue (bl) and grey (gy) components. River basins where the REF WF cons, agr, tot exceeds the WF prod, agr, tot (resulting in positive netVW i, agr, tot values), are found along the London–Milan axis. These include the Thames, Scheldt, Meuse, Seine, Rhine and Po basins. River basins where the WF prod, agr, tot exceeds the WF cons, agr, tot are found in Western France, the Iberian Peninsula and the Baltic region. These include the Loire, Ebro and Nemunas basins. Under the HEALTHY diet scenario, the WF cons, agr, tot of most river basins decreases (max −32%), although it was found to increase in some basins in northern and eastern Europe. This results in 22 river basins, including the Danube, shifting from being net VW importers to being net VW exporters. A reduction (max −46%) in WF cons, agr, tot is observed for all but one river basin under the VEG diet scenario. In total, 50 river basins shift from being net VW importers to being net exporters, including the Danube, Seine, Rhone and Elbe basins. Similar observations are made when only the gn + bl and gn components are assessed. When analysing only the bl component, a different river basin pattern is observed. (letters)

  6. Preparation and Characterization of Uranium Oxides in Support of the K Basin Sludge Treatment Project

    Energy Technology Data Exchange (ETDEWEB)

    Sinkov, Sergey I.; Delegard, Calvin H.; Schmidt, Andrew J.

    2008-07-08

    Uraninite (UO2) and metaschoepite (UO3·2H2O) are the uranium phases most frequently observed in K Basin sludge. Uraninite arises from the oxidation of uranium metal by anoxic water and metaschoepite arises from oxidation of uraninite by atmospheric or radiolytic oxygen. Studies of the oxidation of uraninite by oxygen to form metaschoepite were performed at 21°C and 50°C. A uranium oxide oxidation state characterization method based on spectrophotometry of the solution formed by dissolving aqueous slurries in phosphoric acid was developed to follow the extent of reaction. This method may be applied to determine uranium oxide oxidation state distribution in K Basin sludge. The uraninite produced by anoxic corrosion of uranium metal has exceedingly fine particle size (6 nm diameter), forms agglomerates, and has the formula UO2.004±0.007; i.e., is practically stoichiometric UO2. The metaschoepite particles are flatter and wider when prepared at 21°C than the particles prepared at 50°C. These particles are much smaller than the metaschoepite observed in prolonged exposure of actual K Basin sludge to warm moist oxidizing conditions. The uraninite produced by anoxic uranium metal corrosion and the metaschoepite produced by reaction of uraninite aqueous slurries with oxygen may be used in engineering and process development testing. A rapid alternative method to determine uranium metal concentrations in sludge also was identified.

  7. Vietnamese sedimentary basins: geological evolution and petroleum potential

    Energy Technology Data Exchange (ETDEWEB)

    Fyhn, M.B.W.; Petersen, Henrik I.; Mathiesen, A.; Nielsen, Lars H.; Pedersen, Stig A.S.; Lindstroem, S.; Bojesen-Koefoed, J.A.; Abatzis, I.; Boldreel, L.O.

    2010-07-15

    The Geological Survey of Denmark and Greenland has worked in Vietnam since 1995 to assess the geology and petroleum potential of the Vietnamese basins. Since 2002 the work has been carried out in cooperation with the Department of Geography and Geology, University of Copenhagen, as part of the ENRECA project (Enhancement of Research Capacity in Developing Countries). The ENRECA project has already completed two phases and a third and final phase has recently started. The initial phase focused on the Phu Khanh and the Song Hong Basins located in the South China Sea offshore north and central Vietnam and the smaller onshore Song Ba Trough. During the second ENRECA phase, completed in 2009, attention shifted towards the Malay - Tho Chu and Phu Quoc basins located in the Gulf of Thailand, SSW of Vietnam. The Phu Quoc Basin continues onshore to the north to form part of the mountainous area between Vietnam and Cambodia. In the recently started third phase of the project, the focus remains on the Phu Quoc Basin in addition to a revisit to the Song Hong Basin on the north Vietnamese margin and onshore beneath the Song Hong (Red River) delta. (LN)

  8. Criticality evaluations of scrambled fuel in water basin storage

    International Nuclear Information System (INIS)

    Fast, E.

    1989-01-01

    Fuel stored underwater in the Idaho Chemical Processing Plant basins has been subjected to the usual criticality safety evaluations to assure safe storage configurations. Certain accident or emergency conditions, caused by corrosion or a seismic event, could change the fuel configuration and environment to invalidate previous calculations. Consideration is given here to such contingencies for fuel stored in three storage basins. One basin has fuel stored in racks, on a generally flat floor. In the other two basins, the fuel is stored on yokes and in baskets suspended from a monorail system. The floor is ribbed with 30.48-cm-thick and 80-cm-high concrete barriers across the basin width and spaced 30.48 cm apart. The suspended fuel is typically down to 15 cm above the floor of the channel between the concrete barriers. These basins each have 29 channels of 18 positions maximum per channel for a total of 522 possible positions, which are presently 77 and 49% occupied. The three basins are hydraulically interconnected. Several scenarios indicate possible changes in the fuel configuration. An earthquake could rupture a basin wall or floor, allowing the water to drain from all basins. All levels of water would fall to the completely drained condition. Suspended fuel could drop and fall over within the channel. Corrosion might weaken the support systems or cause leaks in sealed fuel canisters. Calculations were made with the KENO-IV criticality program and the library of mostly Hansen-Roach 16-energy-group neutron cross sections

  9. Faunal migration into the Late Permian Zechstein Basin

    DEFF Research Database (Denmark)

    Sørensen, Anne Mehlin; Håkansson, Eckart; Stemmerik, Lars

    2007-01-01

    Late Permian bryozoans from the Wegener Halvø, Ravnefjeld and Schuchert Formations in East Greenland have been investigated. 14 genera are recognised.      Integration of the new bryozoan data from the Upper Permian of East Greenland with data on the distribution of Permian bryozoans along...... the northern margin of Pangea is used to test hypotheses concerning Late Palaeozoic evolution of the North Atlantic region. During the Permian, the Atlantic rift system formed a seaway between Norway and Greenland from the boreal Barents Shelf to the warm and arid Zechstein Basin. This seaway is considered...... to be the only marine connection to the Zechstein Basin and therefore the only possible migration route for bryozoans to enter the basin. The distribution of Permian bryozoans is largely in keeping with such a connection from the cool Barents Shelf past the East Greenland Basin to the warm Zechstein Basin...

  10. Magmatism and petroleum exploration in the Brazilian Paleozoic basins

    Energy Technology Data Exchange (ETDEWEB)

    Thomaz Filho, Antonio; Antonioli, Luzia [Universidade do Estado do Rio de Janeiro, Faculdade de Geologia, Rua Sao Francisco Xavier, no 524/2030, CEP 20550-900, Rio de Janeiro, RJ (Brazil); Mizusaki, Ana Maria Pimentel [Universidade Federal do Rio Grande do Sul, Instituto de Geociencias, Avenida Bento Goncalves, no 9500, Campus do Vale, CEP 91509-900, Porto Alegre, RS (Brazil)

    2008-02-15

    Petroleum exploration in the Paleozoic sedimentary basins of Brazil has proven very challenging for explorationists. Except for the Solimoes Basin, in which transcurrent tectonism formed prospective structural highs, Brazilian Paleozoic basins lack intense structural deformation, and hence the detection and prospecting of place is often difficult. Magmatic intrusive and associated rocks in all these basins have traditionally been considered heat sources and hydrocarbon traps. The role of tholeiitic basic dikes in the generation, migration and accumulation of petroleum in the Anhembi oil occurrence (Sao Paulo State) is discussed herein. It follows that similar geological settings in other Paleozoic basins can be regarded as promising sites for oil accumulation that warrant investigation via modern geological and geophysical methods. (author)

  11. Evaluating land-use change scenarios for the Puget Sound Basin, Washington, within the ecosystem recovery target model-based framework

    Science.gov (United States)

    Villarreal, Miguel; Labiosa, Bill; Aiello, Danielle

    2017-05-23

    The Puget Sound Basin, Washington, has experienced rapid urban growth in recent decades, with varying impacts to local ecosystems and natural resources. To plan for future growth, land managers often use scenarios to assess how the pattern and volume of growth may affect natural resources. Using three different land-management scenarios for the years 2000–2060, we assessed various spatial patterns of urban growth relative to maps depicting a model-based characterization of the ecological integrity and recent development pressure of individual land parcels. The three scenarios depict future trajectories of land-use change under alternative management strategies—status quo, managed growth, and unconstrained growth. The resulting analysis offers a preliminary assessment of how future growth patterns in the Puget Sound Basin may impact land targeted for conservation and how short-term metrics of land-development pressure compare to longer term growth projections.

  12. A NEW METHOD FOR ENVIRONMENTAL FLOW ASSESSMENT BASED ON BASIN GEOLOGY. APPLICATION TO EBRO BASIN.

    Science.gov (United States)

    2018-02-01

    The determination of environmental flows is one of the commonest practical actions implemented on European rivers to promote their good ecological status. In Mediterranean rivers, groundwater inflows are a decisive factor in streamflow maintenance. This work examines the relationship between the lithological composition of the Ebro basin (Spain) and dry season flows in order to establish a model that can assist in the calculation of environmental flow rates.Due to the lack of information on the hydrogeological characteristics of the studied basin, the variable representing groundwater inflows has been estimated in a very simple way. The explanatory variable used in the proposed model is easy to calculate and is sufficiently powerful to take into account all the required characteristics.The model has a high coefficient of determination, indicating that it is accurate for the intended purpose. The advantage of this method compared to other methods is that it requires very little data and provides a simple estimate of environmental flow. It is also independent of the basin area and the river section order.The results of this research also contribute to knowledge of the variables that influence low flow periods and low flow rates on rivers in the Ebro basin.

  13. Three-dimensional geologic mapping of the Cenozoic basin fill, Amargosa Desert basin, Nevada and California

    Science.gov (United States)

    Taylor, Emily M.; Sweetkind, Donald S.

    2014-01-01

    Understanding the subsurface geologic framework of the Cenozoic basin fill that underlies the Amargosa Desert in southern Nevada and southeastern California has been improved by using borehole data to construct three-dimensional lithologic and interpreted facies models. Lithologic data from 210 boreholes from a 20-kilometer (km) by 90-km area were reduced to a limited suite of descriptors based on geologic knowledge of the basin and distributed in three-dimensional space using interpolation methods. The resulting lithologic model of the Amargosa Desert basin portrays a complex system of interfingered coarse- to fine-grained alluvium, playa and palustrine deposits, eolian sands, and interbedded volcanic units. Lithologic units could not be represented in the model as a stacked stratigraphic sequence due to the complex interfingering of lithologic units and the absence of available time-stratigraphic markers. Instead, lithologic units were grouped into interpreted genetic classes, such as playa or alluvial fan, to create a three-dimensional model of the interpreted facies data. Three-dimensional facies models computed from these data portray the alluvial infilling of a tectonically formed basin with intermittent internal drainage and localized regional groundwater discharge. The lithologic and interpreted facies models compare favorably to resistivity, aeromagnetic, and geologic map data, lending confidence to the interpretation.

  14. The evolution of a Late Cretaceous-Cenozoic intraplate basin (Duaringa Basin), eastern Australia: evidence for the negative inversion of a pre-existing fold-thrust belt

    Science.gov (United States)

    Babaahmadi, Abbas; Sliwa, Renate; Esterle, Joan; Rosenbaum, Gideon

    2017-12-01

    The Duaringa Basin in eastern Australia is a Late Cretaceous?-early Cenozoic sedimentary basin that developed simultaneously with the opening of the Tasman and Coral Seas. The basin occurs on the top of an earlier (Permian-Triassic) fold-thrust belt, but the negative inversion of this fold-thrust belt, and its contribution to the development of the Duaringa Basin, are not well understood. Here, we present geophysical datasets, including recently surveyed 2D seismic reflection lines, aeromagnetic and Bouguer gravity data. These data provide new insights into the structural style in the Duaringa Basin, showing that the NNW-striking, NE-dipping, deep-seated Duaringa Fault is the main boundary fault that controlled sedimentation in the Duaringa Basin. The major activity of the Duaringa Fault is observed in the southern part of the basin, where it has undergone the highest amount of displacement, resulting in the deepest and oldest depocentre. The results reveal that the Duaringa Basin developed in response to the partial negative inversion of the pre-existing Permian-Triassic fold-thrust belt, which has similar orientation to the extensional faults. The Duaringa Fault is the negative inverted part of a single Triassic thrust, known as the Banana Thrust. Furthermore, small syn-depositional normal faults at the base of the basin likely developed due to the reactivation of pre-existing foliations, accommodation faults, and joints associated with Permian-Triassic folds. In contrast to equivalent offshore basins, the Duaringa Basin lacks a complex structural style and thick syn-rift sediments, possibly because of the weakening of extensional stresses away from the developing Tasman Sea.

  15. The "normal" elongation of river basins

    Science.gov (United States)

    Castelltort, Sebastien

    2013-04-01

    The spacing between major transverse rivers at the front of Earth's linear mountain belts consistently scales with about half of the mountain half-width [1], despite strong differences in climate and rock uplift rates. Like other empirical measures describing drainage network geometry this result seems to indicate that the form of river basins, among other properties of landscapes, is invariant. Paradoxically, in many current landscape evolution models, the patterns of drainage network organization, as seen for example in drainage density and channel spacing, seem to depend on both climate [2-4] and tectonics [5]. Hovius' observation [1] is one of several unexplained "laws" in geomorphology that still sheds mystery on how water, and rivers in particular, shape the Earth's landscapes. This narrow range of drainage network shapes found in the Earth's orogens is classicaly regarded as an optimal catchment geometry that embodies a "most probable state" in the uplift-erosion system of a linear mountain belt. River basins currently having an aspect away from this geometry are usually considered unstable and expected to re-equilibrate over geological time-scales. Here I show that the Length/Width~2 aspect ratio of drainage basins in linear mountain belts is the natural expectation of sampling a uniform or normal distribution of basin shapes, and bears no information on the geomorphic processes responsible for landscape development. This finding also applies to Hack's [6] law of river basins areas and lengths, a close parent of Hovius' law. [1]Hovius, N. Basin Res. 8, 29-44 (1996) [2]Simpson, G. & Schlunegger, F. J. Geophys. Res. 108, 2300 (2003) [3]Tucker, G. & Bras, R. Water Resour. Res. 34, 2751-2764 (1998) [4]Tucker, G. & Slingerland, R. Water Resour. Res. 33, 2031-2047 (1997) [5]Tucker, G. E. & Whipple, K. X. J. Geophys. Res. 107, 1-1 (2002) [6]Hack, J. US Geol. Surv. Prof. Pap. 294-B (1957)

  16. Hydrologic studies within the Pasco Basin

    International Nuclear Information System (INIS)

    Spane, F.A. Jr.

    1982-09-01

    As part of the Basalt Waste Isolation Project (BWIP), hydrologic studies are being performed to provide an evaluation of groundwater systems within the Columbia River Basalt Group. These studies are focused on the Hanford Site, which is located within the Pasco Basin in south-central Washington. Hydrologic studies within the Pasco Basin involve the areal and vertical characterization of hydraulic head, hydrologic properties, and hydrochemical content for the various basalt groundwater systems. Currently, in excess of 150 test intervals have been tested for hydraulic properties, while in excess of 80 horizons have been analyzed for hydrochemical characteristics at about 30 borehole sites within the Pasco Basin. Data obtained from these studies provide input for numerical modeling of groundwater flow and solute transport. Results from numerical modeling are used for evaluating potential waste migration as a function of space and time. In the Pasco Basin, geologic structures influence groundwater flow patterns within basalt aquifer systems. Potentiometric data and hydrochemical evidence collected from recent studies indicate that geologic structures act as areal hydrologic barriers and in some instances, regions of enhanced vertical conductivity. 8 figures

  17. GRAIL gravity observations of the transition from complex crater to peak-ring basin on the Moon: Implications for crustal structure and impact basin formation

    Science.gov (United States)

    Baker, David M. H.; Head, James W.; Phillips, Roger J.; Neumann, Gregory A.; Bierson, Carver J.; Smith, David E.; Zuber, Maria T.

    2017-08-01

    High-resolution gravity data from the Gravity Recovery and Interior Laboratory (GRAIL) mission provide the opportunity to analyze the detailed gravity and crustal structure of impact features in the morphological transition from complex craters to peak-ring basins on the Moon. We calculate average radial profiles of free-air anomalies and Bouguer anomalies for peak-ring basins, protobasins, and the largest complex craters. Complex craters and protobasins have free-air anomalies that are positively correlated with surface topography, unlike the prominent lunar mascons (positive free-air anomalies in areas of low elevation) associated with large basins. The Bouguer gravity anomaly profiles of complex craters are highly irregular, with central positive anomalies that are generally absent or not clearly tied to interior morphology. In contrast, gravity profiles for peak-ring basins (∼200 km to 580 km) are much more regular and are highly correlated with surface morphology. A central positive Bouguer anomaly is confined within the peak ring and a negative Bouguer anomaly annulus extends from the edge of the positive anomaly outward to about the rim crest. A number of degraded basins lacking interior peak rings have diameters and gravity patterns similar to those of well-preserved peak-ring basins. If these structures represent degraded peak-ring basins, the number of peak-ring basins on the Moon would increase by more than a factor of two to 34. The gravity anomalies within basins are interpreted to be due to uplift of the mantle confined within the peak ring and an annulus of thickened crust between the peak ring and rim crest. We hypothesize that mantle uplift is influenced by interaction between the transient cavity and the mantle. Further, mascon formation is generally disconnected from the number of basin rings formed and occurs over a wide range of basin sizes. These observations have important implications for models of basin and mascon formation on the Moon

  18. Configuration Management Plan for K Basins

    International Nuclear Information System (INIS)

    Weir, W.R.; Laney, T.

    1995-01-01

    This plan describes a configuration management program for K Basins that establishes the systems, processes, and responsibilities necessary for implementation. The K Basins configuration management plan provides the methodology to establish, upgrade, reconstitute, and maintain the technical consistency among the requirements, physical configuration, and documentation. The technical consistency afforded by this plan ensures accurate technical information necessary to achieve the mission objectives that provide for the safe, economic, and environmentally sound management of K Basins and the stored material. The configuration management program architecture presented in this plan is based on the functional model established in the DOE Standard, DOE-STD-1073-93, open-quotes Guide for Operational Configuration Management Programclose quotes

  19. Estimating mountain basin-mean precipitation from streamflow using Bayesian inference

    Science.gov (United States)

    Henn, Brian; Clark, Martyn P.; Kavetski, Dmitri; Lundquist, Jessica D.

    2015-10-01

    Estimating basin-mean precipitation in complex terrain is difficult due to uncertainty in the topographical representativeness of precipitation gauges relative to the basin. To address this issue, we use Bayesian methodology coupled with a multimodel framework to infer basin-mean precipitation from streamflow observations, and we apply this approach to snow-dominated basins in the Sierra Nevada of California. Using streamflow observations, forcing data from lower-elevation stations, the Bayesian Total Error Analysis (BATEA) methodology and the Framework for Understanding Structural Errors (FUSE), we infer basin-mean precipitation, and compare it to basin-mean precipitation estimated using topographically informed interpolation from gauges (PRISM, the Parameter-elevation Regression on Independent Slopes Model). The BATEA-inferred spatial patterns of precipitation show agreement with PRISM in terms of the rank of basins from wet to dry but differ in absolute values. In some of the basins, these differences may reflect biases in PRISM, because some implied PRISM runoff ratios may be inconsistent with the regional climate. We also infer annual time series of basin precipitation using a two-step calibration approach. Assessment of the precision and robustness of the BATEA approach suggests that uncertainty in the BATEA-inferred precipitation is primarily related to uncertainties in hydrologic model structure. Despite these limitations, time series of inferred annual precipitation under different model and parameter assumptions are strongly correlated with one another, suggesting that this approach is capable of resolving year-to-year variability in basin-mean precipitation.

  20. Hanford spent nuclear fuel project recommended path forward, volume III: Alternatives and path forward evaluation supporting documentation

    International Nuclear Information System (INIS)

    Fulton, J.C.

    1994-10-01

    Volume I of the Hanford Spent Nuclear Fuel Project - Recommended Path Forward constitutes an aggressive series of projects to construct and operate systems and facilities to safely retrieve, package, transport, process, and store K Basins fuel and sludge. Volume II provided a comparative evaluation of four Alternatives for the Path Forward and an evaluation for the Recommended Path Forward. Although Volume II contained extensive appendices, six supporting documents have been compiled in Volume III to provide additional background for Volume II

  1. Structural Framework and Architecture of the Paleoproterozoic Bryah and Padbury Basins from Integrated Potential Field and Geological Datasets: Towards an Understanding of the Basin Evolution

    Science.gov (United States)

    Nigro R A Ramos, L.; Aitken, A.; Occhipinti, S.; Lindsay, M.

    2017-12-01

    The Bryah and Padbury Basins were developed along the northern margin of the Yilgarn Craton, in the southern portion of the Capricorn Orogen, which represents a Proterozoic tectonic zone that bounds the Yilgarn and Pilbara Cratons in Western Australia. These basins have been previously interpreted as developing in a rift, back-arc, and retro-arc foreland basins. Recent studies suggest that the Bryah Basin was deposited in a rift setting, while the overlying Padbury Basin evolved in a pro-foreland basin during the collision of the Yilgarn Craton and the Pilboyne block (formed by the Pilbara Craton and the Glenburgh Terrane), occurring in the Glenburgh Orogeny (2005-1960 Ma). This study focuses on characterizing the architecture and structural framework of the Bryah and Padbury Basins through analysis of geophysical and geological datasets, in order to better understand the different stages of the basins evolution. Gravity and magnetic data were used to define the main tectonic units and lithological boundaries, and to delineate major discontinuities in the upper and lower crust, as well as anomalies through a combination of map view interpretation and forward modelling. Geological mapping and drill core observations were linked with the geophysical interpretations. Fourteen magnetic domains are distinguished within the basins, while four main domains based on the Bouguer Anomaly are recognized. The highest gravity amplitude is related with an anomaly trending EW/NE-SW, which is coincident with the voluminous mafic rocks of the Bryah Basin, and may indicate the presence of an approximately 5km thick package of higher density mafic rocks. Magnetic depth estimations also indicate deep magnetic sources up to approximately 4,45km. These results can help to elucidate processes that occurred during the precursor rift of the early stages of the Bryah Basin, add information in relation to the basement control on sedimentation, allow the characterization of the varying

  2. Riddled Basins of Attraction for Synchronized Type-I Intermittency

    DEFF Research Database (Denmark)

    Mancher, Martin; Nordahn, Morten; Mosekilde, Erik

    1998-01-01

    Chaotic mortion resticted to an invariant subspace of total phase space may be associated with basins of attraction that are riddled with holes belonging to the basin of another limiting state. We study the emergence of such basins of two coupled one-dimensional maps, each exhibiting type...

  3. 100KE/KW fuel storage basin surface volumetric factors

    International Nuclear Information System (INIS)

    Conn, K.R.

    1996-01-01

    This Supporting Document presents calculations of surface Volumetric factors for the 100KE and 100KW Fuel Storage Basins. These factors relate water level changes to basin loss or additions of water, or the equivalent water displacement volumes of objects added to or removed from the basin

  4. Integrated Worker Radiation Dose Assessment for the K Basins

    International Nuclear Information System (INIS)

    NELSON, J.V.

    1999-01-01

    This report documents an assessment of the radiation dose workers at the K Basins are expected to receive in the process of removing spent nuclear fuel from the storage basins. The K Basins (K East and K West) are located in the Hanford 100K Area

  5. Palaeocene-early Eocene inversion of the Phuquoc-Kampot Som Basin

    DEFF Research Database (Denmark)

    Fyhn, Michael B. W.; Pedersen, Stig A.S.; Boldreel, Lars Ole

    2010-01-01

    /Pb analysis is used to unravel the basin history. This reveals a hitherto unknown earliest Palaeogene basin inversion associated with the Luconian suturing to SE Asia and the shutdown of palaeo-Pacific subduction underneath SE Asia. The Phuquoc–Kampot Som Basin and the Khorat Basin in Thailand constitute...... the erosional remnants of a larger basin that covered large parts of SE Asia in Late Mesozoic time, and subsequently became segregated during earliest Palaeogene inversion and erosion. Inversion was focused along the several hundred kilometres long Kampot and Khmer–Chanthaburi fold belts that confine...

  6. Temporal and basin-specific population trends of quagga mussels on soft sediment of a multi-basin reservoir

    Science.gov (United States)

    Caldwell, Timothy J; Rosen, Michael R.; Chandra, Sudeep; Acharya, Kumud; Caires, Andrea M; Davis, Clinton J.; Thaw, Melissa; Webster, Daniel M.

    2015-01-01

    Invasive quagga (Dreissena bugnesis) and zebra (Dreissena ploymorpha) mussels have rapidly spread throughout North America. Understanding the relationships between environmental variables and quagga mussels during the early stages of invasion will help management strategies and allow researchers to predict patterns of future invasions. Quagga mussels were detected in Lake Mead, NV/AZ in 2007, we monitored early invasion dynamics in 3 basins (Boulder Basin, Las Vegas Bay, Overton Arm) bi-annually from 2008-2011. Mean quagga density increased over time during the first year of monitoring and stabilized for the subsequent two years at the whole-lake scale (8 to 132 individuals·m-2, geometric mean), in Boulder Basin (73 to 875 individuals·m-2), and in Overton Arm(2 to 126 individuals·m-2). In Las Vegas Bay, quagga mussel density was low (9 to 44 individuals·m-2), which was correlated with high sediment metal concentrations and warmer (> 30°C) water temperatures associated with that basin. Carbon content in the sediment increased with depth in Lake Mead and during some sampling periods quagga density was also positively correlated with depth, but more research is required to determine the significance of this interaction. Laboratory growth experiments suggested that food quantity may limit quagga growth in Boulder Basin, indicating an opportunity for population expansion in this basin if primary productivity were to increase, but was not the case in Overton Arm. Overall quagga mussel density in Lake Mead is highly variable and patchy, suggesting that temperature, sediment size, and sediment metal concentrations, and sediment carbon content all contribute to mussel distribution patterns. Quagga mussel density in the soft sediment of Lake Mead expanded during initial colonization, and began to stabilize approximately 3 years after the initial invasion.

  7. Morphometric analysis of the Marmara Sea river basins, Turkey

    Science.gov (United States)

    Elbaşı, Emre; Ozdemir, Hasan

    2014-05-01

    The drainage basin, the fundamental unit of the fluvial landscape, has been focus of research aimed at understanding the geometric characteristics of the master channel and its tributary network. This geometry is referred to as the basin morphometry and is nicely reviewed by Abrahams (1984). A great amount of research has focused on geometric characteristic of drainage basins, including the topology of the stream networks, and quantitative description of drainage texture, pattern, shape, and relief characteristics. Evaluation of morphometric parameters necessitates the analysis of various drainage parameters such as ordering of the various streams, measurement of basin area and perimeter, length of drainage channels, drainage density (Dd), stream frequency (Fs), bifurcation ratio (Rb), texture ratio (T), basin relief (Bh), Ruggedness number (Rn), time of concentration (Tc), hypsometric curve and integral (Hc and Hi) (Horton, 1932, Schumn, 1956, Strahler, 1957; Verstappen 1983; Keller and Pinter, 2002; Ozdemir and Bird, 2009). These morphometric parameters have generally been used to predict flood peaks, to assess sediment yield, and to estimate erosion rates in the basins. River basins of the Marmara Sea, has an area of approximately 40,000 sqkm, are the most important basins in Turkey based on their dense populations, industry and transportation systems. The primary aim of this study is to determine and analyse of morphometric characteristics of the Marmara Sea river basins using 10 m resolution Digital Elevation Model (DEM) and to evaluate of the results. For these purposes, digital 10 m contour maps scaled 1:25000 and geological maps scaled 1:100000 were used as the main data sources in the study. 10 m resolution DEM data were created using the contour maps and then drainage networks and their watersheds were extracted using D8 pour point model. Finally, linear, areal and relief morphometries were applied to the river basins using Geographic Information Systems

  8. Constraining drivers of basin exhumation in the Molasse Basin by combining low-temperature thermochronology, thermal history and kinematic modeling

    Science.gov (United States)

    Luijendijk, Elco; von Hagke, Christoph; Hindle, David

    2017-04-01

    Due to a wealth of geological and thermochronology data the northern foreland basin of the European Alps is an ideal natural laboratory for understanding the dynamics of foreland basins and their interaction with surface and geodynamic processes. The northern foreland basin of the Alps has been exhumed since the Miocene. The timing, rate and cause of this phase of exhumation are still enigmatic. We compile all available thermochronology and organic maturity data and use a new thermal history model, PyBasin, to quantify the rate and timing of exhumation that can explain these data. In addition we quantify the amount of tectonic exhumation using a new kinematic model for the part of the basin that is passively moved above the detachment of the Jura Mountains. Our results show that the vitrinite reflectance, apatite fission track data and cooling rates show no clear difference between the thrusted and folded part of the foreland basin and the undeformed part of the foreland basin. The undeformed plateau Molasse shows a high rate of cooling during the Neogene of 40 to 100 °C, which is equal to >1.0 km of exhumation. Calculated rates of exhumation suggest that drainage reorganization can only explain a small part of the observed exhumation and cooling. Similarly, tectonic transport over a detachment ramp cannot explain the magnitude, timing and wavelength of the observed cooling signal. We conclude that the observed cooling rates suggest large wavelength exhumation that is probably caused by lithospheric-scale processes. In contrast to previous studies we find that the timing of exhumation is poorly constrained. Uncertainty analysis shows that models with timing starting as early as 12 Ma or as late as 2 Ma can all explain the observed data.

  9. Use of hydrological modelling and isotope techniques in Guvenc basin

    International Nuclear Information System (INIS)

    Altinbilek, D.

    1991-07-01

    The study covers the work performed under Project No. 335-RC-TUR-5145 entitled ''Use of Hydrologic Modelling and Isotope Techniques in Guvenc Basin'' and is an initial part of a program for estimating runoff from Central Anatolia Watersheds. The study presented herein consists of mainly three parts: 1) the acquisition of a library of rainfall excess, direct runoff and isotope data for Guvenc basin; 2) the modification of SCS model to be applied to Guvenc basin first and then to other basins of Central Anatolia for predicting the surface runoff from gaged and ungaged watersheds; and 3) the use of environmental isotope technique in order to define the basin components of streamflow of Guvenc basin. 31 refs, figs and tabs

  10. Impact of land-use and climatic changes on hydrology of the Himalayan Basin: A case study of the Kosi Basin

    Science.gov (United States)

    Sharma, Keshav Prasad

    1997-10-01

    Land-use and climatic changes are of major concern in the Himalayan region because of their potential impacts on a predominantly agriculture-based economy and a regional hydrology dominated by strong seasonality. Such concerns are not limited to any particular basin but exist throughout the region including the downstream plain areas. As a representative basin of the Himalayas, we studied the Kosi basin (54,000 km2) located in the mountainous area of the central Himalayan region. We analyzed climatic and hydrologic information to assess the impacts of existing and potential future land-use and climatic changes over the basin. The assessment of anthropogenic inputs showed that the population grew at a compound growth rate of about one percent per annum over the basin during the last four decades. The comparison of land-use data based on the surveys made in the 1960s, and the surveys of 1978-79 did not reveal noticeable trends in land-use change. Analysis of meteorological and hydrological trends using parametric and nonparametric statistics for monthly data from 1947 to 1993 showed some increasing tendency for temperature and precipitation. Statistical tests of hydrological trends indicated an overall decrease of discharge along mainstem Kosi River and its major tributaries. The decreasing trends of streamflow were more significant during low-flow months. Statistical analysis of homogeneity showed that the climatological as well as the hydrological trends were more localized in nature lacking distinct basinwide significance. Statistical analysis of annual sediment time series, available for a single station on the Kosi River did not reveal a significant trend. We used water balance, statistical correlation, and distributed deterministic modeling approaches to analyze the hydrological sensitivity of the basin to possible land-use and climatic changes. The results indicated a stronger influence of basin characteristics compared to climatic characteristics on flow

  11. Stochastic model for simulating Souris River Basin precipitation, evapotranspiration, and natural streamflow

    Science.gov (United States)

    Kolars, Kelsey A.; Vecchia, Aldo V.; Ryberg, Karen R.

    2016-02-24

    The Souris River Basin is a 61,000-square-kilometer basin in the Provinces of Saskatchewan and Manitoba and the State of North Dakota. In May and June of 2011, record-setting rains were seen in the headwater areas of the basin. Emergency spillways of major reservoirs were discharging at full or nearly full capacity, and extensive flooding was seen in numerous downstream communities. To determine the probability of future extreme floods and droughts, the U.S. Geological Survey, in cooperation with the North Dakota State Water Commission, developed a stochastic model for simulating Souris River Basin precipitation, evapotranspiration, and natural (unregulated) streamflow. Simulations from the model can be used in future studies to simulate regulated streamflow, design levees, and other structures; and to complete economic cost/benefit analyses.Long-term climatic variability was analyzed using tree-ring chronologies to hindcast precipitation to the early 1700s and compare recent wet and dry conditions to earlier extreme conditions. The extended precipitation record was consistent with findings from the Devils Lake and Red River of the North Basins (southeast of the Souris River Basin), supporting the idea that regional climatic patterns for many centuries have consisted of alternating wet and dry climate states.A stochastic climate simulation model for precipitation, temperature, and potential evapotranspiration for the Souris River Basin was developed using recorded meteorological data and extended precipitation records provided through tree-ring analysis. A significant climate transition was seen around1970, with 1912–69 representing a dry climate state and 1970–2011 representing a wet climate state. Although there were some distinct subpatterns within the basin, the predominant differences between the two states were higher spring through early fall precipitation and higher spring potential evapotranspiration for the wet compared to the dry state.A water

  12. The no-project alternative analysis: An early product of the Tahoe Decision Support System

    Science.gov (United States)

    Halsing, David L.; Hessenflow, Mark L.; Wein, Anne

    2005-01-01

    We report on the development of a No-project alternative analysis (NPAA) or “business as usual” scenario with respect to a 20-year projection of 21 indicators of environmental and socioeconomic conditions in the Lake Tahoe Basin for the Tahoe Regional Planning Agency (TRPA). Our effort was inspired by earlier work that investigated the tradeoffs between an environmental and an economic objective. The NPAA study has implications for a longer term goal of building a Tahoe Decision Support System (TDSS) to assist the TRPA and other Basin agencies in assessing the outcomes of management strategies. The NPAA assumes no major deviations from current management practices or from recent environmental or societal trends and planned Environmental Improvement Program (EIP) projects. Quantitative “scenario generation” tools were constructed to simulate site-specific land uses, various population categories, and associated vehicle miles traveled. Projections of each indicator’s attainment status were made by building visual conceptual models of the relevant natural and social processes, extrapolating trends, and using available models, research, and expert opinion. We present results of the NPAA, projected indicator status, key factors affecting the indicators, indicator functionality, and knowledge gaps. One important result is that current management practices may slow the loss or degradation of environmental qualities but not halt or reverse it. Our analysis also predicts an increase in recreation and commuting into and within the basin, primarily in private vehicles. Private vehicles, which are a critical mechanism by which the Basin population affects the surrounding environment, are a key determinant of air-quality indicators, a source of particulate matter affecting Secchi depth, a source of noise, and a factor in recreational and scenic quality, largely owing to congestion. Key uncertainties in the NPAA include climate change, EIP project effectiveness, and

  13. The Hack's law applied to young volcanic basin: the Tahiti case

    Science.gov (United States)

    Ye, F.; Sichoix, L.; Barriot, J.; Serafini, J.

    2010-12-01

    We study the channel morphology over the Tahiti island from the Hack’s law perspective. The Hack’s law is an empirical power relationship between basin drainage area and the length of its main channel. It had also been shown that drainage area becomes more elongate with increasing basin size. For typical continental basins, the exponent value lies between 0.47 for basins larger than 260,000 km2 and 0.7 for those spanning less than 20,720 km2 (Muller, 1973). In Tahiti, we extracted 27 principal basins ranging from 7 km2 to 90 km2 from a Digital Terrain Model of the island with a 5 m-resolution. We demonstrate that the Hack’s law still apply for such small basins (correlation coefficient R2=0.7) with an exponent value being approximately 0.5. It appears that the exponent value is influenced by the local geomorphic condition, and does not follow the previous study results (the exponent value decreases with increasing drainage area.) Our exponent value matches the result found w.r.t. debris-flow basins of China for drainage areas less than 100 km2 (Li et al., 2008). Otherwise, the young volcanic basins of Tahiti do not become longer and narrower with increasing basin size (R2=0.1). Besides, there is no correlation between the basin area and the basin convexity (R2=0). This means that there is no statistical change in basin shape with basin size. We present also the drainage area-slope relationship with respect to sediment or transport-limited processes. Key words: Hack’s law, channel morphology, DTM

  14. Water and Benefit Sharing in Transboundary River Basins

    Science.gov (United States)

    Arjoon, D.; Tilmant, A.; Herrmann, M.

    2015-12-01

    Growing water scarcity underlies the importance of cooperation for the effective management of river basins, particularly in the context of international rivers in which unidirectional externalities can lead to asymmetric relationships between riparian countries. Studies have shown that significant economic benefits can be expected through basin-wide cooperation, however, the equitable partitioning of these benefits over the basin is less well studied and tends to overlook the importance of stakeholder input in the definition of equitability. In this study, an institutional arrangement to maximize welfare and then share the scarcity cost in a river basin is proposed. A river basin authority plays the role of a bulk water market operator, efficiently allocating bulk water to the users and collecting bulk water charges which are then equitably redistributed among water users. This highly regulated market restrains the behaviour of water users to control externalities and to ensure basin-wide coordination, enhanced efficiency, and the equitable redistribution of the scarcity cost. The institutional arrangement is implemented using the Eastern Nile River basin as a case study. The importance of this arrangement is that it can be adopted for application in negotiations to cooperate in trans-boundary river basins. The benefit sharing solution proposed is more likely to be perceived as equitable because water users help define the sharing rule. As a result, the definition of the sharing rule is not in question, as it would be if existing rules, such as bankruptcy rules or cooperative game theory solutions, are applied, with their inherent definitions of fairness. Results of the case study show that the sharing rule is predictable. Water users can expect to receive between 93.5% and 95% of their uncontested benefits (benefits that they expect to receive if water was not rationed), depending on the hydrologic scenario.

  15. Along strike behavior of the Tizi n' Firest fault during the Lower Jurassic rifting (Central High Atlas Carbonate basin, Morocco)

    Science.gov (United States)

    Sarih, S.; Quiquerez, A.; Allemand, P.; Garcia, J. P.; El Hariri, K.

    2018-03-01

    The purpose of this study is to document the along-strike early syn-rift history of the Lower Jurassic Carbonate basin of the Central High Atlas (Morocco) by combining sedimentological observations and high-resolution biostratigraphy. Six sections, each from the Sinemurian to the Upper Pliensbachian, were investigated along a 75 km-long transect at the hanging wall of a major fault of the Lower Jurassic Basin (i.e. the Tizi n' Firest fault). Depositional geometries of the early syn-rift deposits were reconstructed from the correlation between eight main timelines dated by biochronological markers for a time span covering about 6 Ma. Depocentre migration was examined and accommodation rates were calculated at the sub-zone timescale to discuss the along-strike-fault behavior of the Lower Jurassic basin formation. The early stages of extension are marked by contrasted along-strike variations in depositional geometry thickness, depocentre migration and accommodation rates, leading to the growth of three independent sub-basins (i.e. western, central, and eastern), ranging in size from 30 to 50 km, and displaying three contrasted tectono-sedimentary histories. Our results suggest that, during the early rifting phase, tectonic activity was not a continuous and progressive process evolving towards a rift climax stage, but rather a series of acceleration periods that alternated with periods of much reduced activity. The length of active fault segments is estimated at about 15-20 km, with a lifespan of a few ammonite sub-zones (> 2-3 Ma).

  16. Geochemical element mobility during the history of a Paleo-proterozoic clastic sedimentary basin, the Athabasca Basin (Saskatchewan, Canada)

    International Nuclear Information System (INIS)

    Kister, Philippe

    2003-01-01

    In order to understand the mechanisms of migration and deposition of ore elements, it is essential to determine the timing, source, and destination of the geochemical element mass transfers and/or transportation on a scale encompassing the great sedimentary basins. The purpose of this study is to trace and to date the element migrations that occurred during the history of a Paleo-proterozoic clastic sedimentary basin, the Athabasca Basin, which hosts the world's largest and richest uranium deposits. As this geological environment was proved to be efficient to preserve high grade ore deposits for over more than one billion years, it provides an opportunity to study some natural analogues of deep geological nuclear waste storage. Five research topics were studied: 3D modelling of the distribution of normative minerals and trace elements on a basin-wide scale; U-Pb and Rb-Sr systematics; average chemical age estimation; thermodynamic modelling of the major mineralogical assemblages; U-Pb geochronology of uranium oxides. Some elements have remained immobile (Zr) since their initial sedimentary deposition, or were transferred from one phase to another (Al, Th). Other elements have been transported during fluid flow events that occurred: (1) on a basin wide scale during diagenesis (REE, Y, Sr, Fe), (2) at the unconformity and in the vicinity of the fault zones that represent preferential fluid flow pathways between the basement and the sandstone cover (U, Ni, As, B, Mg, K, Fe, Sr, REE), (3) during the late fault reactivation events associated with the basin uplift (U, Pb, Ni, S, Sr, REE). The successive tectonic events related to the geodynamical context that lead to the formation of these high-grade U concentrations (1460 Ma, 1335 Ma and 1275 Ma in the McArthur River deposit), did not however systematically occur in the whole basin (1275 Ma only at Shea Creek). The exceptionally high grade and tonnages of some deposits seem to be related to a larger number of U

  17. Evolution of Xihulitu basin and its control to uranium ore-formation

    International Nuclear Information System (INIS)

    Guo Qingyin; Li Ziying; Dong Wenming

    2003-01-01

    There is a close relationship between basin filling succession and evolution of the basin. Characteristics of basin evolution can be studied by analyzing the basin filling succession. Two major periods are recognized according to the filling succession and subsequent alteration of the Xihulitu Basin. Evolutionary characteristics of each stage of the basin formation and alteration have been discussed in details. The types and special distribution of uranium metallization are controlled by the scale, connection degree and distribution of sandstone units and impermeable mudstone beds. The environment of uranium ore-formation became favorable as the faults modified the hydrodynamic condition. The basin had been uplifted for a long time after it was filled. Intergranular pores are not destroyed due to the weak mechanical compaction, which is beneficial to groundwater penetrating. Montmorillonitization and zeolitization in some sandstone units are strong because of the high content of volcanic fragments. The major uranium metallization is the phreatic oxidation type. The northern zone of the second sub-basin in the central section of the basin is regarded as the first perspective target for subsequent exploration. (authors)

  18. The Interior Columbia Basin Ecosystem Management Project: scientific assessment.

    Science.gov (United States)

    1999-01-01

    This CD-ROM contains digital versions (PDF) of the major scientific documents prepared for the Interior Columbia Basin Ecosystem Management Project (ICBEMP). "A Framework for Ecosystem Management in the Interior Columbia Basin and Portions of the Klamath and Great Basins" describes a general planning model for ecosystem management. The "Highlighted...

  19. Flood Inundation Modelling in the Kuantan River Basin using 1D-2D Flood Modeller coupled with ASTER-GDEM

    Science.gov (United States)

    Ng, Z. F.; Gisen, J. I.; Akbari, A.

    2018-03-01

    Topography dataset is an important input in performing flood inundation modelling. However, it is always difficult to obtain high resolution topography that provide accurate elevation information. Fortunately, there are some open source topography datasets available with reasonable resolution such as SRTM and ASTER-GDEM. In Malaysia particularly in Kuantan, the modelling research on the floodplain area is still lacking. This research aims to: a) to investigate the suitability of ASTER-GDEM to be applied in the 1D-2D flood inundation modelling for the Kuantan River Basin; b) to generate flood inundation map for Kuantan river basin. The topography dataset used in this study is ASTER-GDEM to generate physical characteristics of watershed in the basin. It is used to perform rainfall runoff modelling for hydrological studies and to delineate flood inundation area in the Flood Modeller. The results obtained have shown that a 30m resolution ASTER-GDEM is applicable as an input for the 1D-2D flood modelling. The simulated water level in 2013 has NSE of 0.644 and RSME of 1.259. As a conclusion, ASTER-GDEM can be used as one alternative topography datasets for flood inundation modelling. However, the flood level obtained from the hydraulic modelling shows low accuracy at flat urban areas.

  20. Hot, deep origin of petroleum: deep basin evidence and application

    Science.gov (United States)

    Price, Leigh C.

    1978-01-01

    Use of the model of a hot deep origin of oil places rigid constraints on the migration and entrapment of crude oil. Specifically, oil originating from depth migrates vertically up faults and is emplaced in traps at shallower depths. Review of petroleum-producing basins worldwide shows oil occurrence in these basins conforms to the restraints of and therefore supports the hypothesis. Most of the world's oil is found in the very deepest sedimentary basins, and production over or adjacent to the deep basin is cut by or directly updip from faults dipping into the basin deep. Generally the greater the fault throw the greater the reserves. Fault-block highs next to deep sedimentary troughs are the best target areas by the present concept. Traps along major basin-forming faults are quite prospective. The structural style of a basin governs the distribution, types, and amounts of hydrocarbons expected and hence the exploration strategy. Production in delta depocenters (Niger) is in structures cut by or updip from major growth faults, and structures not associated with such faults are barren. Production in block fault basins is on horsts next to deep sedimentary troughs (Sirte, North Sea). In basins whose sediment thickness, structure and geologic history are known to a moderate degree, the main oil occurrences can be specifically predicted by analysis of fault systems and possible hydrocarbon migration routes. Use of the concept permits the identification of significant targets which have either been downgraded or ignored in the past, such as production in or just updip from thrust belts, stratigraphic traps over the deep basin associated with major faulting, production over the basin deep, and regional stratigraphic trapping updip from established production along major fault zones.

  1. The Indus basin in the framework of current and future water resources management

    Directory of Open Access Journals (Sweden)

    A. N. Laghari

    2012-04-01

    Full Text Available The Indus basin is one of the regions in the world that is faced with major challenges for its water sector, due to population growth, rapid urbanisation and industrialisation, environmental degradation, unregulated utilization of the resources, inefficient water use and poverty, all aggravated by climate change. The Indus Basin is shared by 4 countries – Pakistan, India, Afghanistan and China. With a current population of 237 million people which is projected to increase to 319 million in 2025 and 383 million in 2050, already today water resources are abstracted almost entirely (more than 95% for irrigation. Climate change will result in increased water availability in the short term. However in the long term water availability will decrease. Some current aspects in the basin need to be re-evaluated. During the past decades water abstractions – and especially groundwater extractions – have augmented continuously to support a rice-wheat system where rice is grown during the kharif (wet, summer season (as well as sugar cane, cotton, maize and other crops and wheat during the rabi (dry, winter season. However, the sustainability of this system in its current form is questionable. Additional water for domestic and industrial purposes is required for the future and should be made available by a reduction in irrigation requirements. This paper gives a comprehensive listing and description of available options for current and future sustainable water resources management (WRM within the basin. Sustainable WRM practices include both water supply management and water demand management options. Water supply management options include: (1 reservoir management as the basin is characterised by a strong seasonal behaviour in water availability (monsoon and meltwater and water demands; (2 water quality conservation and investment in wastewater infrastructure; (3 the use of alternative water resources like the recycling of wastewater and desalination; (4

  2. The Indus basin in the framework of current and future water resources management

    Science.gov (United States)

    Laghari, A. N.; Vanham, D.; Rauch, W.

    2012-04-01

    The Indus basin is one of the regions in the world that is faced with major challenges for its water sector, due to population growth, rapid urbanisation and industrialisation, environmental degradation, unregulated utilization of the resources, inefficient water use and poverty, all aggravated by climate change. The Indus Basin is shared by 4 countries - Pakistan, India, Afghanistan and China. With a current population of 237 million people which is projected to increase to 319 million in 2025 and 383 million in 2050, already today water resources are abstracted almost entirely (more than 95% for irrigation). Climate change will result in increased water availability in the short term. However in the long term water availability will decrease. Some current aspects in the basin need to be re-evaluated. During the past decades water abstractions - and especially groundwater extractions - have augmented continuously to support a rice-wheat system where rice is grown during the kharif (wet, summer) season (as well as sugar cane, cotton, maize and other crops) and wheat during the rabi (dry, winter) season. However, the sustainability of this system in its current form is questionable. Additional water for domestic and industrial purposes is required for the future and should be made available by a reduction in irrigation requirements. This paper gives a comprehensive listing and description of available options for current and future sustainable water resources management (WRM) within the basin. Sustainable WRM practices include both water supply management and water demand management options. Water supply management options include: (1) reservoir management as the basin is characterised by a strong seasonal behaviour in water availability (monsoon and meltwater) and water demands; (2) water quality conservation and investment in wastewater infrastructure; (3) the use of alternative water resources like the recycling of wastewater and desalination; (4) land use

  3. Attractors and basins of dynamical systems

    Directory of Open Access Journals (Sweden)

    Attila Dénes

    2011-03-01

    Full Text Available There are several programs for studying dynamical systems, but none of them is very useful for investigating basins and attractors of higher dimensional systems. Our goal in this paper is to show a new algorithm for finding even chaotic attractors and their basins for these systems. We present an implementation and examples for the use of this program.

  4. Laboratory Evaluation of Underwater Grouting of CPP-603 Basins

    International Nuclear Information System (INIS)

    Johnson, V.J.; Pao, J.H.; Demmer, R.L.; Tripp, J.L.

    2002-01-01

    A project is underway to deactivate a Fuel Storage Basin. The project specifies the requirements and identifies the tasks that will be performed for deactivation of the CPP- 603 building at the Idaho Nuclear Technology and Engineering Center of the Idaho National Engineering and Environmental Laboratory. The Fuel Receiving and Storage Building (CPP- 603) was originally used to receive and store spent nuclear fuel from various facilities. The area to undergo deactivation includes the three spent nuclear fuel storage basins and a transfer canal (1.5 million gallons of water storage). Deactivation operations at the task site include management of the hot storage boxes and generic fuel objects, removal of the fuel storage racks, basin sludge, water evaporation and basin grouting, and interior equipment, tanks, and associated components. This includes a study to develop a grout formulation and placement process for this deactivation project. Water will be allowed to passively evaporate to r educe the spread of contamination from the walls of the basin. The basins will be filled with grout, underwater, as the water evaporates to maintain the basin water at a safe level. The objective of the deactivation project is to eliminate potential exposure to hazardous and radioactive materials and eliminate potential safety hazards associated with the CPP-603 building

  5. Seismic stratigraphy and regional unconformity analysis of Chukchi Sea Basins

    Science.gov (United States)

    Agasheva, Mariia; Karpov, Yury; Stoupakova, Antonina; Suslova, Anna

    2017-04-01

    Russian Chukchi Sea Shelf one of petroleum potential province and still one of the most uninvestigated area. North and Sough Chukchi Trough that separated by Wrangel-Hearld Arch have different origin. The main challenge is stratigraphic sequences determination that filled North and South Chukchi basins. The joint tectonic evolution of the territory as Canada basin opening and Brooks Range-Wrangel Herald orogenic events enable to expect the analogous stratigraphy sequences in Russian Part. Analysis of 2D seismic data of Russian and American Chukchi Sea represent the major seismic reflectance that traced throughout the basins. Referring to this data North Chukchi basin includes four seismic stratigraphic sequences - Franklian (pre-Mississippian), Ellesmirian (Upper Devonian-Jurassic), Beaufortian (Jurassic-Lower Cretaceous) and Brookian (Lower Cretaceous-Cenozoic), as it is in North Slope Alaska [1]. South Chukchi basin has different tectonic nature, representing only Franclian basement and Brookian sequences. Sedimentary cover of North Chukchi basins starts with Ellesmirian sequence it is marked by bright reflector that separates from chaotic folded Franklian sequence. Lower Ellesmirian sequence fills of grabens that formed during upper Devonian rifting. Devonian extension event was initiated as a result of Post-Caledonian orogenic collapse, terminating with the opening of Arctic oceans. Beaufortian sequence is distinguished in Colville basin and Hanna Trough by seismically defined clinoforms. Paleozoic and Mesozoic strata are eroded by regional Lower Cretaceous Unconformity (LCU) linked with Canada basin opening. LCU is defined at seismic by angular unconformity, tracing at most arctic basins. Lower Cretaceous erosion and uplift event are of Hauterivian to Aptian age in Brooks Range and the Loppa High uplift refer to the early Barremian. The Lower Cretaceous clinoform complex downlaps to LCU horizon and filling North Chukchi basin (as in Colville basin Alska

  6. Paleohydrogeology of the San Joaquin basin, California

    Science.gov (United States)

    Wilson, A.M.; Garven, G.; Boles, J.R.

    1999-01-01

    Mass transport can have a significant effect on chemical diagenetic processes in sedimentary basins. This paper presents results from the first part of a study that was designed to explore the role of an evolving hydrodynamic system in driving mass transport and chemical diagenesis, using the San Joaquin basin of California as a field area. We use coupled hydrogeologic models to establish the paleohydrogeology, thermal history, and behavior of nonreactive solutes in the basin. These models rely on extensive geological information and account for variable-density fluid flow, heat transport, solute transport, tectonic uplift, sediment compaction, and clay dehydration. In our numerical simulations, tectonic uplift and ocean regression led to large-scale changes in fluid flow and composition by strengthening topography-driven fluid flow and allowing deep influx of fresh ground water in the San Joaquin basin. Sediment compaction due to rapid deposition created moderate overpressures, leading to upward flow from depth. The unusual distribution of salinity in the basin reflects influx of fresh ground water to depths of as much as 2 km and dilution of saline fluids by dehydration reactions at depths greater than ???2.5 km. Simulations projecting the future salinity of the basin show marine salinities persisting for more than 10 m.y. after ocean regression. Results also show a change from topography-to compaction-driven flow in the Stevens Sandstone at ca. 5 Ma that coincides with an observed change in the diagenetic sequence. Results of this investigation provide a framework for future hydrologic research exploring the link between fluid flow and diagenesis.

  7. Retrodeforming the Sivas Basin (Turkey): Structural style of the central Anatolian basins and their integration in the geodynamic framework of Eastern Anatolia

    Science.gov (United States)

    Legeay, Etienne; Ringenbach, Jean-Claude; Callot, Jean-Paul; Mohn, Geoffroy; Kavak, Kaan

    2017-04-01

    Anatolia is the result of the amalgamation of Gondwandian microcontinents against Eurasia active margin. These were originally separated by several Neotethyan oceanic domains consumed by north-dipping subductions. Prior to the continental collision, regional convergence resulted in an obduction event, from north to south in Campanian time, which led to the emplacement of ophiolite nappes and ophiolitic mélanges onto the Tauride passive margin. Several sedimentary basins subsequently developed above the former sutures zones recorded the long-lasting geological evolution of the Anatolian domain from Late Cretaceous to Present The Sivas Basin is all together the richest, the most studied and also most complex of the group of Tertiary basins. The Sivas Basin formed above the northern leading edge of the Tauride platform, the Kırşehir micro-continent, the edge of the Pontide arc and the related sutures. Its complex structure is that of a fold-and-thrust belt with syn-orogenic salt tectonics. After the obduction, the Sivas basin recorded a relative quiet tectonic phase from Maastrichtian to Paleocene with basinal pelagic sedimentation and carbonate platform emplacement on its southern edge. Then shortening resumed in the Early Eocene with the development of north-verging thrusts. It is recorded by a coarse clastic input, with conglomeratic deltas fans grading up to basinal turbidites until the Late Eocene. Then the basin is progressively isolated and becomes an isolated foreland in which a thick evaporite formation deposited. Oligocene to Miocene continental clastics deposition was then mainly controlled by halokinesis: minibasin, salt ridges and salt sheets development. A first canopy is attributed to the second pulse of contraction from Late-Oligocene to Middle Miocene. This second stage end with the formation of back-thrust within the Sivas Basin and southward as a passive roof above a pre-salt triangle zone. This study relies both on extensive fieldwork (4 Ph

  8. Surface-water resources of Polecat Creek basin, Oklahoma

    Science.gov (United States)

    Laine, L.L.

    1956-01-01

    A compilation of basic data on surface waters in Polecat Creek basin is presented on a monthly basis for Heyburn Reservoir and for Polecat Creek at Heyburn, Okla. Chemical analyses are shown for five sites in the basin. Correlation of runoff records with those for nearby basins indicates that the average annual runoff of the basin above gaging station at Heyburn is 325 acre-feet per square mile. Estimated duration curves of daily flow indicate that under natural conditions there would be no flow in Polecat Creek at Heyburn (drainage area, 129 square miles) about 16 percent of the time on an average, and that the flow would be less than 3 cubic feet per second half of the time. As there is no significant base flow in the basin, comparable low flows during dry-weather periods may be expected in other parts of the basin. During drought periods Heyburn Reservoir does not sustain a dependable low-water flow in Polecat Creek. Except for possible re-use of the small sewage effluent from city of Sapulpa, dependable supplies for additional water needs on the main stem will require development of supplemental storage. There has been no regular program for collection of chemical quality data in the basin, but miscellaneous analyses indicate a water of suitable quality for municipal and agricultural uses in Heyburn Reservoir and Polecat Creek near Heyburn. One recent chemical analysis indicates the possibility of a salt pollution problem in the Creek near Sapulpa. (available as photostat copy only)

  9. Hydrology of the Upper Capibaribe Basin, Pernambuco, Brazil - A reconnaissance in an Area of Crystalline Rocks

    Science.gov (United States)

    Chada Filho, Luiz Goncalves; Dias Pessoa, Mario; Sinclair, William C.

    1966-01-01

    only small quantities to wells. The alluvium probably is the most productive aquifer in the basin, but is limited to narrow bands along the rivers that generally are no more than a few hundred meters wide and 5 meters thick. The alluvium contains variable amounts of silty sand capable of yielding small to moderate quantities of water to wells. Wells driven or dug into the alluvium could solve many small water problems. The chemical quality of the water in the upper Capibaribe basin ranges from good to bad and generally presents a major problem that cannot be solved solely by applying geological criteria. Mineralized water is widespread in the area, both in streams and underground, and .the choice of aquifers is small. All known aquifers contain, at one place or another, water that is mineralized, leaving no alternative for a natural supply of good-quality water. Although much of the available water is unsatisfactory for human consumption, it is generally acceptable for animals and therefore meets one of the principal water needs. Some of the ground water could be made potable by diluting it with rainwater, which could be collected during rainy seasons and temporarily stored in cisterns or reservoirs.

  10. Origin of marginal basins of the NW Pacific and their plate tectonic reconstructions

    Science.gov (United States)

    Xu, Junyuan; Ben-Avraham, Zvi; Kelty, Tom; Yu, Ho-Shing

    2014-03-01

    Geometry of basins can indicate their tectonic origin whether they are small or large. The basins of Bohai Gulf, South China Sea, East China Sea, Japan Sea, Andaman Sea, Okhotsk Sea and Bering Sea have typical geometry of dextral pull-apart. The Java, Makassar, Celebes and Sulu Seas basins together with grabens in Borneo also comprise a local dextral, transform-margin type basin system similar to the central and southern parts of the Shanxi Basin in geometry. The overall configuration of the Philippine Sea resembles a typical sinistral transpressional "pop-up" structure. These marginal basins except the Philippine Sea basin generally have similar (or compatible) rift history in the Cenozoic, but there do be some differences in the rifting history between major basins or their sub-basins due to local differences in tectonic settings. Rifting kinematics of each of these marginal basins can be explained by dextral pull-apart or transtension. These marginal basins except the Philippine Sea basin constitute a gigantic linked, dextral pull-apart basin system.

  11. Reserves in western basins: Part 1, Greater Green River basin

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-01

    This study characterizes an extremely large gas resource located in low permeability, overpressured sandstone reservoirs located below 8,000 feet drill depth in the Greater Green River basin, Wyoming. Total in place resource is estimated at 1,968 Tcf. Via application of geologic, engineering and economic criteria, the portion of this resource potentially recoverable as reserves is estimated. Those volumes estimated include probable, possible and potential categories and total 33 Tcf as a mean estimate of recoverable gas for all plays considered in the basin. Five plays (formations) were included in this study and each was separately analyzed in terms of its overpressured, tight gas resource, established productive characteristics and future reserves potential based on a constant $2/Mcf wellhead gas price scenario. A scheme has been developed to break the overall resource estimate down into components that can be considered as differing technical and economic challenges that must be overcome in order to exploit such resources: in other words, to convert those resources to economically recoverable reserves. Total recoverable reserves estimates of 33 Tcf do not include the existing production from overpressured tight reservoirs in the basin. These have estimated ultimate recovery of approximately 1.6 Tcf, or a per well average recovery of 2.3 Bcf. Due to the fact that considerable pay thicknesses can be present, wells can be economic despite limited drainage areas. It is typical for significant bypassed gas to be present at inter-well locations because drainage areas are commonly less than regulatory well spacing requirements.

  12. Regionalization of the Upper Tana Basin of Kenya Using Stream ...

    African Journals Online (AJOL)

    Regionalization of the Upper Tana Basin of Kenya Using Stream Flow Records. ... river gauge stations in the basin using the empirical orthogonal function analysis ... the study basin to be grouped into four homogenous hydrological zones that ...

  13. Did the Bering Sea Form as a Cenozoic Backarc Basin?

    Science.gov (United States)

    Stern, R. J.; Barth, G. A.; Scheirer, D. S.; Scholl, D. W.

    2012-12-01

    Understanding the origins of Bering Sea marginal basins (Aleutian, Bowers, and Komandorsky basins; AB, BB, KB) is key for reconstructing N. Pacific tectonic and magmatic evolution. New acquisitions and recompilations of MCS, OBS, and potential field data (Barth et al. poster. this session) for USGS Extended Continental Shelf project and selection of Aleutians as GeoPrisms Subduction Cycles and Deformation focus site stimulate reconsideration of BB, KB, and especially AB origins. AB has long been regarded as N. Pacific crust trapped when the Aleutian subduction began ~45-50 Ma. BB and KB probably formed together as Miocene backarc basins. Presence of Oligo-Miocene arc volcanics on Bowers and Shirshov ridges suggests that these are remnant arcs, orphaned by AB and KB opening. Seven lines of evidence suggest that AB formed as a Paleogene backarc basin: 1) AB heatflow suggests an age of about 44 Ma (Langseth et al 1980 JGR). 2) Formation of NNW-trending rift basins on Bering shelf (Navarin, Pribilof, and St. George basins) in Paleogene time indicate extension at this time. 3) The early Paleogene "red unconformity" of the Beringian margin could indicate uplift, erosion, and subsidence associated with AB opening. 4) ~N-S magnetic anomalies in AB contrasts with E-W Kula anomalies on N. Pacific, indicating that the two tracts of oceanic crust formed at different spreading ridges. 5) Thicker sediment in AB (2-4 km) vs. BB and KB (oceanic crust.ectonic scenario for formation of Aleutian Arc and Bering Sea basins. Green = present land; yellow = shelf; AB = Aleutian Basin; KB = Komandorsky Basin; BB = Bowers Basin; SR = Shirshov Ridge, BR = Bowers Ridge; Red = active volcanism and spreading ; Blue = extinct volcanism and spreading

  14. Chapter 48: Geology and petroleum potential of the Eurasia Basin

    Science.gov (United States)

    Moore, Thomas E.; Pitman, Janet K.

    2011-01-01

    The Eurasia Basin petroleum province comprises the younger, eastern half of the Arctic Ocean, including the Cenozoic Eurasia Basin and the outboard part of the continental margin of northern Europe. For the USGS petroleum assessment (CARA), it was divided into four assessment units (AUs): the Lena Prodelta AU, consisting of the deep-marine part of the Lena Delta; the Nansen Basin Margin AU, comprising the passive margin sequence of the Eurasian plate; and the Amundsen Basin and Nansen Basin AUs which encompass the abyssal plains north and south of the Gakkel Ridge spreading centre, respectively. The primary petroleum system thought to be present is sourced in c. 50–44 Ma (Early to Middle Eocene) condensed pelagic deposits that could be widespread in the province. Mean estimates of undiscovered, technically recoverable petroleum resources include <1 billion barrels of oil (BBO) and about 1.4 trillion cubic feet (TCF) of nonassociated gas in Lena Prodelta AU, and <0.4 BBO and 3.4 TCF nonassociated gas in the Nansen Basin Margin AU. The Nansen Basin and Amundsen Basin AUs were not quantitatively assessed because they have less than 10% probability of containing at least one accumulation of 50 MMBOE (million barrels of oil equivalent).

  15. Cretaceous sedimentology of the Barmer Basin, Rajasthan, India

    OpenAIRE

    Beaumont, Hazel

    2017-01-01

    The Barmer Basin, western India, is a well-known and prospected petroleum system. However, the Lower Cretaceous Ghaggar-Hakra Formation has not been recognised as basin fill and not documented prior to this study. The formation outcrops in rotational fault blocks at the Sarnoo Hills and surrounding areas, on the eastern Barmer Basin margin. The thesis here describes and analyses the nature and evolution of the formation at both outcrop and within the subsurface, producing facies and depositio...

  16. Modeling Fluid Flow in Faulted Basins

    Directory of Open Access Journals (Sweden)

    Faille I.

    2014-07-01

    Full Text Available This paper presents a basin simulator designed to better take faults into account, either as conduits or as barriers to fluid flow. It computes hydrocarbon generation, fluid flow and heat transfer on the 4D (space and time geometry obtained by 3D volume restoration. Contrary to classical basin simulators, this calculator does not require a structured mesh based on vertical pillars nor a multi-block structure associated to the fault network. The mesh follows the sediments during the evolution of the basin. It deforms continuously with respect to time to account for sedimentation, erosion, compaction and kinematic displacements. The simulation domain is structured in layers, in order to handle properly the corresponding heterogeneities and to follow the sedimentation processes (thickening of the layers. In each layer, the mesh is unstructured: it may include several types of cells such as tetrahedra, hexahedra, pyramid, prism, etc. However, a mesh composed mainly of hexahedra is preferred as they are well suited to the layered structure of the basin. Faults are handled as internal boundaries across which the mesh is non-matching. Different models are proposed for fault behavior such as impervious fault, flow across fault or conductive fault. The calculator is based on a cell centered Finite Volume discretisation, which ensures conservation of physical quantities (mass of fluid, heat at a discrete level and which accounts properly for heterogeneities. The numerical scheme handles the non matching meshes and guaranties appropriate connection of cells across faults. Results on a synthetic basin demonstrate the capabilities of this new simulator.

  17. Open Drainage and Detention Basin Combined System Optimization

    Directory of Open Access Journals (Sweden)

    M. E. Banihabib

    2017-01-01

    Full Text Available Introduction: Since flooding causes death and economic damages, then it is important and is one of the most complex and destructive natural disaster that endangers human lives and properties compared to any other natural disasters. This natural disaster almost hit most of countries and each country depending on its policy deals with it differently. Uneven intensity and temporal distribution of rainfall in various parts of Iran (which has arid and semiarid climate causes flash floods and leads to too much economic damages. Detention basins can be used as one of the measures of flood control and it detains, delays and postpones the flood flow. It controls floods and affects the flood directly and rapidly by temporarily storing of water. If the land topography allows the possibility of making detention basin with an appropriate volume and quarries are near to the projects for construction of detention dam, it can be used, because of its faster effect comparing to the other watershed management measures. The open drains can be used alone or in combination with detention basin instead of detention basin solitarily. Since in the combined system of open and detention basin the dam height is increasing in contrast with increasing the open drainage capacity, optimization of the system is essential. Hence, the investigation of the sensitivity of optimized combined system (open drainage and detention basin to the effective factors is also useful in appropriately design of the combined system. Materials and Methods: This research aims to develop optimization model for a combined system of open drainage and detention basins in a mountainous area and analyze the sensitivity of optimized dimensions to the hydrological factors. To select the dam sites for detention basins, watershed map with scale of 1: 25000 is used. In AutoCAD environment, the location of the dam sites are assessed to find the proper site which contains enough storage volume of the detention

  18. Fishes of the White River basin, Indiana

    Science.gov (United States)

    Crawford, Charles G.; Lydy, Michael J.; Frey, Jeffrey W.

    1996-01-01

    Since 1875, researchers have reported 158 species of fish belonging to 25 families in the White River Basin. Of these species, 6 have not been reported since 1900 and 10 have not been reported since 1943. Since the 1820's, fish communities in the White River Basin have been affected by the alteration of stream habitat, overfishing, the introduction of non-native species, agriculture, and urbanization. Erosion resulting from conversion of forest land to cropland in the 1800's led to siltation of streambeds and resulted in the loss of some silt-sensitive species. In the early 1900's, the water quality of the White River was seriously degraded for 100 miles by untreated sewage from the City of Indianapolis. During the last 25 years, water quality in the basin has improved because of efforts to control water pollution. Fish communities in the basin have responded favorably to the improved water quality.

  19. Water reform in the Murray-Darling Basin

    Science.gov (United States)

    Connell, Daniel; Grafton, R. Quentin

    2011-12-01

    In Australia's Murray-Darling Basin the Australian and state governments are attempting to introduce a system of water management that will halt ongoing decline in environmental conditions and resource security and provide a robust foundation for managing climate change. This parallels similar efforts being undertaken in regions such as southern Africa, the southern United States, and Spain. Central to the project is the Australian government's Water Act 2007, which requires the preparation of a comprehensive basin plan expected to be finalized in 2011. This paper places recent and expected developments occurring as part of this process in their historical context and examines factors that could affect implementation. Significant challenges to the success of the basin plan include human resource constraints, legislative tensions within the Australian federal system, difficulties in coordinating the network of water-related agencies in the six jurisdictions with responsibilities in the Murray-Darling Basin, and social, economic, and environmental limitations that restrict policy implementation.

  20. Burial and thermal history of the Paradox Basin, Utah and Colorado, and petroleum potential of the Middle Pennsylvanian Paradox Basin

    Science.gov (United States)

    Nuccio, Vito F.; Condon, Steven M.

    1996-01-01

    The Ismay?Desert Creek interval and Cane Creek cycle of the Alkali Gulch interval of the Middle Pennsylvanian Paradox Formation in the Paradox Basin of Utah and Colorado contain excellent organic-rich source rocks having total organic carbon contents ranging from 0.5 to 11.0 percent. The source rocks in both intervals contain types I, II, and III organic matter and are potential source rocks for both oil and gas. Organic matter in the Ismay?Desert Creek interval and Cane Creek cycle of the Alkali Gulch interval (hereinafter referred to in this report as the ?Cane Creek cycle?) probably is more terrestrial in origin in the eastern part of the basin and is interpreted to have contributed to some of the gas produced there. Thermal maturity increases from southwest to northeast for both the Ismay?Desert Creek interval and Cane Creek cycle, following structural and burial trends throughout the basin. In the northernmost part of the basin, the combination of a relatively thick Tertiary sedimentary sequence and high basinal heat flow has produced very high thermal maturities. Although general thermal maturity trends are similar for both the Ismay?Desert Creek interval and Cane Creek cycle, actual maturity levels are higher for the Cane Creek due to the additional thickness (as much as several thousand feet) of Middle Pennsylvanian section. Throughout most of the basin, the Ismay?Desert Creek interval is mature and in the petroleum-generation window (0.10 to 0.50 production index (PI)), and both oil and gas are produced; in the south-central to southwestern part of the basin, however, the interval is marginally mature (0.10 PI) in the central part of the basin and is overmature (past the petroleum-generation window (>0.50 PI)) throughout most of the eastern part of the basin. The Cane Creek cycle generally produces oil and associated gas throughout the western and central parts of the basin and thermogenic gas in the eastern part of the basin. Burial and thermal

  1. Tectonics vs. Climate efficiency in triggering detrital input in sedimentary basins: the Po Plain-Venetian-Adriatic Foreland Basin (Northern Italy)

    Science.gov (United States)

    Amadori, Chiara; Di Giulio, Andrea; Toscani, Giovanni; Lombardi, Stefano; Milanesi, Riccardo; Panara, Yuri; Fantoni, Roberto

    2017-04-01

    The relative efficiency of tectonics respect to climate in triggering erosion of mountain belts is a classical but still open debate in geosciences. The fact that data both from tectonically active and inactive mountain regions in different latitudes, record a worldwide increase of sediment input to sedimentary basins during the last million years concomitantly with the cooling of global climate and its evolution toward the modern high amplitude oscillating conditions pushed some authors to conclude that Pliocene-Pleistocene climate has been more efficient than tectonics in triggering mountain erosion. Po Plain-Venetian-Adriatic Foreland System, made by the relatively independent Po Plain-Northern Adriatic Basin and Venetian-Friulian Basin, provides an ideal case of study to test this hypothesis and possibly quantify the difference between the efficiency of the two. In fact it is a relatively closed basin (i.e. without significant sediment escape) with a fairly continuous sedimentation (i.e. with a quite continuous sedimentary record) completely surrounded by collisional belts (Alps, Northern Apennines and Dinarides) that experienced only very weak tectonic activity since Calabrian time, i.e. when climate cooling and cyclicity increased the most. We present a quantitative reconstruction of the sediment flow delivered from the surrounding mountain belts to the different part of the basin during Pliocene-Pleistocene time. This flow was obtained through the 3D reconstruction of the Venetian-Friulian and Po Plain Northern Adriatic Basins architecture, performed by means of the seismic-based interpretation and time-to-depth conversion of six chronologically constrained surfaces (seismic and well log data from courtesy of ENI); moreover, a 3D decompaction of the sediment volume bounded by each couple of surfaces has been included in the workflow, in order to avoid compaction-related bias. The obtained results show in both Basins a rapid four-folds increase of the

  2. Identification of basin characteristics influencing spatial variation of river flows

    NARCIS (Netherlands)

    Mazvimavi, D.; Burgers, S.L.G.E.; Stein, A.

    2006-01-01

    The selection of basin characteristics that explain spatial variation of river flows is important for hydrological regionalization as this enables estimation of flow statistics of ungauged basins. A direct gradient analysis method, redundancy analysis, is used to identify basin characteristics,

  3. K Basin sludge dissolution engineering study

    International Nuclear Information System (INIS)

    Westra, A.G.

    1998-01-01

    The purpose of this engineering study is to investigate the available technology related to dissolution of the K Basin sludge in nitric acid. The conclusion of this study along with laboratory and hot cell tests with actual sludge samples will provide the basis for beginning conceptual design of the sludge dissolver. The K Basin sludge contains uranium oxides, fragments of metallic U, and some U hydride as well as ferric oxyhydroxide, aluminum oxides and hydroxides, windblown sand that infiltrated the basin enclosure, ion exchange resin, and miscellaneous materials. The decision has been made to dispose of this sludge separate from the fuel elements stored in the basins. The sludge will be conditioned so that it meets Tank Waste Remediation System waste acceptance criteria and can be sent to one of the underground storage tanks. Sludge conditioning will be done by dissolving the fuel constituents in nitric acid, separating the insoluble material, adding neutron absorbers for criticality safety, and then reacting the solution with caustic to co-precipitate the uranium and plutonium. There will be five distinct feed streams to the sludge conditioning process two from the K East (KE) Basin and three from the K West (KW) Basin. The composition of the floor and pit sludges which contain more iron oxides and sand than uranium is much different than the canister sludges which are composed of mostly uranium oxides. The sludge conditioning equipment will be designed to process all of the sludge streams, but some of the operating parameters will be adjusted as necessary to handle the different sludge stream compositions. The volume of chemical additions and the amount of undissolved solids will be much different for floor and pit sludge than for canister sludge. Dissolution of uranium metal and uranium dioxide has been studied quite thoroughly and much information is available. Both uranium metal and uranium dioxide have been dissolved on a large scale in nuclear fuel

  4. HYDROLASING OF CONTAMINATED UNDERWATER BASIN SURFACES AT THE HANFORD K AREA

    International Nuclear Information System (INIS)

    CHRONISTER, G.B.

    2005-01-01

    This paper discusses selecting and implementing hydrolasing technology to reduce radioactive contamination in preparing to dispose of the K Basins; two highly contaminated concrete basins at the Hanford Site. A large collection of spent nuclear fuel stored for many years underwater at the K Basins has been removed to stable, dry, safe storage. Remediation activities have begun for the remaining highly contaminated water. sludge, and concrete basin structures. Hydrolasing will be used to decontaminate and prepare the basin structures for disposal

  5. Drowning unconformity of lacustrine rift basins: A case study from the Dongying Sag in Bohai Bay Basin, China

    Science.gov (United States)

    Chen, R.; Fan, J.

    2015-12-01

    The concept of drowning unconformity of lacustrine rift basins was proposed