WorldWideScience

Sample records for widespread fatigue damage

  1. Development of advanced structural analysis methodologies for predicting widespread fatigue damage in aircraft structures

    Science.gov (United States)

    Harris, Charles E.; Starnes, James H., Jr.; Newman, James C., Jr.

    1995-01-01

    NASA is developing a 'tool box' that includes a number of advanced structural analysis computer codes which, taken together, represent the comprehensive fracture mechanics capability required to predict the onset of widespread fatigue damage. These structural analysis tools have complementary and specialized capabilities ranging from a finite-element-based stress-analysis code for two- and three-dimensional built-up structures with cracks to a fatigue and fracture analysis code that uses stress-intensity factors and material-property data found in 'look-up' tables or from equations. NASA is conducting critical experiments necessary to verify the predictive capabilities of the codes, and these tests represent a first step in the technology-validation and industry-acceptance processes. NASA has established cooperative programs with aircraft manufacturers to facilitate the comprehensive transfer of this technology by making these advanced structural analysis codes available to industry.

  2. Fatigue Damage in Wood

    DEFF Research Database (Denmark)

    Clorius, Christian Odin; Pedersen, Martin Bo Uhre; Hoffmeyer, Preben

    1996-01-01

    An investigation of fatigue failure in wood subjected to load cycles in compression parallel to grain is presented. Fatigue failure is found to depend both on the total time under load and on the number of cycles.Recent accelerated fatigue research on wood is reviewed, and a discrepancy between...... to 10 Hz are used. The number of cycles to failure is found to be a poor measure of the fatigue performance of wood. Creep, maximum strain, stiffness and work are monitored throughout the fatigue tests. Accumulated creep is suggested identified with damage and a correlation between stiffness reduction...

  3. Probabilistic Fatigue Damage Program (FATIG)

    Science.gov (United States)

    Michalopoulos, Constantine

    2012-01-01

    FATIG computes fatigue damage/fatigue life using the stress rms (root mean square) value, the total number of cycles, and S-N curve parameters. The damage is computed by the following methods: (a) traditional method using Miner s rule with stress cycles determined from a Rayleigh distribution up to 3*sigma; and (b) classical fatigue damage formula involving the Gamma function, which is derived from the integral version of Miner's rule. The integration is carried out over all stress amplitudes. This software solves the problem of probabilistic fatigue damage using the integral form of the Palmgren-Miner rule. The software computes fatigue life using an approach involving all stress amplitudes, up to N*sigma, as specified by the user. It can be used in the design of structural components subjected to random dynamic loading, or by any stress analyst with minimal training for fatigue life estimates of structural components.

  4. System for estimating fatigue damage

    Science.gov (United States)

    LeMonds, Jeffrey; Guzzo, Judith Ann; Liu, Shaopeng; Dani, Uttara Ashwin

    2017-03-14

    In one aspect, a system for estimating fatigue damage in a riser string is provided. The system includes a plurality of accelerometers which can be deployed along a riser string and a communications link to transmit accelerometer data from the plurality of accelerometers to one or more data processors in real time. With data from a limited number of accelerometers located at sensor locations, the system estimates an optimized current profile along the entire length of the riser including riser locations where no accelerometer is present. The optimized current profile is then used to estimate damage rates to individual riser components and to update a total accumulated damage to individual riser components. The number of sensor locations is small relative to the length of a deepwater riser string, and a riser string several miles long can be reliably monitored along its entire length by fewer than twenty sensor locations.

  5. Uncertainty on Fatigue Damage Accumulation for Composite Materials

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Sørensen, John Dalsgaard

    2009-01-01

    In the present paper stochastic models for fatigue damage accumulation for composite materials are presented based on public available constant and variable amplitude fatigue tests. The methods used for estimating the SN-curve and accumulated fatigue damage are presented.......In the present paper stochastic models for fatigue damage accumulation for composite materials are presented based on public available constant and variable amplitude fatigue tests. The methods used for estimating the SN-curve and accumulated fatigue damage are presented....

  6. Basic mechanisms of tendon fatigue damage

    OpenAIRE

    Neviaser, Andrew; Andarawis-Puri, Nelly; Flatow, Evan

    2012-01-01

    Pathologic processes intrinsic and extrinsic to the tendons have been proposed as the underlying cause of rotator cuff disease, but the precise etiology is not known. Tear formation is, in part, attributable to the accumulation of subrupture tendon fatigue damage. We review the molecular, mechanical, and structural changes induced in tendons subjected to controlled amounts of fatigue loading in an animal model of early tendinopathy. The distinct tendon responses to low and moderate levels of ...

  7. Common and unique associated factors for medically unexplained chronic widespread pain and chronic fatigue.

    Science.gov (United States)

    McBeth, J; Tomenson, B; Chew-Graham, C A; Macfarlane, G J; Jackson, J; Littlewood, A; Creed, F H

    2015-12-01

    Chronic widespread pain and chronic fatigue share common associated factors but these associations may be explained by the presence of concurrent depression and anxiety. We mailed questionnaires to a randomly selected sample of people in the UK to identify participants with chronic widespread pain (ACR 1990 definition) and those with chronic fatigue. The questionnaire assessed sociodemographic factors, health status, healthcare use, childhood factors, adult attachment, and psychological stress including anxiety and depression. To identify persons with unexplained chronic widespread pain or unexplained chronic fatigue; we examined participant's medical records to exclude medical illness that might cause these symptoms. Of 1443 participants (58.0% response rate) medical records of 990 were examined. 9.4% (N=93) had unexplained chronic widespread pain and 12.6% (N=125) had unexplained chronic fatigue. Marital status, childhood psychological abuse, recent threatening experiences and other somatic symptoms were commonly associated with both widespread pain and fatigue. No common effect was found for few years of education and current medical illnesses (more strongly associated with chronic widespread pain) or recent illness in a close relative, neuroticism, depression and anxiety scores (more strongly associated with chronic fatigue). Putative associated factors with a common effect were associated with unexplained chronic widespread pain or unexplained chronic fatigue only when there was concurrent anxiety and/or depression. This study suggests that the associated factors for chronic widespread pain and chronic fatigue need to be studied in conjunction with concurrent depression/anxiety. Clinicians should be aware of the importance of concurrent anxiety or depression. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Fatigue damage monitoring of structural aluminum alloys

    Directory of Open Access Journals (Sweden)

    С.Р. Ігнатович

    2004-01-01

    Full Text Available  Results of the experiments directed on creation of a new tool method of fatigue damage diagnostics and an estimation of a residual life of aviation designs are presented. It is shown, that the defo rmation relief formed on a surface of cladding  layer of sheets of constructional alloys Д-16АТ, 2024-Т3, 7075-Т6  can be considered as the metal damage indicator  under cyclically repeating loadings.

  9. Prediction of fatigue damage in tapered laminates

    DEFF Research Database (Denmark)

    Raeis Hosseiny, Seyed Aydin; Jakobsen, Johnny

    2017-01-01

    . By increasing the cracks density, damage occurs when residual material properties reduce to a critical level. Residual strength and stiffness of simple laminates are assigned in a set of fatigue failure criteria to assess the remaining life of the components by increasing number of loading cycles. The mode...

  10. Fatigue damage assessment of recycled metals and alloys | Ayensu ...

    African Journals Online (AJOL)

    Fatigue damage assessment obeyed Paris law, fatigue limit was inversely proportional to grain size, fatigue strength decreased as tempera-ture increased, while fatigue life cycles increased with temperature decrease. The fatigue failure resulted from residual stresses which caused crack opening and propagation leading ...

  11. Fatigue in patients with chronic widespread pain participating in multidisciplinary rehabilitation treatment: a prospective cohort study.

    Science.gov (United States)

    de Rooij, Aleid; van der Leeden, Marike; de Boer, Michiel R; Steultjens, Martijn P M; Dekker, Joost; Roorda, Leo D

    2015-01-01

    To explore the associations between (improvement in) fatigue and (improvement in) clinical and cognitive factors in patients with chronic widespread pain (CWP), participating in multidisciplinary rehabilitation treatment. Data were used from baseline, 6 and 18 months of follow-up during a prospective cohort study of 120 CWP patients who completed multidisciplinary rehabilitation treatment. Cross-sectional and longitudinal relationships were analyzed between fatigue, clinical (i.e. pain, interference of pain and depression) and pain related cognitive factors (i.e. negative emotional cognitions, active cognitive coping, and control and chronicity beliefs). Higher levels of pain, interference of pain, depression, negative emotional cognitions, and negative control and chronicity beliefs were associated with a higher level of fatigue. Improvement in depression was related to improvement in fatigue. In CWP patients, worse clinical status, and dysfunctional pain-related cognitions are associated with a higher level of fatigue. Our results suggest that improvement in depression might be a mechanism of improvement in fatigue. Furthermore, improvement in fatigue seems to be independent of improvement in pain related cognitions. Targeting fatigue in multidisciplinary pain treatment may need specific strategies. Improvement in depression may be a mechanism of change to improve the level of fatigue in CWP. Improvement in dysfunctional (pain related) cognitions seems to be independent of improvement in fatigue. Targeting fatigue in multidisciplinary treatment may need specific strategies (e.g. additional interventions focusing on reducing fatigue and specific attention to improvement of sleep).

  12. Fatigue Strain and Damage Analysis of Concrete in Reinforced Concrete Beams under Constant Amplitude Fatigue Loading

    Directory of Open Access Journals (Sweden)

    Fangping Liu

    2016-01-01

    Full Text Available Concrete fatigue strain evolution plays a very important role in the evaluation of the material properties of concrete. To study fatigue strain and fatigue damage of concrete in reinforced concrete beams under constant amplitude bending fatigue loading, constant amplitude bending fatigue experiments with reinforced concrete beams with rectangular sections were first carried out in the laboratory. Then, by analyzing the shortcomings and limitations of existing fatigue strain evolution equations, the level-S nonlinear evolution model of fatigue strain was constructed, and the physical meaning of the parameters was discussed. Finally, the evolution of fatigue strain and fatigue damage of concrete in the compression zone of the experimental beam was analyzed based on the level-S nonlinear evolution model. The results show that, initially, fatigue strain grows rapidly. In the middle stages, fatigue strain is nearly a linear change. Because the experimental data for the third stage are relatively scarce, the evolution of the strain therefore degenerated into two phases. The model has strong adaptability and high accuracy and can reflect the evolution of fatigue strain. The fatigue damage evolution expression based on fatigue strain shows that fatigue strain and fatigue damage have similar variations, and, with the same load cycles, the greater the load level, the larger the damage, in line with the general rules of damage.

  13. Damage Analysis of CFRP under Impact Fatigue

    Directory of Open Access Journals (Sweden)

    George Tsigkourakos

    2012-01-01

    Full Text Available In recent years carbon fibre reinforced polymers (CFRPs have become some of the most important structural materials in the aerospace industry due to their excellent stiffness and strength to weight ratios. The real-life loading histories of aerospace composite components and structures involve the generation of transient loads that can propagate as cyclic impacts. This phenomenon is known as impact fatigue (IF. Such loads can cause various types of damage in composites, including fibre breakage, transverse matrix cracking, de-bonding between fibres and matrix and delamination, resulting in a reduction of residual stiffness and a loss of functionality.

  14. 75 FR 69745 - Aging Airplane Program: Widespread Fatigue Damage

    Science.gov (United States)

    2010-11-15

    .... For certain existing airplanes, the rule requires design approval holders to evaluate their airplanes... affective date of the rule, to establish an LOV. Design approval holders and applicants must demonstrate.... Operators may not fly an airplane beyond its LOV unless an extended LOV is approved. DATES: These amendments...

  15. 77 FR 55105 - Aging Airplane Program: Widespread Fatigue Damage; Correction

    Science.gov (United States)

    2012-09-07

    ..., MD- 30 50,000 FC/50,000 FH 88). MD-90 60 60,000 FC/90,000 FH DC-10-10, -15 30 42,000 FC/60,000 FH DC... FH MD-80 (DC-9-81, -82, -83, -87, MD- 30 50,000 FC/50,000 FH 88). MD-90 60 60,000 FC/90,000 FH DC-10-10, -15 30 42,000 FC/60,000 FH DC-10-30, -40, -10F, -30F, -40F.... 30 30,000 FC/60,000 FH MD-10-10F...

  16. Integrated fatigue damage diagnosis and prognosis under uncertainties

    Data.gov (United States)

    National Aeronautics and Space Administration — An integrated fatigue damage diagnosis and prognosis framework is proposed in this paper. The proposed methodology integrates a Lamb wave-based damage detection...

  17. Conditioning monitoring by microstructural evaluation of cumulative fatigue damage

    Science.gov (United States)

    Fukuoka, C.; Nakagawa, Y. G.; Lance, J. J.; Pangborn, R. N.

    1996-12-01

    The objective of this work is to evaluate the damage induced below and above the fatigue limit (Δ σ t =360 MPa) in pressure vessel steels, such as SA508. Fatigue damage was induced in samples taken from an SA508 steel plate by various loading histories in order to examine the influence of prior cyclic loading below the fatigue limit. Cell-to-cell misorientation differences were measured by the selected area diffraction (SAD) method. Surface cracking was also studied by the replication method. Small cracks were observed after precycling both below and above the fatigue limit. It was, however, found that fatigue test bars had a longer lifetime after precycling below the fatigue limit, while precycling above the fatigue limit caused other specimens to fail even when subsequently cycled below the fatigue limit. Cell-to-cell misorientation usually increases with accumulation of fatigue damage, but it was found that the misorientations measured after precycling below the fatigue limit decreased again at the beginning of the subsequent cycling above the fatigue limit. It should be noted that the misorientation at failure was always about 4 to 5 deg, regardless of loading histories. Misorientation showed good correlation with the fatigue lifetime of the samples.

  18. Laser ultrasonic absorption measurement in fatigue-damaged materials.

    Science.gov (United States)

    Luxenburger, S; Arnold, W

    2002-05-01

    Changes in the materials microstructure caused by fatigue processes affect the ultrasonic absorption. Thus, quantitative measurement of the ultrasonic absorption should provide an indirect measure of fatigue damage. In this paper we present a study of the ultrasonic absorption in fatigue-damaged metals using the reverberation technique in combination with laser-based ultrasound. The reverberation technique allows one to measure absorption independently of scattering.

  19. Onboard monitoring of fatigue damage rates in the hull girder

    DEFF Research Database (Denmark)

    Nielsen, Ulrik Dam; Jensen, Jørgen Juncher; Pedersen, Preben Terndrup

    2011-01-01

    Most new advanced ships have extensive data collection systems to be used for continuous monitoring of engine and hull performance, for voyage performance evaluation etc. Such systems could be expanded to include also procedures for stress monitoring and for decision support, where the most...... critical wave-induced ship extreme responses and fatigue damage accumulation can be estimated for hypothetical changes in ship course and speed in the automatically estimated wave environment.The aim of this paper is to outline a calculation procedure for fatigue damage rate prediction in hull girders......-induced stress ranges in a container ship, where the associated fatigue damage rates calculated from a combination of the rain-flow counting method and the Palmgren-Miner damage rule are compared with damage predictions obtained from a computationally much faster frequency fatigue analysis using a spectral...

  20. Fatigue Life of Postbuckled Structures with Indentation Damage

    Science.gov (United States)

    Davila, Carlos G.; Bisagni, Chiara

    2016-01-01

    The fatigue life of composite stiffened panels with indentation damage was investigated experimentally using single stringer compression specimens. Indentation damage was induced on one of the two flanges of the stringer. The experiments were conducted using advanced instrumentation, including digital image correlation, passive thermography, and in-situ ultrasonic scanning. Specimens with initial indentation damage lengths of 37 millimeters to 56 millimeters were tested in fatigue and the effects of cyclic load amplitude and damage size were studied. A means of comparison of the damage propagation rates and collapse loads based on a stress intensity measure and the Paris law is proposed.

  1. Fatigue Life of Postbuckled Structures with Indentation Damages

    Science.gov (United States)

    Davila, Carlos G.; Bisagni, Chiara

    2016-01-01

    The fatigue life of composite stiffened panels with indentation damage was investigated experimentally using single stringer compression specimens. Indentation damage was induced on one of the two flanges of each stringer. The experiments were conducted using advanced instrumentation, including digital image correlation, passive thermography, and in-situ ultrasonic scanning. Specimens with initial indentation damage lengths of 32 millimeters to 56 millimeters were tested quasi-statically and in fatigue, and the effects of cyclic load amplitude and damage size were studied. A means of comparison of the damage propagation rates and collapse loads based on a stress intensity measure and the Paris law is proposed.

  2. Optimal Inspection Planning for Fatigue Damage of Offshore Structures

    DEFF Research Database (Denmark)

    Madsen, H.O.; Sørensen, John Dalsgaard; Olesen, R.

    1990-01-01

    A formulation of optimal design, inspection and maintenance against damage caused by fatigue crack growth is formulated. A stochastic model for fatigue crack growth based on linear elastic fracture mechanics Is applied. Failure is defined by crack growth beyond a critical crack size. The failure......, inspection, repair and failure is minimized with a constraint on the life time reliability....

  3. The Association between Chronic Widespread Musculoskeletal Pain, Depression and Fatigue Is Genetically Mediated.

    Science.gov (United States)

    Burri, Andrea; Ogata, Soshiro; Livshits, Gregory; Williams, Frances

    2015-01-01

    Chronic widespread muscoloskeletal pain (CWP) is prevalent in the general population and associated with high health care costs, so understanding the risk factors for chronic pain is important for both those affected and for society. In the present study we investigated the underlying etiological structure of CWP to understand better the association between the major clinical features of fatigue, depression and dihydroepiandrosterone sulphate (DHEAS) using a multivariate twin design. Data were available in 463 UK female twin pairs including CWP status and information on depression, chronic fatigue and serum DHEAS levels. High to moderate heritabilities for all phenotypes were obtained (42.58% to 74.24%). The highest phenotypic correlation was observed between fatigue and CWP (r = 0.45), and the highest genetic correlation between CWP and fatigue (rg = 0.78). Structural equation modeling revealed the AE Cholesky model to provide the best model of the observed data. In this model, two additive genetic factors could be detected loading heavily on CWP-A2 explaining 40% of the variance and A3 20%. The factor loading heaviest on DHEAS showed only a small loading on the other phenotypes and none on fatigue at all. Furthermore, one distinct non-shared environmental factor loading specifically on CWP-but not on any of the other phenotypes-could be detected suggesting that the association between CWP and the other phenotypes is due only to genetic factors. Our results suggest that CWP and its associated features share a genetic predisposition but that they are relatively distinct in their environmental determinants.

  4. Microplasticity and fatigue in a damage tolerant niobium aluminide intermetallic

    Energy Technology Data Exchange (ETDEWEB)

    Soboyejo, W.O.; DiPasquale, J. [Ohio State Univ., Columbus, OH (United States). Dept. of Materials Science and Engineering; Srivatsan, T.S. [Univ. of Akron, OH (United States). Dept. of Mechanical Engineering; Konitzer, D. [General Electric Aircraft Engines, Cincinnati, OH (United States)

    1997-12-31

    In this paper, the micromechanisms of microplasticity and fatigue are elucidated for a damage tolerant niobium aluminide intermetallic deformed to failure under both monotonic and cyclic loading. Localized microplasticity is shown to occur by the formation of slip bands at stresses as low as 9% of the bulk yield stress. Formation and presence of slip bands is also observed upon application of the first cycle of fatigue load. The deformation and cracking phenomena are discussed in light of classical fatigue crack initiation and propagation models. The implications of microplasticity are elucidated for both fatigue crack initiation and crack growth.

  5. Sources of fatigue damage to passive yaw wind turbine blades

    Energy Technology Data Exchange (ETDEWEB)

    Laino, D.J. [Univ. of Utah, Salt Lake City, UT (United States)

    1997-12-31

    Using an integrated computer analysis approach developed at the University of Utah, fatigue damage sources to passive yaw wind turbine blades have been investigated. Models of a rigid hub and teetering hub machine reveal the parameters important to the fatigue design of each type. The teetering hub proved much less susceptible to fatigue damage from normal operation loads. As a result, extreme events were critical to the teetering hub fatigue life. The rigid hub blades experienced extremely large gyroscopic load cycles induced by rapid yaw rates during normal operation. These yaw rates stem from turbulence activity which is shown to be dependent upon atmospheric stability. Investigation revealed that increasing yaw damping is an effective way of significantly reducing these gyroscopic fatigue loads.

  6. Manuals of SORE, the creep fatigue damage calculation program, and the post program of the creep fatigue damage calculation program

    Energy Technology Data Exchange (ETDEWEB)

    Tanabe, Hiroaki [Japan Nuclear Cycle Development Inst., Tsuruga, Fukuki (Japan). Tsuruga Head Office; Sago, Hiromi [Mitsubishi Heavy Industries Ltd., Tokyo (Japan)

    2002-07-01

    This report includes the Manuals of 'the Structural Integrity Oriented Reliability Assessment System for 'MONJU' (SORE)', 'the creep fatigue damage calculation program using planning operation data' and 'the post program of the creep fatigue damage calculation program using planning operation data'. These programs were developed for the purpose of assisting the preservation management during the 'MONJU' plant employment period from an operation start. (author)

  7. Damage evolution in adhesive joints subjected to impact fatigue

    Science.gov (United States)

    Casas-Rodriguez, J. P.; Ashcroft, I. A.; Silberschmidt, V. V.

    2007-12-01

    There is increasing interest in the effects of low-velocity impacts produced in components and structures by vibrating loads. This type of loading is known as impact-fatigue. The main aim of this paper is to investigate the behaviour of adhesive joints exposed to low-velocity impacting, to study the impact-fatigue life and to compare this loading regime with standard fatigue (i.e. non-impacting, constant amplitude, sinusoidal fatigue). To this effect, bonded aluminium single lap joints have been subjected to multiple impacting tensile loads and it has been shown that this is an extremely damaging load regime compared to standard fatigue. Two modifications of the accumulated time-stress model have been proposed to characterise the impact-fatigue results presented in this paper. The first model has been termed the modified load-time model and relates the total cumulative loading time of the primary tensile load wave to the mean maximum force. The second model attempts to characterise sample damage under impact-fatigue by relating the maximum force normalised with respect to initial maximum force to the accumulated loading time normalised with respect to the total accumulated loading time. This model has been termed the normalised load-time model. It is shown that both models provide a suitable characterisation of impact-fatigue in bonded joints.

  8. Fatigue-Damage Estimation and Control for Wind Turbines

    DEFF Research Database (Denmark)

    Barradas Berglind, Jose de Jesus

    How can fatigue-damage for control of wind turbines be represented? Fatigue-damage is indeed a crucial factor in structures such as wind turbines that are exposed to turbulent and rapidly changing wind flow conditions. This is relevant both in their design stage and during the control......, the inclusion of fatigue-damage within feedback control loops is of special interest. Four strategies in total are proposed in this work: three for the wind turbine level and one for the wind farm level. On one hand, the three strategies in the turbine level are based on hysteresis operators and strive......-damage estimation in wind turbine components, to the mixed objective operation of wind energy conversion systems, and to the synthesis of control strategies that include hysteresis operators....

  9. Fatigue Damage Evolution in Fibre Composites for Wind Turbine Blades

    DEFF Research Database (Denmark)

    Jespersen, Kristine Munk

    One of the largest challenges in wind turbine design, is realistically predicting the lifetime of the blades. Wind turbine blades experience a high number of fatigue load cycles during their life-time, and the fatigue damage mechanisms of the non-crimp fabric based glass fibre composites used...... for the load carrying parts of wind turbine blades are not well understood. This PhD project establishes experimental methods making it possible to monitor the damage initiation and progression of fibre composites in 3D using X-ray CT. To overcome the resolution challenges of X-ray CT, a tension clamp solution...... that applies load to the specimen during X-ray CT examination is presented, and the advantage of combining X-ray CT with other techniques such as transilluminated white light imaging is demonstrated. The established methods are used to monitor the damage initiation and progression of fatigue damage...

  10. Thermomechanical fatigue and damage mechanisms in Sanicro 25 steel

    Czech Academy of Sciences Publication Activity Database

    Petráš, Roman; Škorík, Viktor; Polák, Jaroslav

    2016-01-01

    Roč. 650, JAN (2016), s. 52-62 ISSN 0921-5093 R&D Projects: GA MŠk(CZ) EE2.3.30.0063; GA ČR(CZ) GA13-23652S Institutional support: RVO:68081723 Keywords : thermomechanical fatigue * Sanicro 25 steel * damage mechanism * FIB cutting * localized oxidation-cracking Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 3.094, year: 2016

  11. Fatigue-damage localization in steel catenary risers

    Directory of Open Access Journals (Sweden)

    Hernández Víctor F.

    2014-06-01

    Full Text Available Risers used to transport crude oil require Structural Integrity Management plans and programs to allow proper functioning during its design life. Cyclic loading may cause fatigue damage during operation of the riser. Structural Health Monitoring (SHM is usually applied to detect damages ahead, and be confirmed by non- destructive inspection using remotely operated vehicles. With the information obtained the riser is assessed and if required mitigating measures can be implemented to prevent failure and disasters such as environmental pollution, and human and economic losses. This paper presents a study to locate fatigue damages using signals of the dynamic response. Numerical study cases were defined for a Steel Catenary Riser (SCR installed in 2000 m water depth. A damage case was considered, decreasing the stiffness value at a specific location of the structure. Dynamic analyses were performed using a commercial software that incorporates nonlinear behavior. The Modal Slope Difference, Modal Slope Difference and Damage Index methods (with two variations were applied to locate damage. Based on results the MSlD yielded the smallest error values in damage location followed by the Damage Index Method for severity values greater than 6%. Results demonstrate the effectiveness of the proposed methodology to locate fatigue damages in deep-water SCRs.

  12. Detection of localized fatigue damage in steel by thermography

    Science.gov (United States)

    Medgenberg, Justus; Ummenhofer, Thomas

    2007-04-01

    Fatigue damage of unalloyed steels in the high cycle regime is governed by localized cyclic plastic deformations and subsequent crack initiation. The extent of early microplastic deformations depends on the applied stress level, stress concentration at macroscopic notches, surface treatment, residual stresses etc. The onset of a nonlinear material response can be regarded as an early indicator of fatigue damage. During fatigue loading thermoelastic coupling and thermoplastic dissipation cause characteristic temperature variations in tested specimens which have been assessed by a highly sensitive infrared camera. A specialized data processing method in the time domain has been developed which allows to separate the different contributions to the measured temperature signal. In contrast to other methods - as e.g. measuring the rise of mean temperature during fatigue loading - the proposed methodology is based on measurements during the stabilized temperature regimen and offers very high spatial resolution of localized phenomena. Investigations have been made on mildly notched cylindrical and also on welded specimens. The results confirm the close relation between the local temperature signal and typical fatigue phenomena. The new methodology allows for a much better localization and quantification of effects as cyclic plasticity, crack initiation, crack growth etc. The following paper presents considerations and experimental results of an application of thermography to the local assessment of fatigue damage.

  13. Effects of exercise on fatigue and physical capacity in men with chronic widespread pain - a pilot study

    OpenAIRE

    Ericsson, Anna; Bremell, Tomas; Cider, ?sa; Mannerkorpi, Kaisa

    2016-01-01

    Background There is very limited knowledge about the effects of exercise on men with Chronic Widespread Pain (CWP), especially regarding fatigue. We wanted to investigate the effects of resistance exercise compared with pool exercise on multidimensional fatigue, psychological distress and physical capacity in men with CWP. Methods Thirty-four men with CWP, with a mean age of 49 (SD 8, range 26?59) years, were randomised to 12?weeks of standardised pool exercise (PE) or resistance exercise (RE...

  14. Fatigue damage of nuclear facilities; Endommagement par fatigue des installations nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    The conference on the fatigue damage of nuclear facilities, organized by the SFEN (french society of nuclear energy), took place at Paris the 23. of november 2000. Eleven papers were presented, showing the state of the art and the research programs in the domain of the sizing rules, safety, installations damage, examination and maintenance. (A.L.B.)

  15. Analysis of aeroelastic loads and their contributions to fatigue damage

    DEFF Research Database (Denmark)

    Bergami, Leonardo; Gaunaa, Mac

    2014-01-01

    an estimation of the load frequencies yielding the highest fatigue contributions from the bending moment spectra. The results are in good agreement with rain-flow counting analysis on filtered time series, and, for the blade loads, show dominant contributions from frequencies close to the rotational one...... analysis is performed using rain-flow counting and Palmgren-Miner linear damage assumption; the contribution to life-time fatigue damage from deterministic load variations is quantified, as well as the contributions from operation at different mean wind speeds. A method is proposed to retrieve...

  16. Fretting fatigue life estimation using fatigue damage gradient correction factor in various contact configurations

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Dong Hyeon; Cho, Sung-San [Hongik University, Seoul (Korea, Republic of)

    2017-03-15

    A fretting fatigue life estimation method that takes into account the stress gradient effect was developed by the authors [Journal of Mechanical Science and Technology, 28 (2014) 2153-2159]. In the developed method, fatigue damage value at the cracking location is corrected with fatigue damage gradient and the corrected value is compared directly with the plain fatigue data for life estimation. In other words, the correction factor is the ratio of plain fatigue damage to fretting fatigue damage at the same life and a function of fatigue damage gradient. Since reliability of the method was verified only for cylinder-on-flat contact configuration in the previous study, the present study extends application of the method to flat-on-flat contact configurations by developing the correction factor for both the contact configuration. Fretting fatigue experiments were conducted to obtain fatigue life data for various fretting pads. Finite element analyses were conducted to evaluate the Smith-Watson-Topper (SWT) fatigue damage parameter in the cracking region. It is revealed that the SWT parameter in fat-on-flat contact configuration decreases exponentially away from the surface as in cylinder-on-flat contact configuration, and thus the SWT gradient at the surface can be evaluated reliably. Moreover, it is found that decrease in the SWT parameter around the cracking location can be expressed by piecewise exponential curves. If the gradient of SWT at the surface is used as a representative value of SWT gradient, it is impossible to establish functional relationship between the SWT gradient and the correction factor for both the contact configurations although it was possible for cylinder-on-flat contact configuration. However, if weighted average of the SWT gradient values obtained from each exponential curve in the piecewise exponential curve is used as a representative value, the correction factor for both the contact configurations becomes a function of the SWT gradient

  17. A Modified Fatigue Damage Model for High-Cycle Fatigue Life Prediction

    Directory of Open Access Journals (Sweden)

    Meng Wang

    2016-01-01

    Full Text Available Based on the assumption of quasibrittle failure under high-cycle fatigue for the metal material, the damage constitutive equation and the modified damage evolution equation are obtained with continuum damage mechanics. Then, finite element method (FEM is used to describe the failure process of metal material. The increment of specimen’s life and damage state can be researched using damage mechanics-FEM. Finally, the lifetime of the specimen is got at the given stress level. The damage mechanics-FEM is inserted into ABAQUS with subroutine USDFLD and the Python language is used to simulate the fatigue process of titanium alloy specimens. The simulation results have a good agreement with the testing results under constant amplitude loading, which proves the accuracy of the method.

  18. Fatigue damage propagation in unidirectional glass fibre reinforced composites

    DEFF Research Database (Denmark)

    Hansen, Jens Zangenberg; Alzamora Guzman, Vladimir Joel; Østergaard, R.C.

    2012-01-01

    bundles. The underlying mechanisms are examined using digital microscopy, and it is postulated that fatigue damage initiates due to stress concentrations between the backing (transverse) layer and the unidirectional layer, followed by a cyclic fretting and axial fibre debonding. This fretting mechanism...

  19. Sliding Contact Fatigue Damage in Layered Ceramic Structures

    Science.gov (United States)

    Kim, Jae-Won; Kim, Joo-Hyung; Thompson, Van P.; Zhang, Yu

    2016-01-01

    Porcelain veneered restorations often chip and fracture from repeated occlusal loading, making fatigue studies relevant. Most fatigue studies are limited to uniaxial loading without sliding motion. We hypothesize that biaxial loading (contact-load-slide-liftoff, simulating a masticatory cycle) as compared to uniaxial loading accelerates the fatigue of layered ceramics. Monolithic glass plates were epoxy joined to polycarbonate substrates as a transparent model for an all-ceramic crown on dentin. Uniaxial and biaxial cyclic contact was applied through a hard sphere in water with a mouth-motion machine. The uniaxial (contact-load-hold-liftoff) and traditional R-ratio fatigue (indenter never leaves the specimen surface) produced a similar lifespan, while biaxial fatigue was more severe. The accelerated crack growth rate in biaxial fatigue is attributed to enhanced tensile stresses at the trailing edges of a moving indenter. Fracture mechanics descriptions for damage evolution in brittle materials loaded repeatedly with a sliding sphere are provided. Clinical relevance is addressed. PMID:17959894

  20. Fatigue damage prognosis using affine arithmetic

    Science.gov (United States)

    Gbaguidi, Audrey; Kim, Daewon

    2014-02-01

    Among the essential steps to be taken in structural health monitoring systems, damage prognosis would be the field that is least investigated due to the complexity of the uncertainties. This paper presents the possibility of using Affine Arithmetic for uncertainty propagation of crack damage in damage prognosis. The structures examined are thin rectangular plates made of titanium alloys with central mode I cracks and a composite plate with an internal delamination caused by mixed mode I and II fracture modes, under a harmonic uniaxial loading condition. The model-based method for crack growth rates are considered using the Paris Erdogan law model for the isotropic plates and the delamination growth law model proposed by Kardomateas for the composite plate. The parameters for both models are randomly taken and their uncertainties are considered as defined by an interval instead of a probability distribution. A Monte Carlo method is also applied to check whether Affine Arithmetic (AA) leads to tight bounds on the lifetime of the structure.

  1. Linking asphalt binder fatigue to asphalt mixture fatigue performance using viscoelastic continuum damage modeling

    Science.gov (United States)

    Safaei, Farinaz; Castorena, Cassie; Kim, Y. Richard

    2016-08-01

    Fatigue cracking is a major form of distress in asphalt pavements. Asphalt binder is the weakest asphalt concrete constituent and, thus, plays a critical role in determining the fatigue resistance of pavements. Therefore, the ability to characterize and model the inherent fatigue performance of an asphalt binder is a necessary first step to design mixtures and pavements that are not susceptible to premature fatigue failure. The simplified viscoelastic continuum damage (S-VECD) model has been used successfully by researchers to predict the damage evolution in asphalt mixtures for various traffic and climatic conditions using limited uniaxial test data. In this study, the S-VECD model, developed for asphalt mixtures, is adapted for asphalt binders tested under cyclic torsion in a dynamic shear rheometer. Derivation of the model framework is presented. The model is verified by producing damage characteristic curves that are both temperature- and loading history-independent based on time sweep tests, given that the effects of plasticity and adhesion loss on the material behavior are minimal. The applicability of the S-VECD model to the accelerated loading that is inherent of the linear amplitude sweep test is demonstrated, which reveals reasonable performance predictions, but with some loss in accuracy compared to time sweep tests due to the confounding effects of nonlinearity imposed by the high strain amplitudes included in the test. The asphalt binder S-VECD model is validated through comparisons to asphalt mixture S-VECD model results derived from cyclic direct tension tests and Accelerated Loading Facility performance tests. The results demonstrate good agreement between the asphalt binder and mixture test results and pavement performance, indicating that the developed model framework is able to capture the asphalt binder's contribution to mixture fatigue and pavement fatigue cracking performance.

  2. Nonlinear ultrasound modelling and validation of fatigue damage

    Science.gov (United States)

    Fierro, G. P. Malfense; Ciampa, F.; Ginzburg, D.; Onder, E.; Meo, M.

    2015-05-01

    Nonlinear ultrasound techniques have shown greater sensitivity to microcracks and they can be used to detect structural damages at their early stages. However, there is still a lack of numerical models available in commercial finite element analysis (FEA) tools that are able to simulate the interaction of elastic waves with the materials nonlinear behaviour. In this study, a nonlinear constitutive material model was developed to predict the structural response under continuous harmonic excitation of a fatigued isotropic sample that showed anharmonic effects. Particularly, by means of Landau's theory and Kelvin tensorial representation, this model provided an understanding of the elastic nonlinear phenomena such as the second harmonic generation in three-dimensional solid media. The numerical scheme was implemented and evaluated using a commercially available FEA software LS-DYNA, and it showed a good numerical characterisation of the second harmonic amplitude generated by the damaged region known as the nonlinear response area (NRA). Since this process requires only the experimental second-order nonlinear parameter and rough damage size estimation as an input, it does not need any baseline testing with the undamaged structure or any dynamic modelling of the fatigue crack growth. To validate this numerical model, the second-order nonlinear parameter was experimentally evaluated at various points over the fatigue life of an aluminium (AA6082-T6) coupon and the crack propagation was measured using an optical microscope. A good correlation was achieved between the experimental set-up and the nonlinear constitutive model.

  3. ESTIMATION OF IRREVERSIBLE DAMAGEABILITY AT FATIGUE OF CARBON STEEL

    Directory of Open Access Journals (Sweden)

    I. O. Vakulenko

    2014-04-01

    Full Text Available Purpose. Damageability estimation of carbon steel in the conditions of cyclic loading. Methodology. The steel fragments of railway wheel rim and rail head served as material for research with chemical composition 0.65 % С, 0.67 % Mn, 0.3 % Si, 0.027 % P, 0.028 % S и 0.7 % C, 0.82 % Mn, 0.56 % Si, 0.025 % P, 0.029 % S accordingly. The microstructure of tested steels corresponded to the state of metal after a hot plastic deformation. The fatigue research was conducted in the conditions of symmetric bend using the proof-of-concept machine of type «Saturn-10». Full Wohler diagrams and the lines corresponding to forming of sub-and micro cracks were constructed. The distribution analysis of internal stresses in the metal under cyclic loading was carried out using the microhardness tester of PMT-3 type.Findings. On the basis of fatigue curves for high-carbon steels analysis the positions of borders dividing the areas of convertible and irreversible damages were determined. The article shows that with the growth of carbon concentration in the steel at invariability of the structural state an increase of fatigue limit is observed. At the same time the acceleration of processes, which determine transition terms from the stage of forming of submicrocracks to the microcracks occurs. The research of microhardness distribution in the metal after destruction confirmed the nature of carbon amount influence on the carbon steel characteristics. Originality. Regardless on the stages of breakdown site forming the carbon steels behavior at a fatigue is determined by the ration between the processes of strengthening and softening. At a cyclic loading the heterogeneity of internal stresses distribution decreases with the increase of distance from the destruction surface. Analysis of metal internal restructuring processes at fatigue loading made it possible to determine that at the stages prior to incubation period in the metal microvolumes the cells are already

  4. Periostin deficiency increases bone damage and impairs injury response to fatigue loading in adult mice.

    Directory of Open Access Journals (Sweden)

    Nicolas Bonnet

    Full Text Available Bone damage removal and callus formation in response to fatigue loading are essential to prevent fractures. Periostin (Postn is a matricellular protein that mediates adaptive response of cortical bone to loading. Whether and how periostin influences damage and the injury response to fatigue remains unknown. We investigated the skeletal response of Postn(-/- and Postn(+/+ mice after fatigue stimulus by axial compression of their tibia. In Postn(+/+ mice, cracks number and surface (CsNb, CsS increased 1h after fatigue, with a decrease in strength compared to non-fatigued tibia. At 15 days, CsNb had started to decline, while CtTV and CtBV increased in fatigued vs non-fatigued tibia, reflecting a woven bone response that was present in 75% of the fatigued bones. Cortical porosity and remodelling also prominently increased in the fatigued tibia of Postn(+/+ mice. At 30 days, paralleling a continuous removal of cortical damage, strength of the fatigued tibia was similar to the non-fatigue tibia. In Postn(-/- mice, cracks were detectable even in the absence of fatigue, while the amount of collagen crosslinks and tissue hardness was decreased compared to Postn(+/+. Fatigue significantly increased CsNb and CsS in Postn(-/-, but was not associated with changes in CtTV and CtBV, as only 16% of the fatigued bones formed some woven bone. Cortical porosity and remodelling did not increase either after fatigue in Postn(-/-, and the level of damage remained high even after 30 days. As a result, strength remained compromised in Postn(-/- mice. Contrary to Postn(+/+, which osteocytic lacunae showed a change in the degree of anisotropy (DA after fatigue, Postn(-/- showed no DA change. Hence periostin appears to influence bone materials properties, damage accumulation and repair, including local modeling/remodeling processes in response to fatigue. These observations suggest that the level of periostin expression could influence the propensity to fatigue fractures.

  5. Estimation of early fatigue damage in heat treated En-8 grade steel

    Science.gov (United States)

    Talukdar, P.; Sen, S. K.; Ghosh, A. K.

    1998-08-01

    Generally, the failure of major machinery parts is due to fatigue damage. Because of the structural inhomogeneity of metals, fatigue damage may sometimes occur significantly below the yield strength of the material due to microplastic deformation at low stress levels. Commercial En-8 grade steel (widely used for making secondary metalworking products) was used to estimate the fatigue damage response during cyclic loading nearer to the fatigue endurance limit. Estimation of fatigue damage was carried out with the aid of a nondestructive testing (NDT) method, that is, Elastosonic measurement of fatigue damping coefficient and slope of fatigue damping curves. Results indicate that fatigue damage increases in annealed En-8 steel with an increase in peak stress and with an increase in the number of cycles. However, for hardened and tempered En-8 steel, experimental results may not provide a true indication of fatigue damage during fatigue loading nearer to the endurance limit, most likely due to the more homogeneous structure. Generally, fatigue failure occurs in this grade of steel due to microcrack generation in the cementite of the pearlite phase of annealed steel.

  6. Time-dependent damage in predictions of fatigue behaviour of normal and healing ligaments

    Science.gov (United States)

    Thornton, Gail M.; Bailey, Soraya J.; Schwab, Timothy D.

    2015-08-01

    Ligaments are dense fibrous tissues that connect bones across a joint and are exposed daily to creep and fatigue loading. Ligaments are tensile load-bearing tissues; therefore, fatigue loading will have a component of time-dependent damage from the non-zero mean stress and cycle-dependent damage from the oscillating stress. If time-dependent damage is not sufficient to completely predict the fatigue response, then cycle-dependent damage could be an important contributor. Using data from normal ligaments (current study and Thornton et al., Clin. Biomech. 22:932-940, 2007a) and healing ligaments (Thornton and Bailey, J. Biomech. Eng. 135:091004-1-091004-6, 2013), creep data was used to predict the fatigue response considering time-dependent damage. Relationships between creep lifetime and test stress or initial strain were modelled using exponential or power-law regression. In order to predict fatigue lifetimes, constant rates of damage were assumed and time-varying stresses were introduced into the expressions for time-dependent damage from creep. Then, the predictions of fatigue lifetime were compared with curvefits to the fatigue data where exponential or power-law regressions were used to determine the relationship between fatigue lifetime and test stress or initial strain. The fatigue prediction based on time-dependent damage alone greatly overestimated fatigue lifetime suggesting that time-dependent damage alone cannot account for all of the damage accumulated during fatigue and that cycle-dependent damage has an important role. At lower stress and strain, time-dependent damage was a greater relative contributor for normal ligaments than healing ligaments; however, cycle-dependent damage was a greater relative contributor with incremental increases in stress or strain for normal ligaments than healing ligaments.

  7. Effect of Fatigue Damage on Energy Absorption Properties of Honeycomb Paperboard

    Directory of Open Access Journals (Sweden)

    Zhi-geng Fan

    2015-01-01

    Full Text Available The effect of fatigue damage (FD on the energy absorption properties of precompressed honeycomb paperboard is investigated by fatigue compression experiments. The constitutive relations of honeycomb paperboard have been changed after the fatigue damage. The results show that FD has effect on plateau stress and energy absorption capacity of honeycomb paperboard after fatigue cycles but has no significant effect on densification strain. Energy absorption diagram based on the effect of FD is constructed from the stress-strain curves obtained after fatigue compression experiments. FD is a significant consideration for honeycomb paperboard after transports. The results of this paper could be used for optimization design of packaging materials.

  8. Fatigue Damage Monitoring in 304L Steel Specimens by an Acoustic Emission Method

    Directory of Open Access Journals (Sweden)

    Ould-Amer Ammar

    2014-06-01

    Full Text Available The aim of this work was to clarify fatigue crack initiation and propagation mechanisms in 304L austenitic stainless steel under different total-strain-amplitudes. A complete process from crack initiation and propagation was recorded by using the acoustic emission method in one hand, and replica method in another hand. The effect of strain amplitude on fatigue crack growth was investigated and a new representation of various fatigue curves associated to various levels of fatigue damage is proposed.

  9. Damage development in woven fabric composites during tension-tension fatigue

    DEFF Research Database (Denmark)

    Hansen, U.

    1999-01-01

    Impacted woven fabric composites were tested in tension-tension fatigue. In contrast to results from static testing, the effects of low energy impact damage in a fatigue environment were found to be the critical element leading to failure of the specimen. This difference emphasizes the need...... to identify and understand the fatigue damage mechanism. A relatively new non-destructive inspection technique using infrared thermography was found to be a very useful tool in detecting damage initiation and growth. Furthermore, this technique supplies valuable information to the characterization...... of the operating fatigue damage mechanism(s). Fatigue leads to a degradation of material properties. Consequently, in connection with impact induced local stress raisers, fatigue produces continuously changing non-uniform stress fields because of stress redistribution effects. Other models addressing evolution...

  10. Delayed exercise promotes remodeling in sub-rupture fatigue damaged tendons.

    Science.gov (United States)

    Bell, R; Boniello, M R; Gendron, N R; Flatow, E L; Andarawis-Puri, N

    2015-06-01

    Tendinopathy is a common musculoskeletal injury whose treatment is limited by ineffective therapeutic interventions. Previously we have shown that tendons ineffectively repair early sub-rupture fatigue damage. In contrast, physiological exercise has been shown to promote remodeling of healthy tendons but its utility as a therapeutic to promote repair of fatigue damaged tendons remains unknown. Therefore, the objective of this study was to assess the utility of exercise initiated 1 and 14 days after onset of fatigue damage to promote structural repair in fatigue damaged tendons. We hypothesized that exercise initiated 14 days after fatigue loading would promote remodeling as indicated by a decrease in area of collagen matrix damage, increased procollagen I and decorin, while decreasing proteins indicative of tendinopathy. Rats engaged in 6-week exercise for 30 min/day or 60 min/day starting 1 or 14 days after fatigue loading. Initiating exercise 1-day after onset of fatigue injury led to exacerbation of matrix damage, particularly at the tendon insertion. Initiating exercise 14 days after onset of fatigue injury led to remodeling of damaged regions in the midsubstance and collagen synthesis at the insertion. Physiological exercise applied after the initial biological response to injury has dampened can potentially promote remodeling of damaged tendons. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  11. Fatigue life prediction in composites using progressive damage modelling under block and spectrum loading

    DEFF Research Database (Denmark)

    Passipoularidis, Vaggelis; Philippidis, T.P.; Brøndsted, Povl

    2010-01-01

    A progressive damage fatigue simulator for variable amplitude loads named FADAS is discussed in this work. Fatigue Damage Simulator (FADAS) performs ply by ply stress analysis using classical lamination theory and implements adequate stiffness discount tactics based on the failure criterion of Puck...

  12. Generation of Spectra and Stress Histories for Fatigue and Damage Tolerance Analysis of Fuselage Repairs

    Science.gov (United States)

    1991-10-01

    AD-A250 390liI] II1 il il l ii I DOT-VNTSC-FAA-91-16 Generation of Spectra and Stress Histories FAA Technical Center for Fatigue and Damage Tolerance...Government Accession No. 3. Recipient’s Catalog No. 4. Title and Subtitle 5. Report Date Generation of Spectra and Stress Histories for October 1991 Fatigue ...PUBLIC THROUGH Stress Histories, Stress Analysis THE NATIONAL TECHNICAL INFORMATION SERVICE, Damage Tolerance, Fatigue SPRINGFIELD, VA 22161 19

  13. Comparative Study of Fatigue Damage Models Using Different Number of Classes Combined with the Rainflow Method

    Directory of Open Access Journals (Sweden)

    S. Zengah

    2013-06-01

    Full Text Available Fatigue damage increases with applied load cycles in a cumulative manner. Fatigue damage models play a key role in life prediction of components and structures subjected to random loading. The aim of this paper is the examination of the performance of the “Damaged Stress Model”, proposed and validated, against other fatigue models under random loading before and after reconstruction of the load histories. To achieve this objective, some linear and nonlinear models proposed for fatigue life estimation and a batch of specimens made of 6082T6 aluminum alloy is subjected to random loading. The damage was cumulated by Miner’s rule, Damaged Stress Model (DSM, Henry model and Unified Theory (UT and random cycles were counted with a rain-flow algorithm. Experimental data on high-cycle fatigue by complex loading histories with different mean and amplitude stress values are analyzed for life calculation and model predictions are compared.

  14. Fatigue damage in 20% cold-worked type 316L stainless steel under deuteron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Scholz, R. (CEC, Joint Research Centre, 21020, Ispra (Vatican City State, Holy See) (Italy))

    1994-09-01

    Type 316L stainless steel samples in 20% cold-worked conditions were exposed to fully reversed fatigue cycling in torsion at 400 C during an irradiation with 19 MeV deuterons. Fatigue tests were performed in the high cycle fatigue (HCF) range under continuous cycling and in the low cycle fatigue (LCF) range by imposing a hold-time at the minimum strain value. In comparison with tests under thermal conditions, an increase in the number of cycles to failure N[sub f] by a factor of 6 is observed for the HCF tests and a decrease in N[sub f], by more than an order of magnitude, for the LCF tests. The data are analyzed using a fatigue damage model: a fatigue damage parameter is defined and the change in this parameter caused by the different irradiation or loading conditions shows directly the effect of changed experimental conditions on the fatigue life. ((orig.))

  15. Fatigue Damage Estimation and Data-based Control for Wind Turbines

    DEFF Research Database (Denmark)

    Barradas Berglind, Jose de Jesus; Wisniewski, Rafal; Soltani, Mohsen

    2015-01-01

    based on hysteresis operators, which can be used in control loops. The authors propose a data-based model predictive control (MPC) strategy that incorporates an online fatigue estimation method through the objective function, where the ultimate goal in mind is to reduce the fatigue damage of the wind......The focus of this work is on fatigue estimation and data-based controller design for wind turbines. The main purpose is to include a model of the fatigue damage of the wind turbine components in the controller design and synthesis process. This study addresses an online fatigue estimation method...... turbine components. The outcome is an adaptive or self-tuning MPC strategy for wind turbine fatigue damage reduction, which relies on parameter identification on previous measurement data. The results of the proposed strategy are compared with a baseline model predictive controller....

  16. Thermomechanical fatigue damage evolution in SAC solder joints

    NARCIS (Netherlands)

    Matin, M. A.; Vellinga, W. P.; D Geers, M. G.

    2007-01-01

    Thermornechanical fatigue in lab-type Sn-Ag-Cu solder interconnections between two copper plates has been investigated under cyclic thermal loading within a number of temperature ranges. Fatigue mechanisms have been studied using optical and scanning electron microscopy. Among the various fatigue

  17. Fatigue Properties and Fracture Mechanism of Aluminum Alloy with Orifice Chamfer and Pre-corrosion Damage

    Directory of Open Access Journals (Sweden)

    ZHOU Song

    2016-06-01

    Full Text Available Fatigue fracture often occurs because of the corrosion damage to aerospace structural aluminum alloy with holes. Fatigue tests of 7075 aluminum alloy of both unchamfered and chamfered double-hole specimens under uncorrosion and 24h pre-corrosion were carried out. The influence of both pre-corrosion damage and orifice chamferer on fatigue properties and the differences of fatigue fracture characteristics were analyzed. The results show that the effect on fatigue life of pre-corrosion damage is significant. Median fatigue lives of both unchamfered and chamfered double-hole specimens under 24h pre-corrosion decrease about 31.74% and 26.92% compared with uncorrosion specimens. The orifice chamferer have a certain effect on fatigue life of both uncorrosion and 24h pre-corrosion specimens, with median fatigue lives decreased about 28.02% and 15.36% compared with unchamfered specimens, the main reason is due to the stress concentration after orifice chamfered, on the other hand, cutting marks lead to pre-damage during the orifice chamfering process which will result in an increase of the fatigue crack initiation sites and the fracture probability.

  18. A constitutive high cycle fatigue damage model - based on the interaction between microplasticity and local damage

    Energy Technology Data Exchange (ETDEWEB)

    Flaceliere, L. [Futurscope (France); Morel, F.; Dragon, A.

    2006-07-01

    This paper presents a new model that accounts, on a local scale, for the coupling between plasticity due to gliding in shear bands and damage occurring when the accumulated plastic strain has reached a threshold value. The irreversible thermodynamics with internal state variables is employed to keep a middle way between extensive description of plastic and damage flow and application of accessibility requirements. Plasticity and damage are governed by their proper complementary rules (yield functions and potentials). At the same time, a coupling occurs between the damage variable and the hardening parameters. A large experimental database relative to the fatigue behavior of a mild steel C36 submitted to different loading modes (tension, torsion, combined proportional tension and torsion) proves the efficiency of such a model. The prediciton of Woehler curves for cyclic complex stress states can be readily done, but the main feature of this approach is to ensure a clear link between mesoscopic parameters like the hardening behavior of individual grains and the subsequent local damage.

  19. Thermomechanical fatigue and damage mechanisms in Sanicro 25 steel

    Energy Technology Data Exchange (ETDEWEB)

    Petráš, R. [CEITEC IPM, Institute of Physics of Materials ASCR, Žižkova 22, 616 62 Brno (Czech Republic); Institute of Physics of Materials ASCR, Žižkova 22, 616 62 Brno (Czech Republic); Škorík, V. [Institute of Physics of Materials ASCR, Žižkova 22, 616 62 Brno (Czech Republic); Polák, J., E-mail: polak@ipm.cz [CEITEC IPM, Institute of Physics of Materials ASCR, Žižkova 22, 616 62 Brno (Czech Republic); Institute of Physics of Materials ASCR, Žižkova 22, 616 62 Brno (Czech Republic)

    2016-01-05

    Heat resistant austenitic Sanicro 25 steel was subjected to in-phase and out-of-phase thermomechanical fatigue (TMF) loading conditions with different amplitudes of mechanical strain in a wide interval of temperatures (250–700 °C). Cyclic hardening/softening curves, cyclic stress-strain curves and fatigue life curves were evaluated for both type of loadings. Scanning electron microscopy combined with FIB cutting and EBSD imaging in longitudinal sections containing cracks revealed the mechanisms responsible for fatigue crack initiation and growth. Fatigue cracks developed rapidly in oxidized grain boundaries during in-phase loading and intergranular crack growth resulted in short fatigue life. Multiple cracks in out-of-phase loading perpendicular to the stress axis have arisen only afterwards oxide layer was formed. The delayed initiation and transgranular growth led to longer fatigue life. The effect of grain boundary oxidation and surface oxide cracking on fatigue life was discussed.

  20. Fatigue damage propagation in unidirectional glass fibre reinforced composites made of a non-crimp fabric

    DEFF Research Database (Denmark)

    Hansen, Jens Zangenberg; Brøndsted, Povl; Gillespie Jr., John W.

    2014-01-01

    bundles. A simple stiffness spring model validates the stiffness loss observed. A fatigue damage scheme is presented, which suggests that damage initiates due to failure of the backing bundle causing a stress concentration in the axial load carrying fibres. This stress concentration, along with fretting...... fatigue, gives rise to axial fibre fractures and a loss of stiffness, eventually leading to final failure. The uniqueness of the present work is identification of the mechanisms associated with tension fatigue failure of unidirectional non-crimp fabrics used for wind turbine blades. The observed damage......Damage progression in unidirectional glass fibre reinforced composites manufactured of a non-crimp fabric subjected to tension-tension fatigue is investigated, and a quantitative explanation is given for the experimentally observed stiffness degradation. The underlying damage...

  1. Fatigue damage mechanisms in short fiber reinforced PBT+PET GF30

    Energy Technology Data Exchange (ETDEWEB)

    Klimkeit, B. [Institut PPRIME, CNRS, Universite de Poitiers, ENSMA, UPR 3346, Departement Physique et Mecanique des Materiaux, ENSMA, Teleport 2, 1 Avenue Clement Ader, BP 40109, 86961 Futuroscope Chasseneuil Cedex (France); RENAULT Technocentre, Material Engineering Department, TCR LAB 035, 1 avenue du Golf, 78288 Guyancourt Cedex (France); Castagnet, S. [Institut PPRIME, CNRS, Universite de Poitiers, ENSMA, UPR 3346, Departement Physique et Mecanique des Materiaux, ENSMA, Teleport 2, 1 Avenue Clement Ader, BP 40109, 86961 Futuroscope Chasseneuil Cedex (France); Nadot, Y., E-mail: yves.nadot@ensma.fr [Institut PPRIME, CNRS, Universite de Poitiers, ENSMA, UPR 3346, Departement Physique et Mecanique des Materiaux, ENSMA, Teleport 2, 1 Avenue Clement Ader, BP 40109, 86961 Futuroscope Chasseneuil Cedex (France); Habib, A. El; Benoit, G. [Institut PPRIME, CNRS, Universite de Poitiers, ENSMA, UPR 3346, Departement Physique et Mecanique des Materiaux, ENSMA, Teleport 2, 1 Avenue Clement Ader, BP 40109, 86961 Futuroscope Chasseneuil Cedex (France); Bergamo, S.; Dumas, C.; Achard, S. [RENAULT Technocentre, Material Engineering Department, TCR LAB 035, 1 avenue du Golf, 78288 Guyancourt Cedex (France)

    2011-01-25

    Research highlights: {yields} Final macroscopic cracking only affects the few last percent of the lifetime {yields} Classical approach based on fracture surface observation is not sufficient to characterize micro-mechanisms {yields} Different techniques (scanning electron microscopy, replica technique, infra-red imaging) are compared to the macroscopic mechanical behavior evolution (stiffness, viscous damping, ratcheting effect) {yields} The influence of surrounding fibers on some observed damage processes is being evidenced for the first time. - Abstract: The fatigue damage of a glass-reinforced PolyButylene Terephthalate and PolyEthylene Terephthalate with the fiber volume fraction of 30% (PBT+PET GF30) is investigated by means of various techniques. Fatigue tests at R = 0.1 are carried out on dogbone specimens and tubular specimens with different fiber orientations. The macroscopic evolution of the material behavior is evaluated and fatigue damage mechanisms are observed with a replica technique, Infrared imaging and scanning electron microscopy. A fatigue damage scenario is finally proposed. It is shown that the propagation of a single macroscopic crack is not the major fatigue mechanism under fatigue loading. Damage is spatially distributed in the material and the classical circular crack at the end of the fiber is confirmed as the based fatigue mechanisms. It is also shown that the damage observed alongside the fibers is related to spatial distribution of fiber rather than stress distribution around one single fiber.

  2. Investigation and modeling of the fatigue damage in natural fiber composites

    OpenAIRE

    Bougherara, Habiba; El Sawi, Ihab; FAWAZ, Zouheir; Meraghni, Fodil

    2015-01-01

    The main objective of this preliminary investigation is to identify and characterize the damage evolution of angle ply ([±45] 16 ) flax-reinforced epoxy composites using an energy-based damage model combined with Scanning Electron Microscopy (SEM) observations. The damage model’s parameters for the flax-reinforced epoxy composite were determined from quasi-static and fatigue tests. The preliminary results showed that the energy-based damage model is able predict accurately the damage rate in ...

  3. Thermal fatigue appears to be more damaging than uniaxial isothermal fatigue for the austentic stainless steels, and application of multiaxial fatigue criteria

    Energy Technology Data Exchange (ETDEWEB)

    Fissolo, Antoine; Gourdin, Cedric [DM2S/SEMT/LISN, Gif sur Yvette (France); Vincent, Ludovic [DMN/SRMA/LCD, Gif sur Yvette (France)

    2009-07-01

    For nuclear reactor components, uniaxial isothermal fatigue curves are used to estimate the crack initiation under thermal fatigue. However, such approach would be not sufficient in some cases where cracking was observed. To investigate differences between uniaxial and thermal fatigue damage, tests have been carried out at CEA using the thermal fatigue devices SPLASH and FAT3D: a bi-dimensional (2-D) loading status is obtained in SPLASH, whereas a tri-dimensional (3-D) loading status is obtained in FAT3D. All the analysed tests clearly show that crack initiation in thermal fatigue is faster than in uniaxial isothermal fatigue conditions: for identical levels of strain, the number of cycles required to achieve crack initiation is significantly lower. The enhanced damaging effect probably results from a pure mechanical origin: a nearly perfect biaxial state corresponds to an increased hydrostatic stress. Consequently, multiaxial fatigue criteria must be applied. The Zamrik's strain criterion and the energy criterion proposed by Ecole Polytechnique provide the best estimations. In that framework, the proposed new method coupling both RCC-MR strain estimations and Zamrik's criterion appears to be more promising for the designer. (orig.)

  4. 14 CFR 23.574 - Metallic damage tolerance and fatigue evaluation of commuter category airplanes.

    Science.gov (United States)

    2010-01-01

    ... requirements is impractical for a particular structure. This structure must be shown, by analysis supported by... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Structure Fatigue Evaluation § 23.574 Metallic damage tolerance and fatigue...

  5. DYNAMIC STRAIN MAPPING AND REAL-TIME DAMAGE STATE ESTIMATION UNDER BIAXIAL RANDOM FATIGUE LOADING

    Data.gov (United States)

    National Aeronautics and Space Administration — DYNAMIC STRAIN MAPPING AND REAL-TIME DAMAGE STATE ESTIMATION UNDER BIAXIAL RANDOM FATIGUE LOADING SUBHASISH MOHANTY*, ADITI CHATTOPADHYAY, JOHN N. RAJADAS, AND CLYDE...

  6. Entropy-based probabilistic fatigue damage prognosis and algorithmic performance comparison

    Data.gov (United States)

    National Aeronautics and Space Administration — In this paper, a maximum entropy-based general framework for probabilistic fatigue damage prognosis is investigated. The proposed methodology is based on an...

  7. Entropy-based Probabilistic Fatigue Damage Prognosis and Algorithmic Performance Comparison

    Data.gov (United States)

    National Aeronautics and Space Administration — In this paper, a maximum entropy-based general framework for probabilistic fatigue damage prognosis is investigated. The proposed methodology is based on an...

  8. An Energy-Based Prognostic Framework to Predict Fatigue Damage Evolution in Composites

    Data.gov (United States)

    National Aeronautics and Space Administration — In this work, a prognostics framework to predict the evolution of damage in fiber-reinforced composites materials under fatigue loads is proposed. The assessment of...

  9. High Cycle Fatigue Damage Model for Delamination Crack Growth in CF/Epoxy Composite Laminates

    OpenAIRE

    Gornet, Laurent; Ijaz, Hassan

    2011-01-01

    International audience; This article presents the development of a fatigue damage model which helps to carry out simulation of the evolution of delamination in the laminated composite structures under cyclic loadings. A classical interface damage evolution law, which is commonly used to predict the static debonding process, is modified further to incorporate fatigue delamination effects due to high cycle loadings. An improved formulation is also presented to incorporate the 'R' ratio effects....

  10. Delayed Exercise Promotes Remodeling in Sub-Rupture Fatigue Damaged Tendons

    OpenAIRE

    Bell, R; Boniello, M.R.; Gendron, N.R.; Flatow, E. L.; Andarawis-Puri, N.

    2015-01-01

    Tendinopathy is a common musculoskeletal injury whose treatment is limited by ineffective therapeutic interventions. Previously we have shown that tendons ineffectively repair early sub-rupture fatigue damage. In contrast, physiological exercise has been shown to promote remodeling of healthy tendons but its utility as a therapeutic to promote repair of fatigue damaged tendons remains unknown. Therefore, the objective of this study was to assess the utility of exercise initiated 1 and 14 days...

  11. Fatigue-induced damage in Zr-based bulk metallic glasses.

    Science.gov (United States)

    Chuang, Chih-Pin; Yuan, Tao; Dmowski, Wojciech; Wang, Gong-Yao; Freels, Matt; Liaw, Peter K; Li, Ran; Zhang, Tao

    2013-01-01

    In the present work, we investigate the effect of "fatigue" on the fatigue behavior and atomic structure of Zr-based BMGs. Fatigue experiments on the failed-by-fatigue samples indicate that the remnants generally have similar or longer fatigue life than the as-cast samples. Meanwhile, the pair-distribution-function (PDF) analysis of the as-cast and post-fatigue samples showed very small changes of local atomic structures. These observations suggest that the fatigue life of the 6-mm in-diameter Zr-based BMG is dominated by the number of pre-existing crack-initiation sites in the sample. Once the crack initiates in the specimen, the fatigue-induced damage is accumulated locally on these initiated sites, while the rest of the region deforms elastically. The results suggest that the fatigue failure of BMGs under compression-compression fatigue experiments is a defect-controlled process. The present work indicates the significance of the improved fatigue resistance with decreasing the sample size.

  12. Fatigue Damage Accumulation Under Quasi-Random Loading of Composite Airframe Elements

    Science.gov (United States)

    Strizhius, V.

    2016-09-01

    To perform engineering estimations of the fatigue life of quasi-randomly loaded layered composites, with geometric concentrators, representing the longitudinal elements of composite wing of a transport airplane, a special rule of fatigue damage accumulation is suggested. The main propositions of the method for calculating the fatigue life of these elements by using this rule are formulated. The examples of estimations presented show a good agreement between analytical results and experimental data. A number of important conclusions about the effect of different levels of cyclic loading and "GAG" cycles of different flight types of the quasi-random "TWIST" program on the total fatigue life are made.

  13. The effect of cement creep and cement fatigue damage on the micromechanics of the cement-bone interface.

    NARCIS (Netherlands)

    Waanders, D.; Janssen, D.; Mann, K.A.; Verdonschot, N.J.J.

    2010-01-01

    The cement-bone interface provides fixation for the cement mantle within the bone. The cement-bone interface is affected by fatigue loading in terms of fatigue damage or microcracks and creep, both mostly in the cement. This study investigates how fatigue damage and cement creep separately affect

  14. Fatigue damage evaluation of plain woven carbon fiber reinforced plastic (CFRP) modified with MFC (micro-fibrillated cellulose) by thermo-elastic damage analysis (TDA)

    Science.gov (United States)

    Aoyama, Ryohei; Okubo, Kazuya; Fujii, Toru

    2013-04-01

    The aim of this study is to investigate characteristics of fatigue damage of CFRP modified with MFC by TDA under tensile cyclic loading. In this paper, fatigue life of CFRP modified with MFC was investigated under cyclic loading. Characteristics of fatigue damage of CFRP modified with MFC were evaluated by thermo-elastic damage analysis. Maximum improvement in fatigue life was also obtained under cyclic loading when epoxy matrix was enhanced with 0.3wt% of MFC as well as under static loading. Result of TDA showed same tendency as the result of fatigue test, and the result of TDA well expressed the fatigue damage behavior of plain woven CFRP plate. Eventually, TDA was effective for clear understanding the degree of fatigue damage progression of CFRP modified with MFC.

  15. Research on Fatigue Damage of Compressor Blade Steel KMN-I Using Nonlinear Ultrasonic Testing

    Directory of Open Access Journals (Sweden)

    Pengfei Wang

    2017-01-01

    Full Text Available The fatigue damage of compressor blade steel KMN-I was investigated using nonlinear ultrasonic testing and the relation curve between the material nonlinearity parameter β and the fatigue life was obtained. The results showed that the nonlinearity parameter increased first and then decreased with the increase of the fatigue cycles. The microstructures were observed by scanning electron microscopy (SEM. It was found that some small defects like holes and pits appeared in the material matrix with the increase of the fatigue cycles, and the nonlinearity parameter increased correspondingly. The nonlinearity parameter reached the peak value when the microcracks initiated, and the nonlinearity parameter began to decrease when the microcracks further propagated to macrocracks. Therefore, it is proved that the nonlinearity parameter can be used to characterize the initiation of microcracks at the early stage of fatigue, and a method of evaluating the fatigue life of materials by nonlinear ultrasonic testing is proposed.

  16. Damage-Coupled Constitutive Model for Uniaxial Ratcheting and Fatigue Failure of 304 Stainless Steel

    Science.gov (United States)

    Kang, Guozheng; Ding, Jun; Liu, Yujie

    Based on the existed experimental results of 304 stainless steel, the evolution of fatigue damage during the stress-controlled cyclic loading was discussed first. Then, a damage-coupled visco-plastic cyclic constitutive model was proposed in the framework of unified visco-plasticity and continuum damage mechanics to simulate the whole-life ratcheting and predict the fatigue failure life of the material presented during the uniaxial stress-controlled cyclic loading with non-zero mean stress. In the proposed model, the whole life ratcheting was described by employing a non-linear kinematic hardening rule, i.e., the Armstrong-Frederick model combined with the Ohno-Wang model I, and considering the effect of fatigue damage. The damage threshold was employed to determine the failure life of the material. The simulated whole-life ratcheting and predicted failure lives are in a fairly good agreement with the experimental ones of 304 stainless steel.

  17. Fatigue damage of steam turbine shaft at asynchronous connections of turbine generator to electrical network

    Science.gov (United States)

    Bovsunovsky, A. P.

    2015-07-01

    The investigations of cracks growth in the fractured turbine rotors point out at theirs fatigue nature. The main reason of turbine shafts fatigue damage is theirs periodical startups which are typical for steam turbines. Each startup of a turbine is accompanied by the connection of turbine generator to electrical network. During the connection because of the phase shift between the vector of electromotive force of turbine generator and the vector of supply-line voltage the short-term but powerful reactive shaft torque arises. This torque causes torsional vibrations and fatigue damage of turbine shafts of different intensity. Based on the 3D finite element model of turbine shaft of the steam turbine K-200-130 and the mechanical properties of rotor steel there was estimated the fatigue damage of the shaft at its torsional vibrations arising as a result of connection of turbine generator to electric network.

  18. Creep-Fatigue Damage Investigation and Modeling of Alloy 617 at High Temperatures

    Science.gov (United States)

    Tahir, Fraaz

    The Very High Temperature Reactor (VHTR) is one of six conceptual designs proposed for Generation IV nuclear reactors. Alloy 617, a solid solution strengthened Ni-base superalloy, is currently the primary candidate material for the tubing of the Intermediate Heat Exchanger (IHX) in the VHTR design. Steady-state operation of the nuclear power plant at elevated temperatures leads to creep deformation, whereas loading transients including startup and shutdown generate fatigue. A detailed understanding of the creep-fatigue interaction in Alloy 617 is necessary before it can be considered as a material for nuclear construction in ASME Boiler and Pressure Vessel Code. Current design codes for components undergoing creep-fatigue interaction at elevated temperatures require creep-fatigue testing data covering the entire range from fatigue-dominant to creep-dominant loading. Classical strain-controlled tests, which produce stress relaxation during the hold period, show a saturation in cycle life with increasing hold periods due to the rapid stress-relaxation of Alloy 617 at high temperatures. Therefore, applying longer hold time in these tests cannot generate creep-dominated failure. In this study, uniaxial isothermal creep-fatigue tests with non-traditional loading waveforms were designed and performed at 850 and 950°C, with an objective of generating test data in the creep-dominant regime. The new loading waveforms are hybrid strain-controlled and force-controlled testing which avoid stress relaxation during the creep hold. The experimental data showed varying proportions of creep and fatigue damage, and provided evidence for the inadequacy of the widely-used time fraction rule for estimating creep damage under creep-fatigue conditions. Micro-scale damage features in failed test specimens, such as fatigue cracks and creep voids, were quantified using a Scanning Electron Microscope (SEM) to find a correlation between creep and fatigue damage. Quantitative statistical

  19. Fatigue damage behavior of a surface-mount electronic package under different cyclic applied loads

    Science.gov (United States)

    Ren, Huai-Hui; Wang, Xi-Shu

    2014-04-01

    This paper studies and compares the effects of pull-pull and 3-point bending cyclic loadings on the mechanical fatigue damage behaviors of a solder joint in a surface-mount electronic package. The comparisons are based on experimental investigations using scanning electron microscopy (SEM) in-situ technology and nonlinear finite element modeling, respectively. The compared results indicate that there are different threshold levels of plastic strain for the initial damage of solder joints under two cyclic applied loads; meanwhile, fatigue crack initiation occurs at different locations, and the accumulation of equivalent plastic strain determines the trend and direction of fatigue crack propagation. In addition, simulation results of the fatigue damage process of solder joints considering a constitutive model of damage initiation criteria for ductile materials and damage evolution based on accumulating inelastic hysteresis energy are identical to the experimental results. The actual fatigue life of the solder joint is almost the same and demonstrates that the FE modeling used in this study can provide an accurate prediction of solder joint fatigue failure.

  20. 77 FR 30877 - Aging Airplane Program: Widespread Fatigue Damage; Technical Amendment

    Science.gov (United States)

    2012-05-24

    ... (DC-9-81, -82, -83, -87, MD-88)......... 18 MD-90 48 DC-10 18 MD-10 48 MD-11, -11F 48 All Other...,000 FC/50,000 FH 88). MD-90 60 60,000 FC/90,000 FH DC-10-10, -15 30 42,000 FC/60,000 FH DC-10-30, -40...-80 (DC-9-81, -82, -83, -87, MD- 30 50,000 FC/50,000 FH 88). MD-90 60 60,000 FC/90,000 FH DC-10-10...

  1. Fatigue damage evaluation of short fiber CFRP based on phase information of thermoelastic temperature change

    Science.gov (United States)

    Sakagami, Takahide; Shiozawa, Daiki; Nakamura, Yu; Nonaka, Shinichi; Hamada, Kenichi

    2017-05-01

    Carbon fiber-reinforced plastic (CFRP) is widely used for structural members of transportation vehicles such as automobile, aircraft or spacecraft, utilizing its excellent specific strength and specific rigidity in contrast with the metal. Short carbon fiber composite materials are receiving a lot of attentions because of their excellent moldability and productivity, however they show complicated behaviors in fatigue fracture due to the random fibers orientation. In this study, thermoelastic stress analysis (TSA) using an infrared thermography was applied to the evaluation of fatigue damage in short carbon fiber composites. The distributions of the thermoelastic temperature change was measured during the fatigue test, as well as the phase difference between the thermoelastic temperature change and applied loading signal. Evolution of fatigue damages was detected from distributions of thermoelastic temperature change according to the thermoelastic damage analysis (TDA) procedure. It was also found that fatigue damage evolution was clearly detected than ever by the newly developed thermoelastic phase damage analysis (TPDA) in which damaged area was emphasized in the differential phase delay images utilizing the nature that carbon fiber show opposite phase thermoelastic temperature change.

  2. Application of viscoelastic continuum damage approach to predict fatigue performance of Binzhou perpetual pavements

    Directory of Open Access Journals (Sweden)

    Wei Cao

    2016-04-01

    Full Text Available For this study, the Binzhou perpetual pavement test sections constructed in Shandong Province, China, were simulated for long-term fatigue performance using the layered viscoelastic pavement analysis for critical distresses (LVECD finite element software package. In this framework, asphalt concrete was treated in the context of linear viscoelastic continuum damage theory. A recently developed unified fatigue failure criterion that defined the boundaries of the applicable region of the theory was also incorporated. The mechanistic modeling of the fatigue mechanisms was able to accommodate the complex temperature variations and loading conditions of the field pavements in a rigorous manner. All of the material models were conveniently characterized by dynamic modulus tests and direct tension cyclic fatigue tests in the laboratory using cylindrical specimens. By comparing the obtained damage characteristic curves and failure criteria, it is found that mixtures with small aggregate particle sizes, a dense gradation, and modified asphalt binder tended to exhibit the best fatigue resistance at the material level. The 15-year finite element structural simulation results for all the test sections indicate that fatigue performance has a strong dependence on the thickness of the asphalt pavements. Based on the predicted location and severity of the fatigue damage, it is recommended that Sections 1 and 3 of the Binzhou test sections be employed for perpetual pavement design.

  3. Evaluation of micro-damage accumulation in holed plain-woven CFRP composite under fatigue loading

    Science.gov (United States)

    Ying, Jia; Nishikawa, Masaaki; Hojo, Masaki

    2014-03-01

    Fluorescence method was used to detect the micro-damage caused by fatigue in a plain-woven carbon fiber reinforced polymer (CFRP). Fluorescence measurement is a method which estimates micro-damage by measuring fluorescent intensity change inside materials. The principle is, larger micro-damage means larger plastic strain, thus more space in that damaged spot which allows more fluorescent dyes coming in the material. By detecting fluorescent intensity in CFRP layer by layer using confocal laser microscopy, micro-damage can be estimated. Results show that there's a good relationship between micro-damage and fluorescent intensity gradient.

  4. Anisotropic Elastoplastic Damage Mechanics Method to Predict Fatigue Life of the Structure

    Directory of Open Access Journals (Sweden)

    Hualiang Wan

    2016-01-01

    Full Text Available New damage mechanics method is proposed to predict the low-cycle fatigue life of metallic structures under multiaxial loading. The microstructure mechanical model is proposed to simulate anisotropic elastoplastic damage evolution. As the micromodel depends on few material parameters, the present method is very concise and suitable for engineering application. The material parameters in damage evolution equation are determined by fatigue experimental data of standard specimens. By employing further development on the ANSYS platform, the anisotropic elastoplastic damage mechanics-finite element method is developed. The fatigue crack propagation life of satellite structure is predicted using the present method and the computational results comply with the experimental data very well.

  5. The Vibration Based Fatigue Damage Assessment of Steel and Steel Fiber Reinforced Concrete (SFRC Composite Girder

    Directory of Open Access Journals (Sweden)

    Xu Chen

    2015-01-01

    Full Text Available The steel-concrete composite girder has been usually applied in the bridge and building structures, mostly consisting of concrete slab, steel girder, and shear connector. The current fatigue damage assessment for the composite girder is largely based on the strain values and concrete crack features, which is time consuming and not stable. Hence the vibration-based fatigue damage assessment has been considered in this study. In detail, a steel-steel fiber reinforced concrete (SFRC composite girder was tested. The steel fiber reinforced concrete is usually considered for dealing with the concrete cracks in engineering practice. The composite girder was 3.3m long and 0.45m high. The fatigue load and impact excitation were applied on the specimen sequentially. According to the test results, the concrete crack development and global stiffness degradation during the fatigue test were relatively slow due to the favourable performance of SFRC in tension. But on the other hand, the vibration features varied significantly during the fatigue damage development. Generally, it confirmed the feasibility of executing fatigue damage assessment of composite bridge based on vibration method.

  6. Improving fatigue damage resistance of alumina through surface grading.

    Science.gov (United States)

    Ren, L; Liu, L; Bhowmick, S; Gerbig, Y B; Janal, M N; Thompson, V P; Zhang, Y

    2011-08-01

    Porcelain-veneered alumina crown restorations often fail from bulk fracture resulting from radial cracks that initiate at the cementation surface with repeated flexure of the stiffer crown layers on the soft dentin support. We hypothesized that bulk fracture may be substantially mitigated by grading the elastic modulus at the crown surfaces. In this study, we fabricated graded structures by infiltrating glass into dense alumina plates, resulting in a diminished modulus at the surface layers. The plates were then bonded to polycarbonate substrates and subjected to fatigue loading in water. Tests were terminated when fracture occurred at the cementation tensile surface or at the fatigue endurance limit (1 million cycles). Infiltrated specimens showed a significant increase in fatigue fracture loads over non-infiltrated controls. Our results indicate that controlled elastic gradients at the surface could be highly beneficial in the design of fracture-resistant alumina crowns.

  7. Improving Fatigue Damage Resistance of Alumina through Surface Grading

    Science.gov (United States)

    Ren, L.; Liu, L.; Bhowmick, S.; Gerbig, Y.B.; Janal, M.N.; Thompson, V.P.; Zhang, Y.

    2011-01-01

    Porcelain-veneered alumina crown restorations often fail from bulk fracture resulting from radial cracks that initiate at the cementation surface with repeated flexure of the stiffer crown layers on the soft dentin support. We hypothesized that bulk fracture may be substantially mitigated by grading the elastic modulus at the crown surfaces. In this study, we fabricated graded structures by infiltrating glass into dense alumina plates, resulting in a diminished modulus at the surface layers. The plates were then bonded to polycarbonate substrates and subjected to fatigue loading in water. Tests were terminated when fracture occurred at the cementation tensile surface or at the fatigue endurance limit (1 million cycles). Infiltrated specimens showed a significant increase in fatigue fracture loads over non-infiltrated controls. Our results indicate that controlled elastic gradients at the surface could be highly beneficial in the design of fracture-resistant alumina crowns. PMID:21555776

  8. A Continuum Damage Mechanics Model for the Static and Cyclic Fatigue of Cellular Composites

    Science.gov (United States)

    Huber, Otto

    2017-01-01

    The fatigue behavior of a cellular composite with an epoxy matrix and glass foam granules is analyzed and modeled by means of continuum damage mechanics. The investigated cellular composite is a particular type of composite foam, and is very similar to syntactic foams. In contrast to conventional syntactic foams constituted by hollow spherical particles (balloons), cellular glass, mineral, or metal place holders are combined with the matrix material (metal or polymer) in the case of cellular composites. A microstructural investigation of the damage behavior is performed using scanning electron microscopy. For the modeling of the fatigue behavior, the damage is separated into pure static and pure cyclic damage and described in terms of the stiffness loss of the material using damage models for cyclic and creep damage. Both models incorporate nonlinear accumulation and interaction of damage. A cycle jumping procedure is developed, which allows for a fast and accurate calculation of the damage evolution for constant load frequencies. The damage model is applied to examine the mean stress effect for cyclic fatigue and to investigate the frequency effect and the influence of the signal form in the case of static and cyclic damage interaction. The calculated lifetimes are in very good agreement with experimental results. PMID:28809806

  9. Microstructural analysis of thermal fatigue damage in 316L pipes

    OpenAIRE

    Gonzalez Sanchez, Sergio; Ruiz, Ana; Nilsson, Karl-Fredrik

    2013-01-01

    This report summarizes the data and main conclusions derived from microstructural characterisation of 316L pipes subjected to thermal fatigue with a peak temperature of 550°C. TOFD measurements are compared with measured crack depths from cut segments, and fracture mode and corrosion have been assessed by SEM and EDX, respectively.

  10. Survey on damage mechanics models for fatigue life prediction

    NARCIS (Netherlands)

    Silitonga, S.; Maljaars, J.; Soetens, F.; Snijder, H.H.

    2013-01-01

    Engineering methods to predict the fatigue life of structures have been available since the beginning of the 20th century. However, a practical problem arises from complex loading conditions and a significant concern is the accuracy of the methods under variable amplitude loading. This paper

  11. Micromechanical Investigation of Fatigue Damage in Uni-Directional Fibre Composites

    DEFF Research Database (Denmark)

    Jespersen, Kristine Munk; Zangenberg Hansen, Jens; Mikkelsen, Lars Pilgaard

    2015-01-01

    In this study, 3D x-ray computed tomography (XCT) is used to study fatigue damage mechanisms of a uni-directional (UD) glass fibre composite used in wind turbine blades. The challenges related to using 3D XCT for fatigue damage assessment over time is outlined, and a cut-out of a specimen...... found in this study were intertwining backing bundles in direct contact with the UD bundle and a locally high fibre volume fraction at the backing. Other factors like fibre misalignment and fibre radii could have an effect; however this is not obvious from the obtained results. Further studies...

  12. Effect of control activity on blade fatigue damage rate for a small horizontal axis wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Riddle, A.F.; Freris, L.L.; Graham, J.M.R. [Imperial College, London (United Kingdom)

    1996-09-01

    An experiment into the effect of control activity on blade fatigue damage rate for a 5 kW, two bladed, teetered HAWT has been performed. It has been shown that control activity influences the distribution of strain in the blade but that in a high rotor speed, high cycle fatigue regime this has little influence on damage rate. The experiment was conducted on a small test turbine by implementing variable speed stall, pitch and yaw control strategies and measuring blade flapwise strain response at root and midspan locations. A full description of the investigation is provided. (au)

  13. Effect of Fatigue Damage on Inner-Resonance Conditions of Precompressed Honeycomb Paperboard System

    Directory of Open Access Journals (Sweden)

    Zhi-geng Fan

    2014-05-01

    Full Text Available A polynomial model was suggested for precompressed honeycomb paperboard packaging system, and then both of the inner-resonance conditions for packaged product and the critical component were obtained applying the variational approach. Finally, the effect of fatigue damage on the inner resonance conditions was discussed. The results show that both the packaged product and critical component can be damaged by inner-resonance when some conditions required were met, and the fatigue of honeycomb paperboard will obviously affect the inner-resonance conditions.

  14. Second Harmonic Generation Imaging and Fourier Transform Spectral Analysis Reveal Damage in Fatigue-Loaded Tendons

    Science.gov (United States)

    Fung, David T.; Sereysky, Jedd B.; Basta-Pljakic, Jelena; Laudier, Damien M.; Huq, Rumana; Jepsen, Karl J.; Schaffler, Mitchell B.; Flatow, Evan L.

    2016-01-01

    Conventional histologic methods provide valuable information regarding the physical nature of damage in fatigue-loaded tendons, limited to thin, two-dimensional sections. We introduce an imaging method that characterizes tendon microstructure three-dimensionally and develop quantitative, spatial measures of damage formation within tendons. Rat patellar tendons were fatigue loaded in vivo to low, moderate, and high damage levels. Tendon microstructure was characterized using multiphoton microscopy by capturing second harmonic generation signals. Image stacks were analyzed using Fourier transform-derived computations to assess frequency-based properties of damage. Results showed 3D microstructure with progressively increased density and variety of damage patterns, characterized by kinked deformations at low, fiber dissociation at moderate, and fiber thinning and out-of-plane discontinuities at high damage levels. Image analysis generated radial distributions of power spectral gradients, establishing a “fingerprint” of tendon damage. Additionally, matrix damage was mapped using local, discretized orientation vectors. The frequency distribution of vector angles, a measure of damage content, differed from one damage level to the next. This study established an objective 3D imaging and analysis method for tendon microstructure, which characterizes directionality and anisotropy of the tendon microstructure and quantitative measures of damage that will advance investigations of the microstructural basis of degradation that precedes overuse injuries. PMID:20232150

  15. Investigation and Modeling of the Fatigue Damage in Natural Fiber Composites

    Science.gov (United States)

    Bougherara, Habiba; Sawi, Ihab El; Fawaz, Zouheir; Meraghni, Fodil

    The main objective of this preliminary investigation is to identify and characterize the damage evolution of angle ply ([±45]16) flax-reinforced epoxy composites using an energy-based damage model combined with Scanning Electron Microscopy (SEM) observations. The damage model's parameters for the flax-reinforced epoxy composite were determined from quasi-static and fatigue tests. The preliminary results showed that the energy-based damage model is able predict accurately the damage rate in both longitudinal and transverse directions for loads. The mechanism of damage initiation in the flax/epoxy composites and the damage evolution, during each test, were monitored using SEM. A direct correlation between the microstructure of the flax-reinforced epoxy composites and the damage was obtained.

  16. Fatigue analysis of multiple site damage at a row of holes in a wide panel

    Science.gov (United States)

    Buhler, Kimberley; Grandt, Alten F., Jr.; Moukawsher, E. J.

    1994-01-01

    This paper is concerned with predicting the fatigue life of unstiffened panels which contain multiple site damage (MSD). The initial damage consists of through-the-thickness cracks emanating from a row of holes in the center of a finite width panel. A fracture mechanics analysis has been developed to predict the growth, interaction, and coalescence of the various cracks which propagate in the panel. A strain-life analysis incorporating Neuber's rule for notches, and Miner's rule for cumulative damage, is also employed to predict crack initiation for holes without initial cracking. This analysis is compared with the results of a series of fatigue tests on 2024-T3 aluminum panels, and is shown to do an excellent job of predicting the influence of MSD on the fatigue life of nine inch wide specimens. Having established confidence in the ability to analyze the influence of MSD on fatigue life, a parametric study is conducted to examine the influence of various MSD scenarios in an unstiffened panel. The numerical study considered 135 cases in all, with the parametric variables being the applied cyclic stress level, the lead crack geometry, and the number and location of MSD cracks. The numerical analysis provides details for the manner in which lead cracks and MSD cracks grow and coalesce leading to final failure. The results indicate that MSD located adjacent to lead cracks is the most damaging configuration, while for cases without lead cracks, MSD clusters which are not separated by uncracked holes are most damaging.

  17. Damage and failure modeling of lotus-type porous material subjected to low-cycle fatigue

    Directory of Open Access Journals (Sweden)

    J. Kramberger

    2016-01-01

    Full Text Available The investigation of low-cycle fatigue behaviour of lotus-type porous material is presented in this paper. Porous materials exhibit some unique features which are useful for a number of various applications. This paper evaluates a numerical approach for determining of damage initiation and evolution of lotus-type porous material with computational simulations, where the considered computational models have different pore topology patterns. The low-cycle fatigue analysis was performed by using a damage evolution law. The damage state was calculated and updated based on the inelastic hysteresis energy for stabilized cycle. Degradation of the elastic stifness was modeled using scalar damage variable. In order to examine crack propagation path finite elements with severe damage were deleted and removed from the mesh during simulation. The direct cyclic analysis capability in Abaqus/Standard was used for low-cycle fatigue analysis to obtain the stabilized response of a model subjected to the periodic loading. The computational results show a qualitative understanding of pores topology influence on low-cycle fatigue under transversal loading conditions in relation to pore orientation.

  18. Damage detection of fatigue cracks under nonlinear boundary condition using subharmonic resonance.

    Science.gov (United States)

    Zhang, Mengyang; Xiao, Li; Qu, Wenzhong; Lu, Ye

    2017-05-01

    In recent years, the nonlinear ultrasonic technique has been widely utilized for detecting fatigue crack, one of the most common forms of damage. However, one of limitations associated with this technique is that nonlinearities can be produced not only by damage but also by various intrinsic effects such as boundary conditions. The objective of this paper is to demonstrate the application of a nonlinear ultrasonic subharmonic method for detecting fatigue cracks with nonlinear boundary conditions. The fatigue crack was qualitatively modeled as two elastic, frictionless half spaces that enter into contact during vibration and where the contact obeys the basic Hertz contact law. The nonlinear ordinary differential equation drawn from the developed model was solved with the method of multiple scales. The threshold of subharmonic generation was studied. Different threshold behaviors between the nonlinear boundary condition and the fatigue crack were found that can be used to distinguish the source of nonlinear subharmonic features. To evaluate the proposed method, experiments using an aluminum plate with a fatigue crack were conducted to quantitatively verify the subharmonic resonance range. Two surface-bonded piezoelectric transducers were used to generate and receive ultrasonic wave signals. The experimental results demonstrated that the subharmonic component of the sensing signal could be used to detect the fatigue crack and further to distinguish it from inherent nonlinear boundary conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Thermography Inspection for Early Detection of Composite Damage in Structures During Fatigue Loading

    Science.gov (United States)

    Zalameda, Joseph N.; Burke, Eric R.; Parker, F. Raymond; Seebo, Jeffrey P.; Wright, Christopher W.; Bly, James B.

    2012-01-01

    Advanced composite structures are commonly tested under controlled loading. Understanding the initiation and progression of composite damage under load is critical for validating design concepts and structural analysis tools. Thermal nondestructive evaluation (NDE) is used to detect and characterize damage in composite structures during fatigue loading. A difference image processing algorithm is demonstrated to enhance damage detection and characterization by removing thermal variations not associated with defects. In addition, a one-dimensional multilayered thermal model is used to characterize damage. Lastly, the thermography results are compared to other inspections such as non-immersion ultrasonic inspections and computed tomography X-ray.

  20. Fatigue damage accumulation and lifetime prediction of defective C35 steel subjected to block loading

    Directory of Open Access Journals (Sweden)

    Sallem Haifa

    2014-06-01

    Full Text Available This paper deals with the influence of both defect and loading sequence on fatigue damage accumulation of C35 steel containing artificial defects. Tests were carried out using fatigue samples with artificial spherical defects introduced at the surface. Tests were performed using two blocks loading under increasing and decreasing magnitude. The experimental results were compared to the damage calculated by the Miner rule. In the case of defective material; it is shown in both cases a minor influence of sequence’s effect. A lifetime prediction method is then developed to assess the residual lifetime of damaged defective material. The method is based on a multiaxial endurance criterion used to calculate the equivalent local stress distribution around the defect and to inject it in an uniaxial damage cumulative rule. Finally a comparison between experimental and theoretical results is performed. It is observed that the Mesmacque sequential law gives the most accurate lifetime prediction of defective specimens.

  1. Wind turbine fatigue damage evaluation based on a linear model and a spectral method

    DEFF Research Database (Denmark)

    Tibaldi, Carlo; Henriksen, Lars Christian; Hansen, Morten Hartvig

    2015-01-01

    presents a method to estimate wind turbine fatigue damage suited for optimization design applications. The method utilizes a high-order linear wind turbine model. The model comprehends a detailed description of the wind turbine and the controller. The fatigue is computed with a spectral method applied......Wind turbine multidisciplinary design optimization is currently the focus of several investigations because it has showed potential in reducing the cost of energy. This design approach requires fast methods to evaluate wind turbine loads with a sufficiently high level of fidelity. This paper...... to power spectral densities of wind turbine sensor responses to turbulent wind. In this paper, the model is validated both in time domain and frequency domain with a nonlinear aeroservoelastic model. The approach is compared quantitatively against fatigue damage obtained from the power spectra of time...

  2. Fatigue Damage of V-Lock Chain Ring Under Random Load

    Directory of Open Access Journals (Sweden)

    Zhang Qiang

    2016-10-01

    Full Text Available To study the influence of the random load on the V-lock chain ring for mining, the numerical simulation technology is used. The dynamic tension is obtained by using the dynamic model of the plough. The life and damage nephograms are obtained by using ANSYS Workbench. The analysis results show that the short fatigue life region of the V-lock chain ring for mining is mainly concentrated on the transition region between the medial straight edge and arc, and the fatigue damage of the link chain on the side of the motion direction of the plow head is larger than that on the other side. This link chain has strong anti-fatigue performance.

  3. Fatigue crack tip damaging micromechanisms in a ferritic-pearlitic ductile cast iron

    Directory of Open Access Journals (Sweden)

    Francesco Iacoviello

    2015-07-01

    Full Text Available Due to the peculiar graphite elements shape, obtained by means of a chemical composition control (mainly small addition of elements like Mg, Ca or Ce, Ductile Cast Irons (DCIs are able to offer the good castability of gray irons with the high mechanical properties of irons (first of all, toughness. This interesting properties combination can be improved both by means of the chemical composition control and by means of different heat treatments(e.g. annealing, normalizing, quenching, austempering etc. In this work, fatigue crack tip damaging micromechanisms in a ferritic-pearlitic DCI were investigated by means of scanning electron microscope observations performed on a lateral surface of Compact Type (CT specimens during the fatigue crack propagation test (step by step procedure, performed according to the “load shedding procedure”. On the basis of the experimental results, different fatigue damaging micromechanisms were identified, both in the graphite nodules and in the ferritic – pearlitic matrix.

  4. Nondestructive determination of fatigue crack damage in composites using vibration tests.

    Science.gov (United States)

    Dibenedetto, A. T.; Gauchel, J. V.; Thomas, R. L.; Barlow, J. W.

    1972-01-01

    The vibration response of glass reinforced epoxy and polyester laminates was investigated. The complex modulus and the damping capacity were measured as fatigue crack damage accumulated. Changes in the Young's modulus as well as the damping capacity correlated with the amount of crack damage. The damping was especially sensitive to debonding of the reinforcement from the resin matrix. Measurement of these vibration response changes shows promise as a means to nondestructively test the structural integrity of filament-reinforced composite structural members.

  5. Fatigue

    Science.gov (United States)

    ... to help you find out what's causing your fatigue and recommend ways to relieve it. Fatigue itself is not a disease. Medical problems, treatments, and personal habits can add to fatigue. These include Taking certain medicines, such as antidepressants, ...

  6. Probabilistic Fatigue Damage analysis of a Shape-Optimized Slot Design

    DEFF Research Database (Denmark)

    Andersen, Michael Rye; Birk-Sørensen, Martin; Hansen, Peter Friis

    1998-01-01

    A Conventional VLCC hull design has a large number of complicated connections between the longitudinals and the transverse web frames. The production cost of these joints is relatively high. Thus, new design suitable for rational welding procedures are of interest. A probabilistic fatigue damage...

  7. A Modified Nonlinear Damage Accumulation Model for Fatigue Life Prediction Considering Load Interaction Effects

    Directory of Open Access Journals (Sweden)

    Huiying Gao

    2014-01-01

    Full Text Available Many structures are subjected to variable amplitude loading in engineering practice. The foundation of fatigue life prediction under variable amplitude loading is how to deal with the fatigue damage accumulation. A nonlinear fatigue damage accumulation model to consider the effects of load sequences was proposed in earlier literature, but the model cannot consider the load interaction effects, and sometimes it makes a major error. A modified nonlinear damage accumulation model is proposed in this paper to account for the load interaction effects. Experimental data of two metallic materials are used to validate the proposed model. The agreement between the model prediction and experimental data is observed, and the predictions by proposed model are more possibly in accordance with experimental data than that by primary model and Miner’s rule. Comparison between the predicted cumulative damage by the proposed model and an existing model shows that the proposed model predictions can meet the accuracy requirement of the engineering project and it can be used to predict the fatigue life of welded aluminum alloy joint of Electric Multiple Units (EMU; meanwhile, the accuracy of approximation can be obtained from the proposed model though more simple computing process and less material parameters calling for extensive testing than the existing model.

  8. Surface Irregularity Factor as a Parameter to Evaluate the Fatigue Damage State of CFRP

    Directory of Open Access Journals (Sweden)

    Pablo Zuluaga-Ramírez

    2015-11-01

    Full Text Available This work presents an optical non-contact technique to evaluate the fatigue damage state of CFRP structures measuring the irregularity factor of the surface. This factor includes information about surface topology and can be measured easily on field, by techniques such as optical perfilometers. The surface irregularity factor has been correlated with stiffness degradation, which is a well-accepted parameter for the evaluation of the fatigue damage state of composite materials. Constant amplitude fatigue loads (CAL and realistic variable amplitude loads (VAL, representative of real in- flight conditions, have been applied to “dog bone” shaped tensile specimens. It has been shown that the measurement of the surface irregularity parameters can be applied to evaluate the damage state of a structure, and that it is independent of the type of fatigue load that has caused the damage. As a result, this measurement technique is applicable for a wide range of inspections of composite material structures, from pressurized tanks with constant amplitude loads, to variable amplitude loaded aeronautical structures such as wings and empennages, up to automotive and other industrial applications.

  9. Studying fatigue damage evolution in uni-directional composites using x-ray computed tomography

    DEFF Research Database (Denmark)

    Mikkelsen, Lars Pilgaard

    Understanding fatigue damage evolution in the load carrying laminates of wind turbine blade plays an important role for designing longer and lighter turbine blades which will make it possible to increase the size of wind turbines or to upgrade existing turbines for lower wind classes. Thereby...

  10. Computational stress and damage modelling for rolling contact fatigue

    DEFF Research Database (Denmark)

    Cerullo, Michele

    and of compressive residual stresses are also analyzed. The stress history of a material point at the depth where the maximum Dang Van damage factor is reached is then recorded and used in a subsequent micro-mechanical analysis. The stress history is applied as periodic boundary conditions in a representative volume...

  11. An experimental investigation of fatigue damage in aluminum 2024-T3 alloys

    Science.gov (United States)

    Ferguson, Milton W.

    1993-01-01

    Aluminum alloys are finding increasing use in the aerospace and automobile industries due to their attractive low density-high modulus and low density-high strength characteristics. Unfortunately, cyclic stress-strain deformation alters the microstructure of the material. These structural changes can lead to fatigue damage and ultimately service failure. Therefore, in order to assess the integrity of the alloy, a correlation between fatigue damage and a measurable microstructural property is needed. Aluminum 2024-T3, a commonly used commercial alloy, contains many grains (individual crystals) of various orientations. The sizes and orientations of these grains are known to affect the strength, hardness, and magnetic permeability of polycrystalline alloys and metals; therefore, perhaps a relationship between a grain property and the fatigue state can be established. Tension-compression cycling in aluminum alloys can also induce changes in their dislocation densities. These changes can be studied from measurements of the electrical resistivities of the materials. Consequently, the goals of this investigation were: to study the grain orientation of aluminum 2024-T3 and to seek a correlation between the grain orientation and the fatigue state of the material; and to measure the electrical resistivities of fatigued samples of aluminum 2024-T3 and to interpret the findings.

  12. Numerical fatigue life assessment of cardiovascular stents: A two-scale plasticity-damage model

    Science.gov (United States)

    Santos, H. A. F. A.; Auricchio, F.; Conti, M.

    2013-07-01

    Cardiovascular disease has become a major global health care problem in the last decades. To tackle this problem, the use of cardiovascular stents has been considered a promising and effective approach. Numerical simulations to evaluate the in vivo behavior of stents are becoming more and more important to assess potential failures. As the material failure of a stent device has been often associated with fatigue issues, numerical approaches for fatigue life assessment of stents have gained special interest in the engineering community. Numerical fatigue life predictions can be used to modify the design and prevent failure without making and testing numerous physical devices, thus preventing from undesired fatigue failures. We present a numerical fatigue life model for the analysis of cardiovascular balloon-expandable stainless steel stents that can hopefully provide useful information either to be used for product improvement or for clinicians to make life-saving decisions. This model incorporates a two-scale continuum damage mechanics model and the so-called Soderberg fatigue failure criterion. We provide numerical results for both Palmaz-Schatz and Cypher stent designs and demonstrate that a good agreement is found between the numerical and the available experimental results.

  13. Effect of Load Phase Angle on Wind Turbine Blade Fatigue Damage: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    White, D. L.; Musial, W. D.

    2003-11-01

    This paper examines the importance of phase angle variations with respect to fatigue damage. The operating loads on a generic conventional three-bladed upwind 1.5-MW wind turbine blade were analyzed over a range of operating conditions, and an aggregate probability distribution for the actual phase angles between the in-plane (lead-lag) and out-of-plane (flap) loads was determined. Using a finite element model of a generic blade and Miner's Rule, the accumulated theoretical damage (based on axial strains) resulting from a fatigue test with variable phase angles was compared to the damage resulting from a fatigue test with a constant phase angle. The nodal damage distribution at specific blade cross-sections are compared for the constant and variable phase angle cases. The sequence effects of various phase angle progressions were also considered. For this analysis, the finite element results were processed using the nonlinear Marco-Starkey damage accumulation model. Each phase angle sequence was constrained to have the same overall phase angle distribution and the same total number of cycles but the order in which the phase angles were applied was varied.

  14. A New Energy-Critical Plane Damage Parameter for Multiaxial Fatigue Life Prediction of Turbine Blades.

    Science.gov (United States)

    Yu, Zheng-Yong; Zhu, Shun-Peng; Liu, Qiang; Liu, Yunhan

    2017-05-08

    As one of fracture critical components of an aircraft engine, accurate life prediction of a turbine blade to disk attachment is significant for ensuring the engine structural integrity and reliability. Fatigue failure of a turbine blade is often caused under multiaxial cyclic loadings at high temperatures. In this paper, considering different failure types, a new energy-critical plane damage parameter is proposed for multiaxial fatigue life prediction, and no extra fitted material constants will be needed for practical applications. Moreover, three multiaxial models with maximum damage parameters on the critical plane are evaluated under tension-compression and tension-torsion loadings. Experimental data of GH4169 under proportional and non-proportional fatigue loadings and a case study of a turbine disk-blade contact system are introduced for model validation. Results show that model predictions by Wang-Brown (WB) and Fatemi-Socie (FS) models with maximum damage parameters are conservative and acceptable. For the turbine disk-blade contact system, both of the proposed damage parameters and Smith-Watson-Topper (SWT) model show reasonably acceptable correlations with its field number of flight cycles. However, life estimations of the turbine blade reveal that the definition of the maximum damage parameter is not reasonable for the WB model but effective for both the FS and SWT models.

  15. A New Energy-Critical Plane Damage Parameter for Multiaxial Fatigue Life Prediction of Turbine Blades

    Directory of Open Access Journals (Sweden)

    Zheng-Yong Yu

    2017-05-01

    Full Text Available As one of fracture critical components of an aircraft engine, accurate life prediction of a turbine blade to disk attachment is significant for ensuring the engine structural integrity and reliability. Fatigue failure of a turbine blade is often caused under multiaxial cyclic loadings at high temperatures. In this paper, considering different failure types, a new energy-critical plane damage parameter is proposed for multiaxial fatigue life prediction, and no extra fitted material constants will be needed for practical applications. Moreover, three multiaxial models with maximum damage parameters on the critical plane are evaluated under tension-compression and tension-torsion loadings. Experimental data of GH4169 under proportional and non-proportional fatigue loadings and a case study of a turbine disk-blade contact system are introduced for model validation. Results show that model predictions by Wang-Brown (WB and Fatemi-Socie (FS models with maximum damage parameters are conservative and acceptable. For the turbine disk-blade contact system, both of the proposed damage parameters and Smith-Watson-Topper (SWT model show reasonably acceptable correlations with its field number of flight cycles. However, life estimations of the turbine blade reveal that the definition of the maximum damage parameter is not reasonable for the WB model but effective for both the FS and SWT models.

  16. A Coupled/Uncoupled Computational Scheme for Deformation and Fatigue Damage Analysis of Unidirectional Metal-Matrix Composites

    Science.gov (United States)

    Wilt, Thomas E.; Arnold, Steven M.; Saleeb, Atef F.

    1997-01-01

    A fatigue damage computational algorithm utilizing a multiaxial, isothermal, continuum-based fatigue damage model for unidirectional metal-matrix composites has been implemented into the commercial finite element code MARC using MARC user subroutines. Damage is introduced into the finite element solution through the concept of effective stress that fully couples the fatigue damage calculations with the finite element deformation solution. Two applications using the fatigue damage algorithm are presented. First, an axisymmetric stress analysis of a circumferentially reinforced ring, wherein both the matrix cladding and the composite core were assumed to behave elastic-perfectly plastic. Second, a micromechanics analysis of a fiber/matrix unit cell using both the finite element method and the generalized method of cells (GMC). Results are presented in the form of S-N curves and damage distribution plots.

  17. Post-Impact Fatigue Damage Monitoring Using Fiber Bragg Grating Sensors

    Directory of Open Access Journals (Sweden)

    Chow-Shing Shin

    2014-03-01

    Full Text Available It has been shown that impact damage to composite materials can be revealed by embedded Fiber Bragg Gratings (FBG as a broadening and splitting of the latter’s characteristic narrow peak reflected spectrum. The current work further subjected the impact damaged composite to cyclic loading and found that the FBG spectrum gradually submerged into a rise of background intensity as internal damages progressed. By skipping the impact, directing the impact to positions away from the FBG and examining the extracted fibers, we concluded that the above change is not a result of deterioration/damage of the sensor. It is caused solely by the damages initiated in the composite by the impact and aggravated by fatigue loading. Evolution of the grating spectrum may therefore be used to monitor qualitatively the development of the incurred damages.

  18. Real Time Fatigue Damage Growth Assessment of a Composite Three-Stringer Panel Using Passive Thermography

    Science.gov (United States)

    Zalameda, Joseph N.; Burke, Eric R.; Horne, Michael R.; Bly, James B.

    2015-01-01

    Fatigue testing of advanced composite structures is critical to validate both structural designs and damage prediction models. In-situ inspection methods are necessary to track damage onset and growth as a function of load cycles. Passive thermography is a large area, noncontact inspection technique that is used to detect composite damage onset and growth in real time as a function of fatigue cycles. The thermal images are acquired in synchronicity to the applied compressive load using a dual infrared camera acquisition system for full (front and back) coverage. Image processing algorithms are investigated to increase defect contrast areas. The thermal results are compared to non-immersion ultrasound inspections and acoustic emission data.

  19. Low cycle fatigue: high cycle fatigue damage accumulation in a 304L austenitic stainless steel; Endommagement et cumul de dommage en fatigue dans le domaine de l'endurance limitee d'un acier inoxydable austenitique 304L

    Energy Technology Data Exchange (ETDEWEB)

    Lehericy, Y

    2007-05-15

    The aim of this study was to evaluate the consequences of a Low Cycle Fatigue pre-damage on the subsequent fatigue limit of a 304L stainless steel. The effects of hardening and severe roughness (grinding) have also been investigated. In a first set of tests, the evolution of the surface damage induced by the different LCF pre-cycling was characterized. This has permitted to identify mechanisms and kinetics of damage in the plastic domain for different surface conditions. Then, pre-damaged samples were tested in the High Cycle Fatigue domain in order to establish the fatigue limits associated with each level of pre-damage. Results evidence that, in the case of polished samples, an important number of cycles is required to initiate surface cracks ant then to affect the fatigue limit of the material but, in the case of ground samples, a few number of cycles is sufficient to initiate cracks and to critically decrease the fatigue limit. The fatigue limit of pre-damaged samples can be estimated using the stress intensity factor threshold. Moreover, this detrimental effect of severe surface conditions is enhanced when fatigue tests are performed under a positive mean stress (author)

  20. Chronic widespread musculoskeletal pain, fatigue, depression and disordered sleep in chronic post-SARS syndrome; a case-controlled study.

    Science.gov (United States)

    Moldofsky, Harvey; Patcai, John

    2011-03-24

    The long term adverse effects of Severe Acute Respiratory Syndrome (SARS), a viral disease, are poorly understood. Sleep physiology, somatic and mood symptoms of 22 Toronto subjects, 21 of whom were healthcare workers, (19 females, 3 males, mean age 46.29 yrs.+/- 11.02) who remained unable to return to their former occupation (mean 19.8 months, range: 13 to 36 months following SARS) were compared to 7 healthy female subjects. Because of their clinical similarities to patients with fibromyalgia syndrome (FMS) these post-SARS subjects were similarly compared to 21 drug free female patients, (mean age 42.4 +/- 11.8 yrs.) who fulfilled criteria for fibromyalgia. Chronic post-SARS is characterized by persistent fatigue, diffuse myalgia, weakness, depression, and nonrestorative sleep with associated REM-related apneas/hypopneas, an elevated sleep EEG cyclical alternating pattern, and alpha EEG sleep anomaly. Post- SARS patients had symptoms of pre and post-sleep fatigue and post sleep sleepiness that were similar to the symptoms of patients with FMS, and similar to symptoms of patients with chronic fatigue syndrome. Both post-SARS and FMS groups had sleep instability as indicated by the high sleep EEG cyclical alternating pattern rate. The post-SARS group had a lower rating of the alpha EEG sleep anomaly as compared to the FMS patients. The post-SARS group also reported less pre-sleep and post-sleep musculoskeletal pain symptoms. The clinical and sleep features of chronic post-SARS form a syndrome of chronic fatigue, pain, weakness, depression and sleep disturbance, which overlaps with the clinical and sleep features of FMS and chronic fatigue syndrome.

  1. Gear fatigue damage for a 500 kW wind turbine exposed to increasing turbulence using a flexible multibody model

    Directory of Open Access Journals (Sweden)

    Martin Felix Jørgensen

    2014-04-01

    Full Text Available This paper investigates gear tooth fatigue damage in a 500 kW wind turbine using FLEX5 and own multibody code. FLEX5 provides the physical wind field, rotor and generator torque and the multibody code is used for obtaining gear tooth reaction forces in the planetary gearbox. Different turbulence levels are considered and the accumulated fatigue damage levels are compared. An example where the turbulence/fatigue sensitivity could be important, is in the middle of a big wind farm. Interior wind turbines in large wind farms will always operate in the wake of other wind turbines, causing increased turbulence and therefore increased fatigue damage levels. This article contributes to a better understanding of gear fatigue damage when turbulence is increased (e.g. in the center of large wind farms or at places where turbulence is pronounced.

  2. Nonlinear ultrasonic stimulated thermography for damage assessment in isotropic fatigued structures

    Science.gov (United States)

    Fierro, Gian Piero Malfense; Calla', Danielle; Ginzburg, Dmitri; Ciampa, Francesco; Meo, Michele

    2017-09-01

    Traditional non-destructive evaluation (NDE) and structural health monitoring (SHM) systems are used to analyse that a structure is free of any harmful damage. However, these techniques still lack sensitivity to detect the presence of material micro-flaws in the form of fatigue damage and often require time-consuming procedures and expensive equipment. This research work presents a novel "nonlinear ultrasonic stimulated thermography" (NUST) method able to overcome some of the limitations of traditional linear ultrasonic/thermography NDE-SHM systems and to provide a reliable, rapid and cost effective estimation of fatigue damage in isotropic materials. Such a hybrid imaging approach combines the high sensitivity of nonlinear acoustic/ultrasonic techniques to detect micro-damage, with local defect frequency selection and infrared imaging. When exciting structures with an optimised frequency, nonlinear elastic waves are observed and higher frictional work at the fatigue damaged area is generated due to clapping and rubbing of the crack faces. This results in heat at cracked location that can be measured using an infrared camera. A Laser Vibrometer (LV) was used to evaluate the extent that individual frequency components contribute to the heating of the damage region by quantifying the out-of-plane velocity associated with the fundamental and second order harmonic responses. It was experimentally demonstrated the relationship between a nonlinear ultrasound parameter (βratio) of the material nonlinear response to the actual temperature rises near the crack. These results demonstrated that heat generation at damaged regions could be amplified by exciting at frequencies that provide nonlinear responses, thus improving the imaging of material damage and the reliability of NUST in a quick and reproducible manner.

  3. Fatigue Damage Mechanical Model of the Envelope Material for Stratospheric Airships

    Science.gov (United States)

    Meng, Junhui; Qu, Zhipeng; Zhu, Weiyu; Lv, Mingyun

    2017-08-01

    As a major part of the stratospheric airship structure, the envelope material is used to contain lifting gas and keep the aerodynamic configuration. The main force on the envelope material comes from differential pressure between inside and outside the structure, which is cyclic stress because of the alternative temperature. Three different damage modes of the envelope material, including fracture damage of fabric yarns, cracking damage of resin matrix and functional membrane are investigated in this paper. A theoretical model to predict fatigue life of the envelope material under cycle load is developed base on the damage evolution properties of the material. The results indicates that the theoretical model can well predict the fatigue life. In addition, it can be seen from the results that the fracture of fabric yarns is the main damage modes for the material with off-axial angle of 0°and 90°, while the cracking damage of resin and functional membrane is the main damage modes for the material with other off-axial angles.

  4. Muscle damage and its relationship with muscle fatigue during a half-iron triathlon.

    Science.gov (United States)

    Del Coso, Juan; González-Millán, Cristina; Salinero, Juan José; Abián-Vicén, Javier; Soriano, Lidón; Garde, Sergio; Pérez-González, Benito

    2012-01-01

    To investigate the cause/s of muscle fatigue experienced during a half-iron distance triathlon. We recruited 25 trained triathletes (36±7 yr; 75.1±9.8 kg) for the study. Before and just after the race, jump height and leg muscle power output were measured during a countermovement jump on a force platform to determine leg muscle fatigue. Body weight, handgrip maximal force and blood and urine samples were also obtained before and after the race. Blood myoglobin and creatine kinase concentrations were determined as markers of muscle damage. Jump height (from 30.3±5.0 to 23.4±6.4 cm; P0.05) but significantly correlated with myoglobin concentration (r = 0.65; P<0.001) and creatine kinase concentration (r = 0.54; P<0.001). During a half-iron distance triathlon, the capacity of leg muscles to produce force was notably diminished while arm muscle force output remained unaffected. Leg muscle fatigue was correlated with blood markers of muscle damage suggesting that muscle breakdown is one of the most relevant sources of muscle fatigue during a triathlon.

  5. Effect of stitch density on fatigue characteristics and damage mechanisms of stitched carbon/epoxy composites

    KAUST Repository

    Yudhanto, Arief

    2014-05-01

    The effect of stitch density (SD) on fatigue life, stiffness degradation and fatigue damage mechanisms in carbon/epoxy (T800SC/XNRH6813) stitched using Vectran thread is presented in this paper. Moderately stitched composite (SD = 0.028/mm2; \\'stitched 6 × 6\\') and densely stitched composite (SD = 0.111/mm2; \\'stitched 3 × 3\\') are tested and compared with composite without stitch thread (SD = 0.0; \\'unstitched\\'). The experiments show that the fatigue life of stitched 3 × 3 is moderately better than that of unstitched and stitched 6 × 6. Stitched 3 × 3 pattern is also able to postpone the stiffness degradation onset. The improvement of fatigue properties and postponement of stiffness degradation onset in stitched 3 × 3 is primarily due to an effective impediment of edge-delamination. Quantification of damage at various cycles and stress levels shows that stitch density primarily affects the growth rate of delamination. © 2014 Elsevier Ltd. All rights reserved.

  6. Muscle damage and its relationship with muscle fatigue during a half-iron triathlon.

    Directory of Open Access Journals (Sweden)

    Juan Del Coso

    Full Text Available BACKGROUND: To investigate the cause/s of muscle fatigue experienced during a half-iron distance triathlon. METHODOLOGY/PRINCIPAL FINDINGS: We recruited 25 trained triathletes (36±7 yr; 75.1±9.8 kg for the study. Before and just after the race, jump height and leg muscle power output were measured during a countermovement jump on a force platform to determine leg muscle fatigue. Body weight, handgrip maximal force and blood and urine samples were also obtained before and after the race. Blood myoglobin and creatine kinase concentrations were determined as markers of muscle damage. RESULTS: Jump height (from 30.3±5.0 to 23.4±6.4 cm; P0.05 but significantly correlated with myoglobin concentration (r = 0.65; P<0.001 and creatine kinase concentration (r = 0.54; P<0.001. CONCLUSIONS/SIGNIFICANCE: During a half-iron distance triathlon, the capacity of leg muscles to produce force was notably diminished while arm muscle force output remained unaffected. Leg muscle fatigue was correlated with blood markers of muscle damage suggesting that muscle breakdown is one of the most relevant sources of muscle fatigue during a triathlon.

  7. Fatigue Damage Monitoring of a Composite Step Lap Joint Using Distributed Optical Fibre Sensors.

    Science.gov (United States)

    Wong, Leslie; Chowdhury, Nabil; Wang, John; Chiu, Wing Kong; Kodikara, Jayantha

    2016-05-14

    Over the past few decades, there has been a considerable interest in the use of distributed optical fibre sensors (DOFS) for structural health monitoring of composite structures. In aerospace-related work, health monitoring of the adhesive joints of composites has become more significant, as they can suffer from cracking and delamination, which can have a significant impact on the integrity of the joint. In this paper, a swept-wavelength interferometry (SWI) based DOFS technique is used to monitor the fatigue in a flush step lap joint composite structure. The presented results will show the potential application of distributed optical fibre sensor for damage detection, as well as monitoring the fatigue crack growth along the bondline of a step lap joint composite structure. The results confirmed that a distributed optical fibre sensor is able to enhance the detection of localised damage in a structure.

  8. Fatigue Damage Monitoring of a Composite Step Lap Joint Using Distributed Optical Fibre Sensors

    Directory of Open Access Journals (Sweden)

    Leslie Wong

    2016-05-01

    Full Text Available Over the past few decades, there has been a considerable interest in the use of distributed optical fibre sensors (DOFS for structural health monitoring of composite structures. In aerospace-related work, health monitoring of the adhesive joints of composites has become more significant, as they can suffer from cracking and delamination, which can have a significant impact on the integrity of the joint. In this paper, a swept-wavelength interferometry (SWI based DOFS technique is used to monitor the fatigue in a flush step lap joint composite structure. The presented results will show the potential application of distributed optical fibre sensor for damage detection, as well as monitoring the fatigue crack growth along the bondline of a step lap joint composite structure. The results confirmed that a distributed optical fibre sensor is able to enhance the detection of localised damage in a structure.

  9. Experimental investigation on the effect of creep on the damage evolution of CFRP structures during fatigue loading

    NARCIS (Netherlands)

    Zarouchas, D.; Eleftheroglou, N.; Gdoutos, Emmanuel E.

    2016-01-01

    This paper presents an experimental investigation on the effect of creep on the damage evolution of Carbon Fiber Reinforced Polymer structures during fatigue loading. A new experimental campaign is proposed where unidirectional CFRP specimens are tested under the combination of fatigue and constant

  10. Nonlinear Lamb waves for fatigue damage identification in FRP-reinforced steel plates.

    Science.gov (United States)

    Wang, Yikuan; Guan, Ruiqi; Lu, Ye

    2017-09-01

    A nonlinear Lamb-wave-based method for fatigue crack detection in steel plates with and without carbon fibre reinforcement polymer (CFRP) reinforcement is presented in this study. Both numerical simulation and experimental evaluation were performed for Lamb wave propagation and its interaction with a fatigue crack on these two steel plate types. With the generation of the second harmonic, the damage-induced wave nonlinearities were identified by surface-bonded piezoelectric sensors. Numerical simulation revealed that the damage-induced wave component at the second harmonic was slightly affected by the existence of CFRP laminate, although the total wave energy was decreased because of wave leakage into the CFRP laminate. Due to unavoidable nonlinearity from the experimental environments, it was impractical to directly extract the time-of-flight of the second harmonic for locating the crack. To this end, the correlation coefficient of benchmark and signal with damage at double frequency in the time domain was calculated, based on which an imaging method was introduced to locate the fatigue crack in steel plates with and without CFRP laminates. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Fatigue Damage Prognosis in FRP Composites by Combining Multi-Scale Degradation Fault Modes in an Uncertainty Bayesian Framework

    Data.gov (United States)

    National Aeronautics and Space Administration — In this work, a framework for the estimation of the fatigue damage propagation in CFRP composites is proposed. Macro-scale phenomena such as stiffness and strength...

  12. Hypothalamic damage in multiple sclerosis correlates with disease activity, disability, depression, and fatigue.

    Science.gov (United States)

    Kantorová, E; Poláček, H; Bittšanský, M; Baranovičová, E; Hnilicová, P; Čierny, D; Sivák, Š; Nosáľ, V; Zeleňák, K; Kurča, E

    2017-04-01

    Disturbances in the hypothalamo-pituitary axis are supposed to modulate activity of multiple sclerosis (MS). We hypothesised that the extent of HYP damage may determine severity of MS and may be associated with the disease evolution. We suggested fatigue and depression may depend on the degree of damage of the area. 33 MS patients with relapsing-remitting and secondary progressive disease, and 24 age and sex-related healthy individuals (CON) underwent 1H-MR spectroscopy (1H-MRS) of the hypothalamus. Concentrations of glutamate + glutamin (Glx), cholin (Cho), myoinositol (mIns), N-acetyl aspartate (NAA) expressed as ratio with creatine (Cr) and NAA were correlated with markers of disease activity (RIO score), Multiple Sclerosis Severity Scale (MSSS), Depressive-Severity Status Scale and Simple Numerical Fatigue Scale. Cho/Cr and NAA/Cr ratios were decreased and Glx/NAA ratio increased in MS patients vs CON. Glx/NAA, Glx/Cr, and mIns/NAA were significantly higher in active (RIO 1-2) vs non-active MS patients (RIO 0). Glx/NAA and Glx/Cr correlated with MSSS and fatigue score, and Glx/Cr with depressive score of MS patients. In CON, relationships between Glx/Cr and age, and Glx/NAA and fatigue score were inverse. Our study provides the first evidence about significant hypothalamic alterations correlating with clinical outcomes of MS, using 1H-MRS. The combination of increased Glu or mIns with reduced NAA in HYP reflects whole-brain activity of MS. In addition, excess of Glu is linked to severe disease course, depressive mood and fatigue in MS patients, suggesting superiority of Glu over other metabolites in determining MS burden.

  13. Model-Based Fatigue Prognosis of Fiber-Reinforced Laminates Exhibiting Concurrent Damage Mechanisms

    Science.gov (United States)

    Corbetta, M.; Sbarufatti, C.; Saxena, A.; Giglio, M.; Goebel, K.

    2016-01-01

    Prognostics of large composite structures is a topic of increasing interest in the field of structural health monitoring for aerospace, civil, and mechanical systems. Along with recent advancements in real-time structural health data acquisition and processing for damage detection and characterization, model-based stochastic methods for life prediction are showing promising results in the literature. Among various model-based approaches, particle-filtering algorithms are particularly capable in coping with uncertainties associated with the process. These include uncertainties about information on the damage extent and the inherent uncertainties of the damage propagation process. Some efforts have shown successful applications of particle filtering-based frameworks for predicting the matrix crack evolution and structural stiffness degradation caused by repetitive fatigue loads. Effects of other damage modes such as delamination, however, are not incorporated in these works. It is well established that delamination and matrix cracks not only co-exist in most laminate structures during the fatigue degradation process but also affect each other's progression. Furthermore, delamination significantly alters the stress-state in the laminates and accelerates the material degradation leading to catastrophic failure. Therefore, the work presented herein proposes a particle filtering-based framework for predicting a structure's remaining useful life with consideration of multiple co-existing damage-mechanisms. The framework uses an energy-based model from the composite modeling literature. The multiple damage-mode model has been shown to suitably estimate the energy release rate of cross-ply laminates as affected by matrix cracks and delamination modes. The model is also able to estimate the reduction in stiffness of the damaged laminate. This information is then used in the algorithms for life prediction capabilities. First, a brief summary of the energy-based damage model

  14. Creep-fatigue damage characteristics for a welded cylindrical structure of austenitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyeo Yeon; Kim, Jong Bum; Kim, Seok Hoon; Joo, Young Sang; Lee, Jae Han [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2004-07-01

    In the design and assessment of a high temperature structure, it is important to ensure the structural integrity for the welded joint subjected to a creep-fatigue load because a statistical investigation shows that 29 events out of 46 leaks in liquid metal reactors were caused at the welded joints. As for the structural integrity due to thermal ratchet load at the welded joint, KAERI has performed the test and analysis work for a cylindrical structure with welded joints. As a continuation of the study on welded joints at a high temperature structure, a creep-fatigue structural test and analysis work is now on-going and this paper present the interim findings for the structural test and analysis work. Recently the structural and analysis work for the Y-piece made of a 316L stainless steel structure has been carried out. The objectives of the present structural creep-fatigue test with the welded cylindrical specimen are to compare the creep-fatigue damage mechanisms for the 304 and 316L stainless steels, to compare the different behavior of the welding methods in a high temperature austenitic structures and to quantify the conservatism of the design guidelines for a high temperature structure.

  15. Damage formation, fatigue behavior and strength properties of ZrO{sub 2}-based ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Kozulin, A. A., E-mail: kozulyn@ftf.tsu.ru; Kulkov, S. S. [Tomsk State University, Tomsk, 634050 (Russian Federation); Narikovich, A. S.; Leitsin, V. N. [Immanuel Kant Baltic Federal University, Kaliningrad, 236041 (Russian Federation); Kulkov, S. N., E-mail: kulkov@ispms.ru [Tomsk State University, Tomsk, 634050 (Russian Federation); Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation)

    2016-08-02

    It is suggested that a non-destructive testing technique using a three-dimensional X-ray tomography be applied to detecting internal structural defects and monitoring damage formation in a ceramic composite structure subjected to a bending load. Three-point bending tests are used to investigate the fatigue behavior and mechanical and physical properties of medical-grade ZrO{sub 2}-based ceramics. The bending strength and flexural modulus are derived under static conditions at a loading rate of 2 mm/min. The fatigue strength and fatigue limit under dynamic loading are investigated at a frequency of 10 Hz in three stress ranges: 0.91–0.98, 0.8–0.83, and 0.73–0.77 MPa of the static bending strength. The average values of the bending strength and flexural modulus of sintered specimens are 43 MPa and 22 GPa, respectively. The mechanical properties of the ceramics are found to be similar to those of bone tissues. The testing results lead us to conclude that the fatigue limit obtained from 10{sup 5} stress cycles is in the range 33–34 MPa, i.e. it accounts for about 75% of the static bending strength for the test material.

  16. Probabilistic Fatigue Damage Localization at Unknown Temperatures Using Guided Wave Methods

    Science.gov (United States)

    Hensberry, Kevin

    This research examines the current challenges of using Lamb wave interrogation methods to localize fatigue crack damage in a complex metallic structural component subjected to unknown temperatures. The goal of this work is to improve damage localization results for a structural component interrogated at an unknown temperature, by developing a probabilistic and reference-free framework for estimating Lamb wave velocities and the damage location. The methodology for damage localization at unknown temperatures includes the following key elements: i) a model that can describe the change in Lamb wave velocities with temperature; ii) the extension of an advanced time-frequency based signal processing technique for enhanced time-of-flight feature extraction from a dispersive signal; iii) the development of a Bayesian damage localization framework incorporating data association and sensor fusion. The technique requires no additional transducers to be installed on a structure, and allows for the estimation of both the temperature and the wave velocity in the component. Additionally, the framework of the algorithm allows it to function completely in an unsupervised manner by probabilistically accounting for all measurement origin uncertainty. The novel algorithm was experimentally validated using an aluminum lug joint with a growing fatigue crack. The lug joint was interrogated using piezoelectric transducers at multiple fatigue crack lengths, and at temperatures between 20°C and 80°C. The results showed that the algorithm could accurately predict the temperature and wave speed of the lug joint. The localization results for the fatigue damage were found to correlate well with the true locations at long crack lengths, but loss of accuracy was observed in localizing small cracks due to time-of-flight measurement errors. To validate the algorithm across a wider range of temperatures the electromechanically coupled LISA/SIM model was used to simulate the effects of

  17. Micromechanical Time-Lapse X-ray CT Study of Fatigue Damage in Uni-Directional Fibre Composites

    DEFF Research Database (Denmark)

    Jespersen, Kristine Munk; Lowe, Tristan; Withers, Philip J.

    2015-01-01

    . In the current study 3D X-ray Computed Tomography (XCT) is used to characterise the fatigue damage in the material at three different stages of the fatigue life of a tension-tension fatigue test. 3D XCT is performed on rectangular samples (4x4x110mm) cut out from pre-fatigued full-size fatigue test specimens......This study considers fatigue damage evolution in a uni-directional (UD) glass fibre composite used for wind turbine blades which is manufactured from a non-crimp fabric. It is the initial part of a time-lapse study where the damage progression is followed in a sample during a fatigue test....... The geometry of the cut-out is similar to that which will be used in the time-lapse study. As the micro-mechanical damage mechanisms are small features, it is necessary to obtain a high scan resolution which sets a limit to how large the field of view can be. Therefore, it is necessary to perform several scans...

  18. Analysis of time domain active sensing data from CX-100 wind turbine blade fatigue tests for damage assessment

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Mi Jin [Dept. of Aerospace Engineering and LANL-CBNU Engineering Institute, Chunbuk National University, Jeonju (Korea, Republic of); Jung, Hwee Kwon; Park, Gyu Hae [School of Mechanical Engineering, Chonnam National University, Gwangju (Korea, Republic of); Taylor, Stuart G.; Farinholt, Kevin M. [The Engineering Institute, Los Alamos National Laboratory, Los Alamos (United States)

    2016-04-15

    This paper presents the results obtained using time-series-based methods for structural damage assessment. The methods are applied to a wind turbine blade structure subjected to fatigue loads. A 9 m CX-100 (carbon experimental 100 kW) blade is harmonically excited at its first natural frequency to introduce a failure mode. Consequently, a through-thickness fatigue crack is visually identified at 8.5 million cycles. The time domain data from the piezoelectric active-sensing techniques are measured during the fatigue loadings and used to detect incipient damage. The damage-sensitive features, such as the first four moments and a normality indicator, are extracted from the time domain data. Time series autoregressive models with exogenous inputs are also implemented. These features could efficiently detect a fatigue crack and are less sensitive to operational variations than the other methods.

  19. A discrete element model for damage and fracture of geomaterials under fatigue loading

    Directory of Open Access Journals (Sweden)

    Gao Xiaofeng

    2017-01-01

    Full Text Available Failure processes in geomaterials (concrete, asphalt concrete, masonry, etc. under fatigue loading (repeated moving loads, cycles of temperature, etc. are responsible for most of the dysfunctions in pavements, brick structures, etc. In the beginning of the lifetime of a structure, the material presents only inner defects (micro cracks, voids, etc.. Due to the effect of the cyclic loading, these small defects tend to grow in size and quantity which damage the material, reducing its stiffness. With a relatively high number of cycles, these growing micro cracks become large cracks, which characterizes the fracture behavior. From a theoretical point of view, both mechanisms are treated differently. Fracture is usually described locally, with the propagation of cracks defined by the energy release rate at the crack tip; damage is usually associated to non-local approaches. In the present work, damage and fracture mechanics are combined in a local discrete element approach.

  20. A discrete element model for damage and fracture of geomaterials under fatigue loading

    Science.gov (United States)

    Gao, Xiaofeng; Koval, Georg; Chazallon, Cyrille

    2017-06-01

    Failure processes in geomaterials (concrete, asphalt concrete, masonry, etc.) under fatigue loading (repeated moving loads, cycles of temperature, etc.) are responsible for most of the dysfunctions in pavements, brick structures, etc. In the beginning of the lifetime of a structure, the material presents only inner defects (micro cracks, voids, etc.). Due to the effect of the cyclic loading, these small defects tend to grow in size and quantity which damage the material, reducing its stiffness. With a relatively high number of cycles, these growing micro cracks become large cracks, which characterizes the fracture behavior. From a theoretical point of view, both mechanisms are treated differently. Fracture is usually described locally, with the propagation of cracks defined by the energy release rate at the crack tip; damage is usually associated to non-local approaches. In the present work, damage and fracture mechanics are combined in a local discrete element approach.

  1. An investigation of rolling-sliding contact fatigue damage of carburized gear steels

    Science.gov (United States)

    Kramer, Patrick C.

    The goal of this study was to evaluate the differences in RSCF performance between vacuum and gas carburized steels as well as to investigate the evolution of damage (wear and microstructure changes) leading to pitting. Vacuum and gas carburizing was performed on two gear steels (4120 and 4320) at 1010°C. The carburized specimens were tested in the as-carburized condition using a RSCF machine designed and built at the Colorado School of Mines. The tests were conducted at 3.2 GPa nominal Hertzian contact stress, based on pure rolling, 100°C, and using a negative twenty percent slide ratio. Tests were conducted to pitting failure for each condition for a comparison of the average fatigue lives. Pure rolling tests were also conducted, and were suspended at the same number of cycles as the average RSCF life for a comparison of fatigue damage developed by RCF and RSCF. Incremental tests were suspended at 1,000, 10,000, 100,000, and 200,000 cycles for the vacuum carburized steels to evaluate the wear and damage developed during the initial cycles of RSCF testing and to relate the wear and damage to pitting resistance. Incremental damage was not investigated for gas carburizing due to the limited number of available specimens. The vacuum carburized samples showed a decreased pitting fatigue resistance over the gas carburized samples, possibly due to the presence of bainite in the vacuum carburized cases. Pitting was observed to initiate from surface micropitting and microcracking. A microstructural change induced by contact fatigue, butterflies, was shown to contribute to micropitting and microcracking. Incremental testing revealed that the formation of a microcrack preceded and was necessary for the formation of the butterfly features, and that the butterfly features developed between 10,000 and 100,000 cycles. The orientation and depth of butterfly formation was shown to be dependent upon the application of traction stresses from sliding. RSCF butterflies formed

  2. Estimation of Temperature Conductivity Coefficient Impact upon Fatigue Damage of Material

    Science.gov (United States)

    Bibik, V.; Galeeva, A.

    2015-09-01

    In the paper we consider the peculiarities of adhesive wear of cutting tools. Simulation of heat flows in the cutting zone showed that, as thermal conduction and heat conductivity of tool material grow, the heat flows from the front and back surfaces to tool holder will increase and so, the temperature of the contact areas of the tool will lower. When estimating the adhesive wear rate of cemented-carbide tool under the cutting rates corresponding to the cutting temperature of up to 900 °C, it is necessary to take the fatigue character of adhesive wear into consideration. The process of accumulation and development of fatigue damage is associated with micro- and macroplastic flowing of material, which is determined by the processes of initiation, motion, generation, and elimination of line defects - dislocations. Density of dislocations grows with increase of the loading cycles amount and increase of load amplitude. Growth of dislocations density leads to loosening of material, formation of micro- and macrocracks. The heat capacity of material grows as the loosening continues. In the given paper the authors prove theoretically that temperature conductivity coefficient which is associated with heat capacity of material, decreases as fatigue wear grows.

  3. Approach for investigations of progressive fatigue damage in 3D in fibre composites using X-ray tomography

    DEFF Research Database (Denmark)

    Mikkelsen, Lars Pilgaard; Jespersen, Kristine Munk

    building larger wind turbines or by upgrading existing turbines for lower wind classes’ . In the presented work, a Zeiss Xradia Versa 520 scanner has been used in connection with ex-situ fatigue testing with the purpose of identifying fibre failure during the fatigue loading. The load carrying laminates......% of the fibres are oriented in secondary directions. Thereby, the non-crimp fabric is given some shear stiffness. The figures below show the results from a scanning of a fatigue damaged material. The width of the full scanned cross section is 15 mm, while the size of the zoomed scan is approximately 2.5 mm...... (Jespersen & Mikkelsen, 2016) has been performed. An ex-situ study where it has been important to design a good gripping strategy inside the scanning machine. Doing this, it has been possible to scan the same region multiple times. Thereby, a progressive fatigue damage evolution has been observed....

  4. Fatigue

    Science.gov (United States)

    ... as systemic lupus erythematosus Cancer Heart failure Diabetes Fibromyalgia Infection, especially one that takes a long time ... Bennett RM. Fibromyalgia, chronic fatigue syndrome, and ... Schafer AI, eds. Goldman-Cecil Medicine . 25th ed. Philadelphia, ...

  5. Micromechanics Fatigue Damage Analysis Modeling for Fabric Reinforced Ceramic Matrix Composites

    Science.gov (United States)

    Min, J. B.; Xue, D.; Shi, Y.

    2013-01-01

    A micromechanics analysis modeling method was developed to analyze the damage progression and fatigue failure of fabric reinforced composite structures, especially for the brittle ceramic matrix material composites. A repeating unit cell concept of fabric reinforced composites was used to represent the global composite structure. The thermal and mechanical properties of the repeating unit cell were considered as the same as those of the global composite structure. The three-phase micromechanics, the shear-lag, and the continuum fracture mechanics models were integrated with a statistical model in the repeating unit cell to predict the progressive damages and fatigue life of the composite structures. The global structure failure was defined as the loss of loading capability of the repeating unit cell, which depends on the stiffness reduction due to material slice failures and nonlinear material properties in the repeating unit cell. The present methodology is demonstrated with the analysis results evaluated through the experimental test performed with carbon fiber reinforced silicon carbide matrix plain weave composite specimens.

  6. Guided wave scattering by a geometrical or damage feature: application to fatigue crack and machined notch

    Science.gov (United States)

    Quaegebeur, Nicolas; Bouslama, Nidhal; Bilodeau, Maxime; Masson, Patrice; Maslouhi, Ahmed; Micheau, Philippe

    2017-04-01

    Guided-wave based Non-Destructive Evaluation (NDE) and Structural Health Monitoring (SHM) systems validation under realistic conditions or environment requires complex setups. Numerical or theoretical approaches are useful to save time and cost associated with experimental tests but the interaction with realistic geometrical (rivets, thickness changes, stiffeners, extrusions) or damage features (fatigue cracks, fillet cracks, delaminations, disbonds) must be accurately captured in order to be representative. In this paper, an experimental methodology is presented for estimating the far-field scattering of geometrical or damage features. The principle is based on the use of a Hankel transform of the measured 3D velocity field in order to evaluate with precision the scattered pattern using a spatially averaged method. Application to scattering of a hole with simulated machined and real fatigue cracks is proposed. It is observed that the simulated machined crack generally used as a reference standard can only model accurately the transmission behaviour while the scattering patterns are only similar when the wavelength is about the size of the crack, limiting the practical use of machined cracks for experimental validation of SHM or NDE systems.

  7. Fatigue-creep of martensitic steels containing 9-12% Cr: behaviour and damage; Fatigue-fluage des aciers martensitiques a 9-12% Cr: comportement et endommagement

    Energy Technology Data Exchange (ETDEWEB)

    Fournier, B

    2007-09-15

    It is in the framework of the research programs on nuclear reactors (generation IV) that the martensitic steels containing 9-12% Cr are studied by the CEA. Most of the structures for which they are considered will be solicited in fatigue-creep at high temperature (550 C). The aim of this work is to understand and model the cyclic behaviour and the damage of these materials. The proposed modelling are based on detailed observations studies (SEM, TEM, EBSD...). The cyclic softening is attributed to the growth of the microstructure. A micro-mechanical model based on the physical parameters is proposed and leads to encouraging results. The damage results of interactions between fatigue, creep and oxidation. Two main types of damage are revealed. A model of anticipation of service time is proposed and gives very satisfying results. The possible extrapolations are discussed. (O.M.)

  8. The effect of cement creep and cement fatigue damage on the micromechanics of the cement-bone interface

    Science.gov (United States)

    Waanders, Daan; Janssen, Dennis; Mann, Kenneth A.; Verdonschot, Nico

    2010-01-01

    The cement-bone interface provides fixation for the cement mantle within the bone. The cement-bone interface is affected by fatigue loading in terms of fatigue damage, or micro cracks, and creep, both mostly in the cement. This study investigates how fatigue damage and cement creep separately affect the mechanical response of the cement-bone interface at various load levels in terms of plastic displacement and crack formation. Two FEA models were created, which were based on micro-computed tomography data of two physical cement-bone interface specimens. These models were subjected to tensile fatigue loads with four different magnitudes. Three deformation modes of the cement were considered; ‘only creep’, ‘only damage’ or ‘creep and damage’. The interfacial plastic deformation, the crack reduction as a result of creep and the interfacial stresses in the bone were monitored. The results demonstrate that, although some models failed early, the majority of plastic displacement was caused by fatigue damage, rather than cement creep. However, cement creep does decrease the crack formation in the cement up to 20%. Finally, while cement creep hardly influences the stress levels in the bone, fatigue damage of the cement considerably increases the stress levels in the bone. We conclude that at low load levels the plastic displacement is mainly caused by creep. At moderate to high load levels, however, the plastic displacement is dominated by fatigue damage and is hardly affected by creep, although creep reduced the number of cracks in moderate to high load region. PMID:20692663

  9. Combining Passive Thermography and Acoustic Emission for Large Area Fatigue Damage Growth Assessment of a Composite Structure

    Science.gov (United States)

    Zalameda, Joseph N.; Horne, Michael R.; Madaras, Eric I.; Burke, Eric R.

    2016-01-01

    Passive thermography and acoustic emission data were obtained for improved real time damage detection during fatigue loading. A strong positive correlation was demonstrated between acoustic energy event location and thermal heating, especially if the structure under load was nearing ultimate failure. An image processing routine was developed to map the acoustic emission data onto the thermal imagery. This required removing optical barrel distortion and angular rotation from the thermal data. The acoustic emission data were then mapped onto thermal data, revealing the cluster of acoustic emission event locations around the thermal signatures of interest. By combining both techniques, progression of damage growth is confirmed and areas of failure are identified. This technology provides improved real time inspections of advanced composite structures during fatigue testing.Keywords: Thermal nondestructive evaluation, fatigue damage detection, aerospace composite inspection, acoustic emission, passive thermography

  10. Effect of hardening induced by cold expansion on damage fatigue accumulation and life assessment of Aluminum alloy 6082 T6

    Directory of Open Access Journals (Sweden)

    Bendouba Mostefa

    2012-12-01

    Full Text Available Hole cold expansion (HCE is an effective method to extend the fatigue life of mechanical structures. During cold expansion process compressive residual stresses around the expanded hole are generated. The enhancement of fatigue life and the crack initiation and growth behavior of a holed specimen were investigated by using the 6082 Aluminum alloy. The present study suggests a simple technical method for enhancement of fatigue life by a cold expansion hole of pre-cracked specimen. Fatigue damage accumulation of cold expanded hole in aluminum alloy which is widely used in transportation and in aeronautics was analyzed. Experimental tests were carried out using pre-cracked SENT specimens. Tests were performed in two and four block loading under constant amplitude. These tests were performed by using two and four blocks under uniaxial constant amplitude loading. The increasing and decreasing loading were carried. The experimental results were compared to the damage calculated by the Miner's rule and a new simple fatigue damage indicator. This comparison shows that the 'damaged stress model', which takes into account the loading history, yields a good estimation according to the experimental results. Moreover, the error is minimized in comparison to the Miner's model.

  11. Simultaneous life extension and crack monitoring of fatigue-damaged steel members using multifunctional carbon nanotube based composites

    Science.gov (United States)

    Ahmed, Shafique; Schumacher, Thomas; Thostenson, Erik T.; McConnell, Jennifer

    2017-04-01

    Steel structures including bridges are susceptible to cracking, particularly due to fatigue-sensitive details found in older designs. Therefore, one of the major challenges to keep those steel bridges in service is to rehabilitate existing and potential fatigue damage. There are several conventional approaches to extend the fatigue-life of damaged steel members, e.g., drilling a crack stop-hole to reduce the stress concentration at the crack tip as well as welding and bolting of steel plates or adhesive-bonding of fiber-reinforced polymers (FRP) to reduce the overall stresses. Improvement in material properties of FRP and adhesives make them a viable candidate to apply for extending the fatigue-life of steel members. However, drawbacks include the potential for debonding of the adhesive layer and/or interfaces between adhesive and adherents as well as difficulty in monitoring fatigue crack growth after rehabilitation. In this research, a holistic approach is proposed and evaluated for simultaneous extension of fatigue-life and monitoring by integrating a carbon nanotube (CNT)-based sensing layer with an adhesively-bonded FRP reinforcement. CNT-based sensing layers have a nerve-like electric resistance network, which enables distributed sensing capabilities to monitor stress levels, crack growth, and damage progression. Using laboratory-scale experiments, the simultaneous fatigue-life extension and crack monitoring capability of multifunctional CNT-based composites was evaluated. This paper introduces the fundamental concept of integrated fatigue-rehabilitation and monitoring of steel members, presents a laboratory-scale experiment to demonstrate the feasibility and effectiveness, and discusses challenges for implementation in real structures.

  12. Fatigue damage observed non-destructively in fibre composite coupon test specimens by X-ray CT

    DEFF Research Database (Denmark)

    Jespersen, Kristine Munk; Mikkelsen, Lars Pilgaard

    2016-01-01

    This study presents a method for monitoring the 3D fatigue damage progression on a micro-structural level in a glass fibre/polymer coupon test specimen by means of laboratory X-ray Computed Tomography (CT). A modified mount and holder made for the standard test samples to fit into the X-ray CT...... scanner along with a tension clamp solution is presented. Initially, the same location of the test specimen is inspected by ex-situ X-ray CT during the fatigue loading history, which shows the damage progression on a micro-structural level. The openings of individual uni-directional (UD) fibre fractures...

  13. Gear Fault Detection Effectiveness as Applied to Tooth Surface Pitting Fatigue Damage

    Science.gov (United States)

    Lewicki, David G.; Dempsey, Paula J.; Heath, Gregory F.; Shanthakumaran, Perumal

    2010-01-01

    A study was performed to evaluate fault detection effectiveness as applied to gear-tooth-pitting-fatigue damage. Vibration and oil-debris monitoring (ODM) data were gathered from 24 sets of spur pinion and face gears run during a previous endurance evaluation study. Three common condition indicators (RMS, FM4, and NA4 [Ed. 's note: See Appendix A-Definitions D were deduced from the time-averaged vibration data and used with the ODM to evaluate their performance for gear fault detection. The NA4 parameter showed to be a very good condition indicator for the detection of gear tooth surface pitting failures. The FM4 and RMS parameters perfomu:d average to below average in detection of gear tooth surface pitting failures. The ODM sensor was successful in detecting a significant 8lDOunt of debris from all the gear tooth pitting fatigue failures. Excluding outliers, the average cumulative mass at the end of a test was 40 mg.

  14. Multi Resolution In-Situ Testing and Multiscale Simulation for Creep Fatigue Damage Analysis of Alloy 617

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yongming [Arizona State Univ., Tempe, AZ (United States). School for Engineering of Matter, Transport and Energy; Oskay, Caglar [Vanderbilt Univ., Nashville, TN (United States). Dept. of Civil and Environmental Engineering

    2017-04-30

    This report outlines the research activities that were carried out for the integrated experimental and simulation investigation of creep-fatigue damage mechanism and life prediction of Nickel-based alloy, Inconel 617 at high temperatures (950° and 850°). First, a novel experimental design using a hybrid control technique is proposed. The newly developed experimental technique can generate different combinations of creep and fatigue damage by changing the experimental design parameters. Next, detailed imaging analysis and statistical data analysis are performed to quantify the failure mechanisms of the creep fatigue of alloy 617 at high temperatures. It is observed that the creep damage is directly associated with the internal voids at the grain boundaries and the fatigue damage is directly related to the surface cracking. It is also observed that the classical time fraction approach does not has a good correlation with the experimental observed damage features. An effective time fraction parameter is seen to have an excellent correlation with the material microstructural damage. Thus, a new empirical damage interaction diagram is proposed based on the experimental observations. Following this, a macro level viscoplastic model coupled with damage is developed to simulate the stress/strain response under creep fatigue loadings. A damage rate function based on the hysteresis energy and creep energy is proposed to capture the softening behavior of the material and a good correlation with life prediction and material hysteresis behavior is observed. The simulation work is extended to include the microstructural heterogeneity. A crystal plasticity finite element model considering isothermal and large deformation conditions at the microstructural scale has been developed for fatigue, creep-fatigue as well as creep deformation and rupture at high temperature. The model considers collective dislocation glide and climb of the grains and progressive damage accumulation of

  15. Optical Sensing of the Fatigue Damage State of CFRP under Realistic Aeronautical Load Sequences

    Directory of Open Access Journals (Sweden)

    Pablo Zuluaga-Ramírez

    2015-03-01

    Full Text Available We present an optical sensing methodology to estimate the fatigue damage state of structures made of carbon fiber reinforced polymer (CFRP, by measuring variations on the surface roughness. Variable amplitude loads (VAL, which represent realistic loads during aeronautical missions of fighter aircraft (FALSTAFF have been applied to coupons until failure. Stiffness degradation and surface roughness variations have been measured during the life of the coupons obtaining a Pearson correlation of 0.75 between both variables. The data were compared with a previous study for Constant Amplitude Load (CAL obtaining similar results. Conclusions suggest that the surface roughness measured in strategic zones is a useful technique for structural health monitoring of CFRP structures, and that it is independent of the type of load applied. Surface roughness can be measured in the field by optical techniques such as speckle, confocal perfilometers and interferometry, among others.

  16. Experimental Study of Fatigue Damage Strength of Concrete Lining under Dry-Wet Cycles

    Science.gov (United States)

    Zhang, Yan; Dai, Jun; Zheng, Xuanrong; Zhang, Xinyan; Li, Ning

    2017-10-01

    The laboratory mortar test is used to simulate the actual force state of concrete lining in a dry-wet cycling environment of a high-temperature tunnel. The influence characteristics of temperature and the number of cycles on the lining concrete strength and strain are also explored. The test results suggest that the number of cycles has a great impact on the deterioration of the mechanical properties of the cement-based materials. During the early period, the higher the temperature, the more serious the loss of strength. As the number of cycle increases, the strength damage caused by dry-wet cycles gradually increases. Mortar test shows the fibbers have a good fatigue resistance. The quantitative results presented in this paper can be used as reference in similar projects.

  17. Effect of BCAA intake during endurance exercises on fatigue substances, muscle damage substances, and energy metabolism substances

    OpenAIRE

    Kim, Dong-Hee; Kim, Seok-Hwan; Jeong, Woo-Seok; Lee, Ha-Yan

    2013-01-01

    The increase rate of utilization of branched-chain amino acids (BCAA) by muscle is reduced to its plasma concentration during prolonged exercise leading to glycogen. BCAA supplementation would reduce the serum activities of intramuscular enzymes associated with muscle damage. To examine the effects of BCAA administration on fatigue substances (serotonin, ammonia and lactate), muscle damage substances (CK and LDH) and energy metabolism substances (FFA and glucose) after endurance exercise. Sub...

  18. Revealing fatigue damage evolution in unidirectional composites for wind turbine blades using x-ray computed tomography

    DEFF Research Database (Denmark)

    Mikkelsen, Lars Pilgaard

    Understanding fatigue damage evolution in the load carrying laminates of wind turbine blade play an important role designing longer and lighter turbine blades. Turbine blades which will make it possible to increase the size of wind turbines or to upgrade existing turbines for lower wind classes...

  19. Gear fatigue damage for a 500 kW wind turbine exposed to increasing turbulence using a flexible multibody model

    DEFF Research Database (Denmark)

    Jørgensen, Martin Felix; Pedersen, Niels Leergaard; Sørensen, Jens Nørkær

    2014-01-01

    This paper investigates gear tooth fatigue damage in a 500 kW wind turbine using FLEX5 and own multibody code. FLEX5 provides the physical wind eld, rotor and generator torque and the multibody code is used for obtaining gear tooth reaction forces in the planetary gearbox. Dierent turbulence levels...

  20. Effects of successive judo matches on fatigue and muscle damage markers.

    Science.gov (United States)

    Detanico, Daniele; Dal Pupo, Juliano; Franchini, Emerson; Dos Santos, Saray G

    2015-04-01

    This study aimed to investigate the acute effects of simulated judo matches on fatigue and muscle damage markers. Twenty male judo athletes participated in this study. The athletes performed three 5-minute judo matches separated by 15 minutes of passive rest between each match. The following measurements were performed before and after each match: shoulder external/internal rotation isokinetic torque and countermovement jump (CMJ). Blood samples were taken before the first match and after the third match for serum creatine kinase (CK) and lactate dehydrogenase (LDH) analysis. T-tests for dependent samples and analysis of variance for repeated measures were used to compare the variables over the time; the level of significance was set at 0.05. An overall effect of the successive matches on shoulder internal (PTIN) and external (PTEX) rotation peak torque and CMJ performance was observed. PTIN and PTEX showed significant decreases in postmatch 2 and postmatch 3 when compared with the baseline (p judo matches induced a decline of peak torque and muscle power in the upper and lower limbs, respectively, and also provoked an increase of muscle damage markers. These findings may provide important knowledge for coaches and physical trainers to improve judo-specific strength training in both the upper and lower limbs.

  1. Synergistic Effects of Frequency and Temperature on Damage Evolution and Life Prediction of Cross-Ply Ceramic Matrix Composites under Tension-Tension Fatigue Loading

    Science.gov (United States)

    Longbiao, Li

    2017-10-01

    In this paper, the synergistic effects of loading frequency and testing temperature on the fatigue damage evolution and life prediction of cross-ply SiC/MAS ceramic-matrix composite have been investigated. The damage parameters of the fatigue hysteresis modulus, fatigue hysteresis dissipated energy and the interface shear stress were used to monitor the damage evolution inside of SiC/MAS composite. The evolution of fatigue hysteresis dissipated energy, the interface shear stress and broken fibers fraction versus cycle number, and the fatigue life S-N curves of SiC/MAS composite under the loading frequency of 1 and 10 Hz at 566 °C and 1093 °C in air condition have been predicted. The synergistic effects of the loading frequency and testing temperature on the degradation rate of fatigue hysteresis dissipated energy and the interface shear stress have been analyzed.

  2. Multi-Axial Damage Index and Accumulation Model for Predicting Fatigue Life of CMC Materials Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The fatigue life of CMCs must be well characterized for the safe and reliable use of these materials as integrated TPS components. Existing fatigue life prediction...

  3. Fatigue damage prognosis of internal delamination in composite plates under cyclic compression loadings using affine arithmetic as uncertainty propagation tool

    Science.gov (United States)

    Gbaguidi, Audrey J.-M.

    Structural health monitoring (SHM) has become indispensable for reducing maintenance costs and increasing the in-service capacity of a structure. The increased use of lightweight composite materials in aircraft structures drastically increased the effects of fatigue induced damage on their critical structural components and thus the necessity to predict the remaining life of those components. Damage prognosis, one of the least investigated fields in SHM, uses the current damage state of the system to forecast its future performance by estimating the expected loading environments. A successful damage prediction model requires the integration of technologies in areas like measurements, materials science, mechanics of materials, and probability theories, but most importantly the quantification of uncertainty in all these areas. In this study, Affine Arithmetic is used as a method for incorporating the uncertainties due to the material properties into the fatigue life prognosis of composite plates subjected to cyclic compressive loadings. When loadings are compressive in nature, the composite plates undergo repeated buckling-unloading of the delaminated layer which induces mixed modes I and II states of stress at the tip of the delamination in the plates. The Kardomateas model-based prediction law is used to predict the growth of the delamination, while the integration of the effects of the uncertainties for modes I and II coefficients in the fatigue life prediction model is handled using Affine arithmetic. The Mode I and Mode II interlaminar fracture toughness and fatigue characterization of the composite plates are first experimentally studied to obtain the material coefficients and fracture toughness, respectively. Next, these obtained coefficients are used in the Kardomateas law to predict the delamination lengths in the composite plates while using Affine Arithmetic to handle their uncertainties. At last, the fatigue characterization of the composite plates during

  4. Fatigue-damage evolution and damage-induced reduction of critical current of a Nb{sub 3}Al superconducting composite

    Energy Technology Data Exchange (ETDEWEB)

    Ochiai, S [International Innovation Center, Kyoto University, Sakyo-ku, Kyoto 606-8501 (Japan); Sekino, F [Graduate School of Engineering, Kyoto University, Sakyo-ku, Kyoto 606-8501 (Japan); Sawada, T [Graduate School of Engineering, Kyoto University, Sakyo-ku, Kyoto 606-8501 (Japan); Ohno, H [Graduate School of Engineering, Kyoto University, Sakyo-ku, Kyoto 606-8501 (Japan); Hojo, M [Graduate School of Engineering, Kyoto University, Sakyo-ku, Kyoto 606-8501 (Japan); Tanaka, M [Graduate School of Engineering, Kyoto University, Sakyo-ku, Kyoto 606-8501 (Japan); Okuda, H [International Innovation Center, Kyoto University, Sakyo-ku, Kyoto 606-8501 (Japan); Koganeya, M [Sumitomo Electric Industries, Ltd, Konohana-ku, Osaka 590-0024 (Japan); Hayashi, K [Sumitomo Electric Industries, Ltd, Konohana-ku, Osaka 590-0024 (Japan); Yamada, Y [Sumitomo Electric Industries, Ltd, Konohana-ku, Osaka 590-0024 (Japan); Ayai, N [Sumitomo Electric Industries, Ltd, Konohana-ku, Osaka 590-0024 (Japan); Watanabe, K [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan)

    2003-09-01

    We have studied the fatigue-damage mechanism of a Nb{sub 3}Al superconducting composite at room temperature, and the influences of the fatigue damages introduced at room temperature on the critical current at 4.2 K and the residual strength at room temperature. The main (largest) fatigue crack arose first in the clad copper and then extended into the inner core with an increasing number of stress cycles. The cracking of the Nb{sub 3}Al filaments in the core region occurred at a late stage (around 60-90% of the fatigue life). Once the fracture of the core occurred, it extended very quickly, resulting in a quick reduction in critical current and the residual strength with increasing stress cycles. Such a behaviour was accounted for by the crack growth calculated from the S-N curves (the relation of the maximum stress to the number of stress cycles at failure) combined with the Paris law. The size and distribution of the subcracks along the specimen length, and therefore the reduction in critical current of the region apart from the main crack, were dependent on the maximum stress level. The large subcracks causing fracture of the Nb{sub 3}Al filaments were formed when the maximum stress was around 300-460 MPa, resulting in large reduction in critical current, but not when the maximum stress was outside such a stress range.

  5. Synergistic Effects of Temperature, Oxidation and Stress Level on Fatigue Damage Evolution and Lifetime Prediction of Cross-Ply SiC/CAS Ceramic-Matrix Composites Through Hysteresis-Based Parameters

    Science.gov (United States)

    Li, Longbiao

    2017-10-01

    The damage development and cyclic fatigue lifetime of cross-ply SiC/CAS ceramic-matrix composites have been investigated at different testing temperatures in air atmosphere. The relationships between the fatigue hysteresis-based damage parameters, i.e., fatigue hysteresis dissipated energy, fatigue hysteresis modulus and fatigue peak strain and the damage mechanisms of matrix multicracking, fiber/matrix interface debonding, interface sliding and fibers failure, have been established. With the increase in the cycle number, the evolution of the fatigue hysteresis modulus, fatigue peak strain and fatigue hysteresis dissipated energy depends upon the fatigue peak stress levels, interface and fibers oxidation and testing temperature. The fatigue life S-N curves of cross-ply SiC/CAS composite at room and elevated temperatures have been predicted, and the fatigue limit stresses at room temperature, 750 and 850 °C, are 50, 36 and 30% of the tensile strength, respectively.

  6. Fatigue creep damage at the cement-bone interface: an experimental and a micro-mechanical finite element study

    Science.gov (United States)

    Waanders, Daan; Janssen, Dennis; Miller, Mark A.; Mann, Kenneth A.; Verdonschot, Nico

    2009-01-01

    The goal of this study was to quantify the micromechanics of the cement-bone interface under tensile fatigue loading using finite element analysis (FEA) and to understand the underlying mechanisms that play a role in the fatigue behavior of this interface. Laboratory cement-bone specimens were subjected to a tensile fatigue load, while local displacements and crack growth on the specimen's surface were monitored. FEA models were created from these specimens based upon micro-computed tomography data. To accurately model interfacial gaps at the interface between the bone and cement, a custom-written erosion algorithm was applied to the bone model. A fatigue load was simulated in the FEA models while monitoring the local displacements and crack propagation. The results showed the FEA models were able to capture the general experimental creep damage behavior and creep stages of the interface. Consistent with the experiments, the majority of the deformation took place at the contact interface. Additionally, the FEA models predicted fatigue crack patterns similar to experimental findings. Experimental surface cracks correlated moderately with FEA surface cracks (r2=0.43), but did not correlate with the simulated crack volume fraction (r2=0.06). Although there was no relationship between experimental surface cracks and experimental creep damage displacement (r2=0.07), there was a strong relationship between the FEA crack volume fraction and the FEA creep damage displacement (r2=0.76). This study shows the additional value of FEA of the cement-bone interface relative to experimental studies and can therefore be used to optimize its mechanical properties. PMID:19682690

  7. Atomistic modeling of nanowires, small-scale fatigue damage in cast magnesium, and materials for MEMS

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, Martin L. [Univ. of Colorado, Boulder, CO (United States); Talmage, Mellisa J. [Univ. of Colorado, Boulder, CO (United States); McDowell, David L. [Georgia Inst. of Technology, Atlanta, GA (United States); West, Neil [Univ. of Colorado, Boulder, CO (United States); Gullett, Philip Michael [Mississippi State Univ., Mississippi State, MS (United States); Miller, David C. [Univ. of Colorado, Boulder, CO (United States); Spark, Kevin [Univ. of Colorado, Boulder, CO (United States); Diao, Jiankuai [Univ. of Colorado, Boulder, CO (United States); Horstemeyer, Mark F. [Mississippi State Univ., Mississippi State, MS (United States); Zimmerman, Jonathan A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gall, K. [Georgia Inst. of Technology, Atlanta, GA (United States)

    2006-10-01

    titled 'Atomistic Modeling of Nanowires, Small-scale Fatigue Damage in Cast Magnesium, and Materials for MEMS'. This project supported a strategic partnership between Sandia National Laboratories and the University of Colorado at Boulder by providing funding for the lead author, Ken Gall, and his students, while he was a member of the University of Colorado faculty.

  8. Fatigue damage assessment of uni-directional non-crimp fabric reinforced polyester composite using X-ray computed tomography

    DEFF Research Database (Denmark)

    Jespersen, Kristine Munk; Zangenberg Hansen, Jens; Lowe, Tristan

    2016-01-01

    In this study, the progression of tension-tension fatigue (R=0.1) damage in a unidirectional (UD) composite made from a non-crimp glass fibre fabric used for wind turbine blades is investigated using multi-scale 3D X-ray computed tomography (CT). Initially, a representative volume is examined...... fracture zone becomes more diffuse further from the backing layer. Our work supports a scheme explaining stiffness degradation in terms of UD fibre damage accumulation and demonstrates the importance of 3D and ideally time-lapse imaging studies....

  9. Compression fatigue of Wind Turbine Blade composites materials and damage mechanisms

    DEFF Research Database (Denmark)

    Fraisse, Anthony; Brøndsted, Povl

    According to the new IEC 61400-5-rev0 recommendation, which is under preparation it will be required to qualify wind turbine blade (WTB) composite materials in fatigue at R=0.1, R=-1, and R=10. As a minimum fatigue at R=-1 is required. This is a consequence of the ever-growing blades, where gravity...

  10. Fatigue behaviors and damage mechanism of a Cr-Mn-N austenitic steel

    DEFF Research Database (Denmark)

    Lv, Z.; Cai, P.; Yu, Tianbo

    2017-01-01

    Four-point bending fatigue tests were conducted on a Cr-Mn-N austenitic steel at room temperature, at frequency of 20 Hz and the stress ratio of R = 0.1, in air. The fatigue strength of this Cr-Mn-N austenitic steel was measured to be 503 MPa in the maximum stress from the S-N curve obtained...

  11. Mixed martial arts induces significant fatigue and muscle damage up to 24 hours post-combat.

    Science.gov (United States)

    Ghoul, Nihel; Tabben, Montassar; Miarka, Bianca; Tourny, Claire; Chamari, Karim; Coquart, Jeremy

    2017-06-22

    This study investigates the physiological/physical responses to a simulated mixed martial arts (MMA) competition over 24 hr. Twelve fighters performed a simulated MMA competition, consisting of three 5-min MMA matches. Physiological/physical data were assessed before (Trest), directly after round 1 (Trd1), round 2 (Trd2) and round 3 (Trd3), and then 30-min (Trecovery30min) and/or 24-hr (Trecovery24h) post-competition. Heart rate (HR), rating of perceived exertion (RPE) and blood lactate concentration ([La]) were assessed at Trest, Trd1, Trd2 and Trd3. Biological data were collected at Trest, Trd3, Trecovery30min and Trecovery24h. Physical tests were performed at Trest, Trecovery30min and Trecovery24h. HR, RPE and [La] were high during competition. Leukocytes, hemoglobin, total protein and glycemia were increased at Trd3 compared with all other time points (p<0.05). Cortisol was increased at Trd3 compared with Trest and Trecovery24h (p<0.05). Testosterone was higher at Trd3 and Trecovery30min than Trest (p<0.001). Higher values of uric acid were noted during recovery periods (p<0.001). Lactate dehydrogenase was lower at Trest compared with Trd3, Trecovery30min and Trecovery24h (p<0.05). Countermovement jump was higher at Trest than Trecovery30min (p=0.020). Consequently, MMA is a high-intensity intermittent combat sport that induces significant fatigue and muscle damage, both of which are still present 24-hr post-competition.

  12. Effect of BCAA intake during endurance exercises on fatigue substances, muscle damage substances, and energy metabolism substances.

    Science.gov (United States)

    Kim, Dong-Hee; Kim, Seok-Hwan; Jeong, Woo-Seok; Lee, Ha-Yan

    2013-12-01

    The increase rate of utilization of branched-chain amino acids (BCAA) by muscle is reduced to its plasma concentration during prolonged exercise leading to glycogen. BCAA supplementation would reduce the serum activities of intramuscular enzymes associated with muscle damage. To examine the effects of BCAA administration on fatigue substances (serotonin, ammonia and lactate), muscle damage substances (CK and LDH) and energy metabolism substances (FFA and glucose) after endurance exercise. Subjects (n = 26, college-aged males) were randomly divided into an experimental (n = 13, EXP) and a placebo (n = 13, CON) group. Subjects both EXP and CON performed a bout of cycle training (70% VO2max intensity) to exhaustion. Subject in the EXP were administrated BCAA (78ml/kg·w) prior to the bout of cycle exercise. Fatigue substances, muscle damage substances and energy metabolism substances were measured before ingesting BCAAs and placebos, 10 min before exercise, 30 min into exercise, immediately after exercise, and 30 min after exercise. Data were analyzed by two-way repeated measure ANCOVA, correlation and statistical significance was set at p BCAA decreased serum concentrations of the intramuscular enzymes as CK and LDH following exhaustive exercise. This observation suggests that BCAA supplementation may reduce the muscle damage associated with endurance exercise.

  13. Development of an Image-based Multi-Scale Finite Element Approach to Predict Fatigue Damage in Asphalt Mixtures

    Science.gov (United States)

    Arshadi, Amir

    Image-based simulation of complex materials is a very important tool for understanding their mechanical behavior and an effective tool for successful design of composite materials. In this thesis an image-based multi-scale finite element approach is developed to predict the mechanical properties of asphalt mixtures. In this approach the "up-scaling" and homogenization of each scale to the next is critically designed to improve accuracy. In addition to this multi-scale efficiency, this study introduces an approach for consideration of particle contacts at each of the scales in which mineral particles exist. One of the most important pavement distresses which seriously affects the pavement performance is fatigue cracking. As this cracking generally takes place in the binder phase of the asphalt mixture, the binder fatigue behavior is assumed to be one of the main factors influencing the overall pavement fatigue performance. It is also known that aggregate gradation, mixture volumetric properties, and filler type and concentration can affect damage initiation and progression in the asphalt mixtures. This study was conducted to develop a tool to characterize the damage properties of the asphalt mixtures at all scales. In the present study the Viscoelastic continuum damage model is implemented into the well-known finite element software ABAQUS via the user material subroutine (UMAT) in order to simulate the state of damage in the binder phase under the repeated uniaxial sinusoidal loading. The inputs are based on the experimentally derived measurements for the binder properties. For the scales of mastic and mortar, the artificially 2-Dimensional images of mastic and mortar scales were generated and used to characterize the properties of those scales. Finally, the 2D scanned images of asphalt mixtures are used to study the asphalt mixture fatigue behavior under loading. In order to validate the proposed model, the experimental test results and the simulation results were

  14. Extreme Environment Damage Index and Accumulation Model for CMC Laminate Fatigue Life Prediction Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Materials Research & Design (MR&D) is proposing in the SBIR Phase II an effort to develop a tool for predicting the fatigue life of C/SiC composite...

  15. Nectar secretion on fern fronds associated with lower levels of herbivore damage: field experiments with a widespread epiphyte of Mexican cloud forest remnants.

    Science.gov (United States)

    Koptur, Suzanne; Palacios-Rios, Mónica; Díaz-Castelazo, Cecilia; Mackay, William P; Rico-Gray, Víctor

    2013-06-01

    The oldest group of plants in which nectar secretions have been observed are the Polypodiopsida (ferns sensu lato). Nectaries have been reported in a dozen extant genera. The function of these nectaries has been investigated in several fern species, and in some circumstances has been demonstrated to have an antiherbivore role, attracting and maintaining biotic defence (ants and/or other predatory arthropods). This study documents foliar nectaries in Pleopeltis crassinervata, a widespread Central American epiphyte growing on a variety of trees in cloud forest areas of Veracruz, Mexico. This is a new record for this genus and species. As previous experimental work on epiphytic species of Polypodium has demonstrated a protective role of ants for developing fronds, we conducted similar experiments (using nylon nail polish to cover nectaries rather than excluding ants with bands of sticky resin as in earlier work). The fronds of Pl. crassinervata developed over 6 weeks, at which time damage was assessed. The experiment was simultaneously conducted on a sympatric species lacking nectaries, Polypodium furfuraceum. Herbivore placement experiments were conducted with large and small caterpillars on both of these ferns. Fronds with nectaries covered suffered greater damage from herbivores over the course of their development, compared with fronds that had uncovered nectaries functioning normally. The parallel experiment on Po. furfuraceum showed no difference between manipulated and control fronds. Six species of ants (Brachymyrmex minutus, Crematogaster formosa, Paratrechina longicornis, Solenopsis geminata, S. picea and Wasmannia auropunctata) were observed visiting nectaries of Pl. crassinervata; most were effective in removing herbivore larvae placed on the fronds. The long evolutionary history of ferns may explain why some previous studies of fern nectaries have shown little or no benefit to ferns from nectary visitors, as any coevolved herbivores are those resistant to

  16. Raman spectral markers of collagen denaturation and hydration in human cortical bone tissue are affected by radiation sterilization and high cycle fatigue damage.

    Science.gov (United States)

    Flanagan, Christopher D; Unal, Mustafa; Akkus, Ozan; Rimnac, Clare M

    2017-11-01

    Thermal denaturation and monotonic mechanical damage alter the organic and water-related compartments of cortical bone. These changes can be detected using Raman spectroscopy. However, less is known regarding Raman sensitivity to detect the effects of cyclic fatigue damage and allograft sterilization doses of gamma radiation. To determine if Raman spectroscopic biomarkers of collagen denaturation and hydration are sensitive to the effects of (a) high cycle fatigue damage and (b) 25kGy irradiation. Unirradiated and gamma-radiation sterilized human cortical bone specimens previously tested in vitro under high-cycle (> 100,000 cycles) fatigue conditions at 15MPa, 25MPa, 35MPa, 45MPa, and 55MPa cyclic stress levels were studied. Cortical bone Raman spectral profiles from wavenumber ranges of 800-1750cm-1 and 2700-3800cm-1 were obtained and compared from: a) non-fatigue vs fatigue fracture sites and b) radiated vs. unirradiated states. Raman biomarker ratios 1670/1640 and 3220/2949, which reflect collagen denaturation and organic matrix (mainly collagen)-bound water, respectively, were assessed. One- and two-way ANOVA analyses were utilized to identify differences between groups along with interaction effects between cyclic fatigue and radiation-induced damage. Cyclic fatigue damage resulted in increases in collagen denaturation (1670/1640: 1.517 ± 0.043 vs 1.579 ± 0.021, p denaturation (r = 0.514, p denaturation was sensitive to cyclic fatigue damage but not 25kGy irradiation. Collagen denaturation was correlated with organic matrix-bound water, suggesting that denaturation of collagen to gelatinous form may expose more binding sites to water by unwinding the triple alpha chains. This research may eventually be useful to help identify allograft quality and more appropriately match donors to recipients. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Damage evaluation under thermal fatigue of a vertical target full scale component for the ITER divertor

    Energy Technology Data Exchange (ETDEWEB)

    Missirlian, M. [Association Euratom-CEA, CEA/DSM/DRFC, CEA/Cadarache, F-13108 Saint Paul Lez Durance cedex (France)]. E-mail: missir@drfc.cad.cea.fr; Escourbiac, F. [Association Euratom-CEA, CEA/DSM/DRFC, CEA/Cadarache, F-13108 Saint Paul Lez Durance cedex (France); Merola, M. [EFDA Close Support Unit, Garching (Germany); Durocher, A. [Association Euratom-CEA, CEA/DSM/DRFC, CEA/Cadarache, F-13108 Saint Paul Lez Durance cedex (France); Bobin-Vastra, I. [FRAMATOME, Le Creusot (France); Schedler, B. [PLANSEE , Aktiengesellschaft-A-6600 Reutte (Austria)

    2007-08-01

    An extensive development programme has been carried out in the EU on high heat flux components within the ITER project. In this framework, a Full Scale Vertical Target (VTFS) prototype was manufactured with all the main features of the corresponding ITER divertor design. The fatigue cycling campaign on CFC and W armoured regions, proved the capability of such a component to meet the ITER requirements in terms of heat flux performances for the vertical target. This paper discusses thermographic examination and thermal fatigue testing results obtained on this component. The study includes thermal analysis, with a tentative proposal to evaluate with finite element approach the location/size of defects and the possible propagation during fatigue cycling.

  18. Finite Element Analysis for Fatigue Damage Reduction in Metallic Riveted Bridges Using Pre-Stressed CFRP Plates

    Directory of Open Access Journals (Sweden)

    Elyas Ghafoori

    2014-04-01

    Full Text Available Many old riveted steel bridges remain operational and require retrofit to accommodate ever increasing demands. Complicating retrofit efforts, riveted steel bridges are often considered historical structures where structural modifications that affect the original construction are to be avoided. The presence of rivets along with preservation requirements often prevent the use of traditional retrofit methods, such as bonding of fiber reinforced composites, or the addition of supplementary steel elements. In this paper, an un-bonded post-tensioning retrofit method is numerically investigated using existing railway riveted bridge geometry in Switzerland. The finite element (FE model consists of a global dynamic model for the whole bridge and a more refined sub-model for a riveted joint. The FE model results include dynamic effects from axle loads and are compared with field measurements. Pre-stressed un-bonded carbon fiber reinforced plastic (CFRP plates will be considered for the strengthening elements. Fatigue critical regions of the bridge are identified, and the effects of the un-bonded post-tensioning method with different pre-stress levels on fatigue susceptibility are explored. With an applied 40% CFRP pre-stress, fatigue damage reductions of more than 87% and 85% are achieved at the longitudinal-to-cross beam connections and cross-beam bottom flanges, respectively.

  19. 14 CFR 25.571 - Damage-tolerance and fatigue evaluation of structure.

    Science.gov (United States)

    2010-01-01

    ... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Fatigue Evaluation § 25.... Inspection thresholds for the following types of structure must be established based on crack growth analyses... impractical. This structure must be shown by analysis, supported by test evidence, to be able to withstand the...

  20. Extracting Information from Conventional AE Features for Fatigue Onset Damage Detection in Carbon Fiber Composites

    DEFF Research Database (Denmark)

    Unnthorsson, Runar; Pontoppidan, Niels Henrik Bohl; Jonsson, Magnus Thor

    2005-01-01

    We have analyzed simple data fusion and preprocessing methods on Acoustic Emission measurements of prosthetic feet made of carbon fiber reinforced composites. This paper presents the initial research steps; aiming at reducing the time spent on the fatigue test. With a simple single feature...

  1. 76 FR 74655 - Damage Tolerance and Fatigue Evaluation of Composite Rotorcraft Structures

    Science.gov (United States)

    2011-12-01

    ... fatigue evaluation will include the PSEs of the airframe, main and tail rotor drive systems, main and tail rotor blades and hubs, rotor controls, fixed and movable control surfaces, engine and transmission... six part 29 rotorcraft. Benefits of This Rule The final rule adopts as regulatory requirements past...

  2. 75 FR 793 - Damage Tolerance and Fatigue Evaluation of Composite Rotorcraft Structures

    Science.gov (United States)

    2010-01-06

    ... minimum, the fatigue evaluation would include the PSEs of the: --Airframe, --Main and tail rotor drive systems, --Main and tail rotor blades and hubs, --Rotor controls, --Fixed and movable control surfaces... this period, manufacturers will seek new certifications for 10.5 part 27 rotorcraft and six part 29...

  3. Residual Strains and Their Relation to the Fatigue Damage Evolution in Composite Materials

    DEFF Research Database (Denmark)

    Mikkelsen, Lars Pilgaard; Pereira, Gilmar Ferreira; Jespersen, Kristine Munk

    2016-01-01

    The fatigue performance of unidirectional glass fibre reinforced epoxy is found to be highly dependent on at which curing temperature the composite is manufactured. Performing the curing at 110C instead of at 40C is found to reduce the lifetime dramatically with a factor of 10. Even though...

  4. Separation of surface, subsurface and volume fatigue damage effects in AISI 348 steel for power plant applications

    Energy Technology Data Exchange (ETDEWEB)

    Klein, Martin; Nowak, David; Walther, Frank [Technical Univ. Dortmund (Germany). Dept. of Materials Test Engineering (WPT); Starke, Peter [Saarland Univ., Saarbruecken (Germany). Chair of Non-Destructive Testing and Quality Assurance; Boller, Christian [Saarland Univ., Saarbruecken (Germany). Chair of Non-Destructive Testing and Quality Assurance; Fraunhofer IZFP, Saarbruecken (Germany)

    2016-08-01

    A wide range of industries including energy, chemistry, pharmacy, textiles, food and drink, pulp and paper, etc. is using stainless steels. Metastable austenitic steels such as used in power plants and chemical industry are subjected to cyclic mechanical and thermal loading in air as well as under the influence of corrosive media. This paper provides an overview on different nondestructive and electrochemical measurement techniques, which allow differentiating fatigue damage effects in total strain controlled multiple and constant amplitude tests with respect to damage appearance on surface, in subsurface area as well as in volume of specimens or components microstructure. In addition to conventional mechanical stress-strain hysteresis curves, electrical resistance, magnetic and open circuit potential measurements have been applied to characterize the cyclic deformation behavior of the metastable austenitic steel AISI 348 (X10CrNiNb18-9) in laboratory air and in distilled water. Based on these results obtained, the paper provides an outlook on the possibility for an efficient (remaining) fatigue life evaluation approach, which is adapted to the needs of the application areas.

  5. Fatigue damage observed non-destructively in fibre composite coupon test specimens by X-ray CT

    Science.gov (United States)

    Jespersen, K. M.; Mikkelsen, L. P.

    2016-07-01

    This study presents a method for monitoring the 3D fatigue damage progression on a micro-structural level in a glass fibre/polymer coupon test specimen by means of laboratory X-ray Computed Tomography (CT). A modified mount and holder made for the standard test samples to fit into the X-ray CT scanner along with a tension clamp solution is presented. Initially, the same location of the test specimen is inspected by ex-situ X-ray CT during the fatigue loading history, which shows the damage progression on a micro-structural level. The openings of individual uni-directional (UD) fibre fractures are seen to generally increase with the number of cycles, and new regions of UD fibre fractures also appear. There are some UD fibre fractures that are difficult to detect since their opening is small. Therefore, the effect of tension on the crack visibility is examined afterwards using a tension clamp solution. With applied tension some additional cracks become visible and the openings of fibre fractures increases, which shows the importance of applied tension during the scan.

  6. Model-Based Structural Health Monitoring of Fatigue Damage Test-Bed Specimens

    Science.gov (United States)

    2011-11-15

    to it off-center. The base plate and the stiffener plate are rigidly welded by a tungsten inert gas ( TIG ) weld . Three different crack paths...shown in Figure 9(a), an 18 in long stiffener plate has been welded to each of the tested plates with 0.625 in long discrete TIG welds at 5 locations...around critical weld zones where fatigue failure is likely to initiate. Extensive numerical simulation and experimental testing has been conducted

  7. Evaluation of fatigue damage in steels using Preisach model analysis of magnetic hysteresis measurements

    Science.gov (United States)

    Lo, C. C. H.; Melikhov, Y. Y.; Kadlecová, J.; Perevertov, O. V.; Tomáš, I.; Ring, A. P.; Jiles, D. C.

    2001-04-01

    The Preisach model analysis of magnetic hysteresis measurements has been applied to evaluate the microstructural changes in steels subjected to cyclic loading. Families of hysteresis loops were measured to obtain the Preisach-like functions. Barkhausen effect signals were also measured. The Preisach representation was found to be more sensitive to the increase in the number of stress cycles during the stable fatigue stage than the traditional hysteresis loop properties and Barkhausen effect signals.

  8. A comparison of extreme structural responses and fatigue damage of semi-submersible type floating horizontal and vertical axis wind turbines

    DEFF Research Database (Denmark)

    Cheng, Zhengshun; Aagaard Madsen, Helge; Chai, Wei

    2017-01-01

    •A comprehensive comparison of floating HAWTs and VAWTs with different blade number.•Extreme structural responses and fatigue damage are studied.•Both operational and parked conditions are considered.•The merits and disadvantages of floating HAWTs and VAWTs are revealed and highlighted.......•A comprehensive comparison of floating HAWTs and VAWTs with different blade number.•Extreme structural responses and fatigue damage are studied.•Both operational and parked conditions are considered.•The merits and disadvantages of floating HAWTs and VAWTs are revealed and highlighted....

  9. Statistical modelling of compression and fatigue damage of unidirectional fiber reinforced composites

    DEFF Research Database (Denmark)

    Mishnaevsky, Leon; Brøndsted, Povl

    2009-01-01

    A statistical computational model of strength and damage of unidirectional carbon fiber reinforced composites under compressive and cyclic compressive loading is presented in this paper. The model is developed on the basis of the Budiansky–Fleck fiber kinking condition, continuum damage mechanics...

  10. Probabilistic Fatigue Damage Prognosis Using a Surrogate Model Trained Via 3D Finite Element Analysis

    Science.gov (United States)

    Leser, Patrick E.; Hochhalter, Jacob D.; Newman, John A.; Leser, William P.; Warner, James E.; Wawrzynek, Paul A.; Yuan, Fuh-Gwo

    2015-01-01

    Utilizing inverse uncertainty quantification techniques, structural health monitoring can be integrated with damage progression models to form probabilistic predictions of a structure's remaining useful life. However, damage evolution in realistic structures is physically complex. Accurately representing this behavior requires high-fidelity models which are typically computationally prohibitive. In the present work, a high-fidelity finite element model is represented by a surrogate model, reducing computation times. The new approach is used with damage diagnosis data to form a probabilistic prediction of remaining useful life for a test specimen under mixed-mode conditions.

  11. A New Model to Study Fatigue in Dental Implants Based on Probabilistic Finite Elements and Cumulative Damage Model

    Directory of Open Access Journals (Sweden)

    María Prados-Privado

    2017-01-01

    Full Text Available The aim of this study was to predict the fatigue life of two different connections of a dental implant as in load transfer to bone. Two three-dimensional models were created and assembled. All models were subjected to a natural masticatory force of 118 N in the angle of 75° to the occlusal plane. All degrees of freedom in the inferior border of the cortical bone were restrained, and the mesial and distal borders of the end of the bone section were constrained. Fatigue material data and loads were assumed as random variables. Maximum principal stresses on bone were evaluated. Then, the probability of failure was obtained by the probabilistic approach. The maximum principal stress distribution predicted in the cortical and trabecular bone is 32 MPa for external connection and 39 MPa for internal connection. A mean life of 103 and 210 million cycles were obtained for external and internal connection, respectively. Probability cumulative function was also evaluated for both connection types. This stochastic model employs a cumulative damage model and probabilistic finite element method. This methodology allows the possibility of measured uncertainties and has a good precision on the results.

  12. Probabilistic analysis and fatigue damage assessment of offshore mooring system due to non-Gaussian bimodal tension processes

    Science.gov (United States)

    Chang, Anteng; Li, Huajun; Wang, Shuqing; Du, Junfeng

    2017-08-01

    Both wave-frequency (WF) and low-frequency (LF) components of mooring tension are in principle non-Gaussian due to nonlinearities in the dynamic system. This paper conducts a comprehensive investigation of applicable probability density functions (PDFs) of mooring tension amplitudes used to assess mooring-line fatigue damage via the spectral method. Short-term statistical characteristics of mooring-line tension responses are firstly investigated, in which the discrepancy arising from Gaussian approximation is revealed by comparing kurtosis and skewness coefficients. Several distribution functions based on present analytical spectral methods are selected to express the statistical distribution of the mooring-line tension amplitudes. Results indicate that the Gamma-type distribution and a linear combination of Dirlik and Tovo-Benasciutti formulas are suitable for separate WF and LF mooring tension components. A novel parametric method based on nonlinear transformations and stochastic optimization is then proposed to increase the effectiveness of mooring-line fatigue assessment due to non-Gaussian bimodal tension responses. Using time domain simulation as a benchmark, its accuracy is further validated using a numerical case study of a moored semi-submersible platform.

  13. Effect of four jumping endurance trainings on metabolic fatigue and on indirect symptoms of skeletal muscle damage

    Directory of Open Access Journals (Sweden)

    A Skurvydas

    2010-12-01

    Full Text Available The aim was to analyze the effect of four trainings on the neuromuscular adaptation of the knee extensors muscles, and particularly the connection with neuromuscular fatigue and exercise-induced muscle damage (EIMD. The subjects were healthy untrained men (age 20.8 1.2 years, n=11. The four jumping endurance trainings (JETs were repeated every 3 days and each consisted of five series of 20 jumps performed with maximal intensity with 10 s intervals between the series. The maximal voluntary contraction force (MVCF and electrically evoked muscle contraction force at high and low frequencies, jump height (JH, muscle pain, creatine kinaze (CK activity and lactate concentration were measured before and after first and fourth JET. The main findings in this study are that four JETs, caused: 1 no changes in decrease both of JH and MVCF 3 min after JET and no changes in their recovery rate (up to 60 min either; 2 smaller low frequency fatigue (LFF 3 min after JET; 3 smaller secondary decrease in electrically induced muscle force at high stimulation frequencies from 3 min until 60 min after JET; 4 smaller manifestation of indirect symptoms of EIMD 24 h after JET. Our study showed that four JETs caused no changes in jumping performance but increased resistance of skeletal muscle to LFF and EIMD. It is evident that brief training effect manifest itself rather in electrically induced muscle performance than in voluntary muscle performance.

  14. Simplified rotor load models and fatigue damage estimates for offshore wind turbines.

    Science.gov (United States)

    Muskulus, M

    2015-02-28

    The aim of rotor load models is to characterize and generate the thrust loads acting on an offshore wind turbine. Ideally, the rotor simulation can be replaced by time series from a model with a few parameters and state variables only. Such models are used extensively in control system design and, as a potentially new application area, structural optimization of support structures. Different rotor load models are here evaluated for a jacket support structure in terms of fatigue lifetimes of relevant structural variables. All models were found to be lacking in accuracy, with differences of more than 20% in fatigue load estimates. The most accurate models were the use of an effective thrust coefficient determined from a regression analysis of dynamic thrust loads, and a novel stochastic model in state-space form. The stochastic model explicitly models the quasi-periodic components obtained from rotational sampling of turbulent fluctuations. Its state variables follow a mean-reverting Ornstein-Uhlenbeck process. Although promising, more work is needed on how to determine the parameters of the stochastic model and before accurate lifetime predictions can be obtained without comprehensive rotor simulations. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  15. Fatigue damage assessment of electric roads based on probabilistic load models

    Science.gov (United States)

    Ceravolo, R.; Miraglia, G.; Surace, C.

    2017-05-01

    The electro-mobility is becoming an increasingly present reality in recent years. The most important drawback of this technology is known to be limited battery autonomy. In an attempt to overcome this problem, for specific studies and testing, a number of roads have been implemented with coil systems in order to transfer power to electric vehicles, as described in this article. While on the one hand this could solve the problem of charging, on the other hand the introduction of a technology within an existing infrastructure could result in further structural issues. Since little or no information on the possible structural effect of the introduction of a charging system in the road is currently available, this study has focused on the long-term fatigue analysis of an electric road infrastructure in which an inductive wireless charging system has been introduced into the road structure. To perform the fatigue analysis, a recursive procedure defined within a probabilistic framework was developed and applied to a benchmark case study. The results obtained from the analysis represent an initial database for the definition of strategies and protocols for the monitoring, maintenance and operations of future electric roads infrastructures.

  16. Workload, Fatigue and Muscle Damage in an u20 Rugby Union Team Over an Intensified International Tournament.

    Science.gov (United States)

    Lacome, Mathieu; Carling, Christopher; Hager, Jean-Philippe; Dine, Gerard; Piscione, Julien

    2018-02-12

    This study examined the effects of an intensified tournament on workload, perceptual and neuromuscular fatigue and muscle damage responses in an international under-20 rugby union team. Players were subdivided into two groups according to match-play exposure time: high (HEG, n=13) and low (LEG, n=11). Measures monitored over the 19-day period included training session (n=10) and match (n=5) workload determined via global positioning systems and session ratings of perceived exertion (sRPE). Wellbeing scores, countermovement jump height performance (CMJ) and blood creatine kinase [CK]b concentrations were collected at various time points. Analysis of workload cumulated across the tournament entirety for training and match-play combined showed that high-speed running distance was similar between groups while a very likely larger sRPE load was reported in HEG vs. LEG. In HEG high-speed activity fluctuated across the 5 successive matches albeit with no clear trend for a progressive decrease. No clear tendency for a progressive decrease in wellbeing scores prior to or following matches was observed in either group. In HEG trivial to possibly small reductions in post-match CMJ performance were observed while unclear to most likely moderate increases in pre-match [CK]b concentrations occurred until prior to match 4. The magnitude of match-to-match changes in external workload, perceptual and neuromuscular fatigue and muscle damage was generally unclear or small. These results suggest that irrespective of exposure time to match-play players generally maintained performance and readiness to play across the intensified tournament. These findings support the need for holistic systematic player monitoring programmes.

  17. Fatigue damage estimation in non-linear systems using a combination of Monte Carlo simulation and the First Order Reliability Method

    DEFF Research Database (Denmark)

    Jensen, Jørgen Juncher

    2015-01-01

    For non-linear systems the estimation of fatigue damage under stochastic loadings can be rather time-consuming. Usually Monte Carlo simulation (MCS) is applied, but the coefficient-of-variation (COV) can be large if only a small set of simulations can be done due to otherwise excessive CPU time...

  18. Ex-situ time-lapse x-ray CT study of 3D micro-structural fatigue damage evolution in uni-directional composites

    DEFF Research Database (Denmark)

    Jespersen, Kristine Munk; Wang, Ying; Zangenberg Hansen, Jens

    2016-01-01

    In this study, the progress of damage under tension-tension fatigue of a uni-directional (UD) glass fibre composite made from a non-crimp fabric is studied using transilluminated white light imaging (TWLI) and X-ray computed tomography (CT). TWLI images are automatically captured throughout...

  19. Acoustic Emission Signatures of Fatigue Damage in Idealized Bevel Gear Spline for Localized Sensing

    Directory of Open Access Journals (Sweden)

    Lu Zhang

    2017-06-01

    Full Text Available In many rotating machinery applications, such as helicopters, the splines of an externally-splined steel shaft that emerges from the gearbox engage with the reverse geometry of an internally splined driven shaft for the delivery of power. The splined section of the shaft is a critical and non-redundant element which is prone to cracking due to complex loading conditions. Thus, early detection of flaws is required to prevent catastrophic failures. The acoustic emission (AE method is a direct way of detecting such active flaws, but its application to detect flaws in a splined shaft in a gearbox is difficult due to the interference of background noise and uncertainty about the effects of the wave propagation path on the received AE signature. Here, to model how AE may detect fault propagation in a hollow cylindrical splined shaft, the splined section is essentially unrolled into a metal plate of the same thickness as the cylinder wall. Spline ridges are cut into this plate, a through-notch is cut perpendicular to the spline to model fatigue crack initiation, and tensile cyclic loading is applied parallel to the spline to propagate the crack. In this paper, the new piezoelectric sensor array is introduced with the purpose of placing them within the gearbox to minimize the wave propagation path. The fatigue crack growth of a notched and flattened gearbox spline component is monitored using a new piezoelectric sensor array and conventional sensors in a laboratory environment with the purpose of developing source models and testing the new sensor performance. The AE data is continuously collected together with strain gauges strategically positioned on the structure. A significant amount of continuous emission due to the plastic deformation accompanied with the crack growth is observed. The frequency spectra of continuous emissions and burst emissions are compared to understand the differences of plastic deformation and sudden crack jump. The

  20. Review of the damage mechanism in wind turbine gearbox bearings under rolling contact fatigue

    Science.gov (United States)

    Su, Yun-Shuai; Yu, Shu-Rong; Li, Shu-Xin; He, Yan-Ni

    2017-12-01

    Wind turbine gearbox bearings fail with the service life is much shorter than the designed life. Gearbox bearings are subjected to rolling contact fatigue (RCF) and they are observed to fail due to axial cracking, surface flaking, and the formation of white etching areas (WEAs). The current study reviewed these three typical failure modes. The underlying dominant mechanisms were discussed with emphasis on the formation mechanism of WEAs. Although numerous studies have been carried out, the formation of WEAs remains unclear. The prevailing mechanism of the rubbing of crack faces that generates WEAs was questioned by the authors. WEAs were compared with adiabatic shear bands (ASBs) generated in the high strain rate deformation in terms of microstructural compositions, grain refinement, and formation mechanism. Results indicate that a number of similarities exist between them. However, substantial evidence is required to verify whether or not WEAs and ASBs are the same matters.

  1. Damage Precursor Investigation of Fiber-Reinforced Composite Materials Under Fatigue Loads

    Science.gov (United States)

    2013-09-01

    Damage Prognosis for Materials and Structures in Complex Systems, AFOSR Discovery Challenge Thrust (DCT) Workshop on Prognosis of Aircraft and Space...Socrate, S. Micromechanics of Uniaxial Tensile Deformation and Failure in High Impact Polystyrene ( HIPS ). Polymer 2009, 50.14, 3386–3395. Talreja

  2. Monitoring fatigue damage of an adhesive joint using fiber optics sensors

    Science.gov (United States)

    Shin, C. S.; Yang, Y. J.; Liaw, S. K.

    2017-05-01

    Adhesive joining has many merits over traditional joining techniques. However, adhesive joints are susceptible to damage and degradation caused by service loading. If such degradation went undetected, serious structural failures and catastrophic outcome might follow. It is difficult and economically unviable to carry out regular examination on the joint integrity using conventional non-destructive evaluation techniques, especially in the case of practical structures with large scale adhesive joining. In this work, optical fibers with Bragg grating (FBG) sensors embedded in single lap joints has been demonstrated to be able to detect internal damage caused by monotonic and cyclic loading. FBG sensor works by reflecting specific wavelengths from a broad spectrum incident light. The wavelengths reflected depend on the strain on the FBG. Internal damages will perturb the strain field in the joint and thus change the shape of the reflected FBG spectrum. With embedded FBG sensors, it is possible to achieve on-line monitoring of the joint integrity in an economical way.

  3. Reducing fatigue damage for ships in transit through structured decision making

    Science.gov (United States)

    Nichols, J.M.; Fackler, P.L.; Pacifici, K.; Murphy, K.D.; Nichols, J.D.

    2014-01-01

    Research in structural monitoring has focused primarily on drawing inference about the health of a structure from the structure’s response to ambient or applied excitation. Knowledge of the current state can then be used to predict structural integrity at a future time and, in principle, allows one to take action to improve safety, minimize ownership costs, and/or increase the operating envelope. While much time and effort has been devoted toward data collection and system identification, research to-date has largely avoided the question of how to choose an optimal maintenance plan. This work describes a structured decision making (SDM) process for taking available information (loading data, model output, etc.) and producing a plan of action for maintaining the structure. SDM allows the practitioner to specify his/her objectives and then solves for the decision that is optimal in the sense that it maximizes those objectives. To demonstrate, we consider the problem of a Naval vessel transiting a fixed distance in varying sea-state conditions. The physics of this problem are such that minimizing transit time increases the probability of fatigue failure in the structural supports. It is shown how SDM produces the optimal trip plan in the sense that it minimizes both transit time and probability of failure in the manner of our choosing (i.e., through a user-defined cost function). The example illustrates the benefit of SDM over heuristic approaches to maintaining the vessel.

  4. Analysis of the Static and Fatigue Strenght of a Damage Tolerant 3D-Reinforced Joining Technology on Composite Single Lap Joints

    Science.gov (United States)

    Nogueira, A. C.; Drechsler, K.; Hombergsmeier, E.

    2012-07-01

    The increasing usage of carbon fiber reinforced plastics (CFRP) in aerospace together with the constant drive for fuel efficiency and lightweight design have imposed new challenges in next generation structural assemblies and load transfer efficient joining methods. To address this issue, an innovative technology, denominated Redundant High Efficiency Assembly (RHEA) joints, is introduced as a high-performance lightweight joint that combines efficient load transfer with good damage tolerance. A review of the ongoing research involving the RHEA joint technology, its through-thickness reinforcement concept and the results of quasi-static and fatigue tensile investigations of single lap shear specimens are exposed and discussed. Improvements in ultimate static load, maximum joint deformation, damage tolerance and fatigue life are encountered when comparing the performance of the RHEA lap shear joints to co-bonded reference specimens.

  5. Cognitive and Physical Fatigue Tasks Enhance Pain, Cognitive Fatigue and Physical Fatigue in People with Fibromyalgia

    Science.gov (United States)

    Dailey, Dana L; Keffala, Valerie J; Sluka, Kathleen A

    2014-01-01

    Objective Fibromyalgia is a condition characterized by chronic widespread muscle pain and fatigue. The primary objective of this study was to determine if pain, perceived cognitive fatigue, and perceived physical fatigue were enhanced in participants with fibromyalgia compared to healthy controls during a cognitive fatigue task, a physical fatigue task and a dual fatigue task. Methods Twenty four people with fibromyalgia and 33 healthy controls completed pain, fatigue and function measures. A cognitive fatigue task (Controlled Oral Word Association Test) and physical fatigue task (Valpar peg test) were done individually and combined for a dual fatigue task. Resting pain, perceived cognitive fatigue and perceived physical fatigue were assessed during each task using visual analogue scales. Function was assessed with shoulder range of motion and grip. Results People with fibromyalgia had significantly higher increases in pain, cognitive fatigue and physical fatigue when compared to healthy controls after completion of a cognitive fatigue task, a physical fatigue task, or a dual fatigue task (pfatigue tasks, respectively. Conclusions These data show that people with fibromyalgia show larger increases in pain, perceived cognitive fatigue and perceived physical fatigue to both cognitive and physical fatigue tasks compared to healthy controls. The increases in pain and fatigue during cognitive and physical fatigue tasks could influence subject participation in daily activities and rehabilitation. PMID:25074583

  6. Kinetics of Accumulation of Damage in Surface Layers of Lithium-Containing Aluminum Alloys in Fatigue Tests with Rigid Loading Cycle and Corrosive Effect of Environment

    Science.gov (United States)

    Morozova, L. V.; Zhegina, I. P.; Grigorenko, V. B.; Fomina, M. A.

    2017-07-01

    High-resolution methods of metal physics research including electron, laser and optical microscopy are used to study the kinetics of the accumulation of slip lines and bands and the corrosion damage in the plastic zone of specimens of aluminum-lithium alloys 1441 and B-1469 in rigid-cycle fatigue tests under the joint action of applied stresses and corrosive environment. The strain parameters (the density of slip bands, the sizes of plastic zones near fracture, the surface roughness in singled-out zones) and the damage parameters (the sizes of pits and the pitting area) are evaluated.

  7. Fatigue creep damage at the cement–bone interface: An experimental and a micro-mechanical finite element study

    NARCIS (Netherlands)

    Waanders, Daan; Janssen, Dennis; Miller, Mark A.; Mann, Kenneth A.; Verdonschot, Nicolaas Jacobus Joseph

    2009-01-01

    The goal of this study was to quantify the micromechanics of the cement–bone interface under tensile fatigue loading using finite element analysis (FEA) and to understand the underlying mechanisms that play a role in the fatigue behavior of this interface. Laboratory cement–bone specimens were

  8. Fatigue damage evolution in quasi-unidirectional non-crimp fabric based composite materials for wind turbine blades

    DEFF Research Database (Denmark)

    Mikkelsen, Lars Pilgaard

    The fatigue failure of wind turbine blades is controlled by failure mechanisms on multiple scales spanning single fiber fatigue failure at the sub-micron scale, over the fiber bundle structure on the millimeter scale to the quasi-unidirectional non-crimp fabric on the meter scale. At the smaller ...

  9. Characterisation of foreign object damage (FOD) and early fatigue crack growth in laser shock peened Ti-6Al-4V aerofoil specimens

    Energy Technology Data Exchange (ETDEWEB)

    Spanrad, S. [Mechanical Behaviour of Materials Laboratory, Department of Mechanical and Design Engineering, University of Portsmouth (United Kingdom); Tong, J., E-mail: jie.tong@port.ac.uk [Mechanical Behaviour of Materials Laboratory, Department of Mechanical and Design Engineering, University of Portsmouth (United Kingdom)

    2011-02-25

    Research highlights: {yields} A study of deformation in a generic LSPed aerofoil specimen subjected to high speed head-on and 45 deg. impacts, and subsequently fatigue loading. {yields} Characterisation of damage features considering geometry of the projectile, impact angle and impact velocity. {yields} Onset and early crack growth due to FOD in LSPed samples compared to those without LSP subjected to cubical impacts under simulated service loading conditions. - Abstract: Foreign object damage (FOD) has been identified as one of the primary life limiting factors for fan and compressor blades, with the leading edge of aerofoils particularly susceptible to such damage. In this study, a generic aerofoil specimen of Ti-6Al-4V alloy was used. The specimens were treated by laser shock peening (LSP) to generate compressive residual stresses in the leading edge region prior to impact. FOD was simulated by firing a cubical projectile at the leading edge using a laboratory gas gun at 200 m/s, head-on; and at 250 m/s, at an angle of 45 deg. The specimens were then subjected to 4-point bend fatigue testing under high cycle (HCF), low cycle (LCF) and combined LCF and HCF loading conditions. Scanning electron microscopy (SEM) was used to characterise the damage features due to FOD. Crack initiation and early crack growth due to FOD and subsequent fatigue growth were examined in detail. The results were compared between the two impact conditions; and with those from samples without LSP treatment as well as those impacted with spherical projectiles. The results seem to suggest that LSP has improved the crack growth resistance post FOD. Delayed onset of crack initiation was observed in LSPed samples compared to those without LSP under similar loading conditions. Damage features depend on the geometry of the projectile, the impact angle as well as the impact velocity.

  10. Characterization and fatigue damage of plasma sprayed HAp top coat with Ti and HAp/Ti bond coat layers on commercially pure titanium substrate.

    Science.gov (United States)

    Rakngarm, Achariya; Mutoh, Yoshiharu

    2009-10-01

    The surface of commercially pure Ti (cp-Ti) substrate was grit-blasted with Al(2)O(3) powders and then wet-blasted with HAp/Ti mixed powders at room temperature. Then plasma spraying with Ti powders or HAp/Ti mixed powders on the blasted surface was carried out to form a bond coat layer, denoted as T50 and T100 bond coat for the former and HT100 bond coat for the later. The HAp top coat was subsequently sprayed with 100 mum thickness. The XRD patterns showed that the as-sprayed HT100 bond coat layer was mainly composed of HAp with minor components of Ti and TiO(2). EDS analysis also showed there co-existed HAp and Ti without reaction in the HT100 bond coat layer. Some cracks were observed in the bond coat and the top coat layers after compression-compression and tension-tension fatigue tests. The HT100 bond coat specimen produced less AE signal and a small amount of debonding and cracking in compression-compression fatigue test. The HT100 specimen could survive up to 10 million cycles at stress amplitude of 200 MPa, which is high enough compared to the maximum stress in bones: the order of 100 MPa. The degree of damage (debonding and cracking) in tension-tension fatigue test was more severe than that in compression-compression fatigue testing.

  11. Creep-Fatigue Damage Evaluation of a Model Reactor Vessel and Reactor Internals of Sodium Test Facility according to ASME-NH and RCC-MRx Codes

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Dong-Won; Lee, Hyeong-Yeon; Eoh, Jae-Hyuk; Son, Seok-Kwon; Kim, Jong-Bum; Jeong, Ji-Young [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    The objective of the STELLA-2 is to support the specific design approval for PGSFR by synthetic reviews of key safety issues and code validations through the integral effect tests. Due to its high temperature operation in SFRs (and in a testing facility) up to 550 °C, thermally induced creep-fatigue damage is very likely in components including a reactor vessel, reactor internals (interior structures), heat exchangers, pipelines, etc. In this study, structural integrity of the components such as reactor vessel and internals in STELLA-2 has been evaluated against creep-fatigue failures at a concept-design step. As 2D analysis yields far conservative results, a realistic 3D simulation is performed by a commercial software. A design integrity guarding against a creep-fatigue damage failure operating at high temperature was evaluated for the reactor vessel with its internal structure of the STELLA-2. Both the high temperature design codes were used for the evaluation, and results were compared. All the results showed the vessel as a whole is safely designed at the given operating conditions, while the ASME-NH gives a conservative evaluation.

  12. Mitigation of FOD and Corrosion Fatigue Damage in 17-4 PH Stainless Steel Compressor Blades With Surface Treatment

    National Research Council Canada - National Science Library

    Prevey, Paul S; Jayaraman, N; Ravindranath, Ravi

    2004-01-01

    ... the geometrical conditions of thick section and blade leading edges of compressor blades. The FOD tolerance and corrosion fatigue performance of 17-4PH prepared by low plasticity burnishing (LPB), shot peening (SP...

  13. Determination of Fatigue Damage.

    Science.gov (United States)

    1980-08-01

    R1A(2)PTLEA),(R1A(34)iHL)i *(R1A(40) ,RADA) (RlA(48) ,TA), (RIA(50) , LACA ) (RIA(52), #YAINC) ,(RlA(54) ,TTHA1) ,(RIA(56) ,NPA) ,(RIA(62) ,DATEA) ,(RIA... LACA =0. TA=0. PAGE= 1 WRIIE(593) 3 F-ORMAT(’ ENTER THE DATE:’P$) REAIJ(594)DATEW 4 FORMAT(A9) WRITE(597) 7 FL)RMAT(’ ENTER THE TIME:’t.) READ(5,8)TIME a

  14. Fatigue Evaluation Algorithms: Review

    DEFF Research Database (Denmark)

    Passipoularidis, Vaggelis; Brøndsted, Povl

    A progressive damage fatigue simulator for variable amplitude loads named FADAS is discussed in this work. FADAS (Fatigue Damage Simulator) performs ply by ply stress analysis using classical lamination theory and implements adequate stiffness discount tactics based on the failure criterion of Pu...

  15. Fatigue and cognitive function in systemic lupus erythematosus: associations with white matter microstructural damage. A diffusion tensor MRI study and meta-analysis.

    Science.gov (United States)

    Wiseman, S J; Bastin, M E; Hamilton, I F; Hunt, D; Ritchie, S J; Amft, E N; Thomson, S; Belch, J F F; Ralston, S H; Wardlaw, J M

    2017-05-01

    Objective The objective of this study was to investigate fatigue and cognitive impairments in systemic lupus erythematous (SLE) in relation to diffuse white matter microstructural brain damage. Methods Diffusion tensor MRI, used to generate biomarkers of brain white matter microstructural integrity, was obtained in patients with SLE and age-matched controls. Fatigue and cognitive function were assessed and related to SLE activity, clinical data and plasma biomarkers of inflammation and endothelial dysfunction. Results Fifty-one patients with SLE (mean age 48.8 ± 14.3 years) were included. Mean diffusivity (MD) was significantly higher in all white matter fibre tracts in SLE patients versus age-matched healthy controls ( p < 0.0001). Fatigue in SLE was higher than a normal reference range ( p < 0.0001) and associated with lower MD ( ß = -0.61, p = 0.02), depression ( ß = 0.17, p = 0.001), anxiety ( ß = 0.13, p = 0.006) and higher body mass index ( ß = 0.10, p = 0.004) in adjusted analyses. Poorer cognitive function was associated with longer SLE disease duration ( p = 0.003) and higher MD ( p = 0.03) and, in adjusted analysis, higher levels of IL-6 ( ß = -0.15, p = 0.02) but not with MD. Meta-analysis (10 studies, n = 261, including the present study) confirmed that patients with SLE have higher MD than controls. Conclusion Patients with SLE have more microstructural brain white matter damage for age than the general population, but this does not explain increased fatigue or lower cognition in SLE. The association between raised IL-6 and worse current cognitive function in SLE should be explored in larger datasets.

  16. Role of loading direction on cyclic behaviour characteristics of AM30 extrusion and its fatigue damage modelling

    Energy Technology Data Exchange (ETDEWEB)

    Roostaei, Ali A., E-mail: aaroostaei@uwaterloo.ca; Jahed, Hamid, E-mail: hjahed@uwaterloo.ca

    2016-07-18

    Anisotropic fatigue and cyclic behaviour of AM30 Mg alloy extrusion is investigated by performing fully-reversed strain-controlled tension-compression cyclic tests at strain amplitudes between 0.3% and 2.3%, along extrusion (ED) and transverse (TD) directions. The shapes of half-life hysteresis loops suggest the predominance of slip and twinning/de-twinning mechanisms below and above the strain amplitude of 0.5%, respectively. The twinning/de-twinning occurrence is found to be more extensive during straining along ED, which results in higher asymmetry of hysteresis loops, and thereby, higher induced mean stress. This adversely affects the fatigue resistance and yields to less number of cycles before failure in ED. Optical microscopy and texture analysis are employed to validate the findings. In addition, fracture surfaces are studied by scanning electron microscopy to identify the sources of fatigue crack initiation. Persistent slip bands (PSBs) and twin lamellae interfaces are evidenced as crack initiation sites at low and high strain amplitudes, respectively. Cracks emanated from debonded inclusion interface are also observed. Lastly, estimated fatigue life by Smith-Watson-Topper (SWT) and Jahed-Varvani (JV) fatigue models are compared with experimental life obtained through this study as well as the ones reported in the literature. The JV energy model is proven to yield better life predictions.

  17. Influence of creep damage on the low cycle thermal-mechanical fatigue behavior of two tantalum base alloys

    Science.gov (United States)

    Sheffler, K. D.; Doble, G. S.

    1972-01-01

    Low cycle fatigue tests have been performed on the tantalum base alloys T-111 and ASTAR 811C with synchronized, independently programmed temperature and strain cycling. The thermal-mechanical cycles applied fell into three basic categories: these were isothermal cycling, in-phase thermal cycling, and out-of-phase thermal cycling. In-phase cycling was defined as tensile deformation associated with high temperature and compressive deformation with low temperature, while out-of-phase thermal cycling was defined as the reverse case. The in-phase thermal cycling had a pronounced detrimental influence on the fatigue life of both alloys, with the life reduction being greater in the solid solution strengthened T-111 alloy than in the carbide strengthened ASTAR 811C alloy. The out-of-phase tests also showed pronounced effects on the fatigue life of both alloys, although not as dramatic.

  18. Characterization of fatigue damage in adhesively bonded lap joints through dynamic, full-spectral interrogation of fiber Bragg grating sensors: 1. Experiments

    Science.gov (United States)

    Webb, S.; Shin, P.; Peters, K.; Zikry, M. A.; Stan, N.; Chadderdon, S.; Selfridge, R.; Schultz, S.

    2014-02-01

    In this study we measure the in situ response of a fiber Bragg grating (FBG) sensor embedded in the adhesive layer of a single composite lap joint, subjected to harmonic excitation after fatigue loading. After a fully reversed cyclic fatigue loading is applied to the composite lap joint, the full-spectral response of the sensor is interrogated at 100 kHz during two loading conditions: with and without an added harmonic excitation. The full-spectral information avoided dynamic measurement errors often experienced using conventional peak wavelength and edge filtering techniques. The short-time Fourier transform (STFT) is computed for the extracted peak wavelength information to reveal time-dependent frequencies and amplitudes of the dynamic FBG sensor response. The dynamic response of the FBG sensor indicated a transition to strong nonlinear dynamic behavior as fatigue-induced damage progressed. The ability to measure the dynamic response of the lap joint through sensors embedded in the adhesive layer can provide in situ monitoring of the lap joint condition.

  19. Modeling Fatigue Damage Onset and Progression in Composites Using an Element-Based Virtual Crack Closure Technique Combined With the Floating Node Method

    Science.gov (United States)

    De Carvalho, Nelson V.; Krueger, Ronald

    2016-01-01

    A new methodology is proposed to model the onset and propagation of matrix cracks and delaminations in carbon-epoxy composites subject to fatigue loading. An extended interface element, based on the Floating Node Method, is developed to represent delaminations and matrix cracks explicitly in a mesh independent fashion. Crack propagation is determined using an element-based Virtual Crack Closure Technique approach to determine mixed-mode energy release rates, and the Paris-Law relationship to obtain crack growth rate. Crack onset is determined using a stressbased onset criterion coupled with a stress vs. cycle curve and Palmgren-Miner rule to account for fatigue damage accumulation. The approach is implemented in Abaqus/Standard® via the user subroutine functionality. Verification exercises are performed to assess the accuracy and correct implementation of the approach. Finally, it was demonstrated that this approach captured the differences in failure morphology in fatigue for two laminates of identical stiffness, but with layups containing ?deg plies that were either stacked in a single group, or distributed through the laminate thickness.

  20. Damage estimates for European and U.S.sites using the U.S. high-cycle fatigue data base

    Energy Technology Data Exchange (ETDEWEB)

    Sutherland, H.J. [Wind Energy Technology, Sandia National Lab., Albuquerque, NM (United States)

    1996-09-01

    This paper uses two high-cycle fatigue data bases, one for typical U.S. blade materials and one for European materials, to analyze the service lifetime of a wind turbine blade subjected to the WISPER load spectrum for northern European sites and the WISPER protocol load spectrum for U.S. wind farm sites. The U.S. data base contains over 2200 data points that were obtained using coupon testing procedures. These data are used to construct a Goodman diagram that is suitable for analyzing wind turbine blades. This result is compared to the Goodman diagram derived from the European fatigue data base FACT. The LIFE2 fatigue analysis code for wind turbines is then used to predict the service lifetime of a turbine blade subjected to the two loading histories. The results of this study indicate that the WISPER load spectrum from northern European sites significantly underestimates the WISPER protocol load spectrum from a U.S. wind farm site, i.e., the WISPER load spectrum significantly underestimates the number and magnitude of the loads observed at a U.S. wind farm site. Further, the analysis demonstrate that the European and the U.S. fatigue material data bases are in general agreement for the prediction of tensile failures. However, for compressive failures, the two data bases are significantly different, with the U.S. data base predicting significantly shorter service lifetimes than the European data base. (au) 14 refs.

  1. Behaviour and fatigue damage study of cast aluminium alloys; Etude du comportement et de l'endommagement en fatigue d'alliages d'aluminium de fonderie

    Energy Technology Data Exchange (ETDEWEB)

    Barlas, B.

    2004-02-15

    This study is aimed at determining the influence of chemical composition and heat treatment of cast aluminium alloys Al-Si-Cu-Mg on mechanical behaviour and fatigue life of structures. The industrial frame of this study concerns cylinder-heads of high efficiency diesel engines, for Renault and Montupet companies. The experimental means involved in this work are as well microscopic (TEM, microhardness, image analysis), mechanical (LCF and aniso-thermal tests, macro-hardness) and numerical (simulation of the stability of the hardening phases, behaviour and damage model identification, cylinder-head life time calculation). The link between micro and macro approaches is provided by the means of an internal microscopic variable representing thermal aging through coarsening of the precipitates and implemented into the macroscopic model. (author)

  2. Influence of physical contact on neuromuscular fatigue and markers of muscle damage following small-sided games.

    Science.gov (United States)

    Johnston, Rich D; Gabbett, Tim J; Seibold, Anthony J; Jenkins, David G

    2014-09-01

    Physical contact is frequent in rugby league competition and is thought to be a major contributor to the fatigue and creatine kinase (CK) response, although direct evidence is lacking. The aim of this study was to investigate the influence that physical contact had on the fatigue and CK response to small-sided games. Cross-over, counter-balanced study. Twenty-three junior elite rugby league players were divided into two groups. Group one played a contact game on day 1 before playing a non-contact game 72 h later; group two played the games in reverse order. The rules were identical for each game, with the only difference being a 10s contact bout every 50s during the contact game. Upper and lower body neuromuscular fatigue and blood concentrations of CK were assessed immediately before, immediately after, and 12 and 24h after the games. During each game, players wore global positioning system units to provide information on movements. CK increased after both games, peaking immediately following the non-contact game; CK was still rising 24h following the contact game. The difference between the two conditions was practically meaningful at this point (likelihood=likely, 82%; ES=0.86). There were moderate to large reductions in upper body power following the contact game (ES=-0.74 to -1.86), and no reductions following the non-contact game. This study indicates that large increases in blood CK and upper body fatigue result from physical contact. Training sessions involving physical contact should be performed well in advance of scheduled games. Copyright © 2013 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  3. Increased 8-hydroxy-deoxyguanosine, a marker of oxidative damage to DNA, in major depression and myalgic encephalomyelitis / chronic fatigue syndrome.

    Science.gov (United States)

    Maes, Michael; Mihaylova, Ivanka; Kubera, Marta; Uytterhoeven, Marc; Vrydags, Nicolas; Bosmans, Eugene

    2009-01-01

    There is now evidence that major depression and myalgic encephalomyelitis / chronic fatigue syndrome (ME/CFS) are accompanied by partially overlapping pathophysiological mechanisms, i.e. activation of various inflammatory and oxidative & nitrosative (IO&NS) pathways. The aim of the present study was to examine the urinary excretion of 8-hydroxy-deoxyguanosine (8-OhdG), a marker of oxidative damage to DNA, in depression; ME/CFS; and depression and ME/CFS. Toward this end, morning urine was sampled for the assays of 8-OHdG and creatinine, in 44 patients with ME/CFS; 25 with major depression; 23 with depression and ME/CFS; and 17 normal controls. Severity of fatigue and somatic symptoms was measured by means of the Fibromyalgia and CFS Rating (FF) scale. We found that 49.0% of the variance in the urinary excretion of 8-OHdG was predicted by the regression on creatinine. Consequently, the urinary 8-OHdG excretion should be expressed as the residualized 8-OHdG values after partialling out the effects of creatinine and not by computing the 8-OHdG / creatinine ratio. We found that the residualized urinary excretion of 8-OHdG (adjusted for creatinine) was significantly higher in patients with depression and ME/CFS than in normal controls and all other patients. In the patient group, there were significant correlations between the urinary 8-OHdG and the total score on the FF scale and sadness and flu-like malaise. The findings show increased oxidatively generated DNA damage in patients with major depression and ME/CFS and, therefore, further extent the role played by IO&NS pathways in the pathophysiology of both disorders. Since oxidatively damage to DNA is a risk factor for atherosclerosis and neurodegeneration, our results also explain previous findings on increased cardiovascular morbidity in depression and ME/CFS, and neurodegenerative processes in depression.

  4. Compressive Fatigue in Wood

    DEFF Research Database (Denmark)

    Clorius, Christian Odin; Pedersen, Martin Bo Uhre; Hoffmeyer, Preben

    1999-01-01

    An investigation of fatigue failure in wood subjected to load cycles in compression parallel to grain is presented. Small clear specimens of spruce are taken to failure in square wave formed fatigue loading at a stress excitation level corresponding to 80% of the short term strength. Four...... frequencies ranging from 0.01 Hz to 10 Hz are used. The number of cycles to failure is found to be a poor measure of the fatigue performance of wood. Creep, maximum strain, stiffness and work are monitored throughout the fatigue tests. Accumulated creep is suggested identified with damage and a correlation...

  5. Self-Repairing Fatigue Damage in Metallic Structures for Aerospace Vehicles Using Shape Memory Alloy Self-healing (SMASH) Technology

    Science.gov (United States)

    Wright, M. Clara; Manuel, Michele; Wallace, Terryl; Newman, Andy; Brinson, Kate

    2015-01-01

    This DAA is for the Phase II webinar presentation of the ARMD-funded SMASH technology. A self-repairing aluminum-based composite system has been developed using liquid-assisted healing theory in conjunction with the shape memory effect of wire reinforcements. The metal matrix composite was thermodynamically designed to have a matrix with a relatively even dispersion of low-melting phase, allowing for repair of cracks at a pre-determined temperature. Shape memory alloy wire reinforcements were used within the composite to provide crack closure. Investigators focused the research on fatigue cracks propagating through the matrix in order to optimize and computer model the SMASH technology for aeronautical applications.

  6. Characterization of fatigue damage in adhesively bonded lap joints through dynamic, full-spectral interrogation of fiber Bragg grating sensors: 2. Simulations

    Science.gov (United States)

    Webb, S.; Shin, P.; Peters, K.; Zikry, M. A.; Stan, N.; Chadderdon, S.; Selfridge, R.; Schultz, S.

    2014-02-01

    In this paper, we simulate the response of fiber Bragg grating (FBG) sensors embedded in the adhesive layer of a composite lap that is subjected to harmonic excitation. To simulate accumulated fatigue damage at the adhesive layer, two forms of numerical nonlinearities are introduced into the model: (1) progressive plastic deformation of the adhesive and (2) changing the boundary of an interfacial defect at the adhesive layer across the overlap shear area. The simulation results are compared with previous measurements of the dynamic, full-spectral response of such FBG sensors for condition monitoring of the lap joint. Short-time Fourier transforms (STFT) of the locally extracted axial strain time histories reveal a transition to nonlinear behavior of the composite lap joint by means of intermittent frequencies that were observed in the experimental measurements and are not associated with the external excitation. The simulation results verify that the nonlinear changes in measured dynamic FBG responses are due to the progression of damage in the lap joint.

  7. Fatigue evaluation algorithms: Review

    Energy Technology Data Exchange (ETDEWEB)

    Passipoularidis, V.A.; Broendsted, P.

    2009-11-15

    A progressive damage fatigue simulator for variable amplitude loads named FADAS is discussed in this work. FADAS (Fatigue Damage Simulator) performs ply by ply stress analysis using classical lamination theory and implements adequate stiffness discount tactics based on the failure criterion of Puck, to model the degradation caused by failure events in ply level. Residual strength is incorporated as fatigue damage accumulation metric. Once the typical fatigue and static properties of the constitutive ply are determined,the performance of an arbitrary lay-up under uniaxial and/or multiaxial load time series can be simulated. The predictions are validated against fatigue life data both from repeated block tests at a single stress ratio as well as against spectral fatigue using the WISPER, WISPERX and NEW WISPER load sequences on a Glass/Epoxy multidirectional laminate typical of a wind turbine rotor blade construction. Two versions of the algorithm, the one using single-step and the other using incremental application of each load cycle (in case of ply failure) are implemented and compared. Simulation results confirm the ability of the algorithm to take into account load sequence effects. In general, FADAS performs well in predicting life under both spectral and block loading fatigue. (author)

  8. Study of the damage processes induced by thermal fatigue in stainless steels F17TNb and R20-12 for automobile application; Etude de l'endommagement en fatigue thermique des aciers inoxydables F17TNb et R20-12 pour application automobile

    Energy Technology Data Exchange (ETDEWEB)

    Bucher, L.

    2004-12-15

    Thermal cycling is the main cause of fatigue failure in automobile exhaust manifolds for which the use of stainless steel now rivals that of cast iron which has been traditionally used. An original fatigue test has been developed by Ugine and ALZ, a stainless steel producer, so as to be able to compare different grades of stainless steel alloys. This test is representative of the thermal conditions encountered in the critical zones of exhaust manifolds. However, it has revealed significant differences in damage processes in the ferritic and austenitic grades tested. The subject of this thesis is the damage processes induced by thermal fatigue in stainless steels used for automotive exhaust manifolds. Two stainless steels were studied: a ferritic grade, F17TNb (17%Cr and stabilized with Ti and Nb), and an austenitic grade, R20-12, containing 20% Cr and 12% Ni. The first objective was to understand the different damage processes induced by thermal fatigue in the ferritic and austenitic grades. The second was to develop a numerical design tool of the thermally tested structures. (author)

  9. Damage and service life of nickel-base alloys under thermal-mechanical fatigue stress at different phase positions; Schaedigung und Lebensdauer von Nickelbasislegierungen unter thermisch-mechanischer Ermuedungsbeanspruchung bei verschiedenen Phasenlagen

    Energy Technology Data Exchange (ETDEWEB)

    Guth, Stefan

    2016-07-01

    This work considers the behaviour of two nickel-base alloys (NiCr22Co12Mo9 and MAR-M247 LC) under thermo-mechanical fatigue loading with varying phase angles between mechanical strain and temperature. The investigations focus on the characterisation of microstructures and damage mechanisms as a function of the phase angle. Based on the results, a life prediction model is proposed.

  10. Fatigue Analysis of Large-scale Wind turbine

    Directory of Open Access Journals (Sweden)

    Zhu Yongli

    2017-01-01

    Full Text Available The paper does research on top flange fatigue damage of large-scale wind turbine generator. It establishes finite element model of top flange connection system with finite element analysis software MSC. Marc/Mentat, analyzes its fatigue strain, implements load simulation of flange fatigue working condition with Bladed software, acquires flange fatigue load spectrum with rain-flow counting method, finally, it realizes fatigue analysis of top flange with fatigue analysis software MSC. Fatigue and Palmgren-Miner linear cumulative damage theory. The analysis result indicates that its result provides new thinking for flange fatigue analysis of large-scale wind turbine generator, and possesses some practical engineering value.

  11. Lipid Replacement Therapy: a Functional Food Approach with New Formulations for Reducing Cellular Oxidative Damage, Cancer-Associated Fatigue and the Adverse Effects of Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Garth L. Nicolson

    2011-04-01

    Full Text Available Backgroud:Cancer-associated fatigue and the chronic adverse effects of cancer therapy can be reduced by Lipid Replacement Therapy (LRT using membrane phospholipid mixtures given as food supplements.Methods:This is a review of the published literature on LRT and its uses.Results: LRT significantly reduced fatigue in cancer patients as well as patients suffering from chronic fatiguing illnesses and other medical conditions. It also reduced the adverse effects of chemotherapy, resulting in improvements in incidence of fatigue, nausea, diarrhea, impaired taste, constipation, insomnia and other quality of life indicators. In other diseases, such as chronic fatigue syndrome, fibromyalgia syndrome and other chronic fatiguing illnesses, LRT reduced fatigue by 35.5-43.1% in different clinical trials and increased mitochondrial function.Conclusions: LRT formulations appear to be useful as non-toxic dietary supplements for direct use or placed in functional foods to reduce fatigue and restore mitochondrial and other cellular membrane functions. Formulations of LRT phospholipids are suitable for addition to variousfood products for the treatment of a variety of chronic illnesses as well as their application inanti-aging and other health supplements and products.

  12. Fatigue approach for addressing environmental effects in fatigue usage calculation

    Energy Technology Data Exchange (ETDEWEB)

    Wilhelm, Paul; Rudolph, Juergen [AREVA GmbH, Erlangen (Germany); Steinmann, Paul [Erlangen-Nuremberg Univ., erlangen (Germany). Chair of Applied Mechanics

    2015-04-15

    Laboratory tests consider simple trapezoidal, triangle, and sinusoidal signals. However, actual plant components are characterized by complex loading patterns and periods of holds. Fatigue tests in water environment show, that the damage from a realistic strain variation or the presence of hold-times within cyclic loading results in an environmental reduction factor (Fen) only half that of a simple waveform. This study proposes a new fatigue approach for addressing environmental effects in fatigue usage calculation for class 1 boiler and pressure vessel reactor components. The currently accepted method of fatigue assessment has been used as a base model and all cycles, which have been comparable with realistic fatigue tests, have been excluded from the code-based fatigue calculation and evaluated directly with the test data. The results presented show that the engineering approach can successfully be integrated in the code-based fatigue assessment. The cumulative usage factor can be reduced considerably.

  13. Gas solubilities widespread applications

    CERN Document Server

    Gerrard, William

    1980-01-01

    Gas Solubilities: Widespread Applications discusses several topics concerning the various applications of gas solubilities. The first chapter of the book reviews Henr's law, while the second chapter covers the effect of temperature on gas solubility. The third chapter discusses the various gases used by Horiuti, and the following chapters evaluate the data on sulfur dioxide, chlorine data, and solubility data for hydrogen sulfide. Chapter 7 concerns itself with solubility of radon, thoron, and actinon. Chapter 8 tackles the solubilities of diborane and the gaseous hydrides of groups IV, V, and

  14. Study of the fatigue behaviour and damage of a aged duplex stainless steel; Etude du comportement et de l'endommagement en fatigue d'un acier inoxydable austeno-ferritique moule vieilli

    Energy Technology Data Exchange (ETDEWEB)

    Le Roux, J.Ch

    2000-07-01

    Cast duplex stainless steels are commonly used in components of pressurized water reactors primary circuit. When submitted to in-service temperatures embrittlement occurs because of the nucleation and growth of a harder phase in the ferrite by spinodal composition. Macrostructure of this steel (ferritic primary grain size is about 4-5 mm) and embrittlement of ferrite due to aging lead to a very high scattering of mechanical properties for monotonous loadings. We showed that, in spite of this macrostructure, the cyclic behaviour of aged duplex stainless steels fits usual Manson-Coffin law while initial hardening is followed by softening, in part because of the demodulation of the composition. The fatigue crack propagation rate of material follows a Paris law. While crack initiation mainly appears next to the millimetric cast defects, fatigue crack propagation remains a continuous mechanism. Ferritic and austenitic elements break successively (ferrite first breaks by cleavage, then austenite breaks by ductile fatigue). In spite of the fact that the aged ferrite is embrittled, cleavage microcracks, for load levels examined, seldom appear in ferrite at the crack tip and on both sides of the main crack. Effects of cast defects and crystallographic ferrite orientation were also studied. Propagation fatigue crack behaviour was modeled assuming that the crack tip material behaves as if it was submitted to low cycle fatigue loadings. If we consider a homogeneous material, results are in good agreement with experiments. (authors)

  15. Evaluation of fatigue damage in nuclear power plants: evolution and new tools of analysis; Evaluacion del dano a fatiga en centrales nucleares: evolucion y nuevas herramientas de analisis

    Energy Technology Data Exchange (ETDEWEB)

    Cicero, R.; Corchon, F.

    2011-07-01

    This paper presents new fatigue mechanisms requiring analysis, tools developed for evaluation and the latest trends and studies that are currently working in the nuclear field, and allow proper management referring facilities the said degradation mechanism.

  16. Fatigue damage of steel components

    DEFF Research Database (Denmark)

    Fæster, Søren; Zhang, Xiaodan; Huang, Xiaoxu

    2014-01-01

    Railway rails and the inner ring in roller bearings in wind turbines are both experiencing steel-to-steel contact in small areas with huge loads resulting in extremely high stresses in the base materials......Railway rails and the inner ring in roller bearings in wind turbines are both experiencing steel-to-steel contact in small areas with huge loads resulting in extremely high stresses in the base materials...

  17. Nitinol Fatigue Life for Variable Strain Amplitude Fatigue

    Science.gov (United States)

    Lin, Z.; Pike, K.; Schlun, M.; Zipse, A.; Draper, J.

    2012-12-01

    Nitinol fatigue testing results are presented for variable strain amplitude cycling. The results indicate that cycles smaller than the constant amplitude fatigue limit may contribute to significant fatigue damage when they occur in a repeating sequence of large and small amplitude cycles. The testing utilized two specimen types: stent-like diamond specimens and Z-shaped wire specimens. The diamond specimens were made from nitinol tubing with stent-like manufacturing processes and the Z-shaped wire specimens were made from heat set nitinol wire. The study explored the hypothesis that duty cycling can have an effect on nitinol fatigue life. Stent-like structures were subjected to different in vivo loadings in order to create more complex strain amplitudes. The main focus in this study was to determine whether a combination of small and large amplitudes causes additional damage that alters the fatigue life of a component.

  18. Fatigue Performance of Composite Laminates After Low-velocity Impact

    Directory of Open Access Journals (Sweden)

    LIANG Xiao-lin

    2016-12-01

    Full Text Available Compression-compression fatigue tests were carried out on T300/5405 composite laminates after low-velocity impact, compression performance of the laminates with different impact damages was studied together with its fatigue life and damage propagation under different stress levels, then the effects of impact energy, stress level and damage propagation on fatigue life of laminates were discussed. The results indicate that impact damage can greatly reduce the residual strength of laminates; under low fatigue load levels, the higher impact energy is, the shorter the fatigue life of laminates with impact damage will be; damage propagation undergoes two stages during the fatigue test, namely the steady propagation and the rapid propagation, accounting for 80% and 20% of the overall fatigue life, respectively; damage propagation rate decreases with the reduction of stress level.

  19. Simulation of Stochastic Loads for Fatigue Experiments

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Brincker, Rune

    A simple direct simulation method for stochastic fatigue load generation is described in this paper. The simulation method is based on the assumption that only the peaks of the load process significantly affect the fatigue life. The method requires the conditional distribution functions of load...... second using an IBM PC. Finally the proposed simulation method for fatigue load generation is tested by comparing some fatigue damage measures obtained by the simulation methods....

  20. Fatigue technology assessment and strategies for fatigue avoidance in marine structures. Appendices

    Science.gov (United States)

    Capanoglu, Cuneyt C.

    This report provides an up-to-date assessment of fatigue technology, directed specifically toward the marine industry. A comprehensive overview of fatigue analysis and design, a global review of fatigue including rules and regulations and current practices, and a fatigue analysis and design criteria are provided as a general guideline to fatigue assessment. A detailed discussion of all fatigue parameters is grouped under three analysis blocks: fatigue stress model, covering environmental forces, structure response and loading, stress response amplitude operations (RAO's) and hot-spot stresses; fatigue stress history model covering long-term distribution of environmental loading; and fatigue resistance of structures and damage assessment methodologies. The analyses and design parameters that affect fatigue assessment are discussed together with uncertainties and research gaps, to provide a basis for developing strategies for fatigue avoidance. Additional in-depth discussions of wave environment, stress concentration factors, etc. are presented in the appendixes. Assessment of fatigue technology, fatigue stress models, fatigue stress history models, fatigue resistance, fatigue parameters, and fatigue avoidance strategies.

  1. Multiscale Fatigue Life Prediction for Composite Panels

    Science.gov (United States)

    Bednarcyk, Brett A.; Yarrington, Phillip W.; Arnold, Steven M.

    2012-01-01

    Fatigue life prediction capabilities have been incorporated into the HyperSizer Composite Analysis and Structural Sizing Software. The fatigue damage model is introduced at the fiber/matrix constituent scale through HyperSizer s coupling with NASA s MAC/GMC micromechanics software. This enables prediction of the micro scale damage progression throughout stiffened and sandwich panels as a function of cycles leading ultimately to simulated panel failure. The fatigue model implementation uses a cycle jumping technique such that, rather than applying a specified number of additional cycles, a specified local damage increment is specified and the number of additional cycles to reach this damage increment is calculated. In this way, the effect of stress redistribution due to damage-induced stiffness change is captured, but the fatigue simulations remain computationally efficient. The model is compared to experimental fatigue life data for two composite facesheet/foam core sandwich panels, demonstrating very good agreement.

  2. Postdialysis fatigue.

    Science.gov (United States)

    Sklar, A H; Riesenberg, L A; Silber, A K; Ahmed, W; Ali, A

    1996-11-01

    To clarify the demographic and clinicolaboratory features of postdialysis fatigue (PDF), we enrolled 85 patients on maintenance hemodialysis in a cross-sectional study using validated questionnaires and chart review. Forty-three patients complained of fatigue after dialysis. On formal testing using the Kidney Disease Questionnaire, the PDF group had statistically greater severity of fatigue and somatic complaints than the group of patients without subjective fatigue (P = 0.03 and 0.04, respectively). On a scale measuring intensity of fatigue (1 = least to 5 = worst), the PDF group average was 3.4 +/- 1.2. PDF subjects reported that 80% +/- 25% of dialysis treatments were followed by fatigue symptoms. In 28 (65%) of patients, the symptoms started with the first dialysis treatment. They reported needing an average of 4.8 hours of rest or sleep to overcome the fatigue symptoms (range, 0 to 24 hours). There were no significant differences between patients with and without PDF in the following parameters: age; sex; type of renal disease; presence of diabetes mellitus, heart disease (congestive, ischemic), or chronic obstructive lung disease; blood pressure response to dialysis; type or adequacy of dialysis regimen; hematocrit; electrolytes; blood urea nitrogen; creatinine; cholesterol; albumin; parathyroid hormone; ejection fraction; and use of antihistamines, benzodiazepines, and narcotics. In the fatigue group, there was significantly greater use of antihypertensive medications known to have fatigue as a side effect (P = 0.007). Depression was more common in the fatigue group by Beck Depression score (11.6 +/- 8.0 v 7.8 +/- 6.3; P = 0.02). We conclude that (1) postdialysis fatigue is a common, often incapacitating symptom in patients on chronic extracorporeal dialysis; (2) no routinely measured parameter of clinical or dialytic function appears to predict postdialysis fatigue; and (3) depression is highly associated with postdialysis fatigue, but the cause

  3. Fatigue Reliability of Offshore Wind Turbine Systems

    DEFF Research Database (Denmark)

    Marquez-Dominguez, Sergio; Sørensen, John Dalsgaard

    2012-01-01

    Optimization of the design of offshore wind turbine substructures with respect to fatigue loads is an important issue in offshore wind energy. A stochastic model is developed for assessing the fatigue failure reliability. This model can be used for direct probabilistic design and for calibration...... of appropriate partial safety factors / fatigue design factors (FDF) for steel substructures of offshore wind turbines (OWTs). The fatigue life is modeled by the SN approach. Design and limit state equations are established based on the accumulated fatigue damage. The acceptable reliability level for optimal...

  4. Vibration fatigue using modal decomposition

    Science.gov (United States)

    Mršnik, Matjaž; Slavič, Janko; Boltežar, Miha

    2018-01-01

    Vibration-fatigue analysis deals with the material fatigue of flexible structures operating close to natural frequencies. Based on the uniaxial stress response, calculated in the frequency domain, the high-cycle fatigue model using the S-N curve material data and the Palmgren-Miner hypothesis of damage accumulation is applied. The multiaxial criterion is used to obtain the equivalent uniaxial stress response followed by the spectral moment approach to the cycle-amplitude probability density estimation. The vibration-fatigue analysis relates the fatigue analysis in the frequency domain to the structural dynamics. However, once the stress response within a node is obtained, the physical model of the structure dictating that response is discarded and does not propagate through the fatigue-analysis procedure. The structural model can be used to evaluate how specific dynamic properties (e.g., damping, modal shapes) affect the damage intensity. A new approach based on modal decomposition is presented in this research that directly links the fatigue-damage intensity with the dynamic properties of the system. It thus offers a valuable insight into how different modes of vibration contribute to the total damage to the material. A numerical study was performed showing good agreement between results obtained using the newly presented approach with those obtained using the classical method, especially with regards to the distribution of damage intensity and critical point location. The presented approach also offers orders of magnitude faster calculation in comparison with the conventional procedure. Furthermore, it can be applied in a straightforward way to strain experimental modal analysis results, taking advantage of experimentally measured strains.

  5. A parametric study based on spectral fatigue analysis for 170k LNGC

    Directory of Open Access Journals (Sweden)

    Tae-Yoon Park

    2011-06-01

    Full Text Available The Spectral Fatigue Analysis is representative fatigue life assessment method for vessels. This Analysis is performed generally for the whole vessel and many assessment sites. The spectral fatigue analysis is performed through the process of hydrodynamic response analysis, global structural analysis, local structural analysis and calculation of fatigue damage. In these processes, fatigue damage is affected by many variables. The representative variables are S-N curve data, wave scatter data, wave spectrum, bandwidth effect and etc. In this paper, the effects of these variables to the fatigue damage are analyzed through the spectral fatigue analysis for 170k LNGC.

  6. Fatigue Properties of Plain Concrete under Triaxial Tension-Compression-Compression Cyclic Loading

    Directory of Open Access Journals (Sweden)

    Dongfu Zhao

    2017-01-01

    Full Text Available Fatigue tests were performed on plain concrete under triaxial tension-compression-compression (T-C-C cyclic loading with constant and variable amplitude using a large multiaxial machine. Experimental results show that, under constant amplitude fatigue loads, the development of residual strain in the fatigue loading direction depends mostly on the lateral compressive stress ratio and is nearly independent of stress level. Under variable amplitude fatigue loads, the fatigue residual strain is related to the relative fatigue cycle and lateral compressive stress ratio but has little relationship with the loading process. To model this system, the relative residual strain was defined as the damage variant. Damage evolutions for plain concrete were established. In addition, fatigue damage analysis and predictions of fatigue remaining life were conducted. This work provides a reference for multistage fatigue testing and fatigue damage evaluation of plain concrete under multiaxial loads.

  7. Fatigue (PDQ)

    Science.gov (United States)

    ... home. Depression. Anxiety. Trouble sleeping. Younger age. Being underweight. Having advanced cancer or other medical conditions. Fatigue ... detection, genetics, treatment, supportive care, and complementary and alternative medicine. Most summaries come in two versions. The health ...

  8. Fatigue Reliability under Multiple-Amplitude Loads

    DEFF Research Database (Denmark)

    Talreja, R.

    1979-01-01

    A method to determine the fatigue of structures subjected to multiple-amplitude loads is presented. Unlike the more common cumulative damage methods, which are usually based on fatigue life data, the proposed method is based on tensile strength data. Assuming the Weibull distribution for the init...

  9. Deformation relief in the area of ​​fatigue crack

    Directory of Open Access Journals (Sweden)

    М.В. Карускевич

    2007-02-01

    Full Text Available  Results of observation of the alclad aluminium alloy surface state near fatigue crack are presented. It is shown, that deformation relief near stress concentrator expresses fatigue damage of the material not only at the initial stage of fatigue, but at the fatigue crack propagation stage as well. The damage parameter D, that  determines the intensity of the surface micro plastic deformation features can be considered as quantitative parameter of fatigue crack propagation rate.

  10. Widespread bullous fixed drug eruption.

    Science.gov (United States)

    Patell, Rushad D; Dosi, Rupal V; Shah, Purav C; Joshi, Harshal S

    2014-02-07

    A 53-year-old man developed a widespread erythematous eruption which rapidly evolved into fluid-filled bulla mostly involving the distal areas of all four limbs and erosions on the oral as well as anogenital mucosa. Based on clinical presentation, chronology of drug exposure, past events and histopathology as diagnosis of widespread bullous fixed drug eruption was made over Steven Johnson-toxic epidermal necrolysis syndrome. Steroids were deferred and the lesions healed with minimal pigmentation within a week. Differentiating between the two entities has been historically difficult, and yet can have significant therapeutic and prognostic implications.

  11. Fatigue in Aluminum Highway Bridges under Random Loading

    DEFF Research Database (Denmark)

    Rom, Søren; Agerskov, Henning

    2014-01-01

    Fatigue damage accumulation in aluminum highway bridges under random loading is studied. The fatigue life of welded joints has been determined both experimentally and from a fracture mechanics analysis. In the experimental part of the investigation, fatigue test series on welded plate test...

  12. Fatigue and Corrosion in Metals

    CERN Document Server

    Milella, Pietro Paolo

    2013-01-01

    This textbook, suitable for students, researchers and engineers, gathers the experience of more than 20 years of teaching fracture mechanics, fatigue and corrosion to professional engineers and running experimental tests and verifications to solve practical problems in engineering applications. As such, it is a comprehensive blend of fundamental knowledge and technical tools to address the issues of fatigue and corrosion. The book initiates with a systematic description of fatigue from a phenomenological point of view, since the early signs of submicroscopic damage in few surface grains and continues describing, step by step, how these precursors develop to become mechanically small cracks and, eventually, macrocracks whose growth is governed by fracture mechanics. But fracture mechanics is also introduced to analyze stress corrosion and corrosion assisted fatigue in a rather advanced fashion. The author dedicates a particular attention to corrosion starting with an electrochemical treatment that mechanical e...

  13. [Auditory fatigue].

    Science.gov (United States)

    Sanjuán Juaristi, Julio; Sanjuán Martínez-Conde, Mar

    2015-01-01

    Given the relevance of possible hearing losses due to sound overloads and the short list of references of objective procedures for their study, we provide a technique that gives precise data about the audiometric profile and recruitment factor. Our objectives were to determine peripheral fatigue, through the cochlear microphonic response to sound pressure overload stimuli, as well as to measure recovery time, establishing parameters for differentiation with regard to current psychoacoustic and clinical studies. We used specific instruments for the study of cochlear microphonic response, plus a function generator that provided us with stimuli of different intensities and harmonic components. In Wistar rats, we first measured the normal microphonic response and then the effect of auditory fatigue on it. Using a 60dB pure tone acoustic stimulation, we obtained a microphonic response at 20dB. We then caused fatigue with 100dB of the same frequency, reaching a loss of approximately 11dB after 15minutes; after that, the deterioration slowed and did not exceed 15dB. By means of complex random tone maskers or white noise, no fatigue was caused to the sensory receptors, not even at levels of 100dB and over an hour of overstimulation. No fatigue was observed in terms of sensory receptors. Deterioration of peripheral perception through intense overstimulation may be due to biochemical changes of desensitisation due to exhaustion. Auditory fatigue in subjective clinical trials presumably affects supracochlear sections. The auditory fatigue tests found are not in line with those obtained subjectively in clinical and psychoacoustic trials. Copyright © 2013 Elsevier España, S.L.U. y Sociedad Española de Otorrinolaringología y Patología Cérvico-Facial. All rights reserved.

  14. Chronic Fatigue Syndrome

    Science.gov (United States)

    Chronic fatigue syndrome (CFS) is a disorder that causes extreme fatigue. This fatigue is not the kind of tired feeling that ... activities. The main symptom of CFS is severe fatigue that lasts for 6 months or more. You ...

  15. Peridynamic model for fatigue cracking.

    Energy Technology Data Exchange (ETDEWEB)

    Silling, Stewart Andrew; Abe Askari (Boeing)

    2014-10-01

    The peridynamic theory is an extension of traditional solid mechanics in which the field equations can be applied on discontinuities, such as growing cracks. This paper proposes a bond damage model within peridynamics to treat the nucleation and growth of cracks due to cyclic loading. Bond damage occurs according to the evolution of a variable called the "remaining life" of each bond that changes over time according to the cyclic strain in the bond. It is shown that the model reproduces the main features of S-N data for typical materials and also reproduces the Paris law for fatigue crack growth. Extensions of the model account for the effects of loading spectrum, fatigue limit, and variable load ratio. A three-dimensional example illustrates the nucleation and growth of a helical fatigue crack in the torsion of an aluminum alloy rod.

  16. Fatigue modeling of materials with complex microstructures

    DEFF Research Database (Denmark)

    Qing, Hai; Mishnaevsky, Leon

    2011-01-01

    with the phenomenological model of fatigue damage growth. As a result, the fatigue lifetime of materials with complex structures can be determined as a function of the parameters of their structures. As an example, the fatigue lifetimes of wood modeled as a cellular material with multilayered, fiber reinforced walls were...... determined for different parameters of wood microstructures. In so doing, 3D hierarchical finite element models of softwood, and a computational technique, including the repeating restart and model change procedures, have been employed to model the fatigue response of latewood....

  17. Multi-purpose fatigue sensor. Part 1. Uniaxial and multiaxial fatigue

    Directory of Open Access Journals (Sweden)

    M.V. Karuskevich

    2016-10-01

    Full Text Available The paper describes the key principles and results of preliminary experiments aimed at the development of new technique for the fatigue life prediction under conditions of biaxial cyclic tension. The foundations of the method were developed early by the numerous tests with monitoring the process of surface deformation relief formation, which is proved to be an indicator of accumulated fatigue damage under uniaxial fatigue. The employed phenomenon was early applied for the development of a family of uniaxial loading fatigue sensors. The formation of strain induced relief has been recently taken into consideration as a part of damage accumulation criteria under biaxial fatigue as well. The home-made testing machine has been designed to implement combined bending and torsion loading that simulates loads experienced by an aircraft wing skin. The experimental evidences on formation and evolution of the deformation relief revealed under conditions of combined loading, supports the proposed concept of biaxial fatigue sensor

  18. Albuminuria reflects widespread vascular damage. The Steno hypothesis

    DEFF Research Database (Denmark)

    Deckert, T; Feldt-Rasmussen, B; Borch-Johnsen, K

    1989-01-01

    retinopathy, and severe macroangiopathy suggests a common cause of albuminuria and the severe renal and extrarenal complications associated with it. Enzymes involved in the metabolism of anionic components of the extracellular matrix (e.g. heparan sulphate proteoglycan) vulnerable to hyperglycaemia, seem......Albuminuria in Type 1 (insulin-dependent) diabetes is not only an indication of renal disease, but a new, independent risk-marker of proliferative retinopathy and macroangiopathy. The coincidence of generalised vascular dysfunction and albuminuria, advanced mesangial expansion, proliferative...... to constitute the primary cause of albuminuria and the associated complications. Genetic polymorphism of such enzymes is possibly the main reason for variation in susceptibility....

  19. The role of human fatigue factor towards maritime casualties

    OpenAIRE

    Xhelilaj Ermal; Lapa Kristofor

    2010-01-01

    The international studies on maritime accidents has shown that fatigue is continuing to be either the main cause or a contributory factor in a considerable number of casualties at sea resulting in the loss of life and damage to the environment and property. In fact, fatigue??s detrimental role toward performance at work is leading to errors being made and consequently resulting in fatalities. In light of these considerations, fatigue issue is of great importance to seafarers, the shipping ind...

  20. Fatigue in tension perpendicular to the grain

    DEFF Research Database (Denmark)

    Clorius, Christian Odin; Pedersen, Martin Bo Uhre; Hoffmeyer, Preben

    1999-01-01

    Traditinally fatigue resistance is quantified as number of cycles to failure at a given stress level. A previous study by the authors showed that fatigue in compression parallel to the grain is governed partly by duration of load and partly by an effect of loading, i.e. a combination of a creep...... and on dowel type joints with slotted in steel plates. In series of ten, the small specimens are taken to fatigue failure in uniform tension at square wave shaped load cycles at 0.01 Hz and 0.1 Hz. In order to test the predictive validity of the result from the small tension specimens, fatigue experiments...... mechanism and a mechanism connected to damage introduce in the loading sequences. The purpose of the present study is to disentangle the effect of duration of load from the effect of load oscillation in fatigue in tension perpendicular to the grain. Fatigue experiments are made on small specimens...

  1. Fatigue In Tension Perpendicular to the Grain

    DEFF Research Database (Denmark)

    Clorius, Christian Odin; Pedersen, Martin Uhre; Hoffmeyer, Preben

    2004-01-01

    Traditionally fatigue resistance is quantified as number of cycles to failure at a given stress level. A previous study by the authors showed that fatigue in compression parallel to the grain is governed partly by duration of load and partly by an effect of loading, i.e. a combination of a creep...... and on dowel type joints with slotted in steel plates. In series of ten, the small specimens are taken to fatigue failure in uniform tension at square wave shaped load cycles at 0.01 Hz and 0.1 Hz. In arder to test the predictive validity of the result from the small tension specimens, fatigue experiments...... mechanism and a mechanism connected to damage introduced in the loading sequences. The purpose of the present study is to disentangle the effect of duration of load from the effect of load oscillation in fatigue in tension perpendicular to the grain. Fatigue experiments are made on small specimens...

  2. Fatigue in Steel Structures under Random Loading

    DEFF Research Database (Denmark)

    Agerskov, Henning

    1999-01-01

    Fatigue damage accumulation in steel structures under random loading is studied. The fatigue life of welded joints has been determined both experimentally and from a fracture mechanics analysis. In the experimental part of the investigation, fatigue test series have been carried through on various...... types of welded plate test specimens and full-scale offshore tubular joints. The materials that have been used are either conventional structural steel with a yield stress of ~ 360-410 MPa or high-strength steel with a yield stress of ~ 810-1010 MPa. The fatigue tests and the fracture mechanics analyses...... test results. Both the fracture mechanics analysis and the fatigue test results indicate that Miner's rule, which is normally used in the design against fatigue in steel structures, may give results, which are unconservative, and that the validity of the results obtained from Miner's rule will depend...

  3. Multilayer Thin Film Sensors for Damage Diagnostics

    Science.gov (United States)

    Protasov, A. G.; Gordienko, Y. G.; Zasimchuk, E. E.

    2006-03-01

    The new innovative approach to damage diagnostics within the production and maintenance/servicing procedures in industry is proposed. It is based on the real-time multiscale monitoring of the smart-designed multilayer thin film sensors of fatigue damage with the standard electrical input/output interfaces which can be connected to the embedded and on-board computers. The multilayer thin film sensors supply information about the actual unpredictable deformation damage, actual fatigue life, strain localization places, damage spreading, etc.

  4. Beyond pain in fibromyalgia: insights into the symptom of fatigue

    Science.gov (United States)

    2013-01-01

    Fatigue is a disabling, multifaceted symptom that is highly prevalent and stubbornly persistent. Although fatigue is a frequent complaint among patients with fibromyalgia, it has not received the same attention as pain. Reasons for this include lack of standardized nomenclature to communicate about fatigue, lack of evidence-based guidelines for fatigue assessment, and a deficiency in effective treatment strategies. Fatigue does not occur in isolation; rather, it is present concurrently in varying severity with other fibromyalgia symptoms such as chronic widespread pain, unrefreshing sleep, anxiety, depression, cognitive difficulties, and so on. Survey-based and preliminary mechanistic studies indicate that multiple symptoms feed into fatigue and it may be associated with a variety of physiological mechanisms. Therefore, fatigue assessment in clinical and research settings must consider this multi-dimensionality. While no clinical trial to date has specifically targeted fatigue, randomized controlled trials, systematic reviews, and meta-analyses indicate that treatment modalities studied in the context of other fibromyalgia symptoms could also improve fatigue. The Outcome Measures in Rheumatology (OMERACT) Fibromyalgia Working Group and the Patient Reported Outcomes Measurement Information System (PROMIS) have been instrumental in propelling the study of fatigue in fibromyalgia to the forefront. The ongoing efforts by PROMIS to develop a brief fibromyalgia-specific fatigue measure for use in clinical and research settings will help define fatigue, allow for better assessment, and advance our understanding of fatigue. PMID:24289848

  5. A Review on Fatigue Life Prediction Methods for Metals

    Directory of Open Access Journals (Sweden)

    E. Santecchia

    2016-01-01

    Full Text Available Metallic materials are extensively used in engineering structures and fatigue failure is one of the most common failure modes of metal structures. Fatigue phenomena occur when a material is subjected to fluctuating stresses and strains, which lead to failure due to damage accumulation. Different methods, including the Palmgren-Miner linear damage rule- (LDR- based, multiaxial and variable amplitude loading, stochastic-based, energy-based, and continuum damage mechanics methods, forecast fatigue life. This paper reviews fatigue life prediction techniques for metallic materials. An ideal fatigue life prediction model should include the main features of those already established methods, and its implementation in simulation systems could help engineers and scientists in different applications. In conclusion, LDR-based, multiaxial and variable amplitude loading, stochastic-based, continuum damage mechanics, and energy-based methods are easy, realistic, microstructure dependent, well timed, and damage connected, respectively, for the ideal prediction model.

  6. Co-occurrence and associations of pain and fatigue in a community sample of Dutch adults.

    NARCIS (Netherlands)

    Creavin, S.T.; Dunn, K.M.; Mallen, C.D.; Nijrolder, I.; Windt, D.A.W.M. van der

    2010-01-01

    Widespread pain and chronic fatigue are common in the general population. Previous research has demonstrated co-occurrence of syndromes that are associated with pain and fatigue (fibromyalgia and chronic fatigue syndrome), but there is limited existing data on the co-occurrence of these symptoms in

  7. Creep fatigue assessment for EUROFER components

    Energy Technology Data Exchange (ETDEWEB)

    Özkan, Furkan, E-mail: oezkan.furkan@partner.kit.edu; Aktaa, Jarir

    2015-11-15

    Highlights: • Design rules for creep fatigue assessment are developed to EUROFER components. • Creep fatigue assessment tool is developed in FORTRAN code with coupling MAPDL. • Durability of the HCPB-TBM design is discussed under typical fusion reactor loads. - Abstract: Creep-fatigue of test blanket module (TBM) components built from EUROFER is evaluated based on the elastic analysis approach in ASME Boiler Pressure Vessel Code (BPVC). The required allowable number of cycles design fatigue curve and stress-to-rupture curve to estimate the creep-fatigue damage are used from the literature. Local stress, strain and temperature inputs for the analysis of creep-fatigue damage are delivered by the finite element code ANSYS utilizing the Mechanical ANSYS Parametric Design Language (MAPDL). A developed external FORTRAN code used as a post processor is coupled with MAPDL. Influences of different pulse durations (hold-times) and irradiation on creep-fatigue damage for the preliminary design of the Helium Cooled Pebble Bed Test Blanket Module (HCPB-TBM) are discussed for the First Wall component of the TBM box.

  8. Seafarer fatigue

    DEFF Research Database (Denmark)

    Jepsen, Jørgen Riis; Zhao, Zhiwei; van Leeuwen, Wessel M. A.

    2015-01-01

    Background: The consequences of fatigue for the health and safety of seafarers has caused concern in the industry and among academics, and indicates the importance of further research into risk factors and preventive interventions at sea. This review gives an overview of the key issues relating...... and metabolic pathways to the development of chronic diseases that are particularly prevalent in seafarers. Conclusions: Taking into account the frequency of seafarer fatigue and the severity of its consequences, one should look into the efficacy of the current legislative framework and the industry’s...... compliance, the manning of the international merchant fleet, and optimised working, living and sleeping conditions at sea. Considering circumstances at sea, e.g. working in shifts and crossing time zones, that cannot be altered, further assessment of the potentials of preventive interventions including...

  9. A State-of-the-Art Review on Fatigue Life Assessment of Steel Bridges

    Directory of Open Access Journals (Sweden)

    X. W. Ye

    2014-01-01

    Full Text Available Fatigue is among the most critical forms of damage potentially occurring in steel bridges, while accurate assessment or prediction of the fatigue damage status as well as the remaining fatigue life of steel bridges is still a challenging and unsolved issue. There have been numerous investigations on the fatigue damage evaluation and life prediction of steel bridges by use of deterministic or probabilistic methods. The purpose of this review is devoted to presenting a summary on the development history and current status of fatigue condition assessment of steel bridges, containing basic aspects of fatigue, classical fatigue analysis methods, data-driven fatigue life assessment, and reliability-based fatigue condition assessment.

  10. Damage Identification of an Offshore Wind Turbine Jacket Support Structure

    OpenAIRE

    Brauer, Simon Adrian

    2014-01-01

    Due to the variable and stochastic offshore environment, offshore wind turbines are prone to fatigue. Fatigue damage usually occurs as cracks and is an important indicator of the structure's condition and the remaining life-time. However, the detection of fatigue cracks today is very cumbersome and easier and more straight-forward methods are desirable. In this thesis, it is investigated whether fatigue damage can be identified or detected based on operational vibrations. The idea is that sen...

  11. Fatigue-Prone Details in Steel Bridges

    Directory of Open Access Journals (Sweden)

    Mohsen Heshmati

    2012-11-01

    Full Text Available This paper reviews the results of a comprehensive investigation including more than 100 fatigue damage cases, reported for steel and composite bridges. The damage cases are categorized according to types of detail. The mechanisms behind fatigue damage in each category are identified and studied. It was found that more than 90% of all reported damage cases are of deformation-induced type and generated by some kind of unintentional or otherwise overlooked interaction between different load-carrying members or systems in the bridge. Poor detailing, with unstiffened gaps and abrupt changes in stiffness at the connections between different members were also found to contribute to fatigue cracking in many details.

  12. Thermomechanical fatigue, oxidation, and Creep: Part II. Life prediction

    Science.gov (United States)

    Neu, R. W.; Sehitoglu, Huseyin

    1989-09-01

    A life prediction model is developed for crack nucleation and early crack growth based on fatigue, environment (oxidation), and creep damage. The model handles different strain-temperature phasings (i.e., in-phase and out-of-phase thermomechanical fatigue, isothermal fatigue, and others, including nonproportional phasings). Fatigue life predictions compare favorably with experiments in 1070 steel for a wide range of test conditions and strain-temperature phasings. An oxide growth (oxide damage) model is based on the repeated microrupture process of oxide observed from microscopic measurements. A creep damage expression, which is stress-based, is coupled with a unified constitutive equation. A set of interrupted tests was performed to provide valuable damage progression information. Tests were performed in air and in helium atmospheres to isolate creep damage from oxidation damage.

  13. Fracture analysis of stiffened panels under biaxial loading with widespread cracking

    Science.gov (United States)

    Newman, J. C., Jr.; Dawicke, D. S.

    1995-01-01

    An elastic-plastic finite-element analysis with a critical crack-tip-opening angle (CTOA) fracture criterion was used to model stable crack growth and fracture of 2024-T3 aluminum alloy (bare and clad) panels for several thicknesses. The panels had either single or multiple-site damage (MSD) cracks subjected to uniaxial or biaxial loading. Analyses were also conducted on cracked stiffened panels with single or MSD cracks. The critical CTOA value for each thickness was determined by matching the failure load on a middle-crack tension specimen. Comparisons were made between the critical angles determined from the finite-element analyses and those measured with photographic methods. Predicted load-against-crack extension and failure loads for panels under biaxial loading, panels with MSD cracks, and panels with various number of stiffeners were compared with test data, whenever possible. The predicted results agreed well with the test data even for large-scale plastic deformations. The analyses were also able to predict stable tearing behavior of a large lead crack in the presence of MSD cracks. The analyses were then used to study the influence of stiffeners on residual strength in the presence of widespread fatigue cracking. Small MSD cracks were found to greatly reduce the residual strength for large lead cracks even for stiffened panels.

  14. Towards a unified fatigue life prediction method for marine structures

    CERN Document Server

    Cui, Weicheng; Wang, Fang

    2014-01-01

    In order to apply the damage tolerance design philosophy to design marine structures, accurate prediction of fatigue crack growth under service conditions is required. Now, more and more people have realized that only a fatigue life prediction method based on fatigue crack propagation (FCP) theory has the potential to explain various fatigue phenomena observed. In this book, the issues leading towards the development of a unified fatigue life prediction (UFLP) method based on FCP theory are addressed. Based on the philosophy of the UFLP method, the current inconsistency between fatigue design and inspection of marine structures could be resolved. This book presents the state-of-the-art and recent advances, including those by the authors, in fatigue studies. It is designed to lead the future directions and to provide a useful tool in many practical applications. It is intended to address to engineers, naval architects, research staff, professionals and graduates engaged in fatigue prevention design and survey ...

  15. The Fatigue Behavior of Steel Structures under Random Loading

    DEFF Research Database (Denmark)

    Agerskov, Henning

    2009-01-01

    Fatigue damage accumulation in steel structures under random loading has been studied in a number of investigations at the Technical University of Denmark. The fatigue life of welded joints has been determined both experimentally and from a fracture mechanics analysis. In the experimental part...... of the investigation, fatigue test series with a total of 540 fatigue tests have been carried through on various types of welded plate test specimens and full-scale offshore tubular joints. The materials that have been used are either conventional structural steel or high-strength steel. The fatigue tests...... and variable amplitude fatigue test results. Both the fracture mechanics analysis and the fatigue test results indicate that Miner’s rule, which is normally used in the design against fatigue in steel structures, may give results, which are unconservative, and that the validity of the results obtained from...

  16. Prediction of Fatigue Life of a Continuous Bridge Girder Based on Vehicle Induced Stress History

    Directory of Open Access Journals (Sweden)

    V.G. Rao

    2003-01-01

    Full Text Available The fatigue damage assessment of bridge components by conducting a full scale fatigue testing is often prohibitive. A need, therefore, exists to estimate the fatigue damage in bridge components by a simulation of bridge-vehicle interaction dynamics due to the action of the actual traffic. In the present paper, a systematic method has been outlined to find the fatigue damage in the continuous bridge girder based on stress range frequency histogram and fatigue strength parameters of the bridge materials. Vehicle induced time history of maximum flexural stresses has been obtained by Monte Carlo simulation process and utilized to develop the stress range frequency histogram taking into consideration of the annual traffic volume. The linear damage accumulation theory is then applied to calculate cumulative damage index and fatigue life of the bridge. Effect of the bridge span, pavement condition, increase of vehicle operating speed, weight and suspension characteristics on fatigue life of the bridge have been examined.

  17. Side Effects: Fatigue

    Science.gov (United States)

    Fatigue is a common side effect of many cancer treatments such as chemotherapy, radiation therapy, immunotherapy, and surgery. Anemia and pain can also cause fatigue. Learn about symptoms and way to manage fatigue.

  18. Analysis of bearing steel exposed to rolling contact fatigue

    DEFF Research Database (Denmark)

    Hansen, K. T.; Fæster, Søren; Natarajan, Anand

    2017-01-01

    The objective of this work is to characterize fatigue damage in roller bearings under conditions of high load and slippage. A test rig constructed for rolling contact fatigue tests of rings is described, and test results are presented for rings taken from two spherical roller bearings. The prepar......The objective of this work is to characterize fatigue damage in roller bearings under conditions of high load and slippage. A test rig constructed for rolling contact fatigue tests of rings is described, and test results are presented for rings taken from two spherical roller bearings...

  19. Random Fatigue Analysis of Drill-Strings in Frequency Domain

    Directory of Open Access Journals (Sweden)

    Zheng JiaHao

    2017-01-01

    Full Text Available Predicting fatigue damage induced by vibrations is of benefit to oil and gas industry. In this paper a spectral method is developed to estimate the damage of vibration, including both deterministic and random vibration, on the fatigue life of drillstrings. The drill-string is first modeled by the continuous parameter method with two vibration modes: axial and torsional. After the vibration response is obtained, the equivalent stress spectra are calculated for any position along the drill-string, based on maximum shear stress fatigue failure criterion. The fatigue life of the drill-string at arbitrary position is then estimated by the developed spectral methods

  20. Fatigue life prediction under service load considering strengthening effect of loads below fatigue limit

    Science.gov (United States)

    Zhao, Lihui; Zheng, Songlin; Feng, Jinzhi

    2014-11-01

    Lightweight design requires an accurate life prediction for structures and components under service loading histories. However, predicted life with the existing methods seems too conservative in some cases, leading to a heavy structure. Because these methods are established on the basis that load cycles would only cause fatigue damage, ignore the strengthening effect of loads. Based on Palmgren-Miner Rule (PMR), this paper introduces a new method for fatigue life prediction under service loadings by taking into account the strengthening effect of loads below the fatigue limit. In this method, the service loadings are classified into three categories: damaging load, strengthening load and none-effect load, and the process for fatigue life prediction is divided into two stages: stage I and stage II, according to the best strengthening number of cycles. During stage I, fatigue damage is calculated considering both the strengthening and damaging effect of load cycles. While during stage II, only the damaging effect is considered. To validate this method, fatigue lives of automobile half shaft and torsion beam rear axle are calculated based on the new method and traditional methods, such as PMR and Modified Miner Rule (MMR), and fatigue tests of the two components are conducted under service loading histories. The tests results show that the percentage errors of the predicted life with the new method to mean life of tests for the two components are -3.78% and -1.76% separately, much lesser than that with PMR and MMR. By considering the strengthening effect of loads below the fatigue limit, the new method can significantly improve the accuracy for fatigue life prediction. Thus lightweight design can be fully realized in the design stage.

  1. Parallel monostrand stay cable bending fatigue

    DEFF Research Database (Denmark)

    Winkler, Jan Pawel

    of a cable stayed bridge. Characterization of a bridge monitoring data is shown and a generic method for the analysis of a cable fatigue in cable supported bridge structure is proposed. With this research, one of the most basic oversights in the lifetime assessment of cablesupported structures, namely......This dissertation investigates the bending fatigue response of high-strength steel monostrands and multistrand stay cables to cyclic transverse deformations. Increasing bridge stock numbers and a push for longer cable-supported span lengths have led to an increased number of reported incidents...... of damage and replacement of bridge stay cables due to wind and traffic-induced fatigue. The understanding of fatigue mechanisms in most steel structures is well established. However, in the case of cables composed of steel strands, many important aspects related with bending fatigue remain to be clarified...

  2. Material fatigue in high pressure piping

    Energy Technology Data Exchange (ETDEWEB)

    Brunne, W.C. [Pro Novum, Research and Technological Services, Ltd, Katowice, (Poland)

    1998-12-31

    The present paper describes a type of damage to four-way cross pieces on live steam and reheated steam pipelines. The results of metallographic examination and strength tests are presented. The occurring mechanisms of material degradation, i.e. low-cycle fatigue and hydrogen corrosion are discussed. The both mechanisms result in the corrosion fatigue of the material causing the failure of cross pieces. A new design of cross piece was proposed. (orig.) 5 refs.

  3. Probabilistic Flexural Fatigue in Plain and Fiber-Reinforced Concrete.

    Science.gov (United States)

    Ríos, José D; Cifuentes, Héctor; Yu, Rena C; Ruiz, Gonzalo

    2017-07-07

    The objective of this work is two-fold. First, we attempt to fit the experimental data on the flexural fatigue of plain and fiber-reinforced concrete with a probabilistic model (Saucedo, Yu, Medeiros, Zhang and Ruiz, Int. J. Fatigue, 2013, 48, 308-318). This model was validated for compressive fatigue at various loading frequencies, but not for flexural fatigue. Since the model is probabilistic, it is not necessarily related to the specific mechanism of fatigue damage, but rather generically explains the fatigue distribution in concrete (plain or reinforced with fibers) for damage under compression, tension or flexion. In this work, more than 100 series of flexural fatigue tests in the literature are fit with excellent results. Since the distribution of monotonic tests was not available in the majority of cases, a two-step procedure is established to estimate the model parameters based solely on fatigue tests. The coefficient of regression was more than 0.90 except for particular cases where not all tests were strictly performed under the same loading conditions, which confirms the applicability of the model to flexural fatigue data analysis. Moreover, the model parameters are closely related to fatigue performance, which demonstrates the predictive capacity of the model. For instance, the scale parameter is related to flexural strength, which improves with the addition of fibers. Similarly, fiber increases the scattering of fatigue life, which is reflected by the decreasing shape parameter.

  4. Research and development studies for predicting the thermal fatigue; Etudes de R and D pour la prediction de la fatigue thermique

    Energy Technology Data Exchange (ETDEWEB)

    Moulin, D.; Garnier, J.; Fissolo, A.; Lejeail, Y. [CEA, 75 - Paris (France); Stephan, J.M.; Moinereau, D.; Masson, J. [Electricite de France, Les Renardieres, 77 - Moret sur Loing (France). Direction des Etudes et Recherches

    2001-07-01

    This paper presents some studies in development or realized in the EDF and CEA laboratories, concerning the thermal fatigue damage in nuclear reactor components. The first part presents the basic principles and the methods of lifetime prediction. The second part gives some examples on sodium loop, water loop, welded junctions resistance to thermal fatigue and tests on fatigue specimen. (A.L.B.)

  5. The study of a defect evolution in iron under fatigue loading in gigacyclic fatigue regime

    Directory of Open Access Journals (Sweden)

    O. Plekhov

    2016-02-01

    Full Text Available The work is devoted to the study of the damage accumulation in iron under gigacyclic fatigue (VHCF regime. The study of the mechanical properties of the samples with different state of life time existing was carried out on the base of the acoustic resonance method. The damage accumulation (porosity of the samples was studied by the hydrostatic weighing method. The obtained results show the accumulation of porosity in the volume of the sample during fatigue loading and corresponding decrease of the elastic properties. A statistical model of damage accumulation was proposed in order to describe the damage accumulation process. The model describes the influence of the sample surface on the location of fatigue crack initiation.

  6. Static and Fatigue Characterization of Nomex Honeycomb Sandwich Panels

    Directory of Open Access Journals (Sweden)

    Keskes Boualem

    2013-07-01

    Full Text Available The main benefits of using the sandwich concept in structural components are the high stiffness, good fatigue resistance and low weight ratios. Recent advances in materials and construction techniques have resulted in further improvement and increased uniformity of the sandwich composite properties. In order to use these materials in different applications, the knowledge of simply their static properties alone is not sufficient but additional information on their fatigue properties and durability are required. In this paper, first static and fatigue tests on four points bending of nomex honeycomb composite sandwich panels have been performed. Load/displacement and S-N fatigue curves are presented and analysed. Fatigue failure and damage modes are observed with an optical microscope and are discussed. The second is to address such fatigue behaviour by using a damage model and check it by experimentation. This fatigue damage model is based on stiffness degradation, which is used as a damage indicator. Two non-linear cumulative damage models derived from the chosen stiffness degradation equation are examined with assumption of linear Miner's damage summation. Predicted results are compared with available experimental data.

  7. Concurrent Structural Fatigue Damage Prognosis Under Uncertainty

    Science.gov (United States)

    2014-04-30

    263-77. [16] Au SK, Beck JL. Subset simulation and its application to seismic risk based on dynamic analysis. Journal of Engineering Mechanics 2003...and windows 7 OS. MATLAB 2009b is the program used in the current study. For cycle-by-cycle simulation, the computation time for single simulation run

  8. Fatigue Damage Predictions in Aluminium Constructions

    DEFF Research Database (Denmark)

    Jensen, Jørgen Juncher; Toernqvist, Rikard; Nielsen, Poul Erik

    2002-01-01

    obtained are compared with large-scale experiments for a typical connection between a longitudinal girder and a transverse web frame in a ship. The effect of repair work is investigated considering both repair after failure or before the load is applied. Finally, comparison between measured and predicted...

  9. Fatigue Reliability Analysis of a Mono-Tower Platform

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Sørensen, John Dalsgaard; Brincker, Rune

    1991-01-01

    In this paper, a fatigue reliability analysis of a Mono-tower platform is presented. The failure mode, fatigue failure in the butt welds, is investigated with two different models. The one with the fatigue strength expressed through SN relations, the other with the fatigue strength expressed...... through linear-elastic fracture mechanics (LEFM). In determining the cumulative fatigue damage, Palmgren-Miner's rule is applied. Element reliability, as well as systems reliability, is estimated using first-order reliability methods (FORM). The sensitivity of the systems reliability to various parameters...... is investigated. The systems reliability index, estimated by using the fatigue elements with the fatigue strength expressed through SN relations, is found to be smaller than the systems reliability index estimated by using LEFM. It is shown that the systems reliability index is very sensitive to variations...

  10. Fatigue Analysis of a Mono-Tower Platform

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Sørensen, John Dalsgaard; Brincker, Rune

    In this paper, a fatigue reliability analysis of a Mono-tower platform is presented. The failure mode, fatigue failure in the butt welds, is investigated with two different models. The one with the fatigue strength expressed through SN relations, the other with the fatigue strength expressed...... through linear-elastic fracture mechanics (LEFM). In determining the cumulative fatigue damage, Palmgren-Miner's rule is applied. Element reliability as well as systems reliability is estimated using first-order reliability methods (FORM). The sensitivity of the systems reliability to various parameters...... is investigated. The systems reliability index, estimated by using the fatigue elements with the fatigue strength expressed through SN relations, is found to be smaller than the systems reliability index estimated by using LEFM. It is shown that the systems reliability index is very sensitive to variations...

  11. The Damage Effects in Steel Bridges under Highway Random Loading

    DEFF Research Database (Denmark)

    Agerskov, Henning; Nielsen, Jette Andkjær

    1996-01-01

    In the present investigation, fatigue damage accumulation in steel bridges under highway random loading is studied. In the experimental part of the investigation, fatigue test series on welded plate test specimens have been carried through. The fatigue tests have been carried out using load...

  12. Partial Safety Factors for Fatigue Design of Wind Turbine Blades

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Sørensen, John Dalsgaard

    2010-01-01

    In the present paper calibration of partial safety factors for fatigue design of wind turbine blades is considered. The stochastic models for the physical uncertainties on the material properties are based on constant amplitude fatigue tests and the uncertainty on Miners rule for linear damage...

  13. Fatigue testing of materials under extremal conditions by acoustic method

    NARCIS (Netherlands)

    Baranov, VM; Bibilashvili, YK; Karasevich, VA; Sarychev, GA

    2004-01-01

    Increasing fuel cycle time requires fatigue testing of the fuel clad materials for nuclear reactors. The standard high-temperature fatigue tests are complicated and tedious. Solving this task is facilitated by the proposed acoustic method, which ensures observation of the material damage dynamics,

  14. Probabilistic Fatigue Model for Reinforced Concrete Onshore Wind Turbine Foundations

    DEFF Research Database (Denmark)

    Marquez-Dominguez, Sergio; Sørensen, John Dalsgaard

    2013-01-01

    Reinforced Concrete Slab Foundation (RCSF) is the most common onshore wind turbine foundation type installed by the wind industry around the world. Fatigue cracks in a RCSF are an important issue to be considered by the designers. Causes and consequences of the cracks due to fatigue damage in RCSFs...

  15. Muscular fatigue: considerations for dance.

    Science.gov (United States)

    Wyon, Matthew A; Koutedakis, Yiannis

    2013-01-01

    Muscular fatigue can be defined as the failure to maintain an expected power output. It is a multifaceted phenomenon that incorporates metabolic, neural and neuromuscular components, among others. Metabolic causes of fatigue are associated with the ability to maintain energy supply during exercise, the speed at which homeostasis is achieved post-exercise, and the effects of high intensity exercise by-products on the peripheral neuromuscular system. Research has indicated that the central nervous system plays a protective role in preventing catastrophic muscle damage by reducing the intensity and frequency of propagation founded on biofeedback from the muscle cells. The duration and particularly the type of physical activity play a role in the development of muscle fatigue, with impact or weightbearing exercises, such as dance, producing increased symptoms compared to non-impact or non-weightbearing equivalents. The effects of prolonged exercise and the associated increased levels of muscle fatigue that may lead to compromises in neuromuscular propagation need to be considered in dance.

  16. Residual fatigue life evaluation of rail at squats seeds using 3D explicit finite element analysis

    NARCIS (Netherlands)

    Deng, X.; Naeimi, M.; Li, Z.; Qian, Z.

    2014-01-01

    A modeling procedure to predict the residual fatigue life of rail at squats seeds is developed in this article. Two models are involved: a 3D explicit Finite Element (FE) model to compute the stress and strain at squats in rail, and the J-S fatigue damage model to determine the residual fatigue life

  17. A Comparative Study on Fatigue Life Optimization of the Intersection between a Longitudinal and a Webframe

    DEFF Research Database (Denmark)

    Birk-Sørensen, Martin

    1996-01-01

    The connection between longitudinals and transverse web frames, is a weak point in the fatigue strength of a ship structure. Moreover it is very expensive to repair fatigue damages in these intersections, and a fatigue analysis for a specific detail was therefore carried out in order to seek to i...

  18. Estimation of Corrosion Fatigue Lives Based on the Variations of the Crack Lengths Distributions During Stress Cycling

    OpenAIRE

    Ishihara, Sotomi; Maekawa, Ichiro; Shiozawa, Kazuaki; Miyao, Kazyu

    1985-01-01

    Many small distributed cracks have been observed on the specimen during corrosion fatigue process, and the damage of corrosion fatigue is related to the behaviour of these distributed cracks. The distribution of crack lengths during corrosion fatigue was approximated well by the three parameter Weibull distribution under plane-bending fatigue tests of carbon steel in salt water. A method of estimation of corrosion fatigue lives was proposed. The crack initiation, crack growth behaviour and th...

  19. Study on Determination Method of Fatigue Testing Load for Wind Turbine Blade

    Science.gov (United States)

    Liao, Gaohua; Wu, Jianzhong

    2017-07-01

    In this paper, the load calculation method of the fatigue test was studied for the wind turbine blade under uniaxial loading. The characteristics of wind load and blade equivalent load were analyzed. The fatigue property and damage theory of blade material were studied. The fatigue load for 2MW blade was calculated by Bladed, and the stress calculated by ANSYS. Goodman modified exponential function S-N curve and linear cumulative damage rule were used to calculate the fatigue load of wind turbine blades. It lays the foundation for the design and experiment of wind turbine blade fatigue loading system.

  20. Fatigue and fatigue crack growth processes in hard tissues: The importance of age and surface integrity

    Science.gov (United States)

    Majd, Hessam

    With the progressive increase in partially and fully dentate seniors, fracture has become an increasingly common form of restored tooth failure. Dentin undergoes progressive changes in microstructure with patient age, and studies are now suggesting that there is a reduction in fatigue strength and fatigue crack growth resistance of this tissue. This dissertation explores aging of dentin, the influence of flaws that are introduced during restorative processes on the fatigue properties of dentin, and proposes models for characterizing the damage initiation and growth process during fatigue of dentin. Results from this investigation show that the fatigue crack growth properties (Paris Law parameters (C, m) andDeltaKth) of human dentin undergo the most significant changes at a patient age of 42 years. Based on the fatigue crack growth responses, three age groups were established including young (age≤33), aged (34≤age ≤49) and old (50≤age) patients for further analysis. There were significant differences in the initiation and growth behavior between the tissues of patients from the three age groups. With regards to the influence of restorative processes, there was no influence on the quasi-static responses of dentin. However, the endurance limit of dentin treated with the dental burs (28 MPa) and abrasive air jet (35 MPa) were approximately 36% and 20% lower than that of the control (44 MPa), respectively. Both cutting processes caused a significant reduction (p≤0.0001) in fatigue strength. An accumulative damage model was developed to characterize fatigue of the control and bur treated dentin as well as provide a model for fatigue life prediction. The damage models were derived as a function of number of loading cycles (N), and ratio of applied stress to ultimate strength (r). The developed models provide estimations for the initial state of damage, the state of damage during the life, as well as the damage accumulation rate for cyclic loading of dentin

  1. Fatigue in Steel Highway Bridges under Random Loading

    DEFF Research Database (Denmark)

    Agerskov, Henning; Nielsen, Jette Andkjær

    1999-01-01

    Fatigue damage accumulation in steel highway bridges under random loading is studied. The fatigue life of welded joints has been determined both experimentally and from a fracture mechanics analysis. In the experimental part of the investigation, fatigue test series on welded plate test specimens...... have been carried through. The materials that have been used are either conventional structural steel with a yield stress of f(y) similar to 400-410 MPa or high-strength steel with a yield stress of f(y) similar to 810-840 MPa. The fatigue tests have been carried out using load histories, which...

  2. Fatigue in Steel Highway Bridges under Random Loading

    DEFF Research Database (Denmark)

    Agerskov, Henning; Nielsen, J.A.; Vejrum, Tina

    1997-01-01

    In the present investigation, fatigue damage accumulation in steel highway bridges under random loading is studied. The fatigue life of welded joints has been determined both experimentally and from a fracture mechanics analysis.In the experimental part of the investigation, fatigue test series...... on welded plate test specimens have been carried through. The materials that have been used are either conventional structural steel with a yield stress of ~ 400-410 MPa or high-strength steel with a yield stress of ~ 810-840 MPa.The fatigue tests have been carried out using load histories, which correspond...

  3. Creep-Fatigue Failure Diagnosis

    Directory of Open Access Journals (Sweden)

    Stuart Holdsworth

    2015-11-01

    Full Text Available Failure diagnosis invariably involves consideration of both associated material condition and the results of a mechanical analysis of prior operating history. This Review focuses on these aspects with particular reference to creep-fatigue failure diagnosis. Creep-fatigue cracking can be due to a spectrum of loading conditions ranging from pure cyclic to mainly steady loading with infrequent off-load transients. These require a range of mechanical analysis approaches, a number of which are reviewed. The microstructural information revealing material condition can vary with alloy class. In practice, the detail of the consequent cracking mechanism(s can be camouflaged by oxidation at high temperatures, although the presence of oxide on fracture surfaces can be used to date events leading to failure. Routine laboratory specimen post-test examination is strongly recommended to characterise the detail of deformation and damage accumulation under known and well-controlled loading conditions to improve the effectiveness and efficiency of failure diagnosis.

  4. Continuous fatigue crack monitoring of bridges: Long-Term Electrochemical Fatigue Sensor (LTEFS)

    Science.gov (United States)

    Moshier, Monty A.; Nelson, Levi; Brinkerhoff, Ryan; Miceli, Marybeth

    2016-04-01

    Fatigue cracks in steel bridges degrade the load-carrying capacity of these structures. Fatigue damage accumulation caused by the repetitive loading of everyday truck traffic can cause small fatigue cracks initiate. Understanding the growth of these fatigue cracks is critical to the safety and reliability of our transportation infrastructure. However, modeling fatigue in bridges is difficult due to the nature of the loading and variations in connection integrity. When fatigue cracks reach critical lengths failures occur causing partial or full closures, emergency repairs, and even full structural failure. Given the aging US highway and the trend towards asset management and life extension, the need for reliable, cost effective sensors and monitoring technologies to alert bridge owners when fatigue cracks are growing is higher than ever. In this study, an innovative Long-Term Electrochemical Fatigue Sensor (LTEFS) has been developed and introduced to meet the growing NDT marketplace demand for sensors that have the ability to continuously monitor fatigue cracks. The performance of the LTEFS has been studied in the laboratory and in the field. Data was collected using machined specimens with different lengths of naturally initiated fatigue cracks, applied stress levels, applied stress ratios, and for both sinusoidal and real-life bridge spectrum type loading. The laboratory data was evaluated and used to develop an empirically based algorithm used for crack detection. Additionally, beta-tests on a real bridge structure has been completed. These studies have conclusively demonstrated that LTEFS holds great potential for long-term monitoring of fatigue cracks in steel structures

  5. Selected issues concerning calculations and experimental tests of transport means construction elements fatigue life

    Directory of Open Access Journals (Sweden)

    Bogdan LIGAJ

    2014-12-01

    Full Text Available Development of an algorithm of fatigue life of structural components of road and rail vehicles as well as sea vessels and aircrafts involves three groups of activities connected with: development of fatigue load spectra on the basis measurement of service loads, determination of the construction material fatigue properties and a selection of the best hypothesis for estimating the fatigue damage to be used for a phenomenological description of the fatigue process. The above listed groups of problems include the main causes of differences that occur between the calculation results and the results of fatigue life experimental tests. Evaluation of these differences is the main goal of this article.

  6. Contact fatigue in rolling-element bearings

    CSIR Research Space (South Africa)

    Fernandes, PJL

    1997-06-01

    Full Text Available Surface contact fatigue is a common cause of failure in rolling-element bearings. The extent of damage observed depends on the contact loads, the curvature of the rolling elements, and the relative motion between the contacting surfaces...

  7. Fatigue crack growth in Aluminium Alloys

    NARCIS (Netherlands)

    Van Kranenburg, C.

    2010-01-01

    Fatigue is a gradual process of local strength reduction. It is a phenomenon of damage accumulation at stress concentrations caused by fluctuating stresses and/or strains. In metals this results in microscopic cracks. These will start to grow under continued cyclic loading until final failure

  8. Chronic fatigue syndrome

    National Research Council Canada - National Science Library

    Gonthier, Ariane; Favrat, Bernard

    2015-01-01

    Chronic fatigue syndrome (CFS) is a debilitating disorder, characterized by a severe, persistant and unexplained fatigue, which can be associated with diffuse pain, sleep difficulties, neurocognitive and neurovegetative troubles...

  9. Insomnia and Fatigue

    Science.gov (United States)

    ... in turn leads to fatigue, may affect your self-esteem, mood, emotions, relationships and work. But you don’ ... Loss Insomnia and Fatigue Menopausal Symptoms Secondary Cancers Sexual Side Effects Living With HR-Positive Breast Cancer ...

  10. Thermal Acoustic Fatigue Apparatus

    Data.gov (United States)

    Federal Laboratory Consortium — The Thermal Acoustic Fatigue Apparatus (TAFA) is a progressive wave tube test facility that is used to test structures for dynamic response and sonic fatigue due to...

  11. Fatigue crack Behaviour in a High Strength Tool Steel

    DEFF Research Database (Denmark)

    Højerslev, Christian; Carstensen, Jesper V.; Brøndsted, Povl

    2002-01-01

    The influence of microstructure on fatigue crack initiation and crack growth of a hardened and tempered high speed steel was investigated. The evolution of fatigue cracks was followed in four point bending at room temperature. It was found that a carbide damage zone exists above a threshold load...... value of maximally 80% of the yield strength of the steel. The size of this carbide damage zone increases with increasing load amplitude, and the zone is apparently associated with crack nucleation. On fatigue crack propagation plastic deformation of the matrix occurs in a radius of approximately 4...

  12. Probabilistic Fatigue Design of Composite Material for Wind Turbine Blades

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Sørensen, John Dalsgaard

    2011-01-01

    In the present paper a probabilistic design approach to fatigue design of wind turbine blades is presented. The physical uncertainty on the fatigue strength for composite material is estimated using public available fatigue tests. Further, the model uncertainty on Miner rule for damage accumulation...... is also estimated based on test results. The results show that Miners rule gives a non-conservative estimate on the accumulated damage at failure. The reliability of a wind turbine blade is estimated for both out-of-plane and in-plane loading using three different design standards. The estimated annual...

  13. Physical-Mechanism Exploration of the Low-Cycle Unified Creep-Fatigue Formulation

    OpenAIRE

    Dan Liu; Dirk John Pons

    2017-01-01

    Background—Creep-fatigue behavior is identified as the incorporated effects of fatigue and creep. One class of constitutive-based models attempts to evaluate creep and fatigue separately, but the interaction of fatigue and creep is neglected. Other models treat the damage as a single component, but the complex numerical structures that result are inconvenient for engineering application. The models derived through a curve-fitting method avoid these problems. However, the method of curving fit...

  14. Experimental Research on Vibration Fatigue of CFRP and Its Influence Factors Based on Vibration Testing

    OpenAIRE

    Fan, Zhengwei; Jiang, Yu; Zhang, Shufeng; Chen, Xun

    2017-01-01

    A new research method based on vibration testing for the vibration fatigue of FRP was proposed in this paper. Through the testing on a closed-loop controlled vibration fatigue test system, the vibration fatigue phenomenon of typical carbon-fiber-reinforced plastic (CFRP) cantilevered laminate specimens was carefully studied. Moreover, a method based on the frequency response function was proposed to monitor the fatigue damage accumulation of specimens. On the basis of that, the influence fact...

  15. Experimental Design and Validation of an Accelerated Random Vibration Fatigue Testing Methodology

    OpenAIRE

    Yu Jiang(Center for Statistical and Theoretical Condensed Matter Physics, Zhejiang Normal University, Jinhua City, Zhejiang Province 321004, China); Gun Jin Yun; Li Zhao; Junyong Tao

    2015-01-01

    Novel accelerated random vibration fatigue test methodology and strategy are proposed, which can generate a design of the experimental test plan significantly reducing the test time and the sample size. Based on theoretical analysis and fatigue damage model, several groups of random vibration fatigue tests were designed and conducted with the aim of investigating effects of both Gaussian and non-Gaussian random excitation on the vibration fatigue. First, stress responses at a weak point of a ...

  16. ANSYS Creep-Fatigue Assessment tool for EUROFER97 components

    Directory of Open Access Journals (Sweden)

    M. Mahler

    2016-12-01

    Full Text Available The damage caused by creep-fatigue is an important factor for materials at high temperatures. For in-vessel components of fusion reactors the material EUROFER97 is a candidate for structural application where it is subjected to irradiation and cyclic thermo-mechanical loads. To be able to evaluate fusion reactor components reliably, creep-fatigue damage has to be taken into account. In the frame of Engineering Data and Design Integration (EDDI in EUROfusion Technology Work Programme rapid and easy design evaluation is very important to predict the critical regions under typical fusion reactor loading conditions. The presented Creep-Fatigue Assessment (CFA tool is based on the creep-fatigue rules in ASME Boiler Pressure Vessel Code (BPVC Section 3 Division 1 Subsection NH which was adapted to the material EUROFER97 and developed for ANSYS. The CFA tool uses the local stress, maximum elastic strain range and temperature from the elastic analysis of the component performed with ANSYS. For the assessment design fatigue and stress to rupture curves of EUROFER97 as well as isochronous stress vs. strain curves determined by a constitutive model considering irradiation influence are used to deal with creep-fatigue damage. As a result allowable number of cycles based on creep-fatigue damage interaction under given hold times and irradiation rates is obtained. This tool can be coupled with ANSYS MAPDL and ANSYS Workbench utilizing MAPDL script files.

  17. Optimal Fatigue Testing

    DEFF Research Database (Denmark)

    Faber, Michael Havbro; Sørensen, John Dalsgaard; Kroon, I. B.

    1993-01-01

    This paper considers the reassessment of the reliability of tubular joints subjected to fatigue load. The reassessment is considered in two parts namely the task of utilizing new experimental data on fatigue life to update the reliability of the tubular joint ant the task of planning new fatigue ...

  18. Fatigue Life of High-Strength Steel Offshore Tubular Joints

    DEFF Research Database (Denmark)

    Petersen, Rasmus Ingomar; Agerskov, Henning; Lopez Martinez, Luis

    1996-01-01

    In the present investigation, the fatigue life of tubular joints in offshore steel structures is studied. Two test series on full-scale tubular joints have been carried through. One series was on joints in conventional offshore structural steel, and the other series was on joints in high......-strength steel with a yield stress of 820-830 MPa and with high weldability and toughness properties. The test specimens of both series had the same geometry. The present report concentrates on the results obtained in the investigation on the high-strength steel tubular joints.The test specimens were fabricated...... amplitude fatigue test results showed shorter fatigue lives in variable amplitude loading than should be expected from the linear fatigue damage accumulation formula. Furthermore, the fatigue tests on high-strength steel tubular joints showed slightly longer fatigue lives than those obtained...

  19. Velocity-specific fatigue: quantifying fatigue during variable velocity cycling.

    Science.gov (United States)

    Gardner, A Scott; Martin, David T; Jenkins, David G; Dyer, Iain; Van Eiden, Jan; Barras, Martin; Martin, James C

    2009-04-01

    Previous investigators have quantified fatigue during short maximal cycling trials ( approximately 30 s) by calculating a fatigue index. Other investigators have reported a curvilinear power-pedaling rate relationship during short fatigue-free maximal cycling trials (track bicycles. Data from the initial portion of maximal acceleration were used to establish maximal power-pedaling rate relationships. Fatigue was quantified three ways: 1) traditional fatigue index, 2) fatigue index modified to account for the power-pedaling rate relationship (net fatigue index), and 3) work deficit, the difference between actual work done and work that might have been accomplished without fatigue. Fatigue index (55.4% +/- 6.4%) was significantly greater than net fatigue index (41.0% +/- 7.9%, P cycling. These measures can be used to compare fatigue during different fatigue protocols, including world-class sprint cycling competition. Precise quantification of fatigue during elite cycling competition may improve evaluation of training status, gear ratio selection, and fatigue resistance.

  20. Pain in patients with chronic fatigue syndrome: time for specific pain treatment?

    NARCIS (Netherlands)

    Nijs, J.; Crombez, G.; Meeus, M.; Knoop, H.; Damme, S.V.; Cauwenbergh, V.; Bleijenberg, G.

    2012-01-01

    BACKGROUND: Besides chronic fatigue, patients with chronic fatigue syndrome (CFS) have debilitating widespread pain. Yet pain from CFS is often ignored by clinicians and researchers. OBJECTIVES: To examine whether pain is a unique feature of CFS, or does it share the same underlying mechanisms as

  1. Improving Fatigue Performance of AHSS Welds

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Zhili [ORNL; Yu, Xinghua [ORNL; ERDMAN III, DONALD L [ORNL; Wang, Yanli [ORNL; Kelly, Steve [ArcelorMittal USA; Hou, Wenkao [ArcelorMittal USA; Yan, Benda [ArcelorMittal USA; Wang, Zhifeng [Colorado School of Mines, Golden; Yu, Zhenzhen [Colorado School of Mines, Golden; Liu, Stephen [Colorado School of Mines, Golden

    2015-03-01

    Reported herein is technical progress on a U.S. Department of Energy CRADA project with industry cost-share aimed at developing the technical basis and demonstrate the viability of innovative in-situ weld residual stresses mitigation technology that can substantially improve the weld fatigue performance and durability of auto-body structures. The developed technology would be costeffective and practical in high-volume vehicle production environment. Enhancing weld fatigue performance would address a critical technology gap that impedes the widespread use of advanced high-strength steels (AHSS) and other lightweight materials for auto body structure light-weighting. This means that the automotive industry can take full advantage of the AHSS in strength, durability and crashworthiness without the concern of the relatively weak weld fatigue performance. The project comprises both technological innovations in weld residual stress mitigation and due-diligence residual stress measurement and fatigue performance evaluation. Two approaches were investigated. The first one was the use of low temperature phase transformation (LTPT) weld filler wire, and the second focused on novel thermo-mechanical stress management technique. Both technical approaches have resulted in considerable improvement in fatigue lives of welded joints made of high-strength steels. Synchrotron diffraction measurement confirmed the reduction of high tensile weld residual stresses by the two weld residual stress mitigation techniques.

  2. Determinants of seafarers’ fatigue

    DEFF Research Database (Denmark)

    Bøggild Dohrmann, Solveig; Leppin, Anja

    2017-01-01

    Purpose: Fatigue jeopardizes seafarer’s health and safety. Thus, knowledge on determinants of fatigue is of great importance to facilitate its prevention. However, a systematic analysis and quality assessment of all empirical evidence specifically for fatigue are still lacking. The aim...... in the review. The main reason for exclusion was fatigue not being the outcome variable. Results: Most evidence was available for work time-related factors suggesting that working nights was most fatiguing, that fatigue levels were higher toward the end of watch or shift, and that the 6-h on–6-h off watch...... system was the most fatiguing. Specific work demands and particularly the psychosocial work environment have received little attention, but preliminary evidence suggests that stress may be an important factor. A majority of 12 studies were evaluated as potentially having a high risk of bias. Conclusions...

  3. Fatigue Performance of Fiber Reinforced Concrete

    DEFF Research Database (Denmark)

    Jun, Zhang; Stang, Henrik

    1996-01-01

    The objective of the present study is to obtain basic data of fibre reinforced concrete under fatigue load and to set up a theoretical model based on micromechanics. In this study, the bridging stress in fiber reinforced concrete under cyclic tensile load was investigted in details. The damage...... mechanism of the interface between fiber and matrix was proposed and a rational model given. Finally, the response of a steel fiber reinforced concrete beam under fatigue loading was predicted based on this model and compared with experimental results....

  4. One damage law for different mechanisms

    Science.gov (United States)

    Lemaitre, J.; Sermage, J. P.

    1997-07-01

    We consider here a general three-dimensional kinetic damage law. It uses the thermodynamic of irreversible processes formalism and the phenomenological aspects of isotropic damage. It gives the damage rate as a function of its associated variable, the strain energy density release rate and the accumulated plastic strain rate. Associated with different plastic constitutive equations, this damage law takes into account brittle damage, ductile damage, low and high cycle fatigue and creep damage. In this paper we mainly focus on creep-fatigue interaction and high cycle fatigue. Associated to a viscoplastic constitutive equation having kinematic hardening, the damage law gives the non linear creep-fatigue interaction. The agreement with experiments is good. Associated to plastic constitutive equations also having kinematic hardening but introduced in a micromechanical two scale model based on the self-consistent scheme, it models the non linear accumulation of damage induced by a succession of sequences of different amplitudes as well as the effect of the mean stress and the influence of non proportional loading.

  5. A thermography-based method for fatigue behavior evaluation of coupling beam damper

    Directory of Open Access Journals (Sweden)

    Zhe Zhang

    2017-04-01

    Full Text Available Under cyclic load, local fatigue damage will occur in the metal damper widely used in the shear wall. This will deteriorate the stiffness of damper and weaken the hysteresis behaviour. The present paper proposed a new and easy method to manufacture kinds of coupling beam dampers. A thermography-based experiment was used to study the energy dissipation and damage accumulation during fatigue process of the metal damper. Based on the temperature variation related to fatigue damage process, the relationship between the plastic deformation and thermal energy dissipation was quantitatively established. Besides, the relationships between the temperature increase to damage accumulation and mechanical load were analyzed systematically.

  6. Experimental Investigation and Finite Element Analysis on Fatigue Behavior of Aluminum Alloy 7050 Single-Lap Joints

    Science.gov (United States)

    Zhou, Bing; Cui, Hao; Liu, Haibo; Li, Yang; Liu, Gaofeng; Li, Shujun; Zhang, Shangzhou

    2018-01-01

    The fatigue behavior of single-lap four-riveted aluminum alloy 7050 joints was investigated by using high-frequency fatigue test and scanning electron microscope (SEM). Stress distributions obtained by finite element (FE) analysis help explain the fatigue performance. The fatigue test results showed that the fatigue lives of the joints depend on cold expansion and applied cyclic loads. FE analysis and fractography indicated that the improved fatigue lives can be attributed to the reduction in maximum stress and evolution of fatigue damage at the critical location. The beneficial effects of strengthening techniques result in tearing ridges or lamellar structure on fracture surface, decrease in fatigue striations spacing, delay of fatigue crack initiation, crack deflection in fatigue crack propagation and plasticity-induced crack closure.

  7. The effect of osteoporosis treatments on fatigue properties of cortical bone tissue

    Directory of Open Access Journals (Sweden)

    Garry R. Brock

    2015-06-01

    Full Text Available Bisphosphonates are commonly prescribed for treatment of osteoporosis. Long-term use of bisphosphonates has been correlated to atypical femoral fractures (AFFs. AFFs arise from fatigue damage to bone tissue that cannot be repaired due to pharmacologic treatments. Despite fatigue being the primary damage mechanism of AFFs, the effects of osteoporosis treatments on fatigue properties of cortical bone are unknown. To examine if fatigue-life differences occur in bone tissue after different pharmacologic treatments for osteoporosis, we tested bone tissue from the femurs of sheep given a metabolic acidosis diet to induce osteoporosis, followed by treatment with a selective estrogen reception modulator (raloxifene, a bisphosphonate (alendronate or zoledronate, or parathyroid hormone (teriparatide, PTH. Beams of cortical bone tissue were created and tested in four-point bending fatigue to failure. Tissue treated with alendronate had reduced fatigue life and less modulus loss at failure compared with other treatments, while tissue treated with PTH had a prolonged fatigue life. No loss of fatigue life occurred with zoledronate treatment despite its greater binding affinity and potency compared with alendronate. Tissue mineralization measured by microCT did not explain the differences seen in fatigue behavior. Increased fatigue life with PTH suggests that current treatment methods for AFF could have beneficial effects for restoring fatigue life. These results indicate that fatigue life differs with each type of osteoporosis treatment.

  8. Oligo cyclic plastic fatigue of Zircaloy-4 under vacuum and in iodinated methanol; Fatigue plastique oligocyclique du Zircaloy-4 sous vide et dans le methanol iode

    Energy Technology Data Exchange (ETDEWEB)

    Beloucif, A.

    1995-01-01

    Our study was bound to the Zircaloy-4 fuel can damage in PWR type reactors. The topic was the damage mechanisms of Zircaloy-4 by oligo-cyclic plastic fatigue in inert atmosphere and in iodinated methanol. The oligo-cyclic plastic fatigue tests, under vacuum, were performed with steady plastic deformation and deformation speed. The corrosion fatigue tests in iodinated methanol put to the fore one obvious harmful part of iodine on Zircaloy-4 resistance to cyclic solicitations. The observations proved the existence of a very strong synergic effect between cyclic mechanical damage and corrosion. (MML). 84 refs., 117 figs., 3 tabs.

  9. Biologic interventions for fatigue in rheumatoid arthritis

    DEFF Research Database (Denmark)

    Almeida, Celia; Choy, Ernest H S; Hewlett, Sarah

    2016-01-01

    BACKGROUND: Fatigue is a common and potentially distressing symptom for patients with rheumatoid arthritis (RA), with no accepted evidence-based management guidelines. Evidence suggests that biologic interventions improve symptoms and signs in RA as well as reducing joint damage. OBJECTIVES......: To evaluate the effect of biologic interventions on fatigue in rheumatoid arthritis. SEARCH METHODS: We searched the following electronic databases up to 1 April 2014: Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, EMBASE, Cochrane Database of Systematic Reviews, Current Controlled Trials...... and contacted key authors. SELECTION CRITERIA: We included randomised controlled trials if they evaluated a biologic intervention in people with rheumatoid arthritis and had self reported fatigue as an outcome measure. DATA COLLECTION AND ANALYSIS: Two reviewers selected relevant trials, assessed methodological...

  10. Comparative Physiology of Fatigue

    National Research Council Canada - National Science Library

    JONES, JAMES H

    2016-01-01

    ABSTRACTThis review attempts to provide insights into factors associated with fatigue in human and nonhuman animals by using the two fundamental approaches of comparative physiologydetermining common...

  11. Neurobiological studies of fatigue

    Science.gov (United States)

    Harrington, Mary E.

    2012-01-01

    Fatigue is a symptom associated with many disorders, is especially common in women and in older adults, and can have a huge negative influence on quality of life. Although most past research on fatigue uses human subjects instead of animal models, the use of appropriate animal models has recently begun to advance our understanding of the neurobiology of fatigue. In this review, results from animal models using immunological, developmental, or physical approaches to study fatigue are described and compared. Common across these animal models is that fatigue arises when a stimulus induces activation of microglia and/or increased cytokines and chemokines in the brain. Neurobiological studies implicate structures in the ascending arousal system, sleep executive control areas, and areas important in reward. In addition, the suprachiasmatic nucleus clearly plays an important role in homeostatic regulation of the neural network mediating fatigue. This nucleus responds to cytokines, shows decreased amplitude firing rate output in models of fatigue, and responds to exercise, one of our few treatments for fatigue. This is a young field but very important as the symptom of fatigue is common across many disorders and we do not have effective treatments. PMID:22841649

  12. Fatigue Analysis of a Point Absorber WEC subjected to Passive and Reactive Control

    DEFF Research Database (Denmark)

    Zurkinden, Andrew Stephen; Lambertsen, Søren Heide; Damkilde, Lars

    2015-01-01

    and generic toolbox which can be applied to any other global response model of a WEC device combined with a control system. The stress responses due to the stochastic wave loads are computed by a FEM model using the frequency-domain approach. The fatigue damage is calculated based on the spectral......-based fatigue analysis in which the fatigue is described by the given spectral moments of the stress response. The question will be discussed, which control case is more favorable regarding the trade off between fatigue damage reduction and increased power production....

  13. An active control logic to improve the fatigue strength of smart flexible structures

    Science.gov (United States)

    Ambrosio, Pasquale; Braghin, Francesco; Resta, Ferruccio; Ripamonti, Francesco

    2013-04-01

    In general active vibration control intrinsically implies a fatigue damage reduction. Anyway, this assumption is not always verified. In these cases it is possible to deeper investigate the fatigue phenomena on smart flexible structures and their reduction from a control point of view. In this article, to identify the problem main parameters, a simplified interpretation of fatigue damage is given using the frequency analysis framework. Then, the active control logic is defined as an optimization problem with a quadratic functional taking into account the previously cited parameters. Finally, because of non-linearity of fatigue phenomenon, an adaptive approach is applied and a numerical/experimental validation is carried out.

  14. Fatigue Failure of Sandwich Beams with Wrinkle Defects Used for Wind Turbine Blades

    DEFF Research Database (Denmark)

    Leong, Martin Klitgaard; Hvejsel, C.F.; Lund, Erik

    2012-01-01

    Glass fiber face sheet/balsa wood core sandwich beams with out-of-plane fiber misalignments/wrinkle defects were subjected to in-plane fully reversed fatigue loading and the failure modes were documented. A fatigue life design limit was estimated using finite element analyses and the Northwestern...... University failure theory. The presence of the wrinkle defect significantly lowered the fatigue strength, but it was found that the test specimens could reach a pre-defined fatigue life with no signs of damage, by applying a fatigue load below 80% of the estimated design limit....

  15. Fatigue Load Modeling and Control for Wind Turbines based on Hysteresis Operators

    DEFF Research Database (Denmark)

    Barradas Berglind, Jose de Jesus; Wisniewski, Rafal; Soltani, Mohsen

    2015-01-01

    method based on hysteresis operators, which can be used in control loops. Furthermore, we propose a model predictive control (MPC) strategy that incorporates the online fatigue estimation through the objective function, where the ultimate goal in mind is to reduce the fatigue load of the wind turbine......The focus of this work is on fatigue load modeling and controller design for the wind turbine level. The main purpose is to include a model of the damage effects caused by the fatigue of the wind turbine components in the controller design process. This paper addresses an online fatigue estimation...

  16. Online vibration-based crack detection during fatigue testing

    Energy Technology Data Exchange (ETDEWEB)

    Peeters, B.; Vecchio, A.; Auweraer, H. van der [LMS International, Heverlee (Belgium); Mevel, L. [INRIA, Rennes (France); Vanlanduit, S.; Guillaume, P. [Dept. of Mechanical Engineering, VUB, Brussels (Belgium); Goursat, M. [Rocquencourt, INRIA, Le Chesnay (France)

    2003-07-01

    When performing fatigue tests, it is essential to monitor the degradation of the structure with an increasing number of fatigue cycles. In this article, a vibration-based damage detection method will be proposed. Such a method has the advantage that it operates online with the fatigue test. Especially for structures with very high fatigue strength, it is important that the test does not have to be interrupted. The damage detection method that will be used is based on a residual generated from a stochastic subspace identification method. The basic idea is that a model for the undamaged structure is identified and that, afterwards, vibration measurements from a possibly damaged structure are confronted with this model. A statistical local approach hypothesis testing is used to assess the deviation of the new data from the nominal model. After introducing the damage detection method, its performance will be illustrated on data from a fatigue experiment. The method will be compared to other linear and non-linear vibration-based damage detection methods. (orig.)

  17. Fatigue mechanisms in unidirectional glass-fibre-reinforced polypropylene

    DEFF Research Database (Denmark)

    Gamstedt, E.K.; Berglund, L.A.; Peijs, T.

    1999-01-01

    Polypropylene (PP) and polypropylene modified with maleic anhydride (MA-PP) reinforced by continuous longitudinal glass fibres have been investigated. The most prominent effect of the modification with maleic anhydride in the composite is a stronger fibre/matrix interface. The effects...... of interfacial strength on fatigue performance and on the underlying micromechanisms have been studied for these composite systems. Tension-tension fatigue tests (R = 0.1) were carried out on 0 degrees glass-fibre/PP and glass-fibre/ MA-PP coupons. The macroscopic fatigue behaviour was characterized in terms...... of stiffness reduction and fatigue-life curves. The results showed that the longitudinal Young's modulus degraded more rapidly for glass-fibre/PP, which was caused by a higher degree of damage growth and accumulation. The improvement in monotonic strength was negligible, but the fatigue life was prolonged...

  18. Partial Safety Factors for Fatigue Design of Wind Turbine Blades

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Sørensen, John Dalsgaard

    In the present paper calibration of partial safety factors for fatigue design of wind turbine blades is considered. The stochastic models for the physical uncertainties on the material properties are based on constant amplitude fatigue tests and the uncertainty on Miners rule for linear damage...... from rainflow-counting of simulated time series for a 5MW reference wind turbine [1]. A possible influence of a complex stress state in the blade is not taken into account and only longitudinal stresses are considered....... accumulation is determined from variable amplitude fatigue tests with the Wisper and Wisperx spectra. The statistical uncertainty for the assessment of the fatigue loads is also investigated. The partial safety factors are calibrated for design load case 1.2 in IEC 61400-1. The fatigue loads are determined...

  19. The Fatigue Behavior of Steel Structures under Random Loading

    DEFF Research Database (Denmark)

    Agerskov, Henning

    2008-01-01

    Fatigue damage accumulation in steel structures under random loading has been studied in a number of investigations at the Technical University of Denmark. The fatigue life of welded joints has been determined both experimentally and from a fracture mechanics analysis. In the experimental part...... of the investigation, fatigue test series with a total of 540 fatigue tests have been carried through on various types of welded plate test specimens and full-scale offshore tubular joints. The materials that have been used are either conventional structural steel or high-strength steel. The fatigue tests...... and the fracture mechanics analyses have been carried out using load histories, which are realistic in relation to the types of structures studied, i.e. primarily bridges, offshore structures and chimneys. In general, the test series carried through show a significant difference between constant amplitude...

  20. A multi-ingredient containing carbohydrate, proteins L-glutamine and L-carnitine attenuates fatigue perception with no effect on performance, muscle damage or immunity in soccer players.

    Science.gov (United States)

    Naclerio, Fernando; Larumbe-Zabala, Eneko; Cooper, Robert; Allgrove, Judith; Earnest, Conrad P

    2015-01-01

    We investigated the effects of ingesting a multi-ingredient (53 g carbohydrate, 14.5 g whey protein, 5 g glutamine, 1.5 g L-carnitine-L-tartrate) supplement, carbohydrate only, or placebo on intermittent performance, perception of fatigue, immunity, and functional and metabolic markers of recovery. Sixteen amateur soccer players ingested their respective treatments before, during and after performing a 90-min intermittent repeated sprint test. Primary outcomes included time for a 90-min intermittent repeated sprint test (IRS) followed by eleven 15 m sprints. Measurements included creatine kinase, myoglobin, interleukine-6, Neutrophil; Lymphocytes and Monocyte before (pre), immediately after (post), 1 h and 24 h after exercise testing period. Overall, time for the IRS and 15 m sprints was not different between treatments. However, the perception of fatigue was attenuated (Pcarbohydrate (17.0±1.9) condition. Several changes in immune/inflammatory indices were noted as creatine kinase peaked at 24 h while Interleukin-6 and myoglobin increased both immediately after and at 1 h compared with baseline (PCarbohydrate also elicited lower neutrophil concentrations vs. multi-ingredient (3.9±1.5 10(9)/L vs. 4.9±1.8 10(9)/L, P = 0.016) and a reduced (Pcarbohydrate supplements did not improve intermittent performance, inflammatory or immune function. However, both treatments did attenuate serum myoglobin, while only carbohydrate blunted post-exercise leukocytosis.

  1. Putting a price on worker fatigue

    Energy Technology Data Exchange (ETDEWEB)

    Carter, R.A.

    2007-03-15

    In a round-the-clock industry such as mining, extended work hours may be necessary for production but damaging to the bottom line. A recent report commissioned by the Minerals Council of Australia (MCA) attempts to document the relationship between sleep, working arrangements and fatigue. The study, titled Work Design, Fatigue and Sleep by Dr. Angela Baker and Dr. Sally Ferguson of the Australian Center for Sleep Research at the University of South Australia contains information useful for managing fatigue in the workplace. The publication is available free online at http://www.minerals.org.au. The study offers guidelines for planing work schedules or for chaning shifts. William G. Sirosis, senior vice president and COO of Circadian Technologies Inc., also addressed this topic in a presentation at the recent MineWest 2006 conference. He pointed out that the exact dollar costs of operating with a fatigued workforce was difficult to pinpoint but the cumulative effect can be damaging to a company's production and profitability. He suggested steps to a successful management programme.

  2. Identificação do dano induzido por fadiga e cura de micro trincas em compósitos cerâmicos particulados, voltados à aplicação em pavimentos flexíveis Fatigue damage induced and healing identification in particulate ceramic composites for application in flexible pavings

    Directory of Open Access Journals (Sweden)

    F. R. G. Nunes

    2009-12-01

    Full Text Available Um dos grandes defeitos ocorrentes no pavimento, ao longo de sua vida útil, é o trincamento por fadiga. Este problema, em geral, se inicia na base do revestimento asfáltico e se propaga para a sua superfície. A caracterização das misturas asfálticas, realizada comumente no Brasil, é baseada no número de ciclos que causam a ruptura no ensaio de fadiga. No entanto, tal número não é um parâmetro mecânico, podendo variar para diferentes condições de contorno. O objetivo do presente artigo é identificar parâmetros mecânicos, referentes ao trincamento por fadiga, do compósito asfáltico com agregado sintético de argila calcinada (ASAC. Para tanto, foi utilizado um modelo viscoelástico de dano contínuo, fundamentado em trabalhos de Shapery, Kim e Lee. Os resultados com o compósito estudado (ASAC mostraram que a perda de rigidez, baseada em uma variável interna de estado, pode ser um critério de fadiga; que o ensaio pode ser realizado para um nível de tensão; a cura de microtrincas durante os períodos de não solicitação da estrutura.One of the major distresses in flexible pavings, throughout its useful life, is the fatigue cracking. This problem, in general, initiates in the base of the asphalt layer and propagates for its surface. The characterization of the asphalt mixtures, carried out in Brazil, is based on the number of cycles that cause the rupture in the fatigue test. However, such number is not a mechanical parameter, varying for different boundary conditions. The objective of the present article is to identify mechanical parameters, referring fatigue cracking, of the asphalt composite with synthetic calcinated clay aggregates (SCCA. To this end, a continuum damage viscoelastic model was used based works from Shapery, Kim and Lee. The results with the composite studied (SCCA had shown: that the loss of rigidity, based on an internal state variable, can be a fatigue criterion; that the test can be carried through

  3. Physical and Model Uncertainty for Fatigue Design of Composite Material

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Sørensen, John Dalsgaard

    The main aim of the present report is to establish stochastic models for the uncertainties related to fatigue design of composite materials. The uncertainties considered are the physical uncertainty related to the static and fatigue strength and the model uncertainty related to Miners rule...... for linear damage accumulation. Test data analyzed are taken from the Optimat database [1] which is public available. The composite material tested within the Optimat project is normally used for wind turbine blades....

  4. Partial Safety Factors for Fatigue Design of Wind Turbine Blades

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Sørensen, John Dalsgaard

    2010-01-01

    In the present paper calibration of partial safety factors for fatigue design of wind turbine blades is considered. The stochastic models for the physical uncertainties on the material properties are based on constant amplitude fatigue tests and the uncertainty on Miners rule for linear damage ac...... of the partial safety factors depending on the level of model and statistical uncertainty. This could be useful for manufactures that perform additional measurements or calculations in order to bring down the model and statistical uncertainties....

  5. Fatigue mechanisms during physical exercise

    Directory of Open Access Journals (Sweden)

    Monique Gevaerd

    2006-03-01

    Full Text Available Fatigue can be defined as incapacity to maintain the required power output, with concomitant impairment of exercise performance, and it can be divided into chronic or acute. In acute fatigue a subdivision has been used to delimitate experimental studies. Thus, acute fatigue can be central or peripheral. We began the review process with a search on the Pubmed database, followed by selection of classical and more recent articles. As the fatigue mechanisms are linked to the predominant energy metabolism in the activity, the purpose of this paper was to review the main acute fatigue theories in activities with different metabolic demands. From this literature review, it was possible to infer that important metabolic alterations occurring during exercise, impair normal cellular activities,therefore, decreasing the speed of contraction and as well as energy replenishment. Many of those alterations give information to the central nervous system, limiting the time length of exercise. Theoretically, the elongation of exercise beyond biological limits can cause irreversible damages to the organism. RESUMO Fadiga pode ser definida como uma incapacidade na manutenção de uma determinada potência, com conseqüente redução no desempenho, podendo ser considerada como crônica ou aguda. Na fadiga aguda, uma subdivisão vem sendo utilizada para maior delimitação dos estudos experimentais. Nesse sentido, fadiga aguda pode ser descrita como central ou periférica. Nós iniciamos o processo de revisão sobre o assunto com uma busca no banco de dados Pubmed, seguido da seleção dos artigos clássicos e mais recentes. Como os mecanismos de fadiga estão intimamente ligados ao metabolismo energético predominante da atividade, a presente revisão destinou-se a levantar as principais teorias sobre fadiga aguda em atividades com diferentes exigências metabólicas. A partir desse apanhado bibliográfico podemos inferir que importantes alterações metab

  6. Corrosion fatigue crack propagation in metals

    Science.gov (United States)

    Gangloff, Richard P.

    1990-01-01

    This review assesses fracture mechanics data and mechanistic models for corrosion fatigue crack propagation in structural alloys exposed to ambient temperature gases and electrolytes. Extensive stress intensity-crack growth rate data exist for ferrous, aluminum and nickel based alloys in a variety of environments. Interactive variables (viz., stress intensity range, mean stress, alloy composition and microstructure, loading frequency, temperature, gas pressure and electrode potential) strongly affect crack growth kinetics and complicate fatigue control. Mechanistic models to predict crack growth rates were formulated by coupling crack tip mechanics with occluded crack chemistry, and from both the hydrogen embrittlement and anodic dissolution/film rupture perspectives. Research is required to better define: (1) environmental effects near threshold and on crack closure; (2) damage tolerant life prediction codes and the validity of similitude; (3) the behavior of microcrack; (4) probes and improved models of crack tip damage; and (5) the cracking performance of advanced alloys and composites.

  7. Fatigue Life Assessment of Orthotropic Steel Deck with UHPC Pavement

    Directory of Open Access Journals (Sweden)

    Xu Jiang

    2017-01-01

    Full Text Available In recent years, a number of large-span bridges with orthotropic steel decks were constructed in China. With increasing traffic volumes and higher wheel loads, many fatigue cracks developed at the welds and the edge of cut-out holes. This paper aims at presenting the numerical analysis on the fatigue performance of the orthotropic steel deck using ultrahigh performance concrete (UHPC overlay as the deck pavement instead of the conventional asphalt concrete pavement. By using finite element method (FEM model, stress distribution at fatigue sensitive locations under the action of wheel loads is characterized and the obtained stress ranges indicate that the UHPC pavement significantly reduces the magnitude of the stress peak valued. A suggested truck stream model based on the weigh-in-motion (WIM data of four bridges in China is employed to calculate the stress variation at specific fatigue details. Furthermore, the fatigue damage accumulation at fatigue details under the UHPC and conventional asphalt concrete pavement is studied based on Miner’s linear cumulative damage rule and the rain-flow method. The results indicate that the UHPC pavement on the orthotropic steel deck can extend the service lives of the concerned regions over 100 years, but the fatigue lives will reduce significantly when the elastic modulus of UHPC decreases to 50% of the original value.

  8. Examining fatigue in COPD

    DEFF Research Database (Denmark)

    Al-Shair, Khaled; Muellerova, Hana; Yorke, Janelle

    2012-01-01

    ABSTRACT: INTRODUCTION: Fatigue is a disruptive symptom that inhibits normal functional performance of COPD patients in daily activities. The availability of a short, simple, reliable and valid scale would improve assessment of the characteristics and influence of fatigue in COPD. METHODS......: At baseline, 2107 COPD patients from the ECLIPSE cohort completed the Functional Assessment of Chronic Illness Therapy Fatigue (FACIT-F) scale. We used well-structured classic method, the principal components analysis (PCA) and Rasch analysis for structurally examining the 13-item FACIT-F. RESULTS: Four items...... were less able to capture fatigue characteristics in COPD and were deleted. PCA was applied to the remaining 9 items of the modified FACIT-F and resulted in three interpretable dimensions: i) general (5 items); ii) functional ability (2 items); and iii) psychosocial fatigue (2 items). The modified...

  9. Creep, fatigue and creep-fatigue interactions in modified 9% Chromium - 1% Molybdenum (P91) steels

    Science.gov (United States)

    Kalyanasundaram, Valliappa

    Grade P91 steel, from the class of advanced high-chrome ferritic steels, is one of the preferred materials for many elevated temperature structural components. Creep-fatigue (C-F) interactions, along with oxidation, can accelerate the kinetics of damage accumulation and consequently reduce such components' life. Hence, reliable C-F test data is required for meticulous consideration of C-F interactions and oxidation, which in turn is vital for sound design practices. It is also imperative to develop analytical constitutive models that can simulate and predict material response under various long-term in-service conditions using experimental data from short-term laboratory experiments. Consequently, the major objectives of the proposed research are to characterize the creep, fatigue and C-F behavior of grade P91 steels at 625 C and develop robust constitutive models for simulating/predicting their microstructural response under different loading conditions. This work will utilize experimental data from 16 laboratories worldwide that conducted tests (creep, fatigue and C-F) on grade P91 steel at 625°C in a round-robin (RR) program. Along with 7 creep deformation and rupture tests, 32 pure fatigue and 46 C-F tests from the RR are considered in this work. A phenomenological constitutive model formulated in this work needs just five fitting parameters to simulate/predict the monotonic, pure fatigue and C-F behavior of grade P91 at 625 C. A modified version of an existing constitutive model is also presented for particularly simulating its isothermal creep deformation and rupture behavior. Experimental results indicate that specimen C-F lives, as measured by the 2% load drop criterion, seem to decrease with increasing strain ranges and increasing hold times at 625°C. Metallographic assessment of the tested specimens shows that the damage mode in both pure fatigue and 600 seconds hold time cyclic tests is predominantly transgranular fatigue with some presence of

  10. A methodology to evaluate the fatigue life of flexible pipes

    Energy Technology Data Exchange (ETDEWEB)

    Sousa, Fernando J.M. de; Sousa, Jose Renato M. de; Siqueira, Marcos Q. de; Sagrilo, Luis V.S. [Coordenacao dos Programas de Pos-graduacao em Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil); Lemos, Carlos Alberto D. de [Petroleo Brasileiro S.A. (PETROBRAS), Rio de Janeiro, RJ (Brazil)

    2009-07-01

    This paper focus on a methodology to perform the fatigue analysis of flexible pipes. This methodology employs functions that convert forces and moments obtained in global analyses into stresses. The stresses are then processed by well-known cycle counting methods, and S-N curves evaluate the damage at several points in the pipe cross-section. Palmgren-Miner linear damage hypothesis is assumed in order to calculate the accumulated fatigue damage. A parametric study on the fatigue life of a flexible pipe employing this methodology is presented. The main points addressed in the study are the influence of friction between layers in the results, the importance of evaluating the fatigue life in various points of the pipe cross-section and the effect of different mean stress levels. The obtained results suggest that the consideration of friction effects strongly influences the fatigue life of flexible risers and these effects have to be accounted both in the global and local analyses of the riser. Moreover, mean stress effects are also significant and at least 8 equally spaced wires in each analyzed section of the riser must be considered in fatigue analyses. (author)

  11. Fatigue Analysis of Notched Laminates: A Time-Efficient Macro-Mechanical Approach

    Science.gov (United States)

    Naghipour, P.; Pineda, E. J.; Bednarcyk, B. A.; Arnold, S. M.; Waas, A. M.

    2016-01-01

    A coupled transversely isotropic deformation and damage fatigue model is implemented within the finite element method and was utilized along with a static progressive damage model to predict the fatigue life, stiffness degradation as a function of number of cycles, and post-fatigue tension and compression response of notched, multidirectional laminates. Initially, the material parameters for the fatigue model were obtained utilizing micromechanics simulations and the provided [0], [90] and [plus or minus 45] experimental composite laminate S-N (stress-cycle) data. Within the fatigue damage model, the transverse and shear properties of the plies were degraded with an isotropic scalar damage variable. The damage in the longitudinal (fiber) ply direction was suppressed, and only the strength of the fiber was degraded as a function of fatigue cycles. A maximum strain criterion was used to capture the failure in each element, and once this criterion was satisfied, the longitudinal stiffness of the element was decreased by a factor of 10 (sup 4). The resulting, degraded properties were then used to calculate the new stress state. This procedure was repeated until final failure of the composite laminate was achieved or a specified number of cycles reached. For post-fatigue tension and compression behavior, four internal state variables were used to control the damage and failure. The predictive capability of the above-mentioned approach was assessed by performing blind predictions of the notched multidirectional IM7/977-3 composite laminates response under fatigue and post-fatigue tensile and compressive loading, followed by a recalibration phase. Although three different multidirectional laminates were analyzed in the course of this study, only detailed results (i.e., stiffness degradation and post-fatigue stress-train curves as well as damage evolution states for a single laminate ([30/60/90/minus 30/minus 60] (sub 2s)) are discussed in detail here.

  12. Very high cycle fatigue testing of concrete using ultrasonic cycling

    Energy Technology Data Exchange (ETDEWEB)

    Karr, Ulrike; Schuller, Reinhard; Fitzka, Michael; Mayer, Herwig [Univ. of Natural Resources and Life Sciences, Vienna (Austria). Inst. of Physics and Materials Science; Denk, Andreas; Strauss, Alfred [Univ. of Natural Resources and Life Sciences, Vienna (Austria)

    2017-06-01

    The ultrasonic fatigue testing method has been further developed to perform cyclic compression tests with concrete. Cylindrical specimens vibrate in resonance at a frequency of approximately 20 kHz with superimposed compressive static loads. The high testing frequency allows time-saving investigations in the very high cycle fatigue regime. Fatigue tests were carried out on ''Concrete 1'' (compressive strength f{sub c} = 80 MPa) and ''Concrete 2'' (f{sub c} = 107 MPa) under purely compressive loading conditions. Experiments at maximum compressive stresses of 0.44 f{sub c} (Concrete 1) and 0.38 f{sub c} (Concrete 2) delivered specimen failures above 109 cycles, indicating that no fatigue limit exists for concrete below one billion load cycles. Resonance frequency, power required to resonate the specimen and second order harmonics of the vibration are used to monitor fatigue damage in situ. Specimens were scanned by X-ray computed tomography prior to and after testing. Fatigue cracks were produced by ultrasonic cycling in the very high cycle fatigue regime at interfaces of grains as well as in cement. The possibilities as well as limitations of ultrasonic fatigue testing of concrete are discussed.

  13. High Frequency Vibration Based Fatigue Testing of Developmental Alloys

    Science.gov (United States)

    Holycross, Casey M.; Srinivasan, Raghavan; George, Tommy J.; Tamirisakandala, Seshacharyulu; Russ, Stephan M.

    Many fatigue test methods have been previously developed to rapidly evaluate fatigue behavior. This increased test speed can come at some expense, since these methods may require non-standard specimen geometry or increased facility and equipment capability. One such method, developed by George et al, involves a base-excited plate specimen driven into a high frequency bending resonant mode. This resonant mode is of sufficient frequency (typically 1200 to 1700 Hertz) to accumulate 107 cycles in a few hours. One of the main limitations of this test method is that fatigue cracking is almost certainly guaranteed to be surface initiated at regions of high stress. This brings into question the validity of the fatigue test results, as compared to more traditional uniaxial, smooth-bar testing, since high stresses are subjecting only a small volume to fatigue damage. This limitation also brings into question the suitability of this method to screen developmental alloys, should their initiation life be governed by subsurface flaws. However, if applicable, the rapid generation of fatigue data using this method would facilitate faster design iterations, identifying more quickly, material and manufacturing process deficiencies. The developmental alloy used in this study was a powder metallurgy boron-modified Ti-6Al-4V, a new alloy currently being considered for gas turbine engine fan blades. Plate specimens were subjected to fully reversed bending fatigue. Results are compared with existing data from commercially available Ti-6Al-4V using both vibration based and more traditional fatigue test methods.

  14. Fatigue Analysis of Proton Exchange Membrane Fuel Cell Stacks Based on Structural Stress Distribution

    Science.gov (United States)

    Wu, C. W.; Liu, B.; Wei, M. Y.; Liu, L. F.

    2017-05-01

    Proton exchange membrane fuel cell (PEMFC) stack usually undergoes various vibrations during packing, transportation and serving time, in particular for those used in the automobiles and portable equipment. Based on the Miner fatigue damage theory, the fatigue lives of the fuel cell components are first assessed. Then the component fatigue life contours of the stack are obtained under four working conditions, i.e. the three single-axial (in X-, Y- and Z-axis separately) and multi-axial random vibrations. Accordingly, the component damage under various vibrations is evaluated. The stress distribution on the gasket and PEM will greatly affect their fatigue lives. Finally, we compare the fatigue lives of 4-bolt- and 6-bolt-clamping stacks under the same total clamping force, and find that increasing the bolt number could improve the bolt fatigue lives.

  15. Perceived fatigue following pediatric burns

    NARCIS (Netherlands)

    Akkerman, Moniek; Mouton, Leonora J.; Dijkstra, Froukje; Niemeijer, Anuschka S.; van Brussel, Marco; van der Woude, Lucas H. V.; Disseldorp, Laurien M.; Nieuwenhuis, Marianne K.

    2017-01-01

    Purpose: Fatigue is a common consequence of numerous pediatric health conditions. In adult burn survivors, fatigue was found to be a major problem. The current cross-sectional study is aimed at determining the levels of perceived fatigue in pediatric burn survivors. Methods: Perceived fatigue was

  16. Perceived fatigue following pediatric burns

    NARCIS (Netherlands)

    Akkerman, Moniek; Mouton, Leonora J.; Dijkstra, Froukje; Niemeijer, Anuschka S.; van Brussel, Marco|info:eu-repo/dai/nl/30481962X; Van der Woude, Lucas H. V.; Disseldorp, Laurien M.; Nieuwenhuis, Marianne K.

    2017-01-01

    Purpose Fatigue is a common consequence of numerous pediatric health conditions. In adult burn survivors, fatigue was found to be a major problem. The current cross-sectional study is aimed at determining the levels of perceived fatigue in pediatric burn survivors. Methods Perceived fatigue was

  17. Prolonged unexplained fatigue in paediatrics

    NARCIS (Netherlands)

    Bakker, R.J.

    2010-01-01

    Prolonged Unexplained Fatigue in Paediatrics. Fatigue, as the result of mental or physical exertion, will disappear after rest, drinks and food. Fatigue as a symptom of illness will recover with the recovering of the illness. But when fatigue is ongoing for a long time, and not the result of

  18. Experiences of Fatigue at Sea

    DEFF Research Database (Denmark)

    Zhao, Zhiwei; Jepsen, Jørgen Riis; Chen, Zhonglong

    2016-01-01

    Fatigue has negative impacts on the general working population as well as on seafarers. In order to study seafarers’ fatigue, a questionnaire-base survey was conducted to gain information about potential risk factors for fatigue and construct indexes indicating fatigue. The study applies T...

  19. Collect Available Creep-Fatigue Data and Study Existing Creep-Fatigue Evaluation Procedures for Grade 91 and Hastelloy XR

    Energy Technology Data Exchange (ETDEWEB)

    Tai Asayama; Yukio Tachibana

    2007-09-30

    This report describes the results of investigation on Task 5 of DOE/ASME Materials Project based on a contract between ASME Standards Technology, LLC (ASME ST-LLC) and Japan Atomic Energy Agency (JAEA). Task 5 is to collect available creep-fatigue data and study existing creep-fatigue evaluation procedures for Grade 91 steel and Hastelloy XR. Part I of this report is devoted to Grade 91 steel. Existing creep-fatigue data were collected (Appendix A) and analyzed from the viewpoints of establishing a creep-fatigue procedure for VHTR design. A fair amount of creep-fatigue data has been obtained and creep-fatigue phenomena have been clarified to develop design standards mainly for fast breeder reactors. Following this, existing creep-fatigue procedures were studied and it was clarified that the creep-fatigue evaluation procedure of the ASME-NH has a lot of conservatisms and they were analyzed in detail from the viewpoints of the evaluation of creep damage of material. Based on the above studies, suggestions to improve the ASME-NH procedure along with necessary research and development items were presented. Part II of this report is devoted to Hastelloy XR. Existing creep-fatigue data used for development of the high temperature structural design guideline for High Temperature Gas-cooled Reactor (HTGR) were collected. Creep-fatigue evaluation procedure in the design guideline and its application to design of the intermediate heat exchanger (IHX) for High Temperature Engineering Test Reactor (HTTR) was described. Finally, some necessary research and development items in relation to creep-fatigue evaluation for Gen IV and VHTR reactors were presented.

  20. THE ANALYSIS OF CAUSES OF LORRY PISTON COMBUSTION ENGINE DAMAGE

    Directory of Open Access Journals (Sweden)

    Mária Štefániková

    2012-02-01

    Full Text Available The article deals with analysis of causes of lorry piston combustion engine damage. For docummentation and analysis of causes was used macroscopical, microscopical and scanning electron microscopy. The analysis showed that the reason of fatal damage resides in production process of lorry combustion pistons which proved in implication of fatigue damage and subsequent burnout in two piston place.

  1. Fatigue 󈨛. Volume 2,

    Science.gov (United States)

    1987-06-01

    boundary. 638 FATIGUE 87 The bulk bismuth concentrations of the bicrystals were measured by Chicago Spectro Laboratory and Charles C. Kawin Company both...645. B.M. Strauss and W.H. Cullen , Jr., editors, ASTM, Philadelphia, 1978, pp. 164-175. (4) Meakin. J.D. and Wilsdorf, H.G.F.. Trans. TMS-AIME, Vol... Edmunds , 1986. 785 FATIGUE 87 (7) James, M.N. and Knott, J.F., Fatigue Fract. Engng Mater. Struct., Vol.8, 1985, pp.177-191. (8) Breat, J.L., Mudry, F

  2. Improved methods of creep-fatigue life assessment of components

    Energy Technology Data Exchange (ETDEWEB)

    Scholz, Alfred; Berger, Christina [Inst. fuer Werkstoffkunde (IfW), Technische Univ. Darmstadt (Germany)

    2009-07-01

    The improvement of life assessment methods contributes to a reduction of efforts at design and an effective long term operation of high temperature components, reduces technical risk and increases high economical advantages. Creep-fatigue at multi-stage loading, covering cold start, warm start and hot start cycles in typical loading sequences e.g. for medium loaded power plants, was investigated here. At hold times creep and stress relaxation, respectively, lead to an acceleration of crack initiation. Creep fatigue life time can be calculated by a modified damage accumulation rule, which considers the fatigue fraction rule for fatigue damage and the life fraction rule for creep damage. Mean stress effects, internal stress and interaction effects of creep and fatigue are considered. Along with the generation of advanced creep data, fatigue data and creep fatigue data as well scatter band analyses are necessary in order to generate design curves and lower bound properties inclusive. Besides, in order to improve lifing methods the enhancement of modelling activities for deformation and life time are important. For verification purposes, complex experiments at variable creep conditions as well as at creep fatigue interaction under multi-stage loading are of interest. Generally, the development of methods to transfer uniaxial material properties to multiaxial loading situations is a current challenge. For specific design purposes, a constitutive material model is introduced which is implemented as an user subroutine for Finite Element applications due to start-up and shut-down phases of components. Identification of material parameters have been performed by Neural Networks. (orig.)

  3. Widespread Granuloma Annulare in Photo Distribution

    Directory of Open Access Journals (Sweden)

    Ayşegül Polat

    2017-12-01

    Full Text Available Granuloma annulare is relatively common idiopathic disease of dermis and subcutaneous tissue. It can be observed of all races and ages, but it effects woman more often (2:1. Widespread granuloma annulare, diffuse but symmetrically located occurs as papular or annular pustules composed of more than ten and often hundreds of lesions. Because of the rare occurrence of common granuloma annulare cases with photosensitivity distribution, we present a case of a 49 year-old woman who had generalized granuloma annulare on the neck, dorsal aspects of the hands and extensor surfaces of the arms showing photosensitive distribution and that responded well to topical and intralesional steroid treatment.

  4. Room temperature creep-fatigue response of selected copper alloys for high heat flux applications

    DEFF Research Database (Denmark)

    Li, M.; Singh, B.N.; Stubbins, J.F.

    2004-01-01

    Two copper alloys, dispersion-strengthened CuAl25 and precipitation-hardened CuCrZr, were examined under fatigue and fatigue with hold time loading conditions. Tests were carried out at room temperature and hold times were imposed at maximum tensile and maximum compressive strains. It was found...... that hold times could be damaging even at room temperature, well below temperatures typically associated with creep. Hold times resulted in shorter fatigue lives in the high cycle fatigue, long life regime (i.e., at low strain amplitudes) than those of materials tested under the same conditions without hold...... times. The influence of hold times on fatigue life in the low cycle fatigue, short life regime (i.e., at high strain amplitudes) was minimal. When hold time effects were observed, fatigue lives were reduced with hold times as short as two seconds. Appreciable stress relaxation was observed during...

  5. Fatigue in Welded High-Strength Steel Plate Elements under Stochastic Loading

    DEFF Research Database (Denmark)

    Agerskov, Henning; Petersen, R.I.; Martinez, L. Lopez

    1999-01-01

    The present project is a part of an investigation on fatigue in offshore structures in high-strength steel. The fatigue life of plate elements with welded attachments is studied. The material used has a yield stress of ~ 810-840 MPa, and high weldability and toughness properties. Fatigue test...... series with constant amplitude loading and with various types of stochastic loading have been carried through on test specimens in high-strength steel, and - for a comparison - on test specimens in conventional offshore structural steel with a yield stress of ~ 400-410 MPa.A comparison between constant...... amplitude and variable amplitude fatigue test results shows shorter fatigue lives in variable amplitude loading than should be expected from the linear fatigue damage accumulation formula. Furthermore, in general longer fatigue lives were obtained for the test specimens in high-strength steel than those...

  6. A multi-ingredient containing carbohydrate, proteins L-glutamine and L-carnitine attenuates fatigue perception with no effect on performance, muscle damage or immunity in soccer players.

    Directory of Open Access Journals (Sweden)

    Fernando Naclerio

    Full Text Available We investigated the effects of ingesting a multi-ingredient (53 g carbohydrate, 14.5 g whey protein, 5 g glutamine, 1.5 g L-carnitine-L-tartrate supplement, carbohydrate only, or placebo on intermittent performance, perception of fatigue, immunity, and functional and metabolic markers of recovery. Sixteen amateur soccer players ingested their respective treatments before, during and after performing a 90-min intermittent repeated sprint test. Primary outcomes included time for a 90-min intermittent repeated sprint test (IRS followed by eleven 15 m sprints. Measurements included creatine kinase, myoglobin, interleukine-6, Neutrophil; Lymphocytes and Monocyte before (pre, immediately after (post, 1 h and 24 h after exercise testing period. Overall, time for the IRS and 15 m sprints was not different between treatments. However, the perception of fatigue was attenuated (P<0.001 for the multi-ingredient (15.9±1.4 vs. placebo (17.8±1.4 but not for the carbohydrate (17.0±1.9 condition. Several changes in immune/inflammatory indices were noted as creatine kinase peaked at 24 h while Interleukin-6 and myoglobin increased both immediately after and at 1 h compared with baseline (P<0.05 for all three conditions. However, Myoglobin (P<0.05 was lower 1 h post-exercise for the multi-ingredient (241.8±142.6 ng·ml(-1 and CHO (265.4±187.8 ng·ml(-1 vs. placebo (518.6±255.2 ng·ml(-1. Carbohydrate also elicited lower neutrophil concentrations vs. multi-ingredient (3.9±1.5 10(9/L vs. 4.9±1.8 10(9/L, P = 0.016 and a reduced (P<0.05 monocytes count (0.36±0.09 10(9/L compared to both multi-ingredient (0.42±0.09 10(9/L and placebo (0.42±0.12 10(9/L. In conclusion, multi-ingredient and carbohydrate supplements did not improve intermittent performance, inflammatory or immune function. However, both treatments did attenuate serum myoglobin, while only carbohydrate blunted post-exercise leukocytosis.

  7. Adoption of High Performance Computational (HPC) Modeling Software for Widespread Use in the Manufacture of Welded Structures

    Energy Technology Data Exchange (ETDEWEB)

    Brust, Frederick W. [Engineering Mechanics Corporation of Columbus, Columbus, OH (United States); Punch, Edward F. [Engineering Mechanics Corporation of Columbus, Columbus, OH (United States); Twombly, Elizabeth Kurth [Engineering Mechanics Corporation of Columbus, Columbus, OH (United States); Kalyanam, Suresh [Engineering Mechanics Corporation of Columbus, Columbus, OH (United States); Kennedy, James [Engineering Mechanics Corporation of Columbus, Columbus, OH (United States); Hattery, Garty R. [Engineering Mechanics Corporation of Columbus, Columbus, OH (United States); Dodds, Robert H. [Professional Consulting Services, Inc., Lisle, IL (United States); Mach, Justin C [Caterpillar, Peoria, IL (United States); Chalker, Alan [Ohio Supercomputer Center (OSC), Columbus, OH (United States); Nicklas, Jeremy [Ohio Supercomputer Center (OSC), Columbus, OH (United States); Gohar, Basil M [Ohio Supercomputer Center (OSC), Columbus, OH (United States); Hudak, David [Ohio Supercomputer Center (OSC), Columbus, OH (United States)

    2016-12-30

    This report summarizes the final product developed for the US DOE Small Business Innovation Research (SBIR) Phase II grant made to Engineering Mechanics Corporation of Columbus (Emc2) between April 16, 2014 and August 31, 2016 titled ‘Adoption of High Performance Computational (HPC) Modeling Software for Widespread Use in the Manufacture of Welded Structures’. Many US companies have moved fabrication and production facilities off shore because of cheaper labor costs. A key aspect in bringing these jobs back to the US is the use of technology to render US-made fabrications more cost-efficient overall with higher quality. One significant advantage that has emerged in the US over the last two decades is the use of virtual design for fabrication of small and large structures in weld fabrication industries. Industries that use virtual design and analysis tools have reduced material part size, developed environmentally-friendly fabrication processes, improved product quality and performance, and reduced manufacturing costs. Indeed, Caterpillar Inc. (CAT), one of the partners in this effort, continues to have a large fabrication presence in the US because of the use of weld fabrication modeling to optimize fabrications by controlling weld residual stresses and distortions and improving fatigue, corrosion, and fracture performance. This report describes Emc2’s DOE SBIR Phase II final results to extend an existing, state-of-the-art software code, Virtual Fabrication Technology (VFT®), currently used to design and model large welded structures prior to fabrication - to a broader range of products with widespread applications for small and medium-sized enterprises (SMEs). VFT® helps control distortion, can minimize and/or control residual stresses, control welding microstructure, and pre-determine welding parameters such as weld-sequencing, pre-bending, thermal-tensioning, etc. VFT® uses material properties, consumable properties, etc. as inputs

  8. Chronic Fatigue Syndrome

    Science.gov (United States)

    ... light, eye pain) Psychological symptoms (irritability, mood swings, panic attacks, anxiety) Chills and night sweats Low grade ... Research Phone Number: 775-682-8250 Chronic fatigue syndrome > A-Z Health Topics The Office on Women's ...

  9. Hyperthermia and fatigue

    DEFF Research Database (Denmark)

    Nybo, Lars

    2008-01-01

    of the cardiovascular function, which eventually reduces arterial oxygen delivery to the exercising muscles. Accordingly, aerobic energy turnover is impaired and anaerobic metabolism provokes peripheral fatigue. In contrast, metabolic disturbances of muscle homeostasis are less important during prolonged exercise......The present review addresses mechanisms of importance for hyperthermia-induced fatigue during short intense activities and prolonged exercise in the heat. Inferior performance during physical activities with intensities that elicit maximal oxygen uptake is to a large extent related to perturbation...... in the heat, because increased oxygen extraction compensates for the reduction in systemic blood flow. The decrease in endurance seems to involve changes in the function of the central nervous system (CNS) that lead to fatigue. The CNS fatigue appears to be influenced by neurotransmitter activity...

  10. Chronic Fatigue Syndrome

    Science.gov (United States)

    ... people with CFS should avoid heavy meals, alcohol, caffeine, and large quantities of junk food. Some people ... to address problems. Write it down. If your memory and concentration are affected by chronic fatigue, it ...

  11. Ultraviolet vision may be widespread in bats

    Science.gov (United States)

    Gorresen, P. Marcos; Cryan, Paul; Dalton, David C.; Wolf, Sandy; Bonaccorso, Frank

    2015-01-01

    Insectivorous bats are well known for their abilities to find and pursue flying insect prey at close range using echolocation, but they also rely heavily on vision. For example, at night bats use vision to orient across landscapes, avoid large obstacles, and locate roosts. Although lacking sharp visual acuity, the eyes of bats evolved to function at very low levels of illumination. Recent evidence based on genetics, immunohistochemistry, and laboratory behavioral trials indicated that many bats can see ultraviolet light (UV), at least at illumination levels similar to or brighter than those before twilight. Despite this growing evidence for potentially widespread UV vision in bats, the prevalence of UV vision among bats remains unknown and has not been studied outside of the laboratory. We used a Y-maze to test whether wild-caught bats could see reflected UV light and whether such UV vision functions at the dim lighting conditions typically experienced by night-flying bats. Seven insectivorous species of bats, representing five genera and three families, showed a statistically significant ‘escape-toward-the-light’ behavior when placed in the Y-maze. Our results provide compelling evidence of widespread dim-light UV vision in bats.

  12. The Recognition Of Fatigue

    DEFF Research Database (Denmark)

    Elsass, Peter; Jensen, Bodil; Mørup, Rikke

    2007-01-01

    Elsass P., Jensen B., Morup R., Thogersen M.H. (2007). The Recognition Of Fatigue: A qualitative study of life-stories from rehabilitation clients. International Journal of Psychosocial Rehabilitation. 11 (2), 75-87......Elsass P., Jensen B., Morup R., Thogersen M.H. (2007). The Recognition Of Fatigue: A qualitative study of life-stories from rehabilitation clients. International Journal of Psychosocial Rehabilitation. 11 (2), 75-87...

  13. Fatigue of bridges with a horizontal rotation axle under random wind load

    NARCIS (Netherlands)

    Maljaars, J.; Steenbergen, R.D.J.M.

    2012-01-01

    The operating mechanisms of movable bridges are subjected to various types of fluctuating loads which may induce fatigue damage. Wind load acting on the bridge deck - when the bridge is open - is one of the important load types. A wind load model is proposed that can be used in the fatigue design

  14. Modeling fatigue-driving delamination using a thick level set interface model

    NARCIS (Netherlands)

    Latifi, M.; van der Meer, F.P.; Sluijs, Lambertus J.; Drechsler, K.

    2016-01-01

    This paper presents a new discontinuous damage model for simulating fatigue-driven delamination in composites. Fatigue models commonly describe crack growth using the Paris law which provides the link between the energy released due to delamination and the crack growth rate. A core issue in

  15. Short-duration fatigue alters neuromuscular coordination of trunk musculature: implications for injury.

    Science.gov (United States)

    Gorelick, M; Brown, J M M; Groeller, H

    2003-07-01

    The aim of this investigation was to determine the effect of muscle fatigue, produced by two different fatigue protocols, on the coordination of trunk and thigh muscles during the performance of a manual-handling task (e.g. a weighted stoop lift). The two fatigue protocols were designed to produce either (a) a non-specific widespread fatigue of trunk and limb muscles (e.g. rowing fatigue protocol), or (b) a specific fatigue of the trunk extensor musculature (e.g. back extension fatigue protocol). Specifically, we wished to determine whether the coordination of trunk muscles during a stoop lift was compromised more, or less, by either of these two fatigue protocols. Ten male subjects (20-24 years) were tested utilising an electromyographic technique which collected electromyograms from trunk flexor and extensor muscles, as well as the Hamstring muscle group, during a pre- and a post-fatigue performance of a weighted stoop lift. The results showed that the back extension fatigue protocol, but not the rowing fatigue protocol, produced significant (pmuscle activation during a stoop lift. The longer periods of muscle activation seen only after the back extension fatigue protocol, suggested that fatigue of these muscles had required the CNS to alter their periods of activation to a pattern similar to that previously seen in elderly populations. The results also suggested that intense short-duration motor tasks, which may differentially target the back and its musculature, could leave the spine susceptible to increased risk of injury even though worker perceptions of general fatigue are low. Risk assessment guidelines for manual handling should consider not only the weight and frequency of the lift, but lift duration as well to maintain worker safety.

  16. Investigation into the fatigue behavior of wood laminates for Wind Energy Converter blade design

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, K.T.

    1987-01-01

    This work sets out to improve the understanding of the fatigue properties of wood and fatigue failure mechanisms. Three important areas were identified for research: (a) effect of R ratio on fatigue life, (b) effect of moisture on fatigue life, and (c) development of cumulative damage laws. In order to understand fatigue-damage mechanisms, a computer control and monitoring system called SArGen was developed. The computer system is designed to accurately control a fatigue machine and simultaneously monitor load, deflections and/or strains for every cycle in a fatigue tests. It is also capable of block loading a specimen with a load history consisting of up to 200 changes in load level. The systems includes a load-level correction routine to compensate for drift in load levels and can be used for static tests, monitoring load and deflection or strain at high rates of loading. Constant-load flexural fatigue tests were conducted. Most of the tests were on 4-ply laminates of 4mm-thick sliced Khaya ivorensis veneers glued with epoxy resin. For comparison, fatigue tests were also performed on rotary cut Khaya ivorensis laminates, solid Sitka spruce and unidirectional and 0/90 compressed Beech laminates. The tests on the effect of R ratio showed clearly the severity of reversed fatigue stress application at negative R ratios.

  17. Chronic widespread pain in the spectrum of rheumatological diseases.

    Science.gov (United States)

    Bliddal, Henning; Danneskiold-Samsøe, Bente

    2007-06-01

    Chronic pain is very common in all European countries, with musculoskeletal problems predominating. About 1% of the adult population develops a syndrome of chronic muscle pain, fibromyalgia (FMS), characterized by multiple tender points, back or neck pain, and a number of associated problems from other organs, including a high frequency of fatigue. Evidence points to central sensitization as an important neurophysiological aberration in the development of FMS. Importantly, these neurological changes may result from inadequately treated chronic focal pain problems such as osteoarthritis or myofascial pain. It is important for health professionals to be aware of this syndrome and to diagnose the patients to avoid a steady increase in diagnostic tests. On the other hand, patients with chronic widespread pain have an increased risk of developing malignancies, and new or changed symptoms should be diagnosed even in FMS. In rheumatology practice it is especially important to be aware of the existence of FMS in association with immune inflammatory diseases, most commonly lupus and rheumatoid arthritis. Differential diagnoses are other causes of chronic pain, e.g. thyroid disease. The costs of this syndrome are substantial due to loss of working capability and direct expenses of medication and health-system usage. Fibromyalgia patients need recognition of their pain syndrome if they are to comply with treatment. Lack of empathy and understanding by healthcare professionals often leads to patient frustration and inappropriate illness behavior, often associated with some exaggeration of symptoms in an effort to gain some legitimacy for their problem. FMS is multifaceted, and treatment consists of both medical interventions, with emphasis on agents acting on the central nervous system, and physical exercises.

  18. Biomarkers for chronic fatigue.

    Science.gov (United States)

    Klimas, Nancy G; Broderick, Gordon; Fletcher, Mary Ann

    2012-11-01

    Fatigue that persists for 6 months or more is termed chronic fatigue. Chronic fatigue (CF) in combination with a minimum of 4 of 8 symptoms and the absence of diseases that could explain these symptoms, constitute the case definition for chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME). Inflammation, immune system activation, autonomic dysfunction, impaired functioning in the hypothalamic-pituitary-adrenal axis, and neuroendocrine dysregulation have all been suggested as root causes of fatigue. The identification of objective markers consistently associated with CFS/ME is an important goal in relation to diagnosis and treatment, as the current case definitions are based entirely on physical signs and symptoms. This review is focused on the recent literature related to biomarkers for fatigue associated with CFS/ME and, for comparison, those associated with other diseases. These markers are distributed across several of the body's core regulatory systems. A complex construct of symptoms emerges from alterations and/or dysfunctions in the nervous, endocrine and immune systems. We propose that new insight will depend on our ability to develop and deploy an integrative profiling of CFS/ME pathogenesis at the molecular level. Until such a molecular signature is obtained efforts to develop effective treatments will continue to be severely limited. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. BIOMARKERS for CHRONIC FATIGUE

    Science.gov (United States)

    Broderick, Gordon; Fletcher, Mary Ann

    2012-01-01

    Fatigue that persists for 6 months or more is termed chronic fatigue. Chronic fatigue (CF) in combination with a minimum of 4 of 8 symptoms and the absence of diseases that could explain these symptoms, constitute the case definition for chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME). Inflammation, immune system activation, autonomic dysfunction, impaired functioning in the hypothalamic-pituitary-adrenal axis, and neuroendocrine dysregulation have all been suggested as root causes of fatigue. The identification of objective markers consistently associated with CFS/ME is an important goal in relation to diagnosis and treatment, as the current case definitions are based entirely on physical signs and symptoms. This review is focused on the recent literature related to biomarkers for fatigue associated with CFS/ME and, for comparison, those associated with other diseases. These markers are distributed across several of the body’s core regulatory systems. A complex construct of symptoms emerges from alterations and/or dysfunctions in the nervous, endocrine and immune systems. We propose that new insight will depend on our ability to develop and deploy an integrative profiling of CFS/ME pathogenesis at the molecular level. Until such a molecular signature is obtained efforts to develop effective treatments will continue to be severely limited. PMID:22732129

  20. Ankle and knee biomechanics during normal walking following ankle plantarflexor fatigue.

    Science.gov (United States)

    Hunt, Michael A; Hatfield, Gillian L

    2017-08-01

    The purpose of this study was to investigate the immediate effects of unilateral ankle plantarflexor fatigue on bilateral knee and ankle biomechanics during gait. Lower leg kinematics, kinetics, and muscle activation were assessed before and after an ankle plantarflexor fatiguing protocol in 31 healthy individuals. Fatigue (defined as >10% reduction in maximal isometric ankle plantarflexor torque production and a downward shift in the median power frequency of both heads of the gastrocnemius muscle of the fatigued limb) was achieved in 18 individuals, and only their data were used for analysis purposes. Compared to pre-fatigue walking trials, medial gastrocnemius activity was significantly reduced in the study (fatigued) limb. Other main changes following fatigue included significantly more knee flexion during loading, and an associated larger external knee flexion moment in the study limb. At the ankle joint, participants exhibited significantly less peak plantarflexion (occurring at toe-off) with fatigue. No significant differences were observed in the contralateral (non-fatigued) limb. Findings from this study indicate that fatigue of the ankle plantarflexor muscle does not produce widespread changes in gait biomechanics, suggesting that small to moderate changes in maximal ankle plantarflexor force production capacity (either an increase or decrease) will not have a substantial impact on normal lower limb functioning during gait. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Probabilistic fatigue life prediction of metallic and composite materials

    Science.gov (United States)

    Xiang, Yibing

    Fatigue is one of the most common failure modes for engineering structures, such as aircrafts, rotorcrafts and aviation transports. Both metallic materials and composite materials are widely used and affected by fatigue damage. Huge uncertainties arise from material properties, measurement noise, imperfect models, future anticipated loads and environmental conditions. These uncertainties are critical issues for accurate remaining useful life (RUL) prediction for engineering structures in service. Probabilistic fatigue prognosis considering various uncertainties is of great importance for structural safety. The objective of this study is to develop probabilistic fatigue life prediction models for metallic materials and composite materials. A fatigue model based on crack growth analysis and equivalent initial flaw size concept is proposed for metallic materials. Following this, the developed model is extended to include structural geometry effects (notch effect), environmental effects (corroded specimens) and manufacturing effects (shot peening effects). Due to the inhomogeneity and anisotropy, the fatigue model suitable for metallic materials cannot be directly applied to composite materials. A composite fatigue model life prediction is proposed based on a mixed-mode delamination growth model and a stiffness degradation law. After the development of deterministic fatigue models of metallic and composite materials, a general probabilistic life prediction methodology is developed. The proposed methodology combines an efficient Inverse First-Order Reliability Method (IFORM) for the uncertainty propogation in fatigue life prediction. An equivalent stresstransformation has been developed to enhance the computational efficiency under realistic random amplitude loading. A systematical reliability-based maintenance optimization framework is proposed for fatigue risk management and mitigation of engineering structures.

  2. Biomarkers of Fatigue: Ranking Mental Fatigue Susceptibility

    Science.gov (United States)

    2010-12-10

    Effectiveness ( SAFTE ), described in Hursh et al. 2004) holds that performance declines steeply after midnight until mid-morning where it levels off to...Meals occurred during the daylight portion of the protocol with greater frequency than the night time portion; however, participants were allowed...Vigilance Task) SAFTE (Sleep Activity Fatigue Task Effectiveness) SD (standard deviation) T (training) 28 Distribution A: Approved for

  3. Computer simulation of fatigue under diametrical compression.

    Science.gov (United States)

    Carmona, H A; Kun, F; Andrade, J S; Herrmann, H J

    2007-04-01

    We study the fatigue fracture of disordered materials by means of computer simulations of a discrete element model. We extend a two-dimensional fracture model to capture the microscopic mechanisms relevant for fatigue and we simulate the diametric compression of a disc shape specimen under a constant external force. The model allows us to follow the development of the fracture process on the macrolevel and microlevel varying the relative influence of the mechanisms of damage accumulation over the load history and healing of microcracks. As a specific example we consider recent experimental results on the fatigue fracture of asphalt. Our numerical simulations show that for intermediate applied loads the lifetime of the specimen presents a power law behavior. Under the effect of healing, more prominent for small loads compared to the tensile strength of the material, the lifetime of the sample increases and a fatigue limit emerges below which no macroscopic failure occurs. The numerical results are in a good qualitative agreement with the experimental findings.

  4. Development of novel apparatus to obtain soil resistance–displacement relationship for well conductor fatigue analysis

    National Research Council Canada - National Science Library

    Jeanjean, Philippe; Sturm, Hendrik; Dyvik, Rune; Zakeri, Arash

    2017-01-01

    .... Fatigue damage in a structure occurs from stress changes in response to cyclic loading. In practice, the lateral cyclic soil response is typically modelled using Winkler lateral load–displacement (p–y) springs...

  5. Effect of matrix toughness on fatigue life of plain woven carbon fabric composites

    Science.gov (United States)

    Nishikawa, Yasuhiro; Okubo, Kazuya; Fujii, Toru; Uenoya, Toshiyuki

    2001-08-01

    The effect of matrix toughness on the fatigue life of polymer matrix composites using plain woven carbon fabrics (pw-CFC) was studied. In order to vary the matrix toughness without changing the inherent cohesion properties such as adhesive strength between matrix and fibers, two different curing agents (acid anhydride and amine types) were used. Static tensile and tension/tension fatigue cyclic loads were applied to pw-CFC specimens. It was observed that the fatigue life was significantly affected by matrix toughness. During the fatigue tests, damage progression was observed intermittently by using a thermo-elastic stress analyzer (TSA). The stress re-distribution occurs due to fatigue damage progression. TSA can identify such stress re- distribution by means of detecting surface temperature amplitude. Highly fatigue-damaged area of pw-CFC was localized if the matrix toughness was high, although moderately damaged area grew all over the specimen. The experimental results indicate that the fatigue life and damage of pw-CFC are strongly governed by matrix toughness.

  6. Comparative phylogeography of two widespread magpies

    DEFF Research Database (Denmark)

    Zhang, Ruiying; Song, Gang; Qu, Yanhua

    2012-01-01

    Historical geological events and climatic changes are believed to have played important roles in shaping the current distribution of species. However, sympatric species may have responded in different ways to such climatic fluctuations. Here we compared genetic structures of two corvid species......, the Azure-winged Magpie Cyanopica cyanus and the Eurasian Magpie Pica pica, both widespread but with different habitat dependence and some aspects of breeding behavior. Three mitochondrial genes and two nuclear introns were used to examine their co-distributed populations in East China and the Iberian...... subclade showed a significant pattern of isolation by distance. In contrast, no genetic structure was found in the East China populations of P. pica. We suggest that the different patterns in the two species are at least partly explained by ecological differences between them, especially in habitat...

  7. Critical plane approach to multiaxial variable amplitude fatigue loading

    Directory of Open Access Journals (Sweden)

    Yingyu Wang

    2015-07-01

    Full Text Available A new critical plane approach based on the modified Manson-Coffin curve method (MMCCM is presented in this paper for predicting fatigue lifetime under variable amplitude (VA multiaxial fatigue loading. The critical plane is assumed to coincide with that material plane experiencing the maximum variance of the resolved shear strain. Fatigue damage is hypothesized to be a function of both the amplitude of the resolved shear strain and the so-called critical plane stress ratio. The latter quantity depends on the mean value and the variance of the stress perpendicular to the critical plane as well as on the variance of the shear stress resolved along the direction experiencing the maximum variance of the resolved shear strain. Load cycles are counted from the resolved shear strain time history by using the classic rain flow counting method. Palmgren-Miner’s linear damage rule is applied to estimate cumulative fatigue damage. The accuracy and reliability of the proposed approach is checked by using several experimental data taken from the literature. The estimated fatigue lives based on the new approach are seen to be in sound agreement with the experimental results.

  8. Fatigue Reliability of Casted Wind Turbine Components Due to Defects

    DEFF Research Database (Denmark)

    Rafsanjani, Hesam Mirzaei; Sørensen, John Dalsgaard

    2015-01-01

    of component are considered and the surface and sub-surface defects categorized. Furthermore, a model to estimate the probability of failure by fatigue due to the defects is proposed. This model is used to estimate the failure location of component and it is compared to models of defect distributions...... and their influence on the fatigue strength of the components. The fatigue life is dependent on the number, type, location and size of the defects in the component and is therefore quite uncertain and needs to be described by stochastic models. In this paper, the Poisson distribution for modeling of defects...... and locations. Further, an upper bound of reliability is estimated using a modified Miner rule approach for fatigue damage accumulation....

  9. High-cycle fatigue strength of a pultruded composite material

    Directory of Open Access Journals (Sweden)

    L. Vergani

    2009-01-01

    Full Text Available Dealing with composites in polymeric matrix, the pultruded ones are among the more suitable for large production rates and volumes. For this reason, their use is increasing also in structural applications in civil and mechanical engineering. However, their use is still limited by the partial knowledge of their fatigue behaviour; in many applications it is, indeed, required a duration of many millions of cycles, while most of the data that can be found in literature refer to a maximum number of cycles equal to 3 millions. In this paper a pultruded composite used for manufacturing structural beams is considered and its mechanical behaviour characterized by means of static and high-cycle fatigue tests. The results allowed to determine the S-N curve of the material and to assess the existence of a fatigue limit. Observations at the scanning electronic microscope (SEM allowed to evaluate the damage mechanisms involved in the static and fatigue failure of the material.

  10. Recommendations for fatigue design of welded joints and components

    CERN Document Server

    Hobbacher, A F

    2016-01-01

    This book provides a basis for the design and analysis of welded components that are subjected to fluctuating forces, to avoid failure by fatigue. It is also a valuable resource for those on boards or commissions who are establishing fatigue design codes. For maximum benefit, readers should already have a working knowledge of the basics of fatigue and fracture mechanics. The purpose of designing a structure taking into consideration the limit state for fatigue damage is to ensure that the performance is satisfactory during the design life and that the survival probability is acceptable. The latter is achieved by the use of appropriate partial safety factors. This document has been prepared as the result of an initiative by Commissions XIII and XV of the International Institute of Welding (IIW).

  11. Thermomechanical fatigue life prediction of high temperature components

    Energy Technology Data Exchange (ETDEWEB)

    Seifert, Thomas; Hartrott, Philipp von; Riedel, Hermann; Siegele, Dieter [Fraunhofer-Inst. fuer Werkstoffmechanik (IWM), Freiburg (Germany)

    2009-07-01

    The aim of the work described in this paper is to provide a computational method for fatigue life prediction of high temperature components, in which the time and temperature dependent fatigue crack growth is a relevant damage mechanism. The fatigue life prediction is based on a law for microcrack growth and a fracture mechanics estimate of the cyclic crack tip opening displacement. In addition, a powerful model for nonisothermal cyclic plasticity is employed, and an efficient laboratory test procedure is proposed for the determination of the model parameters. The models are efficiently implemented into finite element programs and are used to predict the fatigue life of a cast iron exhaust manifold and a notch in the perimeter of a turbine rotor made of a ferritic/martensitic 10%-chromium steel. (orig.)

  12. Monitoring of fatigue crack under complex environment using guided waves

    Science.gov (United States)

    Tang, Jianfei; Yan, Gang; Xu, Xiwu

    2012-04-01

    This paper presents an experimental study on monitoring of fatigue crack under complex environment using guided waves. An experimental set-up consisting of an electrical oven, a MTS testing machine and a monitoring system is established to perform the study. First, the combined effects of temperature, load and vibration on the propagation of guided waves in metallic structure is studied. Then, a statistical approach is proposed to detect fatigue crack under these combined effects. Damage feature is extracted after the guided wave signals are processed by Fourier transform. A Monte Carlo procedure is employed to estimate the probability density functions of the feature before and after cracking, respectively. By comparing the probability density functions, the probability of existence of fatigue crack is determined. Experimental study on a fatigue coupon under combined effects of temperature, load and vibration is conducted to demonstrate the effectiveness of the proposed method.

  13. Relationship between static chemical and cyclic mechanical fatigue in a feldspathic porcelain.

    Science.gov (United States)

    White, S N; Li, Z C; Yu, Z; Kipnis, V

    1997-03-01

    The goal of this study was to determine if static chemical and cyclic mechanical fatigue are independent, or if they interact to produce greater than additive strength loss in a feldspathic porcelain. A blunt indentation technique was used to investigate the response of a feldspathic dental porcelain to cyclic mechanical fatigue and static chemical fatigue. All specimens were fabricated in a dry inert environment and then mechanically fatigued by cyclic loading and strength-tested in dry inert nitrogenous, ambient or wet environments. A series of experiments were performed to evaluate the effects of chemical and mechanical fatigue, and their interaction on strength loss; to determine the effects of, and interaction between, the factors of cyclic fatigue environment and strength test environment on strength; to ascertain if the type of environment during strength testing influenced specimen strength; and to distinguish between chemical damage caused by exposure to moisture alone and stress corrosion damage resulting from the strength testing environment, using a pair of two-way analysis of variance, a single one-way analysis of variance and a t-test (p fatigue and cyclic mechanical fatigue significantly reduced specimen strength, but they did not interact to produce greater than summative effects. It was also learned that chemical fatigue was not detected on initial exposure to moisture and that it occurred to a small extent during mechanical fatigue cycling, and primarily occurred during strength testing through a stress-corrosion phenomenon. Micrographs visually evaluated the effects of mechanical and chemical fatigue on surface contact damage. As both static chemical and cyclic mechanical fatigue influenced porcelain strength, they should both be considered in future evaluations. However, because they largely acted independently, they can be studied separately.

  14. Normalized spectral damage of a linear system over different spectral loading patterns

    Science.gov (United States)

    Kim, Chan-Jung

    2017-08-01

    Spectral fatigue damage is affected by different loading patterns; the damage may be accumulated in a different manner because the spectral pattern has an influence on stresses or strains. The normalization of spectral damage with respect to spectral loading acceleration is a novel solution to compare the accumulated fatigue damage over different spectral loading patterns. To evaluate the sensitivity of fatigue damage over different spectral loading cases, a simple notched specimen is used to conduct a uniaxial vibration test for two representative spectral patterns-random and harmonic-between 30 and 3000 Hz. The fatigue damage to the simple specimen is analyzed for different spectral loading cases using the normalized spectral damage from the measured response data for both acceleration and strain. The influence of spectral loading patterns is discussed based on these analyses.

  15. Fatigue Durability Analysis of Collecting Rapping System in Electrostatic Precipitators under Impact Loading

    OpenAIRE

    Ali Akbar Lotfi Neyestanak; Saeed Adib Nazari; Ali Imam; Cyrus Aghanajafi

    2014-01-01

    Due to the importance of collecting rapping system in electrostatic precipitators (ESP) and controlling the relevant damage under impact loading, fatigue durability of this system is analyzed in the present study based on the numerical and experimental results considering fatigue damage growth and vibration acceleration in the collecting system because of the successive impact of rapping hammers. By microscopic examination of the fracture surface of rapping hammer, beach marks obviously show ...

  16. Analysis of an Axle Shaft Fatigue Failure and Anti-Fatigue System Design

    Directory of Open Access Journals (Sweden)

    Gurkan Irsel

    2017-09-01

    For the present system, a design with a minimum cost, short production process, minimum weight was aimed together with the methodical construction principles. By means of CATIA and ANSYS, the product development design with reasonable tension and deformation values was formed for endless fatigue life. Design was produced in a short time with the help of 2D CATIA drawings and field tests were carried out. The design was used 560.000 cycles and damage did not occur.

  17. A three dimensional discrete dislocation dynamics modelling of the early cycles of fatigue in an austenitic stainless steel 316L: dislocation microstructure and damage analysis; Modelisation physique des stades precurseurs de l'endommagement en fatigue dans l'acier inoxydable austenitique 316L

    Energy Technology Data Exchange (ETDEWEB)

    Depres, Ch

    2005-07-01

    A numerical code modelling the collective behaviour of dislocations at a mesoscopic scale (Discrete Dislocation Dynamics code) is used to analyse the cyclic plasticity that occurs in surface grains of an AISI 316L stainless steel, in order to understand the plastic mechanism involved in crack initiation in fatigue. Firstly, the analyses of both the formation and the evolution of the dislocation microstructures show the crucial role of cross-slip played in the strain localization in the form of slip bands. As the cycling proceeds, the slip bands exhibit well-organized dislocation arrangements that substitute to dislocation tangles, involving specific interaction mechanisms between primary and deviate systems. Secondly, both the surface displacements generated by plastic slip and the distortion energy induced by the dislocation microstructure have been analysed. We find that an irreversible surface relief in the form of extrusion/intrusion can be induced by cyclic slip of dislocations. The number of cycles for the crack initiation follows a Manson-Coffin type law. The analyses of the concentration of the distortion energy and its repartition in the slip bands show that beneficial energetic zones may be present at the very beginning of the cycling, and that mode-II crack propagation in the surface grains results from a succession of micro-crack initiations along primary slip plane, which is facilitated by various effects (stress concentration due to surface relief, environment effects...). Finally, a dislocation-based model for cyclic plasticity is proposed from Discrete Dislocation Dynamics results. (author)

  18. Bone fatigue and its implications for injuries in racehorses.

    Science.gov (United States)

    Martig, S; Chen, W; Lee, P V S; Whitton, R C

    2014-07-01

    Musculoskeletal injuries are a common cause of lost training days and wastage in racehorses. Many bone injuries are a consequence of repeated high loading during fast work, resulting in chronic damage accumulation and material fatigue of bone. The highest joint loads occur in the fetlock, which is also the most common site of subchondral bone injury in racehorses. Microcracks in the subchondral bone at sites where intra-articular fractures and palmar osteochondral disease occur are similar to the fatigue damage detected experimentally after repeated loading of bone. Fatigue is a process that has undergone much study in material science in order to avoid catastrophic failure of engineering structures. The term 'fatigue life' refers to the numbers of cycles of loading that can be sustained before failure occurs. Fatigue life decreases exponentially with increasing load. This is important in horses as loads within the limb increase with increasing speed. Bone adapts to increased loading by modelling to maintain the strains within the bone at a safe level. Bone also repairs fatigued matrix through remodelling. Fatigue injuries develop when microdamage accumulates faster than remodelling can repair. Remodelling of the equine metacarpus is reduced during race training and accelerated during rest periods. The first phase of remodelling is bone resorption, which weakens the bone through increased porosity. A bone that is porous following a rest period may fail earlier than a fully adapted bone. Maximising bone adaptation is an important part of training young racehorses. However, even well-adapted bones accumulate microdamage and require ongoing remodelling. If remodelling inhibition at the extremes of training is unavoidable then the duration of exposure to high-speed work needs to be limited and appropriate rest periods instituted. Further research is warranted to elucidate the effect of fast-speed work and rest on bone damage accumulation and repair. © 2014 EVJ Ltd.

  19. FEM Techniques for High Stress Detection in Accelerated Fatigue Simulation

    Science.gov (United States)

    Veltri, M.

    2016-09-01

    This work presents the theory and a numerical validation study in support to a novel method for a priori identification of fatigue critical regions, with the aim to accelerate durability design in large FEM problems. The investigation is placed in the context of modern full-body structural durability analysis, where a computationally intensive dynamic solution could be required to identify areas with potential for fatigue damage initiation. The early detection of fatigue critical areas can drive a simplification of the problem size, leading to sensible improvement in solution time and model handling while allowing processing of the critical areas in higher detail. The proposed technique is applied to a real life industrial case in a comparative assessment with established practices. Synthetic damage prediction quantification and visualization techniques allow for a quick and efficient comparison between methods, outlining potential application benefits and boundaries.

  20. The application of strain field intensity method in the steel bridge fatigue life evaluation

    Science.gov (United States)

    Zhao, Xuefeng; Wang, Yanhong; Cui, Yanjun; Cao, Kaisheng

    2012-04-01

    Asce's survey shows that 80%--90% bridge damage were associated with fatigue and fracture problems. With the operation of vehicle weight and traffic volume increases constantly, the fatigue of welded steel bridge is becoming more and more serious in recent years. A large number of studies show that most prone to fatigue damage of steel bridge is part of the welding position. Thus, it's important to find a more precise method to assess the fatigue life of steel bridge. Three kinds of fatigue analysis method is commonly used in engineering practice, such as nominal stress method, the local stress strain method and field intensity method. The first two methods frequently used for fatigue life assessment of steel bridge, but field intensity method uses less ,and it widely used in fatigue life assessment of aerospace and mechanical. Nominal stress method and the local stress strain method in engineering has been widely applied, but not considering stress gradient and multiaxial stress effects, the accuracy of calculation stability is relatively poor, so it's difficult to fully explain the fatigue damage mechanism. Therefore, it used strain field intensity method to evaluate the fatigue life of steel bridge. The fatigue life research of the steel bridge based on the strain field method and the fatigue life of the I-section plate girder was analyzed. Using Ansys on the elastoplastic finite element analysis determined the dangerous part of the structure and got the stress-strain history of the dangerous point. At the same time, in order to divide the unit more elaborate introduced the sub-structure technology. Finally, it applies K.N. Smith damage equation to calculate the fatigue life of the dangerous point. In order to better simulating the actual welding defects, it dug a small hole in the welding parts. It dug different holds from different view in the welding parts and plused the same load to calculate its fatigue life. Comparing the results found that the welding

  1. Evaluation of new multiaxial damage parameters on low carbon steel

    Directory of Open Access Journals (Sweden)

    A. S. Cruces

    2017-07-01

    Full Text Available Most mechanical components are subjected to the complex fatigue loading conditions, where both amplitude and direction of loading cycles change over the time. The estimation of damage caused by these complex loading scenarios are often done by simplified uniaxial fatigue theories, which ultimately leads to higher factor of safety during the final design considerations. Critical plane-based fatigue theories have been considered more accurate for computing the fatigue damage for multiaxial loading conditions in comparison to energy-based and equivalent stress-based theories. Two recently developed fatigue theories have been evaluated in this work for the available test data. Test data includes significant amount of biaxial load paths.

  2. Thermal fatigue of beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Deksnis, E.; Ciric, D.; Falter, H. [JET Joint undertaking, Abingdon (United Kingdom)] [and others

    1995-09-01

    Thermal fatigue life of S65c beryllium castellated to a geometry 6 x 6 x (8-10)mm deep has been tested for steady heat fluxes of 3 MW/m{sup 2} to 5 MW/m{sup 2} and under pulsed heat fluxes (10-20 MW/m{sup 2}) for which the time averaged heat flux is 5 MW/m{sup 2}. These tests were carried out in the JET neutral beam test facility A test sequence with peak surface temperatures {le} 600{degrees}C produced no visible fatigue cracks. In the second series of tests, with T{sub max} {le} 750{degrees}C evidence for fatigue appeared after a minimum of 1350 stress cycles. These fatigue data are discussed in view of the observed lack of thermal fatigue in JET plasma operations with beryllium PFC. JET experience with S65b and S65c is reviewed; recent operations with {Phi} = 25 MW/m{sup 2} and sustained melting/resolidification are also presented. The need for a failure criterion for finite element analyses of Be PFC lifetimes is discussed.

  3. Fatigue behavior of RC T-beams

    Directory of Open Access Journals (Sweden)

    Omar A. Farghal

    2014-09-01

    Full Text Available The objective of this research is to study the fatigue performance of reinforced concrete (RC T-beams strengthened in shear with Carbon Fiber Reinforced Polymer (CFRP composite. Experiments were conducted on RC beams with and without CFRP sheets bonded on their web surfaces and subjected to static and cycling loading. The obtained results showed that the strengthened beams could survive one million cycles of cyclic loading (=50% of maximum static load with no apparent signs of damage (premature failure demonstrating the effectiveness of CFRP strengthening system on extending the fatigue life of structures. Also, for beams having the same geometry, the applied strengthening technique can significantly enhance the cycling load particularly, in case of beams provided with U-jacket sheets. Moreover, although the failure mode for the different beams was a brittle one, the strengthened beams provided with U-jacket sheets approved an acceptable enhancement in the structural ductility.

  4. The Identification of Fatigue Resistant and Fatigue Susceptible Individuals

    Science.gov (United States)

    2008-05-01

    normalized and compared 38 to normalized SAFTE predictions. See text for details. Figure 3 Fatigue plots for fatigue susceptible vs. fatigue...has 5 seconds to press the button to get points for successful signal detections. Lower tones are given with greater frequency and responses to...address the first question, and we use predictions of the Sleep Activity Fatigue Task Effectiveness, or SAFTE model (Hursh, Redmond, Johnson, Thorne

  5. On low cycle fatigue in metal matrix composites

    DEFF Research Database (Denmark)

    Pedersen, Thomas Ø; Tvergaard, Viggo

    2000-01-01

    A numerical cell model analysis is used to study the development of fatigue damage in aluminium reinforced by aligned, short SiC fibres. The material is subjected to cyclic loading with either stress control or strain control, and the matrix material is represented by a cyclic plasticity model...

  6. Fatigue behavior of zirconia under different loading conditions

    NARCIS (Netherlands)

    Aboushelib, M.N.; Wang, H.; Kleverlaan, C.J.; Feilzer, A.J.

    2016-01-01

    Purpose. To investigate the influence of surface damage on the fatigue behavior of zirconia under two different loading conditions. Materials and methods. One hundred twenty zirconia bar-shaped received either airborne particle abrasion using 50 μm or 120 μm alumina particles while polished

  7. effect of uncertainty on the fatigue reliability of reinforced concrete ...

    African Journals Online (AJOL)

    user

    2016-07-03

    Jul 3, 2016 ... The deterioration of reinforced concrete bridge deck that has been damaged as a result of load action can affect the durability, safety and function of the structure. In this paper, a reliability time-variant fatigue analysis and uncertainty effect on the serviceability of reinforced concrete bridge deck was carried ...

  8. EFFECT OF UNCERTAINTY ON THE FATIGUE RELIABILITY OF ...

    African Journals Online (AJOL)

    The deterioration of reinforced concrete bridge deck that has been damaged as a result of load action can affect the durability, safety and function of the structure. In this paper, a reliability time-variant fatigue analysis and uncertainty effect on the serviceability of reinforced concrete bridge deck was carried out. A simply ...

  9. A simulated rugby match protocol induces physiological fatigue ...

    African Journals Online (AJOL)

    A simulated rugby match protocol induces physiological fatigue without decreased individual scrummaging performance. ... Blood lactate, heart rate and RPE were measured prior to, at mid-point and after the simulated game, while markers of muscle damage (blood creatine kinase activity (CK) and urea) were measured ...

  10. [Neuroinflammation in the Brain of Patients with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome].

    Science.gov (United States)

    Nakatomi, Yasuhito; Kuratsune, Hirohiko; Watanabe, Yasuyoshi

    2018-01-01

    Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is characterized by chronic, profound, disabling, and unexplained fatigue; cognitive impairment; and chronic widespread pain. By using positron emission tomography, our study demonstrated neuroinflammation in the brain of patients with ME/CFS. Neuroinflammation was found to be widespread in the brain areas of the patients with ME/CFS and was associated with the severity of their neuropsychological symptoms. The ongoing research would lead to the establishment of objective diagnostic criteria and development of an appropriate therapy.

  11. Fatigue design 1998

    Energy Technology Data Exchange (ETDEWEB)

    Marquis, G.; Solin, J. [eds.] [VTT Manufacturing Technology, Espoo (Finland)

    1998-12-31

    These preprints contain the presentations to be delivered at the Fatigue Design 1998 symposium held on May 26-29, 1998 in Espoo. Fatigue Design 1998 is the tenth in a series of VTT symposia addressing the challenge of fatigue of materials, components and structures. Previous international events were in 1992 and 1995. The key theme of the current meeting is `RELIABILITY`. The two volumes (VTT symposium 181-182) represent 56 contributions by authors representing 26 countries. Emphasis has been given to application oriented research topics that report new technologies, new uses of existing methods and case studies. The objective of the symposium is to bring together researchers and engineers to share experiences and new innovations in designing reliable components to resist alternating loads. (orig.)

  12. Fatigue in soccer

    DEFF Research Database (Denmark)

    Mohr, Magni; Krustrup, Peter; Bangsbo, Jens

    2005-01-01

    in the game: (1) after short-term intense periods in both halves; (2) in the initial phase of the second half; and (3) towards the end of the game. Temporary fatigue after periods of intense exercise in the game does not appear to be linked directly to muscle glycogen concentration, lactate accumulation...... temperatures compared with the end of the first half. Thus, when players perform low-intensity activities in the interval between the two halves, both muscle temperature and performance are preserved. Several studies have shown that fatigue sets in towards the end of a game, which may be caused by low glycogen...... concentrations in a considerable number of individual muscle fibres. In a hot and humid environment, dehydration and a reduced cerebral function may also contribute to the deterioration in performance. In conclusion, fatigue or impaired performance in soccer occurs during various phases in a game, and different...

  13. Healing ligaments have shorter lifetime and greater strain rate during fatigue than creep at functional stresses.

    Science.gov (United States)

    Thornton, Gail M; Bailey, Soraya J

    2013-09-01

    Healing ligaments have compromised strength, which makes them susceptible to damage during daily activities at normal functional stresses. Daily activities expose ligaments to cyclic (fatigue) and static (creep) loading. A gap injury was created in the midsubstance of both hindlimb medial collateral ligaments of 40 female 1-year-old New Zealand White rabbits. After a 14-week healing interval, medial collateral ligament gap scars were exposed to long-term fatigue and creep loading over a range of functional force/stress levels. Lifetime and strain behavior were compared during fatigue and creep. The contribution of time-dependent mechanisms to fatigue lifetime was modeled using creep data. Fatigue-loaded healing ligaments had shorter lifetime, greater steady-state strain rate and greater increase in strain at 0.8 h than creep-loaded healing ligaments. The actual fatigue lifetime was less than the predicted fatigue lifetime which was derived from time-dependent damage alone, indicating an important role for cycle-dependent damage mechanisms in healing ligaments during fatigue loading. Cyclic loading decreased lifetime and increased strain rate and strain prior to rupture compared to static loading in healing ligaments. These findings suggest that, after a ligament injury, more care should be taken when exercises result in cyclic loading rather than static loading of the healing ligament even at functional stresses.

  14. Myth vs. Fact: Adrenal Fatigue

    Science.gov (United States)

    ... Endocrinologist Search Featured Resource New Mobile App DOWNLOAD Adrenal Fatigue October 2017 Download PDFs English Editors Irina Bancos, MD Additional Resources Mayo Clinic What is adrenal fatigue? The term “adrenal fatigue” has been used ...

  15. Modafinil May Alleviate Poststroke Fatigue

    DEFF Research Database (Denmark)

    Poulsen, Mai Bang; Damgaard, Bodil; Zerahn, Bo

    2015-01-01

    was randomized, double-blinded, and placebo-controlled. Patients were treated with 400-mg modafinil or placebo for 90 days. Assessments were done at inclusion, 30, 90, and 180 days. The primary end point was fatigue at 90 days measured by the Multidimensional Fatigue Inventory-20 general fatigue domain......BACKGROUND AND PURPOSE: Poststroke fatigue is common and reduces quality of life. Current evidence for intervention is limited, and this is the first placebo-controlled trial to investigate treatment of poststroke fatigue with the wakefulness promoting drug modafinil. METHODS: The trial....... Secondary end points included the Fatigue Severity Scale, the Montreal Cognitive Assessment, the modified Rankin Scale and the Stroke-specific quality of Life questionnaire. Adult patients with a recent stroke achieving a score of ≥12 on the Multidimensional Fatigue Inventory-20 general fatigue domain were...

  16. Coping with cancer -- managing fatigue

    Science.gov (United States)

    ... Fatigue is a feeling of tiredness, weakness, or exhaustion. It is different from drowsiness, which can be ... chap 45. National Cancer Institute. Fatigue (PDQ) - Health professional version. Cancer.gov Web site. Updated January 13, ...

  17. Treatments for chronic fatigue syndrome

    National Research Council Canada - National Science Library

    Rimes, K A; Chalder, T

    2005-01-01

    To review studies evaluating the treatment of chronic fatigue and chronic fatigue syndrome, to describe predictors of response to treatment and to discuss the role of the occupational health physician...

  18. Determinants of fatigue and stress.

    Science.gov (United States)

    Kocalevent, Rüya D; Hinz, Andreas; Brähler, Elmar; Klapp, Burghard F

    2011-07-20

    Fatigue can be triggered by previous perceived stress which may lead to impairment of performance and function. The purpose of the study was to investigate the relationship between fatigue and perceived stress. Health determinants including sociodemographic factors for associations between fatigue and perceived stress in the general population (N = 2,483) are outlined. Fatigue and stress were assessed with the Chalder Fatigue Scale (CFS) and the Perceived Stress Questionnaire (PSQ). Within the general population, 25.9% of male and 34.5% of female respondents reported moderate fatigue during the last six months; 9.7% of subjects reported substantial fatigue lasting six months or longer. An adjusted regression analysis (R2corr = .28, p rates of fatigue and perceived stress: female gender, divorce/separation, low social class and poor health status. We conclude that the two conditions overlap most in terms of socio-economic status and self-perceived health status.

  19. Neurobiology of fibromyalgia and chronic widespread pain.

    Science.gov (United States)

    Sluka, Kathleen A; Clauw, Daniel J

    2016-12-03

    Fibromyalgia is the current term for chronic widespread musculoskeletal pain for which no alternative cause can be identified. The underlying mechanisms, in both human and animal studies, for the continued pain in individuals with fibromyalgia will be explored in this review. There is a substantial amount of support for alterations of central nervous system nociceptive processing in people with fibromyalgia, and that psychological factors such as stress can enhance the pain experience. Emerging evidence has begun exploring other potential mechanisms including a peripheral nervous system component to the generation of pain and the role of systemic inflammation. We will explore the data and neurobiology related to the role of the CNS in nociceptive processing, followed by a short review of studies examining potential peripheral nervous system changes and cytokine involvement. We will not only explore the data from human subjects with fibromyalgia but will relate this to findings from animal models of fibromyalgia. We conclude that fibromyalgia and related disorders are heterogenous conditions with a complicated pathobiology with patients falling along a continuum with one end a purely peripherally driven painful condition and the other end of the continuum is when pain is purely centrally driven. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  20. Phylogeographic patterns in widespread corvid birds.

    Science.gov (United States)

    Haring, E; Gamauf, A; Kryukov, A

    2007-12-01

    Intraspecific genetic diversity and phylogeography of Corvus corone was investigated using the mitochondrial (mt) control region as a molecular marker. A split into two distinct mt lineages was observed. One represents individuals from a wide geographic range spanning from England to the Russian Far East (Kamchatka), while the other one was found in the Primorye and Khabarovsk regions (southern parts of Russian Far East) as well as Japan. For comparison, we investigated several widespread Palearctic corvid taxa with respect to their phylogeographic patterns. A deep split into two lineages was revealed in five cases: Besides C. corone, within Corvus frugilegus, Pica pica, and between the species pairs Corvus monedula-Corvus dauuricus and Cyanopica cyanus-Cyanopica cooki. Although these taxa display a variety of distribution patterns, from disjunct, para/allopatric to continuous, the genetic pattern and level of divergence between clades is very similar. This implies that the differentiation started in about the same time range. In contrast, no differentiation into highly divergent lineages was detected in Corvus corax, Perisoreus infaustus, and Nucifraga caryocatactes. We try to explain the two phylogeographic patterns in corvid birds with ecological factors accompanying the changing climatic conditions during the Pleistocene. The deep genetic splits within several widely distributed Palearctic corvids are discussed with respect to taxonomic questions.

  1. Widespread Natural Occurrence of Hydroxyurea in Animals.

    Directory of Open Access Journals (Sweden)

    David I Fraser

    Full Text Available Here we report the widespread natural occurrence of a known antibiotic and antineoplastic compound, hydroxyurea in animals from many taxonomic groups. Hydroxyurea occurs in all the organisms we have examined including invertebrates (molluscs and crustaceans, fishes from several major groups, amphibians and mammals. The species with highest concentrations was an elasmobranch (sharks, skates and rays, the little skate Leucoraja erinacea with levels up to 250 μM, high enough to have antiviral, antimicrobial and antineoplastic effects based on in vitro studies. Embryos of L. erinacea showed increasing levels of hydroxyurea with development, indicating the capacity for hydroxyurea synthesis. Certain tissues of other organisms (e.g. skin of the frog (64 μM, intestine of lobster (138 μM gills of the surf clam (100 μM had levels high enough to have antiviral effects based on in vitro studies. Hydroxyurea is widely used clinically in the treatment of certain human cancers, sickle cell anemia, psoriasis, myeloproliferative diseases, and has been investigated as a potential treatment of HIV infection and its presence at high levels in tissues of elasmobranchs and other organisms suggests a novel mechanism for fighting disease that may explain the disease resistance of some groups. In light of the known production of nitric oxide from exogenously applied hydroxyurea, endogenous hydoxyurea may play a hitherto unknown role in nitric oxide dynamics.

  2. Reliability Analysis for Adhesive Bonded Composite Stepped Lap Joints Loaded in Fatigue

    DEFF Research Database (Denmark)

    Kimiaeifar, Amin; Sørensen, John Dalsgaard; Lund, Erik

    2012-01-01

    This paper describes a probabilistic approach to calculate the reliability of adhesive bonded composite stepped lap joints loaded in fatigue using three- dimensional finite element analysis (FEA). A method for progressive damage modelling is used to assess fatigue damage accumulation and residual...... by the wind turbine standard IEC 61400-1. Finally, an approach for the assessment of the reliability of adhesive bonded composite stepped lap joints loaded in fatigue is presented. The introduced methodology can be applied in the same way to calculate the reliability level of wind turbine blade components...

  3. Aeronautical fatigue: Key to safety and structural integrity; Proceedings of the 16th ICAF Symposium, Tokyo, Japan, May 22-24, 1991

    Science.gov (United States)

    Kobayashi, Akira

    The present conference on aeronautical fatigue examines its relationship to safety and structural integrity and encompasses multisite damage, aging aircraft, aluminum-lithium alloys, and composite materials. Specific issues addressed include an assessment of the C-141's structural life, fleet fatigue crack prediction, damage-tolerance analyses for several types of aircraft, rotor and gearbox fatigue, and general remarks on the maintenance of safety for an aging fleet of aircraft. Also addressed are the fatigue qualification of high-thickness composite rotor components, analyses of fatigue life for carbon-epoxy composites, a damage-tolerant Al-Li alloy 8090 sheet, the role of fatigue testing in aircraft design, development, and certification, and the effects of prior damage on crack propagation in Al alloys. (For individual items see A93-13627 to A93-13646)

  4. Fatigue behaviour of coke drum materials under thermal-mechanical cyclic loading

    Directory of Open Access Journals (Sweden)

    Jie Chen

    2014-01-01

    Full Text Available Coke drums are vertical pressure vessels used in the delayed coking process in petroleum refineries. Significant temperature variation during the delayed coking process causes damage in coke drums in the form of bulging and cracking. There were some studies on the fatigue life estimation for the coke drums, but most of them were based on strain-fatigue life curves at constant temperatures, which do not consider simultaneous cyclic temperature and mechanical loading conditions. In this study, a fatigue testing system is successfully developed to allow performing thermal-mechanical fatigue (TMF test similar to the coke drum loading condition. Two commonly used base and one clad materials of coke drums are then experimentally investigated. In addition, a comparative study between isothermal and TMF lives of these materials is conducted. The experimental findings lead to better understanding of the damage mechanisms occurring in coke drums and more accurate prediction of fatigue life of coke drum materials.

  5. Fatigue Crack Growth Analysis Under Spectrum Loading in Various Environmental Conditions

    Science.gov (United States)

    Mikheevskiy, S.; Glinka, G.; Lee, E.

    2013-03-01

    The fatigue process consists, from the engineering point of view, of three stages: crack initiation, fatigue crack growth, and the final failure. It is also known that the fatigue process near notches and cracks is governed by local strains and stresses in the regions of maximum stress and strain concentrations. Therefore, the fatigue crack growth can be considered as a process of successive crack increments, and the fatigue crack initiation and subsequent growth can be modeled as one repetitive process. The assumptions mentioned above were used to derive a fatigue crack growth model based, called later as the UniGrow model, on the analysis of cyclic elastic-plastic stresses-strains near the crack tip. The fatigue crack growth rate was determined by simulating the cyclic stress-strain response in the material volume adjacent to the crack tip and calculating the accumulated fatigue damage in a manner similar to fatigue analysis of stationary notches. The fatigue crack growth driving force was derived on the basis of the stress and strain history at the crack tip and the Smith-Watson-Topper (SWT) fatigue damage parameter, D = σmaxΔɛ/2. It was subsequently found that the fatigue crack growth was controlled by a two-parameter driving force in the form of a weighted product of the stress intensity range and the maximum stress intensity factor, Δ K p K {max/1- p }. The effect of the internal (residual) stress induced by the reversed cyclic plasticity has been accounted for and therefore the two-parameter driving force made it possible to predict the effect of the mean stress including the influence of the applied compressive stress, tensile overloads, and variable amplitude spectrum loading. It allows estimating the fatigue life under variable amplitude loading without using crack closure concepts. Several experimental fatigue crack growth datasets obtained for the Al 7075 aluminum alloy were used for the verification of the proposed unified fatigue crack growth

  6. [Chronic fatigue syndrome: more than fatigue].

    Science.gov (United States)

    Royes, Badía; Alvarez, Carballo; Lalinde, Sevillano; Vidal, Llinas; Martín, Alegre

    2010-12-01

    Chronic fatigue syndrome (CFS) is a disease recognized by all international medical organizations and WHO, and is classified under the code G93.3 of the International Classification of Diseases. Its prevalence is estimated around 2.54% being more common in women than in men (8/2) aged between 20 and 40 Is defined as a chronic new description characterized by the presence of subjective feeling of fatigue and exhaustion long disabling of more than 6 months duration that is not relieved by rest. It is a multisystem disorder that often presents a significant number of comorbid phenomena. Not known until specific tests to confirm the diagnosis, nor is there a cure to solve this health problem definitively The strongest evidence is based on the multidisciplinary approach for the symptomatic treatment of pain, sleep disorders, neurocognitive dysfunction, autonomic and control of depression and anxiety. The specific contribution of nursing to care for the person who lives and live with the SFC should be developed primarily in the field of health education and supportive care, support and assistance to help the patient and their relatives are an adaptive response to changes in health.

  7. Fatigue behaviour of uni-directional flax fibre/epoxy composites

    DEFF Research Database (Denmark)

    Ueki, Yosuke; Lilholt, Hans; Madsen, Bo

    2015-01-01

    A study related to the fatigue behaviour of natural fibre-reinforced composites was conducted to expand their range of product applications. A uni-directional flax-epoxy composite was fabricated and several conditions of tension-tension fatigue tests were performed. During fatigue testing......, the composite showed an increase of stiffness, a typical observation for natural fibre-reinforced composites, and this was found to be accompanied by accumulation of residual strain. A clear linear relationship was found between the stiffening effect and the residual strain. In addition, it was revealed...... that the fatigue behaviour was clearly influenced by the frequency of cyclic loading. Lower frequencies induced more significant stiffening and shorter fatigue life. These results suggest that fatigue damaging is progressing simultaneously with the stiffening effect in natural fibre-reinforced composites...

  8. Widespread EEG changes precede focal seizures.

    Directory of Open Access Journals (Sweden)

    Piero Perucca

    Full Text Available The process by which the brain transitions into an epileptic seizure is unknown. In this study, we investigated whether the transition to seizure is associated with changes in brain dynamics detectable in the wideband EEG, and whether differences exist across underlying pathologies. Depth electrode ictal EEG recordings from 40 consecutive patients with pharmacoresistant lesional focal epilepsy were low-pass filtered at 500 Hz and sampled at 2,000 Hz. Predefined EEG sections were selected immediately before (immediate preictal, and 30 seconds before the earliest EEG sign suggestive of seizure activity (baseline. Spectral analysis, visual inspection and discrete wavelet transform were used to detect standard (delta, theta, alpha, beta and gamma and high-frequency bands (ripples and fast ripples. At the group level, each EEG frequency band activity increased significantly from baseline to the immediate preictal section, mostly in a progressive manner and independently of any modification in the state of vigilance. Preictal increases in each frequency band activity were widespread, being observed in the seizure-onset zone and lesional tissue, as well as in remote regions. These changes occurred in all the investigated pathologies (mesial temporal atrophy/sclerosis, local/regional cortical atrophy, and malformations of cortical development, but were more pronounced in mesial temporal atrophy/sclerosis. Our findings indicate that a brain state change with distinctive features, in the form of unidirectional changes across the entire EEG bandwidth, occurs immediately prior to seizure onset. We postulate that these changes might reflect a facilitating state of the brain which enables a susceptible region to generate seizures.

  9. Widespread surface meltwater drainage in Antarctica

    Science.gov (United States)

    Kingslake, J.; Ely, J.; Das, I.; Bell, R. E.

    2016-12-01

    Surface meltwater is thought to cause ice-shelf disintegration, which accelerates the contribution of ice sheets to sea-level rise. Antarctic surface melting is predicted to increase and trigger further ice-shelf disintegration during this century. These climate-change impacts could be modulated by an active hydrological network analogous to the one in operation in Greenland. Despite some observations of Antarctic surface and sub-surface hydrological systems, large-scale active surface drainage in Antarctica has rarely been studied. We use satellite imagery and aerial photography to reveal widespread active hydrology on the surface of the Antarctic Ice Sheet as far south as 85o and as high as 1800 m a.s.l., often near mountain peaks that protrude through the ice (nunataks) and relatively low-albedo `blue-ice areas'. Despite predominantly sub-zero regional air temperatures, as simulated by a regional climate model, Antarctic active drainage has persisted for decades, transporting water through surface streams and feeding vast melt ponds up to 80 km long. Drainage networks (the largest are over 100 km in length) form on flat ice shelves, steep outlet glaciers and ice-sheet flanks across the West and East Antarctica Ice Sheets. Motivated by the proximity of many drainage systems to low-albedo rock and blue-ice areas, we hypothesize a positive feedback between exposed-rock extent, BIA formation, melting and ice-sheet thinning. This feedback relies on drainage moving water long distances from areas near exposed rock, across the grounding line onto and across ice shelves - a process we observe, but had previously thought to be unlikely in Antarctica. This work highlights previously-overlooked processes, not captured by current regional-scale models, which may accelerate the retreat of the Antarctic Ice Sheet.

  10. Widespread EEG Changes Precede Focal Seizures

    Science.gov (United States)

    Perucca, Piero; Dubeau, François; Gotman, Jean

    2013-01-01

    The process by which the brain transitions into an epileptic seizure is unknown. In this study, we investigated whether the transition to seizure is associated with changes in brain dynamics detectable in the wideband EEG, and whether differences exist across underlying pathologies. Depth electrode ictal EEG recordings from 40 consecutive patients with pharmacoresistant lesional focal epilepsy were low-pass filtered at 500 Hz and sampled at 2,000 Hz. Predefined EEG sections were selected immediately before (immediate preictal), and 30 seconds before the earliest EEG sign suggestive of seizure activity (baseline). Spectral analysis, visual inspection and discrete wavelet transform were used to detect standard (delta, theta, alpha, beta and gamma) and high-frequency bands (ripples and fast ripples). At the group level, each EEG frequency band activity increased significantly from baseline to the immediate preictal section, mostly in a progressive manner and independently of any modification in the state of vigilance. Preictal increases in each frequency band activity were widespread, being observed in the seizure-onset zone and lesional tissue, as well as in remote regions. These changes occurred in all the investigated pathologies (mesial temporal atrophy/sclerosis, local/regional cortical atrophy, and malformations of cortical development), but were more pronounced in mesial temporal atrophy/sclerosis. Our findings indicate that a brain state change with distinctive features, in the form of unidirectional changes across the entire EEG bandwidth, occurs immediately prior to seizure onset. We postulate that these changes might reflect a facilitating state of the brain which enables a susceptible region to generate seizures. PMID:24260523

  11. Research on Fatigue Strain and Fatigue Modulus of Concrete

    Directory of Open Access Journals (Sweden)

    Fangping Liu

    2017-01-01

    Full Text Available Concrete fatigue strain and fatigue modulus evolution play a vital role in the evaluation of the material properties. In this paper, by analyzing the advantages and disadvantages of existing concrete strain analysis methods, the level-S nonlinear fatigue strain model was proposed. The parameters’ physical meaning, the ranges, and the impact on the shape of the curve were all discussed. Then, the evolution model of fatigue modulus was established based on the fatigue strain evolution model and the hypothesis of fatigue modulus inversely related fatigue strain amplitude. The results indicate that the level-S model covered all types of fatigue strain evolution. It is very suitable for the description of strain evolution of concrete for its strong adaptability and high accuracy. It was found that the fitting curves coincided with the experimental curves very well, and the correlation coefficients were all above 0.98. The evolution curves of fatigue strain modulus both have three stages, namely, variation phase, linear change stage, and convergence stage. The difference is that the fatigue strain evolution curve is from the lower left corner to the upper right corner, but the fatigue modulus evolution curve is from the upper left corner to the right lower corner.

  12. Monitoring and Failure Analysis of Corroded Bridge Cables under Fatigue Loading Using Acoustic Emission Sensors

    Directory of Open Access Journals (Sweden)

    Hui Li

    2012-03-01

    Full Text Available Cables play an important role in cable-stayed systems, but are vulnerable to corrosion and fatigue damage. There is a dearth of studies on the fatigue damage evolution of corroded cable. In the present study, the acoustic emission (AE technology is adopted to monitor the fatigue damage evolution process. First, the relationship between stress and strain is determined through a tensile test for corroded and non-corroded steel wires. Results show that the mechanical performance of corroded cables is changed considerably. The AE characteristic parameters for fatigue damage are then established. AE energy cumulative parameters can accurately describe the fatigue damage evolution of corroded cables. The failure modes in each phase as well as the type of acoustic emission source are determined based on the results of scanning electron microscopy. The waveform characteristics, damage types, and frequency distribution of the corroded cable at different damage phases are collected. Finally, the number of broken wires and breakage time of the cables are determined according to the variation in the margin index.

  13. Monitoring and Failure Analysis of Corroded Bridge Cables under Fatigue Loading Using Acoustic Emission Sensors

    Science.gov (United States)

    Li, Dongsheng; Ou, Jinping; Lan, Chengming; Li, Hui

    2012-01-01

    Cables play an important role in cable-stayed systems, but are vulnerable to corrosion and fatigue damage. There is a dearth of studies on the fatigue damage evolution of corroded cable. In the present study, the acoustic emission (AE) technology is adopted to monitor the fatigue damage evolution process. First, the relationship between stress and strain is determined through a tensile test for corroded and non-corroded steel wires. Results show that the mechanical performance of corroded cables is changed considerably. The AE characteristic parameters for fatigue damage are then established. AE energy cumulative parameters can accurately describe the fatigue damage evolution of corroded cables. The failure modes in each phase as well as the type of acoustic emission source are determined based on the results of scanning electron microscopy. The waveform characteristics, damage types, and frequency distribution of the corroded cable at different damage phases are collected. Finally, the number of broken wires and breakage time of the cables are determined according to the variation in the margin index. PMID:22666009

  14. The Nature of Fatigue in Chronic Fatigue Syndrome.

    Science.gov (United States)

    Olson, Karin; Zimka, Oksana; Stein, Eleanor

    2015-10-01

    In this article, we report the findings of our study on the nature of fatigue in patients diagnosed with chronic fatigue syndrome. Using ethnoscience as a design, we conducted a series of unstructured interviews and card sorts to learn more about how people with chronic fatigue syndrome describe fatigue. Participants (N = 14) described three distinct domains: tiredness, fatigue, and exhaustion. Most participants experienced tiredness prior to diagnosis, fatigue during daily life, and exhaustion after overexertion. We also discuss participants' ability to adapt to a variety of stressors and prevent shifts to exhaustion, and relate our findings to stress theory and other current research. Primary strategies that promoted adaptation to stressors included pacing and extended rest periods. These findings can aid health care professionals in detecting impending shifts between tiredness, fatigue, and exhaustion and in improving adaptive strategies, thereby improving quality of life. © The Author(s) 2015.

  15. Fatigue in Multidirectional Composites

    Science.gov (United States)

    Ramani, S. V.; Williams, D. P.

    1982-01-01

    Data in new report on fatique properties of graphite/epoxy composites prove valuable to designers of aircraft, space vehicles, and automobiles. Graphite/epoxy composites are being used increasingly in lightweight load-bearing structures, and fatigue of such structures is always major concern of designers.

  16. Control of Fretting Fatigue

    Science.gov (United States)

    1977-07-01

    Effect of Room Temperature Pre-Strain on Grain Boundary Cavitation in Nimonic 80A," J. Microscopy, 97, pp. 165-170, 1973. 48. Eden, E. M., W. N. Rose...Academic Press, New York, 1971. ♦ 115 . Milestone, W. D., An Investigation of the Basic Mechanisms of Mechanical Fretting and Fretting-Fatigue at

  17. Incompatibility and Mental Fatigue

    Science.gov (United States)

    Herzog, Thomas R.; Hayes, Lauren J.; Applin, Rebecca C.; Weatherly, Anna M.

    2011-01-01

    A straightforward prediction from attention restoration theory is that the level of incompatibility in a person's life should be positively correlated with that person's level of mental (or directed attention) fatigue. The authors tested this prediction by developing a new self-report measure of incompatibility in which they attempted to isolate…

  18. Fatigue 󈨛. Volume 1,

    Science.gov (United States)

    1987-06-01

    are constants in the cyclic Ramberg Osgood represen- tation of material stress-strain curve as in (14), Po is the re- ference load of EPRI limit load...MPa) ci, n = Ramberg -Osgood’s coefficient and strain exponent = Strain rate (s - 1) Tend = Fatigue endurance limit (MPa) &LtdlD = Total and plastic

  19. Caffeine, fatigue, and cognition

    NARCIS (Netherlands)

    Lorist, M.M.; Tops, M.

    2003-01-01

    Effects of caffeine and fatigue are discussed with special attention to adenosine-dopamine interactions. Effects of caffeine on human cognition are diverse. Behavioural measurements indicate a general improvement in the efficiency of information processing after caffeine, while the EEG data support

  20. Chronic fatigue syndrome

    African Journals Online (AJOL)

    Committee for Science and Education, Medical. Association of South Africa. Objective. To acknowledge the dinical syndrome chronic fatigue syndrome (CFS) and outline the diagnostic criteria and reasonable management. Outcomes. Attempt at containment of treatmentcost and improvement of the quality of care of patients ...

  1. Chronic fatigue syndrome

    African Journals Online (AJOL)

    Unexplained generalised muscle weakness. 5. Muscle discomfort or myalgia. 6. Prolonged (24 hours or more) generalised fatigue after levels of exercise that would have been tolerated easily in the patient's premorbid state. "7. Generalised headaches (or a type, severity or pattern different from headaches in the premorbid ...

  2. Are nurses able to assess fatigue, exertion fatigue and types of fatigue in residential home patients?

    NARCIS (Netherlands)

    Tiesinga, L.J.; Dijkstra, Ate; Dassen, T.W.N.; Halfens, R.J.G.; van den Heuvel, W.J.A.

    Although fatigue is recognized as a subjective, generalized, extensive and disabling health care problem with a relatively high prevalence among the chronically ill, there have been no studies to show whether nurses caring for fatigued subjects are able to accurately assess the level of fatigue that

  3. Fatigue of wind turbines in the frequency domain

    Energy Technology Data Exchange (ETDEWEB)

    Bishop, N.W.M. [Univ. College London (United Kingdom)

    1996-09-01

    Fatigue damage is traditionally determined from time signals of loading, usually in the form of stress or strain. However, there are three design scenarios when a spectral form of loading is more appropriate. In this case the loading is defined in terms of its magnitude at different frequencies in the form of a Power Spectral Density (PSD) plot. First, the measurement engineer recording responses from in-service components or structures may be interested in PSD`s because they are a efficient way of defining a random stress or strain time history. Secondly, the test engineer assessing the reliability of prototypes may be interested in spectral tools because such an approach allows the structural condition of the component to be monitored by continuous inspection of the system transfer function. However, the most important benefit of working with PSD`s is relevant to the structural analysis or designer because of the more sophisticated analysis options with which they can be use. For all three of these design scenarios the fatigue designer is presented with a PSD of stress or strain with which to perform his fatigue calculation. There is therefore a requirement for a reliable, accurate and robust spectral fatigue design tool. Such a tool allows the designer to estimate the rainflow range content and hence content and hence fatigue damage from the PSD. (EG)

  4. The effect to bending fatigue strength of 65 mn under torsion strain-hardening

    Science.gov (United States)

    Zou, Guangping; Xue, Qichao; Li, Wei

    2010-03-01

    Bending Fatigue experiments for 65Mn are carried out to study the effects of torsion strain-hardening. Firstly bending fatigue specimens are pre-twisted for torsion strain-hardening by using torsion testing machine. And specimens are divided as 8 groups and each group has 8 specimens. A series of plastic shear strains are applied to each group. Then bending fatigue experiments are carried on to estimate torsion fatigue strength by fatigue bending machine. Finally micrograms of fatigue damage are taken by stereo microscope. The test results showed that torsion strain-hardening has a certain effects that when torsion plastic strain is small, bending fatigue strength is increased. Oppositely, when torsion plastic strain is large, bending fatigue strength are all decreased in a large rate compared with specimens without torsion strain-hardening. Comparing different test results and corresponding paragraphs obtained from stereo microscope, a reasonable explanation can be deduced by using metal micromechanics theory and crystal lattice dislocation theory. A possible reason is that when torsion plastic strain is small, there will be more dislocation in crystal lattice, which can raise the fatigue strength. And when torsion plastic strain is large, dislocations are piled up in some position which can bring flaws under loads, which reduce the fatigue strength of specimen.

  5. Muscle Deoxygenation Causes Muscle Fatigue

    Science.gov (United States)

    Murthy, G.; Hargens, A. R.; Lehman, S.; Rempel, D.

    1999-01-01

    Muscle fatigue is a common musculoskeletal disorder in the work place, and may be a harbinger for more disabling cumulative trauma disorders. Although the cause of fatigue is multifactorial, reduced blood flow and muscle oxygenation may be the primary factor in causing muscle fatigue during low intensity muscle exertion. Muscle fatigue is defined as a reduction in muscle force production, and also occurs among astronauts who are subjected to postural constraints while performing lengthy, repetitive tasks. The objectives of this research are to: 1) develop an objective tool to study the role of decreased muscle oxygenation on muscle force production, and 2) to evaluate muscle fatigue during prolonged glovebox work.

  6. Determinants of fatigue and stress

    Directory of Open Access Journals (Sweden)

    Brähler Elmar

    2011-07-01

    Full Text Available Abstract Background Fatigue can be triggered by previous perceived stress which may lead to impairment of performance and function. The purpose of the study was to investigate the relationship between fatigue and perceived stress. Method Health determinants including sociodemographic factors for associations between fatigue and perceived stress in the general population (N = 2,483 are outlined. Fatigue and stress were assessed with the Chalder Fatigue Scale (CFS and the Perceived Stress Questionnaire (PSQ. Results Within the general population, 25.9% of male and 34.5% of female respondents reported moderate fatigue during the last six months; 9.7% of subjects reported substantial fatigue lasting six months or longer. An adjusted regression analysis (R2corr = .28, p Conclusion We conclude that the two conditions overlap most in terms of socio-economic status and self-perceived health status.

  7. Seasonality of cavitation and frost fatigue in Acer mono Maxim.

    Science.gov (United States)

    Zhang, Wen; Feng, Feng; Tyree, Melvin T

    2017-12-08

    Although cavitation is common in plants, it is unknown whether the cavitation resistance of xylem is seasonally constant or variable. We tested the changes in cavitation resistance of Acer mono before and after a controlled cavitation-refilling and freeze-thaw cycles for a whole year. Cavitation resistance was determined from 'vulnerability curves' showing the percent loss of conductivity (PLC) versus xylem tension. Cavitation fatigue was defined as a reduction of cavitation resistance following a cavitation-refilling cycle while frost fatigue was caused by a freeze-thaw cycle. A. mono developed seasonal changes in native embolisms; values were relatively high during winter but relatively low and constant throughout the growing season. Cavitation fatigue occurred and changed seasonally during the 12-month cycle; the greatest fatigue response occurred during summer and the weakest during winter, and the transitions occurred during spring and autumn. A. mono was highly resistant to frost damage during the relatively mild winter months; however, a quite different situation occurred during the growing season, as the seasonal trend of frost fatigue was strikingly similar to that of cavitation fatigue. Seasonality changes in cavitation resistance may be caused by seasonal changes in the mechanical properties of the pit membranes. This article is protected by copyright. All rights reserved.

  8. Accelerated fatigue testing of LM 19.1 blades

    Energy Technology Data Exchange (ETDEWEB)

    Dahl Kristensen, O.J.; Joergensen, E.R.

    2003-04-01

    A series of 19.1 metre wind turbine blades manufactured by LM Glasfiber A/S of Lunderskov, Denmark were subjected to a series of flapwise fatigue tests. The object of these fatigue tests is to evaluate the impact of an increased load on the blade in a fatigue test and to give information if it is possible to increase the load in fatigue test to shorten test time. The tests were carried out as a part of a project financed by the Danish Energy Agency. During the fatigue tests the blades have been surveyed with thermal imaging equipment to determine how an increase in fatigue load affects the blade material. In addition to the thermal imaging surveillance the blades were instrumented with strain gauges. This report presents the temperature during test, calibration test results, moment range measurements, strain statistics, thermal imaging registrations and a determination of the size and cause of the damages. The report is also giving information on the blade-to-blade variation. (au)

  9. PREDICTION OF LONG-TERM CREEP-FATIGUE LIFE OF STAINLESS STEEL WELDMENT BASED ON MICROSTRUCTURE DEGRADATION

    OpenAIRE

    Tai, ASAYAMA; Shinichi, HASEBE; Oarai Engineering Center, Power Reactor and Nuclear Fuel Development Corporation

    1997-01-01

    This paper describes a newly developed analytical method for the evaluation of creep-fatigue strength for stainless weld metal. Based on the observation that creep-fatigue crack initiated adjacent to the interface of σ-phase/δ-ferrite and matrix, a mechanical model, which allowed the evaluation of micro stress/strain concentration adjacent to the interface, was developed. Fatigue and creep damages were evaluated, using the model which described the microstructure after long time exposure to h...

  10. Damage tolerant evaluation of cracked stiffened panels under ...

    Indian Academy of Sciences (India)

    This paper presents the methodologies for damage tolerant evaluation of stiffened panels under fatigue loading. The two major objectives of damage tolerant evaluation, namely, the remaining life prediction and residual strength evaluation of stiffened panels have been discussed. Concentric and eccentric stiffeners have ...

  11. Structural Evolution and Mechanisms of Fatigue in Polycrystalline Brass

    DEFF Research Database (Denmark)

    Carstensen, Jesper Vejlø

    planar and wavy slip. The mechanical and structural behaviour observed in brass resembles recent observations in 316L austenitic stainless steels, and the present results reveal that Cu-30%Zn and 316L have approximately the same fatigue life curve. This empha-sizes brass as being a convenient model...... further developed to account for the ob-served intergranular damage evolution on Cu-30%Zn. With these modifications the model pre-dicts the fatigue life curve of Cu-30%Zn and 316L....

  12. A cohesive zone framework for environmentally assisted fatigue

    DEFF Research Database (Denmark)

    del Busto, Susana; Betegón, Covadonga; Martínez Pañeda, Emilio

    2017-01-01

    by chemical potential gradients, (iii) a mechanical behavior characterized by finite deformation J2 plasticity, (iv) a phenomenological trapping model, (v) an irreversible cohesive zone formulation for fatigue, grounded on continuum damage mechanics, and (vi) a traction-separation law dependent on hydrogen......We present a compelling finite element framework to model hydrogen assisted fatigue by means of a hydrogen- and cycle-dependent cohesive zone formulation. The model builds upon: (i) appropriate environmental boundary conditions, (ii) a coupled mechanical and hydrogen diffusion response, driven...

  13. Fatigue failure of sandwich beams with face sheet wrinkle defects

    DEFF Research Database (Denmark)

    Leong, Martin Klitgaard; Hvejsel, C.F.; Thomsen, Ole Thybo

    2012-01-01

    and application of the Northwestern University failure criteria. The presence of a wrinkle defect reduced the fatigue life by approximately 66%, compared to that of an unnotched reference laminate. Furthermore, the results from the fatigue tests revealed that the design limit was initially overestimated......, as the specimens loaded close to the predicted design limit typically failed before reaching the target life, or reached test run-out with visible face sheet damage indicating imminent final failure in the worst case. It was found that specimens would reach target life with no visible or otherwise detectable...

  14. Partial Safety Factors for Fatigue Design of Wind Turbine Blades

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Sørensen, John Dalsgaard

    2010-01-01

    In the present paper calibration of partial safety factors for fatigue design of wind turbine blades is considered. The stochastic models for the physical uncertainties on the material properties are based on constant amplitude fatigue tests and the uncertainty on Miners rule for linear damage...... the influence from each of these. In general model uncertainty on the aerodynamics has the largest influence on the partial safety factors followed by the physical uncertainty on the material properties and the model uncertainty on Miners rule. In the paper a framework is presented for determination...

  15. Different types of fatigue in patients with facioscapulohumeral dystrophy, myotonic dystrophy and HMSN-I. Experienced fatigue and physiological fatigue.

    NARCIS (Netherlands)

    Kalkman, J.S.; Zwarts, M.J.; Schillings, M.L.; Engelen, B.G.M. van; Bleijenberg, G.

    2008-01-01

    Although fatigue is a common symptom in neuromuscular disorders, little is known about different types of fatigue. Sixty-five FSHD, 79 adult-onset MD and 73 HMSN type I patients were studied. Experienced fatigue was assessed with the CIS-fatigue subscale. Physiological fatigue was measured during a

  16. Fatigue Modeling for Superelastic NiTi Considering Cyclic Deformation and Load Ratio Effects

    Science.gov (United States)

    Mahtabi, Mohammad J.; Shamsaei, Nima

    2017-09-01

    A cumulative energy-based damage model, called total fatigue toughness, is proposed for fatigue life prediction of superelastic NiTi alloys with various deformation responses (i.e., transformation stresses), which also accounts for the effects of mean strain and stress. Mechanical response of superelastic NiTi is highly sensitive to chemical composition, material processing, as well as operating temperature; therefore, significantly different deformation responses may be obtained for seemingly identical NiTi specimens. In this paper, a fatigue damage parameter is proposed that can be used for fatigue life prediction of superelastic NiTi alloys with different mechanical properties such as loading and unloading transformation stresses, modulus of elasticity, and austenite-to-martensite start and finish strains. Moreover, the model is capable of capturing the effects of tensile mean strain and stress on the fatigue behavior. Fatigue life predictions using the proposed damage parameter for specimens with different cyclic stress responses, tested at various strain ratios ( R ɛ = ɛ min /ɛ max) are shown to be in very good agreement with the experimentally observed fatigue lives.

  17. Open hole and postimpact compressive fatigue of stitched and unstitched carbon-epoxy composites

    Science.gov (United States)

    Portanova, Marc A.; Poe, Clarence C.; Whitcomb, John D.

    1992-01-01

    The performance is studied of a stitched uniweave fabric composite and that of a toughened tape composite. The effects of stitching on compression fatigue life are addressed. Post impact compression fatigue and open hole fatigue tests were run on an AS4/3501-6 uniweave with stitching and a toughened IM7/8551-7 tape without stitching. Stitching was found to increase the thickness and consequently the weight of the composite material. The two materials were compared on an equal carbon content basis as well as on an equal weight basis. The excess thickness in the stitched uniweave composite was responsible for the lower fatigue life, on an equal carbon basis, compared to the toughened resin tape composite. Comparison of fatigue lives on an equal carbon content basis indicated that puncture or crimp type damage from stitching has very little effect on compression failure. Post impact fatigue test showed that although the damage area in the stitched uniweave composite was twice that of the toughened tape composite, the fatigue lives of the stitched composite were significantly longer than those of the toughened composite. Thus, it appears that the increase in thickness from stitching is much more of a penalty than crimped fibers or puncture type damage from stitching.

  18. Open hole and post-impact compression fatigue of stitched and unstitched carbon/epoxy composites

    Science.gov (United States)

    Portanova, M. A.; Poe, C. C., Jr.; Whitcomb, John D.

    1990-01-01

    The performance is studied of a stitched uniweave fabric composite and that of a toughened tape composite. The effects of stitching on compression fatigue life are addressed. Post impact compression fatigue and open hole fatigue tests were run on an AS4/3501-6 uniweave with stitching and a toughened IM7/8551-7 tape without stitching. Stitching was found to increase the thickness and consequently the weight of the composite material. The two materials were compared on an equal carbon content basis as well as on an equal weight basis. The excess thickness in the stitched uniweave composite was responsible for the lower fatigue life, on an equal carbon basis, compared to the toughened resin tape composite. Comparison of fatigue lives on an equal carbon content basis indicated that puncture or crimp type damage from stitching has very little effect on compression failure. Post impact fatigue test showed that although the damage area in the stitched uniweave composite was twice that of the toughened tape composite, the fatigue lives of the stitched composite were significantly longer than those of the toughened composite. Thus, it appears that the increase in thickness from stitching is much more of a penalty than crimped fibers or puncture type damage from stitching.

  19. DETERMINATION OF THE CREEP–FATIGUE INTERACTION DIAGRAM FOR ALLOY 617

    Energy Technology Data Exchange (ETDEWEB)

    Wright, J. K.; Carroll, L. J.; Sham, T. -L.; Lybeck, N. J.; Wright, R. N.

    2016-08-01

    Alloy 617 is the leading candidate material for an intermediate heat exchanger for the very high temperature reactor. To evaluate the behavior of this material in the expected service conditions, creep-fatigue testing was performed. Testing has been performed primarily on a single heat of material at 850 and 950°C for total strain ranges of 0.3 to 1% and tensile hold times as long as 240 minutes. At 850°C, increases in the tensile hold duration degraded the creep fatigue resistance, at least to the investigated strain-controlled hold time of up to 60 minutes at the 0.3% strain range and 240 minutes at the 1.0% strain range. At 950°C, the creep-fatigue cycles to failure becomes constant with increasing hold times, indicating saturation occurs at relatively short hold times. The creep and fatigue damage fractions have been calculated and plotted on a creep-fatigue interaction D-diagram. Results from earlier creep-fatigue tests at 800 and 1000°C on an additional heat of Alloy 617 are also plotted on the D-diagram. The methodology for calculating the damage fractions will be presented, and the effects of strain rate, strain range, temperature, hold time, and strain profile (i.e. holds in tension, compression or both) on the creep-fatigue damage will be explored.

  20. A Theoretical Approach to Predict the Fatigue Life of Flexible Pipes

    Directory of Open Access Journals (Sweden)

    José Renato M. de Sousa

    2012-01-01

    Full Text Available This paper focuses on a theoretical approach to access the fatigue life of flexible pipes. This methodology employs functions that convert forces and moments obtained in time-domain global analyses into stresses in their tensile armors. The stresses are then processed by well-known cycle counting methods, and S-N curves are used to evaluate the fatigue damage at several points in the pipe’s cross-section. Finally, Palmgren-Miner linear damage hypothesis is assumed in order to calculate the accumulated fatigue damage. A study on the fatigue life of a flexible pipe employing this methodology is presented. The main points addressed in the study are the influence of friction between layers, the effect of the annulus conditions, the importance of evaluating the fatigue life in various points of the pipe’s cross-section, and the effect of mean stresses. The results obtained suggest that the friction between layers and the annulus conditions strongly influences the fatigue life of flexible pipes. Moreover, mean stress effects are also significant, and at least half of the wires in each analyzed section of the pipe must be considered in a typical fatigue analysis.

  1. Fatigue failure in polysilicon not due to simple stress corrosion cracking.

    Science.gov (United States)

    Kahn, H; Ballarini, R; Bellante, J J; Heuer, A H

    2002-11-08

    In the absence of a corrosive environment, brittle materials such as silicon should be immune to cyclic fatigue. However, fatigue effects are well known in micrometer-sized polycrystalline silicon (polysilicon) samples tested in air. To investigate the origins of this phenomenon in polysilicon, we developed a fixed-grip fracture mechanics microspecimen but could find no evidence of static stress corrosion cracking. The environmental sensitivity of the fatigue resistance was also investigated under cyclic loading. For low-cycle fatigue, the behavior is independent of the ambient conditions, whether air or vacuum, but is strongly influenced by the ratio of compressive to tensile stresses experienced during each cycle. The fatigue damage most likely originates from contact stresses at processing-related surface asperities; subcritical crack growth then ensues during further cyclic loading. The lower far-field stresses involved in high-cycle fatigue induce reduced levels of fatigue damage. Under these conditions, a corrosive ambient such as laboratory air exacerbates the fatigue process. Without cyclic loading, polysilicon does not undergo stress corrosion cracking.

  2. Modeling Creep-Fatigue-Environment Interactions in Steam Turbine Rotor Materials for Advanced Ultra-supercritical Coal Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Chen [General Electric Global Research, Niskayuna, NY (United States)

    2014-04-01

    The goal of this project is to model creep-fatigue-environment interactions in steam turbine rotor materials for advanced ultra-supercritical (A-USC) coal power Alloy 282 plants, to develop and demonstrate computational algorithms for alloy property predictions, and to determine and model key mechanisms that contribute to the damages caused by creep-fatigue-environment interactions.

  3. A thick level set interface model for simulating fatigue-drive delamination in composites

    NARCIS (Netherlands)

    Latifi, M.; Van der Meer, F.P.; Sluys, L.J.

    2015-01-01

    This paper presents a new damage model for simulating fatigue-driven delamination in composite laminates. This model is developed based on the Thick Level Set approach (TLS) and provides a favorable link between damage mechanics and fracture mechanics through the non-local evaluation of the energy

  4. Role of bonding defects in a self-reinforced polypropylene (PURE under fatigue loading

    Directory of Open Access Journals (Sweden)

    Skotarek Christoph

    2014-06-01

    The paper deals with the fatigue behavior of this type of material and the role of the bonding imperfections on the damage accumulation process. For this purpose local deformation fields using DIC determined after quasi- static loading, step-wise increased loading and cyclic loading are compared with each other. These findings are related to the damage pattern observed after final fracture.

  5. Variable Amplitude Fatigue

    Science.gov (United States)

    Ranganathan, Narayanaswami; Joly, Damien; Leroy, René

    Fatigue crack growth behavior of selected aluminum alloys under variable amplitude loading is discussed in this study, based principally on experimental observations. The tests include single overloads tests in different environments, block load tests and tests using an aircraft wing loading spectrum. It is shown that conditions favoring a planar slip behavior lead to very high delays as opposed to conditions leading to multiple slip behavior. The Aluminium Liithium alloy studied here, has the best fatigue crack growth resistance in almost all test conditions studied here as compared to other conventional alloys. Under the spectrum loading studied here, the same alloy exhibits a change in micromechanism leading to a four fould acceleration of growth rates. Acceptable life predictions can be made, by taking into account this crack acceleration effect.

  6. Laser thermal shock and fatigue testing system

    Science.gov (United States)

    Fantini, Vincenzo; Serri, Laura; Bianchi, P.

    1997-08-01

    Thermal fatigue consists in repeatedly cycling the temperature of a specimen under test without any other constraint and stopping the test when predefined damage aspects. The result is a lifetime in terms of number of cycles. The parameters of the thermal cycle are the following: minimum and maximum temperature, time of heating, of cooling and time at high or at low temperature. When the temperature jump is very big and fast, phenomena of thermal shock can be induced. Among the numerous techniques used to perform these tests, the laser thermal fatigue cycling is very effective when fast heating of small and localized zones is required. That's the case of test performed to compare new and repaired blades of turbogas machines or components of combustion chambers of energy power plants. In order to perform these tests a thermal fatigue system, based on 1 kW Nd-YAG laser as source of heating, has been developed. The diameter of the heated zone of the specimen irradiated by the laser is in the range 0.5 - 20 mm. The temperatures can be chosen between 200 degree(s)C and 1500 degree(s)C and the piece can be maintained at high and/or low temperature from 0 s to 300 s. Temperature are measured by two sensors: a pyrometer for the high range (550 - 1500 degree(s)C) and a contactless thermocouple for the low range (200 - 550 degree(s)C). Two different gases can be blown on the specimen in the irradiated spot or in sample backside to speed up cooling phase. A PC-based control unit with a specially developed software performs PID control of the temperature cycle by fast laser power modulation. A high resolution vision system of suitable magnification is connected to the control unit to detect surface damages on the specimen, allowing real time monitoring of the tested zone as well as recording and reviewing the images of the sample during the test. Preliminary thermal fatigue tests on flat specimens of INCONEL 738 and HAYNES 230 are presented. IN738 samples, laser cladded by

  7. Fatigue 󈨛. Volume 3,

    Science.gov (United States)

    1987-06-01

    are given above. Sal and Sar were de- termined by tensile tests on single layers. Sad was based on an estimation of the thickness of the inter- facial...effective stress R = gas constart T = absol,,te temperature This apparent activation energy for the fatigue proceos in PVC is approximately half that...in distilled water could be de- termined . The temperature dependence of thus determined Kie is presented in Fig. 6 as a function of reciprocal of the

  8. Carbon Fiber Damage in Accelerator Beam

    CERN Document Server

    Sapinski, M; Guerrero, A; Koopman, J; Métral, E

    2009-01-01

    Carbon fibers are commonly used as moving targets in Beam Wire Scanners. Because of their thermomechanical properties they are very resistant to particle beams. Their strength deteriorates with time due to radiation damage and low-cycle thermal fatigue. In case of high intensity beams this process can accelerate and in extreme cases the fiber is damaged during a single scan. In this work a model describing the fiber temperature, thermionic emission and sublimation is discussed. Results are compared with fiber damage test performed on SPS beam in November 2008. In conclusions the limits of Wire Scanner operation on high intensity beams are drawn.

  9. Chronic fatigue syndrome

    Directory of Open Access Journals (Sweden)

    Brkić Snežana

    2011-01-01

    Full Text Available Chronic fatigue syndrome (CFS is defined by a profound, debilitating fatigue, lasting for at least 6 months and resulting in a substantial reduction of occupational, personal, social and educational status. CFS is a relatively poorly recognized clinical entity, although everyday experience shows that there are many patients with CFS symptoms. The incidence and prevalence of CFS remain unknown in most countries; however, the working population is most affected with predominantly female patients in generative period. Although, CFS was first mentioned four centuries ago, mysterious aethiopathogensis of CFS still intrigues scientists as hundreds of studies are still published every year on the subject. About 80 different aetiological CFS factors are mentioned, which can be classified into five basic groups: genetics, immunology, infectious diseases, endocrinology and neuropsychiatry-psychology. Even today the condition is passed established based on the diagnosis by exclusion of organic and psychiatric disorders, which demands u multidisciplinary approach. As the syndrome is often misdiagnosed and mistreated, self-medication is not uncommon in CFS patients’. In addition, such patients usually suffer for years tolerating severe fatigue. Thus, at the moment there are three priorities regarding CFS; understanding pathogenesis, development of diagnostic tests and creating efficient treatment program.

  10. Fatigue syndrome in sarcoidosis.

    Science.gov (United States)

    Górski, Witold; Piotrowski, Wojciech J

    2016-01-01

    Sarcoidosis is an inflammatory disease of unknown etiology. Most commonly it results in the formation of non-caseating granulomas in intrathoracic lymph nodes and lung parenchyma, but the clinical course and picture may be complicated by extrapulmonary involvement and many non-respiratory signs and symptoms which are directly related to the disease. In addition, sarcoidosis patients may suffer from a plethora of symptoms of uncertain or unknown origin. Fatigue is one of these symptoms, and according to some authors it is reported by the majority of patients with active sarcoidosis, but also by a smaller proportion of patients with inactive sarcoidosis, or even with complete clinical and radiological remission. Therefore the term fatigue syndrome is frequently used to name this clinical problem. The definition of fatigue syndrome in sarcoidosis is imprecise and the syndrome is usually recognized by use of validated questionnaires. In this review the uptodate knowledge in this field was presented and different challenges connected with this syndrome were described.

  11. Experimental Investigation of Widespread Delamination Damage to Composite Materials Caused by Radiant Heating

    Science.gov (United States)

    2013-06-30

    protruding. Figure 6. Composite plate with edge insulation ready for thermal exposure. 2.4 Tensile Testing Specimens were mounted in an MTS servo ...Tyndall AFB, FL in facilities controlled by the Air Force Research Laboratory (AFRL). Tensile and bending tests were performed using an MTS Model 244.31

  12. Climate specific thermomechanical fatigue of flat plate photovoltaic module solder joints

    Energy Technology Data Exchange (ETDEWEB)

    Bosco, Nick; Silverman, Timothy J.; Kurtz, Sarah

    2016-07-01

    FEM simulations of PbSn solder fatigue damage are used to evaluate seven cities that represent a variety of climatic zones. It is shown that the rate of solder fatigue damage is not ranked with the cities' climate designations. For an accurate ranking, the mean maximum daily temperature, daily temperature change and a characteristic of clouding events are all required. A physics-based empirical equation is presented that accurately calculates solder fatigue damage according to these three factors. An FEM comparison of solder damage accumulated through service and thermal cycling demonstrates the number of cycles required for an equivalent exposure. For an equivalent 25-year exposure, the number of thermal cycles (-40 degrees C to 85 degrees C) required ranged from roughly 100 to 630 for the cities examined. It is demonstrated that increasing the maximum cycle temperature may significantly reduce the number of thermal cycles required for an equivalent exposure.

  13. Creep damage index as a sensitive indicator of damage accumulation in thermoplastic laminates

    Czech Academy of Sciences Publication Activity Database

    Minster, Jiří; Šperl, Martin; Šepitka, J.

    2018-01-01

    Roč. 37, č. 3 (2018), s. 147-154 ISSN 0731-6844 Institutional support: RVO:68378297 Keywords : damage accumulation * thermoplastic laminate * cyclic tensile loading * time-dependent properties * microindentation Subject RIV: JL - Materials Fatigue, Friction Mechanics OBOR OECD: Audio engineering, reliability analysis Impact factor: 1.086, year: 2016 http://journals.sagepub.com/doi/pdf/10.1177/0731684417735184

  14. Device Design and Test of Fatigue Behaviour of Expansion Anchor Subjected to Tensile Loads

    Directory of Open Access Journals (Sweden)

    Zhang Jinfeng

    2016-01-01

    Full Text Available In order to study on the fatigue behaviour of expansion anchor (M16, grade 8.8 for overhead contact system in electrification railways, a set of safe, practical loading device is designed and a fatigue test campaign was carried out at structural laboratory of China Academy of Building Research on expansion anchor embedded in concrete block. The mobile frame of the loading device was designed well by finite-element simulation. According to some fatigue performance test of expansion anchor with different size and form, the device have been assessed experimentally its dependability. The results were found that no fatigue damage phenomenon occurred in all specimens after 2×106 cycles tensile fatigue test in this specific series. It shows that in the condition of medium level or slightly lower maximum stress limit and nominal stress range, expansion bolt has good fatigue resistance. The biggest relative displacement and the residual relative displacement after test (Δδ = δ2-δ1 was also strongly lower than the symbol of the fatigue test failure index of this specific series (0.5mm in the high cycle fatigue regime. The ultimate tension failures mode after fatigue tests in all tested samples take place in the concrete anchorage zone. The reduction range of the ultimate tensile strength properties of the anchorage system was not obvious, and the concrete was seen to be the weakest link of the system.

  15. Evaluation of Fatigue Life of CRM-Reinforced SMA and Its Relationship to Dynamic Stiffness

    Directory of Open Access Journals (Sweden)

    Nuha Salim Mashaan

    2014-01-01

    Full Text Available Fatigue cracking is an essential problem of asphalt concrete that contributes to pavement damage. Although stone matrix asphalt (SMA has significantly provided resistance to rutting failure, its resistance to fatigue failure is yet to be fully addressed. The aim of this study is to evaluate the effect of crumb rubber modifier (CRM on stiffness and fatigue properties of SMA mixtures at optimum binder content, using four different modification levels, namely, 6%, 8%, 10%, and 12% CRM by weight of the bitumen. The testing undertaken on the asphalt mix comprises the dynamic stiffness (indirect tensile test, dynamic creep (repeated load creep, and fatigue test (indirect tensile fatigue test at temperature of 25°C. The indirect tensile fatigue test was conducted at three different stress levels (200, 300, and 400 kPa. Experimental results indicate that CRM-reinforced SMA mixtures exhibit significantly higher fatigue life compared to the mixtures without CRM. Further, higher correlation coefficient was obtained between the fatigue life and resilient modulus as compared to permanent strain; thus resilient modulus might be a more reliable indicator in evaluating the fatigue life of asphalt mixture.

  16. Evaluation of fatigue life of CRM-reinforced SMA and its relationship to dynamic stiffness.

    Science.gov (United States)

    Mashaan, Nuha Salim; Karim, Mohamed Rehan; Abdel Aziz, Mahrez; Ibrahim, Mohd Rasdan; Katman, Herda Yati; Koting, Suhana

    2014-01-01

    Fatigue cracking is an essential problem of asphalt concrete that contributes to pavement damage. Although stone matrix asphalt (SMA) has significantly provided resistance to rutting failure, its resistance to fatigue failure is yet to be fully addressed. The aim of this study is to evaluate the effect of crumb rubber modifier (CRM) on stiffness and fatigue properties of SMA mixtures at optimum binder content, using four different modification levels, namely, 6%, 8%, 10%, and 12% CRM by weight of the bitumen. The testing undertaken on the asphalt mix comprises the dynamic stiffness (indirect tensile test), dynamic creep (repeated load creep), and fatigue test (indirect tensile fatigue test) at temperature of 25°C. The indirect tensile fatigue test was conducted at three different stress levels (200, 300, and 400 kPa). Experimental results indicate that CRM-reinforced SMA mixtures exhibit significantly higher fatigue life compared to the mixtures without CRM. Further, higher correlation coefficient was obtained between the fatigue life and resilient modulus as compared to permanent strain; thus resilient modulus might be a more reliable indicator in evaluating the fatigue life of asphalt mixture.

  17. Perceived fatigue following pediatric burns.

    Science.gov (United States)

    Akkerman, Moniek; Mouton, Leonora J; Dijkstra, Froukje; Niemeijer, Anuschka S; van Brussel, Marco; van der Woude, Lucas H V; Disseldorp, Laurien M; Nieuwenhuis, Marianne K

    2017-12-01

    Fatigue is a common consequence of numerous pediatric health conditions. In adult burn survivors, fatigue was found to be a major problem. The current cross-sectional study is aimed at determining the levels of perceived fatigue in pediatric burn survivors. Perceived fatigue was assessed in 23 children and adolescents (15 boys and 8 girls, aged 6-18 years, with burns covering 10-46% of the total body surface area, 1-5 years post burn) using both child self- and parent proxy reports of the Pediatric Quality of Life Inventory Multidimensional Fatigue Scale. Outcomes were compared with reference values of non-burned peers. At group level, pediatric burn survivors did not report significantly more symptoms of fatigue than their non-burned peers. Individual assessments showed, however, that four children experienced substantial symptoms of fatigue according to the child self-reports, compared to ten children according to the parent proxy reports. Furthermore, parents reported significantly more symptoms of fatigue than the children themselves. Age, gender, extent of burn, length of hospital stay, and number of surgeries could not predict the level of perceived fatigue post-burn. Our results suggest that fatigue is prevalent in at least part of the pediatric burn population after 1-5 years. However, the fact that parents reported significantly more symptoms of fatigue then the children themselves, hampers evident conclusions. It is essential for clinicians and therapists to consider both perspectives when evaluating pediatric fatigue after burn and to determine who needs special attention, the pediatric burn patient or its parent. Copyright © 2017 Elsevier Ltd and ISBI. All rights reserved.

  18. Translating Fatigue to Human Performance.

    Science.gov (United States)

    Enoka, Roger M; Duchateau, Jacques

    2016-11-01

    Despite flourishing interest in the topic of fatigue-as indicated by the many presentations on fatigue at the 2015 Annual Meeting of the American College of Sports Medicine-surprisingly little is known about its effect on human performance. There are two main reasons for this dilemma: 1) the inability of current terminology to accommodate the scope of the conditions ascribed to fatigue, and 2) a paucity of validated experimental models. In contrast to current practice, a case is made for a unified definition of fatigue to facilitate its management in health and disease. On the basis of the classic two-domain concept of Mosso, fatigue is defined as a disabling symptom in which physical and cognitive function is limited by interactions between performance fatigability and perceived fatigability. As a symptom, fatigue can only be measured by self-report, quantified as either a trait characteristic or a state variable. One consequence of such a definition is that the word fatigue should not be preceded by an adjective (e.g., central, mental, muscle, peripheral, and supraspinal) to suggest the locus of the changes responsible for an observed level of fatigue. Rather, mechanistic studies should be performed with validated experimental models to identify the changes responsible for the reported fatigue. As indicated by three examples (walking endurance in old adults, time trials by endurance athletes, and fatigue in persons with multiple sclerosis) discussed in the review, however, it has proven challenging to develop valid experimental models of fatigue. The proposed framework provides a foundation to address the many gaps in knowledge of how laboratory measures of fatigue and fatigability affect real-world performance.

  19. Fatigue Performance under Multiaxial Loading

    Science.gov (United States)

    1990-01-01

    Fatigue Strength (Study fatigue strength in cor. connect, in box struc.)." Prog. Rpt. 1, Res. Inst. Ishikawajima - Harima Heavy Ind. Co., Ltd., Tokyo, Japan...1," Ishikawajima - Harima Heavy Ind. Co., Ltd. Research Inst., Tokyo, Japan, IIW Doc. No XIII-573-70. Mall, G., and R. Zirn, "Load Carrying Behavior of...1972. Anonymous, "Application of Program Fatigue Test to Member Joints of Hulls," Mitsubishi Heavy Industries LTD, Mitsubishi Technical Bulletin No

  20. Localized bending fatigue behavior of high-strength steel monostrands

    DEFF Research Database (Denmark)

    Winkler, Jan; Fischer, Gregor; Georgakis, Christos T.

    2012-01-01

    of the strain distribution in the strand and helps in identifying potential failure mechanisms along the strand and at the wedge location. Initial analysis of the deformations shows that the bending fatigue behavior of the monostrand may be controlled either by local bending deformations or by relative......In this paper, the localized bending fatigue behavior of pretensioned high strength steel monostrands is investigated. Furthermore, a new methodology using an optical photogrammetry system, which can quantify surface deformations on the strand is presented. The system allows measurement...... displacement (opening/closing and sliding) of the helically wound wires. Moreover, the results are a step towards understanding the bending fatigue damage mechanisms of monostrand cables....

  1. Wind Climate Parameters for Wind Turbine Fatigue Load Assessment

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Svenningsen, Lasse; Moser, Wolfgang

    2016-01-01

    established from the on-site distribution functions of the horizontal mean wind speeds, the 90% quantile of turbulence along with average values of vertical wind shear and air density and the maximum flow inclination. This paper investigates the accuracy of fatigue loads estimated using this equivalent wind...... climate required by the current design standard by comparing damage equivalent fatigue loads estimated based on wind climate parameters for each 10 min time-series with fatigue loads estimated based on the equivalent wind climate parameters. Wind measurements from Boulder, CO, in the United States...... and Høvsøre in Denmark have been used to estimate the natural variation in the wind conditions between 10 min time periods. The structural wind turbine loads have been simulated using the aero-elastic model FAST. The results show that using a 90% quantile for the turbulence leads to an accurate assessment...

  2. Interlaminar crack growth in fiber reinforced composites during fatigue

    Science.gov (United States)

    Wang, S. S.; Wang, H. T.

    1979-01-01

    This paper presents an investigation of interlaminar crack growth behavior in fiber-reinforced composites subjected to fatigue loading. In the experimental phase of the study, interlaminar crack propagation rates and mechanisms were determined for the cases of various geometries, laminate parameters and cyclic stress levels. An advanced singular hybrid-stress finite element method was used in conjunction with the experimental results to examine the local crack-tip behavior and to characterize the crack propagation during fatigue. Results elucidate the basic nature of the cyclic delamination damage and relate the interlaminar crack growth rate to the range of mixed-mode crack-tip stress intensity factors. The study provides fundamental insight into the problem, reveals several important features of the interlaminar fatigue failure, and should be of practical importance in selection, testing and design of composite materials.

  3. Wave-induced fatigue of multi-span pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Tao Xu [Marine Engineers and Consultants, Freemont, CA (United States); Lauridsen, B. [Danish Maritime Institute, Copenhagen (Denmark); Yong Bai [J P Kenny A/S, Forus (Norway)

    1999-02-01

    Free spanning of the multi-span pipeline is an important subject for design of pipeline in uneven seabed. The seabed intervention costs are largely influenced by pipeline spanning design, which includes assessment of trawl pullover response, vortex-induced vibrations and wave-induced fatigue. The objective of this paper is to develop a rational design methodology for the determination of the free span lengths based on the multi-span pipeline in-line fatigue assessment. Following the summary of the procedure, a detailed mathematical model for the free span movement and its analytical closed form solution are developed. The fatigue damage models are detailed both in time domain and frequency domain approaches. A numerical example is presented to illustrate the technical models. (author)

  4. Analysis of bearing steel exposed to rolling contact fatigue

    Science.gov (United States)

    Hansen, K. T.; Fæster, S.; Natarajan, A.; Mishin, O. V.; Danielsen, H. K.; Jensen, D. Juul; Klit, P.

    2017-07-01

    The objective of this work is to characterize fatigue damage in roller bearings under conditions of high load and slippage. A test rig constructed for rolling contact fatigue tests of rings is described, and test results are presented for rings taken from two spherical roller bearings. The preparation of the rings and the loading situation are explained. Test conditions are chosen with the aim of achieving pitting formation at the contacting surfaces. During testing the contact pressure, torque and the rotational speed are monitored and recorded. After testing the tested rings have been characterized using X-ray tomography and scanning electron microscopy. The observations confirm that rolling contact fatigue testing at high loads leads to pitting failure at the contacting surfaces. The pitting mostly appears on one side of the contact, attributed to a non-uniform contact pressure in the axial direction.

  5. Thermo-mechanical behavior and fatigue strength of a grey cast iron for automotive brake discs considering graphite flakes debonding

    Directory of Open Access Journals (Sweden)

    Augustins Louis

    2014-06-01

    Full Text Available This paper aims at developing an approach for thermo-mechanical fatigue design of automotive brake discs made of lamellar graphite (grey cast-iron. The first step consists of modelling the nonlinear cyclic behavior and tension/compression strong dissymmetry of grey cast iron. The proposed model is based on the introduction of a second-order induced damage tensor. From the analysis of the damage mechanisms, a fatigue criterion based on the dissipated energy per cycle is proposed.

  6. A Tuberculosis Pericarditis Case Admitted with Proteinuria and Widespread Edema

    OpenAIRE

    Cihangiroğlu, Mustafa; ARTAŞ, Hakan; Abdullah ÖZTÜRK; Demirçin, Mustafa; Çelik, İlhami; Bayındır, Yaşar

    2004-01-01

    Tuberculous pericarditis was diagnosed in a patient who was hospitalized for investigation of etiology of proteinuria, widespread edema, pericardial fluid and ascites. Fever and arythmia developed during clinical course, Mycobacterium tuberculosis was isolated from sputum, and pericardial fluid. Tuberculous pericarditis is a rare but life thereatening health problem. Because of initial clinical signs were proteinuria and widespread edema, this case was presented. In endemi...

  7. How Chronic Fatigue Syndrome Wears Patients Out

    Science.gov (United States)

    ... https://medlineplus.gov/news/fullstory_167452.html How Chronic Fatigue Syndrome Wears Patients Out Study suggests body amplifies fatigue ... what it's like for those who struggle with chronic fatigue syndrome, and researchers suggest in a new report that ...

  8. Specimen design and instrumentation for monitoring fatigue crack growth initiating at ply drops

    DEFF Research Database (Denmark)

    Goutianos, Stergios; Di Crescenzo, Leonardo; McGugan, Malcolm

    Unpredictable and excessive loads, for example caused by aerodynamic interaction between different turbines, can accelerate fatigue damage in wind turbine blades (Ghosal et. al (2000)). Fatigue damage can also initiate in the early service life of a wind turbine blade in regions of stress...... concentration, such as those caused by ply drops (Cairns et al. (1999)). Due to these issues, the design philosophy is based on conservative analysis methods and inspections at certain time intervals are required to assess the damage in the wind blades. An alternative approach is to use damage tolerant...... materials and a structural health monitoring system (McGugan et al. (2015)). In this approach, a distribution of damage types within the blades is accepted as long as they can be detected by structural health monitoring techniques and their severity evaluated by material damage models. The present work aims...

  9. Conference Analysis Report of Assessments on Defect and Damage for a High Temperature Structure

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyeong Yeon

    2008-11-15

    This report presents the analysis on the state-of-the-art research trends on creep-fatigue damage, defect assessment of high temperature structure, development of heat resistant materials and their behavior at high temperature based on the papers presented in the two international conferences of ASME PVP 2008 which was held in Chicago in July 2008 and CF-5(5th International Conference on Creep, Fatigue and Creep-Fatigue) which was held in Kalpakkam, India in September 2008.

  10. Implementation of fatigue model for unidirectional laminate based on finite element analysis: theory and practice

    Directory of Open Access Journals (Sweden)

    D. Carrella-Payan

    2016-10-01

    Full Text Available The aim of this study is to deal with the simulation of intralaminar fatigue damage in unidirectional composite under multi-axial and variable amplitude loadings. The variable amplitude and multi-axial loading is accounted for by using the damage hysteresis operator based on Brokate method [6]. The proposed damage model for fatigue is based on stiffness degradation laws from Van Paepegem combined with the ‘damage’ cycle jump approach extended to deal with unidirectional carbon fibres. The parameter identification method is here presented and parameter sensitivities are discussed. The initial static damage of the material is accounted for by using the Ladevèze damage model and the permanent shear strain accumulation based on Van Paepegem’s formulation. This approach is implemented into commercial software (Siemens PLM. The validation case is run on a bending test coupon (with arbitrary stacking sequence and load level in order to minimise the risk of inter-laminar damages. This intra-laminar fatigue damage model combined efficient methods with a low number of tests to identify the parameters of the stiffness degradation law, this overall procedure for fatigue life prediction is demonstrated to be cost efficient at industrial level. This work concludes on the next challenges to be addressed (validation tests, multiple-loadings validation, failure criteria, inter-laminar damages….

  11. Impact of Moving From a Widespread to Multisite Pain Definition on Other Fibromyalgia Symptoms.

    Science.gov (United States)

    Dean, Linda E; Arnold, Lesley; Crofford, Leslie; Bennett, Robert; Goldenberg, Don; Fitzcharles, Mary-Ann; Paiva, Eduardo S; Staud, Roland; Clauw, Dan; Sarzi-Puttini, Piercarlo; Jones, Gareth T; Ayorinde, Abimbola; Flüß, Elisa; Beasley, Marcus; Macfarlane, Gary J

    2017-12-01

    To investigate whether associations between pain and the additional symptoms associated with fibromyalgia are different in persons with chronic widespread pain (CWP) compared to multisite pain (MSP), with or without joint areas. Six studies were used: 1958 British birth cohort, Epidemiology of Functional Disorders, Kid Low Back Pain, Managing Unexplained Symptoms (Chronic Widespread Pain) in Primary Care: Involving Traditional and Accessible New Approaches, Study of Health and its Management, and Women's Health Study (WHEST; females). MSP was defined as the presence of pain in ≥8 body sites in adults (≥10 sites in children) indicated on 4-view body manikins, conducted first to include joints (positive joints) and second without (negative joints). The relationship between pain and fatigue, sleep disturbance, somatic symptoms, and mood impairment was assessed using logistic regression. Results are presented as odds ratios (ORs) with 95% confidence intervals (95% CIs). There were 34,818 participants across the study populations (adults age range 42-56 years, male 43-51% [excluding WHEST], and CWP prevalence 12-17%). Among those reporting MSP, the proportion reporting CWP ranged between 62% and 76%. Among those reporting the symptoms associated with fibromyalgia, there was an increased likelihood of reporting pain, the magnitude of which was similar regardless of the definition used. For example, within WHEST, reporting moderate/severe fatigue (Chalder fatigue scale 4-11) was associated with a >5-fold increase in likelihood of reporting pain (CWP OR 5.2 [95% CI 3.9-6.9], MSP-positive joints OR 6.5 [95% CI 5.0-8.6], and MSP-negative joints OR 6.5 [95% CI 4.7-9.0]). This large-scale study demonstrates that regardless of the pain definition used, the magnitude of association between pain and other associated symptoms of fibromyalgia is similar. This finding supports the continued collection of both when classifying fibromyalgia, but highlights the fact that pain may

  12. Local fatigue behavior in tapered areas of large offshore wind turbine blades

    DEFF Research Database (Denmark)

    Raeis Hosseiny, Seyed Aydin; Jakobsen, Johnny

    2016-01-01

    failure of an entire blade structure. The local strength degradation under an ultimate static loading, subsequent to several years of fatigue, is predicted for an offshore wind turbine blade. Fatigue failure indexes of different damage modes are calculated using a sub-modeling approach. Multi axial...... stresses are accounted for using a developed failure criterion with residual strengths instead of the virgin strengths. Damage initiation is predicted by including available Wohler curve data of E-Glass fabrics and epoxy matrix into multi-axial fatigue failure criteria. As a result of this study, proper...... knock-down factors for ply-drop effects in wind turbine blades under multi-axial static and fatigue loadings can be obtained....

  13. A Model of BGA Thermal Fatigue Life Prediction Considering Load Sequence Effects

    Directory of Open Access Journals (Sweden)

    Weiwei Hu

    2016-10-01

    Full Text Available Accurate testing history data is necessary for all fatigue life prediction approaches, but such data is always deficient especially for the microelectronic devices. Additionally, the sequence of the individual load cycle plays an important role in physical fatigue damage. However, most of the existing models based on the linear damage accumulation rule ignore the sequence effects. This paper proposes a thermal fatigue life prediction model for ball grid array (BGA packages to take into consideration the load sequence effects. For the purpose of improving the availability and accessibility of testing data, a new failure criterion is discussed and verified by simulation and experimentation. The consequences for the fatigue underlying sequence load conditions are shown.

  14. Fatigue Durability Analysis of Collecting Rapping System in Electrostatic Precipitators under Impact Loading

    Directory of Open Access Journals (Sweden)

    Ali Akbar Lotfi Neyestanak

    2014-01-01

    Full Text Available Due to the importance of collecting rapping system in electrostatic precipitators (ESP and controlling the relevant damage under impact loading, fatigue durability of this system is analyzed in the present study based on the numerical and experimental results considering fatigue damage growth and vibration acceleration in the collecting system because of the successive impact of rapping hammers. By microscopic examination of the fracture surface of rapping hammer, beach marks obviously show typical fatigue failure in the rapping hammer arm. In addition, the microscopic examination of the cross section of the collecting plates indicates the corrosion voids which cause crack and eventually fatigue failure. The finite element method is applied to determine both the stress and concentration positions of dynamic stress on the rapping system under impact loading. The paper results can be utilized in system optimization and new material selection for the system by evaluating rapping system durability.

  15. Fatigue resistance of CAD/CAM resin composite molar crowns.

    Science.gov (United States)

    Shembish, Fatma A; Tong, Hui; Kaizer, Marina; Janal, Malvin N; Thompson, Van P; Opdam, Niek J; Zhang, Yu

    2016-04-01

    To demonstrate the fatigue behavior of CAD/CAM resin composite molar crowns using a mouth-motion step-stress fatigue test. Monolithic leucite-reinforced glass-ceramic crowns were used as a reference. Fully anatomically shaped monolithic resin composite molar crowns (Lava Ultimate, n=24) and leucite reinforced glass-ceramic crowns (IPS Empress CAD, n=24) were fabricated using CAD/CAM systems. Crowns were cemented on aged dentin-like resin composite tooth replicas (Filtek Z100) with resin-based cements (RelyX Ultimate for Lava Ultimate or Multilink Automix for IPS Empress). Three step-stress profiles (aggressive, moderate and mild) were employed for the accelerated sliding-contact mouth-motion fatigue test. Twenty one crowns from each group were randomly distributed among these three profiles (1:2:4). Failure was designated as chip-off or bulk fracture. Optical and electron microscopes were used to examine the occlusal surface and subsurface damages, as well as the material microstructures. The resin composite crowns showed only minor occlusal damage during mouth-motion step-stress fatigue loading up to 1700N. Cross-sectional views revealed contact-induced cone cracks in all specimens, and flexural radial cracks in 2 crowns. Both cone and radial cracks were relatively small compared to the crown thickness. Extending these cracks to the threshold for catastrophic failure would require much higher indentation loads or more loading cycles. In contrast, all of the glass-ceramic crowns fractured, starting at loads of approximately 450N. Monolithic CAD/CAM resin composite crowns endure, with only superficial damage, fatigue loads 3-4 times higher than those causing catastrophic failure in glass-ceramic CAD crowns. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  16. Widespread inflammation in CLIPPERS syndrome indicated by autopsy and ultra-high-field 7T MRI

    DEFF Research Database (Denmark)

    Blaabjerg, Morten; Ruprecht, Klemens; Sinnecker, Tim

    2016-01-01

    OBJECTIVE: To examine if there is widespread inflammation in the brain of patients with chronic lymphocytic inflammation with pontine perivascular enhancement responsive to steroids (CLIPPERS) syndrome by using histology and ultra-high-field MRI at 7.0T. METHODS: We performed a detailed...... neuropathologic examination in 4 cases, including 1 autopsy case, and studied 2 additional patients by MRI at 7.0T to examine (1) extension of inflammation to areas appearing normal on 3.0T MRI, (2) potential advantages of 7.0T MRI compared to 3.0T MRI in reflecting widespread inflammation, perivascular pathology......, and axonal damage, and (3) the possibility of lymphoma. RESULTS: In the autopsy case, perivascular inflammation dominated by CD4+ T cells was not only detected in the brainstem and cerebellum but also in brain areas with normal appearance on 3.0T MRI, including supratentorial regions and cranial nerve roots...

  17. The effects of fibre architecture on fatigue life-time of composite materials

    DEFF Research Database (Denmark)

    Hansen, Jens Zangenberg; Østergaard, Rasmus

    Wind turbine rotor blades are among the largest composite structures manufactured of fibre reinforced polymer. During the service life of a wind turbine rotor blade, it is subjected to cyclic loading that potentially can lead to material failure, also known as fatigue. With reference to glass fibre...... reinforced composites used for the main laminate of a wind turbine rotor blade, the problem addressed in the present work is the effect of the fibre and fabric architecture on the fatigue life-time under tension-tension loading. Fatigue of composite materials has been a central research topic for the last...... methodologies in order to be assessed. Furthermore, numerical evaluation and predictions of the fatigue damage evolution are decisive in order to make future improvements. The present work is focused around two central themes: fibre architecture and fatigue failure. The fibre architecture is characterised using...

  18. Short fatigue cracks nucleation and growth in lean duplex stainless steel LDX 2101

    Energy Technology Data Exchange (ETDEWEB)

    Strubbia, R., E-mail: strubbia@ifir-conicet.gov.ar [Instituto de Física Rosario – CONICET, Universidad Nacional de Rosario (Argentina); Hereñú, S.; Alvarez-Armas, I. [Instituto de Física Rosario – CONICET, Universidad Nacional de Rosario (Argentina); Krupp, U. [Faculty of Engineering and Computer Science, University of Applied Sciences Osnabrück (Germany)

    2014-10-06

    This work is focused on the fatigue damage of lean duplex stainless steels (LDSSs) LDX 2101. Special interest is placed on analyzing short fatigue crack behavior. In this sense, short crack initiation and growth during low cycle fatigue (LCF) and short crack nucleation during high cycle fatigue (HCF) of this LDSS have been studied. The active slip systems and their associated Schmid factors (SF) are determined using electron backscattered diffraction (EBSD). Additionally, the dislocation structure developed during cycling is observed by transmission electron microscopy (TEM). Regardless of the fatigue regime, LCF and HCF, short cracks nucleate along intrusion/extrusions in ferritic grains. Moreover, during the LCF phase boundaries decelerate short crack propagation. These results are rationalized by the hardness of the constitutive phases and the dependence of screw dislocation mobility in the ferrite phase on strain rate and stress amplitude.

  19. Modeling the effects of control systems of wind turbine fatigue life

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, K.G.; Laino, D.J. [Univ. of Utah, Salt Lake City, UT (United States)

    1996-12-31

    In this study we look at the effect on fatigue life of two types of control systems. First, we investigate the Micon 65, an upwind, three bladed turbine with a simple yaw control system. Results indicate that increased fatigue damage to the blade root can be attributed to continuous operation at significant yaw error allowed by the control system. Next, we model a two-bladed teetered rotor turbine using three different control systems to adjust flap deflections. The first two limit peak power output, the third limits peak power and cyclic power output over the entire range of operation. Results for simulations conducted both with and without active control are compared to determine how active control affects fatigue life. Improvement in fatigue lifetimes were seen for all control schemes, with increasing fatigue lifetime corresponding to increased flap deflection activity. 13 refs., 6 figs., 2 tabs.

  20. Surface-distributed low-frequency asynchronous stimulation delays fatigue of stimulated muscles.

    Science.gov (United States)

    Maneski, Lana Z Popović; Malešević, Nebojša M; Savić, Andrej M; Keller, Thierry; Popović, Dejan B

    2013-12-01

    One important reason why functional electrical stimulation (FES) has not gained widespread clinical use is the limitation imposed by rapid muscle fatigue due to non-physiological activation of the stimulated muscles. We aimed to show that asynchronous low-pulse-rate (LPR) electrical stimulation applied by multipad surface electrodes greatly postpones the occurrence of muscle fatigue compared with conventional stimulation (high pulse rate, HPR). We compared the produced force vs. time of the forearm muscles responsible for finger flexion in 2 stimulation protocols, LPR (fL = 10 Hz) and HPR (fH = 40 Hz). Surface-distributed low-frequency asynchronous stimulation (sDLFAS) doubles the time interval before the onset of fatigue (104 ± 80%) compared with conventional synchronous stimulation. Combining the performance of multipad electrodes (increased selectivity and facilitated positioning) with sDLFAS (decreased fatigue) can improve many FES applications in both the lower and upper extremities. Copyright © 2013 Wiley Periodicals, Inc.