Modeling Wideband Electromagnetic Emission of Compact Intracloud Discharges
Davydenko, Stanislav; Iudin, Dmitry
2017-04-01
Wideband electromagnetic emission of compact intracloud discharge (CID) is examined in the framework of fractal approach. CID is considered as a result of electric coupling of two bipolar conducting structures, which developed relatively slowly in the regions of strong electric field at the preliminary stage of the discharge. Main stage of CID starts at the moment of electric contact of the bipolar structures and lead to fast formation of tree-like system of well-conducting channels and corresponding current system. To estimate the electromagnetic emission, tree-like current structures at the preliminary and main stages of CID are represented as a sum of linear mean component and set of numerous small-scale constituents corresponding to initial breakdowns between the neighboring cells of the discharge domain. Mean linear currents are considered as effective sources of VLF/LF emission at the both preliminary and main stages of CID. Electrostatic, induction, and radiation electric field components at different distances from CID are calculated taking into account specific features of mean currents at both stages of the discharge. It is shown that, at the preliminary stage, only electrostatic component of the mean current field can be detected, whereas at the main stage all the above components of the electric field can be observed confidently. Radiation electric field of the mean current at the main stage of CID in the far zone represents a typical narrow bipolar pulse (NBP). Dependence of NBP profile on the discharge length and current pulse velocity is analyzed. It is shown that due to bi-directional expansion of mean current the bipolar pulse remains narrow in wide range of the discharge parameters. The small-scale linear currents corresponding to formation of new conducting channels of the discharge are considered as effective sources of HF/VHF emission. Radiation electric field of whole discharge structure at any stage of CID is a sum of contributions of small
Directory of Open Access Journals (Sweden)
Luciano Mescia
2017-11-01
Full Text Available Electromagnetic fields are involved in several therapeutic and diagnostic applications such as hyperthermia and electroporation. For these applications, pulsed electric fields (PEFs and transient phenomena are playing a key role for understanding the biological response due to the exposure to non-ionizing wideband pulses. To this end, the PEF propagation in the six-layered planar structure modeling the human head has been studied. The electromagnetic field and the specific absorption rate (SAR have been calculated through an accurate finite-difference time-domain (FDTD dispersive modeling based on the fractional derivative operator. The temperature rise inside the tissues due to the electromagnetic field exposure has been evaluated using both the non-thermoregulated and thermoregulated Gagge’s two-node models. Moreover, additional parametric studies have been carried out with the aim to investigate the thermal response by changing the amplitude and duration of the electric pulses.
Ultra-Wideband, Short Pulse Electromagnetics 9
Rachidi, Farhad; Kaelin, Armin; Sabath, Frank; UWB SP 9
2010-01-01
Ultra-wideband (UWB), short-pulse (SP) electromagnetics are now being used for an increasingly wide variety of applications, including collision avoidance radar, concealed object detection, and communications. Notable progress in UWB and SP technologies has been achieved by investigations of their theoretical bases and improvements in solid-state manufacturing, computers, and digitizers. UWB radar systems are also being used for mine clearing, oil pipeline inspections, archeology, geology, and electronic effects testing. Ultra-wideband Short-Pulse Electromagnetics 9 presents selected papers of deep technical content and high scientific quality from the UWB-SP9 Conference, which was held from July 21-25, 2008, in Lausanne, Switzerland. The wide-ranging coverage includes contributions on electromagnetic theory, time-domain computational techniques, modeling, antennas, pulsed-power, UWB interactions, radar systems, UWB communications, and broadband systems and components. This book serves as a state-of-the-art r...
Yang, XiaoLiang; Wen, GongJian; Ma, CongHui; Hui, BingWei
2017-01-01
This paper proposes an absolute attitude measurement approach by utilizing a monostatic wideband radar. In this approach, the three-dimensional electromagnetic-model (3-D em-model) and the parametric motion model of a target are combined to estimate absolute attitude. The 3-D em-model is established offline based on the target's geometric structure. Scattering characteristics such as radar cross section and radar images from one-dimension to 3-D can be conveniently predicted by this model. By matching the high-resolution range profiles (HRRPs) of measurements with the HRRPs predicted by the 3-D em-model, the directions of the lines of sight relative to the target at different measuring times are first obtained. Then, based on the obtained directions and the parametric motion model of the target, the target absolute attitude at each measuring time can be acquired. Experiments using both data predicted by a high-frequency em-code and data measured in an anechoic chamber verify the validity of the proposed method.
Prediction of buried mine-like target radar signatures using wideband electromagnetic modeling
Energy Technology Data Exchange (ETDEWEB)
Warrick, A.L.; Azevedo, S.G.; Mast, J.E.
1998-04-06
Current ground penetrating radars (GPR) have been tested for land mine detection, but they have generally been costly and have poor performance. Comprehensive modeling and experimentation must be done to predict the electromagnetic (EM) signatures of mines to access the effect of clutter on the EM signature of the mine, and to understand the merit and limitations of using radar for various mine detection scenarios. This modeling can provide a basis for advanced radar design and detection techniques leading to superior performance. Lawrence Livermore National Laboratory (LLNL) has developed a radar technology that when combined with comprehensive modeling and detection methodologies could be the basis of an advanced mine detection system. Micropower Impulse Radar (MIR) technology exhibits a combination of properties, including wideband operation, extremely low power consumption, extremely small size and low cost, array configurability, and noise encoded pulse generation. LLNL is in the process of developing an optimal processing algorithm to use with the MIR sensor. In this paper, we use classical numerical models to obtain the signature of mine-like targets and examine the effect of surface roughness on the reconstructed signals. These results are then qualitatively compared to experimental data.
Metamaterial-based wideband electromagnetic wave absorber.
La Spada, Luigi; Vegni, Lucio
2016-03-21
In this paper, an analytical and numerical study of a new type of electromagnetic absorber, operating in the infrared and optical regime, is proposed. Absorption is obtained by exploiting Epsilon-Near-Zero materials. The structure electromagnetic properties are analytically described by using a new closed-form formula. In this way, it is possible to correlate the electromagnetic absorption properties of the structure with its geometrical characteristics. Good agreement between analytical and numerical results was achieved. Moreover, an absorption in a wide angle range (0°-80°), for different resonant frequencies (multi-band) with a large frequency bandwidth (wideband) for small structure thicknesses (d = λp/4) is obtained.
Numerical Modeling of Ultra Wideband Combined Antennas
Zorkal'tseva, M. Yu.; Koshelev, V. I.; Petkun, A. A.
2017-12-01
With the help of a program we developed, based on the finite difference method in the time domain, we have investigated the characteristics of ultra wideband combined antennas in detail. The antennas were developed to radiate bipolar pulses with durations in the range 0.5-3 ns. Data obtained by numerical modeling are compared with the data of experimental studies on antennas and have been used in the synthesis of electromagnetic pulses with maximum field strength.
Wideband electromagnetically coupled coaxial probe fed slot ...
African Journals Online (AJOL)
A wideband U-slot loaded rectangular patch stacked with horizontal slot loaded rectangular patch antenna is presented in this paper. The resonating behavior of antenna depends on slot width, slot length of side arm and base arm of U-slot. Similarly, it depends on separation between the two patches. Optimization of these ...
8th conference on Ultra-Wideband Short-Pulse Electromagnetics
Tyo, J. Scott; Baum, Carl E; Ultra-Wideband Short-Pulse Electromagnetics 8; UWBSP8
2007-01-01
The purpose of the Ultra-Wideband Short-Pulse Electromagnetics Conference series is to focus on advanced technologies for the generation, radiation and detection of ultra-wideband short pulse signals, taking into account their propagation and scattering from and coupling to targets of interest. This Conference series reports on developments in supporting mathematical and numerical methods and presents current and potential future applications of the technology. Ultra-Wideband Short-Pulse Electromagnetics 8 is based on the American Electromagnetics 2006 conference held from June 3-7 in Albuquerque, New Mexico. Topical areas covered in this volume include pulse radiation and measurement, scattering theory, target detection and identification, antennas, signal processing, and communications.
FDTD computation of human eye exposure to ultra-wideband electromagnetic pulses.
Simicevic, Neven
2008-03-21
With an increase in the application of ultra-wideband (UWB) electromagnetic pulses in the communications industry, radar, biotechnology and medicine, comes an interest in UWB exposure safety standards. Despite an increase of the scientific research on bioeffects of exposure to non-ionizing UWB pulses, characterization of those effects is far from complete. A numerical computational approach, such as a finite-difference time domain (FDTD) method, is required to visualize and understand the complexity of broadband electromagnetic interactions. The FDTD method has almost no limits in the description of the geometrical and dispersive properties of the simulated material, it is numerically robust and appropriate for current computer technology. In this paper, a complete calculation of exposure of the human eye to UWB electromagnetic pulses in the frequency range of 3.1-10.6, 22-29 and 57-64 GHz is performed. Computation in this frequency range required a geometrical resolution of the eye of 0.1 mm and an arbitrary precision in the description of its dielectric properties in terms of the Debye model. New results show that the interaction of UWB pulses with the eye tissues exhibits the same properties as the interaction of the continuous electromagnetic waves (CWs) with the frequencies from the pulse's frequency spectrum. It is also shown that under the same exposure conditions the exposure to UWB pulses is from one to many orders of magnitude safer than the exposure to CW.
FDTD computation of human eye exposure to ultra-wideband electromagnetic pulses
Energy Technology Data Exchange (ETDEWEB)
Simicevic, Neven [Center for Applied Physics Studies, Louisiana Tech University, Ruston, LA 71272 (United States)], E-mail: neven@phys.latech.edu
2008-03-21
With an increase in the application of ultra-wideband (UWB) electromagnetic pulses in the communications industry, radar, biotechnology and medicine, comes an interest in UWB exposure safety standards. Despite an increase of the scientific research on bioeffects of exposure to non-ionizing UWB pulses, characterization of those effects is far from complete. A numerical computational approach, such as a finite-difference time domain (FDTD) method, is required to visualize and understand the complexity of broadband electromagnetic interactions. The FDTD method has almost no limits in the description of the geometrical and dispersive properties of the simulated material, it is numerically robust and appropriate for current computer technology. In this paper, a complete calculation of exposure of the human eye to UWB electromagnetic pulses in the frequency range of 3.1-10.6, 22-29 and 57-64 GHz is performed. Computation in this frequency range required a geometrical resolution of the eye of 0.1 mm and an arbitrary precision in the description of its dielectric properties in terms of the Debye model. New results show that the interaction of UWB pulses with the eye tissues exhibits the same properties as the interaction of the continuous electromagnetic waves (CWs) with the frequencies from the pulse's frequency spectrum. It is also shown that under the same exposure conditions the exposure to UWB pulses is from one to many orders of magnitude safer than the exposure to CW.
7th conference on ultra-wideband, short-pulse electromagnetics
Schenk, Uwe; Nitsch, Daniel; Sabath, Frank; Ultra-Wideband, Short-Pulse Electromagnetics 7; UWBSP7
2007-01-01
Ultra-wideband (UWB), short-pulse (SP) electromagnetics are now being used for an increasingly wide variety of applications, including collision avoidance radar, concealed object detection, and communications. Notable progress in UWB and SP technologies has been achieved by investigations of their theoretical bases and improvements in solid-state manufacturing, computers, and digitizers. UWB radar systems are also being used for mine clearing, oil pipeline inspections, archeology, geology, and electronic effects testing. Ultra-Wideband Short-Pulse Electromagnetics 7 presents selected papers of deep technical content and high scientific quality from the UWB-SP7 Conference, including wide-ranging contributions on electromagnetic theory, scattering, UWB antennas, UWB systems, ground penetrating radar (GPR), UWB communications, pulsed-power generation, time-domain computational electromagnetics, UWB compatibility, target detection and discrimination, propagation through dispersive media, and wavelet and multi-res...
10th and 11th conference on Ultra-Wideband Short-Pulse Electromagnetics
Mokole, Eric; UWB SP 10; UWB SP 11
2014-01-01
This book presents contributions of deep technical content and high scientific quality in the areas of electromagnetic theory, scattering, UWB antennas, UWB systems, ground penetrating radar (GPR), UWB communications, pulsed-power generation, time-domain computational electromagnetics, UWB compatibility, target detection and discrimination, propagation through dispersive media, and wavelet and multi-resolution techniques. Ultra-wideband (UWB), short-pulse (SP) electromagnetics are now being used for an increasingly wide variety of applications, including collision avoidance radar, concealed object detection, and communications. Notable progress in UWB and SP technologies has been achieved by investigations of their theoretical bases and improvements in solid-state manufacturing, computers, and digitizers. UWB radar systems are also being used for mine clearing, oil pipeline inspections, archeology, geology, and electronic effects testing. Like previous books in this series, Ultra-Wideband Short-Pulse Electrom...
A model for wideband HF propagation channels
Vogler, L. E.; Hoffmeyer, J. A.
1993-11-01
Expressions to model the sky wave propagation conditions that occur in a HF communication link are presented. The model is intended not only for narrowband applications but also for wideband systems such as those using spread spectrum techniques. A discussion of the background leading to the present development effort is followed by a description of the method used to derive the model transfer function. Analytic expressions for the impulse response and the scattering function are given, and the introduction of random processes into the model is described. Comparisons of scattering functions from the model and from measurements are shown for spread-F conditions ranging from mild to intense and for both an auroral path and a midlatitude path.
Ultra-Wideband Electromagnetic Pulse Propagation through Causal Media
2016-03-04
average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed...SUPPLEMENTARY NOTES 14. ABSTRACT When an electromagnetic pulse travels through a dispersive material each frequency of the transmitted pulse changes in both...amplitude and phase, and each frequency at its own rate. As a consequence, broadband pulses propagating in dispersive material experience
FDTD Computation of Human Eye Exposure to Ultra-wideband Electromagnetic Pulses
Simicevic, Neven
2007-01-01
With an increase in the application of ultra-wideband (UWB) electromagnetic pulses in the communications industry, radar, biotechnology and medicine, comes an interest in UWB exposure safety standards. Despite an increase of the scientific research on bioeffects of exposure to non-ionizing UWB pulses, characterization of those effects is far from complete. A numerical computational approach, such as a finite-difference time domain (FDTD) method, is required to visualize and understand the complexity of broadband electromagnetic interactions. The FDTD method has almost no limits in the description of the geometrical and dispersive properties of the simulated material, it is numerically robust and appropriate for current computer technology. In this paper, a complete calculation of exposure of the human eye to UWB electromagnetic pulses in the frequency range of 3.1-10.6, 22-29, and 57-64 GHz is performed. Computation in this frequency range required a geometrical resolution of the eye of $\\rm 0.1 \\: mm$ and an...
Wideband Channel Modeling in Real Atmospheric Environments with Experimental Evaluation
2013-04-01
received signal will experience ISI and the channel is considered wideband. If either the transmitter or receiver is mobile or the environment is not...are commonly used in spread spectrum communication systems such as Code Division Multiple Access ( CDMA ) systems. Narrowband interference mitigation...Model (APM) for Mobile Radio Applications,” IEEE Trans. Antennas and Propagation, vol. 54, no. 10 (October), pp. 2869–2877. [5] A. Barrios. 1995
Optimum Design of ThinWideband Multilayer Electromagnetic Shield Using Evolutionary Algorithms
Directory of Open Access Journals (Sweden)
K. S. Kola
2017-05-01
Full Text Available This paper describes the method of optimum design of multilayer perforated electromagnetic shield using Evolutionary algorithms, namely Particle Swarm Optimization Algorithm (PSO and Genetic Algorithm (GA. Different parameters which are inherently conflicting in nature corresponds to the multilayer structure of the electromagnetic shields have been considered. The goal is to minimize the overall mass of the shield with respect to its shielding effectiveness and cost. Three different models are considered and synthesized using evolutionary algorithms. Numerical optimal results for each model using different algorithms are presented and compared with each other to establish the effectiveness of the proposed method of designing.
Li, Yunbo; Li, Aobo; Sievenpiper, Daniel
2018-02-01
The electromagnetic (EM) hard surface which can both support transverse electric and transverse magnetic surface wave modes has the important ability to reduce the EM blockage of metallic obstacles. We propose a method to design an electrically thin hard surface with wide bandwidth by loading with non-Foster elements. The wideband hard surface composed of an anisotropic impedance coating can be considered as a kind of active metasurface. We develop a method to determine the values of the loading non-Foster circuit which can minimize the dispersion of the unit cells. For this method, we derive accurate values for the loading non-Foster elements through theoretical analysis. We also determine the fundamental limitations on the bandwidth due to stability requirements. To verify our theoretical design, we simulate the transmission performance between the two ports on opposite sides of a metallic rhombus-shaped obstacle coated with the non-Foster based metasurface. The simulated results show that the blockage has been largely reduced over a broad bandwidth from 0.2 GHz to 1.5 GHz. Finally, we provide a discussion on how the resistive part of the non-Foster circuit can affect the performance of the wideband hard surface coating.
Directory of Open Access Journals (Sweden)
Jianxiong Zhu
2017-12-01
Full Text Available We present a hybrid electromagnetic generator (EMG and triboelectric nanogenerator (TENG using a multi-impact approach for broad-bandwidth-frequency (10–45 Hz energy harvesting. The TENG and the EMG were located at the middle and the free end of the cantilever beam, respectively. When the system was subjected to an external vibration, the cantilever beam would be in a nonlinear response with multiple impacts from a low frequency oscillator. The mathematical model included a TENG oscillator which can have multiple impacts on the cantilever, and the nonlinear Lorenz force which comes from the motion of the coil in the electromagnetic field. Due to the strong nonlinearity of the impacts from the TENG oscillator and the limited space for the free tip of the cantilever, the dynamic response of the cantilever presented a much broader bandwidth, with a frequency range from 10–45 Hz. We also found that the average generated power from TENG and EMG can reach up to 30 μW/m2 and 53 μW, respectively. Moreover, the dynamic responses of the hybrid EMG and TENG were carefully analyzed, and we found that the measured experimental results and the numerical simulations results were in good agreement.
Directory of Open Access Journals (Sweden)
P. B. Tchounwou
2005-04-01
Full Text Available UltraÃ¢Â€Â“wideband (UWB technology has increased with the use of various civilian and military applications. In the present study, we hypothesized that low-dose UWB electromagnetic radiation (UWBR could elicit a mitogenic effect in AML-12 mouse hepatocytes, in vitro. To test this hypothesis, we exposed AML-12 mouse hepatocytes, to UWBR in a specially constructed gigahertz transverse electromagnetic mode (GTEM cell. Cells were exposed to UWBR for 2 h at a temperature of 23Ã‚Â°C, a pulse width of 10 ns, a repetition rate of 1 kHz, and field strength of 5-20 kV/m. UWB pulses were triggered by an external pulse generator for UWBR exposure but were not triggered for the sham exposure. We performed an MTT Assay to assess cell viability for UWBR-treated and sham-exposed hepatocytes. Data from viability studies indicated a time-related increase in hepatocytes at time intervals from 8-24 h post exposure. UWBR exerted a statistically significant (p < 0.05 dose-dependent response in cell viability in both serum-treated and serum free medium (SFM -treated hepatocytes. Western blot analysis of hepatocyte lysates demonstrated that cyclin A protein was induced in hepatocytes, suggesting that increased MTT activity after UWBR exposure was due to cell proliferation. This study indicates that UWBR has a mitogenic effect on AML-12 mouse hepatocytes and implicates a possible role for UWBR in hepatocarcinoma.
Substrate Effects in Wideband SiGe HBT Mixer Circuits
DEFF Research Database (Denmark)
Johansen, Tom Keinicke; Vidkjær, Jens; Krozer, Viktor
2005-01-01
In this paper, the influence from substrate effects on the performance of wideband SiGe HBT mixer circuits is investigated. Equivalent circuit models including substrate networks are extracted from on-wafer test structures and compared with electromagnetic simulations. Electromagnetic simulations...
Directory of Open Access Journals (Sweden)
Huang Hao
2015-10-01
Full Text Available Hardware-in-the-loop (HWIL simulation technology can verify and evaluate the radar by simulating the radio frequency environment in an anechoic chamber. The HWIL simulation technology of wide-band radar targets can accurately generate wide-band radar target echo which stands for the radar target scattering characteristics and pulse modulation of radar transmitting signal. This paper analyzes the wide-band radar target scattering properties first. Since the responses of target are composed of many separate scattering centers, the target scattering characteristic is restructured by scattering centers model. Based on the scattering centers model of wide-band radar target, the wide-band radar target echo modeling and the simulation method are discussed. The wide-band radar target echo is reconstructed in real-time by convoluting the transmitting signal to the target scattering parameters. Using the digital radio frequency memory (DRFM system, the HWIL simulation of wide-band radar target echo with high accuracy can be actualized. A typical wide-band radar target simulation is taken to demonstrate the preferable simulation effect of the reconstruction method of wide-band radar target echo. Finally, the radar target time-domain echo and high-resolution range profile (HRRP are given. The results show that the HWIL simulation gives a high-resolution range distribution of wide-band radar target scattering centers.
Zhong, Hui-Teng; Yang, Xue-Xia; Song, Xing-Tang; Guo, Zhen-Yue; Yu, Fan
2017-11-01
In this work, we introduced the design, demonstration, and discussion of a wideband metamaterial array with polarization-independent and wide-angle for harvesting ambient electromagnetic (EM) energy and wireless power transfer. The array consists of unit cells with one square ring and four metal bars. In comparison to the published metamaterial arrays for harvesting EM energy or wireless transfer, this design had the wide operation bandwidth with the HPBW (Half Power Band Width) of 110% (6.2 GHz-21.4 GHz), which overcomes the narrow-band operation induced by the resonance characteristic of the metamaterial. On the normal incidence, the simulated maximum harvesting efficiency was 96% and the HPBW was 110% for the random polarization wave. As the incident angle increases to 45°, the maximum efficiency remained higher than 88% and the HPBW remained higher than 83% for the random polarization wave. Furthermore, the experimental verification of the designed metamaterial array was conducted, and the measured results were in reasonable agreement with the simulated ones.
Advanced Model of Electromagnetic Launcher
Directory of Open Access Journals (Sweden)
Karel Leubner
2015-01-01
Full Text Available An advanced 2D model of electromagnetic launcher is presented respecting the influence of eddy currents induced in the accelerated ferromagnetic body. The time evolution of electromagnetic field in the system, corresponding forces acting on the projectile and time evolutions of its velocity and current in the field circuit are solved numerically using own application Agros2d. The results are then processed and evaluated in Wolfram Mathematica. The methodology is illustrated with an example whose results are discussed.
Comparison of GTD propagation model wide-band path loss simulation with measurements
Luebbers, Raymond J.; Foose, William A.; Reyner, Gregory
1989-04-01
The geometrical theory of diffraction (GTD) wedge diffraction has been used successfully to predict narrow-band CW radio-wave propagation characteristics. The GTD propagation model uses a two-dimensional terrain profile approximated as piecewise-linear and computes reflection and diffraction effects with model output representing a complex approximation to the narrow-band channel transfer function. Using the narrow-band GTD model as a starting point, a wideband terrain-sensitive model has been developed. The complex wideband channel transfer function calculated by the GTD model is transformed to the time domain via an FFT method. The results are then used to predict time-domain radio transmission loss in the form of a band-limited approximation to the channel impulse response. Important channel parameters such as delay spread and wideband received signal level can then be calculated. The GTD predicted results are compared with measurements.
Graphene as a high impedance surface for ultra-wideband electromagnetic waves
Energy Technology Data Exchange (ETDEWEB)
Aldrigo, Martino; Costanzo, Alessandra [Department of Electrical, Electronic, and Information Engineering “Guglielmo Marconi” – DEI, University of Bologna, Viale del Risorgimento, 2, 40132 Bologna (Italy); Dragoman, Mircea [National Institute for Research and Development in Microtechnology (IMT), P.O. Box 38-160, 023573 Bucharest (Romania); Dragoman, Daniela [Department of Physics, University of Bucharest, P.O. Box MG-11, 077125 Bucharest (Romania)
2013-11-14
The metals are regularly used as reflectors of electromagnetic fields emitted by antennas ranging from microwaves up to THz. To enhance the reflection and thus the gain of the antenna, metallic high impedance surfaces (HIS) are used. HIS is a planar array of continuous metallic periodic cell surfaces able to suppress surface waves, which cause multipath interference and backward radiation in a narrow bandwidth near the cell resonance. Also, the image currents are reduced, and therefore the antenna can be placed near the HIS. We demonstrate that graphene is acting as a HIS surface in a very large bandwidth, from microwave to THz, suppressing the radiation leakages better than a metal.
An Object-Independent ENZ Metamaterial-Based Wideband Electromagnetic Cloak.
Islam, Sikder Sunbeam; Faruque, Mohammad Rashed Iqbal; Islam, Mohammad Tariqul
2016-09-16
A new, metamaterial-based electromagnetic cloaking operation is proposed in this study. The metamaterial exhibits a sharp transmittance in the C-band of the microwave spectrum with negative effective property of permittivity at that frequency. Two metal arms were placed on an FR-4 substrate to construct a double-split-square shape structure. The size of the resonator was maintained to achieve the effective medium property of the metamaterial. Full wave numerical simulation was performed to extract the reflection and transmission coefficients for the unit cell. Later on, a single layer square-shaped cloak was designed using the proposed metamaterial unit cell. The cloak hides a metal cylinder electromagnetically, where the material exhibits epsilon-near-zero (ENZ) property. Cloaking operation was demonstrated adopting the scattering-reduction technique. The measured result was provided to validate the characteristics of the metamaterial and the cloak. Some object size- and shape-based analyses were performed with the cloak, and a common cloaking region was revealed over more than 900 MHz in the C-band for the different objects.
2nd International Conference on Ultra-Wideband, Short-Pulse Electromagnetics
Felsen, Leopold
1995-01-01
The papers published in this volume were presented at the Second International Conference on Ultra-WidebandiShort-Pulse (UWB/SP) Electromagnetics, ApriIS-7, 1994. To place this second international conference in proper perspective with respect to the first conference held during October 8-10, 1992, at Polytechnic University, some background information is necessary. As we had hoped, the first conference struck a responsive cord, both in timeliness and relevance, among the electromagnetic community 1. Participants at the first conference already inquired whether and when a follow-up meeting was under consideration. The first concrete proposal in this direction was made a few months after the first conference by Prof. A. Terzuoli of the Air Force Institute of Technology (AFIT), Dayton, Ohio, who has been a strong advocate of time-domain methods and technologies. He initially proposed a follow-up time-domain workshop under AFIT auspices. Realizing that interest in this subject is lodged also at other Air Force i...
Resilience of LTE networks against smart jamming attacks: Wideband model
Aziz, Farhan M.
2015-12-03
LTE/LTE-A networks have been successfully providing advanced broadband services to millions of users worldwide. Lately, it has been suggested to use LTE networks for mission-critical applications like public safety, smart grid and military communications. We have previously shown that LTE networks are vulnerable to Denial-of-Service (DOS) and loss of service attacks from smart jammers. In this paper, we extend our previous work on resilience of LTE networks to wideband multipath fading channel, SINR estimation in frequency domain and computation of utilities based on observable parameters under the framework of single-shot and repeated games with asymmetric information. In a single-shot game formulation, network utility is severely compromised at its solutions, i.e. at the Nash Equilibria (NE). We propose evolved repeated-game strategy algorithms to combat smart jamming attacks that can be implemented in existing deployments using current technology. © 2015 IEEE.
The Large Office Environment - Measurement and Modeling of the Wideband Radio Channel
DEFF Research Database (Denmark)
Andersen, Jørgen Bach; Nielsen, Jesper Ødum; Bauch, Gerhard
2006-01-01
In a future 4G or WLAN wideband application we can imagine multiple users in a large office environment con-sisting of a single room with partitions. Up to now, indoor radio channel measurement and modelling has mainly concentrated on scenarios with several office rooms and corridors. We present...... here measurements at 5.8GHz for 100 MHz bandwidth and a novel modelling approach for the wideband radio channel in a large office room envi-ronment. An acoustic like reverberation theory is pro-posed that allows to specify a tapped delay line model just from the room dimensions and an average...... calculated from the measurements. The pro-posed model can likely also be applied to indoor hot spot scenarios....
Spatial Dynamic Wideband Modeling of the MIMO Satellite-to-Earth Channel
Directory of Open Access Journals (Sweden)
Andreas Lehner
2014-01-01
response (CIR time series depending on the movement profile of a land mobile terminal is presented in this paper. Based on high precise wideband measurements in L-band the model reproduces the correlated shadowing and multipath conditions in rich detail. The model includes time and space variant echo signals appearing and disappearing in dependence on the receive antenna position and movement, and the actual azimuths and elevations to the various signal sources. Attenuation and path delays relative to the hypothetical line of sight (LOS ensure usability for ranging purposes. Parameters for car and pedestrian applications in urban and suburban environments are provided. The channel characteristics are determined independently of the transmitted signal. Therefore the usability, for example, for GPS and GALILEO, as well as wideband communication services from hovering platforms, is given.
Electromagnetic antenna modeling (EAM) system
Packer, Malcolm; Powers, Robert; Tsitsopoulos, Paul
1994-12-01
The determination of foreign communications capabilities and intent is an important assessment function performed by the USAF National Air Intelligence Center (NAIC). In this context, Rome Laboratory became the NAIC engineering agent for the development of an NAIC requirement for the rapid analysis and evaluation of antenna structures based on often vague to sometimes detailed dimensional information. To this end, the Rome Laboratory sponsored development of the Electromagnetic Antenna Modeling (EAM) System, a state-of-the-art Pascal program with an MS Windows graphical user interface (GUI) pre- and post-processor. Users of NAIC capabilities initiate antenna analysis efforts that range from simple parametric studies to more complex, detailed antenna design and communication-system evaluations. Accordingly, EAM provides a modeling capability 'matched' to the sophistication of the individual analyst, with features appropriate for users ranging from nontechnical analysts to experienced antenna engineers. This capability is particularly valuable in the military-intelligence environment, in which high-speed assessments are required. In particular, EAM meets the specific antenna-analysis requirements of NAIC with a versatile graphical user interface.
Behavioral modelling and predistortion of wideband wireless transmitters
Ghannouchi, Fadhel M; Helaoui, Mohamed
2015-01-01
Covers theoretical and practical aspects related to the behavioral modelling and predistortion of wireless transmitters and power amplifiers. It includes simulation software that enables the users to apply the theory presented in the book. In the first section, the reader is given the general background of nonlinear dynamic systems along with their behavioral modelling from all its aspects. In the second part, a comprehensive compilation of behavioral models formulations and structures is provided including memory polynomial based models, box oriented models such as Hammerstein-based and Wiene
Yin, Jia Yuan; Wan, Xiang; Zhang, Qian; Cui, Tie Jun
2015-07-23
We propose an ultra-wideband polarization-conversion metasurface with polarization selective and incident-angle insensitive characteristics using anchor-shaped units through multiple resonances. The broadband characteristic is optimized by the genetic optimization algorithm, from which the anchor-shaped unit cell generates five resonances, resulting in expansion of the operating frequency range. Owing to the structural feature of the proposed metasurface, only x- and y-polarized incident waves can reach high-efficiency polarization conversions, realizing the polarization-selective property. The proposed metasurface is also insensitive to the angle of incident waves, which indicates a promising future in modern communication systems. We fabricate and measure the proposed metasurface, and both the simulated and measured results show ultra-wide bandwidth for the x- and y-polarized incident waves.
Directory of Open Access Journals (Sweden)
F. Costa
2012-10-01
Full Text Available Different electrically-thin absorbing designs based on High-Impedance Surfaces (HIS are presented and classified on the basis of the nature of loss. HIS structures allow achieving absorption by exploiting either dielectric or ohmic (resistive losses. The former ultra-narrowband absorption phenomenon can be obtained by employing dielectric losses of commercial substrates. The resonant structure, often referred to as Perfect Metamaterial Absorber, usually comprises a metallic frequency selective surfaces located above a ultra-thin grounded dielectric substrate. The metamaterial absorber is also angularly stable because of its reduced thickness. Alternatively, if a loss component is introduced in the frequency selective surface located in front of the grounded dielectric substrate both narrowband and wideband absorbing structures can be designed.
Circuit modeling for electromagnetic compatibility
Darney, Ian B
2013-01-01
Very simply, electromagnetic interference (EMI) costs money, reduces profits, and generally wreaks havoc for circuit designers in all industries. This book shows how the analytic tools of circuit theory can be used to simulate the coupling of interference into, and out of, any signal link in the system being reviewed. The technique is simple, systematic and accurate. It enables the design of any equipment to be tailored to meet EMC requirements. Every electronic system consists of a number of functional modules interconnected by signal links and power supply lines. Electromagnetic interference
Electromagnetic geothermometry theory, modeling, practice
Spichak, Viacheslav V
2015-01-01
Electromagnetic Geothermometry explores, presents and explains the new technique of temperature estimation within the Earth's interior; the Electromagnetic technique will identify zones of geothermal anomalies and thus provides locations for deep drilling. This book includes many case studies from geothermal areas such as Travale (Italy), Soultz-sous-Forêts (France) and Hengill (Iceland), allowing the author and reader to draw conclusions regarding the dominating heat transfer mechanisms, location of its sources and to constrain the locations for drilling of the new boreholes. Covering a to
Modeling Electromagnetic Scattering From Complex Inhomogeneous Objects
Deshpande, Manohar; Reddy, C. J.
2011-01-01
This software innovation is designed to develop a mathematical formulation to estimate the electromagnetic scattering characteristics of complex, inhomogeneous objects using the finite-element-method (FEM) and method-of-moments (MoM) concepts, as well as to develop a FORTRAN code called FEMOM3DS (Finite Element Method and Method of Moments for 3-Dimensional Scattering), which will implement the steps that are described in the mathematical formulation. Very complex objects can be easily modeled, and the operator of the code is not required to know the details of electromagnetic theory to study electromagnetic scattering.
Ren, Qiang; Nagar, Jogender; Kang, Lei; Bian, Yusheng; Werner, Ping; Werner, Douglas H
2017-05-18
A highly efficient numerical approach for simulating the wideband optical response of nano-architectures comprised of Drude-Critical Points (DCP) media (e.g., gold and silver) is proposed and validated through comparing with commercial computational software. The kernel of this algorithm is the subdomain level discontinuous Galerkin time domain (DGTD) method, which can be viewed as a hybrid of the spectral-element time-domain method (SETD) and the finite-element time-domain (FETD) method. An hp-refinement technique is applied to decrease the Degrees-of-Freedom (DoFs) and computational requirements. The collocated E-J scheme facilitates solving the auxiliary equations by converting the inversions of matrices to simpler vector manipulations. A new hybrid time stepping approach, which couples the Runge-Kutta and Newmark methods, is proposed to solve the temporal auxiliary differential equations (ADEs) with a high degree of efficiency. The advantages of this new approach, in terms of computational resource overhead and accuracy, are validated through comparison with well-known commercial software for three diverse cases, which cover both near-field and far-field properties with plane wave and lumped port sources. The presented work provides the missing link between DCP dispersive models and FETD and/or SETD based algorithms. It is a competitive candidate for numerically studying the wideband plasmonic properties of DCP media.
Design of wideband MIMO car-to-car channel models based on the geometrical street scattering model
Avazov, Nurilla; Pätzold, Matthias
2012-01-01
Published version of an article in the journal: Modelling and Simulation in Engineering. Also available from the publisher at: http://dx.doi.org/10.1155/2012/264213 Open access We propose a wideband multiple-input multiple-output (MIMO) car-to-car (C2C) channel model based on the geometrical street scattering model. Starting from the geometrical model, a MIMO reference channel model is derived under the assumption of single-bounce scattering in line-of-sight (LOS) and non-LOS (NLOS) propag...
Energy Mental Models: Mechanics through Electromagnetism
Itza-Ortiz, Salomon F.; Lawrence, Benjamin; Zollman, Dean
2004-09-01
We investigated students' mental models for energy, and changes in these models in going from mechanics to electromagnetism contexts. We interviewed students in a two-semester calculus-based physics course. Our research design included semi-structured interviews with demonstration. Based on our findings in the interviews we are developing a first version of an `Energy Mental Model Inventory.'
Performance of Ultra Wideband On-Body Communication Based on Statistical Channel Model
Wang, Qiong; Wang, Jianqing
Ultra wideband (UWB) on-body communication is attracting much attention in biomedical applications. In this paper, the performance of UWB on-body communication is investigated based on a statistically extracted on-body channel model, which provides detailed characteristics of the multi-path-affected channel with an emphasis on various body postures or body movement. The possible data rate, the possible communication distance, as well as the bit error rate (BER) performance are clarified via computer simulation. It is found that the conventional correlation receiver is incompetent in the multi-path-affected on-body channel, while the RAKE receiver outperforms the conventional correlation receiver at a cost of structure complexity. Different RAKE receiver structures are compared to show the improvement of the BER performance.
Li, K S B; Rumolo, G; Cesaratto, J; Dusatko, J; Fox, J; Pivi, M; Pollock, K; Rivetta, C; Turgut, O
2013-01-01
As part of the LHC Injector Upgrade (LIU) Project [1], a wideband feedback system is under study for mitigation of coherent single bunch instabilities. This type of system may provide a generic way of shifting the instability threshold to regions that are currently inaccessible, thus, boosting the brightness of future beams. To study the effectiveness of such systems, a numerical model has been developed that constitutes a realistic feedback system including real transfer functions for pickup and kicker, realistic N-tap FIR and IIR filters as well as noise and saturation effects. Simulations of SPS cases have been performed with HEADTAIL to evaluate the feedback effectiveness in the presence of transverse mode coupling and electron clouds. Some results are presented addressing bandwidth limitations and amplifier power requirements.
GENERAL RELATIVITY AND DYNAMICAL MODEL OF ELECTROMAGNETIC DRIVE
Trunev A. P.
2016-01-01
The article discusses the dynamic model of the rocket motor electromagnetic type, consisting of a source of electromagnetic waves of radio frequency band and a conical cavity in which electromagnetic waves are excited. The processes of excitation of electromagnetic oscillations in a cavity with conducting walls, as well as the waves of the YangMills field are investigated. The multi-dimensional transient numerical model describing the processes of electromagnetic oscillations in a cavity with...
Accurate Electromagnetic Modeling Methods for Integrated Circuits
Sheng, Z.
2010-01-01
The present development of modern integrated circuits (IC’s) is characterized by a number of critical factors that make their design and verification considerably more difficult than before. This dissertation addresses the important questions of modeling all electromagnetic behavior of features on
Electromagnetic transitions in the algebraic cluster model
Bijker, R.; Díaz-Caballero, O. A.
2017-12-01
We study electromagnetic transition rates in the framework of the algebraic cluster model. The concept of shape-phase transitions is used to propose a mechanism that allows to have interband and intraband quadrupole transitions of comparable strength, as observed in 12C.
Forward modeling. Route to electromagnetic inversion
Energy Technology Data Exchange (ETDEWEB)
Groom, R.; Walker, P. [PetRos EiKon Incorporated, Ontario (Canada)
1996-05-01
Inversion of electromagnetic data is a topical subject in the literature, and much time has been devoted to understanding the convergence properties of various inverse methods. The relative lack of success of electromagnetic inversion techniques is partly attributable to the difficulties in the kernel forward modeling software. These difficulties come in two broad classes: (1) Completeness and robustness, and (2) convergence, execution time and model simplicity. If such problems exist in the forward modeling kernel, it was demonstrated that inversion can fail to generate reasonable results. It was suggested that classical inversion techniques, which are based on minimizing a norm of the error between data and the simulated data, will only be successful when these difficulties in forward modeling kernels are properly dealt with. 4 refs., 5 figs.
Ultra wideband antennas design, methodologies, and performance
Galvan-Tejada, Giselle M; Jardón Aguilar, Hildeberto
2015-01-01
Ultra Wideband Antennas: Design, Methodologies, and Performance presents the current state of the art of ultra wideband (UWB) antennas, from theory specific for these radiators to guidelines for the design of omnidirectional and directional UWB antennas. Offering a comprehensive overview of the latest UWB antenna research and development, this book:Discusses the developed theory for UWB antennas in frequency and time domainsDelivers a brief exposition of numerical methods for electromagnetics oriented to antennasDescribes solid-planar equivalen
Wideband Radar Echo Frequency-domain Simulation and Analysis for High Speed Moving Targets
Directory of Open Access Journals (Sweden)
Ning Chao
2014-04-01
Full Text Available A frequency-domain method is proposed for wideband radar echo simulation of high-speed moving targets. Based on the physical process of electromagnetic waves observing a moving target, a frequency-domain echo model of wideband radar is constructed, and the block diagram of the radar echo simulation in frequency-domain is presented. Then, the impacts of radial velocity and slant range on the matching filtering of LFM radar are analyzed, and some quantitative conclusions on the shift and expansion of the radar profiles are obtained. Simulation results illustrate the correctness and efficiency of the proposed method.
Directory of Open Access Journals (Sweden)
Zhongbao Wang
2014-01-01
Full Text Available A computer-aided design model based on the artificial neural network (ANN is proposed to directly obtain patch physical dimensions of the single-feed corner-truncated circularly polarized microstrip antenna (CPMA with an air gap for wideband applications. To take account of the effect of the air gap, an equivalent relative permittivity is introduced and adopted to calculate the resonant frequency and Q-factor of square microstrip antennas for obtaining the training data sets. ANN architectures using multilayered perceptrons (MLPs and radial basis function networks (RBFNs are compared. Also, six learning algorithms are used to train the MLPs for comparison. It is found that MLPs trained with the Levenberg-Marquardt (LM algorithm are better than RBFNs for the synthesis of the CPMA. An accurate model is achieved by using an MLP with three hidden layers. The model is validated by the electromagnetic simulation and measurements. It is enormously useful to antenna engineers for facilitating the design of the single-feed CPMA with an air gap.
Mathematical models and numerical simulation in electromagnetism
Bermúdez, Alfredo; Salgado, Pilar
2014-01-01
The book represents a basic support for a master course in electromagnetism oriented to numerical simulation. The main goal of the book is that the reader knows the boundary-value problems of partial differential equations that should be solved in order to perform computer simulation of electromagnetic processes. Moreover it includes a part devoted to electric circuit theory based on ordinary differential equations. The book is mainly oriented to electric engineering applications, going from the general to the specific, namely, from the full Maxwell’s equations to the particular cases of electrostatics, direct current, magnetostatics and eddy currents models. Apart from standard exercises related to analytical calculus, the book includes some others oriented to real-life applications solved with MaxFEM free simulation software.
Cable Braid Electromagnetic Penetration Model.
Energy Technology Data Exchange (ETDEWEB)
Warne, Larry K. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Langston, William L. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Basilio, Lorena I. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Johnson, W. A. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)
2015-06-01
The model for penetration of a wire braid is rigorously formulated. Integral formulas are developed from energy principles and reciprocity for both self and transfer immittances in terms of potentials for the fields. The detailed boundary value problem for the wire braid is also setup in a very efficient manner; the braid wires act as sources for the potentials in the form of a sequence of line multipoles with unknown coefficients that are determined by means of conditions arising from the wire surface boundary conditions. Approximations are introduced to relate the local properties of the braid wires to a simplified infinite periodic planar geometry. This is used in a simplified application of reciprocity to be able to treat nonuniform coaxial geometries including eccentric interior coaxial arrangements and an exterior ground plane.
Rahman, Ashiqur; Islam, Mohammad Tariqul; Singh, Mandeep Jit; Kibria, Salehin; Akhtaruzzaman, Md
2016-12-23
In this paper, we report a compact and ultra-wide band antenna on a flexible substrate using the 5-(4-(perfluorohexyl)phenyl)thiophene-2-carbaldehyde compound for microwave imaging. In contrast to other microwave based imaging systems, such as an array of 16 antennas, we proposed a bi-static radar based imaging system consisting of two omnidirectional antennas, which reduces complexity and the overall dimension. The proposed compact antennas are 20 × 14 mm2 and designed for operating at frequencies from 4 to 6 GHz. To allow for implantation into a bra, the electromagnetic performances of the antennas must be considered in bending conditions. In comparison with the recently reported flexible antennas, we demonstrated both electromagnetic performance and imaging reconstruction for bending conditions. For the proof of concept, the electromagnetic performances both at flat and bending conditions have been verified using a homogeneous multilayer model of the human breast phantom. Our results demonstrate that the antenna, even at bending conditions, exhibits an excellent omni-directional radiation pattern with an average efficiency above 70% and average gain above 1 dBi, within the operational frequency band. The comprehensive aim of the realized antenna is to design a biodegradable and wearable antenna-based bra for early breast cancer detection in the future.
Design of Wideband MIMO Car-to-Car Channel Models Based on the Geometrical Street Scattering Model
Directory of Open Access Journals (Sweden)
Nurilla Avazov
2012-01-01
Full Text Available We propose a wideband multiple-input multiple-output (MIMO car-to-car (C2C channel model based on the geometrical street scattering model. Starting from the geometrical model, a MIMO reference channel model is derived under the assumption of single-bounce scattering in line-of-sight (LOS and non-LOS (NLOS propagation environments. The proposed channel model assumes an infinite number of scatterers, which are uniformly distributed in two rectangular areas located on both sides of the street. Analytical solutions are presented for the space-time-frequency cross-correlation function (STF-CCF, the two-dimensional (2D space CCF, the time-frequency CCF (TF-CCF, the temporal autocorrelation function (ACF, and the frequency correlation function (FCF. An efficient sum-of-cisoids (SOCs channel simulator is derived from the reference model. It is shown that the temporal ACF and the FCF of the SOC channel simulator fit very well to the corresponding correlation functions of the reference model. To validate the proposed channel model, the mean Doppler shift and the Doppler spread of the reference model have been matched to real-world measurement data. The comparison results demonstrate an excellent agreement between theory and measurements, which confirms the validity of the derived reference model. The proposed geometry-based channel simulator allows us to study the effect of nearby street scatterers on the performance of C2C communication systems.
Rothwell, Edward J
2009-01-01
Introductory concepts Notation, conventions, and symbology The field concept of electromagneticsThe sources of the electromagnetic field Problems Maxwell's theory of electromagnetism The postulate Maxwell's equations in moving frames The Maxwell-Boffi equations Large-scale form of Maxwell's equationsThe nature of the four field quantities Maxwell's equations with magnetic sources Boundary (jump) conditions Fundamental theorems The wave nature of the electromagnetic field ProblemsThe static electromagnetic field Static fields and steady currents ElectrostaticsMagnetostatics Static field theorem
de Lera Acedo, E.; Bolli, P.; Paonessa, F.; Virone, G.; Colin-Beltran, E.; Razavi-Ghods, N.; Aicardi, I.; Lingua, A.; Maschio, P.; Monari, J.; Naldi, G.; Piras, M.; Pupillo, G.
2017-12-01
In this paper we present the electromagnetic modeling and beam pattern measurements of a 16-elements ultra wideband sparse random test array for the low frequency instrument of the Square Kilometer Array telescope. We discuss the importance of a small array test platform for the development of technologies and techniques towards the final telescope, highlighting the most relevant aspects of its design. We also describe the electromagnetic simulations and modeling work as well as the embedded-element and array pattern measurements using an Unmanned Aerial Vehicle system. The latter are helpful both for the validation of the models and the design as well as for the future instrumental calibration of the telescope thanks to the stable, accurate and strong radio frequency signal transmitted by the UAV. At this stage of the design, these measurements have shown a general agreement between experimental results and numerical data and have revealed the localized effect of un-calibrated cable lengths in the inner side-lobes of the array pattern.
Hollister, Allen L
2007-01-01
In this book, the theory needed to understand wideband amplifier design using the simplest models possible will be developed. This theory will be used to develop algebraic equations that describe particular circuits used in high frequency design so that the reader develops a ""gut level"" understanding of the process and circuit. SPICE and Genesys simulations will be performed to show the accuracy of the algebraic models. By looking at differences between the algebraic equations and the simulations, new algebraic models will be developed that include parameters originally left out of the model
The underground electromagnetic pulse: Four representative models
Energy Technology Data Exchange (ETDEWEB)
Wouters, L.F.
1989-06-01
I describe four phenomenological models by which an underground nuclear explosion may generate electromagnetic pulses: Compton current asymmetry (or ''Compton dipole''); Uphole conductor currents (or ''casing currents''); Diamagnetic cavity plasma (or ''magnetic bubble''); and Large-scale ground motion (or ''magneto-acoustic wave''). I outline the corresponding analytic exercises and summarize the principal results of the computations. I used a 10-kt contained explosion as the fiducial case. Each analytic sequence developed an equivalent source dipole and calculated signal waveforms at representative ground-surface locations. As a comparative summary, the Compton dipole generates a peak source current moment of about 12,000 A/center dot/m in the submicrosecond time domain. The casing-current source model obtains an equivalent peak moment of about 2 /times/ 10/sup 5/ A/center dot/m in the 10- to 30-/mu/s domain. The magnetic bubble produces a magnetic dipole moment of about 7 /times/ 10/sup 6/ A/center dot/m/sup 2/, characterized by a 30-ms time structure. Finally, the magneto-acoustic wave corresponds to a magnetic dipole moment of about 600 A/center dot/m/sup 2/, with a waveform showing 0.5-s periodicities. 8 refs., 35 figs., 7 tabs.
Model of electrical activity in cardiac tissue under electromagnetic induction.
Wu, Fuqiang; Wang, Chunni; Xu, Ying; Ma, Jun
2016-12-23
Complex electrical activities in cardiac tissue can set up time-varying electromagnetic field. Magnetic flux is introduced into the Fitzhugh-Nagumo model to describe the effect of electromagnetic induction, and then memristor is used to realize the feedback of magnetic flux on the membrane potential in cardiac tissue. It is found that a spiral wave can be triggered and developed by setting specific initials in the media, that is to say, the media still support the survival of standing spiral waves under electromagnetic induction. Furthermore, electromagnetic radiation is considered on this model as external stimuli, it is found that spiral waves encounter breakup and turbulent electrical activities are observed, and it can give guidance to understand the occurrence of sudden heart disorder subjected to heavily electromagnetic radiation.
Computational approaches for generating electromagnetic Gaussian Schell-model sources.
Basu, Santasri; Hyde, Milo W; Xiao, Xifeng; Voelz, David G; Korotkova, Olga
2014-12-29
Two different methodologies for generating an electromagnetic Gaussian-Schell model source are discussed. One approach uses a sequence of random phase screens at the source plane and the other uses a sequence of random complex transmittance screens. The relationships between the screen parameters and the desired electromagnetic Gaussian-Schell model source parameters are derived. The approaches are verified by comparing numerical simulation results with published theory. This work enables one to design an electromagnetic Gaussian-Schell model source with pre-defined characteristics for wave optics simulations or laboratory experiments.
Electromagnetic Wave Propagation Models for Multiple-Diffraction Scenarios
Directory of Open Access Journals (Sweden)
Mehmet Barış TABAKCIOĞLU
2014-04-01
Full Text Available Electromagnetic wave propagation models have been used for coverage estimation and field prediction at the receiver to make more reliable and efficient digital broadcasting systems. Propagation models can be classified into two groups as numerical and ray tracing based models. There is a tradeoff between computation time and accuracy of field prediction among electromagnetic wave propagation models. Although numerical models predict accurately, it requires more computation times. Ray tracing based models predicts the field strength less accurately with lower computation time. Many propagation models have been developed to provide optimum solution for accuracy and computation time
Octet Baryon Electromagnetic Form Factors in a Relativistic Quark Model
Energy Technology Data Exchange (ETDEWEB)
Gilberto Ramalho, Kazuo Tsushima
2011-09-01
We study the octet baryon electromagnetic properties by applying the covariant spectator quark model, and provide covariant parametrization that can be used to study baryon electromagnetic reactions. While we use the lattice QCD data in the large pion mass regime (small pion cloud effects) to determine the parameters of the model in the valence quark sector, we use the nucleon physical and octet baryon magnetic moment data to parameterize the pion cloud contributions. The valence quark contributions for the octet baryon electromagnetic form factors are estimated by extrapolating the lattice parametrization in the large pion mass regime to the physical regime. As for the pion cloud contributions, we parameterize them in a covariant, phenomenological manner, combined with SU(3) symmetry. We also discuss the impact of the pion cloud effects on the octet baryon electromagnetic form factors and their radii.
Wideband phantoms of different body tissues for heterogeneous models in body area networks.
Castello-Palacios, Sergio; Garcia-Pardo, Concepcion; Fornes-Leal, Alejandro; Cardona, Narcis; Valles-Lluch, Ana
2017-07-01
One of the key issues about wireless technologies is their interaction with the human body. The so-called internet of things will comprise many devices that will transmit either around or through the human body. These devices must be tested either in their working medium, when possible, or in the most realistic one. For this purpose, tissue-like phantoms are the best alternative to carry out realistic analyses of the performance of body area networks. In addition, they are the conventional way to certify the compliance of commercial standards by these devices. However, the number of phantoms that work in large bandwidths is limited in literature. This work aims at presenting chemical solutions that will be useful to prepare a variety of wideband tissue phantoms. Besides, the colon was mimicked in two ways, the healthy tissue and the malignant one, taking into account studies that relate changes on the relative permittivity with cancer. They were designed on the basis of acetonitrile in aqueous solutions as described in a previous work. Thus, many scenarios could be developed such as multilayers which imitate parts of the heterogeneous body.
Grant, Ian S
1990-01-01
The Manchester Physics Series General Editors: D. J. Sandiford; F. Mandl; A. C. Phillips Department of Physics and Astronomy, University of Manchester Properties of Matter B. H. Flowers and E. Mendoza Optics Second Edition F. G. Smith and J. H. Thomson Statistical Physics Second Edition F. Mandl Electromagnetism Second Edition I. S. Grant and W. R. Phillips Statistics R. J. Barlow Solid State Physics Second Edition J. R. Hook and H. E. Hall Quantum Mechanics F. Mandl Particle Physics Second Edition B. R. Martin and G. Shaw the Physics of Stars Second Edition A. C. Phillips Computing for Scient
A new metamaterial-based wideband rectangular invisibility cloak
Islam, S. S.; Hasan, M. M.; Faruque, M. R. I.
2018-02-01
A new metamaterial-based wideband electromagnetic rectangular cloak is being introduced in this study. The metamaterial unit cell shows sharp transmittances in the C- and X-bands and displays wideband negative effective permittivity region there. The metamaterial unit cell was then applied in designing a rectangular-shaped electromagnetic cloak. The scattering reduction technique was adopted for the cloaking operation. The cloak operates in the certain portion of C-and X-bands that covers more than 4 GHz bandwidth region. The experimental results were provided as well for the metamaterial and the cloak.
Modeling Marine Electromagnetic Survey with Radial Basis Function Networks
Directory of Open Access Journals (Sweden)
Agus Arif
2014-11-01
Full Text Available A marine electromagnetic survey is an engineering endeavour to discover the location and dimension of a hydrocarbon layer under an ocean floor. In this kind of survey, an array of electric and magnetic receivers are located on the sea floor and record the scattered, refracted and reflected electromagnetic wave, which has been transmitted by an electric dipole antenna towed by a vessel. The data recorded in receivers must be processed and further analysed to estimate the hydrocarbon location and dimension. To conduct those analyses successfuly, a radial basis function (RBF network could be employed to become a forward model of the input-output relationship of the data from a marine electromagnetic survey. This type of neural networks is working based on distances between its inputs and predetermined centres of some basis functions. A previous research had been conducted to model the same marine electromagnetic survey using another type of neural networks, which is a multi layer perceptron (MLP network. By comparing their validation and training performances (mean-squared errors and correlation coefficients, it is concluded that, in this case, the MLP network is comparatively better than the RBF network[1].[1] This manuscript is an extended version of our previous paper, entitled Radial Basis Function Networks for Modeling Marine Electromagnetic Survey, which had been presented on 2011 International Conference on Electrical Engineering and Informatics, 17-19 July 2011, Bandung, Indonesia.
FDTD Modelling of Electromagnetic waves in Stratified Medium ...
African Journals Online (AJOL)
The technique is an adaptation of the finite-difference time domain (FDTD) approach usually applied to model electromagnetic wave propagation. In this paper a simple 2D implementation of FDTD algorithm in mathematica environment is presented. Source implementation and the effect of conductivity on the incident field ...
Mathematical models for dispersive electromagnetic waves: An overview
Cassier, Maxence; Joly, Patrick; Kachanovska, Maryna
2017-01-01
International audience; In this work, we investigate mathematical models for electromagnetic wave propagation in dispersive isotropic media. We emphasize the link between physical requirements and mathematical properties of the models. A particular attention is devoted to the notion of non-dissipativity and passivity. We consider successively the case of so-called local media and general passive media. The models are studied through energy techniques, spectral theory and dispersion analysis o...
Mathematical models for dispersive electromagnetic waves: an overview
Cassier, Maxence; Joly, Patrick; Kachanovska, Maryna
2017-01-01
In this work, we investigate mathematical models for electromagnetic wave propagation in dispersive isotropic media. We emphasize the link between physical requirements and mathematical properties of the models. A particular attention is devoted to the notion of non-dissipativity and passivity. We consider successively the case of so-called local media and general passive media. The models are studied through energy techniques, spectral theory and dispersion analysis of plane waves. For makin...
Circuit oriented electromagnetic modeling using the PEEC techniques
Ruehli, Albert; Jiang, Lijun
2017-01-01
This book provides intuitive solutions to electromagnetic problems by using the Partial Eelement Eequivalent Ccircuit (PEEC) method. This book begins with an introduction to circuit analysis techniques, laws, and frequency and time domain analyses. The authors also treat Maxwell's equations, capacitance computations, and inductance computations through the lens of the PEEC method. Next, readers learn to build PEEC models in various forms: equivalent circuit models, non orthogonal PEEC models, skin-effect models, PEEC models for dielectrics, incident and radiate field models, and scattering PEEC models. The book concludes by considering issues like such as stability and passivity, and includes five appendices some with formulas for partial elements.
Numerical Modeling of Electromagnetic Field Effects on the Human Body
Directory of Open Access Journals (Sweden)
Zuzana Psenakova
2006-01-01
Full Text Available Interactions of electromagnetic field (EMF with environment and with tissue of human beings are still under discussion and many research teams are investigating it. The human simulation models are used for biomedical research in a lot of areas, where it is advantage to replace real human body (tissue by the numerical model. Biological effects of EMF are one of the areas, where numerical models are used with many advantages. On the other side, this research is very specific and it is always quite hard to simulate realistic human tissue. This paper deals with different possibilities of numerical modelling of electromagnetic field effects on the human body (especially calculation of the specific absorption rate (SAR distribution in human body and thermal effect.
Coupling capacitor voltage transformer: A model for electromagnetic transient studies
Energy Technology Data Exchange (ETDEWEB)
Fernandes, D.; Neves, W.L.A. [Department of Electrical Engineering, Federal University of Campina Grande, Av. Aprigio Veloso, 882 Bodocongo, 58.109-970 Campina Grande, PB (Brazil); Vasconcelos, J.C.A. [Companhia Hidro Eletrica do Sao Francisco, Rua Delmiro Gouveia, 333 Bongi, 50.761-901 Recife, PE (Brazil)
2007-02-15
In this work, an accurate coupling capacitor voltage transformer (CCVT) model for electromagnetic transient studies is presented. The model takes into account linear and nonlinear elements. A support routine was developed to compute the linear 230kV CCVT parameters (resistances, inductances and capacitances) from frequency response data. The magnetic core and surge arrester nonlinear characteristics were estimated from laboratory measurements as well. The model is used in connection with the electromagnetic transients program (EMTP) to predict the CCVT performance when it is submitted to transient overvoltages, as are the cases of voltages due to the ferroresonance phenomenon and circuit breaker switching. The difference between simulated and measured results is fairly small. Simulations had shown that transient overvoltages produced inside the CCVT, when a short circuit is cleared at the CCVT secondary side, are effectively damped out by the ferroresonance suppression circuit and the protection circuit. (author)
Electromagnetic physical modeling. 11; Denji yudoho no model jikken. 11
Energy Technology Data Exchange (ETDEWEB)
Noguchi, K.; Endo, M.; Yoshimori, M.; Ogura, W. [Waseda University, Tokyo (Japan). School of Science and Engineering; Saito, A. [Mitsui Mineral Development Engineering Co. Ltd., Tokyo (Japan)
1997-05-27
A model experiment on the well electromagnetic induction method was studied. Experimental apparatus consisted chiefly of A/D boards of 16 bit and 100 kHz. In the transmitting part, the transistor inverter and relay switch controlled by computer with car battery as current source generate rectangular wave current and make it run to the transmitter loop. In the receiving part, after electromotive force induced to the receiver coil was amplified by amplifier, it is A/D converted and recorded by computer. As a result of the experiment, the depth, plane position and shape of the structure could be caught by studying data on the well and earth surface together. Further, it was confirmed that in case the disk tilted, the response regularly changes according to the tilt. Moreover, it was found that even in case the structure is just under the inside of the transmitter loop, the thickness and tilt of the structure are influenced by the positional relation with the receiver loop. 2 refs., 18 figs.
Directory of Open Access Journals (Sweden)
Christophe Lièbe
2010-01-01
Full Text Available This paper presents a new software for design of through-the-wall imaging radars. The first part describes the evolution of a ray tracing simulator, originally designed for propagation of narrowband signals, and then for ultra-wideband signals. This simulator allows to obtain temporal channel response to a wide-band emitter (3 GHz to 10 GHz. An experimental method is also described to identify the propagation paths. Simulation results are compared to propagation experiments under the same conditions. Different configurations are tested and then discussed. Finally, a configuration of through-the-wall imaging radar is proposed, with different antennas patterns and different targets. Simulated images will be helpful for understanding the experiment obtained images.
Using the TSAR electromagnetic modeling system
Pennock, S. T.; Laguna, G. W.
1993-09-01
A new user, upon receipt of the TSAR EM modeling system, may be overwhelmed by the number of software packages to learn and the number of manuals associated with those packages. This is a document to describe the creation of a simple TSAR model, beginning with an MGED solid and continuing the process through final results from TSAR. It is not intended to be a complete description of all the parts of the TSAR package. Rather, it is intended simply to touch on all the steps in the modeling process and to take a new user through the system from start to finish. There are six basic parts to the TSAR package. The first, MGED, is part of the BRL-CAD package and is used to create a solid model. The second part, ANASTASIA, is the program used to sample the solid model and create a finite-difference mesh. The third program, IMAGE, lets the user view the mesh itself and verify its accuracy. If everything about the mesh is correct, the process continues to the fourth step, SETUP-TSAR, which creates the parameter files for compiling TSAR and the input file for running a particular simulation. The fifth step is actually running TSAR, the field modeling program. Finally, the output from TSAR is placed into SIG, B2RAS or another program for post-processing and plotting. Each of these steps will be described below. The best way to learn to use the TSAR software is to actually create and run a simple test problem. As an example of how to use the TSAR package, let's create a sphere with a rectangular internal cavity, with conical and cylindrical penetrations connecting the outside to the inside, and find the electric field inside the cavity when the object is exposed to a Gaussian plane wave. We will begin with the solid modeling software, MGED, a part of the BRL-CAD modeling release.
A simplified lumped model for the optimization of post-buckled beam architecture wideband generator
Liu, Weiqun; Formosa, Fabien; Badel, Adrien; Hu, Guangdi
2017-11-01
Buckled beams structures are a classical kind of bistable energy harvesters which attract more and more interests because of their capability to scavenge energy over a large frequency band in comparison with linear generator. The usual modeling approach uses the Galerkin mode discretization method with relatively high complexity, while the simplification with a single-mode solution lacks accuracy. It stems on the optimization of the energy potential features to finally define the physical and geometrical parameters. Therefore, in this paper, a simple lumped model is proposed with explicit relationship between the potential shape and parameters to allow efficient design of bistable beams based generator. The accuracy of the approximation model is studied with the effectiveness of application analyzed. Moreover, an important fact, that the bending stiffness has little influence on the potential shape with low buckling level and the sectional area determined, is found. This feature extends the applicable range of the model by utilizing the design of high moment of inertia. Numerical investigations demonstrate that the proposed model is a simple and reliable tool for design. An optimization example of using the proposed model is demonstrated with satisfactory performance.
Numerical Models for the Study of Electromagnetic Shielding
Directory of Open Access Journals (Sweden)
POPA Monica
2012-10-01
Full Text Available The paper presents 2D and 3D models for the study of electromagnetic shielding of a coil. The magnetic fields are computed for defining the shielding effectiveness. Parametrized numerical studies were performed in order to established the influence of shield thickness and height on magnetic field in certain points located in the exterior of coil – shield setup and on induced power within the shield.
Electromagnetic waves in a model with Chern-Simons potential.
Pis'mak, D Yu; Pis'mak, Yu M; Wegner, F J
2015-07-01
We investigated the appearance of Chern-Simons terms in electrodynamics at the surface or interface of materials. The requirement of locality, gauge invariance, and renormalizability in this model is imposed. Scattering and reflection of electromagnetic waves in three different homogeneous layers of media is determined. Snell's law is preserved. However, the transmission and reflection coefficient depend on the strength of the Chern-Simons interaction (connected with Hall conductance), and parallel and perpendicular components are mixed.
Scalable and Robust BDDC Preconditioners for Reservoir and Electromagnetics Modeling
Zampini, S.
2015-09-13
The purpose of the study is to show the effectiveness of recent algorithmic advances in Balancing Domain Decomposition by Constraints (BDDC) preconditioners for the solution of elliptic PDEs with highly heterogeneous coefficients, and discretized by means of the finite element method. Applications to large linear systems generated by div- and curl- conforming finite elements discretizations commonly arising in the contexts of modelling reservoirs and electromagnetics will be presented.
Electromagnetic axial anomaly in a generalized linear sigma model
Fariborz, Amir H.; Jora, Renata
2017-06-01
We construct the electromagnetic anomaly effective term for a generalized linear sigma model with two chiral nonets, one with a quark-antiquark structure, the other one with a four-quark content. We compute in the leading order of this framework the decays into two photons of six pseudoscalars: π0(137 ), π0(1300 ), η (547 ), η (958 ), η (1295 ) and η (1760 ). Our results agree well with the available experimental data.
Immune Response to Electromagnetic Fields through Cybernetic Modeling
Godina-Nava, J. J.; Segura, M. A. Rodríguez; Cadena, S. Reyes; Sierra, L. C. Gaitán
2008-08-01
We study the optimality of the humoral immune response through a mathematical model, which involves the effect of electromagnetic fields over the large lymphocytes proliferation. Are used the so called cybernetic variables in the context of the matching law of microeconomics or mathematical psychology, to measure the large lymphocytes population and to maximize the instantaneous antibody production rate in time during the immunologic response in order to most efficiently inactivate the antigen.
Simple Electromagnetic Modeling of Small Airplanes: Neural Network Approach
Directory of Open Access Journals (Sweden)
P. Tobola
2009-04-01
Full Text Available The paper deals with the development of simple electromagnetic models of small airplanes, which can contain composite materials in their construction. Electromagnetic waves can penetrate through the surface of the aircraft due to the specific electromagnetic properties of the composite materials, which can increase the intensity of fields inside the airplane and can negatively influence the functionality of the sensitive avionics. The airplane is simulated by two parallel dielectric layers (the left-hand side wall and the right-hand side wall of the airplane. The layers are put into a rectangular metallic waveguide terminated by the absorber in order to simulate the illumination of the airplane by the external wave (both of the harmonic nature and pulse one. Thanks to the simplicity of the model, the parametric analysis can be performed, and the results can be used in order to train an artificial neural network. The trained networks excel in further reduction of CPU-time demands of an airplane modeling.
Fractional Fourier transforms of electromagnetic rectangular Gaussian Schell model beams
Liu, Xiayin; Zhao, Daomu
2015-06-01
We extend the scalar rectangular Gaussian Schell model (RGSM) beams to the electromagnetic domain and obtain the analytical expression for the propagation of the electromagnetic RGSM (EM RGSM) beams through an ABCD optical system. As a practical application, we illustrate how the spectral density, the spectral degree of polarization and the spectral degree of coherence of the EM RGSM beams through the fractional Fourier transform (FRFT) optical system depend on the FRFT order p and the value of beam profile M. It is found that the periods of the on-axis spectral density, the on-axis degree of polarization and the transverse degree of coherence for the FRFT order are all 2. In addition, it is of interest that the profiles of the transverse spectral intensity and the degree of polarization in the standard Fourier transform plane (i.e., p=1) are shown to form flat rectangular region which is wider for larger values of M.
IIR Filter Modeling Using an Algorithm Inspired on Electromagnetism
Directory of Open Access Journals (Sweden)
Cuevas-Jiménez E.
2013-01-01
Full Text Available Infinite-impulse-response (IIR filtering provides a powerful approach for solving a variety of problems. However, its design represents a very complicated task, since the error surface of IIR filters is generally multimodal, global optimization techniques are required in order to avoid local minima. In this paper, a new method based on the Electromagnetism-Like Optimization Algorithm (EMO is proposed for IIR filter modeling. EMO originates from the electro-magnetism theory of physics by assuming potential solutions as electrically charged particles which spread around the solution space. The charge of each particle depends on its objective function value. This algorithm employs a collective attraction-repulsion mechanism to move the particles towards optimality. The experimental results confirm the high performance of the proposed method in solving various benchmark identification problems.
Fast Wideband Solutions Obtained Using Model Based Parameter Estimation with Method of Moments
Directory of Open Access Journals (Sweden)
F. Kaburcuk
2017-10-01
Full Text Available Integration of the Model Based Parameter Estimation (MBPE technique into Method of Moments (MOM provides fast solutions over a wide frequency band to solve radiation and scattering problems. The MBPE technique uses the Padé rational function to approximate solutions over a wide frequency band from a solution at a fixed frequency. In this paper, the MBPE technique with MOM is applied to a thin-wire antenna. The solutions obtained by repeated simulations of MOM agree very well with the solutions obtained by MBPE technique in a single simulation. Therefore, MBPE technique according to MOM provides a remarkable saving in the computation time. Computed results show that solutions at a wider frequency band of interest are achieved in a single simulation.
Mobashsher, Ahmed Toaha; Mahmoud, A.; Abbosh, A. M.
2016-01-01
Intracranial hemorrhage is a medical emergency that requires rapid detection and medication to restrict any brain damage to minimal. Here, an effective wideband microwave head imaging system for on-the-spot detection of intracranial hemorrhage is presented. The operation of the system relies on the dielectric contrast between healthy brain tissues and a hemorrhage that causes a strong microwave scattering. The system uses a compact sensing antenna, which has an ultra-wideband operation with directional radiation, and a portable, compact microwave transceiver for signal transmission and data acquisition. The collected data is processed to create a clear image of the brain using an improved back projection algorithm, which is based on a novel effective head permittivity model. The system is verified in realistic simulation and experimental environments using anatomically and electrically realistic human head phantoms. Quantitative and qualitative comparisons between the images from the proposed and existing algorithms demonstrate significant improvements in detection and localization accuracy. The radiation and thermal safety of the system are examined and verified. Initial human tests are conducted on healthy subjects with different head sizes. The reconstructed images are statistically analyzed and absence of false positive results indicate the efficacy of the proposed system in future preclinical trials. PMID:26842761
Wideband electromagnetically coupled coaxial probe fed slot ...
African Journals Online (AJOL)
user
The antenna structure is shown in figure 1. The upper parasitic layer is horizontal slot loaded rectangular patch and lower one is coaxial probe fed U-slot loaded patch. Due to presence of parasitic element in the stacked configuration, there are two resonant associated with two resonators. These two resonance frequencies ...
Modeling Atmospheric Electromagnetic Field Following a Lightning Discharge
Davydenko, S.; Mareev, E.; Sergeev, A. S.
2013-12-01
A numerical model describing the electromagnetic field in the vicinity of an isolated lightning discharge is developed. Both the slow transient (quasistatic) electric field caused by the Maxwell relaxation of the charge disturbance and fast transient (electromagnetic pulse) are calculated in a plane atmosphere using the FDTD method. The lightning discharge is presented as a pulse current producing a distributed charge dipole inside the thundercloud in a case of intra-cloud (IC) flash or monopole charge in a case of cloud-to-ground (CG) flash. A temporal profile of the discharge current implies an existence of the return stroke, continuous current, and its fine features like the M-component. Temporal and spatial dependences of the atmospheric electric field on the flash type (IC or CG), distance to the discharge, disturbance of the electric conductivity inside the thundercloud, altitude(s) and lateral scale(s) of the charge region(s), temporal profile of the discharge current, and velocity of the return stroke are considered. A dependence of the net electric charge transferred to the upper atmospheric layers on the parameters of IC and CG flashes is studied. It is shown that both IC and CG flashes could serve as effective sources in the global electric circuit. A retrieval of the basic discharge parameters on the results of the one- or multipoint measurements of the both electromagnetic and quasistatic electric fields is discussed.
Modelling and validation of a simple and compact wide upper stop band ultra-wideband bandpass filter
Directory of Open Access Journals (Sweden)
Somdotta Roy Choudhury
2014-09-01
Full Text Available A compact ultra-wideband (UWB bandpass filter (BPF is proposed based on end coupled microstrip transmission line, defected ground structure and defected microstrip structure. The experimental filter shows a fractional bandwidth of 110% at a centre frequency, with two observable transmission zeros (attenuation poles at 2.1 and 11.7 GHz. Measured results exhibit an UWB passband from 3.02 to 10.6 GHz with mid-band insertion loss of 1.8 dB and group delay variation <0.45 ns. The BPF achieves a wide stopband with < −18 dB attenuation up to 20 GHz.
Accuracy Improvement in Magnetic Field Modeling for an Axisymmetric Electromagnet
Ilin, Andrew V.; Chang-Diaz, Franklin R.; Gurieva, Yana L.; Il,in, Valery P.
2000-01-01
This paper examines the accuracy and calculation speed for the magnetic field computation in an axisymmetric electromagnet. Different numerical techniques, based on an adaptive nonuniform grid, high order finite difference approximations, and semi-analitical calculation of boundary conditions are considered. These techniques are being applied to the modeling of the Variable Specific Impulse Magnetoplasma Rocket. For high-accuracy calculations, a fourth-order scheme offers dramatic advantages over a second order scheme. For complex physical configurations of interest in plasma propulsion, a second-order scheme with nonuniform mesh gives the best results. Also, the relative advantages of various methods are described when the speed of computation is an important consideration.
Application of Model-Based Signal Processing Methods to Computational Electromagnetics Simulators
National Research Council Canada - National Science Library
Ling, Hao
2000-01-01
This report summarizes the scientific progress on the research grant "Application of Model-Based Signal Processing Methods to Computational Electromagnetics Simulators" during the period 1 December...
National Research Council Canada - National Science Library
Ling, Hao
1998-01-01
This report summarizes the scientific progress on the research grant "Application of Model-Based Signal Processing Methods to Computational Electromagnetics Simulators" during the period 1 December...
Application of Model-Based Signal Processing Methods to Computational Electromagnetics Simulators
National Research Council Canada - National Science Library
Ling, Hao
1999-01-01
This report summarizes the scientific progress on the research grant "Application of Model-Based Signal Processing Methods to Computational Electromagnetics Simulators" during the period 1 December...
Generalized Wideband Cyclic MUSIC
Directory of Open Access Journals (Sweden)
Zhang-Meng Liu
2009-01-01
Full Text Available The method of Spectral Correlation-Signal Subspace Fitting (SC-SSF fails to separate wideband cyclostationary signals with coherent second-order cyclic statistics (SOCS. Averaged Cyclic MUSIC (ACM method made up for the drawback to some degree via temporally averaging the cyclic cross-correlation of the array output. This paper interprets ACM from another perspective and proposes a new DOA estimation method by generalizing ACM for wideband cyclostationary signals. The proposed method successfully makes up for the aforementioned drawback of SC-SSF and obtains a more satisfying performance than ACM. It is also demonstrated that ACM is a simplified form of the proposed method when only a single spectral frequency is exploited, and the integration of the frequencies within the signal bandwidth helps the new method to outperform ACM.
Directory of Open Access Journals (Sweden)
Pozar David M
2005-01-01
Full Text Available The application of ultra-wideband (UWB technology to low-cost short-range communications presents unique challenges to the communications engineer. The impact of the US FCC's regulations and the characteristics of the low-power UWB propagation channels are explored, and their effects on UWB hardware design are illustrated. This tutorial introduction includes references to more detailed explorations of the subject.
FDTD modelling of induced polarization phenomena in transient electromagnetics
Commer, Michael; Petrov, Peter V.; Newman, Gregory A.
2017-04-01
The finite-difference time-domain scheme is augmented in order to treat the modelling of transient electromagnetic signals containing induced polarization effects from 3-D distributions of polarizable media. Compared to the non-dispersive problem, the discrete dispersive Maxwell system contains costly convolution operators. Key components to our solution for highly digitized model meshes are Debye decomposition and composite memory variables. We revert to the popular Cole-Cole model of dispersion to describe the frequency-dependent behaviour of electrical conductivity. Its inversely Laplace-transformed Debye decomposition results in a series of time convolutions between electric field and exponential decay functions, with the latter reflecting each Debye constituents' individual relaxation time. These function types in the discrete-time convolution allow for their substitution by memory variables, annihilating the otherwise prohibitive computing demands. Numerical examples demonstrate the efficiency and practicality of our algorithm.
A local-ether model of propagation of electromagnetic wave
Energy Technology Data Exchange (ETDEWEB)
Su, C.C. [Dept. of Electrical Engineering, National Tsinghua University, Hsinchu (Taiwan)
2001-07-01
It is pointed out that the classical propagation model can be in accord with the Sagnac effect due to earth's rotational and orbital motions in the high-precision GPS (global positioning system) and interplanetary radar, if the reference frame of the classical propagation medium is endowed with a switchability according to the location of the wave. Accordingly, it is postulated that, as in the obsolete theory, electromagnetic waves propagate via a medium like the ether. However, the ether is not universal. It is proposed that in the region under sufficient influence of the gravity due to the earth, the sun, or another celestial body, there forms a local ether, which in turn is stationary with respect to the gravitational potential of the respective body. For earthbound and interplanetary propagation, the medium is stationary in a geocentric and a heliocentric inertial frame, respectively. An electromagnetic wave propagates at a constant speed with respect to the associated local ether, independent of the motions of source and receiver. Based on this local-ether model of wave propagation, a wide variety of earthbound, interplanetary, and interstellar propagation phenomena are accounted for. Strong evidence of this new classical model is its consistent account of the Sagnac effect due to earth's motions among GPS, the intercontinental microwave link, and the interplanetary radar. Moreover, as examined within the present precision, this model is still in accord with the Michelson-Morley experiment. To test the local-ether propagation model, a one-way-link rotor experiment is proposed. (orig.)
Finite Element Modeling of scattered electromagnetic waves for stroke analysis.
Priyadarshini, N; Rajkumar, E R
2013-01-01
Stroke has become one of the leading causes of mortality worldwide and about 800 in every 100,000 people suffer from stroke each year. The occurrence of stroke is ranked third among the causes of acute death and first among the causes for neurological dysfunction. Currently, Neurological examinations followed by medical imaging with CT, MRI or Angiography are used to provide better identification of the location and the type of the stroke, however they are neither fast, cost-effective nor portable. Microwave technology has emerged to complement these modalities to diagnose stroke as it is sensitive to the differences between the distinct dielectric properties of the brain tissues and blood. This paper investigates the possibility of diagnosing the type of stroke using Finite Element Analysis (FEA). The object of interest is a simulated head phantom with stroke, created with its specifying material characteristics like electrical conductivity and relative permittivity. The phantom is then placed in an electromagnetic field generated by a dipole antenna radiating at 1 GHz. The FEM forward model solver computes the scattered electromagnetic field by finding the solution for the Maxwell's wave equation in the head volume. Subsequently the inverse scattering problem is solved using the Contrast Source Inversion (CSI) method to reconstruct the dielectric profile of the head phantom.
Unquenched quark-model calculation of X(3872) electromagnetic decays
Energy Technology Data Exchange (ETDEWEB)
Cardoso, Marco [Universidade de Lisboa, Centro de Fisica Teorica de Particulas, Instituto Superior Tecnico, Lisbon (Portugal); Rupp, George [Universidade de Lisboa, Centro de Fisica das Interaccoes Fundamentais, Instituto Superior Tecnico, Lisbon (Portugal); Beveren, Eef van [Universidade de Coimbra, Departamento de Fisica, Centro de Fisica Computacional, Coimbra (Portugal)
2015-01-01
A recent quark-model description of X(3872) as an unquenched 2{sup 3}P{sub 1} c anti c state is generalised by now including all relevant meson.meson configurations, in order to calculate the widths of the experimentally observed electromagnetic decays X(3872) → γJ/ψ and X(3872) → γψ(2S). Interestingly, the inclusion of additional two-meson channels, most importantly D{sup ±}D{sup *-+}, leads to a sizeable increase of the c anti c probability in the total wave function, although the D{sup 0} anti D{sup *0} component remains the dominant one. As for the electromagnetic decays, unquenching strongly reduces the γψ(2S) decay rate; yet it even more sharply enhances the γJ/ψ rate, resulting in a decay ratio compatible with one experimental observation but in slight disagreement with two others. Nevertheless, the results show a dramatic improvement as compared to a quenched calculation with the same confinement force and parameters. Concretely, we obtain Γ (X(3872) → γψ(2S)) = 28.9 keV and Γ (X(3872) → γJ/ψ) = 24.7 keV, with branching ratio R{sub γψ} = 1.17. (orig.)
Modeling and design for electromagnetic surface wave devices
La Spada, Luigi; Haq, Sajad; Hao, Yang
2017-09-01
A great deal of interest has reemerged recently in the study of surface waves. The possibility to control and manipulate electromagnetic wave propagations at will opens many new research areas and leads to lots of novel applications in engineering. In this paper, we will present a comprehensive modeling and design approach for surface wave cloaks, based on graded-refractive-index materials and the theory of transformation optics. It can be also applied to any other forms of surface wave manipulation, in terms of amplitude and phase. In this paper, we will present a general method to illustrate how this can be achieved from modeling to the final design. The proposed approach is validated to be versatile and allows ease in manufacturing, thereby demonstrating great potential for practical applications.
Progress in Geant4 Electromagnetic Physics Modelling and Validation
Apostolakis, J; Bagulya, A; Brown, J M C; Burkhardt, H; Chikuma, N; Cortes-Giraldo, M A; Elles, S; Grichine, V; Guatelli, S; Incerti, S; Ivanchenko, V N; Jacquemier, J; Kadri, O; Maire, M; Pandola, L; Sawkey, D; Toshito, T; Urban, L; Yamashita, T
2015-01-01
In this work we report on recent improvements in the electromagnetic (EM) physics models of Geant4 and new validations of EM physics. Improvements have been made in models of the photoelectric effect, Compton scattering, gamma conversion to electron and muon pairs, fluctuations of energy loss, multiple scattering, synchrotron radiation, and high energy positron annihilation. The results of these developments are included in the new Geant4 version 10.1 and in patches to previous versions 9.6 and 10.0 that are planned to be used for production for run-2 at LHC. The Geant4 validation suite for EM physics has been extended and new validation results are shown in this work. In particular, the effect of gamma-nuclear interactions on EM shower shape at LHC energies is discussed.
Wideband Piezomagnetoelastic Vibration Energy Harvesting
DEFF Research Database (Denmark)
Lei, Anders; Thomsen, Erik Vilain
2014-01-01
This work presents a small-scale wideband piezomagnetoelastic vibration energy harvester (VEH) aimed for operation at frequencies of a few hundred Hz. The VEH consists of a tape-casted PZT cantilever with thin sheets of iron foil attached on each side of the free tip. The wideband operation...
submitter Thermal, Hydraulic, and Electromagnetic Modeling of Superconducting Magnet Systems
Bottura, L
2016-01-01
Modeling techniques and tailored computational tools are becoming increasingly relevant to the design and analysis of large-scale superconducting magnet systems. Efficient and reliable tools are useful to provide an optimal forecast of the envelope of operating conditions and margins, which are difficult to test even when a prototype is available. This knowledge can be used to considerably reduce the design margins of the system, and thus the overall cost, or increase reliability during operation. An integrated analysis of a superconducting magnet system is, however, a complex matter, governed by very diverse physics. This paper reviews the wide spectrum of phenomena and provides an estimate of the time scales of thermal, hydraulic, and electromagnetic mechanisms affecting the performance of superconducting magnet systems. The analysis is useful to provide guidelines on how to divide the complex problem into building blocks that can be integrated in a design and analysis framework for a consistent multiphysic...
Modeling coherent cherenkov radio emissions from high energy electromagnetic showers.
Energy Technology Data Exchange (ETDEWEB)
Schoessow, P.
1998-04-24
A technique currently under study for the detection of ultrahigh energy cosmic ray neutrinos involves the measurement of radio emissions from the electromagnetic shower generated by the neutrino in a large volume of naturally occurring dielectric such as the Antarctic ice cap or salt domes. The formation of an electron excess in the shower leads to the emission of coherent Cherenkov radiation, an effect similar to the generation of wakefields in dielectric loaded structures. We have used the finite difference time domain (FDTD) wakefield code ARRAKIS to model coherent Cherenkov radiation fields from high energy showers; we present as an example calculations of expected signals in a proof of principle experiment proposed for the Fermilab Main Injector.
Electromagnetic simulations of simple models of ferrite loaded kickers
Zannini, Carlo; Salvant, B; Metral, E; Rumolo, G
2010-01-01
The kickers are major contributors to the CERN SPS beam coupling impedance. As such, they may represent a limitation to increasing the SPS bunch current in the frame of an intensity upgrade of the LHC. In this paper, CST Particle Studio time domain electromagnetic simulations are performed to obtain the longitudinal and transverse impedances/wake potentials of simplified models of ferrite loaded kickers. The simulation results have been successfully compared with some existing analytical expressions. In the transverse plane, the dipolar and quadrupolar contributions to the wake potentials have been estimated from the results of these simulations. For some cases, simulations have also been benchmarked against measurements on PS kickers. It turns out that the large simulated quadrupolar contributions of these kickers could explain both the negative total (dipolar+quadrupolar) horizontal impedance observed in bench measurements and the positive horizontal tune shift measured with the SPS beam.
Wide-band slow-wave systems simulation and applications
Staras, Stanislovas
2012-01-01
The field of electromagnetics has seen considerable advances in recent years, based on the wide applications of numerical methods for investigating electromagnetic fields, microwaves, and other devices. Wide-Band Slow-Wave Systems: Simulation and Applications presents new technical solutions and research results for the analysis, synthesis, and design of slow-wave structures for modern electronic devices with super-wide pass-bands. It makes available, for the first time in English, significant research from the past 20 years that was previously published only in Russian and Lithuanian. The aut
Oliveira, Luis
2015-01-01
This book demonstrates how to design a wideband receiver operating in current mode, in which the noise and non-linearity are reduced, implemented in a low cost single chip, using standard CMOS technology. The authors present a solution to remove the transimpedance amplifier (TIA) block and connect directly the mixer’s output to a passive second-order continuous-time Σ∆ analog to digital converter (ADC), which operates in current-mode. These techniques enable the reduction of area, power consumption, and cost in modern CMOS receivers.
High dynamic range electric field sensor for electromagnetic pulse detection
National Research Council Canada - National Science Library
Lin, Che-Yun; Wang, Alan X; Lee, Beom Suk; Zhang, Xingyu; Chen, Ray T
2011-01-01
...) polymer Y-fed directional coupler for electromagnetic wave detection. This electrode-less, all optical, wideband electrical field sensor is fabricated using standard processing for E-O polymer photonic devices...
fdtd modelling of electromagnetic waves in stratified medium
African Journals Online (AJOL)
BRIAN
(perfect electromagnetic conductors) based on. FDTD technique. The first is an analytic approach, based on the propagators and wave- splitting technique and the second is the numerical FDTD method. Hybrid finite element finite-difference time-domain. (FE/FDTD) technique for solving complex electromagnetic problems ...
An extremely wideband and lightweight metamaterial absorber.
Shen, Yang; Pei, Zhibin; Pang, Yongqiang; Wang, Jiafu; Zhang, Anxue; Qu, Shaobo
2015-06-14
This paper presents a three-dimensional microwave metamaterial absorber based on the stand-up resistive film patch array. The absorber has wideband absorption, lightweight, and polarization-independent properties. Our design comes from the array of unidirectional stand-up resistive film patches backed by a metallic plane, which can excite multiple standing wave modes. By rolling the resistive film patches as a square enclosure, we obtain the polarization-independent property. Due to the multiple standing wave modes, the most incident energy is dissipated by the resistive film patches, and thus, the ultra-wideband absorption can be achieved by overlapping all the absorption modes at different frequencies. Both the simulated and experimental results show that the absorber possesses a fractional bandwidth of 148.2% with the absorption above 90% in the frequency range from 3.9 to 26.2 GHz. Moreover, the proposed absorber is extremely lightweight. The areal density of the fabricated sample is about 0.062 g/cm 2 , which is approximately equivalent to that of eight stacked standard A4 office papers. It is expected that our proposed absorber may find potential applications such as electromagnetic interference and stealth technologies.
An extremely wideband and lightweight metamaterial absorber
Shen, Yang; Pei, Zhibin; Pang, Yongqiang; Wang, Jiafu; Zhang, Anxue; Qu, Shaobo
2015-06-01
This paper presents a three-dimensional microwave metamaterial absorber based on the stand-up resistive film patch array. The absorber has wideband absorption, lightweight, and polarization-independent properties. Our design comes from the array of unidirectional stand-up resistive film patches backed by a metallic plane, which can excite multiple standing wave modes. By rolling the resistive film patches as a square enclosure, we obtain the polarization-independent property. Due to the multiple standing wave modes, the most incident energy is dissipated by the resistive film patches, and thus, the ultra-wideband absorption can be achieved by overlapping all the absorption modes at different frequencies. Both the simulated and experimental results show that the absorber possesses a fractional bandwidth of 148.2% with the absorption above 90% in the frequency range from 3.9 to 26.2 GHz. Moreover, the proposed absorber is extremely lightweight. The areal density of the fabricated sample is about 0.062 g/cm2, which is approximately equivalent to that of eight stacked standard A4 office papers. It is expected that our proposed absorber may find potential applications such as electromagnetic interference and stealth technologies.
2017-03-06
and energy absorption Oscar Bruno CALIFORNIA INSTITUTE OF TECHNOLOGY 1200 E. CALIFORNIA BLDV PASADENA, CA 91125 03/06/2017 Final Report Air Force...TITLE AND SUBTITLE Electromagnetic modeling, optimization and uncertainty quantification for antenna and radar systems surfaces scattering and energy ...problems in the field of electromagnetic propagation and scattering, with applicability to design of antenna and radar systems, energy absorption
Grobbe, N.
2016-01-01
In this thesis, I study coupled poroelastic waves and electromagnetic fields in layered media. The focus is two-fold:
1. Increase the theoretical and physical understanding of the seismo-electromagnetic phenomenon by analytically-based numerical modeling.
2. Investigate the potential of
Modeling of interactions of electromagnetic fields with human bodies
Caputa, Krzysztof
Interactions of electromagnetic fields with the human body have been a subject of scientific interest and public concern. In recent years, issues in power line field effects and those of wireless telephones have been in the forefront of research. Engineering research compliments biological investigations by quantifying the induced fields in biological bodies due to exposure to external fields. The research presented in this thesis aims at providing reliable tools, and addressing some of the unresolved issues related to interactions with the human body of power line fields and fields produced by handheld wireless telephones. The research comprises two areas, namely development of versatile models of the human body and their visualisation, and verification and application of numerical codes to solve selected problems of interest. The models of the human body, which are based on the magnetic resonance scans of the body, are unique and differ considerably from other models currently available. With the aid of computer software developed, the models can be arranged to different postures, and medical devices can be accurately placed inside them. A previously developed code for modeling interactions of power line fields with biological bodies has been verified by rigorous, quantitative inter-laboratory comparison for two human body models. This code has been employed to model electromagnetic interference (EMI) of the magnetic field with implanted cardiac pacemakers. In this case, the correct placement and representation of the pacemaker leads are critical, as simplified computations have been shown to result in significant errors. In modeling interactions of wireless communication devices, the finite difference time domain technique (FDTD) has become a de facto standard. The previously developed code has been verified by comparison with the analytical solution for a conductive sphere. While previously researchers limited their verifications to principal axes of the sphere
Narrowband and wideband characterisation of satellite mobile/PCN channel
Butt, G.; Parks, M. A. N.; Evans, B. G.
1995-01-01
This paper presents models characterizing satellite mobile channel. Statistical narrowband models based on the CSER high elevation angle channel measurement campaign are reported. Such models are understood to be useful for communication system simulations. It has been shown from the modelling results that for the mobile satellite links at high elevation angles line-of-sight (LOS) signal is available most of the time, even under the heavy shadowing conditions. Wideband measurement campaign which CSER is about to undertake, and subsequently the modelling approach to be adopted is also discussed. It is noted that a wideband channel model is expected to provide a useful tool in investigating CDMA applications.
Multiscale forward electromagnetic model of uterine contractions during pregnancy.
La Rosa, Patricio S; Eswaran, Hari; Preissl, Hubert; Nehorai, Arye
2012-11-05
Analyzing and monitoring uterine contractions during pregnancy is relevant to the field of reproductive health assessment. Its clinical importance is grounded in the need to reliably predict the onset of labor at term and pre-term. Preterm births can cause health problems or even be fatal for the fetus. Currently, there are no objective methods for consistently predicting the onset of labor based on sensing of the mechanical or electrophysiological aspects of uterine contractions. Therefore, modeling uterine contractions could help to better interpret such measurements and to develop more accurate methods for predicting labor. In this work, we develop a multiscale forward electromagnetic model of myometrial contractions during pregnancy. In particular, we introduce a model of myometrial current source densities and compute its magnetic field and action potential at the abdominal surface, using Maxwell's equations and a four-compartment volume conductor geometry. To model the current source density at the myometrium we use a bidomain approach. We consider a modified version of the Fitzhugh-Nagumo (FHN) equation for modeling ionic currents in each myocyte, assuming a plateau-type transmembrane potential, and we incorporate the anisotropic nature of the uterus by designing conductivity-tensor fields. We illustrate our modeling approach considering a spherical uterus and one pacemaker located in the fundus. We obtained a travelling transmembrane potential depolarizing from -56 mV to -16 mV and an average potential in the plateau area of -25 mV with a duration, before hyperpolarization, of 35 s, which is a good approximation with respect to the average recorded transmembrane potentials at term reported in the technical literature. Similarly, the percentage of myometrial cells contracting as a function of time had the same symmetric properties and duration as the intrauterine pressure waveforms of a pregnant human myometrium at term. We introduced a multiscale modeling
Electromagnetic modelling of Ground Penetrating Radar responses to complex targets
Pajewski, Lara; Giannopoulos, Antonis
2014-05-01
This work deals with the electromagnetic modelling of composite structures for Ground Penetrating Radar (GPR) applications. It was developed within the Short-Term Scientific Mission ECOST-STSM-TU1208-211013-035660, funded by COST Action TU1208 "Civil Engineering Applications of Ground Penetrating Radar". The Authors define a set of test concrete structures, hereinafter called cells. The size of each cell is 60 x 100 x 18 cm and the content varies with growing complexity, from a simple cell with few rebars of different diameters embedded in concrete at increasing depths, to a final cell with a quite complicated pattern, including a layer of tendons between two overlying meshes of rebars. Other cells, of intermediate complexity, contain pvc ducts (air filled or hosting rebars), steel objects commonly used in civil engineering (as a pipe, an angle bar, a box section and an u-channel), as well as void and honeycombing defects. One of the cells has a steel mesh embedded in it, overlying two rebars placed diagonally across the comers of the structure. Two cells include a couple of rebars bent into a right angle and placed on top of each other, with a square/round circle lying at the base of the concrete slab. Inspiration for some of these cells is taken from the very interesting experimental work presented in Ref. [1]. For each cell, a subset of models with growing complexity is defined, starting from a simple representation of the cell and ending with a more realistic one. In particular, the model's complexity increases from the geometrical point of view, as well as in terms of how the constitutive parameters of involved media and GPR antennas are described. Some cells can be simulated in both two and three dimensions; the concrete slab can be approximated as a finite-thickness layer having infinite extension on the transverse plane, thus neglecting how edges affect radargrams, or else its finite size can be fully taken into account. The permittivity of concrete can be
A precise electromagnetic field model useful for development of microwave imaging systems
DEFF Research Database (Denmark)
Chaber, Bartosz; Mohr, Johan Jacob
2016-01-01
Purpose - The paper describes a fast forward electromagnetic model built with help of commercial software. The purpose of this paper is to create an efficient and robust electromagnetic field model that could be easily plugged into a working microwave imaging system. The secondary purpose...... was created in an iterative fashion in order to determine how much details are needed to make it reliable, while keeping it efficient.Findings - The authors found that the commercial software seems like a viable platform for developing electromagnetic solvers. The resulting computer model is easy to prepare...... preparation and data visualization.Practical implications - One of the main advantages of using such a full field electromagnetic model is the ability to investigate an impact of different properties of the system ( length of antennas, liquid parameters) on its performance. Thanks to the use of commercial...
Electromagnetic pollution ecological monitoring of airport terminal modeling
Вишнівський, О.В.; Інститут аерокосмічних систем управління; Іваницький, Є.С.; Інститут аерокосмічних систем управління
2012-01-01
The two-dimention model of ecological monitoring system of airport’s terminal electromagnetic pollution has been considered. Предложена двумерная модель системы экологического мониторинга электромагнитного загрязнения пассажирского терминала аэропорта. Запропоновано двовимірну модель системи екологічного моніторигу електромагнітного забруднення пасажирського термінала аеропорта....
Investigation on Electromagnetic Models of High-Speed Solenoid Valve for Common Rail Injector
Directory of Open Access Journals (Sweden)
Jianhui Zhao
2017-01-01
Full Text Available A novel formula easily applied with high precision is proposed in this paper to fit the B-H curve of soft magnetic materials, and it is validated by comparison with predicted and experimental results. It can accurately describe the nonlinear magnetization process and magnetic saturation characteristics of soft magnetic materials. Based on the electromagnetic transient coupling principle, an electromagnetic mathematical model of a high-speed solenoid valve (HSV is developed in Fortran language that takes the saturation phenomena of the electromagnetic force into consideration. The accuracy of the model is validated by the comparison of the simulated and experimental static electromagnetic forces. Through experiment, it is concluded that the increase of the drive current is conducive to improving the electromagnetic energy conversion efficiency of the HSV at a low drive current, but it has little effect at a high drive current. Through simulation, it is discovered that the electromagnetic energy conversion characteristics of the HSV are affected by the drive current and the total reluctance, consisting of the gap reluctance and the reluctance of the iron core and armature soft magnetic materials. These two influence factors, within the scope of the different drive currents, have different contribution rates to the electromagnetic energy conversion efficiency.
An Apparatus for Constructing an Electromagnetic Plane Wave Model
Kneubil, Fabiana Botelho; Loures, Marcus Vinicius Russo; Amado, William
2015-01-01
In this paper we report on an activity aimed at building an electromagnetic wave. This was part of a class on the concept of mass offered to a group of 20 pre-service Brazilian physics teachers. The activity consisted of building a plane wave using an apparatus in which it is possible to fit some rods representing electric and magnetic fields into…
Fast wideband acoustical holography.
Hald, Jørgen
2016-04-01
Patch near-field acoustical holography methods like statistically optimized near-field acoustical holography and equivalent source method are limited to relatively low frequencies, where the average array-element spacing is less than half of the acoustic wavelength, while beamforming provides useful resolution only at medium-to-high frequencies. With adequate array design, both methods can be used with the same array. But for holography to provide good low-frequency resolution, a small measurement distance is needed, whereas beamforming requires a larger distance to limit sidelobe issues. The wideband holography method of the present paper was developed to overcome that practical conflict. Only a single measurement is needed at a relatively short distance and a single result is obtained covering the full frequency range. The method uses the principles of compressed sensing: A sparse sound field representation is assumed with a chosen set of basis functions, a measurement is taken with an irregular array, and the inverse problem is solved with a method that enforces sparsity in the coefficient vector. Instead of using regularization based on the 1-norm of the coefficient vector, an iterative solution procedure is used that promotes sparsity. The iterative method is shown to provide very similar results in most cases and to be computationally much more efficient.
Sabbagh, Harold A; Sabbagh, Elias H; Aldrin, John C; Knopp, Jeremy S
2013-01-01
Computational Electromagnetics and Model-Based Inversion: A Modern Paradigm for Eddy Current Nondestructive Evaluation describes the natural marriage of the computer to eddy-current NDE. Three distinct topics are emphasized in the book: (a) fundamental mathematical principles of volume-integral equations as a subset of computational electromagnetics, (b) mathematical algorithms applied to signal-processing and inverse scattering problems, and (c) applications of these two topics to problems in which real and model data are used. By showing how mathematics and the computer can solve problems more effectively than current analog practices, this book defines the modern technology of eddy-current NDE. This book will be useful to advanced students and practitioners in the fields of computational electromagnetics, electromagnetic inverse-scattering theory, nondestructive evaluation, materials evaluation and biomedical imaging. Users of eddy-current NDE technology in industries as varied as nuclear power, aerospace,...
CSIR Research Space (South Africa)
Grobler, Inus
2013-09-01
Full Text Available Extended Conducted Electromagnetic Interference in Densely Packed DC- DC Converter I Grobler1 and MN Gitau2 Department of Electrical, Electronic and Computer Engineering, University of Pretoria, South Africa. igrobler@csir.co.za1, mgitau.... This will improve the overall design efficiency and shorten the crucial time to market period [1]. It is of utmost importance to try and model the electromagnetic compatibility concurrent with the power processor design stage. The marketplace is in need...
Energy Technology Data Exchange (ETDEWEB)
Mishchenko, Michael I., E-mail: michael.i.mishchenko@nasa.gov [NASA Goddard Institute for Space Studies, 2880 Broadway, New York, NY 10025 (United States); Dlugach, Janna M. [Main Astronomical Observatory of the National Academy of Sciences of Ukraine, 27 Zabolotny Str., 03680, Kyiv (Ukraine); Yurkin, Maxim A. [Voevodsky Institute of Chemical Kinetics and Combustion, SB RAS, Institutskaya str. 3, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, Pirogova 2, 630090 Novosibirsk (Russian Federation); Bi, Lei [Department of Atmospheric Sciences, Texas A& M University, College Station, TX 77843 (United States); Cairns, Brian [NASA Goddard Institute for Space Studies, 2880 Broadway, New York, NY 10025 (United States); Liu, Li [NASA Goddard Institute for Space Studies, 2880 Broadway, New York, NY 10025 (United States); Columbia University, 2880 Broadway, New York, NY 10025 (United States); Panetta, R. Lee [Department of Atmospheric Sciences, Texas A& M University, College Station, TX 77843 (United States); Travis, Larry D. [NASA Goddard Institute for Space Studies, 2880 Broadway, New York, NY 10025 (United States); Yang, Ping [Department of Atmospheric Sciences, Texas A& M University, College Station, TX 77843 (United States); Zakharova, Nadezhda T. [Trinnovim LLC, 2880 Broadway, New York, NY 10025 (United States)
2016-05-16
A discrete random medium is an object in the form of a finite volume of a vacuum or a homogeneous material medium filled with quasi-randomly and quasi-uniformly distributed discrete macroscopic impurities called small particles. Such objects are ubiquitous in natural and artificial environments. They are often characterized by analyzing theoretically the results of laboratory, in situ, or remote-sensing measurements of the scattering of light and other electromagnetic radiation. Electromagnetic scattering and absorption by particles can also affect the energy budget of a discrete random medium and hence various ambient physical and chemical processes. In either case electromagnetic scattering must be modeled in terms of appropriate optical observables, i.e., quadratic or bilinear forms in the field that quantify the reading of a relevant optical instrument or the electromagnetic energy budget. It is generally believed that time-harmonic Maxwell’s equations can accurately describe elastic electromagnetic scattering by macroscopic particulate media that change in time much more slowly than the incident electromagnetic field. However, direct solutions of these equations for discrete random media had been impracticable until quite recently. This has led to a widespread use of various phenomenological approaches in situations when their very applicability can be questioned. Recently, however, a new branch of physical optics has emerged wherein electromagnetic scattering by discrete and discretely heterogeneous random media is modeled directly by using analytical or numerically exact computer solutions of the Maxwell equations. Therefore, the main objective of this Report is to formulate the general theoretical framework of electromagnetic scattering by discrete random media rooted in the Maxwell–Lorentz electromagnetics and discuss its immediate analytical and numerical consequences. Starting from the microscopic Maxwell–Lorentz equations, we trace the development
Behavioral electromagnetic models of high‐speed p‐i‐n photodiodes
DEFF Research Database (Denmark)
Jiang, Chenhui; Krozer, Viktor; Johansen, Tom Keinicke
2011-01-01
This article presents a methodology for developing small‐signal behavioral electromagnetic (EM) models of p‐i‐n photodiodes (PDs) for high‐speed applications. The EM model includes RC bandwidth limitation effect and transit‐time effect. The model is capable of accurately modeling arbitrary complex...
FDTD simulation of exposure of biological material to electromagnetic nanopulses
Energy Technology Data Exchange (ETDEWEB)
Simicevic, Neven [Center for Applied Physics Studies, Louisiana Tech University, Ruston, LA 71272 (United States); Haynie, Donald T [Center for Applied Physics Studies and Biomedical Engineering, Louisiana Tech University, Ruston, LA 71272 (United States)
2005-01-21
Ultra-wideband (UWB) electromagnetic pulses of nanosecond duration, or nanopulses, are of considerable interest to the communications industry and are being explored for various applications in biotechnology and medicine. The propagation of a nanopulse through biological matter has been computed using the finite difference-time domain (FDTD) method. The approach required the reparametrization of existing Cole-Cole model-based descriptions of dielectric properties of biological matter in terms of the Debye model without loss of accuracy. Several tissue types have been considered. Results show that the electromagnetic field inside biological tissue depends on incident pulse rise time and width. Rise time dominates pulse behaviour inside tissue as conductivity increases. It has also been found that the amount of energy deposited by 20 kV m{sup -1} nanopulses is insufficient to change the temperature of the exposed material for pulse repetition rates of 1 MHz or less, consistent with recent experimental results.
Design, Modeling, and Measurement of a Metamaterial Electromagnetic Field Concentrator
2012-03-22
Index of Refraction. In his treatise, “The First Book Opticks,” Sir Isaac Newton described a property of light rays called refrangibility to...Independence in Antennae,” Fractals, 7(1):79–84, 1999. [18] Humphries , S., Jr. “Finite-element Methods for Electromagnetics,” 2010. [19] Inglesfield, J...Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway
Effects of Pulsed Electromagnetic Fields on Osteoporosis Model
Xiaowei, Yang; Liming, Wang; Guan, Z. C.; Yaou, Zhang; Xiangpeng, Wang
The purpose of this paper was to investigate the preventive effects and long term effects of extremely low frequency pulsed electromagnetic fields (PEMFs), generated by circular coils and pulsed electromagnetic fields stimulators, on osteoporosis in bilaterally ovariectomized rats. In preventive experiment, thirty three-month old female Sprague-Dawley rats were randomly divided into three different groups: sham (SHAM), ovariectomy (OVX), PEMFs stimulation (PEMFs). All rats were subjected to bilaterally ovariectomy except those in SHAM group. The PEMFs group was exposed to pulsed electromagnetic fields with frequency 15 Hz, peak magnetic induction density 2.2mT and exposure time 2 hours per day. The bone mineral density (BMD) of vertebra and left femur were measured by dual energy X-ray absorptiometry at eighth week, twelfth week and sixteenth week after surgery. In long term effects experiment, forty four rats were randomly divided into sham (14 rats, SHAM), ovariectomy group (10 rats, OVX), 15Hz PEMFs group(10 rats, 15Hz) and 30Hz PEMFs group(10 rats, 30Hz) at twenty-sixth week after surgery. Rats in PEMFs groups were stimulated sixteen weeks. In preventive experiment, the Corrected BMD of vertebra and femur was significantly higher than that of OVX group after 16 weeks (P<0.001, P<0.001 respectively). In long term effects experiment, the vertebral BMD of 15Hz PEMFs group and 30Hz PEMFs group was significantly higher than that of OVX groups (P<0.01, P<0.05 respectively). The experimental results demonstrated that extremely low intensity, low frequency, single pulsed electromagnetic fields significantly slowed down the loss of corrected vertebral and femoral BMD in bilaterally ovariectomized rats and suggest that PEMFs may be beneficial in the treatment of osteoporosis.
Directory of Open Access Journals (Sweden)
Yingnian Wu
2014-01-01
Full Text Available Electromagnetic calculation plays an important role in both military and civic fields. Some methods and models proposed for calculation of electromagnetic wave propagation in a large range bring heavy burden in CPU computation and also require huge amount of memory. Using the GPU to accelerate computation and visualization can reduce the computational burden on the CPU. Based on forward ray-tracing method, a transmission particle model (TPM for calculating electromagnetic field is presented to combine the particle method. The movement of a particle obeys the principle of the propagation of electromagnetic wave, and then the particle distribution density in space reflects the electromagnetic distribution status. The algorithm with particle transmission, movement, reflection, and diffraction is described in detail. Since the particles in TPM are completely independent, it is very suitable for the parallel computing based on GPU. Deduction verification of TPM with the electric dipole antenna as the transmission source is conducted to prove that the particle movement itself represents the variation of electromagnetic field intensity caused by diffusion. Finally, the simulation comparisons are made against the forward and backward ray-tracing methods. The simulation results verified the effectiveness of the proposed method.
On the generation mechanism of ULF seismogenic electromagnetic emissions
Molchanov, O. A.; Hayakawa, M.
Microfracturing electrification is suggested as a possible mechanism for explaining ULF electromagnetic emissions observed before and after the earthquakes. This effect appears as fast fluctuation of microcracks and leads to the origination of wideband electromagnetic noise. This noise dissipates outside the source region and produces ULF emissions on the ground surface with an upper cutoff frequency ˜1 Hz due to the skin depth attenuation. Each microcurrent results from charge relaxation during microcrack opening and depends on the time of opening and conductivity of the rock medium. The normal size distribution of microcracks, their fast opening and healing (intermittence), and average size progression due to stress corrosion are assumed. Using this model, it is possible to compare these theoretical explanations with the observational results with reference to the intensity, frequency spectrum and temporal development of ULF magnetic field variations.
Wide-band array signal processing via spectral smoothing
Xu, Guanghan; Kailath, Thomas
1989-01-01
A novel algorithm for the estimation of direction-of-arrivals (DOA) of multiple wide-band sources via spectral smoothing is presented. The proposed algorithm does not require an initial DOA estimate or a specific signal model. The advantages of replacing the MUSIC search with an ESPRIT search are discussed.
Electrical Activity in a Time-Delay Four-Variable Neuron Model under Electromagnetic Induction
Directory of Open Access Journals (Sweden)
Keming Tang
2017-11-01
Full Text Available To investigate the effect of electromagnetic induction on the electrical activity of neuron, the variable for magnetic flow is used to improve Hindmarsh–Rose neuron model. Simultaneously, due to the existence of time-delay when signals are propagated between neurons or even in one neuron, it is important to study the role of time-delay in regulating the electrical activity of the neuron. For this end, a four-variable neuron model is proposed to investigate the effects of electromagnetic induction and time-delay. Simulation results suggest that the proposed neuron model can show multiple modes of electrical activity, which is dependent on the time-delay and external forcing current. It means that suitable discharge mode can be obtained by selecting the time-delay or external forcing current, which could be helpful for further investigation of electromagnetic radiation on biological neuronal system.
Beekhuizen, J.; Vermeulen, R.; van Eijsden, M.; van Strien, R.; Bürgi, A.; Loomans, E.; Guxens, M.; Kromhout, H.; Huss, A.
2014-01-01
Radio frequency electromagnetic fields (RF-EMF) from mobile phone base stations can be reliably modelled for outdoor locations, using 3D radio wave propagation models that consider antenna characteristics and building geometry. For exposure assessment in epidemiological studies, however, it is
DEFF Research Database (Denmark)
Silva, Filipe Miguel Faria da
2016-01-01
The simulation of electromagnetic transients involving underground cables is very time consuming, when compared with simulations involving overhead lines, and Bergeron models are often used instead of the more accurate frequency-dependent models, in order to reduce the simulation time. This paper...
Evaluation of strip-line pick-up system for the SPS wideband transverse feedback system
Kotzian, G; Steinhagen, R J; Valuch, D; Wehrle, U
2013-01-01
The proposed SPS Wideband Transverse Feedback system requires a wide-band pick-up system to be able to detect intra-bunch motion within the SPS proton bunches, captured and accelerated in a 200 MHz bucket. We present the electro-magnetic design of transverse beam position pick-up options optimised for installation in the SPS and evaluate their performance reach with respect to direct time domain sampling of the intra-bunch motion. The analysis also discusses the achieved subsystem responses of the associated cabling with new low dispersion smooth wall coaxial cables, wide-band generation of intensity and position signals by means of 180 degree RF hybrids as well as passive techniques to electronically suppress the beam off-set signal, needed to optimise the dynamic range and position resolution of the planned digital intra-bunch feedback system.
Geesink, J H
2016-01-01
Solitons, as self-reinforcing solitary waves, interact with complex biological phenomena such as cellular self-organisation. Soliton models are able to describe a spectrum of electromagnetism modalities that can be applied to understand the physical principles of biological effects in living cells, as caused by electromagnetic radiation. A bio-soliton model is proposed, that enables to predict which eigen-frequencies of non-thermal electromagnetic waves are life-sustaining and which are, in contrast, detrimental for living cells. The particular effects are exerted by a range of electromagnetic wave frequencies of one-tenth of a Hertz till Peta Hertz, that show a pattern of twelve bands, if positioned on an acoustic frequency scale. The model was substantiated by a meta-analysis of 240 published papers of biological radiation experiments, in which a spectrum of non-thermal electromagnetic waves were exposed to living cells and intact organisms. These data support the concept of coherent quantized electromagnet...
Wideband Speech Recovery Using Psychoacoustic Criteria
Directory of Open Access Journals (Sweden)
Visar Berisha
2007-08-01
Full Text Available Many modern speech bandwidth extension techniques predict the high-frequency band based on features extracted from the lower band. While this method works for certain types of speech, problems arise when the correlation between the low and the high bands is not sufficient for adequate prediction. These situations require that additional high-band information is sent to the decoder. This overhead information, however, can be cleverly quantized using human auditory system models. In this paper, we propose a novel speech compression method that relies on bandwidth extension. The novelty of the technique lies in an elaborate perceptual model that determines a quantization scheme for wideband recovery and synthesis. Furthermore, a source/filter bandwidth extension algorithm based on spectral spline fitting is proposed. Results reveal that the proposed system improves the quality of narrowband speech while performing at a lower bitrate. When compared to other wideband speech coding schemes, the proposed algorithms provide comparable speech quality at a lower bitrate.
Wideband Speech Recovery Using Psychoacoustic Criteria
Directory of Open Access Journals (Sweden)
Berisha Visar
2007-01-01
Full Text Available Many modern speech bandwidth extension techniques predict the high-frequency band based on features extracted from the lower band. While this method works for certain types of speech, problems arise when the correlation between the low and the high bands is not sufficient for adequate prediction. These situations require that additional high-band information is sent to the decoder. This overhead information, however, can be cleverly quantized using human auditory system models. In this paper, we propose a novel speech compression method that relies on bandwidth extension. The novelty of the technique lies in an elaborate perceptual model that determines a quantization scheme for wideband recovery and synthesis. Furthermore, a source/filter bandwidth extension algorithm based on spectral spline fitting is proposed. Results reveal that the proposed system improves the quality of narrowband speech while performing at a lower bitrate. When compared to other wideband speech coding schemes, the proposed algorithms provide comparable speech quality at a lower bitrate.
A statistical model for relativistic quantum fluids interacting with an intense electromagnetic wave
Mahajan, Swadesh M.; Asenjo, Felipe A.
2016-05-01
A statistical model for relativistic quantum fluids interacting with an arbitrary amplitude circularly polarized electromagnetic wave is developed in two steps. First, the energy spectrum and the wave function for a quantum particle (Klein Gordon and Dirac) embedded in the electromagnetic wave are calculated by solving the appropriate eigenvalue problem. The energy spectrum is anisotropic in the momentum K and reflects the electromagnetic field through the renormalization of the rest mass m to M =√{m2+q2A2 } . Based on this energy spectrum of this quantum particle plus field combination (QPF), a statistical mechanics model of the quantum fluid made up of these weakly interacting QPF is developed. Preliminary investigations of the formalism yield highly interesting results—a new scale for temperature, and fundamental modification of the dispersion relation of the electromagnetic wave. It is expected that this formulation could, inter alia, uniquely advance our understanding of laboratory as well as astrophysical systems where one encounters arbitrarily large electromagnetic fields.
Ultra wideband wireless body area networks
Thotahewa, Kasun Maduranga Silva; Yuce, Mehmet Rasit
2014-01-01
This book explores the design of ultra wideband (UWB) technology for wireless body-area networks (WBAN). The authors describe a novel implementation of WBAN sensor nodes that use UWB for data transmission and narrow band for data reception, enabling low power sensor nodes, with high data rate capability. The discussion also includes power efficient, medium access control (MAC) protocol design for UWB based WBAN applications and the authors present a MAC protocol in which a guaranteed delivery mechanism is utilized to transfer data with high priority. Readers will also benefit from this book’s feasibility analysis of the UWB technology for human implant applications through the study of electromagnetic and thermal power absorption of human tissue that is exposed to UWB signals. • Describes hardware platform development for IR-UWB based WBAN communication; • Discusses power efficient medium access control (MAC) protocol design for IR-UWB based WBAN applications; • Includes feasibility analy...
Maritime wideband communication networks video transmission scheduling
Yang, Tingting
2014-01-01
This Springer Brief covers emerging maritime wideband communication networks and how they facilitate applications such as maritime distress, urgency, safety and general communications. It provides valuable insight on the data transmission scheduling and protocol design for the maritime wideband network. This brief begins with an introduction to maritime wideband communication networks including the architecture, framework, operations and a comprehensive survey on current developments. The second part of the brief presents the resource allocation and scheduling for video packet transmission wit
Wang, Kan; Wan, Gengping; Wang, Guilong; He, Zhengyi; Shi, Shaohua; Wu, Lihong; Wang, Guizhen
2018-02-01
The demand for microwave absorbing materials with strong absorption capability and wide absorption band is increasing due to serious electromagnetic interference issues and defense stealth technology needs. Here the carbon-coated Fe3O4 (Fe3O4@C) yolk-shell composites were successfully synthesized in a large scale for the application of microwave absorption through an in-situ reduction process from carbon-coated γ-Fe2O3 precursor. The results show that the Fe3O4 nanoparticles are uniformly coated with a thin carbon layer about 10nm in thickness and a clear void about 1 nm in width between Fe3O4 core and carbon shell are formed due to the volume shrinkage during the reduction treatment. The obtained yolk-shell composites exhibit excellent microwave absorption properties. The absorption bandwidth with RL values exceeding -10dB is up to 5.4GHz for the absorber with a thickness of 2.2mm. The optimal RL can reach up to -45.8dB at 10.6GHz for the composite with a thickness of 3.0mm. The outstanding microwave absorption properties may be attributed to the multiple interfacial polarization, good impedance match and multiple reflections and scattering owing to the unique yolk-shell structures. Copyright © 2017 Elsevier Inc. All rights reserved.
A modular wideband sound absorber
Plumb, G. D.
The absorption coefficients were measured of various depths of RW2 grade Rockwool laid directly on the floor of the ISO-Standard reverberation room at BBC Research Department. The Rockwool was very effective as a wideband sound absorber. A new absorber was designed and tested, having the dimensions of the existing BBC type A modular absorbers and containing RW2 Rockwool. The new absorber has a smoother absorption coefficient curve, a less complicated construction, and weighs less than the existing BBC wideband absorber (type A8/A9). It has been named type A11 and has an equivalent performance to that of BBC type A2 and A3 absorbers combined. It complements, very well, the performance of the A10 very low frequency absorber, described in a companion Report (BBC RD No. 1992/10).
Directory of Open Access Journals (Sweden)
M. O. Kostin
2010-09-01
Full Text Available The probabilistic model of parametric reliability of power electromagnetic valve contactors of rolling stock which helps to evaluate the probability of failures in condition of switching a contactor (the tractive force during the whole process of operation should be greater than the resulting counteracting force is proposed in the paper.
Gunnink, J.L.; Siemon, B.
2015-01-01
Airborne electromagnetic (AEM) measurements provide information regarding the electrical properties of the subsurface for large spatial coverage in a limited time. In mapping and modelling for geological and geohydrological purposes, electrical properties (e.g. resistivity) need to be converted to
Modelling Scattering of Electromagnetic Waves in Layered Media: An Up-to-Date Perspective
Directory of Open Access Journals (Sweden)
Pasquale Imperatore
2017-01-01
Full Text Available This paper addresses the subject of electromagnetic wave scattering in layered media, thus covering the recent progress achieved with different approaches. Existing theories and models are analyzed, classified, and summarized on the basis of their characteristics. Emphasis is placed on both theoretical and practical application. Finally, patterns and trends in the current literature are identified and critically discussed.
DEFF Research Database (Denmark)
Cai, Hongzhu; Čuma, Martin; Zhdanov, Michael
2015-01-01
This paper presents a parallelized version of the edge-based finite element method with a novel post-processing approach for numerical modeling of an electromagnetic field in complex media. The method uses an unstructured tetrahedral mesh which can reduce the number of degrees of freedom signific...... seafloor bathymetry. The numerical study demonstrates that the modeling algorithm is capable of simulating the complex topography and bathymetry that is commonly encountered in controlled source electromagnetic problems.......This paper presents a parallelized version of the edge-based finite element method with a novel post-processing approach for numerical modeling of an electromagnetic field in complex media. The method uses an unstructured tetrahedral mesh which can reduce the number of degrees of freedom...... significantly. The linear system of finite element equations is solved using parallel direct solvers which are robust for ill-conditioned systems and efficient for multiple source electromagnetic (EM) modeling. We also introduce a novel approach to compute the scalar components of the electric field from...
Computer programs for forward and inverse modeling of acoustic and electromagnetic data
Ellefsen, Karl J.
2011-01-01
A suite of computer programs was developed by U.S. Geological Survey personnel for forward and inverse modeling of acoustic and electromagnetic data. This report describes the computer resources that are needed to execute the programs, the installation of the programs, the program designs, some tests of their accuracy, and some suggested improvements.
Tural, Güner; Tarakçi, Demet
2017-01-01
Background: One of the topics students have difficulties in understanding is electromagnetic induction. Active learning methods instead of traditional learning method may be able to help facilitate students' understanding such topics more effectively. Purpose: The study investigated the effectiveness of physical models and simulations on students'…
Beekhuizen, Johan; Kromhout, Hans; Bürgi, Alfred; Huss, Anke; Vermeulen, Roel
The increase in mobile communication technology has led to concern about potential health effects of radio frequency electromagnetic fields (RF-EMFs) from mobile phone base stations. Different RF-EMF prediction models have been applied to assess population exposure to RF-EMF. Our study examines what
Modelling natural electromagnetic interference in man-made conductors for space weather applications
Directory of Open Access Journals (Sweden)
L. Trichtchenko
2016-04-01
Full Text Available Power transmission lines above the ground, cables and pipelines in the ground and under the sea, and in general all man-made long grounded conductors are exposed to the variations of the natural electromagnetic field. The resulting currents in the networks (commonly named geomagnetically induced currents, GIC, are produced by the conductive and/or inductive coupling and can compromise or even disrupt system operations and, in extreme cases, cause power blackouts, railway signalling mis-operation, or interfere with pipeline corrosion protection systems. To properly model the GIC in order to mitigate their impacts it is necessary to know the frequency dependence of the response of these systems to the geomagnetic variations which naturally span a wide frequency range. For that, the general equations of the electromagnetic induction in a multi-layered infinitely long cylinder (representing cable, power line wire, rail or pipeline embedded in uniform media have been solved utilising methods widely used in geophysics. The derived electromagnetic fields and currents include the effects of the electromagnetic properties of each layer and of the different types of the surrounding media. This exact solution then has been used to examine the electromagnetic response of particular samples of long conducting structures to the external electromagnetic wave for a wide range of frequencies. Because the exact solution has a rather complicated structure, simple approximate analytical formulas have been proposed, analysed and compared with the results from the exact model. These approximate formulas show good coincidence in the frequency range spanning from geomagnetic storms (less than mHz to pulsations (mHz to Hz to atmospherics (kHz and above, and can be recommended for use in space weather applications.
On an Anomaly in the Modeling of Electromagnetic Stirring in Continuous Casting
Vynnycky, M.
2018-02-01
Early, yet still often-cited, mathematical models for electromagnetic stirring (EMS) in continuous casting are re-examined and found to contain a surprising anomaly: the solutions obtained were not unique. Analysis for the case of a round billet under rotary EMS shows how to avoid this behavior, whilst still making use of the experimental data that motivated the original models. The relevance of this result for current-day modeling of EMS is highlighted, particularly in the context of modulated EMS.
Electromagnetic wave energy converter
Bailey, R. L. (Inventor)
1973-01-01
Electromagnetic wave energy is converted into electric power with an array of mutually insulated electromagnetic wave absorber elements each responsive to an electric field component of the wave as it impinges thereon. Each element includes a portion tapered in the direction of wave propagation to provide a relatively wideband response spectrum. Each element includes an output for deriving a voltage replica of the electric field variations intercepted by it. Adjacent elements are positioned relative to each other so that an electric field subsists between adjacent elements in response to the impinging wave. The electric field results in a voltage difference between adjacent elements that is fed to a rectifier to derive dc output power.
Zhan, Feibiao; Liu, Shenquan
2017-01-01
Electrical activities are ubiquitous neuronal bioelectric phenomena, which have many different modes to encode the expression of biological information, and constitute the whole process of signal propagation between neurons. Therefore, we focus on the electrical activities of neurons, which is also causing widespread concern among neuroscientists. In this paper, we mainly investigate the electrical activities of the Morris-Lecar (M-L) model with electromagnetic radiation or Gaussian white noise, which can restore the authenticity of neurons in realistic neural network. First, we explore dynamical response of the whole system with electromagnetic induction (EMI) and Gaussian white noise. We find that there are slight differences in the discharge behaviors via comparing the response of original system with that of improved system, and electromagnetic induction can transform bursting or spiking state to quiescent state and vice versa. Furthermore, we research bursting transition mode and the corresponding periodic solution mechanism for the isolated neuron model with electromagnetic induction by using one-parameter and bi-parameters bifurcation analysis. Finally, we analyze the effects of Gaussian white noise on the original system and coupled system, which is conducive to understand the actual discharge properties of realistic neurons.
Zhan, Feibiao; Liu, Shenquan
2017-01-01
Electrical activities are ubiquitous neuronal bioelectric phenomena, which have many different modes to encode the expression of biological information, and constitute the whole process of signal propagation between neurons. Therefore, we focus on the electrical activities of neurons, which is also causing widespread concern among neuroscientists. In this paper, we mainly investigate the electrical activities of the Morris-Lecar (M-L) model with electromagnetic radiation or Gaussian white noise, which can restore the authenticity of neurons in realistic neural network. First, we explore dynamical response of the whole system with electromagnetic induction (EMI) and Gaussian white noise. We find that there are slight differences in the discharge behaviors via comparing the response of original system with that of improved system, and electromagnetic induction can transform bursting or spiking state to quiescent state and vice versa. Furthermore, we research bursting transition mode and the corresponding periodic solution mechanism for the isolated neuron model with electromagnetic induction by using one-parameter and bi-parameters bifurcation analysis. Finally, we analyze the effects of Gaussian white noise on the original system and coupled system, which is conducive to understand the actual discharge properties of realistic neurons. PMID:29209192
Directory of Open Access Journals (Sweden)
Feibiao Zhan
2017-11-01
Full Text Available Electrical activities are ubiquitous neuronal bioelectric phenomena, which have many different modes to encode the expression of biological information, and constitute the whole process of signal propagation between neurons. Therefore, we focus on the electrical activities of neurons, which is also causing widespread concern among neuroscientists. In this paper, we mainly investigate the electrical activities of the Morris-Lecar (M-L model with electromagnetic radiation or Gaussian white noise, which can restore the authenticity of neurons in realistic neural network. First, we explore dynamical response of the whole system with electromagnetic induction (EMI and Gaussian white noise. We find that there are slight differences in the discharge behaviors via comparing the response of original system with that of improved system, and electromagnetic induction can transform bursting or spiking state to quiescent state and vice versa. Furthermore, we research bursting transition mode and the corresponding periodic solution mechanism for the isolated neuron model with electromagnetic induction by using one-parameter and bi-parameters bifurcation analysis. Finally, we analyze the effects of Gaussian white noise on the original system and coupled system, which is conducive to understand the actual discharge properties of realistic neurons.
Directory of Open Access Journals (Sweden)
Pietro Bia
2016-01-01
Full Text Available The interaction of electromagnetic fields and biological tissues has become a topic of increasing interest for new research activities in bioelectrics, a new interdisciplinary field combining knowledge of electromagnetic theory, modeling, and simulations, physics, material science, cell biology, and medicine. In particular, the feasibility of pulsed electromagnetic fields in RF and mm-wave frequency range has been investigated with the objective to discover new noninvasive techniques in healthcare. The aim of this contribution is to illustrate a novel Finite-Difference Time-Domain (FDTD scheme for simulating electromagnetic pulse propagation in arbitrary dispersive biological media. The proposed method is based on the fractional calculus theory and a general series expansion of the permittivity function. The spatial dispersion effects are taken into account, too. The resulting formulation is explicit, it has a second-order accuracy, and the need for additional storage variables is minimal. The comparison between simulation results and those evaluated by using an analytical method based on the Fourier transformation demonstrates the accuracy and effectiveness of the developed FDTD model. Five numerical examples showing the plane wave propagation in a variety of dispersive media are examined.
Redfors, Andreas; Ryder, Jim
2001-01-01
Examines third year university physics students' use of models when explaining familiar phenomena involving interaction between metals and electromagnetic radiation. Concludes that few students use a single model consistently. (Contains 27 references.) (DDR)
Three-dimensional electromagnetic model of the pulsed-power Z-pinch accelerator
Directory of Open Access Journals (Sweden)
D. V. Rose
2010-01-01
Full Text Available A three-dimensional, fully electromagnetic model of the principal pulsed-power components of the 26-MA ZR accelerator [D. H. McDaniel et al., in Proceedings of the 5th International Conference on Dense Z-Pinches (AIP, New York, 2002, p. 23] has been developed. This large-scale simulation model tracks the evolution of electromagnetic waves through the accelerator’s intermediate-storage capacitors, laser-triggered gas switches, pulse-forming lines, water switches, triplate transmission lines, and water convolute to the vacuum insulator stack. The insulator-stack electrodes are coupled to a transmission-line circuit model of the four-level magnetically insulated vacuum-transmission-line section and double-post-hole convolute. The vacuum-section circuit model is terminated by a one-dimensional self-consistent dynamic model of an imploding z-pinch load. The simulation results are compared with electrical measurements made throughout the ZR accelerator, and are in good agreement with the data, especially for times until peak load power. This modeling effort demonstrates that 3D electromagnetic models of large-scale, multiple-module, pulsed-power accelerators are now computationally tractable. This, in turn, presents new opportunities for simulating the operation of existing pulsed-power systems used in a variety of high-energy-density-physics and radiographic applications, as well as even higher-power next-generation accelerators before they are constructed.
Chang, Jiang-Hao; Yu, Jing-Cun; Liu, Zhi-Xin
2016-09-01
The full-space transient electromagnetic response of water-filled goaves in coal mines were numerically modeled. Traditional numerical modeling methods cannot be used to simulate the underground full-space transient electromagnetic field. We used multiple transmitting loops instead of the traditional single transmitting loop to load the transmitting loop into Cartesian grids. We improved the method for calculating the z-component of the magnetic field based on the characteristics of full space. Then, we established the fullspace 3D geoelectrical model using geological data for coalmines. In addition, the transient electromagnetic responses of water-filled goaves of variable shape at different locations were simulated by using the finite-difference time-domain (FDTD) method. Moreover, we evaluated the apparent resistivity results. The numerical modeling results suggested that the resistivity differences between the coal seam and its roof and floor greatly affect the distribution of apparent resistivity, resulting in nearly circular contours with the roadway head at the center. The actual distribution of apparent resistivity for different geoelectrical models of water in goaves was consistent with the models. However, when the goaf water was located in one side, a false low-resistivity anomaly would appear on the other side owing to the full-space effect but the response was much weaker. Finally, the modeling results were subsequently confirmed by drilling, suggesting that the proposed method was effective.
Modelling and simulation of a copper slag cleaning process improved by electromagnetic stirring
Yang, H.; Wolters, J.; Pischke, P.; Soltner, H.; Eckert, S.; Natour, G.; Fröhlich, J.
2017-07-01
Electromagnetic stirring in a copper slag cleaning process aims at improving the recovery efficiency of the finely dispersed metallic materials from the waste. In the present study the multiphase problems involved in the slag cleaning process are numerically investigated. An Euler-Lagrange approach with advanced collision and coalescence modelling is employed. The corresponding methodologies are briefly introduced and discussed. Based on the implemented sub-models, the copper recovery is numerically investigated for operating parameters corresponding to industrial pilot plants.
Numerical Modelling of Electromagnetic Field in a Tornado
Directory of Open Access Journals (Sweden)
Pavel Fiala
2008-01-01
Full Text Available This study deals with the numerical model of both the physical and the chemical processes in the tornado. Within the paper, a basic theoretical model and a numerical solution are presented. We prepared numerical models based on the combined finite element method (FEM and the finite volume method (FVM. The model joins the magnetic, electric and current fields, the flow field and a chemical nonlinear ion model. The results were obtained by means of the FEM/FVM as a main application in ANSYS software.
Iterative direction-of-arrival estimation with wideband chirp signals
Wang, Genyuan; Xia, Xiang-Gen; Chen, Victor C.
1999-11-01
Amin et. al. recently developed a time-frequency MUSIC algorithm with narrow band models for the estimation of direction of arrival (DOA) when the source signals are chirps. In this research, we consider wideband models. The joint time-frequency analysis is first used to estimate the chirp rates of the source signals and then the DOA is estimated by the MUSIC algorithm with an iterative approach.
Shin, Kyung-Hun; Park, Hyung-II; Cho, Han-Wook; Choi, Jang-Young
2017-05-01
This paper presents an analytical model for the computation of the electromagnetic performance in interior permanent magnet (IPM) machines that accounts for the stator and the complex rotor structure. Using the subdomain method, we propose a simplified analytical model that considers the magnetic properties of the IPM machine. The analytical solutions are derived by solving the field-governing equations in each simple and regular subdomain, i.e., magnet, barrier, air gap, slot opening, and slot, and then applying the boundary conditions to the interfaces between these subdomains. The analytical model accurately accounts for the influence of the interaction between the slots, the relative recoil permeability of the magnets, and the boundary conditions. The magnetic field and electromagnetic performance obtained using the analytical method are compared with those obtained using finite element analysis. Finally, the analytical predictions are compared with the measured data in order to confirm the validity of the methods proposed in this paper.
Advanced Electric and Magnetic Material Models for FDTD Electromagnetic Codes
Poole, Brian R; Nelson, Scott D
2005-01-01
The modeling of dielectric and magnetic materials in the time domain is required for pulse power applications, pulsed induction accelerators, and advanced transmission lines. For example, most induction accelerator modules require the use of magnetic materials to provide adequate Volt-sec during the acceleration pulse. These models require hysteresis and saturation to simulate the saturation wavefront in a multipulse environment. In high voltage transmission line applications such as shock or soliton lines the dielectric is operating in a highly nonlinear regime, which requires nonlinear models. Simple 1-D models are developed for fast parameterization of transmission line structures. In the case of nonlinear dielectrics, a simple analytic model describing the permittivity in terms of electric field is used in a 3-D finite difference time domain code (FDTD). In the case of magnetic materials, both rate independent and rate dependent Hodgdon magnetic material models have been implemented into 3-D FDTD codes an...
ADVANCED ELECTRIC AND MAGNETIC MATERIAL MODELS FOR FDTD ELECTROMAGNETIC CODES
Energy Technology Data Exchange (ETDEWEB)
Poole, B R; Nelson, S D; Langdon, S
2005-05-05
The modeling of dielectric and magnetic materials in the time domain is required for pulse power applications, pulsed induction accelerators, and advanced transmission lines. For example, most induction accelerator modules require the use of magnetic materials to provide adequate Volt-sec during the acceleration pulse. These models require hysteresis and saturation to simulate the saturation wavefront in a multipulse environment. In high voltage transmission line applications such as shock or soliton lines the dielectric is operating in a highly nonlinear regime, which require nonlinear models. Simple 1-D models are developed for fast parameterization of transmission line structures. In the case of nonlinear dielectrics, a simple analytic model describing the permittivity in terms of electric field is used in a 3-D finite difference time domain code (FDTD). In the case of magnetic materials, both rate independent and rate dependent Hodgdon magnetic material models have been implemented into 3-D FDTD codes and 1-D codes.
Modeling of High-Speed InP DHBTs using Electromagnetic Simulation Based De-embedding
DEFF Research Database (Denmark)
Johansen, Tom Keinicke; Krozer, Viktor; Konczykowska, Agnieszka
2006-01-01
In this paper an approach for high-speed InP DHBT modeling valid to 110 GHz is reported. Electromagnetic (EM) simulation is applied to predict the embedded network model caused by pad parasitics. The form of the parasitic network calls for a 4-step de-embedding approach. Applying direct parameter...... extraction on the de-embedded device response leads to accurate small-signal model description of the InP DHBT. An parameter extraction approach is described for the Agilent HBT model, which assures consistency between large-signal and bias-dependent smallsignal modeling....
Elementary wideband timing of radio pulsars
Energy Technology Data Exchange (ETDEWEB)
Pennucci, Timothy T. [University of Virginia, Department of Astronomy, P.O. Box 400325 Charlottesville, VA 22904-4325 (United States); Demorest, Paul B.; Ransom, Scott M., E-mail: pennucci@virginia.edu, E-mail: pdemores@nrao.edu, E-mail: sransom@nrao.edu [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903-2475 (United States)
2014-08-01
We present an algorithm for the simultaneous measurement of a pulse time-of-arrival (TOA) and dispersion measure (DM) from folded wideband pulsar data. We extend the prescription from Taylor's 1992 work to accommodate a general two-dimensional template 'portrait', the alignment of which can be used to measure a pulse phase and DM. We show that there is a dedispersion reference frequency that removes the covariance between these two quantities and note that the recovered pulse profile scaling amplitudes can provide useful information. We experiment with pulse modeling by using a Gaussian-component scheme that allows for independent component evolution with frequency, a 'fiducial component', and the inclusion of scattering. We showcase the algorithm using our publicly available code on three years of wideband data from the bright millisecond pulsar J1824–2452A (M28A) from the Green Bank Telescope, and a suite of Monte Carlo analyses validates the algorithm. By using a simple model portrait of M28A, we obtain DM trends comparable to those measured by more standard methods, with improved TOA and DM precisions by factors of a few. Measurements from our algorithm will yield precisions at least as good as those from traditional techniques, but is prone to fewer systematic effects and is without ad hoc parameters. A broad application of this new method for dispersion measure tracking with modern large-bandwidth observing systems should improve the timing residuals for pulsar timing array experiments, such as the North American Nanohertz Observatory for Gravitational Waves.
Wideband feedback system prototype validation
Li, K; Bjorsvik, E; Fox, J; Hofle, W; Kotzian, G; Rivetta, C; Salvant, B; Turgut, O
2017-01-01
A wideband feedback demonstrator system has been de-veloped in collaboration with US-LARP under the joint lead-ership of CERN and SLAC. The system includes widebandkicker structures and amplifiers along with a fast digital re-configurable system up to 4 GS/s for single bunch and multibunch control. Most of the components have been installedin recent years and have been put into operation to test bothintra-bunch damping and individual bunch control in a multibunch train. In this note we report on the MD program,procedure and key findings that were made with this systemin the past year.
Three-Dimensional Transient Electromagnetic Modeling Based on Fictitious Wave Domain Methods
Ji, Yanju; Hu, Yanpu; Imamura, Naoto
2017-05-01
Finite-difference time domain (FDTD) methods, which have been widely employed in three-dimensional transient electromagnetic (TEM) modeling, require very small time steps to simulate the electromagnetic fields and this will be time consuming. We present an efficient numerical method for three-dimensional TEM forward modeling. Its key features are based on a correspondence principle between the diffusive and fictitious wave fields. The diffusive Maxwell's equations are transformed and solved in a so-called fictitious wave domain. This scheme allows larger time steps than conventional FDTD methods, allows including air layers, and allows simulating topography. The need for initial field calculations is avoided by including an electric current source in the governing equations. This also avoids a traditional assumption of a flat earth surface in TEM modeling. We test the accuracy of the electromagnetic fields' responses using our method with the spectral differential difference (SLDM) solutions. The results show good agreement even under the existence of air layers and topography in the model.
Sabbagh, Harold A.; Murphy, R. Kim; Sabbagh, Elias H.
2016-02-01
In past work we have developed a rigorous electromagnetic model and an inversion algorithm for the three-dimensional NDE of advanced composite materials. This approach extends Victor Technologies' work in eddy-current NDE of conventional metals, and allows one to determine in localized regions the fiber-resin ratio in graphite-epoxy, and to determine those anomalies, e.g., delaminations, broken fibers, moisture content, etc., that can be reconstructed by our inversion method. In developing the model, we applied rigorous electromagnetic theory to determine a Green's function for a slab of anisotropic composite material, and then determine the integral relations for the forward and inverse problems using the Green's function. In addition, we have given examples of the solution of forward and inverse problems using these algorithms.
Directory of Open Access Journals (Sweden)
Felix Mihai
2015-01-01
Full Text Available Multiphysics problems arise naturally in several engineering and medical applications which often require the solution to coupled processes, which is still a challenging problem in computational sciences and engineering. Some examples include blood flow through an arterial wall and magnetic targeted drug delivery systems. For these, geometric changes may lead to a transient phase in which the structure, flow field, and electromagnetic field interact in a highly nonlinear fashion. In this paper, we consider the computational modeling and simulation of a biomedical application, which concerns the fluid-structure-electromagnetic interaction in the magnetic targeted drug delivery process. Our study indicates that the strong magnetic fields, which aid in targeted drug delivery, can impact not only fluid (blood circulation but also the displacement of arterial walls. A major contribution of this paper is modeling the interactions between these three components, which previously received little to no attention in the scientific and engineering community.
Electromagnetic Thermography Nondestructive Evaluation: Physics-based Modeling and Pattern Mining.
Gao, Bin; Woo, Wai Lok; Tian, Gui Yun
2016-05-09
Electromagnetic mechanism of Joule heating and thermal conduction on conductive material characterization broadens their scope for implementation in real thermography based Nondestructive testing and evaluation (NDT&E) systems by imparting sensitivity, conformability and allowing fast and imaging detection, which is necessary for efficiency. The issue of automatic material evaluation has not been fully addressed by researchers and it marks a crucial first step to analyzing the structural health of the material, which in turn sheds light on understanding the production of the defects mechanisms. In this study, we bridge the gap between the physics world and mathematical modeling world. We generate physics-mathematical modeling and mining route in the spatial-, time-, frequency-, and sparse-pattern domains. This is a significant step towards realizing the deeper insight in electromagnetic thermography (EMT) and automatic defect identification. This renders the EMT a promising candidate for the highly efficient and yet flexible NDT&E.
Liquid crystal polymer substrate based wideband tapered step antenna
Directory of Open Access Journals (Sweden)
Boddapati Taraka Phani MADHAV
2015-05-01
Full Text Available Performance study of wideband tapered step antenna on liquid crystal polymer substrate material is presented. Bandwidth enhancement is achieved by adding step serrated ground on the front side of the model along with the radiating patch. The radiating patch seems to be the intersection of two half circles connected back to back. The lower half circle radius is more than upper half circle radius. Wideband tapered step antenna is designed on the liquid crystal polymer substrate (Ultralam 3850, εr = 2.9 with dimensions of 20×20×0.5 mm. Coplanar waveguide feeding is used in this model with feed line width of 2.6 mm and gap between feed line to ground plane of 0.5 mm.
A full 3D time-dependent electromagnetic model for Roebel cables
DEFF Research Database (Denmark)
Rodriguez Zermeno, Victor Manuel; Grilli, Francesco; Sirois, Frederic
2013-01-01
current sharing among them. However, since Roebel cables have a true 3D structure and are made of several high aspect ratio coated conductors, modelling and simulation of their electromagnetic properties is very challenging. Therefore, a realistic model taking into account the actual layout of the cable...... is unavoidably a large scale computational problem. In this work, we present a full 3D model of a Roebel cable with 14 strands. The model is based on the H-formulation, widely used for 2D problems. In order to keep the 3D features of the cable (in particular the magnetization currents near the transpositions...
The Supercritical Pile Model: Prompt Emission Across the Electromagnetic Spectrum
Kazanas, Demos; Mastichiadis, A.
2008-01-01
The "Supercritical Pile" GRB model is an economical model that provides the dissipation necessary to convert explosively the energy stored in relativistic protons in the blast wave of a GRB into radiation; at the same time it produces spectra whose luminosity peaks at 1 MeV in the lab frame, the result of the kinematics of the proton-photon - pair production reaction that effects the conversion of proton energy to radiation. We outline the fundamental notions behind the "Supercritical Pile" model and discuss the resulting spectra of the prompt emission from optical to gamma-ray energies of order Gamma^2 m_ec^2, (Gamma is the Lorentz factor of the blast wave) present even in the absence of an accelerated particle distribution and compare our results to bursts that cover this entire energy range. Particular emphasis is given on the emission at the GLAST energy range both in the prompt and the afterglow stages of the burst.
Electromagnetic properties of light and heavy baryons in the relativistic quark model
Energy Technology Data Exchange (ETDEWEB)
Nicmorus Marinescu, Diana
2007-06-14
One of the main challenges of nowadays low-energy physics remains the description of the internal structure of hadrons, strongly connected to the electromagnetic properties of matter. In this vein, the success of the relativistic quark model in the analysis of the hadron structure constitutes a solid motivation for the study carried out throughout this work. The relativistic quark model is extended to the investigation of static electromagnetic properties of both heavy and light baryons. The bare contributions to the magnetic moments of the single-, double- and triple-heavy baryons are calculated. Moreover, the relativistic quark model allows the study of the electromagnetic properties of the light baryon octet incorporating meson cloud contributions in a perturbative manner. The long disputed values of the multipole ratios E2/M1 and C2/M1 and the electromagnetic form factors of the N{yields}{delta}{gamma} transition are successfully reproduced. The relativistic quark model can be viewed as a quantum field theory approach based on a phenomenological Lagrangian coupling light and heavy baryons to their constituent quarks. In our approach the baryon is a composite object of three constituent quarks, at least in leading order. The effective interaction Lagrangian is written in terms of baryon and constituent quark fields. The effective action preserves Lorentz covariance and gauge invariance. The main ingredients of the model are already introduced at the level of the interaction Lagrangian: the three-quark baryon currents, the Gaussian distribution of the constituent quarks inside the baryon and the compositeness condition which sets an upper limit for the baryon-quark vertex. The S-matrix elements are expressed by a set of Feynman quark-diagrams. The model contains only few parameters, namely, the cut-off parameter of the Gaussian quark distribution and the free quark propagator, which are unambiguously determined from the best fit to the data. The heavy quark limit
Symplectic modeling of beam loading in electromagnetic cavities
Abell, Dan T.; Cook, Nathan M.; Webb, Stephen D.
2017-05-01
Simulating beam loading in radio frequency accelerating structures is critical for understanding higher-order mode effects on beam dynamics, such as beam break-up instability in energy recovery linacs. Full wave simulations of beam loading in radio frequency structures are computationally expensive, while reduced models can ignore essential physics and can be difficult to generalize. We present a self-consistent algorithm derived from the least-action principle which can model an arbitrary number of cavity eigenmodes and with a generic beam distribution. It has been implemented in our new Open Library for Invesitigating Vacuum Electronics (OLIVE).
Energy Technology Data Exchange (ETDEWEB)
Morrison, John L. [Univ. of Idaho, Moscow, ID (United States)
1992-12-01
The objective of this research is to develop a simple, yet accurate, lumped parameter mathematical model for an explosively driven magnetohydrodynamic generator that can predict the pulse power variables of voltage and current from startup through regenerative operation. The inputs to the model will be the plasma properties entering the generator as predicted by the explosive shock model of Reference [1]. The strategy used was to simplify electromagnetic and thermodynamic three dimensional effects into a zero dimensional model. The model will provide a convenient tool for researchers to optimize designs to be used in pulse power applications. The model is validated using experimental data of Reference [1]. An overview of the operation of the explosively driven generator is first presented. Then a simplified electrical circuit model that describes basic performance of the device is developed. Then a lumped parameter model that incorporates the coupled electromagnetic and thermodynamic effects that govern generator performance is described and developed. The model is based on fundamental physical principles and parameters that were either obtained directly from design data or estimated from experimental data. The model was used to obtain parameter sensitivities and predict beyond the limits observed in the experiments to the levels desired by the potential Department of Defense sponsors. The model identifies process limitations that provide direction for future research.
Energy Technology Data Exchange (ETDEWEB)
Mork, B; Nelson, R; Kirkendall, B; Stenvig, N
2009-11-30
Application of BPL technologies to existing overhead high-voltage power lines would benefit greatly from improved simulation tools capable of predicting performance - such as the electromagnetic fields radiated from such lines. Existing EMTP-based frequency-dependent line models are attractive since their parameters are derived from physical design dimensions which are easily obtained. However, to calculate the radiated electromagnetic fields, detailed current distributions need to be determined. This paper presents a method of using EMTP line models to determine the current distribution on the lines, as well as a technique for using these current distributions to determine the radiated electromagnetic fields.
Compact microstrip stepped impedance wideband bandpass filter
Li, Lin; Li, Zheng-Fan; Xia, H.-X.; Yang, J.-X.
2011-08-01
A novel wideband bandpass filter with a very compact size is presented in this article. Using a side-coupled stepped impedance resonator, wideband characteristics with adjustable centre frequency and 3-dB fractional bandwidth can be obtained easily. Finally, a filter sample is designed and fabricated to provide an experimental verification on the proposed topology. Good insertion/return losses, flat group delay, wide bandwidth as well as ultra compact size are achieved as demonstrated in both simulation and experiment, which makes this filter a very promising candidate for applications in future wideband communication system.
Introduction to Ultra Wideband for Wireless Communications
DEFF Research Database (Denmark)
Nikookar, Homayoun; Prasad, Ramjee
communications. Due to tutorial nature of the book it can also be adopted as a textbook on the subject in the Telecommunications Engineering curriculum. Problems at the end of each chapter extend the reader's understanding of the subject. Introduction to Ultra Wideband for Wireless Communications will aslo...... be useful for practicing engineers from industry who deal with the wireless systems that are designed and analyzed with the UWB technique.......Ultra Wideband (UWB) Technology is the cutting edge technology for wireless communications with a wide range of applications. In Introduction to Ultra Wideband for Wireless Communications UWB principles and technologies for wireless communications are explained clearly. Key issues such as UWB...
Chen, Yongpin P; Jiang, Li Jun; Meng, Min; Wu, Yu Mao; Chew, Weng Cho
2016-01-01
A novel unified Hamiltonian approach is proposed to solve Maxwell-Schrodinger equation for modeling the interaction between classical electromagnetic (EM) fields and particles. Based on the Hamiltonian of electromagnetics and quantum mechanics, a unified Maxwell-Schrodinger system is derived by the variational principle. The coupled system is well-posed and symplectic, which ensures energy conserving property during the time evolution. However, due to the disparity of wavelengths of EM waves and that of electron waves, a numerical implementation of the finite-difference time-domain (FDTD) method to the multiscale coupled system is extremely challenging. To overcome this difficulty, a reduced eigenmode expansion technique is first applied to represent the wave function of the particle. Then, a set of ordinary differential equations (ODEs) governing the time evolution of the slowly-varying expansion coefficients are derived to replace the original Schrodinger equation. Finally, Maxwell's equations represented b...
Electromagnetic interference modeling and suppression techniques in variable-frequency drive systems
Yang, Le; Wang, Shuo; Feng, Jianghua
2017-11-01
Electromagnetic interference (EMI) causes electromechanical damage to the motors and degrades the reliability of variable-frequency drive (VFD) systems. Unlike fundamental frequency components in motor drive systems, high-frequency EMI noise, coupled with the parasitic parameters of the trough system, are difficult to analyze and reduce. In this article, EMI modeling techniques for different function units in a VFD system, including induction motors, motor bearings, and rectifierinverters, are reviewed and evaluated in terms of applied frequency range, model parameterization, and model accuracy. The EMI models for the motors are categorized based on modeling techniques and model topologies. Motor bearing and shaft models are also reviewed, and techniques that are used to eliminate bearing current are evaluated. Modeling techniques for conventional rectifierinverter systems are also summarized. EMI noise suppression techniques, including passive filter, Wheatstone bridge balance, active filter, and optimized modulation, are reviewed and compared based on the VFD system models.
Modeling of MEMS piezoelectric energy harvesters using electromagnetic and power system theories
Ahmad, Mahmoud Al
2012-07-23
This work proposes a novel methodology for estimating the power output of piezoelectric generators. An analytical model that estimates for the first time the loss ratio and output power of piezoelectric generators based on the direct mechanical-to-electrical analogy, electromagnetic theory, and power system theory is developed. The mechanical-to-electrical analogy and power system theory allow the derivation of an equivalent input impedance expression for the network, whereas electromagnetic transmission line theory allows deduction of the equivalent electromechanical loss of the piezoelectric generator. By knowing the mechanical input power and the loss of the network, calculation of the output power of the piezoelectric device becomes a straightforward procedure. Experimental results based on published data are also presented to validate the analytical solution. In order to fully benefit from the well-established electromagnetic transmission line and electric circuit theories, further analyses on the resonant frequency, bandwidth, and sensitivity are presented. Compared to the conventional modeling methods currently being adopted in the literature, the proposed method provides significant additional information that is crucial for enhanced device operation and quick performance optimization. © 2011 IOP Publishing Ltd.
A simple electromagnetic model for the light clock of special relativity
Energy Technology Data Exchange (ETDEWEB)
Smith, Glenn S, E-mail: glenn.smith@ece.gatech.edu [School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0250 (United States)
2011-11-15
Thought experiments involving a light clock are common in introductory treatments of special relativity, because they provide a simple way of demonstrating the non-intuitive phenomenon of time dilation. The properties of the ray or pulse of light that is continuously reflected between the parallel mirrors of the clock are often stated vaguely and sometimes involve implicitly other relativistic effects, such as aberration. While this approach is adequate for an introduction, it should be supplemented by a more accurate analysis of the light clock once the formulae for the Lorentz transformation and the transformation of the electromagnetic field have been developed. A simple yet accurate electromagnetic model for the light clock is presented for this purpose. In this model, the ray of light in the qualitative treatment is replaced by a guided wave in a parallel-plate waveguide. Expressions for the electromagnetic field and energy density within the waveguide are determined in the inertial frame in which the clock is at rest and the laboratory frame in which the clock is moving with constant velocity. The analytical expressions and graphical results obtained clearly demonstrate the operation of the clock and time dilation, as well as other interesting relativistic effects.
Electromagnetic Modeling of the Passive Stabilization Loop at EAST
Ji, Xiang; Song, Yuntao; Wu, Songtao; Wang, Zhibin; Shen, Guang; Liu, Xufeng; Cao, Lei; Zhou, Zibo; Peng, Xuebing; Wang, Chenghao
2012-09-01
A passive stabilization loop (PSL) has been designed and manufactured in order to enhance the control of vertical instability and accommodate the new stage for high-performance plasma at EAST. Eddy currents are induced by vertical displacement events (VDEs) and disruption, which can produce a magnetic field to control the vertical instability of the plasma in a short timescale. A finite element model is created and meshed using ANSYS software. Based on the simulation of plasma VDEs and disruption, the distribution and decay curve of the eddy currents on the PSL are obtained. The largest eddy current is 200 kA and the stress is 68 MPa at the outer current bridge, which is the weakest point of the PSL because of the eddy currents and the magnetic fields. The analysis results provide the supporting data for the structural design.
Ultra wideband filter using dumbbell-etched stepped impedance resonator
Yang, Ru-Yuan; Wu, Hung-Wei; Lee, Der-Sun
2011-11-01
In this article, an ultra wideband bandpass filter using the dumbbell-etched stepped impedance resonator (SIR) is presented. The filter consists of a dumbbell-etched SIR with an impedance ratio K > 1 and the enhanced coupled input/output lines. The SIR is folded into a dumbbell shape to achieve a smaller circuit size than the filter with conventional SIR. The bandwidth can be analysed using the image-parameter method to obtain the proper dimension of the coupled lines and verified using electromagnetic simulation. The measured 3 dB fractional bandwidth of 110% and insertion loss |S 21| less than 3 dB over the entire passband are achieved.
Development of 3D electromagnetic modeling tools for airborne vehicles
Volakis, John L.
1992-01-01
The main goal of this project is to develop methodologies for scattering by airborne composite vehicles. Although our primary focus continues to be the development of a general purpose code for analyzing the entire structure as a single unit, a number of other tasks are also pursued in parallel with this effort. These tasks are important in testing the overall approach and in developing suitable models for materials coatings, junctions and, more generally, in assessing the effectiveness of the various parts comprising the final code. Here, we briefly discuss our progress on the five different tasks which were pursued during this period. Our progress on each of these tasks is described in the detailed reports (listed at the end of this report) and the memoranda included. The first task described below is, of course, the core of this project and deals with the development of the overall code. Undoubtedly, it is the outcome of the research which was funded by NASA-Ames and the Navy over the past three years. During this year we developed the first finite element code for scattering by structures of arbitrary shape and composition. The code employs a new absorbing boundary condition which allows termination of the finite element mesh only 0.3 lambda from the outer surface of the target. This leads to a remarkable reduction of the mesh size and is a unique feature of the code. Other unique features of this code include capabilities to model resistive sheets, impedance sheets and anisotropic materials. This last capability is the latest feature of the code and is still under development. The code has been extensively validated for a number of composite geometries and some examples are given. The validation of the code is still in progress for anisotropic and larger non-metallic geometries and cavities. The developed finite element code is based on a Galerkin's formulation and employs edge-based tetrahedral elements for discretizing the dielectric sections and the region
On Practical Implementation of Electromagnetic Models of Lightning Return-Strokes
Directory of Open Access Journals (Sweden)
Hamidreza Karami
2016-10-01
Full Text Available In electromagnetic models, the return-stroke channel is represented as an antenna excited at its base by either a voltage or a current source. To adjust the speed of the current pulse propagating in the channel to available optical observations, different representations for the return-stroke channel have been proposed in the literature using different techniques to artificially reduce the propagation speed of the current pulse to values consistent with observations. In this paper, we present an analysis of the available electromagnetic models in terms of their practical implementation. Criteria used for the analysis are the ease of implementation of the models, the numerical accuracy and the needed computer resources, as well as their ability to reproduce a desired value for the speed of the return stroke current pulse. Using the CST-MWS software, which is based on the time-domain finite-integration technique, different electromagnetic models were analyzed, namely (A a wire embedded in a fictitious half-space dielectric medium (other than air, (B a wire embedded in a fictitious coating with permittivity (εr and permeability (μr, and (C a wire in free-space loaded by distributed series inductance and resistance. It is shown that, by adjusting the parameters of each model, it is possible to reproduce a desired value for the speed of the current pulse. For each of the considered models, we determined the values for the adjustable parameters that allow obtaining the desired value of the return speed. Model A is the least expensive in terms of computing resources. However, it requires two simulation runs to obtain the electromagnetic fields. A variant of Model B that includes a fictitious dielectric/ferromagnetic coating is found to be more efficient to control the current speed along the channel than using only a dielectric coating. On the other hand, this model requires an increased number of mesh cells, resulting in higher memory and
Swidinsky, Andrei
Gas hydrates are a solid, ice-like mixture of water and low molecular weight hydrocarbons. They are found under the permafrost and to a far greater extent under the ocean, usually at water depths greater than 300m. Hydrates are a potential energy resource, a possible factor in climate change, and a geohazard. For these reasons, it is critical that gas hydrate deposits are quantitatively assessed so that their concentrations, locations and distributions may be established. Due to their ice-like nature, hydrates are electrically insulating. Consequently, a method which remotely detects changes in seafloor electrical conductivity, such as marine controlled source electromagnetics (CSEM), is a useful geophysical tool for marine gas hydrate exploration. Hydrates are geometrically complex structures. Advanced electromagnetic modelling and imaging techniques are crucial for proper survey design and data interpretation. I develop a method to model thin resistive structures in conductive host media which may be useful in building approximate geological models of gas hydrate deposits using arrangements of multiple, bent sheets. I also investigate the possibility of interpreting diffusive electromagnetic data using seismic imaging techniques. To be processed in this way, such data must first be transformed into its non-diffusive, seismic-like counterpart. I examine such a transform from both an analytical and a numerical point of view, focusing on methods to overcome inherent numerical instabilities. This is the first step to applying seismic processing techniques to CSEM data to rapidly and efficiently image resistive gas hydrate structures. The University of Toronto marine electromagnetics group has deployed a permanent marine CSEM array offshore Vancouver Island, in the framework of the NEPTUNE Canada cabled observatory, for the purposes of monitoring gas hydrate deposits. In this thesis I also propose and examine a new CSEM survey technique for gas hydrate which would
Introduction to Ultra Wideband for Wireless Communications
DEFF Research Database (Denmark)
Nikookar, Homayoun; Prasad, Ramjee
Ultra Wideband (UWB) Technology is the cutting edge technology for wireless communications with a wide range of applications. In Introduction to Ultra Wideband for Wireless Communications UWB principles and technologies for wireless communications are explained clearly. Key issues such as UWB...... wireless channels, interference, signal processing as well as applications and standardization activities are addressed. Introduction to Ultra Wideband for Wireless Communications provides easy-to-understand material to (graduate) students and researchers working in the field of commercial UWB wireless...... communications. Due to tutorial nature of the book it can also be adopted as a textbook on the subject in the Telecommunications Engineering curriculum. Problems at the end of each chapter extend the reader's understanding of the subject. Introduction to Ultra Wideband for Wireless Communications will aslo...
Introduction to Ultra Wideband for Wireless Communications
DEFF Research Database (Denmark)
Nikookar, Homayoun; Prasad, Ramjee
communications. Due to tutorial nature of the book it can also be adopted as a textbook on the subject in the Telecommunications Engineering curriculum. Problems at the end of each chapter extend the reader's understanding of the subject. Introduction to Ultra Wideband for Wireless Communications will aslo......Ultra Wideband (UWB) Technology is the cutting edge technology for wireless communications with a wide range of applications. In Introduction to Ultra Wideband for Wireless Communications UWB principles and technologies for wireless communications are explained clearly. Key issues such as UWB...... wireless channels, interference, signal processing as well as applications and standardization activities are addressed. Introduction to Ultra Wideband for Wireless Communications provides easy-to-understand material to (graduate) students and researchers working in the field of commercial UWB wireless...
High-Performance Computing for the Electromagnetic Modeling and Simulation of Interconnects
Schutt-Aine, Jose E.
1996-01-01
The electromagnetic modeling of packages and interconnects plays a very important role in the design of high-speed digital circuits, and is most efficiently performed by using computer-aided design algorithms. In recent years, packaging has become a critical area in the design of high-speed communication systems and fast computers, and the importance of the software support for their development has increased accordingly. Throughout this project, our efforts have focused on the development of modeling and simulation techniques and algorithms that permit the fast computation of the electrical parameters of interconnects and the efficient simulation of their electrical performance.
DEFF Research Database (Denmark)
Cai, Hongzhu; Hu, Xiangyun; Xiong, Bin
2017-01-01
We implemented an edge-based finite element time domain (FETD) modeling algorithm for simulating controlled-source electromagnetic (CSEM) data. The modeling domain is discretized using unstructured tetrahedral mesh and we consider a finite difference discretization of time using the backward Euler...... method which is unconditionally stable. We solve the diffusion equation for the electric field with a total field formulation. The finite element system of equation is solved using the direct method. The solutions of electric field, at different time, can be obtained using the effective time stepping...
Hemispheric ultra-wideband antenna.
Energy Technology Data Exchange (ETDEWEB)
Brocato, Robert Wesley
2006-04-01
This report begins with a review of reduced size ultra-wideband (UWB) antennas and the peculiar problems that arise when building a UWB antenna. It then gives a description of a new type of UWB antenna that resolves these problems. This antenna, dubbed the hemispheric conical antenna, is similar to a conventional conical antenna in that it uses the same inverted conical conductor over a ground plane, but it also uses a hemispheric dielectric fill in between the conductive cone and the ground plane. The dielectric material creates a fundamentally new antenna which is reduced in size and much more rugged than a standard UWB conical antenna. The creation of finite-difference time domain (FDTD) software tools in spherical coordinates, as described in SAND2004-6577, enabled this technological advance.
Energy Technology Data Exchange (ETDEWEB)
Rosales, Mario F. [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)
1987-12-31
In this article are presented the general characteristics of the electromagnetic phenomena that can be described by means of the software CALIIE-2D of the Instituto de Investigaciones Electricas (IIE) derived from a modeling based in the magnetic and electric potentials, always using the MKS rationalized units system. Closed regions are considered with axial or moving symmetry to incorporate the bi-dimensional behavior of the electromagnetic fields. The possibility of means with movement is also included. [Espanol] En este articulo se presentan las caracteristicas generales de los fenomenos electromagneticos que pueden describirse mediante el programa de computo CALIIE-2D, del Instituto de Investigaciones Electricas (IIE), que provienen de una modelacion basada en los potenciales magnetico y electrico, en esta se utiliza sistema MKS racionalizado de unidades. Se consideran regiones cerradas con simetria axial o traslacional para incorporar el comportamiento bidimensional de los campos electromagneticos, se incluye tambien la posibilidad de medios con movimiento.
Design of a wideband excitation source for fast bioimpedance spectroscopy
Yang, Yuxiang; Kang, Minhang; Lu, Yong; Wang, Jian; Yue, Jing; Gao, Zonghai
2011-01-01
Multi-frequency-one-time (MFOT) measurement of bioimpedance spectroscopy (BIS) can greatly reduce measurement time and grasp the transient physiological status of a living body compared with the traditional one-frequency-one-time (OFOT) measurement technology, and a wideband excitation source mixed with multiple frequencies is a crucial part of MFOT measurement of BIS. This communication describes a design of a wideband excitation source. Firstly, a multi-frequency mixed (MFM) signal containing seven primary harmonics is synthesized based on Walsh functions, which is a periodical and rectangular signal and whose 68.9% of the energy is homogeneously distributed on its seven 2nth primary harmonics. Then the MFM signal is generated by a field programmable gate array (FPGA), and a unipolar-to-bipolar convertor (UBC) is designed to convert the unipolar signal into bipolar signal. Finally, the bipolar MFM signal is driven by a voltage-controlled current source (VCCS). A 2R-1C series model is adopted as the load of the VCCS, and the simulated voltage response on the load is obtained based on the theoretical analysis. Experiments show that the practical waveform on the load matches well with the theoretical analysis, which indicates that the VCCS has a good performance on the MFM signal. The design of the wideband excitation source establishes a good foundation for fast measurement of BIS.
Sources of variability in wideband energy reflectance measurements in adults.
Feeney, M Patrick; Stover, Bert; Keefe, Douglas H; Garinis, Angela C; Day, Jessica E; Seixas, Noah
2014-05-01
Wideband acoustic immittance measurements of the middle ear, such as wideband energy reflectance (ER), can provide information about how the middle ear functions across the traditional audiometric frequency range. These measurements are being investigated as a new means of evaluating conductive hearing disorders, and studies have been reported on a number of middle-ear disorders. However, the normative database for wideband ER is still being developed, and more information is needed about sources of test variability. The purpose of the present study was to evaluate sources of variability in wideband ER measurements at baseline and across annual tests for up to 5 yr in subjects with normal hearing. The main group consisted of 112 subjects (187 ears), 24 females and 88 males, with normal hearing and normal 0.226-kHz admittance tympanometry. An additional 24 adults with abnormal 0.226-kHz tympanometry provided baseline comparison data. A longitudinal design was used in obtaining annual measurements of audiometry, tympanometry, and wideband ER at ambient pressure in adults. Clinical audiometry and tympanometry data and 1/3-octave wideband ER measurements were obtained at baseline and annually for up to four additional tests. Descriptive statistics and t-tests were used to explore differences in 1/3-octave baseline ER measures in terms of subject age, test ear, sex, and clinical tympanometry. Longitudinal mixed-effects linear regression models at 1.0, 2.0, and 4.0 kHz were used to examine the different sources of variance affecting ER over time. There were small but statistically significant mean differences in ER for baseline measurements as a function of ear, sex, and age. Compared with these results, data for 29 ears with abnormal 0.226-kHz tympanometry differed from mean normal data across a broad frequency range by as much as 20%. ER varied as a function of peak compensated static acoustic admittance (Ytm) for measures at 1.0 kHz but was unrelated to Ytm at 2.0 and
Calibrating a Salt Water Intrusion Model with Time-Domain Electromagnetic Data
DEFF Research Database (Denmark)
Herckenrath, Daan; Odlum, Nick; Nenna, Vanessa
2013-01-01
Salt water intrusion models are commonly used to support groundwater resource management in coastal aquifers. Concentration data used for model calibration are often sparse and limited in spatial extent. With airborne and ground-based electromagnetic surveys, electrical resistivity models can...... be obtained to provide high-resolution three-dimensional models of subsurface resistivity variations that can be related to geology and salt concentrations on a regional scale. Several previous studies have calibrated salt water intrusion models with geophysical data, but are typically limited to the use......, we perform a coupled hydrogeophysical inversion (CHI) in which we use a salt water intrusion model to interpret the geophysical data and guide the geophysical inversion. We refer to this methodology as a Coupled Hydrogeophysical Inversion-State (CHI-S), in which simulated salt concentrations...
Investigation of frequency-selective properties of microwave wideband bandpass filters
Khodenkov, S. A.; Boev, N. M.
2017-11-01
A new approach allowing to improve frequency-selective properties for a fixed order of N filter is suggested. In all the studies, conducted with the help of numerical electrodynamic analysis of 3D models of microstrip filters based on a multimode resonator, the same substrate with dielectric constant ε=2.8 and thickness h=2 mm (material - FLAN) was used in calculations. The central bandpass frequency of microwave structures f 0≈1.4 GHz was registered and as well as relative bandwidth Δf/f o≈80%. The strip conductor of central multimode resonator in six studied filters of the sixth and eighth orders has the shape of an irregular meander being electromagnetically connected with four single-mode resonators, a pair of which is located to the left of it, and the other pair is to the right. It is shown that in single-mode quarter-wave resonators building-up the number of portions of identical parallel strip conductors, connected to a screen at one end and connected with each other by a strip conductor jumper, can increase the power of suppression at low-frequency stop band by more than 15 dB, as well as near high-frequency slope of passband by more than 10 dB. Therefore, the level of maximums of return losses in the passband of wideband bandpass filter ranges within a few dB.
Thiel, Florian; Kosch, Olaf; Seifert, Frank
2010-01-01
The specific advantages of ultra-wideband electromagnetic remote sensing (UWB radar) make it a particularly attractive technique for biomedical applications. We partially review our activities in utilizing this novel approach for the benefit of high and ultra-high field magnetic resonance imaging (MRI) and other applications, e.g., for intensive care medicine and biomedical research. We could show that our approach is beneficial for applications like motion tracking for high resolution brain imaging due to the non-contact acquisition of involuntary head motions with high spatial resolution, navigation for cardiac MRI due to our interpretation of the detected physiological mechanical contraction of the heart muscle and for MR safety, since we have investigated the influence of high static magnetic fields on myocardial mechanics. From our findings we could conclude, that UWB radar can serve as a navigator technique for high and ultra-high field magnetic resonance imaging and can be beneficial preserving the high resolution capability of this imaging modality. Furthermore it can potentially be used to support standard ECG analysis by complementary information where sole ECG analysis fails. Further analytical investigations have proven the feasibility of this method for intracranial displacements detection and the rendition of a tumour's contrast agent based perfusion dynamic. Beside these analytical approaches we have carried out FDTD simulations of a complex arrangement mimicking the illumination of a human torso model incorporating the geometry of the antennas applied.
Directory of Open Access Journals (Sweden)
Frank Seifert
2010-12-01
Full Text Available The specific advantages of ultra-wideband electromagnetic remote sensing (UWB radar make it a particularly attractive technique for biomedical applications. We partially review our activities in utilizing this novel approach for the benefit of high and ultra-high field magnetic resonance imaging (MRI and other applications, e.g., for intensive care medicine and biomedical research. We could show that our approach is beneficial for applications like motion tracking for high resolution brain imaging due to the non-contact acquisition of involuntary head motions with high spatial resolution, navigation for cardiac MRI due to our interpretation of the detected physiological mechanical contraction of the heart muscle and for MR safety, since we have investigated the influence of high static magnetic fields on myocardial mechanics. From our findings we could conclude, that UWB radar can serve as a navigator technique for high and ultra-high field magnetic resonance imaging and can be beneficial preserving the high resolution capability of this imaging modality. Furthermore it can potentially be used to support standard ECG analysis by complementary information where sole ECG analysis fails. Further analytical investigations have proven the feasibility of this method for intracranial displacements detection and the rendition of a tumour’s contrast agent based perfusion dynamic. Beside these analytical approaches we have carried out FDTD simulations of a complex arrangement mimicking the illumination of a human torso model incorporating the geometry of the antennas applied.
Directory of Open Access Journals (Sweden)
V. Pohjola
2010-03-01
Full Text Available We have developed a fully kinetic electromagnetic model to study instabilities and waves in planetary plasma environments. In the particle-in-a-cell (PIC model both ions and electrons are modeled as particles. An important feature of the developed global kinetic model, called HYB-em, compared to other electromagnetic codes is that it is built up on an earlier quasi-neutral hybrid simulation platform called HYB and that it can be used in conjunction with earlier hybrid models. The HYB models have been used during the past ten years to study globally the flowing plasma interaction with various Solar System objects: Mercury, Venus, the Moon, Mars, Saturnian moon Titan and asteroids. The new stand-alone fully kinetic model enables us to (1 study the stability of various planetary plasma regions in three-dimensional space, (2 analyze the propagation of waves in a plasma environment derived from the other global HYB models. All particle processes in a multi-ion plasma which are implemented on the HYB platform (e.g. ion-neutral-collisions, chemical processes, particle loss and production processes are also automatically included in HYB-em model. In this brief report we study the developed approach by analyzing the propagation of high frequency electromagnetic waves in non-magnetized plasma in two cases: We study (1 expansion of a spherical wave generated from a point source and (2 propagation of a plane wave in plasma. The analysis shows that the HYB-em model is capable of describing these space plasma situations successfully. The analysis also suggests the potential of the developed model to study both high density-high magnetic field plasma environments, such as Mercury, and low density-low magnetic field plasma environments, such as Venus and Mars.
Directory of Open Access Journals (Sweden)
V. Pohjola
2010-03-01
Full Text Available We have developed a fully kinetic electromagnetic model to study instabilities and waves in planetary plasma environments. In the particle-in-a-cell (PIC model both ions and electrons are modeled as particles. An important feature of the developed global kinetic model, called HYB-em, compared to other electromagnetic codes is that it is built up on an earlier quasi-neutral hybrid simulation platform called HYB and that it can be used in conjunction with earlier hybrid models. The HYB models have been used during the past ten years to study globally the flowing plasma interaction with various Solar System objects: Mercury, Venus, the Moon, Mars, Saturnian moon Titan and asteroids. The new stand-alone fully kinetic model enables us to (1 study the stability of various planetary plasma regions in three-dimensional space, (2 analyze the propagation of waves in a plasma environment derived from the other global HYB models. All particle processes in a multi-ion plasma which are implemented on the HYB platform (e.g. ion-neutral-collisions, chemical processes, particle loss and production processes are also automatically included in HYB-em model.
In this brief report we study the developed approach by analyzing the propagation of high frequency electromagnetic waves in non-magnetized plasma in two cases: We study (1 expansion of a spherical wave generated from a point source and (2 propagation of a plane wave in plasma. The analysis shows that the HYB-em model is capable of describing these space plasma situations successfully. The analysis also suggests the potential of the developed model to study both high density-high magnetic field plasma environments, such as Mercury, and low density-low magnetic field plasma environments, such as Venus and Mars.
Joshi, R. P.
2003-01-01
A study into the problem of determining electromagnetic solutions at high frequencies for problems involving complex geometries, large sizes and multiple sources (e.g. antennas) has been initiated. Typical applications include the behavior of antennas (and radiators) installed on complex conducting structures (e.g. ships, aircrafts, etc..) with strong interactions between antennas, the radiation patterns, and electromagnetic signals is of great interest for electromagnetic compatibility control. This includes the overall performance evaluation and control of all on-board radiating systems, electromagnetic interference, and personnel radiation hazards. Electromagnetic computational capability exists at NASA LaRC, and many of the codes developed are based on the Moment Method (MM). However, the MM is computationally intensive, and this places a limit on the size of objects and structures that can be modeled. Here, two approaches are proposed: (i) a current-based hybrid scheme that combines the MM with Physical optics, and (ii) an Alternating Direction Implicit-Finite Difference Time Domain (ADI-FDTD) method. The essence of a hybrid technique is to split the overall scattering surface(s) into two regions: (a) a MM zone (MMZ) which can be used over any part of the given geometry, but is most essential over irregular and "non-smooth" geometries, and (b) a PO sub-region (POSR). Currents induced on the scattering and reflecting surfaces can then be computed in two ways depending on whether the region belonged to the MMZ or was part of the POSR. For the MMZ, the current calculations proceed in terms of basis functions with undetermined coefficients (as in the usual MM method), and the answer obtained by solving a system of linear equations. Over the POSR, conduction is obtained as a superposition of two contributions: (i) currents due to the incident magnetic field, and (ii) currents produced by the mutual induction from conduction within the MMZ. This effectively leads to
Reich, Felix A.; Rickert, Wilhelm; Müller, Wolfgang H.
2017-09-01
This study investigates the implications of various electromagnetic force models in macroscopic situations. There is an ongoing academic discussion which model is "correct," i.e., generally applicable. Often, gedankenexperiments with light waves or photons are used in order to motivate certain models. In this work, three problems with bodies at the macroscopic scale are used for computing theoretical model-dependent predictions. Two aspects are considered, total forces between bodies and local deformations. By comparing with experimental data, insight is gained regarding the applicability of the models. First, the total force between two cylindrical magnets is computed. Then a spherical magnetostriction problem is considered to show different deformation predictions. As a third example focusing on local deformations, a droplet of silicone oil in castor oil is considered, placed in a homogeneous electric field. By using experimental data, some conclusions are drawn and further work is motivated.
Modelling of resonant MEMS magnetic field sensor with electromagnetic induction sensing
Liu, Song; Xu, Huaying; Xu, Dehui; Xiong, Bin
2017-06-01
This paper presents an analytical model of resonant MEMS magnetic field sensor with electromagnetic induction sensing. The resonant structure vibrates in square extensional (SE) mode. By analyzing the vibration amplitude and quality factor of the resonant structure, the magnetic field sensitivity as a function of device structure parameters and encapsulation pressure is established. The developed analytical model has been verified by comparing calculated results with experiment results and the deviation between them is only 10.25%, which shows the feasibility of the proposed device model. The model can provide theoretical guidance for further design optimization of the sensor. Moreover, a quantitative study of the magnetic field sensitivity is conducted with respect to the structure parameters and encapsulation pressure based on the proposed model.
Model of the double-rotor induction motor in terms of electromagnetic differential
Directory of Open Access Journals (Sweden)
Adamczyk Dominik
2016-12-01
Full Text Available The paper presents a concept, a construction, a circuit model and experimental results of the double-rotor induction motor. This type of a motor is to be implemented in the concept of the electromagnetic differential. At the same time it should fulfill the function of differential mechanism and the vehicle drive. One of the motor shafts is coupled to the direction changing mechanical transmission. The windings of the external rotor are powered by slip rings and brushes. The inner rotor has the squirrel-cage windings. The circuit model parameters were calculated based on the 7.5 kW real single-rotor induction motor (2p = 4. Experimental verification of the model was based on comparison between the mentioned single-rotor motor and double-rotor model with the outer rotor blocked. The presented results showed relatively good compliance between the model and real motor.
Review of FD-TD numerical modeling of electromagnetic wave scattering and radar cross section
Taflove, Allen; Umashankar, Korada R.
1989-01-01
Applications of the finite-difference time-domain (FD-TD) method for numerical modeling of electromagnetic wave interactions with structures are reviewed, concentrating on scattering and radar cross section (RCS). A number of two- and three-dimensional examples of FD-TD modeling of scattering and penetration are provided. The objects modeled range in nature from simple geometric shapes to extremely complex aerospace and biological systems. Rigorous analytical or experimental validatons are provided for the canonical shapes, and it is shown that FD-TD predictive data for near fields and RCS are in excellent agreement with the benchmark data. It is concluded that with continuing advances in FD-TD modeling theory for target features relevant to the RCS problems and in vector and concurrent supercomputer technology, it is likely that FD-TD numerical modeling will occupy an important place in RCS technology in the 1990s and beyond.
Electromagnetic modelling of GaAs membrane supported mm-wave receivers
Energy Technology Data Exchange (ETDEWEB)
Neculoiu, D [IMT Bucharest, 32B Erou Iancu Nicolae str., 72996, Bucharest (Romania); Electronics Department, POLITEHNICA University of Bucharest, 1-3 Iuliu Maniu Av., 061071 Bucharest (Romania); Muller, A [IMT Bucharest, 32B Erou Iancu Nicolae str., 72996, Bucharest (Romania); Konstantinidis, G [MRG-IESL-FORTH Heraklion, PO Box 1527, Crete (Greece)
2006-04-01
This paper presents a new electromagnetic modelling approach for the design of GaAs membrane supported monolithically integrated mm-wave receivers. The receivers structures are divided into membrane supported sections and bulk GaAs supported sections. Each block is modelled and designed using the full-wave electromagnetic simulation software Zeland IE3D. The Schottky diode is included in the model using the internal port feature. The design steps include the Schottky diode experimental characterization, design and measurements of membrane supported antenna demonstrators and linear/nonlinear simulations of the final receiver structures. The fabrication processes is based on GaAs micromachining. Two types of video detection receivers were designed, fabricated and tested: a 38 GHz double folded slot antenna receivers and a 45 GHz Yagi-Uda antenna receiver. Both circuits monolithically integrated the antenna with the Schottky diode on the same 2.2 {mu}m thin semiinsulating GaAs membrane. The experimental results demonstrate an isotropic voltage sensitivity of 3000 mV/mW at 38 GHz and 6000 mV/mW at 45 GHz, respectively. The measurements validate the modelling approach and open a window of opportunity for the development of innovative RF MEMS architectures operating at higher frequency, up to the sub-millimetre wave frequency range.
Electromagnetic modelling of GaAs membrane supported mm-wave receivers
Neculoiu, D.; Muller, A.; Konstantinidis, G.
2006-04-01
This paper presents a new electromagnetic modelling approach for the design of GaAs membrane supported monolithically integrated mm-wave receivers. The receivers structures are divided into membrane supported sections and bulk GaAs supported sections. Each block is modelled and designed using the full-wave electromagnetic simulation software Zeland IE3D. The Schottky diode is included in the model using the internal port feature. The design steps include the Schottky diode experimental characterization, design and measurements of membrane supported antenna demonstrators and linear/nonlinear simulations of the final receiver structures. The fabrication processes is based on GaAs micromachining. Two types of video detection receivers were designed, fabricated and tested: a 38 GHz double folded slot antenna receivers and a 45 GHz Yagi-Uda antenna receiver. Both circuits monolithically integrated the antenna with the Schottky diode on the same 2.2 µm thin semiinsulating GaAs membrane. The experimental results demonstrate an isotropic voltage sensitivity of 3000 mV/mW at 38 GHz and 6000 mV/mW at 45 GHz, respectively. The measurements validate the modelling approach and open a window of opportunity for the development of innovative RF MEMS architectures operating at higher frequency, up to the sub-millimetre wave frequency range.
Chatterjee, I; Hagmann, M J; Gandhi, O P
1980-01-01
The electromagnetic energy deposited in a semi-infinite slab model consisting of skin, fat, and muscle layers is calculated for both plane-wave and near-field exposures. The plane-wave spectrum (PWS) approach is used to calculate the energy deposited in the model by fields present due to leakage from equipment using electromagnetic energy. This analysis applies to near-field exposures where coupling of the target to the leakage source can be neglected. Calculations were made for 2,450 MHz, at which frequency the layered slab adequately models flat regions of the human body. Resonant absorption due to layering is examined as a function of the skin and fat thicknesses for plane-wave exposure and as a function of the physical extent of the near-field distribution. Calculations show that for fields that are nearly constant over at least a free-space wavelength, the energy deposition (for skin, fat, and muscle combination that gives resonant absorption) is equal to or less than that resulting from plane-wave exposure, but is appreciably greater than that obtained for a homogeneous muscle slab model.
Energy Technology Data Exchange (ETDEWEB)
Abrego L, J. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico); Azorin N, J. [UAM-I, 09340 Mexico D.F. (Mexico); Siles A, S. [CICATA, IPN, 07000 Mexico D.F. (Mexico); Cruz O, A. [CINVESTAV, IPN, 07000 Mexico D.F. (Mexico)
2004-07-01
In this work, a model to process the electromagnetic waves in ultrasonic equipment is proposed and it is experimentally demonstrated that, the origin of the ultrasound is electronic and non mechanic. The above mentioned, it has been demonstrated when making in an electronic equipment a spectral analysis the one that indicated an unfolding of the original ultrasonic pulses of 17 K Hz., to 88 K Hz., and of 5 MHz., to 23 GHz. Also, it was obtained the degradation with ultrasound of particles of Hematite and of Galena, as well as the fading of the methylene blue and the generation of an electric current exciting with ultrasound. (Author)
Modeling of Electromagnetic Fields in Parallel-Plane Structures: A Unified Contour-Integral Approach
Directory of Open Access Journals (Sweden)
M. Stumpf
2017-04-01
Full Text Available A unified reciprocity-based modeling approach for analyzing electromagnetic fields in dispersive parallel-plane structures of arbitrary shape is described. It is shown that the use of the reciprocity theorem of the time-convolution type leads to a global contour-integral interaction quantity from which novel both time- and frequency-domain numerical schemes can be arrived at. Applications of the numerical method concerning the time-domain radiated interference and susceptibility of parallel-plane structures are discussed and illustrated on numerical examples.
Lightning Return Stroke Current Analysis Using Electromagnetic Models and the 3D-FDTD Method
Directory of Open Access Journals (Sweden)
Kaddour Arzag
2017-03-01
Full Text Available The three dimensions finite difference time domain method (3D-FDTD is employed to calculate lightning return stoke current distributions in a vertical lightning channel. The latter is excited at its bottom by a lumped current source above a flat perfectly conducting ground. In this study four lightning return stroke electromagnetic models are used. The calculating approach, which is based on Taflove formulation of the 3D-FDTD method combined to the UPML boundary conditions, is implemented on Matlab environment. For validation needs, the obtained lightning return stroke space and time distributions are compared with others taken from specialized literature.
Li, Zheng-Wei; Xi, Xiao-Li; Zhang, Jin-Sheng; Liu, Jiang-fan
2015-12-14
The unconditional stable finite-difference time-domain (FDTD) method based on field expansion with weighted Laguerre polynomials (WLPs) is applied to model electromagnetic wave propagation in gyrotropic materials. The conventional Yee cell is modified to have the tightly coupled current density components located at the same spatial position. The perfectly matched layer (PML) is formulated in a stretched-coordinate (SC) system with the complex-frequency-shifted (CFS) factor to achieve good absorption performance. Numerical examples are shown to validate the accuracy and efficiency of the proposed method.
Energy Technology Data Exchange (ETDEWEB)
Minami, Takuya; Nakano, Masayoshi [Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531 (Japan)
2015-01-22
Electromagnetically induced transparency (EIT), which is known as an efficient control method of optical absorption property, is investigated using the polarizability spectra and population dynamics obtained by solving the quantum Liouville equation. In order to clarify the intermolecular interaction effect on EIT, we examine several molecular aggregate models composed of three-state monomers with the dipole-dipole coupling. On the basis of the present results, we discuss the applicability of EIT in molecular aggregate systems to a new type of optical switch.
Directory of Open Access Journals (Sweden)
C. O. MOLNAR
2008-05-01
Full Text Available The paper presents the numerical modeling ofelectromagnetic field within the induction hardening ofinner cylindrical surface. The numerical computation hasbeen done by means of finite element method in order tosolve the coupled electromagnetic and thermal fieldquestion. The obtained results provide informationregarding the heating process taking into account therelative movement between the inductor and workpiece,the over heating of thin layers, the geometricalconfiguration of the inductor as well the technologicalrequirements correlated with electrical parameters andrepresents an active tool to setup the induction heatingequipment in order to get best results during hardeningprocess .
Directory of Open Access Journals (Sweden)
D. V. Rose
2010-09-01
Full Text Available A 3D fully electromagnetic (EM model of the principal pulsed-power components of a high-current linear transformer driver (LTD has been developed. LTD systems are a relatively new modular and compact pulsed-power technology based on high-energy density capacitors and low-inductance switches located within a linear-induction cavity. We model 1-MA, 100-kV, 100-ns rise-time LTD cavities [A. A. Kim et al., Phys. Rev. ST Accel. Beams 12, 050402 (2009PRABFM1098-440210.1103/PhysRevSTAB.12.050402] which can be used to drive z-pinch and material dynamics experiments. The model simulates the generation and propagation of electromagnetic power from individual capacitors and triggered gas switches to a radially symmetric output line. Multiple cavities, combined to provide voltage addition, drive a water-filled coaxial transmission line. A 3D fully EM model of a single 1-MA 100-kV LTD cavity driving a simple resistive load is presented and compared to electrical measurements. A new model of the current loss through the ferromagnetic cores is developed for use both in circuit representations of an LTD cavity and in the 3D EM simulations. Good agreement between the measured core current, a simple circuit model, and the 3D simulation model is obtained. A 3D EM model of an idealized ten-cavity LTD accelerator is also developed. The model results demonstrate efficient voltage addition when driving a matched impedance load, in good agreement with an idealized circuit model.
Parsaei, Sara; Rajabi, Ali Akbar
2018-01-01
The electromagnetic transition between the nucleon and excited baryons has long been recognized as an important source of information for understanding strong interactions in the domain of quark confinement. We study the electromagnetic properties of the excitation of the negative parity the N*(1535) resonances in the nonrelativistic constituent quark model at large momentum transfers and have performed a calculation the longitudinal and transverse helicity amplitudes. Since the helicity amplitudes depend strongly on the quark wave function in this paper, we consider the baryon as a simple, non-relativistically three-body quark model and also consider a hypercentral potential scheme for the internal baryon structure, which makes three-body forces among three quarks. Since the hyper central potential depends only on the hyper radius, therefore, the Cornell potential which is a combination of the Coulombic-like term plus a linear confining term is considered as the potential for interaction between quarks. In our work, in solving the Schrodinger equation with the Cornell potential, the Nikiforov–Uvarov method employed, and the analytic eigen-energies and eigen-functions obtained. By using the obtained eigen-functions, the transition amplitudes calculated. We show that our results in the range {{{Q}}}2> 2 {{GeV}}2 lead to an overall better agreement with the experimental data in comparison with the other three non-relativistic quark models.
DEFF Research Database (Denmark)
Viezzoli, Andrea; Kaminskiy, Vladislav; Fiandaca, Gianluca
2017-01-01
We have developed a synthetic multiparametric modeling and inversion exercise undertaken to study the robustness of inverting airborne time-domain electromagnetic (TDEM) data to extract Cole-Cole parameters. The following issues were addressed: nonuniqueness, ill posedness, dependency on manual...... processing and the effect of constraints, and a priori information. We have used a 1D layered earth model approximation and lateral constraints. Synthetic simulations were performed for several models and the corresponding Cole-Cole parameters. The possibility to recover these models by means of laterally...... constrained multiparametric inversion was evaluated, including recovery of chargeability distributions from shallow and deep targets based on analysis of induced polarization (IP) effects, simulated in airborne TDEM data. Different scenarios were studied, including chargeable targets associated...
DEFF Research Database (Denmark)
This book is dedicated to various aspects of electromagnetic wave theory and its applications in science and technology. The covered topics include the fundamental physics of electromagnetic waves, theory of electromagnetic wave propagation and scattering, methods of computational analysis...
Application of the perfectly matched layer in 3-D marine controlled-source electromagnetic modelling
Li, Gang; Li, Yuguo; Han, Bo; Liu, Zhan
2018-01-01
In this study, the complex frequency-shifted perfectly matched layer (CFS-PML) in stretching Cartesian coordinates is successfully applied to 3-D frequency-domain marine controlled-source electromagnetic (CSEM) field modelling. The Dirichlet boundary, which is usually used within the traditional framework of EM modelling algorithms, assumes that the electric or magnetic field values are zero at the boundaries. This requires the boundaries to be sufficiently far away from the area of interest. To mitigate the boundary artefacts, a large modelling area may be necessary even though cell sizes are allowed to grow toward the boundaries due to the diffusion of the electromagnetic wave propagation. Compared with the conventional Dirichlet boundary, the PML boundary is preferred as the modelling area of interest could be restricted to the target region and only a few absorbing layers surrounding can effectively depress the artificial boundary effect without losing the numerical accuracy. Furthermore, for joint inversion of seismic and marine CSEM data, if we use the PML for CSEM field simulation instead of the conventional Dirichlet, the modelling area for these two different geophysical data collected from the same survey area could be the same, which is convenient for joint inversion grid matching. We apply the CFS-PML boundary to 3-D marine CSEM modelling by using the staggered finite-difference discretization. Numerical test indicates that the modelling algorithm using the CFS-PML also shows good accuracy compared to the Dirichlet. Furthermore, the modelling algorithm using the CFS-PML shows advantages in computational time and memory saving than that using the Dirichlet boundary. For the 3-D example in this study, the memory saving using the PML is nearly 42 per cent and the time saving is around 48 per cent compared to using the Dirichlet.
An analytic solution for numerical modeling validation in electromagnetics: the resistive sphere
Swidinsky, Andrei; Liu, Lifei
2017-11-01
We derive the electromagnetic response of a resistive sphere to an electric dipole source buried in a conductive whole space. The solution consists of an infinite series of spherical Bessel functions and associated Legendre polynomials, and follows the well-studied problem of a conductive sphere buried in a resistive whole space in the presence of a magnetic dipole. Our result is particularly useful for controlled-source electromagnetic problems using a grounded electric dipole transmitter and can be used to check numerical methods of calculating the response of resistive targets (such as finite difference, finite volume, finite element and integral equation). While we elect to focus on the resistive sphere in our examples, the expressions in this paper are completely general and allow for arbitrary source frequency, sphere radius, transmitter position, receiver position and sphere/host conductivity contrast so that conductive target responses can also be checked. Commonly used mesh validation techniques consist of comparisons against other numerical codes, but such solutions may not always be reliable or readily available. Alternatively, the response of simple 1-D models can be tested against well-known whole space, half-space and layered earth solutions, but such an approach is inadequate for validating models with curved surfaces. We demonstrate that our theoretical results can be used as a complementary validation tool by comparing analytic electric fields to those calculated through a finite-element analysis; the software implementation of this infinite series solution is made available for direct and immediate application.
Electromagnetic Properties of Multiphase Dielectrics A Primer on Modeling, Theory and Computation
Zohdi, Tarek I
2012-01-01
Recently, several applications, primarily driven by microtechnology, have emerged where the use of materials with tailored electromagnetic (dielectric) properties are necessary for a successful overall design. The ``tailored'' aggregate properties are achieved by combining an easily moldable base matrix with particles having dielectric properties that are chosen to deliver (desired) effective properties. In many cases, the analysis of such materials requires the simulation of the macroscopic and microscopic electromagnetic response, as well as its resulting coupled thermal response, which can be important to determine possible failures in ``hot spots.'' This necessitates a stress analysis. Furthermore, because, oftentimes, such processes initiate degratory chemical processes, it can be necessary to also include models for these processes as well. A central objective of this work is to provide basic models and numerical solution strategies to analyze the coupled response of such mat...
Review on Computational Electromagnetics
Directory of Open Access Journals (Sweden)
P. Sumithra
2017-03-01
Full Text Available Computational electromagnetics (CEM is applied to model the interaction of electromagnetic fields with the objects like antenna, waveguides, aircraft and their environment using Maxwell equations. In this paper the strength and weakness of various computational electromagnetic techniques are discussed. Performance of various techniques in terms accuracy, memory and computational time for application specific tasks such as modeling RCS (Radar cross section, space applications, thin wires, antenna arrays are presented in this paper.
Su, Jianxun; Lu, Yao; Zhang, Hui; Li, Zengrui; Lamar Yang, Yaoqing; Che, Yongxing; Qi, Kainan
2017-02-09
In this paper, an ultra-wideband, wide angle and polarization-insensitive metasurface is designed, fabricated, and characterized for suppressing the specular electromagnetic wave reflection or backward radar cross section (RCS). Square ring structure is chosen as the basic meta-atoms. A new physical mechanism based on size adjustment of the basic meta-atoms is proposed for ultra-wideband manipulation of electromagnetic (EM) waves. Based on hybrid array pattern synthesis (APS) and particle swarm optimization (PSO) algorithm, the selection and distribution of the basic meta-atoms are optimized simultaneously to obtain the ultra-wideband diffusion scattering patterns. The metasurface can achieve an excellent RCS reduction in an ultra-wide frequency range under x- and y-polarized normal incidences. The new proposed mechanism greatly extends the bandwidth of RCS reduction. The simulation and experiment results show the metasurface can achieve ultra-wideband and polarization-insensitive specular reflection reduction for both normal and wide-angle incidences. The proposed methodology opens up a new route for realizing ultra-wideband diffusion scattering of EM wave, which is important for stealth and other microwave applications in the future.
Wideband Lithium Niobate FBAR Filters
Directory of Open Access Journals (Sweden)
Thomas Baron
2013-01-01
Full Text Available Filters based on film bulk acoustic resonators (FBARs are widely used for mobile phone applications, but they can also address wideband aerospace requirements. These devices need high electromechanical coupling coefficients to achieve large band pass filters. The piezoelectric material LiNbO3 complies with such specifications and is compatible with standard fabrication processes. In this work, simple metal—LiNbO3—metal structures have been developed to fabricate single FBAR elements directly connected to each other on a single chip. A fabrication process based on LiNbO3/silicon Au-Au bonding and LiNbO3 lapping/polishing has been developed and is proposed in this paper. Electrical measurements of these FBAR filters are proposed and commented exhibiting filters with 8% of fractional bandwidth and 3.3 dB of insertion losses. Electrical measurements show possibilities to obtain 14% of fractional bandwidth. These devices have been packaged, allowing for power handling, thermal, and ferroelectric tests, corresponding to spatial conditions.
Electromagnetic Selection Rules for \\varvec{^{12}}C in a 3 \\varvec{α } Cluster Model
Fortunato, L.; Stellin, G.; Vitturi, A.
2017-01-01
The recent successful application of the Algebraic Cluster Model to the energy spectrum of ^{12}C has brought a new impetus on spectroscopy of this and other α -conjugate nuclei. In fact, known spectral properties have been reexamined on the basis of vibrations and rotations of three α particles at the vertexes of an equilateral triangle and new excited states have been measured that fit into this scheme. The analysis of this system entails the application of molecular models for rotational-vibrational spectra to the nuclear context and requires deep knowledge of the underlying group-theoretical properties, based on the D_{3h} symmetry, similarly to what is done in quantum chemistry. We have recently analyzed the symmetries of the model and the quantum numbers in great depth, reproducing the all-important results of Wheeler and we have derived electromagnetic selection rules for the system of three α particles, finding, for instance, that electric dipole E1 and magnetic dipole M1 excitations are excluded from the model. The lowest active modes are therefore E2, E3,\\cdots and M2, M3, \\cdots although there are further restrictions between certain types of bands. The selection rules summarized in the text provide a criterion for assigning of observed lines to the alpha cluster model or not and they might help to further unravel the electromagnetic properties of ^{12}C. With the perspective of new facilities (such as ELI) where photo-excitation and photo-dissociation experiments will play a major role, a complete understanding of e.m. selection rules as a tool to confirm or disprove nuclear structure models, is mandatory.
Khrennikov, Andrei
2011-09-01
We propose a model of quantum-like (QL) processing of mental information. This model is based on quantum information theory. However, in contrast to models of "quantum physical brain" reducing mental activity (at least at the highest level) to quantum physical phenomena in the brain, our model matches well with the basic neuronal paradigm of the cognitive science. QL information processing is based (surprisingly) on classical electromagnetic signals induced by joint activity of neurons. This novel approach to quantum information is based on representation of quantum mechanics as a version of classical signal theory which was recently elaborated by the author. The brain uses the QL representation (QLR) for working with abstract concepts; concrete images are described by classical information theory. Two processes, classical and QL, are performed parallely. Moreover, information is actively transmitted from one representation to another. A QL concept given in our model by a density operator can generate a variety of concrete images given by temporal realizations of the corresponding (Gaussian) random signal. This signal has the covariance operator coinciding with the density operator encoding the abstract concept under consideration. The presence of various temporal scales in the brain plays the crucial role in creation of QLR in the brain. Moreover, in our model electromagnetic noise produced by neurons is a source of superstrong QL correlations between processes in different spatial domains in the brain; the binding problem is solved on the QL level, but with the aid of the classical background fluctuations. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Marriage of Electromagnetism and Gravity in an Extended Space Model and Astrophysical Phenomena
Andreev, V. A.; Tsipenyuk, D. Yu.
2013-09-01
The generalization of Einstein's special theory of relativity (SRT) is proposed. In this model the possibility of unification of scalar gravity and electromagnetism into a single unified field is considered. Formally, the generalization of the SRT is that instead of (1+3)-dimensional Minkowski space the (1+4)-dimensional extension G is considered. As a fifth additional coordinate the interval S is used. This value is saved under the usual Lorentz transformations in Minkowski space M, but it changes when the transformations in the extended space G are used. We call this model the extended space model (ESM). From a physical point of view our expansion means that processes in which the rest mass of the particles changes are acceptable now. If the rest mass of a particle does not change and the physical quantities do not depend on an additional variable S, then the electromagnetic and gravitational fields exist independently of each other. But if the rest mass is variable and there is a dependence on S, then these two fields are combined into a single unified field. In the extended space model a photon can have a nonzero mass and this mass can be either positive or negative. The gravitational effects such as the speed of escape, gravitational red shift and detection of light can be analyzed in the frame of the extended space model. In this model all these gravitational effects can be found algebraically by the rotations in the (1+4) dimensional space. Now it becomes possible to predict some future results of visible size of supermassive objects in our Universe due to new stage of experimental astronomy development in the RadioAstron Project and analyze phenomena is an explosion of the star V838 Mon.
Monostatic ultra-wideband GPR antenna for through wall detection
Ali, Jawad; Abdullah, Noorsaliza; Yahya, Roshayati; Naeem, Taimoor
2017-11-01
The aim of this paper is to present a monostatic arc-shaped ultra-wideband (UWB) printed monopole antenna system with 3-16 GHz frequency bandwidth suitable for through-wall detection. Ground penetrating radar (GPR) technique is used for detection with the gain of 6.2 dB achieved for the proposed antenna using defected ground structure (DGS) method. To serve the purpose, a simulation experiment of through-wall detection model is constructed which consists of a monostatic antenna act as transmitter and receiver, concrete wall and human skin model. The time domain reflection of obtained result is then analysed for target detection.
Monostatic ultra-wideband GPR antenna for through wall detection
Directory of Open Access Journals (Sweden)
Ali Jawad
2017-01-01
Full Text Available The aim of this paper is to present a monostatic arc-shaped ultra-wideband (UWB printed monopole antenna system with 3-16 GHz frequency bandwidth suitable for through-wall detection. Ground penetrating radar (GPR technique is used for detection with the gain of 6.2 dB achieved for the proposed antenna using defected ground structure (DGS method. To serve the purpose, a simulation experiment of through-wall detection model is constructed which consists of a monostatic antenna act as transmitter and receiver, concrete wall and human skin model. The time domain reflection of obtained result is then analysed for target detection.
Energy Technology Data Exchange (ETDEWEB)
Aldridge, David F.
2014-11-01
A reciprocity theorem is an explicit mathematical relationship between two different wavefields that can exist within the same space - time configuration. Reciprocity theorems provi de the theoretical underpinning for mod ern full waveform inversion solutions, and also suggest practical strategies for speed ing up large - scale numerical modeling of geophysical datasets . In the present work, several previously - developed electromagnetic r eciprocity theorems are generalized to accommodate a broader range of medi um, source , and receiver types. Reciprocity relations enabling the interchange of various types of point sources and point receivers within a three - dimensional electromagnetic model are derived. Two numerical modeling algorithms in current use are successfully tested for adherence to reciprocity. Finally, the reciprocity theorem forms the point of departure for a lengthy derivation of electromagnetic Frechet derivatives. These mathe matical objects quantify the sensitivity of geophysical electromagnetic data to variatio ns in medium parameters, and thus constitute indispensable tools for solution of the full waveform inverse problem. ACKNOWLEDGEMENTS Sandia National Labor atories is a multi - program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE - AC04 - 94AL85000. Signif icant portions of the work reported herein were conducted under a Cooperative Research and Development Agreement (CRADA) between Sandia National Laboratories (SNL) and CARBO Ceramics Incorporated. The author acknowledges Mr. Chad Cannan and Mr. Terry Pa lisch of CARBO Ceramics, and Ms. Amy Halloran, manager of SNL's Geophysics and Atmospheric Sciences Department, for their interest in and encouragement of this work. Special thanks are due to Dr . Lewis C. Bartel ( recently retired from Sandia National Labo ratories
Directory of Open Access Journals (Sweden)
S. Lalléchère
2017-05-01
Full Text Available The aim of this proposal is to demonstrate the ability of tridimensional (3-D electromagnetic modeling tool for the characterization of composite materials in microwave frequency band range. Indeed, an automated procedure is proposed to generate random materials, proceed to 3-D simulations, and compute shielding effectiveness (SE statistics with finite integration technique. In this context, 3-D electromagnetic models rely on random locations of conductive inclusions; results are compared with classical electromagnetic mixing theory (EMT approaches (e.g. Maxwell-Garnett formalism, and dynamic homogenization model (DHM. The article aims to demonstrate the interest of the proposed approach in various domains such as propagation and electromagnetic compatibility (EMC.
Tao, Xie; Shang-Zhuo, Zhao; William, Perrie; He, Fang; Wen-Jin, Yu; Yi-Jun, He
2016-06-01
To study the electromagnetic backscattering from a one-dimensional drifting fractal sea surface, a fractal sea surface wave-current model is derived, based on the mechanism of wave-current interactions. The numerical results show the effect of the ocean current on the wave. Wave amplitude decreases, wavelength and kurtosis of wave height increase, spectrum intensity decreases and shifts towards lower frequencies when the current occurs parallel to the direction of the ocean wave. By comparison, wave amplitude increases, wavelength and kurtosis of wave height decrease, spectrum intensity increases and shifts towards higher frequencies if the current is in the opposite direction to the direction of ocean wave. The wave-current interaction effect of the ocean current is much stronger than that of the nonlinear wave-wave interaction. The kurtosis of the nonlinear fractal ocean surface is larger than that of linear fractal ocean surface. The effect of the current on skewness of the probability distribution function is negligible. Therefore, the ocean wave spectrum is notably changed by the surface current and the change should be detectable in the electromagnetic backscattering signal. Project supported by the National Natural Science Foundation of China (Grant No. 41276187), the Global Change Research Program of China (Grant No. 2015CB953901), the Priority Academic Development Program of Jiangsu Higher Education Institutions (PAPD), Program for the Innovation Research and Entrepreneurship Team in Jiangsu Province, China, the Canadian Program on Energy Research and Development, and the Canadian World Class Tanker Safety Service.
Anthropogenic Radio-Frequency Electromagnetic Fields Elicit Neuropathic Pain in an Amputation Model.
Black, Bryan; Granja-Vazquez, Rafael; Johnston, Benjamin R; Jones, Erick; Romero-Ortega, Mario
2016-01-01
Anecdotal and clinical reports have suggested that radio-frequency electromagnetic fields (RF EMFs) may serve as a trigger for neuropathic pain. However, these reports have been widely disregarded, as the epidemiological effects of electromagnetic fields have not been systematically proven, and are highly controversial. Here, we demonstrate that anthropogenic RF EMFs elicit post-neurotomy pain in a tibial neuroma transposition model. Behavioral assays indicate a persistent and significant pain response to RF EMFs when compared to SHAM surgery groups. Laser thermometry revealed a transient skin temperature increase during stimulation. Furthermore, immunofluorescence revealed an increased expression of temperature sensitive cation channels (TRPV4) in the neuroma bulb, suggesting that RF EMF-induced pain may be due to cytokine-mediated channel dysregulation and hypersensitization, leading to thermal allodynia. Additional behavioral assays were performed using an infrared heating lamp in place of the RF stimulus. While thermally-induced pain responses were observed, the response frequency and progression did not recapitulate the RF EMF effects. In vitro calcium imaging experiments demonstrated that our RF EMF stimulus is sufficient to directly contribute to the depolarization of dissociated sensory neurons. Furthermore, the perfusion of inflammatory cytokine TNF-α resulted in a significantly higher percentage of active sensory neurons during RF EMF stimulation. These results substantiate patient reports of RF EMF-pain, in the case of peripheral nerve injury, while confirming the public and scientific consensus that anthropogenic RF EMFs engender no adverse sensory effects in the general population.
Directory of Open Access Journals (Sweden)
Ran Zhao
2015-01-01
Full Text Available The hybrid solvers based on integral equation domain decomposition method (HS-DDM are developed for modeling of electromagnetic radiation. Based on the philosophy of “divide and conquer,” the IE-DDM divides the original multiscale problem into many closed nonoverlapping subdomains. For adjacent subdomains, the Robin transmission conditions ensure the continuity of currents, so the meshes of different subdomains can be allowed to be nonconformal. It also allows different fast solvers to be used in different subdomains based on the property of different subdomains to reduce the time and memory consumption. Here, the multilevel fast multipole algorithm (MLFMA and hierarchical (H- matrices method are combined in the framework of IE-DDM to enhance the capability of IE-DDM and realize efficient solution of multiscale electromagnetic radiating problems. The MLFMA is used to capture propagating wave physics in large, smooth regions, while H-matrices are used to capture evanescent wave physics in small regions which are discretized with dense meshes. Numerical results demonstrate the validity of the HS-DDM.
Directory of Open Access Journals (Sweden)
O. G. Isaeva
2009-01-01
Full Text Available We formulate the dynamical model for the anti-tumour immune response based on intercellular cytokine-mediated interactions with the interleukin-2 (IL-2 taken into account. The analysis shows that the expression level of tumour antigens on antigen presenting cells has a distinct influence on the tumour dynamics. At low antigen presentation, a progressive tumour growth takes place to the highest possible value. At high antigen presentation, there is a decrease in tumour size to some value when the dynamical equilibrium between the tumour and the immune system is reached. In the case of the medium antigen presentation, both these regimes can be realized depending on the initial tumour size and the condition of the immune system. A pronounced immunomodulating effect (the suppression of tumour growth and the normalization of IL-2 concentration is established by considering the influence of low-intensity electromagnetic microwaves as a parametric perturbation of the dynamical system. This finding is in qualitative agreement with the recent experimental results on immunocorrective effects of centimetre electromagnetic waves in tumour-bearing mice.
Beekhuizen, Johan; Kromhout, Hans; Bürgi, Alfred; Huss, Anke; Vermeulen, Roel
2015-01-01
The increase in mobile communication technology has led to concern about potential health effects of radio frequency electromagnetic fields (RF-EMFs) from mobile phone base stations. Different RF-EMF prediction models have been applied to assess population exposure to RF-EMF. Our study examines what input data are needed to accurately model RF-EMF, as detailed data are not always available for epidemiological studies. We used NISMap, a 3D radio wave propagation model, to test models with various levels of detail in building and antenna input data. The model outcomes were compared with outdoor measurements taken in Amsterdam, the Netherlands. Results showed good agreement between modelled and measured RF-EMF when 3D building data and basic antenna information (location, height, frequency and direction) were used: Spearman correlations were >0.6. Model performance was not sensitive to changes in building damping parameters. Antenna-specific information about down-tilt, type and output power did not significantly improve model performance compared with using average down-tilt and power values, or assuming one standard antenna type. We conclude that 3D radio wave propagation modelling is a feasible approach to predict outdoor RF-EMF levels for ranking exposure levels in epidemiological studies, when 3D building data and information on the antenna height, frequency, location and direction are available.
DEFF Research Database (Denmark)
Minsley, Burke; Christensen, Nikolaj Kruse; Christensen, Steen
of airborne electromagnetic (AEM) data to estimate large-scale model structural geometry, i.e. the spatial distribution of different lithological units based on assumed or estimated resistivity-lithology relationships, and the uncertainty in those structures given imperfect measurements. Geophysically derived...... that illustrate the complete workflow from geophysical parameter uncertainty analysis to the impact of model structural uncertainty on hydrologic parameter estimates. We also discuss some of the computational challenges associated with application to large AEM surveys with many thousands of data locations.......Detailed estimates of physical property distributions- such as electrical resistivity- are common end products of geophysical surveys, but are often of limited use for the geologist, hydrologist, or resource manager who is tasked with making decisions based on these data. Here, we focus on the use...
Qi, Youzheng; Huang, Ling; Wu, Xin; Zhu, Wanhua; Fang, Guangyou; Yu, Gang
2017-07-01
Quantitative modeling of the transient electromagnetic (TEM) response requires consideration of the full transmitter waveform, i.e., not only the specific current waveform in a half cycle but also the bipolar repetition. In this paper, we present a novel temporal interpolation and convolution (TIC) method to facilitate the accurate TEM modeling. We first calculate the temporal basis response on a logarithmic scale using the fast digital-filter-based methods. Then, we introduce a function named hamlogsinc in the framework of discrete signal processing theory to reconstruct the basis function and to make the convolution with the positive half of the waveform. Finally, a superposition procedure is used to take account of the effect of previous bipolar waveforms. Comparisons with the established fast Fourier transform method demonstrate that our TIC method can get the same accuracy with a shorter computing time.
Internal Model-Based Robust Tracking Control Design for the MEMS Electromagnetic Micromirror.
Tan, Jiazheng; Sun, Weijie; Yeow, John T W
2017-05-26
The micromirror based on micro-electro-mechanical systems (MEMS) technology is widely employed in different areas, such as scanning, imaging and optical switching. This paper studies the MEMS electromagnetic micromirror for scanning or imaging application. In these application scenarios, the micromirror is required to track the command sinusoidal signal, which can be converted to an output regulation problem theoretically. In this paper, based on the internal model principle, the output regulation problem is solved by designing a robust controller that is able to force the micromirror to track the command signal accurately. The proposed controller relies little on the accuracy of the model. Further, the proposed controller is implemented, and its effectiveness is examined by experiments. The experimental results demonstrate that the performance of the proposed controller is satisfying.
Modeling of High-Frequency Electromagnetic Effects on an Ironless Inductive Position Sensor
Danisi, Alessandro; Masi, Alessandro; Perriard, Yves
2013-01-01
The ironless inductive position sensor (I2PS) is a five-coil air-cored structure that senses the variation of flux linkage between supply and sense coils and relates it to the linear position of a moving coil. In air-cored structures, the skin and proximity effect can bring substantial variations of the electrical resistance, leading to important deviations from the low-frequency functioning. In this paper, an analysis of the effect of high-frequency phenomena on the I2PS functioning is described. The key-element is the modeling of the resistance as a function of the frequency, which starts from the analytical resolution of Maxwell's equations in the coil's geometry. The analysis is validated by means of experimental measurements on custom sensor coils. The resulting model is integrated with the existing low-frequency analysis and represents a complete tool for the design of an I2PS sensor, framing its electromagnetic behavior.
Energy Technology Data Exchange (ETDEWEB)
Burke, G.J.
1988-04-08
Computer modeling of antennas, since its start in the late 1960's, has become a powerful and widely used tool for antenna design. Computer codes have been developed based on the Method-of-Moments, Geometrical Theory of Diffraction, or integration of Maxwell's equations. Of such tools, the Numerical Electromagnetics Code-Method of Moments (NEC) has become one of the most widely used codes for modeling resonant sized antennas. There are several reasons for this including the systematic updating and extension of its capabilities, extensive user-oriented documentation and accessibility of its developers for user assistance. The result is that there are estimated to be several hundred users of various versions of NEC world wide. 23 refs., 10 figs.
Hybrid synchronous motor electromagnetic torque research
Directory of Open Access Journals (Sweden)
Suvorkova Elena E.
2014-01-01
Full Text Available Electromagnetic field distribution models in reluctance and permanent magnet parts were made by means of Elcut. Dependences of electromagnetic torque on torque angle were obtained.
Blok, H.; van den Berg, P.M.
2011-01-01
This book is dedicated to various aspects of electromagnetic wave theory and its applications in science and technology. The covered topics include the fundamental physics of electromagnetic waves, theory of electromagnetic wave propagation and scattering, methods of computational analysis, material characterization, electromagnetic properties of plasma, analysis and applications of periodic structures and waveguide components, etc.
Fovargue, Daniel E; Mitran, Sorin; Smith, Nathan B; Sankin, Georgy N; Simmons, Walter N; Zhong, Pei
2013-08-01
A multiphysics computational model of the focusing of an acoustic pulse and subsequent shock wave formation that occurs during extracorporeal shock wave lithotripsy is presented. In the electromagnetic lithotripter modeled in this work the focusing is achieved via a polystyrene acoustic lens. The transition of the acoustic pulse through the solid lens is modeled by the linear elasticity equations and the subsequent shock wave formation in water is modeled by the Euler equations with a Tait equation of state. Both sets of equations are solved simultaneously in subsets of a single computational domain within the BEARCLAW framework which uses a finite-volume Riemann solver approach. This model is first validated against experimental measurements with a standard (or original) lens design. The model is then used to successfully predict the effects of a lens modification in the form of an annular ring cut. A second model which includes a kidney stone simulant in the domain is also presented. Within the stone the linear elasticity equations incorporate a simple damage model.
Introduction to Ultra Wideband for Wireless Communications
DEFF Research Database (Denmark)
Nikookar, Homayoun; Prasad, Ramjee
communications. Due to tutorial nature of the book it can also be adopted as a textbook on the subject in the Telecommunications Engineering curriculum. Problems at the end of each chapter extend the reader's understanding of the subject. Introduction to Ultra Wideband for Wireless Communications will aslo...... wireless channels, interference, signal processing as well as applications and standardization activities are addressed. Introduction to Ultra Wideband for Wireless Communications provides easy-to-understand material to (graduate) students and researchers working in the field of commercial UWB wireless...
Mognaschi, Maria Evelina; Di Barba, Paolo; Magenes, Giovanni; Lenzi, Andrea; Naro, Fabio; Fassina, Lorenzo
2014-01-01
We have implemented field models and performed a detailed numerical dosimetry inside our extremely-low-frequency electromagnetic bioreactor which has been successfully used in in vitro Biotechnology and Tissue Engineering researches. The numerical dosimetry permitted to map the magnetic induction field (maximum module equal to about 3.3 mT) and to discuss its biological effects in terms of induced electric currents and induced mechanical forces (compression and traction). So, in the frame of the tensegrity-mechanotransduction theory of Ingber, the study of these electromagnetically induced mechanical forces could be, in our opinion, a powerful tool to understand some effects of the electromagnetic stimulation whose mechanisms remain still elusive.
MRI-Based Multiscale Model for Electromagnetic Analysis in the Human Head with Implanted DBS
Directory of Open Access Journals (Sweden)
Maria Ida Iacono
2013-01-01
Full Text Available Deep brain stimulation (DBS is an established procedure for the treatment of movement and affective disorders. Patients with DBS may benefit from magnetic resonance imaging (MRI to evaluate injuries or comorbidities. However, the MRI radio-frequency (RF energy may cause excessive tissue heating particularly near the electrode. This paper studies how the accuracy of numerical modeling of the RF field inside a DBS patient varies with spatial resolution and corresponding anatomical detail of the volume surrounding the electrodes. A multiscale model (MS was created by an atlas-based segmentation using a 1 mm3 head model (mRes refined in the basal ganglia by a 200 μm2 ex-vivo dataset. Four DBS electrodes targeting the left globus pallidus internus were modeled. Electromagnetic simulations at 128 MHz showed that the peak of the electric field of the MS doubled (18.7 kV/m versus 9.33 kV/m and shifted 6.4 mm compared to the mRes model. Additionally, the MS had a sixfold increase over the mRes model in peak-specific absorption rate (SAR of 43.9 kW/kg versus 7 kW/kg. The results suggest that submillimetric resolution and improved anatomical detail in the model may increase the accuracy of computed electric field and local SAR around the tip of the implant.
Han, Jinxiang; Huang, Jinzhao
2012-03-01
In this study, based on the resonator model and exciplex model of electromagnetic radiation within the human body, mathematical model of biological order state, also referred to as syndrome in traditional Chinese medicine, was established and expressed as: "Sy = v/ 1n(6I + 1)". This model provides the theoretical foundation for experimental research addressing the order state of living system, especially the quantitative research syndrome in traditional Chinese medicine.
Beekhuizen, J; Vermeulen, R; van Eijsden, M; van Strien, R; Bürgi, A; Loomans, E; Guxens, M; Kromhout, H; Huss, A
2014-06-01
Radio frequency electromagnetic fields (RF-EMF) from mobile phone base stations can be reliably modelled for outdoor locations, using 3D radio wave propagation models that consider antenna characteristics and building geometry. For exposure assessment in epidemiological studies, however, it is especially important to determine indoor exposure levels as people spend most of their time indoors. We assessed the accuracy of indoor RF-EMF model predictions, and whether information on building characteristics could increase model accuracy. We performed 15-minute spot measurements in 263 rooms in 101 primary schools and 30 private homes in Amsterdam, the Netherlands. At each measurement location, we collected information on building characteristics that can affect indoor exposure to RF-EMF, namely glazing and wall and window frame materials. Next, we modelled RF-EMF at the measurement locations with the 3D radio wave propagation model NISMap. We compared model predictions with measured values to evaluate model performance, and explored if building characteristics modified the association between modelled and measured RF-EMF using a mixed effect model. We found a Spearman correlation of 0.73 between modelled and measured total downlink RF-EMF from base stations. The average modelled and measured RF-EMF were 0.053 and 0.041mW/m(2), respectively, and the precision (standard deviation of the differences between predicted and measured values) was 0.184mW/m(2). Incorporating information on building characteristics did not improve model predictions. Although there is exposure misclassification, we conclude that it is feasible to reliably rank indoor RF-EMF from mobile phone base stations for epidemiological studies. Copyright © 2014 Elsevier Ltd. All rights reserved.
Radiation force of scalar and electromagnetic twisted Gaussian Schell-model beams.
Zhao, Chengliang; Cai, Yangjian; Korotkova, Olga
2009-11-23
Radiation force of a focused scalar twisted Gaussian Schell-model (TGSM) beam on a Rayleigh dielectric sphere is investigated. It is found that the twist phase affects the radiation force and by raising the absolute value of the twist factor it is possible to increase both transverse and longitudinal trapping ranges at the real focus where the maximum on-axis intensity is located. Numerical calculations of radiation forces induced by a focused electromagnetic TGSM beam on a Rayleigh dielectric sphere are carried out. It is found that radiation force is closely related to the twist phase, degree of polarization and correlation factors of the initial beam. The trapping stability is also discussed.
Three-dimensional modeling of lightning-induced electromagnetic pulses on Venus, Jupiter, and Saturn
Pérez-Invernón, F. J.; Luque, A.; Gordillo-Vázquez, F. J.
2017-07-01
While lightning activity in Venus is still controversial, its existence in Jupiter and Saturn was first detected by the Voyager missions and later on confirmed by Cassini and New Horizons optical recordings in the case of Jupiter, and recently by Cassini on Saturn in 2009. Based on a recently developed 3-D model, we investigate the influence of lightning-emitted electromagnetic pulses on the upper atmosphere of Venus, Saturn, and Jupiter. We explore how different lightning properties such as total energy released and orientation (vertical, horizontal, and oblique) can produce mesospheric transient optical emissions of different shapes, sizes, and intensities. Moreover, we show that the relatively strong background magnetic field of Saturn can enhance the lightning-induced quasi-electrostatic and inductive electric field components above 1000 km of altitude producing stronger transient optical emissions that could be detected from orbital probes.
3D modeling of lightning-induced electromagnetic pulses on Venus, Jupiter and Saturn
Pérez-Invernón, Francisco J.; Luque, Alejandro; Gordillo-Vázquez, Francisco J.
2017-04-01
Atmospheric electricity is a common phenomenon in some planets of The Solar System. We know that atmospheric discharges exist on Earth and gaseous planets; however, some characteristics of lightning on Saturn and Jupiter as well as their relevance on the effects of lightning in the atmospheres of these planets are still unknown. In the case of Venus, there exist some radio evidences of lightning, but the lack of optical observations suggests exploring indirect methods of detection, such as searching for lightning-induced transient optical emissions from the upper atmosphere. The Akatsuki probe, currently orbiting Venus, is equipped with a camera whose temporal resolution is high enough to detect optical emissions from lightning discharges and to measure nightglow enhancements. In this work, we extend previous models [1,2] to investigate the chemical impact and transient optical emissions produced by possible lightning-emitted electromagnetic pulses (EMP) in Venus, Saturn and Jupiter. Using a 3D FDTD ("Finite Differences Time Domain") model we solve the Maxwell equations coupled with the Langevin equation for electrons [3] and with a kinetic scheme, different for each planetary atmosphere. This method is useful to investigate the temporal and spatial impact of lightning-induced electromagnetic fields in the atmosphere of each planet for different lightning characteristics (e.g. energy released, orientation). This 3D FDTD model allows us to include the saturnian and jovian background magnetic field inclination and magnitude at different latitudes, and to determine the effects of different lightning channel inclinations. Results provide useful information to interpret lightning observations on giant gaseous planets and in the search for indirect optical signals from atmospheric discharge on Venus such as fast nightglow transient enhancements related to lightning as seen on Earth. Furthermore, we underline the observation of electrical discharges characteristics as a
Test of a trust and confidence model in the applied context of electromagnetic field (EMF) risks.
Siegrist, Michael; Earle, Timothy C; Gutscher, Heinz
2003-08-01
Trust is an important factor in risk management. There is little agreement among researchers, however, on how trust in risk management should be studied. Based on a comprehensive review of the trust literature a "dual-mode model of social trust and confidence" is proposed. Trust and confidence are separate but, under some circumstances, interacting sources of cooperation. Trust is based on value similarity, and confidence is based on performance. According to our model, judging similarity between an observer's currently active values and the values attributed to others determines social trust. Thus, the basis for trust is a judgment that the person to be trusted would act as the trusting person would. Interpretation of the other's performance influences confidence. Both social trust and confidence have an impact on people's willingness to cooperate (e.g., accept electromagnetic fields or EMF in the neighborhood). The postulated model was tested in the applied context of EMF risks. Structural equation modeling procedures and data from a random sample of 1,313 Swiss citizens between 18 and 74 years old were used. Results indicated that after minor modifications the model explained the data very well. In the applied context of EMF risks, both trust and confidence had an impact on cooperation. Results suggest that the dual-mode model of social trust and confidence could be used as a common framework in the field of trust and risk management. Practical implications of the results are discussed.
Cai, Hongzhu; Hu, Xiangyun; Xiong, Bin; Auken, Esben; Han, Muran; Li, Jianhui
2017-10-01
We implemented an edge-based finite element time domain (FETD) modeling algorithm for simulating controlled-source electromagnetic (CSEM) data. The modeling domain is discretized using unstructured tetrahedral mesh and we consider a finite difference discretization of time using the backward Euler method which is unconditionally stable. We solve the diffusion equation for the electric field with a total field formulation. The finite element system of equation is solved using the direct method. The solutions of electric field, at different time, can be obtained using the effective time stepping method with trivial computation cost once the matrix is factorized. We try to keep the same time step size for a fixed number of steps using an adaptive time step doubling (ATSD) method. The finite element modeling domain is also truncated using a semi-adaptive method. We proposed a new boundary condition based on approximating the total field on the modeling boundary using the primary field corresponding to a layered background model. We validate our algorithm using several synthetic model studies.
Electromagnetic Thermography Nondestructive Evaluation: Physics-based Modeling and Pattern Mining
National Research Council Canada - National Science Library
Gao, Bin; Woo, Wai Lok; Tian, Gui Yun
2016-01-01
Electromagnetic mechanism of Joule heating and thermal conduction on conductive material characterization broadens their scope for implementation in real thermography based Nondestructive testing and evaluation (NDT&E...
Saynisch, J.; Petereit, J.; Irrgang, C.; Thomas, M.
2017-05-01
In contrast to ocean circulation signals, ocean tides are already well detectable by electromagnetic measurements. Oceanic electric conductivities from the Coupled Model Intercomparison Project Phase 5 (CMIP5) climate simulations are combined with tidal currents of M2 and O1 to estimate electromagnetic tidal signals and their sensitivity to global warming. Ninety-four years of global warming leads to differences of ±0.3 nT in tidal magnetic amplitudes and ±0.1 mV/km in the tidal electric amplitudes at sea level. Locally, the climate-induced changes can be much higher, e.g., +1 nT in the North Atlantic. In general, all studied electromagnetic tidal amplitudes show large-scale climate-induced anomalies that are strongest in the Northern Hemisphere and amount to 30% of their actual values. Consequently, changes in oceanic electromagnetic tidal amplitudes should be detectable in electromagnetic records. Electric and magnetic signals, as well as tides of different frequencies, contain complementary regional information.
Mancini, John G; Neisius, Andreas; Smith, Nathan; Sankin, Georgy; Astroza, Gaston M; Lipkin, Michael E; Simmons, W Neal; Preminger, Glenn M; Zhong, Pei
2013-09-01
The acoustic lens of the Modularis electromagnetic shock wave lithotripter (Siemens, Malvern, Pennsylvania) was modified to produce a pressure waveform and focal zone more closely resembling that of the original HM3 device (Dornier Medtech, Wessling, Germany). We assessed the newly designed acoustic lens in vivo in an animal model. Stone fragmentation and tissue injury produced by the original and modified lenses of the Modularis lithotripter were evaluated in a swine model under equivalent acoustic pulse energy (about 45 mJ) at 1 Hz pulse repetition frequency. Stone fragmentation was determined by the weight percent of stone fragments less than 2 mm. To assess tissue injury, shock wave treated kidneys were perfused, dehydrated, cast in paraffin wax and sectioned. Digital images were captured every 120 μm and processed to determine functional renal volume damage. After 500 shocks, the mean ± SD stone fragmentation efficiency produced by the original and modified lenses was 48% ± 12% and 52% ± 17%, respectively (p = 0.60). However, after 2,000 shocks, the modified lens showed significantly improved stone fragmentation compared to the original lens (mean 86% ± 10% vs 72% ± 12%, p = 0.02). Tissue injury caused by the original and modified lenses was minimal at a mean of 0.57% ± 0.44% and 0.25% ± 0.25%, respectively (p = 0.27). With lens modification the Modularis lithotripter demonstrates significantly improved stone fragmentation with minimal tissue injury at a clinically relevant acoustic pulse energy. This new lens design could potentially be retrofitted to existing lithotripters, improving the effectiveness of electromagnetic lithotripters. Copyright © 2013 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Directory of Open Access Journals (Sweden)
Abraham E. Ortega Paredes
2010-01-01
Full Text Available This paper presents the unscented transform (UT applied to uncertainty modeling of manufacturing tolerances at the design stage of microwave passive devices. The process combines the UT with electromagnetic simulations and assumes that the numerical sources of error are negligible in comparison to the imperfections due to the manufacturing process. The technique was validated with the simulation, construction, and test of several sets of identical microstrip filters with very good results. Although the combination of UT and electromagnetic simulators was presented for microstrip filters, it can also be used for different types of microwave devices.
DEFF Research Database (Denmark)
Ingeman-Nielsen, Thomas; Baumgartner, François
2006-01-01
We have constructed a forward modelling code in Matlab, capable of handling several commonly used electrical and electromagnetic methods in a 1D environment. We review the implemented electromagnetic field equations for grounded wires, frequency and transient soundings and present new solutions...... in the case of a non-magnetic first layer. The CR1Dmod code evaluates the Hankel transforms occurring in the field equations using either the Fast Hankel Transform based on digital filter theory, or a numerical integration scheme applied between the zeros of the Bessel function. A graphical user interface...
DEFF Research Database (Denmark)
Cai, Hongzhu; Xiong, Bin; Han, Muran
2014-01-01
This paper presents a linear edge-based finite element method for numerical modeling of 3D controlled-source electromagnetic data in an anisotropic conductive medium. We use a nonuniform rectangular mesh in order to capture the rapid change of diffusive electromagnetic field within the regions...... of anomalous conductivity and close to the location of the source. In order to avoid the source singularity, we solve Maxwell's equation with respect to anomalous electric field. The nonuniform rectangular mesh can be transformed to hexahedral mesh in order to simulate the bathymetry effect. The sparse system...
Limits on the electromagnetic and weak dipole moments of the tau-lepton in a 331 model
Energy Technology Data Exchange (ETDEWEB)
Gutiérrez-Rodríguez, A. [Facultad de Física, Universidad Autónoma de Zacatecas Apartado, Postal C-580, 98060 Zacatecas, México (Mexico); Hernández-Ruíz, M.A. [Facultad de Ciencias Químicas, Universidad Autónoma de Zacatecas Apartado, Postal 585, 98060 Zacatecas, México (Mexico); Castañeda-Almanza, C.P.; Espinoza-Garrido, A.; Chubykalo, A. [Facultad de Física, Universidad Autónoma de Zacatecas Apartado, Postal C-580, 98060 Zacatecas, México (Mexico)
2014-08-15
Using as an input the data obtained by the L3 and OPAL Collaborations for the reaction e{sup +}e{sup −}→τ{sup +}τ{sup −}γ at the Z{sub 1}-pole, we obtained bounds on the electromagnetic and weak dipole moments of the tau-lepton in the context of a 331 model. Our bounds on the electromagnetic moments are consistent with the bounds obtained by the L3 and OPAL Collaborations for the reaction e{sup +}e{sup −}→τ{sup +}τ{sup −}γ. We also obtained bounds on the tau weak dipole moments which are consistent with the bounds obtained recently by the DELPHI, ALEPH and BELLE Collaborations from the reaction e{sup +}e{sup −}→τ{sup +}τ{sup −}. Our work complements other studies on the electromagnetic and weak dipole moments of the tau-lepton.
Limits on the electromagnetic and weak dipole moments of the tau-lepton in a 331 model
Gutiérrez-Rodríguez, A.; Hernández-Ruíz, M. A.; Castañeda-Almanza, C. P.; Espinoza-Garrido, A.; Chubykalo, A.
2014-08-01
Using as an input the data obtained by the L3 and OPAL Collaborations for the reaction e+e- →τ+τ- γ at the Z1-pole, we obtained bounds on the electromagnetic and weak dipole moments of the tau-lepton in the context of a 331 model. Our bounds on the electromagnetic moments are consistent with the bounds obtained by the L3 and OPAL Collaborations for the reaction e+e- →τ+τ- γ. We also obtained bounds on the tau weak dipole moments which are consistent with the bounds obtained recently by the DELPHI, ALEPH and BELLE Collaborations from the reaction e+e- →τ+τ-. Our work complements other studies on the electromagnetic and weak dipole moments of the tau-lepton.
Electromagnetic ultrasonic guided waves
Huang, Songling; Li, Weibin; Wang, Qing
2016-01-01
This book introduces the fundamental theory of electromagnetic ultrasonic guided waves, together with its applications. It includes the dispersion characteristics and matching theory of guided waves; the mechanism of production and theoretical model of electromagnetic ultrasonic guided waves; the effect mechanism between guided waves and defects; the simulation method for the entire process of electromagnetic ultrasonic guided wave propagation; electromagnetic ultrasonic thickness measurement; pipeline axial guided wave defect detection; and electromagnetic ultrasonic guided wave detection of gas pipeline cracks. This theory and findings on applications draw on the author’s intensive research over the past eight years. The book can be used for nondestructive testing technology and as an engineering reference work. The specific implementation of the electromagnetic ultrasonic guided wave system presented here will also be of value for other nondestructive test developers.
Spherical Horn Array for Wideband Propagation Measurements
DEFF Research Database (Denmark)
Franek, Ondrej; Pedersen, Gert Frølund
2011-01-01
A spherical array of horn antennas designed to obtain directional channel information and characteristics is introduced. A dual-polarized quad-ridged horn antenna with open flared boundaries and coaxial feeding for the frequency band 600 MHz–6 GHz is used as the element of the array. Matching...... for a wideband multipath propagation studies....
Ultra-wideband radar sensors and networks
Leach, Jr., Richard R; Nekoogar, Faranak; Haugen, Peter C
2013-08-06
Ultra wideband radar motion sensors strategically placed in an area of interest communicate with a wireless ad hoc network to provide remote area surveillance. Swept range impulse radar and a heart and respiration monitor combined with the motion sensor further improves discrimination.
Introduction to Ultra Wideband for Wireless Communications
DEFF Research Database (Denmark)
Nikookar, Homayoun; Prasad, Ramjee
communications. Due to tutorial nature of the book it can also be adopted as a textbook on the subject in the Telecommunications Engineering curriculum. Problems at the end of each chapter extend the reader's understanding of the subject. Introduction to Ultra Wideband for Wireless Communications will aslo...
A mathematical model of extremely low frequency ocean induced electromagnetic noise
Energy Technology Data Exchange (ETDEWEB)
Dautta, Manik, E-mail: manik.dautta@anyeshan.com; Faruque, Rumana Binte, E-mail: rumana.faruque@anyeshan.com; Islam, Rakibul, E-mail: rakibul.islam@anyeshan.com [Research & Development Engineer, Anyeshan Limited, Dhaka (Bangladesh)
2016-07-12
Magnetic Anomaly Detection (MAD) system uses the principle that ferromagnetic objects disturb the magnetic lines of force of the earth. These lines of force are able to pass through both water and air in similar manners. A MAD system, usually mounted on an aerial vehicle, is thus often employed to confirm the detection and accomplish localization of large ferromagnetic objects submerged in a sea-water environment. However, the total magnetic signal encountered by a MAD system includes contributions from a myriad of low to Extremely Low Frequency (ELF) sources. The goal of the MAD system is to detect small anomaly signals in the midst of these low-frequency interfering signals. Both the Range of Detection (R{sub d}) and the Probability of Detection (P{sub d}) are limited by the ratio of anomaly signal strength to the interfering magnetic noise. In this paper, we report a generic mathematical model to estimate the signal-to-noise ratio or SNR. Since time-variant electro-magnetic signals are affected by conduction losses due to sea-water conductivity and the presence of air-water interface, we employ the general formulation of dipole induced electromagnetic field propagation in stratified media [1]. As a first step we employ a volumetric distribution of isolated elementary magnetic dipoles, each having its own dipole strength and orientation, to estimate the magnetic noise observed by a MAD system. Numerical results are presented for a few realizations out of an ensemble of possible realizations of elementary dipole source distributions.
Directory of Open Access Journals (Sweden)
Mengxue Zhang
Full Text Available Understanding the mechanisms of uterine contractions during pregnancy is especially important in predicting the onset of labor and thus in forecasting preterm deliveries. Preterm birth can cause serious health problems in newborns, as well as large financial burdens to society. Various techniques such as electromyography (EMG and magnetomyography (MMG have been developed to quantify uterine contractions. However, no widely accepted method to predict labor based on electromagnetic measurement is available. Therefore, developing a biophysical model of EMG and MMG could help better understand uterine contractions, interpret real measurements, and detect labor. In this work, we propose a multiscale realistic model of uterine contractions during pregnancy. At the cellular level, building on bifurcation theory, we apply generalized FitzHugh-Nagumo (FHN equations that produces both plateau-type and bursting-type action potentials. At the tissue level, we introduce a random fiber orientation model applicable to an arbitrary uterine shape. We also develop an analytical expression for the propagation speed of transmembrane potential. At the organ level, a realistic volume conductor geometry model is provided based on magnetic resonance images of a pregnant woman. To simulate the measurements from the SQUID Array for Reproductive Assessment (SARA device, we propose a sensor array model. Our model is able to reproduce the characteristics of action potentials. Additionally, we investigate the sensitivity of MMG to model configuration aspects such as volume geometry, fiber orientation, and pacemaker location. Our numerical results show that fiber orientation and pacemaker location are the key aspects that greatly affect the MMG as measured by the SARA device. We conclude that sphere is appropriate as an approximation of the volume geometry. The initial step towards validating the model against real MMG measurement is also presented. Our results show that the
Zhang, Mengxue; Tidwell, Vanessa; La Rosa, Patricio S; Wilson, James D; Eswaran, Hari; Nehorai, Arye
2016-01-01
Understanding the mechanisms of uterine contractions during pregnancy is especially important in predicting the onset of labor and thus in forecasting preterm deliveries. Preterm birth can cause serious health problems in newborns, as well as large financial burdens to society. Various techniques such as electromyography (EMG) and magnetomyography (MMG) have been developed to quantify uterine contractions. However, no widely accepted method to predict labor based on electromagnetic measurement is available. Therefore, developing a biophysical model of EMG and MMG could help better understand uterine contractions, interpret real measurements, and detect labor. In this work, we propose a multiscale realistic model of uterine contractions during pregnancy. At the cellular level, building on bifurcation theory, we apply generalized FitzHugh-Nagumo (FHN) equations that produces both plateau-type and bursting-type action potentials. At the tissue level, we introduce a random fiber orientation model applicable to an arbitrary uterine shape. We also develop an analytical expression for the propagation speed of transmembrane potential. At the organ level, a realistic volume conductor geometry model is provided based on magnetic resonance images of a pregnant woman. To simulate the measurements from the SQUID Array for Reproductive Assessment (SARA) device, we propose a sensor array model. Our model is able to reproduce the characteristics of action potentials. Additionally, we investigate the sensitivity of MMG to model configuration aspects such as volume geometry, fiber orientation, and pacemaker location. Our numerical results show that fiber orientation and pacemaker location are the key aspects that greatly affect the MMG as measured by the SARA device. We conclude that sphere is appropriate as an approximation of the volume geometry. The initial step towards validating the model against real MMG measurement is also presented. Our results show that the model is
Energy Technology Data Exchange (ETDEWEB)
Amadio, G.; et al.
2017-11-22
An intensive R&D and programming effort is required to accomplish new challenges posed by future experimental high-energy particle physics (HEP) programs. The GeantV project aims to narrow the gap between the performance of the existing HEP detector simulation software and the ideal performance achievable, exploiting latest advances in computing technology. The project has developed a particle detector simulation prototype capable of transporting in parallel particles in complex geometries exploiting instruction level microparallelism (SIMD and SIMT), task-level parallelism (multithreading) and high-level parallelism (MPI), leveraging both the multi-core and the many-core opportunities. We present preliminary verification results concerning the electromagnetic (EM) physics models developed for parallel computing architectures within the GeantV project. In order to exploit the potential of vectorization and accelerators and to make the physics model effectively parallelizable, advanced sampling techniques have been implemented and tested. In this paper we introduce a set of automated statistical tests in order to verify the vectorized models by checking their consistency with the corresponding Geant4 models and to validate them against experimental data.
3D modelling of the electromagnetic response of geophysical targets using the FDTD method
Energy Technology Data Exchange (ETDEWEB)
Debroux, P.S. [Univ. of Arizona, Tucson, AZ (United States). Mining and Geological Engineering Dept.
1996-05-01
A publicly available and maintained electromagnetic finite-difference time domain (FDTD) code has been applied to the forward modelling of the response of 1D, 2D and 3D geophysical targets to a vertical magnetic dipole excitation. The FDTD method is used to analyze target responses in the 1 MHz to 100 MHz range, where either conduction or displacement currents may have the controlling role. The response of the geophysical target to the excitation is presented as changes in the magnetic field ellipticity. The results of the FDTD code compare favorably with previously published integral equation solutions of the response of 1D targets, and FDTD models calculated with different finite-difference cell sizes are compared to find the effect of model discretization on the solution. The discretization errors, calculated as absolute error in ellipticity, are presented for the different ground geometry models considered, and are, for the most part, below 10% of the integral equation solutions. Finally, the FDTD code is used to calculate the magnetic ellipticity response of a 2D survey and a 3D sounding of complicated geophysical targets. The response of these 2D and 3D targets are too complicated to be verified with integral equation solutions, but show the proper low- and high-frequency responses.
Self-Consistent Ring Current/Electromagnetic Ion Cyclotron Waves Modeling
Khazanov, G. V.; Gamayunov, K.; Gallagher, D.
2006-12-01
The self-consistent treatment of ring current (RC) ion dynamics and electromagnetic ion cyclotron (EMIC) waves, which are thought to exert important influences on dynamic ion evolution and are an important missing element in our understanding of the storm-and recovery-time ring current evolution. For example, the EMIC waves cause the RC decay on a time scale of about one hour or less during the main phase of storms. The oblique EMIC waves damp due to Landau resonance with the thermal plasmaspheric electrons, and subsequent transport of the dissipating wave energy into the ionosphere below causes an ionosphere temperature enhancement. Under certain conditions, relativistic electrons, with energies ~1 MeV, can be removed from the outer radiation belt by EMIC wave scattering during a magnetic storm. That is why the modeling of EMIC waves is a critical and timely issue in magnetospheric physics. This study will generalize the self-consistent theoretical description of RC ions and EMIC waves that has been developed by Khazanov et al. [2002, 2003] and include the heavy ions and propagation effects of EMIC waves in global dynamic modeling of self-consistent RC - EMIC waves coupling. The results of our newly developed model will be presented, focusing mainly on the dynamics of EMIC waves and comparison of these results with the previous global RC modeling studies devoted to EMIC waves formation. We will also discuss RC ion precipitations and wave induced thermal electron fluxes into the ionosphere.
Directory of Open Access Journals (Sweden)
Li Zhang
2017-12-01
Full Text Available In recent years, with the rapid development of offshore wind turbines (WTs, the problem of lightning strikes has become more and more prominent. In order to reduce the failure rate caused by the transient overvoltage of lightning struck offshore WTs, the influencing factors and the response rules of transient overvoltage are analyzed. In this paper, a new integrated electromagnetic transient model of offshore WTs is established by using the numerical calculation method of the electromagnetic field first. Then, based on the lightning model and considering the impedance of the lightning channel, the transient overvoltage of lightning is analyzed. Last, the electromagnetic transient model of offshore WTs is simulated and analyzed by using the alternative transients program electro-magnetic transient program (ATP-EMTP software. The influence factors of lightning transient overvoltage are studied. The main influencing factors include the sea depth, the blade length, the tower height, the lightning flow parameters, the lightning strike point, and the blade rotation position. The simulation results show that the influencing factors mentioned above have different effects on the lightning transient overvoltage. The results of the study have some guiding significance for the design of the lightning protection of the engine room.
Electromagnetic field modeling and ion optics calculations for a continuous-flow AMS system
Han, B. X.; von Reden, K. F.; Roberts, M. L.; Schneider, R. J.; Hayes, J. M.; Jenkins, W. J.
2007-06-01
A continuous-flow 14C AMS (CFAMS) system is under construction at the NOSAMS facility. This system is based on a NEC Model 1.5SDH-1 0.5 MV Pelletron accelerator and will utilize a combination of a microwave ion source (MIS) and a charge exchange canal (CXC) to produce negative carbon ions from a continuously flowing stream of CO2 gas. For high-efficiency transmission of the large emittance, large energy-spread beam from the ion source unit, a large-acceptance and energy-achromatic injector consisting of a 45° electrostatic spherical analyzer (ESA) and a 90° double-focusing magnet has been designed. The 45° ESA is rotatable to accommodate a 134-sample MC-SNICS as a second ion source. The high-energy achromat (90° double focusing magnet and 90° ESA) has also been customized for large acceptance. Electromagnetic field modeling and ion optics calculations of the beamline were done with Infolytica MagNet, ElecNet, and Trajectory Evaluator. PBGUNS and SIMION were used for the modeling of ion source unit.
Zhou, Kan
With the modern trend of transportation electrification, electric machines are a key component of electric/hybrid electric vehicle (EV/HEV) powertrains. It is therefore important that vehicle powertrain-level and system-level designers and control engineers have access to accurate yet computationally-efficient (CE), physics-based modeling tools of the thermal and electromagnetic (EM) behavior of electric machines. In this dissertation, CE yet sufficiently-accurate thermal and EM models for electric machines, which are suitable for use in vehicle powertrain design, optimization, and control, are developed. This includes not only creating fast and accurate thermal and EM models for specific machine designs, but also the ability to quickly generate and determine the performance of new machine designs through the application of scaling techniques to existing designs. With the developed techniques, the thermal and EM performance can be accurately and efficiently estimated. Furthermore, powertrain or system designers can easily and quickly adjust the characteristics and the performance of the machine in ways that are favorable to the overall vehicle performance.
Bogdanov, G; Ludwig, R
2002-03-01
The performance modeling of RF resonators at high magnetic fields of 4.7 T and more requires a physical approach that goes beyond conventional lumped circuit concepts. The treatment of voltages and currents as variables in time and space leads to a coupled transmission line model, whereby the electric and magnetic fields are assumed static in planes orthogonal to the length of the resonator, but wave-like along its longitudinal axis. In this work a multiconductor transmission line (MTL) model is developed and successfully applied to analyze a 12-element unloaded and loaded microstrip line transverse electromagnetic (TEM) resonator coil for animal studies. The loading involves a homogeneous cylindrical dielectric insert of variable radius and length. This model formulation is capable of estimating the resonance spectrum, field distributions, and certain types of losses in the coil, while requiring only modest computational resources. The boundary element method is adopted to compute all relevant transmission line parameters needed to set up the transmission line matrices. Both the theoretical basis and its engineering implementation are discussed and the resulting model predictions are placed in context with measurements. A comparison between a conventional lumped circuit model and this distributed formulation is conducted, showing significant departures in the resonance response at higher frequencies. This MTL model is applied to simulate two small-bore animal systems: one of 7.5-cm inner diameter, tuned to 200 MHz (4.7 T for proton imaging), and one of 13.36-cm inner diameter, tuned to both 200 and 300 MHz (7 T). Copyright 2002 Wiley-Liss, Inc.
High-efficiency polarization conversion phase gradient metasurface for wideband anomalous reflection
Zhang, Jiameng; Yang, Lan; Li, Linpeng; Zhang, Tong; Li, Haihong; Wang, Qingmin; Hao, Yanan; Lei, Ming; Bi, Ke
2017-07-01
An ultra-wideband polarization conversion metasurface based on S-shaped metallic structure is designed and prepared. The simulation results show that the polarization conversion bandwidth is 14 GHz for linearly polarized normally incident electromagnetic waves and the cross-polarized reflectance is more than 99% in the range of 10.3 GHz-20.5 GHz. On the premise of high reflection efficiency, the reflective phase can be regulated by changing the geometrical parameter of the S-shaped metallic structure. A phase gradient metasurface composed of six periodically arrayed S-shaped unit cells is proposed and further demonstrated both numerically and experimentally. The specular cross-polarization reflection of the phase gradient metasurface is below -10 dB, which shows a good performance on manipulating the direction of the reflected electromagnetic waves.
Kruse Christensen, Nikolaj; Ferre, Ty Paul A.; Fiandaca, Gianluca; Christensen, Steen
2017-03-01
We present a workflow for efficient construction and calibration of large-scale groundwater models that includes the integration of airborne electromagnetic (AEM) data and hydrological data. In the first step, the AEM data are inverted to form a 3-D geophysical model. In the second step, the 3-D geophysical model is translated, using a spatially dependent petrophysical relationship, to form a 3-D hydraulic conductivity distribution. The geophysical models and the hydrological data are used to estimate spatially distributed petrophysical shape factors. The shape factors primarily work as translators between resistivity and hydraulic conductivity, but they can also compensate for structural defects in the geophysical model. The method is demonstrated for a synthetic case study with sharp transitions among various types of deposits. Besides demonstrating the methodology, we demonstrate the importance of using geophysical regularization constraints that conform well to the depositional environment. This is done by inverting the AEM data using either smoothness (smooth) constraints or minimum gradient support (sharp) constraints, where the use of sharp constraints conforms best to the environment. The dependency on AEM data quality is also tested by inverting the geophysical model using data corrupted with four different levels of background noise. Subsequently, the geophysical models are used to construct competing groundwater models for which the shape factors are calibrated. The performance of each groundwater model is tested with respect to four types of prediction that are beyond the calibration base: a pumping well's recharge area and groundwater age, respectively, are predicted by applying the same stress as for the hydrologic model calibration; and head and stream discharge are predicted for a different stress situation. As expected, in this case the predictive capability of a groundwater model is better when it is based on a sharp geophysical model instead of a
An HF and lower VHF spectrum assessment system exploiting instantaneously wideband capture
Barnes, Rod I.; Singh, Malkiat; Earl, Fred
2017-09-01
We report on a spectral environment evaluation and recording (SEER) system, for instantaneously wideband spectral capture and characterization in the HF and lower VHF band, utilizing a direct digital receiver coupled to a data recorder. The system is designed to contend with a wide variety of electromagnetic environments and to provide accurately calibrated spectral characterization and display from very short (ms) to synoptic scales. The system incorporates a novel RF front end involving automated gain and equalization filter selection which provides an analogue frequency-dependent gain characteristic that mitigates the high dynamic range found across the HF and lower VHF spectrum. The system accurately calibrates its own internal noise and automatically subtracts this from low variance, external spectral estimates, further extending the dynamic range over which robust characterization is possible. Laboratory and field experiments demonstrate that the implementation of these concepts has been effective. Sensitivity to varying antenna load impedance of the internal noise reduction process has been examined. Examples of software algorithms to provide extraction and visualization of spectral behavior over narrowband, wideband, short, and synoptic scales are provided. Application in HF noise spectral density monitoring, spectral signal strength assessment, and electromagnetic interference detection is possible with examples provided. The instantaneously full bandwidth collection provides some innovative applications, and this is demonstrated by the collection of discrete lightning emissions, which form fast ionograms called "flashagrams" in power-delay-frequency plots.
Energy Technology Data Exchange (ETDEWEB)
N. Suzuki, T. Sato, T.-S. H. Lee
2010-10-01
We explain the application of a recently developed analytic continuation method to extract the electromagnetic transition form factors for the nucleon resonances ($N^*$) within a dynamical coupled-channel model of meson-baryon reactions.Illustrative results of the obtained $N^*\\rightarrow \\gamma N$ transition form factors, defined at the resonance pole positions on the complex energy plane, for the well isolated $P_{33}$ and $D_{13}$, and the complicated $P_{11}$ resonances are presented. A formula has been developed to give an unified representation of the effects due to the first two $P_{11}$ poles, which are near the $\\pi\\Delta$ threshold, but are on different Riemann sheets. We also find that a simple formula, with its parameters determined in the Laurent expansions of $\\pi N \\rightarrow \\pi N$ and $\\gamma N \\rightarrow\\pi N$ amplitudes, can reproduce to a very large extent the exact solutions of the considered model at energies near the real parts of the extracted resonance positions. We indicate the differences between our results and those extracted from the approaches using the Breit-Wigner parametrization of resonant amplitudes to fit the data.
The Effect of GSM Mobile Phone Electromagnetic Field on Femur Fracture Healing in a Rat Model
Directory of Open Access Journals (Sweden)
Ali Kalender
2012-10-01
Full Text Available Aim: Biological effects of electromagnetic field (EMF and their consequences on human health have been the subject of much interest and research in recent years. The aim of this study was to investigate the effects of 900 MHz EMF on femur fracture healing in a rat model. Material and Method: After sixty male Sprague-Dawley rats were exposed to a closed right femur fracture under anesthesia, the reduction and fixation were done with a 21 g needle. Then, 900 MHz radiation (2 W peak output power and 1.04 mW/cm2 power density was applied to EM group for one hour/day for seven days. The healing was assessed using radiological (Lane and Sandhu classification, histological (Huo scale for callus evaluation, and biomechanical (3-point bending measures at 2nd, 4th and 6th weeks after fracture. Results: Fracture healing, as assessed radiologically and histopathologically, in Group EM and control animals was similar at 2nd, 4th and 6th weeks. Fracture healing, as assessed biomechanically, was significantly better in Group EM compared to controls in those sacrificed at 2nd week post-procedure (p<0.05. Biomechanical strength was not different between the groups at 4th and 6th weeks. Discussion: 900 MHz EMF from a mobile phone in this rat femur fracture model resulted in no significant difference in healing from controls not exposed to EM radiation.
Three-dimensional electromagnetic modeling and inversion on massively parallel computers
Energy Technology Data Exchange (ETDEWEB)
Newman, G.A.; Alumbaugh, D.L. [Sandia National Labs., Albuquerque, NM (United States). Geophysics Dept.
1996-03-01
This report has demonstrated techniques that can be used to construct solutions to the 3-D electromagnetic inverse problem using full wave equation modeling. To this point great progress has been made in developing an inverse solution using the method of conjugate gradients which employs a 3-D finite difference solver to construct model sensitivities and predicted data. The forward modeling code has been developed to incorporate absorbing boundary conditions for high frequency solutions (radar), as well as complex electrical properties, including electrical conductivity, dielectric permittivity and magnetic permeability. In addition both forward and inverse codes have been ported to a massively parallel computer architecture which allows for more realistic solutions that can be achieved with serial machines. While the inversion code has been demonstrated on field data collected at the Richmond field site, techniques for appraising the quality of the reconstructions still need to be developed. Here it is suggested that rather than employing direct matrix inversion to construct the model covariance matrix which would be impossible because of the size of the problem, one can linearize about the 3-D model achieved in the inverse and use Monte-Carlo simulations to construct it. Using these appraisal and construction tools, it is now necessary to demonstrate 3-D inversion for a variety of EM data sets that span the frequency range from induction sounding to radar: below 100 kHz to 100 MHz. Appraised 3-D images of the earth`s electrical properties can provide researchers opportunities to infer the flow paths, flow rates and perhaps the chemistry of fluids in geologic mediums. It also offers a means to study the frequency dependence behavior of the properties in situ. This is of significant relevance to the Department of Energy, paramount to characterizing and monitoring of environmental waste sites and oil and gas exploration.
Kim, Tae Hee; James, Robin; Narayanan, Ram M.
2017-04-01
Fiber Reinforced Polymer or Plastic (FRP) composites have been rapidly increasing in the aerospace, automotive and marine industry, and civil engineering, because these composites show superior characteristics such as outstanding strength and stiffness, low weight, as well as anti-corrosion and easy production. Generally, the advancement of materials calls for correspondingly advanced methods and technologies for inspection and failure detection during production or maintenance, especially in the area of nondestructive testing (NDT). Among numerous inspection techniques, microwave sensing methods can be effectively used for NDT of FRP composites. FRP composite materials can be produced using various structures and materials, and various defects or flaws occur due to environmental conditions encountered during operation. However, reliable, low-cost, and easy-to-operate NDT methods have not been developed and tested. FRP composites are usually produced as multilayered structures consisting of fiber plate, matrix and core. Therefore, typical defects appearing in FRP composites are disbondings, delaminations, object inclusions, and certain kinds of barely visible impact damages. In this paper, we propose a microwave NDT method, based on synthetic aperture radar (SAR) imaging algorithms, for stand-off imaging of internal delaminations. When a microwave signal is incident on a multilayer dielectric material, the reflected signal provides a good response to interfaces and transverse cracks. An electromagnetic wave model is introduced to delineate interface widths or defect depths from the reflected waves. For the purpose of numerical analysis and simulation, multilayered composite samples with various artificial defects are assumed, and their SAR images are obtained and analyzed using a variety of high-resolution wideband waveforms.
Golovanov, A. A.; Kostyukov, I. Yu.; Thomas, J.; Pukhov, A.
2017-10-01
Based on a model of plasma wakefield in the strongly nonlinear (bubble) regime, we develop a lowest-order perturbation theory for the components of electromagnetic fields inside and outside the bubble using the assumption of small thickness of the electron sheath on the boundary of the bubble. Unlike previous models, we derive simple explicit expressions for the components of electromagnetic fields not only in the vicinity of the center of the bubble, but in the whole volume of the bubble (including the areas of driving or accelerated bunches) as well as outside it. Moreover, we apply the results to the case of radially non-uniform plasma and, in particular, to plasma with a hollow channel. The obtained results are verified with 3D particle-in-cell simulations which show a good correspondence to our model.
Energy Technology Data Exchange (ETDEWEB)
Xie, G.; Li, J.; Majer, E.; Zuo, D.
1998-07-01
This paper describes a new 3D parallel GILD electromagnetic (EM) modeling and nonlinear inversion algorithm. The algorithm consists of: (a) a new magnetic integral equation instead of the electric integral equation to solve the electromagnetic forward modeling and inverse problem; (b) a collocation finite element method for solving the magnetic integral and a Galerkin finite element method for the magnetic differential equations; (c) a nonlinear regularizing optimization method to make the inversion stable and of high resolution; and (d) a new parallel 3D modeling and inversion using a global integral and local differential domain decomposition technique (GILD). The new 3D nonlinear electromagnetic inversion has been tested with synthetic data and field data. The authors obtained very good imaging for the synthetic data and reasonable subsurface EM imaging for the field data. The parallel algorithm has high parallel efficiency over 90% and can be a parallel solver for elliptic, parabolic, and hyperbolic modeling and inversion. The parallel GILD algorithm can be extended to develop a high resolution and large scale seismic and hydrology modeling and inversion in the massively parallel computer.
Ultra-Wideband Radio Frequency Identification Systems
Nekoogar, Faranak
2012-01-01
Ultra-Wideband Radio Frequency Identification Systems describes the essentials of radio frequency identification systems as well as their target markets. The authors provide a study of commercially available RFID systems and characterizes their performance in terms of read range and reliability in the presence of conductive and dielectric materials. The capabilities and limitations of some commercial RFID systems are reported followed by comprehensive discussions of the advantages and challenges of using ultra-wideband technology for tag/reader communications. The book presents practical aspects of UWB RFID system such as: pulse generation, remote powering, tag and reader antenna design, as well as special applications of UWB RFIDs in a simple and easy-to-understand language.
Gizhko, Vasiliy V.; Sit'ko, S. P.
1994-08-01
Analysis of semiclassic theory of radiation interaction is done in respect to the millimeter range wave lengths and water milien of biological objects. General characteristics of electromagnetic limit cicles are analyzed with respect to the peculiarity of human anatomy, the correspondence between these characteristics and laws of classical acupuncture system topography is determined. General condition of multicellular organism's stability on all of development stages are formulated as a space quantum conditions for eigen electromagnetic field's states.
Efficient Integrated Circuits for Wideband Wireless Transceivers
Duong, Quoc-Tai
2016-01-01
The proliferation of portable communication devices combined with the relentless demand for higher data rates has spurred the development of wireless communication standards which can support wide signal bandwidths. Benefits of the complementary metal oxide semiconductor (CMOS) process such as high device speeds and low manufacturing cost have rendered it the technology of choice for implementing wideband wireless transceiver integrated circuits (ICs). This dissertation addresses the key chal...
Integrated Microwave Photonics for Wideband Signal Processing
Directory of Open Access Journals (Sweden)
Xiaoke Yi
2017-11-01
Full Text Available We describe recent progress in integrated microwave photonics in wideband signal processing applications with a focus on the key signal processing building blocks, the realization of monolithic integration, and cascaded photonic signal processing for analog radio frequency (RF photonic links. New developments in integration-based microwave photonic techniques, that have high potentialities to be used in a variety of sensing applications for enhanced resolution and speed are also presented.
Fundamental Limits in Wireless Wideband Networking
Do, Tan Tai
2015-01-01
The rapid growth of the wireless communication industry recently does not only bring opportunities but also challenges on developing radio technologies and solutions that can support high data rate as well as reliable and efficient communications. Two fundamental factors that limit the transmission rate are the available transmit energy and the available bandwidth. In this thesis, we investigate fundamental limits on energy and bandwidth efficiencies in wireless wideband networking. The frame...
Laboratory Stands for Wideband Analysis Radiocommunication Signals
Studanski, Ryszard; Was, Radosław; Studanska, Agnieszka; Garus, Jarosław
2012-01-01
A laboratory stand for wideband analysis radiocommunication signals is presented in the paper. The stand is designed for signals acquisition in wide spectrum and research a field of digital signal processing. Procedures used for simultaneous acquiring many frequency channels in selected wide band are described. The method of detection of direct sequence spread spectrum signals (DS SS) which power spectral density is lower than noise is also discussed. Executed research were performed with sig...
Fractal Model of a Compact Intracloud Discharge. II. Specific Features of Electromagnetic Emission
Davydenko, S. S.; Iudin, D. I.
2016-12-01
We examine the features of the electromagnetic emission of a compact intracloud discharge (CID) within the framework of the fractal approach [1] described in the first part of the article. Compact intracloud discharge is considered as the result of electric interaction of two bipolar streamer-type structures previously developed in the regions of a strong electric field inside the thundercloud. To estimate the electromagnetic emission of the discharge, the complex tree-like structure of the electric currents at the preliminary and main stages of CID was represented as the sum of a relatively slowly varying large-scale linear mean component and fast small-scale constituents corresponding to the initial formation of elementary conductive channels of the discharge tree. Mean linear current of the discharge is considered as an effective source of the VLF/LF emission at both the preliminary and main stages of a CID. Electrostatic, induction, and radiation components of the electric field at different distances from the mean current are calculated taking into account specific features of both stages of the discharge within the framework of the transmission-line model. It is shown that at the preliminary stage only the electrostatic component can mainly be detected, whereas at the main stage all the above components of the electric field can be reliably measured. Dependence of the radiation electric field at the main stage on the length of the discharge channel and propagation velocity of the current front is analyzed. It is found that due to the bi-directional expansion of the current at the main stage of a CID the radiation field pulse remains narrow in a wide range of discharge parameters. The small-scale currents corresponding to the initial breakdown between the neighboring cells of the discharge domain are considered as the sources of HF/VHF radiation. It is shown that HF/VHF emission at the preliminary stage is negligible as compared to emission at the main stage
A wideband RF amplifier for satellite tuners
Xueqing, Hu; Zheng, Gong; Yin, Shi; Foster, Dai Fa
2011-11-01
This paper presents the design and measured performance of a wideband amplifier for a direct conversion satellite tuner. It is composed of a wideband low noise amplifier (LNA) and a two-stage RF variable gain amplifier (VGA) with linear gain in dB and temperature compensation schemes. To meet the system linearity requirement, an improved distortion compensation technique and a bypass mode are applied on the LNA to deal with the large input signal. Wideband matching is achieved by resistive feedback and an off-chip LC-ladder matching network. A large gain control range (over 80 dB) is achieved by the VGA with process voltage and temperature compensation and dB linearization. In total, the amplifier consumes up to 26 mA current from a 3.3 V power supply. It is fabricated in a 0.35-μm SiGe BiCMOS technology and occupies a silicon area of 0.25 mm2.
Analysis and Modelling towards Hybrid Piezo-Electromagnetic Vibrating Energy Harvesting Devices
Reuschel, Torsten; Salehian, Armaghan
2011-11-01
The efficiency of mobile electrical devices increased over the last years. Self-supply by harvesting ambient energy became a possibility of reducing operational costs by ruling out the need of battery replacement. Many energy harvesting devices employ cantilever configurations with base excitation to increase the effective displacement. The proposed design extends this design with an electromagnetic harvesting device (EMH) placed at its tip. It features an alternating stack of magnets with opposing poles and discs of highly permeable material. The composite cylinder is encircled by coils. This EMH design has successfully been employed for ocean wave harvesting and vehicle suspension systems. Its efficiency with respect to mass and energy output is compared to a previously published design using a single magnet placed at the tip moving within a coil. There exists proof that combining readily available technologies into a so-called coupled or hybrid design can increase the efficiency in comparison to respective stand-alone designs. Once the model for the proposed design is derived and evaluated, it is extended by a cantilevered excitation. Piezoelectric layers for hybrid harvesting may be included in future research.
Schiantarelli, Harry T.
1990-09-01
Electronic support measures (ESM) systems play an increasingly important role in modern warfare and can influence the outcome of a military engagement. The application of ESM can be extended to anti-guerrilla and anti-drug operations where law enforcement agencies can exploit the fact that their presence is inducing the outlaw to depend more on radio communications to coordinate their activities. When a propagation path of no more than one reflection at the ionosphere (1-hop) can be assumed, position of an HF emitter can be determined by a single observing site using vertical triangulation, provided that the height of the ionosphere at the point where the radio wave is reflected, can be determined. This technique is known as high frequency direction finding single-site-location (HFDF SSL). This thesis analyzes the HFDF SSL error in measuring the direction of arrival of the signal, how this error is generated by the antenna array and its effect on emitter location. The characteristics of the two antenna arrays used by a specific HFDF SSL system that implements the phase-interferometer techniques were studied using electromagnetic modeling.
Borah, B
2014-01-01
A theoretical model is developed to study the equilibrium electromagnetic properties of a spherically symmetric dust molecular cloud (DMC) structure on the Jeans scale. It applies a technique based on the modified Lane-Emden equation (m-LEE). It considers an inhomogeneous distribution of dust grains in field-free hydrodynamic equilibrium configuration within the framework of exact gravito-electrostatic pressure balancing condition. Although weak relative to the massive grains, but finite, the efficacious inertial roles of the thermal species (electrons and ions) are included. A full portrayal of the lowest-order cloud surface boundary (CSB) and associated parameter signatures on the Jeans scale is made numerically for the first time. The multi-order extremization of the m-LEE solutions specifies the CSB at a radial point m relative to the centre. It gets biased negatively due to the interplay of plasma-boundary wall interaction (global) and plasma sheath-sheath coupling (local) processes. The CSB acts as an i...
Modelling of 3-D electromagnetic responses using the time-wavenumber method
Energy Technology Data Exchange (ETDEWEB)
Lee, S.
1991-12-01
The diffusion of electromagnetic fields in time and the three spatial dimensions can be modelled using a new numerical algorithm that is tailored for geophysical applications. The novel feature of the algorithm is that a large part of the computation is done in the wavenumber domain. Here, the spatial Fourier transforms of the vertical magnetic field and the vertical current density are used to define two scalar potentials. For either a vertical electric or a vertical magnetic dipole source at the subsurface these wavenumber potentials can be represented by a simple Gaussian distribution function. In the air, the fields satisfy the Laplace equation. The flow of this algorithm is as follows: the potentials are defined in the wavenumber domain as an initial condition depending on the source configuration, the vector current density J in space is obtained from the potentials using the inverse Fourier transform, the vector electric field E is obtained by multiplying J by resistivity, the updated potentials are then obtained from the forward Fourier transform of E. Using the updated potential as a subsequent initial condition these steps are repeated until the solution reaches the final time. Since spatial derivatives can be exactly evaluated in the wavenumber domain by simple multiplications, this algorithm requires far less memory than the conventional finite difference (FD) method. The conventional FD method needs finer discretization in space in order to minimize the numerical dispersion caused by numerical differentiation in space. The conductivity distribution for this algorithm is piece-wise continuous and bounded in the wavenumber domain.
Borah, B.; Karmakar, P. K.
2015-10-01
A theoretical model is developed to study the equilibrium electromagnetic properties of a spherically symmetric dust molecular cloud (DMC) structure on the Jeans scales of space and time. It applies a new technique based on the modified Lane-Emden equation (m-LEE) of polytropic configuration. We consider a spatially inhomogeneous distribution of the massive dust grains in hydrodynamic equilibrium in the framework of exact gravito-electrostatic pressure balancing condition. Although weak relative to the massive grains, but non-zero finite, the efficacious inertial roles of the thermal species (electrons and ions) are included. A full portrayal of the lowest-order cloud surface boundary (CSB) and associated significant parameters is numerically presented. The multi-order extremization of the m-LEE solutions specifies the CSB existence at a radial point 8.58 ×1012 m relative to the center. It is shown that the CSB gets biased negatively due to the interplay of plasma-boundary wall interaction (global) and plasma sheath-sheath coupling (local) processes. It acts as an interfacial transition layer coupling the bounded and unbounded scale-dynamics of the cloud. The geometrical patterns of the bi-scale plasma coupling are elaborately analyzed. Application of our technique to neutron stars, other observed DMCs and double layers is stressed together with possible future expansion.
Gutiérrez-Rodríguez, A.
From the total cross-section for the reaction e+e-→τ+τ-γ at the Z1 pole and in the framework of a simplest little Higgs model (SLHM), we get a limit on the characteristic energy scale of the model f, f ≥ 5.4 TeV, which in turn induces bounds on the electromagnetic and weak dipole moments of the tau-lepton. Our bounds on the electromagnetic moments are consistent with the bounds obtained by the L3 and OPAL collaborations for the reaction e+e-→τ+τ-γ. We also obtained bounds on the tau weak dipole moments which are consistent with the bounds obtained recently by the DELPHI and ALEPH collaborations from the reaction e+e-→τ+τ-.
Transformer modeling for low- and mid-frequency electromagnetic transients simulation
Lambert, Mathieu
, and generalized to include resistances and capacitances in what is called electromagnetic circuit theory. Also, it is explained that this theory is actually equivalent to what is called finite formulations (such as the finite element method), which bridges the gap between circuit theory and discrete electromagnetism. Therefore, this enables not only to develop topologically-correct transformer models, where electric and magnetic circuits are defined on dual meshes, but also rotating machine and transmission lines models (wave propagation can be taken into account).
Spatial and Temporal Variation of Wideband Indoor Channels
Directory of Open Access Journals (Sweden)
David L. Ndzi
2010-01-01
Full Text Available Extensive studies of the impact of temporal variations induced by people on the characteristics of indoor wideband channels are reported. Singular Value Decomposition Prony algorithm has been used to compute the impulse response from measured channel transfer functions. The high multipath resolution of the algorithm has allowed a detailed assessment of the shapes of individual multipath clusters and their variation in time and space in indoor channels. Large- and small-scale analyses show that there is a significant dependency of the channel response on room size. The presence of people in the channel has been found to induce both signal enhancements and fading with short-term dynamic variations of up to 30 dB, depending on the number of people and their positions within the room. A joint amplitude and time of arrival model has been used to successfully model measured impulse response clusters.
Effects of radiation emitted by WCDMA mobile phones on electromagnetic hypersensitive subjects
Kwon, Min Kyung; Choi, Joon Yul; Kim, Sung Kean; Yoo, Tae Keun; Kim, Deok Won
2012-01-01
Abstract Background With the use of the third generation (3 G) mobile phones on the rise, social concerns have arisen concerning the possible health effects of radio frequency-electromagnetic fields (RF-EMFs) emitted by wideband code division multiple access (WCDMA) mobile phones in humans. The number of people with self-reported electromagnetic hypersensitivity (EHS), who complain of various subjective symptoms such as headache, dizziness and fatigue, has also increased. However, the origins...
Effects of Millimeter-Wave Electromagnetic Radiation on the Experimental Model of Migraine.
Sivachenko, I B; Medvedev, D S; Molodtsova, I D; Panteleev, S S; Sokolov, A Yu; Lyubashina, O A
2016-02-01
Effects of millimeter-wave electromagnetic radiation (40 GHz frequency, 0.01 mW power) on the spontaneous fi ring of convergent neurons of the spinal trigeminal nucleus and their responses to electrical stimulation of the dura mater were studied in neurophysiological experiments on rats. Irradiation of the area of cutaneous receptive fields of spinal trigeminal nucleus reversibly inhibited both spontaneous discharges and activity induced by electrical stimulation of the dura mater. The second and third exposures to electromagnetic radiation with an interval of 10 min were ineffective. These results suggest that suppression of neuronal excitability in the spinal trigeminal ganglion can be a mechanism of the anti-migraine effects of electromagnetic radiation observed in clinical practice.
Dlugach, Janna M.; Mishchenko, Michael I.
2017-01-01
In this paper, we discuss some aspects of numerical modeling of electromagnetic scattering by discrete random medium by using numerically exact solutions of the macroscopic Maxwell equations. Typical examples of such media are clouds of interstellar dust, clouds of interplanetary dust in the Solar system, dusty atmospheres of comets, particulate planetary rings, clouds in planetary atmospheres, aerosol particles with numerous inclusions and so on. Our study is based on the results of extensive computations of different characteristics of electromagnetic scattering obtained by using the superposition T-matrix method which represents a direct computer solver of the macroscopic Maxwell equations for an arbitrary multisphere configuration. As a result, in particular, we clarify the range of applicability of the low-density theories of radiative transfer and coherent backscattering as well as of widely used effective-medium approximations.
Hassan, A. M.; Douglas, J. F.; Garboczi, E. J.
2014-02-01
Carbon fiber reinforced polymer composites (CFRPC) are of great interest in the aerospace and automotive industries due to their exceptional mechanical properties. Carbon fibers are typically woven and inter-laced perpendicularly in warps and wefts to form a carbon fabric that can be embedded in a binding matrix. The warps and wefts can be interlaced in different patterns called weaving structures. The primary weaving structures are the plain, twill, and satin weaves, which give different mechanical composite properties. The goal of this work is to computationally investigate the dependence of CFRPC microwave and terahertz electromagnetic characteristics on weave structure. These bands are good candidates for the Nondestructive Evaluation (NDE) of CFRPC since their wavelengths are comparable to the main weave features. 3D full wave electromagnetic simulations of several different weave models have been performed using a finite element (FEM) simulator, which is able to accurately model the complex weave structure. The computational experiments demonstrate that the reflection of electromagnetic waves from CFRPC depend sensitively on weave structure. The reflection spectra calculated in this work can be used to identify the optimal frequencies for the NDE of each weave structure.
From Fibrevision To The Multi-Star Wideband Network
Wood, R.; Moore, D.
1984-03-01
Following experience gained with the Fibrevision cable TV trial at Milton Keynes the implementation of a large scale multi-star wideband local network is being investigated by British Telecom. An update on the Fibrevision trial is given followed by an outline description of a future multi-star wideband network.
Analysis and interpretation of the model of a Faraday cage for electromagnetic compatibility testing
Directory of Open Access Journals (Sweden)
Nenad V. Munić
2014-02-01
Full Text Available In order to improve the work of the Laboratory for Electromagnetic Compatibility Testing in the Technical Test Center (TTC, we investigated the influence of the Faraday cage on measurement results. The primary goal of this study is the simulation of the fields in the cage, especially around resonant frequencies, in order to be able to predict results of measurements of devices under test in the anechoic chamber or in any other environment. We developed simulation (computer models of the cage step by step, by using the Wipl-D program and by comparing the numerical results with measurements as well as by resolving difficulties due to the complex structure and imperfections of the cage. The subject of this paper is to present these simulation models and the corresponding results of the computations and measurements. Construction of the cage The cage is made of steel plates with the dimensions 1.25 m x 2.5 m. The base of the cage is a square; the footprint interior dimensions are 3.76 m x 3.76 m, and the height is 2.5 m. The cage ceiling is lowered by plasticized aluminum strips. The strips are loosely attached to the carriers which are screwed to the ceiling. The cage has four ventilation openings (two on the ceiling and two on one wall, made of honeycomb waveguide holes. In one corner of the cage, there is a single door with springs made of beryllium bronze. For frequencies of a few tens of MHz, the skin effect is fully developed in the cage walls. By measuring the input impedance of the wire line parallel to a wall of the cage, we calculated the surface losses of the cage plates. In addition, we used a magnetic probe to detect shield discontinuities. We generated a strong current at a frequency of 106 kHz outside the cage and measured the magnetic field inside the cage at the places of cage shield discontinuities. In this paper, we showed the influence of these places on the measurement results, especially on the qualitative and quantitative
Directory of Open Access Journals (Sweden)
Fulya ÇALLIALP KUNTER
2017-08-01
Full Text Available A major factor of anxiety and speculation come from electromagnetic fields which represent one of the most common and fastest increasing environmental issues. The purpose of this work is to examine existing electric and magnetic fields’ levels in a typical house and an office at very low frequency, and comparing the measurement results with the prior studies and also with the ICNIRP standard limits. This study also comprises the three phase conductors’ electromagnetic fields analysis at a point. As a result, it is observed that the measured values are approaching to the calculated ones.
Electromagnetic modelling of a space-borne far-infrared interferometer
Donohoe, Anthony; O'Sullivan, Créidhe; Murphy, J. Anthony; Bracken, Colm; Savini, Giorgio; Pascale, Enzo; Ade, Peter; Sudiwala, Rashmi; Hornsby, Amber
2016-02-01
In this paper I will describe work done as part of an EU-funded project `Far-infrared space interferometer critical assessment' (FISICA). The aim of the project is to investigate science objectives and technology development required for the next generation THz space interferometer. The THz/FIR is precisely the spectral region where most of the energy from stars, exo-planetary systems and galaxy clusters deep in space is emitted. The atmosphere is almost completely opaque in the wave-band of interest so any observation that requires high quality data must be performed with a space-born instrument. A space-borne far infrared interferometer will be able to answer a variety of crucial astrophysical questions such as how do planets and stars form, what is the energy engine of most galaxies and how common are the molecule building blocks of life. The FISICA team have proposed a novel instrument based on a double Fourier interferometer that is designed to resolve the light from an extended scene, spectrally and spatially. A laboratory prototype spectral-spatial interferometer has been constructed to demonstrate the feasibility of the double-Fourier technique at far infrared wavelengths (0.15 - 1 THz). This demonstrator is being used to investigate and validate important design features and data-processing methods for future instruments. Using electromagnetic modelling techniques several issues related to its operation at long baselines and wavelengths, such as diffraction, have been investigated. These are critical to the design of the concept instrument and the laboratory testbed.
Effects of electromagnetic fields on bone loss in hyperthyroidism rat model.
Liu, Chaoxu; Zhang, Yingchi; Fu, Tao; Liu, Yang; Wei, Sheng; Yang, Yong; Zhao, Dongming; Zhao, Wenchun; Song, Mingyu; Tang, Xiangyu; Wu, Hua
2017-02-01
Optimal therapeutics for hyperthyroidism-induced osteoporosis are still lacking. As a noninvasive treatment, electromagnetic fields (EMF) have been proven to be effective for treating osteoporosis in non-hyperthyroidism conditions. We herein systematically evaluated the reduced effects of EMF on osteoporosis in a hyperthyroidism rat model. With the use of Helmholtz coils and an EMF stimulator, 15 Hz/1 mT EMF was generated. Forty-eight 5-month-old male Sprague-Dawley rats were randomly divided into four different groups: control, levothyroxine treated (L-T4), EMF exposure + levothyroxine (EMF + L-T4), and EMF exposure without levothyroxine administration (EMF). All rats were treated with L-T4 (100 mg/day) except those in control and EMF groups. After 12 weeks, the results obtained from bone mineral density analyses and bone mechanical measurements showed significant differences between L-T4 and EMF + L-T4 groups. Micro CT and bone histomorphometric analyses indicated that trabecular bone mass and architecture in distal femur and proximal tibia were augmented and restored partially in EMF + L-T4 group. In addition, bone thyroid hormone receptors (THR) expression of hyperthyroidism rats was attenuated in EMF + L-T4 group, compared to control group, which was not observed in L-T4 group. According to these results, we concluded that 15 Hz/1 mT EMF significantly inhibited bone loss and micro architecture deterioration in hyperthyroidism rats, which might occur due to reduced THR expression caused by EMF exposure. Bioelectromagnetics. 38:137-150, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Abdallh, A.; Crevecoeur, G.; Dupré, L.
2012-03-01
Magnetic material properties of an electromagnetic device can be recovered by solving an inverse problem where measurements are adequately interpreted by a mathematical forward model. The accuracy of these forward models dramatically affects the accuracy of the material properties recovered by the inverse problem. The more accurate the forward model is, the more accurate recovered data are. However, the more accurate ‘fine’ models demand a high computational time and memory storage. Alternatively, less accurate ‘coarse’ models can be used with a demerit of the high expected recovery errors. This paper uses the Bayesian approximation error approach for improving the inverse problem results when coarse models are utilized. The proposed approach adapts the objective function to be minimized with the a priori misfit between fine and coarse forward model responses. In this paper, two different electromagnetic devices, namely a switched reluctance motor and an EI core inductor, are used as case studies. The proposed methodology is validated on both purely numerical and real experimental results. The results show a significant reduction in the recovery error within an acceptable computational time.
Hejazin, Y.; Jones, W.; El-Nimri, S.
2012-12-01
The Aquarius/SAC-D ocean salinity measurement mission was launched into polar orbit during the summer of 2011. The prime sensor is an L-band radiometer/scatterometer developed jointly by NASA Goddard Space Flight Center and the Jet Propulsion Laboratory. This paper deals with the development of an ocean emissivity model using AQ radiometer brightness temperature (Tb) observations. This model calculates the ocean surface emissivity as a function of ocean salinity, sea surface temperature, surface wind speed and direction. One unique aspect of this model is that it calculates ocean emissivity over wide ranges of Earth incidence angles (EIAs) from nadir to > 60°and ocean wind speeds from 0 m/s to > 70 m/s. This physical electromagnetic model with empirical coefficients follows the form of Stogryn [1967] that treats the ocean as a mixture of foam and clean rough water. The CFRSL ocean surface emissivity (ɛocean) is modeled as a linear sum of foam (ɛfoam) and foam-free seawater (ɛrough) emissivities, according to ɛocean = FF * ɛfoam + (1 - FF) * ɛrough (1) where FF is the fractional area coverage by foam. The foam emissivity is modeled as ɛfoam = Q(freq, U10, EIA) (2) where Q( ) is the empirical dependence of foam emissivity on radiometer frequency, the 10-m neutral stability wind speed and EIA according to El-Nimri [2010]. Following Stogryn, the foam-free seawater emissivity (ɛrough) is modeled ɛrough = ɛsmooth +Δɛexcess (3) where ɛsmooth = (1 - Γ) is the smooth surface emissivity, Γ is the Fresnel power reflection coefficient, and Δɛexcess is the wind-induced excess emissivity, given by Δɛexcess = G(freq, U10, WDir, EIA) (4) Where G( ) is the empirical signature of foam-free rough ocean, which depends upon the surface wind speed and wind direction. This function is determined empirically from measured AQ radiometer Tb's associated with surface wind vector from collocated NOAA GDAS numerical weather model. Ocean emissivity calculations are compared
Milson, James L.
1990-01-01
Three activities involving electromagnetism are presented. Discussed are investigations involving the construction of an electromagnet, the effect of the number of turns of wire in the magnet, and the effect of the number of batteries in the circuit. Extension activities are suggested. (CW)
Computer modeling of electromagnetic problems using the geometrical theory of diffraction
Burnside, W. D.
1976-01-01
Some applications of the geometrical theory of diffraction (GTD), a high frequency ray optical solution to electromagnetic problems, are presented. GTD extends geometric optics, which does not take into account the diffractions occurring at edges, vertices, and various other discontinuities. Diffraction solutions, analysis of basic structures, construction of more complex structures, and coupling using GTD are discussed.
Electromagnetic properties of the deuteron in a relativistic one-boson exchange model
Tjon, J.A.; Zuilhof, M.J.
1979-01-01
The deuteron electric electromagnetic form factors are studied in a quasi-potential framework, where relativistic and meson-exchange contributions are treated consistently. At moderate momentum transfer the corrections to the static approximation are found to be significantly less than estimates
Model of Fabry-Pérot-type electromagnetic modes of a cylindrical nanowire
DEFF Research Database (Denmark)
Bordo, Vladimir
2010-01-01
The rigorous theory of normal electromagnetic modes of a cylindrical nanowire of finite length is developed. The exact integral equation which determines the solution of Maxwell's equations obeying the boundary conditions at the whole nanowire surface is derived. The nanowire normal (Fabry...... if one introduces an effective wavelength-dependent phase shift which can be determined from the calculation of the nanowire response function....
Directory of Open Access Journals (Sweden)
Irena Cosic
2016-06-01
Full Text Available The meaning and influence of light to biomolecular interactions, and consequently to health, has been analyzed using the Resonant Recognition Model (RRM. The RRM proposes that biological processes/interactions are based on electromagnetic resonances between interacting biomolecules at specific electromagnetic frequencies within the infra-red, visible and ultra-violet frequency ranges, where each interaction can be identified by the certain frequency critical for resonant activation of specific biological activities of proteins and DNA. We found that: (1 the various biological interactions could be grouped according to their resonant frequency into super families of these functions, enabling simpler analyses of these interactions and consequently analyses of influence of electromagnetic frequencies to health; (2 the RRM spectrum of all analyzed biological functions/interactions is the same as the spectrum of the sun light on the Earth, which is in accordance with fact that life is sustained by the sun light; (3 the water is transparent to RRM frequencies, enabling proteins and DNA to interact without loss of energy; (4 the spectrum of some artificial sources of light, as opposed to the sun light, do not cover the whole RRM spectrum, causing concerns for disturbance to some biological functions and consequently we speculate that it can influence health.
Bosanac, Slobodan Danko
2016-01-01
This book is devoted to theoretical methods used in the extreme circumstances of very strong electromagnetic fields. The development of high power lasers, ultrafast processes, manipulation of electromagnetic fields and the use of very fast charged particles interacting with other charges requires an adequate theoretical description. Because of the very strong electromagnetic field, traditional theoretical approaches, which have primarily a perturbative character, have to be replaced by descriptions going beyond them. In the book an extension of the semi-classical radiation theory and classical dynamics for particles is performed to analyze single charged atoms and dipoles submitted to electromagnetic pulses. Special attention is given to the important problem of field reaction and controlling dynamics of charges by an electromagnetic field.
Application of the perfectly matched layer in 2.5D marine controlled-source electromagnetic modeling
Li, Gang; Han, Bo
2017-09-01
For the traditional framework of EM modeling algorithms, the Dirichlet boundary is usually used which assumes the field values are zero at the boundaries. This crude condition requires that the boundaries should be sufficiently far away from the area of interest. Although cell sizes could become larger toward the boundaries as electromagnetic wave is propagated diffusively, a large modeling area may still be necessary to mitigate the boundary artifacts. In this paper, the complex frequency-shifted perfectly matched layer (CFS-PML) in stretching Cartesian coordinates is successfully applied to 2.5D frequency-domain marine controlled-source electromagnetic (CSEM) field modeling. By using this PML boundary, one can restrict the modeling area of interest to the target region. Only a few absorbing layers surrounding the computational area can effectively depress the artificial boundary effect without losing the numerical accuracy. A 2.5D marine CSEM modeling scheme with the CFS-PML is developed by using the staggered finite-difference discretization. This modeling algorithm using the CFS-PML is of high accuracy, and shows advantages in computational time and memory saving than that using the Dirichlet boundary. For 3D problem, this computation time and memory saving should be more significant.
Pajewski, Lara; Giannopoulos, Antonios; Sesnic, Silvestar; Randazzo, Andrea; Lambot, Sébastien; Benedetto, Francesco; Economou, Nikos
2017-04-01
This work aims at presenting the main results achieved by Working Group (WG) 3 "Electromagnetic methods for near-field scattering problems by buried structures; data processing techniques" of the COST (European COoperation in Science and Technology) Action TU1208 "Civil Engineering Applications of Ground Penetrating Radar" (www.GPRadar.eu, www.cost.eu). The main objective of the Action, started in April 2013 and ending in October 2017, is to exchange and increase scientific-technical knowledge and experience of Ground Penetrating Radar (GPR) techniques in civil engineering, whilst promoting in Europe the effective use of this safe non-destructive technique. The Action involves more than 150 Institutions from 28 COST Countries, a Cooperating State, 6 Near Neighbour Countries and 6 International Partner Countries. Among the most interesting achievements of WG3, we wish to mention the following ones: (i) A new open-source version of the finite-difference time-domain simulator gprMax was developed and released. The new gprMax is written in Python and includes many advanced features such as anisotropic and dispersive-material modelling, building of realistic heterogeneous objects with rough surfaces, built-in libraries of antenna models, optimisation of parameters based on Taguchi's method - and more. (ii) A new freeware CAD was developed and released, for the construction of two-dimensional gprMax models. This tool also includes scripts easing the execution of gprMax on multi-core machines or network of computers and scripts for a basic plotting of gprMax results. (iii) A series of interesting freeware codes were developed will be released by the end of the Action, implementing differential and integral forward-scattering methods, for the solution of simple electromagnetic problems by buried objects. (iv) An open database of synthetic and experimental GPR radargrams was created, in cooperation with WG2. The idea behind this initiative is to give researchers the
Energy Technology Data Exchange (ETDEWEB)
Yoon, Hyun Jin; Kim, Dong Il [Korea Maritime University, Busan (Korea, Republic of)
2004-10-15
The purpose of this simulation study is to design and fabricate an electromagnetic (EM) wave absorber in order to develop a wide-band absorber. We have proposed and modeled a bird-eye-type and cutting-cone-type EM wave absorber by using the equivalent material constants method (EMCM), and we simulated them by using a finite-difference time-domain (FDTD) method. A two or a three-dimensional simulation would be desirable to analyze the EM wave absorber characteristics and to develop new structures. The two-dimensional FDTD simulation requires less computer resources than a three-dimensional simulation to consider the structural effects of the EM wave absorbers. The numerical simulation by using the FDTD method shows propagating EM waves in various types of periodic structure EM wave absorbers. Simultaneously, a Fourier analysis is used to characterize the input pulse and the reflected EM waves for ferrite absorbers with various structures. The results have a wide-band reflection-reducing characteristic. The validity of the proposed model was confirmed by comparing the two-dimensional simulation with the experimental results. The simulations were carried out in the frequency band from 30 MHz to 10 GHz.
Lécureux, Marie; Enoch, Stefan; Deumié, Carole; Tayeb, Gérard
2014-10-01
Sunscreens protect from UV radiation, a carcinogen also responsible for sunburns and age-associated dryness. In order to anticipate the transmission of light through UV protection containing scattering particles, we implement electromagnetic models, using numerical methods for solving Maxwell's equations. After having our models validated, we compare several calculation methods: differential method, scattering by a set of parallel cylinders, or Mie scattering. The field of application and benefits of each method are studied and examples using the appropriate method are described.
Diffuse Scattering Model of Indoor Wideband Propagation
DEFF Research Database (Denmark)
Franek, Ondrej; Andersen, Jørgen Bach; Pedersen, Gert Frølund
2011-01-01
intensity in all locations eventually follows exponential decay with the same slope and approximately the same level for given delay. These observations are shown to be in good agreement with theory and previous measurements—the slopes of the decay curves for measurement, simulation and theory are found...... to be 18 dB, 19.4 dB and 20.2 dB per 100 ns, respectively. The remaining differences are further discussed and an additional case of spherical room is used to demonstrate the influence of the room shape on the results. It is concluded that the presented method is valid as a simple tool for use in indoor...
Computational electromagnetic-aerodynamics
Shang, Joseph J S
2016-01-01
Presents numerical algorithms, procedures, and techniques required to solve engineering problems relating to the interactions between electromagnetic fields, fluid flow, and interdisciplinary technology for aerodynamics, electromagnetics, chemical-physics kinetics, and plasmadynamics This book addresses modeling and simulation science and technology for studying ionized gas phenomena in engineering applications. Computational Electromagnetic-Aerodynamics is organized into ten chapters. Chapter one to three introduce the fundamental concepts of plasmadynamics, chemical-physics of ionization, classical magnetohydrodynamics, and their extensions to plasma-based flow control actuators, high-speed flows of interplanetary re-entry, and ion thrusters in space exploration. Chapter four to six explain numerical algorithms and procedures for solving Maxwell’s equation in the time domain for computational electromagnetics, plasma wave propagation, and the time-dependent c mpressible Navier-Stokes equation for aerodyn...
A Novel Monopulse Angle Estimation Method for Wideband LFM Radars
Directory of Open Access Journals (Sweden)
Yi-Xiong Zhang
2016-06-01
Full Text Available Traditional monopulse angle estimations are mainly based on phase comparison and amplitude comparison methods, which are commonly adopted in narrowband radars. In modern radar systems, wideband radars are becoming more and more important, while the angle estimation for wideband signals is little studied in previous works. As noise in wideband radars has larger bandwidth than narrowband radars, the challenge lies in the accumulation of energy from the high resolution range profile (HRRP of monopulse. In wideband radars, linear frequency modulated (LFM signals are frequently utilized. In this paper, we investigate the monopulse angle estimation problem for wideband LFM signals. To accumulate the energy of the received echo signals from different scatterers of a target, we propose utilizing a cross-correlation operation, which can achieve a good performance in low signal-to-noise ratio (SNR conditions. In the proposed algorithm, the problem of angle estimation is converted to estimating the frequency of the cross-correlation function (CCF. Experimental results demonstrate the similar performance of the proposed algorithm compared with the traditional amplitude comparison method. It means that the proposed method for angle estimation can be adopted. When adopting the proposed method, future radars may only need wideband signals for both tracking and imaging, which can greatly increase the data rate and strengthen the capability of anti-jamming. More importantly, the estimated angle will not become ambiguous under an arbitrary angle, which can significantly extend the estimated angle range in wideband radars.
An ultra-wideband pattern reconfigurable antenna based on graphene coating
Jiang, YanNan; Yuan, Rui; Gao, Xi; Wang, Jiao; Li, SiMin; Lin, Yi-Yu
2016-11-01
An ultra-wideband pattern reconfigurable antenna is proposed. The antenna is a dielectric coaxial hollow monopole with a cylindrical graphene-based impedance surface coating. It consists of a graphene sheet coated onto the inner surface of a cylindrical substrate and a set of independent polysilicon DC gating pads mounted on the outside of the cylindrical substrate. By changing the DC bias voltages to the different gating pads, the surface impedance of the graphene coating can be freely controlled. Due to the tunability of graphene's surface impedance, the radiation pattern of the proposed antenna can be reconfigured. A transmission line method is used to illustrate the physical mechanism of the proposed antenna. The results show that the proposed antenna can reconfigure its radiation pattern in the omnidirectional mode with the relative bandwidth of 58.5% and the directional mode over the entire azimuth plane with the relative bandwidth of 67%. Project supported by the National Natural Science Foundation of China (Grant Nos. 61661012, 61461016, and 61361005), the Natural Science Foundation of Guangxi, China (Grant Nos. 2015GXNSFBB139003 and 2014GXNSFAA118283), Program for Innovation Research Team of Guilin University of Electromagnetic Technology, China, and the Dean Project of Guangxi Key Laboratory of Wireless Wideband Communication and Signal Processing, China.
Energy Technology Data Exchange (ETDEWEB)
Vargas, Carlos E.; Bagatella-Flores, Norma [Universidad Veracruzana, Facultad de Fisica, Veracruz (Mexico); Velazquez, Victor [Universidad Nacional Autonoma de Mexico, Facultad de Ciencias, Mexico D.F. (Mexico); Lerma-Hernandez, Sergio [Universidad Veracruzana, Facultad de Fisica, Veracruz (Mexico); Universidad Nacional Autonoma de Mexico, Instituto de Ciencias Nucleares, Mexico D.F. (Mexico)
2017-04-15
The large collectivity observed in the rare-earth region of the nuclear landscape is well known. The microscopic studies are difficult to perform in this region due to the enormous size of the valence spaces, a problem that can be avoided by means of the use of symmetry-based models. Here we present calculations for electromagnetic properties of {sup 160-170}Dy nuclei within the pseudo-SU(3) scheme. The model Hamiltonian includes the preserving symmetry Q.Q term and the symmetry-breaking Nilsson and pairing terms, systematically parametrized for all members of the chain. The model is used to calculate B(E2) and B(M1) inter-band transition strengths between the ground state, γ and β-bands. In addition, we present results for quadrupole moments and g factors in these rotational bands. The results show that the pseudo-SU(3) shell model is a powerful microscopic theory for a description of electromagnetic properties of states in the normal parity sector in heavy deformed nuclei. (orig.)
Modeling and Measurement of Electromagnetic Fields Near LORAN-C and OMEGA Stations
1987-06-15
magnetic fields on the embryological development of fertilized chicken eggs. This effect was first reported by Delgado, et. al., (30) in 1982 and has since... Embryological Changes Induced by Weak, Extremely Low Frequency Electromagnetic Fields, J.Anat., 134, 533, 1982. 31. Ubeda, A., Leal, J., Trillo, M.A...experiments. One example is the finding that weak pulsed magnetic fields can induce embroyological changes in chicken eggs (30) (31). Some of the results
Graphene-based wideband metamaterial absorber for solar cells application
Rufangura, Patrick; Sabah, Cumali
2017-07-01
A wideband metamaterial (MTM) absorber based on a concentric ring resonator is discussed at visible frequencies. The proposed structure offers a wideband absorption response, where absorption of >70% is gained for the frequency ranging from 537.91 to 635.73 THz. The analysis is conducted on the components of the proposed structure to understand the origin of wideband absorption. Furthermore, a graphene monolayer sheet is integrated to the proposed MTM absorber to optimize its absorptivity, where the studies show enhancement of the absorptivity of the proposed structure up to 26% from its initial absorptivity. MTM absorbers of this kind have potential applications in solar cells.
Thomas, David T; Hartnett, James P; Hughes, William F
1973-01-01
The applications involving electromagnetic fields are so pervasive that it is difficult to estimate their contribution to the industrial output: generation of electricity, power transmission lines, electric motors, actuators, relays, radio, TV and microwave transmission and reception, magnetic storage, and even the mundane little magnet used to hold a paper note on the refrigerator are all electromagnetic in nature. One would be hard pressed to find a device that works without relaying on any electromagnetic principle or effect. This text provides a good theoretical understanding of the electromagnetic field equations but also treats a large number of applications. In fact, no topic is presented unless it is directly applicable to engineering design or unless it is needed for the understanding of another topic. In electrostatics, for example, the text includes discussions of photocopying, ink-jet printing, electrostatic separation and deposition, sandpaper production, paint spraying, and powder coating. In ma...
Backward Raman amplification in plasmas with chirped wideband pump and seed pulses
Wu, Zhao-Hui; Wei, Xiao-Feng; Zuo, Yan-Lei; Liu, Lan-Qin; Zhang, Zhi-Meng; Li, Min; Zhou, Yu-Liang; Su, Jing-Qin
2015-01-01
Chirped wideband pump and seed pulses are usually considered for backward Raman amplification (BRA) in plasmas to achieve an extremely high-power laser pulse. However, current theoretical models only contain either a chirped pump or a chirped seed. In this paper, modified three-wave coupling equations are proposed for the BRA in the plasmas with both chirped wideband pump and seed. The simulation results can more precisely describe the experiments, such as the Princeton University experiment. The optimized chirp and bandwidth are determined based on the simulation to enhance the output intensity and efficiency. Project supported by the National Natural Science Foundation of China (Grant No. 11305157) and the Development Foundation of China Academy of Engineering Physics Laboratory (CAEPL) (Grant No. 2013A0401019).
Transmit Beampattern Synthesis with Constant Beamwidth and Sidelobe Control for Wideband MIMO Radar
Directory of Open Access Journals (Sweden)
Pengcheng Gong
2014-01-01
Full Text Available A beampattern synthesis approach is proposed to design the power spectral density matrix (PSDM, which is chosen to achieve a given transmit beampattern in wideband multiple-input multiple-output (MIMO radar systems. The proposed approach focuses on transmit beampattern synthesis with constant beamwidth and sidelobe control. Moreover, the design problem is further converted to a convex optimization problem, which is solved efficiently via the modeling system CVX. In comparison to these recently developed wideband MIMO beampattern synthesis methods, the proposed approach maintains a constant beamwidth across the entire frequency band and provides a great improvement in sidelobe control. Numerical simulation results are obtained to validate the effectiveness of this approach.
Design of Wide-Band Bandpass Filter Using Composite Right/Left-Handed Transmission Line Structure
Directory of Open Access Journals (Sweden)
Baoping Ren
2016-01-01
Full Text Available A wide-band microstrip bandpass filter (BPF based on the improved composite right/left-handed transmission line (CRLH-TL structure is presented in this paper. Compared to the traditional CRLH-TL with via hole, the improved one is an all-planar structure, which owns the advantage of fabrication and loss. The equivalent lossless LC circuit model of the proposed structure is established. EM software Sonnet is adopted to design the wide-band filter with bandwidth of 1.4 GHz (from 1.9 GHz to 3.3 GHz. The circuit occupies only 20.6 × 12.8 mm2. Finally, the fabrication and measurement are implemented. A good agreement between simulation and measured results verifies the validity of the design methodology.
Hadjloum, Massinissa; El Gibari, Mohammed; Li, Hongwu; Daryoush, Afshin S.
2015-10-01
An ultra-wideband complex permittivity extraction method is reported here using numerical fitting of scattering parameters to measured results. A grounded coplanar waveguide transmission line is realized on an unknown dielectric material, whose dielectric constant and loss tangent are extracted by the best fitting of the simulated magnitude, |S21|, and phase, ϕ21, of forward scattering parameter using an electromagnetic full-wave simulator (high frequency structure simulator) to the measured results. The genetic algorithm is employed for optimum rapid extraction, where errors between the numerically simulated and measured S21 (|S21| and ϕ21) are minimized in an iterative manner. As long as the convergence criterion is not satisfied, modifications to dielectric properties are made with this genetic algorithm implemented in Matlab. Feasibility of this extraction technique is validated on benzocyclobutane polymer from 10 MHz to 40 GHz.
DEFF Research Database (Denmark)
Cermak, Daniel; Okutsu, Ayaka; Jørgensen, Stina Marie Hasse
2015-01-01
Daniel Cermak-Sassenrath, Ayaka Okutsu, Stina Hasse. Electromagnetic Landscape - In-between Signal, Noise and Environment. Installation and artist talk. 21th International Symposium on Electronic Art (ISEA) 2015, Vancouver, CAN, Aug 14-18, 2015.......Daniel Cermak-Sassenrath, Ayaka Okutsu, Stina Hasse. Electromagnetic Landscape - In-between Signal, Noise and Environment. Installation and artist talk. 21th International Symposium on Electronic Art (ISEA) 2015, Vancouver, CAN, Aug 14-18, 2015....
Study on thin wideband applicator for detecting blood characteristics in human body
Bamba, Kazuki; Kuki, Takao; Nikawa, Yoshio
2016-11-01
Preventive care as well as early detection method and monitoring technique for diseases are highly attracted attention to increase quality of life. Noninvasive measurement method for blood characteristics in body is expected by patients with kidney dysfunction. Complex permittivity of blood is changed a few present at 6GHz. This change is caused by the change of water and albumin contents in blood. In this study, to detect blood characteristics in human body, experiments with phantom model has been performed using thin wideband applicator for examining microwave transmission up to 6GHz. The thin wideband applicator has advantages for detecting living body information in detail. The thin wideband applicator is designed based on Antipodal Vivaldi Antenna and is not required any balun and is very easy handling. Using developed Antipodal Vivaldi Antenna, transmission coefficient can be obtained as a function of thickness of phantom model with high sensitivity. Using this method, highly sensitive sensor for obtaining characteristics of blood in body can be developed.
Seoane, F.; Macías, R.; Bragós, R.; Lindecrantz, K.
2011-11-01
In this work, the single Op-Amp with load-in-the-loop topology as a current source is revisited. This circuit topology was already used as a voltage-controlled current source (VCCS) in the 1960s but was left unused when the requirements for higher frequency arose among the applications of electrical bioimpedance (EBI). The aim of the authors is not only limited to show that with the currently available electronic devices it is perfectly viable to use this simple VCCS topology as a working current source for wideband spectroscopy applications of EBI, but also to identify the limitations and the role of each of the circuit components in the most important parameter of a current for wideband applications: the output impedance. The study includes the eventual presence of a stray capacitance and also an original enhancement, driving with current the VCCS. Based on the theoretical analysis and experimental measurements, an accurate model of the output impedance is provided, explaining the role of the main constitutive elements of the circuit in the source's output impedance. Using the topologies presented in this work and the proposed model, any electronic designer can easily implement a simple and efficient current source for wideband EBI spectroscopy applications, e.g. in this study, values above 150 kΩ at 1 MHz have been obtained, which to the knowledge of the authors are the largest values experimentally measured and reported for a current source in EBI at this frequency.
Wideband Single Crystal Transducer for Bone Characterization Project
National Aeronautics and Space Administration — TRS Technologies proposes to develop a very wideband ultrasound diagnostic tool for quantification of trabecular bone properties for astronauts in long term space...
Low-Power Wideband Digital Spectrometer for Planetary Science Project
National Aeronautics and Space Administration — The purpose of this project is to develop a wideband digital spectrometer to support space-born measurements of planetary atmospheric composition. The spectrometer...
Collaborative Visualization for Large-Scale Accelerator Electromagnetic Modeling (Final Report)
Energy Technology Data Exchange (ETDEWEB)
William J. Schroeder
2011-11-13
This report contains the comprehensive summary of the work performed on the SBIR Phase II, Collaborative Visualization for Large-Scale Accelerator Electromagnetic Modeling at Kitware Inc. in collaboration with Stanford Linear Accelerator Center (SLAC). The goal of the work was to develop collaborative visualization tools for large-scale data as illustrated in the figure below. The solutions we proposed address the typical problems faced by geographicallyand organizationally-separated research and engineering teams, who produce large data (either through simulation or experimental measurement) and wish to work together to analyze and understand their data. Because the data is large, we expect that it cannot be easily transported to each team member's work site, and that the visualization server must reside near the data. Further, we also expect that each work site has heterogeneous resources: some with large computing clients, tiled (or large) displays and high bandwidth; others sites as simple as a team member on a laptop computer. Our solution is based on the open-source, widely used ParaView large-data visualization application. We extended this tool to support multiple collaborative clients who may locally visualize data, and then periodically rejoin and synchronize with the group to discuss their findings. Options for managing session control, adding annotation, and defining the visualization pipeline, among others, were incorporated. We also developed and deployed a Web visualization framework based on ParaView that enables the Web browser to act as a participating client in a collaborative session. The ParaView Web Visualization framework leverages various Web technologies including WebGL, JavaScript, Java and Flash to enable interactive 3D visualization over the web using ParaView as the visualization server. We steered the development of this technology by teaming with the SLAC National Accelerator Laboratory. SLAC has a computationally
Sainath, Kamalesh
2015-01-01
We propose a full-wave pseudo-analytical numerical electromagnetic (EM) algorithm to model subsurface induction sensors, traversing planar-layered geological formations of arbitrary EM material anisotropy and loss, which are used, for example, in the exploration of hydrocarbon reserves. Unlike past pseudo-analytical planar-layered modeling algorithms that impose parallelism between the formation's bed junctions however, our method involves judicious employment of Transformation Optics techniques to address challenges related to modeling arbitrarily-oriented, relative slope (i.e., tilting) between said junctions. The algorithm exhibits this flexibility, both with respect to anisotropy in the formation layers as well as junction tilting, via employing special planar slabs that coat each "flattened" (i.e., originally tilted) planar interface, locally redirecting the incident wave within the coating slabs to cause wave fronts to interact with the flattened interfaces as if they were still tilted with a specific, ...
Gamayunov, K. V.; Khazanov, G. V.; Liemohn, M. W.; Fok, M.-C.; Ridley, A. J.
2009-01-01
Further development of our self-consistent model of interacting ring current (RC) ions and electromagnetic ion cyclotron (EMIC) waves is presented. This model incorporates large scale magnetosphere-ionosphere coupling and treats self-consistently not only EMIC waves and RC ions, but also the magnetospheric electric field, RC, and plasmasphere. Initial simulations indicate that the region beyond geostationary orbit should be included in the simulation of the magnetosphere-ionosphere coupling. Additionally, a self-consistent description, based on first principles, of the ionospheric conductance is required. These initial simulations further show that in order to model the EMIC wave distribution and wave spectral properties accurately, the plasmasphere should also be simulated self-consistently, since its fine structure requires as much care as that of the RC. Finally, an effect of the finite time needed to reestablish a new potential pattern throughout the ionosphere and to communicate between the ionosphere and the equatorial magnetosphere cannot be ignored.
Miri, Mehdi; Khavasi, Amin; Mehrany, Khashayar; Rashidian, Bizhan
2010-01-15
The transmission-line analogy of the planar electromagnetic reflection problem is exploited to obtain a transmission-line model that can be used to design effective, robust, and wideband interference-based matching stages. The proposed model based on a new definition for a scalar impedance is obtained by using the reflection coefficient of the zeroth-order diffracted plane wave outside the photonic crystal. It is shown to be accurate for in-band applications, where the normalized frequency is low enough to ensure that the zeroth-order diffracted plane wave is the most important factor in determining the overall reflection. The frequency limitation of employing the proposed approach is explored, highly dispersive photonic crystals are considered, and wideband matching stages based on binomial impedance transformers are designed to work at the first two photonic bands.
3D Finite Volume Modeling of ENDE Using Electromagnetic T-Formulation
Directory of Open Access Journals (Sweden)
Yue Li
2012-01-01
Full Text Available An improved method which can analyze the eddy current density in conductor materials using finite volume method is proposed on the basis of Maxwell equations and T-formulation. The algorithm is applied to solve 3D electromagnetic nondestructive evaluation (E’NDE benchmark problems. The computing code is applied to study an Inconel 600 work piece with holes or cracks. The impedance change due to the presence of the crack is evaluated and compared with the experimental data of benchmark problems No. 1 and No. 2. The results show a good agreement between both calculated and measured data.
Wideband pulse amplifiers for the NECTAr chip
Energy Technology Data Exchange (ETDEWEB)
Sanuy, A., E-mail: asanuy@ecm.ub.es [Dept. AM i Dept. ECM, Institut de Ciencies del Cosmos (ICC), Universitat de Barcelona. Marti i Franques 1, E08028, Barcelona (Spain); Delagnes, E. [IRFU/DSM/CEA, CE-Saclay, Bat. 141 SEN Saclay, F-91191, Gif-sur-Yvette (France); Gascon, D. [Dept. AM i Dept. ECM, Institut de Ciencies del Cosmos (ICC), Universitat de Barcelona. Marti i Franques 1, E08028, Barcelona (Spain); Sieiro, X. [Departament d' Electronica, Universitat de Barcelona. Marti i Franques 1, E08028, Barcelona (Spain); Bolmont, J.; Corona, P. [LPNHE, Universite Paris VI and Universite Paris VII and IN2P3/CNRS, Barre 12-22, 1er etage, 4 place Jussieu, 75252 Paris (France); Feinstein, F. [LUPM, Universite Montpellier II and IN2P3/CNRS, CC072, bat. 13, place Eugene Bataillon, 34095 Montpellier (France); Glicenstein, J-F. [IRFU/DSM/CEA, CE-Saclay, Bat. 141 SEN Saclay, F-91191, Gif-sur-Yvette (France); Naumann, C.L.; Nayman, P. [LPNHE, Universite Paris VI and Universite Paris VII and IN2P3/CNRS, Barre 12-22, 1er etage, 4 place Jussieu, 75252 Paris (France); Ribo, M. [Dept. AM i Dept. ECM, Institut de Ciencies del Cosmos (ICC), Universitat de Barcelona. Marti i Franques 1, E08028, Barcelona (Spain); and others
2012-12-11
The NECTAr collaboration's FE option for the camera of the CTA is a 16 bits and 1-3 GS/s sampling chip based on analog memories including most of the readout functions. This works describes the input amplifiers of the NECTAr ASIC. A fully differential wideband amplifier, with voltage gain up to 20 V/V and a BW of 400 MHz. As it is impossible to design a fully differential OpAmp with an 8 GHz GBW product in a 0.35 CMOS technology, an alternative implementation based on HF linearized transconductors is explored. The output buffer is a class AB miller operational amplifier, with special non-linear current boost.
Multichannel Baseband Processor for Wideband CDMA
Directory of Open Access Journals (Sweden)
Jalloul Louay MA
2005-01-01
Full Text Available The system architecture of the cellular base station modem engine (CBME is described. The CBME is a single-chip multichannel transceiver capable of processing and demodulating signals from multiple users simultaneously. It is optimized to process different classes of code-division multiple-access (CDMA signals. The paper will show that through key functional system partitioning, tightly coupled small digital signal processing cores, and time-sliced reuse architecture, CBME is able to achieve a high degree of algorithmic flexibility while maintaining efficiency. The paper will also highlight the implementation and verification aspects of the CBME chip design. In this paper, wideband CDMA is used as an example to demonstrate the architecture concept.
Multichannel Baseband Processor for Wideband CDMA
Jalloul, Louay M. A.; Lin, Jim
2005-12-01
The system architecture of the cellular base station modem engine (CBME) is described. The CBME is a single-chip multichannel transceiver capable of processing and demodulating signals from multiple users simultaneously. It is optimized to process different classes of code-division multiple-access (CDMA) signals. The paper will show that through key functional system partitioning, tightly coupled small digital signal processing cores, and time-sliced reuse architecture, CBME is able to achieve a high degree of algorithmic flexibility while maintaining efficiency. The paper will also highlight the implementation and verification aspects of the CBME chip design. In this paper, wideband CDMA is used as an example to demonstrate the architecture concept.
Ultra wideband technology for wireless sensor networks
Wang, Yue; Xiong, Weiming
2011-08-01
Wireless sensor networks (WSNs) have emerged as an important method for planetary surface exploration. To investigate the optimized wireless technology for WSNs, we summarized the key requirements of WSNs and justified ultra wideband (UWB) technology by comparing with other competitive wireless technologies. We also analyzed network topologies as well as physical and MAC layer designs of IEEE 802.15.4a standard, which adopted impulse radio UWB (IR-UWB) technology. Our analysis showed that IR-UWB-based 802.15.4a standard could enable robust communication, precise ranging, and heterogeneous networking for WSNs applications. The result of our present work implies that UWB-based WSNs can be applied to future planetary surface exploration.
Ultra-Wideband Transceivers for Cochlear Implants
Directory of Open Access Journals (Sweden)
Reisenzahn Alexander
2005-01-01
Full Text Available Ultra-wideband (UWB radio offers low power consumption, low power spectral density, high immunity against interference, and other benefits, not only for consumer electronics, but also for medical devices. A cochlear implant (CI is an electronic hearing apparatus, requiring a wireless link through human tissue. In this paper we propose an UWB link for a data rate of Mbps and a propagation distance up to 500 mm. Transmitters with step recovery diode and transistor pulse generators are proposed. Two types of antennas and their filter characteristics in the UWB spectrum will be discussed. An ultra-low-power back tunnel diode receiver prototype is described and compared with conventional detector receivers.
An Ultra-Wideband Millimeter-Wave Phased Array
Novak, Markus H.; Miranda, Felix A.; Volakis, John L.
2016-01-01
Wideband millimeter-wave arrays are of increasing importance due to their growing use in high data rate systems, including 5G communication networks. In this paper, we present a new class of ultra-wideband millimeter wave arrays that operate from nearly 20 GHz to 90 GHz. The array is based on tightly coupled dipoles. Feeding designs and fabrication challenges are presented, and a method for suppressing feed resonances is provided.
Petrov, P.; Newman, G. A.
2010-12-01
Quantitative imaging of the subsurface objects is essential part of modern geophysical technology important in oil and gas exploration and wide-range engineering applications. A significant advancement in developing a robust, high resolution imaging technology is concerned with using the different geophysical measurements (gravity, EM and seismic) sense the subsurface structure. A joint image of the subsurface geophysical attributes (velocity, electrical conductivity and density) requires the consistent treatment of the different geophysical data (electromagnetic and seismic) due to their differing physical nature - diffusive and attenuated propagation of electromagnetic energy and nonlinear, multiple scattering wave propagation of seismic energy. Recent progress has been reported in the solution of this problem by reducing the complexity of seismic wave field. Works formed by Shin and Cha (2009 and 2008) suggests that low-pass filtering the seismic trace via Laplace-Fourier transformation can be an effective approach for obtaining seismic data that has similar spatial resolution to EM data. The effect of Laplace- Fourier transformation on the low-pass filtered trace changes the modeling of the seismic wave field from multi-wave propagation to diffusion. The key benefit of transformation is that diffusive wave-field inversion works well for both data sets seismic (Shin and Cha, 2008) and electromagnetic (Commer and Newman 2008, Newman et al., 2010). Moreover the different data sets can also be matched for similar and consistent resolution. Finally, the low pass seismic image is also an excellent choice for a starting model when analyzing the entire seismic waveform to recover the high spatial frequency components of the seismic image; its reflectivity (Shin and Cha, 2009). Without a good starting model full waveform seismic imaging and migration can encounter serious difficulties. To produce seismic wave fields consistent for joint imaging in the Laplace
Christensen, Nikolaj K; Minsley, Burke J.; Christensen, Steen
2017-01-01
We present a new methodology to combine spatially dense high-resolution airborne electromagnetic (AEM) data and sparse borehole information to construct multiple plausible geological structures using a stochastic approach. The method developed allows for quantification of the performance of groundwater models built from different geological realizations of structure. Multiple structural realizations are generated using geostatistical Monte Carlo simulations that treat sparse borehole lithological observations as hard data and dense geophysically derived structural probabilities as soft data. Each structural model is used to define 3-D hydrostratigraphical zones of a groundwater model, and the hydraulic parameter values of the zones are estimated by using nonlinear regression to fit hydrological data (hydraulic head and river discharge measurements). Use of the methodology is demonstrated for a synthetic domain having structures of categorical deposits consisting of sand, silt, or clay. It is shown that using dense AEM data with the methodology can significantly improve the estimated accuracy of the sediment distribution as compared to when borehole data are used alone. It is also shown that this use of AEM data can improve the predictive capability of a calibrated groundwater model that uses the geological structures as zones. However, such structural models will always contain errors because even with dense AEM data it is not possible to perfectly resolve the structures of a groundwater system. It is shown that when using such erroneous structures in a groundwater model, they can lead to biased parameter estimates and biased model predictions, therefore impairing the model's predictive capability.
State of the art in electromagnetic modeling for the Compact Linear Collider
Energy Technology Data Exchange (ETDEWEB)
Candel, Arno; Kabel, Andreas; Lee, Lie-Quan; Li, Zenghai; Ng, Cho; Schussman, Greg; Ko, Kwok; /SLAC
2009-07-10
SLAC's Advanced Computations Department (ACD) has developed the parallel 3D electromagnetic time-domain code T3P for simulations of wakefields and transients in complex accelerator structures. T3P is based on state-of-the-art Finite Element methods on unstructured grids and features unconditional stability, quadratic surface approximation and up to 6th-order vector basis functions for unprecedented simulation accuracy. Optimized for large-scale parallel processing on leadership supercomputing facilities, T3P allows simulations of realistic 3D structures with fast turn-around times, aiding the design of the next generation of accelerator facilities. Applications include simulations of the proposed two-beam accelerator structures for the Compact Linear Collider (CLIC) - wakefield damping in the Power Extraction and Transfer Structure (PETS) and power transfer to the main beam accelerating structures are investigated.
Jadidi, Majid; Biat, Saeed Moghadas; Sameni, Hamid Reza; Safari, Manouchehr; Vafaei, Abbas Ali; Ghahari, Laya
2016-07-01
The main characteristic of mesenchymal stem cells (MSCs) is their ability to produce other cell types. Electromagnetic field (EMF) stimulates differentiation of MSCs into other cells. In this study, we investigated whether EMF can effect on the differentiation of MSCs into dopaminergic (DA) neurons. An EMF with a frequency of 50 Hz and two intensities of 40 and 400 µT 1hr/day was generated around the cells for a week. Afterwards, these cells were injected into the left ventricle of Parkinsonian rats. The rats survived for 2 weeks, and then sampling was performed. The injected cells differentiated into DA neurons and sporadically settled in the substantia nigra pars compacta (SNpc). Transplanted rats exhibited significant partial correction apomorphine-induced rotational behavior compared to Parkinsonian rats (5.0±0.1 vs 7.57±0.08). Results demonstrated that endogenous serum and brain derived neurotrophic factor (BDNF) were altered in all experimental groups. The greatest increase was in group of 400 µT EMF in comparison with Parkinsonian rats (398±15 vs. 312±11.79 pg ⁄ mg). Current study have shown that 6-Hydroxydopamine can cause severe loss of dopaminergic neurons (68±6.58), but injected MSCs that exposed to 40 and 400 µT EMF increased dopaminergic neurons in SNpc (108±2.33 & 126±3.89) (P<0.001). Electromagnetic fields with particular frequencies stimulate MSCs. So, these cells had anti-Parkinsonian properties in our studies.
Three-dimensional FDTD simulation of biomaterial exposure to electromagnetic nanopulses
Energy Technology Data Exchange (ETDEWEB)
Simicevic, Neven [Center for Applied Physics Studies, Louisiana Tech University, PO Box 10348, Ruston, LA 71272 (United States)
2005-11-07
Ultra-wideband (UWB) electromagnetic pulses of nanosecond duration, or nanopulses, have recently been approved by the Federal Communications Commission for a number of different applications. They are also being explored for applications in biotechnology and medicine. The simulation of the propagation of a nanopulse through biological matter, previously performed using a two-dimensional finite-difference time-domain (FDTD) method, has been extended here into a full three-dimensional computation. To account for the UWB frequency range, the geometrical resolution of the exposed sample was 0.25 mm and the dielectric properties of biological matter were accurately described in terms of the Debye model. The results obtained from the three-dimensional computation support the previously obtained results: the electromagnetic field inside a biological tissue depends on the incident pulse rise time and width, with increased importance of the rise time as the conductivity increases; no thermal effects are possible for the low pulse repetition rates, supported by recent experiments. New results show that the dielectric sample exposed to nanopulses behaves as a dielectric resonator. For a sample in a cuvette, we obtained the dominant resonant frequency and the Q-factor of the resonator.
DEFF Research Database (Denmark)
Cermak, Daniel; Okutsu, Ayaka; Hasse, Stina
2015-01-01
Electromagnetic Landscape demonstrates in direct, tangible and immediate ways effects of the disruption of the familiar. An ubiquitous technological medium, FM radio, is turned into an alien and unfamiliar one. Audience participation, the environment, radio signals and noise create a site...
... cancers. Studies in adults did not prove that EMF exposure causes cancer. Some people worry that wireless and cellular phones cause cancer or other health problems. The phones do give off radio-frequency energy (RF), a form of electromagnetic radiation. So far, scientific evidence has not found a ...
National Research Council Canada - National Science Library
V. T. Erofeenko
2015-01-01
.... Under the calculations of parameters, taking into account a multiple scattering of the field between particles, a new type of addition theorems, connecting basic spherical electromagnetic fields...
Gray, Robin B.
1960-01-01
Hovering and steady low-speed forward-flight tests were run on a 4-foot-diameter rotor at a ground height of 1 rotor radius. The two blades had a 2 to 1 taper ratio and were mounted in a see-saw hub. The solidity ratio was 0.05. Measurements were made of the rotor rpm, collective pitch, and forward-flight velocity. Smoke was introduced into the tip vortex and the resulting vortex pattern was photographed from two positions. Using the data obtained from these photographs, wire models of the tip vortex configurations were constructed and the distribution of the normal component of induced velocity at the blade feathering axis that is associated with these tip vortex configurations was experimentally determined at 450 increments in azimuth position from this electromagnetic analog. Three steady-state conditions were analyzed. The first was hovering flight; the second, a flight velocity just under the wake "tuck under" speed; and the third, a flight velocity just above this speed. These corresponded to advance ratios of 0, 0.022, and 0.030 (or ratios of forward velocity to calculated hovering induced velocity of approximately 0, 0.48, and 0.65), respectively, for the model test rotor. Cross sections of the wake at 450 intervals in azimuth angle as determined from the path of the tip vortex are presented graphically for all three cases. The nondimensional normal component of the induced velocity that is associated with the tip vortex as determined by an electromagnetic analog at 450 increments in azimuth position and at the blade feathering axis is presented graphically. It is shown that the mean value of this component of the induced velocity is appreciably less after tuck-under than before. It is concluded that this method yields results of engineering accuracy and is a very useful means of studying vortex fields.
Apparatus And Method For Wireless Monitoring Using Ultra-wideband Frequencies
Sana, Furrukh
2015-04-23
A system for and a method of wirelessly monitoring one or more patients can include transmitting ultra-wideband pulses toward the one or more patients, receiving ultra-wideband signals, and sampling the ultra-wideband signals. Sampling the ultra-wideband pulses can be performed with a sample rate that is less than the Nyquist rate. Impulse response can be estimated and/or recovered by exploiting sparsity of the impulse response.
Martens, Astrid L|info:eu-repo/dai/nl/375286063; Slottje, Pauline|info:eu-repo/dai/nl/299345351; Timmermans, Danielle R M; Kromhout, Hans|info:eu-repo/dai/nl/074385224; Reedijk, Marije|info:eu-repo/dai/nl/413319431; Vermeulen, Roel C H|info:eu-repo/dai/nl/216532620; Smid, Tjabe
2017-01-01
We assessed associations between modeled and perceived exposure to radio-frequency electromagnetic fields (RF-EMF) from mobile-phone base stations and the development of nonspecific symptoms and sleep disturbances over time. A population-based Dutch cohort study, the Occupational and Environmental
Woelders, H.; Wit, de A.A.C.; Lourens, A.; Stockhofe, N.; Engel, B.; Hulsegge, B.; Schokker, D.; Heijningen, van P.; Vossen, S.; Bekers, D.; Zwamborn, P.
2017-01-01
The objective of this study is to investigate possible biological effects of radiofrequency electromagnetic fields (RF-EMF) as used in modern wireless telecommunication in a well-controlled experimental environment using chicken embryo development as animal model. Chicken eggs were incubated under
Cai, Hongzhu; Hu, Xiangyun; Xiong, Bin; Zhdanov, Michael S.
2017-12-01
The induced polarization (IP) method has been widely used in geophysical exploration to identify the chargeable targets such as mineral deposits. The inversion of the IP data requires modeling the IP response of 3D dispersive conductive structures. We have developed an edge-based finite-element time-domain (FETD) modeling method to simulate the electromagnetic (EM) fields in 3D dispersive medium. We solve the vector Helmholtz equation for total electric field using the edge-based finite-element method with an unstructured tetrahedral mesh. We adopt the backward propagation Euler method, which is unconditionally stable, with semi-adaptive time stepping for the time domain discretization. We use the direct solver based on a sparse LU decomposition to solve the system of equations. We consider the Cole-Cole model in order to take into account the frequency-dependent conductivity dispersion. The Cole-Cole conductivity model in frequency domain is expanded using a truncated Padé series with adaptive selection of the center frequency of the series for early and late time. This approach can significantly increase the accuracy of FETD modeling.
Accioly, Antonio; Correia, Gilson; de Brito, Gustavo P.; de Almeida, José; Herdy, Wallace
2017-03-01
Simple prescriptions for computing the D-dimensional classical potential related to electromagnetic and gravitational models, based on the functional generator, are built out. These recipes are employed afterward as a support for probing the premise that renormalizable higher-order systems have a finite classical potential at the origin. It is also shown that the opposite of the conjecture above is not true. In other words, if a higher-order model is renormalizable, it is necessarily endowed with a finite classical potential at the origin, but the reverse of this statement is untrue. The systems used to check the conjecture were D-dimensional fourth-order Lee-Wick electrodynamics, and the D-dimensional fourth- and sixth-order gravity models. A special attention is devoted to New Massive Gravity (NMG) since it was the analysis of this model that inspired our surmise. In particular, we made use of our premise to resolve trivially the issue of the renormalizability of NMG, which was initially considered to be renormalizable, but it was shown some years later to be non-renormalizable. We remark that our analysis is restricted to local models in which the propagator has simple and real poles.
Performance of a Wideband Cadmium Ferrite Microstrip Patch Antenna in the X-Band Region
Bhongale, S. R.; Ingavale, H. R.; Shinde, T. J.; Vasambekar, P. N.
2017-10-01
Magnesium-substituted cadmium ferrites with the chemical composition Mg x Cd1-x Fe2O4 (x = 0, 0.4 and 0.8) were prepared by an oxalate co-precipitation method under microwave sintering technique. The structural properties of ferrites were studied by x-ray diffraction, Fourier transform infrared spectroscopy and field emission scanning electron microscope techniques. The scattering parameters such as reflection coefficient (S 11) and transmission coefficient (S 21) at microwave frequencies of palletized ferrites were measured by using a vector network analyzer. The software module 85071E followed by scattering parameters was used to determine the electromagnetic properties of the ferrites. The values determined for electromagnetic parameters such as the real part of permittivity (ɛ'), permeability (μ'), dielectric loss tangent (tanδ e) and magnetic loss tangent (tanδ m) of synthesized ferrites were used to design rectangular microstrip patch antennas. The performance of magnesium-substituted Cd ferrites as substrate for microstrip patch antennas was investigated. The antenna parameters such as return loss, bandwidth, voltage standing wave ratio, Smith chart and radiation pattern were studied. It is found that the Cd ferrite has applicability as a substrate for wideband antennas in the X-band region.
Performance of a Wideband Cadmium Ferrite Microstrip Patch Antenna in the X-Band Region
Bhongale, S. R.; Ingavale, H. R.; Shinde, T. J.; Vasambekar, P. N.
2018-01-01
Magnesium-substituted cadmium ferrites with the chemical composition Mg x Cd1- x Fe2O4 ( x = 0, 0.4 and 0.8) were prepared by an oxalate co-precipitation method under microwave sintering technique. The structural properties of ferrites were studied by x-ray diffraction, Fourier transform infrared spectroscopy and field emission scanning electron microscope techniques. The scattering parameters such as reflection coefficient ( S 11) and transmission coefficient ( S 21) at microwave frequencies of palletized ferrites were measured by using a vector network analyzer. The software module 85071E followed by scattering parameters was used to determine the electromagnetic properties of the ferrites. The values determined for electromagnetic parameters such as the real part of permittivity ( ɛ'), permeability ( μ'), dielectric loss tangent (tan δ e) and magnetic loss tangent (tan δ m) of synthesized ferrites were used to design rectangular microstrip patch antennas. The performance of magnesium-substituted Cd ferrites as substrate for microstrip patch antennas was investigated. The antenna parameters such as return loss, bandwidth, voltage standing wave ratio, Smith chart and radiation pattern were studied. It is found that the Cd ferrite has applicability as a substrate for wideband antennas in the X-band region.
A Channelization-Based DOA Estimation Method for Wideband Signals.
Guo, Rui; Zhang, Yue; Lin, Qianqiang; Chen, Zengping
2016-07-04
In this paper, we propose a novel direction of arrival (DOA) estimation method for wideband signals with sensor arrays. The proposed method splits the wideband array output into multiple frequency sub-channels and estimates the signal parameters using a digital channelization receiver. Based on the output sub-channels, a channelization-based incoherent signal subspace method (Channelization-ISM) and a channelization-based test of orthogonality of projected subspaces method (Channelization-TOPS) are proposed. Channelization-ISM applies narrowband signal subspace methods on each sub-channel independently. Then the arithmetic mean or geometric mean of the estimated DOAs from each sub-channel gives the final result. Channelization-TOPS measures the orthogonality between the signal and the noise subspaces of the output sub-channels to estimate DOAs. The proposed channelization-based method isolates signals in different bandwidths reasonably and improves the output SNR. It outperforms the conventional ISM and TOPS methods on estimation accuracy and dynamic range, especially in real environments. Besides, the parallel processing architecture makes it easy to implement on hardware. A wideband digital array radar (DAR) using direct wideband radio frequency (RF) digitization is presented. Experiments carried out in a microwave anechoic chamber with the wideband DAR are presented to demonstrate the performance. The results verify the effectiveness of the proposed method.
A Channelization-Based DOA Estimation Method for Wideband Signals
Guo, Rui; Zhang, Yue; Lin, Qianqiang; Chen, Zengping
2016-01-01
In this paper, we propose a novel direction of arrival (DOA) estimation method for wideband signals with sensor arrays. The proposed method splits the wideband array output into multiple frequency sub-channels and estimates the signal parameters using a digital channelization receiver. Based on the output sub-channels, a channelization-based incoherent signal subspace method (Channelization-ISM) and a channelization-based test of orthogonality of projected subspaces method (Channelization-TOPS) are proposed. Channelization-ISM applies narrowband signal subspace methods on each sub-channel independently. Then the arithmetic mean or geometric mean of the estimated DOAs from each sub-channel gives the final result. Channelization-TOPS measures the orthogonality between the signal and the noise subspaces of the output sub-channels to estimate DOAs. The proposed channelization-based method isolates signals in different bandwidths reasonably and improves the output SNR. It outperforms the conventional ISM and TOPS methods on estimation accuracy and dynamic range, especially in real environments. Besides, the parallel processing architecture makes it easy to implement on hardware. A wideband digital array radar (DAR) using direct wideband radio frequency (RF) digitization is presented. Experiments carried out in a microwave anechoic chamber with the wideband DAR are presented to demonstrate the performance. The results verify the effectiveness of the proposed method. PMID:27384566
A Channelization-Based DOA Estimation Method for Wideband Signals
Directory of Open Access Journals (Sweden)
Rui Guo
2016-07-01
Full Text Available In this paper, we propose a novel direction of arrival (DOA estimation method for wideband signals with sensor arrays. The proposed method splits the wideband array output into multiple frequency sub-channels and estimates the signal parameters using a digital channelization receiver. Based on the output sub-channels, a channelization-based incoherent signal subspace method (Channelization-ISM and a channelization-based test of orthogonality of projected subspaces method (Channelization-TOPS are proposed. Channelization-ISM applies narrowband signal subspace methods on each sub-channel independently. Then the arithmetic mean or geometric mean of the estimated DOAs from each sub-channel gives the final result. Channelization-TOPS measures the orthogonality between the signal and the noise subspaces of the output sub-channels to estimate DOAs. The proposed channelization-based method isolates signals in different bandwidths reasonably and improves the output SNR. It outperforms the conventional ISM and TOPS methods on estimation accuracy and dynamic range, especially in real environments. Besides, the parallel processing architecture makes it easy to implement on hardware. A wideband digital array radar (DAR using direct wideband radio frequency (RF digitization is presented. Experiments carried out in a microwave anechoic chamber with the wideband DAR are presented to demonstrate the performance. The results verify the effectiveness of the proposed method.
Wideband dispersion reversal of lamb waves.
Xu, Kailiang; Ta, Dean; Hu, Bo; Laugier, Pascal; Wang, Weiqi
2014-06-01
Ultrasonic guided waves have been widely acknowledged as the most promising tools for nondestructive evaluation (NDE). However, because of the multimodal dispersion, the received guided modes usually overlap in both time and frequency, which highly complicates the mode separation and signal interpretation. The time-reversal technique can be used to realize the time recompression of the Lamb waves, but because of the multimode excitation and reception, it still may not be able to remove the mode ambiguity and achieve the pure pulse compression. With the goal of overcoming this limitation, a wideband dispersion reversal (WDR) technique is proposed. The technique makes use of a priori knowledge of the guided dispersion characteristics to synthesize the corresponding dispersion reversal excitations, which are able to selectively excite the self-compensation pure mode pulse. The theoretical basis of the technique is thoroughly described. A two-dimensional finite-difference time-domain (2D-FDTD) method is employed to simulate the propagation of two fundamental Lamb modes, the symmetrical S0 and antisymmetrical A0 modes in a steel plate. The proposed method was verified through experimental investigation. Finally, the advantages and potential applications of the method are briefly discussed.
Quadrature frequency generation for wideband wireless applications
Elbadry, Mohammad
2015-01-01
This book describes design techniques for wideband quadrature LO generation for software defined radio transceivers, with frequencies spanning 4GHz to around 80GHz. The authors discuss several techniques that can be used to reduce the cost and/or power consumption of one of the key components of the RF front-end, the quadrature local oscillator. The discussion includes simple and useful insights into quadrature VCOs, along with numerous examples of practical techniques. · Provides a thorough survey of quadrature LO generation; · Offers an intuitive explanation of the different quadrature VCO architectures, and categorization of these architectures based on the intuitive explanations; · Describes a new technique for simultaneous quadrature LO generation for channelized receivers; · Includes simple and detailed explanation of two new quadrature VCO techniques that improve phase-noise performance of QVCOs, while providing a large tuning rang...
Analysis of wideband radio channel properties for planning of next-generation wireless networks
Zhang, H.; Mantel, O.C.; Kwakkernaat, M.R.J.A.E.; Herben, M.
2009-01-01
This paper analyzes the application of wideband channel properties in the radio planning of wideband wireless networks. The definition and prediction of delay spread (DS) and angular spread (AS) are first discussed. A wideband high-resolution measurement campaign is then described which was
Radiating Fröhlich system as a model of cellular electromagnetism.
Šrobár, Fedor
2015-01-01
Oscillating polar entities inside the biological cells, most notably microtubules, are bound to emit electromagnetic radiation. This phenomenon is described by Fröhlich kinetic equations expressing, in terms of quantum occupancy numbers of each discrete collective oscillatory mode, the balance between incoming metabolic energy flow and losses due to linear and non-linear interactions with the thermal environs of the oscillators. Hitherto, radiation losses have not been introduced as part of the balance; it was assumed that they were proportional to the modal occupation numbers. It is demonstrated that this formulation is incorrect and the radiation losses must be taken into account in the kinetic equations explicitly. Results of a numerical study of kinetic equations, enlarged in this sense, are presented for the case of three coupled oscillators which was shown to evince the essential attributes of the Fröhlich systems. Oscillator eigenfrequencies were chosen, alternatively, to fall into the MHz and the THz frequency domains. It was found that large radiation levels destroy the main hallmark of the Fröhlich systems, the energy condensation in the lowest frequency mode. The system then functions as a convertor of metabolic energy into radiation. At more moderate radiation levels, both energy condensation and significant radiation can coexist. Possible consequences for the cell physiology are suggested.
Modelling of Electromagnetic Scattering by a Hypersonic Cone-Like Body in Near Space
Directory of Open Access Journals (Sweden)
Ji-Wei Qian
2017-01-01
Full Text Available A numerical procedure for analysis of electromagnetic scattering by a hypersonic cone-like body flying in the near space is presented. First, the fluid dynamics equation is numerically solved to obtain the electron density, colliding frequency, and the air temperature around the body. They are used to calculate the complex relative dielectric constants of the plasma sheath. Then the volume-surface integral equation method is adopted to analyze the scattering properties of the body plus the plasma sheath. The Backscattering Radar Cross-Sections (BRCS for the body flying at different speeds, attack angles, and elevations are examined. Numerical results show that the BRCS at a frequency higher than 300 MHz is only slightly affected if the speed is smaller than 7 Mach. The BRCS at 1 GHz would be significantly reduced if the speed is greater than 7 Mach and is continuously increased, which can be attributed to the absorption by the lossy plasma sheath. Typically, the BRCS is influenced by 5~10 dBm for a change of attack angle within 0~15 degrees, or for a change of elevation within 30~70 km above the ground.
Masongsong, E. V.; Glesener, G. B.; Angelopoulos, V.; Lilensten, J.; Bingley, L.
2015-12-01
The Planeterrella can be used as an analog to help students visualize and understand the electromagnetic processes driving space weather that affect our daily lives. Solar storms and solar wind charged particles (plasma) cause "space weather" via their interaction with Earth's protective magnetic shield, the magnetosphere. The Planeterrella uses magnetized spheres in a vacuum chamber to demonstrate solar wind energy transfer to Earth and planets, with polar localization of aurora due to charged particles traveling along geomagnetic field lines. The Planeterrella provides a unique opportunity to experience and manipulate plasma, the dominant form of matter in our universe, yet seldom observable on Earth. Severe space weather events produce spectacular auroral displays as well as devastating consequences: radiation exposure to air and space travelers, prolonged radio blackouts, and damage to critical GPS and communications satellites. We will (1) discuss ways in which the Planeterrella may be most useful in classroom settings, including large lecture halls, laboratories, and small discussion sessions; (2) provide information on how instructors can produce their own Planeterrella for their courses; and (3) invite meeting attendees to engage in a discussion on how we might be able to improve on the current design of the Planeterrella, and how to reach students in more parts of the world.
Directory of Open Access Journals (Sweden)
Majid Jadidi
2016-07-01
Full Text Available Objective(s: The main characteristic of mesenchymal stem cells (MSCs is their ability to produce other cell types. Electromagnetic field (EMF stimulates differentiation of MSCs into other cells. In this study, we investigated whether EMF can effect on the differentiation of MSCs into dopaminergic (DA neurons. Materials and Methods: An EMF with a frequency of 50 Hz and two intensities of 40 and 400 µT 1hr/day was generated around the cells for a week. Afterwards, these cells were injected into the left ventricle of Parkinsonian rats. The rats survived for 2 weeks, and then sampling was performed. Results: The injected cells differentiated into DA neurons and sporadically settled in the substantia nigra pars compacta (SNpc. Transplanted rats exhibited significant partial correction apomorphine-induced rotational behavior compared to Parkinsonian rats (5.0±0.1 vs 7.57±0.08. Results demonstrated that endogenous serum and brain derived neurotrophic factor (BDNF were altered in all experimental groups. The greatest increase was in group of 400 µT EMF in comparison with Parkinsonian rats (398±15 vs. 312±11.79 pg ⁄ mg. Current study have shown that 6-Hydroxydopamine can cause severe loss of dopaminergic neurons (68±6.58, but injected MSCs that exposed to 40 and 400 µT EMF increased dopaminergic neurons in SNpc ( 108±2.33 & 126±3.89 (P
De Conti, Alberto; Silveira, Fernando H.; Visacro, Silvério
2014-05-01
This paper investigates the influence of corona on currents and electromagnetic fields predicted by a return-stroke model that represents the lightning channel as a nonuniform transmission line with time-varying (nonlinear) resistance. The corona model used in this paper allows the calculation of corona currents as a function of the radial electric field in the vicinity of the channel. A parametric study is presented to investigate the influence of corona parameters, such as the breakdown electric field and the critical electric field for the stable propagation of streamers, on predicted currents and electromagnetic fields. The results show that, regardless of the assumed corona parameters, the incorporation of corona into the nonuniform and nonlinear transmission line model under investigation modifies the model predictions so that they consistently reproduce most of the typical features of experimentally observed lightning electromagnetic fields and return-stroke speed profiles. In particular, it is shown that the proposed model leads to close vertical electric fields presenting waveforms, amplitudes, and decay with distance in good agreement with dart leader electric field changes measured in triggered lightning experiments. A comparison with popular engineering return-stroke models further confirms the model's ability to predict consistent electric field waveforms in the close vicinity of the channel. Some differences observed in the field amplitudes calculated with the different models can be related to the fact that current distortion, while present in the proposed model, is ultimately neglected in the considered engineering return-stroke models.
Ultra-wideband spectral analysis using S2 technology
Energy Technology Data Exchange (ETDEWEB)
Krishna Mohan, R. [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States)]. E-mail: krishna@spectrum.montana.edu; Chang, T. [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); Tian, M. [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); Department of Physics, Montana State University, Bozeman, MT 59717 (United States); Bekker, S. [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); Olson, A. [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); Ostrander, C. [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); Khallaayoun, A. [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); Dollinger, C. [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); Babbitt, W.R. [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); Department of Physics, Montana State University, Bozeman, MT 59717 (United States); Cole, Z. [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); S2 Corporation, Bozeman, MT 59718 (United States); Reibel, R.R. [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); S2 Corporation, Bozeman, MT 59718 (United States); Merkel, K.D. [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); S2 Corporation, Bozeman, MT 59718 (United States); Sun, Y. [Department of Physics, Montana State University, Bozeman, MT 59717 (United States); Cone, R. [Department of Physics, Montana State University, Bozeman, MT 59717 (United States); Schlottau, F. [University of Colorado, Boulder, CO 80309 (United States); Wagner, K.H. [University of Colorado, Boulder, CO 80309 (United States)
2007-11-15
This paper outlines the efforts to develop an ultra-wideband spectrum analyzer that takes advantage of the broad spectral response and fine spectral resolution ({approx}25 kHz) of spatial-spectral (S2) materials. The S2 material can process the full spectrum of broadband microwave transmissions, with adjustable time apertures (down to 100 {mu}s) and fast update rates (up to 1 kHz). A cryogenically cooled Tm:YAG crystal that operates on microwave signals modulated onto a stabilized optical carrier at 793 nm is used as the core for the spectrum analyzer. Efforts to develop novel component technologies that enhance the performance of the system and meet the application requirements are discussed, including an end-to-end device model for parameter optimization. We discuss the characterization of new ultra-wide bandwidth S2 materials. Detection and post-processing module development including the implementation of a novel spectral recovery algorithm using field programmable gate array technology (FPGA) is also discussed.
Wideband quin-stable energy harvesting via combined nonlinearity
Directory of Open Access Journals (Sweden)
Chen Wang
2017-04-01
Full Text Available In this work, we propose a wideband quintuple-well potential piezoelectric-based vibration energy harvester using a combined nonlinearity: the magnetic nonlinearity induced by magnetic force and the piecewise-linearity produced by mechanical impact. With extra stable states compared to other multi-stable harvesters, the quin-stable harvester can distribute its potential energy more uniformly, which provides shallower potential wells and results in lower excitation threshold for interwell motion. The mathematical model of this quin-stable harvester is derived and its equivalent piecewise-nonlinear restoring force is measured in the experiment and identified as piecewise polynomials. Numerical simulations and experimental verifications are performed in different levels of sinusoid excitation ranging from 1 to 25 Hz. The results demonstrate that, with lower potential barriers compared with tri-stable counterpart, the quin-stable arrangement can escape potential wells more easily for doing high-energy interwell motion over a wider band of frequencies. Moreover, by utilizing the mechanical stoppers, this harvester can produce significant output voltage under small tip deflections, which results in a high power density and is especially suitable for a compact MEMS approach.
Ultra-Wideband Printed Slot Radiators with Controllable Frequency Characteristics
Directory of Open Access Journals (Sweden)
S. L. Chernyshev
2015-01-01
Full Text Available We have studied the possibility of creating ultra-wideband (UWB antennas with controlled frequency response of matching based on the printed slot antenna Vivaldi by introducing controlled resonators directly into the structure of the radiator. In the area of irregular slotline there are printed switched resonators with variable capacitance (varactor model, which allow tuning the frequency characteristics for each state of switching cavities, providing bandpass and band-barrage properties of the antenna. The investigation of reconfigurable printed resonators in the system of reconfigurable resonators of a bandpass filter is conducted. The paper considers filter to provide restructuring in the band (3-9 GHz. Electrodynamic simulation of the device was carried out in the time domain using a finite integration method. A bandstop reconfigurable filter is also investigated. The filter located on the substrate opposite the slit is based on tunable L-shaped resonator that has one end connected to the short-circuitor through the board metallization; the other end remains open and is brought into the region of interaction with the slotline. Such filter provides an effective narrow-band suppression and can be easily tuned to the desired frequency channel. The combination of these two types of filters allows you to create a controlled print Vivaldi slot antenna with combined properties. The paper investigates parameters of the scattering and radiation pattern of the antenna in different modes.
Time-Domain Diversity in Ultra-Wideband MIMO Communications
Directory of Open Access Journals (Sweden)
Alain Sibille
2005-03-01
Full Text Available The development of ultra-wideband (UWB communications is impeded by the drastic transmitted power limitations imposed by regulation authorities due to the Ã¢Â€ÂœpollutingÃ¢Â€Â character of these radio emissions with respect to existing services. Technical solutions must be researched in order either to limit the level of spectral pollution by UWB devices or to increase their reception sensitivity. In the present work, we consider pulse-based modulations and investigate time-domain multiple-input multiple-output (MIMO diversity as one such possible solution. The basic principles of time-domain diversity in the extreme (low multipath density or intermediate (dense multipath UWB regimes are addressed, which predict the possibility of a MIMO gain equal to the product NtÃƒÂ—Nr of the numbers of transmit/receive antenna elements when the channel is not too severe. This analysis is confirmed by simulations using a parametric empirical stochastic double-directional channel model. They confirm the potential interest of MIMO approaches solutions in order to bring a valuable performance gain in UWB communications.
Exposure to electromagnetic fields aboard high-speed electric multiple unit trains.
Niu, D; Zhu, F; Qiu, R; Niu, Q
2016-01-01
High-speed electric multiple unit (EMU) trains generate high-frequency electric fields, low-frequency magnetic fields, and high-frequency wideband electromagnetic emissions when running. Potential human health concerns arise because the electromagnetic disturbances are transmitted mainly into the car body from windows, and from there to passengers and train staff. The transmission amount and amplitude distribution characteristics that dominate electromagnetic field emission need to be studied, and the exposure level of electromagnetic field emission to humans should be measured. We conducted a series of tests of the on board electromagnetic field distribution on several high-speed railway lines. While results showed that exposure was within permitted levels, the possibility of long-term health effects should be investigated.
Electromagnetic transients in power cables
da Silva, Filipe Faria
2013-01-01
From the more basic concepts to the most advanced ones where long and laborious simulation models are required, Electromagnetic Transients in Power Cables provides a thorough insight into the study of electromagnetic transients and underground power cables. Explanations and demonstrations of different electromagnetic transient phenomena are provided, from simple lumped-parameter circuits to complex cable-based high voltage networks, as well as instructions on how to model the cables.Supported throughout by illustrations, circuit diagrams and simulation results, each chapter contains exercises,
1981-06-01
In (i) AR ’Bn(i) x TxiB B-1-t"w $ (i) G.) 1i n+l . n+l * )II/ 4B ) /> (5.3.9.2)C ~ B !B lI~ (i)- In (i..l +B VB+I 2) 6 x B A 277 In the above equations...8. Nanevicz, J.E., R.T. Bly and R..C. Adams, " Airborne Measurement cf Electromagnetic Environments Near Thunderstorm Cells (TRIP-76)," AFFDL-TR-77
Computational Electromagnetics
Rylander, Thomas; Bondeson, Anders
2013-01-01
Computational Electromagnetics is a young and growing discipline, expanding as a result of the steadily increasing demand for software for the design and analysis of electrical devices. This book introduces three of the most popular numerical methods for simulating electromagnetic fields: the finite difference method, the finite element method and the method of moments. In particular it focuses on how these methods are used to obtain valid approximations to the solutions of Maxwell's equations, using, for example, "staggered grids" and "edge elements." The main goal of the book is to make the reader aware of different sources of errors in numerical computations, and also to provide the tools for assessing the accuracy of numerical methods and their solutions. To reach this goal, convergence analysis, extrapolation, von Neumann stability analysis, and dispersion analysis are introduced and used frequently throughout the book. Another major goal of the book is to provide students with enough practical understan...
DEFF Research Database (Denmark)
Dridi, Kim; Bjarklev, Anders Overgaard
1999-01-01
An electromagnetic vector-field modle for design of optical components based on the finite-difference-time-domain method and radiation integrals in presented. Its ability to predict the optical electromagnetic dynamics in structures with complex material distribution is demonstrated. Theoretical...
Adabi, Saba; Pajewski, Lara
2014-05-01
This work deals with the electromagnetic wire-grid modelling of metallic cylindrical objects, buried in the ground or embedded in a structure, for example in a wall or in a concrete slab. Wire-grid modelling of conducting objects was introduced by Richmond in 1966 [1] and, since then, this method has been extensively used over the years to simulate arbitrarily-shaped objects and compute radiation patterns of antennas, as well as the electromagnetic field scattered by targets. For any wire-grid model, a fundamental question is the choice of the optimum wire radius and grid spacing. The most widely used criterion to fix the wire size is the so-called same-area rule [2], coming from empirical observation: the total surface area of the wires has to be equal to the surface area of the object being modelled. However, just few authors have investigated the validity of this criterion. Ludwig [3] studied the reliability of the rule by examining the canonical radiation problem of a transverse magnetic field by a circular cylinder fed with a uniform surface current, compared with a wire-grid model; he concluded that the same-area rule is optimum and that too thin wires are just as bad as too thick ones. Paknys [4] investigated the accuracy of the same-area rule for the modelling of a circular cylinder with a uniform current on it, continuing the study initiated in [3], or illuminated by a transverse magnetic monochromatic plane wave; he deduced that the same-area rule is optimal and that the field inside the cylinder is most sensitive to the wire radius than the field outside the object, so being a good error indicator. In [5], a circular cylinder was considered, embedded in a dielectric half-space and illuminated by a transverse magnetic monochromatic plane wave; the scattered near field was calculated by using the Cylindrical-Wave Approach and numerical results, obtained for different wire-grid models in the spectral domain, were compared with the exact solution. The
Energy Technology Data Exchange (ETDEWEB)
Holden, S J [Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire SP4 0JQ (United Kingdom); Sheridan, R D [Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire SP4 0JQ (United Kingdom); Coffey, T J [Mathshop Ltd, Porton Down Science Park, Salisbury, Wiltshire SP4 0JQ (United Kingdom); Scaramuzza, R A [Flomerics Ltd, Electromagnetic Division, TLM House, Percy Street, Nottingham NG16 3EP (United Kingdom); Diamantopoulos, P [Bio-Medical Modelling Unit, School of Engineering, University of Sussex, Falmer, Sussex BN1 9QT (United Kingdom)
2007-12-21
Increasing use by law enforcement agencies of the M26 and X26 TASER electrical incapacitation devices has raised concerns about the arrhythmogenic potential of these weapons. Using a numerical phantom constructed from medical images of the human body in which the material properties of the tissues are represented, computational electromagnetic modelling has been used to predict the currents arising at the heart following injection of M26 and X26 waveforms at the anterior surface of the chest (with one TASER 'barb' directly overlying the ventricles). The modelling indicated that the peak absolute current densities at the ventricles were 0.66 and 0.11 mA mm{sup -2} for the M26 and X26 waveforms, respectively. When applied during the vulnerable period to the ventricular epicardial surface of guinea-pig isolated hearts, the M26 and X26 waveforms induced ectopic beats, but only at current densities greater than 60-fold those predicted by the modelling. When applied to the ventricles in trains designed to mimic the discharge patterns of the TASER devices, neither waveform induced ventricular fibrillation at peak currents >70-fold (for the M26 waveform) and >240-fold (for the X26) higher than the modelled current densities. This study provides evidence for a lack of arrhythmogenic action of the M26 and X26 TASER devices.
Holden, S. J.; Sheridan, R. D.; Coffey, T. J.; Scaramuzza, R. A.; Diamantopoulos, P.
2007-12-01
Increasing use by law enforcement agencies of the M26 and X26 TASERTASER is an acronym for Thomas A. Swift's Electric Rifle from the book Tom Swift and His Electric Rifle (1911) by Victor Appleton, ISBN-10: 1594561257. electrical incapacitation devices has raised concerns about the arrhythmogenic potential of these weapons. Using a numerical phantom constructed from medical images of the human body in which the material properties of the tissues are represented, computational electromagnetic modelling has been used to predict the currents arising at the heart following injection of M26 and X26 waveforms at the anterior surface of the chest (with one TASER 'barb' directly overlying the ventricles). The modelling indicated that the peak absolute current densities at the ventricles were 0.66 and 0.11 mA mm-2 for the M26 and X26 waveforms, respectively. When applied during the vulnerable period to the ventricular epicardial surface of guinea-pig isolated hearts, the M26 and X26 waveforms induced ectopic beats, but only at current densities greater than 60-fold those predicted by the modelling. When applied to the ventricles in trains designed to mimic the discharge patterns of the TASER devices, neither waveform induced ventricular fibrillation at peak currents >70-fold (for the M26 waveform) and >240-fold (for the X26) higher than the modelled current densities. This study provides evidence for a lack of arrhythmogenic action of the M26 and X26 TASER devices.
Electromagnetic theory for electromagnetic compatibility engineers
Toh, Tze-Chuen
2013-01-01
Engineers and scientists who develop and install electronic devices and circuits need to have a solid understanding of electromagnetic theory and the electromagnetic behavior of devices and circuits. In particular, they must be well-versed in electromagnetic compatibility, which minimizes and controls the side effects of interconnected electric devices. Designed to entice the practical engineer to explore some worthwhile mathematical methods, and to reorient the theoretical scientist to industrial applications, Electromagnetic Theory for Electromagnetic Compatibility Engineers is based on the
Selective wave-transmitting electromagnetic absorber through composite metasurface
Sun, Zhiwei; Zhao, Junming; Zhu, Bo; Jiang, Tian; Feng, Yijun
2017-11-01
Selective wave-transmitting absorbers which have one or more narrow transmission bands inside a wide absorption band are often demanded in wireless communication and radome applications for reducing the coupling between different systems, improving anti-jamming capability, and reducing antennas' radar cross section. Here we propose a feasible method that utilizing composite of two metasurfaces with different polarization dependent characteristics, one works as electromagnetic polarization rotator and the other as a wideband polarization dependent electromagnetic wave absorber. The polarization rotator produces a cross polarization output in the wave-transmitting band, while preserves the polarization of the incidence outside the band. The metasurface absorber works for certain linear polarization with a much wider absorption band covering the wave-transmitting frequency. When combining these two metasurfaces properly, the whole structure behaves as a wideband absorber with a certain frequency transmission window. The proposal may be applied in radome designs to reduce the radar cross section of antenna or improving the electromagnetic compatibility in communication devices.
Ida, Nathan
2015-01-01
This book provides students with a thorough theoretical understanding of electromagnetic field equations and it also treats a large number of applications. The text is a comprehensive two-semester textbook. The work treats most topics in two steps – a short, introductory chapter followed by a second chapter with in-depth extensive treatment; between 10 to 30 applications per topic; examples and exercises throughout the book; experiments, problems and summaries. The new edition includes: updated end of chapter problems; a new introduction to electromagnetics based on behavior of charges; a new section on units; MATLAB tools for solution of problems and demonstration of subjects; most chapters include a summary. The book is an undergraduate textbook at the Junior level, intended for required classes in electromagnetics. It is written in simple terms with all details of derivations included and all steps in solutions listed. It requires little beyond basic calculus and can be used for self-study. The weal...
DEFF Research Database (Denmark)
Marker, Pernille Aabye; Foged, N.; He, X.
2015-01-01
hydrological performance by comparison of performance statistics from comparable hydrological models, the cluster model performed competitively. Calibrations of 11 hydrostratigraphic cluster models with 1-11 hydraulic conductivity zones showed improved hydrological performance with an increasing number...
Dipole Models for UXO Discrimination at Live Sites
2017-05-01
Application of the Method of Auxiliary Sources to the Wide-Band Electromagnetic Induction Problem . IEEE Trans. Geosci. Remote Sensing, 40:928-942, 2002. S. L...in dynamic mode is explored further, it is possible that this cost disadvantage will lessen. 15. SUBJECT TERMS UXO classification, electromagnetic ...Discriminator CCR Combined Classifier Ranking cm Centimeter(s) EM Electromagnetic EMI Electromagnetic Induction ESTCP Environmental Security Technology
Rayleigh fading effect reduction with wideband DS/CDMA signals
Holtzman, Jack M.; Jalloul, Louay M. A.
1994-02-01
Mobile radio fading analyses typically assume a single frequency carrier transmitted through the propagation medium. The results are then used for the case of narrowband transmission. New phenomena occur with wideband transmission. This paper presents an analysis of the mitigation of the Rayleigh fading effect for wideband direct sequence code division multiple access (DS/CDMA) signaling. There are measurements that show this phenomenon. The reduction of the Rayleigh fading effect is an advantage of CDMA over narrowband transmission systems and it eases the burden of CDMA power control. A general expression for the coefficient of variation of the received wideband signal power is derived. It is shown how the coefficient of variation of the received power decreases as the bandwidth spreading increases. This paper also analyzes the time correlation needed for other analyses (e.g., CDMA power control).
An Analog Correlator for Ultra-Wideband Receivers
Directory of Open Access Journals (Sweden)
Tu Chunjiang
2005-01-01
Full Text Available We present a new analog circuit exhibiting high bandwidth and low distortion, specially designed for signal correlation in an ultra-wideband receiver front end. The ultra-wideband short impulse signals are correlated with a local pulse template by the correlator. A comparator then samples the output for signal detection. A typical Gilbert mixer core is adopted for multiplication of broadband signals up to . As a result of synchronization of the received signal and the local template, the output voltage level after integration and sampling can reach up to , which is sufficient for detection by the comparator. The circuit dissipates about from double voltage supplies of and using SiGe BiCMOS technology. Simulation results are presented to show the feasibility of this circuit design for use in ultra-wideband receivers.
Šrobár, Fedor
2013-09-01
Fröhlich model describes emission of electromagnetic field in the interior of biological cells by oscillating polar units, now mostly identified with microtubule filaments. Central element of this theory is the system of rate equations for the quantum occupancy numbers n i of collective oscillation modes. These equations describe both linear and nonlinear properties of the system; presence of the latter can lead to condensation of the incoming energy into the lowest frequency mode - a phenomenon deemed to be of major importance for cell's biochemistry, because the excited mode can engage in chemical reactions while the major part of the system remains near the equilibrium, not exposed to energetic stress. This paper explores, using a simple model, the influence of strong static electric field created by mitochondria flanking the microtubules on nonlinear interactions and, in turn, on occupancy numbers. The computed results show that simultaneous presence of both sufficient metabolic pumping and adequately elevated static electric field is necessary for the full unfolding of the hallmark properties of the Fröhlich model. It is suggested that cancer-related mitochondrial dysfunction leading to metabolic transformation has additional adverse effect mediated by diminution of static fields which in turn reduces the nonlinear processes in the Fröhlich systems, essential for energy condensation in the fundamental mode.
Dabirian, Ali
2017-02-15
High-efficiency crystalline silicon (c-Si) solar cells increasingly feature sophisticated electron and hole contacts aimed at minimizing electronic losses. At the rear of photovoltaic devices, such contacts—usually consisting of stacks of functional layers—offer opportunities to enhance the infrared response of the solar cells. Here, we propose an accurate and simple modeling procedure to evaluate the infrared performance of rear contacts in c-Si solar cells. Our method combines full-wave electromagnetic modeling of the rear contact with a statistical ray optics model to obtain the fraction of optical energy dissipated from the rear contact relative to that absorbed by the Si wafer. Using this technique, we study the impact of the refractive index, extinction coefficient, and thickness of the rear-passivating layer and establish basic design rules. In addition, we evaluate novel optical structures, including stratified thin films, nanoparticle composites, and conductive nanowires embedded in a low-index dielectric matrix, for integration into advanced rear contacts in c-Si photovoltaic devices. From an optical perspective, nanowire structures preserving low contact resistance appear to be the most effective approach to mitigating dissipation losses from the rear contact.
Soares Dos Santos, Marco P; Ferreira, Jorge A F; Simões, José A O; Pascoal, Ricardo; Torrão, João; Xue, Xiaozheng; Furlani, Edward P
2016-01-04
Magnetic levitation has been used to implement low-cost and maintenance-free electromagnetic energy harvesting. The ability of levitation-based harvesting systems to operate autonomously for long periods of time makes them well-suited for self-powering a broad range of technologies. In this paper, a combined theoretical and experimental study is presented of a harvester configuration that utilizes the motion of a levitated hard-magnetic element to generate electrical power. A semi-analytical, non-linear model is introduced that enables accurate and efficient analysis of energy transduction. The model predicts the transient and steady-state response of the harvester a function of its motion (amplitude and frequency) and load impedance. Very good agreement is obtained between simulation and experiment with energy errors lower than 14.15% (mean absolute percentage error of 6.02%) and cross-correlations higher than 86%. The model provides unique insight into fundamental mechanisms of energy transduction and enables the geometric optimization of harvesters prior to fabrication and the rational design of intelligent energy harvesters.
Barzegaranbaboli, Mohammadreza
The low-frequency electromagnetic compatibility (EMC) is an increasingly important aspect in the design of practical systems to ensure the functional safety and reliability of complex products. The opportunities for using numerical techniques to predict and analyze system's EMC are therefore of considerable interest in many industries. As the first phase of study, a proper model, including all the details of the component, was required. Therefore, the advances in EMC modeling were studied with classifying analytical and numerical models. The selected model was finite element (FE) modeling, coupled with the distributed network method, to generate the model of the converter's components and obtain the frequency behavioral model of the converter. The method has the ability to reveal the behavior of parasitic elements and higher resonances, which have critical impacts in studying EMI problems. For the EMC and signature studies of the machine drives, the equivalent source modeling was studied. Considering the details of the multi-machine environment, including actual models, some innovation in equivalent source modeling was performed to decrease the simulation time dramatically. Several models were designed in this study and the voltage current cube model and wire model have the best result. The GA-based PSO method is used as the optimization process. Superposition and suppression of the fields in coupling the components were also studied and verified. The simulation time of the equivalent model is 80-100 times lower than the detailed model. All tests were verified experimentally. As the application of EMC and signature study, the fault diagnosis and condition monitoring of an induction motor drive was developed using radiated fields. In addition to experimental tests, the 3DFE analysis was coupled with circuit-based software to implement the incipient fault cases. The identification was implemented using ANN for seventy various faulty cases. The simulation results were
Detection of Metallic and Electronic Radar Targets by Acoustic Modulation of Electromagnetic Waves
2017-07-01
electronic targets within the near field of an ultra-wideband radar antenna operating in the ultra-high frequency band. 15. SUBJECT TERMS radar ...ARL-TR-8076● JULY 2017 US Army Research Laboratory Detection of Metallic and Electronic Radar Targets by Acoustic Modulation of...US Army Research Laboratory Detection of Metallic and Electronic Radar Targets by Acoustic Modulation of Electromagnetic Waves by Gregory
Costa, Filippo; Monorchio, Agostino; Manara, Giuliano
2010-01-01
High-Impedance Surfaces (HIS) comprising lossy Frequency Selective Surfaces (FSS) are employed to design thin electromagnetic absorbers. The structure, despite its typical resonant behavior, is able to perform a very wideband absorption in a reduced thickness. Losses in the frequency selective surface are introduced by printing the periodic pattern through resistive inks and hence avoiding the typical soldering of a large number of lumped resistors. The effect of the surface resistance of the...
Effect of direction on loudness for wideband and reverberant sounds
DEFF Research Database (Denmark)
Sivonen, Ville Pekka; Ellermeier, Wolfgang
2006-01-01
presented to the listeners via individual binaural synthesis. The results confirm that loudness depends on sound incidence angle, as it does for narrow-band, anechoic sounds. The directional effects, however, were attenuated with the wideband and reverberant stimuli used in the present investigation.......The effect of incidence angle on loudness was investigated for wideband and reverberant sounds. In an adaptive procedure, five listeners matched the loudness of a sound coming from five incidence angles in the horizontal plane to that of the same sound with frontal incidence. The stimuli were...
Timed arrays wideband and time varying antenna arrays
Haupt, Randy L
2015-01-01
Introduces timed arrays and design approaches to meet the new high performance standards The author concentrates on any aspect of an antenna array that must be viewed from a time perspective. The first chapters briefly introduce antenna arrays and explain the difference between phased and timed arrays. Since timed arrays are designed for realistic time-varying signals and scenarios, the book also reviews wideband signals, baseband and passband RF signals, polarization and signal bandwidth. Other topics covered include time domain, mutual coupling, wideband elements, and dispersion. The auth
Compressed wideband spectrum sensing based on discrete cosine transform.
Wang, Yulin; Zhang, Gengxin
2014-01-01
Discrete cosine transform (DCT) is a special type of transform which is widely used for compression of speech and image. However, its use for spectrum sensing has not yet received widespread attention. This paper aims to alleviate the sampling requirements of wideband spectrum sensing by utilizing the compressive sampling (CS) principle and exploiting the unique sparsity structure in the DCT domain. Compared with discrete Fourier transform (DFT), wideband communication signal has much sparser representation and easier implementation in DCT domain. Simulation result shows that the proposed DCT-CSS scheme outperforms the conventional DFT-CSS scheme in terms of MSE of reconstruction signal, detection probability, and computational complexity.
Aji Hapsoro, Cahyo; Purqon, Acep; Srigutomo, Wahyu
2017-07-01
2-D Time Domain Electromagnetic (TDEM) has been successfully conducted to illustrate the value of Electric field distribution under the Earth surface. Electric field compared by magnetic field is used to analyze resistivity and resistivity is one of physical properties which very important to determine the reservoir potential area of geothermal systems as one of renewable energy. In this modeling we used Time Domain Electromagnetic method because it can solve EM field interaction problem with complex geometry and to analyze transient problems. TDEM methods used to model the value of electric and magnetic fields as a function of the time combined with the function of distance and depth. The result of this modeling is Electric field intensity value which is capable to describe the structure of the Earth’s subsurface. The result of this modeling can be applied to describe the Earths subsurface resistivity values to determine the reservoir potential of geothermal systems.
A ray model for decimetric radiowave propagation in an urban area
Rossi, J.-P.; Levy, A. J.
1992-11-01
A ray-tracing model involving multiple reflections and diffractions is proposed to predict wideband decimetric radio wave propagation in an urban area. A computer code was developed in which only buildings close to the vehicle are considered. Wall irregularities and electromagnetic properties of material are taken into account by a constant reflection factor, while diffraction attenuation is computed from geometrical theory of diffraction results. Simulated channel path losses and complex impulse responses are compared with some measurements performed in Paris at a 900-MHz central frequency.
MODEL OF ANECHOIC CHAMBER FOR EVALUATING THE SHIELDING EFFECTIVENESS OF ELECTROMAGNETIC FIELD
National Research Council Canada - National Science Library
Ján Zbojovský; Iraida Kolcunová; Marek Pavlík; Marek Češkovič; František Adamčík; Martin Krchňák
2017-01-01
.... This paper deals with model of anechoic chamber created in ANSYS HFSS. Model is created for evaluating the shielding effectiveness of materials with different properties. In that case it is possible to optimize the shielding effectiveness of materials with changing of its properties. Model works for frequency range from 1 to 10 GHz.
Electromagnetic segregation of cast parts
Langejurgen, M.; Nacke, B.
2007-06-01
The Electromagnetic Induced Segregation (EIS) of cast parts is an innovative technology for diecasting aluminium alloys. Using numerical simulation, an inductor system has been developed to produce a primary silicon concentration gradient during casting. The report shows the advantages of numerical simulation in research and development. A suitable inductor has been designed and its electromagnetic field optimized for the EIS. The numerical model is 2D for geometries with cylindrical symmetry and 3D for non-symmetric products. The inductor system is implemented in a pilot installation. With the metallurgical results, the interaction between the electromagnetic field and the location of primary silicon is investigated. Figs 7, Refs 1.
Directory of Open Access Journals (Sweden)
Donghui Liu
2017-11-01
Full Text Available No-insulation (NI high-temperature superconducting (HTS REBCO coil has been a promising candidate for manufacturing high-field superconducting magnets with high thermal stability and self-protecting features. When NI coil is operated at the external field, it is necessary to analyze charging and sudden-discharging characteristics of NI coil by considering the effect of magnetic field. In addition, the self-field effect has an obvious influence on the critical current for large-scale coil. Thus, an electromagnetic coupling model in which an equivalent circuit axisymmetric model considers the effect of magnetic field is proposed. The results show that when the radial current exists, the coil voltage and central field will tend to be stable faster. In a high field, the decrease of the critical current leads to the increase of radial current and this effect is more obvious for a larger field. And the charging time with the increase of the external field reduces significantly, while the sudden-discharging time is almost unchanged. For NI coils composed of many double-pancake coils, the charging time and sudden-discharging time proportionally increase with the increase of the number of double-pancake coil and turn number of single-pancake coil.
Yang, Lei; Hao, Dongmei; Wu, Shuicai; Zhong, Rugang; Zeng, Yanjun
2013-06-01
Rats are often used in the electromagnetic field (EMF) exposure experiments. In the study for the effect of 900 MHz EMF exposure on learning and memory in SD rats, the specific absorption rate (SAR) and the temperature rise in the rat head are numerically evaluated. The digital anatomical model of a SD rat is reconstructed with the MRI images. Numerical method as finite difference time domain has been applied to assess the SAR and the temperature rise during the exposure. Measurements and simulations are conducted to characterize the net radiated power of the dipole to provide a precise dosimetric result. The whole-body average SAR and the localized SAR averaging over 1, 0.5 and 0.05 g mass for different organs/tissues are given. It reveals that during the given exposure experiment setup, no significant temperature rise occurs. The reconstructed anatomical rat model could be used in the EMF simulation and the dosimetric result provides useful information for the biological effect studies.
Directory of Open Access Journals (Sweden)
Stevan M. Berber
2014-06-01
Full Text Available Chaotic spreading sequences can increase secrecy and resistance to interception in signal transmission. Chaos-based CDMA systems have been well investigated in the case of flat fading and noise presence in the channel. However, these systems operating in wideband channels, characterized by the frequency selective fading and white Gaussian noise, have not been investigated to the level of understanding their practical applications. This paper presents a detailed mathematical model of a CDMA system based on chaotic spreading sequences. In a theoretical analysis, all signals are represented in the discrete time domain. Using the theory of discrete time stochastic processes, the probability of error expressions are derived in a closed form for a multi-user chaos based CDMA system. For the sake of comparison, the expressions for the probability of error are derived separately for narrowband and wideband channels. The application of the system interleaving technique is investigated in particular, which showed that this technique can substantially improve probability of error in the system. The system is simulated and the findings of the simulation confirmed theoretically expected results. Possible improvements in the probability of bit error due to multipath channel nature, with and without interleavers, are quantified depending on the random delay and the number of users in the system. In the analyzed system, a simplified version of the wideband channel model, proposed for modern wideband wireless networks, is used. Introduction Over the past years, the demand for wireless communications has increased substantially due to advancements in mobile communication systems and networks. Following these increasing demands, modern communication systems require the ability to handle a large number of users to process and transmit wideband signals through complex frequency selective channels. One of the techniques for transmission of multi-user signals is the
Davis, Brynmor; Kim, Edward; Piepmeier, Jeffrey; Hildebrand, Peter H. (Technical Monitor)
2001-01-01
Many new Earth remote-sensing instruments are embracing both the advantages and added complexity that result from interferometric or fully polarimetric operation. To increase instrument understanding and functionality a model of the signals these instruments measure is presented. A stochastic model is used as it recognizes the non-deterministic nature of any real-world measurements while also providing a tractable mathematical framework. A stationary, Gaussian-distributed model structure is proposed. Temporal and spectral correlation measures provide a statistical description of the physical properties of coherence and polarization-state. From this relationship the model is mathematically defined. The model is shown to be unique for any set of physical parameters. A method of realizing the model (necessary for applications such as synthetic calibration-signal generation) is given and computer simulation results are presented. The signals are constructed using the output of a multi-input multi-output linear filter system, driven with white noise.
DEFF Research Database (Denmark)
Barfod, Adrian; Straubhaar, Julien; Høyer, Anne-Sophie
2017-01-01
Creating increasingly realistic hydrological models involves the inclusion of additional geological and geophysical data in the hydrostratigraphic modelling procedure. Using Multiple Point Statistics (MPS) for stochastic hydrostratigraphic modelling provides a degree of flexibility that allows......2. The comparison of the stochastic hydrostratigraphic MPS models is carried out in an elaborate scheme of visual inspection, mathematical similarity and consistency with boreholes. Using the Kasted survey data, a practical example for modelling new survey areas is presented. A cognitive...... soft data variable. The computation time of 2-3 h for snesim was in between DS and iqsim. The snesim implementation used here is part of the Stanford Geostatistical Modeling Software, or SGeMS. The snesim setup was not trivial, with numerous parameter settings, usage of multiple grids and a search tree...
DEFF Research Database (Denmark)
Minsley, B. J.; Christensen, Nikolaj Kruse; Christensen, Steen
is never perfectly known, however, and incorrect assumptions can be a significant source of error when making model predictions. We describe a systematic approach for quantifying model structural uncertainty that is based on the integration of sparse borehole observations and large-scale airborne...... indicator simulation, we produce many realizations of model structure that are consistent with observed datasets and prior knowledge. Given estimates of model structural uncertainty, we incorporate hydrologic observations to evaluate the errors in hydrologic parameter or prediction errors that occur when...
Lipatov, Alexander S.; Sittler, Edward C.; Hartle, Richard E.; Cooper, John F.
2011-01-01
A 2.5D numerical plasma model of the interaction of the solar wind (SW) with the Solar Probe Plus spacecraft (SPPSC) is presented. These results should be interpreted as a basic plasma model derived from the SW-interaction with the spacecraft (SC), which could have consequences for both plasma wave and electron plasma measurements on board the SC in the inner heliosphere. Compression waves and electric field jumps with amplitudes of about 1.5 V/m and (12-18) V/m were also observed. A strong polarization electric field was also observed in the wing of the plasma wake. However, 2.5D hybrid modeling did not show excitation of whistler/Alfven waves in the upstream connected with the bidirectional current closure that was observed in short-time 3D modeling SPPSC and near a tether in the ionosphere. The observed strong electromagnetic perturbations may be a crucial point in the electromagnetic measurements planned for the future Solar Probe Plus (SPP) mission. The results of modeling electromagnetic field perturbations in the SW due to shot noise in absence of SPPSC are also discussed.
Energy Technology Data Exchange (ETDEWEB)
Rodriguez Amaya, N.; Weiss, F.; Schmitt, A.
1991-04-18
An electromagnet, particularly for use in switching valves for the direct control of a fuel injection quantity on fuel injection pumps, has a magnet pot (25) made of soft magnetic material, an annular excitation coil (30) and a magnet armature (29), which is situated with a working air gap in front of the magnet pot (25). To improve the dynamic behaviour of the electromagnet (20), ie: to achieve extremely low switching times with simple manufacture of the magnetic circuit, the magnet pot (25) and/or the magnet armature (29) made as a solid part is provided with an even number of at least four radial slots (41), which pass through the magnet pot (25) or the magnet armature (29) over their whole axial length. Successive radial slots (41a, 41b) extend alternately from the outside or from the inside jacket surface (311 or 321) to near the inside or the outside jacket surface (321 or 311) respectively and end there, always leaving a bar of material (42 or 43).
Electromagnetic microactuators
Büttgenbach, S.; Al-Halhouli, A. T.; Feldmann, M.; Seidemann, V.; Waldschik, A.
2013-05-01
High precision microactuators have become key elements for many applications of MEMS, for example for positioning and handling systems as well as for microfluidic devices. Electromagnetic microactuators exhibit considerable benefits such as high forces, large deflections, low input impedances and thus, the involvement of only low voltages. Most of the magnetic microactuators developed so far are based on the variable reluctance principle and use soft magnetic materials. Since the driving force of such actuators is proportional to their volume, they require structures with rather great heights and aspect ratios. Therefore, the development of new photo resists, which allow UV exposure of thick layers of resist, has been essential for the advancement of variable reluctance microactuators. On the other hand, hard magnetic materials have the potential for larger forces and larger deflections. Accordingly, polymer magnets, in which micro particles of hard magnetic material are suspended in a polymer matrix, have been used to fabricate permanent magnet microactuators. In this paper we give an overview of sophisticated electromagnetic microactuators which have been developed in our laboratory in the framework of the Collaborative Research Center "Design and Manufacturing of Active Microsystems". In particular, concept, fabrication and test of variable reluctance micro stepper motors, of permanent magnet synchronous micromotors and of microactuators based on the Lorentz force principle will be described. Special emphasis will be given to applications in lab-on-chip systems.
Time-domain modeling of electromagnetic diffusion with a frequency-domain code
Mulder, W.A.; Wirianto, M.; Slob, E.C.
2007-01-01
We modeled time-domain EM measurements of induction currents for marine and land applications with a frequency-domain code. An analysis of the computational complexity of a number of numerical methods shows that frequency-domain modeling followed by a Fourier transform is an attractive choice if a
DEFF Research Database (Denmark)
Jiang, Chenhui; Krozer, Viktor; Bach, H-G
2008-01-01
In this paper, we propose an accurate full 3D EM behavioral model of PD chips for the first time. The model, which is meshed at 130 GHz, runs for about 17 minutes on an Intel Core2 Duo CPU@3 GHz PC with 3.5 GB of RAM. The impact of various parameters in wire- bonding transitions for transmission...
A Wideband Monopole for Reconfigurable Multiband Radio Terminals
Ammann, Max
2001-01-01
A wideband planar monopole employing two broadbanding techniques is investigated, and is shown to yield an impedance bandwidth ratio of 10:1 or greater for a return loss of 8 dB. The radiation pattern bandwidth is also investigated
Pressurized Wideband Absorbance Findings in Healthy Neonates: A Preliminary Study
Wali, Hamzah A.; Mazlan, Rafidah; Kei, Joseph
2017-01-01
Purpose: The present study aimed to establish normative data for wideband absorbance (WBA) measured at tympanometric peak pressure (TPP) and 0 daPa and to assess the test-retest reliability of both measurements in healthy neonates. Method: Participants of this cross-sectional study included 99 full-term neonates (165 ears) with mean chronological…
Fibre Optics In A Multi-Star Wideband Local Network
Fox, J. R.
1983-08-01
Early experience has been gained with the switched-star type of network in the Fibrevision cable TV trial at Milton Keynes, and British Telecom are progressing towards a full-scale multi-star wideband local network. This paper discusses both the present and future use of fibre optics in this type of network.
Target Doppler Estimation Using Wideband Frequency Modulated Signals
Doisy, Y.; Deruaz, L.; Beerens, S.P.; Been, R.
2000-01-01
The topic of this paper is the design and performance analysis of wideband sonar waveforms capable of estimating both target range and Döppler using as few replicas in the processing as possible. First, it is shown that for conventional Döppler sensitive waveforms, for which the Döppler and delay
Ultra-wideband MMICs for remote sensing applications
DEFF Research Database (Denmark)
Johansen, Tom Keinicke; Vidkjær, Jens; Krozer, Viktor
2003-01-01
This paper presents an overview of the current activity at the Technical University of Denmark in the field of ultra-wideband monolitic microwave integrated circuits (MMICs) for next-generation high-resolution synthetic aperature radar (SAR) systems. The transfer function requirements for MMIC co...
MIMO-OFDM performance in relation to wideband channel properties
Li, P.; Zhang, H.; Oostveen, J.; Fledderus, E.
2010-01-01
In this paper, the sensitivity of the error rate performance of MIMO-OFDM-based practical systems (WiMAX and LTE) to wide band channel properties is investigated. The behavior of the wideband channel is characterized in terms of delay spread (DS) and angular spread (AS). The impacts of DS and AS on
Clutter suppression for moving targets detection with wideband radar
Le Chevalier, F.; Krasnov, O.A.; Deudon, F.; Bidon, S.
2011-01-01
Wideband (high range resolution) radars have been proposed [7] as high performance systems for detection of small targets in adverse environments, due to their small resolution cells and non-ambiguity in range and velocity (velocity ambiguity removed by the measurement of the range migration of the
DEFF Research Database (Denmark)
Marker, Pernille Aabye; Foged, N.; He, X.
2015-01-01
-scale groundwater models. We present a novel method to automatically integrate large AEM data-sets and lithological information into large-scale hydrological models. Clay-fraction maps are produced by translating geophysical resistivity into clay-fraction values using lithological borehole information. Voxel models...... of electrical resistivity and clay fraction are classified into hydrostratigraphic zones using k-means clustering. Hydraulic conductivity values of the zones are estimated by hydrological calibration using hydraulic head and stream discharge observations. The method is applied to a Danish case study...
Directory of Open Access Journals (Sweden)
Feilong Li
2017-01-01
Full Text Available The usable satellite spectrum is becoming scarce due to static spectrum allocation policies. Cognitive radio approaches have already demonstrated their potential towards spectral efficiency for providing more spectrum access opportunities to secondary user (SU with sufficient protection to licensed primary user (PU. Hence, recent scientific literature has been focused on the tradeoff between spectrum reuse and PU protection within narrowband spectrum sensing (SS in terrestrial wireless sensing networks. However, those narrowband SS techniques investigated in the context of terrestrial CR may not be applicable for detecting wideband satellite signals. In this paper, we mainly investigate the problem of joint designing sensing time and hard fusion scheme to maximize SU spectral efficiency in the scenario of low earth orbit (LEO mobile satellite services based on wideband spectrum sensing. Compressed detection model is established to prove that there indeed exists one optimal sensing time achieving maximal spectral efficiency. Moreover, we propose novel wideband cooperative spectrum sensing (CSS framework where each SU reporting duration can be utilized for its following SU sensing. The sensing performance benefits from the novel CSS framework because the equivalent sensing time is extended by making full use of reporting slot. Furthermore, in respect of time-varying channel, the spatiotemporal CSS (ST-CSS is presented to attain space and time diversity gain simultaneously under hard decision fusion rule. Computer simulations show that the optimal sensing settings algorithm of joint optimization of sensing time, hard fusion rule and scheduling strategy achieves significant improvement in spectral efficiency. Additionally, the novel ST-CSS scheme performs much higher spectral efficiency than that of general CSS framework.
Li, Feilong; Li, Zhiqiang; Li, Guangxia; Dong, Feihong; Zhang, Wei
2017-01-21
The usable satellite spectrum is becoming scarce due to static spectrum allocation policies. Cognitive radio approaches have already demonstrated their potential towards spectral efficiency for providing more spectrum access opportunities to secondary user (SU) with sufficient protection to licensed primary user (PU). Hence, recent scientific literature has been focused on the tradeoff between spectrum reuse and PU protection within narrowband spectrum sensing (SS) in terrestrial wireless sensing networks. However, those narrowband SS techniques investigated in the context of terrestrial CR may not be applicable for detecting wideband satellite signals. In this paper, we mainly investigate the problem of joint designing sensing time and hard fusion scheme to maximize SU spectral efficiency in the scenario of low earth orbit (LEO) mobile satellite services based on wideband spectrum sensing. Compressed detection model is established to prove that there indeed exists one optimal sensing time achieving maximal spectral efficiency. Moreover, we propose novel wideband cooperative spectrum sensing (CSS) framework where each SU reporting duration can be utilized for its following SU sensing. The sensing performance benefits from the novel CSS framework because the equivalent sensing time is extended by making full use of reporting slot. Furthermore, in respect of time-varying channel, the spatiotemporal CSS (ST-CSS) is presented to attain space and time diversity gain simultaneously under hard decision fusion rule. Computer simulations show that the optimal sensing settings algorithm of joint optimization of sensing time, hard fusion rule and scheduling strategy achieves significant improvement in spectral efficiency. Additionally, the novel ST-CSS scheme performs much higher spectral efficiency than that of general CSS framework.
Liu, Xiao; Zuo, Hongyan; Wang, Dewen; Peng, Ruiyun; Song, Tao; Wang, Shuiming; Xu, Xinping; Gao, Yabing; Li, Yang; Wang, Shaoxia; Wang, Lifeng; Zhao, Li
2015-01-01
Although some epidemiological investigations showed a potential association between long-term exposure of extremely low frequency electromagnetic fields (ELF-EMF) and Alzheimer's disease (AD), no reasonable mechanism can explain this association, and the related animal experiments are rare. In this study, ELF-EMF exposure (50 Hz 400 µT 60 d) combined with D-galactose intraperitoneal (50 mg/kg, q.d., 42 d) and Aβ25-35 hippocampal (5 μl/unilateral, bilateral, single-dose) injection was implemented to establish a complex rat model. Then the effects of ELF-EMF exposure on AD development was studied by using the Morris water maze, pathological analysis, and comparative proteomics. The results showed that ELF-EMF exposure delayed the weight gain of rats, and partially improved cognitive and clinicopathologic symptoms of AD rats. The differential proteomic analysis results suggest that synaptic transmission, oxidative stress, protein degradation, energy metabolism, Tau aggregation, and inflammation involved in the effects mentioned above. Therefore, our findings indicate that certain conditions of ELF-EMF exposure could delay the development of AD in rats.
Directory of Open Access Journals (Sweden)
Xiao Liu
Full Text Available Although some epidemiological investigations showed a potential association between long-term exposure of extremely low frequency electromagnetic fields (ELF-EMF and Alzheimer's disease (AD, no reasonable mechanism can explain this association, and the related animal experiments are rare. In this study, ELF-EMF exposure (50 Hz 400 µT 60 d combined with D-galactose intraperitoneal (50 mg/kg, q.d., 42 d and Aβ25-35 hippocampal (5 μl/unilateral, bilateral, single-dose injection was implemented to establish a complex rat model. Then the effects of ELF-EMF exposure on AD development was studied by using the Morris water maze, pathological analysis, and comparative proteomics. The results showed that ELF-EMF exposure delayed the weight gain of rats, and partially improved cognitive and clinicopathologic symptoms of AD rats. The differential proteomic analysis results suggest that synaptic transmission, oxidative stress, protein degradation, energy metabolism, Tau aggregation, and inflammation involved in the effects mentioned above. Therefore, our findings indicate that certain conditions of ELF-EMF exposure could delay the development of AD in rats.
Marker, Pernille Aabye; Bauer-Gottwein, Peter; Mosegaard, Klaus
2016-01-01
Hydrologiske modeller af grundvands- og integrerede hydrologiske systemer bruges til at forvalte grundvandsressourcer og vejlede relaterede beslutningsprocesser. Modellerne anvendes bl.a. til, at understøtte den kvantitative forvaltning af vandforsyningen fra kildepladser; udføre afvandingsberegninger af byggepladser; kvantificere grundvandsforurening i tid og rum; estimere miljøeffekten af menneske- eller klimapåvirkninger; karakterisere saltvandsindtrængning i kystnære områder, mm. Modeller...
Energy Technology Data Exchange (ETDEWEB)
Penzkofer, Tobias; Isfort, Peter; Bruners, Philipp; Mahnken, Andreas H. [RWTH Aachen University, Applied Medical Engineering, Helmholtz-Institute Aachen, Aachen (Germany); RWTH Aachen University, Department of Diagnostic Radiology, Aachen University Hospital, Aachen (Germany); Wiemann, Christian; Guenther, Rolf W. [RWTH Aachen University, Department of Diagnostic Radiology, Aachen University Hospital, Aachen (Germany); Kyriakou, Yiannis; Kalender, Willi A. [Friedrich-Alexander University of Erlangen-Nuremberg, Institute for Medical Physics, Erlangen (Germany); Schmitz-Rode, Thomas [RWTH Aachen University, Applied Medical Engineering, Helmholtz-Institute Aachen, Aachen (Germany)
2010-11-15
To evaluate accuracy and procedure times of electromagnetic tracking (EMT) in a robotic arm mounted flat panel setting using phantom and animal cadaveric models. A robotic arm mounted flat panel (RMFP) was used in combination with EMT to perform anthropomorphic phantom (n = 90) and ex vivo pig based punctures (n = 120) of lumbar facet joints (FJ, n = 120) and intervertebral discs (IVD, n = 90). Procedure accuracies and times were assessed and evaluated. FJ punctures were carried out with a spatial accuracy of 0.8 {+-} 0.9 mm (phantom) and 0.6 {+-} 0.8 mm (ex vivo) respectively. While IVD punctures showed puncture deviations of 0.6 {+-} 1.2 mm (phantom) and 0.5 {+-} 0.6 mm (ex vivo), direct and angulated phantom based punctures had accuracies of 0.8 {+-} 0.9 mm and 1.0 {+-} 1.3 mm. Planning took longer for ex vivo IVD punctures compared to phantom model interventions (39.3 {+-} 17.3 s vs. 20.8 {+-} 5.0 s, p = 0.001) and for angulated vs. direct phantom FJ punctures (19.7 {+-} 5.1 s vs. 28.6 {+-} 7.8 s, p < 0.001). Puncture times were longer for ex vivo procedures when compared to phantom model procedures in both FJ (37.9 {+-} 9.0 s vs. 23.6 {+-} 7.2 s, p = 0.001) and IVD punctures (43.9 {+-} 16.1 s vs. 31.1 {+-} 6.4 s, p = 0.026). The combination of RMFP with EMT provides an accurate method of navigation for spinal interventions such as facet joint punctures and intervertebral disc punctures. (orig.)
Moore, Stephen M; McIntosh, Robert L; Iskra, Steve; Wood, Andrew W
2015-02-01
This study considers the computationally determined thermal profile of a fully clothed, finely discretized, heterogeneous human body model, subject to the maximum allowable reference level for a 1-GHz radio frequency electromagnetic field for a worker, and also subject to adverse environmental conditions, including high humidity and high ambient temperature. An initial observation is that while electromagnetic fields at the occupational safety limit will contribute an additional thermal load to the tissues, and subsequently, cause an elevated temperature, the magnitude of this effect is far outweighed by that due to the conditions including the ambient temperature, relative humidity, and the type of clothing worn. It is envisaged that the computational modeling approach outlined in this paper will be suitably modified in future studies to evaluate the thermal response of a body at elevated metabolic rates, and for different body shapes and sizes including children and pregnant women.
Performance analysis for a chaos-based code-division multiple access system in wide-band channel
Directory of Open Access Journals (Sweden)
Ciprian Doru Giurcăneanu
2015-08-01
Full Text Available Code-division multiple access technology is widely used in telecommunications and its performance has been extensively investigated in the past. Theoretical results for the case of wide-band transmission channel were not available until recently. The novel formulae which have been published in 2014 can have an important impact on the future of wireless multiuser communications, but limitations come from the Gaussian approximations used in their derivation. In this Letter, the authors obtain more accurate expressions of the bit error rate (BER for the case when the model of the wide-band channel is two-ray, with Rayleigh fading. In the authors’ approach, the spreading sequences are assumed to be generated by logistic map given by Chebyshev polynomial function of order two. Their theoretical and experimental results show clearly that the previous results on BER, which rely on the crude Gaussian approximation, are over-pessimistic.
Kageshima, Masami; Chikamoto, Takuma; Ogawa, Tatsuya; Hirata, Yoshiki; Inoue, Takahito; Naitoh, Yoshitaka; Li, Yan Jun; Sugawara, Yasuhiro
2009-02-01
In order to probe dynamical properties of mesoscopic soft matter systems such as polymers, structured liquid, etc., a new atomic force microscopy apparatus with a wide-band magnetic cantilever excitation system was developed. Constant-current driving of an electromagnet up to 1 MHz was implemented with a closed-loop driver circuit. Transfer function of a commercial cantilever attached with a magnetic particle was measured in a frequency range of 1-1000 kHz in distilled water. Effects of the laser spot position, distribution of the force exerted on the cantilever, and difference in the detection scheme on the obtained transfer function are discussed in comparison with theoretical predictions by other research groups. A preliminary result of viscoelasticity spectrum measurement of a single dextran chain is shown and is compared with a recent theoretical calculation.
DEFF Research Database (Denmark)
Marker, Pernille Aabye; Bauer-Gottwein, Peter; Mosegaard, Klaus
into the groundwater modeling process. The work focuses on reproducibility and objectivity, which is typically lacking in traditional interpretations of AEM and lithological information, and the approaches presented in this thesis are to a large extent automatic. An approach that integrates EM data and borehole...... for construction sites; quantify groundwater contamination in time and space; estimate ecological impacts of anthropogenic or climatic stresses; characterize salt-water intrusion phenomena, etc. Applications can be at scales of tens to thousands of square kilometers. The reliability of numerical groundwater models...... lithological information directly into groundwater models is proposed. The approach builds on a clay-fraction inversion which is a spatially variable translation of resistivity values from EM data into clay-fraction values using borehole lithological information. Hydrostratigraphical units are obtained through...
Evaluation of the Possibility of Ultra-Wideband Signals Detection
Directory of Open Access Journals (Sweden)
S. L. Chernyshev
2014-01-01
Full Text Available Investigations were carried out to assess the possibility for detecting the ultra-wideband signals of unknown shape. Due to the fact that the geometrical length of the UWB signal is much smaller than the length of target, filter is matched with the radiated signal rather than with the signal reflected from the target, with subsequent treatment in a block in two periods. An output signal of the matched filter and output signal of second unit were obtained on the basis of simulation modeling. Signal/noise ratio at the output of the filter and at the output of the second block were calculated. The signal at the the first filter output is a sequence of correlation functions of a single signal. Improved signal-noise ratio after preliminary matched filter was proved. This enables us to improve the performance of the next block. With the signal/noise ratio at the input of the detector being equal to 6 dB, its increase by 5 - 6 dB was obtained. The implementations of possible signals were investigated, and significant noise elimination was shown. Signal at output of a single detector without first filter was obtained. Analysis results have shown that such detector has a significantly poorer properties than the proposed one. The paper gives detecting characteristics of the optimal detector of the known shape signal, detector with the processing in two adjacent periods, and detector having proposed circuit. The optimal detector has the best characteristics, the detector of the second type possesses the worst one, while the characteristics of the proposed detector is close to that of the optimal detector.
Energy Technology Data Exchange (ETDEWEB)
Cwik, T.; Jamnejad, V.; Zuffada, C. [California Institute of Technology, Pasadena, CA (United States)
1994-12-31
The usefulness of finite element modeling follows from the ability to accurately simulate the geometry and three-dimensional fields on the scale of a fraction of a wavelength. To make this modeling practical for engineering design, it is necessary to integrate the stages of geometry modeling and mesh generation, numerical solution of the fields-a stage heavily dependent on the efficient use of a sparse matrix equation solver, and display of field information. The stages of geometry modeling, mesh generation, and field display are commonly completed using commercially available software packages. Algorithms for the numerical solution of the fields need to be written for the specific class of problems considered. Interior problems, i.e. simulating fields in waveguides and cavities, have been successfully solved using finite element methods. Exterior problems, i.e. simulating fields scattered or radiated from structures, are more difficult to model because of the need to numerically truncate the finite element mesh. To practically compute a solution to exterior problems, the domain must be truncated at some finite surface where the Sommerfeld radiation condition is enforced, either approximately or exactly. Approximate methods attempt to truncate the mesh using only local field information at each grid point, whereas exact methods are global, needing information from the entire mesh boundary. In this work, a method that couples three-dimensional finite element (FE) solutions interior to the bounding surface, with an efficient integral equation (IE) solution that exactly enforces the Sommerfeld radiation condition is developed. The bounding surface is taken to be a surface of revolution (SOR) to greatly reduce computational expense in the IE portion of the modeling.
DEFF Research Database (Denmark)
Barfod, Adrian; Straubhaar, Julien; Høyer, Anne-Sophie
2017-01-01
the incorporation of elaborate datasets and provides a framework for stochastic hydrostratigraphic modelling. This paper focuses on comparing three MPS methods: snesim, DS and iqsim. The MPS methods are tested and compared on a real-world hydrogeophysical survey from Kasted in Denmark, which covers an area of 45 km...... soft data variable. The computation time of 2-3 h for snesim was in between DS and iqsim. The snesim implementation used here is part of the Stanford Geostatistical Modeling Software, or SGeMS. The snesim setup was not trivial, with numerous parameter settings, usage of multiple grids and a search tree...
DEFF Research Database (Denmark)
Stahlhut, Carsten; Wipf, David; Attias, Hagai T.
2010-01-01
In this paper we present a novel spatio-temporal inverse method for solving the inverse M/EEG problem. The contribution is two-folded; firstly, the proposed model allows for a sparse spatial and temporal source representation of the M/EEG by applying an automatic relevance determination type prior...
The Role of Models and Analogies in the Electromagnetic Theory: A Historical Case Study
Silva, Cibelle Celestino
2007-01-01
Despite its great importance, many students and even their teachers still cannot recognize the relevance of models to build up physical knowledge and are unable to develop qualitative explanations for mathematical expressions that exist within physics. Thus, it is not a surprise that analogies play an important role in science education, since…
Validation Of Naval Platform Electromagnetic Tools Via Model And Full-Scale Measurements
van der Graaff, Jasper; Leferink, Frank Bernardus Johannes
2004-01-01
Reliable EMC predictions are very important in the design of a naval platform's topside. Currently, EMC predictions of a Navy ship are verified by scale model and full-scale measurements. In the near future, the validation of software tools leads to an increased confidence in EMC predictions and
Lee, J. H.; Angelopoulos, V.; Chen, L.; Thorne, R. M.
2014-12-01
Numerous global magnetospheric studies on electromagnetic ion cyclotron (EMIC) waves have revealed the typical wave properties observed throughout the Earth's magnetosphere. The observed trends in the wave properties at various geocentric distances and local time sectors, although in general agreement, elude satisfactory explanation without further details on the ambient plasma properties, the low-energy (few to ~100 eV) ions in particular. Recent studies also described techniques to deduce the presence and properties of low-energy ions and the application of such a technique to THEMIS (Time History of Events and Macroscale Interactions during Substorms) data has revealed the typical low-energy ion compositional properties throughout the Earth's magnetosphere. Motivated by the recent work on EMIC waves and low-energy ion composition, we analyze typical wave cases observed at each local time sector by the THEMIS satellites and apply the composition techniques or the statistical low-energy ion composition data to constrain the low-energy components in modeling of each wave case in the context of linear hot plasma theory. We find that the observed waves are modeled well with hot plasma theory and both are fully consistent with the composition of the ambient plasma. Our results suggest that combined ion composition and wave measurements are critical for further assessment of the effects of the waves on energetic particles. In the cases we report on here, we find the waves could resonantly interact with electrons at energies in excess of 2 MeV and therefore do not have an effect on the dominant trapped electron population.
Coupled models in low-frequency electromagnetic simulation LDRD Final Report 94-ERI-004
Energy Technology Data Exchange (ETDEWEB)
Hewett, D.W.; Bateson, D.; Gibbons, M.; Lambert, M.; Tung, L.; Rodrique, G.
1997-02-03
Responding to a need to include realistic chemistry and ionization in the driven plasmas in plasma-aided manufacture, we became convinced that existing computational tools were not able to fulfill our requirements. In response to this, we invented an entirely new approach to such problems. Our approach is to generalize the capabilities of existing methods: Particle-In-Cell (PIC) contains the required details of the distributions but becomes overwhelming expensive when applied to realistic, multidimensional problems. The common alternative, the hydrodynamic model, has simply lost the ability to model this science because of the simple fluid assumption. Our solution, GAPH (for Grid and Particle Hydrodynamics), retains the kinetic capabilities of PIC while using fluid concepts within each particle to control the incredible expense. The coupling of these two methods has resulted in a very powerful new algorithm that is now being applied to a range of programmatic problems throughout LLNL that now far outstrips the initial applications area.
Electromagnetic game modeling through Tensor Analysis of Networks and Game Theory
Maurice, Olivier; Reineix, Alain; Lalléchère, Sébastien
2014-10-01
A complex system involves events coming from natural behaviors. Whatever is the complicated face of machines, they are still far from the complexity of natural systems. Currently, economy is one of the rare science trying to find out some ways to model human behavior. These attempts involve game theory and psychology. Our purpose is to develop a formalism able to take in charge both game and hardware modeling. We first present the Tensorial Analysis of Networks, used for the material part of the system. Then, we detail the mathematical objects defined in order to describe the evolution of the system and its gaming side. To illustrate the discussion we consider the case of a drone whose electronic can be disturbed by a radar field, but this drone must fly as near as possible close to this radar.
Directory of Open Access Journals (Sweden)
Mohammad Bagher Tavakoli
2015-01-01
Full Text Available After proposing the idea of antiproton cancer treatment in 1984 many experiments were launched to investigate different aspects of physical and radiobiological properties of antiproton, which came from its annihilation reactions. One of these experiments has been done at the European Organization for Nuclear Research known as CERN using the antiproton decelerator. The ultimate goal of this experiment was to assess the dosimetric and radiobiological properties of beams of antiprotons in order to estimate the suitability of antiprotons for radiotherapy. One difficulty on this way was the unavailability of antiproton beam in CERN for a long time, so the verification of Monte Carlo codes to simulate antiproton depth dose could be useful. Among available simulation codes, Geant4 provides acceptable flexibility and extensibility, which progressively lead to the development of novel Geant4 applications in research domains, especially modeling the biological effects of ionizing radiation at the sub-cellular scale. In this study, the depth dose corresponding to CERN antiproton beam energy by Geant4 recruiting all the standard physics lists currently available and benchmarked for other use cases were calculated. Overall, none of the standard physics lists was able to draw the antiproton percentage depth dose. Although, with some models our results were promising, the Bragg peak level remained as the point of concern for our study. It is concluded that the Bertini model with high precision neutron tracking (QGSP_BERT_HP is the best to match the experimental data though it is also the slowest model to simulate events among the physics lists.
Numeric Modeling of the Electromagnetic Induction Heating Process for Thermal Treatments
Directory of Open Access Journals (Sweden)
Claudiu Mich-Vancea
2009-10-01
Full Text Available One of the current technologies ofelectromagnetic processing of materials proposed forstudy in this work is hardening through inductiveheating. During the past years, there have beendeveloped modeling methods of the hardeningprocesses in which the numeric analysis of theelectromagnetic field is joined with the analysis ofthermal diffusion. The hardening solutions of ascrew with ball are analyzed with the help of theFLUX program package, resulting the hardeningtime and the distributions corresponding to theelectromagnetic and thermal fields.
2016-11-21
research on quantifying the immunity of microcontrollers to ESD pulses (voltage spikes) ( Vick & Habiger 1997, Wendsche et al 1999) indicated that...University of New Mexico, 2011. Vick , R. and E. Habiger. The Dependence of the Immunity of Digital Equipment on the Hardware and Software Structure... Vick and E. Habiger. Modeling and Testing of Immunity of Computerized Equipment to Fast Electrical Transients. IEEE Transactions on
ATLOG Modeling of Aerial Cable from the November 2016 HERMES Electromagnetic Pulse Experiments
Energy Technology Data Exchange (ETDEWEB)
campione, salvatore [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Warne, Larry K. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Yee, Benjamin Tong [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Cartwright, Keith [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Basilio, Lorena I. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2017-09-01
This report details the comparison of ATLOG modeling results for the response of a finite-length dissipative aerial conductor interacting with a conducting ground to a measurement taken November 2016 at the High-Energy Radiation Megavolt Electron Source (HERMES) facility. We use the ATLOG time-domain method based on transmission line theory. Good agreement is observed between simulations and experiments. Intentionally Left Blank
Metamaterial Absorber for Electromagnetic Waves in Periodic Water Droplets
Yoo, Young Joon; Ju, Sanghyun; Park, Sang Yoon; Ju Kim, Young; Bong, Jihye; Lim, Taekyung; Kim, Ki Won; Rhee, Joo Yull; Lee, YoungPak
2015-01-01
Perfect metamaterial absorber (PMA) can intercept electromagnetic wave harmful for body in Wi-Fi, cell phones and home appliances that we are daily using and provide stealth function that military fighter, tank and warship can avoid radar detection. We reported new concept of water droplet-based PMA absorbing perfectly electromagnetic wave with water, an eco-friendly material which is very plentiful on the earth. If arranging water droplets with particular height and diameter on material surface through the wettability of material surface, meta-properties absorbing electromagnetic wave perfectly in GHz wide-band were shown. It was possible to control absorption ratio and absorption wavelength band of electromagnetic wave according to the shape of water droplet–height and diameter– and apply to various flexible and/or transparent substrates such as plastic, glass and paper. In addition, this research examined how electromagnetic wave can be well absorbed in water droplets with low electrical conductivity unlike metal-based metamaterials inquiring highly electrical conductivity. Those results are judged to lead broad applications to variously civilian and military products in the future by providing perfect absorber of broadband in all products including transparent and bendable materials. PMID:26354891
Metamaterial Absorber for Electromagnetic Waves in Periodic Water Droplets.
Yoo, Young Joon; Ju, Sanghyun; Park, Sang Yoon; Ju Kim, Young; Bong, Jihye; Lim, Taekyung; Kim, Ki Won; Rhee, Joo Yull; Lee, YoungPak
2015-09-10
Perfect metamaterial absorber (PMA) can intercept electromagnetic wave harmful for body in Wi-Fi, cell phones and home appliances that we are daily using and provide stealth function that military fighter, tank and warship can avoid radar detection. We reported new concept of water droplet-based PMA absorbing perfectly electromagnetic wave with water, an eco-friendly material which is very plentiful on the earth. If arranging water droplets with particular height and diameter on material surface through the wettability of material surface, meta-properties absorbing electromagnetic wave perfectly in GHz wide-band were shown. It was possible to control absorption ratio and absorption wavelength band of electromagnetic wave according to the shape of water droplet-height and diameter- and apply to various flexible and/or transparent substrates such as plastic, glass and paper. In addition, this research examined how electromagnetic wave can be well absorbed in water droplets with low electrical conductivity unlike metal-based metamaterials inquiring highly electrical conductivity. Those results are judged to lead broad applications to variously civilian and military products in the future by providing perfect absorber of broadband in all products including transparent and bendable materials.
Metamaterial Absorber for Electromagnetic Waves in Periodic Water Droplets
Yoo, Young Joon; Ju, Sanghyun; Park, Sang Yoon; Ju Kim, Young; Bong, Jihye; Lim, Taekyung; Kim, Ki Won; Rhee, Joo Yull; Lee, Youngpak
2015-09-01
Perfect metamaterial absorber (PMA) can intercept electromagnetic wave harmful for body in Wi-Fi, cell phones and home appliances that we are daily using and provide stealth function that military fighter, tank and warship can avoid radar detection. We reported new concept of water droplet-based PMA absorbing perfectly electromagnetic wave with water, an eco-friendly material which is very plentiful on the earth. If arranging water droplets with particular height and diameter on material surface through the wettability of material surface, meta-properties absorbing electromagnetic wave perfectly in GHz wide-band were shown. It was possible to control absorption ratio and absorption wavelength band of electromagnetic wave according to the shape of water droplet-height and diameter- and apply to various flexible and/or transparent substrates such as plastic, glass and paper. In addition, this research examined how electromagnetic wave can be well absorbed in water droplets with low electrical conductivity unlike metal-based metamaterials inquiring highly electrical conductivity. Those results are judged to lead broad applications to variously civilian and military products in the future by providing perfect absorber of broadband in all products including transparent and bendable materials.
Noninvasive probing of the human body with electromagnetic pulses: Modeling of the signal path
Thiel, F.; Seifert, F.
2009-02-01
The biomedical applications of ultrawideband (UWB) radar promise a very important means to remotely monitor physiological signatures such as myocardial deformation and respiration. Accurate numerical and analytical techniques to predict the propagation of UWB signals in biological tissue are of great interests to researchers as an aid in developing signal processing algorithms. We propose applying an analytic transmit/receive signal path model considering the antennas, the human body, and the signal processing part of the UWB unit. Furthermore, the frequency dependency of the different biological tissues' dielectric properties and the individual continuous motion of intrathoracic tissue layers are incorporated.
Design and Motion Modeling of an Electromagnetic Hydraulic Power Hump Harvester
Directory of Open Access Journals (Sweden)
Hatem Hadi Obeid
2014-08-01
Full Text Available This paper emphasises the idea that the kinetic energy getting wasted while vehicles move can be utilized to generate power by using a special arrangement called “hydraulic power hump.” Hydraulic technology is used to convert linear transient motion into rotational. Dynamic model for the new design has been derived and analyzed based on Lagrange differential equation. Governing differential equations are solved by numerical “Duhamel integral.” Theoretical simulations are carried out to study the features and estimation power. Guidelines are given for the design of this type of power speed humps.
Moghadas, D.; André, F.; Vereecken, H.; Lambot, S.
2009-04-01
Water is a vital resource for human needs, agriculture, sanitation and industrial supply. The knowledge of soil water dynamics and solute transport is essential in agricultural and environmental engineering as it controls plant growth, hydrological processes, and the contamination of surface and subsurface water. Increased irrigation efficiency has also an important role for water conservation, reducing drainage and mitigating some of the water pollution and soil salinity. Geophysical methods are effective techniques for monitoring the vadose zone. In particular, electromagnetic induction (EMI) can provide in a non-invasive way important information about the soil electrical properties at the field scale, which are mainly correlated to important variables such as soil water content, salinity, and texture. EMI is based on the radiation of a VLF EM wave into the soil. Depending on its electrical conductivity, Foucault currents are generated and produce a secondary EM field which is then recorded by the EMI system. Advanced techniques for EMI data interpretation resort to inverse modeling. Yet, a major gap in current knowledge is the limited accuracy of the forward model used for describing the EMI-subsurface system, usually relying on strongly simplifying assumptions. We present a new low frequency EMI method based on Vector Network Analyzer (VNA) technology and advanced forward modeling using a linear system of complex transfer functions for describing the EMI loop antenna and a three-dimensional solution of Maxwell's equations for wave propagation in multilayered media. VNA permits simple, international standard calibration of the EMI system. We derived a Green's function for the zero-offset, off-ground horizontal loop antenna and also proposed an optimal integration path for faster evaluation of the spatial-domain Green's function from its spectral counterpart. This new integration path shows fewer oscillations compared with the real path and permits to avoid the
Beckstein, P.; Galindo, V.; Schönecker, A.; Gerbeth, G.
2017-07-01
The Ribbon Growth on Substrate (RGS) technology is a crystallization technique that allows direct casting of silicon wafers and sheets of advanced metal-silicide compounds. With the potential of reaching high crystallization rates, it promises a very efficient approach for future photo-voltaic silicon wafer production compared to well-established processes in industry. However, a number of remaining problems, like process stability and controllability, need to be addressed for the RGS technology to eventually become a competitor in the near future. In this regard, it is very desirable to gain detailed insights into the characteristic process dynamics. To comply with this demand, we have developed a new numerical tool based on OpenFOAM (foam-extend), capable of simulating the free-surface dynamics of the melt flow under the influence of an applied alternating magnetic field. Our corresponding model thereby resolves the interaction of hydrodynamic and magnetodynamic effects in three-dimensional space. Although we currently focus on the RGS process, the modeling itself has been formulated in a more general form, which may be used for the investigation of similar problems, too. Here we provide a brief overview of these developments.
Directory of Open Access Journals (Sweden)
Jorge I. Silva O.
2015-06-01
Full Text Available This paper present a purpose to characterize power lines in order to identify level of operation since the power grid planning. In order to model a power line was required the use of computational tools to generate a mathematical model in MATLAB, which was based on the finite difference method and represent the electromagnetic field (EMF contribution. The results were contrasted with real and measured values taken from a cross section of a power line that was previously modeled. Statistical analysis showed an accurate estimation of the electric and magnetic field emitted by the line identifying the same shape of the plotted curve and values in an acceptable range.
Jarukanont, Daungruthai; Coimbra, João T S; Bauerhenne, Bernd; Fernandes, Pedro A; Patel, Shekhar; Ramos, Maria J; Garcia, Martin E
2014-10-21
We report on the viability of breaking selected bonds in biological systems using tailored electromagnetic radiation. We first demonstrate, by performing large-scale simulations, that pulsed electric fields cannot produce selective bond breaking. Then, we present a theoretical framework for describing selective energy concentration on particular bonds of biomolecules upon application of tailored electromagnetic radiation. The theory is based on the mapping of biomolecules to a set of coupled harmonic oscillators and on optimal control schemes to describe optimization of temporal shape, the phase and polarization of the external radiation. We have applied this theory to demonstrate the possibility of selective bond breaking in the active site of bacterial DNA topoisomerase. For this purpose, we have focused on a model that was built based on a case study. Results are given as a proof of concept.
Classical and quantal Lorentz covariant models of the electromagnetic radiation field
Aaberge, Terje
2000-07-01
We present Lorentz covariant models of the radiation field, i.e., plane wave solutions of the Maxwell equations satisfying the Coulomb gauge condition. The theory is constructed along traditional lines. We apply the interpretation of the field as a collection of photons and starts by constructing the state space of the photon. The novelty of this formulation is the use of a new action of the Lorentz group on the space of circular helicities of spin 1 which permits the construction of an action on the state space of the photon. Moreover, the generators of the action provide objects that can be used to construct the field observables both in the classical and quantum case. The result is a theory with a tight structure. It is a generalization of the standard theory, a covariant generalization, and it contains this as a special case.
A model for phonon coupling contributions to electromagnetic moments of odd spherical nuclei
Saperstein, E. E.; Kamerdzhiev, S.; Krewald, S.; Speth, J.; Tolokonnikov, S. V.
2013-08-01
Within the Theory of Finite Fermi Systems (TFFS), a model is developed to describe Phonon Coupling (PC) effects in odd magic and semi-magic nuclei. It is based on the perturbation theory in g^2_L , where gL is the vertex of the L-phonon creation. Among all g^2_L diagrams the set is separated which depends significantly on the nucleus under consideration and the state λ of the odd nucleon. An ansatz is proposed to take into account the phonon tadpole diagram which ensures the total angular-momentum conservation. Calculations are carried out for three odd-proton chains, the odd Tl, In and Sb ones. Different PC corrections strongly cancel each other. In the result, the total PC correction to magnetic moments in magic nuclei is, as a rule, negligible. In the non-magic nuclei considered it is noticeable and improves the agreement with data.
Homology in Electromagnetic Boundary Value Problems
Directory of Open Access Journals (Sweden)
Pellikka Matti
2010-01-01
Full Text Available We discuss how homology computation can be exploited in computational electromagnetism. We represent various cellular mesh reduction techniques, which enable the computation of generators of homology spaces in an acceptable time. Furthermore, we show how the generators can be used for setting up and analysis of an electromagnetic boundary value problem. The aim is to provide a rationale for homology computation in electromagnetic modeling software.
Topological Foundations of Electromagnetism
Barrett, Terrence W
2008-01-01
Topological Foundations of Electromagnetism seeks a fundamental understanding of the dynamics of electromagnetism; and marshals the evidence that in certain precisely defined topological conditions, electromagnetic theory (Maxwell's theory) must be extended or generalized in order to provide an explanation and understanding of, until now, unusual electromagnetic phenomena. Key to this generalization is an understanding of the circumstances under which the so-called A potential fields have physical effects. Basic to the approach taken is that the topological composition of electromagnetic field
Beekhuizen, Johan; Heuvelink, Gerard B M; Huss, Anke; Bürgi, Alfred; Kromhout, Hans; Vermeulen, Roel
2014-11-01
With the increased availability of spatial data and computing power, spatial prediction approaches have become a standard tool for exposure assessment in environmental epidemiology. However, such models are largely dependent on accurate input data. Uncertainties in the input data can therefore have a large effect on model predictions, but are rarely quantified. With Monte Carlo simulation we assessed the effect of input uncertainty on the prediction of radio-frequency electromagnetic fields (RF-EMF) from mobile phone base stations at 252 receptor sites in Amsterdam, The Netherlands. The impact on ranking and classification was determined by computing the Spearman correlations and weighted Cohen's Kappas (based on tertiles of the RF-EMF exposure distribution) between modelled values and RF-EMF measurements performed at the receptor sites. The uncertainty in modelled RF-EMF levels was large with a median coefficient of variation of 1.5. Uncertainty in receptor site height, building damping and building height contributed most to model output uncertainty. For exposure ranking and classification, the heights of buildings and receptor sites were the most important sources of uncertainty, followed by building damping, antenna- and site location. Uncertainty in antenna power, tilt, height and direction had a smaller impact on model performance. We quantified the effect of input data uncertainty on the prediction accuracy of an RF-EMF environmental exposure model, thereby identifying the most important sources of uncertainty and estimating the total uncertainty stemming from potential errors in the input data. This approach can be used to optimize the model and better interpret model output. Copyright © 2014 Elsevier Inc. All rights reserved.
A novel compact dual-wideband BPF with multiple transmission zeros and super wide upper stopband
Mirzaee, Milad; Nosrati, Mehdi
2013-05-01
In this article, a novel miniaturised dual-wideband bandpass filter (DWB-BPF) based on two different resonators including a quasi-spiral loaded multiple-mode resonator (QSL-MMR) and L-shaped transmission line (LS-TL) is presented. At the first step, in order to design a single wideband BPF filter with controllable transmission zeros near the centre frequency, the open circuit impedance parameter of quasi-spiral loaded resonator Z21 is determined in terms of ABCD matrix. Then an equivalent circuit model of the proposed structure is derived and the impedance characteristic and electrical length of LS-TLs to achieve a DWB-BPF with excellent selectivity are calculated through even- and odd-mode analysis. The proposed filter possesses both compact and simple structure as well as two wide passbands with fractional bandwidth (FBW) of 70% and 22.8% for its first and second passbands, respectively. The proposed technique creates two transmission zeros at the lower and upper stopbands of each passband resulting in a very sharp roll-off accompanied by a wide stopband. Notably, the circuit size is reduced and the bandwidth is enhanced in comparison with its conventional counterparts. The theoretical performance of the filter is verified by the experimental one where a good agreement is reported between them.
Analysis of a Compact Wideband Slotted Antenna for Ku Band Applications
Directory of Open Access Journals (Sweden)
M. R. Ahsan
2014-01-01
Full Text Available The design procedure and physical module of a compact wideband patch antenna for Ku band application are presented in this paper. Finite element method based on 3D electromagnetic field solver has been utilized for the designing and analyzing process of proposed microstrip line fed modified E-H shaped electrically small patch antenna. After successful completion of the design process through various simulations, the proposed antenna has been fabricated on printed circuit board (PCB and its characteristics have been studied. The parameters of the proposed antenna prototype have been measured in standard far-field rectangular shape anechoic measurement compartment. It is apparent from the measured antenna parameters that the proposed antenna achieved almost stable variation of radiation pattern over the entire operational band with 1380 MHz of -10 dB return loss bandwidth. The maximum gain of 7.8 dBi and 89.97% average efficiency within the operating band from 17.15 GHz to 18.53 GHz ensure the suitability of the proposed antenna for Ku band applications.
Naishadham, Krishna; Piou, Jean E; Ren, Lingyun; Fathy, Aly E
2016-12-01
Ultra wideband (UWB) Doppler radar has many biomedical applications, including remote diagnosis of cardiovascular disease, triage and real-time personnel tracking in rescue missions. It uses narrow pulses to probe the human body and detect tiny cardiopulmonary movements by spectral analysis of the backscattered electromagnetic (EM) field. With the help of super-resolution spectral algorithms, UWB radar is capable of increased accuracy for estimating vital signs such as heart and respiration rates in adverse signal-to-noise conditions. A major challenge for biomedical radar systems is detecting the heartbeat of a subject with high accuracy, because of minute thorax motion (less than 0.5 mm) caused by the heartbeat. The problem becomes compounded by EM clutter and noise in the environment. In this paper, we introduce a new algorithm based on the state space method (SSM) for the extraction of cardiac and respiration rates from UWB radar measurements. SSM produces range-dependent system poles that can be classified parametrically with spectral peaks at the cardiac and respiratory frequencies. It is shown that SSM produces accurate estimates of the vital signs without producing harmonics and inter-modulation products that plague signal resolution in widely used FFT spectrograms.
Numerical Design of Ultra-Wideband Printed Antenna for Surface Penetrating Radar Application
Directory of Open Access Journals (Sweden)
Achmad Munir
2011-08-01
Full Text Available Surface penetrating radar (SPR is an imaging device of electromagnetic wave that works by emitting and transmitting a narrow period pulse through the antenna. Due to the use of narrow period pulse, according to the Fourier transform duality, therefore ultra-wideband (UWB antenna becomes one of the most important needs in SPR system. In this paper, a novel UWB printed antenna is proposed to be used for SPR application. Basically, the proposed antenna is developed from a rectangular microstrip antenna fed by symmetric T-shaped. Some investigation methods such as resistive loading, abrupt transition, and ground plane modification are attempted to achieve required characteristics of bandwidth, radiation efficiency, and compactness needed by the system. To obtain the optimum design, the characteristics of proposed antenna are numerically investigated through the physical parameters of antenna. It is shown that proposed antenna deployed on an FR-4 Epoxy substrate with permittivity of 4.3 and thickness of 1.6mm has a compact size of 72.8mm x 60.0mm and a large bandwidth of 50MHz-5GHz which is suitable for SPR application.
Ultra-wideband circular-polarization converter with micro-split Jerusalem-cross metasurfaces
Gao, Xi; Yu, Xing-Yang; Cao, Wei-Ping; Jiang, Yan-Nan; Yu, Xin-Hua
2016-12-01
An ultrathin micro-split Jerusalem-cross metasurface is proposed in this paper, which can efficiently convert the linear polarization of electromagnetic (EM) wave into the circular polarization in ultra-wideband. By symmetrically employing two micro-splits on the horizontal arm (in the x direction) of the Jerusalem-cross structure, the bandwidth of the proposed device is significantly extended. Both simulated and experimental results show that the proposed metasurface is able to convert linearly polarized waves into circularly polarized waves in a frequency range from 12.4 GHz to 21 GHz, with an axis ratio better than 1 dB. The simulated results also show that such a broadband and high-performance are maintained over a wide range of incident angle. The presented polarization converter can be used in a number of areas, such as spectroscopy and wireless communications. Project supported by the National Natural Science Foundation of China (Grant Nos. 61461016 and 61661012), the Natural Science Foundation of Guangxi Zhuang Autonomous Region, China (Grant Nos. 2014GXNSFAA118366, 2014GXNSFAA118283, and 2015jjBB7002), and the Innovation Project of Graduate Education of Guilin University of Electronic Technology, China (Grant No. 2016YJCX82).
Nagaoka, Tomoaki; Watanabe, Soichi; Sakurai, Kiyoko; Kunieda, Etsuo; Watanabe, Satoshi; Taki, Masao; Yamanaka, Yukio
2004-01-01
With advances in computer performance, the use of high-resolution voxel models of the entire human body has become more frequent in numerical dosimetries of electromagnetic waves. Using magnetic resonance imaging, we have developed realistic high-resolution whole-body voxel models for Japanese adult males and females of average height and weight. The developed models consist of cubic voxels of 2 mm on each side; the models are segmented into 51 anatomic regions. The adult female model is the first of its kind in the world and both are the first Asian voxel models (representing average Japanese) that enable numerical evaluation of electromagnetic dosimetry at high frequencies of up to 3 GHz. In this paper, we will also describe the basic SAR characteristics of the developed models for the VHF/UHF bands, calculated using the finite-difference time-domain method.
2016-08-01
WIDEBAND AUTONOMOUS COGNITIVE RADIOS Sudharman Jayaweera Department of Electrical and Computer Engineering University of New Mexico Albuquerque, NM...Knowledge Acquisition in Wideband Autonomous Cognitive Radios 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 63401F 6. AUTHOR(S) 5d. PROJECT NUMBER...will advance the wideband autonomous cognitive radio (WACR) technology. These are radios that have the ability to sense state of the radio frequency
Yogeshwar, P.; Tezkan, B.
2017-01-01
Thick sedimentary sequences are deposited in the central area of the Azraq basin in Jordan consisting mostly of hyper-saline clay and various evaporates. These sediment successions form the 10 km × 10 km large Azraq mudflat and are promising archives for a palaeoclimatical reconstruction. Besides palaeoclimatical research, the Azraq area is of tremendous importance to Jordan due to groundwater and mineral resources. The heavy exploitation of groundwater has lead to a drastic decline of the water table and drying out of the former Azraq Oasis. Two 7 and 5 km long transects were investigated from the periphery of the mudflat across its center using a total of 150 central loop transient electromagnetic (TEM) soundings. The scope of the survey was to detect the thickness of sedimentary deposits along both transects and to provide a basis for future drilling activities. We derive a two-dimensional model which can explain the TEM data for all soundings along each profile simultaneously. Previously uncertain depths of geological boundaries were determined along both transects. Particularly the thickness of the deposited mudflat sediments was identified and ranges from 40 m towards the periphery down to approximately 130 m at the deepest location. Besides that, the depth and lateral extent of a buried basalt layer was identified. In the basin center the groundwater is hyper-saline. The lateral extent of the saline water body was determined precisely along both transects. In order to investigate the detectability of the basement below the high conductive mudflat sediments an elaborate two-dimensional modeling study was performed. Both, the resistivity and depth of the basement were varied systematically. The basement resistivity cannot be determined precisely in most zones and may range roughly between 1 and 100 Ωm without deteriorating the misfit. In contrast to that, the depth down to the basement is detected accurately in most zones and along both transects. Varying
Optimization and Design of Wideband Antenna Based on Q Factor
Directory of Open Access Journals (Sweden)
Han Liu
2015-01-01
Full Text Available A wideband antenna is designed based on Q factor in this paper. Firstly, the volume-surface integral equations (VSIEs and self-adaptive differential evolution algorithm (DEA are introduced as the basic theories to optimize antennas. Secondly, we study the computation of Q of arbitrary shaped structures, aiming at designing an antenna with maximum bandwidth by minimizing the Q of the antenna. This method is much more efficient for only Q values at specific frequency points that are computed, which avoids optimizing bandwidth directly. Thirdly, an integrated method combining the above method with VSIEs and self-adaptive DEA is employed to optimize the wideband antenna, extending its bandwidth from 11.5~16.5 GHz to 7~20 GHz. Lastly, the optimized antenna is fabricated and measured. The measured results are consistent with the simulated results, demonstrating the feasibility and effectiveness of the proposed method.
Ultra wideband coplanar waveguide fed spiral antenna for humanitarian demining
DEFF Research Database (Denmark)
Thaysen, Jesper; Jakobsen, Kaj Bjarne; Appel-Hansen, Jørgen
2000-01-01
to 1 bandwidth with a return loss better than 10 dB from 0.4 to 3.8 GHz is presented. A wideband balun covering the frequency range of the antenna was developed. The constructed spiral antenna is very useful in a stepped frequency ground penetrating radar for humanitarian demining due to the very...... wide band-width, relatively small size, and being uniplanar. Successful detection of a small 5.4 cm non-metallic AP-mines in a pseudo minefield are presented.......to 1 bandwidth with a return loss better than 10 dB from 0.4 to 3.8 GHz is presented. A wideband balun covering the frequency range of the antenna was developed. The constructed spiral antenna is very useful in a stepped frequency ground penetrating radar for humanitarian demining due to the very...
Ultra-wideband polarization insensitive UT-shaped metamaterial absorber
Karampour, Nasrollah; Nozhat, Najmeh
2017-05-01
In this paper, an ultra-wideband metamaterial absorber (MMA) with U and T shaped resonators has been proposed. The resonators and the ground plane consist of gold (Au) and titanium (Ti) layers. The resistive sheet effect of Ti layer and the resonance elements in the structure cause a broad absorption spectrum. The simulations are based on the finite element method (FEM) and the results show that the absorption of the proposed structure is more than 90% between 150 and 300 THz that is much larger than previous works. Moreover, by applying the interference theory, we have demonstrated that the simulation results are in good agreement with the theoretical results. The primary proposed MMA is polarization sensitive. Therefore, a polarization insensitive metamaterial absorber has been suggested. Also, because of the extra resonance elements the full width at 90% absorption increases about 35 THz. This ultra-wideband MMA has various applications in microbalometer, imaging, thermal emitters, photovoltaic, and energy harvesting.
Wideband Printed Antenna Design Using a Shape Blending Algorithm
Directory of Open Access Journals (Sweden)
Aiting Wu
2017-01-01
Full Text Available The shape of the tuning stub of the wide slot printed antenna is an important factor which affects the antenna’s performances. In this paper, a new design and optimization method of wideband printed slot antenna using a shape blending algorithm is presented. The proposed antenna consists of a wide rectangular slot and a tuning stub, whose profile is formed by the shape blending outcome from a pie and a diamond shape. The method is used to design an ultra-wideband antenna. The impact on the impedance bandwidth through the antenna geometry change with the different shape blending results has been investigated and analyzed. To verify the proposed design, the antenna prototype was designed, fabricated, and measured. The measured results are compared with the simulation and show good agreement.
Thermal Studies on the SPS Wideband Transverse Feedback Kicker
Roggen, Toon; Hofle, Wolfgang; Montesinos, Eric; CERN. Geneva. ATS Department
2016-01-01
As part of the SPS wideband transverse feedback system in the framework of the LHC Injector Upgrade (LIU) project, a wideband kicker design is being proposed. Vertical beam instabilities due to intensity dependent effects (electron cloud instability (ECI) and transverse mode coupling instability (TMCI)) are potentially suppressed by using a feedback system driving such a kicker system. One of the options for a kicker is a one meter long slotted-coaxial kicker, providing a substantial vertical kick strength (10ˉ5 –10ˉ4 eV.s/m) over a bandwidth ranging from nearly DC to 1 GHz. The necessary kick strength requires a total power of 4 kW. This note describes thermal studies that assisted in the material choice of the feedthroughs of the slotted-coaxial kicker and guided the design choices.
A Wideband Direct Data Domain Genetic Algorithm Beamforming
Directory of Open Access Journals (Sweden)
H. M. Elkamchouchi
2015-04-01
Full Text Available In this paper, a wideband direct data-domain genetic algorithm beamforming is presented. Received wideband signals are decomposed to a set of narrow sub-bands using fast Fourier transform. Each sub-band is transformed to a reference frequency using the steering vector transformation. So, narrowband approaches could be used for any of these sub-bands. Hence, the direct data-domain genetic algorithm beamforming can be used to form a single ‘hybrid’ beam pattern with sufficiently deep nulls in order to separate and reconstruct frequency components of the signal of interest efficiently. The proposed approach avoids most of drawbacks of already-existing statistical and gradient-based approaches since formation of a covariance matrix is not needed, and a genetic algorithm is used to solve the beamforming problem.
Development of Wideband, Dual Polarized L-Band Array Antenna for Digital Beam forming SAR Project
National Aeronautics and Space Administration — Using analytical methods to conceptualization L-band antenna structures that offer potentials of wideband operation. Perform extensive computer simulations on these...
Cen, Wei; Hoppe, Ralph; Lu, Rongbo; Cai, Zhaoquan; Gu, Ning
2017-08-01
In this paper, the relationship between electromagnetic power absorption and temperature distributions inside highly heterogeneous biological samples was accurately determinated using finite volume method. An in-vitro study on pineal gland that is responsible for physiological activities was for the first time simulated to illustrate effectiveness of the proposed method.
Survey of Ultra-wideband Radar
Mokole, Eric L.; Hansen, Pete
The development of UWB radar over the last four decades is very briefly summarized. A discussion of the meaning of UWB is followed by a short history of UWB radar developments and discussions of key supporting technologies and current UWB radars. Selected UWB radars and the associated applications are highlighted. Applications include detecting and imaging buried mines, detecting and mapping underground utilities, detecting and imaging objects obscured by foliage, through-wall detection in urban areas, short-range detection of suicide bombs, and the characterization of the impulse responses of various artificial and naturally occurring scattering objects. In particular, the Naval Research Laboratory's experimental, low-power, dual-polarized, short-pulse, ultra-high resolution radar is used to discuss applications and issues of UWB radar. Some crucial issues that are problematic to UWB radar are spectral availability, electromagnetic interference and compatibility, difficulties with waveform control/shaping, hardware limitations in the transmission chain, and the unreliability of high-power sources for sustained use above 2 GHz.
Dufour, Christian; Cardin, Julien; Debieu, Olivier; Fafin, Alexandre; Gourbilleau, Fabrice
2011-04-04
By means of ADE-FDTD method, this paper investigates the electromagnetic modelling of a rib-loaded waveguide composed of a Nd3+ doped Silicon Rich Silicon Oxide active layer sandwiched between a SiO2 bottom cladding and a SiO2 rib. The Auxilliary Differential Equations are the rate equations which govern the levels populations. The Finite Difference Time Domain (FDTD) scheme is used to solve the space and time dependent Maxwell equations which describe the electromagnetic field in a copropagating scheme of both pumping (λpump = 488 nm) and signal (λsignal = 1064 nm) waves. Such systems are characterized by extremely different specific times such as the period of electromagnetic field ~ 10-15 s and the lifetimes of the electronic levels between ~ 10-10s and ~ 10-4 s. The time scaling method is used in addition to specific initial conditions in order to decrease the computational time. We show maps of the Poynting vector along the propagation direction as a function of the silicon nanograin (Si-ng) concentrations. A threshold value of 1024 Si-ng m-3 is extracted below which the pump wave can propagate so that a signal amplication is possible.
Directory of Open Access Journals (Sweden)
Dufour Christian
2011-01-01
Full Text Available Abstract By means of ADE-FDTD method, this paper investigates the electromagnetic modelling of a rib-loaded waveguide composed of a Nd3+ doped Silicon Rich Silicon Oxide active layer sandwiched between a SiO2 bottom cladding and a SiO2 rib. The Auxilliary Differential Equations are the rate equations which govern the levels populations. The Finite Difference Time Domain (FDTD scheme is used to solve the space and time dependent Maxwell equations which describe the electromagnetic field in a copropagating scheme of both pumping (λ pump = 488 nm and signal (λ signal = 1064 nm waves. Such systems are characterized by extremely different specific times such as the period of electromagnetic field ~ 10-15 s and the lifetimes of the electronic levels between ~ 10-10s and ~ 10-4 s. The time scaling method is used in addition to specific initial conditions in order to decrease the computational time. We show maps of the Poynting vector along the propagation direction as a function of the silicon nanograin (Si-ng concentrations. A threshold value of 1024 Si-ng m-3 is extracted below which the pump wave can propagate so that a signal amplication is possible.
Wideband MIMO Channel Capacity Analysis in Multiprobe Anechoic Chamber Setups
DEFF Research Database (Denmark)
Fan, Wei; Kyosti, Pekka; Nielsen, Jesper Ødum
2016-01-01
This paper discusses over the air (OTA) testing for multiple input multiple output (MIMO) capable terminals with emphasis on wideband MIMO channel capacity analysis in a multi-probe anechoic chamber setup. In the literature, the spatial correlation simulation accuracy at the receiver (Rx) side has...... in a practical multi-probe anechoic chamber setup. The capacity simulation accuracy is shown to be a valid measure to determine the test area size....
Ruggedizing Printed Circuit Boards Using a Wideband Dynamic Absorber
Directory of Open Access Journals (Sweden)
V.C. Ho
2003-01-01
Full Text Available The existing approaches to ruggedizing inherently fragile and sensitive critical components of electronic equipment such as printed circuit boards (PCB for use in hostile industrial and military environment are either insufficient or expensive. This paper addresses a novel approach towards ruggedizing commercial-off-the-shelf PCBs using a miniature wideband dynamic absorber. The optimisation technique used relies on the experimentally measured vibration spectra and complex receptance of the original PCB.
Ultra-Wideband Coplanar-Fed Monopoles: A Comparative Study
Directory of Open Access Journals (Sweden)
J. Jilkova
2008-04-01
Full Text Available The paper provides an experimental comparison of four types of ultra-wideband coplanar-fed planar monopole antennas. Parameters of the open stub completed by an L-shaped monopole and the cross monopole were adopted from the literature. The forked monopole and the coplanar monopole were fabricated and measured. Monopoles were compared from the viewpoint of the impedance bandwidth, gain, directivity patterns and dimensions.
A wideband Noise-Canceling CMOS LNA exploiting a transformer
Blaakmeer, S.C.; Klumperink, Eric A.M.; Leenaerts, Domine M.W.; Nauta, Bram
2006-01-01
A broadband LNA incorporating single-ended to differential conversion, has been successfully implemented using a noise-canceling technique and a single on-chip transformer. The LNA achieves a high voltage gain of 19dB, a wideband input match (2.5–4.0 GHz), and a Noise Figure of 4–5.4 dB, while
A wideband Noise-Canceling CMOS LNA exploiting a transformer
Blaakmeer, S.C.; Klumperink, Eric A.M.; Leenaerts, Domine M.W.; Nauta, Bram
2006-01-01
Abstract — A broadband LNA incorporating single-ended to differential conversion, has been successfully implemented using a noise-canceling technique and a single on-chip transformer. The LNA achieves a high voltage gain of 19dB, a wideband input match (2.5–4.0 GHz), and a Noise Figure of 4–5.4 dB,
Closely Mounted Compact Wideband Diversity Antenna for Mobile Phone Applications
Directory of Open Access Journals (Sweden)
Bunggil Yu
2012-01-01
Full Text Available Here a compact wideband diversity antenna covering the PCS/UMTS/WiMAX bands with high isolation and low enveloped correlation coefficient (ECC is proposed. To widen the bandwidth, the proposed antenna uses a structure with a gap-coupled feed and an inductively shorted line that has capacitive compensation between the radiator and the ground plane. Also, a suspended line with a parasitic element is used to enhance the isolation between the two antennas.
Integral methods in low-frequency electromagnetics
Solin, Pavel; Karban, Pavel; Ulrych, Bohus
2009-01-01
A modern presentation of integral methods in low-frequency electromagnetics This book provides state-of-the-art knowledge on integral methods in low-frequency electromagnetics. Blending theory with numerous examples, it introduces key aspects of the integral methods used in engineering as a powerful alternative to PDE-based models. Readers will get complete coverage of: The electromagnetic field and its basic characteristics An overview of solution methods Solutions of electromagnetic fields by integral expressions Integral and integrodifferential methods
DEFF Research Database (Denmark)
Andersen, Søren Bøgh; Santos, Ilmar F.; Fuerst, Axel
2015-01-01
electromagnet, thermal and structural interactions. This multi-physics model will later on be used for simulating and parameter optimization of a gearless mill drive. What has been proposed is a multi-physics model where the core losses are determined through a series of static finite element magnetic...... calculations applied to the principle of separation of losses where the losses of each harmonic are summed up. These losses have then been used in the thermal part of the model as heat generation and is modeled by the finite difference and finite element method. The cooling flow, which properties are updated......This paper presents an improved completely interconnected procedure for estimating the losses, cooling flows, fluid characteristics and temperature distribution in a gearless mill drive using real life data. The presented model is part of a larger project building a multi-physics model combining...
Concealed weapons detection using electromagnetic resonances
Hunt, Allen R.; Hogg, R. Douglas; Foreman, William
1998-12-01
Concealed weapons pose a significant threat to both law enforcement and security agency personnel. The uncontrolled environments associated with peacekeeping and the move toward relaxation of concealed weapons laws here in the U.S. provide a strong motivation for developing weapons detection technologies which are noninvasive and can function noncooperatively. Existing weapons detection systems are primarily oriented to detecting metal and require the cooperation of the person being searched. The new generation of detectors under development that focuses primarily on imaging methods, faces problems associated with privacy issues. There remains a need for a weapons detector which is portable, detects weapons remotely, avoids the issues associated with privacy rights, can tell the difference between car keys and a knife, and is affordable enough that one can be issued to every peacekeeper and law enforcement officer. AKELA is developing a concealed weapons detector that uses wideband radar techniques to excite natural electromagnetic resonances that characterize the size, shape, and material composition of an object. Neural network processing is used to classify the difference between weapons and nuisance objects. We have constructed both time and frequency domain test systems and used them to gather experimental data on a variety of armed and unarmed individuals. These experiments have been performed in an environment similar to the operational environment. Preliminary results from these experiments show that it is possible to detect a weapon being carried by an individual from a distance of 10 to 15 feet, and to detect a weapon being concealed behind the back. The power required is about 100 milliwatts. A breadboard system is being fabricated and will be used by AKELA and our law enforcement partner to gather data in operationally realistic situations. While a laptop computer will control the breadboard system, the wideband radar electronics will fit in a box the