WorldWideScience

Sample records for wide-field x-ray study

  1. Wide field monitoring of the X-ray sky using Rotation Modulation Collimators

    DEFF Research Database (Denmark)

    Lund, Niels; Brandt, Søren

    1995-01-01

    Wide field monitoring is of particular interest in X-ray astronomy due to the strong time-variability of most X-ray sources. Not only does the time-profiles of the persistent sources contain characteristic signatures of the underlying physical systems, but, additionally, some of the most intriguing...... sources have long periods of quiesense in which they are almost undetectable as X-ray sources, interspersed with relatively brief periods of intense outbursts, where we have unique opportunities of studying dynamical effects, in, for instance, the evolution of accretion discs. Another question for which...... wide field monitors may provide key information, is the origin and nature of the cosmic gamma ray bursts.Rotation Modulation Collimators (RMC's) were originally introduced in X-ray astronomy to provide accurate source localizations over extended fields. This role has since been taken over...

  2. Wide Field-of-View (FOV) Soft X-Ray Imager Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Wide Field-of-View (FOV) Soft X-Ray Imager proposes to be a state-of-art instrument with applications for numerous heliospheric and planetary...

  3. ISS-Lobster: A Proposed Wide-Field X-Ray Telescope on the International Space Station

    Science.gov (United States)

    Camp, Jordan

    2012-01-01

    The Lobster wide-field imaging telescope combines simultaneous high FOV, high sensitivity and good position resolution. These characteristics can open the field of X-Ray time domain astronomy, which will study many interesting transient sources, including tidal disruptions of stars, supernova shock breakouts, and high redshift gamma-ray bursts. Also important will be its use for the X-ray follow-up of gravitational wave detections. I will describe our present effort to propose the Lobster concept for deployment on the International Space Station through a NASA Mission of Opportunity this fall.

  4. Wide field imaging spectrometer for ESA's future X-ray mission: XEUS

    CERN Document Server

    Strüder, L

    1999-01-01

    An active pixel sensor (APS) based on the DEpleted P-channel junction Field Effect Transistor (DEPFET) concept will be described as a potential wide field imager for ESA's high resolution, high throughput mission: 'X-ray Evolving Universe Spectroscopy' (XEUS). It comprises a parallel multichannel readout, low noise at high speed readout, backside illumination and a fill factor of 100% over the whole field of view. The depleted thickness will be 500 microns. These design parameters match the scientific requirements of the mission. The fabrication techniques of the DEPFET arrays are related to the high resistivity process of the X-ray pn-CCDs. Potential extensions of the already realized DEPFET structures are a non-destructive repetitive readout of the signal charges. This concept will be presented. As an alternative solution, frame store pn-CCDs are considered having the same format and pixel sizes as the proposed DEPFET arrays. Their development is a low risk, straightforward continuation of the XMM devices. ...

  5. Concerning the Development of the Wide-Field Optics for WFXT Including Methods of Optimizing X-Ray Optical Prescriptions for Wide-Field Applications

    Science.gov (United States)

    Weisskopf, M. C.; Elsner, R. F.; O'Dell, S. L.; Ramsey, B. D.

    2010-01-01

    We present a progress report on the various endeavors we are undertaking at MSFC in support of the Wide Field X-Ray Telescope development. In particular we discuss assembly and alignment techniques, in-situ polishing corrections, and the results of our efforts to optimize mirror prescriptions including polynomial coefficients, relative shell displacements, detector placements and tilts. This optimization does not require a blind search through the multi-dimensional parameter space. Under the assumption that the parameters are small enough so that second order expansions are valid, we show that the performance at the detector can be expressed as a quadratic function with numerical coefficients derived from a ray trace through the underlying Wolter I optic. The optimal values for the parameters are found by solving the linear system of equations creating by setting derivatives of this function with respect to each parameter to zero.

  6. Development of digital system for the wide-field x-ray imaging detector aboard Kanazawa-SAT3

    Science.gov (United States)

    Kagawa, Yasuaki; Yonetoku, Daisuke; Sawano, Tatsuya; Mihara, Tatehiro; Kyutoku, Koutarou; Ikeda, Hirokazu; Yoshida, Kazuki; Ina, Masao; Ota, Kaichi; Suzuki, Daichi; Miyao, Kouga; Watanabe, Syouta; Hatori, Satoshi; Kume, Kyo; Mizushima, Satoshi; Hasegawa, Takashi

    2017-08-01

    We are planning to launch a micro satellite, Kanazawa-SAT3 , at the end of FY2018 to localize X-ray transients associated with gravitational wave sources. Now we are testing a prototype model of wide-field Xray imaging detector named T-LEX (Transient Localization EXperiment). T-LEX is an orthogonally distributed two sets of 1-dimensional silicon strip detectors with coded aperture masks, and covers more than 1 steradian field of view in the energy range of 1 - 20 keV. Each dimension has 512 readout electrodes (totally 1,024 channels), and they are read out with application specific integrated circuits (ASICs) controlled by two onboard FPGAs. Moreover, each FPGA calculates the cross correlation between the X-ray intensity and mask patterns every 64 msec, makes a histogram of lightcurves and energy spectra, and also plays a role of telemetry/command interface to mission CPU. In this paper, we report an overview of digital electronics system. Especially, we focus on the high-speed imaging processor on FPGA and demonstrate its performance as an X-ray imaging system.

  7. Simulations of the x-ray imaging capabilities of the silicon drift detectors (SDD) for the LOFT wide-field monitor

    DEFF Research Database (Denmark)

    Evangelista, Y.; Campana, R.; Del Monte, E.

    2012-01-01

    The Large Observatory For X-ray Timing (LOFT), selected by ESA as one of the four Cosmic Vision M3 candidate missions to undergo an assessment phase, will revolutionize the study of compact objects in our galaxy and of the brightest supermassive black holes in active galactic nuclei. The Large Area...... Detector (LAD), carrying an unprecedented effective area of 10 m^2, is complemented by a coded-mask Wide Field Monitor, in charge of monitoring a large fraction of the sky potentially accessible to the LAD, to provide the history and context for the sources observed by LAD and to trigger its observations...

  8. Wide-field-of-view phase-contrast imaging of nanostructures with a comparatively large polychromatic soft x-ray plasma source.

    Science.gov (United States)

    Gasilov, S V; Faenov, A Ya; Pikuz, T A; Fukuda, Y; Kando, M; Kawachi, T; Skobelev, I Yu; Daido, H; Kato, Y; Bulanov, S V

    2009-11-01

    Polychromatic soft x-ray plasma sources were not previously considered to be among the sources suitable for the propagation based phase contrast imaging because of their comparatively large emission-zone size. In the current work a scheme based on the combination of soft x-ray emission of multicharged ions, generated by the interaction of femtosecond laser pulses with an ultrasonic jet of gas clusters, and an LiF crystal detector was used to obtain phase-enhanced high-resolution images of micro- and nanoscale objects in a wide field of view.

  9. Two methods for studying the X-ray variability

    NARCIS (Netherlands)

    Yan, Shu-Ping; Ji, Li; Méndez, Mariano; Wang, Na; Liu, Siming; Li, Xiang-Dong

    2016-01-01

    The X-ray aperiodic variability and quasi-periodic oscillation (QPO) are the important tools to study the structure of the accretion flow of X-ray binaries. However, the origin of the complex X-ray variability from X-ray binaries remains yet unsolved. We proposed two methods for studying the X-ray

  10. X-ray Studies of Planetary Nebulae

    Science.gov (United States)

    Montez, Rodolfo

    2017-10-01

    X-ray emission from planetary nebulae (PNe) provides unique insight on the formation and evolution of PNe. Past observations and the ongoing Chandra Planetary Nebulae Survey (ChanPlaNS) provide a consensus on the two types of X-ray emission detected from PNe: extended and compact point-like sources. Extended X-ray emission arises from a shocked ``hot bubble'' plasma that resides within the nebular shell. Cooler than expected hot bubble plasma temperatures spurred a number of potential solutions with one emerging as the likely dominate process. The origin of X-ray emission from compact sources at the location of the central star is less clear. These sources might arise from one or combinations of the following processes: self-shocking stellar winds, spun-up binary companions, and/or accretion, perhaps from mass transfer, PN fallback, or debris disks. In the discovery phase, X-ray studies of PNe have mainly focused on the origin of the various emission processes. New directions incorporate multi-wavelength observations to study the influence of X-ray emission on the rest of the electromagnetic spectrum.

  11. Radiobiological studies using gamma and x rays.

    Energy Technology Data Exchange (ETDEWEB)

    Potter, Charles Augustus; Longley, Susan W.; Scott, Bobby R.; Lin, Yong; Wilder, Julie; Hutt, Julie A.; Padilla, Mabel T.; Gott, Katherine M.

    2013-02-01

    There are approximately 500 self-shielded research irradiators used in various facilities throughout the U.S. These facilities use radioactive sources containing either 137Cs or 60Co for a variety of biological investigations. A report from the National Academy of Sciences[1] described the issues with security of particular radiation sources and the desire for their replacement. The participants in this effort prepared two peer-reviewed publications to document the results of radiobiological studies performed using photons from 320-kV x rays and 137Cs on cell cultures and mice. The effectiveness of X rays was shown to vary with cell type.

  12. PREPARATION, SPECTROSCOPIC STUDIES AND X-RAY ...

    African Journals Online (AJOL)

    These complexes have been characterized by analysis, molar conductance, magnetic measurements, infrared spectral studies and X-ray diffraction. The analytical data showed 1:3 (metal:ligand) stoichiometry. Molar conductance measurements in dmf indicate 1:3 electrolytes in all cases. Magnetic moment values are close ...

  13. Development of Tiled Imaging CZT Detectors for Sensitive Wide-Field Hard X-Ray Surveys to EXIST

    Science.gov (United States)

    Grindlay, J.; Hong, J.; Allen, B.; Barthelmy, S.; Baker, R.

    2011-01-01

    Motivated by the proposed EXIST mission, a "medium-class" space observatory to survey black holes and the Early Universe proposed to the 2010 NAS/NRC Astronomy and Astrophysics Decadal Survey, we have developed the first "large" area 256 sq cm close-tiled (0.6 mm gaps) hard X-ray (20-600 keV) imaging detector employing pixelated (2.5 mm) CdZnTe (CZT) detectors, each 2 x 2 x 0.5 cubic cm. We summarize the design, development and operation of this detector array (8 x 8 CZTs) and its performance as the imager for a coded aperture telescope on a high altitude (40 km) balloon flight in October. 2009, as the ProtoEX1STl payload. We then outline our current development of a second-generation imager, ProtcEXIST2. with 0.6 mm pixels on a 32 x 32 array on each CZT, and how it will lead to the ultimate imaging system needed for EXIST. Other applications of this technology will also be mentioned.

  14. Development of tiled imaging CZT detectors for sensitive wide-field hard X-ray surveys to EXIST

    Science.gov (United States)

    Grindlay, J.; Hong, J.; Allen, B.; Barthelmy, S.; Baker, R.

    2011-10-01

    Motivated by the proposed EXIST mission, a "medium-class" space observatory to survey black holes and the Early Universe proposed to the 2010 NAS/NRC Astronomy and Astrophysics Decadal Survey, we have developed the first "large" area 256 cm 2 close-tiled (0.6 mm gaps) hard X-ray (20-600 keV) imaging detector employing pixelated (2.5 mm) CdZnTe (CZT) detectors, each 2×2×0.5 cm 3. We summarize the design, development and operation of this detector array (8×8 CZTs) and its performance as the imager for a coded aperture telescope on a high altitude (40 km) balloon flight in October, 2009, as the ProtoEXIST1 payload. We then outline our current development of a second-generation imager, ProtoEXIST2, with 0.6 mm pixels on a 32×32 array on each CZT, and how it will lead to the ultimate imaging system needed for EXIST. Other applications of this technology will also be mentioned.

  15. Resonant inelastic x-ray scattering studies of elementary excitations

    NARCIS (Netherlands)

    Ament, Lucas Johannes Peter (Luuk)

    2010-01-01

    Resonant Inelastic X-ray Scattering (RIXS) is an X-ray in, X-ray out technique that enables one to study the dispersion of excitations in solids. In this thesis, we investigated how various elementary excitations of transition metal oxides show up in RIXS spectra.

  16. Spectroscopic Studies of X-Ray Binary Pulsars

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Abstract. Several new features of X-ray binary pulsars are revealed from recent observations with ASCA, RXTE, BeppoSAX and other X- ray observatories. Among these, I will review in this paper some recent progress in spectroscopic studies of accreting X-ray pulsars in binary sys- tems (XBPs). First, I will discuss soft ...

  17. Flight performance of an advanced CZT imaging detector in a balloon-borne wide-field hard X-ray telescope—ProtoEXIST1

    Science.gov (United States)

    Hong, J.; Allen, B.; Grindlay, J.; Barthelemy, S.; Baker, R.; Garson, A.; Krawczynski, H.; Apple, J.; Cleveland, W. H.

    2011-10-01

    We successfully carried out the first high-altitude balloon flight of a wide-field hard X-ray coded-aperture telescope ProtoEXIST1, which was launched from the Columbia Scientific Balloon Facility at Ft. Sumner, New Mexico on October 9, 2009. ProtoEXIST1 is the first implementation of an advanced CdZnTe (CZT) imaging detector in our ongoing program to establish the technology required for next generation wide-field hard X-ray telescopes such as the High Energy Telescope (HET) in the Energetic X-ray Imaging Survey Telescope (EXIST). The CZT detector plane in ProtoEXIST1 consists of an 8×8 array of closely tiled 2 cm×2 cm×0.5 cm thick pixellated CZT crystals, each with 8×8 pixels, mounted on a set of readout electronics boards and covering a 256 cm2 active area with 2.5 mm pixels. A tungsten mask, mounted at 90 cm above the detector provides shadowgrams of X-ray sources in the 30-600 keV band for imaging, allowing a fully coded field of view of 9°×9° (and 19°×19° for 50% coding fraction) with an angular resolution of 20‧. In order to reduce the background radiation, the detector is surrounded by semi-graded (Pb/Sn/Cu) passive shields on the four sides all the way to the mask. On the back side, a 26 cm×26 cm×2 cm CsI(Na) active shield provides signals to tag charged particle induced events as well as ≳100keV background photons from below. The flight duration was only about 7.5 h due to strong winds (60 knots) at float altitude (38-39 km). Throughout the flight, the CZT detector performed excellently. The telescope observed Cyg X-1, a bright black hole binary system, for ˜1h at the end of the flight. Despite a few problems with the pointing and aspect systems that caused the telescope to track about 6.4° off the target, the analysis of the Cyg X-1 data revealed an X-ray source at 7.2σ in the 30-100 keV energy band at the expected location from the optical images taken by the onboard daytime star camera. The success of this first flight is very

  18. X-ray Studies of Nano Composites

    Science.gov (United States)

    Hexemer, Alexander

    Nano composite materials are an exciting and fast expanding field. X-ray scattering has been used in order to study the structure properties relation. During the last few years the field has expanded more towards the field of thin films where there's been a dramatic increase in the use of grazing incidence small angle X-ray scattering (GISAXS). The main issue of GISAXS has been the complex analysis framework necessary for simulating and fitting. In addition, existing software has restricted the scientist in systems that can be simulated and the speed to analyze large amounts of data. Over the last few years we have worked closely with our computational research and supercomputer division to enable the use of supercomputers to simulate at scattering data. We have developed a comprehensive analysis framework to simulate and fit a wide variety of materials and morphologies. The framework is designed to supply scientists with close to real-time feedback during beam times. Therefore, HipGISAXS (High Performance GISAXS) has been developed to run simulations on massively parallel platforms such as the Oak Ridge Supercomputer Titan (OLCF). Further, with inverse modeling algorithms for fitting available in HipGISAXS, such as particle swarm optimization, it can handle a large number of parameters during the structure fitting process. In September of 2014, HipGISAXS was used in a real time demonstration that married the SAXS/WAXS beamline at the ALS with the data handling and processing capabilities at NERSC, and simulation capabilities of running at-scale simulations on Titan at OLCF. Doe Early Carrier Award, SPOT and CAMERA.

  19. Studying Microquasars with X-Ray Polarimetry

    Directory of Open Access Journals (Sweden)

    Giorgio Matt

    2018-03-01

    Full Text Available Microquasars are Galactic black hole systems in which matter is transferred from a donor star and accretes onto a black hole of, typically, 10–20 solar masses. The presence of an accretion disk and a relativistic jet made them a scaled down analogue of quasars—thence their name. Microquasars feature prominently in the scientific goals of X-ray polarimeters, because a number of open questions, which are discussed in this paper, can potentially be answered: the geometry of the hot corona believed to be responsible for the hard X-ray emission; the role of the jet; the spin of the black hole.

  20. Dark field X-ray microscopy for studies of recrystallization

    DEFF Research Database (Denmark)

    Ahl, Sonja Rosenlund; Simons, Hugh; Jakobsen, Anders Clemen

    2015-01-01

    We present the recently developed technique of Dark Field X-Ray Microscopy that utilizes the diffraction of hard X-rays from individual grains or subgrains at the (sub)micrometre- scale embedded within mm-sized samples. By magnifying the diffracted signal, 3D mapping of orientations and strains...... external influences. The capabilities of Dark Field X- Ray Microscopy are illustrated by examples from an ongoing study of recrystallization of 50% cold-rolled Al1050 specimens....

  1. X-ray Studies of Flaring Plasma

    Indian Academy of Sciences (India)

    We present some methods of X-ray data analysis employed in our laboratory for deducing the physical parameters of flaring plasma. For example, we have used a flare well observed with Polish instrument RESIK aboard Russian CORONAS-F satellite. Based on a careful instrument calibration, the absolute fluxes in a ...

  2. Resonance magnetic x-ray scattering study of erbium

    DEFF Research Database (Denmark)

    Sanyal, M.K.; Gibbs, D.; Bohr, J.

    1994-01-01

    The magnetic phases of erbium have been studied by resonance x-ray-scattering techniques. When the incident x-ray energy is tuned near the L(III) absorption edge, large resonant enhancements of the magnetic scattering are observed above 18 K. We have measured the energy and polarization dependence...

  3. High-resolution X-ray diffraction studies of multilayers

    DEFF Research Database (Denmark)

    Christensen, Finn Erland; Hornstrup, Allan; Schnopper, H. W.

    1988-01-01

    High-resolution X-ray diffraction studies of the perfection of state-of-the-art multilayers are presented. Data were obtained using a triple-axis perfect-crystal X-ray diffractometer. Measurements reveal large-scale figure errors in the substrate. A high-resolution triple-axis set up is required...

  4. Morphology of nanocermet thin films: X-ray scattering study

    Science.gov (United States)

    Hazra, S.; Gibaud, A.; Désert, A.; Sella, C.; Naudon, A.

    2000-06-01

    The morphology of ceramic-metal (cermet) thin films is studied by surface-sensitive X-ray scattering techniques. Grazing incidence small angle X-ray scattering (GISAXS) experiments carried out at LURE with a 2D detector show that metal clusters of nanometer size, known as nanoparticles, are dispersed in the thin film. Analyses of the X-ray reflectivity along with the diffuse scattering allow to predict the formation of layers of nanoparticles along the growth direction of the films. The formation of such cumulative-disordered layers in one direction is likely to be related to the boundary condition in the reduced dimension.

  5. Soft X-ray Absorbers Enabling Study of the Diffuse X-ray Background Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Absorbers for soft x-rays need to be made thinner and with larger area, to collect more photons, and with minimal number of support stems. However, the structure is...

  6. DCC Case Study: Wide Field Astronomy Unit (WFAU)

    OpenAIRE

    Donnelly, Martin

    2005-01-01

    Case study on the Wide Field Astronomy Unit (WFAU), Edinburgh. Outlines data curation issues with which WFAU is involved, with an emphasis on interoperability. Particular regard is given to the transfer and reuse of data collected from disparate sources. The case study also covers other factors influencing data curation, including methodological development, standards and legal issues, evaluation, and human factors. A technical appendix outlines the technologies used i...

  7. Arbutin: Isolation, X-ray structure and computional studies

    Science.gov (United States)

    Nycz, Jacek E.; Malecki, Grzegorz; Morag, Monika; Nowak, Gerard; Ponikiewski, Lukasz; Kusz, Joachim; Switlicka, Anna

    2010-09-01

    Arbutin, an active component originated from Serratula quinquefolia for skin-whitening use and treating skin related allergic inflammation, was characterized by microanalysis, FTIR, UV-Vis, multinuclear NMR spectroscopy, and single crystal X-ray diffraction method. The geometries of the studied compound were optimized in singlet states using the density functional theory (DFT) method with B3LYP functional. Electronic spectra were calculated by TDDFT method. In general, the predicted bond lengths and angles are in a good agreement with the values based on the X-ray crystal structure data.

  8. X-ray study of bow shocks in runaway stars

    Science.gov (United States)

    De Becker, M.; del Valle, M. V.; Romero, G. E.; Peri, C. S.; Benaglia, P.

    2017-11-01

    Massive runaway stars produce bow shocks through the interaction of their winds with the interstellar medium, with the prospect for particle acceleration by the shocks. These objects are consequently candidates for non-thermal emission. Our aim is to investigate the X-ray emission from these sources. We observed with XMM-Newton a sample of five bow shock runaways, which constitutes a significant improvement of the sample of bow shock runaways studied in X-rays so far. A careful analysis of the data did not reveal any X-ray emission related to the bow shocks. However, X-ray emission from the stars is detected, in agreement with the expected thermal emission from stellar winds. On the basis of background measurements we derive conservative upper limits between 0.3 and 10 keV on the bow shocks emission. Using a simple radiation model, these limits together with radio upper limits allow us to constrain some of the main physical quantities involved in the non-thermal emission processes, such as the magnetic field strength and the amount of incident infrared photons. The reasons likely responsible for the non-detection of non-thermal radiation are discussed. Finally, using energy budget arguments, we investigate the detectability of inverse Compton X-rays in a more extended sample of catalogued runaway star bow shocks. From our analysis we conclude that a clear identification of non-thermal X-rays from massive runaway bow shocks requires one order of magnitude (or higher) sensitivity improvement with respect to present observatories.

  9. High resolution X-ray diffraction studies on unirradiated and ...

    Indian Academy of Sciences (India)

    High-resolution X-ray diffraction technique, employing a three-crystal monochromator–collimator combination is used to study the irradiation induced defects in flux grown Sr-hexaferrite crystals irradiated with 50 MeV Li3+ ion beams at room temperature with a fluence value of 1 × 1014 ions/cm2. The diffraction curves of the ...

  10. Energy dispersive X-Ray fluorescence spectrometric study of ...

    African Journals Online (AJOL)

    , Ca, Mn, Ti, Cu, Mo, Fe, Zn, Ni, Re, Eu and Pb using Energy Dispersive X-ray fluorescence (ED-XRF) spectrometry, following standard procedures. The results showed varying amounts of the studied elements in the samples from the two ...

  11. Crystal defect studies using x-ray diffuse scattering

    Energy Technology Data Exchange (ETDEWEB)

    Larson, B.C.

    1980-01-01

    Microscopic lattice defects such as point (single atom) defects, dislocation loops, and solute precipitates are characterized by local electronic density changes at the defect sites and by distortions of the lattice structure surrounding the defects. The effect of these interruptions of the crystal lattice on the scattering of x-rays is considered in this paper, and examples are presented of the use of the diffuse scattering to study the defects. X-ray studies of self-interstitials in electron irradiated aluminum and copper are discussed in terms of the identification of the interstitial configuration. Methods for detecting the onset of point defect aggregation into dislocation loops are considered and new techniques for the determination of separate size distributions for vacancy loops and interstitial loops are presented. Direct comparisons of dislocation loop measurements by x-rays with existing electron microscopy studies of dislocation loops indicate agreement for larger size loops, but x-ray measurements report higher concentrations in the smaller loop range. Methods for distinguishing between loops and three-dimensional precipitates are discussed and possibilities for detailed studies considered. A comparison of dislocation loop size distributions obtained from integral diffuse scattering measurements with those from TEM show a discrepancy in the smaller sizes similar to that described above.

  12. Flash X-Ray Injector Study

    Energy Technology Data Exchange (ETDEWEB)

    Paul, A C

    2004-03-26

    The study described in this report1 models the FXR injector from the cathode to the exit of the injector. The calculations are compared to actual experimental measurements, table 1. In these measurements the anode voltage was varied by changing the Marks-Bank charging voltage. The anode-cathode spacing was varied by adjusting the location of the cathode in hopes of finding an island of minimum emittance (none found). The bucking coil current was set for zero field on the cathode. In these measurements, a pepper-pot mask was inserted into FXR at beam bug 135 and viewed downstream via a wiggle probe diagnostic at cell gap J21, figure 1. The observed expansion of the beamlets passing through the mask of known geometric layout and hole size allow a calculation of the phase space beam properties.

  13. Invited Article: First flight in space of a wide-field-of-view soft x-ray imager using lobster-eye optics: Instrument description and initial flight results.

    Science.gov (United States)

    Collier, Michael R; Porter, F Scott; Sibeck, David G; Carter, Jenny A; Chiao, Meng P; Chornay, Dennis J; Cravens, Thomas E; Galeazzi, Massimiliano; Keller, John W; Koutroumpa, Dimitra; Kujawski, Joseph; Kuntz, Kip; Read, Andy M; Robertson, Ina P; Sembay, Steve; Snowden, Steven L; Thomas, Nicholas; Uprety, Youaraj; Walsh, Brian M

    2015-07-01

    We describe the development, launch into space, and initial results from a prototype wide field-of-view soft X-ray imager that employs lobster-eye optics and targets heliophysics, planetary, and astrophysics science. The sheath transport observer for the redistribution of mass is the first instrument using this type of optics launched into space and provides proof-of-concept for future flight instruments capable of imaging structures such as the terrestrial cusp, the entire dayside magnetosheath from outside the magnetosphere, comets, the Moon, and the solar wind interaction with planetary bodies like Venus and Mars [Kuntz et al., Astrophys. J. (in press)].

  14. Nonlocal heat transport and improved target design for x-ray heating studies at x-ray free electron lasers

    Science.gov (United States)

    Hoidn, Oliver; Seidler, Gerald T.

    2018-01-01

    The extremely high-power densities and short durations of single pulses of x-ray free electron lasers (XFELs) have opened new opportunities in atomic physics, where complex excitation-relaxation chains allow for high ionization states in atomic and molecular systems, and in dense plasma physics, where XFEL heating of solid-density targets can create unique dense states of matter having temperatures on the order of the Fermi energy. We focus here on the latter phenomena, with special emphasis on the problem of optimum target design to achieve high x-ray heating into the warm dense matter (WDM) state. We report fully three-dimensional simulations of the incident x-ray pulse and the resulting multielectron relaxation cascade to model the spatial energy density deposition in multicomponent targets, with particular focus on the effects of nonlocal heat transport due to the motion of high energy photoelectrons and Auger electrons. We find that nanoscale high-Z /low-Z multicomponent targets can give much improved energy density deposition in lower-Z materials, with enhancements reaching a factor of 100. This has three important benefits. First, it greatly enlarges the thermodynamic parameter space in XFEL x-ray heating studies of lower-Z materials. Second, it allows the use of higher probe photon energies, enabling higher-information content x-ray diffraction (XRD) measurements such as in two-color XFEL operations. Third, while this is merely one step toward optimization of x-ray heating target design, the demonstration of the importance of nonlocal heat transport establishes important common ground between XFEL-based x-ray heating studies and more traditional laser plasma methods.

  15. X-ray luminescence computed tomography: a sensitivity study

    Science.gov (United States)

    Lun, Michael C.; Zhang, Wei; Li, Changqing

    2017-03-01

    X-ray luminescence computed tomography (XLCT) is a hybrid molecular imaging modality that uses high energy x-ray photons to excite nanophosphors (e.g. Europium doped Gadolinium Oxysulfide - GOS: Eu3+) emitting optical photons to be measured by a sensitive detector for image reconstruction. XLCT has potentials to combine both the merits of x-ray imaging (high spatial resolution) and optical imaging (high sensitivity), which makes XLCT an attractive imaging modality to image nanophosphor targets deeply embedded in turbid media. In this study, we have evaluated the sensitivity of XLCT with phantom experiments by scanning targets of different phosphor concentrations at different depths. Cylindrical phantoms embedded with a cylindrical target with varying concentrations of GOS: Eu3+ (27.6 mM, 2.76 mM, 276 μM, and 27.6 μM) were scanned inside our lab made XLCT imaging system for varying scanning depths (6, 11, 16, and 21 mm). We found that XLCT is capable of imaging targets of very low concentrations (27.6 μM or 0.01 mg/mL) at significant depths, such as 21 mm. Our results demonstrate that there is also little variation in the reconstructed target size for different imaging depths for XLCT. We have for the first time, compared the sensitivity of XLCT with that of traditional computed tomography (CT) for phosphor targets. We found that XLCT's use of x-ray induced photons provides much higher measurement sensitivity and contrast compared to CT which provides image contrast solely based on x-ray attenuation.

  16. X-ray absorption studies of battery materials

    Energy Technology Data Exchange (ETDEWEB)

    McBreen, J.

    1996-10-01

    X-ray absorption spectroscopy (XAS) is ideal for {ital in}{ital situ} studies of battery materials because both the probe and signal are penetrating x rays. The advantage of XAS being element specific permits investigation of the environment of a constituent element in a composite material. This makes it very powerful for studying electrode additives and corrosion of individual components of complex metal hydride alloys. The near edge part of the spectrum (XANES) provides information on oxidation state and site symmetry of the excited atom. This is particularly useful in study of corrosion and oxidation changes in cathode materials during charge/discharge cycle. Extended fine structure (EXAFS) gives structural information. Thus the technique provides both chemical and structural information. Since XAS probes only short range order, it can be applied to study of amorphous electrode materials and electrolytes. This paper discusses advantages and limitations of the method, as well as some experimental aspects.

  17. Studies of prototype DEPFET sensors for the Wide Field Imager of Athena

    Science.gov (United States)

    Treberspurg, Wolfgang; Andritschke, Robert; Bähr, Alexander; Behrens, Annika; Hauser, Günter; Lechner, Peter; Meidinger, Norbert; Müller-Seidlitz, Johannes; Treis, Johannes

    2017-08-01

    The Wide Field Imager (WFI) of ESA's next X-ray observatory Athena will combine a high count rate capability with a large field of view, both with state-of-the-art spectroscopic performance. To meet these demands, specific DEPFET active pixel detectors have been developed and operated. Due to the intrinsic amplification of detected signals they are best suited to achieve a high speed and low noise performance. Different fabrication technologies and transistor geometries have been implemented on a dedicated prototype production in the course of the development of the DEPFET sensors. The main modifications between the sensors concern the shape of the transistor gate - regarding the layout - and the thickness of the gate oxide - regarding the technology. To facilitate the fabrication and testing of the resulting variety of sensors the presented studies were carried out with 64×64 pixel detectors. The detector comprises a control ASIC (Switcher-A), a readout ASIC (VERITAS- 2) and the sensor. In this paper we give an overview on the evaluation of different prototype sensors. The most important results, which have been decisive for the identification of the optimal fabrication technology and transistor layout for subsequent sensor productions are summarized. It will be shown that the developments result in an excellent performance of spectroscopic X-ray DEPFETs with typical noise values below 2.5 ENC at 2.5 μs/row.

  18. A beam expander facility for studying x-ray optics

    DEFF Research Database (Denmark)

    Christensen, Finn Erland; Hornstrup, Allan; Frederiksen, P.

    1992-01-01

    The detailed study of the performance of full scale x-ray optics often requires the illumination of large areas. This paper describes a beam expander facility at the Daresbury Synchrotron Radiation Facility. It combines monochromatization and beam expansion in one dimension. The beam expansion...... x-ray telescope will be studied, is described in detail. Review of Scientific Instruments is copyrighted by The American Institute of Physics....... is obtained from an extremely asymmetric reflection in a large single crystal of Si. An expansion of a factor of 50 was obtained in one dimension. The expanded beam of ~85 mm is limited only by the crystal size. The facility is installed in a 12-m-long hutch. A specific application, in which a high throughput...

  19. Biomimetic Calcium Phosphate Crystallization: Synchrotron X-ray Studies

    Science.gov (United States)

    Uysal, Ahmet; Stripe, Benjamin; Dutta, Pulak; Lin, Binhua; Meron, Mati

    2012-02-01

    The nucleation and growth of calcium phosphate by organic templates attract great attention due to its relevance to bone biomineralization. In spite of the vast studies in the field, the role of the organic templates in the process is still not well understood. One reason for this drawback is the lack of experimental tools to probe the organic template structure during the process. We studied the nucleation and growth of calcium phosphate under floating Langmuir monolayers, at the air/water interface, using two complementary X-ray scattering methods. We show that Grazing Incidence X-ray Diffraction (GID) and Grazing Incidence X-ray off-Specular Scattering (GIXOS) can reveal the organic-inorganic interface properties in situ. By using GID and GIXOS together, we can simultaneously determine the lateral interface structure and the electron density profile normal to the interface. Combined with ex situ methods, these techniques can improve our understanding of the role of the organic template during biomineralization.

  20. Study of lobster eye optics with iridium coated x-ray mirrors for a rocket experiment

    Science.gov (United States)

    Stehlikova, Veronika; Urban, Martin; Nentvich, Ondrej; Inneman, Adolf; Döhring, Thorsten; Probst, Anne-Catherine

    2017-05-01

    In the field of astronomical X-ray telescopes, different types of optics based on grazing incidence mirrors can be used. This contribution describes the special design of a lobster-eye optics in Schmidt's arrangement, which uses dual reflection to increase the collecting area. The individual mirrors of this wide-field telescope are made of at silicon wafers coated with reflecting iridium layers. This iridium coatings have some advantages compared to more common gold layers as is shown in corresponding simulations. The iridium coating process for the X-ray mirrors was developed within a cooperation of the Aschaffenburg University of Applied Sciences and the Czech Technical University in Prague. Different mirror parameters essential for a proper function of the X-ray optics, like the surface microroughness and the problematic of a good adhesion quality of the coatings were studied. After integration of the individual mirrors into the final lobster-eye optics and the corresponding space qualification testing it is planned to fly the telescope in a recently proposed NASA rocket experiment.

  1. Photon counting x-ray imaging with K-edge filtered x-rays: A simulation study.

    Science.gov (United States)

    Atak, Haluk; Shikhaliev, Polad M

    2016-03-01

    In photon counting (PC) x-ray imaging and computed tomography (CT), the broad x-ray spectrum can be split into two parts using an x-ray filter with appropriate K-edge energy, which can improve material decomposition. Recent experimental study has demonstrated substantial improvement in material decomposition with PC CT when K-edge filtered x-rays were used. The purpose of the current work was to conduct further investigations of the K-edge filtration method using comprehensive simulation studies. The study was performed in the following aspects: (1) optimization of the K-edge filter for a particular imaging configuration, (2) effects of the K-edge filter parameters on material decomposition, (3) trade-off between the energy bin separation, tube load, and beam quality with K-edge filter, (4) image quality of general (unsubtracted) images when a K-edge filter is used to improve dual energy (DE) subtracted images, and (5) improvements with K-edge filtered x-rays when PC detector has limited energy resolution. The PC x-ray images of soft tissue phantoms with 15 and 30 cm thicknesses including iodine, CaCO3, and soft tissue contrast materials, were simulated. The signal to noise ratio (SNR) of the contrast elements was determined in general and material-decomposed images using K-edge filters with different atomic numbers and thicknesses. The effect of the filter atomic number and filter thickness on energy separation factor and SNR was determined. The boundary conditions for the tube load and halfvalue layer were determined when the K-edge filters are used. The material-decomposed images were also simulated using PC detector with limited energy resolution, and improvements with K-edge filtered x-rays were quantified. The K-edge filters with atomic numbers from 56 to 71 and K-edge energies 37.4-63.4 keV, respectively, can be used for tube voltages from 60 to 150 kVp, respectively. For a particular tube voltage of 120 kVp, the Gd and Ho were the optimal filter materials

  2. Oxides neutron and synchrotron X-ray diffraction studies

    CERN Document Server

    Sosnowska, I M

    1999-01-01

    We review some results from several areas of oxide science in which neutron scattering and X-ray synchrotron scattering exercise a complementary role to high-resolution transmission electron microscopy. The very high-resolution time-of-flight neutron diffraction technique and its role in studies of the magnetic structure of oxides is especially reviewed. The selected topics of structural studies for the chosen oxides are: crystal and magnetic structure of the so-called cellular random systems, magnetic structure and phase transitions in ferrites and the behaviour of water in non-stoichiometric protonic conductors and in the opal silica-water system. (40 refs).

  3. Studies of dark energy with X-ray observatories.

    Science.gov (United States)

    Vikhlinin, Alexey

    2010-04-20

    I review the contribution of Chandra X-ray Observatory to studies of dark energy. There are two broad classes of observable effects of dark energy: evolution of the expansion rate of the Universe, and slow down in the rate of growth of cosmic structures. Chandra has detected and measured both of these effects through observations of galaxy clusters. A combination of the Chandra results with other cosmological datasets leads to 5% constraints on the dark energy equation-of-state parameter, and limits possible deviations of gravity on large scales from general relativity.

  4. X-ray diffraction study of oriented gels of titin

    Energy Technology Data Exchange (ETDEWEB)

    Vazina, A.A. [Institute of Theoretical and Experimental Biophysics of RAS, Institutskaya st. 3, Pushchino, Moscow region 142290 (Russian Federation); Gorbunova, N.P. [Institute of Theoretical and Experimental Biophysics of RAS, Institutskaya st. 3, Pushchino, Moscow region 142290 (Russian Federation); Lanina, N.F. [Institute of Theoretical and Experimental Biophysics of RAS, Institutskaya st. 3, Pushchino, Moscow region 142290 (Russian Federation)]. E-mail: lanina@iteb.ru; Dolbnya, I.P. [DUBBLE-CRG/ESRF, B.P.220, F-38043 Grenoble (France); Bras, W. [DUBBLE-CRG/ESRF, B.P.220, F-38043 Grenoble (France); Snigireva, I. [ESRF, B.P.220, F-38043 Grenoble (France)

    2005-05-01

    This work is concerned with the X-ray diffraction study of oriented gels of titin. A topological zig-zag model of a giant fibrillar molecule of titin is proposed. The model suggests that a titin molecule consists of successively joined anisotropic domains, and the long axes of adjacent domains are connected at a nearly right angle relative to each other but are not necessarily inclined at equal angles relative to the fibril axis. The structural mechanism of the high elasticity of the titin molecule is discussed in terms of the physics of structural transitions in crystalline polymers.

  5. X-ray and synchrotron methods in studies of cultural heritage sites

    Energy Technology Data Exchange (ETDEWEB)

    Koval’chuk, M. V.; Yatsishina, E. B.; Blagov, A. E.; Tereshchenko, E. Yu., E-mail: elenatereschenko@yandex.ru; Prosekov, P. A.; Dyakova, Yu. A. [National Research Centre “Kurchatov Institute” (Russian Federation)

    2016-09-15

    X-ray and synchrotron methods that are most widely used in studies of cultural heritage objects (including archaeological sites)—X-ray diffraction analysis, X-ray spectroscopy, and visualization techniques— have been considered. The reported examples show high efficiency and informativeness of natural science studies when solving most diverse problems of archaeology, history, the study of art, museology, etc.

  6. X-ray and synchrotron methods in studies of cultural heritage sites

    Science.gov (United States)

    Koval'chuk, M. V.; Yatsishina, E. B.; Blagov, A. E.; Tereshchenko, E. Yu.; Prosekov, P. A.; Dyakova, Yu. A.

    2016-09-01

    X-ray and synchrotron methods that are most widely used in studies of cultural heritage objects (including archaeological sites)—X-ray diffraction analysis, X-ray spectroscopy, and visualization techniques— have been considered. The reported examples show high efficiency and informativeness of natural science studies when solving most diverse problems of archaeology, history, the study of art, museology, etc.

  7. High-resolution x-ray studies of an AXAF high-energy transmission grating

    DEFF Research Database (Denmark)

    Abdali, S.; Christensen, Finn Erland; Schnopper, H. W.

    1993-01-01

    A triple axis X-ray diffractometer, designed and built at the Danish Space Research Institute, was used to make a high resolution study of the performance of a 2000 angstroms period, high energy X-ray transmission grating developed at MIT for one of the grating spectrometers on the Advanced X-ray...

  8. Resonant X-ray scattering studies of concentrated aqueous solutions

    CERN Document Server

    Ramos, S

    2001-01-01

    structure of the three cations is also presented in this thesis. This work illustrates one of the main advantages of RXD: the possibility of carrying out systematic structural studies on all elements with atomic number greater than 28 (Ni). Finally, a critical discussion on the actual stage of development of RXD is presented. The results shown offer evidence of the future prospects of the technique and justify further efforts to develop it to the level of reliability and ease of use that NDIS has reached after more than three decades of development. The microscopic structure of concentrated aqueous electrolyte solutions has been studied by resonant X-ray diffraction (RXD). This technique provides a method for the measurement of the structure around a specific atom or ion in solution. In that sense, RXD is the X-ray equivalent of neutron diffraction with isotopic substitution (NDIS). The use of RXD as an alternative to NDIS has been considered of interest for some time; it is potentially one of the best method...

  9. X-ray microfluorescence for biodistribution studies of nanomedicines.

    Science.gov (United States)

    Epaule, Céline; Maksimenko, Andrey; Bastian, Gérard; Caron, Joachim; Desmaële, Didier; Zouhiri, Fatima; Couvreur, Patrick; Doucet, Jean

    2017-10-05

    Currently, the in vivo distribution of drugs is investigated by non-spatial quantitative techniques. With the emergence of personal therapies using nanomedicines, deeper investigations are required to precisely know the in vivo fate of entrapped drugs, especially to predict possible toxicity. Here, we assess the capabilities of SR-μXRF for i) detecting drugs into nanomedicines without adding any marker, ii) mapping their distribution into tissues and iii) locally quantifying the drugs loaded into nanomedicines. To prepare the nanomedicine model, we used the bioconjugate diamine(dichloro)platinum (SQ-CDD) developed in the TERNANOMED Grant Project. Nanomedicines were intravenously injected into a nude mice model bearing a pancreatic tumour (PANC-1). The X-ray microfluorescence experiments were performed on embeds tissue sections of kidney and tumor at 2h and 24h after nanoparticles injection. Data collection was performed on the micro-imaging beamline ID13 of the European Synchrotron Radiation Facility (ESRF). A quantitative study was performed by atomic absorption spectroscopy (AAS), allowing to compare the platinum concentrations with those measured by X-ray. This study shows that the synchrotron radiation-based μXRF analysis is sensitive enough to detect and map the distribution of a drug entrapped into nanomedicine. A quantitative local analysis is possible with a tissue element as reference, or semi-quantitatively if the tissue reference is not homogenous. Copyright © 2017. Published by Elsevier B.V.

  10. X-ray Diffraction Study of Arsenopyrite at High Pressure

    Energy Technology Data Exchange (ETDEWEB)

    D Fan; M Ma; W Zhou; S Wei; Z Chen; H Xie

    2011-12-31

    The high-pressure X-ray diffraction study of a natural arsenopyrite was investigated up to 28.2 GPa using in situ angle-dispersive X-ray diffraction and a diamond anvil cell at National Synchrotron Light Source, Brookhaven National Laboratory. The 16:3:1 methanol-ethanol-water mixture was used as a pressure-transmitting medium. Pressures were measured using the ruby-fluorescence method. No phase change has been observed up to 28.2 GPa. The isothermal equation of state (EOS) was determined. The values of K{sub 0}, and K'{sub 0} refined with a third-order Birch-Murnaghan EOS are K{sub 0} = 123(9) GPa, and K'{sub 0} = 5.2(8). Furthermore, we confirm that the linear compressibilities ({beta}) along a, b and c directions of arsenopyrite is elastically isotropic ({beta}{sub a} = 6.82 x 10{sup -4}, {beta}{sub b} = 6.17 x 10{sup -4} and {beta}{sub c} = 6.57 x 10{sup -4} GPa{sup -1}).

  11. Synchrotron x-ray study of multilayers in Laue geometry

    Energy Technology Data Exchange (ETDEWEB)

    Kang, H C; Stephenson, G B; Liu, C; Conley, R; Macrander, A T; Maser, J; Bajt, S; Chapman, H N

    2004-07-21

    Zone plates with depth to zone-width ratios as large as 100 are needed for focusing of hard x-rays. Such high aspect ratios are challenging to produce by lithography. We are investigating the fabrication of high-aspect-ratio linear zone plates by multilayer deposition followed by sectioning. As an initial step in this work, we present a synchrotron x-ray study of constant-period multilayers diffracting in Laue (transmission) geometry. Data are presented from two samples: a 200 period W/Si multilayer with d-spacing of 29 nm, and a 2020 period Mo/Si multilayer with d-spacing of 7 nm. By cutting and polishing we have successfully produced thin cross sections with section depths ranging from 2 to 12 {micro}m. Transverse scattering profiles (rocking curves) across the Bragg reflection exhibit well-defined interference fringes originating from the depth of the sample, in agreement with dynamical diffraction theory for a multilayer in Laue geometry.

  12. X-MIME: An Imaging X-ray Spectrometer for Detailed Study of Jupiter's Icy Moons and the Planet's X-ray Aurora

    Science.gov (United States)

    Elsner, R. F.; Ramsey, B. D.; Waite, J. H.; Rehak, P.; Johnson, R. E.; Cooper, J. F.; Swartz, D. A.

    2004-01-01

    Remote observations with the Chandra X-ray Observatory and the XMM-Newton Observatory have shown that the Jovian system is a source of x-rays with a rich and complicated structure. The planet's polar auroral zones and its disk are powerful sources of x-ray emission. Chandra observations revealed x-ray emission from the Io Plasma Torus and from the Galilean moons Io, Europa, and possibly Ganymede. The emission from these moons is certainly due to bombardment of their surfaces of highly energetic protons, oxygen and sulfur ions from the region near the Torus exciting atoms in their surfaces and leading to fluorescent x-ray emission lines. Although the x-ray emission from the Galilean moons is faint when observed from Earth orbit, an imaging x-ray spectrometer in orbit around these moons, operating at 200 eV and above with 150 eV energy resolution, would provide a detailed mapping (down to 40 m spatial resolution) of the elemental composition in their surfaces. Such maps would provide important constraints on formation and evolution scenarios for the surfaces of these moons. Here we describe the characteristics of X-MIME, an imaging x-ray spectrometer under going a feasibility study for the JIMO mission, with the ultimate goal of providing unprecedented x-ray studies of the elemental composition of the surfaces of Jupiter's icy moons and Io, as well as of Jupiter's auroral x-ray emission.

  13. Final Report - X-ray Studies of Highly Correlated Systems

    Energy Technology Data Exchange (ETDEWEB)

    Burns, Clement [Western Michigan Univ., Kalamazoo MI (United States)

    2017-11-27

    The overall goal of the research was to improve the capabilities of x-ray synchrotron instrumentation to enable cutting-edge research in condensed matter physics. The main goal of the current grant cycle was to find a method to measure the polarization of the scattered x-ray in resonant inelastic x-ray scattering. To do this, we developed a polarization analysis apparatus using a thin, toroidally bent single crystal, which could be set to reflect one or the other of the two polarization components in the scattered x-ray beam. Resonant x-ray scattering measurements were also carried out on interfaces and the charge density wave in high temperature superconducting materials.

  14. Surface layering and melting in an ionic liquid studied by resonant soft X-ray reflectivity

    OpenAIRE

    Mezger, Markus; Ocko, Benjamin M.; Reichert, Harald; Deutsch, Moshe

    2013-01-01

    The molecular-scale structure of the ionic liquid [C18mim]+[FAP]− near its free surface was studied by complementary methods. X-ray absorption spectroscopy and resonant soft X-ray reflectivity revealed a depth-decaying near-surface layering. Element-specific interfacial profiles were extracted with submolecular resolution from energy-dependent soft X-ray reflectivity data. Temperature-dependent hard X-ray reflectivity, small- and wide-angle X-ray scattering, and infrared spectroscopy uncovere...

  15. Surface layering and melting in an ionic liquid studied by resonant soft X-ray reflectivity.

    Science.gov (United States)

    Mezger, Markus; Ocko, Benjamin M; Reichert, Harald; Deutsch, Moshe

    2013-03-05

    The molecular-scale structure of the ionic liquid [C18mim](+)[FAP](-) near its free surface was studied by complementary methods. X-ray absorption spectroscopy and resonant soft X-ray reflectivity revealed a depth-decaying near-surface layering. Element-specific interfacial profiles were extracted with submolecular resolution from energy-dependent soft X-ray reflectivity data. Temperature-dependent hard X-ray reflectivity, small- and wide-angle X-ray scattering, and infrared spectroscopy uncovered an intriguing melting mechanism for the layered region, where alkyl chain melting drove a negative thermal expansion of the surface layer spacing.

  16. X-Ray Studies of Phase Transitions on Surfaces

    DEFF Research Database (Denmark)

    Als-Nielsen, Jens Aage

    1984-01-01

    The density variation across the surface from vapor to liquid in liquid crystal materials has been measured in the isotropic, nematic and smectic A phases by specular reflection of X rays with grazing angles from θc to θB (total reflection angle and Bragg angle for smectic A layering, respectively......) using synchroton X-rays in HASYLAB, Hamburg. Crystalline surface structures may be deduced from X-ray diffraction, utilizing the evanescent beam occuring for grazing angles less than θc to obtain surface sensitivity. Results from the reconstruction of Au(110) surface are reviewed....

  17. An x-ray diffraction study of ribosome structure.

    Science.gov (United States)

    Dolgov, A D; Ivanov, D A; Kapitonova, K A; Mokul'skii, M A

    1975-01-01

    Dense gels of E. coli 70 S ribosomes, their 50 S subunits, CM-like particles, RNP strands and their fragments, 38 S particles obtained from RNP strand folding upon addition of Mg2+ ions, and of unoriented salt-free and free rRNA sodium and magnesium salts were studied by X-ray diffraction. It was shown that under dense gel conditions RNA molecules contained in ribosomes unfolded by desalting, like all other particles considered here, have helical regions. Under these conditions free desalted RNA has no helical regions. Experimental data on X-ray scattering at medium angles were compared with the diffraction curves calculated for homogeneous prolate and oblate ellipsoids, for various ellipsoids containing a dense region or an internal cavity, and for ellipsoids containing internal periodic regions. The results indicate that the internal structure of the 50 S ribosome is periodic, i. e., its components form a periodic lattice. The lattice spacings are approximately 42 and 28 A with a 0.8g/g dry weight sample water content. When the 50 S particle water content drops below 0.2 g/g dry weight the periodic structure is disrupted. This disruption is reversible. It was shown that CM-like particles at high ionic strenght (2 M LiCl) have approximately the same internal periodicity as the 50 S particles, but in contrast they lose this periodicity at low ionic strength (10-2M tris-HCl and 5-10-3 M MgCl2).

  18. Study of osteoporosis using dual energy X-ray absorptiometry

    Energy Technology Data Exchange (ETDEWEB)

    Someya, Misao (Showa Univ., Tokyo (Japan). School of Medicine)

    1992-04-01

    Dual energy X-ray absorptiometry (Hologic QDR-1000) was used to quantitatively analyze the diagnosis and prevention of osteoporosis. The peak bone mineral density (BMD) of the spine appeared in normal men in their twenties and in normal women in their thirties. There was acceleration of bone loss in the 50 to 60 year age bracket (premenopause and postmenopause) in normal women. On the contrary, the peak BMD of the femoral neck in normal men and women appeared in their twenties after which it decreased slightly with age. Comparison showed that the femoral neck BMD of normal women was lower than that of men throughout all ages. The fracture threshold, 0.756 g/cm[sup 2] for the spine, was obtained by scanning 73 females with spinal fractures, the mean BMDs for L2-L4 at the 90th percentile level were used as the fracture threshold. The fracture threshold of femoral neck fracture was the femoral proximal BMD of the 9th decile. Classification by the Public Welfare Silver Science Group's method and by the Singh index, except Grades I, II, and III, revealed a difference; as the severity of bone atrophy advanced, BMD tended to decrease. The percent reduction of MBD 10 years after premenopause was 21.0% in the spine and 13.2% in the femoral neck. Correlation between BMD and weight, weight/height ratio, BODY MASS INDEX was significant. No correlation between BMD and bone metabolism factors in the blood was found in 50 osteoporotic patients. The results of this study showed that dual energy X-ray absorptiometry (Hologic QDR-1000) can objectively diagnose and suggest measures for prevention of osteoporosis, and is clinically useful. (author).

  19. Multiwavelength studies of X-ray selected extragalactic sample

    OpenAIRE

    Mickaelian, A. M.; Paronyan, G. M.; Harutyunyan, G. S.; Abrahamyan, H. V.; Gyulzadyan, M. V.

    2015-01-01

    The joint catalogue of Active Galactic Nuclei selected from optical identifications of X-ray sources was created as a combination of two samples: Hamburg-ROSAT Catalogue (HRC) and Byurakan-Hamburg-ROSAT Catalogue (BHRC). Both are based on optical identifications of X-ray sources from ROSAT catalogues using low-dispersion spectra of Hamburg Quasar Survey (HQS). However, HRC and BHRC contain a number of misidentifications and using the recent optical and multiwavelength (MW) catalogues we have ...

  20. Combining operando synchrotron X-ray tomographic microscopy and scanning X-ray diffraction to study lithium ion batteries

    Science.gov (United States)

    Pietsch, Patrick; Hess, Michael; Ludwig, Wolfgang; Eller, Jens; Wood, Vanessa

    2016-06-01

    We present an operando study of a lithium ion battery combining scanning X-ray diffraction (SXRD) and synchrotron radiation X-ray tomographic microscopy (SRXTM) simultaneously for the first time. This combination of techniques facilitates the investigation of dynamic processes in lithium ion batteries containing amorphous and/or weakly attenuating active materials. While amorphous materials pose a challenge for diffraction techniques, weakly attenuating material systems pose a challenge for attenuation-contrast tomography. Furthermore, combining SXRD and SRXTM can be used to correlate processes occurring at the atomic level in the crystal lattices of the active materials with those at the scale of electrode microstructure. To demonstrate the benefits of this approach, we investigate a silicon powder electrode in lithium metal half-cell configuration. Combining SXRD and SRXTM, we are able to (i) quantify the dissolution of the metallic lithium electrode and the expansion of the silicon electrode, (ii) better understand the formation of the Li15Si4 phase, and (iii) non-invasively probe kinetic limitations within the silicon electrode. A simple model based on the 1D diffusion equation allows us to qualitatively understand the observed kinetics and demonstrates why high-capacity electrodes are more prone to inhomogeneous lithiation reactions.

  1. X-ray standing wave studies of surface adsorption structures

    CERN Document Server

    Kariapper, M S

    2000-01-01

    13 deg from the surface normal. The three F atoms appeared to deviate from the gas phase geometry by having an increased F-P-F angle. conclusion confirms the results of a recent near-edge and surface extended x-ray absorption fine structure study, but contrasts with the established adsorbate-induced reconstruction produced by this species on Cu(111). The asymmetry parameter Q arising from dipole-quadrupole interference in core-level photoemission from F 1s and P 1s states at photon energies 3430 eV and 2975 eV have been determined to be 0.31 +- 0.02 and 0.18 +- 0.02, respectively, via NIXSW experiments conducted on multilayer films of perfluorohexane, C sub 6 F sub 1 sub 4 and phosphorous tribromide, PBr sub 3 , grown on Cu(100). The structure of the PF sub 3 molecule adsorbed on Cu(100) (dosed with the crystal kept at around 110 K and then annealed briefly to 180 K) has been studied by P K-edge NEXAFS and NIXSW at both (200) and (111) reflections using absorption at both the P and F atoms of the adsorbate mo...

  2. X-ray diffraction study of directionally grown perylene crystallites

    DEFF Research Database (Denmark)

    Breiby, Dag W.; Lemke, H. T.; Hammershøj, P.

    2008-01-01

    Using grazing incidence X-ray diffraction, perylene crystallites grown on thin highly oriented poly(tetrafluoroethylene) (PTFE) films on silicon substrates have been investigated. All the perylene crystallites are found to orient with the ab plane of the monoclinic unit cell parallel to the subst......Using grazing incidence X-ray diffraction, perylene crystallites grown on thin highly oriented poly(tetrafluoroethylene) (PTFE) films on silicon substrates have been investigated. All the perylene crystallites are found to orient with the ab plane of the monoclinic unit cell parallel...

  3. Experimental study on hard X-rays emitted from metre-scale negative discharges in air

    CERN Document Server

    Kochkin, P O; Ebert, Ute

    2015-01-01

    We investigate the development of meter long negative discharges and focus on their X-ray emissions. We describe appearance, timing and spatial distribution of the X-rays. They appear in bursts of nanosecond duration mostly in the cathode area. The spectrum can be characterized by an exponential function with 200 keV characteristic photon energy. With nanosecond-fast photography we took detailed images of the pre-breakdown phenomena during the time when X-rays were registered. We found bipolar discharge structures, also called "pilot systems", in the vicinity of the cathode. As in our previous study of X-rays from positive discharges, we correlate the X-ray emission with encounters between positive and negative streamers. We suggest that a similar process is responsible for X-rays generated by lightning leaders.

  4. Pinhole X-ray Fluorescence Imaging of Gadolinium Nanoparticles: A Preliminary Monte Carlo Study

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Seong Moon; Sung, Won Mo; Ye, Sung Joon [Seoul National University, Seoul (Korea, Republic of)

    2014-10-15

    X-ray fluorescence imaging is a modality for the element-specific imaging of a subject through analysis of characteristic x-rays produced by exploiting the interaction of high atomic number elements and incoming x-rays. Previous studies have utilized a polychromatic x-ray source to investigate the production of in vivo x-ray fluorescence images for the assessment of concentrations and locations of gold nanoparticles. However, previous efforts have so far been unable to detect low concentrations, such as 0.001% gold by weight, which is an expected concentration accumulated in tumors. We examined the feasibility of a monochromatic synchrotron x-rays implementation of pinhole x-ray fluorescence imaging by Monte Carlo simulations using MCNP5. In the current study, gadolinium (Gd) nanoparticles, which have been widely used as a contrast agent in magnetic resonance imaging and also as a dose enhancer in radiation therapy, were chosen for tumor targeting. Since a monochromatic x-ray source is used, the increased x-ray fluorescence signals allow the detection of low concentrations of Gd. Two different monochromatic x-ray beam energies, 50.5 keV near the Kedge energy (i.e., 50.207 keV) of Gd and 55 keV, were compared by their respective imaging results. Using Monte Carlo simulations the feasibility of imaging low concentrations of Gd nanoparticles (e.g., 0.001 wt%) with x-ray fluorescence using monochromatic synchrotron x-rays of two different energies was shown. In the case of imaging a single Gd column inserted in the center of a water phantom, the fluorescence signals from 0.05 wt% and 0.1 wt% Gd columns irradiated with a 50.5 keV photon beam were higher than those irradiated with 55 keV. Below 0.05 wt% region no significant differences were found.

  5. Experimental study on hard X-ray generation of relativistic electron beams in azimuthal magnetic field

    CERN Document Server

    Fan Ya Jun; Qiu Aici

    2002-01-01

    Experimental study on hard X-ray generation was carried out on Flash 2 accelerator, with the method of relativistic electron beams transported in a low pressure gas via azimuthal magnetic field and interacted with Ta target. At 47 cm transporting distance, the measured areal integral of hard X-ray dose rate was 2.1 x 10 sup 1 sup 0 Gy centre dot cm sup 2 /s, total areal integral of hard X-ray dose was 1843 Gy centre dot cm sup 2 , and X-ray convert rate was 108 Gy centre dot cm sup 2 /kJ

  6. X-ray-absorption studies of organodisulfide redox polymeric electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Yang, X.Q.; Xue, K.H.; Lee, H.S.; McBreen, J. (Brookhaven National Laboratory, Upton, New York 11973 (United States)); Skotheim, T.A. (Moltech Corporation, Stony Brook, New York 11794-2275 (United States)); Lu, F. (CFFLS, University of Kentucky, Lexington, Kentucky 40506 (United States))

    1992-03-01

    We have measured the near-edge x-ray-absorption fine-structure (NEXAFS) spectra of the {ital K} edge of sulfur in organodisulfide redox polymeric electrodes in both charged and discharged states. The formation and scission of S-S bonding during the charge-discharge cycle were observed through NEXAFS spectroscopy.

  7. High resolution X-ray diffraction studies on unirradiated and ...

    Indian Academy of Sciences (India)

    High-resolution X-ray diffraction technique, employing a three-crystal monochromator–collimator ... observed by high-resolution electron microscopy in both ..... 1988 Nucl. Instrum. Meth. B34 228. Kato N 1992 J. Acta Crystallogr. A48 834. Kaur B, Bhat M, Licci F, Kumar R, Kotru P N and Bamzai K K. 2004 Nucl. Instrum. Meth ...

  8. Simulation studies of atomic resolution X-ray holography

    Indian Academy of Sciences (India)

    Unknown

    rage atomic arrangement of the atoms. It may be noted that in X-ray holography methods, the concept of unit cell is not required. We know from the optical reciprocity principle that if we exchange the detector with the source, then we obtain the same experiment. We now have a source in the far field producing a plane wave ...

  9. X-ray scattering studies of lanthanides magnetism

    DEFF Research Database (Denmark)

    McMorrow, D.; Bohr, Jakob; Gibbs, D.

    1999-01-01

    Interest in the applications of X-ray synchrotron radiation has grown rapidly during the last decade. At the present time, intense, ultra-bright synchrotron radiation is available on a routine basis from third-generation sources located in Europe (ESRF), North America (APS) and Japan (Spring8...

  10. Synchrotron X-ray studies of liquid-vapor interfaces

    DEFF Research Database (Denmark)

    Als-Nielsen, Jens Aage

    1986-01-01

    The density profile ρ(z) across a liquid-vapor interface may be determined by the reflectivity R(θ) of X-rays at grazing angle incidence θ. The relation between R(θ) and ρ(z) is discussed, and experimental examples illustrating thermal roughness of simple liquids and smectic layering of liquid...

  11. Nano structured materials studied by coherent X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Gulden, Johannes

    2013-03-15

    Structure determination with X-rays in crystallography is a rapidly evolving field. Crystallographic methods for structure determination are based on the assumptions about the crystallinity of the sample. It is vital to understand the structure of possible defects in the crystal, because they can influence the structure determination. All conventional methods to characterize defects require a modelling through simulated data. No direct methods exist to image the core of defects in crystals. Here a new method is proposed, which will enable to visualize the individual scatterers around and at defects in crystals. The method is based on coherent X-ray scattering. X-rays are perfectly suited since they can penetrate thick samples and buried structures can be investigated Recent developments increased the coherent flux of X-Ray sources such as synchrotrons by orders of magnitude. As a result, the use of the coherent properties of X-rays is emerging as a new aspect of X-ray science. New upcoming and operating X-ray laser sources will accelerate this trend. One new method which has the capacity to recover structural information from the coherently scattered photons is Coherent X-ray Diffraction Imaging (CXDI). The main focus of this thesis is the investigation of the structure and the dynamics of colloidal crystals. Colloidal crystals can be used as a model for atomic crystals in order to understand the growth and defect structure. Despite the large interest in these structures, many details are still unknown.Therefore, it is vital to develop new approaches to measure the core of defects in colloidal crystals. After an introduction into the basics of the field of coherent X-ray scattering, this thesis introduces a novel method, Small Angle Bragg Coherent Diffractive Imaging, (SAB-CDI). This new measurement technique which besides the relevance to colloidal crystals can be applied to a large variety of nano structured materials. To verify the experimental possibilities the

  12. X-ray excited optical luminescence, photoluminescence, photostimulated luminescence and x-ray photoemission spectroscopy studies on BaFBr:Eu

    CERN Document Server

    Subramanian, N; Govinda-Rajan, K; Mohammad-Yousuf; Santanu-Bera; Narasimhan, S V

    1997-01-01

    The results of x-ray excited optical luminescence (XEOL), photoluminescence (PL), photostimulated luminescence (PSL) and x-ray photoemission spectroscopy (XPS) studies on the x-ray storage phosphor BaFBr:Eu are presented in this paper. Analyses of XEOL, PL and PSL spectra reveal features corresponding to the transitions from 4f sup 6 td sup 1 to 4f sup 7 configurations in different site symmetries of Eu sup 2 sup +. Increasing x-ray dose is seen to lead to a red shift in the maximum of the PL excitation spectrum for the 391 nm emission. The XEOL and XPS spectra do not show any signature of Eu sup 3 sup + in the samples studied by us, directly raising doubts about the model of Takahashi et al in which Eu sup 2 sup + is expected to ionize to Eu sup 3 sup + upon x-ray irradiation and remain stable until photostimulation. XEOL and PSL experiments with simultaneous x-ray irradiation and He - Ne laser excitation as well as those with sequential x-ray irradiation and laser stimulation bring out the competition betwe...

  13. Empirical studies of solar flares: Comparison of X-ray and H alpha filtergrams and analysis of the energy balance of the X-ray plasma

    Science.gov (United States)

    Moore, R. L.

    1979-01-01

    The physics of solar flares was investigated through a combined analysis of X-ray filtergrams of the high temperature coronal component of flares and H alpha filtergrams of the low temperature chromospheric component. The data were used to study the magnetic field configuration and its changes in solar flares, and to examine the chromospheric location and structure of X-ray bright points (XPB) and XPB flares. Each topic and the germane data are discussed. The energy balance of the thermal X-ray plasma in flares, while not studied, is addressed.

  14. Synchrotron X-Ray Radiation and Deformation Studies

    DEFF Research Database (Denmark)

    Fæster Nielsen, Søren

    machining. The conical slit has six 25µm thick conically shaped openings matching six of the Debye-Scherrer cones from a fcc powder. By combining the conical slit with a micro-focused incoming beam of hard X-rays an embedded gauge volume is defined. Using a 2D detector, fast and complete information can...... the embedded grains within thick samples in three dimensions. All essential features like the position, volume, orien-tation, stress-state of individual grains can be determined, including the morphology of the grain boundaries. The first results obtained by using the novel tracking technique are presented...... in combination with synchrotron X-ray tomography in order to gain new in-formation on the wetting kinetics of liquid gallium in aluminium grain boundaries. Finally, an electron microscopy investigation was carried out in order to describe the lattice rotations and texture evolution in uniaxially compressed...

  15. Study of exploding type pumping x-ray laser

    Energy Technology Data Exchange (ETDEWEB)

    Yashiro, Hidehiko; Tomie, Toshihisa [Electrotechnical Lab., Tsukuba, Ibaraki (Japan)

    2000-03-01

    We are proposing a new x-ray pumping scheme named 'Exploding type pumping scheme'. A plasma is produced from a very thin membrane which is irradiated by a short pulse laser. Effective heating and ionization of a plasma from membrane is evaluated from Si spectral lines and theoretically hydrodynamic simulation. Effect of ASE from KrF amplifiers is experimentally evaluated as a negligible level when a short pulse laser is well-synchronized. (author)

  16. X-Ray Diffraction Studies on the Thermal Stability of Calcium ...

    African Journals Online (AJOL)

    acer

    X-Ray Diffraction Studies on the Thermal Stability of Calcium-Strontium Hydroxyapatite ... X- ray diffraction technique has been used by several researchers to investigate the individual effect of some elements on the formation and some properties of apatite in synthetic and .... is consistent with the larger ionic radius of.

  17. High energy x-ray reflectivity and scattering study from spectrum-x-gamma flight mirrors

    DEFF Research Database (Denmark)

    Christensen, Finn Erland; Budtz-Jørgensen, Carl; Frederiksen, P. Kk

    1993-01-01

    Line radiation from Fe K-alpha(1), Cu K-alpha(1), and Ag K-alpha(1) is used to study the high energy X-ray reflectivity and scattering behavior of flight-quality X-ray mirrors having various Al substrates. When both the specular and the scattered radiation are integrated, near theoretical...

  18. Reflectivity studies on a synchrotron radiation mirror in the hard X-ray regime

    CERN Document Server

    Keil, P; Novikov, D V; Hahn, U; Frahm, R

    2001-01-01

    The optical performance and roughness parameters of an X-ray mirror that was used for several years in a synchrotron radiation beamline are determined by studying its X-ray reflectivity and diffuse scattering behavior. These values are compared to the data derived from topographic measurements with an atomic force microscope (AFM).

  19. X-Ray and Neutron Scattering Study of the Magnetic Structure of Neodymium Metal

    DEFF Research Database (Denmark)

    Lebech, Bente; Als-Nielsen, Jens Aage; McEwen, K. A.

    1979-01-01

    A combined x-ray and neutron diffraction study has shown that the so-called "triple-q⃗" structure is not the correct model of the magnetic structure of neodymium. The x-ray data showed only the Bragg reflections originating from the double-hcp lattice. Hence, all additional reflections observed...

  20. A high resolution X-ray crystal spectrometer to study electron and ...

    Indian Academy of Sciences (India)

    We have studied fast ion–atom and electron–atom collision processes using a reconditioned high resolution X-ray spectrometer. The X-rays, generated by the collisions, are dispersed by a curved ADP crystal (Johansson geometry) and detected by a gas proportional counter. A self-written LabVIEW based program has ...

  1. Iron overload of human colon adenocarcinoma cells studied by synchrotron-based X-ray techniques

    NARCIS (Netherlands)

    Mihucz, Victor G.; Meirer, Florian; Polgári, Zsófia; Réti, Andrea; Pepponi, Giancarlo; Ingerle, Dieter; Szoboszlai, Norbert; Streli, Christina

    2016-01-01

    Fast- and slow-proliferating human adenocarcinoma colorectal cells, HT-29 and HCA-7, respectively, overloaded with transferrin (Tf), Fe(III) citrate, Fe(III) chloride and Fe(II) sulfate were studied by synchrotron radiation total-reflection X-ray spectrometry (TXRF), TXRF-X-ray absorption near edge

  2. A Furnace for Diffraction Studies using Synchrotron X-Ray Radiation

    DEFF Research Database (Denmark)

    Buras, B.; Lebech, Bente; Kofoed, W.

    1984-01-01

    A furnace for diffraction studies using synchrotron X-ray radiation is described. The furnace can be operated between ambient temperature and 1 800 °C with a temperature stability better than 5 °C for temperatures above 300 °C. Kapton windows allow almost 360° access for the X-ray beam...

  3. Magnetic nanoparticles studied by small angle X-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Cristiano Luis Pinto [Universidade de Sao Paulo (IF/USP), SP (Brazil). Inst. de Fisica. Grupo de Fluidos Complexos; Antonel, Soledad; Negri, Martin [Universidad de Buenos Aires (UBA) (Argentina). Facultad de Ciencias Exactas y Naturales. Dept. de Quimica Inorganica, Analitica y Quimica Fisica

    2011-07-01

    nanoparticles are very interesting because they exhibit magnetic (ferromagnetic) and electrical properties in the same material. Then, the nickel nanoparticles could be used for the development of electroelastic materials. In this case, the electrical conductivity of the material can be strongly dependent on the applied magnetic field, for example the case of nickel metal nanoparticles dispersed in a polymer, resulting in an anisotropic material with combined piezomagnetic and piezoelectric properties. In order to investigate the structural characteristics of cobalt-iron oxides and nickel nanoparticles, powder samples of those magnetic materials were studied by Small-Angle X-Ray Scattering. As will be shown, from the analysis and modeling of the scattering data, structural information could be obtained, enabling a detailed description of the structural properties of the studied samples which could be directly correlated to the magnetic properties. (author)

  4. Electronic Excitations in Vanadium Oxide Phthalocyanine Studied via Resonant Soft X-ray Emission and Resonant Inelastic X-ray Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Zhang,Y.; Wang, S.; Learmonth, T.; Plucinski, L.; Matsuura, A.; Bernardis, S.; ODonnell, C.; Downes, J.; Smith, K.

    2005-01-01

    The electronic structure of the organic semiconductor vanadium oxide phthalocyanine has been studied using resonant inelastic X-ray scattering and X-ray emission spectroscopy. The vanadyl species in the films is shown to be highly localized, and good agreement between the measurements and a density functional calculation is obtained. Both dipole forbidden V 3d to V 3d*, and O 2p to V 3d* charge transfer transitions are observed, and explained in a local molecular orbital model.

  5. High-pressure studies with x-rays using diamond anvil cells

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Guoyin; Mao, Ho Kwang

    2016-11-22

    Pressure profoundly alters all states of matter. The symbiotic development of ultrahigh-pressure diamond anvil cells, to compress samples to sustainable multi-megabar pressures; and synchrotron x-ray techniques, to probe materials' properties in situ, has enabled the exploration of rich high-pressure (HP) science. In this article, we first introduce the essential concept of diamond anvil cell technology, together with recent developments and its integration with other extreme environments. We then provide an overview of the latest developments in HP synchrotron techniques, their applications, and current problems, followed by a discussion of HP scientific studies using x-rays in the key multidisciplinary fields. These HP studies include: HP x-ray emission spectroscopy, which provides information on the filled electronic states of HP samples; HP x-ray Raman spectroscopy, which probes the HP chemical bonding changes of light elements; HP electronic inelastic x-ray scattering spectroscopy, which accesses high energy electronic phenomena, including electronic band structure, Fermi surface, excitons, plasmons, and their dispersions; HP resonant inelastic x-ray scattering spectroscopy, which probes shallow core excitations, multiplet structures, and spin-resolved electronic structure; HP nuclear resonant x-ray spectroscopy, which provides phonon densities of state and time-resolved Mössbauer information; HP x-ray imaging, which provides information on hierarchical structures, dynamic processes, and internal strains; HP x-ray diffraction, which determines the fundamental structures and densities of single-crystal, polycrystalline, nanocrystalline, and non-crystalline materials; and HP radial x-ray diffraction, which yields deviatoric, elastic and rheological information. Integrating these tools with hydrostatic or uniaxial pressure media, laser and resistive heating, and cryogenic cooling, has enabled investigations of the structural, vibrational, electronic, and

  6. High-pressure studies with x-rays using diamond anvil cells

    Science.gov (United States)

    Shen, Guoyin; Mao, Ho Kwang

    2017-01-01

    Pressure profoundly alters all states of matter. The symbiotic development of ultrahigh-pressure diamond anvil cells, to compress samples to sustainable multi-megabar pressures; and synchrotron x-ray techniques, to probe materials’ properties in situ, has enabled the exploration of rich high-pressure (HP) science. In this article, we first introduce the essential concept of diamond anvil cell technology, together with recent developments and its integration with other extreme environments. We then provide an overview of the latest developments in HP synchrotron techniques, their applications, and current problems, followed by a discussion of HP scientific studies using x-rays in the key multidisciplinary fields. These HP studies include: HP x-ray emission spectroscopy, which provides information on the filled electronic states of HP samples; HP x-ray Raman spectroscopy, which probes the HP chemical bonding changes of light elements; HP electronic inelastic x-ray scattering spectroscopy, which accesses high energy electronic phenomena, including electronic band structure, Fermi surface, excitons, plasmons, and their dispersions; HP resonant inelastic x-ray scattering spectroscopy, which probes shallow core excitations, multiplet structures, and spin-resolved electronic structure; HP nuclear resonant x-ray spectroscopy, which provides phonon densities of state and time-resolved Mössbauer information; HP x-ray imaging, which provides information on hierarchical structures, dynamic processes, and internal strains; HP x-ray diffraction, which determines the fundamental structures and densities of single-crystal, polycrystalline, nanocrystalline, and non-crystalline materials; and HP radial x-ray diffraction, which yields deviatoric, elastic and rheological information. Integrating these tools with hydrostatic or uniaxial pressure media, laser and resistive heating, and cryogenic cooling, has enabled investigations of the structural, vibrational, electronic, and

  7. IN SITU SURFACE X-RAY SCATTERING STUDIES OF ELECTROSORPTION

    Energy Technology Data Exchange (ETDEWEB)

    WANG,J.X.; ADZIC,R.R.; OCKO,B.M.

    1998-07-01

    A short review of the application of surface x-ray scattering techniques to the electrode/electrolyte interfaces is presented. Recent results on metal, halide, and metal-halide adlayers with three specific systems: Bi on Au(100) and Au(110); Br on Au(100) and Ag(100); and the coadsorption of Tl with Br or I on Au(111), are given as an illustration. Factors affecting ordering of pure metal and halide adlayers and the metal-halide surface compounds are discussed in some detail.

  8. Surface X-ray studies of catalytic clean technologies.

    Science.gov (United States)

    Lee, Adam F; Prabhakaran, Vinod; Wilson, Karen

    2010-06-14

    The rational design of new heterogeneous catalysts for clean chemical technologies can be accelerated by molecular level insight into surface chemical processes. In situ methodologies, able to provide time-resolved and/or pressure dependent information on the evolution of reacting adsorbed layers over catalytically relevant surfaces, are therefore of especial interest. Here we discuss recent applications of surface X-ray techniques to surface-catalysed oxidations, (de)hydrogenations, C-C coupling, dehalogenation and associated catalyst restructuring, and explore how these may help to shape future sustainable chemistry.

  9. First hard X-ray detection and broad-band X-ray study of the unidentified transient AX J1949.8+2534

    Science.gov (United States)

    Sguera, V.; Sidoli, L.; Paizis, A.; Masetti, N.; Bird, A. J.; Bazzano, A.

    2017-08-01

    We present the results from INTEGRAL and Swift/XRT observations of the hitherto poorly studied unidentified X-ray transient AX J1949.8+2534, and on archival multiwavelength observations of field objects. Bright hard X-ray outbursts have been discovered above 20 keV for the first time, the measured duty cycle and dynamic range are of the order of ˜4 per cent and ≥ 630, respectively. The source was also detected during a low soft X-ray state (˜2 × 10-12 erg cm-2 s-1) thanks to a Swift/XRT followup, which allowed for the first time to perform a soft X-ray spectral analysis as well as significantly improve the source positional uncertainty from arcminute to arcsecond size. From archival near-infrared data, we pinpointed two bright objects as most likely counterparts whose photometric properties are compatible with an early-type spectral nature. This strongly supports a high-mass X-ray binary (HMXB) scenario for AX J1949.8+2534, specifically a Supergiant Fast X-ray Transient (more likely) or alternatively a Be HMXB.

  10. Dental x-rays and the risk of thyroid cancer: a case-control study.

    Science.gov (United States)

    Memon, Anjum; Godward, Sara; Williams, Dillwyn; Siddique, Iqbal; Al-Saleh, Khalid

    2010-05-01

    The thyroid gland is highly susceptible to radiation carcinogenesis and exposure to high-dose ionising radiation is the only established cause of thyroid cancer. Dental radiography, a common source of low-dose diagnostic radiation exposure in the general population, is often overlooked as a radiation hazard to the gland and may be associated with the risk of thyroid cancer. An increased risk of thyroid cancer has been reported in dentists, dental assistants, and x-ray workers; and exposure to dental x-rays has been associated with an increased risk of meningiomas and salivary tumours. To examine whether exposure to dental x-rays was associated with the risk of thyroid cancer, we conducted a population-based case-control interview study among 313 patients with thyroid cancer and a similar number of individually matched (year of birth +/- three years, gender, nationality, district of residence) control subjects in Kuwait. Conditional logistic regression analysis, adjusted for other upper-body x-rays, showed that exposure to dental x-rays was significantly associated with an increased risk of thyroid cancer (odds ratio = 2.1, 95% confidence interval: 1.4, 3.1) (p=0.001) with a dose-response pattern (p for trend dental x-rays, particularly multiple exposures, may be associated with an increased risk of thyroid cancer; and warrant further study in settings where historical dental x-ray records may be available.

  11. Twinning study of CdTe epitaxic layer by X-ray [phi]-scan measurement

    Energy Technology Data Exchange (ETDEWEB)

    Brizard, C. (LETI (CEA-Technologies Avancees) DOPT, CENG 85 X, 38 Grenoble (France)); Rolland, G. (LETI (CEA-Technologies Avancees) DOPT, CENG 85 X, 38 Grenoble (France)); Laugier, F. (LETI (CEA-Technologies Avancees) DOPT, CENG 85 X, 38 Grenoble (France))

    1993-08-01

    A new application of an X-ray [phi]-scan setup is presented. The [phi] motion has been installed on an X-ray powder diffractometer. The application of this system to twinned crystals is described. The X-ray [phi]-scan diffraction pattern can show twins in the crystal studies to a very good precision. The ratio between the twin diffraction peaks and those from the crystal matrix gives the twin yield. This method is a great deal faster and more precise than the previous one used to study twins, which consisted of recording successively the various diffraction peaks of a chosen plane on a simple diffraction setup. (orig.).

  12. LIGHT SOURCE: A simulation study of Tsinghua Thomson scattering X-ray source

    Science.gov (United States)

    Tang, Chuan-Xiang; Li, Ren-Kai; Huang, Wen-Hui; Chen, Huai-Bi; Du, Ying-Chao; Du, Qiang; Du, Tai-Bin; He, Xiao-Zhong; Hua, Jian-Fei; Lin, Yu-Zhen; Qian, Hou-Jun; Shi, Jia-Ru; Xiang, Dao; Yan, Li-Xin; Yu, Pei-Cheng

    2009-06-01

    Thomson scattering X-ray sources are compact and affordable facilities that produce short duration, high brightness X-ray pulses enabling new experimental capacities in ultra-fast science studies, and also medical and industrial applications. Such a facility has been built at the Accelerator Laboratory of Tsinghua University, and upgrade is in progress. In this paper, we present a proposed layout of the upgrade with design parameters by simulation, aiming at high X-ray pulses flux and brightness, and also enabling advanced dynamics studies and applications of the electron beam. Design and construction status of main subsystems are also presented.

  13. Pinpointing the base of the AGN jets through general relativistic X-ray reverberation studies

    Science.gov (United States)

    Emmanoulopoulos, D.

    2015-03-01

    Many theoretical models of Active Galactic Nuclei (AGN) predict that the X-ray corona, lying above the black hole, constitutes the base of the X-ray jet. Thus, by studying the exact geometry of the close black hole environment, we can pinpoint the launching site of the jet. Detection of negative X-ray reverberation time delays (i.e. soft band X-ray variations lagging behind the corresponding hard band X-ray variations) can yield significant information about the geometrical properties of the AGN, such as the location of the X-ray source, as well as the physical properties of the the black hole, such as its mass and spin. In the frame-work of the lamp-post geometry, I present the first systematic X-ray time-lag modelling results of an ensemble of 12 AGN, using a fully general relativistic (GR) ray tracing approach for the estimation of the systems' response functions. By combing these state-of-the art GR response models with statistically innovative fitting routines, I derive the geometrical layout of the close BH environment for each source, unveiling the position of the AGN jet-base.

  14. X-rays as a new tool to study the winds of hot subdwarf stars

    Science.gov (United States)

    Mereghetti, S.; La Palombara, N.

    2017-10-01

    In recent years, thanks to XMM-Newton and Chandra, it has been possible to detect X-ray emission from several hot subdwarf stars or place interesting upper limits. X-rays are observed from subdwarfs in binary systems, where they result from wind accretion onto a white dwarf or neutron star companion, as well as from single hot subdwarfs, in which X-rays are probably due to shock instabilities in the wind. In both cases, X-ray data provide useful information for our understanding of the weak radiation-driven winds of these low mass stars, which are difficult to study with the techniques and observations typically used for massive hot stars. After reviewing the properties of the X-ray emission from hot subdwarfs, we will report on the most recent results on the three X-ray brightest sdOs (HD 49798, BD +37 442, and BD +37 1977), discuss the implications of the non-detections of sdB+WD binaries, and present the prospects for future X-ray observations of hot subdwarfs.

  15. Soft X-ray emission studies of biomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Kurmaev, E.Z. E-mail: kurmaev@ifmlrs.uran.ru; Werner, J.P.; Moewes, A.; Chiuzbaian, S.; Bach, M.; Ching, W.-Y.; Motozaki, W.; Otsuka, T.; Matsuya, S.; Endo, K.; Neumann, M

    2004-07-01

    Soft X-ray fluorescence measurements are used to characterize three groups of biomaterials: Vitamin B{sub 12} and derivatives, antioxidants (aspirin and paracetamol), and human teeth. We show that the chemical bonding in Vitamin B{sub 12} is characterized by the strong Co-C bond and the relatively weak Co-N bond. The Co-C bond in cyanocobalamin is found to be stronger than that of methylcobalamin leading to their different biological activity. The chemical bonding of paracetamol and aspirin is characterized by the formation of oxygen lone-pair {pi}-orbitals, which can neutralize free radicals and therefore be related to antioxidant activity of these compounds. Carbon K{alpha} emission spectra of a caries lesion suggest that the CaCO{sub 3} like phase exists in sound enamel and that a selective loss of carbonate occurs during the early stages of a caries attack.

  16. Analytical characterization of a new mobile X-ray fluorescence and X-ray diffraction instrument combined with a pigment identification case study

    Energy Technology Data Exchange (ETDEWEB)

    Van de Voorde, Lien, E-mail: lien.vandevoorde@ugent.be [Ghent University, Department of Analytical Chemistry, X-ray Microspectroscopy and Imaging Research Group, Krijgslaan 281 S12, B-9000 Gent (Belgium); Vekemans, Bart [Ghent University, Department of Analytical Chemistry, X-ray Microspectroscopy and Imaging Research Group, Krijgslaan 281 S12, B-9000 Gent (Belgium); Verhaeven, Eddy [Antwerp University, Faculty of Design Sciences, Mutsaardstraat 31, B-2000 Antwerpen (Belgium); Tack, Pieter; De Wolf, Robin; Garrevoet, Jan [Ghent University, Department of Analytical Chemistry, X-ray Microspectroscopy and Imaging Research Group, Krijgslaan 281 S12, B-9000 Gent (Belgium); Vandenabeele, Peter [Ghent University, Department of Archaeology, Archaeometry Research Group, Sint-Pietersnieuwstraat 35, B-9000 Gent (Belgium); Vincze, Laszlo [Ghent University, Department of Analytical Chemistry, X-ray Microspectroscopy and Imaging Research Group, Krijgslaan 281 S12, B-9000 Gent (Belgium)

    2015-08-01

    A new, commercially available, mobile system combining X-ray diffraction and X-ray fluorescence has been evaluated which enables both elemental analysis and phase identification simultaneously. The instrument makes use of a copper or molybdenum based miniature X-ray tube and a silicon-Pin diode energy-dispersive detector to count the photons originating from the samples. The X-ray tube and detector are both mounted on an X-ray diffraction protractor in a Bragg–Brentano θ:θ geometry. The mobile instrument is one of the lightest and most compact instruments of its kind (3.5 kg) and it is thus very useful for in situ purposes such as the direct (non-destructive) analysis of cultural heritage objects which need to be analyzed on site without any displacement. The supplied software allows both the operation of the instrument for data collection and in-depth data analysis using the International Centre for Diffraction Data database. This paper focuses on the characterization of the instrument, combined with a case study on pigment identification and an illustrative example for the analysis of lead alloyed printing letters. The results show that this commercially available light-weight instrument is able to identify the main crystalline phases non-destructively, present in a variety of samples, with a high degree of flexibility regarding sample size and position. - Highlights: • New X-ray fluorescence and X-ray diffraction instrument for non-destructive analysis • Commercially available, mobile system • One of the lightest and most compact of its kind • Characterization, data acquisition and analysis are performed. • Results of measurements on pigment model samples and cultural heritage materials.

  17. Studies in K-shell X-ray energy shift for a 2p spectator vacancy

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, J.; Talukdar, B.; Laha, U.

    1989-10-01

    We examine a simple model for calculating X-ray energy shifts due to outer atomic vacancies and present some case studies. We find that this model is a good supplement for the traditional approach to the problem. (orig.).

  18. [X-ray endoscopic semiotics and diagnostic algorithm of radiation studies of preneoplastic gastric mucosa changes].

    Science.gov (United States)

    Akberov, R F; Gorshkov, A N

    1997-01-01

    The X-ray endoscopic semiotics of precancerous gastric mucosal changes (epithelial dysplasia, intestinal epithelial rearrangement) was examined by the results of 1574 gastric examination. A diagnostic algorithm was developed for radiation studies in the diagnosis of the above pathology.

  19. Study of magnetic metal periodic structures by X-Ray and electron microscopy methods

    Science.gov (United States)

    Prutskov, G. V.; Chesnokov, Yu. M.; Vasilliev, A. L.; Likhachev, I. A.; Pashaev, E. M.; Subbotin, I. A.

    2017-11-01

    Complex studies of magnetic periodic metallic systems based on Dy/Gd layers have been carried out by X-ray diffraction, resonance X-ray reflectometry, transmission electronic microscopy, and energydispersve microanalysis. The application of these methods and joint analysis of their results provide an effective approach to study of the structure and determination of the parameters of individual layers and interfaces and their structural quality with a high degree of reliability.

  20. Resonant X-ray Raman scattering on molecules: A benchmark study on HCl

    Energy Technology Data Exchange (ETDEWEB)

    Carniato, Stephane [UPMC Univ Paris 06, UMR 7614, Laboratoire de Chimie Physique Matiere et Rayonnement, F-75005 Paris (France); CNRS, UMR 7614, Laboratoire de Chimie Physique Matiere et Rayonnement, F-75005 Paris (France); Taieb, Richard, E-mail: richard.taieb@upmc.f [UPMC Univ Paris 06, UMR 7614, Laboratoire de Chimie Physique Matiere et Rayonnement, F-75005 Paris (France); CNRS, UMR 7614, Laboratoire de Chimie Physique Matiere et Rayonnement, F-75005 Paris (France); Journel, Loic; Guillemin, Renaud [UPMC Univ Paris 06, UMR 7614, Laboratoire de Chimie Physique Matiere et Rayonnement, F-75005 Paris (France); CNRS, UMR 7614, Laboratoire de Chimie Physique Matiere et Rayonnement, F-75005 Paris (France); Stolte, Wayne C.; Lindle, Dennis W. [Department of Chemistry, University of Nevada, Las Vegas, NV 89154-4003 (United States); Gel' mukhanov, Faris [Theoretical Chemistry, Roslagstullsbacken 15, Royal Institute of Technology, S-106 91 Stockholm (Sweden); Simon, Marc [UPMC Univ Paris 06, UMR 7614, Laboratoire de Chimie Physique Matiere et Rayonnement, F-75005 Paris (France); CNRS, UMR 7614, Laboratoire de Chimie Physique Matiere et Rayonnement, F-75005 Paris (France)

    2010-08-15

    Resonant X-ray Raman scattering is a powerful tool to study molecular dynamics and subtle chemical effects like the molecular field beyond vibrational and lifetime limitations. Using this technique in the tender X-ray region, gas phase HCl is studied as a benchmark molecule for other compounds like freons, which play an important role in physical-chemical properties of the ozone layer of atmosphere.

  1. [Study on spectrum analysis of X-ray based on rotational mass effect in special relativity].

    Science.gov (United States)

    Yu, Zhi-Qiang; Xie, Quan; Xiao, Qing-Quan

    2010-04-01

    Based on special relativity, the formation mechanism of characteristic X-ray has been studied, and the influence of rotational mass effect on X-ray spectrum has been given. A calculation formula of the X-ray wavelength based upon special relativity was derived. Error analysis was carried out systematically for the calculation values of characteristic wavelength, and the rules of relative error were obtained. It is shown that the values of the calculation are very close to the experimental values, and the effect of rotational mass effect on the characteristic wavelength becomes more evident as the atomic number increases. The result of the study has some reference meaning for the spectrum analysis of characteristic X-ray in application.

  2. X-Ray Photoemission Study of the Oxidation of Hafnium

    Directory of Open Access Journals (Sweden)

    A. R. Chourasia

    2009-01-01

    Full Text Available About 20 Å of hafnium were deposited on silicon substrates using the electron beam evaporation technique. Two types of samples were investigated. In one type, the substrate was kept at the ambient temperature. After the deposition, the substrate temperature was increased to 100, 200, and 300∘C. In the other type, the substrate temperature was held fixed at some value during the deposition. For this type, the substrate temperatures used were 100, 200, 300, 400, 500, 550, and 600∘C. The samples were characterized in situ by the technique of X-ray photoelectron spectroscopy. No trace of elemental hafnium is observed in the deposited overlayer. Also, there is no evidence of any chemical reactivity between the overlayer and the silicon substrate over the temperature range used. The hafnium overlayer shows a mixture of the dioxide and the suboxide. The ratio of the suboxide to dioxide is observed to be more in the first type of samples. The spectral data indicate that hafnium has a strong affinity for oxygen. The overlayer gets completely oxidized to form HfO2 at substrate temperature around 300∘C for the first type of samples and at substrate temperature greater than 550∘C for the second type.

  3. Studies of Deformation in Niobium by X-Ray Topographic Methods.

    Science.gov (United States)

    1985-01-01

    STANDARDS-|1%3-A ! iL STUDIES OF DEFORMATION IN NIOBIUM BY X-RAY TOPOGRAPHIC METHODS CV S.R. Stock, Haydn Chen and H,K, Birnbaum University of...Rt. Stock*, Haydn Chen and H. K. Birnbaum J icatio. -: Department of Metallurgy and Mining Engineering By - and Materials Research Laboratory... Haydn Chen and H. K. Birnbaum, "Equi-Inclination Contour Mapping of Strain Fields," in press in Applications of X-Ray . Topographic Methods to Materials

  4. Molecular orientation in soft matter thin films studied by resonant soft X-ray reflectivity

    Energy Technology Data Exchange (ETDEWEB)

    Mezger, Markus; Jerome, Blandine; Kortright, Jeffrey B.; Valvidares, Manuel; Gullikson, Eric; Giglia, Angelo; Mahne, Nicola; Nannarone, Stefano

    2011-01-12

    We present a technique to study depth profiles of molecular orientation in soft matter thin films with nanometer resolution. The method is based on dichroism in resonant soft X-ray reflectivity using linear s- and p-polarization. It combines the chemical sensitivity of Near-Edge X-ray Absorption Fine Structure spectroscopy to specific molecular bonds and their orientation relative to the polarization of the incident beam with the precise depth profiling capability of X-ray reflectivity. We demonstrate these capabilities on side chain liquid crystalline polymer thin films with soft X-ray reflectivity data at the carbon K edge. Optical constants of the anisotropic refractive index ellipsoid were obtained from a quantitative analysis using the Berreman formalism. For films up to 50 nm thickness we find that the degree of orientation of the long axis exhibits no depth variation and isindependent of the film thickness.

  5. Analytical characterization of a new mobile X-ray fluorescence and X-ray diffraction instrument combined with a pigment identification case study

    Science.gov (United States)

    Van de Voorde, Lien; Vekemans, Bart; Verhaeven, Eddy; Tack, Pieter; De Wolf, Robin; Garrevoet, Jan; Vandenabeele, Peter; Vincze, Laszlo

    2015-08-01

    A new, commercially available, mobile system combining X-ray diffraction and X-ray fluorescence has been evaluated which enables both elemental analysis and phase identification simultaneously. The instrument makes use of a copper or molybdenum based miniature X-ray tube and a silicon-Pin diode energy-dispersive detector to count the photons originating from the samples. The X-ray tube and detector are both mounted on an X-ray diffraction protractor in a Bragg-Brentano θ:θ geometry. The mobile instrument is one of the lightest and most compact instruments of its kind (3.5 kg) and it is thus very useful for in situ purposes such as the direct (non-destructive) analysis of cultural heritage objects which need to be analyzed on site without any displacement. The supplied software allows both the operation of the instrument for data collection and in-depth data analysis using the International Centre for Diffraction Data database. This paper focuses on the characterization of the instrument, combined with a case study on pigment identification and an illustrative example for the analysis of lead alloyed printing letters. The results show that this commercially available light-weight instrument is able to identify the main crystalline phases non-destructively, present in a variety of samples, with a high degree of flexibility regarding sample size and position.

  6. Use of x-ray fluorescence microprobe and x-ray photoelectron spectroscopy to study variations in bulk and surface chemistry of minerals

    Energy Technology Data Exchange (ETDEWEB)

    Perry, D.L.; Schlueter, E.M. [Lawrence Berkeley National Lab., CA (United States)

    1996-12-31

    Two experimental approaches, synchrotron x-ray fluorescence microprobe and x-ray photoelectron spectroscopy, can be used to study the chemistry of minerals. The former technique yields data at the micron level of depth, whereas the latter approach gives data at the Angstrom level and thus more indicative of the surface conditions of the sample. The present work makes use of the difference in depths being sampled by the two techniques and using them in conjunction with lateral microscopic profiling to study bulk and surface chemistry in oxide and sulfide minerals. A complementary method, angle resolved x-ray photoelectron spectroscopy, is also discussed with respect to both the bulk chemistry and multiple layer films that can occur as reactions products on the surfaces of minerals.

  7. Structural studies of tropomyosin by cryoelectron microscopy and x-ray diffraction.

    Science.gov (United States)

    Cabral-Lilly, D; Phillips, G N; Sosinsky, G E; Melanson, L; Chacko, S; Cohen, C

    1991-04-01

    A comparison has been made between cryoelectron microscope images and the x-ray structure of one projection of the Bailey tropomyosin crystal. The computed transforms of the electron micrographs extend to a resolution of approximately 18 A compared with the reflections from x-ray crystallography which extend to 15 A. After correction of the images for lattice distortions and the contrast transfer function, the structure factors were constrained to the plane group (pmg) symmetry of this projection. Amplitude and phase data for five images were compared with the corresponding view from the three-dimensional x-ray diffraction data (Phillips, G.N., Jr., J.P. Fillers, and C. Cohen. 1986. J. Mol. Biol. 192: 111-131). The average R factor between the electron microscopy and x-ray amplitudes was 15%, with an amplitude-weighted mean phase difference of 4.8 degrees. The density maps derived from cryoelectron microscopy contain structural features similar to those from x-ray diffraction: these include the width and run of the filaments and their woven appearance at the crossover regions. Preliminary images obtained from frozen-hydrated tropomyosin/troponin cocrystals suggest that this approach may provide structural details not readily obtainable from x-ray diffraction studies.

  8. Preliminary small-angle X-ray scattering and X-ray diffraction studies of the BTB domain of lola protein from Drosophila melanogaster

    Science.gov (United States)

    Boyko, K. M.; Nikolaeva, A. Yu.; Kachalova, G. S.; Bonchuk, A. N.; Dorovatovskii, P. V.; Popov, V. O.

    2017-11-01

    The Drosophila genome has several dozens of transcription factors (TTK group) containing BTB domains assembled into octamers. The LOLA protein belongs to this family. The purification, crystallization, and preliminary X-ray diffraction and small-angle X-ray scattering (SAXS) studies of the BTB domain of this protein are reported. The crystallization conditions were found by the vapor-diffusion technique. A very low diffraction resolution (8.7 Å resolution) of the crystals was insufficient for the determination of the threedimensional structure of the BTB domain. The SAXS study demonstrated that the BTB domain of the LOLA protein exists as an octamer in solution.

  9. An x-ray study of massive star forming regions with CHANDRA

    Science.gov (United States)

    Wang, Junfeng

    2007-08-01

    Massive stars are characterized by powerful stellar winds, strong ultraviolet (UV) radiation, and consequently devastating supernovae explosions, which have a profound influence on their natal clouds and galaxy evolution. However, the formation and evolution of massive stars themselves and how their low-mass siblings are affected in the wind-swept and UV-radiation-dominated environment are not well understood. Much of the stellar populations inside of the massive star forming regions (MSFRs) are poorly studied in the optical and IR wavelengths because of observational challenges caused by large distance, high extinction, and heavy contamination from unrelated sources. Although it has long been recognized that X-rays open a new window to sample the young stellar populations residing in the MSFRs, the low angular resolution of previous generation X-ray telescopes has limited the outcome from such studies. The sensitive high spatial resolution X-ray observations enabled by the Chandra X- ray Observatory and the Advanced CCD Imaging Spectrometer (ACIS) have significantly improved our ability to study the X-ray-emitting populations in the MSFRs in the last few years. In this thesis, I analyzed seven high spatial resolution Chandra /ACIS images of two massive star forming complexes, namely the NGC 6357 region hosting the 1 Myr old Pismis 24 cluster (Chapter 3) and the Rosette Complex including the 2 Myr old NGC 2244 cluster immersed in the Rosette Nebula (Chapter 4), embedded clusters in the Rosette Molecular Cloud (RMC; Chapter 5), and a triggered cluster NGC 2237 (Chapter 6). The X-ray sampled stars were studied in great details. The unique power of X-ray selection of young stellar cluster members yielded new knowledge in the stellar populations, the cluster structures, and the star formation histories. The census of cluster members is greatly improved in each region. A large fraction of the X-ray detections have optical or near-infrared (NIR) stellar counterparts

  10. Dental x-rays and the risk of thyroid cancer: A case-control study

    Energy Technology Data Exchange (ETDEWEB)

    Memon, Anjum (Div. of Primary Care and Public Health, Brighton and Sussex Medical School (United Kingdom)), E-mail: a.memon@bsms.ac.uk; Godward, Sara (Dept. of Public Health and Primary Care, Univ. of Cambridge (United Kingdom)); Williams, Dillwyn (Thyroid Carcinogenesis Research Group, Strangeways Research Laboratories, Univ. of Cambridge (United Kingdom)); Siddique, Iqbal (Dept. of Medicine, Faculty of Medicine, Kuwait Univ. (Kuwait)); Al-Saleh, Khalid (Kuwait Cancer Control Centre, Ministry of Health (Kuwait))

    2010-05-15

    The thyroid gland is highly susceptible to radiation carcinogenesis and exposure to high-dose ionising radiation is the only established cause of thyroid cancer. Dental radiography, a common source of low-dose diagnostic radiation exposure in the general population, is often overlooked as a radiation hazard to the gland and may be associated with the risk of thyroid cancer. An increased risk of thyroid cancer has been reported in dentists, dental assistants, and x-ray workers; and exposure to dental x-rays has been associated with an increased risk of meningiomas and salivary tumours. Methods. To examine whether exposure to dental x-rays was associated with the risk of thyroid cancer, we conducted a population-based case-control interview study among 313 patients with thyroid cancer and a similar number of individually matched (year of birth +- three years, gender, nationality, district of residence) control subjects in Kuwait. Results. Conditional logistic regression analysis, adjusted for other upper-body x-rays, showed that exposure to dental x-rays was significantly associated with an increased risk of thyroid cancer (odds ratio = 2.1, 95% confidence interval: 1.4, 3.1) (p=0.001) with a dose-response pattern (p for trend <0.0001). The association did not vary appreciably by age, gender, nationality, level of education, or parity. Discussion. These findings, based on self-report by cases/controls, provide some support to the hypothesis that exposure to dental x-rays, particularly multiple exposures, may be associated with an increased risk of thyroid cancer; and warrant further study in settings where historical dental x-ray records may be available.

  11. Parameter study of self-absorption effects in Total Reflection X-ray Fluorescence-X-ray Absorption Near Edge Structure analysis of arsenic

    Science.gov (United States)

    Meirer, F.; Pepponi, G.; Streli, C.; Wobrauschek, P.; Kregsamer, P.; Zoeger, N.; Falkenberg, G.

    2008-12-01

    Total reflection X-ray Fluorescence (TXRF) analysis in combination with X-ray Absorption Near Edge Structure (XANES) analysis is a powerful method to perform chemical speciation studies at trace element levels. However, when measuring samples with higher concentrations and in particular standards, damping of the oscillations is observed. In this study the influence of self-absorption effects on TXRF-XANES measurements was investigated by comparing measurements with theoretical calculations. As(V) standard solutions were prepared at various concentrations and dried on flat substrates. The measurements showed a correlation between the damping of the oscillations and the As mass deposited. A Monte-Carlo simulation was developed using data of the samples shapes obtained from confocal white light microscopy. The results showed good agreement with the measurements; they confirmed that the key parameters are the density of the investigated atom in the dried residues and the shape of the residue, parameters that combined define the total mass crossed by a certain portion of the incident beam. The study presents a simple approach for an a priori evaluation of the self-absorption in TXRF X-ray absorption studies. The consequences for Extended X-ray Absorption Fine Structure (EXAFS) and XANES measurements under grazing incidence conditions are discussed, leading to the conclusion that the damping of the oscillations seems to make EXAFS of concentrated samples non feasible. For XANES "fingerprint" analysis samples should be prepared with a deposited mass and sample shape leading to an acceptable absorption for the actual investigation.

  12. Soft-x-ray fluorescence study of buried silicides in antiferromagnetically coupled Fe/Si multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Carlisle, J.A.; Chaiken, A.; Michel, R.P. [Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    Multilayer films made by alternate deposition of two materials play an important role in electronic and optical devices such as quantum-well lasers and x-ray mirrors. In addition, novel phenomena like giant magnetoresistance and dimensional crossover in superconductors have emerged from studies of multilayers. While sophisticated x-ray techniques are widely used to study the morphology of multilayer films, progress in studying the electronic structure has been slower. The short mean-free path of low-energy electrons severely limits the usefulness of photoemission and related electron free path of low-energy electrons severely limit spectroscopies for multilayer studies. Soft x-ray fluorescence (SXF) is a bulk-sensitive photon-in, photon-out method to study valence band electronic states. Near-edge x-ray absorption fine-structure spectroscopy (NEXAFS) measured with partial photon yield can give complementary bulk-sensitive information about unoccupied states. Both these methods are element-specific since the incident x-ray photons excite electrons from core levels. By combining NEXAFS and SXF measurements on buried layers in multilayers and comparing these spectra to data on appropriate reference compounds, it is possible to obtain a detailed picture of the electronic structure. Results are presented for a study of a Fe/Si multilayer system.

  13. A Deep X-ray Study of the Globular Cluster M4

    Science.gov (United States)

    Pooley, David

    2015-08-01

    We know from observations that globular clusters are very efficient catalysts in forming unusual binary systems, such as low-mass X-ray binaries (LMXBs), cataclysmic variables (CVs), and millisecond pulsars (MSPs), with formation rates per unit mass exceeding those in the Galactic disk by orders of magnitude. The high stellar densities in globular clusters trigger various dynamical interactions: exchange encounters, direct collisions, destruction of binaries, and tidal capture. This binary population is, in turn, critical to the stabilization of globular clusters against gravitational collapse; the long-term stability of a cluster is thought to depend on tapping into the gravitational binding energy of such close binaries.We have also learned that not all X-ray sources in a globular cluster are dynamically formed. Chandra X-ray Observatory observations of low-density clusters have shown that the magnetically active main-sequence binaries in those clusters are largely primordial, but few clusters have been observed deeply enough in X-rays to uncover a substantial fraction of these binaries.We report on the results of deep Chandra observations of M4 that were motivated, in part, to uncover a nearly complete census of its active binaries. These observations reach X-ray luminosities below 1029 erg/s, a sensitivity that should detect ~90% of the active main-sequence binary population. We detect ~100 X-ray sources within the half-light radius of M4 and characterize their nature by investigating their optical counterparts (or lack thereof) in deep Hubble Space Telescope observations. We compare the populations of X-ray sources in M4 to other well-studied clusters.

  14. Characteristics of a molybdenum X-pinch X-ray source as a probe source for X-ray diffraction studies

    Science.gov (United States)

    Zucchini, F.; Bland, S. N.; Chauvin, C.; Combes, P.; Sol, D.; Loyen, A.; Roques, B.; Grunenwald, J.

    2015-03-01

    X-ray emission from a molybdenum X-pinch has been investigated as a potential probe for the high pressure states made in dynamic compression experiments. Studies were performed on a novel 300 kA, 400 ns generator which coupled the load directly to a low inductance capacitor and switch combination. The X-pinch load consisted of 4 crossed molybdenum wires of 13 μm diameter, crossed at an angle of 62°. The load height was 10 mm. An initial x-ray burst generated at the wire crossing point, radiated in the soft x-ray range (hυ x-ray burst (hυ > 10 keV) whose power ranged from 1 to 7 MW. Time integrated spectral measurements showed that the harder bursts were dominated by K-alpha emission; though, a lower level, wide band continuum up to at least 30 keV was also present. Initial tests demonstrated that the source was capable of driving Laue diffraction experiments, probing uncompressed samples of LiF and aluminium.

  15. A structural study of bone changes in knee osteoarthritis by synchrotron-based X-ray fluorescence and X-ray absorption spectroscopy techniques

    Science.gov (United States)

    Sindhupakorn, Bura; Thienpratharn, Suwittaya; Kidkhunthod, Pinit

    2017-10-01

    Osteoarthritis (OA) is characterized by degeneration of articular cartilage and thickening of subchondral bone. The present study investigated the changing of biochemical components of cartilage and bone compared between normal and OA people. Using Synchrotron-based X-ray fluorescence (SR-XRF) and X-ray absorption spectroscopy (XAS) techniquesincluding X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) were employed for the bone changes in kneeosteoarthritisstudies. The bone samples were collected from various osteoarthritis patients with both male and female in the ages range between 20 and 74 years old. SR-XRF results excited at 4240 eV for Ca elements show a majority three main groups, based on their XRF intensities, 20-36 years, 40-60 years and over 70 years, respectively. By employing XAS techniques, XANES features can be used to clearly explain in term of electronic transitions occurring in bone samples which are affected from osteoarthritis symptoms. Moreover, a structural change around Ca ions in bone samples is obviously obtained by EXAFS results indicating an increase of Ca-amorphous phase when the ages increase.

  16. Protegrin interaction with lipid monolayers: Grazing incidence X-ray diffraction and X-ray reflectivity study

    Science.gov (United States)

    Neville, Frances; Ishitsuka, Yuji; Hodges, Chris S.; Konovalov, Oleg; Waring, Alan J.; Lehrer, Robert; Lee, Ka Yee C.; Gidalevitz, David

    2009-01-01

    Interactions of the antimicrobial peptide protegrin-1 (PG-1) with phospholipid monolayers have been investigated by using grazing incidence X-ray diffraction (GIXD) and specular X-ray reflectivity (XR). The structure of a PG-1 film at the air-aqueous interface was also investigated by XR for the first time. Lipid A, dipalmitoyl-phosphatidylglycerol (DPPG) and dipalmitoyl-phosphatidylcholine (DPPC) monolayers were formed at the air-aqueous interface to mimic the surface of the bacterial cell wall and the outer leaflet of the erythrocyte cell membrane, respectively. Experiments were carried out under constant area conditions where the pressure changes upon insertion of peptide into the monolayer. GIXD data suggest that the greatest monolayer disruption produced by PG-1 is seen with the DPPG system at 20 mN/m since the Bragg peaks completely disappear after introduction of PG-1 to the system. PG-1 shows greater insertion into the lipid A system compared to the DPPC system when both films are held at the same initial surface pressure of 20 mN/m. The degree of insertion lessens at 30 mN/m with both DPPC and DPPG monolayer systems. XR data further reveal that PG-1 inserts primarily in the head group region of lipid monolayers. However, only the XR data of the anionic lipids suggest the existence of an additional adsorbed peptide layer below the head group of the monolayer. Overall the data show that the extent of peptide/lipid interaction and lipid monolayer disruption depends not only on the lipid composition of the monolayer, but the packing density of the lipids in the monolayer prior to the introduction of peptide to the subphase. PMID:19672319

  17. Experimental validation of L-shell x-ray fluorescence computed tomography imaging: phantom study.

    Science.gov (United States)

    Bazalova-Carter, Magdalena; Ahmad, Moiz; Xing, Lei; Fahrig, Rebecca

    2015-10-01

    Thanks to the current advances in nanoscience, molecular biochemistry, and x-ray detector technology, x-ray fluorescence computed tomography (XFCT) has been considered for molecular imaging of probes containing high atomic number elements, such as gold nanoparticles. The commonly used XFCT imaging performed with K-shell x rays appears to have insufficient imaging sensitivity to detect the low gold concentrations observed in small animal studies. Low energy fluorescence L-shell x rays have exhibited higher signal-to-background ratio and appeared as a promising XFCT mode with greatly enhanced sensitivity. The aim of this work was to experimentally demonstrate the feasibility of L-shell XFCT imaging and to assess its achievable sensitivity. We built an experimental L-shell XFCT imaging system consisting of a miniature x-ray tube and two spectrometers, a silicon drift detector (SDD), and a CdTe detector placed at [Formula: see text] with respect to the excitation beam. We imaged a 28-mm-diameter water phantom with 4-mm-diameter Eppendorf tubes containing gold solutions with concentrations of 0.06 to 0.1% Au. While all Au vials were detectable in the SDD L-shell XFCT image, none of the vials were visible in the CdTe L-shell XFCT image. The detectability limit of the presented L-shell XFCT SDD imaging setup was 0.007% Au, a concentration observed in small animal studies.

  18. Time-resolved structural studies of protein reaction dynamics: a smorgasbord of X-ray approaches.

    Science.gov (United States)

    Westenhoff, Sebastian; Nazarenko, Elena; Malmerberg, Erik; Davidsson, Jan; Katona, Gergely; Neutze, Richard

    2010-03-01

    Proteins undergo conformational changes during their biological function. As such, a high-resolution structure of a protein's resting conformation provides a starting point for elucidating its reaction mechanism, but provides no direct information concerning the protein's conformational dynamics. Several X-ray methods have been developed to elucidate those conformational changes that occur during a protein's reaction, including time-resolved Laue diffraction and intermediate trapping studies on three-dimensional protein crystals, and time-resolved wide-angle X-ray scattering and X-ray absorption studies on proteins in the solution phase. This review emphasizes the scope and limitations of these complementary experimental approaches when seeking to understand protein conformational dynamics. These methods are illustrated using a limited set of examples including myoglobin and haemoglobin in complex with carbon monoxide, the simple light-driven proton pump bacteriorhodopsin, and the superoxide scavenger superoxide reductase. In conclusion, likely future developments of these methods at synchrotron X-ray sources and the potential impact of emerging X-ray free-electron laser facilities are speculated upon.

  19. Study of Post-Harvest Ambon Banana (Musa acuminata) Preservation Using X-Ray

    Science.gov (United States)

    Dwijananti, P.; Handayani, L.; Marwoto, P.; Iswari, R. S.

    2016-08-01

    An exposure to Ambon banana (Musa Acuminata) samples has been done by using X-rays with current, voltage and exposure time are control parameters. This study aimed to determine storage ability of the post-harvest sample. Five samples were exposured by x-rays with the dose of (3-5) × 10-14 Gy. The samples were stored at room temperature. Their mass and physical condition (color and smell) were evaluated every 3 days. It was found that the control sample which was not exposured by X-ray was ripe in the sixth day indicated by the yellow color and good smell of the banana. Meanwhile, the samples which were exposured by (3 - 5) × 10-14 Gy doze of X-ray looked fresher and still had green color. These samples showed their ripening in the ninth day and their mass decrease was (12-13)% which is lower than the control sample. The preservation of banana can be done through low-dose X-ray exposure.

  20. Invited Article: First Flight in Space of a Wide-field-of-view Soft X-Ray Imager Using Lobster-Eye Optics: Instrument Description and Initial Flight Results

    Science.gov (United States)

    Collier, Michael; Porter, F. Scott; Sibeck, David G.; Carter, Jenny A.; Chiao, Meng P.; Chomay, Dennis J.; Cravens, Thomas E.; Galeazzi, Massiniliano; Keller, John; Koutroumpa, Dimitra

    2015-01-01

    We describe the development, launch into space, and initial results from a prototype wide eld-of-view (FOV) soft X-ray imager that employs Lobster-eye optics and targets heliophysics, planetary, and astrophysics science. The Sheath Transport Observer for the Redistribution of Mass (STORM) is the rst instrument using this type of optics launched into space and provides proof-of-concept for future ight instruments capable of imaging structures such as the terrestrial cusp, the entire dayside magnetosheath from outside the magnetosphere, comets, the moon, and the solar wind interaction with planetary bodies like Venus and Mars.

  1. Novel applications of diagnostic x-rays in activating photo-agents through x-ray induced visible luminescence from rare-earth particles: an in vitro study

    Science.gov (United States)

    Abliz, Erkinay; Collins, Joshua E.; Friedberg, Joseph S.; Kumar, Ajith; Bell, Howard; Waynant, Ronald W.; Tata, Darrell B.

    2010-02-01

    Photodynamic agents such as Photofrin II (Photo II) utilized in photodynamic therapy (PDT) possess a remarkable property to become preferentially retained within the tumor's micro-environment. Upon the photo-agent's activation through visible light photon absorption, the agents exert their cellular cytotoxicity through type II and type I mechanistic pathways through extensive generation of reactive oxygen species (ROS): singlet oxygen 1O2, superoxide anion O2 -, and hydrogen peroxide H2O2, within the intratumoral environment. Unfortunately, due to shallow visible light penetration depth (~2mm to 5mm) in tissues, the PDT strategy currently has largely been restricted to the treatments of surface tumors, such as the melanomas. Additional invasive strategies through optical fibers are currently utilized in getting the visible light into the intended deep seated targets within the body for PDT. In this communication, we report on a novel strategy in utilizing "soft" energy diagnostic X-rays to indirectly activate Photo II through X-ray induced luminescence from Gadolinium oxysulfide (20 micron dimension) particles doped with Terbium: Gd2O2S:Tb. X-ray induced visible luminescence from Gd2O2S:Tb particles was spectroscopically characterized and the ROS production levels from clinically relevant concentration (10 μg/ml) of Photo II was quantified through changes in the Vitamin C absorbance. ROS kinetics through X-ray induced luminescence was found to be similar to the ROS kinetics from red He-Ne laser exposures used in the clinics. Taken together, in-vitro findings herein provide the basis for future studies in determining the safety and efficacy of this non-invasive X-ray induced luminescence strategy in activating photo-agent in deep seated tumors.

  2. Optical and x-ray photoelectron spectroscopy studies of α-Al2O3

    Science.gov (United States)

    Prakash, Ram; Kumar, Sandeep; Kumar, Vinay; Choudhary, R. J.; Phase, D. M.

    2016-05-01

    α-Al2O3 powder sample was synthesized at 550 °C via solution combustion synthesis (SCS) method using urea as an organic fuel. The sample was characterized by X-ray diffraction (XRD), Optical spectroscopy and X-ray photoelectron spectroscopy (XPS) without any further thermal treatment. XRD study reveals that the powder crystallized directly in the hexagons α-Al2O3 phase. A band gap of 5.7 eV was estimated using diffuse reflectance spectra. For surface investigation X-ray photo electron spectroscopy (XPS) was carried out. The XPS survey scan study of α-Al2O3 powder reveals that the sample is free from impurity. The core levels of Al-2s and O-1s are also reported.

  3. X-ray diffraction study of structural stability of giant proteoglycan molecules of mucus

    Science.gov (United States)

    Vazina, A. A.; Lanina, N. F.; Vasilieva, A. A.; Korneev, V. N.; Zabelin, A. V.; Polyakova, E. P.

    2009-05-01

    X-ray diffraction study of various native and modified gastrointestinal mucins was carried out using synchrotron radiation. The mucus X-ray patterns of mammals and invertebrates are very similar and display a large number of sharp diffraction rings at the spacing of about 4.65 nm, which are due to the helical packing of polysaccharide chains covalently connected to the protein core. A comparative analysis of the X-ray patterns obtained earlier by us from various samples of mucus and biological tissues showed that the 4.65(±0.15) nm spacing is a nanoscale structural invariant of giant proteoglycan molecules of both the mucus and the extracellular matrix of tissues. A role of structural dynamics of proteoglycan scaffolding of biological systems in mechanism of modifying adaptation of organisms to significant changes of temperature is discussed.

  4. X-ray diffraction study of structural stability of giant proteoglycan molecules of mucus

    Energy Technology Data Exchange (ETDEWEB)

    Vazina, A.A. [Institute of Theoretical and Experimental Biophysics, RAS, Institutskaya St. 3, 142290 Pushchino, Moscow Region (Russian Federation); Russian Research Center ' Kurchatov Institute' , 123182 Moscow (Russian Federation)], E-mail: vazina@iteb.ru; Lanina, N.F.; Vasilieva, A.A. [Institute of Theoretical and Experimental Biophysics, RAS, Institutskaya St. 3, 142290 Pushchino, Moscow Region (Russian Federation); Korneev, V.N. [Institute of Cell Biophysics, RAS, 142290 Pushchino (Russian Federation); Zabelin, A.V. [Russian Research Center ' Kurchatov Institute' , 123182 Moscow (Russian Federation); Polyakova, E.P. [Timiryazev Moscow Agricultural Academy, 127550 Moscow (Russian Federation)

    2009-05-11

    X-ray diffraction study of various native and modified gastrointestinal mucins was carried out using synchrotron radiation. The mucus X-ray patterns of mammals and invertebrates are very similar and display a large number of sharp diffraction rings at the spacing of about 4.65 nm, which are due to the helical packing of polysaccharide chains covalently connected to the protein core. A comparative analysis of the X-ray patterns obtained earlier by us from various samples of mucus and biological tissues showed that the 4.65({+-}0.15) nm spacing is a nanoscale structural invariant of giant proteoglycan molecules of both the mucus and the extracellular matrix of tissues. A role of structural dynamics of proteoglycan scaffolding of biological systems in mechanism of modifying adaptation of organisms to significant changes of temperature is discussed.

  5. The Study on the Attenuation of X-ray and Imaging Quality by Contents in Stomach

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Kyung Rae; Ji, Youn Sang; Kim, Chang Bok; Choi, Seong Kwan; Moon, Sang In [Dept. of Radiological Technology, Gwangju Health College University, Gwangju (Korea, Republic of); Dieter, Kevin [Dept. of Physical Therapy, Gwangju Health College University, Gwangju (Korea, Republic of)

    2009-03-15

    This study examined the change in the attenuation of X-rays with the ROI (Region of Interest) in DR (Digital Radiography) according to the stomach contents by manufacturing a tissue equivalent material phantom to simulate real stomach tissue based on the assumption that there is some attenuation of X-rays and a difference in imaging quality according to the stomach contents. The transit dosage by the attenuation of X-rays decreased with increasing protein thickness, which altered the average ROI values in the film and DR images. A comparison of the change in average ROI values of the film and DR image showed that the image in film caused larger density changes with varying thickness of protein than the image by DR. The results indicate that NPO (nothing by mouth) is more important in film system than in DR system.

  6. Synchrotron X-ray diffraction imaging studies of dislocations in Kyropoulos grown Ti doped sapphire crystal

    Science.gov (United States)

    Sen, Gourav; Tran Caliste, Thu Nhi; Stelian, Carmen; Baruchel, José; Barthalay, Nicolas; Duffar, Thierry

    2017-06-01

    In this study, X-ray diffraction and X-ray topography, using synchrotron radiation source, were used to analyse the nature of defects in a sapphire single crystal sample grown by Kyropoulos method. Qualitative and quantitative analysis were carried out on the results of the topography experiments. The dislocation density was found to be around 103-104 dislocations/cm2 indicating a crystal of good crystalline quality. Also, the variation of dislocation density with respect to the position on the sample was observed and discussed.

  7. X-ray powder diffraction study of poly/carbon monofluoride/, CF/1.12/

    Science.gov (United States)

    Mahajan, V. K.; Badachhape, R. B.; Margrave, J. L.

    1974-01-01

    Data from X-ray diffraction studies of the poly(carbon monofluoride) with empirical formula CF(1.09-1.15) are reported, and possible intercalation arrangements for the substance are discussed. The data do not conform to true hexagonal symmetry, indicating that the carbon atoms are not coplanar. Each bond angle of carbon is 118.8 deg, and the carbon-carbon distance is 1.47 A. The interlayer distance is 5.76 A. A total absence of (hkl) reflections in the X-ray pattern shows that the separate CF layers are not regularly arranged with respect to one another.

  8. An X-ray spectral study of 24 type-1 AGN

    OpenAIRE

    Reynolds, C. S.

    1996-01-01

    I present a study of the X-ray spectral properties of a sample containing 24 type-1 active galactic nuclei using the medium spectral resolution of ``ASCA''. The sample consists of 20 radio-quiet objects and 4 radio-loud objects. A simple power-law continuum absorbed by Galactic material provides a very poor description of the spectra of most objects. Deviations from the power-law form are interpreted in terms of X-ray reprocessing/absorption processes. In particular, at least half of the obje...

  9. Synthesis of Novel Amphiphilic Azobenzenes and X-ray Scattering Studies of Their Langmuir Monolayers

    DEFF Research Database (Denmark)

    Sørensen, Thomas Just; Kjær, Kristian; Breiby, Dag Werner

    2008-01-01

    . At the air-water interface, the amphiphilic azobenzenes form noncrystalline but stable Langmuir films that display an unusual reversible monolayer collapse close to 35 mN/m. The structures and phase transitions were studied by X-ray reflectivity (XR) and grazing-incidence X-ray diffraction, both utilizing...... synchrotron radiation. Compression beyond the collapse point does not change the XR data, showing that the film is unchanged at the molecular level, even at areas less than half of that of the collapse. This leads to the conclusion that few macroscopic collapse sites are responsible for reversibly removing...

  10. Charge and orbital ordered states studied by using x-ray anomalous scattering terms

    CERN Document Server

    Nakao, H

    2002-01-01

    Recently, the studies utilizing anomalous scattering term of atomic scattering factor near absorption edge, so called x-ray anomalous scattering and resonant x-ray scattering, have been rapidly developed. This technique has especially contributed to the determination of the charge-orbital ordered structure in strongly correlated electron system. In this paper, we present the typical examples - the charge ordering of V sup 4 sup + and V sup 5 sup + in NaV sub 2 O sub 5 and the antiferro-quadrupole ordering (orbital ordering) of Ge sup 3 sup + ions in CeB sub 6 (author)

  11. Optical and x-ray time resolved study of the structural transition in mixed valence manganites

    Directory of Open Access Journals (Sweden)

    Jia Q. X.

    2013-03-01

    Full Text Available Time resolved optical reflectivity and x-ray diffraction techniques are employed to study the laser-induced structural response in two charge and orbitally ordered manganites. Optical data indicate a non-thermal nature of the laser-triggered phase transition via the disappearance of an optical phonon related to the charge and orbitally ordered phase. The x-ray diffraction measurements on superlattice reflections confirm the non-thermal time scale of the initial step of this phase transition but also show that the complete change of structural symmetry is not instantaneous.

  12. Laser-driven shock waves studied by x-ray radiography.

    Science.gov (United States)

    Antonelli, L; Atzeni, S; Schiavi, A; Baton, S D; Brambrink, E; Koenig, M; Rousseaux, C; Richetta, M; Batani, D; Forestier-Colleoni, P; Le Bel, E; Maheut, Y; Nguyen-Bui, T; Ribeyre, X; Trela, J

    2017-06-01

    Multimegabar laser-driven shock waves are unique tools for studying matter under extreme conditions. Accurate characterization of shocked matter is for instance necessary for measurements of equation of state data or opacities. This paper reports experiments performed at the LULI facility on the diagnosis of shock waves, using x-ray-absorption radiography. Radiographs are analyzed using standard Abel inversion. In addition, synthetic radiographs, which also take into account the finite size of the x-ray source, are generated using density maps produced by hydrodynamic simulations. Reported data refer to both plane cylindrical targets and hemispherical targets. Evolution and deformation of the shock front could be followed using hydrodynamic simulations.

  13. An X-ray and computational study of liquid pentylammonium nitrate

    Science.gov (United States)

    Gontrani, Lorenzo; Leonelli, Francesca; Campetella, Marco

    2017-11-01

    In this article we report the study of liquid pentylammonium nitrate with Wide Angle X-ray scattering and AIMD simulations. Static and dynamical features were characterized by comparing the experimental X-ray pattern with ab initio molecular dynamics simulation trajectories. From the analysis, we were able to focus our attention on the nature and time duration of the hydrogen bond network established between cation and anion. Such H-bond interactions occur around 2.8 Å, last about 1.55 ps and lead to the loss of degeneracy of the asymmetric stretching normal mode of the anion, with a splitting of about 84 cm-1.

  14. X-ray phase computed tomography for nanoparticulated imaging probes and therapeutics: preliminary feasibility study

    Science.gov (United States)

    Tang, Xiangyang; Yang, Yi; Tang, Shaojie

    2011-03-01

    With the scientific progress in cancer biology, pharmacology and biomedical engineering, the nano-biotechnology based imaging probes and therapeutical agents (namely probes/agents) - a form of theranostics - are among the strategic solutions bearing the hope for the cure of cancer. The key feature distinguishing the nanoparticulated probes/agents from their conventional counterparts is their targeting capability. A large surface-to-volume ratio in nanoparticulated probes/agents enables the accommodation of multiple targeting, imaging and therapeutic components to cope with the intra- and inter-tumor heterogeneity. Most nanoparticulated probes/agents are synthesized with low atomic number materials and thus their x-ray attenuation are very similar to biological tissues. However, their microscopic structures are very different, which may result in significant differences in their refractive properties. Recently, the investigation in the x-ray grating-based differential phase contrast (DPC) CT has demonstrated its advantages in differentiating low-atomic materials over the conventional attenuation-based CT. We believe that a synergy of x-ray grating-based DPC CT and nanoparticulated imaging probes and therapeutic agents may play a significant role in extensive preclinical and clinical applications, or even become a modality for molecular imaging. Hence, we propose to image the refractive property of nanoparticulated imaging probes and therapeutical agents using x-ray grating-based DPC CT. In this work, we conduct a preliminary feasibility study with a focus to characterize the contrast-to-noise ratio (CNR) and contrast-detail behavior of the x-ray grating-based DPC CT. The obtained data may be instructive to the architecture design and performance optimization of the x-ray grating-based DPC CT for imaging biomarker-targeted imaging probes and therapeutic agents, and even informative to the translation of preclinical research in theranostics into clinical applications.

  15. A study of changes in the primary dose penetrating the protective apron on SID in x-ray radiography

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Seong Kwan [Dept. of Radiological Technology, Kwangju Health University, Gwangju (Korea, Republic of)

    2016-12-15

    This study is to figure out the amount of primary X-ray generated in SID 50cm, 1m, and 2m penetrating protective aprons in X-ray radiography for hands, skull, and lumbar spine. Results are as follows: Firstly, the exposure dose of primary X-ray which is low such as that of hand X-ray may be reduced by 270 times if protective aprons are worn, but it still slightly penetrates 0.3mm thick Pb protective aprons at SID 50cm, 1m, and 2m. Secondly, the exposure dose of primary X-ray which is moderate such as that of skull X-ray may be reduced by 22 times if protective aprons are worn, but it still fairly penetrates 0.3mm thick Pb protective aprons at SID 50cm, 1m, and 2m. Thirdly, the exposure dose of primary X-ray which is very high such as that of lumbar spine X-ray may be reduced b y 13 times if protective aprons a re worn, but it still penetrates a lot 0.3mm thick Pb protective aprons at SID 50cm, 1m, and 2m. Therefore, people in X-ray room should not only wear protective aprons at any spaces that the primary X-ray can reach, but also need to stand behind the thick Pb shield to protect the body if it is inevitable to stay in the room.

  16. Study of microstructure in vanadium–palladium alloys by X-ray ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 30; Issue 5. Study of microstructure in vanadium–palladium alloys by X-ray diffraction technique ... Present study considers microstructural characterization of vanadium-based palladium (V–Pd) alloys, which are widely used in marine environment due to their high ...

  17. Combination of Raman, infrared, and X-ray energy-dispersion spectroscopies and X-ray d diffraction to study a fossilization process

    Energy Technology Data Exchange (ETDEWEB)

    Sousa Filho, Francisco Eduardo de [Departamento de Fisica, Universidade Regional do Cariri, Crato, CE (Brazil); Joao Herminio da Silva [Universidade Federal do Ceara, Cariri, Juazeiro do Norte, CE (Brazil); Saraiva, Antonio Alamo Feitosa; Brito, Deyvid Dennys S. [Departamento de Ciencias Biologicas, Universidade Regional do Cariri, Crato, CE (Brazil); Viana, Bartolomeu Cruz [Departamento de Fisica, Universidade Federal do Piaui, Teresina, PI, (Brazil); Abagaro, Bruno Tavares de Oliveira; Freire, Paulo de Tarso Cavalcante, E-mail: tarso@fisica.ufc.br [Departamento de Fisica, Universidade Federal do Ceara, Fortaleza, CE (Brazil)

    2011-12-15

    X-ray diffraction was combined with X-ray energy-dispersion, Fourier-transform infrared, and Raman spectroscopies to study the fossilization of a Cretaceous specimen of the plant Brachyphyllum castilhoi, a fossil from the Ipubi Formation, in the Araripe Sedimentary Basin, Northeastern Brazil. Among the possible fossilization processes, which could involve pyrite, silicon oxide, calcium oxide, or other minerals, we were able to single out pyritization as the central mechanism producing the fossil, more than 100 million years ago. In addition to expanding the knowledge of the Ipubi Formation, this study shows that, when combined with other experimental techniques, Raman spectroscopy is a valuable tool at the paleontologist's disposal. (author)

  18. Optical characterization and x-ray diffraction studies of synthetic ...

    African Journals Online (AJOL)

    ... lime and the resulting calcium chloride solution was reacted with dilute sulphuric acid. Calcinations were done at a constant o temperature of 120 C for a period of four hours. The choice of the production parameters was guided by the findings of previous studies. Optical absorption spectra of the samples were measured ...

  19. Amorphous silica studied by high energy x-ray diffraction

    DEFF Research Database (Denmark)

    Poulsen, H.F.; Neuefeind, J.; Neumann, H.B.

    1995-01-01

    -ray and neutron data. A feasibility study of amorphous silica has been performed at 95 keV, using a wiggler synchrotron beam-line at HASYLAB and a cylindrical sample, 3 mm in diameter. The range of Q between 0.8 and 32 Angstrom(-1) was covered. A thorough discussion of the experimental challenges is given...

  20. X-ray diffraction study of kanwa used as active ingredient in achu ...

    African Journals Online (AJOL)

    In this study, x-ray powder diffractometry (XRPD) technique was used to identify the mineral constituents of kanwa; an earthy material widely used as active ingredient in achu soup and other vegetable soups in Cameroon and several other West African countries. Results depicted trona (Na3H (CO3)2.2H2O) to be the main ...

  1. X-ray diffraction and spectral studies of biological native and modified tissues

    Energy Technology Data Exchange (ETDEWEB)

    Vazina, A.A. [Institute of Theoretical and Experimental Biophysics of RAS, 142290 Pushchino Institutskaya st., 3, Moscow region (Russian Federation)]. E-mail: vazina@iteb.ru; Budantsev, A.Yu. [Institute of Theoretical and Experimental Biophysics of RAS, 142290 Pushchino Institutskaya st., 3, Moscow region (Russian Federation); Bras, W. [DUBBLE-CRG/ESRF, Grenoble (France)] [and others

    2005-05-01

    X-ray diffraction and spectral data obtained by studying different types of native and modified human and animal tissues are reported. It has been found that the proteoglycan structure undergoes transformation upon interaction with calcium cations. The role of the extracellular matrix in the structure of the native tissue is discussed.

  2. Positional order in Langmuir monolayers: An X-ray diffraction study

    DEFF Research Database (Denmark)

    Kaganer, V.M.; Brezesinski, G.; Möhwald, H.

    1999-01-01

    The structural phase transition from the hexagonal to a distorted-hexagonal (centered rectangular) phase (the LS-S transition) in Langmuir monolayers of octadecanol is studied in a grazing incidence x-ray diffraction experiment. We find algebraic decay of positional correlations, which suggests...

  3. Synchrotron-based X-ray microscopic studies for bioeffects of nanomaterials.

    Science.gov (United States)

    Zhu, Ying; Cai, Xiaoqing; Li, Jiang; Zhong, Zengtao; Huang, Qing; Fan, Chunhai

    2014-04-01

    There have been increasing interests in studying biological effects of nanomaterials, which are nevertheless faced up with many challenges due to the nanoscale dimensions and unique chemical properties of nanomaterials. Synchrotron-based X-ray microscopy, an advanced imaging technology with high spatial resolution and excellent elemental specificity, provides a new platform for studying interactions between nanomaterials and living systems. In this article, we review the recent progress of X-ray microscopic studies on bioeffects of nanomaterials in several living systems including cells, model organisms, animals and plants. We aim to provide an overview of the state of the art, and the advantages of using synchrotron-based X-ray microscopy for characterizing in vitro and in vivo behaviors and biodistribution of nanomaterials. We also expect that the use of a combination of new synchrotron techniques should offer unprecedented opportunities for better understanding complex interactions at the nano-biological interface and accounting for unique bioeffects of nanomaterials. Synchrotron-based X-ray microscopy is a non-destructive imaging technique that enables high resolution spatial mapping of metals with elemental level detection methods. This review summarizes the current use and perspectives of this novel technique in studying the biology and tissue interactions of nanomaterials. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Mössbauer effect studies and X-ray diffraction analysis of cobalt ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 26; Issue 5. Mössbauer effect studies and X-ray diffraction analysis of cobalt ferrite prepared in powder form by thermal decomposition method. M D Joseph Sebastian B Rudraswamy M C Radhakrishna Ramani. Magnetic Materials Volume 26 Issue 5 August 2003 pp ...

  5. High Pressure X-ray Absorption Studies on Correlated-Electron Systems

    Energy Technology Data Exchange (ETDEWEB)

    Cornelius, Andrew L. [Univ. of Nevada, Las Vegas, NV (United States)

    2016-08-26

    This project used high pressure to alter the electron-electron and electron-lattice interactions in rare earth and actinide compounds. Knowledge of these properties is the starting points for a first-principles understanding of electronic and electronically related macroscopic properties. The research focused on a systematic study of x-ray absorption measurements on rare earth and actinide compounds.

  6. Energy-dispersive X-ray fluorescence study of elemental uptake in ...

    Indian Academy of Sciences (India)

    A109Cd radioisotope-induced energy-dispersive X-ray fluorescence (EDXRF) study has been performed on samples of cauliflower consisting of the flower, the leaves and the associated root soil. The cauliflowers were collected from farms near the main dumping site of municipal solid waste in the city of Kolkata, India and ...

  7. In situ x-ray reflectivity and grazing incidence x-ray diffraction study of L 1(0) ordering in (57)Fe/Pt multilayers.

    Science.gov (United States)

    Raghavendra Reddy, V; Gupta, Ajay; Gome, Anil; Leitenberger, Wolfram; Pietsch, U

    2009-05-06

    In situ high temperature x-ray reflectivity and grazing incidence x-ray diffraction measurements in the energy dispersive mode are used to study the ordered face-centered tetragonal (fct) L 1(0) phase formation in [Fe(19 Å)/Pt(25 Å)]( × 10) multilayers prepared by ion beam sputtering. With the in situ x-ray measurements it is observed that (i) the multilayer structure first transforms to a disordered FePt and subsequently to an ordered fct L 1(0) phase, (ii) the ordered fct L 1(0) FePt peaks start to appear at 320 °C annealing, (iii) the activation energy of the interdiffusion is 0.8 eV and (iv) ordered fct FePt grains have preferential out-of-plane texture. The magneto-optical Kerr effect and conversion electron Mössbauer spectroscopies are used to study the magnetic properties of the as-deposited and 400 °C annealed multilayers. The magnetic data for the 400 °C annealed sample indicate that the magnetization is at an angle of ∼50° from the plane of the film.

  8. Study on Compression Induced Contrast in X-ray Mammograms Using Breast Mimicking Phantoms

    Directory of Open Access Journals (Sweden)

    A. B. M. Aowlad Hossain

    2015-09-01

    Full Text Available X-ray mammography is commonly used to scan cancer or tumors in breast using low dose x-rays. But mammograms suffer from low contrast problem. The breast is compressed in mammography to reduce x-ray scattering effects. As tumors are stiffer than normal tissues, they undergo smaller deformation under compression. Therefore, image intensity at tumor region may change less than the background tissues. In this study, we try to find out compression induced contrast from multiple mammographic images of tumorous breast phantoms taken with different compressions. This is an extended work of our previous simulation study with experiment and more analysis. We have used FEM models for synthetic phantom and constructed a phantom using agar and n-propanol for simulation and experiment. The x-ray images of deformed phantoms have been obtained under three compression steps and a non-rigid registration technique has been applied to register these images. It is noticeably observed that the image intensity changes at tumor are less than those at surrounding which induce a detectable contrast. Addition of this compression induced contrast to the simulated and experimental images has improved their original contrast by a factor of about 1.4

  9. Brownian and advective dynamics in microflow studied by coherent X-ray scattering experiments.

    Science.gov (United States)

    Urbani, Raphael; Westermeier, Fabian; Banusch, Benjamin; Sprung, Michael; Pfohl, Thomas

    2016-11-01

    Combining microfluidics with coherent X-ray illumination offers the possibility to not only measure the structure but also the dynamics of flowing samples in a single-scattering experiment. Here, the power of this combination is demonstrated by studying the advective and Brownian dynamics of colloidal suspensions in microflow of different geometries. Using an experimental setup with a fast two-dimensional detector and performing X-ray correlation spectroscopy by calculating two-dimensional maps of the intensity auto-correlation functions, it was possible to evaluate the sample structure and furthermore to characterize the detailed flow behavior, including flow geometry, main flow directions, advective flow velocities and diffusive dynamics. By scanning a microfocused X-ray beam over a microfluidic device, the anisotropic auto-correlation functions of driven colloidal suspensions in straight, curved and constricted microchannels were mapped with the spatial resolution of the X-ray beam. This method has not only a huge potential for studying flow patterns in complex fluids but also to generally characterize anisotropic dynamics in materials.

  10. Titanium dioxide nanoparticles: synthesis, X-Ray line analysis and chemical composition study

    Energy Technology Data Exchange (ETDEWEB)

    Chenari, Hossein Mahmoudi, E-mail: mahmoudi_hossein@guilan.ac.ir, E-mail: h.mahmoudiph@gmail.com [University of Guilan, Rasht (Iran, Islamic Republic of); Seibel, Christoph; Hauschild, Dirk; Reinert, Friedrich [Karlsruhe Institute of Technology - KIT, Gemeinschaftslabor für Nanoanalytik, Karlsruhe (Germany); Abdollahian, Hossein [Nanotechnology Research Center of Urmia University, Urmia, (Iran, Islamic Republic of)

    2016-11-15

    TiO{sub 2} nanoparticles have been synthesized by the sol-gel method using titanium alkoxide and isopropanol as a precursor. The structural properties and chemical composition of the TiO{sub 2} nanoparticles were studied using X-ray diffraction, scanning electron microscopy, and X-ray photoelectron spectroscopy.The X-ray powder diffraction pattern confirms that the particles are mainly composed of the anatase phase with the preferential orientation along [101] direction. The physical parameters such as strain, stress and energy density were investigated from the Williamson- Hall (W-H) plot assuming a uniform deformation model (UDM), and uniform deformation energy density model (UDEDM). The W-H analysis shows an anisotropic nature of the strain in nano powders. The scanning electron microscopy image shows clear TiO{sub 2} nanoparticles with particle sizes varying from 60 to 80nm. The results of mean particle size of TiO{sub 2} nanoparticles show an inter correlation with the W-H analysis and SEM results. Our X-ray photoelectron spectroscopy spectra show that nearly a complete amount of titanium has reacted to TiO{sub 2}. (author)

  11. An efficient photoelectric X-ray polarimeter for the study of black holes and neutron stars.

    Science.gov (United States)

    Costa, E; Soffitta, P; Bellazzini, R; Brez, A; Lumb, N; Spandre, G

    2001-06-07

    The study of astronomical objects using electromagnetic radiation involves four basic observational approaches: imaging, spectroscopy, photometry (accurate counting of the photons received) and polarimetry (measurement of the polarizations of the observed photons). In contrast to observations at other wavelengths, a lack of sensitivity has prevented X-ray astronomy from making use of polarimetry. Yet such a technique could provide a direct picture of the state of matter in extreme magnetic and gravitational fields, and has the potential to resolve the internal structures of compact sources that would otherwise remain inaccessible, even to X-ray interferometry. In binary pulsars, for example, we could directly 'see' the rotation of the magnetic field and determine if the emission is in the form of a 'fan' or a 'pencil' beam. Also, observation of the characteristic twisting of the polarization angle in other compact sources would reveal the presence of a black hole. Here we report the development of an instrument that makes X-ray polarimetry possible. The factor of 100 improvement in sensitivity that we have achieved will allow direct exploration of the most dramatic objects of the X-ray sky.

  12. Recent progress of soft X-ray photoelectron spectroscopy studies of uranium compounds

    Energy Technology Data Exchange (ETDEWEB)

    Fujimori, Shin-ichi; Takeda, Yukiharu; Okane, Tetsuo; Saitoh, Yuji [Condensed Matter Science Divisions, Japan Atomic Energy Agency, Sayo, Hyogo (Japan); Fujimori, Atsushi [Condensed Matter Science Divisions, Japan Atomic Energy Agency, Sayo, Hyogo (Japan); Department of Physics, University of Tokyo, Hongo, Tokyo 113-0033 (Japan); Yamagami, Hiroshi [Condensed Matter Science Divisions, Japan Atomic Energy Agency, Sayo, Hyogo (Japan); Department of Physics, Faculty of Science, Kyoto Sangyo University, Kyoto 603-8555 (Japan); Yamamoto, Etsuji; Haga, Yoshinori [Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan); Ōnuki, Yoshichika [Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan); Faculty of Science, University of the Ryukyus, Nishihara, Okinawa 903-0213 (Japan)

    2016-04-15

    Recent progresses in the soft X-ray photoelectron spectroscopy (PES) studies (hν ≳ 100 eV) for uranium compounds are briefly reviewed. The soft X-ray PES has enhanced sensitivities for the bulk U 5f electronic structure, which is essential to understand the unique physical properties of uranium compounds. In particular, the recent remarkable improvement in energy resolutions from an order of 1 eV to 100 meV made it possible to observe fine structures in U 5f density of states. Furthermore, soft X-ray ARPES becomes available due to the increase of photon flux at beamlines in third generation synchrotron radiation facilities.The technique made it possible to observe bulk band structures and Fermi surfaces of uranium compounds and therefore, the results can be directly compared with theoretical models such as band-structure calculations. The core-level spectra of uranium compounds show a systematic behavior depending on their electronic structures, suggesting that they can be utilized to determine basic physical parameters such as the U 5f-ligand hybridizations or Comlomb interaction between U 5f electrons. It is shown that soft X-ray PES provides unique opportunities to understand the electronic structures of uranium compounds.

  13. Study of caprine bones after moist and dry heat processes by X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Barbosa, Caroline M., E-mail: carolmattosb@yahoo.com.br [Instituto de Arqueologia Brasileira (IAB), Belford Roxo, RJ (Brazil); Azeredo, Soraia R.; Lopes, Ricardo T., E-mail: soraia@lin.ufrj.br [Coordenacao dos Programas de Pos-Graduacao em Engenharia (COPPE/LIN/UFRJ), Rio de Janeiro, RJ (Brazil). Laboratorio de Instrumentacao Nuclear; Souza, Sheila M.F.M de, E-mail: sferraz@ensp.fiocruz.br [Fundacao Oswaldo Cruz (ENSP/FIOCRUZ), Rio de Janeiro, RJ (Brazil). Escola Nacional de Saude Publica Sergio Arouca

    2013-07-01

    Bone tissue is a biological material composed of hydroxyapatite (HAp) and collagen matrix. The bone X-ray diffraction (XRD) pattern presents characteristics of the hydroxyapatite crystallography planes. This paper presents the characterization by X-ray diffraction of caprine bone powder pattern and the comparison of this pattern with moist or dry heat cooked bone patterns. The parameters chosen to characterize the X-ray diffraction peaks were: angular position (2θ), full width at half maximumt (FWHM), and relative intensity (I{sub rel}). The X-ray diffraction patterns were obtained with a Shimadzu XRD-6000 diffractometer. The caprine bone XRD pattern revealed a significant correlation of several crystallographic parameters (lattice data) with hydroxyapatite. The profiles of the three bone types analyzed presented differences. The study showed as small angular displacement (decrease of the 2θ angle) of some peaks was observed after moist and dry heat cooking processes. The characterization of bone tissue aimed to contribute to future analysis in the field of archeology. (author)

  14. New Mission Concept Study: Energetic X-Ray Imaging Survey Telescope (EXIST)

    Science.gov (United States)

    1998-01-01

    This Report summarizes the activity carried out under the New Mission Concept (NMC) study for a mission to conduct a sensitive all-sky imaging survey in the hard x-ray (HX) band (approximately 10-600 keV). The Energetic X-ray Imaging Survey Telescope (EXIST) mission was originally proposed for this NMC study and was then subsequently proposed for a MIDEX mission as part of this study effort. Development of the EXIST (and related) concepts continues for a future flight proposal. The hard x-ray band (approximately 10-600 keV) is nearly the final band of the astronomical spectrum still without a sensitive imaging all-sky survey. This is despite the enormous potential of this band to address a wide range of fundamental and timely objectives - from the origin and physical mechanisms of cosmological gamma-ray bursts (GRBs) to the processes on strongly magnetic neutron stars that produce soft gamma-repeaters and bursting pulsars; from the study of active galactic nuclei (AGN) and quasars to the origin and evolution of the hard x-ray diffuse background; from the nature and number of black holes and neutron stars and the accretion processes onto them to the extreme non-thermal flares of normal stars; and from searches for expected diffuse (but relatively compact) nuclear line (Ti-44) emission in uncatalogued supernova remnants to diffuse non-thermal inverse Compton emission from galaxy clusters. A high sensitivity all-sky survey mission in the hard x-ray band, with imaging to both address source confusion and time-variable background radiations, is very much needed.

  15. Feasibility study for the in vivo measurement of lead in bone using L-x-ray fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Wielopolski, L.; Slatkin, D.N.; Vartsky, D.; Ellis, K.J.; Cohn, S.H.

    1980-01-01

    Lead deposits in bone were detected by x-ray fluorescence using x-rays from either a /sup 125/I or a /sup 109/Cd source. Measurements were taken from tibia in intact human legs, post-mortem. On the basis of preliminary measurements, it was concluded that an exposure of one rad is adequate for determination of lead in bone. Both the advantages and the disadvantages of L-x-rays, used in the technique developed for this study, are compared with those of K-x-rays.

  16. Application of X-ray fluorescence analytical techniques in phytoremediation and plant biology studies

    Energy Technology Data Exchange (ETDEWEB)

    Necemer, Marijan [Jozef Stefan Institute, Jamova 39, 1000 Ljubljana (Slovenia)], E-mail: marijan.necemer@ijs.si; Kump, Peter; Scancar, Janez; Jacimovic, Radojko; Simcic, Jurij; Pelicon, Primoz; Budnar, Milos; Jeran, Zvonka [Jozef Stefan Institute, Jamova 39, 1000 Ljubljana (Slovenia); Pongrac, Paula; Regvar, Marjana; Vogel-Mikus, Katarina [Department of Biology, Biotechnical Faculty, University of Ljubljana, Vecna pot 111, SI-1000 Ljubljana (Slovenia)

    2008-11-15

    Phytoremediation is an emerging technology that employs the use of higher plants for the clean-up of contaminated environments. Progress in the field is however handicapped by limited knowledge of the biological processes involved in plant metal uptake, translocation, tolerance and plant-microbe-soil interactions; therefore a better understanding of the basic biological mechanisms involved in plant/microbe/soil/contaminant interactions would allow further optimization of phytoremediation technologies. In view of the needs of global environmental protection, it is important that in phytoremediation and plant biology studies the analytical procedures for elemental determination in plant tissues and soil should be fast and cheap, with simple sample preparation, and of adequate accuracy and reproducibility. The aim of this study was therefore to present the main characteristics, sample preparation protocols and applications of X-ray fluorescence-based analytical techniques (energy dispersive X-ray fluorescence spectrometry-EDXRF, total reflection X-ray fluorescence spectrometry-TXRF and micro-proton induced X-ray emission-micro-PIXE). Element concentrations in plant leaves from metal polluted and non-polluted sites, as well as standard reference materials, were analyzed by the mentioned techniques, and additionally by instrumental neutron activation analysis (INAA) and atomic absorption spectrometry (AAS). The results were compared and critically evaluated in order to assess the performance and capability of X-ray fluorescence-based techniques in phytoremediation and plant biology studies. It is the EDXRF, which is recommended as suitable to be used in the analyses of a large number of samples, because it is multi-elemental, requires only simple preparation of sample material, and it is analytically comparable to the most frequently used instrumental chemical techniques. The TXRF is compatible to FAAS in sample preparation, but relative to AAS it is fast, sensitive and

  17. Wide-field monitoring strategy for the study of fast optical transients

    Science.gov (United States)

    Beskin, Grigory; Bondar, Sergey; Karpov, Sergey; Guarnieri, Adriano; Bartolini, Corrado; Greco, Giuseppe; Piccioni, Adalberto

    2010-10-01

    We discuss the strategy of search for fast optical transients accompanying gamma-ray bursts by means of continuous monitoring of wide sky fields with high temporal resolution. We describe the design, performance and results of our cameras, FAVOR and TORTORA. Also we discuss the perspectives of this strategy and possible design of next-generation equipment for wide-field monitoring which will be able to detect optical transients and to study their color and polarization properties with high time resolution.

  18. X-Ray Polarization Measurements with the EXIST Hard X-Ray Survey Telescope

    Science.gov (United States)

    Krawczynski, Henric; Garson, A., III; Hong, J.; Grindlay, J. E.

    2009-01-01

    The Energetic X-ray Imaging Survey Telescope (EXIST) is a proposed NASA mission for scanning the entire sky in intermediate and hard X-rays. The EXIST mission includes a wide field of view High Energy Telescope (HET) covering the 5-600 keV energy range, and an infrared telescope. The HET has the capability to measure the energy dependent X-ray polarization properties of moderately bright and bright X-ray sources. Here we report on a study of the polarization sensitivity of EXIST as a function of the integration time. Broadband X-ray polarization measurements with EXIST have the potential to make important contributions to our understanding of a number of astrophysical source types including binary black holes, accreting neutron stars, magnetars, pulsar wind nebulae, active galactic nuclei and gamma-ray bursts. EXIST observations of the X-rays from binary black holes can be used to constrain the spins of black holes. Last but not least, EXIST observations of active galactic nuclei and gamma-ray bursts can be used for extremely sensitive Lorentz Invariance tests.

  19. X-ray diffraction studies on single and mixed confectionery fats using synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    MacMillan, S.C.; Roberts, K.J.; Wells, M.; Polgreen, M.; Smith, I. [Heriot-Watt University, Edinburgh, (United Kingdom). Department of Mechanical and Chemical Engineering, Centre for Molecular and Interface Engineering

    1999-12-01

    Full text: Understanding and refining the molecular-scale processes involved in the manufacture of structured materials such as long-chain hydrocarbon compounds is important in many commercial areas such as the petrochemical, biochemical, food, pharmaceutical and soap industries. In such processes crystallisation is an important separation, purification and preparation technique. Despite this our knowledge of the crystallisation process itself is surprisingly limited. In order to improve the crystallisation of confectionery fats, the crystallisation of it`s main component, cocoa butter fat, must be properly understood. Cocoa butter fat can exhibit up to 6 polymorphic forms of different crystallographic structures with melting points varying from 17.3 deg C to 36.3 deg C. During the production of chocolate it is essential to control the polymorphic form of fats present, in order to produce a final product with the correct physical and rheological properties. Both shear rate and temperature are thought to play a crucial role in this process. The most widely used method for studying polymorphism is X-ray diffraction. Typical X-ray diffraction patterns of fats exhibit two groups of diffraction lines corresponding to the long and short spacings. The long spacings correspond to the planes formed by the methyl end groups and are dependent on the chain length and the angle of tilt of the component fatty acids of the glyceride molecules. The short spacings refer to the cross sectional packing of the hydrocarbon chain and are independent of the chain length. The relationship between crystallisation rate, polymorphic form, shear and the fat composition has for the first time been quantified, which will enable more accurate control of the polymorhic form in chocolate production. This has been achieved by developing an improved in-situ cell for X-ray studies. The X-ray studies are necessary for the examination of on-line studies under well controlled conditions of temperature

  20. Ultrafast laser-induced melting and ablation studied by time-resolved diffuse X-ray scattering

    Directory of Open Access Journals (Sweden)

    Meyer zu Heringdorf F.

    2013-03-01

    Full Text Available Time-resolved diffuse X-ray scattering with 50 fs, 9.5 keV X-ray pulses from the Linear Coherent Light Source was used to study the structural dynamics in materials undergoing rapid melting and ablation after fs laser excitation.

  1. Collection of wood quality data by X-ray densitometry: a case study with three southern pines

    Science.gov (United States)

    Thomas L. Eberhardt; Lisa J. Samuelson

    2015-01-01

    X-ray densitometry is a technique often used in tree growth and wood quality studies to incrementally measure density (specific gravity) along a radial strip of wood. Protocols for this technique vary between laboratories because of differences in species, equipment, tree age, and other factors. Here, the application of X-ray densitometry is discussed in terms of a...

  2. High-resolution x-ray scatter and reflectivity study of sputtered IR surfaces

    DEFF Research Database (Denmark)

    Christensen, Finn Erland; Abdali, S.; Hornstrup, Allan

    1993-01-01

    In recent years there has been an increased interest in the possible use of Ir as the reflecting surface in X-ray telescope programs. An X-ray study of such surfaces produced by sputtering of Ir on highly polished Zerodur flats is presented here. The study was performed using Fe K(alpha) 1 (6.......404 Kev) and Cu K(alpha) 1 (8.048 keV) and includes measurement of total external reflection and scattering. The scattering measurement was made with three different instruments arrangements; one employed a 1D position sensitive detector for low resolution studies giving approximately 30 arcsec resolution...... (FWHM), and the other two arrangements employed channel cut crystals providing resolutions (FWHM) of 5 arcsec and 1 arcsec, respectively at Cu K(alpha) 1. The reflectivity study revealed a very close correspondence with a theoretical model based on recently published optical constants. This important...

  3. Synchrotron X-ray diffraction and fluorescence study of the astrolabe

    Energy Technology Data Exchange (ETDEWEB)

    Notis, Michael [Lehigh University, Bethlehem, PA (United States); Newbury, Brian [ExxonMobil Development Company, Houston, TX (United States); Stephenson, Bruce [Adler Planetarium and Astronomy Museum, Chicago, IL (United States); Stephenson, G.B. [Argonne National Laboratory, Argonne, IL (United States)

    2013-04-15

    The astrolabe is an ancient analogue astronomical computing device used for calculations relating to position and time of the observer's location. In its most common form (the planispheric astrolabe), it consists of an engraved plate or series of plates held together and pinned in a housing, the assembly usually being made of brass. The present study describes the use of X-ray diffraction (XRD) and X-ray fluorescence (XRF) in a synchrotron to elucidate the composition of, and fabrication techniques used for, the major component parts of the astrolabe. The synchrotron XRF studies are compared to similar studies made with a handheld XRF instrument and the advantages and disadvantages of both approaches are discussed. (orig.)

  4. Synchrotron X-ray diffraction and fluorescence study of the astrolabe

    Science.gov (United States)

    Notis, Michael; Newbury, Brian; Stephenson, Bruce; Stephenson, G. Brian

    2013-04-01

    The astrolabe is an ancient analogue astronomical computing device used for calculations relating to position and time of the observer's location. In its most common form (the planispheric astrolabe), it consists of an engraved plate or series of plates held together and pinned in a housing, the assembly usually being made of brass. The present study describes the use of X-ray diffraction (XRD) and X-ray fluorescence (XRF) in a synchrotron to elucidate the composition of, and fabrication techniques used for, the major component parts of the astrolabe. The synchrotron XRF studies are compared to similar studies made with a handheld XRF instrument and the advantages and disadvantages of both approaches are discussed.

  5. Design study of Thomson Laser-Electron X-ray Generator (LEX) for Millisecond Angiography

    Science.gov (United States)

    Artyukov, I. A.; Bessonov, E. G.; Feshchenko, R. M.; Gorbunkov, M. V.; Maslova, Yu Ya; Popov, N. L.; Dyachkov, N. V.; Postnov, A. A.; Vinogradov, S. L.; Vinogradov, A. V.

    2017-01-01

    In this concept study a laser-electron X-ray generator (LEX) is considered for the medical imaging of the inner vessel structure. It is demonstrated that the modern lasers and linear electron accelerators are suitable for the design of the new generation of angiography medical equipment combining higher spatial and time resolution with the reduced patient dose. Angiography setup based on LEXG can make use of different contrast media (iodine, gadolinium) working on absorption edge due to the narrow tuneable spectrum which is not possible with conventional X-ray tubes. In the present study all estimations are made for iodine-based contrast agents. The conclusion is that modern technologies allow practical implementation of LEX for angiography based on multibunch linear accelerator and photon storage device.

  6. Low Temperature X-Ray Diffraction Study on CaFe2As2

    Science.gov (United States)

    Huyan, Shuyuan; Deng, Liangzi; Wu, Zheng; Zhao, Kui; Lv, Bing; Xue, Yiyu; Chu, Ching-Wu; B. Lv Collaboration; HPLT (Paul C. W. Chu) Team

    For undoped CaFe2As2 single crystals, we observed that utilizing thermal treatments could stabilize two pure tetragonal phases PI and PII. Both phases are non-superconducting, while the superconductivity with a Tc up to 25 K can be induced through proper thermal treatment. Room temperature X-ray studies suggest that the origin of superconductivity arises from the interface of the mesoscopically stacked layers of PI and PII. To further investigate, a systematic low temperature X-ray study was conducted over a series of thermal treated CaFe2As2 single crystals. From which, we observed the phase aggregation of PI and PII upon cooling, more importantly, an ordered stacking structure exists at low temperature, which closely related to superconducting volume fraction and the ratio of PI and PII. These results further support the proposal of interface-enhanced superconductivity in undoped CaFe2As2. UT Dallas

  7. In situ/Operando studies of electrocatalysts using hard X-ray spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lassalle-Kaiser, Benedikt [Synchrotron SOLEIL, Gif-sur-Yvette (France); Gul, Sheraz [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Molecular Biophysics and Integrated Bioimaging Div.; Kern, Jan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Molecular Biophysics and Integrated Bioimaging Div.; SLAC National Accelerator Lab., Menlo Park, CA (United States). Linac Coherent Light Source (LCLS); Yachandra, Vittal K. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Molecular Biophysics and Integrated Bioimaging Div.; Yano, Junko [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Molecular Biophysics and Integrated Bioimaging Div.

    2017-05-02

    This review focuses on the use of X-ray absorption and emission spectroscopy techniques using hard X-rays to study electrocatalysts under in situ/operando conditions. The importance and the versatility of methods in the study of electrodes in contact with the electrolytes are described, when they are being cycled through the catalytic potentials during the progress of the oxygen-evolution, oxygen reduction and hydrogen evolution reactions. The catalytic oxygen evolution reaction is illustrated with examples using three oxides, Co, Ni and Mn, and two sulfides, Mo and Co. These are used as examples for the hydrogen evolution reaction. A bimetallic, bifunctional oxygen evolving and oxygen reducing Ni/Mn oxide is also presented. The various advantages and constraints in the use of these techniques and the future outlook are discussed.

  8. An X-ray photoelectron spectroscopy study of uranyl-chitosan interaction

    Directory of Open Access Journals (Sweden)

    Veleshko Alexander N.

    2008-01-01

    Full Text Available An X-ray photoelectron spectroscopy study of uranium sorption by spherically-granulated chitosan in sulphate solutions, as well as the study of the nature of the U(VI - chitosan interaction was carried out in this work. The X-ray photoelectron spectroscopy analysis showed that the uranyl - chitosan interaction results in the formation of complexes with aminogroup nitrogen, and possibly chitin ring oxygens and free hydroxyl groups in the equatorial plane. Under the UHV in the spectrometer chamber, the uranyl-amin and uranyl-hyroxide bonds were shown to break and tetravalent uranium compounds were shown to form on the sample surface. Hydroxyl groups were shown to evaporate. The calculated DG0 = -1,3 kJ/mol can be an evidence of several concurrent processes, some of which require energy, as well as of the formation of a surface chemical compound.

  9. The X-Ray Surveyor Mission Concept Study: Forging the Path to NASA Astrophysics 2020 Decadal Survey Prioritization

    Science.gov (United States)

    Gaskin, Jessica; Ozel, Feryal; Vikhlinin, Alexey

    2016-01-01

    The X-Ray Surveyor mission concept is unique among those being studied for prioritization in the NASA Astrophysics 2020 Decadal Survey. The X-Ray Surveyor mission will explore the high-energy Universe; providing essential and complimentary observations to the Astronomy Community. The NASA Astrophysics Roadmap (Enduring Quests, Daring Visions) describes the need for an X-Ray Observatory that is capable of addressing topics such as the origin and growth of the first supermassive black holes, galaxy evolution and growth of the cosmic structure, and the origin and evolution of the stars that make up our Universe. To address these scientifically compelling topics and more, an Observatory that exhibits leaps in capability over that of previous X-Ray Observatories in needed. This paper describes the current status of the X-Ray Surveyor Mission Concept Study and the path forward, which includes scientific investigations, technology development, and community participation.

  10. Using X-ray imaging to study thermal-induced changes in food

    DEFF Research Database (Denmark)

    Nielsen, Mikkel Schou; Miklos, Rikke; Lametsch, René

    The food quality in many food processes relies greatly on the structural changes that take place during heating or freezing of the food product. So far, it has only been possible to study these changes indirectly but recent new Xray imaging modalities allow for direct visualization. We present pr...... preliminary results of structural changes by heating of bovine meat and freezing of berries inspected with X-ray phase-contrast and dark-field imaging....

  11. Atomic structure of machined semiconducting chips: An x-ray absorption spectroscopy study

    Energy Technology Data Exchange (ETDEWEB)

    Paesler, M.; Sayers, D.

    1988-12-01

    X-ray absorption spectroscopy (XAS) has been used to examine the atomic structure of chips of germanium that were produced by single point diamond machining. It is demonstrated that although the local (nearest neighbor) atomic structure is experimentally quite similar to that of single crystal specimens information from more distant atoms indicates the presence of considerable stress. An outline of the technique is given and the strength of XAS in studying the machining process is demonstrated.

  12. Poly(ethylene oxide) complexed with KI: An x-ray absorption study

    Energy Technology Data Exchange (ETDEWEB)

    Yang, X.Q.; Chen, J.; Skotheim, T.A.; Okamoto, Y.; denBoer, M.L. (Brookhaven National Lab., Upton, NY (USA); Polytechnic Univ., Brooklyn, NY (USA); Hunter Coll., New York, NY (USA))

    1989-01-01

    Polymer-salt complexes of poly(ethylene oxide) (PEO) and KI have been studied with the technique of Near Edge X-ray Absorption Fine Structure of the K-edge of potassium. The changes observed in the spectra as a function of temperature are compared with model systems. The results suggests that the oxygen complexation of the potassium ion is reduced at elevated temperatures. 7 refs., 2 figs.

  13. Polymorphism in B-DNA: X-ray diffraction studies on Li-DNA fibres

    Indian Academy of Sciences (India)

    tribpo

    Abstract. From X-ray diffraction studies it is generally believed that B-DNA has the structural parameters n = 10 and h = 3·4 Å. However, for the first time we report that polymorphism in the B-form can be observed in DNA fibres. This was achieved by the precise control of salt and humidity in fibres and by the application of the ...

  14. Structure of Magainin and Alamethicin in Model Membranes Studied by X-Ray Reflectivity

    OpenAIRE

    Li, C.; Salditt, T.

    2006-01-01

    We have investigated the structure of lipid bilayers containing varied molar ratios of different lipids and the antimicrobial peptides magainin and alamethicin. For this structural study, we have used x-ray reflectivity on highly aligned solid-supported multilamellar lipid membranes. The reflectivity curves have been analyzed by semi-kinematical reflectivity theory modeling the bilayer density profile ρ(z). Model simulations of the reflectivity curves cover a large range of vertical momentum ...

  15. Characterization and biocompatibility studies of lead free X-ray shielding polymer composite for healthcare application

    Science.gov (United States)

    Singh, Anil Kumar; Singh, Rakesh Kumar; Sharma, Bhupesh; Tyagi, Ajay Kumar

    2017-09-01

    Lead based X-ray shielding systems are widely being used in healthcare and radiation processing centers to protect technicians, operators and patients from unwanted exposure to ionizing radiation. However, the use of lead is avoided mainly due to its toxic effects on human health and environment, and also discomfort due to heavier in weight. Hence, production of non-toxic, environment friendly, lead-free X-ray shielding system with less weight and good radiation shielding efficiency compared to conventional lead-based shielding systems is a challenging issue and need of the day. The objectives of present study are to develop, characterize and establish synergy of the materials making radiation shielding composition and their biocompatibility without compromising on radiation shielding efficiency and physico-mechanical attributes vis-à-vis lead based systems.

  16. X-ray studies of neutron stars and their magnetic fields

    Science.gov (United States)

    MAKISHIMA, Kazuo

    2016-01-01

    Utilizing results obtained over the past quarter century mainly with Japanese X-ray astronomy satellites, a review is given to some aspects of neutron stars (NSs), with a particular emphasis on the magnetic fields (MFs) of mass-accreting NSs and magnetars. Measurements of electron cyclotron resonance features in binary X-ray pulsars, using the Ginga and Suzaku observatories, clarified that their surface MFs are concentrated in a narrow range of (1–7) × 108 T. Extensive studies of magnetars with Suzaku reinforced their nature as neutron stars with truly strong MFs, and revealed several important clues to their formation, evolution, and physical states. Taking all these results into account, a discussion is made on the origin and evolution of these strong MFs. One possible scenario is that the MF of NSs is a manifestation of some fundamental physics, e.g., neutron spin alignment or chirality violation, and the MF makes transitions from strong to weak states. PMID:27169348

  17. X-ray studies of neutron stars and their magnetic fields.

    Science.gov (United States)

    Makishima, Kazuo

    2016-01-01

    Utilizing results obtained over the past quarter century mainly with Japanese X-ray astronomy satellites, a review is given to some aspects of neutron stars (NSs), with a particular emphasis on the magnetic fields (MFs) of mass-accreting NSs and magnetars. Measurements of electron cyclotron resonance features in binary X-ray pulsars, using the Ginga and Suzaku observatories, clarified that their surface MFs are concentrated in a narrow range of (1-7) × 10(8) T. Extensive studies of magnetars with Suzaku reinforced their nature as neutron stars with truly strong MFs, and revealed several important clues to their formation, evolution, and physical states. Taking all these results into account, a discussion is made on the origin and evolution of these strong MFs. One possible scenario is that the MF of NSs is a manifestation of some fundamental physics, e.g., neutron spin alignment or chirality violation, and the MF makes transitions from strong to weak states.

  18. BEAM OPTIMIZATION STUDY FOR AN X-RAY FEL OSCILLATOR AT THE LCLS-II

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Weilun; Huang, S.; Liu, K.X.; Huang, Z; Ding, Y.; Maxwell, T.J.; Kim, K.-J.

    2016-06-01

    The 4 GeV LCLS-II superconducting linac with high repetition beam rate enables the possibility to drive an X-Ray FEL oscillator at harmonic frequencies *. Compared to the regular LCLS-II machine setup, the oscillator mode requires a much longer bunch length with a relatively lower current. Also a flat longitudinal phase space distribution is critical to maintain the FEL gain since the X-ray cavity has extremely narrow bandwidth. In this paper, we study the longitudinal phase space optimization including shaping the initial beam from the injector and optimizing the bunch compressor and dechirper parameters. We obtain a bunch with a flat energy chirp over 400 fs in the core part with current above 100 A. The optimization was based on LiTrack and Elegant simulations using LCLS-II beam parameters.

  19. X-ray absorption spectroscopic studies of mononuclear non-heme iron enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Westre, Tami E. [Stanford Univ., CA (United States)

    1996-01-01

    Fe-K-edge X-ray absorption spectroscopy (XAS) has been used to investigate the electronic and geometric structure of the iron active site in non-heme iron enzymes. A new theoretical extended X-ray absorption fine structure (EXAFS) analysis approach, called GNXAS, has been tested on data for iron model complexes to evaluate the utility and reliability of this new technique, especially with respect to the effects of multiple-scattering. In addition, a detailed analysis of the 1s→3d pre-edge feature has been developed as a tool for investigating the oxidation state, spin state, and geometry of iron sites. Edge and EXAFS analyses have then been applied to the study of non-heme iron enzyme active sites.

  20. Supplementary X-ray studies of the Ni-Sn-Bi system

    Directory of Open Access Journals (Sweden)

    Vassilev G.P.

    2007-01-01

    Full Text Available Phase equilibria were studied in the system Ni-Sn-Bi. Special attention has been paid to the identification of the recently found ternary phase. For this purpose samples were synthesized using intimately mixed powders. After annealing and quenching, all alloys were analyzed by scanning electron microscope and by X-ray diffraction. The results give evidences about the existence of a ternary compound with approximate formula Ni6Sn2Bi to Ni7Sn2Bi. Overlapping of some neighboring diffraction peaks of this phase with NiBi and Ni3Sn_LT is the reason for the difficulties related to the X-ray diffraction identification of the ternary phase.

  1. Moessbauer and X-ray study of the firing process for production of improved roofing tiles

    Energy Technology Data Exchange (ETDEWEB)

    Rekecki, R.; Kuzmann, E., E-mail: kuzmann@ludens.elte.hu; Homonnay, Z. [Eoetvoes University, Laboratory of Nuclear Chemistry, Institute of Chemistry (Hungary); Ranogajec, J. [University of Novi Sad, Faculty of Technology (Serbia)

    2013-04-15

    The effects of firing atmosphere parameters on the microstructural characteristics and physical properties of clay roofing tiles were studied. For these investigations, {sup 57}Fe Moessbauer spectroscopy, X-ray diffractometry and dilatometry were used. XRD of the raw material exploited from the clay pit belonging to the roofing tile factory 'Potisje-Kanjiza', revealed the presence of montmorillonite, kaolinite, illite and some chlorite clay minerals, as well as, quartz, albite, calcite and dolomite. Gradual changes were observed both in the {sup 57}Fe Moessbauer spectra and X-ray diffractograms with samples fired in reducing CO/N{sub 2} gas atmosphere at temperatures between 700 and 1060 Degree-Sign C. These changes reflect the dehydroxylation processes, oxide (Fe{sub 3}O{sub 4}) formation, carbonate decomposition, densification and new silicate (plagioclase) formation. The firing conditions in reducing atmosphere were determined to produce roofing tiles with improved properties.

  2. Local X-ray magnetic circular dichroism study of Fe/Cu(111) using a tunneling smart tip

    Energy Technology Data Exchange (ETDEWEB)

    DiLullo, Andrew; Shirato, Nozomi; Cummings, Marvin [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Kersell, Heath; Chang, Hao [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Ohio University, Athens, OH 45701 (United States); Rosenmann, Daniel; Miller, Dean; Freeland, John W. [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Hla, Saw-Wai [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Ohio University, Athens, OH 45701 (United States); Rose, Volker, E-mail: vrose@anl.gov [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States)

    2016-01-28

    A tunneling smart tip of a synchrotron X-ray scanning tunneling microscope provides simultaneously localized topographic, elemental and magnetic information. Localized spectroscopy with simultaneous topographic, elemental and magnetic information is presented. A synchrotron X-ray scanning tunneling microscope has been employed for the local study of the X-ray magnetic circular dichroism at the Fe L{sub 2,3}-edges of a thin iron film grown on Cu(111). Polarization-dependent X-ray absorption spectra have been obtained through a tunneling smart tip that serves as a photoelectron detector. In contrast to conventional spin-polarized scanning tunneling microscopy, X-ray excitations provide magnetic contrast even with a non-magnetic tip. Intensity variations in the photoexcited tip current point to chemical variations within a single magnetic Fe domain.

  3. Study of mineralogical speciation of arsenic in soils using X ray microfluorescence and scanning electronic microscopy.

    Science.gov (United States)

    Gómez-Parrales, Isidoro; Bellinfante, Nicolás; Tejada, Manuel

    2011-05-15

    In this paper we studied the As content in natural contaminated soils, classified as Dystric Leptosol, Chromic Luvisol, Eutric Cambisol and Mollic Leptosol. In soil samples, sieved (mineralogical speciation was studied by X-ray microfluorescence, XRD with Göbbel mirror and SEM-BEI-EDX. Total As contents ranging from 61.00 to 131.00 mg kg(-1). The results of the sequential extraction showed that As was, mainly, in the residual fraction (52.51-98.76 mg kg(-1)) and in the fraction bound to iron oxyhydroxides (0-36.5 mg kg(-1)). Mapping of As with X-ray microfluorescence show strongly relationship between Fe and As. Iron (III) oxyhydroxides (FeOHs) (lepidocrocite and goethite), scorodite, angelellite, schultenite and dussertite were identified by XRD analysis as most likely mineral phases. The contents of As, Fe, Pb and Ba obtained with EDX-microprobe, confirmed the results of XRD. The results of sequential extraction and X-ray microfluorescence indicate that As is strongly bound to the soils because the identified As-bearing mineral phases are very stable at the pH conditions of studied soils. Consequently, a low mobility of As can be assumed in these soils. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Nano-structured titanium and aluminium nitride coatings: Study by grazing incidence X-ray diffraction and X-ray absorption and anomalous diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Tuilier, M.-H., E-mail: marie-helene.tuilier@uha.fr [Universite de Haute Alsace (UHA), Laboratoire Physique et Mecanique Textile (LPMT), EA 4365 -conventionnee au CNRS, Equipe PPMR, F-68093 Mulhouse (France); Pac, M.-J. [Universite de Haute Alsace (UHA), Laboratoire Physique et Mecanique Textile (LPMT), EA 4365 - conventionnee au CNRS, Equipe PPMR, F-68093 Mulhouse (France); Anokhin, D.V. [Universite de Haute Alsace (UHA), CNRS, Institut de Science des Materiaux de Mulhouse (IS2M), LRC 7228, F-68093 Mulhouse (France); Moscow State University, Faculty of Fundamental Physical and Chemical Engineering, 119991, Moscow, GSP-1, 1-51 Leninskie Gory (Russian Federation); Ivanov, D.A. [Universite de Haute Alsace (UHA), CNRS, Institut de Science des Materiaux de Mulhouse (IS2M), LRC 7228, F-68093 Mulhouse (France); Rousselot, C. [Universite de Franche-Comte, FEMTO-ST (UMR CNRS 6174), F-25211 Montbeliard (France); Thiaudiere, D. [Synchrotron Soleil, Saint Aubin, F-91192 Gif sur Yvette (France)

    2012-12-30

    Titanium and aluminium nitride thin films, Ti{sub 1-x}Al{sub x}N (x = 0, x = 0.5, x = 0.68), deposited by reactive magnetron sputtering on silicon substrates are investigated by combining two different X-ray diffraction experiments carried out using synchrotron radiation. Grazing-incidence X-ray diffraction and Ti K-edge diffraction anomalous near edge structure spectroscopy provide information on the micro- and nano-structure of the films respectively, which play a crucial role in the functionality of coatings. The spectroscopic data of Ti{sub 0.50}Al{sub 0.50}N film show that Ti atoms in crystallized domains and grain boundaries are all in octahedral cubic local order, but their growth mode is quite different. It is found that the crystallized part of the Ti{sub 0.50}Al{sub 0.50}N film has a single-crystalline nature, whereas the TiN one presents a fibrillar microstructure. For Ti{sub 0.32}Al{sub 0.68}N film, grazing-incidence X-ray diffraction provides information on the uniaxial texture along the [001] direction of the hexagonal lattice. A sharp Ti K pre-edge peak is observed in diffraction anomalous near edge spectrum that definitely shows that Ti atoms are incorporated in the hexagonal lattice of those fibrillar domains. Moreover, the difference observed between Ti K-edge diffraction anomalous and X-ray absorption pre-edge regions proves that a significant part of Ti atoms is located in nanocrystallites with cubic symmetry outside of the crystallized domains. - Highlights: Black-Right-Pointing-Pointer We study nano and micro-structures of TiN, Ti{sub 0.50}Al{sub 0.50}N and Ti{sub 0.32}Al{sub 0.68}N films. Black-Right-Pointing-Pointer Anomalous diffraction solves the crystallized part regardless of grain boundaries. Black-Right-Pointing-Pointer TiN microstructure is fibrillar, Ti{sub 0.5}Al{sub 0.5}N presents single crystalline domains. Black-Right-Pointing-Pointer For Ti{sub 0.32}Al{sub 0.68}N, Ti atoms are located in nanocrystallites with cubic symmetry

  5. In situ X-ray diffraction studies on the piezoelectric response of PZT thin films

    Energy Technology Data Exchange (ETDEWEB)

    Davydok, A., E-mail: davydok@mpie.de [Aix Marseille Université, CNRS, Université de Toulon, IM2NP UMR 7334, 13397 Marseille (France); Max-Planck-Institut für Eisenforschung, Department Structure and Nano-/Micromechanics of Materials, D-40237 Düsseldorf (Germany); Cornelius, T.W. [Aix Marseille Université, CNRS, Université de Toulon, IM2NP UMR 7334, 13397 Marseille (France); Mocuta, C. [SOLEIL Synchrotron, DiffAbs beamline, L' Orme des Merisiers, Saint-Aubin - BP 48, 91192 Gif-sur-Yvette Cedex (France); Lima, E.C. [Universidade Federal do Tocantins, 77500-000 Porto Nacional, TO (Brazil); Araujo, E.B. [Departamento de Fisica e Quimica, Universidade Estadual Paulista, Av. Brasil, 56 Centro, 15385-000 Ilha Solteira, SP (Brazil); Thomas, O. [Aix Marseille Université, CNRS, Université de Toulon, IM2NP UMR 7334, 13397 Marseille (France)

    2016-03-31

    Piezoelectric properties of randomly oriented self-polarized PbZr{sub 0.50}Ti{sub 0.50}O{sub 3} (PZT) thin films were investigated using in situ synchrotron X-ray diffraction. Possibilities for investigating the piezoelectric effect using micro-sized hard X-ray beams are demonstrated and perspectives for future dynamical measurements on PZT samples with variety of compositions and thicknesses are given. Studies performed on the crystalline [100, 110] directions evidenced piezoelectric anisotropy. The piezoelectric coefficient d{sub 33} was calculated in terms of the lab reference frame (d{sub perp}) and found to be two times larger along the [100] direction than along the [110] direction. The absolute values for the d{sub perp} amount to 120 and 230 pm/V being in good agreement with experimental and theoretical values found in literature for bulk PZT ceramics. - Highlights: • We performed in situ synchrotron X-ray diffraction studies on (PZT) thin films. • We discuss anisotropy of piezo effect in different crystallographic directions. • Perpendicular component Piezo coefficient of thin PZT layer is defined.

  6. Small angle X-ray scattering studies of reverse micelles in supercritical fluids

    Energy Technology Data Exchange (ETDEWEB)

    Pfund, D.M.; Fulton, J.L.

    1994-10-01

    The nature of aggregates formed in a supercritical fluid determines its solvent power and selectivity. Small angle X-ray scattering (SAXS) is a powerful tool for studying the properties of aggregates with sizes in the 10{angstrom} to 200{angstrom} range. It is also useful in studying those interparticle interactions which operate over a similar distance. The authors have used SAXS to examine the aggregates formed in pure fluids, in mixtures and in fluid/surfactant/water systems. The scattered intensity as a function of angle depends on the geometry, polydispersity, X-ray contrast, and interaction strength of the particles as well as on the phase behavior of the system. In this paper the authors present the results of modeling the X-ray scattering from AOT/water reverse micelles in supercritical propane and in propane/carbon dioxide mixtures. They examine the effect of dilution with CO{sub 2} anti-solvent on the phase behavior of the system and on the strength of intermicellar attractions. A better understanding of these systems must be obtained before the applications of supercritical reverse micelle systems to extractions, reactions, and enhanced oil recovery can be fully developed.

  7. Synchrotron X-ray Analytical Techniques for Studying Materials Electrochemistry in Rechargeable Batteries.

    Science.gov (United States)

    Lin, Feng; Liu, Yijin; Yu, Xiqian; Cheng, Lei; Singer, Andrej; Shpyrko, Oleg G; Xin, Huolin L; Tamura, Nobumichi; Tian, Chixia; Weng, Tsu-Chien; Yang, Xiao-Qing; Meng, Ying Shirley; Nordlund, Dennis; Yang, Wanli; Doeff, Marca M

    2017-09-29

    Rechargeable battery technologies have ignited major breakthroughs in contemporary society, including but not limited to revolutions in transportation, electronics, and grid energy storage. The remarkable development of rechargeable batteries is largely attributed to in-depth efforts to improve battery electrode and electrolyte materials. There are, however, still intimidating challenges of lower cost, longer cycle and calendar life, higher energy density, and better safety for large scale energy storage and vehicular applications. Further progress with rechargeable batteries may require new chemistries (lithium ion batteries and beyond) and better understanding of materials electrochemistry in the various battery technologies. In the past decade, advancement of battery materials has been complemented by new analytical techniques that are capable of probing battery chemistries at various length and time scales. Synchrotron X-ray techniques stand out as one of the most effective methods that allow for nearly nondestructive probing of materials characteristics such as electronic and geometric structures with various depth sensitivities through spectroscopy, scattering, and imaging capabilities. This article begins with the discussion of various rechargeable batteries and associated important scientific questions in the field, followed by a review of synchrotron X-ray based analytical tools (scattering, spectroscopy, and imaging) and their successful applications (ex situ, in situ, and in operando) in gaining fundamental insights into these scientific questions. Furthermore, electron microscopy and spectroscopy complement the detection length scales of synchrotron X-ray tools and are also discussed toward the end. We highlight the importance of studying battery materials by combining analytical techniques with complementary length sensitivities, such as the combination of X-ray absorption spectroscopy and electron spectroscopy with spatial resolution, because a sole

  8. Extensive X-ray variability studies of NGC 7314 using long XMM-Newton observations

    Science.gov (United States)

    Emmanoulopoulos, D.; McHardy, I. M.; Vaughan, S.; Papadakis, I. E.

    2016-08-01

    We present a detailed X-ray variability study of the low-mass active galactic nuclei (AGN) NGC 7314 using the two newly obtained XMM-Newton observations (140 and 130 ks), together with two archival data sets of shorter duration (45 and 84 ks). The relationship between the X-ray variability characteristics and other physical source properties (such as the black hole mass) are still relatively poorly defined, especially for low-mass AGN. We perform a new, fully analytical, power spectral density (PSD) model analysis method, which will be described in detail in a forthcoming paper, that takes into consideration the spectral distortions, caused by red-noise leak. We find that the PSD in the 0.5-10 keV energy range, can be represented by a bending power law with a bend around 6.7 × 10-5 Hz, having a slope of 0.51 and 1.99 below and above the bend, respectively. Adding our bend time-scale estimate, to an already published ensemble of estimates from several AGN, supports the idea that the bend time-scale depends linearly only on the black hole mass and not on the bolometric luminosity. Moreover, we find that as the energy range increases, the PSD normalization increases and there is a hint that simultaneously the high-frequency slope becomes steeper. Finally, the X-ray time-lag spectrum of NGC 7314 shows some very weak signatures of relativistic reflection, and the energy resolved time-lag spectrum, for frequencies around 3 × 10-4 Hz, shows no signatures of X-ray reverberation. We show that the previous claim about ks time delays in this source, is simply an artefact induced by the minuscule number of points entering during the time-lag estimation in the low-frequency part of the time-lag spectrum (I.e. below 10-4 Hz).

  9. High count-rate study of two TES x-ray microcalorimeters with different transition temperatures

    Science.gov (United States)

    Lee, Sang-Jun; Adams, Joseph S.; Bandler, Simon R.; Betancourt-Martinez, Gabriele L.; Chervenak, James A.; Eckart, Megan E.; Finkbeiner, Fred M.; Kelley, Richard L.; Kilbourne, Caroline A.; Porter, Frederick S.; Sadleir, John E.; Smith, Stephen J.; Wassell, Edward J.

    2017-10-01

    We have developed transition-edge sensor (TES) microcalorimeter arrays with high count-rate capability and high energy resolution to carry out x-ray imaging spectroscopy observations of various astronomical sources and the Sun. We have studied the dependence of the energy resolution and throughput (fraction of processed pulses) on the count rate for such microcalorimeters with two different transition temperatures (T c). Devices with both transition temperatures were fabricated within a single microcalorimeter array directly on top of a solid substrate where the thermal conductance of the microcalorimeter is dependent upon the thermal boundary resistance between the TES sensor and the dielectric substrate beneath. Because the thermal boundary resistance is highly temperature dependent, the two types of device with different T cs had very different thermal decay times, approximately one order of magnitude different. In our earlier report, we achieved energy resolutions of 1.6 and 2.3 eV at 6 keV from lower and higher T c devices, respectively, using a standard analysis method based on optimal filtering in the low flux limit. We have now measured the same devices at elevated x-ray fluxes ranging from 50 Hz to 1000 Hz per pixel. In the high flux limit, however, the standard optimal filtering scheme nearly breaks down because of x-ray pile-up. To achieve the highest possible energy resolution for a fixed throughput, we have developed an analysis scheme based on the so-called event grade method. Using the new analysis scheme, we achieved 5.0 eV FWHM with 96% throughput for 6 keV x-rays of 1025 Hz per pixel with the higher T c (faster) device, and 5.8 eV FWHM with 97% throughput with the lower T c (slower) device at 722 Hz.

  10. A neutron-X-ray, NMR and calorimetric study of glassy Probucol synthesized using containerless techniques

    Energy Technology Data Exchange (ETDEWEB)

    Weber, J.K.R., E-mail: rweber@anl.gov [Materials Development, Inc., Arlington Heights, IL 60004 (United States); Argonne National Laboratory, Argonne, IL 60439 (United States); Benmore, C.J. [Argonne National Laboratory, Argonne, IL 60439 (United States); Department of Physics, Arizona State University, AZ 85287 (United States); Tailor, A.N.; Tumber, S.K. [Materials Development, Inc., Arlington Heights, IL 60004 (United States); Neuefeind, J. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Cherry, B. [Magnetic Resonance Research Center, Arizona State University, AZ 85287 (United States); Department of Chemistry and Biochemistry, Arizona State University, AZ 85287 (United States); Yarger, J.L. [Department of Physics, Arizona State University, AZ 85287 (United States); Magnetic Resonance Research Center, Arizona State University, AZ 85287 (United States); Department of Chemistry and Biochemistry, Arizona State University, AZ 85287 (United States); Mou, Q. [Magnetic Resonance Research Center, Arizona State University, AZ 85287 (United States); Department of Chemistry and Biochemistry, Arizona State University, AZ 85287 (United States); Weber, W. [Department of Physics, Arizona State University, AZ 85287 (United States); Department of Chemistry and Biochemistry, Arizona State University, AZ 85287 (United States); Byrn, S.R. [Department of Industrial and Physical Pharmacy, Purdue University, IN 47907 (United States)

    2013-10-16

    Highlights: • Acoustic levitation was used to make phase-pure glassy forms of pharmaceutical compounds. • Neutrons, X-rays and NMR were used to characterize the glasses. • The glass comprised of slightly distorted molecules packed in a random network. • Potential for new drug synthesis routes is discussed. - Abstract: Acoustic levitation was used to trap 1–3 mm diameter drops of Probucol and other pharmaceutical materials in containerless conditions. Samples were studied in situ using X-ray diffraction and ex situ using neutron diffraction, NMR and DSC techniques. The materials were brought into non-equilibrium states by supersaturating solutions or by supercooling melts. The glass transition and crystallization temperatures of glassy Probucol were 29 ± 1 and 71 ± 1 °C respectively. The glassy form was stable with a shelf life of at least 8 months. A neutron/X-ray difference function of the glass showed that while molecular sub-groups remain rigid, many of the hydrogen correlations observed in the crystal become smeared out in the disordered material. The glass is principally comprised of slightly distorted Form I Probucol molecules with disordered packing rather than large changes in the individual molecular structure. Avoiding surface contact-induced nucleation provided access to highly non-equilibrium phases and enabled synthesis of phase-pure glasses.

  11. Crystal-field and covalency effects in uranates: an X-ray spectroscopic study

    Energy Technology Data Exchange (ETDEWEB)

    Butorin, Sergei M. [Molecular and Condensed Matter Physics, Department of Physics and Astronomy, Uppsala University, Uppsala (Sweden); Kvashnina, Kristina O. [European Synchrotron Radiation Facility, CS40220, Grenoble (France); Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Resource Ecology, Dresden (Germany); Smith, Anna L. [Department of Radiation Science and Technology, TU Delft (Netherlands); Popa, Karin [European Commission, Joint Research Centre, Institute for Transuranium Elements, Karlsruhe (Germany); Martin, Philippe M. [CEA Marcoule, CEA, DEN, DTEC/SECA/LCC, Bagnols-sur-Ceze (France)

    2016-07-04

    The electronic structure of U{sup V}- and U{sup VI}-containing uranates NaUO{sub 3} and Pb{sub 3}UO{sub 6} was studied by using an advanced technique, namely X-ray absorption spectroscopy (XAS) in high-energy-resolution fluorescence-detection (HERFD) mode. Due to a significant reduction in core-hole lifetime broadening, the crystal-field splittings of the 5f shell were probed directly in HERFD-XAS spectra collected at the U 3d edge, which is not possible by using conventional XAS. In addition, the charge-transfer satellites that result from U 5f-O 2p hybridization were clearly resolved. The crystal-field parameters, 5f occupancy, and degree of covalency of the chemical bonding in these uranates were estimated by using the Anderson impurity model by calculating the U 3d HERFD-XAS, conventional XAS, core-to-core (U 4f-3d transitions) resonant inelastic X-ray scattering (RIXS), and U 4f X-ray photoelectron spectra. The crystal field was found to be strong in these systems and the 5f occupancy was determined to be 1.32 and 0.84 electrons in the ground state for NaUO{sub 3} and Pb{sub 3}UO{sub 6}, respectively, which indicates a significant covalent character for these compounds. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Comprehensive Study of Hydrated IDPs: X-Ray Diffraction, IR Spectroscopy and Electron Microscopic Analysis

    Science.gov (United States)

    Nakamura, K.; Keller, L. P.; Nakamura, T.; Noguchi, T.; Nozaki, W.; Tomeoka, K.

    2003-01-01

    Chondritic hydrated interplanetary dust particles (IDPs) comprise up to 50% of all IDPs collected in the stratosphere(1). Although much is known about the mineralogy, chemistry and carbon abundance of hydrated IDPs (2-4) controversies still exist regarding their formation, history, and relationship to other primitive solar system materials. Hydrated IDPs are generally believed to be derived from asteroidal sources that have undergone some degree of aqueous alteration. However, the high C contents of hydrated IDPs (by 2 to 6X CI levels (3,4) indicate that they are probably not derived from the same parent bodies sampled by the known chondritic meteorites. We report the comprehensive study of individual hydrated IDPs. The strong depletion in Ca (I) has been used as a diagnostic feature of hydrated IDPs. The particles are embedded in elemental sulfur or low viscosity epoxy and ultramicrotomed thin sections are observed using a transmission electron microscope (TEM) equipped with an energy-dispersive X-ray detector (EDX) followed by other measurements including: 1) FTIR microspectroscopy to understand the significant constraints on the organic functionality and the nature of the C-bearing phases and 2) powder X-ray difiaction using a synchrotron X-ray source to understand the bulk mineralogy of the particles.

  13. Studies of float glass surfaces by neutron and x-ray reflection

    CERN Document Server

    Dalgliesh, R

    2001-01-01

    applicability of current off-specular scattering models. A rich surface structure has been found which results in reflection effects that cannot be explained by these models. Model systems have also been developed in an attempt to combine x-ray fluorescence techniques with reflectivity. The surface of glass and glass coatings have been studied using x-ray and neutron scattering techniques. In particular, the effect of aqueous solutions and humid atmospheres on both the fire polished and the tin rich side of float glass have been investigated using neutron and x-ray reflection. Isotopic substitution has enabled the number density of water molecules within the float glass surface to be monitored with respect to immersion time, temperature and impurity content. A thin gel-like water-rich layer of thickness approx 30A is observed at the surface accompanied by a more deeply penetrating layer which increases in depth with time reaching approx 500A after 6 months. The rate of water ingression is higher than predicte...

  14. A 1-D Study of the Ignition Space for Magnetic Indirect (X-ray) Drive Targets

    Energy Technology Data Exchange (ETDEWEB)

    Cobble, James Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sinars, Daniel Brian [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-06-02

    The ICF program today is investigating three approaches to achieving multi-MJ fusion yields and ignition: (1) laser indirect (x-ray) drive on the National Ignition Facility (NIF), (2) laser direct drive (primarily on the Omega laser facility at the University of Rochester), and (3) magnetic direct drive on the Z pulsed power facility. In this white paper we briefly consider a fourth approach, magnetic indirect drive, in which pulsedpower- driven x-ray sources are used in place of laser driven sources. We first look at some of the x-ray sources studied on Z prior to 2007 before the pulsed power ICF program shifted to magnetic direct drive. We then show results from a series of 1D Helios calculations of double-shell capsules that suggest that these sources, scaled to higher temperatures, could be a promising path to achieving multi-MJ fusion yields and ignition. We advocate here that more detailed design calculations with widely accepted 2D/3D ICF codes should be conducted for a better assessment of the prospects.

  15. Simultaneous X-ray imaging and diffraction study of shock propagation and phase transition in silicon

    Science.gov (United States)

    Galtier, Eric

    2017-06-01

    X-ray phase contrast imaging technique using a free electron laser have observed the propagation of laser-driven shock waves directly inside materials. While providing images with few hundred nanometers spatial resolution, access to more quantitative information like the material density and the various shock front speeds remain challenging due to imperfections in the images limiting the convergence in the reconstruction algorithm. Alternatively, pump-probe X-ray diffraction (XRD) is a robust technique to extract atomic crystalline structure of compressed matter, providing insight into the kinetics of phase transformation and material response to stress. However, XRD by itself is not sufficient to extract the equation of state of the material under study. Here we report on the use of the LCLS free electron laser as a source of a high-resolution X-ray microscopy enabling the direct imaging of shock waves and phase transitions in optically opaque silicon. In this configuration, no algorithm is necessary to extract the material density and the position of the shock fronts. Simultaneously, we probed the crystalline structure via XRD of the various phases in laser compressed silicon. E. Galtier, B. Nagler, H. J. Lee, S. Brown, E. Granados, A. Hashim, E. McBride, A. Mackinnon, I. Nam, J. Zimmerman (SLAC) A. Gleason (Stanford, LANL) A. Higginbotham (University of York) A. Schropp, F. Seiboth (DESY).

  16. Time-resolved X-ray Absorption Spectroscopy for Electron Transport Study in Warm Dense Gold

    Science.gov (United States)

    Lee, Jong-Won; Bae, Leejin; Engelhorn, Kyle; Heimann, Philip; Ping, Yuan; Barbrel, Ben; Fernandez, Amalia; Beckwith, Martha Anne; Cho, Byoung-Ick; GIST Team; IBS Team; LBNL Collaboration; SLAC Collaboration; LLNL Collaboration

    2015-11-01

    The warm dense Matter represents states of which the temperature is comparable to Fermi energy and ions are strongly coupled. One of the experimental techniques to create such state in the laboratory condition is the isochoric heating of thin metal foil with femtosecond laser pulses. This concept largely relies on the ballistic transport of electrons near the Fermi-level, which were mainly studied for the metals in ambient conditions. However, they were barely investigated in warm dense conditions. We present a time-resolved x-ray absorption spectroscopy measured for the Au/Cu dual layered sample. The front Au layer was isochorically heated with a femtosecond laser pulse, and the x-ray absorption changes around L-edge of Cu, which was attached on the backside of Au, was measured with a picosecond resolution. Time delays between the heating of the `front surface' of Au layer and the alternation of x-ray spectrum of Cu attached on the `rear surface' of Au indicate the energetic electron transport mechanism through Au in the warm dense conditions. IBS (IBS-R012-D1) and the NRF (No. 2013R1A1A1007084) of Korea.

  17. Quantitative energy-dispersive x-ray diffraction for identification of counterfeit medicines: a preliminary study

    Science.gov (United States)

    Crews, Chiaki C. E.; O'Flynn, Daniel; Sidebottom, Aiden; Speller, Robert D.

    2015-06-01

    The prevalence of counterfeit and substandard medicines has been growing rapidly over the past decade, and fast, nondestructive techniques for their detection are urgently needed to counter this trend. In this study, energy-dispersive X-ray diffraction (EDXRD) combined with chemometrics was assessed for its effectiveness in quantitative analysis of compressed powder mixtures. Although EDXRD produces lower-resolution diffraction patterns than angular-dispersive X-ray diffraction (ADXRD), it is of interest for this application as it carries the advantage of allowing the analysis of tablets within their packaging, due to the higher energy X-rays used. A series of caffeine, paracetamol and microcrystalline cellulose mixtures were prepared with compositions between 0 - 100 weight% in 20 weight% steps (22 samples in total, including a centroid mixture), and were pressed into tablets. EDXRD spectra were collected in triplicate, and a principal component analysis (PCA) separated these into their correct positions in the ternary mixture design. A partial least-squares (PLS) regression model calibrated using this training set was validated using both segmented cross-validation, and with a test set of six samples (mixtures in 8:1:1 and 5⅓:2⅓:2⅓ ratios) - the latter giving a root-mean square error of prediction (RMSEP) of 1.30, 2.25 and 2.03 weight% for caffeine, paracetamol and cellulose respectively. These initial results are promising, with RMSEP values on a par with those reported in the ADXRD literature.

  18. Evaluating scintillator performance in time-resolved hard X-ray studies at synchrotron light sources

    Energy Technology Data Exchange (ETDEWEB)

    Rutherford, Michael E.; Chapman, David J.; White, Thomas G. [Imperial College London, London (United Kingdom); Drakopoulos, Michael [Diamond Light Source, I12 Joint Engineering, Environmental, Processing (JEEP) Beamline, Didcot, Oxfordshire (United Kingdom); Rack, Alexander [European Synchrotron Radiation Facility, Grenoble (France); Eakins, Daniel E., E-mail: d.eakins@imperial.ac.uk [Imperial College London, London (United Kingdom)

    2016-03-24

    Scintillator performance in time-resolved, hard, indirect detection X-ray studies on the sub-microsecond timescale at synchrotron light sources is reviewed, modelled and examined experimentally. LYSO:Ce is found to be the only commercially available crystal suitable for these experiments. The short pulse duration, small effective source size and high flux of synchrotron radiation is ideally suited for probing a wide range of transient deformation processes in materials under extreme conditions. In this paper, the challenges of high-resolution time-resolved indirect X-ray detection are reviewed in the context of dynamic synchrotron experiments. In particular, the discussion is targeted at two-dimensional integrating detector methods, such as those focused on dynamic radiography and diffraction experiments. The response of a scintillator to periodic synchrotron X-ray excitation is modelled and validated against experimental data collected at the Diamond Light Source (DLS) and European Synchrotron Radiation Facility (ESRF). An upper bound on the dynamic range accessible in a time-resolved experiment for a given bunch separation is calculated for a range of scintillators. New bunch structures are suggested for DLS and ESRF using the highest-performing commercially available crystal LYSO:Ce, allowing time-resolved experiments with an interframe time of 189 ns and a maximum dynamic range of 98 (6.6 bits)

  19. Structural Modification of Cobalt Catalysts: Effect of Wetting Studied by X-Ray and Infrared Techniques

    Directory of Open Access Journals (Sweden)

    Khodakov A.

    1999-07-01

    Full Text Available The effect of wetting on the structure and localisation of cobalt species on various supports (Al2O3, SiO2, TiO2, HZSM-5 zeolite was studied using X-ray diffraction, Fourier transform infrared spectroscopy with CO as a molecular probe, X-ray photoelectron spectroscopy and extended X-ray absorption fine structure analysis. Aqueous impregnation to incipient wetness of reduced and passivated cobalt catalysts results, even in the absence of any promoter, in a considerable decrease in the concentration of Co crystalline phases and modifies the surface sites. The decrease in the concentration of Co3O4 crystallites was especially pronounced on silica supported catalysts prepared via impregnation of cobalt and on a mixture of Co3O4 and HZSM-5 zeolite. Saturation with water of the passivated Co/SiO2 sample results in an amorphous solid with a local structure close to that of Co2SiO4. For Co/Al2O3 and Co/TiO2 catalysts, the effect of wetting on the concentration of Co3O4 crystalline phase was considerably smaller.

  20. Elemental and mineralogical study of earth-based pigments using particle induced X-ray emission and X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Nel, P., E-mail: pnel@unimelb.edu.a [Centre for Cultural Materials Conservation, University of Melbourne, Parkville, Vic. 3010 (Australia); Lynch, P.A. [Commonwealth Scientific and Industrial Research Organisation (CSIRO), Materials Science and Engineering, Clayton, Vic. 3168 (Australia); Laird, J.S. [Commonwealth Scientific and Industrial Research Organisation (CSIRO), Division of Exploration and Mining, School of Physics, University of Melbourne, Parkville, Vic. 3010 (Australia); Centre of Excellence in Ore Deposits (CODES), University of Tasmania, Hobart, Tas. 7001 (Australia); Casey, H.M. [Centre for Cultural Materials Conservation, University of Melbourne, Parkville, Vic. 3010 (Australia); Goodall, L.J. [Commonwealth Scientific and Industrial Research Organisation (CSIRO), Materials Science and Engineering, Clayton, Vic. 3168 (Australia); Ryan, C.G. [Commonwealth Scientific and Industrial Research Organisation (CSIRO), Division of Exploration and Mining, School of Physics, University of Melbourne, Parkville, Vic. 3010 (Australia); Centre of Excellence in Ore Deposits (CODES), University of Tasmania, Hobart, Tas. 7001 (Australia); Sloggett, R.J. [Centre for Cultural Materials Conservation, University of Melbourne, Parkville, Vic. 3010 (Australia)

    2010-07-21

    Artwork and precious artefacts demand non-destructive analytical methodologies for art authentication, attribution and provenance assessment. However, structural and chemical characterisation represents a challenging problem with existing analytical techniques. A recent authentication case based on an Australian Aboriginal artwork, indicate there is substantial benefit in the ability of particle induced X-ray emission (PIXE), coupled with dynamic analysis (DA) to characterise pigments through trace element analysis. However, this information alone is insufficient for characterising the mineralogical residence of trace elements. For this reason a combined methodology based on PIXE and X-ray diffraction (XRD) has been performed to explore the benefits of a more comprehensive data set. Many Aboriginal paintings and artefacts are predominantly earth pigment based. This makes these cultural heritage materials an ideal case study for testing the above combined methodological approach on earth-based pigments. Samples of synthetic and naturally occurring earth-based pigments were obtained from a range of sources, which include Indigenous communities within Australia's Kimberley region. PIXE analyses using a 3 MeV focussed proton beam at the CSIRO nuclear microprobe, as well as laboratory-based XRD was carried out on the above samples. Elemental signature spectra as well as mineralogical data were used to assess issues regarding synthetic and naturally occurring earth pigments with the ultimate aim of establishing provenance.

  1. The aquatic hyphomycete Heliscus lugdunensis protects its hyphae tip cells from cadmium: A micro X-ray fluorescence and X-ray absorption near edge structure spectroscopy study

    Science.gov (United States)

    Isaure, Marie-Pierre; Leyh, Benjamin; Salomé, Murielle; Krauss, Gerd-Joachim; Schaumlöffel, Dirk; Dobritzsch, Dirk

    2017-11-01

    Aquatic fungi can be used to evaluate the functioning of natural ecosystems. Heliscus lugdunensis is an early colonizer of allochthone leafs. Since this aquatic hyphomycete is able to develop in metal contaminated habitats and tolerates cadmium, it appears to be a good candidate to investigate adaptation to metal pollution. This study aimed at examining the sequestration of Cd in the hyphae of H. lugdunensis, and particularly the role of the tip cells. For that, H. lugdunensis growth was evaluated under various Cd concentrations, and a combination of synchrotron micro X-ray fluorescence and X-ray absorption near edge structure spectroscopy was carried out to determine the compartments of Cd accumulation and the Cd chemical species, respectively. Results showed that the hyphal tip cells were depleted in Cd, and that the metal was stored in older cells. Cd was mainly associated with sulfur ligands and to a lesser extent bound to phosphates and carboxyl/hydroxyl groups from cell wall and/or organic acids. Finally, the aquatic fungus was able to maintain the tip cell as a functional system, thus allowing the colonization of contaminated environments.

  2. Ultra-small-angle X-ray scattering-X-ray photon correlation spectroscopy studies of incipient structural changes in amorphous calcium phosphate-based dental composites.

    Science.gov (United States)

    Zhang, Fan; Allen, Andrew J; Levine, Lyle E; Espinal, Laura; Antonucci, Joseph M; Skrtic, Drago; O'Donnell, Justin N R; Ilavsky, Jan

    2012-05-01

    The local structural changes in amorphous calcium phosphate (ACP)-based dental composites were studied under isothermal conditions using both static, bulk measurement techniques and a recently developed methodology based on combined ultra-small angle X-ray scattering-X-ray photon correlation spectroscopy (USAXS-XPCS), which permits a dynamic approach. While results from conventional bulk measurements do not show clear signs of structural change, USAXS-XPCS results reveal unambiguous evidence for local structural variations on a similar time scale to that of water loss in the ACP fillers. A thermal-expansion-based simulation indicates that thermal behavior alone does not account for the observed dynamics. Together, these results suggest that changes in the water content of ACP affect the composite morphology due to changes in ACP structure that occur without an amorphous-to-crystalline conversion. It is also noted that biomedical materials research could benefit greatly from USAXS-XPCS, a dynamic approach. Copyright © 2012 Wiley Periodicals, Inc.

  3. Strain in nanoscale Germanium hut clusters on Si(001) studied by x-ray diffraction

    DEFF Research Database (Denmark)

    Steinfort, A.J.; Scholte, P.M.L.O.; Ettema, A.

    1996-01-01

    Scanning tunneling microscopy and synchrotron x-ray diffraction have been used to investigate nanoscale Ge hut clusters on Si(001). We have been able to identify the contributions to the scattered x-ray intensity which arise solely from the hut clusters and have shown that x-ray diffraction can b...

  4. Machine learning from hard x-ray surveys: applications to magnetic cataclysmic variable studies

    Science.gov (United States)

    Scaringi, Simone

    2009-11-01

    Within this thesis are discussed two main topics of contemporary astrophysics. The first is that of machine learning algorithms for astronomy whilst the second is that of magnetic cataclysmic variables (mCVs). To begin, an overview is given of ISINA: INTEGRAL Scouce Identifiction Network Algorithm. This machine learning algorithm, using random forests, is applied to the IBIS/ISGRI data set in order to ease the production of unbiased future soft gamma-ray source catalogues. The feature extraction process on an initial candidate list is described together with feature merging. Three trainng and testing sets are created in order to deal with the diverse time-scales encountered when dealing with the gamma-ray sky: one dealing with faint persistent source recognition, one dealing with strong persistent sources and a final one dealing with transients. For the latter, a new transient detection technique is introduced and described: the transient matrix. Finally the performance of the network is assessed and discussed using the testing set and some illustrative source examples. ISINA is also compared to the more conventional approach of visual inspection. Next mCVs are discussed, and in particular the properties arising from a hard X-ray selected sample which has proven remarkably efficient in detecting intermediate polars and asynchronous polars, two of the rarest type of cataclysmic variables (CVs). This thesis focuses particularly on the link between hard X-ray properties and spin/orbital periods. To this end, a new sample of these objects is constructed by cross-corelating candidate sources detected in INTEGRAL/IBIS observations against catalogues of known CVs. Also included in the analysis are hard X-ray Observations from Swift/BAT and SUZAKU/HXD in order to make the study more complete. It is found that most hard X-ray detected mCVs have Pspin/Porbattention is given to the very low number of detected systems in any ban between Pspin/Porb = 0.3 and Pspin/Porb = 1 and

  5. A hard X-ray study of the ultraluminous X-ray source NGC 5204 X-1 with NuSTAR and XMM-Newton

    DEFF Research Database (Denmark)

    Mukherjee, E. S.; Walton, D. J.; Bachetti, M.

    2015-01-01

    We present the results from coordinated X-ray observations of the ultraluminous X-ray source NGC 5204 X-1 performed by the Nuclear Spectroscopic Telescope Array and XMM-Newton in early 2013. These observations provide the first detection of NGC 5204 X-1 above 10 keV, extending the broadband...

  6. [A study of the necessity of cooling of charge-coupled devices in x-ray imaging systems].

    Science.gov (United States)

    Morgun, O N; Nemchenko, K E; Rogov, Iu V

    2006-01-01

    The goal of this work was to study one of the widely used X-ray imaging systems: luminescent screen-optical system-matrix of photosensitive charge-coupled device (CCD)-amplifier-analog-to-digital converter. Experimental and theoretical studies were performed to substantiate the necessity of cooling of charge-coupled devices for improvement of X-ray image characteristics. The obtained results reveal the necessity of cooling of CCD-matrix crystals in the X-ray imaging system under consideration.

  7. X-ray reflectometer for single layer and multilayer coating characterization at 8 keV: An interlaboratory study

    Science.gov (United States)

    Gurgew, Danielle N.; Broadway, David M.; Gubarev, Mikhail; Ramsey, Brian D.; Gregory, Don A.

    2016-10-01

    An X-ray reflectometer (XRR) system has been developed at the Marshall Space Flight Center (MSFC) for characterizing various soft and hard X-ray optic coatings. The XRR instrument generates X-ray radiation using a high-output rotating anode source (RAS), operational over a voltage range of 5-35 kV and a current range of 10-150 mA. Copper is used as the target material to produce an X-ray spectrum from which the Kα line at 8.048 keV is isolated for the reflectivity measurements. Five precision slits are mounted along the X-ray beam path to limit the extent of the beam at the sample and to adjust the resolution in the measurements. A goniometer consisting of two precision rotary stages controls the positions of the coating sample and the X-ray detector with respect to the beam. The detector itself is a high performance silicon drift detector used to achieve high count rate efficiency to attain good statistics in the reflectivity measurement at larger grazing angles. The X-ray reflectometer system design and capabilities are described in detail. Verification of the system is obtained through an interlaboratory study in which reflectivity measurements of a multilayer coating made at MSFC are compared with those made at two external laboratories.

  8. 2D and 3D Terahertz Imaging and X-Rays CT for Sigillography Study

    Science.gov (United States)

    Fabre, M.; Durand, R.; Bassel, L.; Recur, B.; Balacey, H.; Bou Sleiman, J.; Perraud, J.-B.; Mounaix, P.

    2017-04-01

    Seals are part of our cultural heritage but the study of these objects is limited because of their fragility. Terahertz and X-Ray imaging are used to analyze a collection of wax seals from the fourteenth to eighteenth centuries. In this work, both techniques are compared in order to discuss their advantages and limits and their complementarity for conservation state study of the samples. Thanks to 3D analysis and reconstructions, defects and fractures are detected with an estimation of their depth position. The path from the parchment tongue inside the seals is also detected.

  9. Studies on X-ray computed tomography findings of tumorous hemangiomas of the skin

    Energy Technology Data Exchange (ETDEWEB)

    Okamura, Rieko

    1987-02-01

    X-ray computed tomography (CT) findings were compared with microscopic picture in 18 cases of tumorous hemangiomas of the skin. Eight cases of strawberry mark, six cases of cavernous hemangioma, a case of angioblastoma, a case of angiokeratoma naeviforme and two cases of venous racemous angioma were studied. Strawberry mark showed a lobular, well demarcated density with moderate contrast enhancement by urographin. Cavernous hemangioma showed a well demarcated homogeneous density with smooth surface. In conclusion, CT study is a useful tool in the differential and preoperative diagnosis of tumorous hemangioma.

  10. Sol-Gel Synthesis, X-Ray Diffraction Studies, and Electric Conductivity of Sodium Europium Silicate

    Directory of Open Access Journals (Sweden)

    Ekaterina V. Borisova

    2013-01-01

    Full Text Available Sodium europium silicate, NaEu9(SiO46O2, with apatite structure has been obtained and studied using X-ray diffraction and SEM. It has been shown that sodium sublimation does not take place upon synthesis by the sol-gel method. Rietveld refinement has revealed that sodium atoms are ordered and occupy the 4f position. O(4 atoms not related to silicate ions are placed at the centers of Eu(2 triangles. DC and AC electric conductivity and activation energy have been determined for the compound studied.

  11. In-situ x-ray absorption study of copper films in ground watersolutions

    Energy Technology Data Exchange (ETDEWEB)

    Kvashnina, K.O.; Butorin, S.M.; Modin, A.; Soroka, I.; Marcellini, M.; Nordgren, J.; Guo, J.-H.; Werme, L.

    2007-10-29

    This study illustrates how the damage from copper corrosion can be reduced by modifying the chemistry of the copper surface environment. The surface modification of oxidized copper films induced by chemical reaction with Cl{sup -} and HCO{sub 3}{sup -} in aqueous solutions was monitored by in situ X-ray absorption spectroscopy. The results show that corrosion of copper can be significantly reduced by adding even a small amount of sodium bicarbonate. The studied copper films corroded quickly in chloride solutions, whereas the same solution containing 1.1 mM HCO{sub 3}{sup -} prevented or slowed down the corrosion processes.

  12. Estimating head and neck tissue dose from x-ray scatter to physicians performing x-ray guided cardiovascular procedures: a phantom study.

    Science.gov (United States)

    Fetterly, Kenneth A; Schueler, Beth A; Grams, Michael P; Sturchio, Glenn M

    2017-03-20

    Physicians performing x-ray guided interventional procedures have a keen interest in radiation safety. Radiation dose to tissues and organs of the head and neck are of particular interest because they are not routinely protected by wearable radiation safety devices. This study was conducted to facilitate estimation of radiation dose to tissues of the head and neck of interventional physicians based on the dose recorded by a personal dosimeter worn on the left collar. Scatter beam qualities maximum energy and HVL were measured for 40 scatter beams emitting from an anthropomorphic patient phantom. Variables of the scatter beams included scatter angle (35° and 90°), primary beam peak tube potential (60, 80, 100, and 120 kVp), and 5 Cu spectral filter thicknesses (0-0.9 mm). Four reference scatter beam qualities were selected to represent the range of scatter beams realized in a typical practice. A general radiographic x-ray tube was tuned to produce scatter-equivalent radiographic beams and used to simultaneously expose the head and neck of an anthropomorphic operator phantom and radiochromic film. The geometric relationship between the x-ray source of the scatter-equivalent beams and the operator phantom was set to mimic that between a patient and physician performing an invasive cardiovascular procedure. Dose to the exterior surface of the operator phantom was measured with both 3 × 3 cm2 pieces of film and personal dosimeters positioned at the location of the left collar. All films were scanned with a calibrated flatbed scanner, which converted the film's reflective density to dose. Films from the transverse planes of the operator phantom provided 2D maps of the dose distribution within the phantom. These dose maps were normalized by the dose at the left collar, providing 2D percent of left collar dose (LCD) maps. The percent LCD maps were overlain with bony anatomy CT images of the operator phantom and estimates of percent LCD to the left, right and whole

  13. Diagnostic X-ray examinations and increased chromosome translocations: evidence from three studies.

    Science.gov (United States)

    Bhatti, Parveen; Yong, Lee C; Doody, Michele M; Preston, Dale L; Kampa, Diane M; Ramsey, Marilyn J; Ward, Elizabeth M; Edwards, Alan A; Ron, Elaine; Tucker, James D; Sigurdson, Alice J

    2010-11-01

    Controversy regarding potential health risks from increased use of medical diagnostic radiologic examinations has come to public attention. We evaluated whether chromosome damage, specifically translocations, which are a potentially intermediate biomarker for cancer risk, was increased after exposure to diagnostic X-rays, with particular interest in the ionizing radiation dose-response below the level of approximately 50 mGy. Chromosome translocation frequency data from three separately conducted occupational studies of ionizing radiation were pooled together. Studies 1 and 2 included 79 and 150 medical radiologic technologists, respectively, and study 3 included 83 airline pilots and 50 university faculty members (total = 155 women and 207 men; mean age = 62 years, range 34-90). Information on personal history of radiographic examinations was collected from a detailed questionnaire. We computed a cumulative red bone marrow (RBM) dose score based on the numbers and types of X-ray examinations reported with 1 unit approximating 1 mGy. Poisson regression analyses were adjusted for age and laboratory method. Mean RBM dose scores were 49, 42, and 11 for Studies 1-3, respectively (overall mean = 33.5, range 0-303). Translocation frequencies significantly increased with increasing dose score (P < 0.001). Restricting the analysis to the lowest dose scores of under 50 did not materially change these results. We conclude that chromosome damage is associated with low levels of radiation exposure from diagnostic X-ray examinations, including dose scores of approximately 50 and lower, suggesting the possibility of long-term adverse health effects.

  14. Protein folding and protein metallocluster studies using synchrotron small angler X-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Eliezer, D.

    1994-06-01

    Proteins, biological macromolecules composed of amino-acid building blocks, possess unique three dimensional shapes or conformations which are intimately related to their biological function. All of the information necessary to determine this conformation is stored in a protein`s amino acid sequence. The problem of understanding the process by which nature maps protein amino-acid sequences to three-dimensional conformations is known as the protein folding problem, and is one of the central unsolved problems in biophysics today. The possible applications of a solution are broad, ranging from the elucidation of thousands of protein structures to the rational modification and design of protein-based drugs. The scattering of X-rays by matter has long been useful as a tool for the characterization of physical properties of materials, including biological samples. The high photon flux available at synchrotron X-ray sources allows for the measurement of scattering cross-sections of dilute and/or disordered samples. Such measurements do not yield the detailed geometrical information available from crystalline samples, but do allow for lower resolution studies of dynamical processes not observable in the crystalline state. The main focus of the work described here has been the study of the protein folding process using time-resolved small-angle x-ray scattering measurements. The original intention was to observe the decrease in overall size which must accompany the folding of a protein from an extended conformation to its compact native state. Although this process proved too fast for the current time-resolution of the technique, upper bounds were set on the probable compaction times of several small proteins. In addition, an interesting and unexpected process was detected, in which the folding protein passes through an intermediate state which shows a tendency to associate. This state is proposed to be a kinetic molten globule folding intermediate.

  15. SARS E protein in phospholipid bilayers: an anomalous X-ray reflectivity study

    Science.gov (United States)

    Khattari, Z.; Brotons, G.; Arbely, E.; Arkin, I. T.; Metzger, T. H.; Salditt, T.

    2005-02-01

    We report on an anomalous X-ray reflectivity study to locate a labelled residue of a membrane protein with respect to the lipid bilayer. From such experiments, important constraints on the protein or peptide conformation can be derived. Specifically, our aim is to localize an iodine-labelled phenylalanine in the SARS E protein, incorporated in DMPC phospholipid bilayers, which are deposited in the form of thick multilamellar stacks on silicon surfaces. Here, we discuss the experimental aspects and the difficulties associated with the Fourier synthesis analysis that gives the electron density profile of the membranes.

  16. X-ray topographic study of defects in Si-based multilayer epitaxial power devices

    Directory of Open Access Journals (Sweden)

    Iren L. Shul'pina

    2016-03-01

    The X-ray methods used in the work allow revealing and identifying growth and process defects in device structures, studying their distributions, analyzing their mutual interactions and obtaining valuable information on the nature and evolution of the defects during device structure fabrication processes. This information allowed us to optimize the choice of initial materials and processes aiming to reduce the content of critical electrically active structural defects in the crystals that can influence the parameters of fabricated semiconductor devices; we also increased process yield and tangibly improved semiconductor device operation reliability in severe conditions and emergency modes.

  17. Preliminary studies of radiation coupling between remote soft X-ray laser amplifiers

    Energy Technology Data Exchange (ETDEWEB)

    Cairns, G. (Queen' s Univ., Belfast (United Kingdom). Dept. of Pure and Applied Physics); Lewis, C.L.S. (Queen' s Univ., Belfast (United Kingdom). Dept. of Pure and Applied Physics); MacPhee, A.G. (Queen' s Univ., Belfast (United Kingdom). Dept. of Pure and Applied Physics); Neely, D. (Queen' s Univ., Belfast (United Kingdom). Dept. of Pure and Applied Physics); Holden, M. (Essex Univ., Colchester (United Kingdom). Dept. of Physics); Krishnan, J. (Essex Univ., Colchester (United Kingdom). Dept. of Physics); Tallents, G.J. (Essex Univ., Colchester (United Kingdom). Dept. of Physics); Key, M.H. (Rutherford Appleton Lab., Chilton (United Kingdom). Central Laser Facility Oxford Univ. (United Kingdom). Clarendon Lab.); Norreys, P.N. (Rutherford Appleton Lab., Chilton (United Kingdom). Central Laser Facility); Smith, C.G. (Oxford Univ. (United Kingdom). Clarendon Lab.); Zhang, J. (Oxford Univ. (United Kingdom). Clarendon Lab.); Holden, P.B. (York Univ. (United Kingdom). Dept. of Comp

    1994-01-01

    Coupling of a soft X-ray laser beam with a relaying concave mirror in a sequentially pumped amplifier geometry using the Ne-like Ge system has been studied experimentally. Preliminary observations indicate an increase in the spatial coherence of the amplified relayed beam. In addition, near-field imaging of one of the amplifier plasmas shows a double-lobed intensity pattern of the emergent beam indicating refractive guiding of the amplified beam with components both normal and tangential to the target surface. (orig.)

  18. Wide-angle X-ray scattering study of heat-treated PEEK and PEEK composite

    Science.gov (United States)

    Cebe, Peggy; Lowry, Lynn; Chung, Shirley Y.; Yavrouian, Andre; Gupta, Amitava

    1987-01-01

    Samples of poly(etheretherketone) (PEEK) neat resin and APC-2 carbon fiber composite were subjected to various heat treatments, and the effect of quenching and annealing treatments was studied by wide-angle X-ray scattering. It is found that high-temperature treatments may introduce disorder into neat resin and composite PEEK when followed by rapid cooling. The disorder is metastable and can revert to ordered state when the material is heated above its glass transition temperature and then cooled slowly. The disorder may result from residual thermal stresses.

  19. Report on a round-robin study of diffuse X-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Ohshima, K.; Harada, J.; Morinaga, M.; Georgopoulos, P.; Cohen, J.B.

    1986-06-01

    The diffuse scattering in a volume in reciprocal space from NbCsub(0.72) was measured on an absolute scale at two synchrotron sources (in the US and in Japan) and with a high-intensity rotating-anode source (in Japan). The shape and actual absolute intensities agreed to a few percent. Special problems associated with such measurements at a synchrotron are noted, especially with an insertion device. The high resolution possible at such sources reduces the need for an evacuated sample chamber. Detailed measurements can be completed in 1-2 d, making such studies much more accessible than is possible with sealed-tube X-ray generation.

  20. Structure of magainin and alamethicin in model membranes studied by x-ray reflectivity.

    Science.gov (United States)

    Li, C; Salditt, T

    2006-11-01

    We have investigated the structure of lipid bilayers containing varied molar ratios of different lipids and the antimicrobial peptides magainin and alamethicin. For this structural study, we have used x-ray reflectivity on highly aligned solid-supported multilamellar lipid membranes. The reflectivity curves have been analyzed by semi-kinematical reflectivity theory modeling the bilayer density profile rho(z). Model simulations of the reflectivity curves cover a large range of vertical momentum transfer q(z), and yield excellent agreement between data and theory. The structural changes observed as a function of the molar peptide/lipid concentration P/L are discussed in a comparative way.

  1. Structure of Magainin and Alamethicin in Model Membranes Studied by X-Ray Reflectivity

    Science.gov (United States)

    Li, C.; Salditt, T.

    2006-01-01

    We have investigated the structure of lipid bilayers containing varied molar ratios of different lipids and the antimicrobial peptides magainin and alamethicin. For this structural study, we have used x-ray reflectivity on highly aligned solid-supported multilamellar lipid membranes. The reflectivity curves have been analyzed by semi-kinematical reflectivity theory modeling the bilayer density profile ρ(z). Model simulations of the reflectivity curves cover a large range of vertical momentum transfer qz, and yield excellent agreement between data and theory. The structural changes observed as a function of the molar peptide/lipid concentration P/L are discussed in a comparative way. PMID:16920839

  2. High Pressure X-ray Diffraction Study on Icosahedral Boron Arsenide (B12As2)

    Energy Technology Data Exchange (ETDEWEB)

    J Wu; H Zhu; D Hou; C Ji; C Whiteley; J Edgar; Y Ma

    2011-12-31

    The high pressure properties of icosahedral boron arsenide (B12As2) were studied by in situ X-ray diffraction measurements at pressures up to 25.5 GPa at room temperature. B12As2 retains its rhombohedral structure; no phase transition was observed in the pressure range. The bulk modulus was determined to be 216 GPa with the pressure derivative 2.2. Anisotropy was observed in the compressibility of B12As2-c-axis was 16.2% more compressible than a-axis. The boron icosahedron plays a dominant role in the compressibility of boron-rich compounds.

  3. Lattice deformation in laser-irradiated silicon crystal studied by picosecond X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Kishimura, Hiroaki; Yazaki, Akio; Hironaka, Yoichiro; Nakamura, Kazutaka G.; Kondo, Ken-ichi

    2003-02-28

    Lattice deformation in laser-irradiated Si(1 1 1) has been studied by picosecond X-ray diffraction at a delay time of 350 ps. The rapid thermal expansion (0.24% at maximum) was observed at 2.0 GW/cm{sup 2} irradiation. By irradiation above dielectric breakdown threshold (10.0 GW/cm{sup 2}), the intense lattice compression (2.1% at maximum) was observed. The compression is caused by the laser ablation due to dielectric breakdown.

  4. Quantitative study of mammalian cells by scanning transmission soft X-ray microscopy

    Science.gov (United States)

    Shinohara, K.; Ohigashi, T.; Toné, S.; Kado, M.; Ito, A.

    2017-06-01

    Molecular distribution in mammalian cells was studied by soft X-ray scanning transmission microscopy with respect to the quantitative aspect of analysis. NEXAFS profiles at the C, N and O K-absorption edges were combined and used for the analysis. For the estimation of quantity for nucleic acids and proteins, NEXAFS profiles of DNA and bovine serum albumin (BSA) at the N K-absorption edge were applied assuming that those were their representatives. The method has a potential to explore the other molecular components than nucleic acids and proteins.

  5. Crystallization and preliminary X-ray studies of mouse centrin1

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jung Hee [Institut für Medizinische Physik und Biophysik, Charité - Universitätsmedizin Berlin, Ziegelstrasse 5-9, D-10098 Berlin (Germany); Krauss, Norbert [Institut für Biochemie, Charité - Universitätsmedizin Berlin, Monbijoustrasse 2, D-10117 Berlin (Germany); Pulvermüller, Alexander [Institut für Medizinische Physik und Biophysik, Charité - Universitätsmedizin Berlin, Ziegelstrasse 5-9, D-10098 Berlin (Germany); Scheerer, Patrick; Höhne, Wolfgang [Institut für Biochemie, Charité - Universitätsmedizin Berlin, Monbijoustrasse 2, D-10117 Berlin (Germany); Giessl, Andreas; Wolfrum, Uwe [Zell- und Matrixbiologie, Institut für Zoologie, Johannes Gutenberg-Universität Mainz, D-55099 Mainz (Germany); Hofmann, Klaus Peter, E-mail: kph@charite.de; Ernst, Oliver Peter [Institut für Medizinische Physik und Biophysik, Charité - Universitätsmedizin Berlin, Ziegelstrasse 5-9, D-10098 Berlin (Germany); Choe, Hui-Woog, E-mail: kph@charite.de [Institut für Medizinische Physik und Biophysik, Charité - Universitätsmedizin Berlin, Ziegelstrasse 5-9, D-10098 Berlin (Germany); Department of Chemistry, College of Natural Science, Chonbuk National University, 561-756 Chonju (Korea, Republic of)

    2005-05-01

    The expression, purification, crystallization and preliminary X-ray diffraction studies of mouse centrin1 are reported. Centrins belong to a family of Ca{sup 2+}-binding EF-hand proteins that play a fundamental role in centrosome duplication and the function of cilia. To shed light on the structure–function relationship of these proteins, mouse centrin1 has been crystallized. The mouse centrin1 has been expressed in Escherichia coli as a GST-centrin fusion protein containing a thrombin protease cleavage site between the fusion partners. Two constructs with different linking-sequence lengths were expressed and purified. Thrombin cleavage yielded functional centrin1 and N-terminally extended centrin1 containing 25 additional residues upstream of its N-terminus. Only N-terminally extended centrin1 (MW ≃ 22 240 Da) could be crystallized at room temperature, using 20–25%(w/v) PEG 1500, 5–10%(v/v) ethylene glycol and 1–2%(v/v) dioxane. Crystals were suitable for X-ray analysis, diffracting to 2.9 Å at 295 K using a rotating-anode X-ray source. They belong to space group C2, with unit-cell parameters a = 60.7, b = 59.6, c = 58.3 Å, β = 109.4°. Assuming the asymmetric cell to be occupied by one centrin1 molecule of 22.2 kDa, the unit cell contains 45% solvent with a crystal volume per protein weight, V{sub M}, of 2.2 Å{sup 3} Da{sup −1}.

  6. An x-ray diffraction study of microstructural deformation induced by cyclic loading of selected steel

    Science.gov (United States)

    Fourspring, Patrick Michael

    X-ray double crystal diffractometry (XRDCD) and X-ray scanning diffractometry (XRSD) were used to assess cyclic microstructural deformation in a face centered cubic (fcc) steel (AISI304) and a body centered cubic (bcc) steel (SA508 class 2). The objectives of the investigation were to determine if X-ray diffraction could be used effectively to monitor cyclic microstructural deformation in polycrystalline Fe alloys and to study the distribution of the microstructural deformation induced by cyclic loading in these alloys. The approach used in the investigation was to induce fatigue damage in a material and to characterize the resulting microstructural deformation at discrete fractions of the fatigue life of the material. Also, characterization of microstructural deformation was carried out to identify differences in the accumulation of damage from the surface to the bulk, focusing on the following three regions: near surface (0-10 mum), subsurface (10-300 mum), and bulk. Characterization of the subsurface region was performed only on the AISI304 material because of the limited availability of the SA508 material. The results from the XRDCD data indicate a measurable change induced by fatigue from the initial state to subsequent states of both the AISI304 and the SA508 materials. The results from the XRSD data show similar but less coherent trends than the results from the XRDCD data. Therefore, the XRDCD technique was shown to be sensitive to the microstructural deformation caused by fatigue in steels; thus, the technique can be used to monitor fatigue damage in steels. In addition, for the AISI304 material, the level of cyclic microstructural deformation in the bulk material was found to be greater than the level in the near surface material. In contrast, previous investigations have shown that the deformation is greater in the near surface than the bulk for Al alloys and bcc Fe alloys.

  7. An electrochemical cell for in operando studies of lithium/sodium batteries using a conventional x-ray powder diffractometer

    DEFF Research Database (Denmark)

    Shen, Yanbin; Pedersen, Erik Ejler; Christensen, Mogens

    2014-01-01

    An electrochemical cell has been designed for powder X-ray diffraction (PXRD) studies of lithium ion batteries (LIB) and sodium ion batteries (SIB) in operando with high time resolution using conventional powder X-ray diffractometer. The cell allows for studies of both anode and cathode electrode...... materials in reflection mode. The cell design closely mimics that of standard battery testing coin cells and allows obtaining powder X-ray diffraction patterns under representative electrochemical conditions. In addition, the cell uses graphite as the X-ray window instead of beryllium, and it is easy...... to operate and maintain. Test examples on lithium insertion/extraction in two spinel-type LIB electrode materials (Li4Ti5O12 anode and LiMn2O4 cathode) are presented as well as first results on sodium extraction from a layered SIB cathode material (Na0.84Fe0.56Mn0.44O2)....

  8. X-ray absorption spectroscopy and EPR studies of oriented spinach thylakoid preparations

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, J.C. [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry]|[Lawrence Berkeley Lab., CA (United States). Structural Biology Div.

    1995-08-01

    In this study, oriented Photosystem II (PS II) particles from spinach chloroplasts are studied with electron paramagnetic resonance (EPR) and x-ray absorption spectroscopy (XAS) to determine more details of the structure of the oxygen evolving complex (OEC). The nature of halide binding to Mn is also studied with Cl K-edge and Mn EXAFS (extended x-ray absorption fine structure) of Mn-Cl model compounds, and with Mn EXAFS of oriented PS II in which Br has replaced Cl. Attention is focused on the following: photosynthesis and the oxygen evolving complex; determination of mosaic spread in oriented photosystem II particles from signal II EPR measurement; oriented EXAFS--studies of PS II in the S{sub 2} state; structural changes in PS II as a result of treatment with ammonia: EPR and XAS studies; studies of halide binding to Mn: Cl K-edge and Mn EXAFS of Mn-Cl model compounds and Mn EXAFS of oriented Br-treated photosystem II.

  9. Purification, crystallization and preliminary X-ray study of the fungal laccase from Cerrena maxima

    Energy Technology Data Exchange (ETDEWEB)

    Lyashenko, Andrey V.; Zhukhlistova, Nadegda E.; Gabdoulkhakov, Azat G.; Zhukova, Yuliya N. [A. V. Shubnikov Institute of Crystallography, RAS, Leninskiy Prospect 59, 119333 Moscow (Russian Federation); Voelter, Wolfang [Institute of Biochemistry, University of Tuebingen, Physiologisch-Chemisches Institut, Hoppe-Seyler-Strasse 4, 72076 Tuebingen (Germany); Zaitsev, Viatcheslav N. [University of St Andrews, Centre for Biomolecular Sciences, North Haugh, St Andrews, KY16 9ST,Scotland (United Kingdom); Bento, Isabel [Instituto de Tecnologia Química e Biológica (ITQB), Universidade Nova de Lisboa, Apartado 127, Av. Republica, 2781-901 Oeiras (Portugal); Stepanova, Elena V. [A. N. Bakh Institute of Biochemistry, RAS, Leninskiy Prospect 33, 119071 Moscow (Russian Federation); Kachalova, Galina S. [Institute of Theoretical and Experimental Biophysics of RAS, Institutskaya Street 3, 142290 Puschino, Moscow Region (Russian Federation); Koroleva, Ol’ga V. [A. N. Bakh Institute of Biochemistry, RAS, Leninskiy Prospect 33, 119071 Moscow (Russian Federation); Cherkashyn, Evgeniy A.; Tishkov, Vladimir I. [Department of Chemical Enzymology, M. V. Lomonosov Moscow State University, 119992 Moscow (Russian Federation); Lamzin, Victor S.; Schirwitz, Katja [European Molecular Biology Laboratory, c/o DESY, Notkestrasse 85, 22603 Hamburg (Germany); Morgunova, Ekaterina Yu. [A. V. Shubnikov Institute of Crystallography, RAS, Leninskiy Prospect 59, 119333 Moscow (Russian Federation); Betzel, Christian [University of Hamburg, Institute fur Biochemie und Lebensmittelchemie, Department of Biochemistry and Molecular Biology, c/o DESY, Building 22a, Notkestrasse 85, 22603 Hamburg (Germany); Lindley, Peter F. [Instituto de Tecnologia Química e Biológica (ITQB), Universidade Nova de Lisboa, Apartado 127, Av. Republica, 2781-901 Oeiras (Portugal); Mikhailov, Al’bert M., E-mail: amm@ns.crys.ras.ru [A. V. Shubnikov Institute of Crystallography, RAS, Leninskiy Prospect 59, 119333 Moscow (Russian Federation)

    2006-10-01

    The crystallization and preliminary X-ray structure at 1.9 Å resolution of the fungal laccase from C. maxima are presented. Laccases are members of the blue multi-copper oxidase family that oxidize substrate molecules by accepting electrons at a mononuclear copper centre and transferring them to a trinuclear centre. Dioxygen binds to the trinuclear centre and, following the transfer of four electrons, is reduced to two molecules of water. Crystals of the laccase from Cerrena maxima have been obtained and X-ray data were collected to 1.9 Å resolution using synchrotron radiation. A preliminary analysis shows that the enzyme has the typical laccase structure and several carbohydrate sites have been identified. The carbohydrate chains appear to be involved in stabilization of the intermolecular contacts in the crystal structure, thus promoting the formation of well ordered crystals of the enzyme. Here, the results of an X-ray crystallographic study on the laccase from the fungus Cerrena maxima are reported. Crystals that diffract well to a resolution of at least 1.9 Å (R factor = 18.953%; R{sub free} = 23.835; r.m.s.d. bond lengths, 0.06 Å; r.m.s.d. bond angles, 1.07°) have been obtained despite the presence of glycan moieties. The overall spatial organization of C. maxima laccase and the structure of its copper-containing active centre have been determined by the molecular-replacement method using the laccase from Trametes versicolor (Piontek et al., 2002 ▶) as a structural template. In addition, four glycan-binding sites were identified and the 1.9 Å X-ray data were used to determine the previously unknown primary structure of this protein. The identity (calculated from sequence alignment) between the C. maxima laccase and the T. versicolor laccase is about 87%. Tyr196 and Tyr372 show significant extra density at the ortho positions and this has been interpreted in terms of NO{sub 2} substituents.

  10. Dynamic X-ray Diffraction to study the shock-induced α - ɛ Phase Transition in Iron

    Science.gov (United States)

    Branch, Brittany; Jensen, Brian

    2017-06-01

    Iron undergoes a well-known polymorphic phase transformation from a ferromagnetic body-centered cubic (α-phase) ground state to a non-magnetic hexagonal-closed pack (ɛ-phase) crystal structure at pressures exceeding 13 GPa. With the coupling of dynamic loading platforms and advanced light sources we were able to study the α- ɛ phase transition of iron using dynamic X-ray diffraction (XRD) now available at the Advanced Photon Source (APS). Specifically, front-surface plate impact experiments were performed using single and two-stage gun systems coupled to the X-ray beam line at the new Dynamic Compression Sector (DCS) at the APS. X-ray diffraction data obtained from multiple 80 picosecond width x-ray bunches were obtained for impact stresses that spanned the a-e region of the phase diagram. The experimental methods, results, and preliminary analysis will be presented. LA-UR - 17-21401.

  11. A compact high vacuum heating chamber for in-situ x-ray scattering studies

    Energy Technology Data Exchange (ETDEWEB)

    Bertram, F.; Deiter, C.; Pflaum, K.; Seeck, O. H. [Hamburger Synchrotronstrahlungslabor am Deutschen Elektronen-Synchrotron, Notkestr. 85, 22607 Hamburg (Germany)

    2012-08-15

    A very compact multi purpose high vacuum heating chamber for x-ray scattering techniques was developed. The compact design allows the chamber to be installed on high precision diffractometers which usually cannot support heavy and/or large equipment. The chamber is covered by a Be dome allowing full access to the hemisphere above the sample which is required for in-plane grazing incident x-ray diffraction and out-off plane wide angle x-ray diffraction.

  12. A flexible gas flow reaction cell for in situ x-ray absorption spectroscopy studies

    Energy Technology Data Exchange (ETDEWEB)

    Kroner, Anna B., E-mail: anna.kroner@diamond.ac.uk; Gilbert, Martin; Duller, Graham; Cahill, Leo; Leicester, Peter; Woolliscroft, Richard; Shotton, Elizabeth J. [Diamond Light Source Ltd., Diamond House, Harwell Science and Innovation Campus, Chilton, Oxfordshire, OX110DE (United Kingdom); Mohammed, Khaled M. H. [UK Catalysis Hub, Research Complex at Harwell, Rutherford Appleton Laboratory, Chilton, Oxfordshire, OX110FA (United Kingdom); School of Chemistry, University of Southampton, Southampton, SO17 1BJ (United Kingdom)

    2016-07-27

    A capillary-based sample environment with hot air blower and integrated gas system was developed at Diamond to conduct X-ray absorption spectroscopy (XAS) studies of materials under time-resolved, in situ conditions. The use of a hot air blower, operating in the temperature range of 298-1173 K, allows introduction of other techniques e.g. X-ray diffraction (XRD), Raman spectroscopy for combined techniques studies. The flexibility to use either quartz or Kapton capillaries allows users to perform XAS measurement at energies as low as 5600 eV. To demonstrate performance, time-resolved, in situ XAS results of Rh catalysts during the process of activation (Rh K-edge, Ce L{sub 3}-edge and Cr K-edge) and the study of mixed oxide membrane (La{sub 0.6}Sr{sub 0.4}Co{sub 0.2}Fe{sub 0.8}O{sub 3−δ}) under various partial oxygen pressure conditions are described.

  13. Isolation, spectroscopic characterization, X-ray, theoretical studies as well as in vitro cytotoxicity of Samarcandin.

    Science.gov (United States)

    Ghoran, Salar Hafez; Atabaki, Vahideh; Babaei, Esmaeil; Olfatkhah, Seyed Reza; Dusek, Michal; Eigner, Vaclav; Soltani, Alireza; Khalaji, Aliakbar Dehno

    2016-06-01

    Samarcandin 1, a natural sesquiterpene-coumarin, was isolated as well as elucidated from F. assa-foetida which has significant effect in Iranian traditional medicine because of its medicinal attitudes. The crystal structure of samarcandin was determined by single-crystal X-ray structure analysis. It is orthorhombic, with unit cell parameters a=10.8204 (5)Å, b=12.9894 (7)Å, c=15.2467 (9)Å, V=2142.9 (2)Å(3), space group P212121 and four symmetry equivalent molecules in the unit cell. Samarcandin was isolated in order to study for its theoretical studies as well as its cellular toxicity as anti-cancer drug against two cancerous cells. In comparison with controls, our microscopic and MTT assay data showed that samarcandin suppresses cancer cell proliferation in a dose-dependent manner with IC50=11μM and 13 for AGS and WEHI-164 cell lines, respectively. Density functional theory (DFT) and time-dependent density functional theory (TD-DFT) of the structure was computed by three functional methods and 6-311++G(∗∗) standard basis set. The optimized molecular geometry and theoretical analysis agree closely to that obtained from the single crystal X-ray crystallography. To sum up, the good correlations between experimental and theoretical studies by UV, NMR, and IR spectra were found. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Hybrid echo and x-ray image guidance for cardiac catheterization procedures by using a robotic arm: a feasibility study.

    Science.gov (United States)

    Ma, YingLiang; Penney, Graeme P; Bos, Dennis; Frissen, Peter; Rinaldi, C Aldo; Razavi, Reza; Rhode, Kawal S

    2010-07-07

    We present a feasibility study on hybrid echocardiography (echo) and x-ray image guidance for cardiac catheterization procedures. A self-tracked, remotely operated robotic arm with haptic feedback was developed that attached to a standard x-ray table. This was used to safely manipulate a three-dimensional (3D) trans-thoracic echo probe during simultaneous x-ray fluoroscopy and echo acquisitions. By a combination of calibration and tracking of the echo and x-ray systems, it was possible to register the 3D echo images with the 2D x-ray images. Visualization of the combined data was achieved by either overlaying triangulated surfaces extracted from segmented echo data onto the x-ray images or by overlaying volume rendered 3D echo data. Furthermore, in order to overcome the limited field of view of the echo probe, it was possible to create extended field of view (EFOV) 3D echo images by co-registering multiple tracked echo data to generate larger roadmaps for procedure guidance. The registration method was validated using a cross-wire phantom and showed a 2D target registration error of 3.5 mm. The clinical feasibility of the method was demonstrated during two clinical cases for patients undergoing cardiac pacing studies. The EFOV technique was demonstrated using two healthy volunteers.

  15. Hybrid echo and x-ray image guidance for cardiac catheterization procedures by using a robotic arm: a feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Ma Yingliang; Penney, Graeme P; Razavi, Reza; Rhode, Kawal S [Division of Imaging Sciences, King' s College, London SE1 7EH (United Kingdom); Bos, Dennis; Frissen, Peter [Philips Applied Technologies, High Tech. Campus 7, 5656 AE Eindhoven (Netherlands); Rinaldi, C Aldo, E-mail: y.ma@kcl.ac.u [Department of Cardiology, Guy' s and St Thomas' NHS Foundation Trust, London SE1 7EH (United Kingdom)

    2010-07-07

    We present a feasibility study on hybrid echocardiography (echo) and x-ray image guidance for cardiac catheterization procedures. A self-tracked, remotely operated robotic arm with haptic feedback was developed that attached to a standard x-ray table. This was used to safely manipulate a three-dimensional (3D) trans-thoracic echo probe during simultaneous x-ray fluoroscopy and echo acquisitions. By a combination of calibration and tracking of the echo and x-ray systems, it was possible to register the 3D echo images with the 2D x-ray images. Visualization of the combined data was achieved by either overlaying triangulated surfaces extracted from segmented echo data onto the x-ray images or by overlaying volume rendered 3D echo data. Furthermore, in order to overcome the limited field of view of the echo probe, it was possible to create extended field of view (EFOV) 3D echo images by co-registering multiple tracked echo data to generate larger roadmaps for procedure guidance. The registration method was validated using a cross-wire phantom and showed a 2D target registration error of 3.5 mm. The clinical feasibility of the method was demonstrated during two clinical cases for patients undergoing cardiac pacing studies. The EFOV technique was demonstrated using two healthy volunteers. (note)

  16. Low-energy d-d excitations in MnO studied by resonant x-ray fluorescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Butorin, S.M.; Guo, J.; Magnuson, M. [Uppsala Univ. (Sweden)] [and others

    1997-04-01

    Resonant soft X-ray emission spectroscopy has been demonstrated to possess interesting abilities for studies of electronic structure in various systems, such as symmetry probing, alignment and polarization dependence, sensitivity to channel interference, etc. In the present abstract the authors focus on the feasibility of resonant soft X-ray emission to probe low energy excitations by means of resonant electronic X-ray Raman scattering. Resonant X-ray emission can be regarded as an inelastic scattering process where a system in the ground state is transferred to a low excited state via a virtual core excitation. The energy closeness to a core excitation of the exciting radiation enhances the (generally) low probability for inelastic scattering at these wavelengths. Therefore soft X-ray emission spectroscopy (in resonant electronic Raman mode) can be used to study low energy d-d excitations in transition metal systems. The involvement of the intermediate core state allows one to use the selection rules of X-ray emission, and the appearance of the elastically scattered line in the spectra provides the reference to the ground state.

  17. Multifrequency EPR study on freeze-dried fruits before and after X-ray irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Yordanov, N.D. [Laboratory EPR, Institute of Catalysis, Bulgarian Academy of Sciences, 1113 Sofia (Bulgaria)]. E-mail: ndyepr@bas.bg; Aleksieva, K. [Laboratory EPR, Institute of Catalysis, Bulgarian Academy of Sciences, 1113 Sofia (Bulgaria); Dimitrova, A. [Laboratory EPR, Institute of Catalysis, Bulgarian Academy of Sciences, 1113 Sofia (Bulgaria); Georgieva, L. [Institute of Cryobiology and Food Technologies, 1162 Sofia (Bulgaria); Tzvetkova, E. [Institute of Cryobiology and Food Technologies, 1162 Sofia (Bulgaria)

    2006-09-15

    X-, K- and Q-band EPR studies on lyophilized whole pulp parts of blue plum, apricot, peach, melon as well as achens and pulp separately of strawberry before and after X-ray irradiation are reported. Before irradiation all samples show in X band a weak singlet EPR line with g=2.0030+/-0.0005, except melon, which is EPR silent. Immediately after irradiation all samples exhibit complex fruit-depending spectra, which decay with time and change to give, in ca. 50days, an asymmetric singlet EPR line with g=2.0041+/-0.0005. Only apricot pulp gave a typical ''sugar-like'' EPR spectrum. Singlet EPR lines recorded after irradiation in X -band are K- and Q-band resolved as typical anisotropic EPR spectra with g{sub ||}=2.0023+/-0.0003 and g{sub -}bar =2.0041+/-0.0005. In addition, K- and Q-band EPR spectra of all samples show a superposition with the six EPR lines of Mn{sup 2+} naturally present in the fruits. The saturation behavior of the EPR spectra of achens of lyophilized and fresh strawberry is also studied. The differences in g factors of samples before and after X-ray irradiation might be used for the identification of radiation processing of fruits in the case of pulp and the differences in the EPR saturation behavior might be used for the achens of strawberry.

  18. X-ray absorption Studies of Zinc species in Centella asiatica

    Science.gov (United States)

    Dehipawala, Sunil; Cheung, Tak; Hogan, Clayton; Agoudavi, Yao; Dehipawala, Sumudu

    2013-03-01

    Zinc is a very important mineral present in a variety of vegetables. It is an essential element in cellular metabolism and several bodily functions. We used X-ray fluorescence, and X-ray Absorption near Edge structure(XANES) to study the amount of zinc present in several leafy vegetables as well as its chemical environment within the plant. Main absorption edge position of XANES is sensitive to the oxidation state of zinc and is useful when comparing the type of zinc present in different vegetables to the standard zinc present in supplements. Normalized main edge height is proportional to the amount of zinc present in the sample. Several leafy greens were used in this study, such as Spinacia oleracea, Basella alba, Brassica oleracea, Cardiospermum halicacabumand Centella asiatica. All of these plant leaves contained approximately the same amount of zinc in the leaf portion of the plant and a slightly lower amount in the stems, except Centella asiatica. Both leaves and stems of the plant Centella asiatica contained nearly two times the zinc compared to other plants. Further investigation of zinc's chemical environment within Centella asiatica could lead to a much more efficient dietary consumption of zinc. Use of the National Synchrotron Light Source, Brookhaven National Laboratory, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886

  19. Studies of X-ray burst reactions with radioactive ion beams from RESOLUT

    Science.gov (United States)

    Blackmon, J. C.; Wiedenhöver, I.; Belarge, J.; Kuvin, S. A.; Anastasiou, M.; Baby, L. T.; Baker, J.; Colbert, K.; Deibel, C. M.; de Lucio, O.; Gardiner, H. E.; Gay, D. L.; Good, E.; Höflich, P.; Hood, A. A. D.; Keely, N.; Lai, J.; Laminack, A.; Linhardt, L. E.; Lighthall, J.; Macon, K. T.; Need, E.; Quails, N.; Rasco, B. C.; Rijal, N.; Volya, A.

    2018-01-01

    Reactions on certain proton-rich, radioactive nuclei have been shown to have a significant influence on X-ray bursts. We provide an overview of two recent measurements of important X-ray burst reactions using in-flight radioactive ion beams from the RESOLUT facility at the J. D. Fox Superconducting Accelerator Laboratory at Florida State University. The 17F(d,n)18Ne reaction was measured, and Asymptotic Normalization Coefficients were extracted for bound states in 18Ne that determine the direct-capture cross section dominating the 17F(p,γ)18Ne reaction rate for T≲ 0.45 GK. Unbound resonant states were also studied, and the single-particle strength for the 4.523-MeV (3+) state was found to be consistent with previous results. The 19Ne(d,n)20Na proton transfer reaction was used to study resonances in the 19Ne(p,γ)20Na reaction. The most important 2.65-MeV state in 20Na was observed to decay by proton emission to both the ground and first-excited states in 19Ne, providing strong evidence for a 3+ spin assignment and indicating that proton capture on the thermally-populated first-excited state in 19Ne is an important contributor to the 19Ne(p,γ)20Na reaction rate.

  20. Synchrotron X-Ray Microdiffraction Studies of Electromigration in Interconnect lines at the Advanced Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Tamura, Nobumichi; Chen, Kai; Kunz, Martin

    2009-05-01

    Synchrotron polychromatic X-ray microdiffraction is a particularly suitable technique to study in situ the effect of electromigration in metal interconnects as add spatial resolution to grain orientation and strain sensitivity. This technique has been extensively used at the Advanced Light Source to monitor changes in aluminum and copper interconnect test structures while high-density current is passed into them during accelerated tests at elevated temperature. One of the principal findings is the observation of electromigration-induced plasticity in the metal lines that appear during the very early stages of electromigration. In some of the lines, high density of geometrically necessary dislocation are formed leading to additional diffusion paths causing an enhancement of electromigration effect at test temperature. This paper presents an overview of the principal results obtained from X-ray microdiffraction studies of electromigration effects on aluminum and copper interconnects at the ALS throughout continuous efforts that spanned over a decade (1998-2008) from approximately 40 weeks of combined beamtime.

  1. Studies of X-ray burst reactions with radioactive ion beams from RESOLUT

    Directory of Open Access Journals (Sweden)

    Blackmon J. C.

    2017-01-01

    Full Text Available Reactions on certain proton-rich, radioactive nuclei have been shown to have a significant influence on X-ray bursts. We provide an overview of two recent measurements of important X-ray burst reactions using in-flight radioactive ion beams from the RESOLUT facility at the J. D. Fox Superconducting Accelerator Laboratory at Florida State University. The 17F(d,n18Ne reaction was measured, and Asymptotic Normalization Coefficients were extracted for bound states in 18Ne that determine the direct-capture cross section dominating the 17F(p,γ18Ne reaction rate for T≲ 0.45 GK. Unbound resonant states were also studied, and the single-particle strength for the 4.523-MeV (3+ state was found to be consistent with previous results. The 19Ne(d,n20Na proton transfer reaction was used to study resonances in the 19Ne(p,γ20Na reaction. The most important 2.65-MeV state in 20Na was observed to decay by proton emission to both the ground and first-excited states in 19Ne, providing strong evidence for a 3+ spin assignment and indicating that proton capture on the thermally-populated first-excited state in 19Ne is an important contributor to the 19Ne(p,γ20Na reaction rate.

  2. Hygroscopic behavior of individual submicrometer particles studied by X-ray spectromicroscopy.

    Science.gov (United States)

    Ghorai, Suman; Tivanski, Alexei V

    2010-11-15

    A novel application of single particle scanning transmission X-ray microscopy (STXM) and near edge X-ray absorption fine structure (NEXAFS) spectroscopy is presented for quantitative analysis of hygroscopic properties and phase transitions of individual submicrometer particles. The approach utilizes the exposure of substrate-deposited individual particles to water vapor at different relative humidity followed by STXM/NEXAFS spectromicroscopy analysis. The hygroscopic properties of atmospherically relevant NaCl, NaBr, NaI, and NaNO(3) submicrometer particles were measured to evaluate the utility of the approach. An analytical approach for quantification of a water-to-solute ratio within an individual submicrometer particle during hydration and dehydration cycles is presented. The results for the deliquescence and efflorescence phase transitions and quantitative measurements of water-to-solute ratios are found in excellent agreement with available literature data. Oxygen K-edge NEXAFS spectra of submicrometer sodium halide droplets are reported along with a unique experimental observation of the formation of the halide-water anionic complex in NaBr and NaI microdimensional droplets. The analytical approach provides a unique opportunity for spectromicroscopy studies of water uptake on environmental particles collected in both laboratory and field studies.

  3. Structural Significance of Lipid Diversity as Studied by Small Angle Neutron and X-ray Scattering.

    Science.gov (United States)

    Kučerka, Norbert; Heberle, Frederick A; Pan, Jianjun; Katsaras, John

    2015-09-21

    We review recent developments in the rapidly growing field of membrane biophysics, with a focus on the structural properties of single lipid bilayers determined by different scattering techniques, namely neutron and X-ray scattering. The need for accurate lipid structural properties is emphasized by the sometimes conflicting results found in the literature, even in the case of the most studied lipid bilayers. Increasingly, accurate and detailed structural models require more experimental data, such as those from contrast varied neutron scattering and X-ray scattering experiments that are jointly refined with molecular dynamics simulations. This experimental and computational approach produces robust bilayer structural parameters that enable insights, for example, into the interplay between collective membrane properties and its components (e.g., hydrocarbon chain length and unsaturation, and lipid headgroup composition). From model studies such as these, one is better able to appreciate how a real biological membrane can be tuned by balancing the contributions from the lipid's different moieties (e.g., acyl chains, headgroups, backbones, etc.).

  4. Structural Significance of Lipid Diversity as Studied by Small Angle Neutron and X-ray Scattering

    Directory of Open Access Journals (Sweden)

    Norbert Kučerka

    2015-09-01

    Full Text Available We review recent developments in the rapidly growing field of membrane biophysics, with a focus on the structural properties of single lipid bilayers determined by different scattering techniques, namely neutron and X-ray scattering. The need for accurate lipid structural properties is emphasized by the sometimes conflicting results found in the literature, even in the case of the most studied lipid bilayers. Increasingly, accurate and detailed structural models require more experimental data, such as those from contrast varied neutron scattering and X-ray scattering experiments that are jointly refined with molecular dynamics simulations. This experimental and computational approach produces robust bilayer structural parameters that enable insights, for example, into the interplay between collective membrane properties and its components (e.g., hydrocarbon chain length and unsaturation, and lipid headgroup composition. From model studies such as these, one is better able to appreciate how a real biological membrane can be tuned by balancing the contributions from the lipid’s different moieties (e.g., acyl chains, headgroups, backbones, etc..

  5. Synchrotron X-ray Scattering Studies of Poly(lactide) Electrospun Fibers Containing Carbon Nanotubes

    Science.gov (United States)

    Zhu, Yazhe; Cebe, Peggy

    2014-03-01

    Carbon nanotubes(CNTs) often serve as an effective nucleating agent that facilitates the crystallization of semicrystalline polymers. Here we study the influence of CNTs on thermal and structural properties of Poly-lactide (PLA), which is well-known as a biodegradable and biocompatible thermoplastic polymer. The effect of CNTs on the crystallization and melting behavior of electrospun fibers of poly (L-lactide) (PLLA, with 100% L-isomer) and poly (D-lactide) (PDLA, containing 4% D-isomer) was systemically studied by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), Fourier transform spectroscopy(FT-IR) and real time synchrotron wide-angle X-ray scattering (WAXS) . Multi-walled CNTs were co-electrospun with the poly(lactides) in weight ratios ranging from 0.1 to 4.0 wt% MW-CNT. PLA/carbon nanotubes composite electrospun fibers were successfully produced by appropriate choice of processing conditions and solution concentration. The morphologies of neat and CNT-filled electrospun nanofibers were observed by scanning electron microscopy. WAXS and DSC results show that lower content of CNTs contributes to higher speed of crystallization. However the results also showed that at the highest concentration of CNTs the ultimate crystallinity was reduced. FTIR and X-ray results show that PLA fibers have different crystal forms at high and low crystallization temperature. DSC results also show that D-lactide has reduced crystallinity compared to L-lactide.

  6. Small-angle x-ray scattering study on the structure of microcrystalline and nanofibrillated cellulose

    Science.gov (United States)

    Leppänen, Kirsi; Pirkkalainen, Kari; Penttilä, Paavo; Sievänen, Jenni; Kotelnikova, Nina; Serimaa, Ritva

    2010-10-01

    The effects of different solvents on the structure of microcrystalline and nanofibrillated cellulose (MCC, NFC) were studied using small-angle x-ray scattering (SAXS). MCC was immersed in water, ethanol, and acetone, and NFC was immersed only in water and ethanol, but studied also in the form of foam-like water-NFC-gel in wet, air-dried and re-wet states. The solvent affected the average chord length, which reveals the typical length scale of the structure of the sample: 2.4 ± 0.1 nm was obtained for MCC-water, 2.5 ± 0.1 nm for re-wet NFC-gel, 1.6 ± 0.1 nm for MCC-ethanol, 1.2 ± 0.1 nm for NFC-ethanol, and 1.3 ± 0.1 nm for MCC-acetone. The specific surface of cellulose increased strongly when MCC and NFC were immersed in the solvents compared to dry cellulose. The specific surface of cellulose was determined to be larger for NFC-water than MCC-water, and slightly larger for dry NFC powder than for dry MCC, which can be explained by the fact that the width of cellulose crystallites perpendicular to the cellulose chain direction was slightly larger in MCC than in NFC on the basis of wide-angle x-ray scattering results.

  7. GRB 071112C: A CASE STUDY OF DIFFERENT MECHANISMS IN X-RAY AND OPTICAL TEMPORAL EVOLUTION

    Energy Technology Data Exchange (ETDEWEB)

    Huang, K. Y.; Tung, Y. H.; Lin, H. M.; Wang, S. Y.; Lehner, M. J.; Wang, J. H.; Wen, C. Y. [Institute of Astronomy and Astrophysics, Academia Sinica, P.O. Box 23-141, Taipei 106, Taiwan (China); Urata, Y.; Ip, W. H. [Institute of Astronomy, National Central University, Chung-Li 32054, Taiwan (China); Xin, L. P.; Qiu, Y.; Wei, J. [National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Yoshida, M. [Hiroshima Astrophysical Science Center, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526 (Japan); Zheng, W.; Akerlof, C. [Department of Physics, University of Michigan, Ann Arbor, MI 48109 (United States); Bianco, F. B. [Department of Physics, University of California Santa Barbara, Mail Code 9530, Santa Barbara, CA 93106-9530 (United States); Kawai, N. [Department of Physics, Tokyo Institute of Technology, 2-21-1 Ookayama, Meguro-ku, Tokyo 152-8551 (Japan); Kuroda, D. [Okayama Astrophysical Observatory, National Astronomical Observatory of Japan, Kamogata, Asakuchi, Okayama 719-0232 (Japan); Marshall, S. L. [Kavli Institute for Particle Astrophysics and Cosmology, 2575 Sand Hill Road, MS 29, Menlo Park, CA 94025 (United States); Schwamb, M. E. [Department of Physics, Yale University, P.O. Box 208121, New Haven, CT 06520-8121 (United States); and others

    2012-03-20

    We present a study on GRB 071112C X-ray and optical light curves. In these two wavelength ranges, we have found different temporal properties. The R-band light curve showed an initial rise followed by a single power-law decay, while the X-ray light curve was described by a single power-law decay plus a flare-like feature. Our analysis shows that the observed temporal evolution cannot be described by the external shock model in which the X-ray and optical emission are produced by the same emission mechanism. No significant color changes in multi-band light curves and a reasonable value of the initial Lorentz factor ({Gamma}{sub 0} = 275 {+-} 20) in a uniform interstellar medium support the afterglow onset scenario as the correct interpretation for the early R band rise. The result suggests that the optical flux is dominated by afterglow. Our further investigations show that the X-ray flux could be created by an additional feature related to energy injection and X-ray afterglow. Different theoretical interpretations indicate the additional feature in X-ray can be explained by either late internal dissipation or local inverse-Compton scattering in the external shock.

  8. A X-ray photoelectron spectroscopy study of HDTMAB distribution within organoclays

    Science.gov (United States)

    He, Hongping; Zhou, Qin; Frost, Ray L.; Wood, Barry J.; Duong, Loc V.; Kloprogge, J. Theo

    2007-04-01

    X-ray photoelectron spectroscopy (XPS) in combination with X-ray diffraction (XRD) and high-resolution thermogravimetric analysis (HRTG) has been used to investigate the surfactant distribution within the organoclays prepared at different surfactant concentrations. This study demonstrates that the surfactant distribution within the organoclays depends strongly on the surfactant loadings. In the organoclays prepared at relative low surfactant concentrations, the surfactant cations mainly locate in the clay interlayer, whereas the surfactants occupy both the clay interlayer space and the interparticle pores in the organoclays prepared at high surfactant concentrations. This is in accordance with the dramatic pore volume decrease of organoclays compared to those of starting clays. XPS survey scans show that, at low surfactant concentration (organoclays prepared at high concentrations (>1.0 CEC). High-resolution XPS spectra show that the modification of clay with surfactants has prominent influences on the binding energies of the atoms in both clays and surfactants, and nitrogen is the most sensitive to the surfactant distribution within the organoclays.

  9. In situ X-ray photoelectron spectroscopy study of complex oxides under gas and vacuum environments

    Science.gov (United States)

    Paloukis, F.; Papazisi, K. M.; Balomenou, S. P.; Tsiplakides, D.; Bournel, F.; Gallet, J.-J.; Zafeiratos, S.

    2017-11-01

    For several decades an open question in many X-ray photoelectron spectroscopy (XPS) studies was whether or not the results obtained in ultra-high vacuum conditions (UHV) were representative of the sample state in gas atmospheres. As a consequence, near ambient pressure X-ray photoelectron spectroscopy (NAP-XPS) was received by surface scientists as an important tool for in situ characterization of the gas-solid interactions. However, it is not yet clear how, if at all, the surface state formed in contact with the gas is modified when this gas is evacuated. In this work we compare synchrotron-based XPS results recorded at 300 °C on Ni/yttria- stabilized zirconia cermet and La0.75Sr0.25Cr0.9Fe0.1O3 perovskite, under 3.5 mbar O2 and UHV environments. We found that the surface state formed in O2 is maintained to a large extent under vacuum. In addition, we demonstrate that the correlation of XPS spectra recorded in the two conditions can provide information regarding the electrical conductivity of the specific surface sites of these complex oxides. Our findings suggest that comparison of XPS measurements in gas and in vacuum environments might be particularly useful in applications where the electronic conductivity at the surface plays a crucial role, as for example in solid oxide electrochemical devices.

  10. X-ray absorption study of diamond films grown by chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Yang, X.; Ruckman, M.W.; Skotheim, T.A. (Brookhaven National Laboratory, Upton, New York 11973 (USA)); den Boer, M.; Zheng, Y. (The City University of New York, New York, New York 10021 (USA)); Badzian, A.R.; Badzian, T.; Messier, R. (The Pennsylvania State University, University Park, Pennsylvania 16802 (USA)); Srivatsa, A.R. (Moltech Corporation, Stony Brook, New York 11974 (USA))

    1991-05-01

    Carbon {ital k}-edge x-ray absorption fine structure (XAFS) is used to study the structure and bonding of chemical vapor deposition (CVD) grown diamond and diamond-like carbon films. Diamond films grown at 875 {degree}C on silicon using a 1% CH{sub 4} /H{sub 2} mixture have near-edge spectra resembling type 1(a) natural diamond. The {ital k}-edges of the diamond-like films grown by electron cyclotron resonance CVD at 200 {degree}C using 10{sup {minus}4} Torr of CH{sub 4} show a broad main peak lacking the sharp structure of graphite or diamond. Comparing the near edges of the CVD diamond film with other carbon compounds (i.e., graphite) and the CVD diamond film, the diamond-like film shows a strong {pi}* feature at 285 eV indicative of sp{sup 2} bonded carbon and a feature at 289 eV, the {sigma}*(C--H) resonance indicating C--H bonds. The relatively weak extended x-ray absorption fine structure (EXAFS) shows that the diamond-like carbon film is highly disordered on an atomic level.

  11. A study of shielding properties of x-ray and gamma in barium compounds

    Energy Technology Data Exchange (ETDEWEB)

    Seenappa, L.; Manjunatha, H. C. [Dept. of of Physics, Government College for women, Karnataka (India); Chandrika, B. M. [PC Extension, St. Annes School, Karnataka (India); Chikka, Hanumantharayappa [Vivekananda Degree College, Karnataka (India)

    2017-03-15

    Ionizing radiation is known to be harmful to human health. The shielding of ionizing radiation depends on the attenuation which can be achieved by three main rules, i.e. time, distance and absorbing material. The mass attenuation coefficient, linear attenuation coefficient, Half Value Layer (HVL) and Tenth Value Layer (TVL) of X-rays (32 keV, 74 keV) and gamma rays (662 keV) are measured in Barium compounds. The measured values agree well with the theory. The effective atomic numbers (Z{sub eff}) and electron density (Ne) of Barium compounds have been computed in the wide energy region 1 keV to 100 GeV using an accurate database of photon-interaction cross sections and the WinXCom program. The mass attenuation coefficient and linear attenuation coefficient for BaCO{sub 3} is higher than the BaCl{sub 2}, Ba(No{sub 3}){sub 2} and BaSO{sub 4}. HVL, TVL and mean free path are lower for BaCO{sub 3} than the BaCl{sub 2}, Ba(No{sub 3}){sub 2} and BaSO{sub 4}. Among the studied barium compounds, BaCO{sub 3} is best material for x-ray and gamma shielding.

  12. A study of X-ray multiple diffraction by means of section topography.

    Science.gov (United States)

    Kohn, V G; Smirnova, I A

    2015-09-01

    The results of theoretical and experimental study are presented for the question of how the X-ray multiple diffraction in a silicon single crystal influences the interference fringes of section topography for the 400 reflection in the Laue case. Two different cases of multiple diffraction are discovered for zero and very small values of the azimuthal angle for the sample in the form of a plate with the surface normal to the 001 direction. The cases are seen on the same topogram without rotation of the crystal. Accurate computer simulations of the section topogram for the case of X-ray multiple diffraction are performed for the first time. It is shown that the structure of interference fringes on the section topogram in the region of multiple diffraction becomes more complicated. It has a very sharp dependence on the azimuthal angle. The experiment is carried out using a laboratory source under conditions of low resolution over the azimuthal angle. Nevertheless, the characteristic inclination of the interference fringes on the tails of the multiple diffraction region is easily seen. This phenomenon corresponds completely to the computer simulations.

  13. A Microbeam Small-Angle X-ray Scattering Study on Enamel Crystallites in Subsurface Lesion

    Energy Technology Data Exchange (ETDEWEB)

    Yagi, N; Ohta, N; Matsuo, T [Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5198 (Japan); Tanaka, T; Terada, Y; Kamasaka, H; Kometani, T, E-mail: yagi@spring8.or.j [Ezaki Glico Co. Ltd., 4-6-5 Utajima, Nishiyodogawa-ku, Osaka 555-8502 (Japan)

    2010-10-01

    The early caries lesion in bovine tooth enamel was studied by two different X-ray diffraction systems at the SPring-8 third generation synchrotron radiation facility. Both allowed us simultaneous measurement of the small and large angle regions. The beam size was 6{mu}m at BL40XU and 50{mu}m at BL45XU. The small-angle scattering from voids in the hydroxyapatite crystallites and the wide-angle diffraction from the hydroxyapatite crystals were observed simultaneously. At BL40XU an X-ray image intensifier was used for the small-angle and a CMOS flatpanel detector for the large-angle region. At BL45XU, a large-area CCD detector was used to cover both regions. A linear microbeam scan at BL40XU showed a detailed distribution of voids and crystals and made it possible to examine the structural details in the lesion. The two-dimensional scan at BL45XU showed distribution of voids and crystals in a wider region in the enamel. The simultaneous small- and wide-angle measurement with a microbeam is a powerful tool to elucidate the mechanisms of demineralization and remineralization in the early caries lesion.

  14. Synchrotron X-Ray Studies of Model SOFC Cathodes, Part I: Thin Film Cathodes.

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Kee-Chul; Ingram, Brian; Ilavsky, Jan; Lee, Shiwoo; Fuoss, Paul; You, Hoydoo

    2017-11-15

    We present synchrotron x-ray investigations of thin film La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) model cathodes for solid oxide fuel cells, grown on electrolyte substrates by pulse laser deposition, in situ during half-cell operations. We observed dynamic segregations of cations, such as Sr and Co, on the surfaces of the film cathodes. The effects of temperature, applied potentials, and capping layers on the segregations were investigated using a surfacesensitive technique of total external reflection x-ray fluorescence. We also studied patterned thin film LSCF cathodes using high-resolution micro-beam diffraction measurements. We find chemical expansion decreases for narrow stripes. This suggests the expansion is dominated by the bulk pathway reactions. The chemical expansion vs. the distance from the electrode contact was measured at three temperatures and an oxygen vacancy activation energy was estimated to be ~1.4 eV.

  15. Archaeometric studies by neutron, x-ray radiography and microCT

    Science.gov (United States)

    Latini, R. M.; Bellido, A. V. B.; Vinagre Filho, U. M.; Souza, M. I. S.; Lima, I.; Oliveira, D. F.; Lopes, R. T.

    2013-05-01

    The aim of this study is to investigate manufacturing techniques used in prehistoric Brazilian pottery from Acre state and Araruama, Rio de Janeiro state, Brazil, using Neutron and X-Ray Radiography. For the neutrongraphy different fragments of pottery were submitted to a neutron flux of the order of 105n.cm-2.s-1 for 3 minutes at the Argonauta research reactor of the Instituto de Engenharia Nuclear (IEN)/CNEN. Digital processing techniques using imaging plate were applied to process the image of the selected sample. For the radiography the sample were exposed to an X-Rays in the Feinfocus Model FX100 and the image was obtained by Flat Panel GE IT Model DXR 250V at the Laboratório de Instrumentação Nuclear (LIN) - COPPE/UFRJ. The Neutrongraphy and radiography shows two different manufacturing details: palette and rollers and the microtomography shows cavities in the clay body and different temper applied in the pottery production. The preliminary results shows promising techniques applied for the pottery manufacturing information and as complement for better understanding the ceramics classification and precedence.

  16. Photoluminescence and X-ray diffraction studies on Cu{sub 2}O

    Energy Technology Data Exchange (ETDEWEB)

    Solache-Carranco, H., E-mail: hsolache@cinvestav.m [Departamento de Ingenieria Electrica, SEES, CINVESTAV-IPN, Mexico, D.F. (Mexico); Juarez-Diaz, G. [Departamento de Ingenieria Electrica, SEES, CINVESTAV-IPN, Mexico, D.F. (Mexico); Esparza-Garcia, A.; Briseno-Garcia, M. [Centro de Ciencias Aplicadas y Desarrollo de Tecnologia-UNAM, Mexico, D.F. (Mexico); Galvan-Arellano, M. [Departamento de Ingenieria Electrica, SEES, CINVESTAV-IPN, Mexico, D.F. (Mexico); Martinez-Juarez, J. [Centro de Investigacion en Dispositivos Semiconductores, BUAP, Puebla, Pue. (Mexico); Romero-Paredes, G.; Pena-Sierra, R. [Departamento de Ingenieria Electrica, SEES, CINVESTAV-IPN, Mexico, D.F. (Mexico)

    2009-12-15

    Cuprous oxide (Cu{sub 2}O) crystals were grown by the two-step crystallization method in air atmosphere conditions from polycrystalline thin copper foils. The method comprises two stages; in the first one the copper plates are oxidized at 1020 deg. C by some hours in line with its initial thickness. In the second stage, the growth of large crystalline areas is promoted by annealing the Cu{sub 2}O samples at 1100 deg. C for long periods. Raman scattering an X-ray measurements demonstrates the existence of the single-phase Cu{sub 2}O. The effects on the crystalline structure and photoluminescence (PL) response were studied as a function of the conditions used in the second stage of the synthesis method. PL spectra were taken from 10 to 180 K to define the main radiative recombination paths. Besides the near band excitonic transitions, two strong emission bands at 720 and 920 nm associated with relaxed excitons at oxygen and copper vacancies were detected. Both excitonic-vacancy bond transitions presented similar intensities that are related to the growth method. X-ray and Raman scattering measurements help to assess the samples crystalline quality.

  17. High energy white beam x-ray diffraction studies of residual strains in engineering components

    Science.gov (United States)

    Zhang, S. Y.; Vorster, W.; Jun, T. S.; Song, X.; Golshan, M.; Laundy, D.; Walsh, M. J.; Korsunsky, A. M.

    2008-09-01

    In order to predict the durability of engineering components and improve performance, it is mandatory to understand residual stresses. The last decade has witnessed a significant increase of residual stress evaluation using diffraction of penetrating radiation, such as neutrons or high energy X-rays. They provide a powerful non-destructive method for determining the level of residual stresses in engineering components through precise characterisation of interplanar crystal lattice spacing. The unique non-destructive nature of these measurement techniques is particularly beneficial in the context of engineering design, since it allows the evaluation of a variety of structural and deformational parameters inside real components without material removal, or at worst with minimal interference. However, while most real engineering components have complex shape and are often large in size, leading to measurement and interpretation difficulties, since experimental facilities usually have limited space for mounting the sample, limited sample travel range, limited loading capacity of the sample positioning system, etc. Consequently, samples often have to be sectioned, requiring appropriate corrections on measured data; or facilities must be improved. Our research group has contributed to the development of engineering applications of high-energy X-ray diffraction methods for residual stress evaluation, both at synchrotron sources and in the lab setting, including multiple detector setup, large engineering component manipulation and measurement at the UK Synchrotron Radiation Source (SRS Daresbury), and in our lab at Oxford. A nickel base superalloy combustion casing and a large MIG welded Al alloy plate were successfully studied.

  18. Study on vinasse dynamics in soil using energy dispersive x-ray fluorescence with radioisotopic excitation

    Energy Technology Data Exchange (ETDEWEB)

    Simabuco, S.M. [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia; Nascimento Filho, V.F. [Sao Paulo Univ., Piracicaba, SP (Brazil). Escola Superior de Agricultura Luiz de Queiroz]|[Centro de Energia Nuclear na Agricultura (CENA), Piracicaba, SP (Brazil)

    1994-05-01

    The distribution of S, Cl, K and Ca along the profiles of two soils of different texture (Red Yellow Podzolic and Dark Red Latosol) treated with amounts of vinasse equivalent to 4000 m{sup 3}/ha were studied using energy dispersive X-ray fluorescence, observing a significant increase in the contents of these elements. The same effect was observed for Cu, Zn, Rb and Sr contents in soils treated with vinasse as compared to the control. The concentrations of Al, Si, Ti, Mn, Fe and Zr could also be evaluated but no significant variation was observed due to the high soil initial concentrations of these elements as compared to the low concentrations in the vinasse. Annular radioactive sources of Fe-55 and Cd-109 were employed for the excitation of these elements in the soil samples, treated or not with vinasse. For the detection of the characteristic X-rays, a Si(Li) semiconductor detector was used, coupled to a multichannel emulation card inserted in a microcomputer. (author). 8 refs, 6 figs, 4 tabs.

  19. On the possibility of using X-ray Compton scattering to study magnetoelectrical properties of crystals

    Energy Technology Data Exchange (ETDEWEB)

    Collins, S. P., E-mail: steve.collins@diamond.ac.uk; Laundy, D.; Connolley, T.; Laan, G. van der; Fabrizi, F. [Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, OX11 0DE (United Kingdom); Janssen, O. [Department of Physics, New York University, New York, NY 10003 (United States); Cooper, M. J. [Department of Physics, University of Warwick, CV4 7AL (United Kingdom); Ebert, H.; Mankovsky, S. [Universität München, Department Chemie, Haus E2.033, Butenandtstrasse 5-13, D-81377 München (Germany)

    2016-02-16

    The possibility of using X-ray Compton scattering to reveal antisymmetric components of the electron momentum density, as a fingerprint of magnetoelectric sample properties, is investigated experimentally and theoretically by studying the polar ferromagnet GaFeO{sub 3}. This paper discusses the possibility of using Compton scattering – an inelastic X-ray scattering process that yields a projection of the electron momentum density – to probe magnetoelectrical properties. It is shown that an antisymmetric component of the momentum density is a unique fingerprint of such time- and parity-odd physics. It is argued that polar ferromagnets are ideal candidates to demonstrate this phenomenon and the first experimental results are shown, on a single-domain crystal of GaFeO{sub 3}. The measured antisymmetric Compton profile is very small (≃ 10{sup −5} of the symmetric part) and of the same order of magnitude as the statistical errors. Relativistic first-principles simulations of the antisymmetric Compton profile are presented and it is shown that, while the effect is indeed predicted by theory, and scales with the size of the valence spin–orbit interaction, its magnitude is significantly overestimated. The paper outlines some important constraints on the properties of the antisymmetric Compton profile arising from the underlying crystallographic symmetry of the sample.

  20. X-ray study of the merging double-radio-relic cluster Abell 3376 with Suzaku

    Science.gov (United States)

    Urdampilleta, I.; Akamatsu, H.; Mernier, F.; Kaastra, J.; de Plaa, J.; Ohashi, T.; Ishisaki, Y.; Kawahara, H.

    2017-10-01

    In this work, we present an X-ray analysis of the nearby merging double-radio-relic cluster Abell 3376 (z= 0.046), observed with the Suzaku XIS instrument. These deep observations (˜380 ks) cover the entire double-relic region in the outskirts of the cluster. The mentioned diffuse radio structures are one of the largest arc-shaped relics known (˜Mpc) and are co-spatially located with large-scale X-ray shocks (Mach number M≤2-3). We confirm the presence of a prominent shock (M˜3) in the western periphery, derived from a sharp temperature drop across the shock. This is one of the strongest shocks ever detected in a merging galaxy cluster. In addition, we have preliminary indications of a shock present in the eastern outskirts. In our analysis, we are able to constrain the Cosmic Xray Background fluctuations and limit the systematic uncertainties on the temperature in the outer regions to 20-30%. These data allow us to study the connection between shocks and radio relics as well as the particle acceleration mechanism in strong shocks. We also estimate the dynamical age of the shock front, which provides us with a better understanding of the evolution of the merging cluster.

  1. Timing and Spectral Studies of the Peculiar X-ray Binary Circinus X-1

    Energy Technology Data Exchange (ETDEWEB)

    Saz Parkinson, Pablo M.

    2003-08-26

    Circinus X-1 (Cir X-1) is an X-ray binary displaying an array of phenomena which makes it unique in our Galaxy. Despite several decades of observation, controversy surrounds even the most basic facts about this system. It is generally classified as a Neutron Star (NS) Low Mass X-ray Binary (LMXB),though this classification is based primarily on the observation of Type I X-ray Bursts by EXOSAT in 1985. It is believed to be in a very eccentric {approx} 16.5 day orbit, displaying periodic outbursts in the radio and other frequency bands (including optical and IR) which reinforce the notion that this is in fact the orbital period. Cir X-1 lies in the plane of the Galaxy, where optical identification of the companion is made difficult due to dust obscuration. The companion is thought to be a low mass star, though a high mass companion has not currently been ruled out. In this work, the author analyzes recent observations of Cir X-1 made with the Unconventional Stellar Aspect (USA) experiment, as well as archival observations of Cir X-1 made by a variety of instruments, from as early as 1969. The fast (< 1 s) timing properties of Cir X-1 are studied by performing FFT analyses of the USA data. Quasi-Periodic Oscillations (QPOs) in the 1-50 Hz range are found and discussed in the context of recent correlations which question the leading models invoked for their generation. The energy dependence of the QPOs (rms increasing with energy) argues against them being generated in the disk and favors models in which the QPOs are related to a higher energy Comptonizing component. The power spectrum of Cir X-1 in its soft state is compared to that of Cygnus X-1 (Cyg X-1), the prototypical black hole candidate. Using scaling arguments the author argues that the mass of Cir X-1 could exceed significantly the canonical 1.4 M{circle_dot} mass of a neutron star, possibly partly explaining why this object appears so different to other neutron stars. The spectral evolution of Cir X-1 is

  2. Joint x-ray

    Science.gov (United States)

    X-ray - joint; Arthrography; Arthrogram ... x-ray technologist will help you position the joint to be x-rayed on the table. Once in place, pictures are taken. The joint may be moved into other positions for more ...

  3. X-ray studies, spectral characterization and thermal behaviour of a ...

    African Journals Online (AJOL)

    HP04)3]. H20, I, was synthesized by reacting Zn2+ ions with tris-(2-aminoethyl) amine phosphate [C6H21N4][P04].5H20. The compound was characterized by powder x-ray diffraction analysis, energy dispersive analysis by x-ray and infrared ...

  4. Chandra and HST Studies of the X-Ray Sources in Galactic Globular Cluster M92

    NARCIS (Netherlands)

    Lu, T.-N.; Kong, A.K.H.; Verbunt, F.W.M.|info:eu-repo/dai/nl/068970374; Lewin, W.H.G.; Anderson, S.F.; Pooley, D.

    2011-01-01

    We present the analysis of two observations of M92 taken with the Chandra X-Ray Observatory. We combined the two data sets with a total exposure of ∼52 ks. With the combined observation, we detected 10 X-ray sources inside the half-mass radius (1. 02), five of which are inside the core radius (0.

  5. Comparative study of X-ray emission from plasma focus relative to different preionization schemes

    Science.gov (United States)

    Ahmad, S.; Qayyum, A.; Hassan, M.; Zakaullah, M.

    2017-07-01

    A 2.7-kJ Mather-type plasma focus has been investigated for X-ray emission with preionization produced by an α-source, a β-source, and a shunt resistor. Time-resolved and time integrated measurements are carried out using a PIN-diode-based X-ray spectrometer and pinhole camera. The β-source (28Ni63) assisted preionization enhances the X-ray emission up to 25%, while preionization induced by depleted uranium (92U238) increases both Cu-Kα and total X-ray yield of about 100%. The preionization caused by the optimum shunt resistor enhances the Cu-Kα and total X-ray yield of about 53%. It is found that preionization also broadens the working pressure range for the high X-ray yield and improves the shot-to-shot reproducibility of the system. Pinhole images reveal that the X-ray emission from the anode tip is dominant owing to impact of electron bombardment, while the X-ray emission from hot spots is also visible.

  6. Experimental study on hard X-rays emitted from metre-scale negative discharges in air

    NARCIS (Netherlands)

    P.O. Kochkin (Pavlo); A. van Deursen (Arie); U. Ebert (Ute)

    2015-01-01

    htmlabstractWe investigate the development of metre long negative discharges and focus on their x-ray emissions. We describe appearance, timing and spatial distribution of the x-rays. They appear in bursts of nanosecond duration mostly in the cathode area. The spectrum can be characterized by an

  7. Luminosity Dependent Study of the High Mass X-ray Binary Pulsar ...

    Indian Academy of Sciences (India)

    1997-02-10

    Feb 10, 1997 ... these spectral characteristics as observed with ASCA with those of other satellites. We also compare ... periodicity has been observed in the X-ray light curves of 4U 0114 + 65 from the analysis of archival ... The X-ray spectrum emanating from the pulsar is nicely fitted with a generic model applicable in the ...

  8. X-ray study of chromium oxide films epitaxially grown on MgO

    NARCIS (Netherlands)

    Du, XS; Hak, S; Rogojami, OC; Hibma, T

    2004-01-01

    Chromium oxide films grown by molecular beam epitaxy on MgO (001) substrates were characterized by x-ray diffraction (XRD) and x-ray reflectivity (XRR) measurements. The absence of random oriented peaks in the theta-2theta spectra indicated that the thin films were a single phase. Reciprocal space

  9. Interaction between lipid monolayers and poloxamer 188: An X-ray reflectivity and diffraction study

    DEFF Research Database (Denmark)

    Wu, G.H.; Majewski, J.; Ege, C.

    2005-01-01

    The mechanism by which poloxamer 188 (P188) seals a damaged cell membrane is examined using the lipid monolayer as a model system. X-ray reflectivity and grazing-incidence x-ray diffraction results show that at low nominal lipid density, P188, by physically occupying the available area and phase...

  10. X-ray micro diffraction study on mesostructured silica thin films

    CERN Document Server

    Noma, T; Miyata, H; Iida, A

    2001-01-01

    The local structure of highly ordered mesostructured silica films was investigated by using a synchrotron X-ray microbeam and a CCD X-ray detector. Two-dimensional X-ray diffraction patterns clearly showed the detailed arrangement of the mesostructures, in which the hexagonal mesochannels aligned uniaxially in the mesostructured silica films formed on a silica glass substrate with a rubbing-treated thin polyimide coating. The alignment direction was shown to be perpendicular to the rubbing direction. The grazing incidence condition revealed the structural anisotropy of the mesostructures, while normal incidence X-ray diffraction data indicated the in-plane structural uniformity of the films. Extra spots were observed in the diffraction patterns. This suggested that the X-ray beam reflected at the boundary of the mesostructured silica film and the substrate.

  11. A study to compare chest X-ray reports on overseas nursing recruits.

    LENUS (Irish Health Repository)

    Power, S

    2010-05-01

    This study was carried out to assess if there was a difference in the Chest X- ray (CXR) report on recruited nurses carried out overseas and later repeated in Ireland. This study was carried out in two Irish teaching hospitals. The subjects of this study comprised all overseas nurses recruited in each of the two hospitals within the defined period. The total number of subjects recruited from the 2 two centres was 84. Only nurses that had a repeat CXR were included in this study. 6\\/84 (7%) of the CXR that were initially reported as normal were subsequently reported as abnormal and were later diagnosed as Latent TB. 2\\/84(2%) of the CXR that were reported as abnormal were subsequently reported as normal. The data collected in this study has demonstrated that there was a significant difference in the CXR report from overseas and the CXR report in Ireland.

  12. X-ray Absorption Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Yano, Junko; Yachandra, Vittal K.

    2009-07-09

    This review gives a brief description of the theory and application of X-ray absorption spectroscopy, both X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS), especially, pertaining to photosynthesis. The advantages and limitations of the methods are discussed. Recent advances in extended EXAFS and polarized EXAFS using oriented membranes and single crystals are explained. Developments in theory in understanding the XANES spectra are described. The application of X-ray absorption spectroscopy to the study of the Mn4Ca cluster in Photosystem II is presented.

  13. X-Ray Studies of the Extended TeV Gamma-Ray Source VER J2019+368

    Science.gov (United States)

    Mizuno, T.; Tanaka, N.; Takahashi, H.; Katsuta, J.; Hayashi, K.; Yamazaki, R.

    2017-06-01

    This article reports the results of X-ray studies of the extended TeV γ-ray source VER J2019+368. Suzaku observations conducted to examine properties of the X-ray pulsar wind nebula (PWN) around PSR J2021+3651 revealed that the western region of the X-ray PWN has a source extent of 15\\prime × 10\\prime with the major axis oriented to that of the TeV emission. The PWN-west spectrum was closely fitted by a power law for absorption at N({{H}})=({8.2}-1.1+1.3)× {10}21 {{cm}}-2 and a photon index of {{Γ }}=2.05+/- 0.12, with no obvious change in the index within the X-ray PWN. The measured X-ray absorption indicates that the distance to the source is much less than the 10 {kpc} inferred by radio data. Aside from the PWN, no extended emission was observed around PSR J2021+3651 even by Suzaku. Archival data from the XMM-Newton were also analyzed to complement the Suzaku observations, indicating that the eastern region of the X-ray PWN has a similar spectrum (N({{H}})=(7.5+/- 0.9)× {10}21 {{cm}}-2 and {{Γ }}=2.03+/- 0.10) and source extent up to at least 12\\prime along the major axis. The lack of significant change in the photon index and the source extent in X-ray are used to constrain the advection velocity or the diffusion coefficient for accelerated X-ray-producing electrons. A mean magnetic field of ˜ 3 μ {{G}} is required to account for the measured X-ray spectrum and reported TeV γ-ray spectrum. A model calculation of synchrotron radiation and inverse Compton scattering was able to explain ˜ 80 % of the reported TeV flux, indicating that the X-ray PWN is a major contributor of VER J2019+368.

  14. Study of Increased Radiation When an X-ray Tube is Placed in a Strong Magnetic Field

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Z.F.; /Stanford U., Dept. Radiol. /Stanford U., Phys. Dept.; Pelc, N.J.; /Stanford U., Dept. Radiol. /Stanford U., Dept. Bioeng.; Nelson, W.R.; /SLAC; Fahrig, R.; /Stanford U., Dept. Radiol.

    2007-01-12

    When a fixed anode x-ray tube is placed in a magnetic field (B) that is parallel to the anode-cathode axis, the x-ray exposure increases with increasing B. It was hypothesized that the increase was caused by backscattered electrons which were constrained by B and reaccelerated by the electric field onto the x-ray tube target. We performed computer simulations and physical experiments to study the behavior of the backscattered electrons in a magnetic field, and their effects on the radiation output, x-ray spectrum, and off-focal radiation. A Monte Carlo program (EGS4) was used to generate the combined energy and angular distribution of the backscattered electrons. The electron trajectories were traced and their landing locations back on the anode were calculated. Radiation emission from each point was modeled with published data (IPEM Report 78), and thus the exposure rate and x-ray spectrum with the contribution of backscattered electrons could be predicted. The point spread function for a pencil beam of electrons was generated and then convolved with the density map of primary electrons incident on the anode as simulated with a finite element program (Opera-3d, Vector Fields, UK). The total spatial distribution of x-ray emission could then be calculated. Simulations showed that for an x-ray tube working at 65 kV, about 54% of the electrons incident on the target were backscattered. In a magnetic field of 0.5 T, although the exposure would be increased by 33%, only a small fraction of the backscattered electrons landed within the focal spot area. The x-ray spectrum was slightly shifted to lower energies and the half value layer (HVL) was reduced by about 6%. Measurements of the exposure rate, half value layer and focal spot distribution were acquired as functions of B. Good agreement was observed between experimental data and simulation results. The wide spatial distribution of secondary x-ray emission can degrade the MTF of the x-ray system at low spatial

  15. Comparative dimensional study between panoramic X-ray (OPG and cone beam CT (CBCT

    Directory of Open Access Journals (Sweden)

    Tonea Marinela

    2016-08-01

    Full Text Available During daily practice, we find various situations in which the 1/1 correspondence between panoramic x-ray (OPG and reality seems not to be respected. In the studied literature, there are articles on this subject, but our study was made based on cases in a highly frequented dental imaging clinic in Bucharest. The study was carried out on a number of 24 patients selected from the radiology department. Using Romexis Viewer software, with soft’s specific feature, measurements have been made (in approximately horizontal and approximately vertical axis in three different areas: anterior, bicuspid and molar. Various results have been obtained, depending on the studied area. CBCT measured length of anterior teeth was higher than that measured on OPG, in the majority of cases. Molar width (mesio-distal distance parameter variation was very small between OPG and CBCT.

  16. Radiation effects and metalloproteins studied by x-ray photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wurzbach, J.A.

    1975-07-01

    X-ray photoelectron spectroscopy (XPS) is used to study the bonding structure at the iron site of cytochrome c and the bonding of rare earth ions to the phosphate oxygens of ATP. Radiation effects are studied on several amino acid and simple peptide model systems. The emission spectrum of the x-ray source is calculated from literature references. The distributions of photon energy as a function of photon frequency and as a function of take-off angle are obtained. From these distributions, the radiation dose absorbed by an organic sample is found to be 10/sup 6/ rads/sec. The C 1s and N 1s spectra of amino acids and peptides are studied to characterize an internal reference standard for protein XPS spectra. Samples of native cytochrome c prepared from solutions of pH 1.5, 3, 7, and 11 are studied. Control samples include porphyrin cytochrome c (PCC), the metal free analogue of the native protein, and microperoxidase (MP), a mixture of heme peptides derived from the peptic digestion of cytochrome c. These samples show two S 2p peaks. The first peak has a binding energy (BE) of 163 eV, which corresponds to the S containing amino acids; the second peak is shifted to 167 eV. This large shift may be the result of Fe-S binding, or oxidation, or both. Low spin ferricytochrome c and ferri-MP were found to have Fe 3p BE's that are unusually low (51 eV) compared to other ferric compounds (54 to 58 eV) and even Fe metal (53 eV). X-ray crystal structures of these compounds show that low spin heme Fe lies in the porphyrin plane; while, high spin heme Fe is displaced above the plane. The N 1s and P 2p spectra of ATP show no change except slight broadening when Nd/sup 3 +/ is substituted for Na/sup +/. Thus, there is no inconsistency with proposals that rare earth ions might be useful as substitutes for alkali metal ions and alkaline earth ions in proteins.

  17. An X-ray spectral study of 24 type 1 active galactic nuclei

    Science.gov (United States)

    Reynolds, C. S.

    1997-04-01

    I present a study of the X-ray spectral properties of a sample containing 24 type 1 active galactic nuclei using the medium spectral resolution of ASCA. The sample consists of 20 radio-quiet objects (18 Seyfert 1 galaxies and two radio-quiet quasars) and four radio-loud objects (three broad-line radio galaxies and one radio-loud quasar). A simple power-law continuum absorbed by Galactic material provides a very poor description of the spectra of most objects. Deviations from the power-law form are interpreted in terms of X-ray reprocessing/absorption processes. In particular, at least half of the objects show K-shell absorption edges of warm oxygen (Ovii and Oviii) characteristic of optically thin, photoionized material along the line of sight to the central engine, the so-called warm absorber. The amount and presence of this absorption are found to depend on either the luminosity or radio properties of the objects: luminous and/or radio-loud objects are found to possess less ionized absorption. This ambiguity exists because the radio-loud objects are also amongst the most luminous of the sample. It is also found that objects with significant optical reddening display deep Ovii edges. The converse is true with two possible exceptions (NGC 3783 and NGC 3516). Coupled with other evidence resulting from detailed study of particular objects, this suggests the existence of dusty warm plasma. A radiatively driven outflow originating from the molecular torus is probably the source of this plasma. Rapid variability of the warm absorber also points to there being another component closer to the central source and probably situated within the broad-line region (BLR). Independent evidence for such an optically thin, highly ionized BLR component comes from detailed optical/UV studies. Spectral features at energies characteristic of cold iron Kalpha emission are common. Such emission is expected to arise from the fluorescence of cold iron in optically thick material when

  18. 100-OL-1 Operable Unit Field Portable X-Ray Fluorescence (XRF) Analyzer Pilot Study Plans

    Energy Technology Data Exchange (ETDEWEB)

    Bunn, Amoret L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Fritz, Brad G. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wellman, Dawn M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-07-01

    A pilot study is being conducted to support the approval of the Remedial Investigation/Feasibility Study (RI/FS) Work Plan to evaluate the 100-OL-1 Operable Unit (OU) pre-Hanford orchard lands. Based on comments received by the U.S. Environmental Protection Agency (EPA) and Washington State Department of Ecology, the pilot study will evaluate the use of field portable X-ray fluorescence (XRF) spectrometry measurements for evaluating lead and arsenic concentrations on the soil surface as an indicator of past use of lead arsenate pesticide residue in the OU. The work will be performed in the field during the summer of 2014, and assist in the planning for the characterization activities in the RI/FS.

  19. Extended X-ray absorption fine structure studies of GaN epilayers doped with Er

    Science.gov (United States)

    Katchkanov, V.; Mosselmans, J. F. W.; O'Donnell, K. P.; Nogales, E.; Hernandez, S.; Martin, R. W.; Steckl, A.; Lee, D. S.

    2006-05-01

    The structural properties of Er doped GaN epilayers were studied by means of extended X-ray absorption fine structure (EXAFS) measured at the Er L III and Ga K-edges. The samples were doped with Er in-situ during growth by molecular beam epitaxy (MBE). The Ga local structure was found to be the same in all samples studied. Er L III-edge EXAFS showed that when growth conditions were gradually changed from Ga-rich to Ga-poor, an increase in Er concentration from 0.15 at.% to 0.64 at.% is accompanied by the sequential formation of ErGaN, ErGaN clusters with locally high Er content and finally a pure ErN component. This study indicates that Er incorporation into GaN is enhanced under Ga-poor conditions, at the expense of the formation of Er-rich clusters and ErN precipitates.

  20. Magnetic coupling in (GaMn)As ferromagnetic semiconductors - studied by soft X-ray spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kronast, F.

    2006-07-01

    Manganese doped into Gallium Arsenide provides a local spin magnetic moment and acting as an acceptor it creates itinerant holes, which can mediate long range ferromagnetic order. We studied the magnetic coupling of Mn atoms and their hybridization with the GaAs host in epitactically grown (GaMn)As layers, utilizing X-ray absorption spectroscopy and X-ray magnetic circular dichroism at the Mn L2,3 absorption edges. Combining surface and bulk sensitive detection methods with additional reflectivity measurements we resolved a chemical and magnetic depth profile of Mn in the (GaMn)As layer. The depth profile reveals an inhomogeneous distribution of Mn in two different ground state configurations. The bulk is dominated by Mn residing at the Ga sites, for this substitutional Mn the hybridization with the sp-states of the As ligands causes an admixture of a 3d{sup 6} weight to the 3d{sup 5} ground state configuration. At the surface we find an accumulation of non-ferromagnetic Mn in a pure 3d{sup 5} electronic configuration. The enhanced surface segregation of this second Mn species upon annealing provides strong evidence that the surface layer is caused by the diffusion of interstitial Mn during the growth and the annealing. With increasing Mn concentration we find an increasing amount of Mn atoms not participating in the ferromagnetic ordering. Their number scales approximately with the number of Mn nearest neighbor pairs expected for a statistical Mn distribution. For the Mn atoms not participating in the ferromagnetic ordering we also find a reduced number of 3d electrons of close to 3d{sup 4}. Both observations can be explained by the presence of antiferromagnetically coupled Mn-Mn nearest neighbor pairs at higher Mn concentrations. So far antiferromagnetic coupling has only been observed in doped II-VI semiconductors. The pd-hybridization, mediating the magnetic exchange coupling, is usually assumed to be spherically isotropic. We studied the pd-hybridization by X-ray

  1. Thermal oxidation of vanadium-free Ti alloys: An X-ray photoelectron spectroscopy study

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, Maria Francisca, E-mail: mflopez@icmm.csic.es [Department of Surfaces and Coatings, ICMM-CSIC, Sor Juana Ines de la Cruz, 3, Cantoblanco, 28049 Madrid (Spain); Gutierrez, Alejandro [Departamento de Fisica Aplicada and Instituto Nicolas Cabrera, Universidad Autonoma de Madrid, Cantoblanco, E-28049 Madrid (Spain); Jimenez, Jose Antonio [Centro Nacional de Investigaciones Metalurgicas, CSIC, Avda. Gregorio del Amo 8, E-28040 Madrid (Spain); Martinesi, Maria; Stio, Maria; Treves, Cristina [Department of Biochemical Sciences of University of Florence, Viale Morgagni 50, 50134 Florence (Italy)

    2010-04-06

    In the present work, X-ray photoelectron spectroscopy (XPS) was used to study the surface chemical composition of three alloys for biomedical applications: Ti-7Nb-6Al, Ti-13Nb-13Zr and Ti-15Zr-4Nb. The surface of these alloys was modified by annealing in air at 750 deg. C for different times with the aim of developing an oxide thick layer on top. The evolution of surface composition with annealing time was studied by XPS, and compared with the composition of the native oxide layer present on the samples before annealing. Two different oxidation trends were observed depending on the alloying elements and their corresponding diffusion kinetics, which give rise to different chemical species at the topmost layers. These results were linked with an evaluation of the biological response of the alloys by bringing them in contact with human peripheral blood mononuclear cells (PBMC).

  2. Oxide Nanolayers in Stratified Samples Studied by X-Ray Resonant Raman Scattering at Grazing Incidence

    Directory of Open Access Journals (Sweden)

    Juan José Leani

    2015-01-01

    Full Text Available X-ray resonant Raman scattering is applied at grazing incidence conditions with the aim of discriminating and identifying chemical environment of iron in different layers of stratified materials using a low resolution energy dispersive system. The methodology allows for depth studies with nanometric resolution. Nanostratified samples of Fe oxides were studied at the Brazilian synchrotron facility (LNLS using monochromatic radiation and an EDS setup. The measurements were carried out in grazing incident regime with incident photon energy lower than and close to the Fe-K absorption edge. The result allowed for characterizing oxide nanolayers, not observable with conventional geometries, identifying the oxidation state present in a particular depth of a sample surface with nanometric, or even subnanometric, resolution using a low-resolution system.

  3. Spectral, DFT and X-ray diffraction studies on regioselective synthesis of thiazolo-quinazoline system

    Science.gov (United States)

    Gautam, Deepika; Gautam, Poonam; Chaudhary, R. P.

    2017-10-01

    Unsymmetrical quinazoline-3-thione 2, obtained from one pot condensation of 2-tetralone, p-chlorobenzaldehyde and thiourea in acidic medium, on reaction with α-halo acids afforded thiazolo-quinazoline derivatives 3, 7 and not their regioisomers 4 and 8 respectively. The cyclised product obtained by the reaction of thione 2 with 1,2-dibromoethane has been assigned structure 5. Condensation of thione 2 with 3-chloropropionic acid and 1,3-dibromopropane furnished thiazino-quinazoline derivatives 10 and 12 instead of their regioisomers 11 and 13 respectively. The structure of the cyclised products has been established by means of spectral data (IR, NMR and Mass). X-ray diffraction studies of a representative compound supported our claim on structural assignments. DFT studies on regioisomers further validated the claim for assigned structures. The reaction of thione 2 with 3-chloropropionc acid in presence of acetic acid yielded thiazinan-4-one 10.

  4. Structural changes of green roof growing substrate layer studied by X-ray CT

    Science.gov (United States)

    Jelinkova, Vladimira; Sacha, Jan; Dohnal, Michal; Snehota, Michal

    2017-04-01

    Increasing interest in green infrastructure linked with newly implemented legislation/rules/laws worldwide opens up research potential for field of soil hydrology. A better understanding of function of engineered soils involved in green infrastructure solutions such as green roofs or rain garden is needed. A soil layer is considered as a highly significant component of the aforesaid systems. In comparison with a natural soil, the engineered soil is assumed to be the more challenging case due to rapid structure changes early stages after its build-up. The green infrastructure efficiency depends on the physical and chemical properties of the soil, which are, in the case of engineered soils, a function of its initial composition and subsequent soil formation processes. The project presented in this paper is focused on fundamental processes in the relatively thick layer of engineered soil. The initial structure development, during which the pore geometry is altered by the growth of plant roots, water influx, solid particles translocation and other soil formation processes, is investigated with the help of noninvasive imaging technique  X-ray computed tomography. The soil development has been studied on undisturbed soil samples taken periodically from green roof test system during early stages of its life cycle. Two approaches and sample sizes were employed. In the first approach, undisturbed samples (volume of about 63 cm3) were taken each time from the test site and scanned by X-ray CT. In the second approach, samples (volume of about 630 cm3) were permanently installed at the test site and has been repeatedly removed to perform X-ray CT imaging. CT-derived macroporosity profiles reveal significant temporal changes of soil structure. Clogging of pores by fine particles and fissures development are two most significant changes that would affect the green roof system efficiency. This work has been supported by the Ministry of Education, Youth and Sports within

  5. X-ray beam design for multi-energy imaging with charge-integrating detector: A simulation study

    Science.gov (United States)

    Baek, Cheol-Ha; Kim, Daehong

    2015-11-01

    Multi-energy X-ray imaging systems have been widely used for clinical examinations. In order to enhance the imaging quality of these X-ray systems, a dual-energy system that can obtain specific information has been developed in order to discriminate different materials. Although the dual-energy system shows reliable performance for clinical applications, it is necessary to improve the method in order to minimize radiation dose, reduce projection error, and increase image contrast. The purpose of this study is to develop a triple energy technique that can discriminate three materials for the purpose of enhancing imaging quality and patient safety. The X-ray system tube voltage was varied from 40 to 90 kV, and filters (that can generate three X-ray energies) were installed, consisting of pure elemental materials in foil form (including Al, Cu, I, Ba, Ce, Gd, Er, and W). The X-ray beam was evaluated with respect to mean energy ratio, contrast variation ratio, and exposure efficiency. In order to estimate the performance of the suggested technique, Monte Carlo was conducted, and the results were compared to the photon-counting method. As a result, the density maps of iodine, aluminum, and polymethyl methacrylate (PMMA) using the X-ray beam were more accurate in comparison to that obtained with the photon-counting method. According to the results, the suggested triple energy technique can improve the accuracy of the determination of thickness of density. Moreover, the X-ray beam could reduce unnecessary patient dose.

  6. X-ray study of a SODART flight telescope using the expanded beam x-ray optics beamline at the Daresbury synchrotron

    DEFF Research Database (Denmark)

    Christensen, Finn Erland; Hornstrup, Allan; Frederiksen, P. K.

    1995-01-01

    The on- and off-axis imaging properties of the first of two SODART flight telescopes have been studied using the expanded beam x-ray facility at the Daresbury synchrotron. From on- axis measurements the encircled power distribution and the point spread function at three energies 6.627 keV, 8.837 ke......V, and 11.046 keV have been measured using a one dimensional position sensitive detector. The data have been used to calculate the half power diameter (HPD) for three different SODART focal plane detectors, the high energy proportional counter (HEPC), the low energy proportional counter (LEPC) and the 19...... to contribute to the HPD by approximately 10%. If 33% of the geometric telescope area near the edges of the quadrants are covered a reduction of 10% of the HPD can be obtained. On- and off-axis images generated from the one dimensional intensity distribution are presented. Finally the data have been used...

  7. X-ray study of a test quadrant of the SODART telescopes using the expanded beam x-ray optics facility at the Daresbury synchrotron

    DEFF Research Database (Denmark)

    Christensen, Finn Erland; Hornstrup, Allan; Frederiksen, P.

    1994-01-01

    The imaging properties of a test model of the SODART telescopes have been studied using an expanded beam X-ray facility at the Daresbury synchrotron. The encircled power and the point spread function at three energies 6.627 keV, 8.837 keV and 11.046 keV have been measured using 1D and 2D position...... sensitive detectors. The data have been used to calculate the Half Power Diameter (HPD) for three different SODART focal plane detectors. The High Energy Proportional Counter (HEPC), the Low Energy Proportional Counter (LEPC) and the 19 element solid state array detector (SIXA). At 6.627 keV and 8.837 ke......V the HPD is 2.5 - 3.0 arcmin for all detectors whereas it is somewhat larger at 11.046 keV for HEPC and LEPC but essentially unchanged for SIXA. Finally, the data are used to point to improvements that can be introduced during the manufacture of the flight telescopes....

  8. One Year Study of Chest X-Ray Changes in Opiate -poisoned Patients in Hamadan

    Directory of Open Access Journals (Sweden)

    S Afzali

    2012-05-01

    Full Text Available

    Background and Objectives: Intoxication with opiates is one of the most common causes of referring to emergency departments in Iran. Because respiratory signs are one of the most common and important signs in these patients, this study was designed to evaluate the chest x-ray changes of the patients.Methods: The present study was a cross-sectional one. The changes noted in the Chest X-Ray (CXR of the patients having been intoxicated with opiates and referred with respiratory signs of intoxication during the one year period between July 2007 till July 2008 to Farshchian Hospital in Hamadan were studied. The data, then, were gathered and analyzed using T and chi-square statistical tests.Results: Out of 1698 patients having referred due to poisoning with drugs and chemical agents, 318(18.72% patients were admitted due to opiates intoxication. Among them, 214 (67.29% had respiratory signs. 84.1% were male and 15.9% were female. Their average age was 35.6. The most important substance used was opium (57.5%.Most of the cases (84.1% were due to abuse.

    The most common physical signs were: miosis (83.6%, respiratory distress (74.8%, rales & wheezing (67.3%. The most common radiographic abnormality was pulmonary edema (14.5%. And the most common substance causing pulmonary edema was crack (59.4% revealing a significant statistical difference (p=0.001. Conclusion: As expected, one of the most important complications and common causes of death in opiate-poisoned patients was respiratory problems; we suggest that physicians and staffs working in the emergency department be well-trained in management of such patients.

  9. One Year Study of Chest X-Ray Changes in Opiate -poisoned Patients in Hamadan

    Directory of Open Access Journals (Sweden)

    Jafari M.R.

    2010-06-01

    Full Text Available Background and Objectives: Intoxication with opiates is one of the most common causes of referring to emergency departments in Iran. Because respiratory signs are one of the most common and important signs in these patients, this study was designed to evaluate the chest x-ray changes of the patients.Methods: The present study was a cross-sectional one. The changes noted in the Chest X-Ray (CXR of the patients having been intoxicated with opiates and referred with respiratory signs of intoxication during the one year period between July 2007 till July 2008 to Farshchian Hospital in Hamadan were studied. The data, then, were gathered and analyzed using T and chi-square statistical tests.Results: Out of 1698 patients having referred due to poisoning with drugs and chemical agents, 318(18.72% patients were admitted due to opiates intoxication. Among them, 214 (67.29% had respiratory signs. 84.1% were male and 15.9% were female. Their average age was 35.6. The most important substance used was opium (57.5%.Most of the cases (84.1% were due to abuse. The most common physical signs were: miosis (83.6%, respiratory distress (74.8%, rales & wheezing (67.3%. The most common radiographic abnormality was pulmonary edema (14.5%. And the most common substance causing pulmonary edema was crack (59.4% revealing a significant statistical difference (p=0.001. Conclusion: As expected, one of the most important complications and common causes of death in opiate-poisoned patients was respiratory problems; we suggest that physicians and staffs working in the emergency department be well-trained in management of such patients.Keywords: Radiography, Thoracic; Analgesics, Opioid; Poisoning; Pulmonary Edema.

  10. X-ray diffraction study on microstructures of shot/laser-peened AISI316 stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Kumagai, Masayoshi, E-mail: mkumagai@tcu.ac.jp [Tokyo City University, Department of Mechanical Systems Engineering (Japan); Akita, Koichi [Quantum Beam Science Directorate, Japan Atomic Energy Agency (Japan); Itano, Yuta [Tokyo City University, Graduate School of Engineering (Japan); Imafuku, Muneyuki; Ohya, Shin-ichi [Tokyo City University, Department of Mechanical Systems Engineering (Japan)

    2013-11-15

    Microstructural features of AISI316 stainless steels processed by shot peening (SP) and laser peening (LP) were studied using X-ray diffraction line profile analyses. Both specimens exhibited similar compressive residual stress profiles. Although the number of dislocations was increased and the crystallites were refined with both processes, the dislocation density in the SP specimen was significantly greater than that in the LP specimen. The crystallite size in the SP specimen was one-third that in the LP specimen. The SP process induced martensite transformation. The variations in the microstructural features differed between samples subjected to the two processes. The SP process resulted in a greater variation in the microstructural features in a sample in which residual stresses similar to that induced by the LP process were induced. Thus, the variations in the microstructural features differed depending on the deformation process.

  11. Phase analysis study of copper ferrite aluminates by X-ray diffraction and Moessbauer spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Almokhtar, M. E-mail: almoktar@aun.edu.egalmoktar@acc.aun.eun.eg; Abdalla, A.M.Atef M.; Gaffar, M.A

    2004-05-01

    CuFe{sub 2-x}Al{sub x}O{sub 4} (where x=0.0-0.6) have been synthesized at 950 deg. C, 1000 deg. C, 1050 deg. C and 1100 deg. C using the usual ceramic method. The Moessbauer measurements show reasonable values of magnetic as well as electric hyperfine interactions. At higher sintering temperatures, the spinel ferrite phase is partially dissociated forming delafossite phase in addition to the main matrix. The delafossite phase manifested itself as paramagnetic doublet overlapping the main Moessbauer spectra measured at room temperature. Furthermore, X-ray diffraction studies confirmed the presence of the CuFeO{sub 2} (delafossite) phase of Cu-Al ferrite.

  12. X-ray Spectromicroscopy Study of Protein Adsorption to a Polystyrene-Polylactide Blend

    Energy Technology Data Exchange (ETDEWEB)

    Leung, Bonnie; Hitchcock, Adam; Cornelius, Rena; Brash, John; Scholl, Andreas; Doran, Andrew

    2010-06-09

    Synchrotron-based X-ray photoemission electron microscopy (X-PEEM) was used to study the adsorption of human serum albumin (HSA) to polystyrene-polylactide (40:60 PS-PLA, 0.7 wt percent) thin films, annealed under various conditions. The rugosity of the substrate varied from 35 to 90 nm, depending on the annealing conditions. However, the characteristics of the protein adsorption (amounts and phase preference) were not affected by the changes in topography. The adsorption was also not changed by the phase inversion which occured when the PS-PLA substrate was annealed above Tg of the PLA. The amount of protein adsorbed depended on whether adsorption took place from distilled water or phosphate buffered saline solution. These differences are interpreted as a result of ionic strength induced changes in the protein conformation in solution.

  13. Small-angle x-ray scattering study of polymer structure: Carbosilane dendrimers in hexane solution

    Science.gov (United States)

    Shtykova, E. V.; Feigin, L. A.; Volkov, V. V.; Malakhova, Yu. N.; Streltsov, D. R.; Buzin, A. I.; Chvalun, S. N.; Katarzhanova, E. Yu.; Ignatieva, G. M.; Muzafarov, A. M.

    2016-09-01

    The three-dimensional organization of monodisperse hyper-branched macromolecules of regular structure—carbosilane dendrimers of zero, third, and sixth generations—has been studied by small-angle X-ray scattering (SAXS) in solution. The use of modern methods of SAXS data interpretation, including ab initio modeling, has made it possible to determine the internal architecture of the dendrimers in dependence of the generation number and the number of cyclosiloxane end groups (forming the shell of dendritic macromolecules) and show dendrimers to be spherical. The structural results give grounds to consider carbosilane dendrimers promising objects for forming crystals with subsequent structural analysis and determining their structure with high resolution, as well as for designing new materials to be used in various dendrimer-based technological applications.

  14. Study of elemental variations during somatic embryogenesis in sugarcane using photon induced X-ray probe

    Science.gov (United States)

    Desai, N. S.; Joseph, D.; Suprasanna, P.; Bapat, V. A.

    2006-11-01

    Energy-dispersive X-ray fluorescence technique (EDXRF) has been extensively used to characterize trace element profiles during plant growth under stress and development. In this study, elemental accumulation was analyzed using EDXRF technique during somatic embryogenesis, from de-differentiated callus (S1) to proembryogenic callus (S2), embryogenic callus with developing embryos (S3) and embryo converted plantlets (S4, S5). There was much variation in Mg, K, Ca, Mn, Fe, Cu and Zn. Higher Mg (4.6%) K (1068 ppm) and Fe accumulation was observed in proembryogenic callus (S2) stage compared to other stages suggesting specific elemental accumulation in embryogenic callus. The results suggest that the information on the accumulation of elements during developmental stages in vitro could be useful for formulating a media for induction of high frequency of embryogenesis in sugarcane.

  15. Study of elemental variations during somatic embryogenesis in sugarcane using photon induced X-ray probe

    Energy Technology Data Exchange (ETDEWEB)

    Desai, N.S. [Dr. DY Patil Institute of Biotechnology and Bioinformatics, Sector 15, CBD Belapur, Navi Mumbai 400 614 (India); Joseph, D. [Nuclear Physics Division, Bhabha Atomic Research Center, Mumbai, Trombay 400 085 (India); Suprasanna, P. [Plant Cell Culture Technology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Center, Mumbai, Trombay 400 085 (India)]. E-mail: prasanna@barc.gov.in; Bapat, V.A. [Plant Cell Culture Technology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Center, Mumbai, Trombay 400 085 (India)

    2006-11-15

    Energy-dispersive X-ray fluorescence technique (EDXRF) has been extensively used to characterize trace element profiles during plant growth under stress and development. In this study, elemental accumulation was analyzed using EDXRF technique during somatic embryogenesis, from de-differentiated callus (S1) to proembryogenic callus (S2), embryogenic callus with developing embryos (S3) and embryo converted plantlets (S4, S5). There was much variation in Mg, K, Ca, Mn, Fe, Cu and Zn. Higher Mg (4.6%) K (1068 ppm) and Fe accumulation was observed in proembryogenic callus (S2) stage compared to other stages suggesting specific elemental accumulation in embryogenic callus. The results suggest that the information on the accumulation of elements during developmental stages in vitro could be useful for formulating a media for induction of high frequency of embryogenesis in sugarcane.

  16. On the microstructure of nanoporous gold: an X-ray diffraction study.

    Science.gov (United States)

    Van Petegem, Steven; Brandstetter, Stefan; Hodge, Andrea M; El-Dasher, Bassem S; Biener, Jurgen; Schmitt, Bernd; Borca, Camelia; Van Swygenhoven, Helena

    2009-03-01

    The evolution of the grain structure, internal strain, and the lattice misorientations of nanoporous gold during dealloying of bulk (3D) Ag-Au alloy samples was studied by various in situ and ex situ X-ray diffraction techniques including powder and Laue diffraction. The experiments reveal that the dealloying process preserves the original crystallographic structure but leads to a small spread in orientations within individual grains. Initially, most grains develop in-plane tensile stresses, which are partly released during further dealloying. Simultaneously, the feature size of the developing nanoporous structure increases with increasing dealloying time. Finally, microdiffraction experiments on dealloyed micron-sized nanoporous pillars reveal significant surface damage introduced by focused ion beam milling.

  17. Phases of phosphatidyl ethanolamine monolayers studied by synchrotron x-ray scattering

    DEFF Research Database (Denmark)

    Helm, C.A.; Tippmann-Krayer, P.; Möhwald, H.

    1991-01-01

    For the first time, phospholid monolayers at the air/water interface have been studied by x-ray diffraction and reflection all along the isotherm from the laterally isotropic fluid (the so-called LE phase) to the ordered phases. The model used to analyze the data, and the accuracy of the parameters...... deduced, were tested by comparing the results obtained with two lipids having the same head group but different chain lengths. Compression of the fluid phase leads predominantly to a change of thickness of the hydrophobic moiety, much less of its density, with the head group extension remaining constant....... The main transition involves a considerable increase (approximately 10%) of the electron density in the hydrophobic region, a dehydration of the head group and a positional ordering of the aliphatic tails, albeit with low coherence lengths (approximately 10 spacings). On further compression of the film...

  18. X-ray, FTIR and DFT study of new iodine-containing derivatives of trifluoroacetamide

    Science.gov (United States)

    Sterkhova, Irina V.; Astakhova, Vera V.; Shainyan, Bagrat A.

    2017-08-01

    The X-ray structures of new iodine-containing derivatives of trifluoroacetamide: N-(1-cyclohexyl-2-iodoethyl)trifluoroacetamide (1), N-(2-iodo-1-phenylethyl)trifluoroacetamide (2), and N-(5-iodocyclopent-2-en-1-yl)trifluoroacetamide (3) have been determined. The conformers of amides 1, 2 and their structural analogue N-[2-iodo-1-(p-chlorophenyl)ethyl]trifluoroacetamide (4) with respect to rotation about the Csbnd CH2I bond were studied by FT-IR spectroscopy [along with N-(5-iodocyclopent-2-en-1-yl)trifluoroacetamide (3) and N-(6-iodocyclohex-2-en-1-yl)trifluoroacetamide (5)] and analyzed by quantum chemical calculations (B3LYP/DGDZVP).

  19. Study of a neutron irradiated reactor pressure vessel steel by X-ray absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Cammelli, S. [LWV, NES, Paul Scherrer Institute, 5232 Villigen PSI (Switzerland)], E-mail: sebastiano.cammelli@psi.ch; Degueldre, C.; Kuri, G.; Bertsch, J. [LWV, NES, Paul Scherrer Institute, 5232 Villigen PSI (Switzerland)

    2008-11-15

    Reactor pressure vessel (RPV) reference steel samples submitted to neutron irradiations followed by thermal annealing were investigated by X-ray absorption fine structure (XAFS) spectroscopy. Several studies revealed that Cu and Ni impurities can form nanoclusters. In the unirradiated sample and in the only-irradiated sample no significant clustering is detected. In all irradiated and subsequently annealed samples increases of Cu and Ni atom densities are recorded around the absorber. Furthermore, the density of Cu and Ni atoms determined in the first and second shells around the absorber is found to be affected by the irradiation and annealing treatment. The comparison of the XAFS data at Cu and Ni K-edges shows that these elements reside in arrangements similar to bcc Fe. However, the local irradiation damage yields vacancy fractions which were determined from the analysis of XAFS data with a precision of {approx}5%.

  20. Synchrotron X-Ray Microdiffraction Studies of Electromigration in Interconnect lines at the Advanced Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Tamura, Nobumichi; Chen, Kai; Kunz, Martin

    2009-12-01

    Synchrotron polychromatic X-ray microdiffraction is a particularly suitable technique to study in situ the effect of electromigration in metal interconnects as add spatial resolution to grain orientation and strain sensitivity. This technique has been extensively used at the Advanced Light Source to monitor changes in aluminum and copper interconnect test structures while high-density current is passed into them during accelerated tests at elevated temperature. One of the principal findings is the observation of electromigration-induced plasticity in the metal lines that appear during the very early stages of electromigration. In some of the lines, high density of geometrically necessary dislocation are formed leading to additional diffusion paths causing an enhancement of electromigration effect at test temperature.

  1. Shear cracking in an Al powder compact studied by X-ray microtomography

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, S.A., E-mail: sam.mcdonald@btinternet.com [School of Materials, University of Manchester, Grosvenor Street, Manchester M1 7HS (United Kingdom); Motazedian, F. [Department of Engineering, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Cocks, A.C.F. [Department of Engineering Science, University of Oxford, Park Road, Oxford OX1 3PJ (United Kingdom); Withers, P.J. [School of Materials, University of Manchester, Grosvenor Street, Manchester M1 7HS (United Kingdom)

    2009-05-20

    An experimental study is presented of the compaction of an aluminium alloy powder to determine the sequence of physical processes that leads to shear cracking. The powder was compacted in a die containing a long central vertical pin. Image correlation was used to map out the evolution of the displacement and strain patterns in the compact from the motion of tin markers in the powder captured in a sequence of X-ray tomographic 3D volumes. Compaction is observed to occur most extensively above the pin, creating an essentially rigid domed region as the powder approaches full density locally. As the compaction force is increased further, intense shear deformation occurs around the dome, smearing out the particles and leading to the formation of a shear crack. Optical micrographs taken destructively at different stages of compaction show clearly the deformation of the particles either side of the shear plane and the morphology of the crack.

  2. In Situ Study of Silicon Electrode Lithiation with X-ray Reflectivity.

    Science.gov (United States)

    Cao, Chuntian; Steinrück, Hans-Georg; Shyam, Badri; Stone, Kevin H; Toney, Michael F

    2016-12-14

    Surface sensitive X-ray reflectivity (XRR) measurements were performed to investigate the electrochemical lithiation of a native oxide terminated single crystalline silicon (100) electrode in real time during the first galvanostatic discharge cycle. This allows us to gain nanoscale, mechanistic insight into the lithiation of Si and the formation of the solid electrolyte interphase (SEI). We describe an electrochemistry cell specifically designed for in situ XRR studies and have determined the evolution of the electron density profile of the lithiated Si layer (LixSi) and the SEI layer with subnanometer resolution. We propose a three-stage lithiation mechanism with a reaction limited, layer-by-layer lithiation of the Si at the LixSi/Si interface.

  3. Heterogeneities in CuZr-based bulk metallic glasses studied by x-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Wang, X D; Lou, H B; Gong, Y; Jiang, J Z [International Center for New-Structured Materials (ICNSM), Zhejiang University (China); Vainio, U, E-mail: wangxd@zju.edu.cn, E-mail: jiangjz@zju.edu.cn [HASYLAB at DESY, Notkestrasse 85, D-22607 Hamburg (Germany)

    2011-02-23

    Inhomogeneities in two CuZr-based bulk metallic glasses (BMGs) were studied by using synchrotron radiation x-ray scattering techniques. (Cu{sub 4.5/5.5}Ag{sub 1/5.5}){sub 46}Zr{sub 46}Al{sub 8} BMG was found to be more inhomogeneous than Cu{sub 46}Zr{sub 46}Al{sub 8} BMG on the small length scale, where Cu and Ag atoms form enriched zones. Such heterogeneities are locally favorable for forming close-packed icosahedron-like clusters in three-dimensional space, greatly promoting the glass forming ability of this alloy. Upon annealing near the T{sub g} temperature, the heterogeneities were reduced initially at low temperature and short time annealing, then regenerated again for temperature increase and time extension. The average environment around Zr atoms almost does not change. However, the heterogeneity increases for Cu, Zr and Ag atoms once nanocrystallization happens.

  4. Fossilization in Geopark Araripe studied through X-ray diffraction, scanning microscopy and thermogravimetric analysis

    CERN Document Server

    Lima, Ricardo J C; Macedo, Zélia S; Sasaki, José M; Saraiva, Antônio A F

    2008-01-01

    The Geopark Araripe, located in Northeastern Brazil, is the first UNESCO Natural Park in the South hemisphere and a world-famous fossil deposit of the Early Cretaceous period (approximately 120 million years). Fossilized fish fauna in Geopark Araripe is found inside of sedimentary rocks in three-dimensional forms. In the present study sedimentary rocks and fossil fish Rhacolepis bucalis have been carefully analysed by means of X-ray powder diffraction, scanning electron microscopy and termogravimetric analysis. Mineralogical composition of the fossil fish was explained in terms of facts occurred at the initial stages of the opening of the South Atlantic and the oceanic hydrothermal phenomena (``black smoker'', ``white smoker'' and warm-water events). The occurrence of organic substance was, for the first time, evaluated in collapsed internal elements (intestinal and muscles) by termogravimetric analysis.

  5. A Preliminary X-ray Study of Murine Tnfaip8/Oxi-α

    Directory of Open Access Journals (Sweden)

    Daeun Lee

    2014-03-01

    Full Text Available Tnfaip8/oxidative stress regulated gene-α (Oxi-α is a novel protein expressed specifically in brain dopaminergic neurons and its over-expression has been reported to protect dopaminergic cells against OS-induced cell death. In this study, murine C165S mutant Tnfaip8/Oxi-α has been crystallized and X-ray data have been collected to 1.8 Å using synchrotron radiation. The crystal belonged to the primitive orthorhombic space group P21212, with unit-cell parameters a = 66.9, b = 72.3, c = 93.5 Å. A full structural determination is under way in order to provide insights into the structure-function relationships of this protein.

  6. High-pressure X-ray diffraction study of bulk- and nanocrystalline GaN

    DEFF Research Database (Denmark)

    Jorgensen, J.E.; Jakobsen, J.M.; Jiang, Jianzhong

    2003-01-01

    Bulk- and nanocrystalline GaN have been studied by high-pressure energy-dispersive X-ray diffraction. Pressure-induced structural phase transitions from the wurtzite to the NaCl phase were observed in both materials. The transition pressure was found to be 40 GPa for the bulk-crystalline GaN, while...... the wurtzite phase was retained up to 60 GPa in the case of nanocrystalline GaN. The bulk moduli for the wurtzite phases were determined to be 187 ( 7) and 319 ( 10) GPa for the bulk- and nanocrystalline phases, respectively, while the respective NaCl phases were found to have very similar bulk moduli [ 208...

  7. X-RAY VARIABILITY STUDY OF POLAR SCATTERED SEYFERT1 GALAXIES

    Directory of Open Access Journals (Sweden)

    Tobias Beuchert

    2014-08-01

    Full Text Available We study 12 Seyfert 1 galaxies with a high level of optical polarization. Optical light emerging from the innermost regions is predominantly scattered in a polar region above the central engine directly in our line of sight. These sources show characteristics of Seyfert 2 galaxies, e.g. polarized broad lines. The polarization signatures suggest a viewing angle of 45°, classifying them as intermediate Seyfert 1/2 types. The unified model predicts this line of sight to pass through the outer layer of the torus resulting in significant soft X-ray variability due to a strongly varying column density. The aim is to find evidence for this geometrical assumption in the spectral variability of all available historical observations of these sources by XMM-Newton and Swift.

  8. X-ray absorption studies of Ti/polymer and Cr/polymer interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Opila, R.L.; Konstadinidis, K. [AT and T Bell Labs., Murray Hill, NJ (United States); Ibidunni, A.O [AT and T Bell Labs., North Andover, MA (United States); Davenport, A.J.; Isaacs, H.S. [Brookhaven National Lab., Upton, NY (United States)

    1993-11-01

    The interface formed between metals, Ti and Cr, and polymers, epoxy, and triazine, have been studied, non-destructively, using x-ray absorption spectroscopy. The metals were sputtered onto the polymer surfaces. Titanium reacts extensively, up to Ti thickness of 100 {Angstrom} while Cr remains primarily metallic. In situ heating at 200{degree}C increases the extent of reaction for both metals. Heating has a greater effect on metal/epoxy interfaces than metal/triazine. Titanium and Cr were ion implanted into the polymer in order to determine the interactions of isolated metal atoms with the polymer. Titanium and Cr appear to form oxides as the final reaction product, and the Ti is tetrahedrally coordinated.

  9. Atomic physics studies of highly charged ions on tokamaks using x-ray spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Beiersdorfer, P.; von Goeler, S.; Bitter, M.; Hill, K.W.

    1989-07-01

    An overview is given of atomic physics issues which have been studied on tokamaks with the help resolution x-ray spectroscopy. The issues include the testing of model calculations predicting the excitation of line radiation, the determination of rate coefficients, and accurate atomic structure measurements. Recent research has focussed primarily on highly charged heliumlike (22 less than or equal to Z less than or equal to 28) and neonlike (34 less than or equal to Z less than or equal to 63) ions, and results are presented from measurements on the PLT and TFTR tokamaks. Many of the measurements have been aided by improved instrumental design and new measuring techniques. Remarkable agreement has been found between measurements and theory in most cases. However, in this review those areas are stressed where agreement is worst and where further investigations are needed. 19 refs., 13 figs., 2 tabs.

  10. X-ray diffraction, FTIR, UV-VIS and SEM studies on chromium (III) complexes

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Ashutosh; Dwivedi, Jagrati, E-mail: hemu.dwi@gmail.com; Shukla, Kritika [School of Physics, Devi Ahilya University, Khandwa Road, Indore-452001 (India)

    2015-06-24

    Five Chromium (III) complexes have been prepared using Schiff base ligands which derived from benzoin and five different amino acids (H{sub 2}N-R). Samples were characterized by XRD, FTIR, UV-VIS and SEM method. X-Ray diffraction pattern analyzed that all chromium (III) complexes have hexagonal structure and crystalline, in nature, using Bruker D8 Advance instrument. Using VERTAX 70, FTIR spectroscopy reveals that Samples have (C=N), (C-O), (M-N) and (M-O) bonds in the range of 4000-400cm{sup −1}. UV-VIS spectroscopy give information that samples absorb the visible light which is in the range of 380-780nm. For this, Lambda 960 spectrometer used. SEM is designed for studying of the solid objects, using JEOL JSM 5600 instrument.

  11. Tensile behavior of orthorhombic alpha ''-titanium alloy studied by in situ X-ray diffraction

    DEFF Research Database (Denmark)

    Wang, X.D.; Lou, H.B.; Ståhl, Kenny

    2010-01-01

    The tensile behavior of a Ti-11%Zr-14%Nb-10%Sn alloy with pure orthorhombic alpha '' phase was studied by in situ X-ray diffraction using synchrotron radiation. It is found that no phase transformation happens during the whole tensile process. The "double-yielding" platforms of this alloy...... are indeed due to a low stress yielding (similar to 400 MPa) followed with a significant work-hardening before necking and fracture. In this process, the [0 2 2] orientation of grains more approaches the tensile direction and the [2 0 0] moves to the transverse, causing the lattice parameter a to be shrunk......, and b and c elongated, and the formation of texture. The similar texture can also be produced upon cold rolling by which the yield strength of the alpha '' phase is largely improved to be over 900 MPa....

  12. Argon impurity transport studies at Wendelstein 7-X using x-ray imaging spectrometer measurements

    Science.gov (United States)

    Langenberg, A.; Pablant, N. A.; Marchuk, O.; Zhang, D.; Alonso, J. A.; Burhenn, R.; Svensson, J.; Valson, P.; Gates, D.; Beurskens, M.; Wolf, R. C.; the W7-X Team

    2017-08-01

    In the first operational phase of the stellarator Wendelstein 7-X (W7-X), the x-ray imaging crystal spectrometer (XICS) system has been commissioned for measuring radial profiles of ion and electron temperature, T i and T e, plasma rotation velocities, v P, and selected impurity densities, n Z . This paper shows the first measurements of the spectrometer and gives an initial calculation of impurity transport parameters derived from an Ar impurity transport study. Using Bayesian analysis, the temporal evolution of Ar impurity density profiles after an Ar gas puff could be observed with a time resolution of up to 5 ms, yielding a maximum value for the diffusion coefficient of D  =  1.5 m2 s-1 at ρ ~ 0.5 and small pinch velocities in the inner plasma region.

  13. Experimental studies of X-pinch dynamics and X-ray emission point parameters.

    Science.gov (United States)

    Shelkovenko, T. A.; Pikuz, S. A.; Sinars, D. B.; Skobelev, I. Yu.; Hammer, D. A.; Greenly, J. B.; Dimant, Y. S.

    1999-11-01

    New x-ray and spectroscopic diagnostics on the XP Pulser at Cornell (450 kA, 100 ns) have allowed quantitative measurements important for understanding the behavior of X-pinches. X-pinches produce intense x-ray radiation bursts from spots close to 1 μm in diameter lasting about 0.5 ns. Using two parallel X-pinches, the radiation burst from each X-pinch was used to generate a magnified X-ray backlighter image of the other [1]. These images allow previously unobserved structure close to the time of x-ray burst emission to be seen. An intial stage is revealed in which a 300 μm length z-pinch forms between the virtual electrodes of a "mini-diode" located at the crossing-point of the X-pinch. This z-pinch collapses rapidly into a series of narrow necks until an x-ray burst occurs from a spot inside the narrowest neck. After the x-ray burst, the z-pinch disappears quickly leaving only the mini-diode visible. Using a simple technique involving a reference mesh superimposed on the x-ray images, the x-ray emission point is located to within 10 μm. Calibrated density measurements of Al x-pinches have been made using an Al step wedge in the film pack. K-spectra of H- and He-like Al, Ti, and Ni, as well as Ne-like Mo ions have been registered using FSSR spectrography with spherically bent mica crystals. These spectra yield estimates of Ne > 10^21 cm-3 and Te > 1 keV for the x-ray emission point. 1. T.A.Shelkovenko, S.A.Pikuz, A.R.Mingaleev and D.A.Hammer, Rev. Sci. Instrum., 70, 667 (1999).

  14. A theoretical study on phase-contrast mammography with Thomson-scattering x-ray sources

    Energy Technology Data Exchange (ETDEWEB)

    De Caro, Liberato; Giannini, Cinzia; Bellotti, Roberto; Tangaro, Sabina [Istituto di Cristallografia-Consiglio Nazionale delle Ricerche (IC-CNR), via Amendola 122/O, I-70125 Bari, Italy and Istituto Nazionale Fisica Nucleare, Sezione di Bari, via Amendola 173, 70126 Bari (Italy); Istituto Nazionale Fisica Nucleare, Sezione di Bari, via Amendola 173, 70126 Bari, Italy and Dipartimento Interateneo di Fisica-M. Merlin, Universita degli Studi di Bari, via Amendola 173, 70126 Bari (Italy); Istituto Nazionale Fisica Nucleare, Sezione di Bari, via Amendola 173, 70126 Bari (Italy)

    2009-10-15

    Purpose: The x-ray transmitted beam from any material/tissue depends on the complex refractive index (n=1-{delta}+i{beta}), where {delta} is responsible for the phase shift and {beta} is for the beam attenuation. Although for human tissues, the {delta} cross section is about 1000 times greater than the {beta} ones in the x-ray energy range from 10 to 150 keV, the gain in breast tumor visualization of phase-contrast mammography (PCM) with respect to absorption contact imaging (AI) is limited by the maximum dose that can be delivered to the patient. Moreover, in-line PC imaging (PCI) is the simplest experimental mode among all available x-ray PCI techniques since no optics are needed. The latter is a fundamental requirement in order to transfer the results of laboratory research into hospitals. Alternative to synchrotron radiation sources, the implementation of relativistic Thomson-scattering (TS) x-ray sources is particularly suitable for hospital use because of their high peak brightness within a relatively compact and affordable system. In this work, the possibility to realize PCM using a TS source in a hospital environment is studied, accounting for the effect of a finite deliverable dose on the PC visibility enhancement with respect to AI. Methods: The contrast-to-noise ratio of tumor-tissue lesions in PCM has been studied on the bases of a recent theoretical model, describing image contrast formation by means of both wave-optical theory and the mutual coherence formalism. The latter is used to describe the evolution, during wave propagation, of the coherence of the wave field emitted by a TS source. The contrast-to-noise ratio for both PCI and AI has been analyzed in terms of tumor size, beam energy, detector, and source distances, studying optimal conditions for performing PCM. Regarding other relevant factors which could influence ''tumor'' visibility, the authors have assumed simplified conditions such as a spherical shape description of

  15. Spectroscopic Studies of the Soft X-Ray Radiation from Gas-Puff Z-Pinches on Cobra

    Science.gov (United States)

    Shelkovenko, T. A.; Pikuz, S. A.; de Grouchy, P. W. L.; Qi, N.; Atoyan, L.; Kusse, B. R.; Hammer, D. A.

    2015-11-01

    Gas-puff Z-pinch experiments have been conducted on the 0.8-1.2 MA, 100-240 ns pulse duration COBRA pulsed power generator. Triple nozzle gas-puff loads consisting of Ne, Ar and Kr gases in different combination and pressures with pre-ionization were used in the most recent experiments. Photo-conducting diodes (PCDs) and pinhole cameras with different filters were used to study the X-ray timing, intensity and spatial distribution in different energy bands. Spectrographs with spatial and temporal resolution were used to study the soft x-ray radiation from the gas-puff Z-pinches. One spectrograph with two spherically bent mica crystals was used to study radiation with 200 micron spatial resolution and high spectral resolution. An x-ray streak camera with one spherically bent quartz crystal was used to study the x-ray radiation with up to 10 ps temporal resolution. The x-ray spectra were used to estimate spatial and temporal distributions of plasma parameters and determine the intensity of the line and continuum radiation from the Z-pinches plasma. Work supported by the National Nuclear Security Administration Stewardship Sciences Academic Programs under Department of Energy Cooperative Agreement No. DE-NA0001836.

  16. X-ray Studies of Interfacial Strontium–Extractant Complexes in a Model Solvent Extraction System

    Energy Technology Data Exchange (ETDEWEB)

    Bu, Wei; Mihaylov, Miroslav; Amoanu, Daniel; Lin, Binhua; Meron, Mati; Kuzmenko, Ivan; Soderholm, L.; Schlossman, Mark L.

    2014-10-30

    The interfacial behavior of a model solvent extraction liquidliquid system, consisting of solutions of dihexadecyl phosphate (DHDP) in dodecane and SrCl2 in water, was studied to determine the structure of the interfacial ionextractant complex and its variation with pH. Previous experiments on a similar extraction system with ErCl3 demonstrated that the kinetics of the extraction process could be greatly retarded by cooling through an adsorption transition, thus providing a method to immobilize ionextractant complexes at the interface and further characterize them with X-ray interface-sensitive techniques. Here, we use this same method to study the SrCl2 system. X-ray reflectivity and fluorescence near total reflection measured the molecular-scale interfacial structure above and below the adsorption transition for a range of pH. Below the transition, DHDP molecules form a homogeneous monolayer at the interface with Sr2+ coverage increasing from zero to saturation (one Sr2+ per two DHDP) within a narrow range of pH. Experimental values of Sr2+ interfacial density determined from fluorescence measurements are larger than those from reflectivity measurements. Although both techniques probe Sr2+ bound to DHDP, only the fluorescence provides adequate sensitivity to Sr2+ in the diffuse double layer. A Stern equation determines the Sr2+ binding constant from the reflectivity measurements and the additional Sr2+ measured in the diffuse double layer is accounted for by GouyChapman theory. Above the transition temperature, a dilute concentration of DHDPSr complexes resides at the interface, even for temperatures far above the transition. A comparison is made of the structure of the interfacial ionextractant complex for this divalent metal ion to recent results on trivalent Er3+ metal ions, which provides insight into the role of metal ion charge on the structure of interfacial ionextractant complexes, as well as implications for extraction of these two differently charged

  17. X-Ray Studies of Diffusion Dynamics in Nano-Confined Geometries

    OpenAIRE

    Boucheron, Leandra

    2015-01-01

    Since their discovery in the late 1800s, x-rays have taken the stage as one of the most powerful research techniques for materials science. Their element-specific absorption has allowed for everyday applications in security and medical imaging, while their short wavelength has a tremendous ability to resolve materials on a molecular or even atomic level. In this dissertation, I will discuss basic properties of x-rays as well as how they are produced and detected. I will also present x-ray sca...

  18. Studying Nanoscale Magnetism and its Dynamics with Soft X-ray Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Mccall, Monnikue M; Fischer, Peter

    2008-05-01

    Magnetic soft X-ray microscopy allows for imaging magnetic structures at a spatial resolution down to 15nm and a time resolution in the sub-100ps regime. Inherent elemental specificity can be used to image the magnetic response of individual components such as layers in multilayered systems. This review highlights current achievements and discusses the future potential of magnetic soft X-ray microscopy at fsec X-ray sources where snapshot images of ultrafast spin dynamics with a spatial resolution below 10nm will become feasible.

  19. Head injury, diagnostic X-rays, and risk of medulloblastoma and primitive neuroectodermal tumor: a Children's Oncology Group study.

    Science.gov (United States)

    Khan, Saira; Evans, Alison A; Rorke-Adams, Lucy; Orjuela, Manuela A; Shiminski-Maher, Tania; Bunin, Greta R

    2010-07-01

    A comprehensive case-control study was conducted to determine potential risk factors for medulloblastoma/primitive neuroectodermal tumor (PNET), a common brain tumor in children. This analysis evaluated possible associations between previous head injury and ionizing radiation exposure through diagnostic X-rays and medulloblastoma/PNET. Mothers of 318 cases head injury (OR: 0.78, 95% CI: 0.40-1.5) or head X-ray for any reason including head injury with medulloblastoma/PNET. A statistically non-significant excess of cases reported having an X-ray for reason other than head injury (OR 2.3, 95% CI 0.91-5.7). When cases that received an X-ray for a common symptom of medulloblastoma/PNET were considered unexposed this association weakened (OR: 1.3, 95% CI: 0.49-3.7). No dose-response relationship was observed. Head injury and exposure to diagnostic head X-rays were not associated with medulloblastoma/PNET in this study. Future studies should investigate all imaging procedures with ionizing radiation exposure including computed tomography scans and utilize radiation dose estimations.

  20. Analysis of chromosomal abnormalities: a study of partial exposure to X-rays

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Aida M.G. de; Mendes, Mariana E.; Mendonça, Julyanne C.G.; Melo, Laís; Hwang, Suy; Santos, Neide; Lima, Fabiana F. de, E-mail: aidamgandrade@gmail.com [Universidade Federal de Pernambuco (UFPE), Recife (Brazil); Centro Regional de Ciências Nucleares (CRCN-NE/CNEN-PE), Recife, PE (Brazil); Universidade Federal de Pernambuco (UFPE),Recife (Brazil). Centro de Biociências. Departamento de Genética

    2017-11-01

    Biological dosimetry is used in case of supposed accidental overexposure. The most commonly used biomarkers for assessing the absorbed dose are unstable chromosomal abnormalities. In a case of a partial body exposure, the frequencies of those abnormalities varies according to the area of the exposed body and may be substantially different from a total exposure of the body with an identical dose. The present study aimed to evaluate the frequency of chromosomal changes simulating, with blood samples, partial (25%, 50%) and full body irradiation (100%) in X-ray beam. The irradiation was performed at Metrology Service (CRCN-NE / CNEN) with a bundle of 250kVp X-rays, resulting in the absorbed dose of 1.0 Gy. Prior to obtain the metaphases, irradiated blood was mixed with non-irradiated blood, and then the mitotic metaphases for the chromosomal analyzes were obtained by culturing lymphocytes and the slides were stained with 5% Giemsa. It was observed that there was an increase in dicentric frequency when the dose percentage increases in both subjects (0.024 and 0.049 in subject 1 and 0.016 and 0.038 in subject 2) after irradiation. The cellular distribution was 'contaminated' only at dose 25% of the first individual who had a prolongation of the distribution. The Qdr and Dolphin methods were used to estimate partial absorbed dose, but the Qdr method was not efficient and whereas the Dolphin method was efficient when the individual had a prolonged cell distribution. It is necessary to increase the number of observations to be sure of the observed behaviors. (author)

  1. Study of human blood and hemocomponents irradiated by low angle x ray scattering (LAXS)

    Energy Technology Data Exchange (ETDEWEB)

    Pinto, Nivia G. Villela; Barroso, Regina C. [Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil). Inst. de Fisica. Dept. de Fisica Aplicada e Termodinamica], e-mail: nitatag@gmail.com; Mota, Carla L.S.; Almeida, Andre P.; Azeredo, Soraia R.; Braz, Delson [Coordenacao dos Programas de Pos-graduacao em Engenharia (COPPE/UFRJ), RJ (Brazil). Lab. de Instrumentacao Nuclear], e-mail: delson@lin.ufrj.br

    2009-07-01

    Irradiation of blood and blood components is currently practiced in developed and in a few developing countries. The main purpose of this process is the prevention of graft versus host disease in immunodeficient patients. The Food and Drug Administration recommends a dose range of 15 Gy to 25 Gy for these blood components. When x-ray photons are scattered from biological samples, their angular distribution shows one or more peaks in the forward direction of scattering. These peaks are characteristic for the investigated samples. Due to its wide range of biological and medical applications, low-angle x-ray scattering has attracted the attention of many authors. Thus in this present work was studied the possible variations in scattering profiles due to the irradiation when the gender of patients was considered. Fresh blood specimens were obtained from volunteers using vacutainer tubes containing EDTA, at the Dr. Eliel Figueiredo Laboratory, Rio de Janeiro. All the samples were lyophilized for 48 hours in a freeze drier in order to remove the water. The scattering measurements were carried out in e-2e reflection geometry using a powder diffractometer Shimadzu XRD- 6000. The measured characterization parameters for LAXS were associated with epidemiological data (gender). The mean values of the different parameters were compared using the Students's t-test for each characterization parameters. The scattering profiles from plasma and formed elements are characterized by the presence of two peaks in the forward direction of scattering. For epidemiological data (gender) analyzed was not found significant changes in the mostly of characterization parameters (p>0.05). (author)

  2. A systematic Chandra study of Sgr A⋆: II. X-ray flare statistics

    Science.gov (United States)

    Yuan, Qiang; Wang, Q. Daniel; Liu, Siming; Wu, Kinwah

    2018-01-01

    The routinely flaring events from Sgr A⋆ trace dynamic, high-energy processes in the immediate vicinity of the supermassive black hole. We statistically study temporal and spectral properties, as well as fluence and duration distributions, of the flares detected by the Chandra X-ray Observatory from 1999 to 2012. The detection incompleteness and bias are carefully accounted for in determining these distributions. We find that the fluence distribution can be well characterized by a power law with a slope of 1.73^{+0.20}_{-0.19}, while the durations (τ in seconds) by a lognormal function with a mean log (τ)=3.39^{+0.27}_{-0.24} and an intrinsic dispersion σ =0.28^{+0.08}_{-0.06}. No significant correlation between the fluence and duration is detected. The apparent positive correlation, as reported previously, is mainly due to the detection bias (i.e. weak flares can be detected only when their durations are short). These results indicate that the simple self-organized criticality model has difficulties in explaining these flares. We further find that bright flares usually have asymmetric light curves with no statistically evident difference/preference between the rising and decaying phases in terms of their spectral/timing properties. Our spectral analysis shows that although a power-law model with a photon index of 2.0 ± 0.4 gives a satisfactory fit to the joint spectra of strong and weak flares, there is weak evidence for a softer spectrum of weaker flares. This work demonstrates the potential to use statistical properties of X-ray flares to probe their trigger and emission mechanisms, as well as the radiation propagation around the black hole.

  3. AXIS - A High Angular Resoltuion X-ray Probe Concept Study

    Science.gov (United States)

    Mushotzky, Richard; AXIS Study Team

    2018-01-01

    AXIS is a probe-class concept under study to the 2020 Decadal survey. AXIS will extend and enhance the science of high angular resolution x-ray imaging and spectroscopy in the next decade with ~0.3" angular resolution over a 7' radius field of view and an order of magnitude more collecting area than Chandra in the 0.3-12 keV band with a cost consistent with a probe.These capabilities enable major advances in a wide range of science such as: (1) measuring the event horizon scale structure in AGN accretion disks and the spins of supermassive black holes through observations of gravitationally-microlensed quasars; (ii) determining AGN and starburst feedback in galaxies and galaxy clusters through direct imaging of winds and interaction of jets and via spatially resolved imaging of galaxies at high-z; (iii) fueling of AGN by probing the Bondi radius of over 20 nearby galaxies; (iv) hierarchical structure formation and the SMBH merger rate through measurement of the occurrence rate of dual AGN and occupation fraction of SMBHs; (v) advancing SNR physics and galaxy ecology through large detailed samples of SNR in nearby galaxies; (vi) measuring the Cosmic Web through its connection to cluster outskirts. With a nominal 2028 launch, AXIS benefits from natural synergies with the ELTs, LSST, ALMA, WFIRST and ATHENA. AXIS utilizes breakthroughs in the construction of lightweight X-ray optics from mono-crystalline silicon blocks, and developments in the fabrication of large format, small pixel, high readout rate detectors allowing a robust and cost effective design. The AXIS team welcomes input and feedback from the community in preparation for the 2020 Decadal review.

  4. X-ray structural studies of quinone reductase 2 nanomolar range inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Pegan, Scott D.; Sturdy, Megan; Ferry, Gilles; Delagrange, Philippe; Boutin, Jean A.; Mesecar, Andrew D. (IdRS); (Purdue); (Colorado); (UIC)

    2011-09-06

    Quinone reductase 2 (QR2) is one of two members comprising the mammalian quinone reductase family of enzymes responsible for performing FAD mediated reductions of quinone substrates. In contrast to quinone reductase 1 (QR1) which uses NAD(P)H as its co-substrate, QR2 utilizes a rare group of hydride donors, N-methyl or N-ribosyl nicotinamide. Several studies have linked QR2 to the generation of quinone free radicals, several neuronal degenerative diseases, and cancer. QR2 has been also identified as the third melatonin receptor (MT3) through in cellulo and in vitro inhibition of QR2 by traditional MT3 ligands, and through recent X-ray structures of human QR2 (hQR2) in complex with melatonin and 2-iodomelatonin. Several MT3 specific ligands have been developed that exhibit both potent in cellulo inhibition of hQR2 nanomolar, affinity for MT3. The potency of these ligands suggest their use as molecular probes for hQR2. However, no definitive correlation between traditionally obtained MT3 ligand affinity and hQR2 inhibition exists limiting our understanding of how these ligands are accommodated in the hQR2 active site. To obtain a clearer relationship between the structures of developed MT3 ligands and their inhibitory properties, in cellulo and in vitro IC{sub 50} values were determined for a representative set of MT3 ligands (MCA-NAT, 2-I-MCANAT, prazosin, S26695, S32797, and S29434). Furthermore, X-ray structures for each of these ligands in complex with hQR2 were determined allowing for a structural evaluation of the binding modes of these ligands in relation to the potency of MT3 ligands.

  5. X-ray structural studies of quinone reductase 2 nanomolar range inhibitors.

    Science.gov (United States)

    Pegan, Scott D; Sturdy, Megan; Ferry, Gilles; Delagrange, Philippe; Boutin, Jean A; Mesecar, Andrew D

    2011-07-01

    Quinone reductase 2 (QR2) is one of two members comprising the mammalian quinone reductase family of enzymes responsible for performing FAD mediated reductions of quinone substrates. In contrast to quinone reductase 1 (QR1) which uses NAD(P)H as its co-substrate, QR2 utilizes a rare group of hydride donors, N-methyl or N-ribosyl nicotinamide. Several studies have linked QR2 to the generation of quinone free radicals, several neuronal degenerative diseases, and cancer. QR2 has been also identified as the third melatonin receptor (MT3) through in cellulo and in vitro inhibition of QR2 by traditional MT3 ligands, and through recent X-ray structures of human QR2 (hQR2) in complex with melatonin and 2-iodomelatonin. Several MT3 specific ligands have been developed that exhibit both potent in cellulo inhibition of hQR2 nanomolar, affinity for MT3. The potency of these ligands suggest their use as molecular probes for hQR2. However, no definitive correlation between traditionally obtained MT3 ligand affinity and hQR2 inhibition exists limiting our understanding of how these ligands are accommodated in the hQR2 active site. To obtain a clearer relationship between the structures of developed MT3 ligands and their inhibitory properties, in cellulo and in vitro IC₅₀ values were determined for a representative set of MT3 ligands (MCA-NAT, 2-I-MCANAT, prazosin, S26695, S32797, and S29434). Furthermore, X-ray structures for each of these ligands in complex with hQR2 were determined allowing for a structural evaluation of the binding modes of these ligands in relation to the potency of MT3 ligands. Copyright © 2011 The Protein Society.

  6. X-ray spectroscopy study of ThO2 and ThF4

    Directory of Open Access Journals (Sweden)

    Teterin Anton Yu.

    2010-01-01

    Full Text Available The structure of the X-ray photoelectron, X-ray O(FKa-emission spectra from ThO2 and ThF4 as well as the Auger OKLL spectra from ThO2 was studied. The spectral structure was analyzed by using fully relativistic cluster discrete variational calculations of the electronic structure of the ThO8 D4h and ThF8 (C2 clusters reflecting thorium close environment in solid ThO2 and ThF4. As a result it was theoretically found and experimentally confirmed that during the chemical bond formation the filled O(F2p electronic states are distributed mainly in the binding energy range of the outer valence molecular orbitals from 0-13 eV, while the filled O(F2s electronic states - in the binding energy range of the inner valence molecular orbitals from 13-35 eV. It was shown that the Auger OKLL spectral structure from ThO2 characterizes not only the O2p electronic state density distribution, but also the O2s electronic state density distribution. It agrees with the suggestion that O2s electrons participate in formation of the inner valence molecular orbitals, in the binding energy range of 13-35 eV. The relative Auger OKL2-3L2-3 peak intensity was shown to reflect quantitatively the O2p electronic state density of the oxygen ion in ThO2.

  7. Surface x-ray diffraction study on polar oxide surface and interface

    Science.gov (United States)

    Han, Wei

    An atomic scale study of surface/interface structure is required to properly understand physical and chemical phenomena such as crystal growth, lubrication and electrochemistry. The stability of polar oxide surface has long been an interesting question. A bulk-terminated polar oxide surface comprises alternating layers of opposite charges, thus resulting in diverging surface energies. In order to reduce the surface energy, various reconstruction-stabilized MgO (111) surfaces have been reported experimentally. However, the atomic structure of the MgO (111)rt3xrt3R30° reconstructed surface remains unclear. Using a third-generation X-ray source is one of the feasible methodologies to probe such a system due to its increase of sensitivity on the interface layer. Surface X-ray diraction (SXRD) experiments were performed for the MgO(111) rt3xrt3R30° reconstructed surface at Advanced Photon Source, Argonne National Laboratory. The sample surface was prepared at home laboratory by annealing in a tube furnace for 36hrs at 1050°C, with N2 blowing at rate 1 to 2 scft. Crystal truncation rod (CTR) and super structure rod (SSR) measurements were acquired in both the absence and presence of a thin layer of water, obtained by compressing the bulk water layer with a thin Kapton sheet. A differential evolution algorithm, GenX, was used to search for the appropriate atomic model of reconstructed structure. Some reasonable models are presented and discussed with quantitative calculation of optimizing parameters (R factor and chi square). Preliminary SXRD results of the dry surface and solid-liquid interface are compared. This determination will shed light on whether physical (as opposed to chemical) factors are operant in the formation of ice-like layers.

  8. Improving x-ray fluorescence signal for benchtop polychromatic cone-beam x-ray fluorescence computed tomography by incident x-ray spectrum optimization: A Monte Carlo study

    Energy Technology Data Exchange (ETDEWEB)

    Manohar, Nivedh [Nuclear/Radiological Engineering and Medical Physics Programs, Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Jones, Bernard L. [Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, Colorado 80045 (United States); Cho, Sang Hyun, E-mail: scho@mdanderson.org [Department of Radiation Physics and Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 (United States)

    2014-10-15

    Purpose: To develop an accurate and comprehensive Monte Carlo (MC) model of an experimental benchtop polychromatic cone-beam x-ray fluorescence computed tomography (XFCT) setup and apply this MC model to optimize incident x-ray spectrum for improving production/detection of x-ray fluorescence photons from gold nanoparticles (GNPs). Methods: A detailed MC model, based on an experimental XFCT system, was created using the Monte Carlo N-Particle (MCNP) transport code. The model was validated by comparing MC results including x-ray fluorescence (XRF) and scatter photon spectra with measured data obtained under identical conditions using 105 kVp cone-beam x-rays filtered by either 1 mm of lead (Pb) or 0.9 mm of tin (Sn). After validation, the model was used to investigate the effects of additional filtration of the incident beam with Pb and Sn. Supplementary incident x-ray spectra, representing heavier filtration (Pb: 2 and 3 mm; Sn: 1, 2, and 3 mm) were computationally generated and used with the model to obtain XRF/scatter spectra. Quasimonochromatic incident x-ray spectra (81, 85, 90, 95, and 100 keV with 10 keV full width at half maximum) were also investigated to determine the ideal energy for distinguishing gold XRF signal from the scatter background. Fluorescence signal-to-dose ratio (FSDR) and fluorescence-normalized scan time (FNST) were used as metrics to assess results. Results: Calculated XRF/scatter spectra for 1-mm Pb and 0.9-mm Sn filters matched (r ≥ 0.996) experimental measurements. Calculated spectra representing additional filtration for both filter materials showed that the spectral hardening improved the FSDR at the expense of requiring a much longer FNST. In general, using Sn instead of Pb, at a given filter thickness, allowed an increase of up to 20% in FSDR, more prominent gold XRF peaks, and up to an order of magnitude decrease in FNST. Simulations using quasimonochromatic spectra suggested that increasing source x-ray energy, in the

  9. In situ coherent x-ray scattering and STM studies of hexagonally reconstructed Au(001) in Electrolytes

    Science.gov (United States)

    Pierce, Michael S.; Komanicky, Vladimir; Barbour, Andi; Hennessy, Daniel; Su, Jun-Dar; Sandy, Alec; You, Hoydoo

    2011-03-01

    We have studied the dynamics of Au(001) and Au(111) surfaces in situ in 0.1 M HClO4 electrolyte solution using coherent x-ray scattering experiments and STM microscopy. Our coherent x-ray scattering experiments measure a correlation time for the surface as a function of applied potentials. Coherent x-ray scattering differs from the ordinary x-ray diffraction in sensitivity to the structural and temporal details. The correlation times were obtained from measurements conducted while the surface is in equilibrium and the ordinary surface scattering intensity is constant. The correlation time changes from high 103 seconds to low 102 seconds. The correlation times of reconstructed surfaces at low potential are at least an order of magnitude smaller than those measured at the reconstructed surfaces in vacuum. The correlation times also change dramatically in response to the applied potential. These experiments also represent the first successful application of coherent x-ray scattering to the study of electrochemical interfaces in situ. Work at ANL is supported by DOE-BES and work at SU by VEGA.

  10. The soft x-ray instrument for materials studies at the linac coherent light source x-ray free-electron laser

    Czech Academy of Sciences Publication Activity Database

    Schlotter, W.F.; Turner, J.J.; Rowen, M.; Heimann, P.; Holmes, M.; Krupin, O.; Messerschmidt, M.; Moeller, S.; Krzywinski, J.; Soufli, R.; Fernández-Perea, M.; Kelez, N.; Lee, S.; Coffee, R.; Hays, G.; Beye, M.; Gerken, N.; Sorgenfrei, F.; Hau-Riege, S.; Juha, Libor; Chalupský, Jaromír; Hájková, Věra; Mancuso, A.P.; Singer, A.; Yefanov, O.; Vartanyants, I.A.; Cadenazzi, G.; Abbey, B.; Nugent, K.A.; Sinn, H.; Lüning, J.; Schaffert, S.; Eisebitt, S.; Lee, W.-S.; Scherz, A.; Nilsson, A.R.; Wurth, W.

    2012-01-01

    Roč. 83, č. 4 (2012), "043107-1"-"043107-11" ISSN 0034-6748 R&D Projects: GA ČR(CZ) GAP108/11/1312 Institutional research plan: CEZ:AV0Z10100523 Keywords : free-electron laser * materials science * beamline * x-ray laser Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.602, year: 2012

  11. X-Ray and γ-Ray Studies of the Millisecond Pulsar and Possible X-Ray Binary/Radio Pulsar Transition Object PSR J1723-2837

    Science.gov (United States)

    Bogdanov, Slavko; Esposito, Paolo; Crawford, Fronefield, III; Possenti, Andrea; McLaughlin, Maura A.; Freire, Paulo

    2014-01-01

    We present X-ray observations of the "redback" eclipsing radio millisecond pulsar (MSP) and candidate radio pulsar/X-ray binary transition object PSR J1723-2837. The X-ray emission from the system is predominantly non-thermal and exhibits pronounced variability as a function of orbital phase, with a factor of ~2 reduction in brightness around superior conjunction. Such temporal behavior appears to be a defining characteristic of this variety of peculiar MSP binaries and is likely caused by a partial geometric occultation by the main-sequence-like companion of a shock within the binary. There is no indication of diffuse X-ray emission from a bow shock or pulsar wind nebula associated with the pulsar. We also report on a search for point source emission and γ-ray pulsations in Fermi Large Area Telescope data using a likelihood analysis and photon probability weighting. Although PSR J1723-2837 is consistent with being a γ-ray point source, due to the strong Galactic diffuse emission at its position a definitive association cannot be established. No statistically significant pulsations or modulation at the orbital period are detected. For a presumed detection, the implied γ-ray luminosity is lsim5% of its spin-down power. This indicates that PSR J1723-2837 is either one of the least efficient γ-ray producing MSPs or, if the detection is spurious, the γ-ray emission pattern is not directed toward us.

  12. X-ray and γ-ray studies of the millisecond pulsar and possible X-ray binary/radio pulsar transition object PSR J1723-2837

    Energy Technology Data Exchange (ETDEWEB)

    Bogdanov, Slavko [Columbia Astrophysics Laboratory, Columbia University, 550 West 120th Street, New York, NY 10027 (United States); Esposito, Paolo [INAF-IASF Milano, via East Bassini 15, I-20133 Milano (Italy); Crawford III, Fronefield [Department of Physics and Astronomy, Franklin and Marshall College, P.O. Box 3003, Lancaster, PA 17604 (United States); Possenti, Andrea [INAF-Osservatorio Astronomico di Cagliari, Loc. Poggio dei Pini, Strada 54, I-09012 Capoterra (Italy); McLaughlin, Maura A. [Department of Physics and Astronomy, West Virginia University, 210E Hodges Hall, Morgantown, WV 26506 (United States); Freire, Paulo, E-mail: slavko@astro.columbia.edu [Max-Planck-Institut für Radioastronomie, D-53121 Bonn (Germany)

    2014-01-20

    We present X-ray observations of the 'redback' eclipsing radio millisecond pulsar (MSP) and candidate radio pulsar/X-ray binary transition object PSR J1723-2837. The X-ray emission from the system is predominantly non-thermal and exhibits pronounced variability as a function of orbital phase, with a factor of ∼2 reduction in brightness around superior conjunction. Such temporal behavior appears to be a defining characteristic of this variety of peculiar MSP binaries and is likely caused by a partial geometric occultation by the main-sequence-like companion of a shock within the binary. There is no indication of diffuse X-ray emission from a bow shock or pulsar wind nebula associated with the pulsar. We also report on a search for point source emission and γ-ray pulsations in Fermi Large Area Telescope data using a likelihood analysis and photon probability weighting. Although PSR J1723-2837 is consistent with being a γ-ray point source, due to the strong Galactic diffuse emission at its position a definitive association cannot be established. No statistically significant pulsations or modulation at the orbital period are detected. For a presumed detection, the implied γ-ray luminosity is ≲5% of its spin-down power. This indicates that PSR J1723-2837 is either one of the least efficient γ-ray producing MSPs or, if the detection is spurious, the γ-ray emission pattern is not directed toward us.

  13. Opportunities and challenges for time-resolved studies of protein structural dynamics at X-ray free-electron lasers.

    Science.gov (United States)

    Neutze, Richard

    2014-07-17

    X-ray free-electron lasers (XFELs) are revolutionary X-ray sources. Their time structure, providing X-ray pulses of a few tens of femtoseconds in duration; and their extreme peak brilliance, delivering approximately 10(12) X-ray photons per pulse and facilitating sub-micrometre focusing, distinguish XFEL sources from synchrotron radiation. In this opinion piece, I argue that these properties of XFEL radiation will facilitate new discoveries in life science. I reason that time-resolved serial femtosecond crystallography and time-resolved wide angle X-ray scattering are promising areas of scientific investigation that will be advanced by XFEL capabilities, allowing new scientific questions to be addressed that are not accessible using established methods at storage ring facilities. These questions include visualizing ultrafast protein structural dynamics on the femtosecond to picosecond time-scale, as well as time-resolved diffraction studies of non-cyclic reactions. I argue that these emerging opportunities will stimulate a renaissance of interest in time-resolved structural biochemistry.

  14. Study of X-ray emission from plasma focus device using vacuum photodiode

    Science.gov (United States)

    Talukdar, N.; Borthakur, T. K.; Neog, N. K.

    2013-10-01

    A newly fabricated vacuum photodiode (VPD) is used to measure time resolved X-ray emission and electron temperature from plasma focus device operated in hydrogen medium. The VPD signals are compared with the PIN diode signal and observed to be of similar in nature. The acquired signals from VPD are deduced to measure electron temperature and X-ray radiated power for four different anode tips (cylindrical, diverging, oval and converging). The electron temperatures are found to be 0.64, 1.5, 0.60 and 0.55 keV for cylindrical, diverging, oval and converging anode tips respectively in hydrogen plasma. The X-ray radiated powers are observed to be varying with respect to the shape of the anode tips and it is found highest in case of converging tip and lowest for the diverging one. Results indicate that VPD could efficiently be employed as an X-ray diagnostics in plasma focus device.

  15. Study of X-ray emission from plasma focus device using vacuum photodiode

    Energy Technology Data Exchange (ETDEWEB)

    Talukdar, N.; Borthakur, T.K., E-mail: tkborthakur@yahoo.co.uk; Neog, N.K.

    2013-10-21

    A newly fabricated vacuum photodiode (VPD) is used to measure time resolved X-ray emission and electron temperature from plasma focus device operated in hydrogen medium. The VPD signals are compared with the PIN diode signal and observed to be of similar in nature. The acquired signals from VPD are deduced to measure electron temperature and X-ray radiated power for four different anode tips (cylindrical, diverging, oval and converging). The electron temperatures are found to be 0.64, 1.5, 0.60 and 0.55 keV for cylindrical, diverging, oval and converging anode tips respectively in hydrogen plasma. The X-ray radiated powers are observed to be varying with respect to the shape of the anode tips and it is found highest in case of converging tip and lowest for the diverging one. Results indicate that VPD could efficiently be employed as an X-ray diagnostics in plasma focus device.

  16. Radiation exposure during chest X-ray examinations in a premature intensive care unit: phantom studies

    Energy Technology Data Exchange (ETDEWEB)

    Duetting, T.; Foerste, B.; Darge, K.; Troeger, J. [Heidelberg Univ. (Germany). Dept. of Paediatric Radiology; Knoch, T. [Heidelberg Univ. (Germany). Central Radiation Protection

    1999-03-01

    Background. There are few reports on the radiation dose received by infants, their family and radiographers exposed to scatter radiation in a premature baby intensive care unit. Objective. To evaluate the degree of radiation exposure from diagnostic X-ray examinations with mobile X-ray machines in a premature intensive care unit. Materials and methods. The radiation exposure of an adjacent newborn, the radiographer and other persons in the room was simulated using phantoms during X-ray examination of the chest using vertical and horizontal beams. Results. Most of the measured doses were below the registration limit of the measuring apparatus and had to be extrapolated by multiple exposures. Without exception, the maximal doses were significantly lower than the permitted limit for persons not professionally exposed to X-rays. Conclusions. Recommendations to avoid unnecessary radiation exposure are given. (orig.) With 2 figs., 3 tabs., 10 refs.

  17. Structural changes in a-Si:H studied by x-ray photoemission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, S.; Sacher, E.; Yelon, A.; Branz, H.M.; Masson, D.P.

    1999-07-01

    X-ray irradiation-induced structural changes in undoped a-Si:H have been investigated in detail by X-ray photoemission spectroscopy (XPS). The Si2s and the Si2p peaks were found to shift simultaneously to lower bonding energies, by the same amount, with X-ray irradiation. The shifts are near saturation, at about 0.1 eV, after one hour of irradiation at the intensity used; they can be reversed almost completely, seemingly with an activation energy lower than that for the metastable changes in electronic properties (Staebler-Wronski effect). The present results suggest that essentially the whole Si network structure is affected by the X-ray irradiation.

  18. Clinical studies on health conditions of medical diagnostic X-ray workers

    Energy Technology Data Exchange (ETDEWEB)

    Liu Liqun

    1984-10-01

    The results of investigations on general health conditions of 2484 medical X-ray workers and 1718 controls were reported. It was shown that the incidences of neurasthenic syndrome, loss of appetite, baldness etc. in X-ray workers were statistically higher than those in controls. Chronic rhinitis, pharyngitis, and paranasal sinusitis also occurred more frequently in the former group. The blood pressure, pulse rate, capillary resistance and past medical history showed no significant difference between these two groups. (Author).

  19. Carbon Fiber Morphology. 2. Expanded Wide-Angle X-Ray Diffraction Studies of Carbon Fibers

    Science.gov (United States)

    1991-02-01

    X- Ray Diffraction," JPS. Polym. Phys. Ed., 16, 939 (1978). 17. Rosalind E. Franklin , "The Structure of Graphitic Carbons," Acta Cryst., 4, 253 (1951...18. Rosalind E. Franklin , "The Interpretation of Diffuse X-ray Diagrams of Carbon," Acta CrL, 3, 107 (1950). 19. K. Jain and A. S. Abhiraman...been generally mentioned much earlier by Franklin [17,18]. Jain and Abhiraman [19] demonstrated that these corrections can make significant differences

  20. Drop-on-demand sample delivery for studying biocatalysts in action at X-ray free-electron lasers.

    Science.gov (United States)

    Fuller, Franklin D; Gul, Sheraz; Chatterjee, Ruchira; Burgie, E Sethe; Young, Iris D; Lebrette, Hugo; Srinivas, Vivek; Brewster, Aaron S; Michels-Clark, Tara; Clinger, Jonathan A; Andi, Babak; Ibrahim, Mohamed; Pastor, Ernest; de Lichtenberg, Casper; Hussein, Rana; Pollock, Christopher J; Zhang, Miao; Stan, Claudiu A; Kroll, Thomas; Fransson, Thomas; Weninger, Clemens; Kubin, Markus; Aller, Pierre; Lassalle, Louise; Bräuer, Philipp; Miller, Mitchell D; Amin, Muhamed; Koroidov, Sergey; Roessler, Christian G; Allaire, Marc; Sierra, Raymond G; Docker, Peter T; Glownia, James M; Nelson, Silke; Koglin, Jason E; Zhu, Diling; Chollet, Matthieu; Song, Sanghoon; Lemke, Henrik; Liang, Mengning; Sokaras, Dimosthenis; Alonso-Mori, Roberto; Zouni, Athina; Messinger, Johannes; Bergmann, Uwe; Boal, Amie K; Bollinger, J Martin; Krebs, Carsten; Högbom, Martin; Phillips, George N; Vierstra, Richard D; Sauter, Nicholas K; Orville, Allen M; Kern, Jan; Yachandra, Vittal K; Yano, Junko

    2017-04-01

    X-ray crystallography at X-ray free-electron laser sources is a powerful method for studying macromolecules at biologically relevant temperatures. Moreover, when combined with complementary techniques like X-ray emission spectroscopy, both global structures and chemical properties of metalloenzymes can be obtained concurrently, providing insights into the interplay between the protein structure and dynamics and the chemistry at an active site. The implementation of such a multimodal approach can be compromised by conflicting requirements to optimize each individual method. In particular, the method used for sample delivery greatly affects the data quality. We present here a robust way of delivering controlled sample amounts on demand using acoustic droplet ejection coupled with a conveyor belt drive that is optimized for crystallography and spectroscopy measurements of photochemical and chemical reactions over a wide range of time scales. Studies with photosystem II, the phytochrome photoreceptor, and ribonucleotide reductase R2 illustrate the power and versatility of this method.

  1. Time-resolved structural studies at synchrotrons and X-ray free electron lasers: opportunities and challenges

    Science.gov (United States)

    Neutze, Richard; Moffat, Keith

    2012-01-01

    X-ray free electron lasers (XFELs) are potentially revolutionary X-ray sources because of their very short pulse duration, extreme peak brilliance and high spatial coherence, features that distinguish them from today’s synchrotron sources. We review recent time-resolved Laue diffraction and time-resolved wide angle X-ray scattering (WAXS) studies at synchrotron sources, and initial static studies at XFELs. XFELs have the potential to transform the field of time-resolved structural biology, yet many challenges arise in devising and adapting hardware, experimental design and data analysis strategies to exploit their unusual properties. Despite these challenges, we are confident that XFEL sources are poised to shed new light on ultrafast protein reaction dynamics. PMID:23021004

  2. Optical and x-ray photoelectron spectroscopy studies of α-Al{sub 2}O{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Prakash, Ram, E-mail: rpgiuc@gmail.com, E-mail: ramprakash@smvdu.ac.in; Kumar, Sandeep; Kumar, Vinay [School of Physics, Shri Mata Vaishno Devi University, Katra 182320 J& K (India); Choudhary, R. J.; Phase, D. M. [UGC DAE Consortium for Scientific Research, Indore-452001 (India)

    2016-05-23

    α-Al{sub 2}O{sub 3} powder sample was synthesized at 550 °C via solution combustion synthesis (SCS) method using urea as an organic fuel. The sample was characterized by X-ray diffraction (XRD), Optical spectroscopy and X-ray photoelectron spectroscopy (XPS) without any further thermal treatment. XRD study reveals that the powder crystallized directly in the hexagons α-Al{sub 2}O{sub 3} phase. A band gap of 5.7 eV was estimated using diffuse reflectance spectra. For surface investigation X-ray photo electron spectroscopy (XPS) was carried out. The XPS survey scan study of α-Al{sub 2}O{sub 3} powder reveals that the sample is free from impurity. The core levels of Al-2s and O-1s are also reported.

  3. Synchrotron X-ray fluorescence studies of a bromine-labelled cyclic RGD peptide interacting with individual tumor cells

    Energy Technology Data Exchange (ETDEWEB)

    Sheridan, Erin J.; Austin, Christopher J. D. [School of Chemistry, The University of Sydney, Sydney, NSW 2006 (Australia); Aitken, Jade B. [School of Chemistry, The University of Sydney, Sydney, NSW 2006 (Australia); Australian Synchrotron, Clayton, Victoria 3168 (Australia); Institute of Materials Structure Science, KEK, Tsukuba, Ibaraki 305-0801 (Japan); Vogt, Stefan [X-ray Science Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Jolliffe, Katrina A. [School of Chemistry, The University of Sydney, Sydney, NSW 2006 (Australia); Harris, Hugh H. [School of Chemistry and Physics, The University of Adelaide, Adelaide, South Australia 5005 (Australia); Rendina, Louis M., E-mail: lou.rendina@sydney.edu.au [School of Chemistry, The University of Sydney, Sydney, NSW 2006 (Australia)

    2013-03-01

    The first example of synchrotron X-ray fluorescence imaging of cultured mammalian cells in cyclic peptide research is reported. The study reports the first quantitative analysis of the incorporation of a bromine-labelled cyclic RGD peptide and its effects on the biodistribution of endogenous elements (for example, K and Cl) within individual tumor cells. The first example of synchrotron X-ray fluorescence imaging of cultured mammalian cells in cyclic peptide research is reported. The study reports the first quantitative analysis of the incorporation of a bromine-labelled cyclic RGD peptide and its effects on the biodistribution of endogenous elements (for example, K and Cl) within individual tumor cells.

  4. Synchrotron X-Ray Study of Melting in Submonolayer Ar and other Rare-Gas Films on Graphite

    DEFF Research Database (Denmark)

    McTague, J. P.; Als-Nielsen, Jens Aage; Bohr, Jakob

    1982-01-01

    Synchrotron x-ray diffraction studies of the (10) peak of Ar on the (001) surface of ZYX graphite show a sharp but continuous broadening of the Bragg peak with increasing temperature. Below a coverage of ∼ 1 Ar atom per six surface carbon atoms (ρ=1) the onset of this transition occurs at a cover......Synchrotron x-ray diffraction studies of the (10) peak of Ar on the (001) surface of ZYX graphite show a sharp but continuous broadening of the Bragg peak with increasing temperature. Below a coverage of ∼ 1 Ar atom per six surface carbon atoms (ρ=1) the onset of this transition occurs...

  5. Option study of an orthogonal X-ray radiography axis for pRad at LANSCE area C, Los Alamos.

    Energy Technology Data Exchange (ETDEWEB)

    Oliver, Bryan Velten; Johnson, David L.; Leckbee, Joshua J.; Jones, Peter (Ktech Corp., Albuquerque, NM)

    2010-10-01

    We report on an option study of two potential x-ray systems for orthogonal radiography at Area C in the LANSCE facility at Los Alamos National Laboratory. The systems assessed are expected to be near equivalent systems to the presently existing Cygnus capability at the Nevada Test Site. Nominal dose and radiographic resolution of 4 rad (measured at one meter) and 1 mm spot are desired. Both a system study and qualitative design are presented as well as estimated cost and schedule. Each x-ray system analyzed is designed to drive a rod-pinch electron beam diode capable of producing the nominal dose and spot.

  6. Magnetic hysteresis of an artificial square ice studied by in-plane Bragg x-ray resonant magnetic scattering

    Directory of Open Access Journals (Sweden)

    J. P. Morgan

    2012-06-01

    Full Text Available We report X-ray resonant magnetic scattering studies of a Permalloy artificial square ice nanomagnet array, focussing on the field-driven evolution of the sum Σ and difference Δ signals of left and right handed circularly polarized synchrotron X-rays at different lateral positions in reciprocal space Qx. We used X-rays tuned to the Fe L3 resonance energy, with the scattering plane aligned along a principal symmetry axis of the array. Details of the specular Δ hysteresis curve are discussed, following the system magnetization from an initial demagnetized state. The periodic structure gives rise to distinct peaks at in-plane reciprocal Bragg positions, as shown by fitting Σ(Qx to a model based on a simple unit cell structure. Diffraction order-dependent hysteresis in Δ is observed, indicative of the reordering of magnetization on the system's two interpenetrating sublattices, which markedly deviates from an ideal Ising picture under strong applied fields.

  7. A doubly curved elliptical crystal spectrometer for the study of localized x-ray absorption in hot plasmas.

    Science.gov (United States)

    Cahill, Adam D; Hoyt, Cad L; Pikuz, Sergei A; Shelkovenko, Tania; Hammer, David A

    2014-10-01

    X-ray absorption spectroscopy is a powerful tool for the diagnosis of plasmas over a wide range of both temperature and density. However, such a measurement is often limited to probing plasmas with temperatures well below that of the x-ray source in order to avoid object plasma emission lines from obscuring important features of the absorption spectrum. This has excluded many plasmas from being investigated by this technique. We have developed an x-ray spectrometer that provides the ability to record absorption spectra from higher temperature plasmas than the usual approach allows without the risk of data contamination by line radiation emitted by the plasma under study. This is accomplished using a doubly curved mica crystal which is bent both elliptically and cylindrically. We present here the foundational work in the design and development of this spectrometer along with initial results obtained with an aluminum x-pinch as the object plasma.

  8. A doubly curved elliptical crystal spectrometer for the study of localized x-ray absorption in hot plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Cahill, Adam D., E-mail: adc87@cornell.edu; Hoyt, Cad L.; Pikuz, Sergei A.; Shelkovenko, Tania; Hammer, David A. [Cornell University, Electrical and Computer Engineering, Ithaca, NY 14853 (United States)

    2014-10-15

    X-ray absorption spectroscopy is a powerful tool for the diagnosis of plasmas over a wide range of both temperature and density. However, such a measurement is often limited to probing plasmas with temperatures well below that of the x-ray source in order to avoid object plasma emission lines from obscuring important features of the absorption spectrum. This has excluded many plasmas from being investigated by this technique. We have developed an x-ray spectrometer that provides the ability to record absorption spectra from higher temperature plasmas than the usual approach allows without the risk of data contamination by line radiation emitted by the plasma under study. This is accomplished using a doubly curved mica crystal which is bent both elliptically and cylindrically. We present here the foundational work in the design and development of this spectrometer along with initial results obtained with an aluminum x-pinch as the object plasma.

  9. Magnetic hysteresis of an artificial square ice studied by in-plane Bragg x-ray resonant magnetic scattering

    Science.gov (United States)

    Morgan, J. P.; Kinane, C. J.; Charlton, T. R.; Stein, A.; Sánchez-Hanke, C.; Arena, D. A.; Langridge, S.; Marrows, C. H.

    2012-06-01

    We report X-ray resonant magnetic scattering studies of a Permalloy artificial square ice nanomagnet array, focussing on the field-driven evolution of the sum Σ and difference Δ signals of left and right handed circularly polarized synchrotron X-rays at different lateral positions in reciprocal space Qx. We used X-rays tuned to the Fe L3 resonance energy, with the scattering plane aligned along a principal symmetry axis of the array. Details of the specular Δ hysteresis curve are discussed, following the system magnetization from an initial demagnetized state. The periodic structure gives rise to distinct peaks at in-plane reciprocal Bragg positions, as shown by fitting Σ(Qx) to a model based on a simple unit cell structure. Diffraction order-dependent hysteresis in Δ is observed, indicative of the reordering of magnetization on the system's two interpenetrating sublattices, which markedly deviates from an ideal Ising picture under strong applied fields.

  10. Optical Design for a Survey X-Ray Telescope

    Science.gov (United States)

    Saha, Timo T.; Zhang, William W.; McClelland, Ryan S.

    2014-01-01

    Optical design trades are underway at the Goddard Space Flight Center to define a telescope for an x-ray survey mission. Top-level science objectives of the mission include the study of x-ray transients, surveying and long-term monitoring of compact objects in nearby galaxies, as well as both deep and wide-field x-ray surveys. In this paper we consider Wolter, Wolter-Schwarzschild, and modified Wolter-Schwarzschild telescope designs as basic building blocks for the tightly nested survey telescope. Design principles and dominating aberrations of individual telescopes and nested telescopes are discussed and we compare the off-axis optical performance at 1.0 KeV and 4.0 KeV across a 1.0-degree full field-of-view.

  11. Study of archaeological ceramics by total-reflection X-ray fluorescence spectrometry: Semi-quantitative approach

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Ruiz, R. [Universidad Autonoma de Madrid, Facultad de Ciencias, Servicio Interdepartamental de Investigacion, Modulo C-9, Laboratorio de TXRF, Crta. Colmenar, Km 15, Cantoblanco, E-28049, Madrid (Spain)], E-mail: ramon.fernandez@uam.es; Garcia-Heras, M. [Instituto de Historia-CSIC, C/Serrano, 13. E-28001, Madrid (Spain); CENIM-CSIC, Avda. Gregorio del Amo, 8. E-28040, Madrid (Spain)

    2007-10-15

    Total-reflection X-ray fluorescence spectrometry has been compared with Instrumental Neutron Activation Analysis in order to test its potential application to the study of archaeological ceramics in the archaeometric field. Two direct solid non-chemical sample preparation procedures have been checked: solid sedimentation and solid chemical homogenization. For sedimentation procedure, total-reflection X-ray fluorescence allows the analysis of the elemental composition with respect to the size fraction but not the average evaluation of the composition. For solid chemical homogenization procedure, total-reflection X-ray fluorescence provides precise (from 0.8% to 27% of coefficient of variation) and accurate results (from 91% to 110% of recovery) for 15 elements (Cr, Hf, Ni, Rb, Al, Ba, Ca, K, Mn, Ti, V, Cu, Ga, Y and Fe) with an easy sample preparation process of the solid clay and without previous chemical treatment. The influence of the particle sizes has been checked by total-reflection X-ray fluorescence sample angle scans and anomalous behaviors have been found for three additional detected elements: As, Sr and Zn, which can be attributed to interference effects of the mineral grain sizes of their associated chemical phases in the total-reflection X-ray fluorescence interference region. The solid chemical homogenization procedure produces data useful for archaeological interpretation, which is briefly illustrated by a case-study. Finally, the decantation procedure data can be also useful for size chemical speciation and, consequently, for alternative environmental total-reflection X-ray fluorescence applications.

  12. A Review of Energy Dispersive X-Ray Fluorescence (EDXRF) as an Analytical Tool in Numismatic Studies.

    Science.gov (United States)

    Navas, María José; Asuero, Agustín García; Jiménez, Ana María

    2016-01-01

    Energy dispersive X-ray fluorescence spectrometry (EDXRF) as an analytical technique in studies of ancient coins is summarized and reviewed. Specific EDXRF applications in historical studies, in studies of the corrosion of coins, and in studies of the optimal working conditions of some laser-based treatment for the cleaning of coins are described. © The Author(s) 2015.

  13. ROSAT EUV and soft X-ray studies of atmospheric composition and structure in G191-B2B

    Science.gov (United States)

    Barstow, M. A.; Fleming, T. A.; Finley, D. S.; Koester, D.; Diamond, C. J.

    1993-01-01

    Previous studies of the hot DA white dwarf GI91-B2B have been unable to determine whether the observed soft X-ray and EUV opacity arises from a stratified hydrogen and helium atmosphere or from the presence of trace metals in the photosphere. New EUV and soft X-ray photometry of this star, made with the ROSAT observatory, when analyzed in conjunction with the earlier data, shows that the stratified models cannot account for the observed fluxes. Consequently, we conclude that trace metals must be a substantial source of opacity in the photosphere of G191-B2B.

  14. Dense plasma focus PACO as a hard X-ray emitter: a study on the radiation source

    OpenAIRE

    Supán, L.; Guichón, S.; Milanese, Maria Magdalena; Niedbalski, Jorge Julio; Moroso, Roberto Luis; Acuña, H.; Malamud, Florencia

    2016-01-01

    The radiation in the X-ray range detected outside the vacuum chamber of the dense plasma focus (DPF) PACO, are produced on the anode zone. The zone of emission is studied in a shot-to-shot analysis, using pure deuterium as filling gas. We present a diagnostic method to determine the place and size of the hard X-ray source by image analysis of high density radiography plates. Fil: Supán, L.. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Insti...

  15. X-ray absorption spectroscopy study of granular Fe / Si{sub 3}N{sub 4} systems

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez-Villacorta, F; Castro, G R [SpLine-Spanish CRG beamline at the European Synchrotron Radiation Facility, BP-220 38043 Grenoble Cedex (France) (France); Prieto, C, E-mail: jimenezv@esrf.f [Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Cientificas. Cantoblanco, 28049 - Madrid (Spain)

    2009-11-15

    [Fe (t{sup Fe}) / Si{sub 3}N{sub 4} (3 nm)] multilayers were prepared by sequential magnetron sputtering. The Fe layer thickness has been varied for every sample. Magnetic properties show a gradual evolution from a ferromagnetic state for samples with larger metal thickness to a granular behaviour for the samples with the smallest Fe layer thickness. Microstructural features such as average thickness and granularity, as well as the local order around Fe atoms, were studied by x-ray reflectometry and x-ray absorption spectroscopy, respectively. X-ray reflectometry suggests that the formation of discontinuous metal-insulator multilayers is produced at t{sup Fe} {<=} 1.3 nm. Extended x-ray absorption fine structure (EXAFS) analysis shows a reduction, of the Fe-Fe coordination shell as the metal layer thickness decreases. Moreover, a new phase emerges, and it is visible at the samples with t{sup Fe} {<=} 1.3 nm. This coordination shell is attributed to the formation of Fe-N bonds likely placed at the interface regions. X-ray absorption near edge spectroscopy (XANES) at the Fe K-edge shows as well the evolution from the metallic spectrum to a combined contribution of 2 phases as the metal layer thickness decreases. XANES calculations performed within the real-space multiple-scattering formalism of two nanometric phases for metal bcc Fe and tetrahedral FeN in zinc-blende structure provide a successful explanation of the XANES spectral evolution. The appearance of a new phase linked to the interface regions obtained by X-ray absorption analysis suggests the granular morphology of samples with t{sup Fe} {<=} 1.3 nm.

  16. Non-destructive in situ study of "Mad Meg" by Pieter Bruegel the Elder using mobile X-ray fluorescence, X-ray diffraction and Raman spectrometers

    Science.gov (United States)

    Van de Voorde, Lien; Van Pevenage, Jolien; De Langhe, Kaat; De Wolf, Robin; Vekemans, Bart; Vincze, Laszlo; Vandenabeele, Peter; Martens, Maximiliaan P. J.

    2014-07-01

    "Mad Meg", a figure of Flemish folklore, is the subject of a famous oil-on-panel painting by the Flemish renaissance artist Pieter Bruegel the Elder, exhibited in the Museum Mayer van den Bergh (Antwerp, Belgium). This article reports on the in situ chemical characterization of this masterpiece by using currently available state-of-the-art portable analytical instruments. The applied non-destructive analytical approach involved the use of a) handheld X-ray fluorescence instrumentation for retrieving elemental information and b) portable X-ray fluorescence/X-ray diffraction instrumentation and laser-based Raman spectrometers for obtaining structural/molecular information. Next to material characterization of the used pigments and of the different preparation layers of the painting, also the verification of two important historical iconographic hypotheses is performed concerning the economic way of painting by Brueghel, and whether or not he used blue smalt pigment for painting the boat that appears towards the top of the painting. The pigments identified are smalt pigment (65% SiO2 + 15% K2O + 10% CoO + 5% Al2O3) for the blue color present in all blue areas of the painting, probably copper resinate for the green colors, vermillion (HgS) as red pigment and lead white is used to form different colors. The comparison of blue pigments used on different areas of the painting gives no differences in the elemental fingerprint which confirms the existing hypothesis concerning the economic painting method by Bruegel.

  17. Multispecies Biofilms Transform Selenium Oxyanions into Elemental Selenium Particles: Studies Using Combined Synchrotron X-ray Fluorescence Imaging and Scanning Transmission X-ray Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Soo In; George, Graham N.; Lawrence, John R.; Kaminskyj, Susan G. W.; Dynes, James J.; Lai, Barry; Pickering, Ingrid J.

    2016-10-04

    Selenium (Se) is an element of growing environmental concern, because low aqueous concentrations can lead to biomagnification through the aquatic food web. Biofilms, naturally occurring microbial consortia, play numerous important roles in the environment, especially in biogeochemical cycling of toxic elements in aquatic systems. The complexity of naturally forming multispecies biofilms presents challenges for characterization because conventional microscopic techniques require chemical and physical modifications of the sample. Here, multispecies biofilms biotransforming selenium oxyanions were characterized using X-ray fluorescence imaging (XFI) and scanning transmission X-ray microscopy (STXM). These complementary synchrotron techniques required minimal sample preparation and were applied correlatively to the same biofilm areas. Sub-micrometer XFI showed distributions of Se and endogenous metals, while Se K-edge X-ray absorption spectroscopy indicated the presence of elemental Se (Se0). Nanoscale carbon K-edge STXM revealed the distributions of microbial cells, extracellular polymeric substances (EPS), and lipids using the protein, saccharide, and lipid signatures, respectively, together with highly localized Se0 using the Se LIII edge. Transmission electron microscopy showed the electron-dense particle diameter to be 50–700 nm, suggesting Se0 nanoparticles. The intimate association of Se0 particles with protein and polysaccharide biofilm components has implications for the bioavailability of selenium in the environment.

  18. Medieval glass from the Cathedral in Paderborn: a comparative study using X-ray absorption spectroscopy, X-ray fluorescence, and inductively coupled laser ablation mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Hormes, J. [University of Saskatchewan, Canadian Light Source Inc., Saskatoon, SK (Canada); Louisiana State University, CAMD, Baton Rouge, LA (United States); Roy, A.; Bovenkamp, G.L. [Louisiana State University, CAMD, Baton Rouge, LA (United States); Simon, K. [University of Goettingen, Geochemistry, Centre for Geosciences, Goettingen (Germany); Kim, C.Y. [University of Saskatchewan, Canadian Light Source Inc., Saskatoon, SK (Canada); Boerste, N. [Faculty for Theology Paderborn, Paderborn (Germany); Gai, S. [LWL - Archaeologie fuer Westfalen, Muenster (Germany)

    2013-04-15

    We have investigated four stained glass samples recovered from an archaeological excavation at the Cathedral in Paderborn (Germany) between 1978 and 1980. On two of the samples there are parts of paintings. Concentrations of major elements were determined using two independent techniques: LA-ICP-MS (a UV laser ablation microsampler combined with an inductively coupled plasma mass spectrometer) and synchrotron radiation X-ray excited X-ray fluorescence (SR-XRF). The SR-XRF data were quantified by using the program package PyMCA developed by the software group of the ESRF in Grenoble. Significant differences were found between the concentrations determined by the two techniques that can be explained by concentration gradients near the surface of the glasses caused, for example, by corrosion/leaching processes and the different surface sensitivities of the applied techniques. For several of the elements that were detected in the glass and in the colour pigments used for the paintings X-ray absorption near edge structure (XANES) spectra were recorded in order to determine the chemical speciation of the elements of interest. As was expected, most elements in the glass were found as oxides in their most stable form. Two notable exceptions were observed: titanium was not found as rutile - the most stable form of TiO{sub 2} - but in the form of anatase, and lead was not found in one defined chemical state but as a complex mixture of oxide, sulphate, and other compounds. (orig.)

  19. Synchrotron Radial X-ray Diffraction Studies of Deformation of Polycrystalline MgO

    Science.gov (United States)

    Girard, J.; Tsujino, N.; Mohiuddin, A.; Karato, S. I.

    2016-12-01

    X-ray diffraction analyses have been used for decades to study mechanical properties of polycrystalline samples during in-situ high-pressure deformation. When polycrystalline materials are deformed, stresses develop in grains and lead to lattice distortion. Using X-ray diffraction we can estimate the lattice strain for each (hkl) diffraction plans and calculate the applied stress for each (hkl), using [Singh, 1993] relation. However, this method doesn't take into account plastic anisotropy. As a results of plastic anisotropy present in the material, stress estimated from this method can be largely differ depending on (hkl) diffraction planes [Karato, 2009]. Studying the stress estimate for each (hkl) plane, might help us distinguish dominant deformation mechanisms activated during deformation such as diffusion (we will observe small stress variation as a function of (hkl) diffraction planes) or dislocation creep (we will observe a stress variation as a function of (hkl) diffraction planes that could also give us clues on potential slip system activity). In this study we observed stress evolution in MgO polycrystalline samples deformed under mantle pressure and temperature for (200) and (220) diffraction planes. Using a range MgO grain sizes we were able to control the active deformation mechanism (for e.g. diffusion creep or dislocation creep). For coarse-grained specimens, we observed strong (hkl) dependence of radial strain indicating the operation of dislocation creep. The observed (hkl) dependence changes with pressure suggesting a change in the slip system: at pressures higher than 27 GPa, (200) shows larger stress estimate than (220). In contrast, at lower pressures, (220) shows larger stress estimate than (200). This might indicate a slip system transition in MgO occurring under lower mantle conditions. From {110} plane to {100} plane. This is in good agreement with theoretical predictions and numerical calculation [Amodeo et al., 2012] and has an important

  20. Effective X-ray beam size measurements of an X-ray tube and polycapillary X-ray lens system using a scanning X-ray fluorescence method

    Energy Technology Data Exchange (ETDEWEB)

    Gherase, Mihai R., E-mail: mgherase@csufresno.edu; Vargas, Andres Felipe

    2017-03-15

    Size measurements of an X-ray beam produced by an integrated polycapillary X-ray lens (PXL) and X-ray tube system were performed by means of a scanning X-ray fluorescence (SXRF) method using three different metallic wires. The beam size was obtained by fitting the SXRF data with the analytical convolution between a Gaussian and a constant functions. For each chemical element in the wire an effective energy was calculated based on the incident X-ray spectrum and its photoelectric cross section. The proposed method can be used to measure the effective X-ray beam size in XRF microscopy studies.

  1. Twisted amides: X-ray crystallographic and theoretical study of two acylated glycolurils with aromatic substituents

    Science.gov (United States)

    Matta, Chérif F.; Cow, Christopher N.; Harrison, Paul H. M.

    2003-11-01

    X-ray crystallography and theoretical analysis were applied to explore the molecular basis for the efficient and selective Claisen-like condensations of diacylglycolurils. The crystal structures of 1-acetyl-6-benzoyl-3,4,7,8-tetramethylglycoluril ( 4b), and of 1-(3'-oxo-3'-phenylpropionyl)-3,4,7,8-tetramethylglycoluril ( 5b), the product of base-promoted intramolecular condensation of 4b, were obtained by X-ray diffraction. The acetyl (Ac) group in 4b is essentially coplanar with the attached tetrahydroimidazolone ring of the glycoluril core ( τ=7°), while the benzoyl (Bz) group is twisted by τ=45° relative to a plane through the ring to which it is bonded. Product 5b contains a flat amide ( τ=7°). Ab initio energy optimizations of the experimental structures for 4b and 5b give optimized geometries which are not dramatically altered, suggesting that crystal packing effects are small. An atoms-in-molecules study of the delocalization of the Fermi hole reveals that electrons in the Bz CO group of 4b are delocalized into the phenyl ring as well as into the urea moiety of the glycoluril core. This effect stabilizes the Bz over the Ac carbonyl group, and accounts for selective twisting of the Bz group. The Laplacian of the electron density reveals a non-bonded valence shell charge concentration at O of the Ac group, corresponding to a lone-pair region, aligned with a charge depletion in the valence shell of the Bz CO carbon [∠(C15-O16⋯C18)=113°]. The angle of approach [∠(O16⋯C18O19)] is 100°, equal to the angle for ideal nucleophilic attack on a carbonyl group. Oxygen atom O16 is thus poised to attack C18; only the O16⋯C18 distance (3.248 Å) seems to prevent reaction. These results suggest that the same distance restraint may prevent O-acylation in the enolate intermediate 6b derived from 4b. By contrast, the transition state for C-acylation, leading from 6b towards product 5b requires a different geometry, which may explain the

  2. X-ray studies of interfacial strontium-extractant complexes in a model solvent extraction system.

    Science.gov (United States)

    Bu, Wei; Mihaylov, Miroslav; Amoanu, Daniel; Lin, Binhua; Meron, Mati; Kuzmenko, Ivan; Soderholm, L; Schlossman, Mark L

    2014-10-30

    The interfacial behavior of a model solvent extraction liquid-liquid system, consisting of solutions of dihexadecyl phosphate (DHDP) in dodecane and SrCl2 in water, was studied to determine the structure of the interfacial ion-extractant complex and its variation with pH. Previous experiments on a similar extraction system with ErCl3 demonstrated that the kinetics of the extraction process could be greatly retarded by cooling through an adsorption transition, thus providing a method to immobilize ion-extractant complexes at the interface and further characterize them with X-ray interface-sensitive techniques. Here, we use this same method to study the SrCl2 system. X-ray reflectivity and fluorescence near total reflection measured the molecular-scale interfacial structure above and below the adsorption transition for a range of pH. Below the transition, DHDP molecules form a homogeneous monolayer at the interface with Sr(2+) coverage increasing from zero to saturation (one Sr(2+) per two DHDP) within a narrow range of pH. Experimental values of Sr(2+) interfacial density determined from fluorescence measurements are larger than those from reflectivity measurements. Although both techniques probe Sr(2+) bound to DHDP, only the fluorescence provides adequate sensitivity to Sr(2+) in the diffuse double layer. A Stern equation determines the Sr(2+) binding constant from the reflectivity measurements and the additional Sr(2+) measured in the diffuse double layer is accounted for by Gouy-Chapman theory. Above the transition temperature, a dilute concentration of DHDP-Sr complexes resides at the interface, even for temperatures far above the transition. A comparison is made of the structure of the interfacial ion-extractant complex for this divalent metal ion to recent results on trivalent Er(3+) metal ions, which provides insight into the role of metal ion charge on the structure of interfacial ion-extractant complexes, as well as implications for extraction of these two

  3. Application of X-ray phase-contrast tomography in quantative studies of heat induced structural changes in meat

    DEFF Research Database (Denmark)

    Miklos, R.; Nielsen, M. S.; Einarsdottir, Hildur

    2013-01-01

    X-ray computed tomography is increasingly used in the studies of food structure. This paper describes the perspectives of use of phase contrast computed tomography in studies of heat induced structural changes in meat. From the data it was possible to obtain reconstructed images of the sample...

  4. Digital x-ray radiogrammetry identifies women at risk of osteoporotic fracture: results from a prospective study

    DEFF Research Database (Denmark)

    Bach-Mortensen, Pernille; Hyldstrup, Lars; Appleyard, Merete

    2006-01-01

    Using digital X-ray radiogrammetry (DXR) on hand radiographs from a large population-based study, 1,370 postmenopausal women were evaluated in a prospective fashion; fracture occurrence was compared with DXR measurements of historic radiographs. Further, the aim of the study was to evaluate factors...

  5. X-ray monitoring for astrophysical applications on Cubesat

    Science.gov (United States)

    Pina, L.; Hudec, R.; Inneman, A.; Cerna, D.; Jakubek, J.; Sieger, L.; Dániel, V.; Cash, W.; Mikulickova, L.; Pavlica, R.; Belas, E.; Polak, J.

    2015-05-01

    The primary objective of the project VZLUSAT-1 is the development, manufacturing, qualification and experimental verification of products and technologies in Earth orbit (IOD - In-Orbit Demonstration). This work addresses the issue of X-ray monitoring for astrophysical applications. The proposed wide-field optical system has not been used in space yet. The proposed novel approach is based on the use of 1D "Lobster eye" optics in combination with Timepix X-ray detector in the energy range 3 - 40 keV. The proposed project includes theoretical study and a functional sample of the Timepix X-ray detector with multifoil wide-field X-ray "Lobster eye" optics. Using optics to focus X-rays on a detector is the only solution in cases the intensity of impinging X-ray radiation is below the sensitivity of the detector, e.g. while monitoring astrophysical objects in space, or phenomena in the Earth's atmosphere. On board the functions and features of Radiation Hardened Composite Housing (RHCH), Solar panels based on composite substrate and Hollow Retro Reflector Array based on composite (HRRA) will be verified. To verify the properties of the developed products the satellite is equipped by Health Monitoring system (HM). HM system includes temperature, volatiles, radiation and mechanical properties sensors. The custom ADCS algorithms are being developed within the project. Given the number of IOD experiments and the necessary power the 1U CubeSat is equipped with Composite Deployable Panels (CDP) where HM panels and additional Solar panels are located. Satellite platform is assembled from commercial parts. Mission VZLUSAT-1 is planned for 6 months with launch in 2016.

  6. In-Situ Coherent Grazing Incidence Small Angle X-ray Scattering (Co-GISAXS) Studies of Surface Fluctuations of Sputter Deposited WSi2 using X-ray Photon Correlation Spectroscopy (XPCS)

    Science.gov (United States)

    Dahal, Som; Ulbrandt, Jeffrey; Headrick, Randall; Demasi, Alexander; Ludwig, Karl

    2014-03-01

    We performed Coherent Grazing Incidence Small Angle X-ray Scattering (Co-GISAXS) studies of surface dynamics during magnetron sputtering deposited WSi2 amorphous thin films. The local dynamics of surface fluctuations was studied by X-ray Photon Correlation Spectroscopy (XPCS) in the late time regime where the static GIXAXS stops evolving. Our studies reveal that the correlation time of the sputtered species varies as a power law with the in-plane momentum transfer. The experimentally obtained results are compared with predictions from continuum models of surface growth.

  7. Microstructure of calcite deformed by high-pressure torsion: An X-ray line profile study

    Science.gov (United States)

    Schuster, Roman; Schafler, Erhard; Schell, Norbert; Kunz, Martin; Abart, Rainer

    2017-11-01

    Calcite aggregates were deformed to high strain using high-pressure torsion and applying confining pressures of 1-6 GPa and temperatures between room temperature and 450 °C. The run products were characterized by X-ray diffraction, and key microstructural parameters were extracted employing X-ray line profile analysis. The dominant slip system was determined as r { 10 1 bar 4 } ⟨ 2 bar 021 ⟩ with edge dislocation character. The resulting dislocation density and the size of the coherently scattering domains (CSD) exhibit a systematic dependence on the P-T conditions of deformation. While high pressure generally impedes recovery through reducing point defect mobility, the picture is complicated by pressure-induced phase transformations in the CaCO3 system. Transition from the calcite stability field to those of the high-pressure polymorphs CaCO3-II, CaCO3-III and CaCO3-IIIb leads to a change of the microstructural evolution with deformation. At 450 °C and pressures within the calcite stability field, dislocation densities and CSD sizes saturate at shear strains exceeding 10 in agreement with earlier studies at lower pressures. In the stability field of CaCO3-II, the dislocation density exhibits a more complex behavior. Furthermore, at a given strain and strain rate, the dislocation density increases and the CSD size decreases with increasing pressure within the stability fields of either calcite or of the high-pressure polymorphs. There is, however, a jump from high dislocation densities and small CSDs in the upper pressure region of the calcite stability field to lower dislocation densities and larger CSDs in the low-pressure region of the CaCO3-II stability field. This jump is more pronounced at higher temperatures and less so at room temperature. The pressure influence on the deformation-induced evolution of dislocation densities implies that pressure variations may change the rheology of carbonate rocks. In particular, a weakening is expected to occur at

  8. Advancement of X-Ray Microscopy Technology and its Application to Metal Solidification Studies

    Science.gov (United States)

    Kaukler, William F.; Curreri, Peter A.

    1996-01-01

    The technique of x-ray projection microscopy is being used to view, in real time, the structures and dynamics of the solid-liquid interface during solidification. By employing a hard x-ray source with sub-micron dimensions, resolutions of 2 micrometers can be obtained with magnifications of over 800 X. Specimen growth conditions need to be optimized and the best imaging technologies applied to maintain x-ray image resolution, contrast and sensitivity. It turns out that no single imaging technology offers the best solution and traditional methods like radiographic film cannot be used due to specimen motion (solidification). In addition, a special furnace design is required to permit controlled growth conditions and still offer maximum resolution and image contrast.

  9. Hydrothermal formation of tobermorite studied by in situ X-ray diffraction under autoclave condition.

    Science.gov (United States)

    Kikuma, Jun; Tsunashima, Masamichi; Ishikawa, Tetsuji; Matsuno, Shin-ya; Ogawa, Akihiro; Matsui, Kunio; Sato, Masugu

    2009-09-01

    Hydrothermal formation of tobermorite from a pre-cured cake has been investigated by transmission X-ray diffraction (XRD) using high-energy X-rays from a synchrotron radiation source in combination with a newly designed autoclave cell. The autoclave cell has a large and thin beryllium window for wide-angle X-ray diffraction; nevertheless, it withstands a steam pressure of more than 1.2 MPa, which enables in situ XRD measurements in a temperature range of 373 to 463 K under a saturated steam pressure. Formation and/or decomposition of several components has been successfully observed during 7.5 h of reaction time. From the intensity changes of the intermediate materials, namely non-crystalline C-S-H and hydroxylellestadite, two pathways for tobermorite formation have been confirmed. Thus, the newly developed autoclave cell can be used for the analyses of reaction mechanisms under specific atmospheres and temperatures.

  10. Spectroscopic study of site selective DNA damage induced by intense soft X-rays

    CERN Document Server

    Fujii, K

    2003-01-01

    To investigate the mechanisms of DNA damage induced by direct photon impact, we observed the near edge X-ray absorption fine structures (NEXAFS) of DNA nucleobases using monochromatic synchrotron soft X-rays around nitrogen and oxygen K-shell excitation regions. Each spectrum obtained has unique structure corresponding to pi* excitation of oxygen or nitrogen 1s electron. These aspects open a way of nucleobase-selective photo-excitation in a DNA molecule using high resolution monochromatized soft X-rays. From the analysis of polarization-dependent intensities of the pi* resonance peak, it is clarified that adenine, guanine an uracil form orientated surface structure. Furthermore from the direct measurement of positive ions desorbed from photon irradiated DNA components, it is revealed that the sugar moiety is a fragile site in a DNA molecule. (author)

  11. High-pressure x-ray absorption spectroscopy study of tin tungstates

    Science.gov (United States)

    Kuzmin, A.; Anspoks, A.; Kalinko, A.; Timoshenko, J.; Kalendarev, R.; Nataf, L.; Baudelet, F.; Irifune, T.

    2015-09-01

    Room-temperature pressure-dependent (0-25 GPa) x-ray absorption spectroscopy at the W {L}{1,3}-edges of α-SnWO4 and β-SnWO4 was performed using a dispersive setup and a high-pressure nanodiamond anvil cell. The detailed analysis of experimental x-ray absorption near-edge structure and extended x-ray absorption fine structure data suggests that upon increasing pressure, a displacement of tungsten atoms by about 0.2 Å toward the center of the WO6 octahedra occurs in α-SnWO4, whereas the coordination of tungsten atoms changes from tetrahedral to distorted octahedral in β-SnWO4.

  12. Conceptual study of moderately coupled plasmas and experimental comparison of laboratory x-ray sources

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chikang [Massachusetts Inst. of Tech., Cambridge, MA (United States). Plasma Fusion Center

    1993-12-01

    In this thesis the fundamental concepts of moderately coupled plasmas, for which 2≲lnΛb≲10, are, for the first time, presented. This investigation is motivated because neither the conventional Fokker-Planck approximation [for weakly coupled plasmas (lnΛb≲10)] nor the theory of dielectric response with correlations for strongly coupled plasmas (lnΛb≲1) has satisfactorily addressed this regime. Specifically, herein the standard Fokker-Planck operator for Coulomb collisions has been modified to include hitherto neglected terms that are directly associated with large-angle scattering. In addition a reduced electron-ion collision operator has been calculated that, for the first time, manifests 1/lnΛb corrections. Precise calculations of some relaxation rates and crude calculations of electron transport coefficients have been made. As one of major applications of the modified Fokker-Planck equation, the stopping powers and ρR have been calculated for charged fusion products (α`s, 3H, 3He) and hot electrons interacting with plasmas relevant to inertial confinement fusion. In the second major topic of this thesis, advances made in the area of laboratory x-ray sources are presented. First, and most importantly, through the use a Cockcroft-Walton linear accelerator, a charged particle induced x-ray emission (PIXE) source has been developed. Intense line x radiation (including K-, L-, M-, and N-lines) with wavelengths from 0.5 Å to 111 Å have been successfully produced. Second, a new high intensity electron-beam x-ray generator has also been developed, and it has been used with advantage in the soft x-ray region ( < 3 keV). Finally, a direct comparisons of both sources (PIXE and electron-beam x-ray sources) to a commercially available radioactive α fluorescent x-ray source has been made.

  13. Reactive ZnO/Ti/ZnO interfaces studied by hard x-ray photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Knut, Ronny, E-mail: Ronny.Knut@physics.gu.se; Lindblad, Rebecka; Rensmo, Håkan; Karis, Olof [Department of Physics and Astronomy, Uppsala University, Box 516, 75120 Uppsala (Sweden); Grachev, Sergey; Faou, Jean-Yvon; Søndergård, Elin [Unité Mixte CNRS/Sain-Gobain Recherche, 39 Quai Lucien Lefranc, 93303 Aubervilliers (France); Gorgoi, Mihaela [Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, D-12489 Berlin (Germany)

    2014-01-28

    The chemistry and intermixing at buried interfaces in sputter deposited ZnO/Ti/ZnO thin layers were studied by hard x-ray photoelectron spectroscopy. The long mean free path of the photoelectrons allowed for detailed studies of the oxidation state, band bending effects, and intrinsic doping of the buried interfaces. Oxidation of the Ti layer was observed when ZnO was deposited on top. When Ti is deposited onto ZnO, Zn Auger peaks acquire a metallic character indicating a strong reduction of ZnO at the interface. Annealing of the stack at 200 °C results in further reduction of ZnO and oxidation of Ti. Above 300 °C, oxygen transport from the bulk of the ZnO layer takes place, leading to re-oxidation of ZnO at the interface and further oxidation of Ti layer. Heating above 500 °C leads to an intermixing of the layers and the formation of a Zn{sub x}TiO{sub y} compound.

  14. X-Ray diffraction study of KTiOPO{sub 4} single crystals doped with hafnium

    Energy Technology Data Exchange (ETDEWEB)

    Novikova, N. E., E-mail: natnov@ns.crys.ras.ru; Verin, I. A.; Sorokina, N. I.; Alekseeva, O. A. [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation); Orlova, E. I.; Voronkova, V. I. [Moscow State University, Faculty of Physics (Russian Federation)

    2011-05-15

    Single crystals of KTi{sub 1-x}Hf{sub x}OPO{sub 4} (x = 0.015(2), 0.035(1), and 0.128(1) are reinvestigated by precision X-ray diffraction at room temperature. It is found that the implantation of hafnium atoms in the crystal structure of KTiOPO{sub 4} does not lead to significant changes in the framework and affects only the positions of the potassium atoms in the channel. Our studies reveal the displacements of the potassium atoms from their main and additional positions in the structure of pure KTP in all three structures studied. The largest displacements from the K1 Prime and K1 Double-Prime additional positions are observed in the structure with x = 0.035. At this hafnium concentration, the occupancy of the main positions of potassium atoms decreases and the occupancy of the additional positions increases in relation to those in KTP. This redistribution of potassium atoms enhances the nonuniformity of distribution of the electron density in the vicinity of their positions, which is probably responsible for the increase in the nonlinear susceptibility of KTP crystals that contain 3.5% hafnium in relation to crystals of pure KTP.

  15. X-ray reflectivity studies at the mercury/electrolyte interface

    Energy Technology Data Exchange (ETDEWEB)

    Elsen, Annika; Murphy, Bridget M.; Magnussen, Olaf M. [Institut fuer Experimentelle und Angewandte Physik, CAU, D-24105 Kiel (Germany); Ocko, Ben M. [Department of Physics, BNL, Upton, New York 11973 (United States); Tamam, Lilach; Deutsch, Moshe [Department of Physics, Bar-Ilan University, Ramat Gan 52900 (Israel); Kuzmenko, Ivan [CMC-CAT, APS, ANL, Argonne, Illinois 60439 (United States)

    2010-07-01

    The interface between the liquid mercury electrode and an electrolyte solution is one of the most extensively studied electrochemical systems. It was fundamental for verifying traditional and modern theories of the electrochemical double layer. Although the metal contributes significant to the double layer capacity, with its interface structure playing an important role, up to now there is almost no knowledge about this structure. Here we present the first X-ray reflectivity studies at the liquid mercury electrode in electrolyte solution (0.01M NaF), allowing to clarify the interface structure. The experiments exhibited atomic layering of the mercury perpendicular to the surface similar to that found for the mercury vapour interface. We found a significant influence on the width of the interface electron density profile which can be referred to two effects: first of all the potential dependent change in the surface tension causes a change in the capillary wave induced interface roughness. Secondly another potential controlled effect was found due to the intrinsic change in the electron density distribution because of interface polarisation.

  16. The surface of 1-euro coins studied by X-ray photoelectron spectroscopy

    Science.gov (United States)

    Gou, F.; Gleeson, M. A.; Villette, J.; Kleyn, S. E. F.; Kleyn, A. W.

    2004-03-01

    The two alloy surfaces (pill and ring) that are present on 1-euro coins have been studied by X-ray photoelectron spectroscopy (XPS). Comparison is made between coins from general circulation and coin surfaces that have been subjected to a variety of cleaning and oxidation treatments. The concentrations and possible oxidation states of the metals (nickel, copper and zinc) at the surface were derived from analysis of the 2p 3/2 core levels. The surface atomic ratios measured for the pill and the ring parts of the euro coins were compared to the official bulk ratios. This study shows a clear nickel enrichment of both pill and ring surfaces. Nickel at surface seems to be present mainly in hydroxide form although the chloride form cannot be excluded. A small concentration of zinc was present on the surface of the pill, even though it is not present in the bulk alloy. Evidence of both nickel and zinc surface enrichment is observed for the ring. No surface enrichment is observed for the atomically clean or oxidized alloy surfaces over a 60-h time scale.

  17. The surface of 1-euro coins studied by X-ray photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Gou, F.; Gleeson, M.A.; Villette, J.; Kleyn, S.E.F.; Kleyn, A.W

    2004-03-30

    The two alloy surfaces (pill and ring) that are present on 1-euro coins have been studied by X-ray photoelectron spectroscopy (XPS). Comparison is made between coins from general circulation and coin surfaces that have been subjected to a variety of cleaning and oxidation treatments. The concentrations and possible oxidation states of the metals (nickel, copper and zinc) at the surface were derived from analysis of the 2p{sub 3/2} core levels. The surface atomic ratios measured for the pill and the ring parts of the euro coins were compared to the official bulk ratios. This study shows a clear nickel enrichment of both pill and ring surfaces. Nickel at surface seems to be present mainly in hydroxide form although the chloride form cannot be excluded. A small concentration of zinc was present on the surface of the pill, even though it is not present in the bulk alloy. Evidence of both nickel and zinc surface enrichment is observed for the ring. No surface enrichment is observed for the atomically clean or oxidized alloy surfaces over a 60-h time scale.

  18. Oxidation mechanism of chalcopyrite revealed by X-ray photoelectron spectroscopy and first principles studies

    Science.gov (United States)

    Xiong, Xiaolu; Hua, Xiaoming; Zheng, Yongfei; Lu, Xionggang; Li, Shenggang; Cheng, Hongwei; Xu, Qian

    2018-01-01

    X-ray photoelectron spectroscopic (XPS) studies revealed that the iron site on the chalcopyrite (CuFeS2) surface was preferably oxidized to the Cu site when exposed to an oxidizing environment. Extensive density functional theory calculations were performed to investigate the surface structure of chalcopyrite and its reaction with both molecular oxygen (O2) and water. The adsorption and dissociation of a single O2 molecule, a single H2O molecule, as well as both molecules at the Fe and Cu sites on the CuFeS2 (001) surface were studied. Consistent with our experimental observation, the Fe site was found to be preferred for the adsorption and dissociation of O2 due to its lower energy barrier and greater exothermicity. The dissociation of H2O on the CuFeS2 (001) surface by itself was found to be unfavorable both thermodynamically and kinetically. However, the surface formed upon O2 dissociation was predicted to be much more reactive with H2O, which was attributed to favorable hydrogen transfer to the O site formed upon O2 dissociation to hydrogen transfer to the S site due to the much weaker Ssbnd H bond than the Osbnd H bond.

  19. Study of X-ray point sources in NGC 5643 and NGC 7457 with Chandra

    Science.gov (United States)

    Singha, Akram Chandrajit; Devi, A. Senorita

    2017-12-01

    In the present study we have analysed Chandra Observational data of 2 galaxies: NGC 5643 and NGC 7457. Four point sources from NGC 5643 and two point sources from NGC 7457 with net counts ≥ 100 were considered for the present study. The spectra of these sources were fitted using two spectral models- an absorbed powerlaw and an absorbed disk blackbody. The spectrum of all the sources can be explained almost equally by both the models. We report here the discovery of 3 Ultraluminous X-ray sources (ULXs), X-1, X-2 and X-3 in the galaxy NGC 5643 and one ULX, X-5 in the galaxy NGC 7457. The spectral parameters suggest that all the above four ULX sources are in hard state (Γ ˜ 1.42-1.86), which may be due to thermal comptonization. If explained by absorbed diskblackbody model, the Black Hole (BH) mass of these sources are estimated to be stellar mass BHs with X-2, & X-5 accreting at super-Eddington rate while X-1 and X-3 at sub-Eddington rate. Another ULX, X-4 in NGC 5643 which is also accreting at super-Eddington rate is found to be a variable ULX with its luminosity reducing from 4.4 × 10^{40} ergs s^{-1} to 2.27 × 10^{40} ergs s^{-1} in the 0.3-10.0 keV energy range within a period of 11 years.

  20. Synchrotron X-Ray Studies of Monolayers at Air - Interfaces and on Solid Substrates.

    Science.gov (United States)

    Shih, Mingchih

    We have used X-ray diffraction to study the structures of Langmuir monolayers. We find that both heneicosanoic acid and heneicosanol monolayers show the same untilted structures at high monolayer pressure as do lamellar paraffins; in other words, the high-pressure untilted structures are determined by chain packing and not by the head group. At lower pressures, however, the structures, lattice spacings, and tilt angles and tilt directions all appear to be determined by competition between head group and tail group interactions. For example, we find that the effect of increasing subphase pH on heneicosanoic acid monolayers is to reduce the in -plane spacings at zero pressure, and thus reduce the tilt angles and move the phase transitions to lower pressure. Again, while acid monolayers show phases with both nearest-neighbor and next-nearest-neighbor tilts, alcohol monolayers show next-nearest-neighbor tilts only. Finally, we have studied the correlation between structures of phases on water and structures of films transferred from these phases to solid substrates; we find that the structures are not preserved, although there are small "memory effects".

  1. Studying nanostructure gradients in injection-molded polypropylene/montmorillonite composites by microbeam small-angle x-ray scattering

    DEFF Research Database (Denmark)

    Stribeck, Norbert; Schneider, Konrad; Zeinolebadi, Ahmad

    2014-01-01

    The core–shell structure in oriented cylindrical rods of polypropylene (PP) and nanoclay composites (NCs) from PP and montmorillonite (MMT) is studied by microbeam small-angle x-ray scattering (SAXS). The structure of neat PP is almost homogeneous across the rod showing regular semicrystalline...

  2. X-ray diffraction study of the composition and strain fields in buried SiGe islands

    NARCIS (Netherlands)

    Hrauda, N.; Zhang, J.J.; Stoffel, M.; Stangl, J.; Bauer, G.; Rehman-Khan, A.; Holy, V.; Schmidt, O.G.; Jovanovic, V.; Nanver, L.K.

    2009-01-01

    We report on studies of strain and composition of two-dimensionally ordered SiGe islands grown by molecular beam epitaxy using high resolution x-ray diffraction. To ensure a small size distribution of the islands, pit-patterned 4 (001) Si wafers were used as substrates. The Si wafers were patterned

  3. Studies of protein structure in solution and protein folding using synchrotron small-angle x-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Lingling [Stanford Univ., CA (United States)

    1996-04-01

    Synchrotron small angle x-ray scattering (SAXS) has been applied to the structural study of several biological systems, including the nitrogenase complex, the heat shock cognate protein (hsc70), and lysozyme folding. The structural information revealed from the SAXS experiments is complementary to information obtained by other physical and biochemical methods, and adds to our knowledge and understanding of these systems.

  4. Comparative Effectiveness of a Mnemonic-Use Approach vs. Self-Study to Interpret a Lateral Chest X-Ray

    Science.gov (United States)

    Thompson, Michael; Johansen, Dallin; Stoner, Russell; Jarsted, Allison; Sorrells, Robert; McCarroll, Michele L.; Justice, Wade

    2017-01-01

    The chest X-ray is the most commonly performed medical imaging study; however, the lateral chest film intimidates many physicians and medical students. The lateral view is more difficult to interpret than the frontal view but provides important information that is either not visible or not as evident on frontal view, and inability to read it may…

  5. Self-assembly of designed coiled coil peptides studied by small-angle X-ray scattering and analytical ultracentrifugation

    DEFF Research Database (Denmark)

    Malik, Leila; Nygaard, Jesper; Christensen, Niels Johan

    2013-01-01

    , they are promising tools for the construction of nanomaterials. Small-angle X-ray scattering (SAXS) has emerged as a new biophysical technique for elucidation of protein topology. Here, we describe a systematic study of the self-assembly of a small ensemble of coiled coil sequences using SAXS and analytical...

  6. Femtosecond X-Ray Scattering Study of Ultrafast Photoinduced Structural Dynamics in Solvated [Co(terpy)2]2+

    DEFF Research Database (Denmark)

    Biasin, Elisa; Brandt van Driel, Tim; Kjær, Kasper Skov

    2016-01-01

    We study the structural dynamics of photoexcited [Co(terpy)2]2+ in an aqueous solution with ultrafast x-ray diffuse scattering experiments conducted at the Linac Coherent Light Source. Through direct comparisons with density functional theory calculations, our analysis shows...

  7. Energy-Dispersive X-Ray Diffraction Studies of the Texture in Cold-Rolled Alpha-Beta Brass

    DEFF Research Database (Denmark)

    Szpunar, J.; Gerward, L.

    1980-01-01

    It is shown that energy-dispersive X-ray diffraction can be used for simultaneous measurement of several pole figures and that the accuracy is sufficient for the determination of the crystallite orientation distribution. The method is applied to the study of the texture in Cu-43 wt % Zn duplex...... alpha-beta brass rolled to 80% reduction....

  8. X-ray and light scattering study of the structure of large protein aggregates at neutral pH

    NARCIS (Netherlands)

    Pouzot, M.; Nicolai, T.; Visschers, R.W.; Weijers, M.

    2005-01-01

    The structure of large ovalbumin and ß-lactoglobulin aggregates formed after heat-denaturation at neutral pH was studied using a combination of light and small-angle X-ray scattering. The effect of the electrostatic interactions was investigated by varying the ionic strength. The results were

  9. A United Effort for Crystal Growth, Neutron Scattering, and X-ray Scattering Studies of Novel Correlated Electron Materials

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young S. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2015-02-12

    The research accomplishments during the award involved experimental studies of correlated electron systems and quantum magnetism. The techniques of crystal growth, neutron scattering, x-ray scattering, and thermodynamic & transport measurements were employed, and graduate students and postdoctoral research associates were trained in these techniques.

  10. Research study on stellar X-ray imaging experiment, volume 1

    Science.gov (United States)

    Wilson, H. H.; Vanspeybroeck, L. P.

    1972-01-01

    The use of microchannel plates as focal plane readout devices and the evaluation of mirrors for X-ray telescopes applied to stellar X-ray imaging is discussed. The microchannel plate outputs were either imaged on a phosphor screen which was viewed by a low light level vidicon or on a wire array which was read out by digitally processing the output of a charge division network attached to the wires. A service life test which was conducted on two image intensifiers is described.

  11. Interaction between Lipid Monolayers and Poloxamer 188: An X-Ray Reflectivity and Diffraction Study

    Science.gov (United States)

    Wu, Guohui; Majewski, Jaroslaw; Ege, Canay; Kjaer, Kristian; Weygand, Markus Jan; Lee, Ka Yee C.

    2005-01-01

    The mechanism by which poloxamer 188 (P188) seals a damaged cell membrane is examined using the lipid monolayer as a model system. X-ray reflectivity and grazing-incidence x-ray diffraction results show that at low nominal lipid density, P188, by physically occupying the available area and phase separating from the lipids, forces the lipid molecules to pack tightly and restore the barrier function of the membrane. Upon compression to bilayer equivalent pressure, P188 is squeezed out from the lipid monolayer, allowing a graceful exit of P188 when the membrane integrity is restored. PMID:16100276

  12. A sample holder for in-house X-ray powder diffraction studies of protein powders

    DEFF Research Database (Denmark)

    Frankær, Christian Grundahl; Harris, Pernille; Ståhl, Kenny

    2011-01-01

    A sample holder for handling samples of protein for in-house X-ray powder diffraction (XRPD) analysis has been made and tested on lysozyme. The use of an integrated pinhole reduced the background, and good signal-to-noise ratios were obtained from only 7 l of sample, corresponding to approximately...... 2-3 mg of dry protein. The sample holder is further adaptable to X-ray absorption spectroscopy (XAS) measurements. Both XRPD and XAS at the Zn K-edge were tested with hexameric Zn insulin....

  13. Study of ablation and implosion stages in wire arrays using coupled ultraviolet and X-ray probing diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, A. A.; Ivanov, V. V.; Astanovitskiy, A. L.; Wiewior, P. P.; Chalyy, O. [University of Nevada Reno, Reno, Nevada 89557 (United States); Papp, D. [University of Nevada Reno, Reno, Nevada 89557 (United States); ELI-ALPS, ELI-Hu Nkft., H-6720 Szeged (Hungary)

    2015-11-15

    Star and cylindrical wire arrays were studied using laser probing and X-ray radiography at the 1-MA Zebra pulse power generator at the University of Nevada, Reno. The Leopard laser provided backlighting, producing a laser plasma from a Si target which emitted an X-ray probing pulse at the wavelength of 6.65 Å. A spherically bent quartz crystal imaged the backlit wires onto X-ray film. Laser probing diagnostics at the wavelength of 266 nm included a 3-channel polarimeter for Faraday rotation diagnostic and two-frame laser interferometry with two shearing interferometers to study the evolution of the plasma electron density at the ablation and implosion stages. Dynamics of the plasma density profile in Al wire arrays at the ablation stage were directly studied with interferometry, and expansion of wire cores was measured with X-ray radiography. The magnetic field in the imploding plasma was measured with the Faraday rotation diagnostic, and current was reconstructed.

  14. Development of a portable system of grazing exit X-Ray fluorescence applied to environmental and biological studies

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Ramon S.; Oliveira, Davi F.; Anjos, Marcelino J. [Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil). Instituto de Fisica; Assis, Joaquim T., E-mail: ramonziosp@yahoo.com.br, E-mail: davi.oliveira@uerj.br, E-mail: marcelin@uerj.br, E-mail: joaquim.iprj@gmail.com [Universidade do Estado do Rio de Janeiro (UERJ), Nova Friburgo, RJ (Brazil). Instituto Politécnico

    2017-07-01

    In this study was developed a portable system of grazing exit X-ray fluorescence (geometric 90° - 0°) that will be applied in environmental studies (aerosol samples) and biological studies. GE-XRF portable system is formed by a mini X-ray tube of low power (anode of Au, maximum voltage and current of 50 kV and 200 μA, respectively) and a SiPIN detector (model XR-100CR of the Amptek). The reflectors used as sample support (sampler carrier) were quartz discs with 25.4 mm diameter and 3.0 mm thickness. The grazing exit angle was experimentally determined by measuring a cooper solution (10 μg.g{sup -1}). The system of GE-XRF proved to be quite stable and reproducible. It was calculated the sensibility curve of the system using multielement solutions. The accuracy of the system was checked using multielement reference solution as standard reference material. The relative errors between measured and certified values are in the range of 4 to 19%. The first results showed a background was drastically reduced at grazing exit angles, enabling trace elemental analysis. This paper shows that it is possible to produce a portable system of grazing exit X-ray fluorescence compact, efficient, low-cost and easy-to-handle instrumentation using a low-power X-ray tube and a SiPIN compact detector. (author)

  15. Catching a glimpse of the X-ray emission from galaxies in the early Universe by studying nearby low-metallicity galaxies

    Science.gov (United States)

    Basu-Zych, Antara; Hornschemeier, Ann; Lehmer, Bret; Ptak, Andrew; Yukita, Mihoko

    2015-09-01

    Deep studies of X-ray emission from galaxies, such as the Chandra Deep Field-South 4 Ms (soon to be 7Ms) survey, have allowed us to peer back in history at X-ray binary formation and evolution over cosmic timescales. X-ray stacking observations of z=1-4 star-forming galaxies reveal that the metallicity evolution of the Universe drives the evolution of the 2-10 keV X-ray luminosity per star formation rate (SFR), which is dominated by high mass X-ray binaries (HMXBs). By finding local (z=0.02-0.2), rare, analogs of these high redshift galaxies, we have found further evidence that the X-ray emission per SFR is elevated compared to typical local star-forming galaxies and this appears to be due to the lower metallicities of these galaxies. Theoretically, metal poor stars produce weaker stellar winds, which results in higher numbers of more massive binaries and therefore leads to higher X-ray luminosities in metal poor populations. Since galaxies in the early universe (and their binaries) formed in a more pristine universe, with few metals, the analogs that we have been studying have cosmological significance. X-ray emission from X-ray binaries and hot gas within galaxies at these early epochs is expected to be important for heating and reionization of the Universe. We will present our current results on the study of HMXB populations in nearby metal-poor starbursts. These primordial analog galaxies represent a challenge for current X-ray facilities, but with modest exposures with Athena, we will obtain high-resolution X-ray spectra permitting detailed study of their properties. We use simulations of the X-ray spectra from these galaxies with Athena to explore the potential capability for measuring column densities (n_H) and metallicities, as well as line shifts to detect outflows that may ultimately enrich the intergalactic medium (IGM).

  16. Structure of organoclays--an X-ray diffraction and thermogravimetric analysis study.

    Science.gov (United States)

    Xi, Yunfei; Ding, Zhe; He, Hongping; Frost, Ray L

    2004-09-01

    X-ray diffraction has been used to study the changes in the surface properties of a montmorillonitic clay through the changes in the basal spacings of montmorillonite (SWy-2) and surfactant-intercalated organoclays. Variation in the d-spacing was found to be a step function of the surfactant concentration. High-resolution thermogravimetric analysis (HRTG) shows that the thermal decomposition of SWy-2-MMTs modified with the surfactant octadecyltrimethylammonium bromide takes place in four steps. A mass-loss step is observed at room temperature and is attributed to dehydration of adsorption water. A second mass-loss step is observed over the temperature range 87.9 to 135.5 degrees C and is also attributed to dehydration of water hydrating metal cations such as Na+. The third mass loss occurs from 178.9 to 384.5 degrees C and is assigned to a loss of surfactant. The fourth mass-loss step is ascribed to the loss of OH units through dehydroxylation over the temperature range 556.0 to 636.4 degrees C. A model is proposed in which, up to 0.4 CEC, a surfactant monolayer is formed between the montmorillonitic clay layers; up to 0.8 CEC, a lateral-bilayer arrangement is formed; and above 1.5 CEC, a pseudotrimolecular layer is formed, with excess surfactant adsorbed on the clay surface.

  17. Small angle X-ray study of cellulose macromolecules produced by tunicates and bacteria.

    Science.gov (United States)

    Khandelwal, Mudrika; Windle, Alan H

    2014-07-01

    The organisation of poly-glucan chains into cellulose macromolecular microfibrils has been studied using small angle X-ray scattering (SAXS). Three kinds of cellulose - bacterial cellulose (BC), nata-de-coco (NdC) (food grade bacterial cellulose) and tunicate cellulose (TC) have been investigated. Given the large ambiguity in literature on the microfibril dimensions owing to different methods and data analysis strategies, a method to extract dimensions of cellulose microfibrils using SAXS has been shown, which was found to be consistent across all the samples. The results have been verified with microscopy data. Two populations of microfibrils with different cross-section dimensions were identified. The dimensions of the rectangular cross-sections of BC were found to be 32nm by 16nm and 21nm by 10nm. The dimensions for NdC were calculated to be 25nm×8nm and 14nm×6nm and that for TC were determined to be 25nm×10nm and 15nm×8nm. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. {sup 57}Fe Moessbauer spectroscopy and x-ray diffraction study of some complex metamict minerals

    Energy Technology Data Exchange (ETDEWEB)

    Malczewski, Dariusz, E-mail: malczews@us.edu.pl [University of Silesia, Faculty of Earth Sciences (Poland); Frackowiak, Janusz E., E-mail: jfrack@us.edu.pl [University of Silesia, Faculty of Computer and Materials Science (Poland); Galuskin, Evgeny V., E-mail: galuskin@us.edu.pl [University of Silesia, Faculty of Earth Sciences (Poland)

    2005-11-15

    Metamict minerals are a class of natural amorphous materials which were initially crystalline but self-radiation damage mainly from alpha decays of {sup 238}U and {sup 232}Th series inside the structure can produce partially or fully amorphization (metamictization) of these minerals. This paper reports the results of {sup 57}Fe Moessbauer spectroscopy, gamma-ray spectrometry and X-ray diffraction (XRD) study of some complex metamict minerals like: davidite-(La), gadolinite, steenstrupine-(Ce), vesuvianite and comparatively epidote. The absorbed {alpha}-dose for these minerals varies in wide range from 1.9 x 10{sup 14} {alpha}-decay/mg (epidote) to as high as 2.7 x 10{sup 16} {alpha}-decay/mg (steenstrupine). The Moessbauer spectra show decreasing IS values (except steenstrupine) for Fe{sup 2+} components with absorbed {alpha}-dose. Rather unexpected feature of these spectra is a noticeable decrease of the spectral line widths with increasing absorbed {alpha}-dose both Fe{sup 2+} and Fe{sup 3+} components in gadolinite, davidite and steenstrupine.

  19. The use of X-ray diffraction as a tool for bio polymer junction studies

    Energy Technology Data Exchange (ETDEWEB)

    Burgardt, Vania C.F.; Oliveira, Debora F. de; Evseev, Ivan G., E-mail: evseev@utfpr.edu.br [Universidade Tecnologica Federal do Parana (UTFPR), Francisco Beltrao, PR (Brazil); Waszczynskyj, Nina, E-mail: ninawas@ufpr.br [Departamento de Engenharia Quimica. Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil)

    2011-07-01

    In this work, we illustrate the efficiency of x-ray diffraction (XRD) in analysis of bio polymer junctions under the presence of proteins. Although XRD is a common technique for the characterization of different polymeric materials, it is still little explored for the matrices containing mixed biopolymers, such as proteins and carbohydrates. At the same time, the interaction between carbohydrates and proteins is of a great interest for industry because it is responsible for several physical and sensory properties of food, and may (or may not) result in system thermal stability. Thus, it was attractive to compare the observations obtained with such traditional for the food industry methods as Fourier transform spectroscopy (FTIR) and scanning electron microscopy (SEM), with XRD results. We used these three methods to evaluate the gels formed by 12.0% of casein glyco macropeptide (CMP) at pH 3,5. During the gel production, carboxymethylcellulose (CMC) was added in the proportions of 0.00%, 0.25%, and 0.50%. The XRD study shows that the gel with 0.25% CMC addition presents minor crystallinity, and, thus, major interactions between CMC and CMP biopolymers. It is in perfect agreement with FTIR and SEM interpretations. (author)

  20. Electronic structure of advanced materials studied by x-ray emission spectroscopy

    Science.gov (United States)

    Kurmaev, E. Z.; Galakhov, V. R.; Yarmoshenko, Yu. M.; Trofimova, V. A.; Shamin, S. N.; Cherkashenko, V. M.; Poteryaev, A. I.; Anisimov, V. I.

    1997-01-01

    High resolution soft x-ray emission spectroscopy with high spatial resolution is used to study of the electronic structure and characterize advanced materials: high-Tc superconductors, transition metal compounds, porous silicon, solid-solid buried interfaces and hard materials. In high-Tc, the main attention is focused on the analysis of oxygen-cation interactions and the determination of the location of impurity atoms. In transition metal compounds the participation of different electronic states of constitute atoms in the valence band is analyzed and correctness of LDA band structure calculations is estimated. For CuFeO2 an unusual mutual position of the Cu3d and Fe3d bands was found which is attributed to strong electron-electron correlations. In porous silicon the local structure of silicon atoms is found to depend on the type of doping of the initial Si wafer. Solid-solid buried interfaces in thin semiconducting films irradiated by eximer laser are investigated. For the hard materials boron-carbonitride a structure consisting of hexagonal lattice planes of carbon and boron nitride is proposed.

  1. Kinetics of methane hydrate decomposition studied via in situ low temperature X-ray powder diffraction.

    Science.gov (United States)

    Everett, S Michelle; Rawn, Claudia J; Keffer, David J; Mull, Derek L; Payzant, E Andrew; Phelps, Tommy J

    2013-05-02

    Gas hydrate is known to have a slowed decomposition rate at ambient pressure and temperatures below the melting point of ice. As hydrate exothermically decomposes, gas is released and water of the clathrate cages transforms into ice. Based on results from the decomposition of three nominally similar methane hydrate samples, the kinetics of two regions, 180-200 and 230-260 K, within the overall decomposition range 140-260 K, were studied by in situ low temperature X-ray powder diffraction. The kinetic rate constants, k(a), and the reaction mechanisms, n, for ice formation from methane hydrate were determined by the Avrami model within each region, and activation energies, E(a), were determined by the Arrhenius plot. E(a) determined from the data for 180-200 K was 42 kJ/mol and for 230-260 K was 22 kJ/mol. The higher E(a) in the colder temperature range was attributed to a difference in the microstructure of ice between the two regions.

  2. Synchrotron X-ray study of charge density waves in o-TaS{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Inagaki, K; Tsubota, M; Ichimura, K; Tanda, S [Department of Applied Physics, Hokkaido University, Sapporo (Japan); Yamamoto, K; Hanasaki, N; Nogami, Y; Ikeda, N [Graduate School of Natural Science, Okayama University, Okayama (Japan); Ito, T; Toyokawa, H, E-mail: kina@eng.hokudai.ac.j [Japan Synchrotron Research Center, Hyogo (Japan)

    2009-03-01

    We report a synchrotron X-ray study of charge density waves (CDW) in an o-TaS{sub 3} crystal. CDW of o-TaS{sub 3} has been known to undergo a commensurate-incommensurate transition at 100 K, below which the wavevector locks in with the pristine lattice. We exploited the beamline BL02B1 of SPring-8. Temperature dependence of the Bragg peak (002) and satellite peak (1 -1 2)+ q-vector was measured from 7 K to 180 K. We found that a new phase in a temperature range of 130--50 K, where two independent CDWs coexist. These waves are incommensurate and commensurate CDWs with longitudinal wave vectors q{sub c}=0.252c* and 0.250c*, respectively. By lowering the temperature, intensity of the incommensurate CDW was decreased, while that of the commensurate CDW was increased. At 50 K, the incommensurate CDW was completely diminished. Based on the concept of discommensuration, we determined the dislocation configuration from the intensity of the two CDWs.

  3. Crystallization and preliminary X-ray studies of azoreductases from Bacillus sp. B29

    Science.gov (United States)

    Ogata, Daiki; Ooi, Toshihiko; Fujiwara, Takaaki; Taguchi, Seiichi; Tanaka, Isao; Yao, Min

    2010-01-01

    Azoreductases from Bacillus sp. B29 are NADH-dependent flavoenzymes which contain a flavin mononucleotide (FMN) as a prosthetic group and exist as homodimers composed of 23 kDa subunits. These enzymes catalyze the reductive degradation of various azo compounds by a ping-pong mechanism. In order to determine the structure–function relationship of the azo-dye reduction mechanism, an X-ray crystallographic study of azoreductases was performed. Selenomethionine-labelled AzrA (SeMet-AzrA) and AzrC were crystallized by the hanging-drop vapour-diffusion method. A crystal of SeMet-AzrA diffracted to 2.0 Å resolution and was determined to belong to space group P212121, with unit-cell parameters a = 56.9, b = 69.0, c = 105.4 Å. The native crystals of AzrC belonged to space group C2, with unit-cell parameters a = 192.0, b = 56.6, c = 105.5 Å, β = 115.7°, and diffracted to 2.21 Å resolution. PMID:20445244

  4. Natural nanoparticle structure, properties and reactivity from X-ray studies

    Energy Technology Data Exchange (ETDEWEB)

    Waychunas, Glenn A.

    2009-10-01

    Synthetic analogs of naturally occurring nanoparticles have been studied by a range of X-ray techniques to determine their structure and chemistry, and relate these to their novel chemical properties and physical behavior. ZnS nanoparticles, formed in large concentrations naturally bymicrobial action, have an interesting core-shell structure with a highly distorted and strained outer layer. The strain propagates through the particles and produces unusual stiffness but can be relieved by changing the nature of the surface ligand binding. Weaker bound ligands allow high surface distortion, but strongly bound ligands relax this structure and reduce the overall strain. Only small amounts of ligand exchange causes transformations from the strained to the relaxed state. Most remarkably, minor point contacts between strained nanoparticles also relax the strain. Fe oxyhydroxide nanoparticles appear to go through structural transformations dependent on their size and formation conditions, and display a crystallographically oriented form of aggregation at the nanoscale that alters growth kinetics. At least one Fe oxyhydroxide mineral may only be stable on the nanoscale, and nonstoichiometry observed on the hematite surface suggests that for this phase and possibly other natural metal oxides, chemistry may be size dependent. Numerous questions exist on nanominerals formed in acid mine drainage sites and by reactions at interfaces.

  5. Spectroscopic and X-ray Diffraction Study of Structural Disorder in Cryomilled and Amorphous Griseofulvin

    Energy Technology Data Exchange (ETDEWEB)

    A Zarow; B Zhou; X Wang; R Pinal; Z Iqbal

    2011-12-31

    Structural disorder induced by cryogenic milling and by heating to the amorphous phase in the active pharmaceutical ingredient Griseofulvin has been studied using Raman spectroscopy, X-ray powder diffraction (XRPD), and fluorescence spectroscopy. A broad, exciting-frequency-independent scattering background in the Raman spectra and changes in intensities and splitting of some of the Raman lines due to lattice and molecular modes have been observed. In the cryomilled samples this strong background is deconvoluted into two components: one due to lattice disorder induced by cryomilling and the other due to Mie scattering from nanosized crystallites. A single-component background scattering attributed to lattice disorder is seen in the Raman spectrum of the amorphous sample. Fluorescence measurements showed an intrinsic fluorescence signal in as-received Griseofulvin that does not correspond to the inelastic background in the Raman spectra and, moreover, decreases in intensity upon cryomilling, thus excluding an assignment of the Raman background intensity to impurity- or molecular-defect-induced fluorescence. Wide-angle XRPD measurements on cryomilled Griseofulvin shows a broad two-component background consistent with the background-scattering component in the Raman data associated with lattice disorder, but at longer correlation lengths. Persistence of this disorder to even longer lengths is evident in small-angle synchrotron XRPD data on micronized Griseofulvin taken as a function of temperature from the crystalline to the amorphous phase.

  6. An energy dispersive x-ray scattering and molecular dynamics study of liquid dimethyl carbonate.

    Science.gov (United States)

    Gontrani, Lorenzo; Russina, Olga; Marincola, Flaminia Cesare; Caminiti, Ruggero

    2009-12-28

    In this work, we report on the first x-ray diffraction study on liquid dimethyl carbonate. Diffraction spectra were collected with an energy-dispersive instrument, whose wide Q-range allows the structure determination of weakly ordered systems (such as liquids). The structural correlation in this liquid ranges up to about 20 A. The observed patterns are interpreted with a structural model derived from classical molecular dynamics simulations. The simulations were run using OPLS force field, only slightly modified to restrain bond distances to the experimental values. The model structure function and radial distribution functions, averaged among the productive trajectory frames, are in very good agreement with the corresponding experimental ones. Molecular dynamics results show that the deviations from C(2v) cis-cis structure, predicted by ab initio calculations and observed by electron diffraction in the gas phase, are small. By analyzing the intra- and intermolecular pair distribution functions, it was possible to assign the peaks of the experimental radial distribution function to specific structural correlations, and to compute the different average intermolecular coordination numbers. The intermolecular methyl-carbonyl oxygen distance is thoroughly discussed to assess the presence of weak C-H...O hydrogen bonds.

  7. Study of salinity in aqueous medium using X-Ray beam with MCNP-X code

    Energy Technology Data Exchange (ETDEWEB)

    Barbosa, Caroline M.; Braz, Delson [Coordenacao de Pos-Graduacao e Pesquisa de Engenharia (PEN/COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear; Salgado, César M., E-mail: cbarbosa@nuclear.ufrj.br, E-mail: delson@nuclear.ufrj.br, E-mail: otero@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2017-07-01

    In offshore production, it is possible that the produced water presents geochemical characteristics that correspond to the mixture of formation water (connate water) and the sea water (injection water), and the physical-chemical behavior of the injected water allows a considerable variation in the index of salinity altering the water/oil ratio during transportation and/or extraction. Injection water is generally used to raise the reservoir pressure, increasing the percentage of extracted oil. This water has a significant amount of salts that generate some difficulties, such as measuring fractions of volume in multiphase systems. One way to check the effects of salinity would be to regularly measure the amount of salt present in the water. In this way, this work presents a methodology to measure the concentration and the types of salts using nuclear techniques through the MCNP-X computational code. The measurement geometry uses an X-ray beam (40-100 keV) and NaI(Tl) scintillation detector positioned diametrically opposed to the source. The studied samples were the NaCl, KCl and MgCl{sub 2} salts in aqueous solution. The results present the possibility of differentiating the formation and injection waters due to differences in the salt concentrations. (author)

  8. Phantom and animal imaging studies using PLS synchrotron X-rays

    CERN Document Server

    Hee Joung Kim; Kyu Ho Lee; Hai Jo Jung; Eun Kyung Kim; Jung Ho Je; In Woo Kim; Yeukuang, Hwu; Wen Li Tsai; Je Kyung Seong; Seung Won Lee; Hyung Sik Yoo

    2001-01-01

    Ultra-high resolution radiographs can be obtained using synchrotron X-rays. A collaboration team consisting of K-JIST, POSTECH and YUMC has recently commissioned a new beamline (5C1) at Pohang Light Source (PLS) in Korea for medical applications using phase contrast radiology. Relatively simple image acquisition systems were set up on 5C1 beamline, and imaging studies were performed for resolution test patterns, mammographic phantom, and animals. Resolution test patterns and mammographic phantom images showed much better image resolution and quality with the 5C1 imaging system than the mammography system. Both fish and mouse images with 5C1 imaging system also showed much better image resolution with great details of organs and anatomy compared to those obtained with a conventional mammography system. A simple and inexpensive ultra-high resolution imaging system on 5C1 beamline was successfully implemented. The authors were able to acquire ultra-high resolution images for, resolution test patterns, mammograph...

  9. Band alignments in Fe/graphene/Si(001) junctions studied by x-ray photoemission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Le Breton, J.-C., E-mail: jean-christophe.lebreton@univ-rennes1.fr; Tricot, S.; Delhaye, G.; Lépine, B.; Turban, P.; Schieffer, P. [Département Matériaux et Nanosciences, Institut de Physique de Rennes, UMR 6251, CNRS-Université de Rennes 1, Campus de Beaulieu, Bât 11 E, 35042 Rennes Cedex (France)

    2016-08-01

    The control of tunnel contact resistance is of primary importance for semiconductor-based spintronic devices. This control is hardly achieved with conventional oxide-based tunnel barriers due to deposition-induced interface states. Manipulation of single 2D atomic crystals (such as graphene sheets) weakly interacting with their substrate might represent an alternative and efficient way to design new heterostructures for a variety of different purposes including spin injection into semiconductors. In the present paper, we study by x-ray photoemission spectroscopy the band alignments and interface chemistry of iron–graphene-hydrogenated passivated silicon (001) surfaces for a low and a high n-doping concentration. We find that the hydrogen passivation of the Si(001) surface remains efficient even with a graphene sheet on the Si(001) surface. For both doping concentrations, the semiconductor is close to flat-band conditions which indicates that the Fermi level is unpinned on the semiconductor side of the Graphene/Si(001):H interface. When iron is deposited on the graphene/Si(001):H structures, the Schottky barrier height remains mainly unaffected by the metallic overlayer with a very low barrier height for electrons, a sought-after property in semiconductor based spintronic devices. Finally, we demonstrate that the graphene layer intercalated between the metal and semiconductor also serves as a protection against iron-silicide formation even at elevated temperatures preventing from the formation of a Si-based magnetic dead layer.

  10. Recent Advances in the Study of Black Holes using X-ray Reflection Spectroscopy

    Science.gov (United States)

    Garcia, Javier; Dauser, Thomas; Wilms, Joern; Kallman, Timothy; Harrison, Fiona

    2018-01-01

    Reflection spectroscopy has proven to be a versatile tool for the study of accreting black holes. It enables assessment of key physical parameters related to the black hole (e.g., its spin); of the accretion disk (e.g., inner radius, inclination, ionization state and iron abundance); and, more recently, the of the corona that produces the X-ray emission (e.g., temperature, optical depth, and geometry). We present an overview of the state of the art of the models most commonly used, highlighting their limitations and recent developments, which include, but are not limited to, the implementation of a physical Comptonization model for the illumination of the disk, the calculation of reflection models for high densities, and the improvement of the ray tracing techniques used to simulate the relativistic effects affecting the observed spectra. We also discuss current outstanding issues in the interpretation of the observational data, such as the large iron abundances frequently required to fit the reflection spectra of both black hole binaries and AGN.

  11. Building Polyelectrolyte Multilayers with Calmodulin: A Neutron and X-ray Reflectivity Study.

    Science.gov (United States)

    Cinar, Süleyman; Möbitz, Simone; Al-Ayoubi, Samy; Seidlhofer, Beatrix-Kamelia; Czeslik, Claus

    2017-04-25

    We have studied the formation and functional properties of polyelectrolyte multilayers where calmodulin (CaM) is used as a polyanion. CaM is known to populate distinct conformational states upon binding Ca2+ and small ligand molecules. Therefore, we have also probed the effects of Ca2+ ions and trifluoperazine (TFP) as ligand molecule on the interfacial structures. Multilayers with the maximum sequence PEI-(PSS-PAH)x-CaM-PAH-CaM-PAH have been deposited on silicon wafers and characterized by X-ray and neutron reflectometry. From the analysis of all data, several remarkable conclusions can be drawn. When CaM is deposited for the second time, a much thicker sublayer is produced than in the first CaM deposition step. However, upon rinsing with PAH, very thin CaM-PAH sublayers remain. There are no indications that ligand TFP can be involved in the multilayer buildup due to strong CaM-PAH interactions. However, there is a significant increase in the multilayer thickness upon removal of Ca2+ ions from holo-CaM and an equivalent decrease in the multilayer thickness upon subsequent saturation of apo-CaM with Ca2+ ions. Presumably, CaM can still be toggled between an apo and a holo state, when it is embedded in polyelectrolyte multilayers, providing an approach to design bioresponsive interfaces.

  12. Synchrotron small-angle X-ray scattering studies of hemoglobin nonaggregation confined inside polymer capsules.

    Science.gov (United States)

    Mandal, Soumit S; Bhaduri, Satarupa; Amenitsch, Heinz; Bhattacharyya, Aninda J

    2012-08-16

    The effect of confinement on the structure of hemoglobin (Hb) within polymer capsules was investigated here. Hemoglobin transformed from an aggregated state in solution to a nonaggregated state when confined inside the polymer capsules. This was directly confirmed using synchrotron small-angle X-ray scattering (SAXS) studies. The radius of gyration (R(g)) and polydispersity (p) of the proteins in the confined state were smaller compared to those in solution. In fact, the R(g) value is very similar to theoretical values obtained using protein structures generated from the Protein Databank. In the temperature range (25-85 °C, Tm 59 °C), the R(g) values for the confined Hb remained constant. This observation is in contrary to the increasing R(g) values obtained for the bare Hb in solution. This suggested higher thermal stability of Hb when confined inside the polymer capsule than when in solution. Changes in protein configuration were also reflected in the protein function. Confinement resulted in a beneficial enhancement of the electroactivity of Hb. While Hb in solution showed dominance of the cathodic process (Fe(3+) → Fe(2+)), efficient reversible Fe(3+)/Fe(2+) redox response is observed in the case of the confined Hb. This has important protein functional implications. Confinement allows the electroactive heme to take up positions favorable for various biochemical activities such as sensing of analytes of various sizes from small to macromolecules and controlled delivery of drugs.

  13. Irradiation studies of DEPFET-like devices with X-rays

    Energy Technology Data Exchange (ETDEWEB)

    Petrovics, Stefan; Ritter, Andreas; Moser, Hans-Guenther; Ninkovic, Jelena; Richter, Rainer; Andricek, Ladislav; Koffmane, Christian; Wassatsch, Andreas [Max-Planck-Institut fuer Physik, Halbleiterlabor (Germany)

    2012-07-01

    The upcoming upgrade of the Belle-Experiment at KEK will impose new challenges in radiation hardness for the utilized DEPFET-devices (Depleted p-channel Field Effect Transistor). The upgrade in Belle II will result in an increased luminosity and therefore in a significantly higher radiation dose up to 1 Mrad (10 kGy) per year which the DEPFET-devices need to withstand. Radiation damage through ionizing and non-ionizing radiation is possible. In the case of ionizing radiation positive charge carriers are created that will be collected at the interface between silicon and silicon dioxide. The creation of these charge carriers will result in a threshold voltage shift of the deployed transistors. In order for the detector to remain functional, the operating voltage needs to be adjusted depending on the threshold voltage shift. Therefore a detailed characterization of the voltage shift due to the radiation damage of ionizing radiation is crucial for the correct predicament of the detector operation. The test devices employed for the irradiation studies simulated the behavior at the Si-SiO{sub 2} interface of the DEPFET. The irradiation was executed at the X-ray facility at KIT (Karlsruhe Institute of Technology) with maximum photon energy of 60 keV.

  14. Behavior of oxygen doped SiC thin films: An x-ray photoelectron spectroscopy study

    Science.gov (United States)

    Avila, A.; Montero, I.; Galán, L.; Ripalda, J. M.; Levy, R.

    2001-01-01

    Thin silicon carbide films have been deposited by chemical vapor deposition on p-type (100) silicon substrates. The composition and bonds formed in these films have been analyzed by x-ray photoelectron spectroscopy (XPS) and infrared spectroscopy. The native surface oxide on the silicon carbide surface induced by air exposure has also been studied. Several phases are detected in the near-surface region: elemental Si, Si oxides (mainly SiO2), Si carbide (SiC) and Si oxicarbides (SiOxCy). Quantitative XPS analysis results indicate that, for atomic oxygen fractions silicon oxicarbide is observed, but a multiphase material formed by elemental Si, Si oxides and Si carbides is observed. In spite of the film being a complex phase mixture, a simple relationship is found between the overall carbon and oxygen compositions. The carbon atomic fraction in the film decreases quasilinearly as the oxygen content increases, with a slope of about -1. An overall composition of SiOxC3-x in the 0.5silicon carbide obtained by CHn+ ion implantation into monocrystalline silicon is made.

  15. [X-ray bone densitometry. Study of in vitro and in vivo reproducibility].

    Science.gov (United States)

    Luisetto, G; Zangari, M; Ridolfi, P; Tizian, L; Ziliotto, D

    1991-01-01

    We studied the reproducibility in vitro and in vivo of a new bone densitometer (HOLOGIC QDR-1000, software version 4.03) which uses an x-ray source at two different levels of energy. Short and long term coefficient of variation (c.v.) in vitro is less than 0.5%. In vivo c.v. is less than 1% in normal body weight subjects and less than 3% in obese subjects. The ingestion of 500 mg of calcium element did not modify bone mineral density (BMD), while 1000 mg determined an increase of BMD equal to 2.6% and 1.5% in the two subjects examined. The increase of water thickness on a three femoral heads phantom caused a progressive reduction of bone mineral content (BMC) and BMD until 12.1% less than basal value and an increase of c.v. from 0.1% to 1%. The addition of oil to water at different percentages determined a slight increase of both BMC and BMD, till 3.5% with 66% of oil in water, if compared with the values obtained with water alone. The reduction of soft tissue around the bone determined a progressive decrease of BMD reaching 3.4% less than basal value when the reduction was 30%.

  16. Study of overload effects in bainitic steel by synchrotron X-ray diffraction

    Directory of Open Access Journals (Sweden)

    P. Lopez-Crespo

    2013-07-01

    Full Text Available This work presents an in-situ characterisation of crack-tip strain fields following an overload by means of synchrotron X-ray diffraction. The study is made on very fine grained bainitic steel, thus allowing a very high resolution so that small changes occurring around the crack-tip were captured along the crack plane at the mid-thickness of the specimen. We have followed the crack as it grew through the overload location. Once the crack-tip has progressed past the overload event there is strong evidence that the crack faces contact in the region of the overload event (though not in the immediate vicinity of the current locations of the crack tip at Kmin even when the crack has travelled 1mm beyond the overload location. It was also found that at Kmax the peak tensile strain ahead of the crack-tip decreases soon after the overload is applied and then gradually recovers as the crack grows past the compressive region created by the overload.

  17. Study of the hydrogen peroxide bleaching agent effects on bovine enamel using X-ray fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, Ruda F.; Calazans, Fernanda S.; Miranda, Mauro S.; Santos, Ramon S.; Anjos, Marcelino J.; Assis, Joaquim T. [Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ (Brazil)

    2013-07-01

    Hydrogen Peroxide's a bleaching agent capable of oxidizing a wide range of colored organic, causing discoloration and hence bleaching of the substrate, but some authors related the occurrence of side effects related to bleaching of the tooth structure, such as changes in morphology superficial. It was used 6 bovine incisors, each tooth was initially evaluated six times in different areas to obtain the count of elements phosphorus and calcium using X-Ray Fluorescence. The teeth were randomly divided in two groups: both groups were submitted to bleaching in office with hydrogen peroxide 38%, once a week during three weeks. Group 1 was stored in distilled water and group 2 in artificial saliva, between the sessions. The measurements were repeated every seven days before the bleaching treatment. Besides that, changes in mineral levels were always assessed in the same area and using the same procedure. It was observed that the bleaching was not able to demineralize the tooth enamel studied. (author)

  18. Collagen Orientation and Crystallite Size in Human Dentin: A Small Angle X-ray Scattering Study

    Energy Technology Data Exchange (ETDEWEB)

    Pople, John A

    2001-03-29

    The mechanical properties of dentin are largely determined by the intertubular dentin matrix, which is a complex composite of type I collagen fibers and a carbonate-rich apatite mineral phase. The authors perform a small angle x-ray scattering (SAXS) study on fully mineralized human dentin to quantify this fiber/mineral composite architecture from the nanoscopic through continuum length scales. The SAXS results were consistent with nucleation and growth of the apatite phase within periodic gaps in the collagen fibers. These mineralized fibers were perpendicular to the dentinal tubules and parallel with the mineralization growth front. Within the plane of the mineralization front, the mineralized collagen fibers were isotropic near the pulp, but became mildly anisotropic in the mid-dentin. Analysis of the data also indicated that near the pulp the mineral crystallites were approximately needle-like, and progressed to a more plate-like shape near the dentino-enamel junction. The thickness of these crystallites, {approx} 5 nm, did not vary significantly with position in the tooth. These results were considered within the context of dentinogenesis and maturation.

  19. Study of strontium ranelate bone issues by X-ray microtomography

    Energy Technology Data Exchange (ETDEWEB)

    Lima, I., E-mail: inaya@lin.ufrj.br [Nuclear Instrumentation Laboratory, COPPE-PEN, UFRJ, P.O. Box 68509, 21941-972 Rio de Janeiro, RJ (Brazil); Department of Mechanical Engineering and Energy, IPRJ-UERJ, Nova Friburgo, RJ (Brazil); Taam, P. [Nuclear Instrumentation Laboratory, COPPE-PEN, UFRJ, P.O. Box 68509, 21941-972 Rio de Janeiro, RJ (Brazil); Costa, V. da [Endocrine Physiologic Laboratory, CCS-UFRJ, RJ (Brazil); Fleiuss, M.F. [University Hospital, UFRJ, RJ (Brazil); Rosenthal, D. [Endocrine Physiologic Laboratory, CCS-UFRJ, RJ (Brazil); Lopes, R.T. [Nuclear Instrumentation Laboratory, COPPE-PEN, UFRJ, P.O. Box 68509, 21941-972 Rio de Janeiro, RJ (Brazil)

    2011-10-01

    The X-ray microtomography is a non-destructive image technique that allows evaluation of inner structure of several kinds of materials, such as trabecular bone. The microarchitecture of osteoporosis bone becomes more fragile and susceptible to fractures. Strontium ranelate (Protos) is a current oral medication used in the treatment of osteoporosis diseases, which promises to act stimulating the proliferation of osteoblasts, as well as inhibiting the proliferation of osteoclasts. In the present work, two ways to administer strontium ranelate are studied in experiments with rats and mice: via oral and via intra-peritoneal injections. Intra-peritoneal injections are easier and not susceptible to gastrointestinal tract issues such as diarrhoea and absorption variations. However, the only method to administrate the strontium ranelate described in literature is still the gavage. In order to establish the best technique for future experiments, structural bone changes in rats were evaluated. The results show that bone porosity parameter at the femoral head decreased after 23 days of treatment when both oral and intraperitoneal routes of strontium ranelate administration were applied, suggesting an improved bone microarchitecture.

  20. In-Situ Synchrotron X-ray Study of the Phase and Texture Evolution of Ceria and Superconductor Films Deposited by Chemical Solution Method

    DEFF Research Database (Denmark)

    Yue, Zhao; Grivel, Jean-Claude; He, Dong

    2012-01-01

    In situ synchrotron x-ray diffraction is used to study the phase and texture formation of ceria based films and superconductor films deposited by the chemical solution method on technical substrates. Combined analysis using in situ synchrotron x-ray diffraction, thermogravimetry/differential ther......In situ synchrotron x-ray diffraction is used to study the phase and texture formation of ceria based films and superconductor films deposited by the chemical solution method on technical substrates. Combined analysis using in situ synchrotron x-ray diffraction, thermogravimetry...

  1. Laue lens for radiotherapy applications through a focused hard x-ray beam: a feasibility study on requirements and tolerances

    Science.gov (United States)

    Camattari, Riccardo

    2017-09-01

    Focusing a hard x-ray beam would represent an innovative technique for tumour treatment, since such a beam may deliver a dose to a tumour located at a given depth under the skin, sparing the surrounding healthy cells. A detailed study of a focusing system for hard x-ray aimed at radiotherapy is presented here. Such a focusing system, named Laue lens, exploits x-ray diffraction and consists of a series of crystals disposed as concentric rings capable of concentrating a flux of x-rays towards a focusing point. A feasibility study regarding the positioning tolerances of the crystalline optical elements has been carried out. It is shown that a Laue lens can effectively be used in the context of radiotherapy for tumour treatments provided that the mounting errors are below certain values, which are reachable in the modern micromechanics. An extended survey based on an analytical approach and on simulations is presented for precisely estimating all the contributions of each mounting error, analysing their effect on the focal spot of the Laue lens. Finally, a simulation for evaluating the released dose in a water phantom is shown.

  2. X-ray absorption spectroscopic studies of the active sites of nickel- and copper-containing metalloproteins

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Grace O. [Stanford Univ., CA (United States)

    1993-06-01

    X-ray absorption spectroscopy (XAS) is a useful tool for obtaining structural and chemical information about the active sites of metalloproteins and metalloenzymes. Information may be obtained from both the edge region and the extended X-ray absorption fine structure (EXAFS) or post-edge region of the K-edge X-ray absorption spectrum of a metal center in a compound. The edge contains information about the valence electronic structure of the atom that absorbs the X-rays. It is possible in some systems to infer the redox state of the metal atom in question, as well as the geometry and nature of ligands connected to it, from the features in the edge in a straightforward manner. The EXAFS modulations, being produced by the backscattering of the ejected photoelectron from the atoms surrounding the metal atom, provide, when analyzed, information about the number and type of neighbouring atoms, and the distances at which they occur. In this thesis, analysis of both the edge and EXAFS regions has been used to gain information about the active sites of various metalloproteins. The metalloproteins studied were plastocyanin (Pc), laccase and nickel carbon monoxide dehydrogenase (Ni CODH). Studies of Cu(I)-imidazole compounds, related to the protein hemocyanin, are also reported here.

  3. Laue lens for radiotherapy applications through a focused hard x-ray beam: a feasibility study on requirements and tolerances.

    Science.gov (United States)

    Camattari, Riccardo

    2017-08-21

    Focusing a hard x-ray beam would represent an innovative technique for tumour treatment, since such a beam may deliver a dose to a tumour located at a given depth under the skin, sparing the surrounding healthy cells. A detailed study of a focusing system for hard x-ray aimed at radiotherapy is presented here. Such a focusing system, named Laue lens, exploits x-ray diffraction and consists of a series of crystals disposed as concentric rings capable of concentrating a flux of x-rays towards a focusing point. A feasibility study regarding the positioning tolerances of the crystalline optical elements has been carried out. It is shown that a Laue lens can effectively be used in the context of radiotherapy for tumour treatments provided that the mounting errors are below certain values, which are reachable in the modern micromechanics. An extended survey based on an analytical approach and on simulations is presented for precisely estimating all the contributions of each mounting error, analysing their effect on the focal spot of the Laue lens. Finally, a simulation for evaluating the released dose in a water phantom is shown.

  4. Chandra studies of the globular cluster 47 Tucanae: A deeper X-ray source catalogue, five new X-ray counterparts to millisecond radio pulsars, and new constraints to r-mode instability window

    Science.gov (United States)

    Bhattacharya, Souradeep; Heinke, Craig O.; Chugunov, Andrey I.; Freire, Paulo C. C.; Ridolfi, Alessandro; Bogdanov, Slavko

    2017-12-01

    We combined Chandra ACIS observations of the globular cluster 47 Tucanae (hereafter, 47 Tuc) from 2000, 2002, and 2014-15 to create a deeper X-ray source list, and study some of the faint radio millisecond pulsars (MSPs) present in this cluster. We have detected 370 X-ray sources within the half-mass radius (2'.79) of the cluster, 81 of which are newly identified, by including new data and using improved source detection techniques. The majority of the newly identified sources are in the crowded core region, indicating cluster membership. We associate five of the new X-ray sources with chromospherically active BY Dra or W UMa variables identified by Albrow et al. (2001). We present alternative positions derived from two methods, centroiding and image reconstruction, for faint, crowded sources. We are able to extract X-ray spectra of the recently discovered MSPs 47 Tuc aa, 47 Tuc ab, the newly timed MSP 47 Tuc Z, and the newly resolved MSPs 47 Tuc S and 47 Tuc F. Generally, they are well fit by black body or neutron star atmosphere models, with temperatures, luminosities and emitting radii similar to those of other known MSPs in 47 Tuc, though 47 Tuc aa and 47 Tuc ab reach lower X-ray luminosities. We limit X-ray emission from the full surface of the rapidly spinning (542 Hz) MSP 47 Tuc aa, and use this limit to put an upper bound for amplitude of r-mode oscillations in this pulsar as α<2.5×10^{-9}$ and constrain the shape of the r-mode instability window.

  5. Chest X-Ray

    Medline Plus

    Full Text Available ... the most commonly performed x-ray exams and use a very small dose of ionizing radiation to ... to your health. While a chest x-ray use a tiny dose of ionizing radiation, the benefit ...

  6. Some studies on low-frequency signal in relation to X-ray flares and climatic conditions

    Directory of Open Access Journals (Sweden)

    S. K. Sarkar

    1994-08-01

    Full Text Available The statistical behaviour of the sudden enhancement in signal strength (SES in relation to solar X-ray flares has been studied for the near east-west propagation of 40 kHz radio waves from Sanwa (36°11'N; 139°51'E in Japan to Calcutta (22°34'N; 88°24'E over a long distance path of 5100 km for a period of two years. The period has been divided into four phases - P1, P2, P3 and P4, according to the position of the overhead sun. The change in signal strength during X-ray flares is dependent on the solar zenith angle and climatic conditions. The statistical modal values of the time lag of the SES peak with respect to that solar X-ray flare is found to increase as solar zenith angle increases. The relative rates of increase and decrease of the signal strength (RRISS and RRDSS respectively have been evaluated for a number of SES which are related to large X-ray flares. Their characteristics have also been investigated. The modal values of the relaxation time have been found to be highly correlated with climatic conditions like temperature and humidity of the propagation path.

  7. X-Ray Beam Studies of Charge Sharing in Small Pixel, Spectroscopic, CdZnTe Detectors

    Science.gov (United States)

    Allwork, Christopher; Kitou, Dimitris; Chaudhuri, Sandeep; Sellin, Paul J.; Seller, Paul; Veale, Matthew C.; Tartoni, Nicola; Veeramani, Perumal

    2012-08-01

    Recent advances in the growth of CdZnTe material have allowed the development of small pixel, spectroscopic, X-ray imaging detectors. These detectors have applications in a diverse range of fields such as medical, security and industrial sectors. As the size of the pixels decreases relative to the detector thickness, the probability that charge is shared between multiple pixels increases due to the non zero width of the charge clouds drifting through the detector. These charge sharing events will result in a degradation of the spectroscopic performance of detectors and must be considered when analyzing the detector response. In this paper charge sharing and charge loss in a 250 μm pitch CdZnTe pixel detector has been investigated using a mono-chromatic X-ray beam at the Diamond Light Source, U.K. Using a 20 μm beam diameter the detector response has been mapped for X-ray energies both above (40 keV) and below (26 keV) the material K-shell absorption energies to study charge sharing and the role of fluorescence X-rays in these events.

  8. The irradiation action on human dental tissue by X-rays and electrons--a nanoindenter study.

    Science.gov (United States)

    Fränzel, Wolfgang; Gerlach, Reinhard

    2009-01-01

    It is known that ionizing radiation is used in medicine for Roentgen diagnostics and for radiation therapy. The radiation interacts with matter, in particular with biological one, essentially by scattering, photoelectric effect, Compton effect and pair production. To what extent the biological material is changed thereby, depends on the type and the amount of radiation energy, on the dose and on the tissue constitution. In modern radiation therapy two different kinds of radiation are used: high energy X-rays and electron radiation. In the case of head-neck tumors the general practice is an irradiation with high energy X-rays with absorbed dose to water up to 70 Gy. Teeth destruction has been identified as a side effect during irradiation. In addition, damage to the salivary glands is often observed which leads to a decrease or even the complete loss of the salivary secretion (xerostomia). This study shows how the different energy and radiation types damage the tooth tissue. The effects of both, high X-ray energy and high energy electrons, on the mechanical properties hardness and elasticity of the human dental tissue are measured by the nanoindentation technique. We compare these results with the effect of the irradiation of low X-ray energy on the dental tissue.

  9. In vivo x-ray phase contrast analyzer-based imaging for longitudinal osteoarthritis studies in guinea pigs

    Energy Technology Data Exchange (ETDEWEB)

    Coan, Paola [Faculty of Medicine and Institute of Clinical Radiology, Ludwig-Maximilians University, Munich (Germany); Wagner, Andreas; Mollenhauer, Juergen [Department of Orthopaedics of the University of Jena, Rudolf-Elle-Hospital Eisenberg (Germany); Bravin, Alberto; Diemoz, Paul C; Keyrilaeinen, Jani, E-mail: Paola.Coan@physik.uni-muenchen.d [European Synchrotron Radiation Facility (ESRF), Grenoble (France)

    2010-12-21

    Over the last two decades phase contrast x-ray imaging techniques have been extensively studied for applications in the biomedical field. Published results demonstrate the high capability of these imaging modalities of improving the image contrast of biological samples with respect to standard absorption-based radiography and routinely used clinical imaging techniques. A clear depiction of the anatomic structures and a more accurate disease diagnosis may be provided by using radiation doses comparable to or lower than those used in current clinical methods. In the literature many works show images of phantoms and excised biological samples proving the high sensitivity of the phase contrast imaging methods for in vitro investigations. In this scenario, the applications of the so-called analyzer-based x-ray imaging (ABI) phase contrast technique are particularly noteworthy. The objective of this work is to demonstrate the feasibility of in vivo x-ray ABI phase contrast imaging for biomedical applications and in particular with respect to joint anatomic depiction and osteoarthritis detection. ABI in planar and tomographic modes was performed in vivo on articular joints of guinea pigs in order to investigate the animals with respect to osteoarthritis by using highly monochromatic x-rays of 52 keV and a low noise detector with a pixel size of 47 x 47 {mu}m{sup 2}. Images give strong evidence of the ability of ABI in depicting both anatomic structures in complex systems as living organisms and all known signs of osteoarthritis with high contrast, high spatial resolution and with an acceptable radiation dose. This paper presents the first proof of principle study of in vivo application of ABI. The technical challenges encountered when imaging an animal in vivo are discussed. This experimental study is an important step toward the study of clinical applications of phase contrast x-ray imaging techniques.

  10. In vivo x-ray phase contrast analyzer-based imaging for longitudinal osteoarthritis studies in guinea pigs

    Science.gov (United States)

    Coan, Paola; Wagner, Andreas; Bravin, Alberto; Diemoz, Paul C.; Keyriläinen, Jani; Mollenhauer, Juergen

    2010-12-01

    Over the last two decades phase contrast x-ray imaging techniques have been extensively studied for applications in the biomedical field. Published results demonstrate the high capability of these imaging modalities of improving the image contrast of biological samples with respect to standard absorption-based radiography and routinely used clinical imaging techniques. A clear depiction of the anatomic structures and a more accurate disease diagnosis may be provided by using radiation doses comparable to or lower than those used in current clinical methods. In the literature many works show images of phantoms and excised biological samples proving the high sensitivity of the phase contrast imaging methods for in vitro investigations. In this scenario, the applications of the so-called analyzer-based x-ray imaging (ABI) phase contrast technique are particularly noteworthy. The objective of this work is to demonstrate the feasibility of in vivo x-ray ABI phase contrast imaging for biomedical applications and in particular with respect to joint anatomic depiction and osteoarthritis detection. ABI in planar and tomographic modes was performed in vivo on articular joints of guinea pigs in order to investigate the animals with respect to osteoarthritis by using highly monochromatic x-rays of 52 keV and a low noise detector with a pixel size of 47 × 47 µm2. Images give strong evidence of the ability of ABI in depicting both anatomic structures in complex systems as living organisms and all known signs of osteoarthritis with high contrast, high spatial resolution and with an acceptable radiation dose. This paper presents the first proof of principle study of in vivo application of ABI. The technical challenges encountered when imaging an animal in vivo are discussed. This experimental study is an important step toward the study of clinical applications of phase contrast x-ray imaging techniques.

  11. Using in situ X-ray reflectivity to study protein adsorption on hydrophilic and hydrophobic surfaces: benefits and limitations.

    Science.gov (United States)

    Richter, Andrew G; Kuzmenko, Ivan

    2013-04-30

    We have employed in situ X-ray reflectivity (IXRR) to study the adsorption of a variety of proteins (lysozyme, cytochrome c, myoglobin, hemoglobin, serum albumin, and immunoglobulin G) on model hydrophilic (silicon oxide) and hydrophobic surfaces (octadecyltrichlorosilane self-assembled monolayers), evaluating this recently developed technique for its applicability in the area of biomolecular studies. We report herein the highest resolution depiction of adsorbed protein films, greatly improving on the precision of previous neutron reflectivity (NR) results and previous IXRR studies. We were able to perform complete scans in 5 min or less with the maximum momentum transfer of at least 0.52 Å(-1), allowing for some time-resolved information about the evolution of the protein film structure. The three smallest proteins (lysozyme, cytochrome c, and myoglobin) were seen to deposit as fully hydrated, nondenatured molecules onto hydrophilic surfaces, with indications of particular preferential orientations. Time evolution was observed for both lysozyme and myoglobin films. The larger proteins were not observed to deposit on the hydrophilic substrates, perhaps because of contrast limitations. On hydrophobic surfaces, all proteins were seen to denature extensively in a qualitatively similar way but with a rough trend that the larger proteins resulted in lower coverage. We have generated high-resolution electron density profiles of these denatured films, including capturing the growth of a lysozyme film. Because the solution interface of these denatured films is diffuse, IXRR cannot unambiguously determine the film extent and coverage, a drawback compared to NR. X-ray radiation damage was systematically evaluated, including the controlled exposure of protein films to high-intensity X-rays and exposure of the hydrophobic surface to X-rays before adsorption. Our analysis showed that standard measuring procedures used for XRR studies may lead to altered protein films

  12. Mössbauer effect studies and X-ray diffraction analysis of cobalt ...

    Indian Academy of Sciences (India)

    Unknown

    Abstract. Cobalt ferrite (CoxFe3–xO4) is prepared in powder form by thermal decomposition of iron and cobalt salts and is analysed by X-ray diffraction and Mössbauer spectroscopic techniques. The variation of. Mössbauer parameters, lattice parameters and crystallite size of the products formed with variation in the.

  13. Synthesis and X-ray diffraction studies of ,, Al2 O3 using aluminium ...

    African Journals Online (AJOL)

    The crystalline particles of the powder obtained were examined by X-ray diffraction, scanning electron microscopy and transmission electron microscopy, while the surface area of the oxide powder was obtained by nitrogen adsorption BET surface area measurement. The result obtained indicated that the -Al2O3 is cubic ...

  14. X-ray diffraction line profile analysis for defect study in Zr–2⋅ 5% Nb ...

    Indian Academy of Sciences (India)

    The results from the X-ray techniques are comparable to those obtained from direct observation of transmission electron microscopy. The measured yield strength increases with dislocation density. An empirical relationship is obtained for the yield strength from the dislocation density of the material. The measured strength ...

  15. X-ray absorption studies of organo-disulfide redox cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Skotheim, T.A. (Moltech Corp., Stony Brook, NY (United States)); Yang, X.Q.; Xue, K.H.; Lee, H.S.; McBreen, J. (Brookhaven National Lab., Upton, NY (United States)); Lu, F. (Kentucky Univ., Lexington, KY (United States))

    1991-01-01

    We have measured the near-edge x-ray absorption fine structure (NEXAFS) spectra of the K-edge of sulfur in organo-disulfide redox polymeric electrodes in both charged and discharged states. The formation and scission of S-S bonding during the charge-discharge cycle were observed through NEXAFS spectroscopy. 4 refs., 2 figs.

  16. A three-dimensional X-ray diffraction microscope for deformation studies of polycrystals

    DEFF Research Database (Denmark)

    Fæster Nielsen, Søren; Lauridsen, E.M.; Juul Jensen, D.

    2001-01-01

    -dimensional X-ray diffraction (3DXRD) microscope installed at the European Synchrotron Radiation Facility in Grenoble provides a fast and non-destructive technique for mapping the embedded grains within thick samples in three dimensions. All essential features like the position, volume, orientation, stress...

  17. Monolayers of CF4 Adsorbed on Graphite, Studied by Synchrotron X-Ray Diffraction

    DEFF Research Database (Denmark)

    Kjær, Kristian; Nielsen, Mourits; Bohr, Jakob

    1982-01-01

    With synchrotron x-ray diffraction we have measured the phase diagram of CF4 monolayers adsorbed on the graphite substrate UCAR-ZYX. We have found four two-dimensional crystalline phases including the 2×2 commensurate structure. Between this and the denser incommensurate hexagonal phase we find...

  18. Small angle X-ray scattering study of calreticulin reveals conformational plasticity

    DEFF Research Database (Denmark)

    Toft, Katrine Nørgaard; Larsen, Nanna; Jørgensen, Flemming Steen

    2008-01-01

    Calreticulin plays a central role in vital cell processes such as protein folding, Ca(2+) homeostasis and immunogenicity. Even so, only limited three-dimensional structural information is presently available. We present a series of Small-Angle X-ray Scattering data on human placenta calreticulin...

  19. X-ray excited optical luminescence studies on the system BaXY (X ...

    Indian Academy of Sciences (India)

    The present paper reports the experimental observations on the x-ray excited optical luminescence (XEOL) along with the afterglow and colour center features found for the barium salts, represented by the formula, Ba, where and are the halides. The system thus consists of four dihalides (BaF2, . . . ,BaI2) and six ...

  20. Study of runaway electrons with Hard X-ray spectrometry of tokamak plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Shevelev, A.; Chugunov, I.; Khilkevitch, E.; Gin, D.; Doinikov, D.; Naidenov, V. [Ioffe Physical-Technical Institute of the Russian Academy of Sciences, Polytechnicheskaya 26, St. Petersburg, 194021 (Russian Federation); Kiptily, V. [EURATOM / CCFE Fusion Association, Abingdon, OX14 3DB (United Kingdom); Plyusnin, V. [Instituto de Plasmas e Fusão Nuclear, Associação EURATOM-IST, Instituto Superior Tecnico, Universidade Tecnica de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Collaboration: EFDA-JET Contributors

    2014-08-21

    Hard-X-ray spectrometry is a tool widely used for diagnostic of runaway electrons in existing tokamaks. In future machines, ITER and DEMO, HXR spectrometry will be useful providing information on runaway electron energy, runaway beam current and its profile during disruption.

  1. High resolution X-ray scattering studies of substrates and multilayers

    DEFF Research Database (Denmark)

    Christensen, Finn Erland

    1988-01-01

    High resolution X-ray scattering measurements on multilayer substrates and surfaces are reviewed. It is shown that the usual substrates of float glass and Si-wafers are dominated by large scale figure error, whereas samples of super polished SiC substrates are comparable in flatness and roughness...

  2. X-ray Studies of Flaring Plasma B. Sylwester , J. Sylwester & K. J. H. ...

    Indian Academy of Sciences (India)

    Abstract. We present some methods of X-ray data analysis employed in our laboratory for deducing the physical parameters of flaring plasma. For example, we have used a flare well observed with Polish instrument RESIK aboard Russian CORONAS-F satellite. Based on a careful instrument cali- bration, the absolute fluxes ...

  3. X-Ray Diffraction Studies on the Thermal Stability of Calcium ...

    African Journals Online (AJOL)

    Calcium-Strontium hydroxyapatite (HAP) solid solutions in the presence and absence of diethylamine (DEA) were prepared by the method of co-precipitation from basic media. The samples were heated at 773.15K in a furnace. Characterization of the samples by x-ray powder diffractometry, atomic absorption spectroscopy ...

  4. X-ray-reflectivity study of the growth kinetics of vapor-deposited silver films

    NARCIS (Netherlands)

    Thompson, C.; Palasantzas, G.; Feng, Y.P.; Krim, J.

    1994-01-01

    X-ray-reflectivity measurements have been carried out on silver films which were vapor deposited onto silicon substrates, to investigate the thickness evolution of the film’s surface roughness. The growth exponent was found to be β=0.26±0.05, and the roughness exponenet was found to be H=0.70±0.10.

  5. patient exposure around an x-ray diagnostic machine~a case study

    African Journals Online (AJOL)

    —ray machine with a tungsten anode at the out-patient department of the University College Hospital (UCH),. Ibadan, Nigeria. The machine is a GEC. Medical Apollo, Roentgen 501 with an X-ray tube made by Machlett at target angle of 16°.

  6. Ultra Small-angle X-ray Scattering Study of Flocculation in Silica-filled Rubber

    NARCIS (Netherlands)

    Mihara, S.; Datta, Rabin; Dierkes, Wilma K.; Noordermeer, Jacobus W.M.; Amino, N.; Ishikawa, Y.; Nishitsuji, S.; Takenaka, M.

    2014-01-01

    The flocculation of silica during vulcanization is monitored using the ultra small-angle X-ray scattering technique for two different types of silica: a highly dispersible silica (HD) and a conventional silica (CV), mixed into a blend of S-SBR and BR rubbers. The cutoff length of the silica

  7. Antiferromagnetic order in superconducting UPt[sub 3]: An x-ray magnetic scattering study (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Isaacs, E.D. (AT T Bell Laboratories, 600 Mountain Avenue, Murray Hill, New Jersey 07974 (United States)); Zschack, P. (Oak Ridge Institute for Science and Education, Brookhaven National Laboratory, Upton, New York 11973 (United States)); Ramirez, A.P.; Oglesby, C.S.; Bucher, E. (AT T Bell Laboratories, 600 Mountain Avenue, Murray Hill, New Jersey 07974 (United States))

    1994-11-15

    The temperature dependence of the antiferromagnetic order in superconducting UPt[sub 3] has been measured using x-ray resonance magnetic scattering. The magnetic Bragg intensity at [ital Q]=(1/2,0,2) grows linearly from [ital T][sub [ital N

  8. A comparative study of the ionic keV X-ray line emission from ...

    Indian Academy of Sciences (India)

    model, the hydrodynamic and atomic rate equations were solved to model the non-LTE plasma relevant to X-ray laser experiments. However, one can use a simple hydrodynamic model to estimate the ionization time during plasma expansion [39]. For one-dimensional expansion of the plasma, which is valid for time t ...

  9. X-ray fluorescence analysis study. Final report, December 1, 1970-December 31, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Kneip, T J; Laurer, G R

    1978-01-01

    This report has described the most significant experiments and the results obtained, during the development of a system for the detection and measurement of Pb in blood using radioisotope-excited x-ray fluorescence analysis, over the contract period. Briefly, the report described: detector selection; source selection; source-sample-detector geometry; sample preparation; system calibration; and separation technique. (PSB)

  10. X-Ray Spectral Study of the Photoionized Stellar Wind in Vela X-1

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Shin; Sako, Masao; Ishida, Manabu; Ishisaki, Yoshitaka; Kahn, Steven M.; Kohmura, Takayoshi; Nagase, Fumiaki; Paerels, Frederik; Takahashi, Tadayuki; /JAXA,

    2006-07-10

    We present results from quantitative modeling and spectral analysis of the high mass X-ray binary system Vela X-1 obtained with the Chandra High Energy Transmission Grating Spectrometer. The observations cover three orbital phase ranges within a single binary orbit. The spectra exhibit emission lines from H-like and He-like ions driven by photoionization, as well as fluorescent emission lines from several elements in lower charge states. The properties of these X-ray lines are measured with the highest accuracy to date. In order to interpret and make full use of the high-quality data, we have developed a simulator, which calculates the ionization and thermal structure of a stellar wind photoionized by an X-ray source, and performs Monte Carlo simulations of X-ray photons propagating through the wind. The emergent spectra are then computed as a function of the viewing angle accurately accounting for photon transport in three dimensions including dynamics. From comparisons of the observed spectra with results from the simulator, we are able to find the ionization structure and the geometrical distribution of material in the stellar wind of Vela X-1 that can reproduce the observed spectral line intensities and continuum shapes at different orbital phases remarkably well. We find that the stellar wind profile can be represented by a CAK-model with a star mass loss rate of (1.5-2.0) x 10{sup -6} M{sub {circle_dot}} yr{sup -1}, assuming a terminal velocity of 1100 km s{sup -1}. It is found that a large fraction of X-ray emission lines from highly ionized ions are formed in the region between the neutron star and the companion star. We also find that the fluorescent X-ray lines must be produced in at least three distinct regions: (1) the extended stellar wind, (2) reflection off the stellar photosphere, and (3) in a distribution of dense material partially covering and possibly trailing the neutron star, which may be associated with an accretion wake. Finally, from

  11. Ambient x-ray pollution assessment at inspection gates of airports- a case study of Mehrabad and Imam Khomeini Airports in Iran.

    Science.gov (United States)

    Pourtaghi, Gholamhossein; Valipour, Firouz; Nourian, Sepideh; Mofidi, Amirabbas

    2014-01-01

    As a well-known, physical carcinogen, ambient X-ray pollution assessment would be of great importance in today's modern world. Accordingly, the present study was done to measure the exposure level of ambient X-ray at inspection gates of two airports in Iran. According to which, the X-ray was measured at different points of the inspection gates including closed and opened Curtain, as well as seating place of operators beside the X-ray inspection systems. The recorded data were then analyzed by "sign" and t-tests. The total average exposure level of the measured x-ray was 2.68 ± 0.73 μsv.h(-1). The measured x-ray exposure level was 2.07 ± 0.61 (μsv.h(-1)) released from RAPISCAN X-ray inspection system and 3.3 ± 1.34 (μsv.h(-1)) emitted from HEIMANN X-ray inspection system. Comparison of average x-ray doses of the systems in both airports showed that the minimum and maximum exposure levels were recorded at 1(m) far from the devices and at the entrance of the devices, respectively. The exposure levels at all measurement points were lower than the occupational exposure limit. This reveals the fact that the exposed operators are not probably at risk of adverse health effects.

  12. Hand x-ray

    Science.gov (United States)

    X-ray - hand ... A hand x-ray is taken in a hospital radiology department or your health care provider's office by an ... technician. You will be asked to place your hand on the x-ray table, and keep it ...

  13. X-Ray

    Science.gov (United States)

    ... show up on chest X-rays. Breast cancer. Mammography is a special type of X-ray test used to examine breast tissue. Enlarged heart. This sign of congestive heart failure shows up clearly on X-rays. Blocked blood vessels. Injecting a contrast material that contains iodine can help highlight sections ...

  14. Easily exchangeable x-ray mirrors and hybrid monochromator modules a study of their performance

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Fan. [Philips Analytical, Asia Pacific, Toa Payoh, (Singapore); Kogan, V. [Philips Analytical, EA Almelo, (Netherlands); Saito, K. [Philips Analytical, Tokyo, (Japan)

    1999-12-01

    Full text: PreFix prealigned optical mounts allowing rapid and easily changeover will be presented. The benefits of laterally graded multilayer X-Ray mirrors coupled with these Prefix mounts - conversion of divergent beam to parallel beam, increase of intensity by a factor of 3-7, monochromation to {alpha}1 and {alpha}2 and a dynamic range of 10 {sup 4-5} CpS will be demonstrated in areas such as Thin Film and Powder analysis. Data will be shown on a diffraction profile of thin film (Cr/SiO{sub 2}) with and without a mirror and Si powder with and without a mirror. Further enhancement will be demonstrated by combining a channel cut monochromator-collimator with an X-Ray mirror to produce a high intensity, parallel, pure Cu K{alpha}1 beam with a high intensity of up to 4.5 x 10{sup 8} cps and a divergence down to 0.01 deg. The applicability to various ranging from High Resolution to thin film/reflectivity to Rietveld structural refinement and to phase analysis will be shown. The Rocking curve of HEMT 10nm InGaAs on InP will be presented using various `standard` optics and hybrid optics, also Si powder and a Rietveld refinement of CuS0{sub 4}.5H{sub 2}0 and Aspirin. A comparison of the benefits and application of X-Ray Mirrors and Hybrid Mirror/Monochromators will be given. The data presented will show that by using X-Ray Mirrors and Hybrid modules the performance of standard `Laboratory` Diffractometers can be greatly enhanced to a level previously unachievable with great practical benefits. Copyright (1999) Australian X-ray Analytical Association Inc.

  15. X-ray and Optical Studies of SAX J1808.4-3658 in Quiescence

    Science.gov (United States)

    Heinke, C. O.; Deloye, C. J.; Jonker, P. G.; Wijnands, R.; Taam, R. E.

    2008-10-01

    We have observed the accreting millisecond X-ray pulsar SAX J1808.4-3658 (1808) in quiescence during two 50 ksec XMM-Newton observations, and acquired near-simultaneous photometry with Gemini South. We find 1808's X-ray spectrum to be hard, describable with an absorbed power-law of photon index 1.7-1.9 and unabsorbed X-ray luminosity Lx = 5.2-7.9×1031 ergs s-1. No thermal neutron star (NS) component is seen, with a limit on any possible NS component of LNS(0.01-10 keV)history, requires highly enhanced neutrino cooling in the core of 1808's NS. The near-simultaneous Gemini observations find a large sinusoidal flux modulation on 1808's orbital period, consistent with predictions from an irradiated secondary star. We model the contributions of the disk and donor star, and find that the donor must be irradiated by an external flux of Lirr = 1.15-1.78×1034 ergs/s, much larger than observed in the X-ray band. This irradiation may be in the form of relativistic particles from the NS turning on as a radio pulsar when not accreting, as suggested by Burderi et al. The amplitude and color dependence of the optical modulation constrain the system inclination and donor radius. These constraints, through the pulsar mass function, deliver constraints on the NS mass of MNS>2.2 Msolar, or for a distance uncertainty 10% larger, of MNS>1.8 Msolar. Such a heavy NS is consistent with the accelerated neutrino cooling found from the X-ray observations.

  16. Studies of soft x-ray transmission through grid supported CH layers

    Science.gov (United States)

    Davis, J. S.; Keiter, P. A.; Klein, S. R.; Frank, Y.; Drake, R. P.; Shvarts, D.

    2017-10-01

    Recent experiments have shown that it may be possible to use laser-heated high-Z foils to drive new radiation transport (RadTran) experiments in gas fill tubes. These tubes must be pressurized above 1atm and the x-ray source needs to be physically separated from the gas. To achieve this, a grid-supported CH seal is implemented. The grid reduces the total surface area of the gas-seal interaction region lowering the thickness requirements for the CH layer. However, as mesh spacing is reduced, hole closure from wire ablation may reduce the x-ray flux. To optimize the seal design, experiments were performed measuring x-ray transmission through CH layers supported by meshes composed of copper, gold, or stainless steel and using hexagonal or square mesh geometries. The x-ray source was formed by heating a 0.5 μm thick planar gold foil with a 4 ns laser pulse at an intensity of 2 ×1014 W / cm 2. Emission data was collected using an x-ray framing camera and a Dante photodiode array. Experiments show that the CH layers can reach effective temperatures of nearly 100 eV but mesh design significantly affects performance, with a nearly 20 eV difference between the best and worst performing seal targets. This talk will discuss our findings and their impact on future RadTran experiments. This work is funded by the U.S. DOE, through the NNSA-DS and SC-OFES Joint Program in HED Laboratory Plasmas, Grant Number DE-NA0001840, the National LUFP, Grant Number DE-NA0000850, and through NNSA/OICF under Cooperatvie Agreement No. DE-FC52-08NA2830.

  17. ZnO/ZnAl2O4 Nanocomposite Films Studied by X-Ray Diffraction, FTIR, and X-Ray Photoelectron Spectroscopy

    Directory of Open Access Journals (Sweden)

    S. Iaiche

    2015-01-01

    Full Text Available ZnO/ZnAl2O4 nanocomposite films were synthesised by ultrasonic spray pyrolysis (USP by extracting Al2O(SO42 oxide with zinc chloride hydrate in deionised water. The sample was then subjected to heat treatment at 650°C and 700°C for 1 h, which led to the formation of the spinel oxide (ZnAl2O4 and wurtzite (ZnO phases. Al2(SO43·18H2O salt was transformed into aluminum oxide sulfate Al2O(SO42, which is an intermediary decomposition product, by calcination at 795°C for 3 h. The structures of the synthesised ZnO/ZnAl2O4 films were confirmed by XRD, FTIR, and X-ray photoelectron spectroscopy (XPS. XPS spectra of the major Zn, Al, and O photoelectron lines and the major X-ray induced Zn LMM Auger lines for ZnO/ZnAl2O4 are presented.

  18. Structural studies coupling X-ray diffraction and high-energy X-ray scattering in the UO2(2+)-HBr(aq) system.

    Science.gov (United States)

    Wilson, Richard E; Skanthakumar, S; Cahill, C L; Soderholm, L

    2011-11-07

    The structural chemistry of uranium(VI) in concentrated aqueous hydrobromic acid solutions was investigated using both single crystal X-ray diffraction and synchrotron-based high-energy X-ray scattering (HEXS) to reveal the structure of the uranium(VI) complexes in solution prior to crystallization. The crystal structures of a series of uranyl tetrabromide salts are reported, including Cs(2)UO(2)Br(4), Rb(2)UO(2)Br(4)·2H(2)O, K(2)UO(2)Br(4)·2H(2)O, and (NH(4))(2)UO(2)Br(4)·2H(2)O, as well as a molecular dimer of uranium(VI), (UO(2))(2)(OH)(2)Br(2)(H(2)O)(4). Limited correspondence exists between the structures observed in the solid state and those in solution. Quantitative analysis of the HEXS data show an average U-Br coordination number of 1.9(2) in solution, in contrast to the U-Br coordination number of 4 in the solid salts. © 2011 American Chemical Society

  19. Molecular-dynamics approach for studying the nonequilibrium behavior of x-ray-heated solid-density matter

    Science.gov (United States)

    Abdullah, Malik Muhammad; Anurag, Jurek, Zoltan; Son, Sang-Kil; Santra, Robin

    2017-08-01

    When matter is exposed to a high-intensity x-ray free-electron-laser pulse, the x rays excite inner-shell electrons leading to the ionization of the electrons through various atomic processes and creating high-energy-density plasma, i.e., warm or hot dense matter. The resulting system consists of atoms in various electronic configurations, thermalizing on subpicosecond to picosecond timescales after photoexcitation. We present a simulation study of x-ray-heated solid-density matter. For this we use XMDYN, a Monte Carlo molecular-dynamics-based code with periodic boundary conditions, which allows one to investigate nonequilibrium dynamics. XMDYN is capable of treating systems containing light and heavy atomic species with full electronic configuration space and three-dimensional spatial inhomogeneity. For the validation of our approach we compare for a model system the electron temperatures and the ion charge-state distribution from XMDYN to results for the thermalized system based on the average-atom model implemented in XATOM, an ab initio x-ray atomic physics toolkit extended to include a plasma environment. Further, we also compare the average charge evolution of diamond with the predictions of a Boltzmann continuum approach. We demonstrate that XMDYN results are in good quantitative agreement with the above-mentioned approaches, suggesting that the current implementation of XMDYN is a viable approach to simulate the dynamics of x-ray-driven nonequilibrium dynamics in solids. To illustrate the potential of XMDYN for treating complex systems, we present calculations on the triiodo benzene derivative 5-amino-2,4,6-triiodoisophthalic acid (I3C), a compound of relevance of biomolecular imaging, consisting of heavy and light atomic species.

  20. A study on developpement of guideline on writing technical document for electrical medical devices: Dental x-ray equipment

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Youl; Kim, Jae Ryang; Lee, Jun Ho; Park, Chang Won [Division of Medical Device Research, National Institute of Food and Drug Safety Evaluation, Mnistry of Food and Drug Safety (Korea, Republic of)

    2016-12-15

    Due to recent population aging, the number of check-up for senior citizens has increased steadily. According to this trend, the market size of dental X-ray equipment and the number of approval and review for these devices have simultaneously increased. The technical document of medical device is required for approval and review for medical device, and medical device companies needs to have work comprehension and expertise, as the document needs to include the overall contents such as performances, test criteria, etc.. Yet, since most of domestic manufacturers or importers of medical devices are small businesses, it is difficult for them to recruit professional manpower for approval of medical devices, and submission of inaccurate technical documents has increased. These problems lead to delay of the approval process and to difficulties in quick entering into the market. Especially, the Ministry of Food and Drug safety (MFDS) standards of a dental extra-oral X-ray equipment, a dental intra-oral X-ray equipment, an arm-type computed tomography, and a portable X-ray system have been recently enacted or not. this guideline of dental X-ray equipment adjusting revised standards was developed to help relative companies and reviewers. For this study, first, the methods to write technical document have been reviewed with revised international and domestic regulations and system. Second, the domestic and foreign market status of each item has been surveyed and analyzed. Third, the contents of technical documents already approved by MFDS have been analyzed to select the correct example, test items, criteria, and methods. Finally, the guideline has been developed based on international and domestic regulation, through close review of a consultative body composed of academic, industrial, research institute and government experts.

  1. X-ray Reflectivity Study of Ionic Liquids at Electrified Surfaces

    Science.gov (United States)

    Chu, Miaoqi

    X-ray reflectivity (XRR) versatile technique that characterize the surface structures. However, due to the lack of phase information of X-ray data, the reconstruction of electron density profile (EDP) from XRR data is an ill-posed inverse problem that requires extra attention. In Chapter 1, several key concepts in XRR data analysis are reviewed. The typical XRR data acquisition procedure and methods of modeling electron density are introduced. The widely used logarithm form of merit function is justified with mathematical deduction and numerical experiment. A scheme that generates artificial reflectivity data with theoretical statistical error but not systematical error is proposed. With the methods and schemes described in Chapter 1, simulated reflectivity data of a simple one-slab model is generated and fitted to test the efficient of EDP reconstruction. By isolating the parameters, the effects of slab width, electron density contrast and maximal wave transfer are studied individually. It?s demonstrated that best-fit/global minima, result reported by most XRR studies, don?t necessary reflect the real EDP. By contrast, mapping the merit function in the parametric space can capture much more details. Additionally, the widely accepted concept about the XRR theoretical spatial resolution (pi/q_{max}) as well the using Patterson function are brought to test. In the perspective of XRR data analysis, this chapter puts forward general rules to design and optimize XRR experiments. It also demonstrates how susceptible the fitting result will be if it?s not done carefully. In Chapter 3, the interface between hydrophobic OTS film and several solvents is studied with XRR in a transmission-cell setup. The solvents, from water, acetone, to alcohol (methanol, ethanol, 1-propanol), to alkane (pentane, hexane and heptane), vary significantly in terms of polarity and hydrogen bonding. However, the XRR data from different solvents are subtle. The methods and principles elicited in

  2. Synthesis, X-ray crystallographic, spectroscopic and computational studies of aminothiazole derivatives

    Science.gov (United States)

    Adeel, Muhammad; Braga, Ataualpa A. C.; Tahir, Muhammad Nawaz; Haq, Fazal; Khalid, Muhammad; Halim, Mohammad A.

    2017-03-01

    Aminothiazole organic compounds have diverse biological applications. Herein we report the synthesis of two aminothiazole derivatives: 4-(biphenyl-4-yl)thiazol-2-amine (1) and 4-(2‧,4‧-difluorobiphenyl-4-yl)thiazol-2-amine (2) via Suzuki-Miyaura cross coupling reaction. The chemical structures of 1 and 2 are confirmed using 1HNMR, 13CNMR, FT-IR, UV-Vis and single crystal x-ray studies. The XRD study reveals that the both solid state structures (1) and (2) are diffused to form poly chain structures due to presence of intra molecular hydrogen bonding (H.B). Furthermore, these compounds were analysed by density functional theory (DFT) at M06-2X/6-311G(d,p), B3LYP/6-31G(d) B3LYP/6-31G(d,p) and B3LYP/6-311G(2d,p) level of theories to obtain optimized geometry, electronic and spectroscopic properties. DFT optimized geometry supports the experimental XRD parameters. Natural bond orbital (NBO) calculation predicted the hyper conjugative interaction and hydrogen bonding in all derivatives. The FT-IR and thermodynamic studies also confirm the presence of hydrogen bonding network in the dimers which agrees well with the XRD results. Moreover, UV-Vis analysis reveals that maximum excitations take place in 1 and 2 due to HOMO → LUMO(98%) and HOMO → LUMO(97%) respectively which show good agreement to experimental data. The first order hyperpolarizability of both molecules is remarkably greater than the value of urea. The global reactivity parameters which are obtained by frontier molecular orbitals disclose that the molecules might be bioactive.

  3. Simulation study of an X-ray diffraction system for breast tumor detection

    Science.gov (United States)

    Marticke, F.; Montémont, G.; Paulus, C.; Michel, O.; Mars, J. I.; Verger, L.

    2017-09-01

    X-ray diffraction (XRD) is a powerful technique used to determine the molecular structure of biological tissues. In breast tissues for example, the scattering signatures of dense fibroglandular tissue and carcinoma have been shown to be significantly different. In this study, XRD was used as a second control level when conventional mammography results were unclear, for instance because of overly high breast density. A system optimized for this issue, called multifocal XRD, was developed combining energy dispersive spectral information at different scattering angles. This system allows depth-imaging in one go but needs an x,y-direction scan to image the region conventional mammography identified as suspect. The scan-time for about 10 cm3 with an incident flux of about 4.8·107 photons per second would be around 2 s. For this study, breast phantoms with and without cancerous nodule were simulated to assess the separation power of the method and to determine the radiation dose required to obtain nearly ideal separation. For tumors situated in the center of the breast, the required dose was only about 0.3 mGy, even for breasts with high density. The tumor position was shown to have a low impact on detectability provided it remained in a zone where the system was sufficiently sensitive. The influence of incident spectrum maximum energy was also studied. The required dose remained very low with any of the incident spectra tested. Finally, an image slice was reconstructed in the x-direction and showed that the system can detect the presence of a small tumor (4 mm). Hence, XRD is a very promising tool to reduce the number of unnecessary invasive breast biopsies.

  4. Study of archaeological iron objects by PGAA, Mössbauer spectroscopy and X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, F. E., E-mail: fwagner@tum.de [Technische Universität München, Physik- Department E15 (Germany); Gebhard, R. [Archäologische Staatssammlung München (Germany); Häusler, W.; Wagner, U. [Technische Universität München, Physik- Department E15 (Germany); Albert, P.; Hess, H. [Archäologische Staatssammlung München (Germany); Révay, Z.; Kudejová, P.; Kleszcz, K. [Technische Universität München, Forschungsneutronenquelle Heinz Maier-Leibnitz (FRM II) (Germany)

    2016-12-15

    Archaeological iron objects often corrode rapidly after their excavation, even though they have survived long times of burial in the ground. Chlorine that accumulates during burial is thought to play a major role in this destructive post-excavation corrosion. It is therefore important for the conservation of such objects to determine the chlorine content in a non-destructive manner and, if necessary, to remove the chlorine from the artefacts by appropriate methods. Such methods are leaching in alkaline solutions or heating in a reducing atmosphere at temperatures up to 800 {sup ∘}C. We have studied the efficiency of the heating method using prompt gamma activation analysis (PGAA) for monitoring the Cl content and Mössbauer spectroscopy at room temperature (RT) and 4.2 K as well as X-ray diffraction to study the mineralogical transformations of the rust layers. The heat treatments were performed a N{sub 2}/H{sub 2} (90/10) mixture at temperatures up to 750 {sup ∘}C. As test specimens sections of iron rods from the Celtic oppidum of Manching (Bavaria) were used. The initial Cl contents of the pieces varied in the range of several hundred ppm, referring to the iron mass. Annealing for 24 h at 350, 550 and 750 {sup ∘}C was found to reduce the Cl contents of the specimens, to about 70, 30 and 15 % of the original values, respectively. The rust consists mainly of goethite with admixtures of magnetite, lepidocrocite and akaganeite, which is thought to be a major carrier of chlorine, probably together with iron chlorides. Much of the goethite is so fine-grained that it does not split magnetically at RT. Annealing converts the rust mainly to maghemite at 350 {sup ∘}C, to magnetite at 550 {sup ∘}C and to wüstite plus magnetite and metallic iron at 750 {sup ∘}C. Pure akaganeite behaves in nearly the same manner.

  5. X-Ray photoelectron study of actinide (Th, U, Pu, Am nitrates

    Directory of Open Access Journals (Sweden)

    Teterin Yury A.

    2003-01-01

    Full Text Available In this work an X-ray photoelectron spectroscopy study of nitrates Th(NO34.4H2O UO2(NO32-nH2O, Pu(NO34-nH2O, and Am(NO32.nH2O was done in the binding energy range from 0 to 1000 eV in order to draw a correlation of the fine spectral structure parameters with the actinide ions oxidation states close environment structure, and chemical bond nature. The linearity of the dependence of the An5fn line intensity on the number n5f of the An5f electrons was proven to remain up to the Am3+ ion with the electron configu5fra-tion{Rn 5f6. The spectral structure in the binding energy range from 0 to ~ 15 eV was associated with the formation of the outer valence molecular orbitals due to the interaction of the An6d-, 7s, 5f - O2p electrons, and the fine spectral structure in the binding energy range from ~ 15 to ~50 eV - with the formation of the inner valence molecular orbitals due to the interaction of the An6p - O2s electrons from the filled neighboring atomic orbitals of actinide and oxygen in the studied compounds. The fine structure of the core level electron spectra in the binding energy range from ~50 to 1000 eV was shown to correlate with the actinide ion oxidation state.

  6. Using a Fast X-Ray Microtomography Study to Better Inform Two-Phase Flow Theories

    Science.gov (United States)

    Meisenheimer, D.; Wildenschild, D.

    2016-12-01

    Understanding multiphase flow in porous media is important to many fields including groundwater management and remediation, soil and agricultural practices, petroleum engineering, and geologic sequestration of CO2. Scientists and engineers in these fields require experimental data acquired under field conditions to accurately create models of the dynamic multiphase flow processes being studied. The recent introduction of fast x-ray microtomography (fast-µCT) allows multiphase flow experiments to be performed in 3-dimensions under field-consistent pressure conditions removing the decision to either sacrifice the 3rd dimension with 2D micromodels or impose a pseudo-equilibrium pressure condition using standard-µCT methods. This new experimental method allows for the acquisition of data under more relevant conditions to validate multiphase theories with greater confidence and inform more accurate models. One such multiphase flow theory introduces interfacial area as a state variable that can be used to better describe the characteristics of two-phase flow by reducing or eliminating the hysteric effect that is prevalent in many two-phase models. Using fast-µCT, interfacial area production and evolution can unprecedentedly be tracked in 3D under valid flow conditions. Previously, we presented a preliminary analysis that suggested that the capillary pressure-saturation-interfacial area (Pc-Sw-Awn) surface established under flow conditions does not coincide with the surface obtained under pseudo-equilibrium conditions, which is complementary to work done in 2D micromodel studies. Here we present a more in-depth analysis on the relationship between Pc-Sw-Anw surfaces obtained under flow or pseudo-equilibrium conditions. In addition, we present an analysis of the measured interfacial area production rate term (Ewn) in relation to the rate of change of saturation (dS/dt) during the two-phase flow experiments which is an important relationship in two-phase theories.

  7. The Wide Field Imager for Athena

    Science.gov (United States)

    Rau, A.; Nandra, K.; Meidinger, N.; Plattner, M.

    2017-10-01

    The Wide Field Imager (WFI) is one of the two scientific instruments of Athena, ESA's next large X-ray Observatory with launch in 2028. The instrument will provide two defining capabilities to the mission sensitive wide-field imaging spectroscopy and excellent high-count rate performance. It will do so with the use of two separate detectors systems, the Large Detector Array (LDA) optimized for its field of view (40'×40') with a 100 fold survey speed increase compared to existing X-ray missions, and the Fast Detector (FD) tweaked for high throughput and low pile-up for point sources as bright as the Crab. In my talk I will present the key performance parameters of the instrument and their links to the scientific goals of Athena and summarize the status of the ongoing development activities.

  8. Study of decorated archeological ceramics by micro X-ray fluorescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Papadopoulou, D. [Archaeometry Laboratory, Cultural and Educational Technology Institute/R.C. ' Athena' , Tsimiski 58, 67100 Xanthi (Greece); Technological Educational Institute of Kavala, Department of Science, Agios Loukas, 654 04 Kavala (Greece); Sakalis, A. [Archaeometry Laboratory, Cultural and Educational Technology Institute/R.C. ' Athena' , Tsimiski 58, 67100 Xanthi (Greece)], E-mail: asakalis@ceti.gr; Merousis, N. [Hellenic Open University, Kyzikou 25-27, 55133 Kalamaria, Thessaloniki (Greece); Tsirliganis, N.C. [Archaeometry Laboratory, Cultural and Educational Technology Institute/R.C. ' Athena' , Tsimiski 58, 67100 Xanthi (Greece)

    2007-09-21

    Micro-X-ray fluorescence ({mu}-XRF) spectrometry is an analytical technique that is especially suitable for the study of archeological findings since it is non-destructive, rapid, universal, versatile and multi-elemental. In the present work a compact portable {mu}-XRF spectrometer was used to characterize decorated sherds of Neolithic pottery from Polyplatanos, North Greece. The sherds were divided into four decorative groups (crusted, classic Dimini, cream on red, and black on red) and the characterization was focused on the determination of certain major, minor and trace elements (Si, K, Ca, Ti, Cr, Mn, Fe, Ni) on the decorated surface and in the clay body. The aim of this characterization was to supplement and confirm archeological information regarding the origin of the artifacts and the manufacturing techniques used for their production. The most predominant chemical elements were determined, and representative ratios (Ca/K, Fe/Mn) were calculated and compared for each individual sample group. The crusted samples and the cream on red samples showed higher concentrations of Ca in the white-crusted surface in comparison with the clay body while Fe was the predominant element in the red decorated surface. The analysis of the samples of classic Dimini, revealed higher concentrations of Mn in the black painted surfaces and higher Ca content in the light-coloured clay bodies. Finally, most samples of the black on red group present high concentrations of Mn in their decoration surface. Zn and Ni were also detected in this group in contrast with the remaining groups.

  9. Evolution of particle breakage studied using x-ray tomography and the discrete element method

    Science.gov (United States)

    Karatza, Zeynep; Andò, Edward; Papanicolopulos, Stefanos-Aldo; Viggiani, Gioacchino; Ooi, Jin Y.

    2017-06-01

    Particle breakage can significantly change the fabric (size and shape of particles and contact network) of a granular material, affecting highly the material's macroscopic response. In this paper, oedometric compression tests are performed on zeolite specimens and x-ray computed micro-tomography is employed, to acquire high resolution 3D images of the specimens throughout the test. The images are processed, to describe breakage spatially and quantify it throughout the test and gain information about the mechanisms leading to particle breakage. In addition to the image processing, the discrete element method (DEM) is used to study the initiation and likelihood of particle breakage, by simulating the experimental test during the early stages of loading and using quantitative results from the images to inform and validate the DEM model. A discrete digital image correlation is used, in order to incrementally identify intact grains and simultaneously get results about the strain field within the specimen, as well as the kinematics of individual grains and fragments. In the initial stages of breakage, there is a clear boundary effect on the spatial distribution of breakage, as it is concentrated at the moving boundary (more than 90% of total breakage) and circumferentially (more than 70% of total breakage) close to the apparatus cell. The DEM model can reproduce the bulk response of the material until the point where substantial breakage governs the macroscopic response and it starts to soften. Additionally, there is an initial indication that the spatial distribution of the force network matches the localisation of breakage radially, but it does not seem to localise close to the loading platen. This analysis will enrich our understanding of the mechanisms and evolution of particle breakage.

  10. Ion distributions at charged aqueous surfaces: Synchrotron X-ray scattering studies

    Energy Technology Data Exchange (ETDEWEB)

    Bu, Wei [Iowa State Univ., Ames, IA (United States)

    2009-01-01

    Surface sensitive synchrotron X-ray scattering studies were performed to obtain the distribution of monovalent ions next to a highly charged interface at room temperature. To control surface charge density, lipids, dihexadecyl hydrogen-phosphate (DHDP) and dimysteroyl phosphatidic acid (DMPA), were spread as monolayer materials at the air/water interface, containing CsI at various concentrations. Five decades in bulk concentrations (CsI) are investigated, demonstrating that the interfacial distribution is strongly dependent on bulk concentration. We show that this is due to the strong binding constant of hydronium H3O+ to the phosphate group, leading to proton-transfer back to the phosphate group and to a reduced surface charge. Using anomalous reflectivity off and at the L3 Cs+ resonance, we provide spatial counterion (Cs+) distributions next to the negatively charged interfaces. The experimental ion distributions are in excellent agreement with a renormalized surface charge Poisson-Boltzmann theory for monovalent ions without fitting parameters or additional assumptions. Energy Scans at four fixed momentum transfers under specular reflectivity conditions near the Cs+ L3 resonance were conducted on 10-3 M CsI with DHDP monolayer materials on the surface. The energy scans exhibit a periodic dependence on photon momentum transfer. The ion distributions obtained from the analysis are in excellent agreement with those obtained from anomalous reflectivity measurements, providing further confirmation to the validity of the renormalized surface charge Poisson-Boltzmann theory for monovalent ions. Moreover, the dispersion corrections f0 and f00 for Cs+ around L3 resonance, revealing the local environment of a Cs+ ion in the solution at the interface, were extracted simultaneously with output of ion distributions.

  11. a Time-Resolved X-Ray Study of Spinodal Decomposition in Aluminium-Zinc

    Science.gov (United States)

    Mainville, Jacques

    Time resolved small angle x-ray scattering (SAXS) using synchrotron radiation was applied to the study of the kinetics of spinodal decomposition (SD) in an AlZn binary alloy at critical composition quenched into the immiscible region. These millisecond time scale measurements, performed at the National Synchrotron Light Source (Brookhaven National Labs., N.Y.), constitute the first direct experimental verification in a binary alloy of the theory proposed by Langer, Bar-on and Miller in 1975 for SD. A scheme based on the composition distribution functional is proposed to account for the decomposition taking place during the quench. The interatomic mobility, a free energy gradient coefficient and two coefficients that suffice to determine a coarse-grained (intensive) free energy have been obtained in the framework of this theory. The mobilities obtained compare well with tracer diffusion measurements reported in literature. A dependence of the coarse-grained free energy coefficients on the coarse-graining length is found and a procedure is proposed to uniquely choose the values of these coefficients based on the predicted integrated intensity from the equilibrium concentrations and on the measured integrated intensities. Late-stage coarsening regimes were also investigated. In these regimes, growth exponents higher than the value 1/3 predicted by the Lifshitz-Slyozov-Wagner theory are obtained. These higher values, comprised between 0.40 and 0.45 are consistent with predictions that alloys in which elastic effects are important can present a transition regime from a t ^{1/3} growth law to a t ^{1/2} law. The structure factors do not quite scale. They also present a shoulder at high wavevectors, a feature not reported before in metallic alloys.

  12. Comparative Studies of Prediction Strategies for Solar X-ray Time Series

    Science.gov (United States)

    Muranushi, T.; Hattori, T.; Jin, Q.; Hishinuma, T.; Tominaga, M.; Nakagawa, K.; Fujiwara, Y.; Nakamura, T.; Sakaue, T.; Takahashi, T.; Seki, D.; Namekata, K.; Tei, A.; Ban, M.; Kawamura, A. D.; Hada-Muranushi, Y.; Asai, A.; Nemoto, S.; Shibata, K.

    2016-12-01

    Crucial virtues for operational space weather forecast are real-timeforecast ability, forecast precision and customizability to userneeds. The recent development of deep-learning makes it veryattractive to space weather, because (1) it learns gradually incomingdata, (2) it exhibits superior accuracy over conventional algorithmsin many fields, and (3) it makes the customization of the forecasteasier because it accepts raw images.However, the best deep-learning applications are only attainable bycareful human designers that understands both the mechanism of deeplearning and the application field. Therefore, we need to foster youngresearchers to enter the field of machine-learning aided forecast. So,we have held a seminar every Monday with undergraduate and graduatestudents from May to August 2016.We will review the current status of space weather science and theautomated real-time space weather forecast engine UFCORIN. Then, weintroduce the deep-learning space weather forecast environments wehave set up using Python and Chainer on students' laptop computers.We have started from simple image classification neural network, thenimplemented space-weather neural network that predicts future X-rayflux of the Sun based on the past X-ray lightcurve and magnetic fieldline-of-sight images.In order to perform each forecast faster, we have focused on simplelightcurve-to-lightcurve forecast, and performed comparative surveysby changing following parameters: The size and topology of the neural network Batchsize Neural network hyperparameters such as learning rates to optimize the preduction accuracy, and time for prediction.We have found how to design compact, fast but accurate neural networkto perform forecast. Our forecasters can perform predictionexperiment for four-year timespan in a few minutes, and achieveslog-scale errors of the order of 1. Our studies is ongoing, and inour talk we will review our progress till December.

  13. Inter-Diffusion of Copper and Hafnium as Studied by X-Ray Photoelectron Spectroscopy

    Science.gov (United States)

    Pearson, Justin Seth

    The purpose of this study is to investigate the interdiffusion of copper and hafnium. Thin films (thicknesses ranging from 100 nm to 150 nm) of hafnium were deposited on a silicon substrate. About 80 nm of copper was then deposited on such samples. High purity samples have been used in this investigation. The deposition of the elements was done by the e-beam technique. The interfaces thus formed were annealed for a fixed time (30 minutes) at temperatures of 100, 200, and 300°C. The samples were characterized in situ by the x-ray photoelectron spectroscopy technique. To carry out the depth profiling of these samples a controlled amount of the over layer was removed and the spectral data were acquired. The argon ion sputtering technique was used to sputter the layers away. Spectral data in the copper 2p and hafnium 4f regions were investigated. The atomic concentration of the constituents as a function of depth across the interface was determined by analyzing the areas under the curves. The depth profiling data thus obtained was analyzed by the Matano-Boltzmann's procedure. For this analysis the Matano plane was determined based on the criteria of equal area on each side of the interface. The Fick's Law second law was used to calculate the interdiffuison coefficient for each of these interfaces. The interdiffusion coefficient as a function of temperature was determined from these analyses. From these coefficients the activation energy and the pre-exponential factor was determined by using the Arrhenius plot. The activation energy was found to be 0.128 eV/atom and the pre-exponential factor was 3.33E-14 cm2/s. The results from this investigation will be useful in the application of Cu/Hf interface in design and fabrication of semiconductor devices.

  14. Complementary ab initio and X-ray nanodiffraction studies of Ta2O5

    Science.gov (United States)

    Hollerweger, R.; Holec, D.; Paulitsch, J.; Bartosik, M.; Daniel, R.; Rachbauer, R.; Polcik, P.; Keckes, J.; Krywka, C.; Euchner, H.; Mayrhofer, P.H.

    2015-01-01

    The complex structure of Ta2O5 led to the development of various structural models. Among them, superstructures represent the most stable configurations. However, their formation requires kinetic activity and long-range ordering processes, which are hardly present during physical vapor deposition. Based on nano-beam X-ray diffraction and concomitant ab initio studies, a new metastable orthorhombic basic structure is introduced for Ta2O5 with lattice parameters a = 6.425 Å, b = 3.769 Å and c = 7.706 Å. The unit cell containing only 14 atoms, i.e. two formula unit blocks in the c direction, is characterized by periodically alternating the occupied oxygen site between two possible positions in succeeding 002-planes. This structure can be described by the space group 53 (Pncm) with four Wyckoff positions, and exhibits an energy of formation of −3.209 eV atom−1. Among all the reported basic structures, its energy of formation is closest to those of superstructures. Furthermore, this model exhibits a 2.5 eV band gap, which is closer to experimental data than the band gap of any other basic-structure model. The sputtered Ta2O5 films develop only a superstructure if annealed at temperatures >800 °C in air or vacuum. Based on these results and the conveniently small unit cell size, it is proposed that the basic-structure model described here is an ideal candidate for both structure and electronic state descriptions of orthorhombic Ta2O5 materials. PMID:25642136

  15. X-ray fluorescence imaging: a new tool for studying manganese neurotoxicity.

    Directory of Open Access Journals (Sweden)

    Gregory Robison

    Full Text Available The neurotoxic effect of manganese (Mn establishes itself in a condition known as manganism or Mn induced parkinsonism. While this condition was first diagnosed about 170 years ago, the mechanism of the neurotoxic action of Mn remains unknown. Moreover, the possibility that Mn exposure combined with other genetic and environmental factors can contribute to the development of Parkinson's disease has been discussed in the literature and several epidemiological studies have demonstrated a correlation between Mn exposure and an elevated risk of Parkinson's disease. Here, we introduce X-ray fluorescence imaging as a new quantitative tool for analysis of the Mn distribution in the brain with high spatial resolution. The animal model employed mimics deficits observed in affected human subjects. The obtained maps of Mn distribution in the brain demonstrate the highest Mn content in the globus pallidus, the thalamus, and the substantia nigra pars compacta. To test the hypothesis that Mn transport into/distribution within brain cells mimics that of other biologically relevant metal ions, such as iron, copper, or zinc, their distributions were compared. It was demonstrated that the Mn distribution does not follow the distributions of any of these metals in the brain. The majority of Mn in the brain was shown to occur in the mobile state, confirming the relevance of the chelation therapy currently used to treat Mn intoxication. In cells with accumulated Mn, it can cause neurotoxic action by affecting the mitochondrial respiratory chain. This can result in increased susceptibility of the neurons of the globus pallidus, thalamus, and substantia nigra pars compacta to various environmental or genetic insults. The obtained data is the first demonstration of Mn accumulation in the substantia nigra pars compacta, and thus, can represent a link between Mn exposure and its potential effects for development of Parkinson's disease.

  16. Polymer gel dosimetry using x-ray computed tomography: a feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Hilts, M. [Vancouver Cancer Center, BC Cancer Agency, 600 W. 10th Ave., Vancouver V5Z 4E6 (Canada); Department of Physics and Astronomy, University of British Columbia, Vancouver (Canada); Audet, C. [Vancouver Cancer Center, BC Cancer Agency, 600 W. 10th Ave., Vancouver V5Z 4E6 (Canada). E-mail: caudet at pamf.org; Duzenli, C. [Vancouver Cancer Center, BC Cancer Agency, 600 W. 10th Ave., Vancouver V5Z 4E6 (Canada); Jirasek, A. [Department of Physics and Astronomy, University of British Columbia, Vancouver (Canada)

    2000-09-01

    A new three-dimensional dosimetry technique using x-ray computed tomography (CT) to analyse polymer gels is proposed. The CT imaging is sensitive to radiation-induced density changes that occur within irradiated polyacrylamide gel (PAG). In this preliminary study, a CT imaging protocol is developed to optimize CT images of PAG; the response of PAG CT number to dose (N{sub CT}-dose response) and the reproducibility of the response are investigated, and the use of CT to analyse PAG is compared with MRI. Experiments were conducted using two 1.5 l cylindrical PAG phantoms (3% acrylamide, 3% bis and 5% gelatin by weight), one irradiated with four intersecting 10 MV photon beams and the other with 10 sets of 6 MV parallel opposed circular radiosurgery fields. The final imaging protocol involves using optimum CT parameters (120 kVp and 200 mAs for our GE HiSpeed CT/i scanner), image averaging and background subtraction. The N{sub CT}-dose response is reproducible, linear up to 800-1000 cGy and is relatively insensitive to the gel temperature during imaging. The dose resolution is {approx}50 cGy for an image thickness of 10 mm. Despite the low dose resolution, preliminary results indicate that this CT technique provides accurate localization of high dose gradients such as those observed in stereotactic radiosurgery. Thus, given the availability and speed of CT scanners, the technique has the potential to be a valuable and practical 3D dose verification tool in radiation therapy. (author)

  17. Bimetallic Catalysts and Platinum Surfaces Studied by X-ray Absorption Spectroscopy and Scanning Tunnelling Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Roenning, Magnus

    2000-07-01

    Bimetallic catalyst systems used in Fischer-Tropsch synthesis (Co-Re/Al{sub 2}O{sub 3}) and in the naphtha reforming process (Pt-Re/Al{sub 2}O{sub 3}) have been studied in situ using X-ray absorption spectroscopy (EXAFS). Additionally, the adsorption of ethene on platinum single crystal surfaces has been investigated using scanning tunnelling microscopy. In situ EXAFS at the cobalt K absorption edge have been carried out at 450{sup o}C on the hydrogen reduction of a rhenium-promoted Co{sub 3}O{sub 4}/Al{sub 2}O{sub 3} catalyst. Reductions carried out using 100% hydrogen and 5% hydrogen in helium gave different results. Whereas the reduction using dilute hydrogen leads to bulk-like metallic cobalt particles (hcp or fcc), reaction with pure hydrogen yields a more dispersed system with smaller cobalt metal particles (< 40 A). The results are rationalised in terms of different degrees of reoxidation of cobalt by the higher and lower concentrations of water generated during the reduction of cobalt oxide by 100% and 5% hydrogen, respectively. Additionally, in both reduction protocols a small fraction (3 -4 wt%) of the cobalt content is randomly dispersed over the tetrahedral vacancies of the alumina support. This dispersion occurs during reduction and not calcination. The cobalt in these sites cannot be reduced at 450 {sup o}C. The local environments about the rhenium atoms in Co-Re/{gamma}-A1{sub 2}O{sub 3} catalyst after different reduction periods have been studied by X-ray absorption spectroscopy. A bimetallic catalyst containing 4.6 wt% cobalt and 2 wt% rhenium has been compared with a corresponding monometallic sample with 2 wt% rhenium on the same support. The rhenium L{sub III} EXAFS analysis shows that bimetallic particles are formed after reduction at 450{sup o}C with the average particle size being 10-15 A. Rhenium is shown to be reduced at a later stage than cobalt. The fraction of cobalt atoms entering the support obstructs the access to the support for the

  18. X-Ray Absorption Studies of Vanadium-Containing Metal Oxide Nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Hohn, Keith, L.

    2006-01-09

    Metal oxide nanocrystals offer significant potential for use as catalysts or catalyst supports due to their high surface areas and unique chemical properties that result from the high number of exposed corners and edges. However, little is known about the catalytic activity of these materials, especially as oxidation catalysts. This research focused on the preparation, characterization and use of vanadium-containing nanocrystals as selective oxidation catalysts. Three vanadium-containing nanocrystals were prepared using a modified sol-gel procedure: V/MgO, V/SiO2, and vanadium phosphate (VPO). These represent active oxidation catalysts for a number of industrially relevant reactions. The catalysts were characterized by x-ray diffraction and Raman, UV-VIS, infrared and x-ray absorption spectroscopies with the goal of determining the primary structural and chemical differences between nanocrystals and microcrystals. The catalytic activity of these catalysts was also studied in oxidative dehydrogenation of butane and methanol oxidation to formaldehyde. V/MgO nanocrystals were investigated for activity in oxidative dehydrogenation of butane and compared to conventional V/MgO catalysts. Characterization of V/MgO catalysts using Raman spectroscopy and x-ray absorption spectroscopy showed that both types of catalysts contained magnesium orthovanadate at vanadium loadings below 15 weight%, but above that loading, magnesium pyrovanadate may have been present. In general, MgO nanocrystals had roughly half the crystal size and double the surface area of the conventional MgO. In oxidative dehydrogenation of butane, nanocrystalline V/MgO gave higher selectivity to butene than conventional V/MgO at the same conversion. This difference was attributed to differences in vanadium domain size resulting from the higher surface areas of the nanocrystalline support, since characterization suggested that similar vanadium phases were present on both types of catalysts. Experiments in

  19. Study of the polarization dependence of the photoelectric effect in the soft X-ray band - A focal plane photoelectric stellar X-ray polarimeter for the Spectrum-X-Gamma mission

    Science.gov (United States)

    Heckler, A.; Blaer, A.; Kaaret, P.; Novick, R.

    1989-01-01

    An experimental study of the polarization dependence of the photoelectric effect in cesium iodide in the soft X-ray band was started (Heckler et al., 1989). At a grazing angle of 10 degrees and a photon energy of 2.6 keV, it is found that the photoelectric yield from a thin layer of evaporated cesium iodide varies by 12.4 percent as the polarization vector of the incident X-ray beam is rotated about the line-of-sight. The rotation angle corresponding to the maximum photoyield is displaced by 16 degrees from the normal to the photocathode. This modulation and phase shift are in good agreement with the results recently reported by Fraser, et al. (1989) It is shown that a focal plane stellar X-ray polarimeter based on this photoelectric effect will be substantially more efficient than convential X-ray polarimeters such as those based on either Bragg reflection or scattering from low atomic number targets.

  20. NIKOLA TESLA AND THE X-RAY

    OpenAIRE

    Rade R. Babic

    2005-01-01

    After professor Wilhelm Konrad Röntgen published his study of an x-ray discovery (Academy Bulletin, Berlin, 08. 11. 1895.), Nikola Tesla published his first study of an x-ray on the 11th of March in 1896. (X-ray, Electrical Review). Until the 11th of August in 1897 he had published ten studies on this subject. All Tesla,s x-ray studies were experimental, which is specific to his work. Studying the nature of the x-ray, he established a new medical branch-radiology. He wrote:” There’s no doubt...

  1. X-RAY ABSORPTION FINE STRUCTURE (XAFS) STUDIES OF SOME COPPER COMPOUNDS AND COMPLEXES OF BIOLOGICAL IMPORTANCE

    OpenAIRE

    Gaur, Abhijeet

    2012-01-01

    In the present thesis, the X-ray absorption fine structure (XAFS)spectroscopy has been used to study copper compounds and complexes. Studies have been done using both EXAFS and XANES spectroscopies. Basically, following two types of studies have been made. Firstly, EXAFS study at the K-edge of copper in mixed ligand copper complexes of biological significance have been done to yield useful and important information about the molecular structure of the complexes which are mononuclear, bi...

  2. Magnetocrystalline anisotropy in FePd alloys studied using transverse X-ray magnetic circular dichroism

    Energy Technology Data Exchange (ETDEWEB)

    Dhesi, S.S. E-mail: dhesi@esrf.fr; Laan, G. van der; Duerr, H.A.; Belakhovsky, M.; Marchesini, S.; Kamp, P.; Marty, A.; Gilles, B.; Rogalev, A

    2001-05-01

    The structural and magnetic properties of Fe{sub 0.5}Pd{sub 0.5} alloys have been correlated using X-ray diffraction (XD), vibrating sample magnetometry (VSM) and transverse X-ray magnetic circular dichroism (TXMCD) at the Pd L{sub 2,3} edges. XD indicates that codeposition of Fe and Pd, at elevated temperatures (350 deg. C), results in a well-ordered L1{sub 0} phase which exhibits perpendicular magnetic anisotropy (PMA). On the other hand, codeposition at room temperature results in a disordered phase with in-plane easy-axis of magnetization. By codepositing at intermediate temperatures, a series of alloys has been produced with varying degree of compositional order. The TXMCD results show that increased compositional ordering leads to an increased orbital moment anisotropy favouring PMA. The magnetocrystalline anisotropy energy resulting from the orbital anisotropy is compared to VSM results.

  3. A study of 8.5 mu m microchannel plate X-ray optics

    CERN Document Server

    Brunton, A N; Fraser, G W; Feller, W B

    1999-01-01

    We have investigated the X-ray focusing properties of microchannel plates (MCPs) with square channels of side length 8.5 mu m. Both planar and spherically slumped MCPs (radius of curvature R sub s sub l sub u sub m sub p =0.5m) have been examined. We have observed foci of 7' deg. and 14' deg. FWHM, respectively. In addition, we have measured the 8 keV X-ray reflectivity of channel surfaces which have been subjected to a variety of chemical treatments. These reflectivities are found to correspond closely to theoretical values calculated by a simple two-layer model of the MCP reflecting surfaces. The inferred values of surface roughness for those MCPs thermally annealed at 430 deg. C is approx 11 A, about a factor of two better than previously measured. (author)

  4. In Situ X-ray Diffraction Studies of (De)lithiation Mechanism in Silicon Nanowire Anodes

    KAUST Repository

    Misra, Sumohan

    2012-06-26

    Figure Persented: Silicon is a promising anode material for Li-ion batteries due to its high theoretical specific capacity. From previous work, silicon nanowires (SiNWs) are known to undergo amorphorization during lithiation, and no crystalline Li-Si product has been observed. In this work, we use an X-ray transparent battery cell to perform in situ synchrotron X-ray diffraction on SiNWs in real time during electrochemical cycling. At deep lithiation voltages the known metastable Li 15Si 4 phase forms, and we show that avoiding the formation of this phase, by modifying the SiNW growth temperature, improves the cycling performance of SiNW anodes. Our results provide insight on the (de)lithiation mechanism and a correlation between phase evolution and electrochemical performance for SiNW anodes. © 2012 American Chemical Society.

  5. In situ X-ray diffraction studies of (de)lithiation mechanism in silicon nanowire anodes.

    Science.gov (United States)

    Misra, Sumohan; Liu, Nian; Nelson, Johanna; Hong, Seung Sae; Cui, Yi; Toney, Michael F

    2012-06-26

    Silicon is a promising anode material for Li-ion batteries due to its high theoretical specific capacity. From previous work, silicon nanowires (SiNWs) are known to undergo amorphorization during lithiation, and no crystalline Li-Si product has been observed. In this work, we use an X-ray transparent battery cell to perform in situ synchrotron X-ray diffraction on SiNWs in real time during electrochemical cycling. At deep lithiation voltages the known metastable Li(15)Si(4) phase forms, and we show that avoiding the formation of this phase, by modifying the SiNW growth temperature, improves the cycling performance of SiNW anodes. Our results provide insight on the (de)lithiation mechanism and a correlation between phase evolution and electrochemical performance for SiNW anodes.

  6. Production, Purification and Preliminary X-ray Crystallographic Studies of Adeno-Associated Virus Serotype 9

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, M.; Nam, H; Carter, A; McCall, A; Rence, C; Bennett, A; Gurda, B; McKenna, R; Porter, M; et. al.

    2009-01-01

    Adeno-associated virus (AAV) serotype 9, which is under development for gene-delivery applications, shows significantly enhanced capsid-associated transduction efficiency in muscle compared with other AAV serotypes. With the aim of characterizing the structural determinants of this property, the purification, crystallization and preliminary X-ray crystallographic analyses of the AAV9 viral capsid are reported. The crystals diffracted X-rays to 2.8 A resolution using synchrotron radiation and belonged to the trigonal space group P32, with unit-cell parameters a = b = 251.0, c = 640.0 A. There are three complete viral capsids in the crystal unit cell. The orientation and position of the asymmetric unit capsid have been determined by molecular-replacement methods and structure determination is in progress.

  7. Strontium Localization in Bone Tissue Studied by X-Ray Absorption Spectroscopy

    DEFF Research Database (Denmark)

    Frankær, Christian Grundahl; Raffalt, Anders Christer; Ståhl, Kenny

    2014-01-01

    Strontium has recently been introduced as a pharmacological agent for the treatment and prevention of osteoporosis. We determined the localization of strontium incorporated into bone matrix from dogs treated with Sr malonate by X-ray absorption spectroscopy. A new approach for analyzing the X......-ray absorption spectra resulted in a compositional model and allowed the relative distribution of strontium in the different bone components to be estimated. Approximately 35–45 % of the strontium present is incorporated into calcium hydroxyapatite (CaHA) by substitution of some of the calcium ions occupying...... highly ordered sites, and at least 30 % is located at less ordered sites where only the first solvation shell is resolved, suggesting that strontium is sur- rounded by only oxygen atoms similar to Sr2? in solution. Strontium was furthermore shown to be absorbed in collagen in which it obtains a higher...

  8. Electron micrography and x-ray study of dip-lacquered LiF (220)

    DEFF Research Database (Denmark)

    Palmari, J.; Rasigni, M.; Rasigni, G.

    1991-01-01

    It has been proposed to use the 220 reflection of LiF with a multilayer deposited upon the top for simultaneous spectroscopy near Fe-k and O-k and below the C-k absorption edge (284 eV) in x-ray astronomy. We demonstrate that a substantial reduction of surface roughness is obtained by dip...... lacquering state-of-the-art polished LiF(220) surfaces. Using a microdensitometer analysis of electron micrographs of surface replicas and x-ray reflection, we have measured ∼ 10-Å rms roughness of Au-coated dip-lacquered LiF(220) crystals, as opposed to ∼ 60 Å measured on the bare LiF(220) crystal surface....

  9. X-ray absorption and magnetic circular dichroism studies of annealed magnetic tunnel junctions

    Science.gov (United States)

    Schmalhorst, J.; Sacher, M.; Thomas, A.; Brückl, H.; Reiss, G.; Starke, K.

    2005-06-01

    The magnetic and chemical interface properties of Mn -Ir/Co-Fe/Al+oxidation/Ni-Fe magnetic tunnel junctions are investigated for different barrier thickness, oxidation times, and annealing conditions by x-ray absorption spectroscopy and x-ray magnetic circular dichroism. For underoxidized samples the formation of Co-Fe-Al alloy at the lower barrier interface during optimal annealing is observed. For optimally oxidized and overoxidized samples FeOx is formed during oxidation, which is reduced by Mn diffusing to the barrier during annealing. The reduction of FeOx is accompanied by an increase of the interfacial magnetic Fe moment, whereas the Co moments hardly change with the postannealing. Comparison of these results with transport properties of the junctions shows that their polycrystalline structure has to be taken into account to understand the annealing temperature and oxidation state dependence of the tunneling magnetoresistance effect.

  10. X-ray and magnetic studies of Zn substituted Ni–Pb ferrites

    Indian Academy of Sciences (India)

    Unknown

    Abstract. Seven samples of the polycrystalline, Ni1⋅25–xZnxPb0⋅25Fe1⋅5O4 (x = 0⋅0, 0⋅1, 0⋅2, 0⋅3, 0⋅4, 0⋅5 and 0⋅6) ferrites, were prepared by usual double sintering ceramic method. X-ray diffraction patterns of the samples revealed single-phase cubic spinel structure. The magnetic properties were investigated by ...

  11. X-ray and magnetic studies of Zn 2 substituted Ni–Pb ferrites

    Indian Academy of Sciences (India)

    Seven samples of the polycrystalline, Ni1.25–ZnPb0.25Fe1.5O4 ( = 0.0, 0.1, 0.2, 0.3, 0.4, 0.5 and 0.6) ferrites, were prepared by usual double sintering ceramic method. X-ray diffraction patterns of the samples revealed single-phase cubic spinel structure. The magnetic properties were investigated by means of ...

  12. Magnetic moments in a gadolinium iron garnet studied by soft-X-ray magnetic circular dichroism

    NARCIS (Netherlands)

    Rudolf, P.; Sette, F.; Tjeng, L.H.; Meigs, G.; Chen, C.T.

    1992-01-01

    The magnetic moments of Gd and Fe in gadolinium iron garnet (Gd3Fe5O12) were probed at 77 and 300 K by soft-X-ray magnetic circular dichroism (SXMCD) measurements at the GdMa4,5 and at the FeL2,3 absorption edges. The SXMCD signal at each edge allows one to independently determine the magnetic

  13. A Deep Chandra X-Ray Study of Neutron Star Coalescence GW170817

    Science.gov (United States)

    Haggard, Daryl; Nynka, Melania; Ruan, John J.; Kalogera, Vicky; Cenko, S. Bradley; Evans, Phil; Kennea, Jamie A.

    2017-10-01

    We report Chandra observations of GW170817, the first neutron star–neutron star merger discovered by the joint LIGO-Virgo Collaboration, and the first direct detection of gravitational radiation associated with an electromagnetic counterpart, Fermi short γ-ray burst GRB 170817A. The event occurred on 2017 August 17 and subsequent observations identified an optical counterpart, SSS17a, coincident with NGC 4993 (∼10″ separation). Early Chandra ({{Δ }}t∼ 2 days) and Swift ({{Δ }}t∼ 1{--}3 days) observations yielded non-detections at the optical position, but ∼9 days post-trigger Chandra monitoring revealed an X-ray point source coincident with SSS17a. We present two deep Chandra observations totaling ∼95 ks, collected on 2017 September 01–02 ({{Δ }}t∼ 15{--}16 days). We detect X-ray emission from SSS17a with {L}0.3{--10{keV}}={2.6}-0.4+0.5× {10}38 erg s‑1, and a power law spectrum of {{Γ }}=2.4+/- 0.8. We find that the X-ray light curve from a binary NS coalescence associated with this source is consistent with the afterglow from an off-axis short γ-ray burst, with a jet angled ≳23° from the line of sight. This event marks both the first electromagnetic counterpart to a LIGO-Virgo gravitational-wave source and the first identification of an off-axis short GRB. We also confirm extended X-ray emission from NGC 4993 ({L}0.3{--10{keV}}∼ 9× {10}38 erg s‑1) consistent with its E/S0 galaxy classification, and report two new Chandra point sources in this field, CXOU J130948 and CXOU J130946.

  14. X-RAY DEBYE TEMPERATURE STUDY OF Fe2O3 NANOPARTICLES

    OpenAIRE

    L.Jithender; N Gopi Krishna

    2012-01-01

    Fe2O3 nanoparticle powders have been prepared by a chemical route synthesis. The resulting nanoparticle powders were characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM). The Debye temperature, mean-square amplitudes of vibration, Debye-Waller factor, particle size, lattice strain, and vacancy formation of energies of Fe2O3 nanoparticles prepared by chemical route synthesis have been obtained from Xray integrated intensities. The integrated intensities have been mea...

  15. X-ray diffraction and molecular-dynamics studies: Structural analysis of phases in diglyceride monolayers

    DEFF Research Database (Denmark)

    Peters, Günther H.J.; Larsen, Niels Bent; Bjørnholm, T.

    1998-01-01

    We report a detailed structural analysis of the phases of 1,2-sn-dipalmitoylglycerol Langmuir monolayers at room temperature. Pressure-induced transitions have been investigated by combination of molecular-dynamics simulations and grazing-incidence x-ray diffraction (XRD). The diglyceride film...... indicate that in the simulated monolayer the finite size with periodic boundary conditions imposes a higher degree of order....

  16. X-ray scattering study of the interplay between magnetism and structure in CeSb

    CERN Document Server

    McMorrow, D F; Lebech, B; Soerensen, S A; Christensen, M J; Vogt, O

    1997-01-01

    The chemical and magnetic structures of CeSb have been investigated using high-resolution x-ray scattering techniques. Experiments performed in the non-resonant regime (x-ray energy of E = 9.4 keV) showed that when the sample was cooled below its Neel temperature of T sub N approx. 16.5 K, peaks appeared with commensurate wave vectors q. From their polarization and wave-vector dependence, the peaks are deduced to arise mainly from a periodic lattice distortion. In the resonant regime, when the x-ray energy was tuned to the L absorption edges of Ce, weak, resonantly enhanced magnetic scattering was observed at the L sub t sub t edge (E = 6.164 keV), with no scattering found at either L sub t or L sub t sub t sub t. Of the six possible zero-field commensurate magnetic structures reported in earlier neutron experiments, we found the phases with q sub m =2/3 and 4/7 only, with the domain that has moments perpendicular to the surface absent. Neutron scattering experiments on the same single crystal confirm that th...

  17. X-ray scattering study of the interplay between magnetism and structure in CeSb

    DEFF Research Database (Denmark)

    McMorrow, Desmond Francis; Lussier, J.-G.; Lebech, Bente

    1997-01-01

    The chemical and magnetic structures of CeSb have been investigated using high-resolution x-ray scattering techniques. Experiments performed in the non-resonant regime (x-ray energy of E = 9.4 keV) showed that when the sample was cooled below its Neel temperature of T-N approximate to 16.5 K, peaks...... appeared with commensurate wave vectors q. From their polarization and wave-vector dependence, the peaks are deduced to arise mainly from a periodic lattice distortion. In the resonant regime, when the x-ray energy was tuned to the L absorption edges of Ce, weak, resonantly enhanced magnetic scattering...... was observed at the L(II) edge (E = 6.164 keV), with no scattering found at either L(I) or L(III) Of the six possible zero-field commensurate magnetic structures reported in earlier neutron experiments, we found the phases with q(m) = 2/3 and 4/7 only, with the domain that has moments perpendicular...

  18. Dithizone and its oxidation products: a DFT, spectroscopic, and X-ray structural study.

    Science.gov (United States)

    von Eschwege, Karel G; Conradie, Jeanet; Kuhn, Annemarie

    2011-12-29

    Air oxidation of ortho-fluorodithizone resulted in the first X-ray resolved structure of a disulfide of dithizone, validating the last outstanding X-ray structure in the oxidation of dithizone, H(2)Dz, which proceeds via the disulfide, (HDz)(2), to the deprotonated dehydrodithizone tetrazolium salt, Dz. Density functional theory calculations established the energetically favored tautomers along the entire pathway; in gas phase and in polar as well as nonpolar solvent environments. DFT calculations using the classic pure OLYP and PW91, or the newer B3LYP hybrid functional, as well as MP2 calculations, yielded the lowest energy structures in agreement with corresponding experimental X-ray crystallographic results. Atomic charge distribution patterns confirmed the cyclization reaction pathway and crystal packing of Dz. Time dependent DFT for the first time gave satisfactory explanation for the solvatochromic properties of dithizone, pointing to different tautomers that give rise to the observed orange color in methanol and green in dichloromethane. Concentratochromism of H(2)Dz was observed in methanol. Computed orbitals and oscillators are in close agreement with UV-visible spectroscopic experimental results. © 2011 American Chemical Society

  19. Atomic holography with electrons and x-rays: Theoretical and experimental studies

    Energy Technology Data Exchange (ETDEWEB)

    Len, Patrick Michael [Univ. of California, Davis, CA (United States). Dept. of Physics

    1997-06-01

    Gabor first proposed holography in 1948 as a means to experimentally record the amplitude and phase of scattered wavefronts, relative to a direct unscattered wave, and to use such a "hologram" to directly image atomic structure. But imaging at atomic resolution has not yet been possible in the way he proposed. Much more recently, Szoeke in 1986 noted that photoexcited atoms can emit photoelectron of fluorescent x-ray wavefronts that are scattered by neighboring atoms, thus yielding the direct and scattered wavefronts as detected in the far field that can then be interpreted as holographic in nature. By now, several algorithms for directly reconstructing three-dimensional atomic images from electron holograms have been proposed (e.g. by Barton) and successfully tested against experiment and theory. Very recently, Tegze and Faigel, and Grog et al. have recorded experimental x-ray fluorescence holograms, and these are found to yield atomic images that are more free of the kinds of aberrations caused by the non-ideal emission or scattering of electrons. The basic principles of these holographic atomic imaging methods are reviewed, including illustrative applications of the reconstruction algorithms to both theoretical and experimental electron and x-ray holograms. The author also discusses the prospects and limitations of these newly emerging atomic structural probes.

  20. X-ray spectral studies of the electronic structure of uranyl fluorite UO2F2

    Directory of Open Access Journals (Sweden)

    Utkin Igor O.

    2004-01-01

    Full Text Available This work interpreted the fine X-ray photoelectron spectral structure of the low binding energy electrons (0-40 eV and X-ray O4,5(U emission spectral structure from UO2F2 taking into account the relativistic Xα discrete variation (RXα-DV calculation for the [(UO2F6]4–(D6h cluster reflecting an uranium close environment in UO2F2. The U5f electrons were shown to participate directly in the chemical bond formation. The U6p electrons were shown to participate not only information of the inner valence molecular orbitals, but also information of the outer valence molecular orbitals. The inner valence molecular orbitals sequence order in the binding energy range 12-40 eV was established. It is important for development of the technique of interatomic distance determination in the axial direction and equatorial plane of uranyl compounds on the X-ray photoelectron spectral basis.