WorldWideScience

Sample records for wide-field photon counting

  1. Wide-field single photon counting imaging with an ultrafast camera and an image intensifier

    Energy Technology Data Exchange (ETDEWEB)

    Zanda, Gianmarco, E-mail: gianmarco.zanda@kcl.ac.uk [King' s College London, Department of Physics, Strand, London WC2R 2LS (United Kingdom); Sergent, Nicolas; Green, Mark; Levitt, James A. [King' s College London, Department of Physics, Strand, London WC2R 2LS (United Kingdom); Petrasek, Zdenek [Biotechnologisches Zentrum, Technische Universitaet Dresden, Tatzberg 47/49, 01307 Dresden (Germany); Suhling, Klaus, E-mail: klaus.suhling@kcl.ac.uk [King' s College London, Department of Physics, Strand, London WC2R 2LS (United Kingdom)

    2012-12-11

    We are reporting a method for wide-field photon counting imaging using a CMOS camera with a 40 kHz frame rate coupled with a three-stage image intensifier mounted on a standard fluorescence microscope. This system combines high frame rates with single photon sensitivity. The output of the phosphor screen, consisting of single-photon events, is collected by a CMOS camera allowing to create a wide-field image with parallel positional and timing information of each photon. Using a pulsed excitation source and a luminescent sample, the arrival time of hundreds of photons can be determined simultaneously in many pixels with microsecond resolution.

  2. Wide-field single photon counting imaging with an ultrafast camera and an image intensifier

    Science.gov (United States)

    Zanda, Gianmarco; Sergent, Nicolas; Green, Mark; Levitt, James A.; Petrášek, Zdeněk; Suhling, Klaus

    2012-12-01

    We are reporting a method for wide-field photon counting imaging using a CMOS camera with a 40 kHz frame rate coupled with a three-stage image intensifier mounted on a standard fluorescence microscope. This system combines high frame rates with single photon sensitivity. The output of the phosphor screen, consisting of single-photon events, is collected by a CMOS camera allowing to create a wide-field image with parallel positional and timing information of each photon. Using a pulsed excitation source and a luminescent sample, the arrival time of hundreds of photons can be determined simultaneously in many pixels with microsecond resolution.

  3. Photon counting imaging with an electron-bombarded CCD: Towards wide-field time-correlated single photon counting (TCSPC)

    Energy Technology Data Exchange (ETDEWEB)

    Hirvonen, Liisa M.; Jiggins, Stephen; Sergent, Nicolas; Zanda, Gianmarco; Suhling, Klaus, E-mail: klaus.suhling@kcl.ac.uk

    2015-07-01

    Single photon detecting capabilities of an electron-bombarded CCD (EBCCD), where a photon is converted into a photoelectron that is accelerated through a high voltage before hitting the CCD chip, were characterised. The photon event pulse height distribution was found to be linearly dependent on the gain voltage. Based on these results, we propose that a gain voltage sweep during exposure in an EBCCD or EBCMOS camera would allow photon arrival time determination from the photon event pulse height with sub-frame exposure time resolution. This effectively uses an electron-bombarded sensor as a parallel-processing photoelectronic time-to-amplitude converter (TAC), or a 2-dimensional streak camera. Several applications that require timing of photon arrival, including fluorescence lifetime imaging microscopy (FLIM), may benefit from this approach. Moreover, the EBCCD was used on a fluorescence microscope to image fluorescently labelled cells in single photon counting mode.

  4. Wide-field time-correlated single photon counting (TCSPC) microscopy with time resolution below the frame exposure time

    Energy Technology Data Exchange (ETDEWEB)

    Hirvonen, Liisa M. [Department of Physics, King' s College London, Strand, London WC2R 2LS (United Kingdom); Petrášek, Zdeněk [Max Planck Institute of Biochemistry, Department of Cellular and Molecular Biophysics, Am Klopferspitz 18, D-82152 Martinsried (Germany); Suhling, Klaus, E-mail: klaus.suhling@kcl.ac.uk [Department of Physics, King' s College London, Strand, London WC2R 2LS (United Kingdom)

    2015-07-01

    Fast frame rate CMOS cameras in combination with photon counting intensifiers can be used for fluorescence imaging with single photon sensitivity at kHz frame rates. We show here how the phosphor decay of the image intensifier can be exploited for accurate timing of photon arrival well below the camera exposure time. This is achieved by taking ratios of the intensity of the photon events in two subsequent frames, and effectively allows wide-field TCSPC. This technique was used for measuring decays of ruthenium compound Ru(dpp) with lifetimes as low as 1 μs with 18.5 μs frame exposure time, including in living HeLa cells, using around 0.1 μW excitation power. We speculate that by using an image intensifier with a faster phosphor decay to match a higher camera frame rate, photon arrival time measurements on the nanosecond time scale could well be possible.

  5. Picosecond wide-field time-correlated single photon counting fluorescence microscopy with a delay line anode detector

    Energy Technology Data Exchange (ETDEWEB)

    Hirvonen, Liisa M.; Le Marois, Alix; Suhling, Klaus, E-mail: klaus.suhling@kcl.ac.uk [Department of Physics, King' s College London, Strand, London WC2R 2LS (United Kingdom); Becker, Wolfgang; Smietana, Stefan [Becker & Hickl GmbH, Nahmitzer Damm 30, 12277 Berlin (Germany); Milnes, James; Conneely, Thomas [Photek Ltd., 26 Castleham Rd, Saint Leonards-on-Sea TN38 9NS (United Kingdom); Jagutzki, Ottmar [Institut für Kernphysik, Max-von-Laue-Str. 1, 60438 Frankfurt (Germany)

    2016-08-15

    We perform wide-field time-correlated single photon counting-based fluorescence lifetime imaging (FLIM) with a crossed delay line anode image intensifier, where the pulse propagation time yields the photon position. This microchannel plate-based detector was read out with conventional fast timing electronics and mounted on a fluorescence microscope with total internal reflection (TIR) illumination. The picosecond time resolution of this detection system combines low illumination intensity of microwatts with wide-field data collection. This is ideal for fluorescence lifetime imaging of cell membranes using TIR. We show that fluorescence lifetime images of living HeLa cells stained with membrane dye di-4-ANEPPDHQ exhibit a reduced lifetime near the coverslip in TIR compared to epifluorescence FLIM.

  6. Photon-counting image sensors

    CERN Document Server

    Teranishi, Nobukazu; Theuwissen, Albert; Stoppa, David; Charbon, Edoardo

    2017-01-01

    The field of photon-counting image sensors is advancing rapidly with the development of various solid-state image sensor technologies including single photon avalanche detectors (SPADs) and deep-sub-electron read noise CMOS image sensor pixels. This foundational platform technology will enable opportunities for new imaging modalities and instrumentation for science and industry, as well as new consumer applications. Papers discussing various photon-counting image sensor technologies and selected new applications are presented in this all-invited Special Issue.

  7. Multimodal wide-field two-photon excitation imaging: characterization of the technique for in vivo applications.

    Science.gov (United States)

    Hwang, Jae Youn; Wachsmann-Hogiu, Sebastian; Ramanujan, V Krishnan; Nowatzyk, Andreas G; Koronyo, Yosef; Medina-Kauwe, Lali K; Gross, Zeev; Gray, Harry B; Farkas, Daniel L

    2011-01-13

    We report fast, non-scanning, wide-field two-photon fluorescence excitation with spectral and lifetime detection for in vivo biomedical applications. We determined the optical characteristics of the technique, developed a Gaussian flat-field correction method to reduce artifacts resulting from non-uniform excitation such that contrast is enhanced, and showed that it can be used for ex vivo and in vivo cellular-level imaging. Two applications were demonstrated: (i) ex vivo measurements of beta-amyloid plaques in retinas of transgenic mice, and (ii) in vivo imaging of sulfonated gallium(III) corroles injected into tumors. We demonstrate that wide-field two photon fluorescence excitation with flat-field correction provides more penetration depth as well as better contrast and axial resolution than the corresponding one-photon wide field excitation for the same dye. Importantly, when this technique is used together with spectral and fluorescence lifetime detection modules, it offers improved discrimination between fluorescence from molecules of interest and autofluorescence, with higher sensitivity and specificity for in vivo applications.

  8. High Count Rate Single Photon Counting Detector Array Project

    Data.gov (United States)

    National Aeronautics and Space Administration — An optical communications receiver requires efficient and high-rate photon-counting capability so that the information from every photon, received at the aperture,...

  9. Wide Field-of-View Fluorescence Imaging with Optical-Quality Curved Microfluidic Chamber for Absolute Cell Counting

    Directory of Open Access Journals (Sweden)

    Mohiuddin Khan Shourav

    2016-07-01

    Full Text Available Field curvature and other aberrations are encountered inevitably when designing a compact fluorescence imaging system with a simple lens. Although multiple lens elements can be used to correct most such aberrations, doing so increases system cost and complexity. Herein, we propose a wide field-of-view (FOV fluorescence imaging method with an unconventional optical-quality curved sample chamber that corrects the field curvature caused by a simple lens. Our optics simulations and proof-of-concept experiments demonstrate that a curved substrate with lens-dependent curvature can reduce greatly the distortion in an image taken with a conventional planar detector. Following the validation study, we designed a curved sample chamber that can contain a known amount of sample volume and fabricated it at reasonable cost using plastic injection molding. At a magnification factor of approximately 0.6, the curved chamber provides a clear view of approximately 119 mm2, which is approximately two times larger than the aberration-free area of a planar chamber. Remarkably, a fluorescence image of microbeads in the curved chamber exhibits almost uniform intensity over the entire field even with a simple lens imaging system, whereas the distorted boundary region has much lower brightness than the central area in the planar chamber. The absolute count of white blood cells stained with a fluorescence dye was in good agreement with that obtained by a commercially available conventional microscopy system. Hence, a wide FOV imaging system with the proposed curved sample chamber would enable us to acquire an undistorted image of a large sample volume without requiring a time-consuming scanning process in point-of-care diagnostic applications.

  10. Femtosecond Photon-Counting Receiver

    Science.gov (United States)

    Krainak, Michael A.; Rambo, Timothy M.; Yang, Guangning; Lu, Wei; Numata, Kenji

    2016-01-01

    An optical correlation receiver is described that provides ultra-precise distance and/or time/pulse-width measurements even for weak (single photons) and short (femtosecond) optical signals. A new type of optical correlation receiver uses a fourth-order (intensity) interferometer to provide micron distance measurements even for weak (single photons) and short (femtosecond) optical signals. The optical correlator uses a low-noise-integrating detector that can resolve photon number. The correlation (range as a function of path delay) is calculated from the variance of the photon number of the difference of the optical signals on the two detectors. Our preliminary proof-of principle data (using a short-pulse diode laser transmitter) demonstrates tens of microns precision.

  11. Sub electron readout noise & photon counting devices

    Science.gov (United States)

    Gach, J.-L.; Balard, Ph.; Daigle, O.; Destefanis, G.; Feautrier, Ph.; Guillaume, Ch.; Rothman, J.

    We present recent advances on ultra low noise visible detectors at Laboratoire d'Astrophysique de Marseille, photon counting and EMCCD developments in collaboration with Observatoire de haute provence, Laboratoire d'astrophysique de l'observatoire de Grenoble and Laboratoire d'Astrophysique Experimentale (Montreal). After a review of the progress with third generation Image Photon Counting Systems (IPCS), we present the OCAM camera, based on the E2V CCD220 EMCCD, part of the Opticon JRA2 programme, and the CCCP controller, a new controller for the 3DNTT instrument that reduces the clock induced charge of an EMCCD by a factor 10, making it competitive with IPCS detectors for very faint fluxes. We will finally present the RAPID project and the concept of photon counting avalanche photodiode CMOS device (in collaboration with CEA-LETI) which is foreseen to be the ultimate detector for the visible-IR range providing no readout noise, high QE and extremely fast readout.

  12. Photon Counting Chirped Amplitude Modulation Ladar

    Science.gov (United States)

    2008-03-01

    a computer simulation of the photon counting chirped AM ladar technique in MathCAD * and presented results from the computer simulation using a two... MathCAD is a trademark of Mathsoft Inc. 4 Figure 3. Magnitude spectrum of the IF waveform from the first chirped AM

  13. Photon Counting Using Edge-Detection Algorithm

    Science.gov (United States)

    Gin, Jonathan W.; Nguyen, Danh H.; Farr, William H.

    2010-01-01

    New applications such as high-datarate, photon-starved, free-space optical communications require photon counting at flux rates into gigaphoton-per-second regimes coupled with subnanosecond timing accuracy. Current single-photon detectors that are capable of handling such operating conditions are designed in an array format and produce output pulses that span multiple sample times. In order to discern one pulse from another and not to overcount the number of incoming photons, a detection algorithm must be applied to the sampled detector output pulses. As flux rates increase, the ability to implement such a detection algorithm becomes difficult within a digital processor that may reside within a field-programmable gate array (FPGA). Systems have been developed and implemented to both characterize gigahertz bandwidth single-photon detectors, as well as process photon count signals at rates into gigaphotons per second in order to implement communications links at SCPPM (serial concatenated pulse position modulation) encoded data rates exceeding 100 megabits per second with efficiencies greater than two bits per detected photon. A hardware edge-detection algorithm and corresponding signal combining and deserialization hardware were developed to meet these requirements at sample rates up to 10 GHz. The photon discriminator deserializer hardware board accepts four inputs, which allows for the ability to take inputs from a quadphoton counting detector, to support requirements for optical tracking with a reduced number of hardware components. The four inputs are hardware leading-edge detected independently. After leading-edge detection, the resultant samples are ORed together prior to deserialization. The deserialization is performed to reduce the rate at which data is passed to a digital signal processor, perhaps residing within an FPGA. The hardware implements four separate analog inputs that are connected through RF connectors. Each analog input is fed to a high-speed 1

  14. Quantum Biometrics with Retinal Photon Counting

    Science.gov (United States)

    Loulakis, M.; Blatsios, G.; Vrettou, C. S.; Kominis, I. K.

    2017-10-01

    It is known that the eye's scotopic photodetectors, rhodopsin molecules, and their associated phototransduction mechanism leading to light perception, are efficient single-photon counters. We here use the photon-counting principles of human rod vision to propose a secure quantum biometric identification based on the quantum-statistical properties of retinal photon detection. The photon path along the human eye until its detection by rod cells is modeled as a filter having a specific transmission coefficient. Precisely determining its value from the photodetection statistics registered by the conscious observer is a quantum parameter estimation problem that leads to a quantum secure identification method. The probabilities for false-positive and false-negative identification of this biometric technique can readily approach 10-10 and 10-4, respectively. The security of the biometric method can be further quantified by the physics of quantum measurements. An impostor must be able to perform quantum thermometry and quantum magnetometry with energy resolution better than 10-9ℏ , in order to foil the device by noninvasively monitoring the biometric activity of a user.

  15. Development of new photon-counting detectors for single-molecule fluorescence microscopy

    Science.gov (United States)

    Michalet, X.; Colyer, R. A.; Scalia, G.; Ingargiola, A.; Lin, R.; Millaud, J. E.; Weiss, S.; Siegmund, Oswald H. W.; Tremsin, Anton S.; Vallerga, John V.; Cheng, A.; Levi, M.; Aharoni, D.; Arisaka, K.; Villa, F.; Guerrieri, F.; Panzeri, F.; Rech, I.; Gulinatti, A.; Zappa, F.; Ghioni, M.; Cova, S.

    2013-01-01

    Two optical configurations are commonly used in single-molecule fluorescence microscopy: point-like excitation and detection to study freely diffusing molecules, and wide field illumination and detection to study surface immobilized or slowly diffusing molecules. Both approaches have common features, but also differ in significant aspects. In particular, they use different detectors, which share some requirements but also have major technical differences. Currently, two types of detectors best fulfil the needs of each approach: single-photon-counting avalanche diodes (SPADs) for point-like detection, and electron-multiplying charge-coupled devices (EMCCDs) for wide field detection. However, there is room for improvements in both cases. The first configuration suffers from low throughput owing to the analysis of data from a single location. The second, on the other hand, is limited to relatively low frame rates and loses the benefit of single-photon-counting approaches. During the past few years, new developments in point-like and wide field detectors have started addressing some of these issues. Here, we describe our recent progresses towards increasing the throughput of single-molecule fluorescence spectroscopy in solution using parallel arrays of SPADs. We also discuss our development of large area photon-counting cameras achieving subnanosecond resolution for fluorescence lifetime imaging applications at the single-molecule level. PMID:23267185

  16. Development of new photon-counting detectors for single-molecule fluorescence microscopy.

    Science.gov (United States)

    Michalet, X; Colyer, R A; Scalia, G; Ingargiola, A; Lin, R; Millaud, J E; Weiss, S; Siegmund, Oswald H W; Tremsin, Anton S; Vallerga, John V; Cheng, A; Levi, M; Aharoni, D; Arisaka, K; Villa, F; Guerrieri, F; Panzeri, F; Rech, I; Gulinatti, A; Zappa, F; Ghioni, M; Cova, S

    2013-02-05

    Two optical configurations are commonly used in single-molecule fluorescence microscopy: point-like excitation and detection to study freely diffusing molecules, and wide field illumination and detection to study surface immobilized or slowly diffusing molecules. Both approaches have common features, but also differ in significant aspects. In particular, they use different detectors, which share some requirements but also have major technical differences. Currently, two types of detectors best fulfil the needs of each approach: single-photon-counting avalanche diodes (SPADs) for point-like detection, and electron-multiplying charge-coupled devices (EMCCDs) for wide field detection. However, there is room for improvements in both cases. The first configuration suffers from low throughput owing to the analysis of data from a single location. The second, on the other hand, is limited to relatively low frame rates and loses the benefit of single-photon-counting approaches. During the past few years, new developments in point-like and wide field detectors have started addressing some of these issues. Here, we describe our recent progresses towards increasing the throughput of single-molecule fluorescence spectroscopy in solution using parallel arrays of SPADs. We also discuss our development of large area photon-counting cameras achieving subnanosecond resolution for fluorescence lifetime imaging applications at the single-molecule level.

  17. Optimizing ultrafast wide field-of-view illumination for high-throughput multi-photon imaging and screening of mutant fluorescent proteins

    Science.gov (United States)

    Stoltzfus, Caleb; Mikhailov, Alexandr; Rebane, Aleksander

    2017-02-01

    Fluorescence induced by 1wo-photon absorption (2PA) and three-photon absorption (3PA) is becoming an increasingly important tool for deep-tissue microscopy, especially in conjunction with genetically-encoded functional probes such as fluorescent proteins (FPs). Unfortunately, the efficacy of the multi-photon excitation of FPs is notoriously low, and because relations between a biological fluorophore's nonlinear-optical properties and its molecular structure are inherently complex, there are no practical avenues available that would allow boosting the performance of current FPs. Here we describe a novel method, where we apply directed evolution to optimize the 2PA properties of EGFP. Key to the success of this approach consists in high-throughput screening of mutants that would allow selection of variants with promising 2PA and 3PA properties in a broad near-IR excitation range of wavelength. For this purpose, we construct and test a wide field-of-view (FOV), femtosecond imaging system that we then use to quantify the multi-photon excited fluorescence in the 550- 1600 nm range of tens of thousands of E. coli colonies expressing randomly mutated FPs in a standard 10 cm diameter Petri dish configuration. We present a quantitative analysis of different factors that are currently limiting the maximum throughput of the femtosecond multi-photon screening techniques and also report on quantitative measurement of absolute 2PA and 3PA cross sections spectra.

  18. Cascaded systems analysis of photon counting detectors.

    Science.gov (United States)

    Xu, J; Zbijewski, W; Gang, G; Stayman, J W; Taguchi, K; Lundqvist, M; Fredenberg, E; Carrino, J A; Siewerdsen, J H

    2014-10-01

    Photon counting detectors (PCDs) are an emerging technology with applications in spectral and low-dose radiographic and tomographic imaging. This paper develops an analytical model of PCD imaging performance, including the system gain, modulation transfer function (MTF), noise-power spectrum (NPS), and detective quantum efficiency (DQE). A cascaded systems analysis model describing the propagation of quanta through the imaging chain was developed. The model was validated in comparison to the physical performance of a silicon-strip PCD implemented on an experimental imaging bench. The signal response, MTF, and NPS were measured and compared to theory as a function of exposure conditions (70 kVp, 1-7 mA), detector threshold, and readout mode (i.e., the option for coincidence detection). The model sheds new light on the dependence of spatial resolution, charge sharing, and additive noise effects on threshold selection and was used to investigate the factors governing PCD performance, including the fundamental advantages and limitations of PCDs in comparison to energy-integrating detectors (EIDs) in the linear regime for which pulse pileup can be ignored. The detector exhibited highly linear mean signal response across the system operating range and agreed well with theoretical prediction, as did the system MTF and NPS. The DQE analyzed as a function of kilovolt (peak), exposure, detector threshold, and readout mode revealed important considerations for system optimization. The model also demonstrated the important implications of false counts from both additive electronic noise and charge sharing and highlighted the system design and operational parameters that most affect detector performance in the presence of such factors: for example, increasing the detector threshold from 0 to 100 (arbitrary units of pulse height threshold roughly equivalent to 0.5 and 6 keV energy threshold, respectively), increased the f50 (spatial-frequency at which the MTF falls to a value of

  19. Photon counting arrays for AO wavefront sensors

    CERN Document Server

    Vallerga, J; McPhate, J; Mikulec, Bettina; Clark, Allan G; Siegmund, O; CERN. Geneva

    2005-01-01

    Future wavefront sensors for AO on large telescopes will require a large number of pixels and must operate at high frame rates. Unfortunately for CCDs, there is a readout noise penalty for operating faster, and this noise can add up rather quickly when considering the number of pixels required for the extended shape of a sodium laser guide star observed with a large telescope. Imaging photon counting detectors have zero readout noise and many pixels, but have suffered in the past with low QE at the longer wavelengths (>500 nm). Recent developments in GaAs photocathode technology, CMOS ASIC readouts and FPGA processing electronics have resulted in noiseless WFS detector designs that are competitive with silicon array detectors, though at ~40% the QE of CCDs. We review noiseless array detectors and compare their centroiding performance with CCDs using the best available characteristics of each. We show that for sub-aperture binning of 6x6 and greater that noiseless detectors have a smaller centroid error at flu...

  20. IceBridge Photon Counting Lidar L1B Unclassified Geolocated Photon Elevations V001

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains geolocated photon elevations captured over Antarctica using the Sigma Space photon counting lidar. The data were collected by scientists...

  1. Multiple-Event, Single-Photon Counting Imaging Sensor

    Science.gov (United States)

    Zheng, Xinyu; Cunningham, Thomas J.; Sun, Chao; Wang, Kang L.

    2011-01-01

    The single-photon counting imaging sensor is typically an array of silicon Geiger-mode avalanche photodiodes that are monolithically integrated with CMOS (complementary metal oxide semiconductor) readout, signal processing, and addressing circuits located in each pixel and the peripheral area of the chip. The major problem is its single-event method for photon count number registration. A single-event single-photon counting imaging array only allows registration of up to one photon count in each of its pixels during a frame time, i.e., the interval between two successive pixel reset operations. Since the frame time can t be too short, this will lead to very low dynamic range and make the sensor merely useful for very low flux environments. The second problem of the prior technique is a limited fill factor resulting from consumption of chip area by the monolithically integrated CMOS readout in pixels. The resulting low photon collection efficiency will substantially ruin any benefit gained from the very sensitive single-photon counting detection. The single-photon counting imaging sensor developed in this work has a novel multiple-event architecture, which allows each of its pixels to register as more than one million (or more) photon-counting events during a frame time. Because of a consequently boosted dynamic range, the imaging array of the invention is capable of performing single-photon counting under ultra-low light through high-flux environments. On the other hand, since the multiple-event architecture is implemented in a hybrid structure, back-illumination and close-to-unity fill factor can be realized, and maximized quantum efficiency can also be achieved in the detector array.

  2. Avalanche photodiode photon counting receivers for space-borne lidars

    Science.gov (United States)

    Sun, Xiaoli; Davidson, Frederic M.

    1991-01-01

    Avalanche photodiodes (APD) are studied for uses as photon counting detectors in spaceborne lidars. Non-breakdown APD photon counters, in which the APD's are biased below the breakdown point, are shown to outperform: (1) conventional APD photon counters biased above the breakdown point; (2) conventional APD photon counters biased above the breakdown point; and (3) APD's in analog mode when the received optical signal is extremely weak. Non-breakdown APD photon counters were shown experimentally to achieve an effective photon counting quantum efficiency of 5.0 percent at lambda = 820 nm with a dead time of 15 ns and a dark count rate of 7000/s which agreed with the theoretically predicted values. The interarrival times of the counts followed an exponential distribution and the counting statistics appeared to follow a Poisson distribution with no after pulsing. It is predicted that the effective photon counting quantum efficiency can be improved to 18.7 percent at lambda = 820 nm and 1.46 percent at lambda = 1060 nm with a dead time of a few nanoseconds by using more advanced commercially available electronic components.

  3. Tutorial on X-ray photon counting detector characterization.

    Science.gov (United States)

    Ren, Liqiang; Zheng, Bin; Liu, Hong

    2017-11-16

    Recent advances in photon counting detection technology have led to significant research interest in X-ray imaging. As a tutorial level review, this paper covers a wide range of aspects related to X-ray photon counting detector characterization. The tutorial begins with a detailed description of the working principle and operating modes of a pixelated X-ray photon counting detector with basic architecture and detection mechanism. Currently available methods and techniques for charactering major aspects including energy response, noise floor, energy resolution, count rate performance (detector efficiency), and charge sharing effect of photon counting detectors are comprehensively reviewed. Other characterization aspects such as point spread function (PSF), line spread function (LSF), contrast transfer function (CTF), modulation transfer function (MTF), noise power spectrum (NPS), detective quantum efficiency (DQE), bias voltage, radiation damage, and polarization effect are also remarked. A cadmium telluride (CdTe) pixelated photon counting detector is employed for part of the characterization demonstration and the results are presented. This review can serve as a tutorial for X-ray imaging researchers and investigators to understand, operate, characterize, and optimize photon counting detectors for a variety of applications.

  4. Time correlated single-photon counting and fluorescence spectroscopy

    Science.gov (United States)

    Erdmann, Rainer; Enderlein, Jorg; Wahl, Michael

    2005-12-01

    A comprehensive reference on modern technological aspects of time-correlated single photon counting as used in academic and industrial applications. It thus covers areas that have either been neglected in the current literature, or for which an updated reference is not available. The book focuses on general fundamentals of photon statistics, light sources, and electronics for photon counting, time-correlated photon counting, data analysis, and fluorescence correlation techniques. One whole chapter is also devoted to applications of this universal technique in life sciences, with most of the attention given to fluorescence phenomena. The whole is backed by an appendix offering measurement examples and practical hints for data analysis. For physicists, spectroscopists, chemists, and biochemists.

  5. Photon counts statistics in leukocyte cell dynamics

    NARCIS (Netherlands)

    Wijk, E. van; Greef, J. van der; Wijk, R. van

    2011-01-01

    In the present experiment ultra-weak photon emission/ chemiluminescence from isolated neutrophils was recorded. It is associated with the production of reactive oxygen species (ROS) in the "respiratory burst" process which can be activated by PMA (Phorbol 12-Myristate 13-Acetate). Commonly, the

  6. Extending single-photon optimized superconducting transition edge sensors beyond the single-photon counting regime.

    Science.gov (United States)

    Gerrits, Thomas; Calkins, Brice; Tomlin, Nathan; Lita, Adriana E; Migdall, Alan; Mirin, Richard; Nam, Sae Woo

    2012-10-08

    Typically, transition edge sensors resolve photon number of up to 10 or 20 photons, depending on the wavelength and TES design. We extend that dynamic range up to 1000 photons, while maintaining sub-shot noise detection process uncertainty of the number of detected photons and beyond that show a monotonic response up to ≈ 6 · 10(6) photons in a single light pulse. This mode of operation, which heats the sensor far beyond its transition edge into the normal conductive regime, offers a technique for connecting single-photon-counting measurements to radiant-power measurements at picowatt levels. Connecting these two usually incompatible operating regimes in a single detector offers significant potential for directly tying photon counting measurements to conventional cryogenic radiometric standards. In addition, our measurements highlight the advantages of a photon-number state source over a coherent pulse source as a tool for characterizing such a detector.

  7. Near UV imager with an MCP-based photon counting detector

    Science.gov (United States)

    Ambily, S.; Mathew, Joice; Sarpotdar, Mayuresh; Sreejith, A. G.; Nirmal, K.; Prakash, Ajin; Safonova, Margarita; Murthy, Jayant

    2016-07-01

    We are developing a compact UV Imager using light weight components, that can be own on a small CubeSat or a balloon platform. The system has a lens-based optics that can provide an aberration-free image over a wide field of view. The backend instrument is a photon counting detector with off-the-shelf MCP, CMOS sensor and electronics. We are using a Z-stack MCP with a compact high voltage power supply and a phosphor screen anode, which is read out by a CMOS sensor and the associated electronics. The instrument can be used to observe solar system objects and detect bright transients from the upper atmosphere with the help of CubeSats or high altitude balloons. We have designed the imager to be capable of working in direct frame transfer mode as well in the photon-counting mode for single photon event detection. The identification and centroiding of each photon event are done using an FPGA-based data acquisition and real-time processing system.

  8. Estimation of atomic interaction parameters by photon counting

    DEFF Research Database (Denmark)

    Kiilerich, Alexander Holm; Mølmer, Klaus

    2014-01-01

    Detection of radiation signals is at the heart of precision metrology and sensing. In this article we show how the fluctuations in photon counting signals can be exploited to optimally extract information about the physical parameters that govern the dynamics of the emitter. For a simple two......-level emitter subject to photon counting, we show that the Fisher information and the Cram\\'er- Rao sensitivity bound based on the full detection record can be evaluated from the waiting time distribution in the fluorescence signal which can, in turn, be calculated for both perfect and imperfect detectors...

  9. Counting constituents in molecular complexes by fluorescence photon antibunching

    Energy Technology Data Exchange (ETDEWEB)

    Fore, S; Laurence, T; Hollars, C; Huser, T

    2007-04-17

    Modern single molecule fluorescence microscopy offers new, highly quantitative ways of studying the systems biology of cells while keeping the cells healthy and alive in their natural environment. In this context, a quantum optical technique, photon antibunching, has found a small niche in the continuously growing applications of single molecule techniques to small molecular complexes. Here, we review some of the most recent applications of photon antibunching in biophotonics, and we provide a guide for how to conduct photon antibunching experiments at the single molecule level by applying techniques borrowed from time-correlated single photon counting. We provide a number of new examples for applications of photon antibunching to the study of multichromophoric molecules and small molecular complexes.

  10. Ultrafast time measurements by time-correlated single photon counting coupled with superconducting single photon detector

    Energy Technology Data Exchange (ETDEWEB)

    Shcheslavskiy, V., E-mail: vis@becker-hickl.de; Becker, W. [Becker & Hickl GmbH, Nahmitzer Damm 30, 12277 Berlin (Germany); Morozov, P.; Divochiy, A. [Scontel, Rossolimo St., 5/22-1, Moscow 119021 (Russian Federation); Vakhtomin, Yu. [Scontel, Rossolimo St., 5/22-1, Moscow 119021 (Russian Federation); Moscow State Pedagogical University, 1/1 M. Pirogovskaya St., Moscow 119991 (Russian Federation); Smirnov, K. [Scontel, Rossolimo St., 5/22-1, Moscow 119021 (Russian Federation); Moscow State Pedagogical University, 1/1 M. Pirogovskaya St., Moscow 119991 (Russian Federation); National Research University Higher School of Economics, 20 Myasnitskaya St., Moscow 101000 (Russian Federation)

    2016-05-15

    Time resolution is one of the main characteristics of the single photon detectors besides quantum efficiency and dark count rate. We demonstrate here an ultrafast time-correlated single photon counting (TCSPC) setup consisting of a newly developed single photon counting board SPC-150NX and a superconducting NbN single photon detector with a sensitive area of 7 × 7 μm. The combination delivers a record instrument response function with a full width at half maximum of 17.8 ps and system quantum efficiency ∼15% at wavelength of 1560 nm. A calculation of the root mean square value of the timing jitter for channels with counts more than 1% of the peak value yielded about 7.6 ps. The setup has also good timing stability of the detector–TCSPC board.

  11. Novel Photon-Counting Detectors for Free-Space Communication

    Science.gov (United States)

    Krainak, Michael A.; Yang, Guan; Sun, Xiaoli; Lu, Wei; Merritt, Scott; Beck, Jeff

    2016-01-01

    We present performance data for novel photon counting detectors for free space optical communication. NASA GSFC is testing the performance of three novel photon counting detectors 1) a 2x8 mercury cadmium telluride avalanche array made by DRS Inc. 2) a commercial 2880 silicon avalanche photodiode array and 3) a prototype resonant cavity silicon avalanche photodiode array. We will present and compare dark count, photon detection efficiency, wavelength response and communication performance data for these detectors. We discuss system wavelength trades and architectures for optimizing overall communication link sensitivity, data rate and cost performance. The HgCdTe APD array has photon detection efficiencies of greater than 50 were routinely demonstrated across 5 arrays, with one array reaching a maximum PDE of 70. High resolution pixel-surface spot scans were performed and the junction diameters of the diodes were measured. The junction diameter was decreased from 31 m to 25 m resulting in a 2x increase in e-APD gain from 470 on the 2010 array to 1100 on the array delivered to NASA GSFC. Mean single photon SNRs of over 12 were demonstrated at excess noise factors of 1.2-1.3.The commercial silicon APD array has a fast output with rise times of 300ps and pulse widths of 600ps. Received and filtered signals from the entire array are multiplexed onto this single fast output. The prototype resonant cavity silicon APD array is being developed for use at 1 micron wavelength.

  12. Photon-Counting Arrays for Time-Resolved Imaging

    Directory of Open Access Journals (Sweden)

    I. Michel Antolovic

    2016-06-01

    Full Text Available The paper presents a camera comprising 512 × 128 pixels capable of single-photon detection and gating with a maximum frame rate of 156 kfps. The photon capture is performed through a gated single-photon avalanche diode that generates a digital pulse upon photon detection and through a digital one-bit counter. Gray levels are obtained through multiple counting and accumulation, while time-resolved imaging is achieved through a 4-ns gating window controlled with subnanosecond accuracy by a field-programmable gate array. The sensor, which is equipped with microlenses to enhance its effective fill factor, was electro-optically characterized in terms of sensitivity and uniformity. Several examples of capture of fast events are shown to demonstrate the suitability of the approach.

  13. Wide Field Imager for Athena

    Science.gov (United States)

    Meidinger, Norbert; Nandra, Kirpal; Rau, Arne; Plattner, Markus; WFI proto-Consortium

    2015-09-01

    The Wide Field Imager focal plane instrument on ATHENA will combine unprecedented survey power through its large field of view of 40 arcmin with a high count-rate capability (> 1 Crab). The energy resolution of the silicon sensor is state-of-the-art in the energy band of interest from 0.1 keV to 15 keV. At energy of 6 keV for example, the full width at half maximum of the line shall be not worse than 150 eV until the end of the mission. The performance is accomplished by a set of DEPFET active pixel sensor matrices with a pixel size well suited to the angular resolution of 5 arc sec (on-axis) of the mirror system.Each DEPFET pixel is a combined detector-amplifier structure with a MOSFET integrated onto a fully depleted 450 micron thick silicon bulk. Two different types of DEPFET sensors are planned for the WFI instrument: A set of large-area sensors to cover the physical size of 14 cm x 14 cm in the focal plane and a single gateable DEPFET sensor matrix optimized for the high count rate capability of the instrument. An overview will be given about the presently developed instrument concept and design, the status of the technology development, and the expected performance. An outline of the project organization, the model philosophy as well as the schedule will complete the presentation about the Wide Field Imager for Athena.

  14. High Time Resolution Photon Counting 3D Imaging Sensors

    Science.gov (United States)

    Siegmund, O.; Ertley, C.; Vallerga, J.

    2016-09-01

    Novel sealed tube microchannel plate (MCP) detectors using next generation cross strip (XS) anode readouts and high performance electronics have been developed to provide photon counting imaging sensors for Astronomy and high time resolution 3D remote sensing. 18 mm aperture sealed tubes with MCPs and high efficiency Super-GenII or GaAs photocathodes have been implemented to access the visible/NIR regimes for ground based research, astronomical and space sensing applications. The cross strip anode readouts in combination with PXS-II high speed event processing electronics can process high single photon counting event rates at >5 MHz ( 80 ns dead-time per event), and time stamp events to better than 25 ps. Furthermore, we are developing a high speed ASIC version of the electronics for low power/low mass spaceflight applications. For a GaAs tube the peak quantum efficiency has degraded from 30% (at 560 - 850 nm) to 25% over 4 years, but for Super-GenII tubes the peak quantum efficiency of 17% (peak at 550 nm) has remained unchanged for over 7 years. The Super-GenII tubes have a uniform spatial resolution of MCP gain photon counting operation also permits longer overall sensor lifetimes and high local counting rates. Using the high timing resolution, we have demonstrated 3D object imaging with laser pulse (630 nm 45 ps jitter Pilas laser) reflections in single photon counting mode with spatial and depth sensitivity of the order of a few millimeters. A 50 mm Planacon sealed tube was also constructed, using atomic layer deposited microchannel plates which potentially offer better overall sealed tube lifetime, quantum efficiency and gain stability. This tube achieves standard bialkali quantum efficiency levels, is stable, and has been coupled to the PXS-II electronics and used to detect and image fast laser pulse signals.

  15. High quantum efficiency S-20 photocathodes in photon counting detectors

    Science.gov (United States)

    Orlov, D. A.; DeFazio, J.; Duarte Pinto, S.; Glazenborg, R.; Kernen, E.

    2016-04-01

    Based on conventional S-20 processes, a new series of high quantum efficiency (QE) photocathodes has been developed that can be specifically tuned for use in the ultraviolet, blue or green regions of the spectrum. The QE values exceed 30% at maximum response, and the dark count rate is found to be as low as 30 Hz/cm2 at room temperature. This combination of properties along with a fast temporal response makes these photocathodes ideal for application in photon counting detectors, which is demonstrated with an MCP photomultiplier tube for single and multi-photoelectron detection.

  16. Binary projective measurement via linear optics and photon counting.

    Science.gov (United States)

    Takeoka, Masahiro; Sasaki, Masahide; Lütkenhaus, Norbert

    2006-07-28

    We investigate the implementation of binary projective measurements with linear optics. This problem can be viewed as a single-shot discrimination of two orthogonal pure quantum states. We show that any two orthogonal states can be perfectly discriminated using only linear optics, photon counting, coherent ancillary states, and feedforward. The statement holds in the asymptotic limit of a large number of these physical resources.

  17. Single-photon counting multicolor multiphoton fluorescence microscope.

    Science.gov (United States)

    Buehler, Christof; Kim, Ki H; Greuter, Urs; Schlumpf, Nick; So, Peter T C

    2005-01-01

    We present a multicolor multiphoton fluorescence microscope with single-photon counting sensitivity. The system integrates a standard multiphoton fluorescence microscope, an optical grating spectrograph operating in the UV-Vis wavelength region, and a 16-anode photomultiplier tube (PMT). The major technical innovation is in the development of a multichannel photon counting card (mC-PhCC) for direct signal collection from multi-anode PMTs. The electronic design of the mC-PhCC employs a high-throughput, fully-parallel, single-photon counting scheme along with a high-speed electrical or fiber-optical link interface to the data acquisition computer. There is no electronic crosstalk among the detection channels of the mC-PhCC. The collected signal remains linear up to an incident photon rate of 10(8) counts per second. The high-speed data interface offers ample bandwidth for real-time readout: 2 MByte lambda-stacks composed of 16 spectral channels, 256 x 256 pixel image with 12-bit dynamic range can be transferred at 30 frames per second. The modular design of the mC-PhCC can be readily extended to accommodate PMTs of more anodes. Data acquisition from a 64-anode PMT has been verified. As a demonstration of system performance, spectrally resolved images of fluorescent latex spheres and ex-vivo human skin are reported. The multicolor multiphoton microscope is suitable for highly sensitive, real-time, spectrally-resolved three-dimensional imaging in biomedical applications.

  18. Low photon count based digital holography for quadratic phase cryptography.

    Science.gov (United States)

    Muniraj, Inbarasan; Guo, Changliang; Malallah, Ra'ed; Ryle, James P; Healy, John J; Lee, Byung-Geun; Sheridan, John T

    2017-07-15

    Recently, the vulnerability of the linear canonical transform-based double random phase encryption system to attack has been demonstrated. To alleviate this, we present for the first time, to the best of our knowledge, a method for securing a two-dimensional scene using a quadratic phase encoding system operating in the photon-counted imaging (PCI) regime. Position-phase-shifting digital holography is applied to record the photon-limited encrypted complex samples. The reconstruction of the complex wavefront involves four sparse (undersampled) dataset intensity measurements (interferograms) at two different positions. Computer simulations validate that the photon-limited sparse-encrypted data has adequate information to authenticate the original data set. Finally, security analysis, employing iterative phase retrieval attacks, has been performed.

  19. A Flight Photon Counting Camera for the WFIRST Coronagraph

    Science.gov (United States)

    Morrissey, Patrick

    2018-01-01

    A photon counting camera based on the Teledyne-e2v CCD201-20 electron multiplying CCD (EMCCD) is being developed for the NASA WFIRST coronagraph, an exoplanet imaging technology development of the Jet Propulsion Laboratory (Pasadena, CA) that is scheduled to launch in 2026. The coronagraph is designed to directly image planets around nearby stars, and to characterize their spectra. The planets are exceedingly faint, providing signals similar to the detector dark current, and require the use of photon counting detectors. Red sensitivity (600-980nm) is preferred to capture spectral features of interest. Since radiation in space affects the ability of the EMCCD to transfer the required single electron signals, care has been taken to develop appropriate shielding that will protect the cameras during a five year mission. In this poster, consideration of the effects of space radiation on photon counting observations will be described with the mitigating features of the camera design. An overview of the current camera flight system electronics requirements and design will also be described.

  20. Ultrafast Photon Counting Applied to Resonant Scanning STED Microscopy

    Science.gov (United States)

    Wu, Xundong; Toro, Ligia; Stefani, Enrico; Wu, Yong

    2014-01-01

    Summary To take full advantage of fast resonant scanning in super-resolution STimulated Emission Depletion (STED) microscopy, we have developed an ultrafast photon counting system based on a multi-giga-sample per second analog-to-digital conversion (ADC) chip that delivers an unprecedented 450 MHz pixel clock (2.2 ns pixel dwell time in each scan). The system achieves a large field of view (~50 × 50 μm) with fast scanning that reduces photobleaching, and advances the time-gated continuous wave (CW) STED technology to the usage of resonant scanning with hardware based time-gating. The assembled system provides superb signal-to-noise ratio and highly linear quantification of light that result in superior image quality. Also, the system design allows great flexibility in processing photon signals to further improve the dynamic range. In conclusion, we have constructed a frontier photon counting image acquisition system with ultrafast readout rate, excellent counting linearity, and with the capacity of realizing resonant-scanning CW-STED microscopy with on-line time-gated detection. PMID:25227160

  1. Photon counting detector for the personal radiography inspection system "SIBSCAN"

    Science.gov (United States)

    Babichev, E. A.; Baru, S. E.; Grigoriev, D. N.; Leonov, V. V.; Oleynikov, V. P.; Porosev, V. V.; Savinov, G. A.

    2017-02-01

    X-ray detectors operating in the energy integrating mode are successfully used in many different applications. Nevertheless the direct photon counting detectors, having the superior parameters in comparison with the integrating ones, are rarely used yet. One of the reasons for this is the low value of the electrical signal generated by a detected photon. Silicon photomultiplier (SiPM) based scintillation counters have a high detection efficiency, high electronic gain and compact dimensions. This makes them a very attractive candidate to replace routinely used detectors in many fields. More than 10 years ago the digital scanning radiography system based on multistrip ionization chamber (MIC) was suggested at Budker Institute of Nuclear Physics. The detector demonstrates excellent radiation resistance and parameter stability after 5 year operations and an imaging of up to 1000 persons per day. Currently, the installations operate at several Russian airports and at subway stations in some cities. At the present time we design a new detector operating in the photon counting mode, having superior parameters than the gas one, based on scintillator - SiPM assemblies. This detector has close to zero noise, higher quantum efficiency and a count rate capability of more than 5 MHz per channel (20% losses), which leads to better image quality and improved detection capability. The suggested detector technology could be expanded to medical applications.

  2. Advanced time-correlated single photon counting techniques

    CERN Document Server

    Becker, Wolfgang

    2005-01-01

    Time-correlated single photon counting (TCSPC) is a remarkable technique for recording low-level light signals with extremely high precision and picosecond-time resolution. TCSPC has developed from an intrinsically time-consuming and one-dimensional technique into a fast, multi-dimensional technique to record light signals. So this reference and text describes how advanced TCSPC techniques work and demonstrates their application to time-resolved laser scanning microscopy, single molecule spectroscopy, photon correlation experiments, and diffuse optical tomography of biological tissue. It gives practical hints about constructing suitable optical systems, choosing and using detectors, detector safety, preamplifiers, and using the control features and optimising the operating conditions of TCSPC devices. Advanced TCSPC Techniques is an indispensable tool for everyone in research and development who is confronted with the task of recording low-intensity light signals in the picosecond and nanosecond range.

  3. Spectroscopic X-ray imaging with photon counting pixel detectors

    CERN Document Server

    Tlustos, L

    2010-01-01

    Single particle counting hybrid pixel detectors simultaneously provide low noise, high granularity and high readout speed and make it possible to build detector systems offering high spatial resolution paired with good energy resolution. A limiting factor for the spectroscopic performance of such detector systems is charge sharing between neighbouring pixels in the sensor part of the detector. The signal spectrum at the collection electrodes of the readout electronics deviates significantly from the photonic spectrum when planar segmented sensor geometries are used. The Medipix3 implements a novel, distributed signal processing architecture linking neighbouring pixels and aims at eliminating the spectral distortion produced in the sensor by charge sharing and at reducing the impact of fluorescence photons generated in the sensor itself. Preliminary results from the very first Medipix3 readouts bump bonded to 300 pm Si sensor are presented. Material reconstruction is a possible future application of spectrosco...

  4. Advanced time-correlated single photon counting applications

    CERN Document Server

    Becker, Wolfgang

    2015-01-01

    This book is an attempt to bridge the gap between the instrumental principles of multi-dimensional time-correlated single photon counting (TCSPC) and typical applications of the technique. Written by an originator of the technique and by sucessful users, it covers the basic principles of the technique, its interaction with optical imaging methods and its application to a wide range of experimental tasks in life sciences and clinical research. The book is recommended for all users of time-resolved detection techniques in biology, bio-chemistry, spectroscopy of live systems, live cell microscopy, clinical imaging, spectroscopy of single molecules, and other applications that require the detection of low-level light signals at single-photon sensitivity and picosecond time resolution.

  5. Ghosting phenomena in single photon counting imagers with Vernier anode.

    Science.gov (United States)

    Yang, Hao; Zhao, Baosheng; Qiurong, Yan; Liu, Yong'an; Hu, Huijun

    2011-02-01

    We provide the ghosting theory of two-dimensional Vernier anode based imagers. The single photon counting detection system based on Vernier anode is constructed. The ghosting, which occurs during the decoding of two-dimensional Vernier anode, and its possible solutions are described in detail. On the basis of the discussion of the decoding algorithm, the ghosting theoretical model is established. Phase conditions on which imaging ghosting can be avoided and the probability distribution function are proposed; the root causes of ghosting of two-dimensional Vernier anode are also discussed.

  6. Gain Instabilities in Photomultipliers: How Accurate are Photon Counting Measurements?

    Science.gov (United States)

    Rosen, W. A.; Chromey, F. R.

    1984-01-01

    Experiments performed on five commercially available photomultiplier tubes indicate that gain instabilities can be an important source of error in photon counting measurements at the 1% level. It is shown that the error cannot be significantly reduced by standard differential measurement techniques. Analysis of time variations in the pulse height distribution is shown to be a sensitive diagnostic tool for the measurement of gain variations. Using this technique it is found that gain variations occur at counting rates as low as 100 Hz. It is argued that such errors will be present at some level in all tubes. Several calibrating schemes capable of reducing the error to below the 0.1% level are discussed.

  7. Wide-field TCSPC-based fluorescence lifetime imaging (FLIM) microscopy

    Science.gov (United States)

    Suhling, Klaus; Hirvonen, Liisa M.; Becker, Wolfgang; Smietana, Stefan; Netz, Holger; Milnes, James; Conneely, Thomas; Le Marois, Alix; Jagutzki, Ottmar

    2016-05-01

    Time-correlated single photon counting (TCSPC) is a widely used, sensitive, precise, robust and mature technique to measure photon arrival times in applications such as fluorescence spectroscopy and microscopy, light detection and ranging (lidar) and optical tomography. Wide-field TCSPC detection techniques, where the position and the arrival time of the photons are recorded simultaneously, have seen several advances in the last few years, from the microsecond to the picosecond time scale. Here, we summarise some of our recent work in this field with emphasis on microsecond resolution phosphorescence lifetime imaging (PLIM) and nanosecond fluorescence lifetime imaging (FLIM) microscopy.

  8. Photon counting spectroscopic CT with dynamic beam attenuator

    CERN Document Server

    Atak, Haluk

    2016-01-01

    Purpose: Photon counting (PC) computed tomography (CT) can provide material selective CT imaging at lowest patient dose but it suffers from suboptimal count rate. A dynamic beam attenuator (DBA) can help with count rate by modulating x-ray beam intensity such that the low attenuating areas of the patient receive lower exposure, and detector behind these areas is not overexposed. However, DBA may harden the beam and cause artifacts and errors. This work investigates positive and negative effects of using DBA in PCCT. Methods: A simple PCCT with single energy bin, spectroscopic PCCT with 2 and 5 energy bins, and conventional energy integrating CT with and without DBA were simulated and investigated using 120kVp tube voltage and 14mGy air dose. The DBAs were modeled as made from soft tissue (ST) equivalent material, iron (Fe), and holmium (Ho) K-edge material. A cylindrical CT phantom and chest phantom with iodine and CaCO3 contrast elements were used. Image artifacts and quantification errors in general and mat...

  9. Soft tissue imaging with photon counting spectroscopic CT.

    Science.gov (United States)

    Shikhaliev, Polad M

    2015-03-21

    The purpose of this work was experimental investigation of photon counting spectroscopic CT (PCS-CT) imaging of anatomical soft tissue with clinically relevant size. The imaging experiments were performed using a spectroscopic CT system based on CdZnTe photon counting detector with two rows of pixels, 256 pixels in each row, 1  ×  1 mm(2) pixel size, and 25.6 cm detector length. The detector could split the x-ray energy spectrum to 5 regions (energy bins), and acquire 5 multi-energy (spectroscopic) CT images in a single CT scan. A sample of round shaped anatomical soft tissue of 14 cm diameter including lean and fat was used for imaging. To avoid the negative effect of anatomical noise on quantitative analysis, a spectroscopic CT phantom with tissue equivalent solid materials was used. The images were acquired at 60, 90, and 120 kVp tube voltages, and spectroscopic image series were acquired with 3 and 5 energy bins. Spectroscopic CT numbers were introduced and used to evaluate an energy selective image series. The anatomical soft tissue with 14 cm diameter was visualized with good quality and without substantial artifacts by the photon counting spectroscopic CT system. The effects of the energy bin crosstalk on spectroscopic CT numbers were quantified and analyzed. The single and double slice PCS-CT images were acquired and compared. Several new findings were observed, including the effect of soft tissue non-uniformity on image artifacts, unique status of highest energy bin, and material dependent visualization in spectroscopic image series. Fat-lean decomposition was performed using dual energy subtraction and threshold segmentation methods, and compared. Using K-edge filtered x-rays improved fat-lean decomposition as compared to conventional x-rays. Several new and important aspects of the PCS-CT were investigated. These include imaging soft tissue with clinically relevant size, single- and double-slice PCS-CT imaging, using spectroscopic CT

  10. Soft tissue imaging with photon counting spectroscopic CT

    Science.gov (United States)

    Shikhaliev, Polad M.

    2015-03-01

    The purpose of this work was experimental investigation of photon counting spectroscopic CT (PCS-CT) imaging of anatomical soft tissue with clinically relevant size. The imaging experiments were performed using a spectroscopic CT system based on CdZnTe photon counting detector with two rows of pixels, 256 pixels in each row, 1  ×  1 mm2 pixel size, and 25.6 cm detector length. The detector could split the x-ray energy spectrum to 5 regions (energy bins), and acquire 5 multi-energy (spectroscopic) CT images in a single CT scan. A sample of round shaped anatomical soft tissue of 14 cm diameter including lean and fat was used for imaging. To avoid the negative effect of anatomical noise on quantitative analysis, a spectroscopic CT phantom with tissue equivalent solid materials was used. The images were acquired at 60, 90, and 120 kVp tube voltages, and spectroscopic image series were acquired with 3 and 5 energy bins. Spectroscopic CT numbers were introduced and used to evaluate an energy selective image series. The anatomical soft tissue with 14 cm diameter was visualized with good quality and without substantial artifacts by the photon counting spectroscopic CT system. The effects of the energy bin crosstalk on spectroscopic CT numbers were quantified and analyzed. The single and double slice PCS-CT images were acquired and compared. Several new findings were observed, including the effect of soft tissue non-uniformity on image artifacts, unique status of highest energy bin, and material dependent visualization in spectroscopic image series. Fat-lean decomposition was performed using dual energy subtraction and threshold segmentation methods, and compared. Using K-edge filtered x-rays improved fat-lean decomposition as compared to conventional x-rays. Several new and important aspects of the PCS-CT were investigated. These include imaging soft tissue with clinically relevant size, single- and double-slice PCS-CT imaging, using spectroscopic CT

  11. Turn-key Near-Infrared Photon-Counting Detector Module for LIDAR Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Based on the prototype photon counter developed during Phase I, we will deliver a next-generation photon counting detector optimized for LIDAR applications within...

  12. Maturing CCD Photon-Counting Technology for Space Flight

    Science.gov (United States)

    Mallik, Udayan; Lyon, Richard; Petrone, Peter; McElwain, Michael; Benford, Dominic; Clampin, Mark; Hicks, Brian

    2015-01-01

    This paper discusses charge blooming and starlight saturation - two potential technical problems - when using an Electron Multiplying Charge Coupled Device (EMCCD) type detector in a high-contrast instrument for imaging exoplanets. These problems especially affect an interferometric type coronagraph - coronagraphs that do not use a mask to physically block starlight in the science channel of the instrument. These problems are presented using images taken with a commercial Princeton Instrument EMCCD camera in the Goddard Space Flight Center's (GSFC), Interferometric Coronagraph facility. In addition, this paper discusses techniques to overcome such problems. This paper also discusses the development and architecture of a Field Programmable Gate Array and Digital-to-Analog Converter based shaped clock controller for a photon-counting EMCCD camera. The discussion contained here will inform high-contrast imaging groups in their work with EMCCD detectors.

  13. Time-gating scheme based on a photodiode for single-photon counting

    Science.gov (United States)

    Kumavor, Patrick D.; Tavakoli, Behnoosh; Donkor, Eric; Zhu, Quing

    2012-01-01

    A fast, simple, and low-cost optical time-gating scheme for counting single photons is presented. Its construction consists of a silicon photodiode connected in series with a 50 Ω resistor and that operates in the photoconductive mode. The temporal resolution at the FWHM of the photon counting system was measured to be 62 ps. The profile of a single-photon pulse measured with the counting system agreed well with analytical results. The system was also used to successfully resolve a pair of targets with 4 mm separation inside a highly scattering medium by the use of time-gated early-arriving photons. PMID:21725458

  14. Energy-correction photon counting pixel for photon energy extraction under pulse pile-up

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Daehee; Park, Kyungjin; Lim, Kyung Taek; Cho, Gyuseong, E-mail: gscho@kaist.ac.kr

    2017-06-01

    A photon counting detector (PCD) has been proposed as an alternative solution to an energy-integrating detector (EID) in medical imaging field due to its high resolution, high efficiency, and low noise. The PCD has expanded to variety of fields such as spectral CT, k-edge imaging, and material decomposition owing to its capability to count and measure the number and the energy of an incident photon, respectively. Nonetheless, pulse pile-up, which is a superimposition of pulses at the output of a charge sensitive amplifier (CSA) in each PC pixel, occurs frequently as the X-ray flux increases due to the finite pulse processing time (PPT) in CSAs. Pulse pile-up induces not only a count loss but also distortion in the measured X-ray spectrum from each PC pixel and thus it is a main constraint on the use of PCDs in high flux X-ray applications. To minimize these effects, an energy-correction PC (ECPC) pixel is proposed to resolve pulse pile-up without cutting off the PPT by adding an energy correction logic (ECL) via a cross detection method (CDM). The ECPC pixel with a size of 200×200 µm{sup 2} was fabricated by using a 6-metal 1-poly 0.18 µm CMOS process with a static power consumption of 7.2 μW/pixel. The maximum count rate of the ECPC pixel was extended by approximately three times higher than that of a conventional PC pixel with a PPT of 500 nsec. The X-ray spectrum of 90 kVp, filtered by 3 mm Al filter, was measured as the X-ray current was increased using the CdTe and the ECPC pixel. As a result, the ECPC pixel dramatically reduced the energy spectrum distortion at 2 Mphotons/pixel/s when compared to that of the ERCP pixel with the same 500 nsec PPT.

  15. Single Photon Counting Performance and Noise Analysis of CMOS SPAD-Based Image Sensors

    Directory of Open Access Journals (Sweden)

    Neale A. W. Dutton

    2016-07-01

    Full Text Available SPAD-based solid state CMOS image sensors utilising analogue integrators have attained deep sub-electron read noise (DSERN permitting single photon counting (SPC imaging. A new method is proposed to determine the read noise in DSERN image sensors by evaluating the peak separation and width (PSW of single photon peaks in a photon counting histogram (PCH. The technique is used to identify and analyse cumulative noise in analogue integrating SPC SPAD-based pixels. The DSERN of our SPAD image sensor is exploited to confirm recent multi-photon threshold quanta image sensor (QIS theory. Finally, various single and multiple photon spatio-temporal oversampling techniques are reviewed.

  16. Single Photon Counting Performance and Noise Analysis of CMOS SPAD-Based Image Sensors.

    Science.gov (United States)

    Dutton, Neale A W; Gyongy, Istvan; Parmesan, Luca; Henderson, Robert K

    2016-07-20

    SPAD-based solid state CMOS image sensors utilising analogue integrators have attained deep sub-electron read noise (DSERN) permitting single photon counting (SPC) imaging. A new method is proposed to determine the read noise in DSERN image sensors by evaluating the peak separation and width (PSW) of single photon peaks in a photon counting histogram (PCH). The technique is used to identify and analyse cumulative noise in analogue integrating SPC SPAD-based pixels. The DSERN of our SPAD image sensor is exploited to confirm recent multi-photon threshold quanta image sensor (QIS) theory. Finally, various single and multiple photon spatio-temporal oversampling techniques are reviewed.

  17. Imaging by photon counting with 256 x 256 pixel matrix

    CERN Document Server

    Tlustos, Lukas; Heijne, Erik H M; Llopart-Cudie, Xavier

    2004-01-01

    Using 0.25 mum standard CMOS we have developed 2-D semiconductor matrix detectors with sophisticated functionality integrated inside each pixel of a hybrid sensor module. One of these sensor modules is a matrix of 256 multiplied by 256 square 55mum pixels intended for X- ray imaging. This device is called 'Medipix2' and features a fast amplifier and two-level discrimination for signals between 1000 and 100000 equivalent electrons, with overall signal noise similar to 150 e- rms. Signal polarity and comparator thresholds are programmable. A maximum count rate of nearly 1 MHz per pixel can be achieved, which corresponds to an average flux of 3 multiplied by 10exp10 photons per cm2. The selected signals can be accumulated in each pixel in a 13- bit register. The serial readout takes 5-10 ms. A parallel readout of similar to 300 mus could also be used. Housekeeping functions such as local dark current compensation, test pulse generation, silencing of noisy pixels and threshold tuning in each pixel contribute to t...

  18. Quantitative material characterization from multi-energy photon counting CT.

    Science.gov (United States)

    Alessio, Adam M; MacDonald, Lawrence R

    2013-03-01

    To quantify the concentration of soft-tissue components of water, fat, and calcium through the decomposition of the x-ray spectral signatures in multi-energy CT images. Decomposition of dual-energy and multi-energy x-ray data into basis materials can be performed in the projection domain, image domain, or during image reconstruction. In this work, the authors present methodology for the decomposition of multi-energy x-ray data in the image domain for the application of soft-tissue characterization. To demonstrate proof-of-principle, the authors apply several previously proposed methods and a novel content-aware method to multi-energy images acquired with a prototype photon counting CT system. Data from phantom and ex vivo specimens are evaluated. The number and type of materials in a region can be limited based on a priori knowledge or classification strategies. The proposed difference classifier successfully classified the image into air only, water+fat, water+fat+iodine, and water+calcium regions. Then, the content-aware material decomposition based on weighted least-square optimization generated quantitative maps of concentration. Bias in the estimation of the concentration of water and oil components in a phantom study was Decomposition of ex vivo carotid endarterectomy specimens suggests the presence of water, lipid, and calcium deposits in the plaque walls. Initial application of the proposed methodology suggests that it can decompose multi-energy CT images into quantitative maps of water, adipose, iodine, and calcium concentrations.

  19. Amplitude distributions of dark counts and photon counts in NbN superconducting single-photon detectors integrated with the HEMT readout

    Energy Technology Data Exchange (ETDEWEB)

    Kitaygorsky, J. [Kavli Institute of Nanoscience Delft, Delft University of Technology, 2600 GA Delft (Netherlands); Department of Electrical and Computer Engineering and Laboratory for Laser Energetics, University of Rochester, Rochester, NY 14627-0231 (United States); Słysz, W., E-mail: wslysz@ite.waw.pl [Institute of Electron Technology, PL-02 668 Warsaw (Poland); Shouten, R.; Dorenbos, S.; Reiger, E.; Zwiller, V. [Kavli Institute of Nanoscience Delft, Delft University of Technology, 2600 GA Delft (Netherlands); Sobolewski, Roman [Department of Electrical and Computer Engineering and Laboratory for Laser Energetics, University of Rochester, Rochester, NY 14627-0231 (United States)

    2017-01-15

    Highlights: • A new operation regime of NbN superconducting single-photon detectors (SSPDs). • A better understanding of the origin of dark counts generated by the detector. • A promise of PNR functionality in SSPD measurements. - Abstract: We present a new operation regime of NbN superconducting single-photon detectors (SSPDs) by integrating them with a low-noise cryogenic high-electron-mobility transistor and a high-load resistor. The integrated sensors are designed to get a better understanding of the origin of dark counts triggered by the detector, as our scheme allows us to distinguish the origin of dark pulses from the actual photon pulses in SSPDs. The presented approach is based on a statistical analysis of amplitude distributions of recorded trains of the SSPD photoresponse transients. It also enables to obtain information on energy of the incident photons, as well as demonstrates some photon-number-resolving capability of meander-type SSPDs.

  20. Simultaneous imaging of multiple focal planes in scanning two-photon absorption microscope by photon counting

    Science.gov (United States)

    Carriles, Ramón; Hoover, Erich E.; Amir, Wafa; Squier, Jeffery A.

    2007-09-01

    We demonstrate a two-photon absorption scanning microscope capable of imaging two focal planes simultaneously. The 23MHz fundamental laser is split in two, one part delayed in time while the other is focused with a deformable mirror to change its divergence. Both parts are then recombined to form a 46MHz pulse train consisting of two interlaced trains with different divergences that after the objective are focused at different sample depths. At the detection path, photon counting techniques allow photons coming from each depth to be separated based on their relative timing with respect to the 46MHz train. The separation is accomplished using a field-programmable gate array that has been programmed to switch back and forth between two counters at a rate provided by a master clock generated by the 46MHz pulse train. The computer that controls the scanners reads and resets the counters before moving to a new pixel. The scheme is demonstrated for two depths but can be extended to a larger number, the ultimate limit being the fluorescence lifetime. This technique could also be implemented for second or third harmonic generation microscopy, in this case the ultimate achievable number of focal planes would be determined by the electronics speed.

  1. Impact of Compton scatter on material decomposition using a photon counting spectral detector

    Science.gov (United States)

    Lewis, Cale; Park, Chan-Soo; Fredette, Nathaniel R.; Das, Mini

    2017-03-01

    Photon counting spectral detectors are being investigated to allow better discrimination of multiple materials by collecting spectral data for every detector pixel. The process of material decomposition or discrimination starts with an accurate estimation of energy dependent attenuation of the composite object. Photoelectric effect and Compton scattering are two important constituents of the attenuation. Compton scattering while results in a loss of primary photon, also results in an increase in photon counts in the lower ene1rgy bins via multiple orders of scatter. This contribution to each energy bin may change with material properties, thickness and x-ray energies. There has been little investigation into the effect of this increase in counts at lower energies due to presence of these Compton scattered photons using photon counting detectors. Our investigations show that it is important to account for this effect in spectral decomposition problems.

  2. The Wide Field Imager for Athena

    Science.gov (United States)

    Rau, A.; Nandra, K.; Meidinger, N.; Plattner, M.

    2017-10-01

    The Wide Field Imager (WFI) is one of the two scientific instruments of Athena, ESA's next large X-ray Observatory with launch in 2028. The instrument will provide two defining capabilities to the mission sensitive wide-field imaging spectroscopy and excellent high-count rate performance. It will do so with the use of two separate detectors systems, the Large Detector Array (LDA) optimized for its field of view (40'×40') with a 100 fold survey speed increase compared to existing X-ray missions, and the Fast Detector (FD) tweaked for high throughput and low pile-up for point sources as bright as the Crab. In my talk I will present the key performance parameters of the instrument and their links to the scientific goals of Athena and summarize the status of the ongoing development activities.

  3. Breast-density measurement using photon-counting spectral mammography.

    Science.gov (United States)

    Johansson, Henrik; von Tiedemann, Miriam; Erhard, Klaus; Heese, Harald; Ding, Huanjun; Molloi, Sabee; Fredenberg, Erik

    2017-07-01

    To evaluate a method for measuring breast density using photon-counting spectral mammography. Breast density is an indicator of breast cancer risk and diagnostic accuracy in mammography, and can be used as input to personalized screening, treatment monitoring and dose estimation. The measurement method employs the spectral difference in x-ray attenuation between adipose and fibro-glandular tissue, and does not rely on any a priori information. The method was evaluated using phantom measurements on tissue-equivalent material (slabs and breast-shaped phantoms) and using clinical data from a screening population (n=1329). A state-of-the-art nonspectral method for breast-density assessment was used for benchmarking. The precision of the spectral method was estimated to be 1.5-1.8 percentage points (pp) breast density. Expected correlations were observed in the screening population for thickness versus breast density, dense volume, breast volume, and compression height. Densities ranged between 4.5% and 99.6%, and exhibited a skewed distribution with a mode of 12.5%, a median of 18.3%, and a mean of 23.7%. The precision of the nonspectral method was estimated to be 2.7-2.8 pp. The major uncertainty of the nonspectral method originated from the thickness estimate, and in particular thin/dense breasts posed problems compared to the spectral method. The spectral method yielded reasonable results in a screening population with a precision approximately two times that of the nonspectral method, which may improve or enable applications of breast-density measurement on an individual basis such as treatment monitoring and personalized screening. © 2017 American Association of Physicists in Medicine.

  4. Wide-Field Plate Database

    Science.gov (United States)

    Tsvetkov, M. K.; Stavrev, K. Y.; Tsvetkova, K. P.; Semkov, E. H.; Mutatov, A. S.

    The Wide-Field Plate Database (WFPDB) and the possibilities for its application as a research tool in observational astronomy are presented. Currently the WFPDB comprises the descriptive data for 400 000 archival wide field photographic plates obtained with 77 instruments, from a total of 1 850 000 photographs stored in 269 astronomical archives all over the world since the end of last century. The WFPDB is already accessible for the astronomical community, now only in batch mode through user requests sent by e-mail. We are working on on-line interactive access to the data via INTERNET from Sofia and parallel from the Centre de Donnees Astronomiques de Strasbourg. (Initial information can be found on World Wide Web homepage URL http://www.wfpa.acad.bg.) The WFPDB may be useful in studies of a variety of astronomical objects and phenomena, andespecially for long-term investigations of variable objects and for multi-wavelength research. We have analysed the data in the WFPDB in order to derive the overall characteristics of the totality of wide-field observations, such as the sky coverage, the distributions by observation time and date, by spectral band, and by object type. We have also examined the totality of wide-field observations from point of view of their quality, availability and digitisation. The usefulness of the WFPDB is demonstrated by the results of identification and investigation of the photometrical behaviour of optical analogues of gamma-ray bursts.

  5. The Ooty Wide Field Array

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Astrophysics and Astronomy; Volume 38; Issue 1. The Ooty Wide Field Array. C. R. Subrahmanya P. K. Manoharan Jayaram N. Chengalur. Review Article Volume 38 Issue 1 March 2017 Article ID ... Keywords. Cosmology: large scale structure of Universe; intergalactic medium; diffuse radiation.

  6. Photon counting imaging and centroiding with an electron-bombarded CCD using single molecule localisation software

    Energy Technology Data Exchange (ETDEWEB)

    Hirvonen, Liisa M.; Barber, Matthew J.; Suhling, Klaus, E-mail: klaus.suhling@kcl.ac.uk

    2016-06-01

    Photon event centroiding in photon counting imaging and single-molecule localisation in super-resolution fluorescence microscopy share many traits. Although photon event centroiding has traditionally been performed with simple single-iteration algorithms, we recently reported that iterative fitting algorithms originally developed for single-molecule localisation fluorescence microscopy work very well when applied to centroiding photon events imaged with an MCP-intensified CMOS camera. Here, we have applied these algorithms for centroiding of photon events from an electron-bombarded CCD (EBCCD). We find that centroiding algorithms based on iterative fitting of the photon events yield excellent results and allow fitting of overlapping photon events, a feature not reported before and an important aspect to facilitate an increased count rate and shorter acquisition times.

  7. The Wide Field Imager Instrument for Athena

    OpenAIRE

    Meidinger, Norbert; Eder, Josef; Eraerds, Tanja; Nandra, Kirpal; Pietschner, Daniel; Plattner, Markus; Rau, Arne; Strecker, Rafael

    2017-01-01

    The WFI (Wide Field Imager) instrument is planned to be one of two complementary focal plane cameras on ESA's next X-ray observatory Athena. It combines unprecedented survey power through its large field of view of 40 amin x 40 amin together with excellent count rate capability (larger than 1 Crab). The energy resolution of the silicon sensor is state-of-the-art in the energy band of interest from 0.2 keV to 15 keV, e.g. the full width at half maximum of a line at 7 keV will be better than 17...

  8. A Near-Infrared Photon Counting Camera for High Sensitivity Astronomical Observation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation is a Near Infrared Photon-Counting Sensor (NIRPCS), an imaging device with sufficient sensitivity to capture the spectral signatures, in the...

  9. High-Sensitivity Semiconductor Photocathodes for Space-Born UV Photon-Counting and Imaging Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Many UV photon-counting and imaging applications, including space-borne astronomy, missile tracking and guidance, UV spectroscopy for chemical/biological...

  10. 4x4 Individually Addressable InGaAs APD Arrays Optimized for Photon Counting Applications

    Science.gov (United States)

    Gu, Y.; Wu, X.; Wu, S.; Choa, F. S.; Yan, F.; Shu, P.; Krainak, M.

    2007-01-01

    InGaAs APDs with improved photon counting characteristics were designed and fabricated and their performance improvements were observed. Following the results, a 4x4 individually addressable APD array was designed, fabricated, and results are reported.

  11. Turn-key Near-Infrared Photon-Counting Detector Module for LIDAR Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to design and deliver a turn-key photon counting detector module for near-infrared wavelengths, based on large-area InGaAs/InP avalanche photodiodes...

  12. Highly Sensitive Photon Counting Detectors for Deep Space Optical Communications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A new type of a photon-counting photodetector is proposed to advance the state-of the-art in deep space optical communications technology. The proposed detector...

  13. Improving the counting efficiency in time-correlated single photon counting experiments by dead-time optimization

    Energy Technology Data Exchange (ETDEWEB)

    Peronio, P.; Acconcia, G.; Rech, I.; Ghioni, M. [Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy)

    2015-11-15

    Time-Correlated Single Photon Counting (TCSPC) has been long recognized as the most sensitive method for fluorescence lifetime measurements, but often requiring “long” data acquisition times. This drawback is related to the limited counting capability of the TCSPC technique, due to pile-up and counting loss effects. In recent years, multi-module TCSPC systems have been introduced to overcome this issue. Splitting the light into several detectors connected to independent TCSPC modules proportionally increases the counting capability. Of course, multi-module operation also increases the system cost and can cause space and power supply problems. In this paper, we propose an alternative approach based on a new detector and processing electronics designed to reduce the overall system dead time, thus enabling efficient photon collection at high excitation rate. We present a fast active quenching circuit for single-photon avalanche diodes which features a minimum dead time of 12.4 ns. We also introduce a new Time-to-Amplitude Converter (TAC) able to attain extra-short dead time thanks to the combination of a scalable array of monolithically integrated TACs and a sequential router. The fast TAC (F-TAC) makes it possible to operate the system towards the upper limit of detector count rate capability (∼80 Mcps) with reduced pile-up losses, addressing one of the historic criticisms of TCSPC. Preliminary measurements on the F-TAC are presented and discussed.

  14. Quantum Non-Demolition Counting of Photons in a Cavity

    Science.gov (United States)

    Haroche, S.; Guerlin, C.; Bernu, J.; Deleglise, S.; Sayrin, C.; Gleyzes, S.; Kuhr, S.; Brune, M.; Raimond, J.-M.

    2008-04-01

    The photons of a microwave field stored in a high-Q cavity are detected non-destructively by a beam of circular Rydberg atoms crossing the cavity one by one. The field collapses into a Fock state as information is progressively extracted by the atoms. The photon number subsequently decays through a succession of quantum jumps under the effect of cavity damping. The QND detection of photons could be used for the preparation and study of various kinds of non-classical fields localized in one or two cavities.

  15. Photon counting passive 3D image sensing for automatic target recognition.

    Science.gov (United States)

    Yeom, Seokwon; Javidi, Bahram; Watson, Edward

    2005-11-14

    In this paper, we propose photon counting three-dimensional (3D) passive sensing and object recognition using integral imaging. The application of this approach to 3D automatic target recognition (ATR) is investigated using both linear and nonlinear matched filters. We find there is significant potential of the proposed system for 3D sensing and recognition with a low number of photons. The discrimination capability of the proposed system is quantified in terms of discrimination ratio, Fisher ratio, and receiver operating characteristic (ROC) curves. To the best of our knowledge, this is the first report on photon counting 3D passive sensing and ATR with integral imaging.

  16. A miniaturized 4 K platform for superconducting infrared photon counting detectors

    Science.gov (United States)

    Gemmell, Nathan R.; Hills, Matthew; Bradshaw, Tom; Rawlings, Tom; Green, Ben; Heath, Robert M.; Tsimvrakidis, Konstantinos; Dobrovolskiy, Sergiy; Zwiller, Val; Dorenbos, Sander N.; Crook, Martin; Hadfield, Robert H.

    2017-11-01

    We report on a miniaturized platform for superconducting infrared photon counting detectors. We have implemented a fibre-coupled superconducting nanowire single photon detector in a Stirling/Joule-Thomson platform with a base temperature of 4.2 K. We have verified a cooling power of 4 mW at 4.7 K. We report 20% system detection efficiency at 1310 nm wavelength at a dark count rate of 1 kHz. We have carried out compelling application demonstrations in single photon depth metrology and singlet oxygen luminescence detection.

  17. The LOFT wide field monitor

    DEFF Research Database (Denmark)

    Brandt, Søren; Hernanz, M.; Alvarez, L.

    2012-01-01

    be able to address fundamental questions about strong gravity in the vicinity of black holes and the equation of state of nuclear matter in neutron stars. The prime goal of the WFM will be to detect transient sources to be observed by the LAD. However, with its wide field of view and good energy...... to the community of ~100 gamma ray burst positions per year with a ~1 arcmin location accuracy within 30 s of the burst. This paper provides an overview of the design, configuration, and capabilities of the LOFT WFM instrument....

  18. Characterization of spectrometric photon-counting X-ray detectors at different pitches

    Science.gov (United States)

    Jurdit, M.; Brambilla, A.; Moulin, V.; Ouvrier-Buffet, P.; Radisson, P.; Verger, L.

    2017-09-01

    There is growing interest in energy-sensitive photon-counting detectors based on high flux X-ray imaging. Their potential applications include medical imaging, non-destructive testing and security. Innovative detectors of this type will need to count individual photons and sort them into selected energy bins, at several million counts per second and per mm2. Cd(Zn)Te detector grade materials with a thickness of 1.5 to 3 mm and pitches from 800 μm down to 200 μm were assembled onto interposer boards. These devices were tested using in-house-developed full-digital fast readout electronics. The 16-channel demonstrators, with 256 energy bins, were experimentally characterized by determining spectral resolution, count rate, and charge sharing, which becomes challenging at low pitch. Charge sharing correction was found to efficiently correct X-ray spectra up to 40 × 106 incident photons.s-1.mm-2.

  19. Athena Wide Field Imager key science drivers

    Science.gov (United States)

    Rau, Arne; Nandra, Kirpal; Aird, James; Comastri, Andrea; Dauser, Thomas; Merloni, Andrea; Pratt, Gabriel W.; Reiprich, Thomas H.; Fabian, Andy C.; Georgakakis, Antonis; Güdel, Manuel; RóŻańska, Agata; Sanders, Jeremy S.; Sasaki, Manami; Vaughan, Simon; Wilms, Jörn; Meidinger, Norbert

    2016-07-01

    The Wide Field Imager (WFI) is one of two instruments for the Advanced Telescope for High-ENergy Astrophysics (Athena). In this paper we summarise three of the many key science objectives for the WFI { the formation and growth of supermassive black holes, non-gravitational heating in clusters of galaxies, and spin measurements of stellar mass black holes { and describe their translation into the science requirements and ultimately instrument requirements. The WFI will be designed to provide excellent point source sensitivity and grasp for performing wide area surveys, surface brightness sensitivity, survey power, and absolute temperature and density calibration for in-depth studies of the outskirts of nearby clusters of galaxies and very good high-count rate capability, throughput, and low pile-up, paired with very good spectral resolution, for detailed explorations of bright Galactic compact objects.

  20. Adaptive depth imaging method based on photon counting LIDAR

    Science.gov (United States)

    He, Weiji; Feng, Zhenchao; Lin, Jie; Shen, Shanshan; Chen, Qian; Gu, Guohua; Zhou, Beibei

    2017-02-01

    For an unknown characteristic target scene, the laser radar system that uses single-photon detector cannot directly estimate the dwell time of every pixel. Therefore, as the difference of target reflectivity, depth estimation appears inadequate sampling or redundant sampling in the conventional imaging method of maximum likelihood estimation (MLE-CIM). In this work, an adaptive depth imaging method (ADIM) is presented. ADIM is capable to obtain the depth estimation of target and adaptively decide the dwell time of each pixel. The experimental results reveal that ADIM can accurately obtain the 3D depth image of target even at the condition of low signal-to-noise ratio.

  1. Spectroscopic micro-tomography of metallic-organic composites by means of photon-counting detectors

    Science.gov (United States)

    Pichotka, M.; Jakubek, J.; Vavrik, D.

    2015-12-01

    The presumed capabilities of photon counting detectors have aroused major expectations in several fields of research. In the field of nuclear imaging ample benefits over standard detectors are to be expected from photon counting devices. First of all a very high contrast, as has by now been verified in numerous experiments. The spectroscopic capabilities of photon counting detectors further allow material decomposition in computed tomography and therefore inherently adequate beam hardening correction. For these reasons measurement setups featuring standard X-ray tubes combined with photon counting detectors constitute a possible replacement of the much more cost intensive tomographic setups at synchrotron light-sources. The actual application of photon counting detectors in radiographic setups in recent years has been impeded by a number of practical issues, above all by restrictions in the detectors size. Currently two tomographic setups in Czech Republic feature photon counting large-area detectors (LAD) fabricated in Prague. The employed large area hybrid pixel-detector assemblies [1] consisting of 10×10/10×5 Timepix devices have a surface area of 143×143 mm2 / 143×71,5 mm2 respectively, suitable for micro-tomographic applications. In the near future LAD devices featuring the Medipix3 readout chip as well as heavy sensors (CdTe, GaAs) will become available. Data analysis is obtained by a number of in house software tools including iterative multi-energy volume reconstruction.In this paper tomographic analysis of of metallic-organic composites is employed to illustrate the capabilities of our technology. Other than successful material decomposition by spectroscopic tomography we present a method to suppress metal artefacts under certain conditions.

  2. Statistical evaluation of photon count rate data for nanoscale particle measurement in wastewaters.

    Science.gov (United States)

    Smeraldi, Josh; Ganesh, Rajagopalan; Safarik, Jana; Rosso, Diego

    2012-01-01

    The dynamic light scattering (DLS) technique can detect the concentration and size distribution of nanoscale particles in aqueous solutions by analyzing photon interactions. This study evaluated the applicability of using photon count rate data from DLS analyses for measuring levels of biogenic and manufactured nanoscale particles in wastewater. Statistical evaluations were performed using secondary wastewater effluent and a Malvern Zetasizer. Dynamic light scattering analyses were performed equally by two analysts over a period of two days using five dilutions and twelve replicates for each dilution. Linearity evaluation using the sixty sample analysis yielded a regression coefficient R(2) = 0.959. The accuracy analysis for various dilutions indicated a recovery of 100 ± 6%. Precision analyses indicated low variance coefficients for the impact of analysts, days, and within sample error. The variation by analysts was apparent only in the most diluted sample (intermediate precision ~12%), where the photon count rate was close to the instrument detection limit. The variation for different days was apparent in the two most concentrated samples, which indicated that wastewater samples must be analyzed for nanoscale particle measurement within the same day of collection. Upon addition of 10 mg l(-1) of nanosilica to wastewater effluent samples, the measured photon count rates were within 5% of the estimated values. The results indicated that photon count rate data can effectively complement various techniques currently available to detect nanoscale particles in wastewaters.

  3. A wide-field TCSPC FLIM system based on an MCP PMT with a delay-line anode

    OpenAIRE

    Becker, Wolfgang; Hirvonen, Liisa; Milnes, James; Conneely, Thomas; Jagutzki, Ottmar; Netz, Holger; Smietana, Stefan; Suhling, Klaus

    2016-01-01

    We report on the implementation of a wide-field time-correlated single photon counting (TCSPC) method for fluorescence lifetime imaging (FLIM). It is based on a 40 mm diameter crossed delay line anode detector, where the readout is performed by three standard TCSPC boards. Excitation is performed by a picosecond diode laser with 50 MHz repetition rate. The photon arrival timing is obtained directly from the microchannel plates, with an instrumental response of ∼190 to 230 ps full width at hal...

  4. IceBridge Merged Photon Counting Lidar/Profiler L4 Surface Slope and Elevations V001

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains geolocated surface elevation measurements captured over Antarctica using the Sigma Space Mapping Photon Counting Lidar and Riegl Laser...

  5. Photon-counting passive 3D image sensing for reconstruction and recognition of partially occluded objects.

    Science.gov (United States)

    Yeom, Seokwon; Javidi, Bahram; Lee, Chae-Wook; Watson, Edward

    2007-11-26

    In this paper, we discuss the reconstruction and the recognition of partially occluded objects using photon counting integral imaging (II). Irradiance scenes are numerically reconstructed for the reference target in three-dimensional (3D) space. Photon counting scenes are estimated for unknown input objects using maximum likelihood estimation (MLE) of Poisson parameter. We propose nonlinear matched filtering in 3D space to recognize partially occluded targets. The recognition performance is substantially improved from the nonlinear matched filtering of elemental images without 3D reconstruction. The discrimination capability is analyzed in terms of Fisher ratio (FR) and receiver operating characteristic (ROC) curves.

  6. Signal to noise ratio of energy selective x-ray photon counting systems with pileup.

    Science.gov (United States)

    Alvarez, Robert E

    2014-11-01

    To derive fundamental limits on the effect of pulse pileup and quantum noise in photon counting detectors on the signal to noise ratio (SNR) and noise variance of energy selective x-ray imaging systems. An idealized model of the response of counting detectors to pulse pileup is used. The model assumes a nonparalyzable response and delta function pulse shape. The model is used to derive analytical formulas for the noise and energy spectrum of the recorded photons with pulse pileup. These formulas are first verified with a Monte Carlo simulation. They are then used with a method introduced in a previous paper [R. E. Alvarez, "Near optimal energy selective x-ray imaging system performance with simple detectors," Med. Phys. 37, 822-841 (2010)] to compare the signal to noise ratio with pileup to the ideal SNR with perfect energy resolution. Detectors studied include photon counting detectors with pulse height analysis (PHA), detectors that simultaneously measure the number of photons and the integrated energy (NQ detector), and conventional energy integrating and photon counting detectors. The increase in the A-vector variance with dead time is also computed and compared to the Monte Carlo results. A formula for the covariance of the NQ detector is developed. The validity of the constant covariance approximation to the Cramèr-Rao lower bound (CRLB) for larger counts is tested. The SNR becomes smaller than the conventional energy integrating detector (Q) SNR for 0.52, 0.65, and 0.78 expected number photons per dead time for counting (N), two, and four bin PHA detectors, respectively. The NQ detector SNR is always larger than the N and Q SNR but only marginally so for larger dead times. Its noise variance increases by a factor of approximately 3 and 5 for the A1 and A2 components as the dead time parameter increases from 0 to 0.8 photons per dead time. With four bin PHA data, the increase in variance is approximately 2 and 4 times. The constant covariance approximation

  7. A photon counting and a squeezing measurement method by the exact absorption and dispersion spectrum of Λ-type Atoms.

    Science.gov (United States)

    Naeimi, Ghasem; Alipour, Samira; Khademi, Siamak

    2016-01-01

    Recently, the master equations for the interaction of two-mode photons with a three-level Λ-type atom are exactly solved for the coherence terms. In this paper the exact absorption spectrum is applied for the presentation of a non-demolition photon counting method, for a few number of coupling photons, and its benefits are discussed. The exact scheme is also applied where the coupling photons are squeezed and the photon counting method is also developed for the measurement of the squeezing parameter of the coupling photons.

  8. Towards a miniaturized photon counting laser altimeter and stereoscopic camera instrument suite for microsatellites

    NARCIS (Netherlands)

    Moon, S.G.; Hannemann, S.; Collon, M.; Wielinga, K.; Kroesbergen, E.; Harris, J.; Gill, E.K.A.; Maessen, D.C.

    2009-01-01

    In the following we review the optimization for microsatellite deployment of a highly integrated payload suite comprising a high resolution camera, an additional camera for stereoscopic imaging, and a single photon counting laser altimeter. This payload suite, the `Stereo Imaging Laser Altimeter'

  9. Characterizing time decay of bibenzyl scintillator using time correlated single photon counting

    Energy Technology Data Exchange (ETDEWEB)

    Hatarik, R.; Bernstein, L. A.; Caggiano, J. A.; Carman, M. L.; Schneider, D. H. G.; Zaitseva, N. P. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Wiedeking, M. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); iThemba LABS, P.O. Box 722, 7129 Somerset West (South Africa)

    2012-10-15

    The time decay of several scintillation materials has been measured using the time correlated single photon counting method and a new organic crystal with a highly suppressed delayed light has been identified. Results comparing the light decay of the bibenzyl crystal with a xylene based detector, which is currently installed at National Ignition Facility will be presented.

  10. Performance of a compact position-sensitive photon counting detector with image charge coupling to an air-side anode

    Science.gov (United States)

    Jagutzki, O.; Czasch, A.; Schössler, S.

    2013-05-01

    We discuss a novel micro-channel plate (MCP) photomultiplier with resistive screen (RS-PMT) as a detection device for space- and time-correlated single photon counting, illustrated by several applications. The photomultiplier tube resembles a standard image intensifier device. However, the rear phosphor screen is replaced by a ceramic "window" with resistive coating. The MCP output is transferred through the ceramic plate to the read-out electrode (on the air side) via capacity-coupling of the image charge. This design allows for an easy reconfiguration of the read-out electrode (e.g. pixel, charge-sharing, cross-strip, delay-line) without breaking the vacuum for optimizing the detector performance towards a certain task. It also eases the design and manufacturing process of such a multi-purpose photomultiplier tube. Temporal and spatial resolutions well below 100 ps and 100 microns, respectively, have been reported at event rates as high as 1 MHz, for up to 40 mm effective detection diameter. In this paper we will discuss several applications like wide-field fluorescence microscopy and dual γ/fast-neutron radiography for air cargo screening and conclude with an outlook on large-area detectors for thermal neutrons based on MCPs.

  11. A single-photon counting “edge-on” silicon detector for synchrotron radiation mammography

    Science.gov (United States)

    Rigon, L.; Arfelli, F.; Astolfo, A.; Bergamaschi, A.; Dreossi, D.; Longo, R.; Menk, R.-H.; Schmitt, B.; Vallazza, E.; Castelli, E.

    2009-09-01

    The Phase Imaging for Clinical Application with Silicon detector and Synchrotron radiatiOn (PICASSO) project is developing an "edge-on" silicon microstrip detector for mammography with synchrotron radiation. The sensor is equipped with a fast single-photon counting electronics based on the Mythen-II application-specific integrated circuit. A first prototype has been assembled and tested at the SYnchrotron Radiation for MEdical Physics (SYRMEP) beamline at Elettra in Trieste, Italy. The first results are presented in this study including evidence of high-rate single-photon counting with negligible losses up to 1.2×10 6 incident photons per pixel per second; spatial resolution consistent with the pixel aperture (0.3 mm×0.05 mm); high-quality imaging of test-objects, obtained with a dose comparable to the one delivered in modern full-field digital mammographic systems.

  12. Hanbury Brown-Twiss effect without two-photon interference in photon counting regime.

    Science.gov (United States)

    Bai, Bin; Zhou, Yu; Liu, Ruifeng; Zheng, Huaibin; Wang, Yunlong; Li, Fuli; Xu, Zhuo

    2017-05-19

    From quantum point of view, Hanbury Brown-Twiss effect is a result of constructive-destructive two-photon interference. There should be no Hanbury Brown-Twiss effect if there was no two-photon interference. In this paper, we observed Hanbury Brown- Twiss effect in a specially designed experiment, in which two-photon interference is impossible by keeping only one two-photon probability amplitude in the experimental scheme. However, our experimental results can still be interpreted by Glauber's quantum optical coherence theory. The researches in our paper are helpful to understand the physics of the second-order coherence of light, especially the physics of Hanbury Brown-Twiss effect.

  13. K-edge energy-based calibration method for photon counting detectors

    Science.gov (United States)

    Ge, Yongshuai; Ji, Xu; Zhang, Ran; Li, Ke; Chen, Guang-Hong

    2018-01-01

    In recent years, potential applications of energy-resolved photon counting detectors (PCDs) in the x-ray medical imaging field have been actively investigated. Unlike conventional x-ray energy integration detectors, PCDs count the number of incident x-ray photons within certain energy windows. For PCDs, the interactions between x-ray photons and photoconductor generate electronic voltage pulse signals. The pulse height of each signal is proportional to the energy of the incident photons. By comparing the pulse height with the preset energy threshold values, x-ray photons with specific energies are recorded and sorted into different energy bins. To quantitatively understand the meaning of the energy threshold values, and thus to assign an absolute energy value to each energy bin, energy calibration is needed to establish the quantitative relationship between the threshold values and the corresponding effective photon energies. In practice, the energy calibration is not always easy, due to the lack of well-calibrated energy references for the working energy range of the PCDs. In this paper, a new method was developed to use the precise knowledge of the characteristic K-edge energy of materials to perform energy calibration. The proposed method was demonstrated using experimental data acquired from three K-edge materials (viz., iodine, gadolinium, and gold) on two different PCDs (Hydra and Flite, XCounter, Sweden). Finally, the proposed energy calibration method was further validated using a radioactive isotope (Am-241) with a known decay energy spectrum.

  14. Comparison of contrast enhancement methods using photon counting detector in spectral mammography

    Science.gov (United States)

    Kim, Hyemi; Park, Su-Jin; Jo, Byungdu; Kim, Dohyeon; Kim, Hee-Joung

    2016-03-01

    The photon counting detector with energy discrimination capabilities provides the spectral information and energy of each photon with single exposure. The energy-resolved photon counting detector makes it possible to improve the visualization of contrast agent by selecting the appropriate energy window. In this study, we simulated the photon counting spectral mammography system using a Monte Carlo method and compared three contrast enhancement methods (K-edge imaging, projection-based energy weighting imaging, and dual energy subtraction imaging). For the quantitative comparison, we used the homogeneous cylindrical breast phantom as a reference and the heterogeneous XCAT breast phantom. To evaluate the K-edge imaging methods, we obtained images by increasing the energy window width based on K-edge absorption energy of iodine. The iodine which has the K-edge discontinuity in the attenuation coefficient curve can be separated from the background. The projection-based energy weighting factor was defined as the difference in the transmissions between the contrast agent and the background. Each weighting factor as a function of photon energy was calculated and applied to the each energy bin. For the dual energy subtraction imaging, we acquired two images with below and above the iodine K-edge energy using single exposure. To suppress the breast tissue in high energy images, the weighting factor was applied as the ratio of the linear attenuation coefficients of the breast tissue at high and low energies. Our results demonstrated the CNR improvement of the K-edge imaging was the highest among the three methods. These imaging techniques based on the energy-resolved photon counting detector improved image quality with the spectral information.

  15. Investigation of energy weighting using an energy discriminating photon counting detector for breast CT

    Energy Technology Data Exchange (ETDEWEB)

    Kalluri, Kesava S. [Department of Radiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655 and Biomedical Engineering and Biotechnology Program, University of Massachusetts, Lowell, One University Avenue, Lowell, Massachusetts 01854 (United States); Mahd, Mufeed [Biomedical Engineering and Biotechnology Program, University of Massachusetts, Lowell, One University Avenue, Lowell, Massachusetts 01854 (United States); Glick, Stephen J. [Department of Radiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655 (United States)

    2013-08-15

    Purpose: Breast CT is an emerging imaging technique that can portray the breast in 3D and improve visualization of important diagnostic features. Early clinical studies have suggested that breast CT has sufficient spatial and contrast resolution for accurate detection of masses and microcalcifications in the breast, reducing structural overlap that is often a limiting factor in reading mammographic images. For a number of reasons, image quality in breast CT may be improved by use of an energy resolving photon counting detector. In this study, the authors investigate the improvements in image quality obtained when using energy weighting with an energy resolving photon counting detector as compared to that with a conventional energy integrating detector.Methods: Using computer simulation, realistic CT images of multiple breast phantoms were generated. The simulation modeled a prototype breast CT system using an amorphous silicon (a-Si), CsI based energy integrating detector with different x-ray spectra, and a hypothetical, ideal CZT based photon counting detector with capability of energy discrimination. Three biological signals of interest were modeled as spherical lesions and inserted into breast phantoms; hydroxyapatite (HA) to represent microcalcification, infiltrating ductal carcinoma (IDC), and iodine enhanced infiltrating ductal carcinoma (IIDC). Signal-to-noise ratio (SNR) of these three lesions was measured from the CT reconstructions. In addition, a psychophysical study was conducted to evaluate observer performance in detecting microcalcifications embedded into a realistic anthropomorphic breast phantom.Results: In the energy range tested, improvements in SNR with a photon counting detector using energy weighting was higher (than the energy integrating detector method) by 30%–63% and 4%–34%, for HA and IDC lesions and 12%–30% (with Al filtration) and 32%–38% (with Ce filtration) for the IIDC lesion, respectively. The average area under the receiver

  16. Investigation of energy weighting using an energy discriminating photon counting detector for breast CT.

    Science.gov (United States)

    Kalluri, Kesava S; Mahd, Mufeed; Glick, Stephen J

    2013-08-01

    Breast CT is an emerging imaging technique that can portray the breast in 3D and improve visualization of important diagnostic features. Early clinical studies have suggested that breast CT has sufficient spatial and contrast resolution for accurate detection of masses and microcalcifications in the breast, reducing structural overlap that is often a limiting factor in reading mammographic images. For a number of reasons, image quality in breast CT may be improved by use of an energy resolving photon counting detector. In this study, the authors investigate the improvements in image quality obtained when using energy weighting with an energy resolving photon counting detector as compared to that with a conventional energy integrating detector. Using computer simulation, realistic CT images of multiple breast phantoms were generated. The simulation modeled a prototype breast CT system using an amorphous silicon (a-Si), CsI based energy integrating detector with different x-ray spectra, and a hypothetical, ideal CZT based photon counting detector with capability of energy discrimination. Three biological signals of interest were modeled as spherical lesions and inserted into breast phantoms; hydroxyapatite (HA) to represent microcalcification, infiltrating ductal carcinoma (IDC), and iodine enhanced infiltrating ductal carcinoma (IIDC). Signal-to-noise ratio (SNR) of these three lesions was measured from the CT reconstructions. In addition, a psychophysical study was conducted to evaluate observer performance in detecting microcalcifications embedded into a realistic anthropomorphic breast phantom. In the energy range tested, improvements in SNR with a photon counting detector using energy weighting was higher (than the energy integrating detector method) by 30%-63% and 4%-34%, for HA and IDC lesions and 12%-30% (with Al filtration) and 32%-38% (with Ce filtration) for the IIDC lesion, respectively. The average area under the receiver operating characteristic curve

  17. High-speed, FPGA-based photon-counting fluorometer with high data-gathering efficiency

    Science.gov (United States)

    Iwata, Tetsuo; Mizuno, Takahiko

    2017-07-01

    We have developed a low-cost, high-efficiency fluorometer using a field-programmable gate array and simultaneous detection of photoelectron pulse trains. The fluorometer covers a time span of 64 ns with a resolution of 1.0 ns/channel. Depending on the number of channels, the signal-gathering efficiency was improved by a factor of 100 relative to that of conventional time-correlated single-photon counting. This assumes that the fluorescence intensity is moderately high but still requires photon counting. The dead time for building a histogram has been reduced to zero, which means that the upper limit of the repetitive excitation frequency could exceed that determined by the time span. We describe instrumental details and demonstrate the basic performance.

  18. A high-throughput, multi-channel photon-counting detector with picosecond timing

    CERN Document Server

    Lapington, J S; Miller, G M; Ashton, T J R; Jarron, P; Despeisse, M; Powolny, F; Howorth, J; Milnes, J

    2009-01-01

    High-throughput photon counting with high time resolution is a niche application area where vacuum tubes can still outperform solid-state devices. Applications in the life sciences utilizing time-resolved spectroscopies, particularly in the growing field of proteomics, will benefit greatly from performance enhancements in event timing and detector throughput. The HiContent project is a collaboration between the University of Leicester Space Research Centre, the Microelectronics Group at CERN, Photek Ltd., and end-users at the Gray Cancer Institute and the University of Manchester. The goal is to develop a detector system specifically designed for optical proteomics, capable of high content (multi-parametric) analysis at high throughput. The HiContent detector system is being developed to exploit this niche market. It combines multi-channel, high time resolution photon counting in a single miniaturized detector system with integrated electronics. The combination of enabling technologies; small pore microchanne...

  19. Approaching the Ultimate Limits of Communication Efficiency with a Photon-Counting Detector

    Science.gov (United States)

    Erkmen, Baris; Moision, Bruce; Dolinar, Samuel J.; Birnbaum, Kevin M.; Divsalar, Dariush

    2012-01-01

    Coherent states achieve the Holevo capacity of a pure-loss channel when paired with an optimal measurement, but a physical realization of this measurement is as of yet unknown, and it is also likely to be of high complexity. In this paper, we focus on the photon-counting measurement and study the photon and dimensional efficiencies attainable with modulations over classical- and nonclassical-state alphabets. We first review the state-of-the-art coherent on-off-keying (OOK) with a photoncounting measurement, illustrating its asymptotic inefficiency relative to the Holevo limit. We show that a commonly made Poisson approximation in thermal noise leads to unbounded photon information efficiencies, violating the conjectured Holevo limit. We analyze two binary-modulation architectures that improve upon the dimensional versus photon efficiency tradeoff achievable with conventional OOK. We show that at high photon efficiency these architectures achieve an efficiency tradeoff that differs from the best possible tradeoff--determined by the Holevo capacity--by only a constant factor. The first architecture we analyze is a coherent-state transmitter that relies on feedback from the receiver to control the transmitted energy. The second architecture uses a single-photon number-state source.

  20. Development of Data Acquisition Methods for an FPGA-Based Photon Counting Detector

    Science.gov (United States)

    Ambily, S.; Sarpotdar, Mayuresh; Mathew, Joice; Sreejith, A. G.; Nirmal, K.; Prakash, Ajin; Safonova, Margarita; Murthy, Jayant

    MCP-based detectors are widely used in the ultraviolet (UV) region due to their low noise levels, high sensitivity and good spatial and temporal resolution. We have developed a compact near-UV (NUV) detector for high-altitude balloon and space flights, using off-the-shelf MCP, CMOS sensor, and optics. The detector is designed to be capable of working in the direct frame transfer mode as well in the photon counting mode for single photon event detection. The identification and centroiding of each photon event are done using an FPGA-based data acquisition and real-time processing system. In this paper, we discuss various algorithms and methods used in both operating modes, as well as their implementation on the hardware.

  1. Position and time sensitive photon counting detector with image charge delay-line readout

    Science.gov (United States)

    Czasch, Achim; Dangendorf, Volker; Milnes, James; Schössler, Sven; Lauck, Ronald; Spillmann, Uwe; Howorth, Jon; Jagutzki, Ottmar

    2007-09-01

    We have developed single photon counting image intensifier tubes combining position and time information read-out with at least 500x500 pixels and sub-nanosecond time resolution. This image intensifier type uses a resistive screen instead of a phosphor screen and the image charge pickup anode is placed outside the sealed tube. We present a novel delay-line anode design which allows for instance detecting simultaneously arriving pairs of photons. Due to the very low background this technique is suited for applications with very low light intensity and especially if a precise time tagging for each photon is required. We show results obtained with several anode types on a 25 mm image intensifier tube and a 40 mm open-face MCP detector and discuss the performance in neutron radiography, e.g. for homeland security, and the prospects for applications like Fluorescence Life-time Imaging Microscopy (FLIM), astronomy and X-ray polarimetry.

  2. Linear Mode HgCdTe Avalanche Photodiodes for Photon Counting Applications

    Science.gov (United States)

    Sullivan, William, III; Beck, Jeffrey; Scritchfield, Richard; Skokan, Mark; Mitra, Pradip; Sun, Xiaoli; Abshire, James; Carpenter, Darren; Lane, Barry

    2015-01-01

    An overview of recent improvements in the understanding and maturity of linear mode photon counting with HgCdTe electron-initiated avalanche photodiodes is presented. The first HgCdTe LMPC 2x8 format array fabricated in 2011 with 64 micron pitch was a remarkable success in terms of demonstrating a high single photon signal to noise ratio of 13.7 with an excess noise factor of 1.3-1.4, a 7 ns minimum time between events, and a broad spectral response extending from 0.4 micron to 4.2 micron. The main limitations were a greater than 10x higher false event rate than expected of greater than 1 MHz, a 5-7x lower than expected APD gain, and a photon detection efficiency of only 50% when greater than 60% was expected. This paper discusses the reasons behind these limitations and the implementation of their mitigations with new results.

  3. A Multispectral Photon-Counting Double Random Phase Encoding Scheme for Image Authentication

    Directory of Open Access Journals (Sweden)

    Faliu Yi

    2014-05-01

    Full Text Available In this paper, we propose a new method for color image-based authentication that combines multispectral photon-counting imaging (MPCI and double random phase encoding (DRPE schemes. The sparsely distributed information from MPCI and the stationary white noise signal from DRPE make intruder attacks difficult. In this authentication method, the original multispectral RGB color image is down-sampled into a Bayer image. The three types of color samples (red, green and blue color in the Bayer image are encrypted with DRPE and the amplitude part of the resulting image is photon counted. The corresponding phase information that has nonzero amplitude after photon counting is then kept for decryption. Experimental results show that the retrieved images from the proposed method do not visually resemble their original counterparts. Nevertheless, the original color image can be efficiently verified with statistical nonlinear correlations. Our experimental results also show that different interpolation algorithms applied to Bayer images result in different verification effects for multispectral RGB color images.

  4. Update on Linear Mode Photon Counting with the HgCdTe Linear Mode Avalanche Photodiode

    Science.gov (United States)

    Beck, Jeffrey D.; Kinch, Mike; Sun, Xiaoli

    2014-01-01

    The behavior of the gain-voltage characteristic of the mid-wavelength infrared cutoff HgCdTe linear mode avalanche photodiode (e-APD) is discussed both experimentally and theoretically as a function of the width of the multiplication region. Data are shown that demonstrate a strong dependence of the gain at a given bias voltage on the width of the n- gain region. Geometrical and fundamental theoretical models are examined to explain this behavior. The geometrical model takes into account the gain-dependent optical fill factor of the cylindrical APD. The theoretical model is based on the ballistic ionization model being developed for the HgCdTe APD. It is concluded that the fundamental theoretical explanation is the dominant effect. A model is developed that combines both the geometrical and fundamental effects. The model also takes into account the effect of the varying multiplication width in the low bias region of the gain-voltage curve. It is concluded that the lower than expected gain seen in the first 2 × 8 HgCdTe linear mode photon counting APD arrays, and higher excess noise factor, was very likely due to the larger than typical multiplication region length in the photon counting APD pixel design. The implications of these effects on device photon counting performance are discussed.

  5. Michelson wide-field stellar interferometry

    NARCIS (Netherlands)

    Montilla, I.

    2004-01-01

    The main goal of this thesis is to develop a system to permit wide field operation of Michelson Interferometers. A wide field of view is very important in applications such as the observation of extended or multiple objects, the fringe acquisition and/ or tracking on a nearby unresolved object, and

  6. Beam hardening artefacts in computed tomography with photon counting, charge integrating and energy weighting detectors: a simulation study

    Energy Technology Data Exchange (ETDEWEB)

    Shikhaliev, Polad M [Department of Radiological Sciences, University of California, Irvine, CA 92697 (United States)

    2005-12-21

    Photon counting x-ray imaging provides efficient rejection of the electronics noise, no pulse height (Swank) noise, less noise due to optimal photon energy weighting and the possibility of energy resolved image acquisition. These advantages apply also to CT when projection data are acquired using a photon counting detector. However, photon counting detectors assign a weighting factor of 1 to all detected photons whereas the weighting factor of a charge integrating detector is proportional to the energy of the detected photon. Therefore, data collected by photon counting and charge integrating detectors represent the 'hardening' of the photon beam passed through the object differently. This affects the beam hardening artefacts in the reconstructed CT images. This work represents the first comparative evaluation of the effect of photon counting, charge integrating and energy weighting photon detectors on beam hardening artefacts in CT. Beam hardening artefacts in CT images were evaluated for 20 cm and 14 cm diameter water cylinders with bone and low contrast inserts, at 120 kVp and 90 kVp x-ray tube voltages, respectively. It was shown that charge integrating results in 1.8% less beam hardening artefacts from bone inserts (i.e., CT numbers in the 'shadow' of the bone are less by 1.8% as compared to CT numbers over the periphery of the image), as compared to photon counting. However, optimal photon energy weighting, which provides highest SNR, results in 7.7% higher beam hardening artefacts from bone inserts as compared to photon counting. The magnitude of the 'cupping' artefacts was lower by 1% for charge integrating and higher by 6.1% for energy weighting acquisitions as compared to photon counting. Only the photon counting systems provide an accurate representation of the beam hardening effect due to its flat energy weighting. Because of their energy dependent weighting factors, the charge integrating and energy weighting systems do

  7. K-edge energy-based calibration method for photon counting detectors.

    Science.gov (United States)

    Ge, Yongshuai; Ji, Xu; Zhang, Ran; Li, Ke; Chen, Guang-Hong

    2017-10-26

    In recent years, potential applications of energy-resolved photon counting detectors (PCDs) in the x-ray medical imaging field have been actively investigated. Unlike conventional x-ray energy integration detectors, PCDs count the number of incident x-ray photons within certain energy windows. For PCDs, the interactions between x-ray photons and photoconductor generate electronic voltage pulse signals. The pulse height of each signal is proportional to the energy of the incident photons. By comparing the pulse height with the preset energy threshold values, x-ray photons with specific energies are recorded and sorted into different energy bins. To quantitatively understand the meaning of the energy threshold values, and thus to assign an absolute energy value to each energy bin, energy calibration is needed to establish the quantitative relationship between the threshold values and the corresponding effective photon energies. In practice, the energy calibration is not always easy, due to the lack of well-calibrated energy references for the working energy range of the PCDs. In this paper, a new method was developed to use the precise knowledge of the characteristic K-edge energy of materials to perform energy calibration. The proposed method was demonstrated using experimental data acquired from three K-edge materials (viz., iodine, gadolinium, and gold) on two different PCDs (Hydra and Flite, XCounter, Sweden). Finally, the proposed energy calibration method was further validated using a radioactive isotope (Am-241) with a known decay energy spectrum. © 2017 Institute of Physics and Engineering in Medicine.

  8. Simultaneous continuous measurement of photon-counting and homodyne detection on a free photon field: dynamics of state reduction and mutual influence of measurement backaction

    OpenAIRE

    Kuramochi, Yui; Watanabe, Yu; Ueda, Masahito

    2012-01-01

    We analyze a simultaneous continuous measurement of photon-counting and homodyne detection. The stochastic master equation or stochastic Schr\\"odinger equation describing the measurement process includes both jump-type and diffusive-type stochastic increments. Analytic expressions of the wave function conditioned on homodyne and photon-counting records are obtained, yielding the probability density distributions and generating functions of the measurement records. Formula for the expectation ...

  9. A dynamic attenuator improves spectral imaging with energy-discriminating, photon counting detectors.

    Science.gov (United States)

    Hsieh, Scott S; Pelc, Norbert J

    2015-03-01

    Energy-discriminating, photon counting (EDPC) detectors have high potential in spectral imaging applications but exhibit degraded performance when the incident count rate approaches or exceeds the characteristic count rate of the detector. In order to reduce the requirements on the detector, we explore the strategy of modulating the X-ray flux field using a recently proposed dynamic, piecewise-linear attenuator. A previous paper studied this modulation for photon counting detectors but did not explore the impact on spectral applications. In this work, we modeled detection with a bipolar triangular pulse shape (Taguchi et al., 2011) and estimated the Cramer-Rao lower bound (CRLB) of the variance of material selective and equivalent monoenergetic images, assuming deterministic errors at high flux could be corrected. We compared different materials for the dynamic attenuator and found that rare earth elements, such as erbium, outperformed previously proposed materials such as iron in spectral imaging. The redistribution of flux reduces the variance or dose, consistent with previous studies on benefits with conventional detectors. Numerical simulations based on DICOM datasets were used to assess the impact of the dynamic attenuator for detectors with several different characteristic count rates. The dynamic attenuator reduced the peak incident count rate by a factor of 4 in the thorax and 44 in the pelvis, and a 10 Mcps/mm (2) EDPC detector with dynamic attenuator provided generally superior image quality to a 100 Mcps/mm (2) detector with reference bowtie filter for the same dose. The improvement is more pronounced in the material images.

  10. An optimised method for material identification using a photon counting detector

    Energy Technology Data Exchange (ETDEWEB)

    Beldjoudi, Guillaume, E-mail: guillaume.beldjoudi@cea.fr [LETI MINATEC Campus, CEA Grenoble, 17, rue des Martyrs, 38054 Grenoble, Cedex 9 (France); Rebuffel, Veronique; Verger, Loieck [LETI MINATEC Campus, CEA Grenoble, 17, rue des Martyrs, 38054 Grenoble, Cedex 9 (France); Kaftandjian, Valerie [CNDRI - INSA Lyon, 20, Avenue Albert Einstein, 69621 Villeurbanne, Cedex (France); Rinkel, Jean [LETI MINATEC Campus, CEA Grenoble, 17, rue des Martyrs, 38054 Grenoble, Cedex 9 (France)

    2012-01-21

    X-ray photon counting detectors have become a competitive alternative to energy integrating systems in certain domains. However, processing methods currently used in radiography for investigating the composition of an object are an extension of dual energy methods and have started to show their limits with an increasing number of counting windows (bins). Thus, in a context of material recognition for homeland security, this study aims to introduce a new data processing method suitable for any type of detector, in integrating or counting mode, regardless of the number of bins. Additionally, a criterion to quantify the influence of the number of counting windows as well as the influence of their threshold position has been developed. The optimisation process is conducted in simulation by considering ideal detectors, and the results, for detectors with m=2, 3, 4 and 5 counting windows, are compared to those obtained with an analytical criterion developed in the literature and adapted to our study context. Both methods give identical results. In the final part, the performances of a spectrometric detector (energy windows width of 1 keV) and of optimised systems with m=2, 3, 4 and 5 bins are analysed for homogeneous plastic identification. The results show an increase in performance with increase in bin number until the performance level of the spectrometric detector is reached. Moreover, a discussion on the optimisation robustness as a function of material thickness to be identified is presented. The spectrometric detector, which does not require any optimisation of the bins thresholds, appears then to be a candidate of choice for material recognition when using X-ray photon counting detectors.

  11. On Approaching the Ultimate Limits of Communication Using a Photon-Counting Detector

    Science.gov (United States)

    Erkmen, Baris I.; Moision, Bruce E.; Dolinar, Samuel J.; Birnbaum, Kevin M.; Divsalar, Dariush

    2012-01-01

    Coherent states achieve the Holevo capacity of a pure-loss channel when paired with an optimal measurement, but a physical realization of this measurement scheme is as of yet unknown, and it is also likely to be of high complexity. In this paper, we focus on the photon-counting measurement and study the photon and dimensional efficiencies attainable with modulations over classical- and nonclassical-state alphabets. We analyze two binary modulation architectures that improve upon the dimensional versus photon efficiency tradeoff achievable with the state-of-the-art coherent-state on-off keying modulation. We show that at high photon efficiency these architectures achieve an efficiency tradeoff that differs from the best possible tradeoff--determined by the Holevo capacity--by only a constant factor. The first architecture we analyze is a coherent-state transmitter that relies on feedback from the receiver to control the transmitted energy. The second architecture uses a single-photon number-state source.

  12. The Wide Field Imager instrument for Athena

    Science.gov (United States)

    Meidinger, Norbert; Barbera, Marco; Emberger, Valentin; Fürmetz, Maria; Manhart, Markus; Müller-Seidlitz, Johannes; Nandra, Kirpal; Plattner, Markus; Rau, Arne; Treberspurg, Wolfgang

    2017-08-01

    ESA's next large X-ray mission ATHENA is designed to address the Cosmic Vision science theme 'The Hot and Energetic Universe'. It will provide answers to the two key astrophysical questions how does ordinary matter assemble into the large-scale structures we see today and how do black holes grow and shape the Universe. The ATHENA spacecraft will be equipped with two focal plane cameras, a Wide Field Imager (WFI) and an X-ray Integral Field Unit (X-IFU). The WFI instrument is optimized for state-of-the-art resolution spectroscopy over a large field of view of 40 amin x 40 amin and high count rates up to and beyond 1 Crab source intensity. The cryogenic X-IFU camera is designed for high-spectral resolution imaging. Both cameras share alternately a mirror system based on silicon pore optics with a focal length of 12 m and large effective area of about 2 m2 at an energy of 1 keV. Although the mission is still in phase A, i.e. studying the feasibility and developing the necessary technology, the definition and development of the instrumentation made already significant progress. The herein described WFI focal plane camera covers the energy band from 0.2 keV to 15 keV with 450 μm thick fully depleted back-illuminated silicon active pixel sensors of DEPFET type. The spatial resolution will be provided by one million pixels, each with a size of 130 μm x 130 μm. The time resolution requirement for the WFI large detector array is 5 ms and for the WFI fast detector 80 μs. The large effective area of the mirror system will be completed by a high quantum efficiency above 90% for medium and higher energies. The status of the various WFI subsystems to achieve this performance will be described and recent changes will be explained here.

  13. Characteristic evaluation of a novel CdTe photon counting detector for X-ray imaging

    Science.gov (United States)

    Cho, Hyo-Min; Kim, Hee-Joung; Ryu, Hyun-Ju; Choi, Yu-Na

    2013-07-01

    The purpose of this paper is to investigate the characteristics of a novel cadmium-telluride (CdTe) photon counting detector optimized for X-ray imaging applications. CdTe was studied as a potential detector material for hard X-ray and gamma-ray detection. In this study, we used a CdTe photon counting detector manufactured by AJAT Ltd. (PID 350, Finland) for the purposes of both X-ray and gamma-ray detection. However, it is noted that X-ray detection can be limited by the characteristics of gamma-ray detectors. For the investigation of the characteristics of a detector for X-ray imaging, the detector has been studied in terms of detector calibration, count rate, and pixel sensitivity variation by using a poly-energetic X-ray. The detector calibration was evaluated to determine the effects of offset, gain, and energy. An optimal calibration increases the accuracy of the output energy spectrum. The pixel sensitivity variation was evaluated using profiles of various rows and columns from white (with X-ray) and dark (without X-ray) images. The specific trend of each image was observed around the edges of the hybrids. These pixel variations of the CdTe sensor were corrected. The image quality was improved by using the optimal correction method based on an understanding of the pixel sensitivity variation. The maximum recorded count rate of the detector was measured in all pixels. The count rate was measured by setting the energy windows from just above the noise level to the maximum energy. The average count rate was fairly linear up to 1.6 × 106 cps/8 modules and saturated at about 2.2 × 106 cps/8 modules. In this paper, we present several characteristics of the detector and demonstrate the improved spectrum and image obtained after calibration and correction. These results show that the novel CdTe photon counting detector can be used in conventional X-ray imaging, but exhibits limitations when applied to spectral X-ray imaging.

  14. Wide-Field Imaging Using Nitrogen Vacancies

    Science.gov (United States)

    Englund, Dirk Robert (Inventor); Trusheim, Matthew Edwin (Inventor)

    2017-01-01

    Nitrogen vacancies in bulk diamonds and nanodiamonds can be used to sense temperature, pressure, electromagnetic fields, and pH. Unfortunately, conventional sensing techniques use gated detection and confocal imaging, limiting the measurement sensitivity and precluding wide-field imaging. Conversely, the present sensing techniques do not require gated detection or confocal imaging and can therefore be used to image temperature, pressure, electromagnetic fields, and pH over wide fields of view. In some cases, wide-field imaging supports spatial localization of the NVs to precisions at or below the diffraction limit. Moreover, the measurement range can extend over extremely wide dynamic range at very high sensitivity.

  15. Photon Counting Energy Dispersive Detector Arrays for X-ray Imaging

    Science.gov (United States)

    Iwanczyk, Jan S.; Nygård, Einar; Meirav, Oded; Arenson, Jerry; Barber, William C.; Hartsough, Neal E.; Malakhov, Nail; Wessel, Jan C.

    2009-01-01

    The development of an innovative detector technology for photon-counting in X-ray imaging is reported. This new generation of detectors, based on pixellated cadmium telluride (CdTe) and cadmium zinc telluride (CZT) detector arrays electrically connected to application specific integrated circuits (ASICs) for readout, will produce fast and highly efficient photon-counting and energy-dispersive X-ray imaging. There are a number of applications that can greatly benefit from these novel imagers including mammography, planar radiography, and computed tomography (CT). Systems based on this new detector technology can provide compositional analysis of tissue through spectroscopic X-ray imaging, significantly improve overall image quality, and may significantly reduce X-ray dose to the patient. A very high X-ray flux is utilized in many of these applications. For example, CT scanners can produce ~100 Mphotons/mm2/s in the unattenuated beam. High flux is required in order to collect sufficient photon statistics in the measurement of the transmitted flux (attenuated beam) during the very short time frame of a CT scan. This high count rate combined with a need for high detection efficiency requires the development of detector structures that can provide a response signal much faster than the transit time of carriers over the whole detector thickness. We have developed CdTe and CZT detector array structures which are 3 mm thick with 16×16 pixels and a 1 mm pixel pitch. These structures, in the two different implementations presented here, utilize either a small pixel effect or a drift phenomenon. An energy resolution of 4.75% at 122 keV has been obtained with a 30 ns peaking time using discrete electronics and a 57Co source. An output rate of 6×106 counts per second per individual pixel has been obtained with our ASIC readout electronics and a clinical CT X-ray tube. Additionally, the first clinical CT images, taken with several of our prototype photon-counting and energy

  16. Experimental study of beam hardening artifacts in photon counting breast computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Bisogni, M.G.; Del Guerra, A. [Dip. di Fisica, Univ. di Pisa and INFN, Pisa (Italy); Lanconelli, N. [Dip. di Fisica, Univ. di Bologna and INFN, Bologna (Italy); Lauria, A.; Mettivier, G. [Dip. di Scienze Fisiche, Univ. di Napoli Federico II and INFN, Naples (Italy); Montesi, M.C. [Dip. di Scienze Fisiche, Univ. di Napoli Federico II and INFN, Naples (Italy)], E-mail: montesi@na.infn.it; Panetta, D. [Dip. di Fisica, Univ. di Pisa and INFN, Pisa (Italy); Pani, R. [Dip. di Medicina Sperimentale, Univ. La Sapienza and INFN, Rome (Italy); Quattrocchi, M.G. [Dip. di Fisica, Univ. di Pisa and INFN, Pisa (Italy); Randaccio, P. [Dip. di Fisica, Univ. di Cagliari and INFN, Cagliari (Italy); Rosso, V. [Dip. di Fisica, Univ. di Pisa and INFN, Pisa (Italy); Russo, P. [Dip. di Scienze Fisiche, Univ. di Napoli Federico II and INFN, Naples (Italy)

    2007-10-21

    We are implementing an X-ray breast Computed Tomography (CT) system on the gantry of a dedicated single photon emission tomography system for breast Tc-99 imaging. For the breast CT system we investigated the relevance of the beam hardening artifact. We studied the use of a single photon counting silicon pixel detector (0.3 mm thick, 256x256 pixel, 55{mu}m pitch, bump-bonded to the Medipix2 photon counting readout chip) as detector unit in our X-ray CT system. We evaluated the beam hardening 'cupping' artifact using homogeneous PMMA slabs and phantoms up to 14 cm in diameter, used as uncompressed breast tissue phantoms, imaged with a tungsten anode tube at 80 kVp with 4.2 mm Al filtration. For beam hardening evaluation we used a bimodal energy model. The CT data show a 'cupping' artifact going from 4% (4-cm thick material) to 18% (14-cm thick material). This huge artifacts is influenced by the low detection efficiency and the charge sharing effect of the silicon pixel detector.

  17. The Dosepix detector—an energy-resolving photon-counting pixel detector for spectrometric measurements

    CERN Document Server

    Zang, A; Ballabriga, R; Bisello, F; Campbell, M; Celi, J C; Fauler, A; Fiederle, M; Jensch, M; Kochanski, N; Llopart, X; Michel, N; Mollenhauer, U; Ritter, I; Tennert, F; Wölfel, S; Wong, W; Michel, T

    2015-01-01

    The Dosepix detector is a hybrid photon-counting pixel detector based on ideas of the Medipix and Timepix detector family. 1 mm thick cadmium telluride and 300 μm thick silicon were used as sensor material. The pixel matrix of the Dosepix consists of 16 x 16 square pixels with 12 rows of (200 μm)2 and 4 rows of (55 μm)2 sensitive area for the silicon sensor layer and 16 rows of pixels with 220 μm pixel pitch for CdTe. Besides digital energy integration and photon-counting mode, a novel concept of energy binning is included in the pixel electronics, allowing energy-resolved measurements in 16 energy bins within one acquisition. The possibilities of this detector concept range from applications in personal dosimetry and energy-resolved imaging to quality assurance of medical X-ray sources by analysis of the emitted photon spectrum. In this contribution the Dosepix detector, its response to X-rays as well as spectrum measurements with Si and CdTe sensor layer are presented. Furthermore, a first evaluation wa...

  18. Polarimetric, Two-Color, Photon-Counting Laser Altimeter Measurements of Forest Canopy Structure

    Science.gov (United States)

    Harding, David J.; Dabney, Philip W.; Valett, Susan

    2011-01-01

    Laser altimeter measurements of forest stands with distinct structures and compositions have been acquired at 532 nm (green) and 1064 nm (near-infrared) wavelengths and parallel and perpendicular polarization states using the Slope Imaging Multi-polarization Photon Counting Lidar (SIMPL). The micropulse, single photon ranging measurement approach employed by SIMPL provides canopy structure measurements with high vertical and spatial resolution. Using a height distribution analysis method adapted from conventional, 1064 nm, full-waveform lidar remote sensing, the sensitivity of two parameters commonly used for above-ground biomass estimation are compared as a function of wavelength. The results for the height of median energy (HOME) and canopy cover are for the most part very similar, indicating biomass estimations using lidars operating at green and near-infrared wavelengths will yield comparable estimates. The expected detection of increasing depolarization with depth into the canopies due to volume multiple-scattering was not observed, possibly due to the small laser footprint and the small detector field of view used in the SIMPL instrument. The results of this work provide pathfinder information for NASA's ICESat-2 mission that will employ a 532 nm, micropulse, photon counting laser altimeter.

  19. Low-noise low-jitter 32-pixels CMOS single-photon avalanche diodes array for single-photon counting from 300 nm to 900 nm

    Energy Technology Data Exchange (ETDEWEB)

    Scarcella, Carmelo; Tosi, Alberto, E-mail: alberto.tosi@polimi.it; Villa, Federica; Tisa, Simone; Zappa, Franco [Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria, Piazza Leonardo da Vinci 32, I-20133 Milano (Italy)

    2013-12-15

    We developed a single-photon counting multichannel detection system, based on a monolithic linear array of 32 CMOS SPADs (Complementary Metal-Oxide-Semiconductor Single-Photon Avalanche Diodes). All channels achieve a timing resolution of 100 ps (full-width at half maximum) and a photon detection efficiency of 50% at 400 nm. Dark count rate is very low even at room temperature, being about 125 counts/s for 50 μm active area diameter SPADs. Detection performance and microelectronic compactness of this CMOS SPAD array make it the best candidate for ultra-compact time-resolved spectrometers with single-photon sensitivity from 300 nm to 900 nm.

  20. IOT Overview: Wide-Field Imaging

    Science.gov (United States)

    Selman, F. J.

    The Wide Field Imager (WFI) instrument at La Silla has been the workhorse of wide-field imaging instruments at ESO for several years. In this contribution I will summarize the issues relating to its productivity for the community both in terms of the quality and quantity of data that has come out of it. Although only surveys of limited scope have been completed using WFI, it is ESO's stepping-stone to the new generation of survey telescopes.

  1. The wide field imager instrument for Athena

    Science.gov (United States)

    Meidinger, Norbert; Eder, Josef; Eraerds, Tanja; Nandra, Kirpal; Pietschner, Daniel; Plattner, Markus; Rau, Arne; Strecker, Rafael

    2016-07-01

    The WFI (Wide Field Imager) instrument is planned to be one of two complementary focal plane cameras on ESA's next X-ray observatory Athena. It combines unprecedented survey power through its large field of view of 40 amin x 40 amin together with excellent count rate capability (>= 1 Crab). The energy resolution of the silicon sensor is state-of-the-art in the energy band of interest from 0.2 keV to 15 keV, e.g. the full width at half maximum of a line at 7 keV will be MOSFET integrated onto a fully depleted 450 μm thick silicon bulk. Two detectors are planned for the WFI instrument: A large-area detector comprising four sensors with a total of 1024 x 1024 pixels and a fast detector optimized for high count rate observations. This high count rate capable detector permits for bright point sources with an intensity of 1 Crab a throughput of more than 80% and a pile-up of less than 1%. The fast readout of the DEPFET pixel matrices is facilitated by an ASIC development, called VERITAS-2. Together with the Switcher-A, a control ASIC that allows for operation of the DEPFET in rolling shutter mode, these elements form the key components of the WFI detectors. The detectors are surrounded by a graded-Z shield, which has in particular the purpose to avoid fluorescence lines that would contribute to the instrument background. Together with ultra-thin coating of the sensor and particle identification by the detector itself, the particle induced background shall be minimized in order to achieve the scientific requirement of a total instrumental background value smaller than 5 x 10-3 cts/cm2/s/keV. Each detector has its dedicated detector electronics (DE) for supply and data acquisition. Due to the high frame rate in combination with the large pixel array, signal correction and event filtering have to be done on-board and in real-time as the raw data rate would by far exceed the feasible telemetry rate. The data streams are merged and compressed in the Instrument Control and

  2. Dear-Mama: A photon counting X-ray imaging project for medical applications

    Energy Technology Data Exchange (ETDEWEB)

    Blanchot, G. [Institute De Fisica D' Altes Energies, UAB Campus, 08193 Bellaterra (Spain); Chmeissani, M. [Institute De Fisica D' Altes Energies, UAB Campus, 08193 Bellaterra (Spain)]. E-mail: mokhtar@ifae.es; Diaz, A. [Sedecal SA, C/ Pelaya 9, Pol. Ind. Rio de Janeiro, 28110 Algete (Spain); Diaz, F. [Sedecal SA, C/ Pelaya 9, Pol. Ind. Rio de Janeiro, 28110 Algete (Spain); Fernandez, J. [UDIAT, Corporacion Sanitaria Parc Tauli, s/n. 08208-Sabadell (Spain); Garcia, E. [Sedecal SA, C/ Pelaya 9, Pol. Ind. Rio de Janeiro, 28110 Algete (Spain); Garcia, J. [Institute De Fisica D' Altes Energies, UAB Campus, 08193 Bellaterra (Spain); Kainberger, F. [Medical University of Vienna AKH, A-1090 Vienna (Austria); Lozano, M. [CNM-CSIC, UAB Campus, 08193 Bellaterra (Spain); Maiorino, M. [Institute De Fisica D' Altes Energies, UAB Campus, 08193 Bellaterra (Spain); Martinez, R. [CNM-CSIC, UAB Campus, 08193 Bellaterra (Spain); Montagne, J.P. [Hopital D' enfants Armand Trousseau, 75571 Paris Cedex (France); Moreno, I. [Sedecal SA, C/ Pelaya 9, Pol. Ind. Rio de Janeiro, 28110 Algete (Spain); Pellegrini, G. [CNM-CSIC, UAB Campus, 08193 Bellaterra (Spain); Puigdengoles, C. [Institute De Fisica D' Altes Energies, UAB Campus, 08193 Bellaterra (Spain); Sentis, M. [UDIAT, Corporacion Sanitaria Parc Tauli, s/n. 08208-Sabadell (Spain); Teres, L. [CNM-CSIC, UAB Campus, 08193 Bellaterra (Spain); Tortajada, M. [UDIAT, Corporacion Sanitaria Parc Tauli, s/n. 08208-Sabadell (Spain); Ullan, M. [CNM-CSIC, UAB Campus, 08193 Bellaterra (Spain)

    2006-12-10

    Dear-Mama (Detection of Early Markers in Mammography) is an EU funded project devoted to develop an X-ray Medical imaging device based on room temperature solid-state pixel detector coupled to photon counting readout electronics via bump bonding. The technology being used leads to signal-to-noise ratio enhancement and thus the ability to detect low contrast anomalies such as micro-calcifications. The Dear-Mama machine is currently being evaluated and preliminary results show an excellent MTF response. Dear-Mama consortium is made up from six European institutions, the project runs from December 2001 to March 2006.

  3. Manipulating and probing microwave fields in a cavity by quantum non-demolition photon counting

    Energy Technology Data Exchange (ETDEWEB)

    Haroche, S; Dotsenko, I; Deleglise, S; Sayrin, C; Zhou, X; Gleyzes, S; Guerlin, C; Kuhr, S; Brune, M; Raimond, J-M [Laboratoire Kastler Brossel, Departement de Physique de l' Ecole Normale Superieure, CNRS and Universite Pierre et Marie Curie, 24 rue Lhomond, 75231 Paris Cedex 05 (France)], E-mail: haroche@lkb.ens.fr

    2009-12-15

    We perform quantum non-demolition (QND) photon counting on a microwave field trapped in a very high Q superconducting cavity, employing circular Rydberg atoms as non-absorbing light probes. Beyond realizing fundamental tests of quantum measurement theory, we use this QND method to prepare non-classical Fock and Schroedinger cat states of the field and to reconstruct their Wigner functions. Monitoring the evolution of these functions provides a direct observation of the decoherence process. Quantum feedback procedures will enable us to steer the field towards target states and to protect them against decoherence.

  4. Manipulating and probing microwave fields in a cavity by quantum non-demolition photon counting

    Science.gov (United States)

    Haroche, S.; Dotsenko, I.; Deléglise, S.; Sayrin, C.; Zhou, X.; Gleyzes, S.; Guerlin, C.; Kuhr, S.; Brune, M.; Raimond, J.-M.

    2009-12-01

    We perform quantum non-demolition (QND) photon counting on a microwave field trapped in a very high Q superconducting cavity, employing circular Rydberg atoms as non-absorbing light probes. Beyond realizing fundamental tests of quantum measurement theory, we use this QND method to prepare non-classical Fock and Schrödinger cat states of the field and to reconstruct their Wigner functions. Monitoring the evolution of these functions provides a direct observation of the decoherence process. Quantum feedback procedures will enable us to steer the field towards target states and to protect them against decoherence.

  5. Teleportation of a unknown coherent-state superposition within a network without photon counting

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen Ba An [Institute for Theoretical Physics 1, Stuttgart University, Pfaffenwaldring 57/4, D-70550 Stuttgart (Germany) and Institute of Physics and Electronics, 10 Dao Tan, Thu Le, Ba Dinh, Hanoi (Viet Nam)]. E-mail: nban@iop.vast.ac.vn; Mahler, Guenter [Institute for Theoretical Physics 1, Stuttgart University, Pfaffenwaldring 57/4, D-70550 Stuttgart (Germany)

    2007-05-21

    A new experimental scheme to teleport a unknown superposition of two coherent states with an equal amplitude but opposite phases between two parties under control of a number of controllers is proposed using only 'yes/no' detectors, i.e., without photon counting. The protocol is conclusive in the sense that any party is able to recognize a failure or a possible success immediately after his measurement. The total success probability is derived which yields a maximal value of 1/2 independent of the number of controllers.

  6. High energy X-ray photon counting imaging using linear accelerator and silicon strip detectors

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Y., E-mail: cycjty@sophie.q.t.u-tokyo.ac.jp [Department of Bioengineering, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Shimazoe, K.; Yan, X. [Department of Nuclear Engineering and Management, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Ueda, O.; Ishikura, T. [Fuji Electric Co., Ltd., Fuji, Hino, Tokyo 191-8502 (Japan); Fujiwara, T. [National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan); Uesaka, M.; Ohno, M. [Nuclear Professional School, the University of Tokyo, 2-22 Shirakata-shirane, Tokai, Ibaraki 319-1188 (Japan); Tomita, H. [Department of Quantum Engineering, Nagoya University, Furo, Chikusa, Nagoya 464-8603 (Japan); Yoshihara, Y. [Department of Nuclear Engineering and Management, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Takahashi, H. [Department of Bioengineering, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Department of Nuclear Engineering and Management, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2016-09-11

    A photon counting imaging detector system for high energy X-rays is developed for on-site non-destructive testing of thick objects. One-dimensional silicon strip (1 mm pitch) detectors are stacked to form a two-dimensional edge-on module. Each detector is connected to a 48-channel application specific integrated circuit (ASIC). The threshold-triggered events are recorded by a field programmable gate array based counter in each channel. The detector prototype is tested using 950 kV linear accelerator X-rays. The fast CR shaper (300 ns pulse width) of the ASIC makes it possible to deal with the high instant count rate during the 2 μs beam pulse. The preliminary imaging results of several metal and concrete samples are demonstrated.

  7. Estimation of signal and noise for a whole-body research photon-counting CT system.

    Science.gov (United States)

    Li, Zhoubo; Leng, Shuai; Yu, Zhicong; Kappler, Steffen; McCollough, Cynthia H

    2017-04-01

    Photon-counting detector CT has a large number of acquisition parameters that require optimization, particularly the energy threshold configurations. Fast and accurate estimation of both signal and noise in photon-counting CT (PCCT) images can facilitate such optimization. Using the detector response function of a research PCCT system, we derived mathematical models for both signal and noise estimation, taking into account beam spectrum and filtration, object attenuation, water beam hardening, detector response, radiation dose, energy thresholds, and the propagation of noise. To determine the absolute noise value, a noise lookup table (LUT) for all available energy thresholds was acquired using a number of calibration scans. The noise estimation algorithm then used the noise LUT to estimate noise for scans with a variety of combination of energy thresholds, dose levels, and object attenuations. Validation of the estimation algorithms was performed on a whole-body research PCCT system using semianthropomorphic water phantoms and solutions of calcium and iodine. Clinical feasibility of noise estimation was assessed with scans of a cadaver head and a living swine. The algorithms achieved accurate estimation of both signal and noise for a variety of scanning parameter combinations. Maximum discrepancies were below 15%, while most errors were below 5%.

  8. A technology review of time-of-flight photon counting for advanced remote sensing

    Science.gov (United States)

    Lamb, Robert A.

    2010-04-01

    Time correlated single photon counting (TCSPC) has made tremendous progress during the past ten years enabling improved performance in precision time-of-flight (TOF) rangefinding and lidar. In this review the development and performance of several ranging systems is presented that use TCSPC for accurate ranging and range profiling over distances up to 17km. A range resolution of a few millimetres is routinely achieved over distances of several kilometres. These systems include single wavelength devices operating in the visible; multi-wavelength systems covering the visible and near infra-red; the use of electronic gating to reduce in-band solar background and, most recently, operation at high repetition rates without range aliasing- typically 10MHz over several kilometres. These systems operate at very low optical power (military, security and surveillance sensing applications. The review will highlight the theoretical principles of photon counting and progress made in developing absolute ranging techniques that enable high repetition rate data acquisition that avoids range aliasing. Technology trends in TCSPC rangefinding are merging with those of quantum cryptography and its future application to revolutionary quantum imaging provides diverse and exciting research into secure covert sensing, ultra-low power active imaging and quantum rangefinding.

  9. ERICA: an energy resolving photon counting readout ASIC for X-ray in-line cameras

    Science.gov (United States)

    Macias-Montero, J.-G.; Sarraj, M.; Chmeissani, M.; Moore, T.; Casanova, R.; Martinez, R.; Puigdengoles, C.; Prats, X.; Kolstein, M.

    2016-12-01

    We present ERICA (Energy Resolving Inline X-ray Camera) a photon-counting readout ASIC, with 6 energy bins. The ASIC is composed of a matrix of 8 × 20 pixels controlled by a global digital controller and biased with 7 independent digital to analog converters (DACs) and a band-gap current reference. The pixel analog front-end includes a charge sensitive amplifier with 16 mV/ke- gain and dynamic range of 45 ke-. ERICA has programmable pulse width, an adjustable constant current feedback resistor, a linear test pulse generator, and six discriminators with 6-bit local threshold adjustment. The pixel digital back-end includes the digital controller, 8 counters of 8-bit depth, half-full buffer flag for any of the 8 counters, a 74-bit shadow/shift register, a 74-bit configuration latch, and charge sharing compensation processing to perform the energy classification and counting operations of every detected photon in 1 μ s. The pixel size is 330 μm × 330 μm and its average consumption is 150 μW. Implemented in TSMC 0.25 μm CMOS process, the ASIC pixel's equivalent noise charge (ENC) is 90 e- RMS connected to a 1 mm thickness matching CdTe detector biased at -300 V with a total leakage current of 20 nA.

  10. Energy-sensitive photon counting detector-based X-ray computed tomography.

    Science.gov (United States)

    Taguchi, Katsuyuki

    2017-03-01

    Energy-sensitive photon counting detectors (PCDs) have recently been developed for medical X-ray computed tomography (CT) imaging and a handful of prototype PCD-CT systems have been built and evaluated. PCDs detect X-rays by using mechanisms that are completely different from the current CT detectors (i.e., energy integrating detectors or EIDs); PCDs count photons and obtain the information of the object tissues (i.e., the effective atomic numbers and mass densities) to be imaged. Therefore, these PCDs have the potential not only for evolution-to improve the current CT images such as providing dose reduction-but also for a revolution-to enable novel applications with a new concept such as molecular CT imaging. The performance of PCDs, however, is not flawless, and thus, it requires integrated efforts to develop PCD-CT for clinical use. In this article, we review the current status and the prediction for the future of PCDs, PCD-CT systems, and potential clinical applications.

  11. Sequential data assimilation for single-molecule FRET photon-counting data

    Energy Technology Data Exchange (ETDEWEB)

    Matsunaga, Yasuhiro [Advanced Institute for Computational Science, RIKEN, 7-1-26 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047 (Japan); Kidera, Akinori [Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi, Yokohama 230-0045 (Japan); Sugita, Yuji, E-mail: sugita@riken.jp [Advanced Institute for Computational Science, RIKEN, 7-1-26 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047 (Japan); Theoretical Molecular Science Laboratory, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198 (Japan); iTHES, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198 (Japan); Quantitative Biology Center, RIKEN, International Medical Device Alliance (IMDA) 6F, 1-6-5 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047 (Japan)

    2015-06-07

    Data assimilation is a statistical method designed to improve the quality of numerical simulations in combination with real observations. Here, we develop a sequential data assimilation method that incorporates one-dimensional time-series data of smFRET (single-molecule Förster resonance energy transfer) photon-counting into conformational ensembles of biomolecules derived from “replicated” molecular dynamics (MD) simulations. A particle filter using a large number of “replicated” MD simulations with a likelihood function for smFRET photon-counting data is employed to screen the conformational ensembles that match the experimental data. We examine the performance of the method using emulated smFRET data and coarse-grained (CG) MD simulations of a dye-labeled polyproline-20. The method estimates the dynamics of the end-to-end distance from smFRET data as well as revealing that of latent conformational variables. The particle filter is also able to correct model parameter dependence in CG MD simulations. We discuss the applicability of the method to real experimental data for conformational dynamics of biomolecules.

  12. Time transfer capability of standard small form factor pluggable laser modules based on photon counting approach

    Science.gov (United States)

    Trojanek, Pavel; Prochazka, Ivan; Blazej, Josef

    2017-05-01

    We are reporting on timing parameters of commonly used standard Small Form Factor Pluggable (SFP) laser modules using single photon counting method. Photon counting is a promising approach for laser time transfer via optical fiber communication hardware. The sub-picosecond precision and stability may be achieved. We have performed several experiments with the aim to measure main parameters of the modules, such as time delay precision, time stability and temperature stability, all being critical for optical time transfer applications. Two standard 16 and 10 Gbit/s at 850 nm SFP modules were examined. The ultimate precision of possible time transfer of 800 fs for averaging times of hours was achieved. The modules together with their driving circuits exhibited very good temperature stability. The temperature drift as low as 300+/-200 fs/K was measured. The achieved timing parameters will enable to use the standard SFP modules for a new method of two way time transfer where the time differences between two distant time scales are measured in parallel to data transfer on existing optical data links without any communication interference.

  13. Photon-counting 1.0 GHz-phase-modulation fluorometer

    Science.gov (United States)

    Mizuno, T.; Nakao, S.; Mizutani, Y.; Iwata, T.

    2015-04-01

    We have constructed an improved version of a photon-counting phase-modulation fluorometer (PC-PMF) with a maximum modulation frequency of 1.0 GHz, where a phase domain measurement is conducted with a time-correlated single-photon-counting electronics. While the basic concept of the PC-PMF has been reported previously by one of the authors, little attention has been paid to its significance, other than its weak fluorescence measurement capability. Recently, we have recognized the importance of the PC-PMF and its potential for fluorescence lifetime measurements. One important aspect of the PC-PMF is that it enables us to perform high-speed measurements that exceed the frequency bandwidths of the photomultiplier tubes that are commonly used as fluorescence detectors. We describe the advantages of the PC-PMF and demonstrate its usefulness based on fundamental performance tests. In our new version of the PC-PMF, we have used a laser diode (LD) as an excitation light source rather than the light-emitting diode that was used in the primary version. We have also designed a simple and stable LD driver to modulate the device. Additionally, we have obtained a sinusoidal histogram waveform that has multiple cycles within a time span to be measured, which is indispensable for precise phase measurements. With focus on the fluorescence intensity and the resolution time, we have compared the performance of the PC-PMF with that of a conventional PMF using the analogue light detection method.

  14. Feasibility study of a breast density measurement within a direct photon-counting mammography scanner system.

    Science.gov (United States)

    Machida, Youichi; Tozaki, Mitsuhiro; Yoshida, Tamiko; Saita, Ai; Yakabe, Mari; Nii, Kanae

    2014-09-01

    To evaluate the clinical feasibility of breast density measurements by a new application within a direct photon-counting mammography scanner system. A retrospective study of consecutive women who underwent mammography using a direct photon-counting mammography scanner system (MicroDose mammography SI; Philips Digital Mammography Sweden AB) was performed at the authors' institution between September and December 2013. Quantitative volumetric glandularity measurements were performed automatically for each acquired mammographic image using an application (Breast Density Measurement; Philips Digital Mammography Sweden AB). The quantitative volumetric glandularity of each breast was defined as the average values for the mediolateral oblique (MLO) and craniocaudal (CC) mammogram views. Of the 44 women who underwent bilateral mammogram acquisitions, the breast density measurements were performed successfully in 40 patients (90.9%). A very good to excellent correlation in the quantitative breast density measurements acquired from the MLO and CC images was obtained in the 40 evaluable patients (R = 0.99). The calculated volumetric glandularity using this new application should correspond well with the true volumetric density of each breast.

  15. Photon-Counting Multikilohertz Microlaser Altimeters for Airborne and Spaceborne Topographic Measurements

    Science.gov (United States)

    Degnan, John J.; Smith, David E. (Technical Monitor)

    2000-01-01

    We consider the optimum design of photon-counting microlaser altimeters operating from airborne and spaceborne platforms under both day and night conditions. Extremely compact Q-switched microlaser transmitters produce trains of low energy pulses at multi-kHz rates and can easily generate subnanosecond pulse-widths for precise ranging. To guide the design, we have modeled the solar noise background and developed simple algorithms, based on Post-Detection Poisson Filtering (PDPF), to optimally extract the weak altimeter signal from a high noise background during daytime operations. Practical technology issues, such as detector and/or receiver dead times, have also been considered in the analysis. We describe an airborne prototype, being developed under NASA's instrument Incubator Program, which is designed to operate at a 10 kHz rate from aircraft cruise altitudes up to 12 km with laser pulse energies on the order of a few microjoules. We also analyze a compact and power efficient system designed to operate from Mars orbit at an altitude of 300 km and sample the Martian surface at rates up to 4.3 kHz using a 1 watt laser transmitter and an 18 cm telescope. This yields a Power-Aperture Product of 0.24 W-square meter, corresponding to a value almost 4 times smaller than the Mars Orbiting Laser Altimeter (0. 88W-square meter), yet the sampling rate is roughly 400 times greater (4 kHz vs 10 Hz) Relative to conventional high power laser altimeters, advantages of photon-counting laser altimeters include: (1) a more efficient use of available laser photons providing up to two orders of magnitude greater surface sampling rates for a given laser power-telescope aperture product; (2) a simultaneous two order of magnitude reduction in the volume, cost and weight of the telescope system; (3) the unique ability to spatially resolve the source of the surface return in a photon counting mode through the use of pixellated or imaging detectors; and (4) improved vertical and

  16. Assessment of the spectral performance of hybrid photon counting x-ray detectors.

    Science.gov (United States)

    Trueb, Peter; Zambon, Pietro; Broennimann, Christian

    2017-09-01

    Hybrid Photon Counting (HPC) detectors profoundly improved x-ray diffraction experiments at third generation synchrotron facilities. Enabling the simultaneous measurement of x-ray intensities in multiple energy bins, they also have many potential applications in the field of medical imaging. A prerequisite for this is a clean spectral response. To quantify how efficiently HPC detectors are able to assign photons to the correct energy bin, a quantity called Spectral Efficiency (SE) is introduced. This figure of merit measures the number of x-rays with correctly assigned energy normalized to the number of incoming photons. A prototype HPC detector has been used to perform precision measurements of x-ray spectra at the BESSY synchrotron. The detector consists of a novel ASIC with pixels of 75 × 75 μm2 size and a 750 μm thick CdTe sensor. The experimental data are complemented by the results of a Monte-Carlo (MC) simulation, which not only includes the physical detection process but also pulse pile-up at high photon fluxes. The spectra and the measured photon flux are used to infer the Spectral Efficiency. In the energy range from 10 to 60 keV, both the Quantum Efficiency and the Spectral Efficiency were precisely measured and simulated. Good agreement between simulation and experiment has been achieved. For the small pixels of the prototype detector, a SE between 15% and 77% has been determined. The MC simulation is used to predict the SE for various pixel sizes at different photon fluxes. For a typical flux of 5∙107  photons/mm2 /s used in human Computed Tomography (CT), the highest SE is achieved for pixel sizes in the range between 150 × 150 μm2 and 300 × 300 μm2 . The Spectral Efficiency turns out to be a useful figure of merit to quantify the spectral performance of HPC detectors. It allows a quantitative comparison of detectors with different sensor and ASIC configurations over a broad range of x-ray energies and fluxes. The maximization of

  17. Investigation of photon counting pixel detectors for X-ray spectroscopy and imaging

    Energy Technology Data Exchange (ETDEWEB)

    Talla, Patrick Takoukam

    2011-04-07

    The Medipix2 and Medipix3 detectors are hybrid pixelated photon counting detectors with a pixel pitch of 55 {mu}m. The sensor material used in this thesis was silicon. Because of their small pixel size they suffer from charge sharing i.e. an incoming photon can be registered by more than one pixel. In order to correct for charge sharing due to lateral diffusion of charge carriers, the Medipix3 detector was developed: with its Charge Summing Mode, the charge collected in a cluster of 2 x 2 pixel is added up and attributed to only one pixel whose counter is incremented. The adjustable threshold of the detectors allows to count the photons and to gain information on their energy. The main purposes of the thesis are to investigate spectral and imaging properties of pixelated photon counting detectors from the Medipix family such as Medipix2 and Medipix3. The investigations are based on simulations and measurements. In order to investigate the spectral properties of the detectors measurements were performed using fluorescence lines of materials such as molybdenum, silver but also some radioactive sources such as Am-241 or Cd-109. From the measured data, parameters like the threshold dispersion and the gain variation from pixel-to-pixel were extracted and used as input in the Monte Carlo code ROSI to model the responses of the detector to monoenergetic photons. The measured data are well described by the simulations for Medipix2 and for Medipix3 operating in Charge Summing Mode. Due to charge sharing and due to the energy dependence of attenuation processes in silicon and to Compton scattering the incoming and the measured spectrum differ substantially from each other. Since the responses to monoenergetic photons are known, a deconvolution was performed to determine the true incoming spectrum. Several direct and iterative methods were successfully applied on measured and simulated data of an X-ray tube and radioactive sources. The knowledge of the X-ray spectrum is

  18. Silicon photon-counting avalanche diodes for single-molecule fluorescence spectroscopy.

    Science.gov (United States)

    Michalet, Xavier; Ingargiola, Antonino; Colyer, Ryan A; Scalia, Giuseppe; Weiss, Shimon; Maccagnani, Piera; Gulinatti, Angelo; Rech, Ivan; Ghioni, Massimo

    2014-11-01

    Solution-based single-molecule fluorescence spectroscopy is a powerful experimental tool with applications in cell biology, biochemistry and biophysics. The basic feature of this technique is to excite and collect light from a very small volume and work in a low concentration regime resulting in rare burst-like events corresponding to the transit of a single molecule. Detecting photon bursts is a challenging task: the small number of emitted photons in each burst calls for high detector sensitivity. Bursts are very brief, requiring detectors with fast response time and capable of sustaining high count rates. Finally, many bursts need to be accumulated to achieve proper statistical accuracy, resulting in long measurement time unless parallelization strategies are implemented to speed up data acquisition. In this paper we will show that silicon single-photon avalanche diodes (SPADs) best meet the needs of single-molecule detection. We will review the key SPAD parameters and highlight the issues to be addressed in their design, fabrication and operation. After surveying the state-of-the-art SPAD technologies, we will describe our recent progress towards increasing the throughput of single-molecule fluorescence spectroscopy in solution using parallel arrays of SPADs. The potential of this approach is illustrated with single-molecule Förster resonance energy transfer measurements.

  19. Silicon photon-counting avalanche diodes for single-molecule fluorescence spectroscopy

    Science.gov (United States)

    Michalet, Xavier; Ingargiola, Antonino; Colyer, Ryan A.; Scalia, Giuseppe; Weiss, Shimon; Maccagnani, Piera; Gulinatti, Angelo; Rech, Ivan; Ghioni, Massimo

    2014-01-01

    Solution-based single-molecule fluorescence spectroscopy is a powerful experimental tool with applications in cell biology, biochemistry and biophysics. The basic feature of this technique is to excite and collect light from a very small volume and work in a low concentration regime resulting in rare burst-like events corresponding to the transit of a single molecule. Detecting photon bursts is a challenging task: the small number of emitted photons in each burst calls for high detector sensitivity. Bursts are very brief, requiring detectors with fast response time and capable of sustaining high count rates. Finally, many bursts need to be accumulated to achieve proper statistical accuracy, resulting in long measurement time unless parallelization strategies are implemented to speed up data acquisition. In this paper we will show that silicon single-photon avalanche diodes (SPADs) best meet the needs of single-molecule detection. We will review the key SPAD parameters and highlight the issues to be addressed in their design, fabrication and operation. After surveying the state-of-the-art SPAD technologies, we will describe our recent progress towards increasing the throughput of single-molecule fluorescence spectroscopy in solution using parallel arrays of SPADs. The potential of this approach is illustrated with single-molecule Förster resonance energy transfer measurements. PMID:25309114

  20. On the performance of bioanalytical fluorescence correlation spectroscopy measurements in a multiparameter photon-counting microscope

    Energy Technology Data Exchange (ETDEWEB)

    Mazouchi, Amir; Liu Baoxu; Bahram, Abdullah [Department of Physics, Institute for Optical Sciences, University of Toronto, Toronto (Canada); Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Rd. N., Mississauga, ON, L5L 1C6 (Canada); Gradinaru, Claudiu C., E-mail: claudiu.gradinaru@utoronto.ca [Department of Physics, Institute for Optical Sciences, University of Toronto, Toronto (Canada); Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Rd. N., Mississauga, ON, L5L 1C6 (Canada)

    2011-02-28

    Fluorescence correlation spectroscopy (FCS) data acquisition and analysis routines were developed and implemented in a home-built, multiparameter photon-counting microscope. Laser excitation conditions were investigated for two representative fluorescent probes, Rhodamine110 and enhanced green fluorescent protein (EGFP). Reliable local concentrations and diffusion constants were obtained by fitting measured FCS curves, provided that the excitation intensity did not exceed 20% of the saturation level for each fluorophore. Accurate results were obtained from FCS measurements for sample concentrations varying from pM to {mu}M range, as well as for conditions of high background signals. These experimental constraints were found to be determined by characteristics of the detection system and by the saturation behavior of the fluorescent probes. These factors actually limit the average number of photons that can be collected from a single fluorophore passing through the detection volume. The versatility of our setup and the data analysis capabilities were tested by measuring the mobility of EGFP in the nucleus of Drosophila cells under conditions of high concentration and molecular crowding. As a bioanalytical application, we studied by FCS the binding affinity of a novel peptide-based drug to the cancer-regulating STAT3 protein and corroborated the results with fluorescence polarization analysis derived from the same photon data.

  1. A high-throughput, multi-channel photon-counting detector with picosecond timing

    Science.gov (United States)

    Lapington, J. S.; Fraser, G. W.; Miller, G. M.; Ashton, T. J. R.; Jarron, P.; Despeisse, M.; Powolny, F.; Howorth, J.; Milnes, J.

    2009-06-01

    High-throughput photon counting with high time resolution is a niche application area where vacuum tubes can still outperform solid-state devices. Applications in the life sciences utilizing time-resolved spectroscopies, particularly in the growing field of proteomics, will benefit greatly from performance enhancements in event timing and detector throughput. The HiContent project is a collaboration between the University of Leicester Space Research Centre, the Microelectronics Group at CERN, Photek Ltd., and end-users at the Gray Cancer Institute and the University of Manchester. The goal is to develop a detector system specifically designed for optical proteomics, capable of high content (multi-parametric) analysis at high throughput. The HiContent detector system is being developed to exploit this niche market. It combines multi-channel, high time resolution photon counting in a single miniaturized detector system with integrated electronics. The combination of enabling technologies; small pore microchannel plate devices with very high time resolution, and high-speed multi-channel ASIC electronics developed for the LHC at CERN, provides the necessary building blocks for a high-throughput detector system with up to 1024 parallel counting channels and 20 ps time resolution. We describe the detector and electronic design, discuss the current status of the HiContent project and present the results from a 64-channel prototype system. In the absence of an operational detector, we present measurements of the electronics performance using a pulse generator to simulate detector events. Event timing results from the NINO high-speed front-end ASIC captured using a fast digital oscilloscope are compared with data taken with the proposed electronic configuration which uses the multi-channel HPTDC timing ASIC.

  2. Performance of in-pixel circuits for photon counting arrays (PCAs) based on polycrystalline silicon TFTs

    Science.gov (United States)

    Liang, Albert K.; Koniczek, Martin; Antonuk, Larry E.; El-Mohri, Youcef; Zhao, Qihua; Street, Robert A.; Lu, Jeng Ping

    2016-03-01

    Photon counting arrays (PCAs), defined as pixelated imagers which measure the absorbed energy of x-ray photons individually and record this information digitally, are of increasing clinical interest. A number of PCA prototypes with a 1 mm pixel-to-pixel pitch have recently been fabricated with polycrystalline silicon (poly-Si)—a thin-film technology capable of creating monolithic imagers of a size commensurate with human anatomy. In this study, analog and digital simulation frameworks were developed to provide insight into the influence of individual poly-Si transistors on pixel circuit performance—information that is not readily available through empirical means. The simulation frameworks were used to characterize the circuit designs employed in the prototypes. The analog framework, which determines the noise produced by individual transistors, was used to estimate energy resolution, as well as to identify which transistors contribute the most noise. The digital framework, which analyzes how well circuits function in the presence of significant variations in transistor properties, was used to estimate how fast a circuit can produce an output (referred to as output count rate). In addition, an algorithm was developed and used to estimate the minimum pixel pitch that could be achieved for the pixel circuits of the current prototypes. The simulation frameworks predict that the analog component of the PCA prototypes could have energy resolution as low as 8.9% full width at half maximum (FWHM) at 70 keV; and the digital components should work well even in the presence of significant thin-film transistor (TFT) variations, with the fastest component having output count rates as high as 3 MHz. Finally, based on conceivable improvements in the underlying fabrication process, the algorithm predicts that the 1 mm pitch of the current PCA prototypes could be reduced significantly, potentially to between ~240 and 290 μm.

  3. Limits on Achievable Dimensional and Photon Efficiencies with Intensity-Modulation and Photon-Counting Due to Non-Ideal Photon-Counter Behavior

    Science.gov (United States)

    Moision, Bruce; Erkmen, Baris I.; Farr, William; Dolinar, Samuel J.; Birnbaum, Kevin M.

    2012-01-01

    An ideal intensity-modulated photon-counting channel can achieve unbounded photon information efficiencies (PIEs). However, a number of limitations of a physical system limit the practically achievable PIE. In this paper, we discuss several of these limitations and illustrate their impact on the channel. We show that, for the Poisson channel, noise does not strictly bound PIE, although there is an effective limit, as the dimensional information efficiency goes as e[overline] e PIE beyond a threshold PIE. Since the Holevo limit is bounded in the presence of noise, this illustrates that the Poisson approximation is invalid at large PIE for any number of noise modes. We show that a finite transmitter extinction ratio bounds the achievable PIE to a maximum that is logarithmic in the extinction ratio. We show how detector jitter limits the ability to mitigate noise in the PPM signaling framework. We illustrate a method to model detector blocking when the number of detectors is large, and illustrate mitigation of blocking with spatial spreading and altering. Finally, we illustrate the design of a high photon efficiency system using state-of-the-art photo-detectors and taking all these effects into account.

  4. The LOFT wide field monitor simulator

    DEFF Research Database (Denmark)

    Donnarumma, I.; Evangelista, Y.; Campana, R.

    2012-01-01

    We present the simulator we developed for the Wide Field Monitor (WFM) aboard the Large Observatory For Xray Timing (LOFT) mission, one of the four ESA M3 candidate missions considered for launch in the 2022–2024 timeframe. The WFM is designed to cover a large FoV in the same bandpass as the Larg...

  5. Dual energy CT with photon counting and dual source systems: comparative evaluation.

    Science.gov (United States)

    Atak, Haluk; Shikhaliev, Polad M

    2015-12-07

    Recently, new dual energy (DE) computed tomography (CT) systems-dual source CT (DSCT) and photon counting CT (PCCT) have been introduced. Although these systems have the same clinical targets, they have major differences as they use dual and single kVp acquisitions and different x-ray detection and energy resolution concepts. The purpose of this study was theoretical and experimental comparisons of DSCT and PCCT. The DSCT Siemens Somatom Flash was modeled for simulation study. The PCCT had the same configuration as DSCT except it used a photon counting detector. The soft tissue phantoms with 20, 30, and 38 cm diameters included iodine, CaCO3, adipose, and water samples. The dose (air kerma) was 14 mGy for all studies. The low and high energy CT data were simulated at 80 kVp and 140 kVp for DSCT, and in 20-58 keV and 59-120 keV energy ranges for PCCT, respectively. The experiments used Somatom Flash DSCT system and PCCT system based on photon counting CdZnTe detector with 2  ×  256 pixel configuration and 1  ×  1 mm(2) pixels size. In simulated general CT images, PCCT provided higher contrast-to-noise ratio (CNR) than DSCT with 0.4/0.8 mm Sn filters. The PCCT with K-edge filter provided higher CNR than the PCCT with a Cu filter, and DSCT with 0.4 mm Sn filter provided higher CNR than the DSCT with a 0.8 mm Sn filter. In simulated DE subtracted images, CNR of the DSCT was comparable to the PCCT with a Cu filter. However, DE PCCT with Ho a K-edge filter provided 30-40% higher CNR than the DE DSCT with 0.4/0.8 mm Sn filters. The experimental PCCT provided higher CNR in general imaging compared to the DSCT. In experimental DE subtracted images, the DSCT provided higher CNR than the PCCT with a Cu filter. However, experimental CNR with DE PCCT with K-edge filter was 15% higher than in DE DSCT, which is less than 30-40% increase predicted by the simulation study. It is concluded that ideal PCCT can provide substantial advantages over ideal

  6. A photon counting CdTe gamma- and X-ray camera

    Science.gov (United States)

    Spartiotis, Konstantinos; Leppänen, Anssi; Pantsar, Tuomas; Pyyhtiä, Jouni; Laukka, Pasi; Muukkonen, Kari; Männistö, Olli; Kinnari, Jussi; Schulman, Tom

    2005-09-01

    A photon counting CdTe imaging camera suitable for gamma- and X-ray detection has been developed and tested. The current full active imaging area of the gamma/X-ray camera covers 44×44 mm 2. The camera is built of eight individual detector hybrids each consisting of a pixelated CdTe detector with dimensions of 22×11 mm 2 and solder bump-bonded to a photon counting custom-designed application specific integrated circuit (ASIC). The ASICs are realized in a mixed signal, 0.35 μm 4 metal 2 poly CMOS process. The effective pixel size (image pixel pitch) is 0.5 mm. To enable higher count rate imaging and to achieve better position resolution in X-ray CT scanning each pixel is divided both on the CdTe detector and on the ASIC into two sub-pixels with dimensions 0.25×0.5 mm 2. Every pixel circuit has two preamps each connected to one sub-pixel and feeding signal to a separate comparator. The digital pulses of the two distinct comparators are recorded by one common 8-bit counter. The amplifier offsets can be adjusted individually with 3-bit accuracy to compensate for process mismatch. A similar 3-bit gain tuning common to the two amplifiers in one pixel circuit is also implemented. A globally tuneable threshold voltage generated externally with high accuracy is used for energy discrimination. The camera can be operated both in the real time imaging mode with a maximum speed of 100 frames/s and in the accumulation mode with user adjustable counting time. Experimental data collected from a fully operational eight hybrid gamma/X-ray camera is presented and compared to simulated data. The camera exhibits excellent sensitivity and a dynamic range of 1:14,000,000. A sharp line spread function indicates the spatial resolution to be limited only by the pixel size (0.5 mm). A single pixel energy resolution of FWHM 4.7 keV at 122 keV (3.9%) was determined from measured 57Co spectra. The peak width of the spectrum combined from all pixels was somewhat larger due to calibration

  7. Exploration of maximum count rate capabilities for large-area photon counting arrays based on polycrystalline silicon thin-film transistors

    Science.gov (United States)

    Liang, Albert K.; Koniczek, Martin; Antonuk, Larry E.; El-Mohri, Youcef; Zhao, Qihua

    2016-03-01

    Pixelated photon counting detectors with energy discrimination capabilities are of increasing clinical interest for x-ray imaging. Such detectors, presently in clinical use for mammography and under development for breast tomosynthesis and spectral CT, usually employ in-pixel circuits based on crystalline silicon - a semiconductor material that is generally not well-suited for economic manufacture of large-area devices. One interesting alternative semiconductor is polycrystalline silicon (poly-Si), a thin-film technology capable of creating very large-area, monolithic devices. Similar to crystalline silicon, poly-Si allows implementation of the type of fast, complex, in-pixel circuitry required for photon counting - operating at processing speeds that are not possible with amorphous silicon (the material currently used for large-area, active matrix, flat-panel imagers). The pixel circuits of two-dimensional photon counting arrays are generally comprised of four stages: amplifier, comparator, clock generator and counter. The analog front-end (in particular, the amplifier) strongly influences performance and is therefore of interest to study. In this paper, the relationship between incident and output count rate of the analog front-end is explored under diagnostic imaging conditions for a promising poly-Si based design. The input to the amplifier is modeled in the time domain assuming a realistic input x-ray spectrum. Simulations of circuits based on poly-Si thin-film transistors are used to determine the resulting output count rate as a function of input count rate, energy discrimination threshold and operating conditions.

  8. An Effective Multilevel Offset Correction Technique for Single Photon Counting Pixel Detectors

    Science.gov (United States)

    Kmon, P.; Maj, P.; Grybos, P.; Szczygiel, R.

    2016-04-01

    We report on a novel technique of an in-pixel multilevel offset correction to be used in hybrid pixel detector readout circuits operating in a single photon counting mode. This technique was implemented in a prototype integrated circuit consisting of 23,552 square shaped pixels of 75 μm pitch, which was designed and manufactured in CMOS 130 nm technology. Each pixel contains a charge sensitive amplifier, shaper, two discriminators, two 14-bit counters and a block for multilevel offset correction. The effective gain and offset are controlled individually in each pixel. The measurement results prove very good uniformity of the prototype integrated circuit with an offset spread of only 7e- rms and a gain spread of 2.5%.

  9. Mu-Spec - A High Performance Ultra-Compact Photon Counting spectrometer for Space Submillimeter Astronomy

    Science.gov (United States)

    Moseley, H.; Hsieh, W.-T.; Stevenson, T.; Wollack, E.; Brown, A.; Benford, D.; Sadleir; U-Yen, I.; Ehsan, N.; Zmuidzinas, J.; hide

    2011-01-01

    We have designed and are testing elements of a fully integrated submillimeter spectrometer based on superconducting microstrip technology. The instrument can offer resolving power R approximately 1500, and its high frequency cutoff is set by the gap of available high performance superconductors. All functions of the spectrometer are integrated - light is coupled to the microstrip circuit with a planar antenna, the spectra discrimination is achieved using a synthetic grating, orders are separated using planar filter, and detected using photon counting MKID detector. This spectrometer promises to revolutionize submillimeter spectroscopy from space. It replaces instruments with the scale of 1m with a spectrometer on a 10 cm Si wafer. The reduction in mass and volume promises a much higher performance system within available resource in a space mission. We will describe the system and the performance of the components that have been fabricated and tested.

  10. Vision 20/20: Single photon counting x-ray detectors in medical imaging.

    Science.gov (United States)

    Taguchi, Katsuyuki; Iwanczyk, Jan S

    2013-10-01

    Photon counting detectors (PCDs) with energy discrimination capabilities have been developed for medical x-ray computed tomography (CT) and x-ray (XR) imaging. Using detection mechanisms that are completely different from the current energy integrating detectors and measuring the material information of the object to be imaged, these PCDs have the potential not only to improve the current CT and XR images, such as dose reduction, but also to open revolutionary novel applications such as molecular CT and XR imaging. The performance of PCDs is not flawless, however, and it seems extremely challenging to develop PCDs with close to ideal characteristics. In this paper, the authors offer our vision for the future of PCD-CT and PCD-XR with the review of the current status and the prediction of (1) detector technologies, (2) imaging technologies, (3) system technologies, and (4) potential clinical benefits with PCDs.

  11. Global analysis of time correlated single photon counting FRET-FLIM data.

    Science.gov (United States)

    Grecco, Hernan E; Roda-Navarro, Pedro; Verveer, Peter J

    2009-04-13

    Fluorescence lifetime imaging microscopy (FLIM) can be used to quantify molecular reactions in cells by detecting fluorescence resonance energy transfer (FRET). Confocal FLIM systems based on time correlated single photon counting (TCSPC) methods provide high spatial resolution and high sensitivity, but suffer from poor signal to noise ratios (SNR) that complicate quantitative analysis. We extend a global analysis method, originally developed for single frequency domain FLIM data, with a new filtering method optimized for FRET-FLIM data and apply it to TCSPC data. With this approach, the fluorescent lifetimes and relative concentrations of free and interacting molecules can be reliably estimated, even if the SNR is low. The required calibration values of the impulse response function are directly estimated from the data, eliminating the need for reference samples. The proposed method is efficient and robust, and can be routinely applied to analyze FRET-FLIM data acquired in intact cells.

  12. Continuously scanning time-correlated single-photon-counting single-pixel 3-D lidar

    Science.gov (United States)

    Henriksson, Markus; Larsson, Håkan; Grönwall, Christina; Tolt, Gustav

    2017-03-01

    Time-correlated single-photon-counting (TCSPC) lidar provides very high resolution range measurements. This makes the technology interesting for three-dimensional imaging of complex scenes with targets behind foliage or other obscurations. TCSPC is a statistical method that demands integration of multiple measurements toward the same area to resolve objects at different distances within the instantaneous field-of-view. Point-by-point scanning will demand significant overhead for the movement, increasing the measurement time. Here, the effect of continuously scanning the scene row-by-row is investigated and signal processing methods to transform this into low-noise point clouds are described. The methods are illustrated using measurements of a characterization target and an oak and hazel copse. Steps between different surfaces of less than 5 cm in range are resolved as two surfaces.

  13. Performance and capacity analysis of Poisson photon-counting based Iter-PIC OCDMA systems.

    Science.gov (United States)

    Li, Lingbin; Zhou, Xiaolin; Zhang, Rong; Zhang, Dingchen; Hanzo, Lajos

    2013-11-04

    In this paper, an iterative parallel interference cancellation (Iter-PIC) technique is developed for optical code-division multiple-access (OCDMA) systems relying on shot-noise limited Poisson photon-counting reception. The novel semi-analytical tool of extrinsic information transfer (EXIT) charts is used for analysing both the bit error rate (BER) performance as well as the channel capacity of these systems and the results are verified by Monte Carlo simulations. The proposed Iter-PIC OCDMA system is capable of achieving two orders of magnitude BER improvements and a 0.1 nats of capacity improvement over the conventional chip-level OCDMA systems at a coding rate of 1/10.

  14. Low-dose lung cancer screening with photon-counting CT: a feasibility study

    Science.gov (United States)

    Symons, Rolf; Cork, Tyler E.; Sahbaee, Pooyan; Fuld, Matthew K.; Kappler, Steffen; Folio, Les R.; Bluemke, David A.; Pourmorteza, Amir

    2017-01-01

    To evaluate the feasibility of using a whole-body photon-counting detector (PCD) CT scanner for low-dose lung cancer screening compared to a conventional energy integrating detector (EID) system. Radiation dose-matched EID and PCD scans of the COPDGene 2 phantom were acquired at different radiation dose levels (CTDIvol: 3.0, 1.5, and 0.75 mGy) and different tube voltages (120, 100, and 80 kVp). EID and PCD images were compared for quantitative Hounsfield unit (HU) accuracy, noise levels, and contrast-to-noise ratios (CNR) for detection of ground-glass nodules (GGN) and emphysema. The PCD HU accuracy was better than EID for water at all scan parameters. PCD HU stability for lung, GGN and emphysema regions were superior to EID and PCD attenuation values were more reproducible than EID for all scan parameters (all P  cancer screening while maintaining diagnostic quality.

  15. Combination of current-integrating/photon-counting detector modules for spectral CT

    Science.gov (United States)

    Chu, Jiyang; Cong, Wenxiang; Li, Liang; Wang, Ge

    2013-10-01

    Inspired by compressive sensing theory and spectral detection technology, here we propose a novel design of a CT detector array that uses current-integrating/photon-counting modules in an interlacing fashion so that strengths of each detector type can be synergistically combined. For geometrical symmetry, an evenly alternating pattern is initially assumed for these detector modules to form a hybrid detector array. While grayscale detector modules acquire regular raw data in a large dynamic range cost-effectively, spectral detector modules simultaneously sense energy-discriminative data in multiple energy bins. A split Bregman iterative algorithm is developed for spectral CT reconstruction from projection data of an object collected with the hybrid detector array. With mathematical phantoms, an optimal ratio of the number of the spectral elements over the number of grayscale elements is determined based on classic image quality evaluation. This hybrid detector array is capable of delivering a performance comparable with that of a full spectral detector array.

  16. Development and characterisation of a visible light photon counting imaging detector system

    CERN Document Server

    Barnstedt, J

    2002-01-01

    We report on the development of a visible light photon counting imaging detector system. The detector concept is based on standard 25 mm diameter microchannel plate image intensifiers made by Proxitronic in Bensheim (Germany). Modifications applied to these image intensifiers are the use of three microchannel plates instead of two and a high resistance ceramics plate used instead of the standard phosphor output screen. A wedge and strip anode mounted directly behind the high resistance ceramics plate was used as a read out device. This wedge and strip anode picks up the image charge of electron clouds emerging from the microchannel plates. The charge pulses are fed into four charge amplifiers and subsequently into a digital position decoding electronics, achieving a position resolution of up to 1024x1024 pixels. Mounting the anode outside the detector tube is a new approach and has the great advantage of avoiding electrical feedthroughs from the anode so that the standard image intensifier fabrication process...

  17. Measurement of the light-field amplitude-correlation function through joint photon-count distributions.

    Science.gov (United States)

    Furcinitti, P.; Kuppenheimer, J. D.; Narducci, L. M.; Tuft , R. A.

    1972-01-01

    When an amplitude-stabilized He-Ne laser beam is scattered by a rotating ground glass with small surface inhomogeneities, the probability density of the instantaneous scattered-wave amplitude is Gaussian. In this paper, we suggest the use of the joint photon-count probability distribution to measure the absolute value of the electric-field amplitude-correlation function for random Gaussian light fields, and report the results of an experiment in which the Gaussian field is produced by scattering a light beam through a rotating ground glass. This procedure offers an alternative to other conventional methods, such as self-beating spectroscopy and irradiance-correlation techniques. The correlation time of the scattered-field amplitude in the present experiment has been measured with an accuracy of approximately 0.8%.

  18. Radiation-Resistant Photon-Counting Detector Package Providing Sub-ps Stability for Laser Time Transfer in Space

    Science.gov (United States)

    Prochzaka, Ivan; Kodat, Jan; Blazej, Josef; Sun, Xiaoli (Editor)

    2015-01-01

    We are reporting on a design, construction and performance of photon-counting detector packages based on silicon avalanche photodiodes. These photon-counting devices have been optimized for extremely high stability of their detection delay. The detectors have been designed for future applications in fundamental metrology and optical time transfer in space. The detectors have been qualified for operation in space missions. The exceptional radiation tolerance of the detection chip itself and of all critical components of a detector package has been verified in a series of experiments.

  19. Wide field imaging problems in radio astronomy

    Science.gov (United States)

    Cornwell, T. J.; Golap, K.; Bhatnagar, S.

    2005-03-01

    The new generation of synthesis radio telescopes now being proposed, designed, and constructed face substantial problems in making images over wide fields of view. Such observations are required either to achieve the full sensitivity limit in crowded fields or for surveys. The Square Kilometre Array (SKA Consortium, Tech. Rep., 2004), now being developed by an international consortium of 15 countries, will require advances well beyond the current state of the art. We review the theory of synthesis radio telescopes for large fields of view. We describe a new algorithm, W projection, for correcting the non-coplanar baselines aberration. This algorithm has improved performance over those previously used (typically an order of magnitude in speed). Despite the advent of W projection, the computing hardware required for SKA wide field imaging is estimated to cost up to $500M (2015 dollars). This is about half the target cost of the SKA. Reconfigurable computing is one way in which the costs can be decreased dramatically.

  20. Spectral response model for a multibin photon-counting spectral computed tomography detector and its applications.

    Science.gov (United States)

    Liu, Xuejin; Persson, Mats; Bornefalk, Hans; Karlsson, Staffan; Xu, Cheng; Danielsson, Mats; Huber, Ben

    2015-07-01

    Variations among detector channels in computed tomography can lead to ring artifacts in the reconstructed images and biased estimates in projection-based material decomposition. Typically, the ring artifacts are corrected by compensation methods based on flat fielding, where transmission measurements are required for a number of material-thickness combinations. Phantoms used in these methods can be rather complex and require an extensive number of transmission measurements. Moreover, material decomposition needs knowledge of the individual response of each detector channel to account for the detector inhomogeneities. For this purpose, we have developed a spectral response model that binwise predicts the response of a multibin photon-counting detector individually for each detector channel. The spectral response model is performed in two steps. The first step employs a forward model to predict the expected numbers of photon counts, taking into account parameters such as the incident x-ray spectrum, absorption efficiency, and energy response of the detector. The second step utilizes a limited number of transmission measurements with a set of flat slabs of two absorber materials to fine-tune the model predictions, resulting in a good correspondence with the physical measurements. To verify the response model, we apply the model in two cases. First, the model is used in combination with a compensation method which requires an extensive number of transmission measurements to determine the necessary parameters. Our spectral response model successfully replaces these measurements by simulations, saving a significant amount of measurement time. Second, the spectral response model is used as the basis of the maximum likelihood approach for projection-based material decomposition. The reconstructed basis images show a good separation between the calcium-like material and the contrast agents, iodine and gadolinium. The contrast agent concentrations are reconstructed with more

  1. An x-ray-based capsule for colorectal cancer screening incorporating single photon counting technology

    Science.gov (United States)

    Lifshitz, Ronen; Kimchy, Yoav; Gelbard, Nir; Leibushor, Avi; Golan, Oleg; Elgali, Avner; Hassoon, Salah; Kaplan, Max; Smirnov, Michael; Shpigelman, Boaz; Bar-Ilan, Omer; Rubin, Daniel; Ovadia, Alex

    2017-03-01

    An ingestible capsule for colorectal cancer screening, based on ionizing-radiation imaging, has been developed and is in advanced stages of system stabilization and clinical evaluation. The imaging principle allows future patients using this technology to avoid bowel cleansing, and to continue the normal life routine during procedure. The Check-Cap capsule, or C-Scan ® Cap, imaging principle is essentially based on reconstructing scattered radiation, while both radiation source and radiation detectors reside within the capsule. The radiation source is a custom-made radioisotope encased in a small canister, collimated into rotating beams. While traveling along the human colon, irradiation occurs from within the capsule towards the colon wall. Scattering of radiation occurs both inside and outside the colon segment; some of this radiation is scattered back and detected by sensors onboard the capsule. During procedure, the patient receives small amounts of contrast agent as an addition to his/her normal diet. The presence of contrast agent inside the colon dictates the dominant physical processes to become Compton Scattering and X-Ray Fluorescence (XRF), which differ mainly by the energy of scattered photons. The detector readout electronics incorporates low-noise Single Photon Counting channels, allowing separation between the products of these different physical processes. Separating between radiation energies essentially allows estimation of the distance from the capsule to the colon wall, hence structural imaging of the intraluminal surface. This allows imaging of structural protrusions into the colon volume, especially focusing on adenomas that may develop into colorectal cancer.

  2. Estimation of signal and noise for a whole-body photon counting research CT system.

    Science.gov (United States)

    Li, Zhoubo; Leng, Shuai; Yu, Zhicong; Kappler, Stephen; McCollough, Cynthia H

    2016-02-01

    Photon-counting CT (PCCT) may yield potential value for many clinical applications due to its relative immunity to electronic noise, increased geometric efficiency relative to current scintillating detectors, and the ability to resolve energy information about the detected photons. However, there are a large number of parameters that require optimization, particularly the energy thresholds configurations. Fast and accurate estimation of signal and noise in PCCT can benefit the optimization of acquisition parameters for specific diagnostic tasks. Based on the acquisition parameters and detector response of our research PCCT system, we derived mathematical models for both signal and noise. The signal model took the tube spectrum, beam filtration, object attenuation, water beam hardening, and detector response into account. The noise model considered the relationship between noise and radiation dose, as well as the propagation of noise as threshold data are subtracted to yield energy bin data. To determine the absolute noise value, a noise look-up table (LUT) was acquired using a limited number of calibration scans. The noise estimation algorithm then used the noise LUT to estimate noise for scans with a variety of combination of energy thresholds, dose levels, and object attenuation. Validation of the estimation algorithms was performed on our whole-body research PCCT system using semi-anthropomorphic water phantoms and solutions of calcium and iodine. The algorithms achieved accurate estimation of signal and noise for a variety of scanning parameter combinations. The proposed method can be used to optimize energy thresholds configuration for many clinical applications of PCCT.

  3. 32-channel time-correlated-single-photon-counting system for high-throughput lifetime imaging

    Science.gov (United States)

    Peronio, P.; Labanca, I.; Acconcia, G.; Ruggeri, A.; Lavdas, A. A.; Hicks, A. A.; Pramstaller, P. P.; Ghioni, M.; Rech, I.

    2017-08-01

    Time-Correlated Single Photon Counting (TCSPC) is a very efficient technique for measuring weak and fast optical signals, but it is mainly limited by the relatively "long" measurement time. Multichannel systems have been developed in recent years aiming to overcome this limitation by managing several detectors or TCSPC devices in parallel. Nevertheless, if we look at state-of-the-art systems, there is still a strong trade-off between the parallelism level and performance: the higher the number of channels, the poorer the performance. In 2013, we presented a complete and compact 32 × 1 TCSPC system, composed of an array of 32 single-photon avalanche diodes connected to 32 time-to-amplitude converters, which showed that it was possible to overcome the existing trade-off. In this paper, we present an evolution of the previous work that is conceived for high-throughput fluorescence lifetime imaging microscopy. This application can be addressed by the new system thanks to a centralized logic, fast data management and an interface to a microscope. The new conceived hardware structure is presented, as well as the firmware developed to manage the operation of the module. Finally, preliminary results, obtained from the practical application of the technology, are shown to validate the developed system.

  4. pawFLIM: reducing bias and uncertainty to enable lower photon count in FLIM experiments

    Science.gov (United States)

    Silberberg, Mauro; Grecco, Hernán E.

    2017-06-01

    Förster resonant energy transfer measured by fluorescence lifetime imaging microscopy (FRET-FLIM) is the method of choice for monitoring the spatio-temporal dynamics of protein interactions in living cells. To obtain an accurate estimate of the molecular fraction of interacting proteins requires a large number of photons, which usually precludes the observation of a fast process, particularly with time correlated single photon counting (TCSPC) based FLIM. In this work, we propose a novel method named pawFLIM (phasor analysis via wavelets) that allows the denoising of FLIM datasets by adaptively and selectively adjusting the desired compromise between spatial and molecular resolution. The method operates by applying a weighted translational-invariant Haar-wavelet transform denoising algorithm to phasor images. This results in significantly less bias and mean square error than other existing methods. We also present a new lifetime estimator (named normal lifetime) with a smaller mean squared error and overall bias as compared to frequency domain phase and modulation lifetimes. Overall, we present an approach that will enable the observation of the dynamics of biological processes at the molecular level with better temporal and spatial resolution.

  5. XPAD: A photons counting pixel detector for material sciences and small-animal imaging

    Science.gov (United States)

    Delpierre, P.; Basolo, S.; Berar, J.-F.; Bordesoule, M.; Boudet, N.; Breugnon, P.; Caillot, B.; Chantepie, B.; Clemens, J. C.; Dinkespiler, B.; Hustache-Ottini, S.; Meessen, C.; Menouni, M.; Morel, C.; Mouget, C.; Pangaud, P.; Potheau, R.; Vigeolas, E.

    2007-03-01

    Experiments on high-flux and high-brilliance third-generation synchrotron X-ray sources are now limited by detector performance. Photon-counting hybrid pixel detectors are being investigated as a solution to improve the dynamic range and the readout speed of the available 2D detectors. The XPAD2 is a large-surface hybrid pixel detector (68×65 mm 2) with a dynamic response, which ranges from 0.01 to 10 6 photons/pixel/s. High-resolution data were recorded using the XPAD2. The comparison with data measured using a conventional setup shows a gain on measurement duration by a factor 20 and on dynamic range. A new generation of pixel detector (XPAD3) is presently under development. For this, a new electronic chip (the XPAD3) is designed to improve spatial resolution by using 130 μm pixels and detector efficiency by using CdTe sensors. XPAD2 is also operated with PIXSCAN, a CT scanner for mice.

  6. A position- and time-sensitive photon-counting detector with delay- line read-out

    Science.gov (United States)

    Jagutzki, Ottmar; Dangendorf, Volker; Lauck, Ronald; Czasch, Achim; Milnes, James

    2007-05-01

    We have developed image intensifier tubes with delay-anode read-out for time- and position-sensitive photon counting. The timing precision is better than 1 ns with 1000x1000 pixels position resolution and up to one megacounts/s processing rate. Large format detectors of 40 and 75 mm active diameter with internal helical-wire delay-line anodes have been produced and specified. A different type of 40 and 25 mm tubes with semi-conducting screen for image charge read-out allow for an economic and robust tube design and for placing the read-out anodes outside the sealed housing. Two types of external delay-line anodes, i.e. pick-up electrodes for the image charge, have been tested. We present tests of the detector and anode performance. Due to the low background this technique is well suited for applications with very low light intensity and especially if a precise time tagging for each photon is required. As an example we present the application of scintillator read-out in time-of-flight (TOF) neutron radiography. Further applications so far are Fluorescence Life-time Microscopy (FLIM) and Astronomy.

  7. Si-strip photon counting detectors for contrast-enhanced spectral mammography

    Science.gov (United States)

    Chen, Buxin; Reiser, Ingrid; Wessel, Jan C.; Malakhov, Nail; Wawrzyniak, Gregor; Hartsough, Neal E.; Gandhi, Thulasi; Chen, Chin-Tu; Iwanczyk, Jan S.; Barber, William C.

    2015-08-01

    We report on the development of silicon strip detectors for energy-resolved clinical mammography. Typically, X-ray integrating detectors based on scintillating cesium iodide CsI(Tl) or amorphous selenium (a-Se) are used in most commercial systems. Recently, mammography instrumentation has been introduced based on photon counting Si strip detectors. The required performance for mammography in terms of the output count rate, spatial resolution, and dynamic range must be obtained with sufficient field of view for the application, thus requiring the tiling of pixel arrays and particular scanning techniques. Room temperature Si strip detector, operating as direct conversion x-ray sensors, can provide the required speed when connected to application specific integrated circuits (ASICs) operating at fast peaking times with multiple fixed thresholds per pixel, provided that the sensors are designed for rapid signal formation across the X-ray energy ranges of the application. We present our methods and results from the optimization of Si-strip detectors for contrast enhanced spectral mammography. We describe the method being developed for quantifying iodine contrast using the energy-resolved detector with fixed thresholds. We demonstrate the feasibility of the method by scanning an iodine phantom with clinically relevant contrast levels.

  8. Development of a high-performance multichannel system for time-correlated single photon counting

    Science.gov (United States)

    Peronio, P.; Cominelli, A.; Acconcia, G.; Rech, I.; Ghioni, M.

    2017-05-01

    Time-Correlated Single Photon Counting (TCSPC) is one of the most effective techniques for measuring weak and fast optical signals. It outperforms traditional "analog" techniques due to its high sensitivity along with high temporal resolution. Despite those significant advantages, a main drawback still exists, which is related to the long acquisition time needed to perform a measurement. In past years many TCSPC systems have been developed with higher and higher number of channels, aimed to dealing with that limitation. Nevertheless, modern systems suffer from a strong trade-off between parallelism level and performance: the higher the number of channels the poorer the performance. In this work we present the design of a 32x32 TCSPC system meant for overtaking the existing trade-off. To this aim different technologies has been employed, to get the best performance both from detectors and sensing circuits. The exploitation of different technologies will be enabled by Through Silicon Vias (TSVs) which will be investigated as a possible solution for connecting the detectors to the sensing circuits. When dealing with a high number of channels, the count rate is inevitably set by the affordable throughput to the external PC. We targeted a throughput of 10Gb/s, which is beyond the state of the art, and designed the number of TCSPC channels accordingly. A dynamic-routing logic will connect the detectors to the lower number of acquisition chains.

  9. Low-Noise Free-Running High-Rate Photon-Counting for Space Communication and Ranging

    Science.gov (United States)

    Lu, Wei; Krainak, Michael A.; Yang, Guan; Sun, Xiaoli; Merritt, Scott

    2016-01-01

    We present performance data for low-noise free-running high-rate photon counting method for space optical communication and ranging. NASA GSFC is testing the performance of two types of novel photon-counting detectors 1) a 2x8 mercury cadmium telluride (HgCdTe) avalanche array made by DRS Inc., and a 2) a commercial 2880-element silicon avalanche photodiode (APD) array. We successfully measured real-time communication performance using both the 2 detected-photon threshold and logic AND-gate coincidence methods. Use of these methods allows mitigation of dark count, after-pulsing and background noise effects without using other method of Time Gating The HgCdTe APD array routinely demonstrated very high photon detection efficiencies (50) at near infrared wavelength. The commercial silicon APD array exhibited a fast output with rise times of 300 ps and pulse widths of 600 ps. On-chip individually filtered signals from the entire array were multiplexed onto a single fast output. NASA GSFC has tested both detectors for their potential application for space communications and ranging. We developed and compare their performances using both the 2 detected photon threshold and coincidence methods.

  10. Determination of confidence limits for experiments with low numbers of counts. [Poisson-distributed photon counts from astrophysical sources

    Science.gov (United States)

    Kraft, Ralph P.; Burrows, David N.; Nousek, John A.

    1991-01-01

    Two different methods, classical and Bayesian, for determining confidence intervals involving Poisson-distributed data are compared. Particular consideration is given to cases where the number of counts observed is small and is comparable to the mean number of background counts. Reasons for preferring the Bayesian over the classical method are given. Tables of confidence limits calculated by the Bayesian method are provided for quick reference.

  11. Photon counting imaging with an electron-bombarded CCD: Towards a parallel-processing photoelectronic time-to-amplitude converter

    Energy Technology Data Exchange (ETDEWEB)

    Hirvonen, Liisa M.; Jiggins, Stephen; Sergent, Nicolas; Zanda, Gianmarco; Suhling, Klaus, E-mail: klaus.suhling@kcl.ac.uk [Department of Physics, King' s College London, Strand, London WC2R 2LS (United Kingdom)

    2014-12-15

    We have used an electron-bombarded CCD for optical photon counting imaging. The photon event pulse height distribution was found to be linearly dependent on the gain voltage. We propose on this basis that a gain voltage sweep during exposure in an electron-bombarded sensor would allow photon arrival time determination with sub-frame exposure time resolution. This effectively uses an electron-bombarded sensor as a parallel-processing photoelectronic time-to-amplitude converter, or a two-dimensional photon counting streak camera. Several applications that require timing of photon arrival, including Fluorescence Lifetime Imaging Microscopy, may benefit from such an approach. A simulation of a voltage sweep performed with experimental data collected with different acceleration voltages validates the principle of this approach. Moreover, photon event centroiding was performed and a hybrid 50% Gaussian/Centre of Gravity + 50% Hyperbolic cosine centroiding algorithm was found to yield the lowest fixed pattern noise. Finally, the camera was mounted on a fluorescence microscope to image F-actin filaments stained with the fluorescent dye Alexa 488 in fixed cells.

  12. Development of a single-photon-counting camera with use of a triple-stacked micro-channel plate.

    Science.gov (United States)

    Yasuda, Naruomi; Suzuki, Hitoshi; Katafuchi, Tetsuro

    2016-01-01

    At the quantum-mechanical level, all substances (not merely electromagnetic waves such as light and X-rays) exhibit wave–particle duality. Whereas students of radiation science can easily understand the wave nature of electromagnetic waves, the particle (photon) nature may elude them. Therefore, to assist students in understanding the wave–particle duality of electromagnetic waves, we have developed a photon-counting camera that captures single photons in two-dimensional images. As an image intensifier, this camera has a triple-stacked micro-channel plate (MCP) with an amplification factor of 10(6). The ultra-low light of a single photon entering the camera is first converted to an electron through the photoelectric effect on the photocathode. The electron is intensified by the triple-stacked MCP and then converted to a visible light distribution, which is measured by a high-sensitivity complementary metal oxide semiconductor image sensor. Because it detects individual photons, the photon-counting camera is expected to provide students with a complete understanding of the particle nature of electromagnetic waves. Moreover, it measures ultra-weak light that cannot be detected by ordinary low-sensitivity cameras. Therefore, it is suitable for experimental research on scintillator luminescence, biophoton detection, and similar topics.

  13. WFIRST: Simulating the Wide-Field Sky

    Science.gov (United States)

    Peeples, Molly; WFIRST Wide Field Imager Simulations Working Group

    2018-01-01

    As astronomy’s first high-resolution wide-field multi-mode instrument, simulated data will play a vital role in the planning for and analysis of data from WFIRST’s WFI (Wide Field Imager) instrument. Part of the key to WFIRST’s scientific success lies in our ability to push the systematics limit, but in order to do so, the WFI pipeline will need to be able to measure and take out said systematics. The efficacy of this pipeline can only be verified with large suites of synthetic data; these data must include both the range of astrophysical sky scenes (from crowded starfields to high-latitude grism data observations) and the systematics from the detector and telescope optics the WFI pipeline aims to mitigate. We summarize here(1) the status of current and planned astrophysical simulations in support of the WFI,(2) the status of current WFI instrument simulators and requirements on future generations thereof, and(3) plans, methods, and requirements on interfacing astrophysical simulations and WFI instrument simulators.

  14. TU-EF-207-02: Spectral Mammography Based on Photon Counting Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Molloi, S. [University of California (United States)

    2015-06-15

    Breast imaging technology is advancing on several fronts. In digital mammography, the major technological trend has been on optimization of approaches for performing combined mammography and tomosynthesis using the same system. In parallel, photon-counting slot-scan mammography is now in clinical use and more efforts are directed towards further development of this approach for spectral imaging. Spectral imaging refers to simultaneous acquisition of two or more energy-windowed images. Depending on the detector and associated electronics, there are a number of ways this can be accomplished. Spectral mammography using photon-counting detectors can suppress electronic noise and importantly, it enables decomposition of the image into various material compositions of interest facilitating quantitative imaging. Spectral imaging can be particularly important in intravenously injected contrast mammography and eventually tomosynthesis. The various approaches and applications of spectral mammography are discussed. Digital breast tomosynthesis relies on the mechanical movement of the x-ray tube to acquire a number of projections in a predefined arc, typically from 9 to 25 projections over a scan angle of +/−7.5 to 25 degrees depending on the particular system. The mechanical x-ray tube motion requires relatively long acquisition time, typically between 3.7 to 25 seconds depending on the system. Moreover, mechanical scanning may have an effect on the spatial resolution due to internal x-ray filament or external mechanical vibrations. New x-ray source arrays have been developed and they are aimed at replacing the scanned x-ray tube for improved acquisition time and potentially for higher spatial resolution. The potential advantages and challenges of this approach are described. Combination of digital mammography and tomosynthesis in a single system places increased demands on certain functional aspects of the detector and overall performance, particularly in the tomosynthesis

  15. Depth imaging in highly scattering underwater environments using time-correlated single-photon counting

    Science.gov (United States)

    Maccarone, Aurora; McCarthy, Aongus; Halimi, Abderrahim; Tobin, Rachael; Wallace, Andy M.; Petillot, Yvan; McLaughlin, Steve; Buller, Gerald S.

    2016-10-01

    This paper presents an optical depth imaging system optimized for highly scattering environments such as underwater. The system is based on the time-correlated single-photon counting (TCSPC) technique and the time-of-flight approach. Laboratory-based measurements demonstrate the potential of underwater depth imaging, with specific attention given to environments with a high level of scattering. The optical system comprised a monostatic transceiver unit, a fiber-coupled supercontinuum laser source with a wavelength tunable acousto-optic filter (AOTF), and a fiber-coupled single-element silicon single-photon avalanche diode (SPAD) detector. In the optical system, the transmit and receive channels in the transceiver unit were overlapped in a coaxial optical configuration. The targets were placed in a 1.75 meter long tank, and raster scanned using two galvo-mirrors. Laboratory-based experiments demonstrate depth profiling performed with up to nine attenuation lengths between the transceiver and target. All of the measurements were taken with an average laser power of less than 1mW. Initially, the data was processed using a straightforward pixel-wise cross-correlation of the return timing signal with the system instrumental timing response. More advanced algorithms were then used to process these cross-correlation results. These results illustrate the potential for the reconstruction of images in highly scattering environments, and to permit the investigation of much shorter acquisition time scans. These algorithms take advantage of the data sparseness under the Discrete Cosine Transform (DCT) and the correlation between adjacent pixels, to restore the depth and reflectivity images.

  16. Fluorescence measurement by a streak camera in a single-photon-counting mode.

    Science.gov (United States)

    Komura, Masayuki; Itoh, Shigeru

    2009-01-01

    We describe here a recently developed fluorescence measurement system that uses a streak camera to detect fluorescence decay in a single photon-counting mode. This system allows for easy measurements of various samples and provides 2D images of fluorescence in the wavelength and time domains. The great advantage of the system is that the data can be handled with ease; furthermore, the data are amenable to detailed analysis. We describe the picosecond kinetics of fluorescence in spinach Photosystem (PS) II particles at 4-77 K as a typical experimental example. Through the global analysis of the data, we have identified a new fluorescence band (F689) in addition to the already established F680, F685, and F695 emission bands. The blue shift of the steady-state fluorescence spectrum upon cooling below 77 K can be interpreted as an increase of the shorter-wavelength fluorescence, especially F689, due to the slowdown of the excitation energy transfer process. The F685 and F695 bands seem to be thermally equilibrated at 77 K but not at 4 K. The simple and efficient photon accumulation feature of the system allows us to measure fluorescence from leaves, solutions, single colonies, and even single cells. The 2D fluorescence images obtained by this system are presented for isolated spinach PS II particles, intact leaves of Arabidopsis thaliana, the PS I super-complex of a marine centric diatom, Chaetoceros gracilis, isolated membranes of a purple photosynthetic bacterium, Acidiphilium rubrum, which contains Zn-BChl a, and a coral that contains a green fluorescent protein and an algal endosymbiont, Zooxanthella.

  17. Mode-Selective Photon Counting Via Quantum Frequency Conversion Using Spectrally-Engineered Pump Pulses

    Science.gov (United States)

    Manurkar, Paritosh

    phase of each spectral frequency from an optical frequency comb. The latter is generated using a cascaded configuration of phase and amplitude modulators. We characterize the mode selectivity using classical signals by arranging the six TMs into two orthogonal signal sets. Furthermore, we also demonstrate that mode selectivity is preserved if we use sub-photon signals (weak coherent light). Thus, this work supports the idea that QFC has the basic properties needed for advanced multi-dimensional quantum measurements given that we have demonstrated for the first time the ability to move to high dimensions (d=4), measure coherent superposition modes, and measure sub-photon signal levels. In addition to mode-selective photon counting, we also experimentally demonstrate a method of reshaping optical pulses based on QFC. Such a method has the potential to serve as the interface between quantum memories and the existing fiber infrastructure. At the same time, it can be employed in all-optical systems for optical signal regeneration.

  18. Studying the optical second-order interference pattern formation process with classical light in the photon counting regime.

    Science.gov (United States)

    He, Yuchen; Liu, Jianbin; Zhang, Songlin; Wang, Wentao; Bai, Bin; Le, Mingnan; Xu, Zhuo

    2015-12-01

    The formation process of the second-order interference pattern is studied experimentally in the photon counting regime by superposing two independent single-mode continuous-wave lasers. Two-photon interference based on the superposition principle in Feynman's path integral theory is employed to interpret the experimental results. The second-order interference pattern of classical light can be formulated when, with high probability, there are only two photons in the interferometer at one time. The studies are helpful in understanding the second-order interference of classical light in the language of photons. The method and conclusions can be generalized to the third- and higher-order interference of light and interference of massive particles.

  19. X-ray Imaging Using a Hybrid Photon Counting GaAs Pixel Detector

    CERN Document Server

    Schwarz, C; Göppert, R; Heijne, Erik H M; Ludwig, J; Meddeler, G; Mikulec, B; Pernigotti, E; Rogalla, M; Runge, K; Smith, K M; Snoeys, W; Söldner-Rembold, S; Watt, J

    1999-01-01

    The performance of hybrid GaAs pixel detectors as X-ray imaging sensors were investigated at room temperature. These hybrids consist of 300 mu-m thick GaAs pixel detectors, flip-chip bonded to a CMOS Single Photon Counting Chip (PCC). This chip consists of a matrix of 64 x 64 identical square pixels (170 mu-m x 170 mu-m) and covers a total area of 1.2 cm**2. The electronics in each cell comprises a preamplifier, a discriminator with a 3-bit threshold adjust and a 15-bit counter. The detector is realized by an array of Schottky diodes processed on semi-insulating LEC-GaAs bulk material. An IV-charcteristic and a detector bias voltage scan showed that the detector can be operated with voltages around 200 V. Images of various objects were taken by using a standard X-ray tube for dental diagnostics. The signal to noise ratio (SNR) was also determined. The applications of these imaging systems range from medical applications like digital mammography or dental X-ray diagnostics to non destructive material testing (...

  20. Theoretical characterization of performance effectiveness of photon-counting technique for digital radiography applications

    Science.gov (United States)

    Yun, Seungman; Kim, Jaehyuk; Huh, Yoonsuk; Kim, Jungha; Park, Sujin; Kim, Jungmin; Kim, Jongpil; Yoon, Kyung Hun; Jo, JaeMoon

    2017-03-01

    Photon-counting (PC) technique has been paid attention to digital radiography applications due to its potential in lowdose operation and multi-energy imaging capability. In this study, we theoretically investigate the performance gain in digital radiography when the PC detectors are used instead of the conventional energy-integrating (EI) detectors. We use the Monte Carlo technique for estimating energy-absorption distributions in detector materials such as CdTe for the PC detector and CsI for the EI detector. To estimate the signal and noise transfers through the two different detectoroperation schemes, we use the cascaded linear-systems approach. In the Monte Carlo simulations, the square and rectangle focal spots are considered to mimic the advanced carbon nanotube (CNT) and conventional filament cathodes, respectively. From the simulation results, the modulation-transfer functions of the PC detector are more sensitive to asymmetric focal spot geometry than those of the EI detector. On the other hand, the PC detector shows better image signal-to-noise ratio than the EI detector; hence better dose efficiency with the PC detector. The dose efficiency of the PC detector in comparison with the EI detector is however marginal for the filament x-ray beam whereas the dose efficiency is not negligible for the CNT x-ray beam. The theoretical upper limits of the imaging performance of the advanced digital radiography technology are reported in this study.

  1. The LAMBDA photon-counting pixel detector and high-Z sensor development

    Science.gov (United States)

    Pennicard, D.; Smoljanin, S.; Struth, B.; Hirsemann, H.; Fauler, A.; Fiederle, M.; Tolbanov, O.; Zarubin, A.; Tyazhev, A.; Shelkov, G.; Graafsma, H.

    2014-12-01

    Many X-ray experiments at third-generation synchrotrons benefit from using single-photon-counting detectors, due to their high signal-to-noise ratio and potential for high-speed measurements. LAMBDA (Large Area Medipix3-Based Detector Array) is a pixel detector system based on the Medipix3 readout chip. It combines the features of Medipix3, such as a small pixel size of 55 μm and flexible functionality, with a large tileable module design consisting of 12 chips (1536 × 512 pixels) and a high-speed readout system capable of running at 2000 frames per second. To enable high-speed experiments with hard X-rays, the LAMBDA system has been combined with different high-Z sensor materials. Room-temperature systems using GaAs and CdTe systems have been produced and tested with X-ray tubes and at synchrotron beamlines. Both detector materials show nonuniformities in their raw image response, but the pixel yield is high and the uniformity can be improved by flat-field correction, particularly in the case of GaAs. High-frame-rate experiments show that useful information can be gained on millisecond timescales in synchrotron experiments with these sensors.

  2. Characterisation of a single photon counting pixel system for imaging of low-contrast objects

    CERN Document Server

    Mikulec, B; Dipasquale, G; Schwarz, C; Watt, J

    2001-01-01

    In the framework of the Medipix collaboration the PCC, a single photon counting pixel chip, has been developed with the aim of improving the contrast resolution in medical imaging applications. The PCC consists of a matrix of 64x64 square pixels with 170 mm side length, each pixel comprising a 15 bit counter and a pulse height discriminator. The chip has been bump bonded to equally segmented 200 mm thick SI-LEC GaAs detectors showing a very high absorption energy for X-rays used in diagnostics. An absolute calibration of the system with a radioactive source and a synchrotron beam are described resulting in the value of the test input capacitance of ~24.7 fF. Using this value a full characterisation of the system from electrical measurements is presented. The entire system can reach a minimum threshold of ~2100 e- with ~250e- rms noise. One of the characteristics of the PCC is the possibility to adjust the thresholds of all pixels on a pixel-by-pixel basis with 3-bit precision. The threshold distribution after...

  3. Note: Space qualified photon counting detector for laser time transfer with picosecond precision and stability.

    Science.gov (United States)

    Prochazka, Ivan; Kodet, Jan; Blazej, Josef

    2016-05-01

    The laser time transfer link is under construction for the European Space Agency in the frame of Atomic Clock Ensemble in Space. We have developed and tested the flying unit of the photon counting detector optimized for this space mission. The results are summarized in this Note. An extreme challenge was to build a detector package, which is rugged, small and which provides long term detection delay stability on picosecond level. The device passed successfully all the tests required for space missions on the low Earth orbits. The detector is extremely rugged and compact. Its long term detection delay stability is excellent, it is better than ±1 ps/day, in a sense of time deviation it is better than 0.5 ps for averaging times of 2000 s to several hours. The device is capable to operate in a temperature range of -55 °C up to +60 °C, the change of the detection delay with temperature is +0.5 ps/K. The device is ready for integration into the space structure now.

  4. Spectral CT of the extremities with a silicon strip photon counting detector

    Science.gov (United States)

    Sisniega, A.; Zbijewski, W.; Stayman, J. W.; Xu, J.; Taguchi, K.; Siewerdsen, J. H.

    2015-03-01

    Purpose: Photon counting x-ray detectors (PCXDs) are an important emerging technology for spectral imaging and material differentiation with numerous potential applications in diagnostic imaging. We report development of a Si-strip PCXD system originally developed for mammography with potential application to spectral CT of musculoskeletal extremities, including challenges associated with sparse sampling, spectral calibration, and optimization for higher energy x-ray beams. Methods: A bench-top CT system was developed incorporating a Si-strip PCXD, fixed anode x-ray source, and rotational and translational motions to execute complex acquisition trajectories. Trajectories involving rotation and translation combined with iterative reconstruction were investigated, including single and multiple axial scans and longitudinal helical scans. The system was calibrated to provide accurate spectral separation in dual-energy three-material decomposition of soft-tissue, bone, and iodine. Image quality and decomposition accuracy were assessed in experiments using a phantom with pairs of bone and iodine inserts (3, 5, 15 and 20 mm) and an anthropomorphic wrist. Results: The designed trajectories improved the sampling distribution from 56% minimum sampling of voxels to 75%. Use of iterative reconstruction (viz., penalized likelihood with edge preserving regularization) in combination with such trajectories resulted in a very low level of artifacts in images of the wrist. For large bone or iodine inserts (>5 mm diameter), the error in the estimated material concentration was decomposition in joint imaging proved feasible through a combination of rotation-translation acquisition trajectories and iterative reconstruction with optimized regularization.

  5. A wide-field TCSPC FLIM system based on an MCP PMT with a delay-line anode.

    Science.gov (United States)

    Becker, Wolfgang; Hirvonen, Liisa M; Milnes, James; Conneely, Thomas; Jagutzki, Ottmar; Netz, Holger; Smietana, Stefan; Suhling, Klaus

    2016-09-01

    We report on the implementation of a wide-field time-correlated single photon counting (TCSPC) method for fluorescence lifetime imaging (FLIM). It is based on a 40 mm diameter crossed delay line anode detector, where the readout is performed by three standard TCSPC boards. Excitation is performed by a picosecond diode laser with 50 MHz repetition rate. The photon arrival timing is obtained directly from the microchannel plates, with an instrumental response of ∼190 to 230 ps full width at half maximum depending on the position on the photocathode. The position of the photon event is obtained from the pulse propagation time along the two delay lines, one in x and one in y. One end of a delay line is fed into the "start" input of the corresponding TCSPC board, and the other end is delayed by 40 ns and fed into the "stop" input. The time between start and stop is directly converted into position, with a resolution of 200-250 μm. The data acquisition software builds up the distribution of the photons over their spatial coordinates, x and y, and their times after the excitation pulses, typically into 512 × 512 pixels and 1024 time channels per pixel. We apply the system to fluorescence lifetime imaging of cells labelled with Alexa 488 phalloidin in an epi-fluorescence microscope and discuss the application of our approach to other fluorescence microscopy methods.

  6. A wide-field TCSPC FLIM system based on an MCP PMT with a delay-line anode

    Science.gov (United States)

    Becker, Wolfgang; Hirvonen, Liisa M.; Milnes, James; Conneely, Thomas; Jagutzki, Ottmar; Netz, Holger; Smietana, Stefan; Suhling, Klaus

    2016-09-01

    We report on the implementation of a wide-field time-correlated single photon counting (TCSPC) method for fluorescence lifetime imaging (FLIM). It is based on a 40 mm diameter crossed delay line anode detector, where the readout is performed by three standard TCSPC boards. Excitation is performed by a picosecond diode laser with 50 MHz repetition rate. The photon arrival timing is obtained directly from the microchannel plates, with an instrumental response of ˜190 to 230 ps full width at half maximum depending on the position on the photocathode. The position of the photon event is obtained from the pulse propagation time along the two delay lines, one in x and one in y. One end of a delay line is fed into the "start" input of the corresponding TCSPC board, and the other end is delayed by 40 ns and fed into the "stop" input. The time between start and stop is directly converted into position, with a resolution of 200-250 μm. The data acquisition software builds up the distribution of the photons over their spatial coordinates, x and y, and their times after the excitation pulses, typically into 512 × 512 pixels and 1024 time channels per pixel. We apply the system to fluorescence lifetime imaging of cells labelled with Alexa 488 phalloidin in an epi-fluorescence microscope and discuss the application of our approach to other fluorescence microscopy methods.

  7. A photon counting dynamic digital lock-in amplifier for background suppression in glow discharge atomic emission spectrometry

    Science.gov (United States)

    Gökmen, Ali; Ulgen, Ahmet; Yalçin, Şerife

    1996-01-01

    A photon counting dynamic digital lock-in amplifier, (PC-DDLIA), has been developed for the suppression of Ar lines in glow discharge lamp atomic emission spectrometry, (GDL-AES). The experimental set-up consists of a Grimm-type GDL, a prism-type scanning monochromator, photon counting electronics, an Apple Ile computer with an interface card and a computer controllable high voltage power supply. The photon counting electronics are designed to convert the photon pulses to logic pulses. A discriminator is used to reject pulses below a threshold level. The high voltage power supply is modulated with a square waveform generated from DAC and photon pulses are counted synchronously by the timer/counter chip, versatile interface adaptor (VIA-6522) on the interface card of computer. The data are analyzed in two steps. In the "learn mode", the GDL is modulated with a square waveform between 370 and 670 V and two spectra consisting of only Ar lines are obtained in a spectral window between 287.1 and 290.0 nm. A new modulation waveform is computed from these spectra which yields two overlapped spectra when the PC-DDLIA is scanned over the same spectral window. In the "analysis mode" of data acquisition, a target material with the analyte element(s) in it is used and the spectrometer is scanned with a dynamically varying rectangular waveform over the same spectral window. The net spectrum consists of pure atomic lines free from any Ar lines. The detection limit for the determination of Si (288.2 nm) in the presence of interfering Ar lines (288.1 and 288.4 nm) is found to be 0.083%, whereas suppression of Ar lines over the same spectral window lowers the detection limit to 0.013%.

  8. Quantum trajectories for a system interacting with environment in a single-photon state: Counting and diffusive processes

    Science.gov (United States)

    DÄ browska, Anita; Sarbicki, Gniewomir; Chruściński, Dariusz

    2017-11-01

    We derived quantum trajectories for a system interacting with the environment prepared in a continuous mode single-photon state as the limit of a discrete filtering model with an environment defined as a series of independent qubits prepared initially in the entangled state being an analog of a continuous mode state. The environment qubits interact with the quantum system and they are subsequently measured. The initial correlation between the bath qubits is the source of the non-Markovianity. The conditional evolutions of the quantum system for the limit of the continuous in time observations together with the formulas for the photon counting probabilities are given.

  9. Quantum Non-Demolition Photon Counting and Time-Resolved Reconstruction of Non-Classical Field States in a Cavity

    Science.gov (United States)

    Haroche, S.; Deleglise, S.; Sayrin, C.; Bernu, J.; Gleyzes, S.; Guerlin, C.; Kuhr, S.; Dotsenko, I.; Brune, M.; Raimond, J. M.

    2009-03-01

    We describe Cavity QED experiments in which a beam of circular Rydberg atoms is used to manipulate and probe non-destructively microwave photons trapped in a very high-Q superconducting cavity. We realize an ideal quantum non-demolition (QND) measurement of light, observe the radiation quantum jumps due to cavity relaxation and prepare non-classical fields such as Fock and Schrödinger cat states. Combining QND photon counting with a homodyne mixing method, we reconstruct the Wigner functions of these non-classical states and, by taking snapshots of these functions at increasing times, obtain movies of the decoherence process in the cavity.

  10. Feasibility of using single photon counting X-ray for lung tumor position estimation based on 4D-CT

    Energy Technology Data Exchange (ETDEWEB)

    Aschenbrenner, Katharina P.; Hesser, Juergen W. [Heidelberg Univ., Mannheim (Germany). Dept. of Experimental Radiation Oncology; Heidelberg Univ. (Germany). IWR; Guthier, Christian V. [Heidelberg Univ., Mannheim (Germany). Dept. of Experimental Radiation Oncology; Lyatskaya, Yulia [Brigham and Women' s Center, Boston, MA (United States); Harvard Medical School, Boston, MA (United States); Boda-Heggemann, Judit; Wenz, Frederik [Heidelberg Univ., Mannheim (Germany). Dept. of Radiation Oncology

    2017-10-01

    In stereotactic body radiation therapy of lung tumors, reliable position estimation of the tumor is necessary in order to minimize normal tissue complication rate. While kV X-ray imaging is frequently used, continuous application during radiotherapy sessions is often not possible due to concerns about the additional dose. Thus, ultra low-dose (ULD) kV X-ray imaging based on a single photon counting detector is suggested. This paper addresses the lower limit of photons to locate the tumor reliably with an accuracy in the range of state-of-the-art methods, i.e. a few millimeters. 18 patient cases with four dimensional CT (4D-CT), which serves as a-priori information, are included in the study. ULD cone beam projections are simulated from the 4D-CTs including Poisson noise. The projections from the breathing phases which correspond to different tumor positions are compared to the ULD projection by means of Poisson log-likelihood (PML) and correlation coefficient (CC), and template matching under these metrics. The results indicate that in full thorax imaging five photons per pixel suffice for a standard deviation in tumor positions of less than half a breathing phase. Around 50 photons per pixel are needed to achieve this accuracy with the field of view restricted to the tumor region. Compared to CC, PML tends to perform better for low photon counts and shifts in patient setup. Template matching only improves the position estimation in high photon counts. The quality of the reconstruction is independent of the projection angle. The accuracy of the proposed ULD single photon counting system is in the range of a few millimeters and therefore comparable to state-of-the-art tumor tracking methods. At the same time, a reduction in photons per pixel by three to four orders of magnitude relative to commercial systems with flatpanel detectors can be achieved. This enables continuous kV image-based position estimation during all fractions since the additional dose to the

  11. Time-over-threshold readout to enhance the high flux capabilities of single-photon-counting detectors.

    Science.gov (United States)

    Bergamaschi, Anna; Dinapoli, Roberto; Greiffenberg, Dominic; Henrich, Beat; Johnson, Ian; Mozzanica, Aldo; Radicci, Valeria; Schmitt, Bernd; Shi, Xintian; Stoppani, Laura

    2011-11-01

    The MYTHEN single-photon-counting (SPC) detector has been characterized using the time-over-threshold (ToT) readout method, i.e. measuring the time that the signal produced by the detected X-rays remains above the comparator threshold. In the following it is shown that the ToT readout preserves the sensitivity, dynamic range and capability of background suppression of the SPC mode, while enhancing the count-rate capability, which is the main limitation of state-of-the-art SPC systems.

  12. A wide field of view plasma spectrometer

    Science.gov (United States)

    Skoug, R. M.; Funsten, H. O.; Möbius, E.; Harper, R. W.; Kihara, K. H.; Bower, J. S.

    2016-07-01

    We present a fundamentally new type of space plasma spectrometer, the wide field of view plasma spectrometer, whose field of view is > 1.25π ster using fewer resources than traditional methods. The enabling component is analogous to a pinhole camera with an electrostatic energy-angle filter at the image plane. Particle energy-per-charge is selected with a tunable bias voltage applied to the filter plate relative to the pinhole aperture plate. For a given bias voltage, charged particles from different directions are focused by different angles to different locations. Particles with appropriate locations and angles can transit the filter plate and are measured using a microchannel plate detector with a position-sensitive anode. Full energy and angle coverage are obtained using a single high-voltage power supply, resulting in considerable resource savings and allowing measurements at fast timescales. We present laboratory prototype measurements and simulations demonstrating the instrument concept and discuss optimizations of the instrument design for application to space measurements.

  13. Absolute dose calibration of an X-ray system and dead time investigations of photon-counting techniques

    CERN Document Server

    Carpentieri, C; Ludwig, J; Ashfaq, A; Fiederle, M

    2002-01-01

    High precision concerning the dose calibration of X-ray sources is required when counting and integrating methods are compared. The dose calibration for a dental X-ray tube was executed with special dose calibration equipment (dosimeter) as function of exposure time and rate. Results were compared with a benchmark spectrum and agree within +-1.5%. Dead time investigations with the Medipix1 photon-counting chip (PCC) have been performed by rate variations. Two different types of dead time, paralysable and non-paralysable will be discussed. The dead time depends on settings of the front-end electronics and is a function of signal height, which might lead to systematic defects of systems. Dead time losses in excess of 30% have been found for the PCC at 200 kHz absorbed photons per pixel.

  14. A unified statistical framework for material decomposition using multienergy photon counting x-ray detectors

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jiyoung; Kang, Dong-Goo; Kang, Sunghoon; Sung, Younghun [Samsung Advanced Institute of Technology (SAIT), San 14, Nong-seo dong, Giheung-gu, Yongin, Kyunggi 446-712 (Korea, Republic of); Ye, Jong Chul [Bio-Imaging and Signal Processing Laboratory, Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejon 305-701 (Korea, Republic of)

    2013-09-15

    Purpose: Material decomposition using multienergy photon counting x-ray detectors (PCXD) has been an active research area over the past few years. Even with some success, the problem of optimal energy selection and three material decomposition including malignant tissue is still on going research topic, and more systematic studies are required. This paper aims to address this in a unified statistical framework in a mammographic environment.Methods: A unified statistical framework for energy level optimization and decomposition of three materials is proposed. In particular, an energy level optimization algorithm is derived using the theory of the minimum variance unbiased estimator, and an iterative algorithm is proposed for material composition as well as system parameter estimation under the unified statistical estimation framework. To verify the performance of the proposed algorithm, the authors performed simulation studies as well as real experiments using physical breast phantom and ex vivo breast specimen. Quantitative comparisons using various performance measures were conducted, and qualitative performance evaluations for ex vivo breast specimen were also performed by comparing the ground-truth malignant tissue areas identified by radiologists.Results: Both simulation and real experiments confirmed that the optimized energy bins by the proposed method allow better material decomposition quality. Moreover, for the specimen thickness estimation errors up to 2 mm, the proposed method provides good reconstruction results in both simulation and real ex vivo breast phantom experiments compared to existing methods.Conclusions: The proposed statistical framework of PCXD has been successfully applied for the energy optimization and decomposition of three material in a mammographic environment. Experimental results using the physical breast phantom and ex vivo specimen support the practicality of the proposed algorithm.

  15. Renal stone characterization using high resolution imaging mode on a photon counting detector CT system

    Science.gov (United States)

    Ferrero, A.; Gutjahr, R.; Henning, A.; Kappler, S.; Halaweish, A.; Abdurakhimova, D.; Peterson, Z.; Montoya, J.; Leng, S.; McCollough, C.

    2017-03-01

    In addition to the standard-resolution (SR) acquisition mode, a high-resolution (HR) mode is available on a research photon-counting-detector (PCD) whole-body CT system. In the HR mode each detector consists of a 2x2 array of 0.225 mm x 0.225 mm subpixel elements. This is in contrast to the SR mode that consists of a 4x4 array of the same subelements, and results in 0.25 mm isotropic resolution at iso-center for the HR mode. In this study, we quantified ex vivo the capabilities of the HR mode to characterize renal stones in terms of morphology and mineral composition. Forty pure stones - 10 uric acid (UA), 10 cystine (CYS), 10 calcium oxalate monohydrate (COM) and 10 apatite (APA) - and 14 mixed stones were placed in a 20 cm water phantom and scanned in HR mode, at radiation dose matched to that of routine dual-energy stone exams. Data from micro CT provided a reference for the quantification of morphology and mineral composition of the mixed stones. The area under the ROC curve was 1.0 for discriminating UA from CYS, 0.89 for CYS vs COM and 0.84 for COM vs APA. The root mean square error (RMSE) of the percent UA in mixed stones was 11.0% with a medium-sharp kernel and 15.6% with the sharpest kernel. The HR showed qualitatively accurate characterization of stone morphology relative to micro CT.

  16. Indirect-detection single-photon-counting x-ray detector for breast tomosynthesis

    Science.gov (United States)

    Jiang, Hao; Kaercher, Joerg; Durst, Roger

    2016-03-01

    X-ray mammography is a crucial screening tool for early identification of breast cancer. However, the overlap of anatomical features present in projection images often complicates the task of correctly identifying suspicious masses. As a result, there has been increasing interest in acquisition of volumetric information through digital breast tomosynthesis (DBT) which, compared to mammography, offers the advantage of depth information. Since DBT requires acquisition of many projection images, it is desirable that the noise in each projection image be dominated by the statistical noise of the incident x-ray quanta and not by the additive noise of the imaging system (referred to as quantum-limited imaging) and that the cumulative dose be as low as possible (e.g., no more than for a mammogram). Unfortunately, the electronic noise (~2000 electrons) present in current DBT systems based on active matrix, flat-panel imagers (AMFPIs) is still relatively high compared with modest x-ray gain of the a-Se and CsI:Tl x-ray converters often used. To overcome the modest signal-to-noise ratio (SNR) limitations of current DBT systems, we have developed a large-area x-ray imaging detector with the combination of an extremely low noise (~20 electrons) active-pixel CMOS and a specially designed high resolution scintillator. The high sensitivity and low noise of such system provides better SNR by at least an order of magnitude than current state-of-art AMFPI systems and enables x-ray indirect-detection single photon counting (SPC) at mammographic energies with the potential of dose reduction.

  17. Contrast-enhanced spectral mammography with a photon-counting detector.

    Science.gov (United States)

    Fredenberg, Erik; Hemmendorff, Magnus; Cederström, Björn; Aslund, Magnus; Danielsson, Mats

    2010-05-01

    Spectral imaging is a method in medical x-ray imaging to extract information about the object constituents by the material-specific energy dependence of x-ray attenuation. The authors have investigated a photon-counting spectral imaging system with two energy bins for contrast-enhanced mammography. System optimization and the potential benefit compared to conventional non-energy-resolved absorption imaging was studied. A framework for system characterization was set up that included quantum and anatomical noise and a theoretical model of the system was benchmarked to phantom measurements. Optimal combination of the energy-resolved images corresponded approximately to minimization of the anatomical noise, which is commonly referred to as energy subtraction. In that case, an ideal-observer detectability index could be improved close to 50% compared to absorption imaging in the phantom study. Optimization with respect to the signal-to-quantum-noise ratio, commonly referred to as energy weighting, yielded only a minute improvement. In a simulation of a clinically more realistic case, spectral imaging was predicted to perform approximately 30% better than absorption imaging for an average glandularity breast with an average level of anatomical noise. For dense breast tissue and a high level of anatomical noise, however, a rise in detectability by a factor of 6 was predicted. Another approximately 70%-90% improvement was found to be within reach for an optimized system. Contrast-enhanced spectral mammography is feasible and beneficial with the current system, and there is room for additional improvements. Inclusion of anatomical noise is essential for optimizing spectral imaging systems.

  18. Ultra-high spatial resolution multi-energy CT using photon counting detector technology

    Science.gov (United States)

    Leng, S.; Gutjahr, R.; Ferrero, A.; Kappler, S.; Henning, A.; Halaweish, A.; Zhou, W.; Montoya, J.; McCollough, C.

    2017-03-01

    Two ultra-high-resolution (UHR) imaging modes, each with two energy thresholds, were implemented on a research, whole-body photon-counting-detector (PCD) CT scanner, referred to as sharp and UHR, respectively. The UHR mode has a pixel size of 0.25 mm at iso-center for both energy thresholds, with a collimation of 32 × 0.25 mm. The sharp mode has a 0.25 mm pixel for the low-energy threshold and 0.5 mm for the high-energy threshold, with a collimation of 48 × 0.25 mm. Kidney stones with mixed mineral composition and lung nodules with different shapes were scanned using both modes, and with the standard imaging mode, referred to as macro mode (0.5 mm pixel and 32 × 0.5 mm collimation). Evaluation and comparison of the three modes focused on the ability to accurately delineate anatomic structures using the high-spatial resolution capability and the ability to quantify stone composition using the multi-energy capability. The low-energy threshold images of the sharp and UHR modes showed better shape and texture information due to the achieved higher spatial resolution, although noise was also higher. No noticeable benefit was shown in multi-energy analysis using UHR compared to standard resolution (macro mode) when standard doses were used. This was due to excessive noise in the higher resolution images. However, UHR scans at higher dose showed improvement in multi-energy analysis over macro mode with regular dose. To fully take advantage of the higher spatial resolution in multi-energy analysis, either increased radiation dose, or application of noise reduction techniques, is needed.

  19. Dual energy CT kidney stone differentiation in photon counting computed tomography

    Science.gov (United States)

    Gutjahr, R.; Polster, C.; Henning, A.; Kappler, S.; Leng, S.; McCollough, C. H.; Sedlmair, M. U.; Schmidt, B.; Krauss, B.; Flohr, T. G.

    2017-03-01

    This study evaluates the capabilities of a whole-body photon counting CT system to differentiate between four common kidney stone materials, namely uric acid (UA), calcium oxalate monohydrate (COM), cystine (CYS), and apatite (APA) ex vivo. Two different x-ray spectra (120 kV and 140 kV) were applied and two acquisition modes were investigated. The macro-mode generates two energy threshold based image-volumes and two energy bin based image-volumes. In the chesspattern-mode four energy thresholds are applied. A virtual low energy image, as well as a virtual high energy image are derived from initial threshold-based images, while considering their statistically correlated nature. The energy bin based images of the macro-mode, as well as the virtual low and high energy image of the chesspattern-mode serve as input for our dual energy evaluation. The dual energy ratio of the individually segmented kidney stones were utilized to quantify the discriminability of the different materials. The dual energy ratios of the two acquisition modes showed high correlation for both applied spectra. Wilcoxon-rank sum tests and the evaluation of the area under the receiver operating characteristics curves suggest that the UA kidney stones are best differentiable from all other materials (AUC = 1.0), followed by CYS (AUC ≍ 0.9 compared against COM and APA). COM and APA, however, are hardly distinguishable (AUC between 0.63 and 0.76). The results hold true for the measurements of both spectra and both acquisition modes.

  20. Elemental analysis with a full-field X-ray fluorescence microscope and a CCD photon-counting system.

    Science.gov (United States)

    Ohigashi, Takuji; Watanabe, Norio; Yokosuka, Hiroki; Aota, Tatsuya; Takano, Hidekazu; Takeuchi, Akihisa; Aoki, Sadao

    2002-05-01

    The first result is presented of an X-ray fluorescence microscope with a Wolter mirror in combination with a CCD camera used as an energy-resolved two-dimensional detector in photon-counting mode. Two-dimensional elemental maps of metallic wires, such as Fe, Co, Ni and Cu, and inclusions of a synthesized diamond could be obtained with an energy resolution of 350 eV.

  1. Design of a high-bandwidth data recording and quicklook display system for a photon-counting speckle camera

    Science.gov (United States)

    Eichhorn, Guenther; Hege, E. Keith

    1990-08-01

    The computer system described in this paper is designed to capture event data from a photon-counting speckle camera at photon event rates of up to 1 MHz continuously. The display and quicklook computer uses several single board computers (SBC's) to display the photon events in real-time, calculate the centroid of the data for autoguiding of the telescope, and calculate the autocorrelation function. The system is based on the VMEbus architecture. The SBC's operate under the VxWorks real-time operating system. A Sun workstation is used for code development. the SBC's are mostly selected for speed since the computational requirements are very high. Eventually a Sun workstation for near-real-time image processing and image reconstruction will be used to receive quicklook data from the control computer.

  2. Switching and counting with atomic vapors in photonic-crystal fibers

    DEFF Research Database (Denmark)

    Peyronel, Thibault; Bajcsy, Michal; Hofferberth, Sebastian

    2012-01-01

    We review our recent experiments demonstrating a hollow-core photonic-crystal fiber loaded with laser-cooled atomic vapor as a system for all-optical switching with pulses containing few hundred photons. Additionally, we discuss the outlooks for improving the efficiency of this switching scheme a...... and present preliminary results geared toward using the system as a photon-number resolving detector....

  3. High-Bandwidth Photon-Counting Detectors with Enhanced Near-Infrared Response Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Long-range optical telecommunications (LROT) impose challenging requirements on detector array sensitivity at 1064nm and arrays timing bandwidth. Large photonic...

  4. Calibration and testing of wide-field UV instruments

    Science.gov (United States)

    Frey, H. U.; Mende, S. B.; Loicq, J.; Habraken, S.

    2017-06-01

    As with all optical systems the calibration of wide-field ultraviolet (UV) systems includes three main areas: sensitivity, imaging quality, and imaging capability. The one thing that makes UV calibrations difficult is the need for working in vacuum substantially extending the required time and effort compared to visible systems. In theory a ray tracing and characterization of each individual component of the optical system (mirrors, windows, and grating) should provide the transmission efficiency of the combined system. However, potentially unknown effects (contamination, misalignment, and measurement errors) can make the final error too large and unacceptable for most applications. Therefore, it is desirable to test and measure the optical properties of the whole system in vacuum and compare the overall response to the response of a calibrated photon detector. A proper comparison then allows the quantification of individual sources of uncertainty and ensures that the whole instrument performance is within acceptable tolerances or pinpoints which parts fail to meet requirements. Based on the experience with the IMAGE Spectrographic Imager, the Wide-band Imaging Camera, and the ICON Far Ultraviolet instruments, we discuss the steps and procedures for the proper radiometric sensitivity and passband calibration, spot size, imaging distortions, flatfield, and field of view determination.Plain Language SummaryAs with all optical systems the calibration of wide-field ultraviolet (UV) systems includes three main areas: sensitivity, imaging quality, and imaging capability. The one thing that makes UV calibrations difficult is the need for working in vacuum substantially extending the required time and effort compared to visible systems. Based on the experience with the IMAGE Spectrographic Imager, the Wide-band Imaging Camera (WIC), and the ICON Far Ultraviolet instruments, we discuss the steps and procedures for the proper radiometric sensitivity and pass-band calibration

  5. The wide field imager instrument for Athena

    Science.gov (United States)

    Meidinger, Norbert; Nandra, Kirpal; Plattner, Markus; Porro, Matteo; Rau, Arne; Santangelo, Andrea E.; Tenzer, Chris; Wilms, Jörn

    2014-07-01

    The "Hot and Energetic Universe" has been selected as the science theme for ESA's L2 mission, scheduled for launch in 2028. The proposed Athena X-ray observatory provides the necessary capabilities to achieve the ambitious goals of the science theme. The X-ray mirrors are based on silicon pore optics technology and will have a 12 m focal length. Two complementary camera systems are foreseen which can be moved in and out of the focal plane by an interchange mechanism. These instruments are the actively shielded micro-calorimeter spectrometer X-IFU and the Wide Field Imager (WFI). The WFI will combine an unprecedented survey power through its large field of view of 40 arcmin with a high countrate capability (approx. 1 Crab). It permits a state-of-the-art energy resolution in the energy band of 0.1 keV to 15 keV during the entire mission lifetime (e.g. FWHM serial analog output. The architecture of sensor and readout ASIC allows readout in full frame mode and window mode as well by addressing selectively arbitrary sub-areas of the sensor allowing time resolution in the order of 10 μs. The further detector electronics has mainly the following tasks: digitization, pre-processing and telemetry of event data as well as supply and control of the detector system. Although the sensor will already be equipped with an on-chip light blocking filter, a filter wheel is necessary to provide an additional external filter, an on-board calibration source, an open position for outgassing, and a closed position for protection of the sensor. The sensor concept provides high quantum efficiency over the entire energy band and we intend to keep the instrumental background as low as possible by designing a graded Z-shield around the sensor. All these properties make the WFI a very powerful survey instrument, significantly surpassing currently existing observatories and in addition allow high-time resolution of the brightest X-ray sources with low pile-up and high efficiency. This

  6. Development of the wide field imager for Athena

    Science.gov (United States)

    Meidinger, Norbert; Eder, Josef; Fürmetz, Maria; Nandra, Kirpal; Pietschner, Daniel; Plattner, Markus; Rau, Arne; Reiffers, Jonas; Strecker, Rafael; Barbera, Marco; Brand, Thorsten; Wilms, Jörn

    2015-08-01

    The WFI (Wide Field Imager) instrument is planned to be one of two complementary focal plane cameras on ESA's next X-ray observatory Athena. It combines unprecedented survey power through its large field of view of 40 arcmin x 40 arcmin together with excellent count-rate capability (>= 1 Crab). The energy resolution of the silicon sensor is state-of-the-art in the energy band of interest from 0.2 keV to 15 keV, e.g. the full width at half maximum of a line at 6 keV will be MOSFET integrated onto a fully depleted 450 μm thick silicon bulk. Two different types of DEPFET sensors are planned for the WFI instrument: A set of four large-area sensors to cover the physical size of 14 cm x 14 cm in the focal plane and a single smaller gateable DEPFET sensor matrix optimized for high count-rate observations. Here we present the conceptual design of the instrument with focus on the critical subsystems and describe the instrument performance expectations. An outline of the model philosophy and the project organization completes the presentation.

  7. Detection of microcalcifications and tumor tissue in mammography using a CdTe-series photon-counting detector

    Science.gov (United States)

    Nakajima, Ai; Ihori, Akiko; Nishide, Hiroko; Koyama, Shuji; Yamakawa, Tsutomu; Yamamoto, Shuichiro; Okada, Masahiro; Kodera, Yoshie

    2017-03-01

    In this study, we proposed a method for detecting microcalcifications and tumor tissue using a cadmium telluride (CdTe) series linear detector. The CdTe series detector was used as an energy resolved photon-counting (hereafter referred to as the photon-counting) mammography detector. The CdTe series linear detector and two types of phantom were designed using a MATLAB simulation. Each phantom consisted of mammary gland and adipose tissue. One phantom contained microcalcifications and the other contained tumor tissue. We varied the size of these structures and the mammary gland composition. We divided the spectrum of an x-ray, which is transmitted to each phantom, into three energy bins and calculated the corresponding linear attenuation coefficients from the numbers of input and output photons. Subsequently, the absorption vector length that expresses the amount of absorption was calculated. When the material composition was different between objects, for example mammary gland and microcalcifications, the absorption vector length was also different. We compared each absorption vector length and tried to detect the microcalcifications and tumor tissue. However, as the size of microcalcifications and tumor tissue decreased and/or the mammary gland content rate increased, there was difficulty in distinguishing them. The microcalcifications and tumor tissue despite the reduction in size or increase in mammary gland content rate can be distinguished by increasing the x-ray dosage. Therefore, it is necessary to find a condition under which a low exposure dose is optimally balanced with high detection sensitivity. It is a new method to indicate the image using photon counting technology.

  8. Spectral performance of a whole-body research photon counting detector CT: quantitative accuracy in derived image sets

    Science.gov (United States)

    Leng, Shuai; Zhou, Wei; Yu, Zhicong; Halaweish, Ahmed; Krauss, Bernhard; Schmidt, Bernhard; Yu, Lifeng; Kappler, Steffen; McCollough, Cynthia

    2017-09-01

    Photon-counting computed tomography (PCCT) uses a photon counting detector to count individual photons and allocate them to specific energy bins by comparing photon energy to preset thresholds. This enables simultaneous multi-energy CT with a single source and detector. Phantom studies were performed to assess the spectral performance of a research PCCT scanner by assessing the accuracy of derived images sets. Specifically, we assessed the accuracy of iodine quantification in iodine map images and of CT number accuracy in virtual monoenergetic images (VMI). Vials containing iodine with five known concentrations were scanned on the PCCT scanner after being placed in phantoms representing the attenuation of different size patients. For comparison, the same vials and phantoms were also scanned on 2nd and 3rd generation dual-source, dual-energy scanners. After material decomposition, iodine maps were generated, from which iodine concentration was measured for each vial and phantom size and compared with the known concentration. Additionally, VMIs were generated and CT number accuracy was compared to the reference standard, which was calculated based on known iodine concentration and attenuation coefficients at each keV obtained from the U.S. National Institute of Standards and Technology (NIST). Results showed accurate iodine quantification (root mean square error of 0.5 mgI/cc) and accurate CT number of VMIs (percentage error of 8.9%) using the PCCT scanner. The overall performance of the PCCT scanner, in terms of iodine quantification and VMI CT number accuracy, was comparable to that of EID-based dual-source, dual-energy scanners.

  9. 18k Channels single photon counting readout circuit for hybrid pixel detector

    Science.gov (United States)

    Maj, P.; Grybos, P.; Szczygiel, R.; Zoladz, M.; Sakumura, T.; Tsuji, Y.

    2013-01-01

    We have performed measurements of an integrated circuit named PXD18k designed for hybrid pixel semiconductor detectors used in X-ray imaging applications. The PXD18k integrated circuit, fabricated in CMOS 180 nm technology, has dimensions of 9.64 mm×20 mm and contains approximately 26 million transistors. The core of the IC is a matrix of 96×192 pixels with 100 μm×100 μm pixel size. Each pixel works in a single photon counting mode. A single pixel contains two charge sensitive amplifiers with Krummenacher feedback scheme, two shapers, two discriminators (with independent thresholds A and B) and two 16-bit ripple counters. The data are read out via eight low voltage differential signaling (LVDS) outputs with 100 Mbps rate. The power consumption is dominated by analog blocks and it is about 23 μW/pixel. The effective peaking time at the discriminator input is 30 ns and is mainly determined by the time constants of the charge sensitive amplifier (CSA). The gain is equal to 42.5 μV/e- and the equivalent noise charge is 168 e- rms (with bump-bonded silicon pixel detector). Thanks to the use of trim DACs in each pixel, the effective threshold spread at the discriminator input is only 1.79 mV. The dead time of the front end electronics for a standard setting is 172 ns (paralyzable model). In the standard readout mode (when the data collection time is separated from the time necessary to readout data from the chip) the PXD18k IC works with two energy thresholds per pixel. The PXD18k can also be operated in the continuous readout mode (with a zero dead time) where one can select the number of bits readout from each pixel to optimize the PXD18k frame rate. For example, for reading out 16 bits/pixel the frame rate is 2.7 kHz and for 4 bits/pixel it rises to 7.1 kHz.

  10. Sphinx1: Spectrometric Photon Counting and Integration Pixel for X-Ray Imaging With a 100 Electron LSB

    Science.gov (United States)

    Habib, Amr; Arques, Marc; Dupont, Bertrand; Rohr, Pierre; Sicard, Gilles; Tchagaspanian, Michaël; Verger, Loïck

    2015-06-01

    Sphinx1 is a novel pixel architecture adapted for X-ray imaging that can detect radiation by photon counting and by charge integration. In photon counting mode, each photon is compensated by one or more counter-charge packets which can be dimensioned at a level as low as 100 electrons and the number of injected counter-charge packets indicates the incoming photon energy, thus allowing a spectrometric detection. The pixel is also able to detect radiation by integrating the charges deposited by all incoming photons and converting this analog value into a digital data with a least significant bit (LSB) of 100 electrons through the use of the counter-charge concept. In this paper, Sphinx1 pixel architecture is presented with emphasis on the counter-charge design, and the two modes of operation are described in detail. The pixel was simulated using Eldo simulator. Simulation results indicate an equivalent noise charge (ENC) of 48 electrons-rms for a detector capacitance of 75 fF. The LSB linearity and the ENC are further studied for different values of detector capacitances. The analog and digital power consumptions are calculated to be less than 1 μW in static conditions, proving the architecture to be suitable for large area detectors. Finally, corner simulations show a consistent performance against transistors mismatch. Proof of concept test chip of 5 mm × 5 mm. test chip is being designed fabricated in CMOS 0.13 μm technology, with a pixel pitch of 200 μm.

  11. State preparation and detector effects in quantum measurements of rotation with circular polarization-entangled photons and photon counting

    Science.gov (United States)

    Cen, Longzhu; Zhang, Zijing; Zhang, Jiandong; Li, Shuo; Sun, Yifei; Yan, Linyu; Zhao, Yuan; Wang, Feng

    2017-11-01

    Circular polarization-entangled photons can be used to obtain an enhancement of the precision in a rotation measurement. In this paper, the method of entanglement transformation is used to produce NOON states in circular polarization from a readily generated linear polarization-entangled photon source. Detection of N -fold coincidences serves as the postselection and N -fold superoscillating fringes are obtained simultaneously. A parity strategy and conditional probabilistic statistics contribute to a better fringe, saturating the angle sensitivity to the Heisenberg limit. The impact of imperfect state preparation and detection is discussed both separately and jointly. For the separated case, the influence of each system imperfection is pronounced. For the joint case, the feasibility region for surpassing the standard quantum limit is given. Our work pushes the state preparation of circular polarization-entangled photons to the same level as that in the case of linear polarization. It is also confirmed that entanglement can be transformed into different frames for specific applications, serving as a useful scheme for using entangled sources.

  12. Photon-counting hexagonal pixel array CdTe detector: Spatial resolution characteristics for image-guided interventional applications

    Energy Technology Data Exchange (ETDEWEB)

    Vedantham, Srinivasan; Shrestha, Suman; Karellas, Andrew, E-mail: andrew.karellas@umassmed.edu; Shi, Linxi; Gounis, Matthew J. [Department of Radiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655 (United States); Bellazzini, Ronaldo; Spandre, Gloria; Brez, Alessandro; Minuti, Massimo [Istituto Nazionale di Fisica Nucleare (INFN), Pisa 56127, Italy and Pixirad Imaging Counters s.r.l., L. Pontecorvo 3, Pisa 56127 (Italy)

    2016-05-15

    Purpose: High-resolution, photon-counting, energy-resolved detector with fast-framing capability can facilitate simultaneous acquisition of precontrast and postcontrast images for subtraction angiography without pixel registration artifacts and can facilitate high-resolution real-time imaging during image-guided interventions. Hence, this study was conducted to determine the spatial resolution characteristics of a hexagonal pixel array photon-counting cadmium telluride (CdTe) detector. Methods: A 650 μm thick CdTe Schottky photon-counting detector capable of concurrently acquiring up to two energy-windowed images was operated in a single energy-window mode to include photons of 10 keV or higher. The detector had hexagonal pixels with apothem of 30 μm resulting in pixel pitch of 60 and 51.96 μm along the two orthogonal directions. The detector was characterized at IEC-RQA5 spectral conditions. Linear response of the detector was determined over the air kerma rate relevant to image-guided interventional procedures ranging from 1.3 nGy/frame to 91.4 μGy/frame. Presampled modulation transfer was determined using a tungsten edge test device. The edge-spread function and the finely sampled line spread function accounted for hexagonal sampling, from which the presampled modulation transfer function (MTF) was determined. Since detectors with hexagonal pixels require resampling to square pixels for distortion-free display, the optimal square pixel size was determined by minimizing the root-mean-squared-error of the aperture functions for the square and hexagonal pixels up to the Nyquist limit. Results: At Nyquist frequencies of 8.33 and 9.62 cycles/mm along the apothem and orthogonal to the apothem directions, the modulation factors were 0.397 and 0.228, respectively. For the corresponding axis, the limiting resolution defined as 10% MTF occurred at 13.3 and 12 cycles/mm, respectively. Evaluation of the aperture functions yielded an optimal square pixel size of 54

  13. Photon-counting hexagonal pixel array CdTe detector: Spatial resolution characteristics for image-guided interventional applications

    Science.gov (United States)

    Shrestha, Suman; Karellas, Andrew; Shi, Linxi; Gounis, Matthew J.; Bellazzini, Ronaldo; Spandre, Gloria; Brez, Alessandro; Minuti, Massimo

    2016-01-01

    Purpose: High-resolution, photon-counting, energy-resolved detector with fast-framing capability can facilitate simultaneous acquisition of precontrast and postcontrast images for subtraction angiography without pixel registration artifacts and can facilitate high-resolution real-time imaging during image-guided interventions. Hence, this study was conducted to determine the spatial resolution characteristics of a hexagonal pixel array photon-counting cadmium telluride (CdTe) detector. Methods: A 650 μm thick CdTe Schottky photon-counting detector capable of concurrently acquiring up to two energy-windowed images was operated in a single energy-window mode to include photons of 10 keV or higher. The detector had hexagonal pixels with apothem of 30 μm resulting in pixel pitch of 60 and 51.96 μm along the two orthogonal directions. The detector was characterized at IEC-RQA5 spectral conditions. Linear response of the detector was determined over the air kerma rate relevant to image-guided interventional procedures ranging from 1.3 nGy/frame to 91.4 μGy/frame. Presampled modulation transfer was determined using a tungsten edge test device. The edge-spread function and the finely sampled line spread function accounted for hexagonal sampling, from which the presampled modulation transfer function (MTF) was determined. Since detectors with hexagonal pixels require resampling to square pixels for distortion-free display, the optimal square pixel size was determined by minimizing the root-mean-squared-error of the aperture functions for the square and hexagonal pixels up to the Nyquist limit. Results: At Nyquist frequencies of 8.33 and 9.62 cycles/mm along the apothem and orthogonal to the apothem directions, the modulation factors were 0.397 and 0.228, respectively. For the corresponding axis, the limiting resolution defined as 10% MTF occurred at 13.3 and 12 cycles/mm, respectively. Evaluation of the aperture functions yielded an optimal square pixel size of 54

  14. ChromAIX2: A large area, high count-rate energy-resolving photon counting ASIC for a Spectral CT Prototype

    Science.gov (United States)

    Steadman, Roger; Herrmann, Christoph; Livne, Amir

    2017-08-01

    Spectral CT based on energy-resolving photon counting detectors is expected to deliver additional diagnostic value at a lower dose than current state-of-the-art CT [1]. The capability of simultaneously providing a number of spectrally distinct measurements not only allows distinguishing between photo-electric and Compton interactions but also discriminating contrast agents that exhibit a K-edge discontinuity in the absorption spectrum, referred to as K-edge Imaging [2]. Such detectors are based on direct converting sensors (e.g. CdTe or CdZnTe) and high-rate photon counting electronics. To support the development of Spectral CT and show the feasibility of obtaining rates exceeding 10 Mcps/pixel (Poissonian observed count-rate), the ChromAIX ASIC has been previously reported showing 13.5 Mcps/pixel (150 Mcps/mm2 incident) [3]. The ChromAIX has been improved to offer the possibility of a large area coverage detector, and increased overall performance. The new ASIC is called ChromAIX2, and delivers count-rates exceeding 15 Mcps/pixel with an rms-noise performance of approximately 260 e-. It has an isotropic pixel pitch of 500 μm in an array of 22×32 pixels and is tile-able on three of its sides. The pixel topology consists of a two stage amplifier (CSA and Shaper) and a number of test features allowing to thoroughly characterize the ASIC without a sensor. A total of 5 independent thresholds are also available within each pixel, allowing to acquire 5 spectrally distinct measurements simultaneously. The ASIC also incorporates a baseline restorer to eliminate excess currents induced by the sensor (e.g. dark current and low frequency drifts) which would otherwise cause an energy estimation error. In this paper we report on the inherent electrical performance of the ChromAXI2 as well as measurements obtained with CZT (CdZnTe)/CdTe sensors and X-rays and radioactive sources.

  15. A new cross-detection method for improved energy-resolving photon counting under pulse pile-up

    Science.gov (United States)

    Lee, Daehee; Lim, Kyung Taek; Park, Kyungjin; Lee, Changyeop; Cho, Gyuseong

    2017-09-01

    In recent, photon counting detectors (PCDs) have been replacing the energy-integrating detectors in many medical imaging applications due to the formers' high resolution, low noise, and high efficiency. Under a high flux X-ray exposure, however, a superimposition of pulses, i.e., pulse pile-up, frequently occurs due to the finite output pulse width, causing distortions in the energy spectrum as a consequence. Therefore, pulse pile-up is considered as a major constraint in using PCDs for high flux X-ray applications. In this study, a new photon counting method is proposed to minimize degradations in PCD performance due to pulse pile-up. The proposed circuit was incorporated into a pixel with a size of 200 × 200 μm2. It was fabricated by using a 1-poly 6-metal 0 . 18 μm complementary metal-oxide-semiconductor (CMOS) process and had a power consumption of 7 . 8 μW / pixel. From the result, it was shown that the maximum count rate of the proposed circuit was increased by a factor of 4.7 when compared to that of the conventional circuit at the same pulse width of 700 ns. This implies that the energy spectrum obtained by the proposed circuit is 4.7 times more resistant to distortions than the conventional energy-resolving circuit does under higher X-ray fluxes.

  16. Bragg-scattering conversion at telecom wavelengths towards the photon counting regime.

    Science.gov (United States)

    Krupa, Katarzyna; Tonello, Alessandro; Kozlov, Victor V; Couderc, Vincent; Di Bin, Philippe; Wabnitz, Stefan; Barthélémy, Alain; Labonté, Laurent; Tanzilli, Sébastien

    2012-11-19

    We experimentally study Bragg-scattering four-wave mixing in a highly nonlinear fiber at telecom wavelengths using photon counters. We explore the polarization dependence of this process with a continuous wave signal in the macroscopic and attenuated regime, with a wavelength shift of 23 nm. Our measurements of mean photon numbers per second under various pump polarization configurations agree well with the theoretical and numerical predictions based on classical models. We discuss the impact of noise under these different polarization configurations.

  17. 2Kx2K resolution element photon counting MCP sensor with >200 kHz event rate capability

    CERN Document Server

    Vallerga, J V

    2000-01-01

    Siegmund Scientific undertook a NASA Small Business Innovative Research (SBIR) contract to develop a versatile, high-performance photon (or particle) counting detector combining recent technical advances in all aspects of Microchannel Plate (MCP) detector development in a low cost, commercially viable package that can support a variety of applications. The detector concept consists of a set of MCPs whose output electron pulses are read out with a crossed delay line (XDL) anode and associated high-speed event encoding electronics. The delay line anode allows high-resolution photon event centroiding at very high event rates and can be scaled to large formats (>40 mm) while maintaining good linearity and high temporal stability. The optimal sensitivity wavelength range is determined by the choice of opaque photocathodes. Specific achievements included: spatial resolution of 200 000 events s sup - sup 1; local rates of >100 events s sup - sup 1 per resolution element; event timing of <1 ns; and low background ...

  18. Photon-Counting Kinetic Inductance Detectors (KID) for Far/Mid-Infrared Space Spectroscopy with the Origins Space Telescope (OST)

    Science.gov (United States)

    Noroozian, Omid; Barrentine, Emily M.; Stevenson, Thomas R.; Brown, Ari D.; Moseley, Samuel Harvey; Wollack, Edward; Pontoppidan, Klaus Martin; U-Yen, Konpop; Mikula, Vilem

    2018-01-01

    Photon-counting detectors are highly desirable for reaching the ~ 10-20 W/√Hz power sensitivity permitted by the Origins Space Telescope (OST). We are developing unique Kinetic Inductance Detectors (KIDs) with photon counting capability in the far/mid-IR. Combined with an on-chip far-IR spectrometer onboard OST these detectors will enable a new data set for exploring galaxy evolution and the growth of structure in the Universe. Mid-IR spectroscopic surveys using these detectors will enable mapping the composition of key volatiles in planet-forming material around protoplanetary disks and their evolution into solar systems. While these OST science objectives represent a well-organized community agreement they are impossible to reach without a significant leap forward in detector technology, and the OST is likely not to be recommended if a path to suitable detectors does not exist.To reach the required sensitivity we are experimenting with superconducting resonators made from thin aluminum films on single-crystal silicon substrates. Under the right conditions, small-volume inductors made from these films can become ultra-sensitive to single photons >90 GHz. Understanding the physics of these superconductor-dielectric systems is critical to performance. We achieved a very high quality factor of 0.5 x 106 for a 10-nm Al resonator at n ~ 1 microwave photon drive power, by far the highest value for such thin films in the literature. We measured a residual electron density of 95% efficiency at 0.5 - 1.0 THz is achievable.We report on these developments and discuss plans to test in our facility through funding from our recently awarded ROSES-APRA grant and Roman Technology Fellowship award.

  19. Development of superconducting tunnel junction as photon counting detector in astronomy; Developpement de jonctions supraconductrices a effet tunnel pour le comptage de photons en astronomie

    Energy Technology Data Exchange (ETDEWEB)

    Jorel, C

    2004-12-15

    This work describes the development of S/Al-AlOx-Al/S Superconducting Tunnel Junctions (STJ) to count photons for astronomical applications in the near-infrared. The incoming light energy is converted into excited charges in a superconducting layer (S, either Nb or Ta) with a population proportional to the deposited energy. The photon energy can thus be evaluated by integrating the tunnel current induced in a voltage biased junction at a very low temperature (100 mK). The performance of STJ for light detection is discussed in the first chapter and compared with the best performances obtained with other techniques based on either superconductors. At the beginning of the thesis, a previous manufacturing process made it possible to obtain good quality Nb based junctions and preliminary results for photon counting. The objective of the thesis was to replace Nb as absorber with Ta, an intrinsically more sensitive material, and secondly to develop a new and more efficient manufacturing process. We first focused on the optimization of the Tantalum thin film quality. Structural analysis showed that these films can be grown epitaxially by magnetron sputtering onto an R-plane sapphire substrate heated to 600 Celsius degrees and covered by a thin Nb buffer layer. Electrical transport measurement from room to low temperatures gave excellent Relative Resistive Ratios of about 50 corresponding to mean free path of the order of 100 nm. Then, we conceived an original manufacturing process batch on 3 inch diameter sapphire substrate with five mask levels. These masks made it possible to produce single pixel STJ of different sizes (from 25*25 to 50*50 square microns) and shapes. We also produced multiple junctions onto a common absorber as well as 9-pixel arrays. Thanks to the development of this process we obtained a very large percentage of quality junctions (>90%) with excellent measured normal resistances of a few micro-ohm cm{sup 2} and low leakage currents of the order of one

  20. Quantum key distribution over a 72 dB channel loss using ultralow dark count superconducting single-photon detectors.

    Science.gov (United States)

    Shibata, Hiroyuki; Honjo, Toshimori; Shimizu, Kaoru

    2014-09-01

    We report the first quantum key distribution (QKD) experiment over a 72 dB channel loss using superconducting nanowire single-photon detectors (SSPD, SNSPD) with the dark count rate (DCR) of 0.01 cps. The DCR of the SSPD, which is dominated by the blackbody radiation at room temperature, is blocked by introducing cold optical bandpass filter. We employ the differential phase shift QKD (DPS-QKD) scheme with a 1 GHz system clock rate. The quantum bit error rate (QBER) below 3% is achieved when the length of the dispersion shifted fiber (DSF) is 336 km (72 dB loss), which is low enough to generate secure keys.

  1. Chromatic X-ray imaging with a fine pitch CdTe sensor coupled to a large area photon counting pixel ASIC

    Science.gov (United States)

    Bellazzini, R.; Spandre, G.; Brez, A.; Minuti, M.; Pinchera, M.; Mozzo, P.

    2013-02-01

    An innovative X-ray imaging sensor based on Chromatic Photon Counting technology with intrinsic digital characteristics is presented. The system counts individually the incident X-ray photons and selects them according to their energy to produce two color images per exposure. The energy selection occurs in real time and at radiographic imaging speed (GHz global counting rate). Photon counting, color mode and a very fine spatial resolution (more than 10 LP/mm at MTF50) allow to obtain a high ratio between image quality and absorbed dose. The individual building block of the imaging system is a two-side buttable semiconductor radiation detector made of a thin pixellated CdTe crystal coupled to a large area VLSI CMOS pixel ASIC. Modules with 1, 2, 4, and 8 block units have been built. The largest module has 25 × 2.5 cm2 sensitive area. Results and images obtained from testing different modules are presented.

  2. Technical feasibility proof for high-resolution low-dose photon-counting CT of the breast

    Energy Technology Data Exchange (ETDEWEB)

    Kalender, Willi A.; Kolditz, Daniel; Lueck, Ferdinand [University of Erlangen-Nuernberg, Institute of Medical Physics (IMP), Erlangen (Germany); CT Imaging GmbH, Erlangen (Germany); Steiding, Christian [University of Erlangen-Nuernberg, Institute of Medical Physics (IMP), Erlangen (Germany); CT Imaging GmbH, Erlangen (Germany); University Hospital of Erlangen, Institute of Radiology, Erlangen (Germany); Ruth, Veikko; Roessler, Ann-Christin [University of Erlangen-Nuernberg, Institute of Medical Physics (IMP), Erlangen (Germany); Wenkel, Evelyn [University Hospital of Erlangen, Institute of Radiology, Erlangen (Germany)

    2017-03-15

    X-ray computed tomography (CT) has been proposed and evaluated multiple times as a potentially alternative method for breast imaging. All efforts shown so far have been criticized and partly disapproved because of their limited spatial resolution and higher patient dose when compared to mammography. Our concept for a dedicated breast CT (BCT) scanner therefore aimed at novel apparatus and detector design to provide high spatial resolution of about 100 μm and average glandular dose (AGD) levels of 5 mGy or below. Photon-counting technology was considered as a solution to reach these goals. The complete concept was previously evaluated and confirmed by simulations and basic experiments on laboratory setups. We here present measurements of dose, technical image quality parameters and surgical specimen results on such a scanner. For comparison purposes, the specimens were also imaged with digital mammography (DM) and breast tomosynthesis (BT) apparatus. Results show that photon-counting BCT (pcBCT) at 5 mGy AGD offers sufficiently high 3D spatial resolution for reliable detectability of calcifications and soft tissue delineation. (orig.)

  3. X-ray imaging with sub-micron resolution using large-area photon counting detectors Timepix

    Science.gov (United States)

    Dudak, J.; Karch, J.; Holcova, K.; Zemlicka, J.

    2017-12-01

    As X-ray micro-CT became a popular tool for scientific purposes a number of commercially available CT systems have emerged on the market. Micro-CT systems have, therefore, become widely accessible and the number of research laboratories using them constantly increases. However, even when CT scans with spatial resolution of several micrometers can be performed routinely, data acquisition with sub-micron precision remains a complicated task. Issues come mostly from prolongation of the scan time inevitably connected with the use of nano-focus X-ray sources. Long exposure time increases the noise level in the CT projections. Furthermore, considering the sub-micron resolution even effects like source-spot drift, rotation stage wobble or thermal expansion become significant and can negatively affect the data. The use of dark-current free photon counting detectors as X-ray cameras for such applications can limit the issue of increased image noise in the data, however the mechanical stability of the whole system still remains a problem and has to be considered. In this work we evaluate the performance of a micro-CT system equipped with nano-focus X-ray tube and a large area photon counting detector Timepix for scans with effective pixel size bellow one micrometer.

  4. Development of a Schottky CdTe Medipix3RX hybrid photon counting detector with spatial and energy resolving capabilities

    Energy Technology Data Exchange (ETDEWEB)

    Gimenez, E.N., E-mail: Eva.Gimenez@diamond.ac.uk [Diamond Light Source, Harwell Campus, Oxforshire OX11 0DE (United Kingdom); Astromskas, V. [University of Surrey (United Kingdom); Horswell, I.; Omar, D.; Spiers, J.; Tartoni, N. [Diamond Light Source, Harwell Campus, Oxforshire OX11 0DE (United Kingdom)

    2016-07-11

    A multichip CdTe-Medipix3RX detector system was developed in order to bring the advantages of photon-counting detectors to applications in the hard X-ray range of energies. The detector head consisted of 2×2 Medipix3RX ASICs bump-bonded to a 28 mm×28 mm e{sup −} collection Schottky contact CdTe sensor. Schottky CdTe sensors undergo performance degrading polarization which increases with temperature, flux and the longer the HV is applied. Keeping the temperature stable and periodically refreshing the high voltage bias supply was used to minimize the polarization and achieve a stable and reproducible detector response. This leads to good quality images and successful results on the energy resolving capabilities of the system. - Highlights: • A high atomic number (CdTe sensor based) photon-counting detector was developed. • Polarization effects affected the image were minimized by regularly refreshing the bias voltage and stabilizing the temperature. • Good spatial resolution and image quality was achieved following this procedure.

  5. Photon-counting single-molecule spectroscopy for studying conformational dynamics and macromolecular interactions

    Energy Technology Data Exchange (ETDEWEB)

    Laurence, Ted Alfred [Univ. of California, Berkeley, CA (United States)

    2002-01-01

    Single-molecule methods have the potential to provide information about conformational dynamics and molecular interactions that cannot be obtained by other methods. Removal of ensemble averaging provides several benefits, including the ability to detect heterogeneous populations and the ability to observe asynchronous reactions. Single-molecule diffusion methodologies using fluorescence resonance energy transfer (FRET) are developed to monitor conformational dynamics while minimizing perturbations introduced by interactions between molecules and surfaces. These methods are used to perform studies of the folding of Chymotrypsin Inhibitor 2, a small, single-domain protein, and of single-stranded DNA (ssDNA) homopolymers. Confocal microscopy is used in combination with sensitive detectors to detect bursts of photons from fluorescently labeled biomolecules as they diffuse through the focal volume. These bursts are analyzed to extract fluorescence resonance energy transfer (FRET) efficiency. Advances in data acquisition and analysis techniques that are providing a more complete picture of the accessible molecular information are discussed. Photon Arrival-time Interval Distribution (PAID) analysis is a new method for monitoring macromolecular interactions by fluorescence detection with simultaneous determination of coincidence, brightness, diffusion time, and occupancy (proportional to concentration) of fluorescently-labeled molecules undergoing diffusion in a confocal detection volume. This method is based on recording the time of arrival of all detected photons, and then plotting the two-dimensional histogram of photon pairs, where one axis is the time interval between each pair of photons 1 and 2, and the second axis is the number of other photons detected in the time interval between photons 1 and 2. PAID is related to Fluorescence Correlation Spectroscopy (FCS) by a collapse of this histogram onto the time interval axis. PAID extends auto- and cross-correlation FCS

  6. Michelson wide-field stellar interferometry : Principles and experimental verification

    NARCIS (Netherlands)

    Montilla, I.; Pereira, S.F.; Braat, J.J.M.

    2005-01-01

    A new interferometric technique for Michelson wide-field interferometry is presented that consists of a Michelson pupil-plane combination scheme in which a wide field of view can be achieved in one shot. This technique uses a stair-shaped mirror in the intermediate image plane of each telescope in

  7. Timepix, a 65k programmable pixel readout chip for arrival time, energy and/or photon counting measurements

    CERN Document Server

    Llopart, X; Campbell, M; Tlustos, L; Wong, W

    2008-01-01

    A novel approach for the readout of a TPC at the future linear collider is to use a CMOS pixel detector combined with some kind of gas gain grid. A first test using the photon counting chip Medipix2 with GEM or Micromegas demonstrated the feasibility of such an approach. Although this experiment demonstrated that single primary electrons could be detected the chip did not provide information on the arrival time of the electron in the sensitive gas volume nor did it give any indication of the quantity of charge detected. The Timepix chip uses an external clock with a frequency of up to 100 MHz as a time reference. Each pixel contains a preamplifier, a discriminator with hysteresis and 4-bit DAC for threshold adjustment, synchronization logic and a 14-bit counter with overflow control. Moreover, each pixel can be independently configured in one of four different modes: masked mode: pixel is off, counting mode: 1-count for each signal over threshold, TOT mode: the counter is incremented continuously as long as t...

  8. MABEL Photon-Counting Laser Altimetry Data in Alaska for ICESat-2 Simulations and Development

    Science.gov (United States)

    Brunt, Kelly; Neumann, T. A.; Amundson, M.; Kavanaugh, J. L.; Moussavi, M. S.; Walsh, K. M.; Cook, W. B.; Markus, T.

    2016-01-01

    Multiple Altimeter Beam Experimental Lidar (MABEL) maps Alaskan crevasses in detail, using 50 of the expected along-track Advanced Topographic Laser Altimeter System (ATLAS) signal-photon densities over summer ice sheets. Ice, Cloud, and Land Elevation Satellite 2 (ICESat-2) along-track data density, and spatial data density due to the multiple-beam strategy, will provide a new dataset to mid-latitude alpine glacier researchers.

  9. Frequency-Modulated, Continuous-Wave Laser Ranging Using Photon-Counting Detectors

    Science.gov (United States)

    Erkmen, Baris I.; Barber, Zeb W.; Dahl, Jason

    2014-01-01

    Optical ranging is a problem of estimating the round-trip flight time of a phase- or amplitude-modulated optical beam that reflects off of a target. Frequency- modulated, continuous-wave (FMCW) ranging systems obtain this estimate by performing an interferometric measurement between a local frequency- modulated laser beam and a delayed copy returning from the target. The range estimate is formed by mixing the target-return field with the local reference field on a beamsplitter and detecting the resultant beat modulation. In conventional FMCW ranging, the source modulation is linear in instantaneous frequency, the reference-arm field has many more photons than the target-return field, and the time-of-flight estimate is generated by balanced difference- detection of the beamsplitter output, followed by a frequency-domain peak search. This work focused on determining the maximum-likelihood (ML) estimation algorithm when continuous-time photoncounting detectors are used. It is founded on a rigorous statistical characterization of the (random) photoelectron emission times as a function of the incident optical field, including the deleterious effects caused by dark current and dead time. These statistics enable derivation of the Cramér-Rao lower bound (CRB) on the accuracy of FMCW ranging, and derivation of the ML estimator, whose performance approaches this bound at high photon flux. The estimation algorithm was developed, and its optimality properties were shown in simulation. Experimental data show that it performs better than the conventional estimation algorithms used. The demonstrated improvement is a factor of 1.414 over frequency-domainbased estimation. If the target interrogating photons and the local reference field photons are costed equally, the optimal allocation of photons between these two arms is to have them equally distributed. This is different than the state of the art, in which the local field is stronger than the target return. The optimal

  10. Analysis of time-correlated single photon counting data: a comparative evaluation of deterministic and probabilistic approaches

    Science.gov (United States)

    Smith, Darren A.; McKenzie, Grant; Jones, Anita C.; Smith, Trevor A.

    2017-12-01

    We review various methods for analysing time-resolved fluorescence data acquired using the time-correlated single photon counting method in an attempt to evaluate their benefits and limitations. We have applied these methods to both experimental and simulated data. The relative merits of using deterministic approaches, such as the commonly used iterative reconvolution method, and probabilistic approaches, such as the smoothed exponential series method, the maximum entropy method and recently proposed basis pursuit denoising (compressed sensing) method, are outlined. In particular, we show the value of using multiple methods to arrive at the most appropriate choice of model. We show that the use of probabilistic analysis methods can indicate whether a discrete component or distribution analysis provides the better representation of the data.

  11. Optimization of the equalization procedure for a single-photon counting CdTe detector used for CT

    Science.gov (United States)

    Delogu, P.; Brombal, L.; Di Trapani, V.; Donato, S.; Bottigli, U.; Dreossi, D.; Golosio, B.; Oliva, P.; Rigon, L.; Longo, R.

    2017-11-01

    SYRMA-3D (SYnchrotron Radiation MAmmography 3D) aims to develop a breast CT system based on monochromatic synchrotron radiation and a single photon counting detector (PIXIRAD-8) with CdTe sensor. Due to the demanding requests on high contrast resolution and low dose, images in breast CT are particularly sensitive to small imperfections of the flat field correction applied before the CT reconstruction. Detectors based on high Z crystal sensors show inhomogeneous pixels gain, which depends on the time from the switching-on of the high voltage polarization. This effect has been studied in our CdTe detector with the purpose of develop an effective flat field correction procedure. In the PIXIRAD-8 detector, the time-dependent inhomogeneities of the flat field signal appear to be local, small and systematically reproducible, with the exception of the pixels on the sensors edges.

  12. Development of windows based software to analyze fluorescence decay with time-correlated single photon counting (TCSPC) setup

    CERN Document Server

    Mallick, M B; Ravindranath, S V G

    2002-01-01

    A VUV spectroscopic facility for studies in photophysics and photochemistry is being set up at INDUS-I synchrotron source, CAT, Indore. For this purpose, a data acquisition system based on time-correlated single photon counting method is being developed for fluorescence lifetime measurement. To estimate fluorescence lifetime from the data collected with this sytem, a Windows based program has been developed using Visual Basic 5.0. It uses instrument response function (IRF) and observed decay curve and estimates parameters of single exponential decay by least square analysis and Marquardt method as convergence mechanism. Estimation of parameters was performed using data collected with a commercial setup. Goodness of fit was judged by evaluating chi R sup 2 , weighted residuals and autocorrelation function. Performance is compared with two commercial software packages and found to be satisfactory.

  13. Development of a fast read-out system of a single photon counting detector for mammography with synchrotron radiation

    Science.gov (United States)

    Lopez, F. C.; Rigon, L.; Longo, R.; Arfelli, F.; Bergamaschi, A.; Chen, R. C.; Dreossi, D.; Schmitt, B.; Vallazza, E.; Castelli, E.

    2011-12-01

    A single-photon counting detector read-out system for mammography with synchrotron radiation has been developed with the aim to meet the needs of the mammographic imaging station of the SYRMEP beamline at ELETTRA. The system called PICASSO (Phase Imaging for Clinical Application with Silicon detector and Synchrotron radiatiOn) is a modular detector that implements a read-out system with MYTHEN II ASICs, an embedded Linux-based controller board and a Scientific Linux acquisition workstation. The system architecture and characteristics are herein presented. The system was tested at the SYRMEP beamline and achieved a frame rate of 33 Hz for 8448 channels at 24-bit dynamic range, and it is capable of continuously acquiring up to 2000 frames. Standard mammographic phantoms were imaged and good quality images were obtained at doses comparable with what is delivered in conventional full field mammographic systems.

  14. On the analogy between pulse-pile-up in energy-sensitive, photon-counting detectors and level-crossing of shot noise

    Science.gov (United States)

    Roessl, Ewald; Bartels, Matthias; Daerr, Heiner; Proksa, Roland

    2016-03-01

    Shot noise processes are omnipresent in physics and many of their properties have been extensively studied in the past, including the particular problem of level crossing of shot noise. Energy-sensitive, photon-counting detectors using comparators to discriminate pulse-heights are currently heavily investigated for medical applications, e.g. for x-ray computed tomography and x-ray mammography. Surprisingly, no mention of the close relation between the two topics can be found in the literature on photon-counting detectors. In this paper, we point out the close analogy between level crossing of shot noise and the problem of determining count rates of photon- counting detectors subject to pulse pile-up. The latter is very relevant for obtaining precise forward models for photon-counting detectors operated under conditions of very high x-ray flux employed in clinical x-ray computed tomography. Although several attempts have been made to provide reasonably accurate, approximative models for the registered number of counts in x-ray detectors under conditions of high flux and arbitrary x-ray spectra, see, e.g., no exact, analytic solution is given in the literature for general continuous pulse shapes. In this paper we present such a solution for arbitrary response functions, x-ray spectra and continuous pulse shapes based on a result from the theory of level crossing. We briefly outline the theory of level crossing including the famous Rice theorem and translate from the language of level crossing to the language of photon-counting detection.

  15. Signal and noise characteristics of a CdTe-based photon counting detector: cascaded systems analysis and experimental studies

    Science.gov (United States)

    Ji, Xu; Zhang, Ran; Ge, Yongshuai; Chen, Guang-Hong; Li, Ke

    2017-03-01

    Recent advances in single photon counting detectors (PCDs) are opening up new opportunities in medical imaging. However, the performance of PCDs is not flawless. Problems such as charge sharing may deteriorate the performance of PCD. This work studied the dependence of the signal and noise properties of a cadmium telluride (CdTe)-based PCD on the charge sharing effect and the anti-charge sharing (ACS) capability offered by the PCD. Through both serial and parallel cascaded systems analysis, a theoretical model was developed to trace the origin of charge sharing in CdTe-based PCD, which is primarily related to remote k-fluorescence re-absorption and spatial spreading of charge cloud. The ACS process was modeled as a sub-imaging state prior to the energy thresholding stage, and its impact on the noise power spectrum (NPS) of PCD can be qualitatively determined by the theoretical model. To validate the theoretical model, experimental studies with a CdTe-based PCD system (XC-FLITE X1, XCounter AB) was performed. Two x-ray radiation conditions, including an RQA-5 beam and a 40 kVp beam, were used for the NPS measurements. Both theoretical predictions and experimental results showed that ACS makes the NPS of the CdTe-based PCD flatter, which corresponds to reduced noise correlation length. The flatness of the NPS is further boosted by increasing the energy threshold or reducing the x-ray energy, both of which reduce the likelihood of registering multiple counts from the same incidenting x-ray photon.

  16. AURORA on MEGSAT 1 a photon counting observatory for the Earth UV night-sky background and Aurora emission

    CERN Document Server

    Monfardini, A; Stalio, R; Mahne, N; Battiston, R; Menichelli, M; Mazzinghi, P

    2001-01-01

    A low-mass, low-cost photon-counting scientific payload has been developed and launched on a commercial microsatellite in order to study the near-UV night-sky background emission with a telescope nicknamed 'Notte' and the Aurora emission with 'Alba'. AURORA, this is the name of the experiment, will determine, with the 'Notte' channel, the overall night-side photon background in the 300-400 nm spectral range, together with a particular 2 sup + N sub 2 line (lambda sub c =337 nm). The 'Alba' channel, on the other hand, will study the Aurora emissions in four different spectral bands (FWHM=8.4-9.6 nm) centered on: 367 nm (continuum evaluation), 391 nm (1 sup - N sup + sub 2), 535 nm (continuum evaluation), 560 nm (OI). The instrument has been launched on the 26 September, 2000 from the Baikonur cosmodrome on a modified SS18 Dnepr-1 'Satan' rocket. The satellite orbit is nearly circular (h sub a sub p sub o sub g sub e sub e =648 km, e=0.0022), and the inclination of the orbital plane is 64.56 deg. An overview of...

  17. High-performance integrated pick-up circuit for SPAD arrays in time-correlated single photon counting

    Science.gov (United States)

    Acconcia, Giulia; Cominelli, Alessandro; Peronio, Pietro; Rech, Ivan; Ghioni, Massimo

    2017-05-01

    The analysis of optical signals by means of Single Photon Avalanche Diodes (SPADs) has been subject to a widespread interest in recent years. The development of multichannel high-performance Time Correlated Single Photon Counting (TCSPC) acquisition systems has undergone a fast trend. Concerning the detector performance, best in class results have been obtained resorting to custom technologies leading also to a strong dependence of the detector timing jitter from the threshold used to determine the onset of the photogenerated current flow. In this scenario, the avalanche current pick-up circuit plays a key role in determining the timing performance of the TCSPC acquisition system, especially with a large array of SPAD detectors because of electrical crosstalk issues. We developed a new current pick-up circuit based on a transimpedance amplifier structure able to extract the timing information from a 50-μm-diameter custom technology SPAD with a state-of-art timing jitter as low as 32ps and suitable to be exploited with SPAD arrays. In this paper we discuss the key features of this structure and we present a new version of the pick-up circuit that also provides quenching capabilities in order to minimize the number of interconnections required, an aspect that becomes more and more crucial in densely integrated systems.

  18. Time-Correlated Single-Photon Counting Fluorescence Imaging of Lipid Domains In Raft-Mimicking Giant Unilamellar Vesicles

    Science.gov (United States)

    Clarke, James; Cheng, Kwan; Shindell, Orrin; Wang, Exing

    We have designed and constructed a high-throughput electrofusion chamber and an incubator to fabricate Giant Unilamellar Vesicles (GUVs) consisting of high-melting lipids, low-melting lipids, cholesterol and both ordered and disordered phase sensitive fluorescent probes (DiIC12, dehydroergosterol and BODIPY-Cholesterol). GUVs were formed in a 3 stage pulse sequence electrofusion process with voltages ranging from 50mVpp to 2.2Vpp and frequencies from 5Hz to 10Hz. Steady state and time-correlated single-photon counting (TCSPC) fluorescence lifetime (FLIM) based confocal and/or multi-photon microscopic techniques were used to characterize phase separated lipid domains in GUVs. Confocal imaging measures the probe concentration and the chemical environment of the system. TCSPC techniques determine the chemical environment through the perturbation of fluorescent lifetimes of the probes in the system. The above techniques will be applied to investigate the protein-lipid interactions involving domain formation. Specifically, the mechanisms governing lipid domain formations in the above systems that mimic the lipid rafts in cells will be explored. Murchison Fellowship at Trinity University.

  19. Wide-Field Infrared Survey Telescope (WFIRST) Integrated Modeling

    Science.gov (United States)

    Liu, Kuo-Chia; Blaurock, Carl

    2017-01-01

    Contents: introduction to WFIRST (Wide-Field Infrared Survey Telescope) and integrated modeling; WFIRST stability requirement summary; instability mitigation strategies; dynamic jitter results; STOP (structural-thermal-optical performance) (thermal distortion) results; STOP and jitter capability limitations; model validation philosophy.

  20. Wide-Field, Deep UV Raman Hyperspectral Imager Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ChemImage Sensor Systems (CISS), teaming with the University of South Carolina, proposes a revolutionary wide-field Raman hyperspectral imaging system capable of...

  1. Photonic-Chip Supercontinuum with Tailored Spectra for Counting Optical Frequencies

    Science.gov (United States)

    Carlson, David R.; Hickstein, Daniel D.; Lind, Alex; Olson, Judith B.; Fox, Richard W.; Brown, Roger C.; Ludlow, Andrew D.; Li, Qing; Westly, Daron; Leopardi, Holly; Fortier, Tara M.; Srinivasan, Kartik; Diddams, Scott A.; Papp, Scott B.

    2017-07-01

    We explore a photonic-integrated-circuit platform that implements optical-frequency measurements and timekeeping with a perspective towards next-generation portable and spaceborne frequency references and optical-clock networks. The stoichiometric-silicon-nitride waveguides we create provide an efficient and low-noise medium for nonlinear spectral broadening and supercontinuum generation with fiber-based optical-frequency combs. In particular, we demonstrate detailed control over supercontinuum emission to target specific atomic-transition wavelengths and perform an optical-clock comparison using on-chip supercontinuum sources. We report a clock-limited relative frequency instability of 3.8 ×10-15 at τ =2 s between a 1550-nm cavity-stabilized reference laser and NIST's calcium atomic-clock laser at 657 nm using a two-octave waveguide-supercontinuum frequency comb.

  2. High-speed and low-distortion solution for time-correlated single photon counting measurements: A theoretical analysis

    Science.gov (United States)

    Cominelli, A.; Acconcia, G.; Peronio, P.; Ghioni, M.; Rech, I.

    2017-12-01

    In this paper, we describe a novel solution to increase the speed of Time-Correlated Single Photon Counting (TCSPC) measurements by almost an order of magnitude while providing, in principle, zero distortion regardless of the experimental conditions. Typically, the relatively long dead time associated with the conversion electronics requires a proper tune of the excitation power in order to avoid distortions of the reconstructed waveform due to pileup and counting loss. As a result, the maximum operating rate of a TCSPC channel is now limited between 1% and 5% of the excitation frequency, thus leading to relatively long acquisition times. We show that negligible distortion (below 1%) is guaranteed if the dead time associated with the converter is kept below the dead time of the detector, and at the same time the detector dead time is matched to the duration of the excitation period. In this way, unprecedented high-speed operation is possible. In this paper, we provide a theoretical analysis of the technique, including the main non-idealities which are introduced by a generic physical implementation. The results are supported by both numerical simulations and analytical calculations.

  3. An ASIC for fast single photon counting in the LHCb RICH upgrade

    Science.gov (United States)

    Gotti, C.

    2017-03-01

    The LHCb experiment will be upgraded during the second LHC long shutdown (years 2019-2020) to operate at higher luminosity. The new triggerless architecture of LHCb requires data from the entire detector to be read out at 40 MHz. The basic element of the front-end electronics of the Ring Imaging Cherenkov (RICH) detector upgrade is the "Elementary Cell" (EC), a readout system for multianode photomultiplier tubes designed to minimise parasitic capacitance at the anodes, to obtain a fast readout with low noise and low crosstalk. At the heart of the EC is the CLARO, an 8 channel, low power and radiation hard front-end ASIC designed in 0.35 μm CMOS technology. Each channel compares the charge signals from the photomultiplier anodes with a programmable threshold, and gives a digital pulse at the output when the threshold is exceeded. Baseline recovery occurs in less than 25 ns for typical single photon signals. In the LHCb RICH upgrade environment, the chips will have to withstand radiation up to a total ionising dose of 2 kGy (200 krad) and neutron and hadron fluences up to 03×112 cm-2 and following irradiation, the chips have been shown to tolerate such doses with a margin of safety.

  4. Ideal-observer detectability in photon-counting differential phase-contrast imaging using a linear-systems approach

    Energy Technology Data Exchange (ETDEWEB)

    Fredenberg, Erik; Danielsson, Mats; Stayman, J. Webster; Siewerdsen, Jeffrey H.; Aslund, Magnus [Research and Development, Philips Women' s Healthcare, Smidesvaegen 5, SE-171 41 Solna, Sweden and Department of Physics, Royal Institute of Technology, AlbaNova, SE-106 91 Stockholm (Sweden); Department of Physics, Royal Institute of Technology, AlbaNova, SE-106 91 Stockholm (Sweden); Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205 (United States); Department of Biomedical Engineering and Department of Radiology, Johns Hopkins University, Baltimore, Maryland 21205 (United States); Research and Development, Philips Women' s Healthcare, Smidesvaegen 5, SE-171 41 Solna (Sweden)

    2012-09-15

    Purpose: To provide a cascaded-systems framework based on the noise-power spectrum (NPS), modulation transfer function (MTF), and noise-equivalent number of quanta (NEQ) for quantitative evaluation of differential phase-contrast imaging (Talbot interferometry) in relation to conventional absorption contrast under equal-dose, equal-geometry, and, to some extent, equal-photon-economy constraints. The focus is a geometry for photon-counting mammography. Methods: Phase-contrast imaging is a promising technology that may emerge as an alternative or adjunct to conventional absorption contrast. In particular, phase contrast may increase the signal-difference-to-noise ratio compared to absorption contrast because the difference in phase shift between soft-tissue structures is often substantially larger than the absorption difference. We have developed a comprehensive cascaded-systems framework to investigate Talbot interferometry, which is a technique for differential phase-contrast imaging. Analytical expressions for the MTF and NPS were derived to calculate the NEQ and a task-specific ideal-observer detectability index under assumptions of linearity and shift invariance. Talbot interferometry was compared to absorption contrast at equal dose, and using either a plane wave or a spherical wave in a conceivable mammography geometry. The impact of source size and spectrum bandwidth was included in the framework, and the trade-off with photon economy was investigated in some detail. Wave-propagation simulations were used to verify the analytical expressions and to generate example images. Results: Talbot interferometry inherently detects the differential of the phase, which led to a maximum in NEQ at high spatial frequencies, whereas the absorption-contrast NEQ decreased monotonically with frequency. Further, phase contrast detects differences in density rather than atomic number, and the optimal imaging energy was found to be a factor of 1.7 higher than for absorption

  5. Comparison of image uniformity with photon counting and conventional scintillation single-photon emission computed tomography system: A Monte Carlo simulation study

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ho Chul; Lee, Young Jin [Dept. of Radiological Science, Eulji University, Seongnam (Korea, Republic of); Kim, Hee Joung; Kim, Kyuseok; Lee, Min Hee [Yonsei University, Wonju (Korea, Republic of)

    2017-06-15

    To avoid imaging artifacts and interpretation mistakes, an improvement of the uniformity in gamma camera systems is a very important point. We can expect excellent uniformity using cadmium zinc telluride (CZT) photon counting detector (PCD) because of the direct conversion of the gamma rays energy into electrons. In addition, the uniformity performance such as integral uniformity (IU), differential uniformity (DU), scatter fraction (SF), and contrast-to-noise ratio (CNR) varies according to the energy window setting. In this study, we compared a PCD and conventional scintillation detector with respect to the energy windows (5%, 10%, 15%, and 20%) using a {sup 99m}Tc gamma source with a Geant4 Application for Tomography Emission simulation tool. The gamma camera systems used in this work are a CZT PCD and NaI(Tl) conventional scintillation detector with a 1-mm thickness. According to the results, although the IU and DU results were improved with the energy window, the SF and CNR results deteriorated with the energy window. In particular, the uniformity for the PCD was higher than that of the conventional scintillation detector in all cases. In conclusion, our results demonstrated that the uniformity of the CZT PCD was higher than that of the conventional scintillation detector.

  6. Comparison of Image Uniformity with Photon Counting and Conventional Scintillation Single-Photon Emission Computed Tomography System: A Monte Carlo Simulation Study

    Directory of Open Access Journals (Sweden)

    Ho Chul Kim

    2017-06-01

    Full Text Available To avoid imaging artifacts and interpretation mistakes, an improvement of the uniformity in gamma camera systems is a very important point. We can expect excellent uniformity using cadmium zinc telluride (CZT photon counting detector (PCD because of the direct conversion of the gamma rays energy into electrons. In addition, the uniformity performance such as integral uniformity (IU, differential uniformity (DU, scatter fraction (SF, and contrast-to-noise ratio (CNR varies according to the energy window setting. In this study, we compared a PCD and conventional scintillation detector with respect to the energy windows (5%, 10%, 15%, and 20% using a 99mTc gamma source with a Geant4 Application for Tomography Emission simulation tool. The gamma camera systems used in this work are a CZT PCD and NaI(Tl conventional scintillation detector with a 1-mm thickness. According to the results, although the IU and DU results were improved with the energy window, the SF and CNR results deteriorated with the energy window. In particular, the uniformity for the PCD was higher than that of the conventional scintillation detector in all cases. In conclusion, our results demonstrated that the uniformity of the CZT PCD was higher than that of the conventional scintillation detector.

  7. Photonics

    CERN Document Server

    Andrews, David L

    2015-01-01

    Discusses the basic physical principles underlying Biomedical Photonics, spectroscopy and microscopy This volume discusses biomedical photonics, spectroscopy and microscopy, the basic physical principles underlying the technology and its applications. The topics discussed in this volume are: Biophotonics; Fluorescence and Phosphorescence; Medical Photonics; Microscopy; Nonlinear Optics; Ophthalmic Technology; Optical Tomography; Optofluidics; Photodynamic Therapy; Image Processing; Imaging Systems; Sensors; Single Molecule Detection; Futurology in Photonics. Comprehensive and accessible cov

  8. Photonics

    CERN Document Server

    Andrews, David L

    2015-01-01

    Discusses the basic physical principles underlying thescience and technology of nanophotonics, its materials andstructures This volume presents nanophotonic structures and Materials.Nanophotonics is photonic science and technology that utilizeslight/matter interactions on the nanoscale where researchers arediscovering new phenomena and developing techniques that go wellbeyond what is possible with conventional photonics andelectronics.The topics discussed in this volume are: CavityPhotonics; Cold Atoms and Bose-Einstein Condensates; Displays;E-paper; Graphene; Integrated Photonics; Liquid Cry

  9. Photonics

    CERN Document Server

    Andrews, David L

    2015-01-01

    Discusses the basic physical principles underlying the technology instrumentation of photonics This volume discusses photonics technology and instrumentation. The topics discussed in this volume are: Communication Networks; Data Buffers; Defense and Security Applications; Detectors; Fiber Optics and Amplifiers; Green Photonics; Instrumentation and Metrology; Interferometers; Light-Harvesting Materials; Logic Devices; Optical Communications; Remote Sensing; Solar Energy; Solid-State Lighting; Wavelength Conversion Comprehensive and accessible coverage of the whole of modern photonics Emphas

  10. Photonics

    CERN Document Server

    Andrews, David L

    2015-01-01

    This book covers modern photonics accessibly and discusses the basic physical principles underlying all the applications and technology of photonicsThis volume covers the basic physical principles underlying the technology and all applications of photonics from statistical optics to quantum optics. The topics discussed in this volume are: Photons in perspective; Coherence and Statistical Optics; Complex Light and Singular Optics; Electrodynamics of Dielectric Media; Fast and slow Light; Holography; Multiphoton Processes; Optical Angular Momentum; Optical Forces, Trapping and Manipulation; Pol

  11. Optimized design of a TOF laser range finder based on time-correlated single-photon counting

    Science.gov (United States)

    Wang, Huanqin; Yang, Yixin; Huang, Zhe; Cao, YangYang; Gui, Huaqiao

    2014-11-01

    A time-of-flight (TOF) laser range finder based on time-correlated single photon counting (TCSPC) has been developed. By using a Geiger-mode avalanche photodiode (G-APD) with the ability of detecting single-photon events and Time-to-Digital Converter (TDC) with picosecond resolution, a good linearity with 4.5 cm range precision can be achieved in the range of 1-10 m. This paper highlights a significant advance in improving the key parameters of this system, including the range precision and measurement dynamic range. In our experiments, it was found that both of the precision and the measurement dynamic range were limited by the signal to noise rate (SNR) and the inherent jitter of system. The range precision can be improved by enhancing the SNR of system. However, when the SNR is high enough, the main factors affecting the range precision will turn into the inherent jitter, which makes the range precision can not be improved infinitely. Moreover, the inherent jitter generated by pulsed laser and the signal processing module has been measured, and its influence on the system performance has also been discussed. Taking all of these factors into account, some optimized designs have been proposed to improve range precision and dynamic range simultaneously. The final experiment results show that, after all of these optimization designs, the range precision of system is better than 1.2 cm and the measurement dynamic range is enlarged to 54 m when the sampling time is as short as 1 ms, which is sufficient for many applications of 3D object recognition, computer vision, reverse engineering and virtual reality.

  12. Ultra-wide-field imaging in diabetic retinopathy.

    Science.gov (United States)

    Ghasemi Falavarjani, Khalil; Tsui, Irena; Sadda, Srinivas R

    2017-10-01

    Since 1991, 7-field images captured with 30-50 degree cameras in the Early Treatment Diabetic Retinopathy Study were the gold standard for fundus imaging to study diabetic retinopathy. Ultra-wide-field images cover significantly more area (up to 82%) of the fundus and with ocular steering can in many cases image 100% of the fundus ("panretinal"). Recent advances in image analysis of ultra-wide-field imaging allow for precise measurements of the peripheral retinal lesions. There is a growing consensus in the literature that ultra-wide-field imaging improves detection of peripheral lesions in diabetic retinopathy and leads to more accurate classification of the disease. There is discordance among studies, however, on the correlation between peripheral diabetic lesions and diabetic macular edema and optimal management strategies to treat diabetic retinopathy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Fluorescence photon migration techniques for the on-farm measurement of somatic cell count in fresh cow's milk

    Science.gov (United States)

    Khoo, Geoffrey; Kuennemeyer, Rainer; Claycomb, Rod W.

    2005-04-01

    Currently, the state of the art of mastitis detection in dairy cows is the laboratory-based measurement of somatic cell count (SCC), which is time consuming and expensive. Alternative, rapid, and reliable on-farm measurement methods are required for effective farm management. We have investigated whether fluorescence lifetime measurements can determine SCC in fresh, unprocessed milk. The method is based on the change in fluorescence lifetime of ethidium bromide when it binds to DNA from the somatic cells. Milk samples were obtained from a Fullwood Merlin Automated Milking System and analysed within a twenty-four hour period, over which the SCC does not change appreciably. For reference, the milk samples were also sent to a testing laboratory where the SCC was determined by traditional methods. The results show that we can quantify SCC using the fluorescence photon migration method from a lower bound of 4x105 cells mL-1 to an upper bound of 1 x 107 cells mL-1. The upper bound is due to the reference method used while the cause of the lower boundary is unknown, yet.

  14. Contrast-enhanced spectral mammography based on a photon-counting detector: quantitative accuracy and radiation dose

    Science.gov (United States)

    Lee, Seungwan; Kang, Sooncheol; Eom, Jisoo

    2017-03-01

    Contrast-enhanced mammography has been used to demonstrate functional information about a breast tumor by injecting contrast agents. However, a conventional technique with a single exposure degrades the efficiency of tumor detection due to structure overlapping. Dual-energy techniques with energy-integrating detectors (EIDs) also cause an increase of radiation dose and an inaccuracy of material decomposition due to the limitations of EIDs. On the other hands, spectral mammography with photon-counting detectors (PCDs) is able to resolve the issues induced by the conventional technique and EIDs using their energy-discrimination capabilities. In this study, the contrast-enhanced spectral mammography based on a PCD was implemented by using a polychromatic dual-energy model, and the proposed technique was compared with the dual-energy technique with an EID in terms of quantitative accuracy and radiation dose. The results showed that the proposed technique improved the quantitative accuracy as well as reduced radiation dose comparing to the dual-energy technique with an EID. The quantitative accuracy of the contrast-enhanced spectral mammography based on a PCD was slightly improved as a function of radiation dose. Therefore, the contrast-enhanced spectral mammography based on a PCD is able to provide useful information for detecting breast tumors and improving diagnostic accuracy.

  15. Towards pH-sensitive imaging of small animals with photon-counting difference diffuse fluorescence tomography

    Science.gov (United States)

    Li, Jiao; Wang, Xin; Yi, Xi; Zhang, Limin; Zhou, Zhongxing; Zhao, Huijuan; Gao, Feng

    2012-09-01

    The importance of cellular pH has been shown clearly in the study of cell activity, pathological feature, and drug metabolism. Monitoring pH changes of living cells and imaging the regions with abnormal pH-values, in vivo, could provide invaluable physiological and pathological information for the research of the cell biology, pharmacokinetics, diagnostics, and therapeutics of certain diseases such as cancer. Naturally, pH-sensitive fluorescence imaging of bulk tissues has been attracting great attentions from the realm of near infrared diffuse fluorescence tomography (DFT). Herein, the feasibility of quantifying pH-induced fluorescence changes in turbid medium is investigated using a continuous-wave difference-DFT technique that is based on the specifically designed computed tomography-analogous photon counting system and the Born normalized difference image reconstruction scheme. We have validated the methodology using two-dimensional imaging experiments on a small-animal-sized phantom, embedding an inclusion with varying pH-values. The results show that the proposed approach can accurately localize the target with a quantitative resolution to pH-sensitive variation of the fluorescent yield, and might provide a promising alternative method of pH-sensitive fluorescence imaging in addition to the fluorescence-lifetime imaging.

  16. Developments of wide field submillimeter optics and lens antenna-coupled MKID cameras

    Science.gov (United States)

    Sekimoto, Y.; Nitta, T.; Karatsu, K.; Sekine, M.; Sekiguchi, S.; Okada, T.; Shu, S.; Noguchi, T.; Naruse, M.; Mitsui, K.; Okada, N.; Tsuzuki, T.; Dominjon, A.; Matsuo, H.

    2014-07-01

    Wide field cryogenic optics and millimeter-wave Microwave Kinetic Inductance Detector (MKID) cameras with Si lens array have been developed. MKID is a Cooper-pair breaking photon detector and consists of supercon- ducting resonators which enable microwave (~GHz) frequency multiplexing. Antenna-coupled Aluminum CPW resonators are put in a line on a Si substrate to be read by a pair of coaxial cables. A 220 GHz - 600 pixels MKID camera with anti-reflection (AR) coated Si lens has been demonstrated in an 0.1 K cryostat. A compact cryogenic system with high refractive index materials has been developed for the MKID camera.

  17. Characterization of the Photon Counting CHASE Jr., Chip Built in a 40-nm CMOS Process With a Charge Sharing Correction Algorithm Using a Collimated X-Ray Beam

    Energy Technology Data Exchange (ETDEWEB)

    Krzyżanowska, A. [AGH-UST, Cracow; Deptuch, G. W. [Fermilab; Maj, P. [AGH-UST, Cracow; Gryboś, P. [AGH-UST, Cracow; Szczygieł, R. [AGH-UST, Cracow

    2017-08-01

    This paper presents the detailed characterization of a single photon counting chip, named CHASE Jr., built in a CMOS 40-nm process, operating with synchrotron radiation. The chip utilizes an on-chip implementation of the C8P1 algorithm. The algorithm eliminates the charge sharing related uncertainties, namely, the dependence of the number of registered photons on the discriminator’s threshold, set for monochromatic irradiation, and errors in the assignment of an event to a certain pixel. The article presents a short description of the algorithm as well as the architecture of the CHASE Jr., chip. The analog and digital functionalities, allowing for proper operation of the C8P1 algorithm are described, namely, an offset correction for two discriminators independently, two-stage gain correction, and different operation modes of the digital blocks. The results of tests of the C8P1 operation are presented for the chip bump bonded to a silicon sensor and exposed to the 3.5- μm -wide pencil beam of 8-keV photons of synchrotron radiation. It was studied how sensitive the algorithm performance is to the chip settings, as well as the uniformity of parameters of the analog front-end blocks. Presented results prove that the C8P1 algorithm enables counting all photons hitting the detector in between readout channels and retrieving the actual photon energy.

  18. Simulation results for PLATO: a prototype hybrid X-ray photon counting detector with a low energy threshold for fusion plasma diagnostics

    Science.gov (United States)

    Habib, A.; Menouni, M.; Pangaud, P.; Fenzi, C.; Colledani, G.; Moureau, G.; Escarguel, A.; Morel, C.

    2017-01-01

    PLATO is a prototype hybrid X-ray photon counting detector that has been designed to meet the specifications for plasma diagnostics for the WEST tokamak platform (Tungsten (W) Environment in Steady-state Tokamak) in southern France, with potential perspectives for ITER. PLATO represents a customized solution that fulfills high sensitivity, low dispersion and high photon counting rate. The PLATO prototype matrix is composed of 16 × 18 pixels with a 70 μm pixel pitch. New techniques have been used in analog sensitive blocks to minimize noise coupling through supply rails and substrate, and to suppress threshold dispersion across the matrix. The PLATO ASIC is designed in CMOS 0.13 μm technology and was submitted for a fabrication run in June 2016. The chip is designed to be bump-bonded to a silicon sensor. This paper presents pixel architecture as well as simulation results while highlighting novel solutions.

  19. Advanced MOKE magnetometry in wide-field Kerr-microscopy

    Science.gov (United States)

    Soldatov, I. V.; Schäfer, R.

    2017-10-01

    The measurement of MOKE (Magneto-Optical Kerr Effect) magnetization loops in a wide-field Kerr microscope offers the advantage that the relevant domain images along the loop can be readily recorded. As the microscope's objective lens is exposed to the magnetic field, the loops are usually strongly distorted by non-linear Faraday rotations of the polarized light that occur in the objective lens and that are superimposed to the MOKE signal. In this paper, an experimental method, based on a motorized analyzer, is introduced which allows to compensate the Faraday contributions, thus leading to pure MOKE loops. A wide field Kerr microscope, equipped with this technology, works well as a laser-based MOKE magnetometer, additionally offering domain images and thus providing the basis for loop interpretation.

  20. Reduction of metal artifact in single photon-counting computed tomography by spectral-driven iterative reconstruction technique.

    Directory of Open Access Journals (Sweden)

    Radin A Nasirudin

    Full Text Available The exciting prospect of Spectral CT (SCT using photon-counting detectors (PCD will lead to new techniques in computed tomography (CT that take advantage of the additional spectral information provided. We introduce a method to reduce metal artifact in X-ray tomography by incorporating knowledge obtained from SCT into a statistical iterative reconstruction scheme. We call our method Spectral-driven Iterative Reconstruction (SPIR.The proposed algorithm consists of two main components: material decomposition and penalized maximum likelihood iterative reconstruction. In this study, the spectral data acquisitions with an energy-resolving PCD were simulated using a Monte-Carlo simulator based on EGSnrc C++ class library. A jaw phantom with a dental implant made of gold was used as an object in this study. A total of three dental implant shapes were simulated separately to test the influence of prior knowledge on the overall performance of the algorithm. The generated projection data was first decomposed into three basis functions: photoelectric absorption, Compton scattering and attenuation of gold. A pseudo-monochromatic sinogram was calculated and used as input in the reconstruction, while the spatial information of the gold implant was used as a prior. The results from the algorithm were assessed and benchmarked with state-of-the-art reconstruction methods.Decomposition results illustrate that gold implant of any shape can be distinguished from other components of the phantom. Additionally, the result from the penalized maximum likelihood iterative reconstruction shows that artifacts are significantly reduced in SPIR reconstructed slices in comparison to other known techniques, while at the same time details around the implant are preserved. Quantitatively, the SPIR algorithm best reflects the true attenuation value in comparison to other algorithms.It is demonstrated that the combination of the additional information from Spectral CT and

  1. DCC Case Study: Wide Field Astronomy Unit (WFAU)

    OpenAIRE

    Donnelly, Martin

    2005-01-01

    Case study on the Wide Field Astronomy Unit (WFAU), Edinburgh. Outlines data curation issues with which WFAU is involved, with an emphasis on interoperability. Particular regard is given to the transfer and reuse of data collected from disparate sources. The case study also covers other factors influencing data curation, including methodological development, standards and legal issues, evaluation, and human factors. A technical appendix outlines the technologies used i...

  2. FPGA-based photon-counting phase-modulation fluorometer and a brief comparison with that operated in a pulsed-excitation mode

    Science.gov (United States)

    Iwata, Tetsuo; Taga, Takanori; Mizuno, Takahiko

    2017-12-01

    We have constructed a high-efficiency, photon-counting phase-modulation fluorometer (PC-PMF) using a field-programmable gate array, which is a modified version of the photon-counting fluorometer (PCF) that works in a pulsed-excitation mode (Iwata and Mizuno in Meas Sci Technol 28:075501, 2017). The common working principle for both is the simultaneous detection of the photoelectron pulse train, which covers 64 ns with a 1.0-ns resolution time (1.0 ns/channel). The signal-gathering efficiency was improved more than 100 times over that of conventional time-correlated single-photon-counting at the expense of resolution time depending on the number of channels. The system dead time for building a histogram was eliminated, markedly shortening the measurement time for fluorescent samples with moderately high quantum yields. We describe the PC-PMF and make a brief comparison with the pulsed-excitation PCF in precision, demonstrating the potential advantage of PC-PMF.

  3. Enhanced discrimination of calcified and soft arterial plaques using computed tomography with a multi-energy-window photon counting x-ray detector

    Science.gov (United States)

    Wang, Xiaolan; Xu, Jingyan; Taguchi, Katsuyuki; Patt, Bradley E.; Wagenaar, Douglas J.; Frey, Eric C.

    2009-02-01

    This work aims at discriminating between soft and calcified coronary artery plaques using microCT with a multi-energywindow photon counting X-ray detector (PCXD). We have previously investigated a solid state X-ray detector which has the capability to count individual photons in different energy windows. The data from these energy windows may be treated as multiple simultaneous X-ray acquisitions within non-overlapping energy windows that can provide additional information about tissue differences. In this work, we simulated a photon counting detector with five energy windows. We investigated two approaches for using the energy information provided by this detector. First, we applied energy weighting to the reconstruction from different energy windows to improve the signal-to-noise ratio between calcified and soft plaques. This resulted in a significant improvement in the signal-to-noise ratio. Second, we applied the basis material decomposition method to discriminate coronary artery plaques based on their calcium content. The results were compared with those obtained using dual-kVp material decomposition. We observed significantly improved contrast-tonoise ratios for the PCXD-based approaches.

  4. A neural network-based method for spectral distortion correction in photon counting x-ray CT

    Science.gov (United States)

    Touch, Mengheng; Clark, Darin P.; Barber, William; Badea, Cristian T.

    2016-08-01

    Spectral CT using a photon counting x-ray detector (PCXD) shows great potential for measuring material composition based on energy dependent x-ray attenuation. Spectral CT is especially suited for imaging with K-edge contrast agents to address the otherwise limited contrast in soft tissues. We have developed a micro-CT system based on a PCXD. This system enables both 4 energy bins acquisition, as well as full-spectrum mode in which the energy thresholds of the PCXD are swept to sample the full energy spectrum for each detector element and projection angle. Measurements provided by the PCXD, however, are distorted due to undesirable physical effects in the detector and can be very noisy due to photon starvation in narrow energy bins. To address spectral distortions, we propose and demonstrate a novel artificial neural network (ANN)-based spectral distortion correction mechanism, which learns to undo the distortion in spectral CT, resulting in improved material decomposition accuracy. To address noise, post-reconstruction denoising based on bilateral filtration, which jointly enforces intensity gradient sparsity between spectral samples, is used to further improve the robustness of ANN training and material decomposition accuracy. Our ANN-based distortion correction method is calibrated using 3D-printed phantoms and a model of our spectral CT system. To enable realistic simulations and validation of our method, we first modeled the spectral distortions using experimental data acquired from 109Cd and 133Ba radioactive sources measured with our PCXD. Next, we trained an ANN to learn the relationship between the distorted spectral CT projections and the ideal, distortion-free projections in a calibration step. This required knowledge of the ground truth, distortion-free spectral CT projections, which were obtained by simulating a spectral CT scan of the digital version of a 3D-printed phantom. Once the training was completed, the trained ANN was used to perform

  5. Wide field focal plane arrays for UKIRT and VISTA

    Science.gov (United States)

    Ives, D.; Laidlaw, K.; Bezawada, N. N.

    This paper briefly describes the focal plane arrays of the UKIRT Wide Field Camera and the IR camera for the Visible and Infrared Survey Telescope for Astronomy (VISTA). Laboratory test results on the HAWAII-2 engineering grade detector are summarised. The interference problems resulting from the on-axis wavefront/autoguider sensors and their controllers (autoguider, wavefront sensor, etc.) are anticipated and possible options to eliminate or attenuate these effects are presented. Laboratory tests on the Electromagnetic Interference (EMI) issues are also reported.

  6. Vestibular rehabilitation using a wide field of view virtual environment.

    Science.gov (United States)

    Sparto, P J; Furman, J M; Whitney, S L; Hodges, L F; Redfern, M S

    2004-01-01

    This paper presents a theoretical justification for using a wide field of view (FOV) virtual reality display system for use in vestibular rehabilitation. A wide FOV environment offers some unique features that may be beneficial to vestibular rehabilitation. Primarily, optic flow information extracted from the periphery may be critical for recalibrating the sensory processes used by people with vestibular disorders. If this hypothesis is correct, then wide FOV systems will have an advantage over narrow field of view input devices such as head mounted or desktop displays. Devices that we have incorporated into our system that are critical for monitoring improvement in this clinical population will also be described.

  7. Every photon counts: improving low, mid, and high-spatial frequency errors on astronomical optics and materials with MRF

    Science.gov (United States)

    Maloney, Chris; Lormeau, Jean Pierre; Dumas, Paul

    2016-07-01

    Many astronomical sensing applications operate in low-light conditions; for these applications every photon counts. Controlling mid-spatial frequencies and surface roughness on astronomical optics are critical for mitigating scattering effects such as flare and energy loss. By improving these two frequency regimes higher contrast images can be collected with improved efficiency. Classically, Magnetorheological Finishing (MRF) has offered an optical fabrication technique to correct low order errors as well has quilting/print-through errors left over in light-weighted optics from conventional polishing techniques. MRF is a deterministic, sub-aperture polishing process that has been used to improve figure on an ever expanding assortment of optical geometries, such as planos, spheres, on and off axis aspheres, primary mirrors and freeform optics. Precision optics are routinely manufactured by this technology with sizes ranging from 5-2,000mm in diameter. MRF can be used for form corrections; turning a sphere into an asphere or free form, but more commonly for figure corrections achieving figure errors as low as 1nm RMS while using careful metrology setups. Recent advancements in MRF technology have improved the polishing performance expected for astronomical optics in low, mid and high spatial frequency regimes. Deterministic figure correction with MRF is compatible with most materials, including some recent examples on Silicon Carbide and RSA905 Aluminum. MRF also has the ability to produce `perfectly-bad' compensating surfaces, which may be used to compensate for measured or modeled optical deformation from sources such as gravity or mounting. In addition, recent advances in MRF technology allow for corrections of mid-spatial wavelengths as small as 1mm simultaneously with form error correction. Efficient midspatial frequency corrections make use of optimized process conditions including raster polishing in combination with a small tool size. Furthermore, a novel MRF

  8. Performance Characterization of Airborne Photon-counting Laser Altimetry in Preparation for ICESat-2 On-orbit Validation.

    Science.gov (United States)

    Magruder, L. A.; Brunt, K. M.

    2016-12-01

    MABEL, (the Multiple Altimeter Beam Experimental Lidar), was created as an airborne engineering model for the instrument onboard the Ice, Cloud and land Elevation Satellite-2 (ICESat-2). Essentially, MABEL was to provide a demonstration of the altimeter measurement strategy, and provide the critical test data needed for ICESat-2 geophysical data product algorithm development. The impact of the MABEL test data is significant in terms of mission preparation, not only for the tasks listed previously but also for the need to examine and establish on-orbit plans for validation of the mission measurements and how they are used to produce higher level products using the geolocated signal. Direct comparison of proxy ICESat-2 elevation data and ground-based GPS data can provide a robust assessment of instrument bias and surface precision. Often this could be done for multiple beams over the same surface and, for MABEL, for various flights within a field campaign. The results throughout MABEL's development provide insight as to overall instrument error and stability. The use of corner cube retro-reflectors (CCR) as ground based fiducials (ground truth) has been proven to be an effective technique for in situ validation of satellite laser altimetry geolocation and ranging in the past. However, given the photon counting technology on-board ICESat-2 there remained question if similar application would be relevant and useful. MABEL test flights over calibration sites containing CCR arrays were collected and analyzed to determine the feasibility of using the technique during the ICESat-2 mission. The results indicate that the CCR signatures allow for an independent geolocation assessment of the altimeter in addition to providing statistical measure of precision and ranging accuracy. Further analysis indicates the utility of these signatures for observability of the geolocation process at a higher resolution than the input data streams (precision orbit determination and precision

  9. Effects of calibration methods on quantitative material decomposition in photon-counting spectral computed tomography using a maximum a posteriori estimator.

    Science.gov (United States)

    Curtis, Tyler E; Roeder, Ryan K

    2017-10-01

    Advances in photon-counting detectors have enabled quantitative material decomposition using multi-energy or spectral computed tomography (CT). Supervised methods for material decomposition utilize an estimated attenuation for each material of interest at each photon energy level, which must be calibrated based upon calculated or measured values for known compositions. Measurements using a calibration phantom can advantageously account for system-specific noise, but the effect of calibration methods on the material basis matrix and subsequent quantitative material decomposition has not been experimentally investigated. Therefore, the objective of this study was to investigate the influence of the range and number of contrast agent concentrations within a modular calibration phantom on the accuracy of quantitative material decomposition in the image domain. Gadolinium was chosen as a model contrast agent in imaging phantoms, which also contained bone tissue and water as negative controls. The maximum gadolinium concentration (30, 60, and 90 mM) and total number of concentrations (2, 4, and 7) were independently varied to systematically investigate effects of the material basis matrix and scaling factor calibration on the quantitative (root mean squared error, RMSE) and spatial (sensitivity and specificity) accuracy of material decomposition. Images of calibration and sample phantoms were acquired using a commercially available photon-counting spectral micro-CT system with five energy bins selected to normalize photon counts and leverage the contrast agent k-edge. Material decomposition of gadolinium, calcium, and water was performed for each calibration method using a maximum a posteriori estimator. Both the quantitative and spatial accuracy of material decomposition were most improved by using an increased maximum gadolinium concentration (range) in the basis matrix calibration; the effects of using a greater number of concentrations were relatively small in

  10. WFIRST: Astrometry with the Wide-Field Imager

    Science.gov (United States)

    Bellini, Andrea; WFIRST Astrometry Working Group

    2018-01-01

    The wide field of view and stable, sharp images delivered by WFIRST's Wide-Field Imager make it an excellent instrument for astrometry, one of five major discovery areas identified in the 2010 Decadal Survey. Compared to the Hubble Space Telescope, WFIRST's wider field of view with similar image quality will provide hundreds more astrometric targets per image as well as background galaxies and stars with precise positions in the Gaia catalog. In addition, WFIRST will operate in the infrared, a wavelength regime where the most precise astrometry has so far been achieved with adaptive optics images from large ground-based telescopes. WFIRST will provide at least a factor of three improvement in astrometry over the current state of the art in this wavelength range, while spanning a field of view thousands of times larger. WFIRST is thus poised to make major contributions to multiple science topics in which astrometry plays an important role, without major alterations to the planned mission or instrument. We summarize a few of the most compelling science cases where WFIRST astrometry could prove transformational.

  11. PERSPECTIVE: Toward a wide-field retinal prosthesis

    Science.gov (United States)

    Ameri, Hossein; Ratanapakorn, Tanapat; Ufer, Stefan; Eckhardt, Helmut; Humayun, Mark S.; Weiland, James D.

    2009-06-01

    The purpose of this paper is to present a wide field electrode array that may increase the field of vision in patients implanted with a retinal prosthesis. Mobility is often impaired in patients with low vision, particularly in those with peripheral visual loss. Studies on low vision patients as well as simulation studies on normally sighted individuals have indicated a strong correlation between the visual field and mobility. In addition, it has been shown that an increased visual field is associated with a significant improvement in visual acuity and object discrimination. Current electrode arrays implanted in animals or human vary in size; however, the retinal area covered by the electrodes has a maximum projected visual field of about 10°. We have designed wide field electrode arrays that could potentially provide a visual field of 34°, which may significantly improve the mobility. Tests performed on a mechanical eye model showed that it was possible to fix 10 mm wide flexible polyimide dummy electrode arrays onto the retina using a single retinal tack. They also showed that the arrays could conform to the inner curvature of the eye. Surgeries on an enucleated porcine eye model demonstrated feasibility of implantation of 10 mm wide arrays through a 5 mm eye wall incision.

  12. Super-resolving quantum lidar: entangled coherent-state sources with binary-outcome photon counting measurement suffice to beat the shot-noise limit.

    Science.gov (United States)

    Wang, Qiang; Hao, Lili; Zhang, Yong; Xu, Lu; Yang, Chenghua; Yang, Xu; Zhao, Yuan

    2016-03-07

    We investigate the performance of the super-resolving quantum lidar with the entangled coherent states of light in the presence of loss and noise, especially in the noisy case. An exact analytical expression of the output signal has been derived with the binary-outcome photon counting measurements. Numerical results show that the resolution of our scheme with parity detection is √N (N) times enhanced relative to that of the coherent-state strategy with the same (intensity) detection in the lossless and noiseless cases. The influences of phase diffusion on resolution and sensitivity have been analyzed and discussed. It is found that the super-resolution emerges in the whole diffusion rate regions, whereas the super-sensitivity just exists in the high and low diffusion rate regimes. Comparisons are made with the well known N00N states, the results show that the entangled coherent states performs better resolution and sensitivity than those of the N00N scheme in the whole diffusion regimes. In addition, the effects of photon loss on resolution and sensitivity have also been studied. The phase sensitivity can beat the shot noise limit and the resolution is much better than the Rayleigh diffraction limit in the whole loss regions. Finally, the zero-nonzero photon counting measurement gives much worse sensitivity than that of the parity detection, which is just opposite from the case as demonstrated in a recent coherent-light Mach-Zehnder experiment.

  13. A Wide Field Auroral Imager (WFAI for low Earth orbit missions

    Directory of Open Access Journals (Sweden)

    N. P. Bannister

    2007-03-01

    Full Text Available A comprehensive understanding of the solar wind interaction with Earth's coupled magnetosphere-ionosphere system requires an ability to observe the charged particle environment and auroral activity from the same platform, generating particle and photon image data which are matched in time and location. While unambiguous identification of the particles giving rise to the aurora requires a Low Earth Orbit satellite, obtaining adequate spatial coverage of aurorae with the relatively limited field of view of current space bourne auroral imaging systems requires much higher orbits. A goal for future satellite missions, therefore, is the development of compact, wide field-of-view optics permitting high spatial and temporal resolution ultraviolet imaging of the aurora from small spacecraft in low polar orbit. Microchannel plate optics offer a method of achieving the required performance. We describe a new, compact instrument design which can observe a wide field-of-view with the required spatial resolution. We report the focusing of 121.6 nm radiation using a spherically-slumped, square-pore microchannel plate with a focal length of 32 mm and an F number of 0.7. Measurements are compared with detailed ray-trace simulations of imaging performance. The angular resolution is 2.7±0.2° for the prototype, corresponding to a footprint ~33 km in diameter for an aurora altitude of 110 km and a spacecraft altitude of 800 km. In preliminary analysis, a more recent optic has demonstrated a full width at half maximum of 5.0±0.3 arcminutes, corresponding to a footprint of ~1 km from the same spacecraft altitude. We further report the imaging properties of a convex microchannel plate detector with planar resistive anode readout; this detector, whose active surface has a radius of curvature of only 100 mm, is shown to meet the spatial resolution and sensitivity requirements of the new wide field auroral imager (WFAI.

  14. Visibility retrieval in Michelson wide-field stellar interferometry

    Science.gov (United States)

    Montilla, I.; Sellos, J.; Pereira, S. F.; Braat, J. J. M.

    2006-04-01

    Wide-field interferometry has become a subject of increasing interest in recent years. New methods have been suggested in order to avoid the drawbacks of the standard wide-field method (homothetic mapping), which is not applicable when the aperture is highly diluted; for this reason, imaging with non-homothetic arrays is being extensively studied (E. Pedretti, et al., Astron. Astrophys. Suppl. Ser. 147 285 (2000); S. Gillet, et al., Astron. Astrophys. 400 393 (2003)). The field of view of a pupil-plane interferometer or a densified array consists of only a few resolution elements; in order to improve these systems, we have developed a new method consisting of a Michelson pupil-plane combination scheme where a wide field of view can be achieved in one shot. This technique, called the ‘staircase mirror’ approach, has been described in a previous paper (I. Montilla, S.F. Pereira and J.J.M. Braat, Appl. Optics 44 328 (2005)) and uses a stair-shaped mirror in the intermediate image plane of each telescope in the array, allowing for simultaneous correction of the differential delay for both the on- and off-axis image positions. Experimental results have been obtained showing the simultaneous recovery of the fringes of off-axis stars with an appreciable angular separation, and with a contrast similar to that of the on-axis reference star. With this example we demonstrate an increase of the field of view by a factor of 5, with no need for extra observation time. In this article, we present a further analysis of the method. We investigate how to retrieve the visibility when a star is focused on the edge of a step of the stair-shaped mirror. Even though the optical pathlength difference correction is discontinuous, we show both numerically and analytically that the visibility can be completely recovered, so that no information is lost. Our experimental results demonstrate that the visibility can be retrieved to within a 1% error.

  15. Wide-field subdiffraction RESOLFT microscopy using fluorescent protein photoswitching.

    Science.gov (United States)

    Schwentker, Miriam A; Bock, Hannes; Hofmann, Michael; Jakobs, Stefan; Bewersdorf, Jörg; Eggeling, Christian; Hell, Stefan W

    2007-03-01

    Subdiffraction fluorescence imaging is presented in a parallelized wide-field arrangement exploiting the principle of reversible saturable/switchable optical transitions (RESOLFT). The diffraction barrier is overcome by photoswitching ensembles of the label protein asFP595 between a nonfluorescent off- and a fluorescent on-state. Relying on ultralow continuous-wave intensities, reversible protein switching facilitates parallelized fast image acquisition. The RESOLFT principle is implemented by illuminating with intensity distributions featuring zero intensity lines that are further apart than the conventional Abbe resolution limit. The subdiffraction resolution is verified by recording live Escherichia coli bacteria labeled with asFP595. The obtained resolution of 50 nm ( approximately lambda/12) is limited only by the spectroscopic properties of the proteins and the imperfections of the optical implementation, but not on principle grounds. (c) 2007 Wiley-Liss, Inc.

  16. Thermal design of the Wide Field/Planetary Camera

    Science.gov (United States)

    Garcia, R. D.; Jones, J. A.; Stultz, J. W.

    1989-01-01

    The Wide Field/Planetary Camera is an imaging system developed by the Jet Propulsion Laboratory for the NASA Hubble Space Telescope currently scheduled to be launched in December 1989 aboard the space shuttle. The temperature control design of the instrument utilizes multilayered insulation, electric resistance heaters, aluminum/ammonia heat pipes, thermoelectric coolers, temperature control coatings, and space radiators. A feedback control system maintains stable sensor temperatures. Thermal capacitance maintains stable optics and electronics temperatures during transient conditions. Schedule slips and launch delays have allowed extensive thermal testing of the instrument. Six instrument thermal vacuum tests and a spacecraft thermal vacuum test were performed. Several modifications have been made to the instrument to correct icing and contamination problems that have been discovered during thermal vacuum testing. This paper describes the thermal design, last instrument thermal vacuum test, results, and thermal model correlation.

  17. The design of the wide field monitor for LOFT

    DEFF Research Database (Denmark)

    Brandt, Søren; Hernanz, M.; Alvarez, L.

    2014-01-01

    is designed to carry on-board two instruments with sensitivity in the 2-50 keV range: a 10 m 2 class Large Area Detector (LAD) with a ... will be to detect transient sources to be observed by the LAD. However, thanks to its unique combination of a wide field of view (FoV) and energy resolution (better than 500 eV), the WFM will be also an excellent monitoring instrument to study the long term variability of many classes of X-ray sources. The WFM...... consists of 10 independent and identical coded mask cameras arranged in 5 pairs to provide the desired sky coverage. We provide here an overview of the instrument design, configuration, and capabilities of the LOFT WFM. The compact and modular design of the WFM could easily make the instrument concept...

  18. Active pixel and photon counting imagers based on poly-Si TFTs: rewriting the rule book on large area flat panel x-ray devices

    Science.gov (United States)

    Antonuk, Larry E.; Koniczek, Martin; El-Mohri, Youcef; Zhao, Qihua

    2009-02-01

    The near-ubiquity of large area, active matrix, flat-panel imagers (AMFPIs) in medical x-ray imaging applications is a testament to the usefulness and adaptability of the relatively simple concept of array pixels based on a single amorphous silicon (a-Si:H) TFT coupled to a pixel storage capacitor. Interestingly, the fundamental advantages of a-Si:H thin film electronics (including compatibility with very large area processing, high radiation damage resistance, and continued development driven by interest in mainstream consumer products) are shared by the rapidly advancing technology of polycrystalline silicon (poly-Si) TFTs. Moreover, the far higher mobilities of poly-Si TFTs, compared to those of a- Si:H, facilitate the creation of faster and more complex circuits than are possible with a-Si:H TFTs, leading to the possibility of new classes of large area, flat panel imagers. Given recent progress in the development of initial poly-Si imager prototypes, the creation of increasingly sophisticated active pixel arrays offering pixel-level amplification, variable gain, very high frame rates, and excellent signal-to-noise performance under all fluoroscopic and radiographic conditions (including very low exposures and high spatial frequencies), appears within reach. In addition, it is conceivable that the properties of poly-Si TFTs could allow the development of large area imagers providing single xray photon counting capabilities. In this article, the factors driving the possible realization of clinically practical active pixel and photon counting imagers based on poly-Si TFTs are described and simple calculational estimates related to photon counting imagers are presented. Finally, the prospect for future development of such imagers is discussed.

  19. Wide-Field Ultraviolet Spectrometer for Planetary Exospheres and Thermospheres

    Science.gov (United States)

    Fillingim, M. O.; Wishnow, E. H.; Miller, T.; Edelstein, J.; Lillis, R. J.; Korpela, E.; England, S.; Shourt, W. V.; Siegmund, O.; McPhate, J.; Courtade, S.; Curtis, D. W.; Deighan, J.; Chaffin, M.; Harmoul, A.; Almatroushi, H. R.

    2016-12-01

    Understanding the composition, structure, and variability of a planet's upper atmosphere - the exosphere and thermosphere - is essential for understanding how the upper atmosphere is coupled to the lower atmosphere, magnetosphere and near-space environment, and the Sun. Ultraviolet spectroscopy can directly observe emissions from constituents in the exosphere and thermosphere. From such observations, the structure, composition, and variability can be determined.We will present the preliminary design for a wide field ultraviolet imaging spectrometer for remote sensing of planetary atmospheres. The imaging spectrometer achieves an extremely large instantaneous 110 degree field of view with no moving scanning mirror. The imaging resolution is very appropriate for extended atmospheric emission studies, with a resolution of better than 0.3 degrees at the center to 0.4 degrees at the edges of the field. The spectral range covers 120 - 170 nm, encompassing emissions from H, O, C, N, CO, and N2, with an average spectral resolution of 1.5 nm. The instrument is composed of a 2-element wide-field telescope, a 3-element Offner spectrometer, and a sealed MCP detector system contained within a compact volume of about 40 x 25 x 20 cm. We will present the optical and mechanical design as well as the predicted optical performance.The wide instantaneous FOV simplifies instrument and spacecraft operations by removing the need for multiple scans (either from a scan mirror or spacecraft slews) to cover the regions of interest. This instrumentation can allow for two-dimensional spectral information to be built up with simple spacecraft operation or just using spacecraft motion. Applications to the terrestrial geocorona and thermosphere will be addressed as well as applications to the upper atmospheres of other planetary objects.

  20. DMD-based programmable wide field spectrograph for Earth observation

    Science.gov (United States)

    Zamkotsian, Frédéric; Lanzoni, Patrick; Liotard, Arnaud; Viard, Thierry; Costes, Vincent; Hébert, Philippe-Jean

    2015-03-01

    In Earth Observation, Universe Observation and Planet Exploration, scientific return could be optimized in future missions using MOEMS devices. In Earth Observation, we propose an innovative reconfigurable instrument, a programmable wide-field spectrograph where both the FOV and the spectrum could be tailored thanks to a 2D micromirror array (MMA). For a linear 1D field of view (FOV), the principle is to use a MMA to select the wavelengths by acting on intensity. This component is placed in the focal plane of a first grating. On the MMA surface, the spatial dimension is along one side of the device and for each spatial point, its spectrum is displayed along the perpendicular direction: each spatial and spectral feature of the 1D FOV is then fully adjustable dynamically and/or programmable. A second stage with an identical grating recomposes the beam after wavelengths selection, leading to an output tailored 1D image. A mock-up has been designed, fabricated and tested. The micromirror array is the largest DMD in 2048 x 1080 mirrors format, with a pitch of 13.68μm. A synthetic linear FOV is generated and typical images have been recorded o at the output focal plane of the instrument. By tailoring the DMD, we could modify successfully each pixel of the input image: for example, it is possible to remove bright objects or, for each spatial pixel, modify the spectral signature. The very promising results obtained on the mock-up of the programmable wide-field spectrograph reveal the efficiency of this new instrument concept for Earth Observation.

  1. Extreme multiplex spectroscopy at wide-field 4-m telescopes

    Science.gov (United States)

    Content, Robert; Shanks, Tom

    2008-07-01

    We describe the design and science case for a spectrograph for the prime focus of classical 4-m wide-field telescopes that can deliver at least 4000 MOS slits over a 1° field. This extreme multiplex capability means that 25000 galaxy redshifts can be measured in a single night, opening up the possibilities for large galaxy redshift surveys out to z~0.7 and beyond for the purpose of measuring the Baryon Acoustic Oscillation (BAO) scale and for many other science goals. The design features four cloned spectrographs and exploits the exclusive possibility of tiling the focal plane of wide-field 4-m telescopes with CCDs for multi-object spectroscopic purposes. In ~200 night projects, such spectrographs have the potential to make galaxy redshift surveys of ~6×106 galaxies over a wide redshift range and thus may provide a low-cost alternative to other survey routes such as WFMOS and SKA. Two of these extreme multiplex spectrographs are currently being designed for the AAT (NG1dF) and Calar Alto (XMS) 4-m class telescopes. NG2dF, a larger version for the AAT 2° field, would have 12 clones and at least 12000 slits. The clones use a transparent design including a grism in which all optics are smaller than the clone square subfield so that the clones can be tightly packed with little gaps between the contiguous fields. Only low cost glasses are used; the variations in chromatic aberrations between bands are compensated by changing one or two of the lenses adjacent to the grism. The total weight and length is smaller with a few clones than a unique spectrograph which makes it feasible to place the spectrograph at the prime focus.

  2. Photon counting x-ray imaging with K-edge filtered x-rays: A simulation study.

    Science.gov (United States)

    Atak, Haluk; Shikhaliev, Polad M

    2016-03-01

    In photon counting (PC) x-ray imaging and computed tomography (CT), the broad x-ray spectrum can be split into two parts using an x-ray filter with appropriate K-edge energy, which can improve material decomposition. Recent experimental study has demonstrated substantial improvement in material decomposition with PC CT when K-edge filtered x-rays were used. The purpose of the current work was to conduct further investigations of the K-edge filtration method using comprehensive simulation studies. The study was performed in the following aspects: (1) optimization of the K-edge filter for a particular imaging configuration, (2) effects of the K-edge filter parameters on material decomposition, (3) trade-off between the energy bin separation, tube load, and beam quality with K-edge filter, (4) image quality of general (unsubtracted) images when a K-edge filter is used to improve dual energy (DE) subtracted images, and (5) improvements with K-edge filtered x-rays when PC detector has limited energy resolution. The PC x-ray images of soft tissue phantoms with 15 and 30 cm thicknesses including iodine, CaCO3, and soft tissue contrast materials, were simulated. The signal to noise ratio (SNR) of the contrast elements was determined in general and material-decomposed images using K-edge filters with different atomic numbers and thicknesses. The effect of the filter atomic number and filter thickness on energy separation factor and SNR was determined. The boundary conditions for the tube load and halfvalue layer were determined when the K-edge filters are used. The material-decomposed images were also simulated using PC detector with limited energy resolution, and improvements with K-edge filtered x-rays were quantified. The K-edge filters with atomic numbers from 56 to 71 and K-edge energies 37.4-63.4 keV, respectively, can be used for tube voltages from 60 to 150 kVp, respectively. For a particular tube voltage of 120 kVp, the Gd and Ho were the optimal filter materials

  3. High Throughput, High Yield Fabrication of High Quantum Efficiency Back-Illuminated Photon Counting, Far UV, UV, and Visible Detector Arrays

    Science.gov (United States)

    Nikzad, Shouleh; Hoenk, M. E.; Carver, A. G.; Jones, T. J.; Greer, F.; Hamden, E.; Goodsall, T.

    2013-01-01

    In this paper we discuss the high throughput end-to-end post fabrication processing of high performance delta-doped and superlattice-doped silicon imagers for UV, visible, and NIR applications. As an example, we present our results on far ultraviolet and ultraviolet quantum efficiency (QE) in a photon counting, detector array. We have improved the QE by nearly an order of magnitude over microchannel plates (MCPs) that are the state-of-the-art UV detectors for many NASA space missions as well as defense applications. These achievements are made possible by precision interface band engineering of Molecular Beam Epitaxy (MBE) and Atomic Layer Deposition (ALD).

  4. Modelling and simulation of pixelated photon counting X-ray detectors for imaging; Modellierung und Simulation physikalischer Eigenschaften photonenzaehlender Roentgenpixeldetektoren fuer die Bildgebung

    Energy Technology Data Exchange (ETDEWEB)

    Durst, Juergen

    2008-07-22

    First of all the physics processes generating the energy deposition in the sensor volume are investigated. The spatial resolution limits of photon interactions and the range of secondary electrons are discussed. The signatures in the energy deposition spectrum in pixelated detectors with direct conversion layers are described. The energy deposition for single events can be generated by the Monte-Carlo-Simulation package ROSI. The basic interactions of photons with matter are evaluated, resulting in the ability to use ROSI as a basis for the simulation of photon counting pixel detectors with direct conversion. In the context of this thesis a detector class is developed to simulate the response of hybrid photon counting pixel detectors using high-Z sensor materials like Cadmium Telluride (CdTe) or Gallium Arsenide (GaAs) in addition to silicon. To enable the realisation of such a simulation, the relevant physics processes and properties have to be implemented: processes in the sensor layer (provided by EGS4/LSCAT in ROSI), generation of charge carriers as electron hole pairs, diffusion and repulsion of charge carriers during drift and lifetime. Furthermore, several noise contributions of the electronics can be taken into account. The result is a detector class which allows the simulation of photon counting detectors. In this thesis the multiplicity framework is developed, including a formula to calculate or measure the zero frequency detective quantum efficiency (DQE). To enable the measurement of the multiplicity of detected events a cluster analysis program was developed. Random and systematic errors introduced by the cluster analysis are discussed. It is also shown that the cluster analysis method can be used to determine the averaged multiplicity with high accuracy. The method is applied to experimental data. As an example using the implemented detector class, the discriminator threshold dependency of the DQE and modulation transfer function is investigated in

  5. Initial evaluation of safety of wide-field irradiation in the treatment of hematopoietic neoplasia in the cat.

    Science.gov (United States)

    Husbands, Brian D; McNiel, Elizabeth A; Modiano, Jaime F

    2010-01-01

    Localized radiation therapy is well tolerated in cats with confined tumors; however, the use of wide-field radiation therapy to treat disseminated neoplasia has not been evaluated systematically in this species. Wide-field external beam radiation therapy, which we define as irradiation of cranial or caudal halves of the body either individually or sequentially, was undertaken as an experimental option to treat cats with either chemotherapy-refractory or naive hematopoietic neoplasia considered to have a poor prognosis. Fifteen cats with hematopoietic malignancies received wide-field external beam radiation therapy between 2003 and 2006. Cats received 8 Gy delivered in 4 Gy fractions with 60Co photons. Treatment-related toxicity was scored according to criteria established by the Veterinary Cooperative Oncology Group. Animals without preexisting abnormalities on hemograms exhibited no or mild (Grade 1 or 2) hematopoietic toxicity. Although most cats (14 of 15) had preexisting gastrointestinal (GI) signs, these signs were stable (29%) or improved (42%) following irradiation. Worsening GI signs following irradiation occurred transiently in two cats and in association with progressive disease in two others. No pulmonary, renal, hepatic, or dermatologic toxicities were detected. In summary, wide-field external beam radiation therapy can be administered safely to, and may provide therapeutic benefit for, cats with disseminated hematopoietic neoplasia.

  6. Investigation of quad-energy high-rate photon counting for X-ray computed tomography using a cadmium telluride detector.

    Science.gov (United States)

    Matsukiyo, Hiroshi; Sato, Eiichi; Oda, Yasuyuki; Yamaguchi, Satoshi; Sato, Yuichi; Hagiwara, Osahiko; Enomoto, Toshiyuki; Watanabe, Manabu; Kusachi, Shinya

    2017-12-01

    To obtain four kinds of tomograms at four different X-ray energy ranges simultaneously, we have constructed a quad-energy (QE) X-ray photon counter with a cadmium telluride (CdTe) detector and four sets of comparators and microcomputers (MCs). X-ray photons are detected using the CdTe detector, and the event pulses produced using amplifiers are sent to four comparators simultaneously to regulate four threshold energies of 20, 33, 50 and 65keV. Using this counter, the energy ranges are 20-33, 33-50, 50-65 and 65-100keV; the maximum energy corresponds to the tube voltage. We performed QE computed tomography (QE-CT) at a tube voltage of 100kV. Using a 0.5-mm-diam lead pinhole, four tomograms were obtained simultaneously at four energy ranges. K-edge CT using iodine and gadolinium media was carried out utilizing two energy ranges of 33-50 and 50-65keV, respectively. At a tube voltage of 100kV and a current of 60 μA, the count rate was 15.2 kilocounts per second (kcps), and the minimum count rates after penetrating objects in QE-CT were regulated to approximately 2 kcps by the tube current. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Towards whole-body ultra-weak photon counting and imaging with a focus on human beings: A review

    NARCIS (Netherlands)

    Wijk, R. van; Wijk, E.P.A. van; Wietmarschen, H.A. van; Greef, J. van der

    2014-01-01

    For decades, the relationship between ultra-weak photon emission (UPE) and the health state of the body is being studied. With the advent of systems biology, attention shifted from the association between UPE and reactive oxygen species towards UPE as a reflection of changed metabolic networks.

  8. Prospects and fundamental limitations of room temperature, non-avalanche, semiconductor photon-counting sensors (Conference Presentation)

    Science.gov (United States)

    Ma, Jiaju; Zhang, Yang; Wang, Xiaoxin; Ying, Lei; Masoodian, Saleh; Wang, Zhiyuan; Starkey, Dakota A.; Deng, Wei; Kumar, Rahul; Wu, Yang; Ghetmiri, Seyed Amir; Yu, Zongfu; Yu, Shui-Qing; Salamo, Gregory J.; Fossum, Eric R.; Liu, Jifeng

    2017-05-01

    This research investigates the fundamental limits and trade-space of quantum semiconductor photodetectors using the Schrödinger equation and the laws of thermodynamics.We envision that, to optimize the metrics of single photon detection, it is critical to maximize the optical absorption in the minimal volume and minimize the carrier transit process simultaneously. Integration of photon management with quantum charge transport/redistribution upon optical excitation can be engineered to maximize the quantum efficiency (QE) and data rate and minimize timing jitter at the same time. Due to the ultra-low capacitance of these quantum devices, even a single photoelectron transfer can induce a notable change in the voltage, enabling non-avalanche single photon detection at room temperature as has been recently demonstrated in Si quanta image sensors (QIS). In this research, uniform III-V quantum dots (QDs) and Si QIS are used as model systems to test the theory experimentally. Based on the fundamental understanding, we also propose proof-of-concept, photon-managed quantum capacitance photodetectors. Built upon the concepts of QIS and single electron transistor (SET), this novel device structure provides a model system to synergistically test the fundamental limits and tradespace predicted by the theory for semiconductor detectors. This project is sponsored under DARPA/ARO's DETECT Program: Fundamental Limits of Quantum Semiconductor Photodetectors.

  9. Selected aspects of wide-field stellar interferometry

    Science.gov (United States)

    D'Arcio, Luigi Arsenio

    1999-11-01

    In Michelson stellar interferometry, the high-resolution information about the source structure is detected by performing observations with widely separated telescopes, interconnected to form an interferometer. At optical wavelengths, this method provides a technically viable approach for achieving angular resolutions in the milliarcsecond range, comparable to those of a 100 m diameter telescope, whose realization is beyond the immediate engineering capabilities. Considerable efforts are currently devoted to the definition of dedicated interferometric instruments, which will allow to address ambitious astronomical tasks such as high-resolution imaging, astrometry at microarcsecond level, and the direct detection of exoplanets. Astrometry and related techniques employ the so-called wide field-of-view interferometric mode, where phase measurements are performed simultaneously at two (or more) sources; often, the actual observable is the instantaneous phase difference of the two object signals. The future success of wide-field interferometry critically depends on the development of techniques for the accurate control of field-dependent (anisoplanatic) phase errors. In this thesis, we address two aspects of this problem in detail. The first one is theoretical in nature. For ground-based measurements, atmospheric turbulence is the largest source of random phase fluctuations between the on- and the off-axis fringes. We developed a model of the temporal power spectrum of this disturbance, whose validity is not limited to low frequencies only, as it is the case with earlier models. This extension opens the possibility of the analysis of dynamic issues, such as the determination of the allowable coherent integration time T for the off-axis fringes. The spectrum turns out to be well approximated by a sequences of four power-law branches. In first instance, its overall form is determined by the values of the baseline length, telescope diameter, and average beam separation in

  10. Wide Field-of-View Fluorescence Imaging of Coral Reefs

    Science.gov (United States)

    Treibitz, Tali; Neal, Benjamin P.; Kline, David I.; Beijbom, Oscar; Roberts, Paul L. D.; Mitchell, B. Greg; Kriegman, David

    2015-01-01

    Coral reefs globally are declining rapidly because of both local and global stressors. Improved monitoring tools are urgently needed to understand the changes that are occurring at appropriate temporal and spatial scales. Coral fluorescence imaging tools have the potential to improve both ecological and physiological assessments. Although fluorescence imaging is regularly used for laboratory studies of corals, it has not yet been used for large-scale in situ assessments. Current obstacles to effective underwater fluorescence surveying include limited field-of-view due to low camera sensitivity, the need for nighttime deployment because of ambient light contamination, and the need for custom multispectral narrow band imaging systems to separate the signal into meaningful fluorescence bands. Here we describe the Fluorescence Imaging System (FluorIS), based on a consumer camera modified for greatly increased sensitivity to chlorophyll-a fluorescence, and we show high spectral correlation between acquired images and in situ spectrometer measurements. This system greatly facilitates underwater wide field-of-view fluorophore surveying during both night and day, and potentially enables improvements in semi-automated segmentation of live corals in coral reef photographs and juvenile coral surveys. PMID:25582836

  11. New Subarray Readout Patterns for the ACS Wide Field Channel

    Science.gov (United States)

    Golimowski, D.; Anderson, J.; Arslanian, S.; Chiaberge, M.; Grogin, N.; Lim, Pey Lian; Lupie, O.; McMaster, M.; Reinhart, M.; Schiffer, F.; Serrano, B.; Van Marshall, M.; Welty, A.

    2017-04-01

    At the start of Cycle 24, the original CCD-readout timing patterns used to generate ACS Wide Field Channel (WFC) subarray images were replaced with new patterns adapted from the four-quadrant readout pattern used to generate full-frame WFC images. The primary motivation for this replacement was a substantial reduction of observatory and staff resources needed to support WFC subarray bias calibration, which became a new and challenging obligation after the installation of the ACS CCD Electronics Box Replacement during Servicing Mission 4. The new readout patterns also improve the overall efficiency of observing with WFC subarrays and enable the processing of subarray images through stages of the ACS data calibration pipeline (calacs) that were previously restricted to full-frame WFC images. The new readout patterns replace the original 512×512, 1024×1024, and 2048×2046-pixel subarrays with subarrays having 2048 columns and 512, 1024, and 2048 rows, respectively. Whereas the original square subarrays were limited to certain WFC quadrants, the new rectangular subarrays are available in all four quadrants. The underlying bias structure of the new subarrays now conforms with those of the corresponding regions of the full-frame image, which allows raw frames in all image formats to be calibrated using one contemporaneous full-frame "superbias" reference image. The original subarrays remain available for scientific use, but calibration of these image formats is no longer supported by STScI.

  12. Wide-Field Slitless Spectroscopy with JWST/NIRISS

    Science.gov (United States)

    Dixon, William V.

    2013-01-01

    The Near Infrared Imager and Slitless Spectrograph (NIRISS) is one of four scientific instruments that will fly aboard the James Webb Space Telescope (JWST) later in this decade. Among its capabilities, NIRISS offers wide-field slitless spectroscopy (WFSS) with a resolving power R = 150 over the wavelength range 1.0 to 2.25 microns using a pair of grisms that disperse light in orthogonal directions. Employing the software packages aXe and Source Extractor, we have developed the configuration files needed to model WFSS observations with NIRISS and to extract and calibrate the resulting spectra. These files, together with a cookbook detailing their use, are available on the JWST/NIRISS web site at STScI. Using these tools, we construct synthetic images of the near-IR sky, identify and extract the spectra of individual sources, and demonstrate that NIRISS can observe galaxies with redshifts up to z = 17. NIRISS is provided to the JWST project by the Canadian Space Agency under the leadership of René Doyon of the Université de Montréal. The prime contractor is COM DEV Canada.

  13. Algorithm for Detection of Ground and Canopy Cover in Micropulse Photon-Counting Lidar Altimeter Data in Preparation for the ICESat-2 Mission

    Science.gov (United States)

    Herzfeld, Ute Christina; McDonald, Brian W.; Neumann, Thomas Allen; Wallin, Bruce F.; Neumann, Thomas A.; Markus, Thorsten; Brenner, Anita; Field, Christopher

    2014-01-01

    NASA's Ice, Cloud and Land Elevation Satellite-II (ICESat-2) mission is a decadal survey mission (2016 launch). The mission objectives are to measure land ice elevation, sea ice freeboard, and changes in these variables, as well as to collect measurements over vegetation to facilitate canopy height determination. Two innovative components will characterize the ICESat-2 lidar: 1) collection of elevation data by a multibeam system and 2) application of micropulse lidar (photon-counting) technology. A photon-counting altimeter yields clouds of discrete points, resulting from returns of individual photons, and hence new data analysis techniques are required for elevation determination and association of the returned points to reflectors of interest. The objective of this paper is to derive an algorithm that allows detection of ground under dense canopy and identification of ground and canopy levels in simulated ICESat-2 data, based on airborne observations with a Sigma Space micropulse lidar. The mathematical algorithm uses spatial statistical and discrete mathematical concepts, including radial basis functions, density measures, geometrical anisotropy, eigenvectors, and geostatistical classification parameters and hyperparameters. Validation shows that ground and canopy elevation, and hence canopy height, can be expected to be observable with high accuracy by ICESat-2 for all expected beam energies considered for instrument design (93.01%-99.57% correctly selected points for a beam with expected return of 0.93 mean signals per shot (msp), and 72.85%-98.68% for 0.48 msp). The algorithm derived here is generally applicable for elevation determination from photoncounting lidar altimeter data collected over forested areas, land ice, sea ice, and land surfaces, as well as for cloud detection.

  14. Pixel History for Advanced Camera for Surveys Wide Field Channel

    Science.gov (United States)

    Borncamp, D.; Grogin, N.; Bourque, M.; Ogaz, S.

    2017-06-01

    Excess thermal energy present in a Charged Coupled Device (CCD) can result in additional electrical current. This excess charge is trapped within the silicon lattice structure of the CCD electronics. It can persist through multiple exposures and have an adverse effect on science performance of the detectors unless properly flagged and corrected for. The traditional way to correct for this extra charge is to take occasional long-exposure images with the camera shutter closed. These images, generally referred to as "dark" images, allow for the measurement of the thermal-electron contamination present in each pixel of the CCD lattice. This so-called "dark current" can then be subtracted from the science images by re-scaling the dark to the corresponding exposure times. Pixels that have signal above a certain threshold are traditionally marked as "hot" and flagged in the data quality array. Many users will discard these because of the extra current. However, these pixels may not be unusable because of an unreliable dark subtraction; if we find these pixels to be stable over an anneal period, we can properly subtract the charge and the extra Poisson noise from this dark current will be propagated into the error arrays. Here we present the results of a pixel history study that analyzes every individual pixel of the Hubble Space Telescope's (HST) Advanced Camera for Surveys (ACS) Wide Field Channel (WFC) CCDs over time and allows pixels that were previously flagged as unusable to be brought back into the science image as a reliable pixel.

  15. Quantum optical signatures in strong-field laser physics: Infrared photon counting in high-order-harmonic generation.

    Science.gov (United States)

    Gonoskov, I A; Tsatrafyllis, N; Kominis, I K; Tzallas, P

    2016-09-07

    We analytically describe the strong-field light-electron interaction using a quantized coherent laser state with arbitrary photon number. We obtain a light-electron wave function which is a closed-form solution of the time-dependent Schrödinger equation (TDSE). This wave function provides information about the quantum optical features of the interaction not accessible by semi-classical theories. With this approach we can reveal the quantum optical properties of high harmonic generation (HHG) process in gases by measuring the photon statistics of the transmitted infrared (IR) laser radiation. This work can lead to novel experiments in high-resolution spectroscopy in extreme-ultraviolet (XUV) and attosecond science without the need to measure the XUV light, while it can pave the way for the development of intense non-classical light sources.

  16. Measurement of effective detective quantum efficiency for a photon counting scanning mammography system and comparison with two flat panel full-field digital mammography systems

    Science.gov (United States)

    Wood, Tim J.; Moore, Craig S.; Saunderson, John R.; Beavis, Andrew W.

    2018-01-01

    Effective detective quantum efficiency (eDQE) describes the resolution and noise properties of an imaging system along with scatter and primary transmission, all measured under clinically appropriate conditions. Effective dose efficiency (eDE) is the eDQE normalised to mean glandular dose and has been proposed as a useful metric for the optimisation of clinical imaging systems. The aim of this study was to develop a methodology for measuring eDQE and eDE on a Philips microdose mammography (MDM) L30 photon counting scanning system, and to compare performance with two conventional flat panel systems. A custom made lead-blocker was manufactured to enable the accurate determination of dose measurements, and modulation transfer functions were determined free-in-air at heights of 2, 4 and 6 cm above the breast support platform. eDQE were calculated for a Philips MDM L30, Hologic Dimensions and Siemens Inspiration digital mammography system for 2, 4 and 6 cm thick poly(methyl methacrylate) (PMMA). The beam qualities (target/filter and kilovoltage) assessed were those selected by the automatic exposure control, and anti-scatter grids were used where available. Measurements of eDQE demonstrate significant differences in performance between the slit- and scan-directions for the photon counting imaging system. MTF has been shown to be the limiting factor in the scan-direction, which results in a rapid fall in eDQE at mid-to-high spatial frequencies. A comparison with two flat panel mammography systems demonstrates that this may limit image quality for small details, such as micro-calcifications, which correlates with a more conventional image quality assessment with the CDMAM phantom. eDE has shown the scanning photon counting system offers superior performance for low spatial frequencies, which will be important for the detection of large low contrast masses. Both eDQE and eDE are proposed as useful metrics that should enable optimisation of the Philips MDM L30.

  17. Optimization of K-edge imaging for vulnerable plaques using gold nanoparticles and energy resolved photon counting detectors: a simulation study.

    Science.gov (United States)

    Alivov, Yahya; Baturin, Pavlo; Le, Huy Q; Ducote, Justin; Molloi, Sabee

    2014-01-06

    We investigated the effect of different imaging parameters, such as dose, beam energy, energy resolution and the number of energy bins, on the image quality of K-edge spectral computed tomography (CT) of gold nanoparticles (GNP) accumulated in an atherosclerotic plaque. A maximum likelihood technique was employed to estimate the concentration of GNP, which served as a targeted intravenous contrast material intended to detect the degree of the plaque's inflammation. The simulation studies used a single-slice parallel beam CT geometry with an x-ray beam energy ranging between 50 and 140 kVp. The synthetic phantoms included small (3 cm in diameter) cylinder and chest (33 × 24 cm(2)) phantoms, where both phantoms contained tissue, calcium and gold. In the simulation studies, GNP quantification and background (calcium and tissue) suppression tasks were pursued. The x-ray detection sensor was represented by an energy resolved photon counting detector (e.g., CdZnTe) with adjustable energy bins. Both ideal and more realistic (12% full width at half maximum (FWHM) energy resolution) implementations of the photon counting detector were simulated. The simulations were performed for the CdZnTe detector with a pixel pitch of 0.5-1 mm, which corresponds to a performance without significant charge sharing and cross-talk effects. The Rose model was employed to estimate the minimum detectable concentration of GNPs. A figure of merit (FOM) was used to optimize the x-ray beam energy (kVp) to achieve the highest signal-to-noise ratio with respect to the patient dose. As a result, the successful identification of gold and background suppression was demonstrated. The highest FOM was observed at the 125 kVp x-ray beam energy. The minimum detectable GNP concentration was determined to be approximately 1.06 µmol mL(-1) (0.21 mg mL(-1)) for an ideal detector and about 2.5 µmol mL(-1) (0.49 mg mL(-1)) for a more realistic (12% FWHM) detector. The studies show the optimal

  18. Optimization of the K-edge imaging for vulnerable plaques using gold nanoparticles and energy-resolved photon counting detectors: a simulation study

    Science.gov (United States)

    Alivov, Yahya; Baturin, Pavlo; Le, Huy Q.; Ducote, Justin; Molloi, Sabee

    2014-01-01

    We investigated the effect of different imaging parameters such as dose, beam energy, energy resolution, and number of energy bins on image quality of K-edge spectral computed tomography (CT) of gold nanoparticles (GNP) accumulated in an atherosclerotic plaque. Maximum likelihood technique was employed to estimate the concentration of GNP, which served as a targeted intravenous contrast material intended to detect the degree of plaque's inflammation. The simulations studies used a single slice parallel beam CT geometry with an X-ray beam energy ranging between 50 and 140 kVp. The synthetic phantoms included small (3 cm in diameter) cylinder and chest (33x24 cm2) phantom, where both phantoms contained tissue, calcium, and gold. In the simulation studies GNP quantification and background (calcium and tissue) suppression task were pursued. The X-ray detection sensor was represented by an energy resolved photon counting detector (e.g., CdZnTe) with adjustable energy bins. Both ideal and more realistic (12% FWHM energy resolution) implementations of photon counting detector were simulated. The simulations were performed for the CdZnTe detector with pixel pitch of 0.5-1 mm, which corresponds to the performance without significant charge sharing and cross-talk effects. The Rose model was employed to estimate the minimum detectable concentration of GNPs. A figure of merit (FOM) was used to optimize the X-ray beam energy (kVp) to achieve the highest signal-to-noise ratio (SNR) with respect to patient dose. As a result, the successful identification of gold and background suppression was demonstrated. The highest FOM was observed at 125 kVp X-ray beam energy. The minimum detectable GNP concentration was determined to be approximately 1.06 μmol/mL (0.21 mg/mL) for an ideal detector and about 2.5 μmol/mL (0.49 mg/mL) for more realistic (12% FWHM) detector. The studies show the optimal imaging parameters at lowest patient dose using an energy resolved photon counting detector

  19. An Algorithm for Detection of Ground and Canopy Cover in Micropulse Photon-Counting Lidar Altimeter Data in Preparation of the ICESat-2 Mission

    Science.gov (United States)

    Herzfeld, Ute C.; McDonald, Brian W.; Wallins, Bruce F.; Markus, Thorsten; Neumann, Thomas A.; Brenner, Anita

    2012-01-01

    The Ice, Cloud and Land Elevation Satellite-II (ICESat-2) mission has been selected by NASA as a Decadal Survey mission, to be launched in 2016. Mission objectives are to measure land ice elevation, sea ice freeboard/ thickness and changes in these variables and to collect measurements over vegetation that will facilitate determination of canopy height, with an accuracy that will allow prediction of future environmental changes and estimation of sea-level rise. The importance of the ICESat-2 project in estimation of biomass and carbon levels has increased substantially, following the recent cancellation of all other planned NASA missions with vegetation-surveying lidars. Two innovative components will characterize the ICESat-2 lidar: (1) Collection of elevation data by a multi-beam system and (2) application of micropulse lidar (photon counting) technology. A micropulse photon-counting altimeter yields clouds of discrete points, which result from returns of individual photons, and hence new data analysis techniques are required for elevation determination and association of returned points to reflectors of interest including canopy and ground in forested areas. The objective of this paper is to derive and validate an algorithm that allows detection of ground under dense canopy and identification of ground and canopy levels in simulated ICESat-2-type data. Data are based on airborne observations with a Sigma Space micropulse lidar and vary with respect to signal strength, noise levels, photon sampling options and other properties. A mathematical algorithm is developed, using spatial statistical and discrete mathematical concepts, including radial basis functions, density measures, geometrical anisotropy, eigenvectors and geostatistical classification parameters and hyperparameters. Validation shows that the algorithm works very well and that ground and canopy elevation, and hence canopy height, can be expected to be observable with a high accuracy during the ICESat

  20. Wide-Field Optic for Autonomous Acquisition of Laser Link

    Science.gov (United States)

    Page, Norman A.; Charles, Jeffrey R.; Biswas, Abhijit

    2011-01-01

    An innovation reported in Two-Camera Acquisition and Tracking of a Flying Target, NASA Tech Briefs, Vol. 32, No. 8 (August 2008), p. 20, used a commercial fish-eye lens and an electronic imaging camera for initially locating objects with subsequent handover to an actuated narrow-field camera. But this operated against a dark-sky background. An improved solution involves an optical design based on custom optical components for the wide-field optical system that directly addresses the key limitations in acquiring a laser signal from a moving source such as an aircraft or a spacecraft. The first challenge was to increase the light collection entrance aperture diameter, which was approximately 1 mm in the first prototype. The new design presented here increases this entrance aperture diameter to 4.2 mm, which is equivalent to a more than 16 times larger collection area. One of the trades made in realizing this improvement was to restrict the field-of-view to +80 deg. elevation and 360 azimuth. This trade stems from practical considerations where laser beam propagation over the excessively high air mass, which is in the line of sight (LOS) at low elevation angles, results in vulnerability to severe atmospheric turbulence and attenuation. An additional benefit of the new design is that the large entrance aperture is maintained even at large off-axis angles when the optic is pointed at zenith. The second critical limitation for implementing spectral filtering in the design was tackled by collimating the light prior to focusing it onto the focal plane. This allows the placement of the narrow spectral filter in the collimated portion of the beam. For the narrow band spectral filter to function properly, it is necessary to adequately control the range of incident angles at which received light intercepts the filter. When this angle is restricted via collimation, narrower spectral filtering can be implemented. The collimated beam (and the filter) must be relatively large to

  1. Precision lifetime measurements of Cs 6p 2P1/2 and 6p 2P3/2 levels by single-photon counting

    Science.gov (United States)

    Young, L.; Hill, W. T., III; Sibener, S. J.; Price, Stephen D.; Tanner, C. E.; Wieman, C. E.; Leone, Stephen R.

    1994-09-01

    Time-correlated single-photon counting is used to measure the lifetimes of the 6p 2P1/2 and 6p 2P3/2 levels in atomic Cs with accuracies ~=0.2-0.3 %. A high-repetition-rate, femtosecond, self-mode-locked Ti:sapphire laser is used to excite Cs produced in a well-collimated atomic beam. The time interval between the excitation pulse and the arrival of a fluorescence photon is measured repetitively until the desired statistics are obtained. The lifetime results are 34.75(7) and 30.41(10) ns for the 6p 2P1/2 and 6p 2P3/2 levels, respectively. These lifetimes fall between those extracted from ab initio many-body perturbation-theory calculations by Blundell, Johnson, and Sapirstein [Phys. Rev. A 43, 3407 (1991)] and V. A. Dzuba et al. [Phys. Lett. A 142, 373 (1989)] and are in all cases within 0.9% of the calculated values. The measurement errors are dominated by systematic effects, and methods to alleviate these and to approach an accuracy of 0.1% are discussed. The technique is a viable alternative to the fast-beam laser approach for measuring lifetimes with extreme accuracy.

  2. Picosecond time-resolved laser pump/X-ray probe experiments using a gated single-photon-counting area detector

    DEFF Research Database (Denmark)

    Ejdrup, T.; Lemke, H.T.; Haldrup, Martin Kristoffer

    2009-01-01

    The recent developments in X-ray detectors have opened new possibilities in the area of time-resolved pump/probe X-ray experiments; this article presents the novel use of a PILATUS detector to achieve X-ray pulse duration limited time-resolution at the Advanced Photon Source (APS), USA...... limited time-resolution of 60 ps using the gated PILATUS detector. This is the first demonstration of X-ray pulse duration limited data recorded using an area detector without the use of a mechanical chopper array at the beamline........ The capability of the gated PILATUS detector to selectively detect the signal from a given X-ray pulse in 24 bunch mode at the APS storage ring is demonstrated. A test experiment performed on polycrystalline organic thin films of [alpha]-perylene illustrates the possibility of reaching an X-ray pulse duration...

  3. Evaluation of Timepix3 based CdTe photon counting detector for fully spectroscopic small animal SPECT imaging

    Science.gov (United States)

    Trojanova, E.; Jakubek, J.; Turecek, D.; Sykora, V.; Francova, P.; Kolarova, V.; Sefc, L.

    2018-01-01

    The imaging method of SPECT (Single Photon Emission Computed Tomography) is used in nuclear medicine for diagnostics of various diseases or organs malfunctions. The distribution of medically injected, inhaled, or ingested radionuclides (radiotracers) in the patient body is imaged using gamma-ray sensitive camera with suitable imaging collimator. The 3D image is then calculated by combining many images taken from different observation angles. Most of SPECT systems use scintillator based cameras. These cameras do not provide good energy resolution and do not allow efficient suppression of unwanted signals such as those caused by Compton scattering. The main goal of this work is evaluation of Timepix3 detector properties for SPECT method for functional imaging of small animals during preclinical studies. Advantageous Timepix3 properties such as energy and spatial resolution are exploited for significant image quality improvement. Preliminary measurements were performed on specially prepared plastic phantom with cavities filled by radioisotopes and then repeated with in vivo mouse sample.

  4. A 32-channel photon counting module with embedded auto/cross-correlators for real-time parallel fluorescence correlation spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Gong, S.; Labanca, I.; Rech, I.; Ghioni, M. [Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy)

    2014-10-15

    Fluorescence correlation spectroscopy (FCS) is a well-established technique to study binding interactions or the diffusion of fluorescently labeled biomolecules in vitro and in vivo. Fast FCS experiments require parallel data acquisition and analysis which can be achieved by exploiting a multi-channel Single Photon Avalanche Diode (SPAD) array and a corresponding multi-input correlator. This paper reports a 32-channel FPGA based correlator able to perform 32 auto/cross-correlations simultaneously over a lag-time ranging from 10 ns up to 150 ms. The correlator is included in a 32 × 1 SPAD array module, providing a compact and flexible instrument for high throughput FCS experiments. However, some inherent features of SPAD arrays, namely afterpulsing and optical crosstalk effects, may introduce distortions in the measurement of auto- and cross-correlation functions. We investigated these limitations to assess their impact on the module and evaluate possible workarounds.

  5. Progress towards photon counting between 1μm and 1.6μm using silicon with infrared absorbers

    Science.gov (United States)

    Morrison, Alan P.; Hayes, John M.; Gity, Farzan; Corbett, Brian

    2010-04-01

    Silicon based avalanche photodiodes (APDs) have exhibited impressive performance over the visible spectrum for more than a decade. Photon counting with these devices has progressed to the level where room-temperature operation and low dark count rates (< 100 Hz) are commonplace. Several commercial enterprises have been established to capitalise on these devices and many niche markets are now serviced by incorporating these devices into suitable systems. This paper describes one approach that allows the performance of silicon based Geigermode avalanche photodiodes (GM-APDs) to be extended into the near-infra-red. The process development is described whereby Ge absorbers are incorporated into adapted silicon APD designs to provide separate absorption and multiplication devices. Simulation results are presented outlining the performance of these devices at wavelengths between 1 μm and 1.6 μm. The performance results from silicon APD designs are presented for visible wavelengths. A silicon-germanium bonding process is described and the challenges presented in developing the hybrid absorber/multiplier structure are detailed. Finally, a summary of appropriate custom application integrated circuits for various applications is discussed.

  6. SU-C-206-01: Impact of Charge Sharing Effect On Sub-Pitch Resolution for CZT-Based Photon Counting CT Systems

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, X; Cheng, Z; Deen, J; Peng, H [McMaster University, Hamilton, Ontario (Canada); Xing, L [Stanford University School of Medicine, Stanford, CA (United States)

    2016-06-15

    Purposes: Photon counting CT is a new imaging technology that can provide tissue composition information such as calcium/iodine content quantification. Cadmium zinc telluride CZT is considered a good candidate the photon counting CT due to its relatively high atomic number and band gap. One potential challenge is the degradation of both spatial and energy resolution as the fine electrode pitch is deployed (<50 µm). We investigated the extent of charge sharing effect as functions of gap width, bias voltage and depth-of-interaction (DOI). Methods: The initial electron cloud size and diffusion process were modeled analytically. The valid range of charge sharing effect refers to the range over which both signals of adjacent electrodes are above the triggering threshold (10% of the amplitude of 60keV X-ray photons). The intensity ratios of output in three regions (I1/I2/I3: left pixel, gap area and right pixel) were calculated. With Gaussian white noises modeled (a SNR of 5 based upon the preliminary experiments), the sub-pitch resolution as a function of the spatial position in-between two pixels was studied. Results: The valid range of charge sharing increases linearly with depth-of-interaction (DOI) but decreases with gap width and bias voltage. For a 1.5mm thickness CZT detector (pitch: 50µm, bias: 400 V), the range increase from ∼90µm up to ∼110µm. Such an increase can be attributed to a longer travel distance and the associated electron cloud broadening. The achievable sub-pitch resolution is in the range of ∼10–30µm. Conclusion: The preliminary results demonstrate that sub-pixel spatial resolution can be achieved using the ratio of amplitudes of two neighboring pixels. Such ratio may also be used to correct charge loss and help improve energy resolution of a CZT detector. The impact of characteristic X-rays hitting adjacent pixels (i.e., multiple interaction) on charge sharing is currently being investigated.

  7. Studies of prototype DEPFET sensors for the Wide Field Imager of Athena

    Science.gov (United States)

    Treberspurg, Wolfgang; Andritschke, Robert; Bähr, Alexander; Behrens, Annika; Hauser, Günter; Lechner, Peter; Meidinger, Norbert; Müller-Seidlitz, Johannes; Treis, Johannes

    2017-08-01

    The Wide Field Imager (WFI) of ESA's next X-ray observatory Athena will combine a high count rate capability with a large field of view, both with state-of-the-art spectroscopic performance. To meet these demands, specific DEPFET active pixel detectors have been developed and operated. Due to the intrinsic amplification of detected signals they are best suited to achieve a high speed and low noise performance. Different fabrication technologies and transistor geometries have been implemented on a dedicated prototype production in the course of the development of the DEPFET sensors. The main modifications between the sensors concern the shape of the transistor gate - regarding the layout - and the thickness of the gate oxide - regarding the technology. To facilitate the fabrication and testing of the resulting variety of sensors the presented studies were carried out with 64×64 pixel detectors. The detector comprises a control ASIC (Switcher-A), a readout ASIC (VERITAS- 2) and the sensor. In this paper we give an overview on the evaluation of different prototype sensors. The most important results, which have been decisive for the identification of the optimal fabrication technology and transistor layout for subsequent sensor productions are summarized. It will be shown that the developments result in an excellent performance of spectroscopic X-ray DEPFETs with typical noise values below 2.5 ENC at 2.5 μs/row.

  8. Wide-field fluorescent microscopy and fluorescent imaging flow cytometry on a cell-phone.

    Science.gov (United States)

    Zhu, Hongying; Ozcan, Aydogan

    2013-04-11

    Fluorescent microscopy and flow cytometry are widely used tools in biomedical research and clinical diagnosis. However these devices are in general relatively bulky and costly, making them less effective in the resource limited settings. To potentially address these limitations, we have recently demonstrated the integration of wide-field fluorescent microscopy and imaging flow cytometry tools on cell-phones using compact, light-weight, and cost-effective opto-fluidic attachments. In our flow cytometry design, fluorescently labeled cells are flushed through a microfluidic channel that is positioned above the existing cell-phone camera unit. Battery powered light-emitting diodes (LEDs) are butt-coupled to the side of this microfluidic chip, which effectively acts as a multi-mode slab waveguide, where the excitation light is guided to uniformly excite the fluorescent targets. The cell-phone camera records a time lapse movie of the fluorescent cells flowing through the microfluidic channel, where the digital frames of this movie are processed to count the number of the labeled cells within the target solution of interest. Using a similar opto-fluidic design, we can also image these fluorescently labeled cells in static mode by e.g. sandwiching the fluorescent particles between two glass slides and capturing their fluorescent images using the cell-phone camera, which can achieve a spatial resolution of e.g. - 10 μm over a very large field-of-view of - 81 mm(2). This cell-phone based fluorescent imaging flow cytometry and microscopy platform might be useful especially in resource limited settings, for e.g. counting of CD4+ T cells toward monitoring of HIV+ patients or for detection of water-borne parasites in drinking water.

  9. Response functions of multi-pixel-type CdTe detector: toward development of precise material identification on diagnostic x-ray images by means of photon counting

    Science.gov (United States)

    Hayashi, Hiroaki; Asahara, Takashi; Kimoto, Natsumi; Kanazawa, Yuki; Yamakawa, Tsutomu; Yamamoto, Shuichiro; Yamasaki, Masashi; Okada, Masahiro

    2017-03-01

    Currently, an X-ray imaging system which can produced information used to identify various materials has been developed based on photon counting. It is important to estimate the response function of the detector in order to accomplish highly accurate material identification. Our aim is to simulate the response function of a CdTe detector using Monte-Carlo simulation; at this time, the transportation of incident and scattered photons and secondary produced electrons were precisely simulated without taking into consideration the charge spread in the collecting process of the produced charges (charge sharing effect). First, we set pixel sizes of 50-500μm, the minimum irradiation fields which produce equilibrium conditions were determined. Then, observed peaks in the response function were analyzed with consideration paid to the interactions between incident X-rays and the detector components, Cd and Te. The secondary produced characteristic X-rays play an important role. Accordingly ratios of full energy peak (FEP), scattering X-rays and penetrating X-rays in the calculated response functions were analyzed. When the pixel size of 200μm was used the scattered X-rays were saturated at equilibrium with relatively small fields and efficiency of FEP was kept at a high value (<50%). Finally, we demonstrated the X-ray spectrum which is folded by the response function. Even if the charge sharing effect is not completely corrected when using the electric circuit, there is a possibility that disturbed portions in the measured X-ray spectra can be corrected by using proper calibration, in which the above considerations are taken into account.

  10. Size-dependent scanning parameters (kVp and mAs) for photon-counting spectral CT system in pediatric imaging: simulation study.

    Science.gov (United States)

    Chen, Han; Danielsson, Mats; Xu, Cheng

    2016-06-07

    We are developing a photon-counting spectral CT detector with a small pixel size of [Formula: see text] mm(2), offering a potential advantage for better visualization of small structures in pediatric patients. The purpose of this study is to determine the patient size dependent scanning parameters (kVp and mAs) for pediatric CT in two imaging cases: adipose imaging and iodinated blood imaging. Cylindrical soft-tissue phantoms of diameters between 10-25 cm were used to mimic patients of different ages from 0 to 15 y. For adipose imaging, a 5 mm diameter adipose sphere was assumed as an imaging target, while in the case of iodinated imaging, an iodinated blood sphere of 1 mm in diameter was assumed. By applying the geometry of a commercial CT scanner (GE Lightspeed VCT), simulations were carried out to calculate the detectability index, [Formula: see text], with tube potentials varying from 40 to 140 kVp. The optimal kVp for each phantom in each imaging case was determined such that the dose-normalized detectability index, [Formula: see text]dose, is maximized. With the assumption that the detectability index in pediatric imaging is required the same as in typical adult imaging, the value of mAs at optimal kVp for each phantom was selected to achieve a reference detectability index that was obtained by scanning an adult phantom (30 cm in diameter) in a typical adult CT procedure (120 kVp and 200 mAs) using a modeled energy-integrating system. For adipose imaging, the optimal kVps are 50, 60, 80, and 120 kVp, respectively, for phantoms of 10, 15, 20, and 25 cm in diameter. The corresponding mAs values required to achieve the reference detectability index are only 9%, 23%, 24%, and 54% of the mAs that is used for adult patients at 120 kVp, for 10, 15, 20, and 25 cm diameter phantoms, respectively. In the case of iodinated imaging, a tube potential of 60 kVp was found optimal for all phantoms investigated, and the mAs values required to achieve the reference

  11. Reducing radiation dose by application of optimized low-energy x-ray filters to K-edge imaging with a photon counting detector

    Science.gov (United States)

    Choi, Yu-Na; Lee, Seungwan; Kim, Hee-Joung

    2016-01-01

    K-edge imaging with photon counting x-ray detectors (PCXDs) can improve image quality compared with conventional energy integrating detectors. However, low-energy x-ray photons below the K-edge absorption energy of a target material do not contribute to image formation in the K-edge imaging and are likely to be completely absorbed by an object. In this study, we applied x-ray filters to the K-edge imaging with a PCXD based on cadmium zinc telluride for reducing radiation dose induced by low-energy x-ray photons. We used aluminum (Al) filters with different thicknesses as the low-energy x-ray filters and implemented the iodine K-edge imaging with an energy bin of 34-48 keV at the tube voltages of 50, 70 and 90 kVp. The effects of the low-energy x-ray filters on the K-edge imaging were investigated with respect to signal-difference-to-noise ratio (SDNR), entrance surface air kerma (ESAK) and figure of merit (FOM). The highest value of SDNR was observed in the K-edge imaging with a 2 mm Al filter, and the SDNR decreased as a function of the filter thicknesses. Compared to the K-edge imaging with a 2 mm Al filter, the ESAK was reduced by 66%, 48% and 39% in the K-edge imaging with a 12 mm Al filter for 50 kVp, 70 kVp and 90 kVp, respectively. The FOM values, which took into account the ESAK and SDNR, were maximized for 8, 6 to 8 and 4 mm Al filters at 50 kVp, 70 kVp and 90 kVp, respectively. We concluded that the use of an optimal low-energy filter thickness, which was determined by maximizing the FOM, could significantly reduce radiation dose while maintaining image quality in the K-edge imaging with the PCXD.

  12. Large Area and High Efficiency Photon Counting Imaging Detectors with High Time and Spatial Resolution for Night Time Sensing and Astronomy

    Science.gov (United States)

    Siegmund, O.; Vallerga, J.; Tremsin, A.; McPhate, J.; Frisch, H.; Elam, J.; Mane, A.; Wagner, R.; Varner, G.

    2012-09-01

    The development of large area photon counting, imaging, timing detectors with high performance has significance for applications in astronomy (such as our sensor on the SAAO SALT 10m telescope), night time remote reconnaissance, airborne/space situational awareness, and high-speed adaptive optics. Sealed tube configurations for optical/IR sensing also have applications in detection of Cherenkov light (RICH), biological single-molecule fluorescence lifetime imaging microscopy and neutron imaging applications. In open faced configurations these devices are important for UV and particle detection in space astrophysics, mass spectroscopy and many time-of flight applications. Currently available devices are limited to sizes of about 5 cm and use either conventional microchannel plates, or dynode multipliers for amplification, coupled coarse pad array readouts. Extension of these schemes to devices as large as 20 cm with high spatial resolution presents significant problems and potentially considerable cost. A collaboration (Large Area Picosecond Photon Detector) of the U. Chicago, Argonne National Laboratory, U.C. Berkeley, U. Hawaii and a number of other institutions has developed novel technologies to realize 20 cm format detectors in open face or sealed tube configurations. One critical component of this development is novel microchannel plates employing borosilicate micro-capillary arrays. The microchannel plates are based on a novel concept where the substrate is constructed from a borosilicate micro-capillary array that is made to function as a microchannel plate by deposition of resistive and secondary emissive layers using atomic layer deposition. The process is relatively inexpensive compared with conventional microchannel plates and allows very large microchannel plates to be produced with pore sizes as small as 10 microns. These provide many performance characteristics typical of conventional microchannel plates, but have been made in sizes up to 20 cm, have

  13. Cost-effective and compact wide-field fluorescent imaging on a cell-phone.

    Science.gov (United States)

    Zhu, Hongying; Yaglidere, Oguzhan; Su, Ting-Wei; Tseng, Derek; Ozcan, Aydogan

    2011-01-21

    attached to a cell-phone could be quite useful especially for resource-limited settings, and might provide an important tool for wide-field imaging and quantification of various lab-on-a-chip assays developed for global health applications, such as monitoring of HIV+ patients for CD4 counts or viral load measurements.

  14. Characterization of a mammographic system based on single photon counting pixel arrays coupled to GaAs x-ray detectors.

    Science.gov (United States)

    Amendolia, S R; Bisogni, M G; Delogu, P; Fantacci, M E; Paternoster, G; Rosso, V; Stefanini, A

    2009-04-01

    The authors report on the imaging capabilities of a mammographic system demonstrator based on GaAs pixel detectors operating in single photon counting (SPC) mode. The system imaging performances have been assessed by means of the transfer functions: The modulation transfer function (MTF), the normalized noise power spectrum, and the detective quantum efficiency (DQE) have been measured following the guidelines of the IEC 62220-1-2 protocol. The transfer function analysis has shown the high spatial resolution capabilities of the GaAs detectors. The MTF calculated at the Nyquist frequency (2.94 cycles/mm) is indeed 60%. The DQE, measured with a standard mammographic beam setup (Mo/Mo, 28 kVp, with 4 mm Al added filter) and calculated at zero frequency, is 46%. Aiming to further improve the system's image quality, the authors investigate the DQE limiting factors and show that they are mainly related to system engineering. For example, the authors show that optimization of the image equalization procedure increases the DQE(0) up to 74%, which is better than the DQE(0) of most clinical mammographic systems. The authors show how the high detection efficiency of GaAs detectors and the noise discrimination associated with the SPC technology allow optimizing the image quality in mammography. In conclusion, the authors propose technological solutions to exploit to the utmost the potentiality of GaAs detectors coupled to SPC electronics.

  15. A Ring Artifact Correction Method: Validation by Micro-CT Imaging with Flat-Panel Detectors and a 2D Photon-Counting Detector

    Directory of Open Access Journals (Sweden)

    Mohamed Elsayed Eldib

    2017-01-01

    Full Text Available We introduce an efficient ring artifact correction method for a cone-beam computed tomography (CT. In the first step, we correct the defective pixels whose values are close to zero or saturated in the projection domain. In the second step, we compute the mean value at each detector element along the view angle in the sinogram to obtain the one-dimensional (1D mean vector, and we then compute the 1D correction vector by taking inverse of the mean vector. We multiply the correction vector with the sinogram row by row over all view angles. In the third step, we apply a Gaussian filter on the difference image between the original CT image and the corrected CT image obtained in the previous step. The filtered difference image is added to the corrected CT image to compensate the possible contrast anomaly that may appear due to the contrast change in the sinogram after removing stripe artifacts. We applied the proposed method to the projection data acquired by two flat-panel detectors (FPDs and a silicon-based photon-counting X-ray detector (PCXD. Micro-CT imaging experiments of phantoms and a small animal have shown that the proposed method can greatly reduce ring artifacts regardless of detector types. Despite the great reduction of ring artifacts, the proposed method does not compromise the original spatial resolution and contrast.

  16. Characterization of a mammographic system based on single photon counting pixel arrays coupled to GaAs x-ray detectors

    Energy Technology Data Exchange (ETDEWEB)

    Amendolia, S. R.; Bisogni, M. G.; Delogu, P.; Fantacci, M. E.; Paternoster, G.; Rosso, V.; Stefanini, A. [Str. Dip. di Matematica e Fisica dell' Universita di Sassari, Via Vienna 2, I-07100, Sassari (Italy) and Istituto Nazionale di Fisica Nucleare INFN Sezione di Pisa, Largo B. Pontecorvo 3, I-56127, Pisa (Italy); Dip. di Fisica ' ' E. Fermi' ' , Universita di Pisa, Largo B. Pontecorvo 3, I-56127, Pisa (Italy) and Istituto Nazionale di Fisica Nucleare INFN Sezione di Pisa, Largo B. Pontecorvo 3, I-56127, Pisa (Italy); Dip. di Fisica ' ' E. Fermi' ' , Universita di Pisa, Largo B. Pontecorvo 3, I-56127, Pisa (Italy); Dip. di Fisica ' ' E. Fermi' ' , Universita di Pisa, Largo B. Pontecorvo 3, I-56127, Pisa (Italy) and Istituto Nazionale di Fisica Nucleare INFN Sezione di Pisa, Largo B. Pontecorvo 3, I-56127, Pisa (Italy)

    2009-04-15

    The authors report on the imaging capabilities of a mammographic system demonstrator based on GaAs pixel detectors operating in single photon counting (SPC) mode. The system imaging performances have been assessed by means of the transfer functions: The modulation transfer function (MTF), the normalized noise power spectrum, and the detective quantum efficiency (DQE) have been measured following the guidelines of the IEC 62220-1-2 protocol. The transfer function analysis has shown the high spatial resolution capabilities of the GaAs detectors. The MTF calculated at the Nyquist frequency (2.94 cycles/mm) is indeed 60%. The DQE, measured with a standard mammographic beam setup (Mo/Mo, 28 kVp, with 4 mm Al added filter) and calculated at zero frequency, is 46%. Aiming to further improve the system's image quality, the authors investigate the DQE limiting factors and show that they are mainly related to system engineering. For example, the authors show that optimization of the image equalization procedure increases the DQE(0) up to 74%, which is better than the DQE(0) of most clinical mammographic systems. The authors show how the high detection efficiency of GaAs detectors and the noise discrimination associated with the SPC technology allow optimizing the image quality in mammography. In conclusion, the authors propose technological solutions to exploit to the utmost the potentiality of GaAs detectors coupled to SPC electronics.

  17. Material decomposition through weighted imaged subtraction in dual-energy spectral mammography with an energy-resolved photon-counting detector using Monte Carlo Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Eom, Ji Soo; Kang, Soon Cheol; Lee, Seung Wan [Konyang University, Daejeon (Korea, Republic of)

    2017-09-15

    Mammography is commonly used for screening early breast cancer. However, mammographic images, which depend on the physical properties of breast components, are limited to provide information about whether a lesion is malignant or benign. Although a dual-energy subtraction technique decomposes a certain material from a mixture, it increases radiation dose and degrades the accuracy of material decomposition. In this study, we simulated a breast phantom using attenuation characteristics, and we proposed a technique to enable the accurate material decomposition by applying weighting factors for the dual-energy mammography based on a photon-counting detector using a Monte Carlo simulation tool. We also evaluated the contrast and noise of simulated breast images for validating the proposed technique. As a result, the contrast for a malignant tumor in the dual-energy weighted subtraction technique was 0.98 and 1.06 times similar than those in the general mammography and dual-energy subtraction techniques, respectively. However the contrast between malignant and benign tumors dramatically increased 13.54 times due to the low contrast of a benign tumor. Therefore, the proposed technique can increase the material decomposition accuracy for malignant tumor and improve the diagnostic accuracy of mammography.

  18. Dose optimization for dual-energy contrast-enhanced digital mammography based on an energy-resolved photon-counting detector: A Monte Carlo simulation study

    Science.gov (United States)

    Lee, Youngjin; Lee, Seungwan; Kang, Sooncheol; Eom, Jisoo

    2017-03-01

    Dual-energy contrast-enhanced digital mammography (CEDM) has been used to decompose breast images and improve diagnostic accuracy for tumor detection. However, this technique causes an increase of radiation dose and an inaccuracy in material decomposition due to the limitations of conventional X-ray detectors. In this study, we simulated the dual-energy CEDM with an energy-resolved photon-counting detector (ERPCD) for reducing radiation dose and improving the quantitative accuracy of material decomposition images. The ERPCD-based dual-energy CEDM was compared to the conventional dual-energy CEDM in terms of radiation dose and quantitative accuracy. The correlation between radiation dose and image quality was also evaluated for optimizing the ERPCD-based dual-energy CEDM technique. The results showed that the material decomposition errors of the ERPCD-based dual-energy CEDM were 0.56-0.67 times lower than those of the conventional dual-energy CEDM. The imaging performance of the proposed technique was optimized at the radiation dose of 1.09 mGy, which is a half of the MGD for a single view mammogram. It can be concluded that the ERPCD-based dual-energy CEDM with an optimal exposure level is able to improve the quality of material decomposition images as well as reduce radiation dose.

  19. Estimation of Basis Line-Integrals in a Spectral Distortion-Modeled Photon Counting Detector Using Low-Order Polynomial Approximation of X-ray Transmittance.

    Science.gov (United States)

    Okkyun Lee; Kappler, Steffen; Polster, Christoph; Taguchi, Katsuyuki

    2017-02-01

    Photon counting detector (PCD)-based computed tomography exploits spectral information from a transmitted x-ray spectrum to estimate basis line-integrals. The recorded spectrum, however, is distorted and deviates from the transmitted spectrum due to spectral response effect (SRE). Therefore, the SRE needs to be compensated for when estimating basis line-integrals. One approach is to incorporate the SRE model with an incident spectrum into the PCD measurement model and the other approach is to perform a calibration process that inherently includes both the SRE and the incident spectrum. A maximum likelihood estimator can be used to the former approach, which guarantees asymptotic optimality; however, a heavy computational burden is a concern. Calibration-based estimators are a form of the latter approach. They can be very efficient; however, a heuristic calibration process needs to be addressed. In this paper, we propose a computationally efficient three-step estimator for the former approach using a low-order polynomial approximation of x-ray transmittance. The low-order polynomial approximation can change the original non-linear estimation method to a two-step linearized approach followed by an iterative bias correction step. We show that the calibration process is required only for the bias correction step and prove that it converges to the unbiased solution under practical assumptions. Extensive simulation studies validate the proposed method and show that the estimation results are comparable to those of the ML estimator while the computational time is reduced substantially.

  20. Wide field imager instrument for the Advanced Telescope for High Energy Astrophysics

    Science.gov (United States)

    Meidinger, Norbert; Nandra, Kirpal; Plattner, Markus; Porro, Matteo; Rau, Arne; Santangelo, Andrea; Tenzer, Chris; Wilms, Jörn

    2015-01-01

    The Advanced Telescope for High Energy Astrophysics (Athena) has been selected for ESA's L2 mission, scheduled for launch in 2028. It will provide the necessary capabilities to achieve the ambitious goals of the science theme "The Hot and Energetic Universe." Athena's x-ray mirrors will be based on silicon pore optics technology with a 12-m focal length. Two complementary focal plane camera systems are foreseen, which can be moved interchangeably to the focus of the mirror system: the actively shielded micro-calorimeter spectrometer X-IFU and the wide field imager (WFI). The WFI camera will provide an unprecedented survey power through its large field of view of 40 arc min with a high count-rate capability (˜1 Crab). It permits a state-of-the-art energy resolution in the energy band of 0.1 to 15 keV during the entire mission lifetime (e.g., full width at half maximum ≤150 eV at 6 keV). This performance is accomplished by a set of depleted P-channel field effect transistor (DEPFET) active pixel sensor matrices with a pixel size well suited to the angular resolution of 5 arc sec (on-axis) of the mirror system. Each DEPFET pixel is a combined detector-amplifier structure with a MOSFET integrated onto a fully depleted 450-μm-thick silicon bulk. This manuscript will summarize the current instrument concept and design, the status of the technology development, and the envisaged baseline performance.

  1. Structured illumination for wide-field Raman imaging of cell membranes

    Science.gov (United States)

    Chen, Houkai; Wang, Siqi; Zhang, Yuquan; Yang, Yong; Fang, Hui; Zhu, Siwei; Yuan, Xiaocong

    2017-11-01

    Although the diffraction limit still restricts their lateral resolution, conventional wide-field Raman imaging techniques offer fast imaging speeds compared with scanning schemes. To extend the lateral resolution of wide-field Raman microscopy using filters, standing-wave illumination technique is used, and an improvement of lateral resolution by a factor of more than two is achieved. Specifically, functionalized surface enhanced Raman scattering nanoparticles are employed to strengthen the desired scattering signals to label cell membranes. This wide-field Raman imaging technique affords various significant opportunities in the biological applications.

  2. A feasibility study of projection-based energy weighting based on a photon-counting detector in contrast-enhanced digital subtraction mammography: a simulation study

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Sunghoon; Lee, Seungwan; Choi, Yuna; Kim, Heejoung [Yonsei University, Wonju (Korea, Republic of)

    2014-06-15

    Contrast media, such as iodine and gadolinium, are generally used in digital subtraction mammography to enhance the contrast between target and background materials. In digital subtraction mammography, where one image (with contrast medium) is subtracted from another (anatomical background) to facilitate visualization of the tumor structure, tumors can be more easily distinguished after the injection of a contrast medium. In order to have more an effective method to increase the contrast-to-noise ratio (CNR), we applied a projection-based energy-weighting method. The purpose of this study is to demonstrate the feasibility of using the projection-based energy-weighting method in digital subtraction mammography. Unlike some other previous studies, we applied the projection-based energy-weighting method to more practical mammography conditions by using the Monte Carlo method to simulate four different iodine solutions embedded in a breast phantom comprised of 50% adipose and 50% glandular tissues. We also considered an optimal tube voltage and anode/filter combination in digital iodine contrast media mammography in order to maximize the figure-of-merit (FOM). The simulated source energy was from 20 to 45 keV to prevent electronic noise and include the k-edge energy of iodine (33.2 keV). The results showed that the projection-based energy-weighting improved the CNR by factors of 1.05 - 1.86 compared to the conventionally integrated images. Consequently, the CNR of digital subtraction mammography images can be improved by using projection-based energy-weighting with photon-counting detectors.

  3. MO-FG-CAMPUS-IeP1-02: Dose Reduction in Contrast-Enhanced Digital Mammography Using a Photon-Counting Detector

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S; Kang, S; Eom, J [Konyang University, Daejeon (Korea, Republic of)

    2016-06-15

    Purpose: Photon-counting detectors (PCDs) allow multi-energy X-ray imaging without additional exposures and spectral overlap. This capability results in the improvement of accuracy of material decomposition for dual-energy X-ray imaging and the reduction of radiation dose. In this study, the PCD-based contrast-enhanced dual-energy mammography (CEDM) was compared with the conventional CDEM in terms of radiation dose, image quality and accuracy of material decomposition. Methods: A dual-energy model was designed by using Beer-Lambert’s law and rational inverse fitting function for decomposing materials from a polychromatic X-ray source. A cadmium zinc telluride (CZT)-based PCD, which has five energy thresholds, and iodine solutions included in a 3D half-cylindrical phantom, which composed of 50% glandular and 50% adipose tissues, were simulated by using a Monte Carlo simulation tool. The low- and high-energy images were obtained in accordance with the clinical exposure conditions for the conventional CDEM. Energy bins of 20–33 and 34–50 keV were defined from X-ray energy spectra simulated at 50 kVp with different dose levels for implementing the PCD-based CDEM. The dual-energy mammographic techniques were compared by means of absorbed dose, noise property and normalized root-mean-square error (NRMSE). Results: Comparing to the conventional CEDM, the iodine solutions were clearly decomposed for the PCD-based CEDM. Although the radiation dose for the PCD-based CDEM was lower than that for the conventional CEDM, the PCD-based CDEM improved the noise property and accuracy of decomposition images. Conclusion: This study demonstrates that the PCD-based CDEM allows the quantitative material decomposition, and reduces radiation dose in comparison with the conventional CDEM. Therefore, the PCD-based CDEM is able to provide useful information for detecting breast tumor and enhancing diagnostic accuracy in mammography.

  4. Influence of dead-time on detection efficiency and range performance of photon-counting laser radar that uses a Geiger-mode avalanche photodiode.

    Science.gov (United States)

    Li, Zhijian; Lai, Jiancheng; Wang, Chunyong; Yan, Wei; Li, Zhenhua

    2017-08-10

    Dead-time has a significant influence on the detection efficiency and range performance of a photon-counting laser radar system with a Geiger-mode avalanche photodiode. In this paper, a rapid universal recursive model of the detection probability of discrete time under various dead-times is proposed, which is verified with controlled parameters. Our model has the advantage of fast computing speed and unifies multi-trigger, single-trigger, and zero-dead-time models. The computing speed is 1 to 2 orders of magnitude faster than Gatt's and Zhao's models under a short dead-time condition, with relative errors less than 0.001 and 10(-14), respectively. Subsequently, the detection efficiency and range bias and precision with various dead-times are theoretically calculated and Monte Carlo simulated with different parameters. On the one hand, dead-time shorter than the end time of the target achieves better detection efficiency; however, this results in worse range performance. On the other hand, dead-time longer than the end time of the target maintains the detection efficiency at a low level but provides a better range performance. We discover that noise is the key reason for the periodic fluctuation of the detection efficiency and range performance versus different dead-times and the local optimum values of fluctuations occur when the dead-time is a few nanoseconds shorter or longer than 1, 1/2, 1/3, or even 1/4 of the end time of the target; further, this phenomenon becomes more evident when noise increases. Moreover, weaker noise level is crucial to the detection efficiency, and narrow pulse width and nearer target position in the range gate are important factors to improve precision.

  5. Imaging performance of phase-contrast breast computed tomography with synchrotron radiation and a CdTe photon-counting detector.

    Science.gov (United States)

    Sarno, A; Mettivier, G; Golosio, B; Oliva, P; Spandre, G; Di Lillo, F; Fedon, C; Longo, R; Russo, P

    2016-05-01

    Within the SYRMA-CT collaboration based at the ELETTRA synchrotron radiation (SR) facility the authors investigated the imaging performance of the phase-contrast computed tomography (CT) system dedicated to monochromatic in vivo 3D imaging of the female breast, for breast cancer diagnosis. Test objects were imaged at 38keV using monochromatic SR and a high-resolution CdTe photon-counting detector. Signal and noise performance were evaluated using modulation transfer function (MTF) and noise power spectrum. The analysis was performed on the images obtained with the application of a phase retrieval algorithm as well as on those obtained without phase retrieval. The contrast to noise ratio (CNR) and the capability of detecting test microcalcification clusters and soft masses were investigated. For a voxel size of (60μm)(3), images without phase retrieval showed higher spatial resolution (6.7mm(-1) at 10% MTF) than corresponding images with phase retrieval (2.5mm(-1)). Phase retrieval produced a reduction of the noise level and an increase of the CNR by more than one order of magnitude, compared to raw phase-contrast images. Microcalcifications with a diameter down to 130μm could be detected in both types of images. The investigation on test objects indicates that breast CT with a monochromatic SR source is technically feasible in terms of spatial resolution, image noise and contrast, for in vivo 3D imaging with a dose comparable to that of two-view mammography. Images obtained with the phase retrieval algorithm showed the best performance in the trade-off between spatial resolution and image noise. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  6. Lung nodule volume quantification and shape differentiation with an ultra-high resolution technique on a photon counting detector CT system

    Science.gov (United States)

    Zhou, W.; Montoya, J.; Gutjahr, R.; Ferrero, A.; Halaweish, A.; Kappler, S.; McCollough, C.; Leng, S.

    2017-03-01

    A new ultra high-resolution (UHR) mode has been implemented on a whole body photon counting-detector (PCD) CT system. The UHR mode has a pixel size of 0.25 mm by 0.25 mm at the iso-center, while the conventional (macro) mode is limited to 0.5 mm by 0.5 mm. A set of synthetic lung nodules (two shapes, five sizes, and two radio-densities) was scanned using both the UHR and macro modes and reconstructed with 2 reconstruction kernels (4 sets of images in total). Linear regression analysis was performed to compare measured nodule volumes from CT images to reference volumes. Surface curvature was calculated for each nodule and the full width half maximum (FWHM) of the curvature histogram was used as a shape index to differentiate sphere and star shape nodules. Receiver operating characteristic (ROC) analysis was performed and area under the ROC curve (AUC) was used as a figure of merit for the differentiation task. Results showed strong linear relationship between measured nodule volume and reference standard for both UHR and macro mode. For all nodules, volume estimation was more accurate using UHR mode with sharp kernel (S80f), with lower mean absolute percent error (MAPE) (6.5%) compared with macro mode (11.1% to 12.9%). The improvement of volume measurement from UHR mode was more evident particularly for small nodule size (3mm, 5mm), or star-shape nodules. Images from UHR mode with sharp kernel (S80f) consistently demonstrated the best performance (AUC = 0.85) when separating star from sphere shape nodules among all acquisition and reconstruction modes. Our results showed the advantages of UHR mode on a PCD CT scanner in lung nodule characterization. Various clinical applications, including quantitative imaging, can benefit substantially from this high resolution mode.

  7. Wide Field-of-View (FOV) Soft X-Ray Imager Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Wide Field-of-View (FOV) Soft X-Ray Imager proposes to be a state-of-art instrument with applications for numerous heliospheric and planetary...

  8. A small animal time-resolved optical tomography platform using wide-field excitation

    Science.gov (United States)

    Venugopal, Vivek

    platform employing DLP-based excitation and time-gated intensified CCD detection and the optimal system operation parameters are determined. The feasibility this imaging approach and accuracy of the system in reconstructing functional parameters and fluorescence markers based on lifetime contrast is established through phantom studies. As a part of the system characterization, the effect of noise in time-resolved optical tomography is investigated and propagation of system noise in optical reconstructions is established. Furthermore, data processing and measurement calibration techniques aimed at reducing the effect of noise in reconstructions are defined. The optimization of excitation pattern selection is established through a novel measurement-guided iterative pattern correction scheme. This technique referred to as Adaptive Full-Field Optical Tomography was shown to improve reconstruction performances in murine models by reducing the dynamic range in photon flux measurements on the surface. Lastly, the application of the unique attributes of this platform to a biologically relevant imaging application, referred to as Forster Resonance Energy Transfer is described. The tomographic imaging of FRET interaction in vivo on a whole-body scale is achieved using the wide-field imaging approach based on lifetime contrast. This technique represents the first demonstration of tomographic FRET imaging in small animals and has significant potential in the development of optical imaging techniques in varied applications ranging from drug discovery to in vivo study of protein-protein interaction.

  9. Optical Design of the WFIRST Phase-A Wide Field Instrument

    Science.gov (United States)

    Pasquale, Bert A.; Marx, Catherine T.; Gao, Guangjun; Armani, Nerses; Casey, Thomas

    2017-01-01

    The WFIRST Wide-Field Infrared Survey Telescope TMA optical design provides 0.28-sq degrees FOV at 0.11” pixel scale to the Wide Field Instrument, operating between 0.48-2.0 micrometers, including a spectrograph mode (1.0-2.0 micrometers). An Integral Field Channel provides 2-D discrete spectroscopy at 0.15” & 0.3” sampling.

  10. EXCALIBUR: a small-pixel photon counting area detector for coherent X-ray diffraction - Front-end design, fabrication and characterisation

    Science.gov (United States)

    Marchal, J.; Horswell, I.; Willis, B.; Plackett, R.; Gimenez, E. N.; Spiers, J.; Ballard, D.; Booker, P.; Thompson, J. A.; Gibbons, P.; Burge, S. R.; Nicholls, T.; Lipp, J.; Tartoni, N.

    2013-03-01

    Coherent X-ray diffraction experiments on synchrotron X-ray beamlines require detectors with high spatial resolution and large detection area. The read-out chip developed by the MEDIPIX3 collaboration offers a small pixel size of 55 microns resulting in a very high spatial resolution when coupled to a direct X-ray conversion segmented silicon sensor. MEDIPIX3 assemblies present also the advantages of hybrid pixel detectors working in single photon counting mode: noiseless imaging, large dynamic range, extremely high frame rate. The EXCALIBUR detector is under development for the X-ray Coherence and Imaging Beamline I13 of the Diamond Light Source. This new detector consists of three modules, each with 16 MEDIPIX3 chips which can be read-out at 100 frames per second in continuous mode or 1000 frames per second in burst mode. In each module, the sensor is a large single silicon die covering 2 rows of 8 individual MEDIPIX3 read-out chips and provides a continuous active detection region within a module. Each module includes 1 million solder bumps connecting the 55 microns pixels of the silicon sensor to the 55 microns pixels of the 16 MEDIPIX3 read-out chips. The detection area of the 3-module EXCALIBUR detector is 115 mm × 100 mm with a small 6.8 mm wide inactive region between modules. Each detector module is connected to 2 FPGA read-out boards via a flexi-rigid circuit to allow a fully parallel read-out of the 16 MEDIPIX3 chips. The 6 FPGA read-out boards used in the EXCALIBUR detector are interfaced to 6 computing nodes via 10Gbit/s fibre-optic links to maintain the very high frame-rate capability. The standard suite of EPICS control software is used to operate the detector and to integrate it with the Diamond Light Source beamline software environment. This article describes the design, fabrication and characterisation of the MEDIPIX3-based modules composing the EXCALIBUR detector.

  11. Photon heterodyning.

    Science.gov (United States)

    Okawa, Youhei; Omura, Fuminori; Yasutake, Yuhsuke; Fukatsu, Susumu

    2017-08-21

    Single-photon interference experiments are attempted in the time domain using true single-photon streams. Self-heterodyning beats are clearly observed by letting the field associated with a single photon interfere with itself on a field-quadratic detector, which is a time analogue of Young's two-slit interference experiment. The temporal first-order coherence of single-photon fields, i.e., transient interference fringes, develops as cumulative detection events are mapped point-by-point onto a virtual capture frame by properly correlating the time-series data. The ability to single out photon counts at a designated timing paves the way for digital heterodyning with faint light for such use as phase measurement and quantum information processing.

  12. Firearm Projectile in the Maxillary Tuberosity Located by Adjunctive Examination of Wide-Field Optical Fluorescence.

    Science.gov (United States)

    Andrade, Sérgio Araújo; Varotti, Fernando de Pilla; Bagnato, Vanderlei Salvador; Pratavieira, Sebastião

    2017-10-10

    Demonstrate the use of wide-field optical fluorescence as an adjunctive examination in a clinical routine to oral diagnosis. Use of wide-field optical fluorescence in the oral cavity has been restricted to topics related to the detection and diagnosis of oral cancer. In a regular medical appointment, a 58-year-old female patient, without any complaint or oral symptom, underwent the complementary examination by wide-field optical fluorescence. A device with high-power light-emitting diode emitting light centered at a wavelength of (400 ± 10) nm and maximum irradiance of (0.040 ± 0.008) W/cm(2) was used for fluorescence visualization. We report the location of a firearm projectile, intraosseous, in the maxillary tuberosity using wide-field optical fluorescence. It is evidenced that wide-field optical fluorescence, within a clinical routine, can provide relevant images and data, with an immediate result, without the use of ionizing radiation, enabling an efficient oral diagnosis.

  13. High-contrast X-ray micro-radiography and micro-CT of ex-vivo soft tissue murine organs utilizing ethanol fixation and large area photon-counting detector.

    Science.gov (United States)

    Dudak, Jan; Zemlicka, Jan; Karch, Jakub; Patzelt, Matej; Mrzilkova, Jana; Zach, Petr; Hermanova, Zuzana; Kvacek, Jiri; Krejci, Frantisek

    2016-07-27

    Using dedicated contrast agents high-quality X-ray imaging of soft tissue structures with isotropic micrometre resolution has become feasible. This technique is frequently titled as virtual histology as it allows production of slices of tissue without destroying the sample. The use of contrast agents is, however, often an irreversible time-consuming procedure and despite the non-destructive principle of X-ray imaging, the sample is usually no longer usable for other research methods. In this work we present the application of recently developed large-area photon counting detector for high resolution X-ray micro-radiography and micro-tomography of whole ex-vivo ethanol-preserved mouse organs. The photon counting detectors provide dark-current-free quantum-counting operation enabling acquisition of data with virtually unlimited contrast-to-noise ratio (CNR). Thanks to the very high CNR even ethanol-only preserved soft-tissue samples without addition of any contrast agent can be visualized in great detail. As ethanol preservation is one of the standard steps of tissue fixation for histology, the presented method can open a way for widespread use of micro-CT with all its advantages for routine 3D non-destructive soft-tissue visualisation.

  14. Hole-Initiated-Avalanche, Linear-Mode, Single-Photon-Sensitive Avalanche Photodetector with Reduced Excess Noise and Low Dark Count Rate Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A radiation hard, single photon sensitive InGaAs avalanche photodiode (APD) receiver technology will be demonstrated useful for long range space based optical...

  15. Properties and applications of photon counting and energy resolved X-ray matrix detectors; Eigenschaften und Einsatzgebiete photonenzaehlender und energieaufloesender Roentgenmatrixdetektoren

    Energy Technology Data Exchange (ETDEWEB)

    Walter, David; Zscherpel, Uwe; Ewert, Uwe [BAM Bundesanstalt fuer Materialforschung und -pruefung, Berlin (Germany); Ullberg, Christer; Weber, Niclas; Urech, Mattias [XCounter AB, Danderyd (Sweden); Pantsar, Tuomas; Perez-Fuster, Katya [Ajat Oy Ltd., Espoo (Finland)

    2015-07-01

    The use of highly absorbing photoconductor materials (e.g. CdTe) for the production of matrix X-ray detectors allows for a number of years, the direct conversion of X-rays into evaluable electrical signals, for the NDT energy to 300 keV too. The conventional scintillator is omitted, resulting in a reduction of image blurring and an increase in efficiency due to the much larger absorption thicknesses result. Also can be at a sufficiently fast readout speed (50 - 100 ns dead time) count single photons and determine their energy. Thus, the readout noise and the dark image correction omitted. Furthermore, one can detect or hide selectively certain areas of the X-ray energy spectrum by defining energy threshold values. This feature allows one the one hand, the discrimination of materials through the dual energy technology and on the other hand, the reduction of the detected scattered radiation, thereby increasing the contrast sensitivity. In order to use these advantages efficiently, a special calibration procedure is required, which must take into account time-dependent processes in the detector layer. Presented here are the properties of this new generation of X-ray detectors matrix compared to traditional indirect converting detectors based on reference measurements on fiber composite components and thick-walled steel tubes (up to 35 mm). Further possible applications in NDT are discussed with regard to the material discrimination especially within fiber composites (eg CFRP and GFRP).(Contains PowerPoint slides). [German] Der Einsatz von hochabsorbierenden Photoleitermaterialien (z.B. CdTe) zur Herstellung von Roentgen-Matrixdetektoren ermoeglicht seit einigen Jahren die direkte Konvertierung von Roentgenstrahlen in auswertbare elektrische Signale, auch fuer den ZfP-Energiebereich bis 300 keV. Die herkoemmliche Szintillatorschicht entfaellt, was eine Verringerung der Bildunschaerfe und eine Effizienzsteigerung aufgrund der deutlich groesseren Absorptionsdicken zur

  16. SixPak: a wide-field IFU for the William Herschel Telescope

    NARCIS (Netherlands)

    Venema, Lars B.; Schoenmaker, Ton; Verheijen, Marc; Trager, Scott; Rutten, René; Bershady, Matthew; Larsen, Søren; Peletier, Reynier; Spaans, Marco

    2008-01-01

    We intend to construct SixPak, a wide-field fibre-based IFU for the 4.2-meter William Herschel Telescope on La Palma. The fibre bundle will consist of 238 fibres, each 3.0 arcsec in diameter, piping light from the Nasmyth focal plane of the WHT to the existing WYFFOS bench spectrograph. A total of

  17. Scalable wide-field optical coherence tomography-based angiography for in vivo imaging applications.

    Science.gov (United States)

    Xu, Jingjiang; Wei, Wei; Song, Shaozhen; Qi, Xiaoli; Wang, Ruikang K

    2016-05-01

    Recent advances in optical coherence tomography (OCT)-based angiography have demonstrated a variety of biomedical applications in the diagnosis and therapeutic monitoring of diseases with vascular involvement. While promising, its imaging field of view (FOV) is however still limited (typically less than 9 mm(2)), which somehow slows down its clinical acceptance. In this paper, we report a high-speed spectral-domain OCT operating at 1310 nm to enable wide FOV up to 750 mm(2). Using optical microangiography (OMAG) algorithm, we are able to map vascular networks within living biological tissues. Thanks to 2,048 pixel-array line scan InGaAs camera operating at 147 kHz scan rate, the system delivers a ranging depth of ~7.5 mm and provides wide-field OCT-based angiography at a single data acquisition. We implement two imaging modes (i.e., wide-field mode and high-resolution mode) in the OCT system, which gives highly scalable FOV with flexible lateral resolution. We demonstrate scalable wide-field vascular imaging for multiple finger nail beds in human and whole brain in mice with skull left intact at a single 3D scan, promising new opportunities for wide-field OCT-based angiography for many clinical applications.

  18. Astro-WISE Processing of Wide-field Images and Other Data

    NARCIS (Netherlands)

    Buddelmeijer, H.; Williams, O.R.; McFarland, J. P.; Belikov, A.; Ballester, P.; Egret, D.; Lorente, N.P.F.

    Astro-WISE (Vriend et al. 2012) is the Astronomical Wide-field Imaging System for Europe (Valentijn et al. 2007). It is a scientific information system which consists of hardware and software federated over about a dozen institutes throughout Europe. It has been developed to exploit the ever

  19. Wide-field interferometric phase microscopy with molecular specificity using plasmonic nanoparticles.

    Science.gov (United States)

    Turko, Nir A; Peled, Anna; Shaked, Natan T

    2013-11-01

    We present a method for adding molecular specificity to wide-field interferometric phase microscopy (IPM) by recording the phase signatures of gold nanoparticles (AuNPs) labeling targets of interest in biological cells. The AuNPs are excited by time-modulated light at a wavelength corresponding to their absorption spectral peak, evoking a photothermal (PT) effect due to their plasmonic resonance. This effect induces a local temperature rise, resulting in local refractive index and phase changes that can be detected optically. Using a wide-field interferometric phase microscope, we acquired an image sequence of the AuNP sample phase profile without requiring lateral scanning, and analyzed the time-dependent profile of the entire field of view using a Fourier analysis, creating a map of the locations of AuNPs in the sample. The system can image a wide-field PT phase signal from a cluster containing down to 16 isolated AuNPs. AuNPs are then conjugated to epidermal growth factor receptor (EGFR) antibodies and inserted to an EGFR-overexpressing cancer cell culture, which is imaged using IPM and verified by confocal microscopy. To the best of our knowledge, this is the first time wide-field interferometric PT imaging is performed at the subcellular level without the need for total internal reflection effects or scanning.

  20. Infrared Testing of the Wide-field Infrared Survey Telescope Grism Using Computer Generated Holograms

    Science.gov (United States)

    Dominguez, Margaret Z.; Content, David A.; Gong, Qian; Griesmann, Ulf; Hagopian, John G.; Marx, Catherine T; Whipple, Arthur L.

    2017-01-01

    Infrared Computer Generated Holograms (CGHs) were designed, manufactured and used to measure the performance of the grism (grating prism) prototype which includes testing Diffractive Optical Elements (DOE). The grism in the Wide Field Infrared Survey Telescope (WFIRST) will allow the surveying of a large section of the sky to find bright galaxies.

  1. Concerning the Development of the Wide-Field Optics for WFXT Including Methods of Optimizing X-Ray Optical Prescriptions for Wide-Field Applications

    Science.gov (United States)

    Weisskopf, M. C.; Elsner, R. F.; O'Dell, S. L.; Ramsey, B. D.

    2010-01-01

    We present a progress report on the various endeavors we are undertaking at MSFC in support of the Wide Field X-Ray Telescope development. In particular we discuss assembly and alignment techniques, in-situ polishing corrections, and the results of our efforts to optimize mirror prescriptions including polynomial coefficients, relative shell displacements, detector placements and tilts. This optimization does not require a blind search through the multi-dimensional parameter space. Under the assumption that the parameters are small enough so that second order expansions are valid, we show that the performance at the detector can be expressed as a quadratic function with numerical coefficients derived from a ray trace through the underlying Wolter I optic. The optimal values for the parameters are found by solving the linear system of equations creating by setting derivatives of this function with respect to each parameter to zero.

  2. Quantum optics and nano-optics teaching laboratory for the undergraduate curriculum: teaching quantum mechanics and nano-physics with photon counting instrumentation

    Science.gov (United States)

    Lukishova, Svetlana G.

    2017-08-01

    At the Institute of Optics, University of Rochester (UR), we have adapted to the main challenge (the lack of space in the curriculum) by developing a series of modular 3-hour experiments and 20-min-demonstrations based on technical elective, 4-credit-hour laboratory course "Quantum Optics and Nano-Optics Laboratory" (OPT 253/OPT453/PHY434), that were incorporated into a number of required courses ranging from freshman to senior level. Rochester Monroe Community College (MCC) students also benefited from this facility that was supported by four NSF grants. MCC students carried out two 3-hour labs on photon quantum mechanics at the UR. Since 2006, total 566 students passed through the labs with lab reports submission (including 144 MCC students) and more than 250 students through lab demonstrations. In basic class OPT 253, four teaching labs were prepared on generation and characterization of entangled and single (antibunched) photons demonstrating the laws of quantum mechanics: (1) entanglement and Bell's inequalities, (2) single-photon interference (Young's double slit experiment and Mach-Zehnder interferometer), (3) confocal microscope imaging of single-emitter (colloidal nanocrystal quantum dots and NV-center nanodiamonds) fluorescence within photonic (liquid crystal photonic bandgap microcavities) or plasmonic (gold bowtie nanoantennas) nanostructures, (4) Hanbury Brown and Twiss setup. Fluorescence antibunching from nanoemitters. Students also carried out measurements of nanodiamond topography using atomic force microscopy and prepared photonic bandgap materials from cholesteric liquid crystals. Manuals, student reports, presentations, lecture materials and quizzes, as well as some NSF grants' reports are placed on a website http://www.optics.rochester.edu/workgroups/lukishova/QuantumOpticsLab/ . In 2011 UR hosted 6 professors from different US universities in three-days training of these experiments participating in the Immersion Program of the Advanced

  3. Wide field monitoring of the X-ray sky using Rotation Modulation Collimators

    DEFF Research Database (Denmark)

    Lund, Niels; Brandt, Søren

    1995-01-01

    Wide field monitoring is of particular interest in X-ray astronomy due to the strong time-variability of most X-ray sources. Not only does the time-profiles of the persistent sources contain characteristic signatures of the underlying physical systems, but, additionally, some of the most intriguing...... sources have long periods of quiesense in which they are almost undetectable as X-ray sources, interspersed with relatively brief periods of intense outbursts, where we have unique opportunities of studying dynamical effects, in, for instance, the evolution of accretion discs. Another question for which...... wide field monitors may provide key information, is the origin and nature of the cosmic gamma ray bursts.Rotation Modulation Collimators (RMC's) were originally introduced in X-ray astronomy to provide accurate source localizations over extended fields. This role has since been taken over...

  4. The biocytin wide-field bipolar cell in the rabbit retina selectively contacts blue cones

    Science.gov (United States)

    MacNeil, Margaret A.; Gaul, Paulette A.

    2010-01-01

    The biocytin wide-field bipolar cell in rabbit retina is a sparsely populated ON cone bipolar cell with a broad dendritic arbor that does not contact all cones in its dendritic field. The purpose of our study was to identify the cone types that this cell contacts. We identified the bipolar cells by selective uptake of biocytin, labeled the cones with peanut agglutinin and then used antibodies against blue cone opsin and red-green cone opsin to identify the individual cone types. The biocytin-labeled cells selectively contacted cones whose outer segments stained for blue cone opsin and avoided cones that did not. We conclude that the biocytin wide-field bipolar cell is an ON blue cone bipolar cell in the rabbit retina and is homologous to the blue cone bipolar cells that have been previously described in primate, mouse, and ground squirrel retinas. PMID:17990268

  5. Biocytin wide-field bipolar cells in rabbit retina selectively contact blue cones.

    Science.gov (United States)

    MacNeil, Margaret A; Gaul, Paulette A

    2008-01-01

    The biocytin wide-field bipolar cell in rabbit retina has a broad axonal arbor in layer 5 of the inner plexiform layer and a wide dendritic arbor that does not contact all cones in its dendritic field. The purpose of our study was to identify the types of cones that this cell contacts. We identified the bipolar cells by selective uptake of biocytin, labeled the cones with peanut agglutinin, and then used antibodies against blue cone opsin and red-green cone opsin to identify the individual cone types. The biocytin-labeled cells selectively contacted cones whose outer segments stained for blue cone opsin and avoided cones that did not. We conclude that the biocytin wide-field bipolar cell is an ON blue cone bipolar cell in the rabbit retina and is homologous to the blue cone bipolar cells that have been previously described in primate, mouse, and ground squirrel retinas. Copyright 2007 Wiley-Liss, Inc.

  6. Ground-based complex for detection and investigation of fast optical transients in wide field

    Science.gov (United States)

    Molinari, Emilio; Beskin, Grigory; Bondar, Sergey; Karpov, Sergey; Plokhotnichenko, Vladimir; de-Bur, Vjacheslav; Greco, Guiseppe; Bartolini, Corrado; Guarnieri, Adriano; Piccioni, Adalberto

    2008-07-01

    To study short stochastic optical flares of different objects (GRBs, SNs, etc) of unknown localizations as well as NEOs it is necessary to monitor large regions of sky with high time resolution. We developed a system which consists of wide-field camera (FOW is 400-600 sq.deg.) using TV-CCD with time resolution of 0.13 s to record and classify optical transients, and a fast robotic telescope aimed to perform their spectroscopic and photometric investigation just after detection. Such two telescope complex TORTOREM combining wide-field camera TORTORA and robotic telescope REM operated from May 2006 at La Silla ESO observatory. Some results of its operation, including first fast time resolution study of optical transient accompanying GRB and discovery of its fine time structure, are presented. Prospects for improving the complex efficiency are given.

  7. Prime focus wide-field corrector designs with lossless atmospheric dispersion correction

    Energy Technology Data Exchange (ETDEWEB)

    Saunders, Will [Australian Astron. Observ.; Gillingham, Peter [Australian Astron. Observ.; Smith, Greg [Australian Astron. Observ.; Kent, Steve [Fermilab; Doel, Peter [University Coll. London

    2014-07-18

    Wide-Field Corrector designs are presented for the Blanco and Mayall telescopes, the CFHT and the AAT. The designs are Terezibh-style, with 5 or 6 lenses, and modest negative optical power. They have 2.2-3 degree fields of view, with curved and telecentric focal surfaces suitable for fiber spectroscopy. Some variants also allow wide-field imaging, by changing the last WFC element. Apart from the adaptation of the Terebizh design for spectroscopy, the key feature is a new concept for a 'Compensating Lateral Atmospheric Dispersion Corrector', with two of the lenses being movable laterally by small amounts. This provides excellent atmospheric dispersion correction, without any additional surfaces or absorption. A novel and simple mechanism for providing the required lens motions is proposed, which requires just 3 linear actuators for each of the two moving lenses.

  8. Spectral and spatial resolution properties of photon counting X-ray detectors like the Medipix-Detector; Spektrale und bildgebende Eigenschaften photonenzaehlender Roentgendetektoren am Beispiel des Medipix-Detektors

    Energy Technology Data Exchange (ETDEWEB)

    Korn, A.

    2007-05-14

    The Medipix detector is a hybrid photon counting X-ray detector, consisting of an ASIC and a semiconducting layer as the sensor. This makes the Medipix a direct converting detector. A special feature of the Medipix is a signal processing circuit in every single pixel. This circuit amplifies the input signal triggered by a photon and then transforms the pulse into a digital signal. This early stage digitalisation is one of the main advantages of the detector, since no dark currents are integrated into the signal. Furthermore, the energy information of each single photon is partly preserved. The high number of pixels lends the detector a wide dynamic range, starting from single counts up to a rate of 1010 photons per cm2 and second. Apart from the many advantages, there are still some problems with the detector. Some effects lead to a deterioration of the energy resolution as well as the spatial resolution. The main reasons for this are two effects occuring in the detector, charge sharing and backscattering inside the detector. This study investigates the influence of those two effects on both the energy and spatial resolution. The physical causes of these effects are delineated and their impact on the detector output is examined. In contrast to high energy photon detectors, the repulsion of the charge carriers drifting inside the sensor must not be neglected in a detailed model of X-ray detectors with an energy range of 5 keV-200 keV. For the simulation of the Medipix using Monte Carlo simulations, the software ROSI was augmented. The added features allow a detailed simulation of the charge distribution, using the relevant physical effects that alter the distribution width during the drift towards the sensor electrodes as well further influences on the detector output, including electronical noise, threshold noise or the geometry of the detector. The measured energy and spatial resolution of several different models of Medipix is compared to the simulated

  9. Wide-field mid-infrared hyperspectral imaging of adhesives using a bolometer camera

    OpenAIRE

    Sugawara, Shigeru; Nakayama, Yoshihiko; Taniguchi, Hideya; Ishimaru, Ichiro

    2017-01-01

    By combining a bolometer detector with an imaging-type interferometer, an inexpensive, easy-to-handle wide-field mid-infrared hyperspectral imaging apparatus was produced. We measured the distributions of four types of thin adhesive layers on an aluminium plate and analysed the results using correlation coefficients to visualise the distribution of various adhesives that cannot be discerned by the naked eye or conventional methods such as visible/near-infrared spectroscopic/fluorescent photog...

  10. Wide-field surface-enhanced CARS microscopy of cells (Conference Presentation)

    Science.gov (United States)

    Fast, Alexander; Kenison, John T.; Potma, Eric O.

    2017-02-01

    We have previously demonstrated a total internal reflection, wide-field CARS microscope, where the signal is enhanced with the aid of a thin gold layer that supports surface plasmon polariton resonances. This surface-enhanced CARS microscope is capable of generating images of lipid structures in close proximity (visualizing lipids in aqueous media, including imaging of cells, with a unique surface-sensitive contrast that cannot be obtained with conventional CARS microscopy.

  11. Laser light-field fusion for wide-field lensfree on-chip phase contrast nanoscopy

    OpenAIRE

    Kazemzadeh, Farnoud; Wong, Alexander

    2016-01-01

    Wide-field lensfree on-chip microscopy, which leverages holography principles to capture interferometric light-field encodings without lenses, is an emerging imaging modality with widespread interest given the large field-of-view compared to lens-based techniques. In this study, we introduce the idea of laser light-field fusion for lensfree on-chip phase contrast nanoscopy, where interferometric laser light-field encodings acquired using an on-chip setup with laser pulsations at different wav...

  12. Wide-field monitoring strategy for the study of fast optical transients

    Science.gov (United States)

    Beskin, Grigory; Bondar, Sergey; Karpov, Sergey; Guarnieri, Adriano; Bartolini, Corrado; Greco, Giuseppe; Piccioni, Adalberto

    2010-10-01

    We discuss the strategy of search for fast optical transients accompanying gamma-ray bursts by means of continuous monitoring of wide sky fields with high temporal resolution. We describe the design, performance and results of our cameras, FAVOR and TORTORA. Also we discuss the perspectives of this strategy and possible design of next-generation equipment for wide-field monitoring which will be able to detect optical transients and to study their color and polarization properties with high time resolution.

  13. Wide-Field Fundus Autofluorescence for Retinitis Pigmentosa and Cone/Cone-Rod Dystrophy.

    Science.gov (United States)

    Oishi, Akio; Oishi, Maho; Ogino, Ken; Morooka, Satoshi; Yoshimura, Nagahisa

    2016-01-01

    Retinitis pigmentosa and cone/cone-rod dystrophy are inherited retinal diseases characterized by the progressive loss of rod and/or cone photoreceptors. To evaluate the status of rod/cone photoreceptors and visual function, visual acuity and visual field tests, electroretinogram, and optical coherence tomography are typically used. In addition to these examinations, fundus autofluorescence (FAF) has recently garnered attention. FAF visualizes the intrinsic fluorescent material in the retina, which is mainly lipofuscin contained within the retinal pigment epithelium. While conventional devices offer limited viewing angles in FAF, the recently developed Optos machine enables recording of wide-field FAF. With wide-field analysis, an association between abnormal FAF areas and visual function was demonstrated in retinitis pigmentosa and cone-rod dystrophy. In addition, the presence of "patchy" hypoautofluorescent areas was found to be correlated with symptom duration. Although physicians should be cautious when interpreting wide-field FAF results because the peripheral parts of the image are magnified significantly, this examination method provides previously unavailable information.

  14. Monitoring with high temporal resolution to search for optical transients in the wide field

    Science.gov (United States)

    Beskin, Grigory; Bondar, Sergey; Ivanov, Evgeny; Karpov, Sergey; Katkova, Elena; Pozanenko, Alexei; Guarnieri, Adriano; Bartolini, Corrado; Piccioni, Adalberto; Greco, Giuseppe; Molinari, Emilio; Covino, Stefano

    2008-02-01

    In order to detect and investigate short stochastic optical flares from a number of variable astrophysical objects (GRBs, SNs, flare stars, CVs, X-Ray binaries) of unknown localizations as well as near-earth objects (NEOs), both natural and artificial, it is necessary to perform the systematic monitoring of large regions of the sky with high temporal resolution. Here we describe the design of a system able to perform such a task, which consists of a wide-field camera with high time resolution able to detect and classify the transient events on a subsecond time scale, and a fast robotic telescope aimed to perform their detailed investigation. In a last few years we've created the prototype FAVOR wide-field camera, placed at North Caucasus near Russian 6-m telescope, and a complete two-telescope complex TORTOREM, combining TORTORA wide-field camera with REM robotic telescope and placed at La Silla ESO observatory. Its technical parameters and first results of operation are described.

  15. Seal Counts

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Database of seal counts from aerial photography. Counts by image, site, species, and date are stored in the database along with information on entanglements and...

  16. Counting carbohydrates

    Science.gov (United States)

    Carb counting; Carbohydrate-controlled diet; Diabetic diet; Diabetes-counting carbohydrates ... Many foods contain carbohydrates (carbs), including: Fruit and fruit juice Cereal, bread, pasta, and rice Milk and milk products, soy milk Beans, legumes, ...

  17. Wide-field Imaging of the Environments of LITTLE THINGS Dwarf Irregular Galaxies

    Science.gov (United States)

    Hunter, Deidre A.; Melton, Casey; Leshin, Stephen; Wong, Alson; Clark, Maurice; Kamienski, Jerald; Moriya, Netzer; Packwood, Burley; Birket, Bob; Edwards, William; Millward, Mervyn; Wheelband, Ian

    2018-01-01

    We have obtained wide-field images of 36 of the 41 LITTLE THINGS (Local Irregulars That Trace Luminosity Extremes, The H I Nearby Galaxy Survey) nearby (limiting magnitudes of the images range from 19.7 to 28.3 mag arcsec‑2, with a median value of 25.9 mag arcsec‑2. We did not find any unknown companions. Two of the LITTLE THINGS galaxies, NGC 4163 and NGC 4214, and the fainter dwarf, UGCA 276, lie potentially within 100 kpc of each other, but our imaging does not reveal any stellar bridge between the galaxies. This project was part of the Lowell Amateur Research Initiative.

  18. The UKIRT wide-field camera (WFCAM): commissioning and performance on the telescope

    Science.gov (United States)

    Hirst, Paul; Casali, Mark; Adamson, Andy; Ives, Derek; Kerr, Tom

    2006-06-01

    The UKIRT Wide-Field Camera (WFCAM) was commissioned in two phases between October and December 2004, and March and April 2005. It has been carrying out full-scale sky survey operations since May 2005. This paper describes the commissioning process and compares actual performance on the telescope with specifications in four key areas: optical image quality including delivered FWHM and ghosting etc., noise and sensitivity in the infrared and on the visible autoguider, array artifacts such as crosstalk and persistent images, and observing efficiency. A comprehensive program of science verification was carried out before commencing the UKIRT Infrared Deep Sky Survey (UKIDSS).

  19. Wide-Field Plates Observations of Stars from Earth Orientation Catalogs (EOC)

    Science.gov (United States)

    Chapanov, Y.; Tsvetkova, K.; Tsvetkov, M.; Vondrak, J.; Ron, C.; Stefka, V.

    2012-01-01

    The Earth Orientation Catalogues (EOCs) are primarily meant to provide stable celestial reference frame in optical wavelengths for deriving Earth Orientation Parameters (EOP) from astrometric observations. The EOCs combine catalogues ARIHIP and TYCHO-2 with the rich observation material (variations of Latitude/Universal Time), obtained during the 20th century in programs of monitoring Earth orientation. Other possible source of information for improving the EOCs is the WFPDB (Wide-Field Plate Database). The number of plates, containing EOCs stars and their distribution in time are determined by means of the search engine of the WFPDB.

  20. Sherlock: An Automated Follow-Up Telescope for Wide-Field Transit Searches

    Science.gov (United States)

    Kotredes, Lewis; Charbonneau, David; Looper, Dagny L.; O'Donovan, Francis T.

    2004-06-01

    The most significant challenge currently facing photometric surveys for transiting gas-giant planets is that of confusion with eclipsing binary systems that mimic the photometric signature. A simple way to reject most forms of these false positives is high-precision, rapid-cadence monitoring of the suspected transit at higher angular resolution and in several filters. We are currently building a system that will perform higher-angular-resolution, multi-color follow-up observations of candidate systems identified by Sleuth (our wide-field transit survey instrument at Palomar), and its two twin system instruments in Tenerife and northern Arizona.

  1. The biocytin wide-field bipolar cell in the rabbit retina selectively contacts blue cones

    OpenAIRE

    MacNeil, Margaret A.; Gaul, Paulette A.

    2008-01-01

    The biocytin wide-field bipolar cell in rabbit retina is a sparsely populated ON cone bipolar cell with a broad dendritic arbor that does not contact all cones in its dendritic field. The purpose of our study was to identify the cone types that this cell contacts. We identified the bipolar cells by selective uptake of biocytin, labeled the cones with peanut agglutinin and then used antibodies against blue cone opsin and red-green cone opsin to identify the individual cone types. The biocytin-...

  2. The High-Speed and Wide-Field TORTORA Camera: description & results .

    Science.gov (United States)

    Greco, G.; Beskin, G.; Karpov, S.; Guarnieri, A.; Bartolini, C.; Bondar, S.; Piccioni, A.; Molinari, E.

    We present the description and the most significant results of the wide-field and ultra-fast TORTORA camera devoted to the investigation of rapid changes in light intensity in a phenomenon occurring within an extremely short period of time and randomly distributed over the sky. In particular, the ground-based TORTORA observations synchronized with the gamma -ray BAT telescope on board of the Swift satellite has permitted to trace the optical burst time-structure of the Naked-Eye GRB 080319B with an unprecedented level of accuracy.

  3. Micrometeoroid Impacts on the Hubble Space Telescope Wide Field and Planetary Camera 2: Larger Particles

    Science.gov (United States)

    Kearsley, A. T.; Grime, G. W.; Webb, R. P.; Jeynes, C.; Palitsin, V.; Colaux, J. L.; Ross, D. K.; Anz-Meador, P.; Liou, J. C.; Opiela, J.; hide

    2014-01-01

    The Wide Field and Planetary Camera 2 (WFPC2) was returned from the Hubble Space Telescope (HST) by shuttle mission STS-125 in 2009. In space for 16 years, the surface accumulated hundreds of impact features on the zinc orthotitanate paint, some penetrating through into underlying metal. Larger impacts were seen in photographs taken from within the shuttle orbiter during service missions, with spallation of paint in areas reaching 1.6 cm across, exposing alloy beneath. Here we describe larger impact shapes, the analysis of impactor composition, and the micrometeoroid (MM) types responsible.

  4. Estimation of Basis Line-Integrals in a Spectral Distortion-Modeled Photon Counting Detector Using Low-Rank Approximation-Based X-Ray Transmittance Modeling: K-Edge Imaging Application.

    Science.gov (United States)

    Lee, Okkyun; Kappler, Steffen; Polster, Christoph; Taguchi, Katsuyuki

    2017-11-01

    Photon counting detectors (PCDs) provide multiple energy-dependent measurements for estimating basis line-integrals. However, the measured spectrum is distorted from the spectral response effect (SRE) via charge sharing, K-fluorescence emission, and so on. Thus, in order to avoid bias and artifacts in images, the SRE needs to be compensated. For this purpose, we recently developed a computationally efficient three-step algorithm for PCD-CT without contrast agents by approximating smooth X-ray transmittance using low-order polynomial bases. It compensated the SRE by incorporating the SRE model in a linearized estimation process and achieved nearly the minimum variance and unbiased (MVU) estimator. In this paper, we extend the three-step algorithm to K-edge imaging applications by designing optimal bases using a low-rank approximation to model X-ray transmittances with arbitrary shapes (i.e., smooth without the K-edge or discontinuous with the K-edge). The bases can be used to approximate the X-ray transmittance and to linearize the PCD measurement modeling and then the three-step estimator can be derived as in the previous approach: estimating the x-ray transmittance in the first step, estimating basis line-integrals including that of the contrast agent in the second step, and correcting for a bias in the third step. We demonstrate that the proposed method is more accurate and stable than the low-order polynomial-based approaches with extensive simulation studies using gadolinium for the K-edge imaging application. We also demonstrate that the proposed method achieves nearly MVU estimator, and is more stable than the conventional maximum likelihood estimator in high attenuation cases with fewer photon counts.

  5. Design status of WFCAM: a wide field camera for the UK infrared telescope

    Science.gov (United States)

    Henry, David M.; Casali, Mark M.; Montgomery, David; Burch, Keith; Laidlaw, Ken; Ives, Derek J.; Vick, Andrew J. A.; Bridger, Alan; Lunney, David; Adamson, Andrew J.; Rees, Nicholas P.; Chylek, Tomas; Chuter, Timothy C.

    2003-03-01

    An update on the design status of the UKIRT Wide Field Camera (WFCAM) is presented. WFCAM is a wide field infrared camera for the UK Infrared Telescope, designed to produce large scale infrared surveys. The complete system consists of a new IR camera with integral autoguider and a new tip/tilt secondary mirror unit. WFCAM is being designed and built by a team at the UK Astronomy Technology Centre in Edinburgh, supported by the Joint Astronomy Centre in Hawaii. The camera uses a novel quasi-Schmidt camera type design, with the camera mounted above the UKIRT primary mirror. The optical system operates over 0.7 - 2.4 μm and has a large corrected field of view of 0.9° diameter. The focal plane is sparsely populated with 4 2K x 2K Rockwell HAWAII-2 MCT array detectors, giving a pixel scale of 0.4 arcsec/pixel. A separate autoguider CCD is integrated into the focal plane unit. Parallel detector controllers are used, one for each of the four IR arrays and a fifth for the autoguider CCD.

  6. Blind deconvolution with principal components analysis for wide-field and small-aperture telescopes

    Science.gov (United States)

    Jia, Peng; Sun, Rongyu; Wang, Weinan; Cai, Dongmei; Liu, Huigen

    2017-09-01

    Telescopes with a wide field of view (greater than 1°) and small apertures (less than 2 m) are workhorses for observations such as sky surveys and fast-moving object detection, and play an important role in time-domain astronomy. However, images captured by these telescopes are contaminated by optical system aberrations, atmospheric turbulence, tracking errors and wind shear. To increase the quality of images and maximize their scientific output, we propose a new blind deconvolution algorithm based on statistical properties of the point spread functions (PSFs) of these telescopes. In this new algorithm, we first construct the PSF feature space through principal component analysis, and then classify PSFs from a different position and time using a self-organizing map. According to the classification results, we divide images of the same PSF types and select these PSFs to construct a prior PSF. The prior PSF is then used to restore these images. To investigate the improvement that this algorithm provides for data reduction, we process images of space debris captured by our small-aperture wide-field telescopes. Comparing the reduced results of the original images and the images processed with the standard Richardson-Lucy method, our method shows a promising improvement in astrometry accuracy.

  7. Wide-field and high-resolution optical imaging for early detection of oral neoplasia

    Science.gov (United States)

    Pierce, Mark C.; Schwarz, Richard A.; Rosbach, Kelsey; Roblyer, Darren; Muldoon, Tim; Williams, Michelle D.; El-Naggar, Adel K.; Gillenwater, Ann M.; Richards-Kortum, Rebecca

    2010-02-01

    Current procedures for oral cancer screening typically involve visual inspection of the entire tissue surface at risk under white light illumination. However, pre-cancerous lesions can be difficult to distinguish from many benign conditions when viewed under these conditions. We have developed wide-field (macroscopic) imaging system which additionally images in cross-polarized white light, narrowband reflectance, and fluorescence imaging modes to reduce specular glare, enhance vascular contrast, and detect disease-related alterations in tissue autofluorescence. We have also developed a portable system to enable high-resolution (microscopic) evaluation of cellular features within the oral mucosa in situ. This system is a wide-field epi-fluorescence microscope coupled to a 1 mm diameter, flexible fiber-optic imaging bundle. Proflavine solution was used to specifically label cell nuclei, enabling the characteristic differences in N/C ratio and nuclear distribution between normal, dysplastic, and cancerous oral mucosa to be quantified. This paper discusses the technical design and performance characteristics of these complementary imaging systems. We will also present data from ongoing clinical studies aimed at evaluating diagnostic performance of these systems for detection of oral neoplasia.

  8. A wide-field suprachoroidal retinal prosthesis is stable and well tolerated following chronic implantation.

    Science.gov (United States)

    Villalobos, Joel; Nayagam, David A X; Allen, Penelope J; McKelvie, Penelope; Luu, Chi D; Ayton, Lauren N; Freemantle, Alexia L; McPhedran, Michelle; Basa, Meri; McGowan, Ceara C; Shepherd, Robert K; Williams, Chris E

    2013-05-01

    The safety of chronic implantation of a retinal prosthesis in the suprachoroidal space has not been established. This study aimed to determine the safety of a wide-field suprachoroidal electrode array following chronic implantation using histopathologic techniques and electroretinography. A platinum electrode array in a wide silicone substrate was implanted unilaterally in the suprachoroidal space in adult cats (n = 7). The lead and connector were tunneled out of the orbit and positioned subcutaneously. Postsurgical recovery was assessed using fundus photography and electroretinography (ERG). Following 3 months of passive implantation, the animals were terminated and the eyes assessed for the pathologic response to implantation. The implant was mechanically stable in the suprachoroidal space during the course of the study. The implanted eye showed a transient increase in ERG response amplitude at 2 weeks, which returned to normal by 3 months. Pigmentary changes were observed at the distal end of the implant, near the optic disc. Histopathologic assessment revealed a largely intact retina and a thin fibrous capsule around the suprachoroidal implant cavity. The foreign body response was minimal, with sporadic presence of macrophages and no active inflammation. All implanted eyes were negative for bacterial or fungal infections. A midgrade granuloma and thick fibrous buildup surrounded the extraocular cable. Scleral closure was maintained in six of seven eyes. There were no staphylomas or choroidal incarceration. A wide-field retinal prosthesis was stable and well tolerated during long-term suprachoroidal implantation in a cat model. The surgical approach was reproducible and overall safe.

  9. Stray-field-induced Faraday contributions in wide-field Kerr microscopy and -magnetometry

    Energy Technology Data Exchange (ETDEWEB)

    Markó, D.; Soldatov, I. [Leibniz Institute for Solid State and Materials Research (IFW) Dresden, Institute for Metallic Materials, PO 270116, D-01171 Dresden (Germany); Dresden University of Technology, Institute for Materials Science, D-01062 Dresden (Germany); Tekielak, M. [Institute of Experimental Physics, University of Bialystok, Lipowa 41, Bialystok 15-424 Poland (Poland); Schäfer, R., E-mail: r.schaefer@ifw-dresden.de [Leibniz Institute for Solid State and Materials Research (IFW) Dresden, Institute for Metallic Materials, PO 270116, D-01171 Dresden (Germany); Dresden University of Technology, Institute for Materials Science, D-01062 Dresden (Germany)

    2015-12-15

    The magnetic domain contrast in wide-field Kerr microscopy on bulk specimens can be substantially distorted by non-linear, field-dependent Faraday rotations in the objective lens that are caused by stray-field components emerging from the specimen. These Faraday contributions, which were detected by Kerr-magnetometry on grain-oriented iron–silicon steel samples, are thoroughly elaborated and characterized. They express themselves as a field-dependent gray-scale offset to the domain contrast and in highly distorted surface magnetization curves if optically measured in a wide field Kerr microscope. An experimental method to avoid such distortions is suggested. In the course of these studies, a low-permeability part in the surface magnetization loop of slightly misoriented (110)-surfaces in iron–silicon sheets was discovered that is attributed to demagnetization effects in direction perpendicular to the sheet surface. - Highlights: • Magnetizing a finite sample in a Kerr microscope leads to sample-generated stray-fields. • They cause non-linear, field- and position-dependent Faraday rotations in the objective. • This leads to a modulation of the Kerr contrast and to distorted MOKE loops. • A method to compensate these Faraday rotations is presented.

  10. Wide-Field Imaging Telescope-0 (WIT0) with automatic observing system

    Science.gov (United States)

    Ji, Tae-Geun; Byeon, Seoyeon; Lee, Hye-In; Park, Woojin; Lee, Sang-Yun; Hwang, Sungyong; Choi, Changsu; Gibson, Coyne Andrew; Kuehne, John W.; Prochaska, Travis; Marshall, Jennifer L.; Im, Myungshin; Pak, Soojong

    2018-01-01

    We introduce Wide-Field Imaging Telescope-0 (WIT0), with an automatic observing system. It is developed for monitoring the variabilities of many sources at a time, e.g. young stellar objects and active galactic nuclei. It can also find the locations of transient sources such as a supernova or gamma-ray bursts. In 2017 February, we installed the wide-field 10-inch telescope (Takahashi CCA-250) as a piggyback system on the 30-inch telescope at the McDonald Observatory in Texas, US. The 10-inch telescope has a 2.35 × 2.35 deg field-of-view with a 4k × 4k CCD Camera (FLI ML16803). To improve the observational efficiency of the system, we developed a new automatic observing software, KAOS30 (KHU Automatic Observing Software for McDonald 30-inch telescope), which was developed by Visual C++ on the basis of a windows operating system. The software consists of four control packages: the Telescope Control Package (TCP), the Data Acquisition Package (DAP), the Auto Focus Package (AFP), and the Script Mode Package (SMP). Since it also supports the instruments that are using the ASCOM driver, the additional hardware installations become quite simplified. We commissioned KAOS30 in 2017 August and are in the process of testing. Based on the WIT0 experiences, we will extend KAOS30 to control multiple telescopes in future projects.

  11. Microlensing Surveys of M31 in the Wide Field Imaging ERA

    Energy Technology Data Exchange (ETDEWEB)

    Baltz, E.

    2004-10-27

    The Andromeda Galaxy (M31) is the closest large galaxy to the Milky Way, thus it is an important laboratory for studying massive dark objects in galactic halos (MACHOs) by gravitational microlensing. Such studies strongly complement the studies of the Milky Way halo using the Large and Small Magellanic Clouds. We consider the possibilities for microlensing surveys of M31 using the next generation of wide field imaging telescopes with fields of view in the square degree range. We consider proposals for such imagers both on the ground and in space. For concreteness, we specialize to the SNAP proposal for a space telescope and the LSST proposal for a ground based telescope. We find that a modest space-based survey of 50 visits of one hour each is considerably better than current ground based surveys covering 5 years. Crucially, systematic effects can be considerably better controlled with a space telescope because of both the infrared sensitivity and the angular resolution. To be competitive, 8 meter class wide-field ground based imagers must take exposures of several hundred seconds with several day cadence.

  12. Spatially Resolved Two-Dimensional Infrared Spectroscopy via Wide-Field Microscopy.

    Science.gov (United States)

    Ostrander, Joshua S; Serrano, Arnaldo L; Ghosh, Ayanjeet; Zanni, Martin T

    2016-07-20

    We report the first wide-field microscope for measuring two-dimensional infrared (2D IR) spectroscopic images. We concurrently collect more than 16 000 2D IR spectra, made possible by a new focal plane array detector and mid-IR pulse shaping, to generate hyperspectral images with multiple frequency dimensions and diffraction-limited spatial resolution. Both frequency axes of the spectra are collected in the time domain by scanning two pairs of femtosecond pulses using a dual acousto-optic modulator pulse shaper. The technique is demonstrated by imaging a mixture of metal carbonyl absorbed polystyrene beads. The differences in image formation between FTIR and 2D IR microscopy are also explored by imaging a patterned USAF test target. We find that our 2D IR microscope has diffraction-limited spatial resolution and enhanced contrast compared to FTIR microscopy because of the nonlinear scaling of the 2D IR signal to the absorptivity coefficient for the vibrational modes. Images generated using off-diagonal peaks, created from vibrational anharmonicities, improve the molecular discrimination and eliminate noise. Two-dimensional wide-field IR microscopy provides information on vibrational lifetimes, molecular couplings, transition dipole orientations, and many other quantities that can be used for creating image contrast to help disentangle and interpret complex and heterogeneous samples. Such experiments made possible could include the study of amyloid proteins in tissues, protein folding in heterogeneous environments, and structural dynamics in devices employing mid-IR materials.

  13. HUBBLE SPACE TELESCOPE SPECTROSCOPY OF BROWN DWARFS DISCOVERED WITH THE WIDE-FIELD INFRARED SURVEY EXPLORER

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Adam C.; Cushing, Michael C. [Department of Physics and Astronomy, University of Toledo, 2801 W. Bancroft St., Toledo, OH 43606 (United States); Kirkpatrick, J. Davy; Gelino, Christopher R. [Infrared Processing and Analysis Center, MS 100-22, California Institute of Technology, Pasadena, CA 91125 (United States); Mace, Gregory N.; Wright, Edward L. [Department of Physics and Astronomy, UCLA, 430 Portola Plaza, Box 951547, Los Angeles, CA 90095-1547 (United States); Eisenhardt, Peter R. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA 91109 (United States); Skrutskie, M. F. [Department of Astronomy, University of Virginia, 530 McCormick Road, Charlottesville, VA 22904 (United States); Griffith, Roger L. [Department of Astronomy and Astrophysics, 525 Davey Lab, The Pennsylvania State University, University Park, PA 16802 (United States); Marsh, Kenneth A., E-mail: Adam.Schneider@Utoledo.edu [School of Physics and Astronomy, Cardiff University, Cardiff CF24 3AA (United Kingdom)

    2015-05-10

    We present a sample of brown dwarfs identified with the Wide-field Infrared Survey Explorer (WISE) for which we have obtained Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3) near-infrared grism spectroscopy. The sample (22 in total) was observed with the G141 grism covering 1.10–1.70 μm, while 15 were also observed with the G102 grism, which covers 0.90–1.10 μm. The additional wavelength coverage provided by the G102 grism allows us to (1) search for spectroscopic features predicted to emerge at low effective temperatures (e.g.,ammonia bands) and (2) construct a smooth spectral sequence across the T/Y boundary. We find no evidence of absorption due to ammonia in the G102 spectra. Six of these brown dwarfs are new discoveries, three of which are found to have spectral types of T8 or T9. The remaining three, WISE J082507.35+280548.5 (Y0.5), WISE J120604.38+840110.6 (Y0), and WISE J235402.77+024015.0 (Y1), are the 19th, 20th, and 21st spectroscopically confirmed Y dwarfs to date. We also present HST grism spectroscopy and reevaluate the spectral types of five brown dwarfs for which spectral types have been determined previously using other instruments.

  14. Wide-Field InfraRed Survey Telescope (WFIRST) Slitless Spectrometer: Design, Prototype, and Results

    Science.gov (United States)

    Gong, Qian; Content, David; Dominguez, Margaret; Emmett, Thomas; Griesmann, Ulf; Hagopian, John; Kruk, Jeffrey; Marx, Catherine; Pasquale, Bert; Wallace, Thomas; hide

    2016-01-01

    The slitless spectrometer plays an important role in the Wide-Field InfraRed Survey Telescope (WFIRST) mission for the survey of emission-line galaxies. This will be an unprecedented very wide field, HST quality 3D survey of emission line galaxies. The concept of the compound grism as a slitless spectrometer has been presented previously. The presentation briefly discusses the challenges and solutions of the optical design, and recent specification updates, as well as a brief comparison between the prototype and the latest design. However, the emphasis of this paper is the progress of the grism prototype: the fabrication and test of the complicated diffractive optical elements and powered prism, as well as grism assembly alignment and testing. Especially how to use different tools and methods, such as IR phase shift and wavelength shift interferometry, to complete the element and assembly tests. The paper also presents very encouraging results from recent element tests to assembly tests. Finally we briefly touch the path forward plan to test the spectral characteristic, such as spectral resolution and response.

  15. Optically sectioned wide-field fluorescence lifetime imaging endoscopy enabled by structured illumination (Conference Presentation)

    Science.gov (United States)

    Hinsdale, Taylor; Malik, Bilal H.; Rico-Jimenez, Jose J.; Jo, Javier A.; Maitland, Kristen C.

    2016-03-01

    We present a wide-field fluorescence lifetime imaging (FLIM) system with optical sectioning by structured illumination microscopy (SIM). FLIM measurements were made using a time gated ICCD camera in conjunction with a pulsed nitrogen dye laser operating at 450 nm. Intensity images were acquired at multiple time delays from a trigger initiated by a laser pulse to create a wide-field FLIM image, which was then combined with three phase SIM to provide optical sectioning. Such a mechanism has the potential to increase the reliability and accuracy of the FLIM measurements by rejecting background intensity. SIM also provides the opportunity to create volumetric FLIM images with the incorporation of scanning mechanisms for the sample plane. We present multiple embodiments of such a system: one as a free space endoscope and the other as a fiber microendoscope enabled by the introduction of a fiber bundle. Finally, we demonstrate the efficacy of such an imaging system by imaging dyes embedded in a tissue phantom.

  16. Simple concept for a wide-field lensless digital holographic microscope using a laser diode

    Directory of Open Access Journals (Sweden)

    Adinda-Ougba A.

    2015-09-01

    Full Text Available Wide-field, lensless digital holographic microscopy is a new microscopic imaging technique for telemedicine and for resource limited setting [1]. In this contribution we propose a very simple wide-field lensless digital holographic microscope using a laser diode. It is based on in-line digital holography which is capable to provide amplitude and phase images of a sample resulting from numerical reconstruction. The numerical reconstruction consists of the angular spectrum propagation method together with a phase retrieval algorithm. Amplitude and phase images of the sample with a resolution of ∽2 µm and with ∽24 mm2 field of view are obtained. We evaluate our setup by imaging first the 1951 USAF resolution test chart to verify the resolution. Second, we record holograms of blood smear and diatoms. The individual specimen can be easily identified after the numerical reconstruction. Our system is a very simple, compact and low-cost possibility of realizing a microscope capable of imaging biological samples. The availability of the phase provide topographic information of the sample extending the application of this system to be not only for biological sample but also for transparent microstructure. It is suitable for fault detection, shape and roughness measurements of these structures.

  17. SHOK—The First Russian Wide-Field Optical Camera in Space

    Science.gov (United States)

    Lipunov, V. M.; Gorbovskoy, E. S.; Kornilov, V. G.; Panasyuk, M. I.; Amelushkin, A. M.; Petrov, V. L.; Yashin, I. V.; Svertilov, S. I.; Vedenkin, N. N.

    2018-02-01

    Onboard the spacecraft Lomonosov is established two fast, fixed, very wide-field cameras SHOK. The main goal of this experiment is the observation of GRB optical emission before, synchronously, and after the gamma-ray emission. The field of view of each of the cameras is placed in the gamma-ray burst detection area of other devices located onboard the "Lomonosov" spacecraft. SHOK provides measurements of optical emissions with a magnitude limit of ˜ 9-10m on a single frame with an exposure of 0.2 seconds. The device is designed for continuous sky monitoring at optical wavelengths in the very wide field of view (1000 square degrees each camera), detection and localization of fast time-varying (transient) optical sources on the celestial sphere, including provisional and synchronous time recording of optical emissions from the gamma-ray burst error boxes, detected by the BDRG device and implemented by a control signal (alert trigger) from the BDRG. The Lomonosov spacecraft has two identical devices, SHOK1 and SHOK2. The core of each SHOK device is a fast-speed 11-Megapixel CCD. Each of the SHOK devices represents a monoblock, consisting of a node observations of optical emission, the electronics node, elements of the mechanical construction, and the body.

  18. A deep, wide-field study of Holmberg II with Suprime-Cam: evidence for ram pressure stripping

    Science.gov (United States)

    Bernard, Edouard J.; Ferguson, Annette M. N.; Barker, Michael K.; Irwin, Michael J.; Jablonka, Pascale; Arimoto, Nobuo

    2012-11-01

    We present a deep, wide-field optical study of the M81 group dwarf galaxy Holmberg II (HoII) based on Subaru/Suprime-Cam imaging. Individual stars are resolved down to I ˜ 25.2, that is, about 1.5 mag below the tip of the red giant branch (RGB). We use resolved star counts in the outskirts of the galaxy to measure the radial surface brightness profile down to μV ˜ 32 mag arcsec-2, from which we determine a projected exponential scalelength of 0.70 ± 0.01 arcmin (i.e. 0.69 ± 0.01 kpc). The composite profile, ranging from the cored centre out to R = 7 arcmin, is best fitted by an Elson-Fall-Freeman profile which gives a half-light radius of 1.41 ± 0.04 arcmin (i.e. 1.39 ± 0.04 kpc), and an absolute magnitude MV = -16.3. The low surface brightness stellar component of HoII is regular and symmetric and has an extent much smaller than the vast H I cloud in which it is embedded. We compare the spatial distribution of the young, intermediate-age and old stellar populations, and find that the old RGB stars are significantly more centrally concentrated than the young stellar populations, contrary to what is observed in most dwarf galaxies of the local Universe. We discuss these properties in the context of the comet-like distribution of H I gas around HoII, and argue for the presence of a hot intragroup medium in the vicinity of HoII to explain the contrasting morphologies of gas and stars. Based on data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.

  19. Radiometric calibration of wide-field camera system with an application in astronomy

    Science.gov (United States)

    Vítek, Stanislav; Nasyrova, Maria; Stehlíková, Veronika

    2017-09-01

    Camera response function (CRF) is widely used for the description of the relationship between scene radiance and image brightness. Most common application of CRF is High Dynamic Range (HDR) reconstruction of the radiance maps of imaged scenes from a set of frames with different exposures. The main goal of this work is to provide an overview of CRF estimation algorithms and compare their outputs with results obtained under laboratory conditions. These algorithms, typically designed for multimedia content, are unfortunately quite useless with astronomical image data, mostly due to their nature (blur, noise, and long exposures). Therefore, we propose an optimization of selected methods to use in an astronomical imaging application. Results are experimentally verified on the wide-field camera system using Digital Single Lens Reflex (DSLR) camera.

  20. Plastic optical fiber for wide field-of-view optical wireless receiver

    Science.gov (United States)

    Fallah, Hoorieh; Sterckx, Karel; Saengudomlert, Poompat; Mohammed, Waleed S.

    2016-10-01

    This paper demonstrates a working indoor optical wireless link for smart environment applications. The system utilizes a wide field-of-view (FOV) optical wireless receiver through cleaving the tip of large core plastic optical fibers (POFs) attached to the detector. The quality of the optical link is quantified through bit error rate (BER) measurements. The experimental results show a wide FOV with the uncoded BER in the order of 10-3 for transmission distances up to 35 cm when using two POFs for signal collection. The distance can be improved further by increasing the number of fibers. The transmitted signal format and how the BER measurement is achieved are discussed at length. In addition, details are provided for the design of the electronics to establish the optical wireless link.

  1. Programmable LED-based integrating sphere light source for wide-field fluorescence microscopy.

    Science.gov (United States)

    Rehman, Aziz Ul; Anwer, Ayad G; Goldys, Ewa M

    2017-12-01

    Wide-field fluorescence microscopy commonly uses a mercury lamp, which has limited spectral capabilities. We designed and built a programmable integrating sphere light (PISL) source which consists of nine LEDs, light-collecting optics, a commercially available integrating sphere and a baffle. The PISL source is tuneable in the range 365-490nm with a uniform spatial profile and a sufficient power at the objective to carry out spectral imaging. We retrofitted a standard fluorescence inverted microscope DM IRB (Leica) with a PISL source by mounting it together with a highly sensitive low- noise CMOS camera. The capabilities of the setup have been demonstrated by carrying out multispectral autofluorescence imaging of live BV2 cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Deconvolution of wide field-of-view radiometer measurements of earth-emitted radiation. I - Theory

    Science.gov (United States)

    Smith, G. L.; Green, R. N.

    1981-01-01

    The theory of deconvolution of wide field-of-view (WFOV) radiometer measurements of earth-emitted radiation provides a technique by which the resolution of such measurements can be enhanced to provide radiant exitance at the top of the atmosphere with a finer resolution than the field of view. An analytical solution for the earth-emitted radiant exitance in terms of WFOV radiometer measurements is derived for the nonaxisymmetric (or regional) case, in which the measurements and radiant exitance are considered to be functions of both latitude and longitude. This solution makes it possible to deconvolve a set of WFOV radiometer measurements of earth-emitted radiation and obtain information with a finer resolution than the instantaneous field of view of the instrument. It is shown that there are tradeoffs involved in the selection between WFOV and scanning radiometers.

  3. Miniaturized high-resolution wide-field contact lens for panretinal photocoagulation

    Directory of Open Access Journals (Sweden)

    Koushan K

    2014-04-01

    Full Text Available Keyvan Koushan, KV Chalam Department of Ophthalmology, University of Florida College of Medicine, Jacksonville, FL, USA Background and objective: We describe a miniaturized lightweight high-refractive-index panretinal contact lens for diagnostic and therapeutic visualization of the peripheral retina. Instrument design: The miniaturized high-resolution wide-field contact lens includes three optical elements in a light (15 g and miniaturized (16 mm footplate, 24 mm external aperture, and 21 mm vertical height casing contributing to a total dioptric power of +171 diopters. This lens provides up to 165° visualization of the retina for diagnostic and therapeutic applications while allowing easier placement due to its miniaturization. Conclusion: This new lens (50% lighter and 89% smaller improves upon earlier contact lenses for visualization of the peripheral retina. Keywords: contact lens, panretinal photocoagulation, retinal examination, peripheral retina, high resolution view, wide-angle lens, lens

  4. Readout electronics for the Wide Field of view Cherenkov/Fluorescence Telescope Array

    Science.gov (United States)

    Zhang, J.; Zhang, S.; Zhang, Y.; Zhou, R.; Bai, L.; Zhang, J.; Huang, J.; Yang, C.; Cao, Z.

    2015-08-01

    The aim of the Large High Altitude Air Shower Observatory (LHAASO), supported by IHEP of the Chinese Academy of Sciences, is a multipurpose project with a complex detectors array for high energy gamma ray and cosmic ray detection. The Wide Field of view Cherenkov Telescope Array (WFCTA), as one of the components of the LHAASO project, aim to tag each primary particle that causes an air shower. The WFCTA is a portable telescope array used to detect cosmic ray spectra. The design of the readout electronics of the WFCTA is described in this paper Sixteen photomultiplier tubes (PMTs), together with their readout electronics are integrated into a single sub-cluster. To maintain good resolution and linearity over a wide dynamic range, a dual-gain amplification configuration on an analog board is used The digital board contains two 16channel 14-bit, 50 Msps analog-to-digital converters (ADC) and its power consumption, noise level, and relative deviation are all tested.

  5. Micrometeoroid Impacts on the Hubble Space Telescope Wide Field and Planetary Camera 2: Smaller Particle Impacts

    Science.gov (United States)

    Ross, D. K.; Anz-Meador, P.; Liou, J.C.; Opiela, J.; Kearsley, A. T.; Grime, G.; Webb, R.; Jeynes, C.; Palitsin, V.; Colaux, J.; hide

    2014-01-01

    The radiator shield on the Wide Field and Planetary Camera 2 (WFPC2) was subject to optical inspection following return from the Hubble Space Telescope (HST) in 2009. The survey revealed over 600 impact features of > 300 micrometers diameter, from exposure in space for 16 years. Subsequently, an international collaborative programme of analysis was organized to determine the origin of hypervelocity particles responsible for the damage. Here we describe examples of the numerous smaller micrometeoroid (MM) impact features (< 700 micrometers diameter) which excavated zinc orthotitanate (ZOT) paint from the radiator surface, but did not incorporate material from underlying Al alloy; larger impacts are described by [3]. We discuss recognition and interpretation of impactor remains, and MM compositions found on WFPC2.

  6. Wide-field mid-infrared hyperspectral imaging of adhesives using a bolometer camera.

    Science.gov (United States)

    Sugawara, Shigeru; Nakayama, Yoshihiko; Taniguchi, Hideya; Ishimaru, Ichiro

    2017-09-29

    By combining a bolometer detector with an imaging-type interferometer, an inexpensive, easy-to-handle wide-field mid-infrared hyperspectral imaging apparatus was produced. We measured the distributions of four types of thin adhesive layers on an aluminium plate and analysed the results using correlation coefficients to visualise the distribution of various adhesives that cannot be discerned by the naked eye or conventional methods such as visible/near-infrared spectroscopic/fluorescent photography. The measurement wavelength range, obtained spectrum's wavenumber resolution, and measurement time was 8-14 μm, about 9 cm-1, and about 30 s, respectively. Using conventional methods, adhesives could not be distinguished from the others. By using this method, we found that adhesives could be precisely distinguished by setting an appropriate threshold value for the correlation coefficient. Thus, our approach can accurately measure the spatial distribution of different types of adhesive that cannot be discriminated by conventional methods.

  7. San Pedro meeting on Wide Field Variability Surveys: Some concluding comments

    Directory of Open Access Journals (Sweden)

    Feast Michael W.

    2017-01-01

    Full Text Available This is a written version of the closing talk at the 22nd Los Alamos Stellar pulsation conference on wide field variability surveys. It comments on some of the issues which arise from the meeting. These include the need for attention to photometric standardization (especially in the infrared and the somewhat controversial problem of statistical bias in the use of parallaxes (and other methods of distance determination. Some major advances in the use of pulsating variables to study Galactic structure are mentioned. The paper includes a clarification of apparently conflicting results from classical Cepheids and RR Lyrae stars in the inner Galaxy and bulge. The importance of understanding non-periodic phenomena in variable stars, particularly asymptotic giant branch variables and R Coronae Borealis stars, is stressed, especially for its relevance to mass-loss in which pulsation may only play a minor role.

  8. Wide-field microscopic FRET imaging using simultaneous spectral unmixing of excitation and emission spectra.

    Science.gov (United States)

    Du, Mengyan; Zhang, Lili; Xie, Shusen; Chen, Tongsheng

    2016-07-11

    Simultaneous spectral unmixing of excitation and emission spectra (ExEm unmixing) has the inherent ability to resolve donor emission, fluorescence resonance energy transfer (FRET)-sensitized acceptor emission and directly excited acceptor emission. We here develop an ExEm unmixing-based quantitative FRET measurement method (EES-FRET) independent of excitation intensity and detector parameter setting. The ratio factor (rK), predetermined using a donor-acceptor tandem construct, of total acceptor absorption to total donor absorption in excitation wavelengths used is introduced for determining the concentration ratio of acceptor to donor. We implemented EES-FRET method on a wide-field microscope to image living cells expressing tandem FRET constructs with different donor-acceptor stoichiometry.

  9. Meteor observations with Mini-Mega-TORTORA wide-field monitoring system

    Science.gov (United States)

    Karpov, S.; Orekhova, N.; Beskin, G.; Biryukov, A.; Bondar, S.; Ivanov, E.; Katkova, E.; Perkov, A.; Sasyuk, V.

    2016-12-01

    Here we report on the results of meteor observations with 9-channel Mini-Mega-TORTORA (MMT-9) optical monitoring system with the wide field and high temporal resolution. During the first 1.5 years of operation more than 90 thousands of meteors have been detected, at a rate of 300-350 per night, with durations from 0.1 to 2.5 seconds and angular velocities up to 38 degrees per second. The faintest detected meteors have peak brightnesses about 10 mag, while the majority have them ranging from 4 to 8 mag. Some of the meteors have been observed in BVR filters simultaneously. Color variations along the trail for them have been determined. The parameters of the detected meteors have been published online. The database also includes data from 10 thousands of meteors detected by our previous FAVOR camera during 2006-2009.

  10. Speckle correlation resolution enhancement of wide-field fluorescence imaging (Conference Presentation)

    Science.gov (United States)

    Yilmaz, Hasan

    2016-03-01

    Structured illumination enables high-resolution fluorescence imaging of nanostructures [1]. We demonstrate a new high-resolution fluorescence imaging method that uses a scattering layer with a high-index substrate as a solid immersion lens [2]. Random scattering of coherent light enables a speckle pattern with a very fine structure that illuminates the fluorescent nanospheres on the back surface of the high-index substrate. The speckle pattern is raster-scanned over the fluorescent nanospheres using a speckle correlation effect known as the optical memory effect. A series of standard-resolution fluorescence images per each speckle pattern displacement are recorded by an electron-multiplying CCD camera using a commercial microscope objective. We have developed a new phase-retrieval algorithm to reconstruct a high-resolution, wide-field image from several standard-resolution wide-field images. We have introduced phase information of Fourier components of standard-resolution images as a new constraint in our algorithm which discards ambiguities therefore ensures convergence to a unique solution. We demonstrate two-dimensional fluorescence images of a collection of nanospheres with a deconvolved Abbe resolution of 116 nm and a field of view of 10 µm × 10 µm. Our method is robust against optical aberrations and stage drifts, therefore excellent for imaging nanostructures under ambient conditions. [1] M. G. L. Gustafsson, J. Microsc. 198, 82-87 (2000). [2] H. Yilmaz, E. G. van Putten, J. Bertolotti, A. Lagendijk, W. L. Vos, and A. P. Mosk, Optica 2, 424-429 (2015).

  11. Precision Pointing for the Wide-Field Infrared Survey Telescope(WFIRST)

    Science.gov (United States)

    Stoneking, Eric T.; Hsu, Oscar C.; Welter, Gary

    2017-01-01

    The Wide-Field Infrared Survey Telescope (WFIRST) mission, scheduled for a mid-2020's launch, is currently in its definition phase. The mission is designed to investigate essential questions in the areas of dark energy, exoplanets, and infrared astrophysics. WFIRST will use a 2.4-meter primary telescope (same size as the Hubble Space Telescope's primary mirror) and two instruments: the Wide Field Instrument (WFI) and the Coronagraph Instrument (CGI). In order to address the critical science requirements, the WFIRST mission will conduct large-scale surveys of the infrared sky, requiring both agility and precision pointing (11.6 milli-arcsec stability, 14 milli-arcsec jitter). This paper describes some of the challenges this mission profile presents to the Guidance, Navigation, and Control (GNC) subsystem, and some of the design elements chosen to accommodate those challenges. The high-galactic-latitude survey is characterized by 3-minute observations separated by slews ranging from 0.025 deg to 0.8 deg. The need for observation efficiency drives the slew and settle process to be as rapid as possible. A description of the shaped slew profile chosen to minimize excitation of structural oscillation, and the handoff from star tracker-gyro control to fine guidance sensor control is detailed. Also presented is the fine guidance sensor (FGS), which is integral with the primary instrument (WFI). The FGS is capable of tracking up to 18 guide stars, enabling robust FGS acquisition and precision pointing. To avoid excitation of observatory structural jitter, reaction wheel speeds are operationally maintained within set limits. In addition, the wheel balance law is designed to maintain 1-Hz separation between the wheel speeds to avoid reinforcing jitter excitation at any particular frequency. The wheel balance law and operational implications are described. Finally, the candidate GNC hardware suite needed to meet the requirements of the mission is presented.

  12. Counting cormorants

    DEFF Research Database (Denmark)

    Bregnballe, Thomas; Carss, David N; Lorentsen, Svein-Håkon

    2013-01-01

    This chapter focuses on Cormorant population counts for both summer (i.e. breeding) and winter (i.e. migration, winter roosts) seasons. It also explains differences in the data collected from undertaking ‘day’ versus ‘roost’ counts, gives some definitions of the term ‘numbers’, and presents two e...

  13. Multiplicity Counting

    Energy Technology Data Exchange (ETDEWEB)

    Geist, William H. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-12-01

    This set of slides begins by giving background and a review of neutron counting; three attributes of a verification item are discussed: 240Pueff mass; α, the ratio of (α,n) neutrons to spontaneous fission neutrons; and leakage multiplication. It then takes up neutron detector systems – theory & concepts (coincidence counting, moderation, die-away time); detector systems – some important details (deadtime, corrections); introduction to multiplicity counting; multiplicity electronics and example distributions; singles, doubles, and triples from measured multiplicity distributions; and the point model: multiplicity mathematics.

  14. Prime Focus Spectrograph: A very wide-field, massively multiplexed, optical & near-infrared spectrograph for Subaru Telescope

    Science.gov (United States)

    Tamura, Naoyuki

    This short article is about Prime Focus Spectrograph (PFS), a very wide-field, massively-multiplexed, and optical & near-infrared (NIR) spectrograph as a next generation facility instrument on Subaru Telescope. More details and updates are available on the PFS official website (http://pfs.ipmu.jp), blog (http://pfs.ipmu.jp/blog/), and references therein. The project, instrument, & timeline PFS will position 2400 fibers to science targets or blank sky in the 1.3 degree field on the Subaru prime focus. These fibers will be quickly (~60sec) reconfigurable and feed the photons during exposures to the Spectrograph System (SpS). SpS consists of 4 modules each of which accommodate ~600 fibers and deliver spectral images ranging from 380nm to 1260nm simultaneously at one exposure via the 3 arms of blue, red, and NIR cameras. The instrument development has been undertaken by the international collaboration at the initiative of Kavli IPMU. The project is now going into the construction phase aiming at system integration and on-sky engineering observations in 2017-2018, and science operation in 2019. The survey design has also been under development envisioning a survey spanning ~300 nights over ~5 years in the framework of Subaru Strategic Program (SSP). The key science areas are: Cosmology, galaxy/AGN evolution, and Galactic Archaeology (GA) (Takada et al. 2014). The cosmology program will be to constrain the nature of dark energy via a survey of emission line galaxies over a comoving volume of 10 Gpc3 at z=0.8-2.4. In the galaxy/AGN program, the wide wavelength coverage of PFS as well as the large field of view will be exploited to characterize the galaxy populations and its clustering properties over a wide redshift range. A survey of color-selected galaxies/AGN at z = 1-2 will be conducted over 20 square degrees yielding a fair sample of galaxies with stellar masses down to ~1010 M ⊙. In the GA program, radial velocities and chemical abundances of stars in the Milky

  15. Wide-field imaging through scattering media by scattered light fluorescence microscopy

    Science.gov (United States)

    Zhou, Yulan; Li, Xun

    2017-08-01

    To obtain images through scattering media, scattered light fluorescence (SLF) microscopy that utilizes the optical memory effect has been developed. However, the small field of view (FOV) of SLF microscopy limits its application. In this paper, we have introduced a re-modulation method to achieve wide-field imaging through scattering media by SLF microscopy. In the re-modulation method, to raster scan the focus across the object plane, the incident wavefront is re-modulated via a spatial light modulator (SLM) in the updated phase compensation calculated using the optimized iterative algorithm. Compared with the conventional optical memory effect method, the re-modulation method can greatly increase the FOV of a SLF microscope. With the phase compensation theoretically calculated, the process of updating the phase compensation of a high speed SLM is fast. The re-modulation method does not increase the imaging time. The re-modulation method is, therefore, expected to make SLF microscopy have much wider applications in biology, medicine and physiology.

  16. Development of a Data Reduction algorithm for Optical Wide Field Patrol

    Directory of Open Access Journals (Sweden)

    Sun-youp Park

    2013-09-01

    Full Text Available The detector subsystem of the Optical Wide-field Patrol (OWL network efficiently acquires the position and time information of moving objects such as artificial satellites through its chopper system, which consists of 4 blades in front of the CCD camera. Using this system, it is possible to get more position data with the same exposure time by changing the streaks of the moving objects into many pieces with the fast rotating blades during sidereal tracking. At the same time, the time data from the rotating chopper can be acquired by the time tagger connected to the photo diode. To analyze the orbits of the targets detected in the image data of such a system, a sequential procedure of determining the positions of separated streak lines was developed that involved calculating the World Coordinate System (WCS solution to transform the positions into equatorial coordinate systems, and finally combining the time log records from the time tagger with the transformed position data. We introduce this procedure and the preliminary results of the application of this procedure to the test observation images.

  17. Automated segmentation of oral mucosa from wide-field OCT images (Conference Presentation)

    Science.gov (United States)

    Goldan, Ryan N.; Lee, Anthony M. D.; Cahill, Lucas; Liu, Kelly; MacAulay, Calum; Poh, Catherine F.; Lane, Pierre

    2016-03-01

    Optical Coherence Tomography (OCT) can discriminate morphological tissue features important for oral cancer detection such as the presence or absence of basement membrane and epithelial thickness. We previously reported an OCT system employing a rotary-pullback catheter capable of in vivo, rapid, wide-field (up to 90 x 2.5mm2) imaging in the oral cavity. Due to the size and complexity of these OCT data sets, rapid automated image processing software that immediately displays important tissue features is required to facilitate prompt bed-side clinical decisions. We present an automated segmentation algorithm capable of detecting the epithelial surface and basement membrane in 3D OCT images of the oral cavity. The algorithm was trained using volumetric OCT data acquired in vivo from a variety of tissue types and histology-confirmed pathologies spanning normal through cancer (8 sites, 21 patients). The algorithm was validated using a second dataset of similar size and tissue diversity. We demonstrate application of the algorithm to an entire OCT volume to map epithelial thickness, and detection of the basement membrane, over the tissue surface. These maps may be clinically useful for delineating pre-surgical tumor margins, or for biopsy site guidance.

  18. WIDE-FIELD INFRARED SURVEY EXPLORER OBSERVATIONS OF THE EVOLUTION OF MASSIVE STAR-FORMING REGIONS

    Energy Technology Data Exchange (ETDEWEB)

    Koenig, X. P.; Leisawitz, D. T.; Benford, D. J.; Padgett, D. L. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Rebull, L. M. [Spitzer Science Center (SSC), California Institute of Technology, M/S 220-6, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Assef, R. J. [Jet Propulsion Laboratory, MS 169-530, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States)

    2012-01-10

    We present the results of a mid-infrared survey of 11 outer Galaxy massive star-forming regions and 3 open clusters with data from the Wide-field Infrared Survey Explorer (WISE). Using a newly developed photometric scheme to identify young stellar objects and exclude extragalactic contamination, we have studied the distribution of young stars within each region. These data tend to support the hypothesis that latter generations may be triggered by the interaction of winds and radiation from the first burst of massive star formation with the molecular cloud material leftover from that earlier generation of stars. We dub this process the 'fireworks hypothesis' since star formation by this mechanism would proceed rapidly and resemble a burst of fireworks. We have also analyzed small cutout WISE images of the structures around the edges of these massive star-forming regions. We observe large (1-3 pc size) pillar and trunk-like structures of diffuse emission nebulosity tracing excited polycyclic aromatic hydrocarbon molecules and small dust grains at the perimeter of the massive star-forming regions. These structures contain small clusters of emerging Class I and Class II sources, but some are forming only a single to a few new stars.

  19. Wide field imaging spectrometer for ESA's future X-ray mission: XEUS

    CERN Document Server

    Strüder, L

    1999-01-01

    An active pixel sensor (APS) based on the DEpleted P-channel junction Field Effect Transistor (DEPFET) concept will be described as a potential wide field imager for ESA's high resolution, high throughput mission: 'X-ray Evolving Universe Spectroscopy' (XEUS). It comprises a parallel multichannel readout, low noise at high speed readout, backside illumination and a fill factor of 100% over the whole field of view. The depleted thickness will be 500 microns. These design parameters match the scientific requirements of the mission. The fabrication techniques of the DEPFET arrays are related to the high resistivity process of the X-ray pn-CCDs. Potential extensions of the already realized DEPFET structures are a non-destructive repetitive readout of the signal charges. This concept will be presented. As an alternative solution, frame store pn-CCDs are considered having the same format and pixel sizes as the proposed DEPFET arrays. Their development is a low risk, straightforward continuation of the XMM devices. ...

  20. Application of a wide-field electromagnetic method to shale gas exploration in South China

    Science.gov (United States)

    Yang, Xue-Li; Li, Bo; Peng, Chuan-Sheng; Yang, Yang

    2017-09-01

    In an effort to reduce the shale gas exploration risks and costs, we applied the wide-field electromagnetic method (WFEM), because of its strong anti-interference capability, high resolution, ability to conduct exploration at large depths, and high efficiency, to the Bayan Syncline in the South Huayuan block, Hunan Province. We collected rock samples and analyzed their resistivity and induced polarization (IP) and built A series of two-dimensional models for geological conditions to investigate the applicability of WFEM to different geological structures. We also analyzed the correlation between TOC of shale and the resistivity and IP ratio to determine the threshold for identifying target formations. We used WFEM to identify the underground structures and determine the distribution, depth, and thickness of the target strata. Resistivity, IP, and total organic carbon were used to evaluate the shale gas prospects and select favorable areas (sweet spots) for exploration and development. Subsequently, drilling in these areas proved the applicability of WFEM in shale gas exploration.

  1. Water-Immersible MEMS scanning mirror designed for wide-field fast-scanning photoacoustic microscopy

    Science.gov (United States)

    Yao, Junjie; Huang, Chih-Hsien; Martel, Catherine; Maslov, Konstantin I.; Wang, Lidai; Yang, Joon-Mo; Gao, Liang; Randolph, Gwendalyn; Zou, Jun; Wang, Lihong V.

    2013-03-01

    By offering images with high spatial resolution and unique optical absorption contrast, optical-resolution photoacoustic microscopy (OR-PAM) has gained increasing attention in biomedical research. Recent developments in OR-PAM have improved its imaging speed, but have sacrificed either the detection sensitivity or field of view or both. We have developed a wide-field fast-scanning OR-PAM by using a water-immersible MEMS scanning mirror (MEMS-ORPAM). Made of silicon with a gold coating, the MEMS mirror plate can reflect both optical and acoustic beams. Because it uses an electromagnetic driving force, the whole MEMS scanning system can be submerged in water. In MEMS-ORPAM, the optical and acoustic beams are confocally configured and simultaneously steered, which ensures uniform detection sensitivity. A B-scan imaging speed as high as 400 Hz can be achieved over a 3 mm scanning range. A diffraction-limited lateral resolution of 2.4 μm in water and a maximum imaging depth of 1.1 mm in soft tissue have been experimentally determined. Using the system, we imaged the flow dynamics of both red blood cells and carbon particles in a mouse ear in vivo. By using Evans blue dye as the contrast agent, we also imaged the flow dynamics of lymphatic vessels in a mouse tail in vivo. The results show that MEMS-OR-PAM could be a powerful tool for studying highly dynamic and time-sensitive biological phenomena.

  2. Wide-field OCT imaging of oral lesions in vivo: quantification and classification (Conference Presentation)

    Science.gov (United States)

    Raizada, Rashika; Lee, Anthony M. D.; Liu, Kelly Y.; MacAulay, Calum E.; Ng, Samson; Poh, Catherine F.; Lane, Pierre M.

    2017-02-01

    Worldwide, there are over 450,000 new cases of oral cancer reported each year. Late-stage diagnosis remains a significant factor responsible for its high mortality rate (>50%). In-vivo non-invasive rapid imaging techniques, that can visualise clinically significant changes in the oral mucosa, may improve the management of oral cancer. We present an analysis of features extracted from oral images obtained using our hand- held wide-field Optical Coherence Tomography (OCT) instrument. The images were analyzed for epithelial scattering, overall tissue scattering, and 3D basement membrane topology. The associations between these three features and disease state (benign, pre-cancer, or cancer), as measured by clinical assessment or pathology, were determined. While scattering coefficient has previously been shown to be sensitive to cancer and dysplasia, likely due to changes in nuclear and cellular density, the addition of basement membrane topology may increase diagnostic ability- as it is known that the presence of bulbous rete pegs in the basement membrane are characteristic of dysplasia. The resolution and field-of-view of our oral OCT system allowed analysis of these features over large areas of up to 2.5mm x 90mm, in a timely fashion, which allow for application in clinical settings.

  3. Wide-Field Infrared Survey Explorer Observations of the Evolution of Massive Star-Forming Regions

    Science.gov (United States)

    Koenig, X. P.; Leisawitz, D. T.; Benford, D. J.; Rebull, L. M.; Padgett, D. L.; Asslef, R. J.

    2012-01-01

    We present the results of a mid-infrared survey of II outer Galaxy massive star-forming regions and 3 open clusters with data from the Wide-field Infrared Survey Explorer (WISE). Using a newly developed photometric scheme to identify young stellar objects and exclude extragalactic contamination, we have studied the distribution of young stars within each region. These data tend to support the hypothesis that latter generations may be triggered by the interaction of winds and radiation from the first burst of massive star formation with the molecular cloud material leftover from that earlier generation of stars. We dub this process the "fireworks hypothesis" since star formation by this mechanism would proceed rapidly and resemble a burst of fireworks. We have also analyzed small cutout WISE images of the structures around the edges of these massive star-forming regions. We observe large (1-3 pc size) pillar and trunk-like structures of diffuse emission nebulosity tracing excited polycyclic aromatic hydrocarbon molecules and small dust grains at the perimeter of the massive star-forming regions. These structures contain small clusters of emerging Class I and Class II sources, but some are forming only a single to a few new stars.

  4. WIDE-FIELD WIDE-BAND INTERFEROMETRIC IMAGING: THE WB A-PROJECTION AND HYBRID ALGORITHMS

    Energy Technology Data Exchange (ETDEWEB)

    Bhatnagar, S.; Rau, U.; Golap, K., E-mail: sbhatnag@nrao.edu, E-mail: rurvashi@nrao.edu, E-mail: kgolap@nrao.edu [National Radio Astronomy Observatory, Socorro, NM 87801 (United States)

    2013-06-20

    Variations of the antenna primary beam (PB) pattern as a function of time, frequency, and polarization form one of the dominant direction-dependent effects at most radio frequency bands. These gains may also vary from antenna to antenna. The A-Projection algorithm, published earlier, accounts for the effects of the narrow-band antenna PB in full polarization. In this paper, we present the wide-band A-Projection algorithm (WB A-Projection) to include the effects of wide bandwidth in the A-term itself and show that the resulting algorithm simultaneously corrects for the time, frequency, and polarization dependence of the PB. We discuss the combination of the WB A-Projection and the multi-term multi-frequency synthesis (MT-MFS) algorithm for simultaneous mapping of the sky brightness distribution and the spectral index distribution across a wide field of view. We also discuss the use of the narrow-band A-Projection algorithm in hybrid imaging schemes that account for the frequency dependence of the PB in the image domain.

  5. FAINT TIDAL FEATURES IN GALAXIES WITHIN THE CANADA-FRANCE-HAWAII TELESCOPE LEGACY SURVEY WIDE FIELDS

    Energy Technology Data Exchange (ETDEWEB)

    Atkinson, Adam M.; Abraham, Roberto G. [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON M5S 3H4 (Canada); Ferguson, Annette M. N. [Institute for Astronomy, University of Edinburgh, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom)

    2013-03-01

    We present an analysis of the detectability of faint tidal features in galaxies from the wide-field component of the Canada-France-Hawaii Telescope Legacy Survey. Our sample consists of 1781 luminous (M{sub r{sup '}}<-19.3 mag) galaxies in the magnitude range 15.5 mag < r' < 17 mag and in the redshift range 0.04 < z < 0.2. Although we have classified tidal features according to their morphology (e.g., streams, shells, and tails), we do not attempt to interpret them in terms of their physical origin (e.g., major versus minor merger debris). Instead, we provide a catalog that is intended to provide raw material for future investigations which will probe the nature of low surface brightness substructure around galaxies. We find that around 12% of the galaxies in our sample show clear tidal features at the highest confidence level. This fraction rises to about 18% if we include systems with convincing, albeit weaker tidal features, and to 26% if we include systems with more marginal features that may or may not be tidal in origin. These proportions are a strong function of rest-frame color and of stellar mass. Linear features, shells, and fans are much more likely to occur in massive galaxies with stellar masses >10{sup 10.5} M {sub Sun }, and red galaxies are twice as likely to show tidal features than are blue galaxies.

  6. Calibration of BVRI Photometry for the Wide Field Channel of the HST Advanced Camera for Surveys

    Science.gov (United States)

    Saha, Abhijit; Shaw, Richard A.; Claver, Jennifer A.; Dolphin, Andrew E.

    2011-04-01

    We present new observations of two Galactic globular clusters, PAL4 and PAL14, using the Wide Field Channel of the Advanced Camera for Surveys (ACS) on board the Hubble Space Telescope (HST) and reanalyze archival data from a third, NGC2419. We matched our photometry of hundreds of stars in these fields from the ACS images to existing ground-based photometry of faint sequences that were calibrated on the standard BVRI system of Landolt. These stars are significantly fainter than those generally used for HST calibration purposes and therefore are much better matched to supporting precision photometry of ACS science targets. We were able to derive more accurate photometric transformation coefficients for the commonly used ACS broadband filters, compared with those published by Sirianni et al., due to the use of a factor of several more calibration stars that span a greater range of color. We find that the inferred transformations from each cluster individually do not vary significantly from the average, except for a small offset of the photometric zero point in the F850LP filter. Our results suggest that the published prescriptions for the time-dependent correction of CCD charge transfer efficiency appear to work very well over the ˜3.5 yr interval that spans our observations of PAL4 and PAL14 and the archived images of NGC2419.

  7. Advances on Hubble Wide Field Camera 3 Grism Calibration and Slitless Spectroscopy Analysis

    Science.gov (United States)

    Fowler, Julia; Brammer, Gabriel; Ryan, Russell; Deustua, Susana; Pirzkal, Nor

    2018-01-01

    Grisms are spectral elements combining a grating and prism to conduct slitless spectroscopy; presently they make up approximately 13% of all Wide Field Camera 3 (WFC3) observations on the Hubble Space Telescope (HST). WFC3 contains three grisms, two for the infrared (IR) channel and one for the ultraviolet-visible (UVIS). Here we summarize recent results from an ongoing effort to improve the analysis tools, characterization, and calibration of WFC3 slitless spectroscopic observations. This includes (1) calibrating the IR wavelength solutions with respect to compact zeroth order images, (2) improved IR throughput curves from modelling grism flux by extending the pixel range of effective point spread functions, (3) IR linear-reconstruction solving methods that solve for optimal, non-parametric spectra, (4) calibrating the UVIS +1 and -1 order over the entire field of view of both chips (allowing for spectral extraction from the entire UVIS detector.) With these efforts we continue to improve and advance the science possible with WFC3 grism observations.

  8. The ARGO-YBJ legacy to next generation wide field-of-view experiments

    Directory of Open Access Journals (Sweden)

    Di Sciascio Giuseppe

    2017-01-01

    Full Text Available The ARGO-YBJ experiment has been in stable data taking for more than 5 years at the YangBaJing Cosmic Ray Observatory (Tibet, P.R. China, 4300 m a.s.l., 606 g/cm2. With a duty-cycle greater than 86% the detector collected about 5×1011 events in a wide energy range, from few hundreds GeV up to about 10 PeV. High altitude location and detector features make ARGO-YBJ capable of investigating a wide range of important issues in Cosmic Ray and Astroparticle Physics by imaging the front of atmospheric showers with unprecedented resolution and detail. In this contribution some of the latest physics results obtained by ARGO-YBJ in gamma-ray astronomy and in cosmic ray physics are summarized. The prospects of TeV gamma-ray observations with new ground-based wide field-of-view detectors are presented.

  9. Mapping absolute tissue endogenous fluorophore concentrations with chemometric wide-field fluorescence microscopy

    Science.gov (United States)

    Xu, Zhang; Reilley, Michael; Li, Run; Xu, Min

    2017-06-01

    We report chemometric wide-field fluorescence microscopy for imaging the spatial distribution and concentration of endogenous fluorophores in thin tissue sections. Nonnegative factorization aided by spatial diversity is used to learn both the spectral signature and the spatial distribution of endogenous fluorophores from microscopic fluorescence color images obtained under broadband excitation and detection. The absolute concentration map of individual fluorophores is derived by comparing the fluorescence from "pure" fluorophores under the identical imaging condition following the identification of the fluorescence species by its spectral signature. This method is then demonstrated by characterizing the concentration map of endogenous fluorophores (including tryptophan, elastin, nicotinamide adenine dinucleotide, and flavin adenine dinucleotide) for lung tissue specimens. The absolute concentrations of these fluorophores are all found to decrease significantly from normal, perilesional, to cancerous (squamous cell carcinoma) tissue. Discriminating tissue types using the absolute fluorophore concentration is found to be significantly more accurate than that achievable with the relative fluorescence strength. Quantification of fluorophores in terms of the absolute concentration map is also advantageous in eliminating the uncertainties due to system responses or measurement details, yielding more biologically relevant data, and simplifying the assessment of competing imaging approaches.

  10. Tower counts

    Science.gov (United States)

    Woody, Carol Ann; Johnson, D.H.; Shrier, Brianna M.; O'Neal, Jennifer S.; Knutzen, John A.; Augerot, Xanthippe; O'Neal, Thomas A.; Pearsons, Todd N.

    2007-01-01

    Counting towers provide an accurate, low-cost, low-maintenance, low-technology, and easily mobilized escapement estimation program compared to other methods (e.g., weirs, hydroacoustics, mark-recapture, and aerial surveys) (Thompson 1962; Siebel 1967; Cousens et al. 1982; Symons and Waldichuk 1984; Anderson 2000; Alaska Department of Fish and Game 2003). Counting tower data has been found to be consistent with that of digital video counts (Edwards 2005). Counting towers do not interfere with natural fish migration patterns, nor are fish handled or stressed; however, their use is generally limited to clear rivers that meet specific site selection criteria. The data provided by counting tower sampling allow fishery managers to determine reproductive population size, estimate total return (escapement + catch) and its uncertainty, evaluate population productivity and trends, set harvest rates, determine spawning escapement goals, and forecast future returns (Alaska Department of Fish and Game 1974-2000 and 1975-2004). The number of spawning fish is determined by subtracting subsistence, sport-caught fish, and prespawn mortality from the total estimated escapement. The methods outlined in this protocol for tower counts can be used to provide reasonable estimates ( plus or minus 6%-10%) of reproductive salmon population size and run timing in clear rivers. 

  11. SAAO's new robotic telescope and WiNCam (Wide-field Nasmyth Camera)

    Science.gov (United States)

    Worters, Hannah L.; O'Connor, James E.; Carter, David B.; Loubser, Egan; Fourie, Pieter A.; Sickafoose, Amanda; Swanevelder, Pieter

    2016-08-01

    The South African Astronomical Observatory (SAAO) is designing and manufacturing a wide-field camera for use on two of its telescopes. The initial concept was of a Prime focus camera for the 74" telescope, an equatorial design made by Grubb Parsons, where it would employ a 61mmx61mm detector to cover a 23 arcmin diameter field of view. However, while in the design phase, SAAO embarked on the process of acquiring a bespoke 1-metre robotic alt-az telescope with a 43 arcmin field of view, which needs a homegrown instrument suite. The Prime focus camera design was thus adapted for use on either telescope, increasing the detector size to 92mmx92mm. Since the camera will be mounted on the Nasmyth port of the new telescope, it was dubbed WiNCam (Wide-field Nasmyth Camera). This paper describes both WiNCam and the new telescope. Producing an instrument that can be swapped between two very different telescopes poses some unique challenges. At the Nasmyth port of the alt-az telescope there is ample circumferential space, while on the 74 inch the available envelope is constrained by the optical footprint of the secondary, if further obscuration is to be avoided. This forces the design into a cylindrical volume of 600mm diameter x 250mm height. The back focal distance is tightly constrained on the new telescope, shoehorning the shutter, filter unit, guider mechanism, a 10mm thick window and a tip/tilt mechanism for the detector into 100mm depth. The iris shutter and filter wheel planned for prime focus could no longer be accommodated. Instead, a compact shutter with a thickness of less than 20mm has been designed in-house, using a sliding curtain mechanism to cover an aperture of 125mmx125mm, while the filter wheel has been replaced with 2 peripheral filter cartridges (6 filters each) and a gripper to move a filter into the beam. We intend using through-vacuum wall PCB technology across the cryostat vacuum interface, instead of traditional hermetic connector-based wiring. This

  12. WIDE-FIELD PRECISION KINEMATICS OF THE M87 GLOBULAR CLUSTER SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Strader, Jay [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Romanowsky, Aaron J.; Brodie, Jean P.; Beasley, Michael A.; Arnold, Jacob A. [UCO/Lick Observatory, University of California, Santa Cruz, CA 95064 (United States); Spitler, Lee R. [Center for Astrophysics and Supercomputing, Swinburne University, Hawthorn, VIC 3122 (Australia); Tamura, Naoyuki [Subaru Telescope, National Astronomical Observatory of Japan, Hilo, HI 96720 (United States); Sharples, Ray M. [Department of Physics, University of Durham, South Road, Durham (United Kingdom); Arimoto, Nobuo, E-mail: jstrader@cfa.harvard.edu [National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588 (Japan)

    2011-12-01

    We present the most extensive combined photometric and spectroscopic study to date of the enormous globular cluster (GC) system around M87, the central giant elliptical galaxy in the nearby Virgo Cluster. Using observations from DEIMOS and the Low Resolution Imaging Spectrometer at Keck, and Hectospec on the Multiple Mirror Telescope, we derive new, precise radial velocities for 451 GCs around M87, with projected radii from {approx}5 to 185 kpc. We combine these measurements with literature data for a total sample of 737 objects, which we use for a re-examination of the kinematics of the GC system of M87. The velocities are analyzed in the context of archival wide-field photometry and a novel Hubble Space Telescope catalog of half-light radii, which includes sizes for 344 spectroscopically confirmed clusters. We use this unique catalog to identify 18 new candidate ultracompact dwarfs and to help clarify the relationship between these objects and true GCs. We find much lower values for the outer velocity dispersion and rotation of the GC system than in earlier papers and also differ from previous work in seeing no evidence for a transition in the inner halo to a potential dominated by the Virgo Cluster, nor for a truncation of the stellar halo. We find little kinematical evidence for an intergalactic GC population. Aided by the precision of the new velocity measurements, we see significant evidence for kinematical substructure over a wide range of radii, indicating that M87 is in active assembly. A simple, scale-free analysis finds less dark matter within {approx}85 kpc than in other recent work, reducing the tension between X-ray and optical results. In general, out to a projected radius of {approx}150 kpc, our data are consistent with the notion that M87 is not dynamically coupled to the Virgo Cluster; the core of Virgo may be in the earliest stages of assembly.

  13. Performance Improvement of Near Earth Space Survey (NESS Wide-Field Telescope (NESS-2 Optics

    Directory of Open Access Journals (Sweden)

    Sung-Yeol Yu

    2010-06-01

    Full Text Available We modified the optical system of 500 mm wide-field telescope of which point spread function showed an irregularity. The telescope has been operated for Near Earth Space Survey (NESS located at Siding Spring Observatory (SSO in Australia, and the optical system was brought back to Korea in January 2008. After performing a numerical simulation with the tested value of surface figure error of the primary mirror using optical design program, we found that the surface figure error of the mirror should be fabricated less than root mean square (RMS λ/10 in order to obtain a stellar full width at half maximum (FWHM below 28 μm. However, we started to figure the mirror for the target value of RMS λ/20, because system surface figure error would be increased by the error induced by the optical axis adjustment, mirror cell installation, and others. The radius of curvature of the primary mirror was 1,946 mm after the correction. Its measured surface figure error was less than RMS λ/20 on the table of polishing machine, and RMS λ/15 after installation in the primary mirror cell. A test observation performed at Daeduk Observatory at Korea Astronomy and Space Science Institute by utilizing the exiting mount, and resulted in 39.8 μm of stellar FWHM. It was larger than the value from numerical simulation, and showed wing-shaped stellar image. It turned out that the measured-curvature of the secondary mirror, 1,820 mm, was not the same as the designed one, 1,795.977 mm. We fabricated the secondary mirror to the designed value, and finally obtained a stellar FWHM of 27 μm after re-installation of the optical system into SSO NESS Observatory in Australia.

  14. Anisoplanatic error evaluation and wide-field adaptive optics performance at Dome C, Antarctica

    Science.gov (United States)

    Carbillet, M.; Aristidi, É.; Giordano, C.; Vernin, J.

    2017-11-01

    The aim of this paper is twofold: (i) to deduce the most representative C_N^2 profile(s) for Dome C (DC), Antarctica, from the latest measurements, and (ii) to evaluate the performance of a wide-field adaptive optics (AO) system equipping a 2-3 m telescope. Two models of the C_N^2 profile, corresponding to the bimodal distribution of seeing (a poor seeing mode and a good seeing mode), are composed from both Single Star Scidar data and balloon radio soundings. The anisoplanatic error is first evaluated for a standard AO system from Monte Carlo simulations. DC is shown to outperform Mauna Kea for both seeing modes. A simple ground-layer AO (GLAO) system is then considered. This provides an anisoplanatic error of less than 150 nm over a field of 30 arcmin for the good seeing mode, corresponding to a basic performance Strehl ratio (considering also the fitting and the servo-lag errors) of more than ˜80 per cent in K and ˜50 per cent in J. The poor seeing model shows performance comparable to the Mauna Kea model. We also studied the influence of telescope elevation, showing that a telescope at 40 m would perform, in the poor seeing mode, like a telescope observing 8 m above the ground in the good seeing mode. Finally, we show that while tip-tilt-only correction permits high levels of correction in the good seeing mode at 40 m, it is not as efficient as the GLAO system, even at an altitude of 8 m, and it is not sufficient for high levels of correction for poor seeing, even at a height of 40 m.

  15. Evaluation of illumination system uniformity for wide-field biomedical hyperspectral imaging

    Science.gov (United States)

    Sawyer, Travis W.; Siri Luthman, A.; E Bohndiek, Sarah

    2017-04-01

    Hyperspectral imaging (HSI) systems collect both spatial (morphological) and spectral (chemical) information from a sample. HSI can provide sensitive analysis for biological and medical applications, for example, simultaneously measuring reflectance and fluorescence properties of a tissue, which together with structural information could improve early cancer detection and tumour characterisation. Illumination uniformity is a critical pre-condition for quantitative data extraction from an HSI system. Non-uniformity can cause glare, specular reflection and unwanted shading, which negatively impact statistical analysis procedures used to extract abundance of different chemical species. Here, we model and evaluate several illumination systems frequently used in wide-field biomedical imaging to test their potential for HSI. We use the software LightTools and FRED. The analysed systems include: a fibre ring light; a light emitting diode (LED) ring; and a diffuse scattering dome. Each system is characterised for spectral, spatial, and angular uniformity, as well as transfer efficiency. Furthermore, an approach to measure uniformity using the Kullback-Leibler divergence (KLD) is introduced. The KLD is generalisable to arbitrary illumination shapes, making it an attractive approach for characterising illumination distributions. Although the systems are quite comparable in their spatial and spectral uniformity, the most uniform angular distribution is achieved using a diffuse scattering dome, yielding a contrast of 0.503 and average deviation of 0.303 over a ±60° field of view with a 3.9% model error in the angular domain. Our results suggest that conventional illumination sources can be applied in HSI, but in the case of low light levels, bespoke illumination sources may offer improved performance.

  16. Automatic detection of diabetic retinopathy features in ultra-wide field retinal images

    Science.gov (United States)

    Levenkova, Anastasia; Sowmya, Arcot; Kalloniatis, Michael; Ly, Angelica; Ho, Arthur

    2017-03-01

    Diabetic retinopathy (DR) is a major cause of irreversible vision loss. DR screening relies on retinal clinical signs (features). Opportunities for computer-aided DR feature detection have emerged with the development of Ultra-WideField (UWF) digital scanning laser technology. UWF imaging covers 82% greater retinal area (200°), against 45° in conventional cameras3 , allowing more clinically relevant retinopathy to be detected4 . UWF images also provide a high resolution of 3078 x 2702 pixels. Currently DR screening uses 7 overlapping conventional fundus images, and the UWF images provide similar results1,4. However, in 40% of cases, more retinopathy was found outside the 7-field ETDRS) fields by UWF and in 10% of cases, retinopathy was reclassified as more severe4 . This is because UWF imaging allows examination of both the central retina and more peripheral regions, with the latter implicated in DR6 . We have developed an algorithm for automatic recognition of DR features, including bright (cotton wool spots and exudates) and dark lesions (microaneurysms and blot, dot and flame haemorrhages) in UWF images. The algorithm extracts features from grayscale (green "red-free" laser light) and colour-composite UWF images, including intensity, Histogram-of-Gradient and Local binary patterns. Pixel-based classification is performed with three different classifiers. The main contribution is the automatic detection of DR features in the peripheral retina. The method is evaluated by leave-one-out cross-validation on 25 UWF retinal images with 167 bright lesions, and 61 other images with 1089 dark lesions. The SVM classifier performs best with AUC of 94.4% / 95.31% for bright / dark lesions.

  17. Hybrid photon detectors

    CERN Document Server

    D'Ambrosio, C

    2003-01-01

    Hybrid photon detectors detect light via vacuum photocathodes and accelerate the emitted photoelectrons by an electric field towards inversely polarized silicon anodes, where they are absorbed, thus producing electron-hole pairs. These, in turn, are collected and generate electronic signals on their ohmic contacts. This review first describes the characteristic properties of the main components of hybrid photon detectors: light entrance windows, photocathodes, and silicon anodes. Then, essential relations describing the trajectories of photoelectrons in electric and magnetic fields and their backscattering from the silicon anodes are derived. Depending on their anode configurations, three families of hybrid photon detectors are presented: hybrid photomultiplier tubes with single anodes for photon counting with high sensitivity and for gamma spectroscopy; multi-anode photon detector tubes with anodes subdivided into square or hexagonal pads for position-sensitive photon detection; imaging silicon pixel array t...

  18. Systems, computer-implemented methods, and tangible computer-readable storage media for wide-field interferometry

    Science.gov (United States)

    Lyon, Richard G. (Inventor); Leisawitz, David T. (Inventor); Rinehart, Stephen A. (Inventor); Memarsadeghi, Nargess (Inventor)

    2012-01-01

    Disclosed herein are systems, computer-implemented methods, and tangible computer-readable storage media for wide field imaging interferometry. The method includes for each point in a two dimensional detector array over a field of view of an image: gathering a first interferogram from a first detector and a second interferogram from a second detector, modulating a path-length for a signal from an image associated with the first interferogram in the first detector, overlaying first data from the modulated first detector and second data from the second detector, and tracking the modulating at every point in a two dimensional detector array comprising the first detector and the second detector over a field of view for the image. The method then generates a wide-field data cube based on the overlaid first data and second data for each point. The method can generate an image from the wide-field data cube.

  19. Wide field imaging - I. Applications of neural networks to object detection and star/galaxy classification

    Science.gov (United States)

    Andreon, S.; Gargiulo, G.; Longo, G.; Tagliaferri, R.; Capuano, N.

    2000-12-01

    Astronomical wide-field imaging performed with new large-format CCD detectors poses data reduction problems of unprecedented scale, which are difficult to deal with using traditional interactive tools. We present here NExt (Neural Extractor), a new neural network (NN) based package capable of detecting objects and performing both deblending and star/galaxy classification in an automatic way. Traditionally, in astronomical images, objects are first distinguished from the noisy background by searching for sets of connected pixels having brightnesses above a given threshold; they are then classified as stars or as galaxies through diagnostic diagrams having variables chosen according to the astronomer's taste and experience. In the extraction step, assuming that images are well sampled, NExt requires only the simplest a priori definition of `what an object is' (i.e. it keeps all structures composed of more than one pixel) and performs the detection via an unsupervised NN, approaching detection as a clustering problem that has been thoroughly studied in the artificial intelligence literature. The first part of the NExt procedure consists of an optimal compression of the redundant information contained in the pixels via a mapping from pixel intensities to a subspace individualized through principal component analysis. At magnitudes fainter than the completeness limit, stars are usually almost indistinguishable from galaxies, and therefore the parameters characterizing the two classes do not lie in disconnected subspaces, thus preventing the use of unsupervised methods. We therefore adopted a supervised NN (i.e. a NN that first finds the rules to classify objects from examples and then applies them to the whole data set). In practice, each object is classified depending on its membership of the regions mapping the input feature space in the training set. In order to obtain an objective and reliable classification, instead of using an arbitrarily defined set of features

  20. Automatic Processing of Chinese GF-1 Wide Field of View Images

    Science.gov (United States)

    Zhang, Y.; Wan, Y.; Wang, B.; Kang, Y.; Xiong, J.

    2015-04-01

    The wide field of view (WFV) imaging instrument carried on the Chinese GF-1 satellite includes four cameras. Each camera has 200km swath-width that can acquire earth image at the same time and the observation can be repeated within only 4 days. This enables the applications of remote sensing imagery to advance from non-scheduled land-observation to periodically land-monitoring in the areas that use the images in such resolutions. This paper introduces an automatic data analysing and processing technique for the wide-swath images acquired by GF-1 satellite. Firstly, the images are validated by a self-adaptive Gaussian mixture model based cloud detection method to confirm whether they are qualified and suitable to be involved into the automatic processing workflow. Then the ground control points (GCPs) are quickly and automatically matched from the public geo-information products such as the rectified panchromatic images of Landsat-8. Before the geometric correction, the cloud detection results are also used to eliminate the invalid GCPs distributed in the cloud covered areas, which obviously reduces the ratio of blunders of GCPs. The geometric correction module not only rectifies the rational function models (RFMs), but also provides the self-calibration model and parameters for the non-linear distortion, and it is iteratively processed to detect blunders. The maximum geometric distortion in WFV image decreases from about 10-15 pixels to 1-2 pixels when compensated by self-calibration model. The processing experiments involve hundreds of WFV images of GF-1 satellite acquired from June to September 2013, which covers the whole mainland of China. All the processing work can be finished by one operator within 2 days on a desktop computer made up by a second-generation Intel Core-i7 CPU and a 4-solid-State-Disk array. The digital ortho maps (DOM) are automatically generated with 3 arc second Shuttle Radar Topography Mission (SRTM). The geometric accuracies of the

  1. Wide-Field Gamma-Spectrometer BDRG: GRB Monitor On-Board the Lomonosov Mission

    Science.gov (United States)

    Svertilov, S. I.; Panasyuk, M. I.; Bogomolov, V. V.; Amelushkin, A. M.; Barinova, V. O.; Galkin, V. I.; Iyudin, A. F.; Kuznetsova, E. A.; Prokhorov, A. V.; Petrov, V. L.; Rozhkov, G. V.; Yashin, I. V.; Gorbovskoy, E. S.; Lipunov, V. M.; Park, I. H.; Jeong, S.; Kim, M. B.

    2018-02-01

    The study of GRB prompt emissions (PE) is one of the main goals of the Lomonosov space mission. The payloads of the GRB monitor (BDRG) with the wide-field optical cameras (SHOK) and the ultra-fast flash observatory (UFFO) onboard the Lomonosov satellite are intended for the observation of GRBs, and in particular, their prompt emissions. The BDRG gamma-ray spectrometer is designed to obtain the temporal and spectral information of GRBs in the energy range of 10-3000 keV as well as to provide GRB triggers on several time scales (10 ms, 1 s and 20 s) for ground and space telescopes, including the UFFO and SHOK. The BDRG instrument consists of three identical detector boxes with axes shifted by 90° from each other. This configuration allows us to localize a GRB source in the sky with an accuracy of ˜ 2°. Each BDRG box contains a phoswich NaI(Tl)/CsI(Tl) scintillator detector. A thick CsI(Tl) crystal in size of \\varnothing 130 × 17 mm is placed underneath the NaI(Tl) as an active shield in the soft energy range and as the main detector in the hard energy range. The ratio of the CsI(Tl) to NaI(Tl) event rates at varying energies can be employed as an independent metric to distinguish legitimate GRB signals from false positives originating from electrons in near-Earth vicinities. The data from three detectors are collected in a BA BDRG information unit, which generates a GRB trigger and a set of data frames in output format. The scientific data output is ˜ 500 Mb per day, including ˜ 180 Mb of continuous data for events with durations in excess of 100 ms for 16 channels in each detector, detailed energy spectra, and sets of frames with ˜ 5 Mb of detailed information for each burst-like event. A number of pre-flight tests including those for the trigger algorithm and calibration were carried out to confirm the reliability of the BDRG for operation in space.

  2. Counting Penguins.

    Science.gov (United States)

    Perry, Mike; Kader, Gary

    1998-01-01

    Presents an activity on the simplification of penguin counting by employing the basic ideas and principles of sampling to teach students to understand and recognize its role in statistical claims. Emphasizes estimation, data analysis and interpretation, and central limit theorem. Includes a list of items for classroom discussion. (ASK)

  3. Clinical assessment of human breast cancer margins with wide-field optical coherence micro-elastography (Conference Presentation)

    Science.gov (United States)

    Allen, Wes M.; Chin, Lixin; Wijesinghe, Philip; Kirk, Rodney W.; Latham, Bruce; Sampson, David D.; Saunders, Christobel M.; Kennedy, Brendan F.

    2017-02-01

    Breast cancer has the second highest mortality rate of all cancers in females. Surgical excision of malignant tissue forms a central component of breast-conserving surgery (BCS) procedures. Incomplete excision of malignant tissue is a major issue in BCS with typically 20 - 30% cases requiring a second surgical procedure due to postoperative detection of tumor in the margin. A major challenge for surgeons during BCS is the lack of effective tools to assess the surgical margin intraoperatively. Such tools would enable the surgeon to more effectively remove all tumor during the initial surgery, hence reducing re-excision rates. We report advances in the development of a new tool, optical coherence micro-elastography, which forms images, known as elastograms, based on mechanical contrast within the tissue. We demonstrate the potential of this technique to increase contrast between malignant tumor and healthy stroma in elastograms over OCT images. We demonstrate a key advance toward clinical translation by conducting wide-field imaging in intraoperative time frames with a wide-field scanning system, acquiring mosaicked elastograms with overall dimensions of 50 × 50 mm, large enough to image an entire face of most lumpectomy specimens. We describe this wide-field imaging system, and demonstrate its operation by presenting wide-field optical coherence tomography images and elastograms of a tissue mimicking silicone phantom and a number of representative freshly excised human breast specimens. Our results demonstrate the feasibility of scanning large areas of lumpectomies, which is an important step towards practical intraoperative margin assessment.

  4. Wide-Field Multi-Parameter FLIM: Long-Term Minimal Invasive Observation of Proteins in Living Cells.

    NARCIS (Netherlands)

    Vitali, M.; Picazo, F.; Prokazov, Y.; Duci, A.; Turbin, E.; Götze, C.; Llopis, J.; Hartig, R.; Visser, A.J.W.G.; Zuschratter, W.

    2011-01-01

    Time-domain Fluorescence Lifetime Imaging Microscopy (FLIM) is a remarkable tool to monitor the dynamics of fluorophore-tagged protein domains inside living cells. We propose a Wide-Field Multi-Parameter FLIM method (WFMP-FLIM) aimed to monitor continuously living cells under minimum light intensity

  5. Photon-photon collisions

    Energy Technology Data Exchange (ETDEWEB)

    Burke, D.L.

    1982-10-01

    Studies of photon-photon collisions are reviewed with particular emphasis on new results reported to this conference. These include results on light meson spectroscopy and deep inelastic e..gamma.. scattering. Considerable work has now been accumulated on resonance production by ..gamma gamma.. collisions. Preliminary high statistics studies of the photon structure function F/sub 2//sup ..gamma../(x,Q/sup 2/) are given and comments are made on the problems that remain to be solved.

  6. Photon-photon colliders

    Energy Technology Data Exchange (ETDEWEB)

    Sessler, A.M.

    1995-04-01

    Since the seminal work by Ginsburg, et at., the subject of giving the Next Linear Collider photon-photon capability, as well as electron-positron capability, has drawn much attention. A 1990 article by V.I. Teinov describes the situation at that time. In March 1994, the first workshop on this subject was held. This report briefly reviews the physics that can be achieved through the photon-photon channel and then focuses on the means of achieving such a collider. Also reviewed is the spectrum of backscattered Compton photons -- the best way of obtaining photons. We emphasize the spectrum actually obtained in a collider with both polarized electrons and photons (peaked at high energy and very different from a Compton spectrum). Luminosity is estimated for the presently considered colliders, and interaction and conversion-point geometries are described. Also specified are laser requirements (such as wavelength, peak power, and average power) and the lasers that might be employed. These include conventional and free-electron lasers. Finally, we describe the R&D necessary to make either of these approaches viable and explore the use of the SLC as a test bed for a photon-photon collider of very high energy.

  7. Hubble Space Telescope Wide Field Planetary Camera 2 Observations of Neptune

    Science.gov (United States)

    1995-01-01

    Two groups have recently used the Hubble Space Telescope (HST) Wide Field Planetary Camera 2 (WFPC 2) to acquire new high-resolution images of the planet Neptune. Members of the WFPC-2 Science Team, lead by John Trauger, acquired the first series of images on 27 through 29 June 1994. These were the highest resolution images of Neptune taken since the Voyager-2 flyby in August of 1989. A more comprehensive program is currently being conducted by Heidi Hammel and Wes Lockwood. These two sets of observations are providing a wealth of new information about the structure, composition, and meteorology of this distant planet's atmosphere.Neptune is currently the most distant planet from the sun, with an orbital radius of 4.5 billion kilometers (2.8 billion miles, or 30 Astronomical Units). Even though its diameter is about four times that of the Earth (49,420 vs. 12,742 km), ground-based telescopes reveal a tiny blue disk that subtends less than 1/1200 of a degree (2.3 arc-seconds). Neptune has therefore been a particularly challenging object to study from the ground because its disk is badly blurred by the Earth's atmosphere. In spite of this, ground-based astronomers had learned a great deal about this planet since its position was first predicted by John C. Adams and Urbain Leverrier in 1845. For example, they had determined that Neptune was composed primarily of hydrogen and helium gas, and that its blue color caused by the presence of trace amounts of the gas methane, which absorbs red light. They had also detected bright cloud features whose brightness changed with time, and tracked these clouds to infer a rotation period between 17 and 22 hours.When the Voyager-2 spacecraft flew past the Neptune in 1989, its instruments revealed a surprising array of meteorological phenomena, including strong winds, bright, high-altitude clouds, and two large dark spots attributed to long-lived giant storm systems. These bright clouds and dark spots were tracked as they moved

  8. Photon-photon collisions

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, S.J.

    1988-07-01

    Highlights of the VIIIth International Workshop on Photon-Photon Collisions are reviewed. New experimental and theoretical results were reported in virtually every area of ..gamma gamma.. physics, particularly in exotic resonance production and tests of quantum chromodynamics where asymptotic freedom and factorization theorems provide predictions for both inclusive and exclusive ..gamma gamma.. reactions at high momentum transfer. 73 refs., 12 figs.

  9. Wide-field surface plasmon microscopy of nano- and microparticles: features, benchmarking, limitations, and bioanalytical applications

    Science.gov (United States)

    Nizamov, Shavkat; Scherbahn, Vitali; Mirsky, Vladimir M.

    2017-05-01

    Detection of nano- and micro-particles is an important task for chemical analytics, food industry, biotechnology, environmental monitoring and many other fields of science and industry. For this purpose, a method based on the detection and analysis of minute signals in surface plasmon resonance images due to adsorption of single nanopartciles was developed. This new technology allows one a real-time detection of interaction of single nano- and micro-particles with sensor surface. Adsorption of each nanoparticle leads to characteristic diffraction image whose intensity depends on the size and chemical composition of the particle. The adsorption rate characterizes volume concentration of nano- and micro-particles. Large monitored surface area of sensor enables a high dynamic range of counting and to a correspondingly high dynamic range in concentration scale. Depending on the type of particles and experimental conditions, the detection limit for aqueous samples can be below 1000 particles per microliter. For application of method in complex media, nanoparticle images are discriminated from image perturbations due to matrix components. First, the characteristic SPRM images of nanoparticles (templates) are collected in aqueous suspensions or spiked real samples. Then, the detection of nanoparticles in complex media using template matching is performed. The detection of various NPs in consumer products like cosmetics, mineral water, juices, and wines was shown at sub-ppb level. The method can be applied for ultrasensitive detection and analysis of nano- and micro-particles of biological (bacteria, viruses, endosomes), biotechnological (liposomes, protein nanoparticles for drug delivery) or technical origin.

  10. Advanced wide-field surface plasmon microscopy of single adsorbing nanoparticles

    Science.gov (United States)

    Nizamov, Shavkat; Scherbahn, Vitali; Mirsky, Vladimir M.

    2017-05-01

    In-situ detection and characterization of nanoparticles in biological media as well as in food or other complex samples is still a big challenge for existing analytical methods. Here we describe a label-free and cost-effective analytical method for detection of nanoparticles in the concentration range 106 -1010 NPs/ml. The proposed method is based on the surface plasmon resonance microscopy (SPRM) with a large field of view ( 1.3mm2 ). It is able to detect and count adsorbing nanoparticles individually, totally up to the hundreds of thousands of NPs on the sensor surface. At constant diffusion conditions the detection rate is proportional to the number concentration of NPs, this provides an approach to determine the NPs concentration. The adsorption of nanoparticle can be manipulated by the surface functionalization, pH and electrolyte concentration of suspensions. Images of detected nanoparticles can be quantified in order to characterize them individually. The image intensity grows quasi-linearly with nanoparticle size for the given material. However, the size and material of nanoparticle cannot be resolved directly from the image. For determination of chemical composition, SPRM can be assisted by electrochemical analysis. In this case, the gold sensor surface is used both as a resonant media for plasmon microscopy and as a working electrode. Under potential sweep, the adsorbed NPs can be subjected to electrochemical dissolution, which is detected optically. The potential of this conversion characterizes the material of NPs.

  11. SkICAT: A cataloging and analysis tool for wide field imaging surveys

    Science.gov (United States)

    Weir, N.; Fayyad, U. M.; Djorgovski, S. G.; Roden, J.

    1992-01-01

    We describe an integrated system, SkICAT (Sky Image Cataloging and Analysis Tool), for the automated reduction and analysis of the Palomar Observatory-ST ScI Digitized Sky Survey. The Survey will consist of the complete digitization of the photographic Second Palomar Observatory Sky Survey (POSS-II) in three bands, comprising nearly three Terabytes of pixel data. SkICAT applies a combination of existing packages, including FOCAS for basic image detection and measurement and SAS for database management, as well as custom software, to the task of managing this wealth of data. One of the most novel aspects of the system is its method of object classification. Using state-of-theart machine learning classification techniques (GID3* and O-BTree), we have developed a powerful method for automatically distinguishing point sources from non-point sources and artifacts, achieving comparably accurate discrimination a full magnitude fainter than in previous Schmidt plate surveys. The learning algorithms produce decision trees for classification by examining instances of objects classified by eye on both plate and higher quality CCD data. The same techniques will be applied to perform higher-level object classification (e.g., of galaxy morphology) in the near future. Another key feature of the system is the facility to integrate the catalogs from multiple plates (and portions thereof) to construct a single catalog of uniform calibration and quality down to the faintest limits of the survey. SkICAT also provides a variety of data analysis and exploration tools for the scientific utilization of the resulting catalogs. We include initial results of applying this system to measure the counts and distribution of galaxies in two bands down to Bj is approximately 21 mag over an approximate 70 square degree multi-plate field from POSS-II. SkICAT is constructed in a modular and general fashion and should be readily adaptable to other large-scale imaging surveys.

  12. Wide-field color imaging of scatter-based tissue contrast using both high spatial frequency illumination and cross-polarization gating.

    Science.gov (United States)

    Carlson, Mackenzie L; McClatchy, David M; Gunn, Jason R; Elliott, Jonathan T; Paulsen, Keith D; Kanick, Stephen C; Pogue, Brian W

    2017-08-11

    This study characterizes the scatter-specific tissue contrast that can be obtained by high spatial frequency (HSF) domain imaging and cross-polarization (CP) imaging, using a standard color imaging system, and how combining them may be beneficial. Both HSF and CP approaches are known to modulate the sensitivity of epi-illumination reflectance images between diffuse multiply scattered and superficially backscattered photons, providing enhanced contrast from microstructure and composition than what is achieved by standard wide-field imaging. Measurements in tissue-simulating optical phantoms show that CP imaging returns localized assessments of both scattering and absorption effects, while HSF has uniquely specific sensitivity to scatter-only contrast, with a strong suppression of visible contrast from blood. The combination of CP and HSF imaging provided an expanded sensitivity to scatter compared with CP imaging, while rejecting specular reflections detected by HSF imaging. ex vivo imaging of an atlas of dissected rodent organs/tissues demonstrated the scatter-based contrast achieved with HSF, CP and HSF-CP imaging, with the white light spectral signal returned by each approach translated to a color image for intuitive encoding of scatter-based contrast within images of tissue. The results suggest that visible CP-HSF imaging could have the potential to aid diagnostic imaging of lesions in skin or mucosal tissues and organs, where just CP is currently the standard practice imaging modality. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. THE FLAT TRANSMISSION SPECTRUM OF THE SUPER-EARTH GJ1214b FROM WIDE FIELD CAMERA 3 ON THE HUBBLE SPACE TELESCOPE

    Energy Technology Data Exchange (ETDEWEB)

    Berta, Zachory K.; Charbonneau, David; Desert, Jean-Michel; Irwin, Jonathan [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Miller-Ricci Kempton, Eliza; Fortney, Jonathan J.; Nutzman, Philip [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); McCullough, Peter R. [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Burke, Christopher J. [SETI Institute/NASA Ames Research Center, M/S 244-30, Moffett Field, CA 94035 (United States); Homeier, Derek, E-mail: zberta@cfa.harvard.edu [Centre de Recherche Astrophysique de Lyon, UMR 5574, CNRS, Universite de Lyon, Ecole Normale Superieure de Lyon, F-69364 Lyon Cedex 07 (France)

    2012-03-01

    Capitalizing on the observational advantage offered by its tiny M dwarf host, we present Hubble Space Telescope/Wide Field Camera 3 (WFC3) grism measurements of the transmission spectrum of the super-Earth exoplanet GJ1214b. These are the first published WFC3 observations of a transiting exoplanet atmosphere. After correcting for a ramp-like instrumental systematic, we achieve nearly photon-limited precision in these observations, finding the transmission spectrum of GJ1214b to be flat between 1.1 and 1.7 {mu}m. Inconsistent with a cloud-free solar composition atmosphere at 8.2{sigma}, the measured achromatic transit depth most likely implies a large mean molecular weight for GJ1214b's outer envelope. A dense atmosphere rules out bulk compositions for GJ1214b that explain its large radius by the presence of a very low density gas layer surrounding the planet. High-altitude clouds can alternatively explain the flat transmission spectrum, but they would need to be optically thick up to 10 mbar or consist of particles with a range of sizes approaching 1 {mu}m in diameter.

  14. Counting Possibilia

    Directory of Open Access Journals (Sweden)

    Alfredo Tomasetta

    2010-06-01

    Full Text Available Timothy Williamson supports the thesis that every possible entity necessarily exists and so he needs to explain how a possible son of Wittgenstein’s, for example, exists in our world:he exists as a merely possible object (MPO, a pure locus of potential. Williamson presents a short argument for the existence of MPOs: how many knives can be made by fitting together two blades and two handles? Four: at the most two are concrete objects, the others being merely possible knives and merely possible objects. This paper defends the idea that one can avoid reference and ontological commitment to MPOs. My proposal is that MPOs can be dispensed with by using the notion of rules of knife-making. I first present a solution according to which we count lists of instructions - selected by the rules - describing physical combinations between components. This account, however, has its own difficulties and I eventually suggest that one can find a way out by admitting possible worlds, entities which are more commonly accepted - at least by philosophers - than MPOs. I maintain that, in answering Williamson’s questions, we count classes of physically possible worlds in which the same instance of a general rule is applied.

  15. Laser Light-field Fusion for Wide-field Lensfree On-chip Phase Contrast Microscopy of Nanoparticles.

    Science.gov (United States)

    Kazemzadeh, Farnoud; Wong, Alexander

    2016-12-13

    Wide-field lensfree on-chip microscopy, which leverages holography principles to capture interferometric light-field encodings without lenses, is an emerging imaging modality with widespread interest given the large field-of-view compared to lens-based techniques. In this study, we introduce the idea of laser light-field fusion for lensfree on-chip phase contrast microscopy for detecting nanoparticles, where interferometric laser light-field encodings acquired using a lensfree, on-chip setup with laser pulsations at different wavelengths are fused to produce marker-free phase contrast images of particles at the nanometer scale. As a proof of concept, we demonstrate, for the first time, a wide-field lensfree on-chip instrument successfully detecting 300 nm particles across a large field-of-view of ~30 mm(2) without any specialized or intricate sample preparation, or the use of synthetic aperture- or shift-based techniques.

  16. Wide-field time-resolved luminescence imaging and spectroscopy to decipher obliterated documents in forensic science

    Science.gov (United States)

    Suzuki, Mototsugu; Akiba, Norimitsu; Kurosawa, Kenji; Kuroki, Kenro; Akao, Yoshinori; Higashikawa, Yoshiyasu

    2016-01-01

    We applied a wide-field time-resolved luminescence (TRL) method with a pulsed laser and a gated intensified charge coupled device (ICCD) for deciphering obliterated documents for use in forensic science. The TRL method can nondestructively measure the dynamics of luminescence, including fluorescence and phosphorescence lifetimes, which prove to be useful parameters for image detection. First, we measured the TRL spectra of four brands of black porous-tip pen inks on paper to estimate their luminescence lifetimes. Next, we acquired the TRL images of 12 obliterated documents at various delay times and gate times of the ICCD. The obliterated contents were revealed in the TRL images because of the difference in the luminescence lifetimes of the inks. This method requires no pretreatment, is nondestructive, and has the advantage of wide-field imaging, which makes it is easy to control the gate timing. This demonstration proves that TRL imaging and spectroscopy are powerful tools for forensic document examination.

  17. Design of refocusing system for a high-resolution space TDICCD camera with wide-field of view

    Science.gov (United States)

    Lv, Shiliang; Liu, Jinguo

    2015-10-01

    This paper describes the design and realization of a refocusing system for a space TDICCD camera of 2.2-meter focal length, which, features a three mirror anastigmatic(TMA) optical system along with 8 TDICCDs assemble at the focal plane, is high resolution and wide field of view. TDICCDs assemble is a kind of major method of acquiring wide field of view for space camera. In this way, the swath width reach 60km. First, the design of TMA optical system and its advantage of this space TDICCD camera was introduced; Then, the refocusing system as well as the technique of mechanical interleaving assemble for TDICCDs focal plane of this space camera was discussed in detail, At last, the refocusing system was measured. Experimental results indicated that the precision of the refocusing system is +/- 3.12μm(3σ), which satisfy the refocusing control system requirements of higher precision and stabilization.

  18. Status and Perspectives of the Mini-MegaTORTORA Wide-field Monitoring System with High Temporal Resolution

    Directory of Open Access Journals (Sweden)

    Sergey Karpov

    2013-01-01

    Full Text Available Here we briefly summarize our long-term experience of constructing and operating wide-field monitoring cameras with sub-second temporal resolution to look for optical components of GRBs, fast-moving satellites and meteors. The general hardware requirements for these systems are discussed, along with algorithms for real-time detection and classification of various kinds of short optical transients. We also give a status report on the next generation, the MegaTORTORA multi-objective and transforming monitoring system, whose 6-channel (Mini-MegaTORTORA-Spain and 9-channel prototypes (Mini-MegaTORTORA-Kazan we have been building at SAO RAS. This system combines a wide field of view with subsecond temporal resolution in monitoring regime, and is able, within fractions of a second, to reconfigure itself to follow-up mode, which has better sensitivity and simultaneously provides multi-color and polarimetric information on detected transients.

  19. Laser Light-field Fusion for Wide-field Lensfree On-chip Phase Contrast Microscopy of Nanoparticles

    Science.gov (United States)

    Kazemzadeh, Farnoud; Wong, Alexander

    2016-12-01

    Wide-field lensfree on-chip microscopy, which leverages holography principles to capture interferometric light-field encodings without lenses, is an emerging imaging modality with widespread interest given the large field-of-view compared to lens-based techniques. In this study, we introduce the idea of laser light-field fusion for lensfree on-chip phase contrast microscopy for detecting nanoparticles, where interferometric laser light-field encodings acquired using a lensfree, on-chip setup with laser pulsations at different wavelengths are fused to produce marker-free phase contrast images of particles at the nanometer scale. As a proof of concept, we demonstrate, for the first time, a wide-field lensfree on-chip instrument successfully detecting 300 nm particles across a large field-of-view of ~30 mm2 without any specialized or intricate sample preparation, or the use of synthetic aperture- or shift-based techniques.

  20. Searching for fast optical transients by means of a wide-field monitoring observations with high temporal resolution

    Science.gov (United States)

    Beskin, G.; Karpov, S.; Plokhotnichenko, V.; Bondar, S.; Ivanov, E.; Perkov, A.; Greco, G.; Guarnieri, A.; Bartolini, C.

    We discuss the strategy of search for fast optical transients accompanying gamma-ray bursts by means of continuous monitoring of wide sky fields with high temporal resolution. We describe the design, performance and results of our cameras, FAVOR and TORTORA. Also we discuss the perspectives of this strategy and possible design of next-generation equipment for wide-field monitoring which will be able to detect optical transients and to study their color and polarization properties with high time resolution.

  1. Obtaining Sub-uas Astrometry on a Wide-field, Coronagraph Equipped, Space Telescope Using a Diffractive Pupil

    Science.gov (United States)

    Bendek, Eduardo; Belikov, R.; Guyon, O.

    2013-01-01

    Detection and mass measurement of earth-size exoplanets using the astrometric signal of the host star requires sub-uas measurement precision. One major challenge in achieving this precision using medium-size space telescopes is the calibration of dynamic distortions. To solve this problem, we propose a diffractive pupil approach in which an array of dots on the primary mirror generates polychromatic diffraction spikes in the focal plane used to calibrate the distortions in the optical system. According to our simulations, this technique enables 0.2microarcsecond or better single-visit precision astrometric measurements on a 2.4m wide-field (>0.1deg2) space telescope. We present the laboratory results of the diffractive pupil concept performed at the University of Arizona, showing that this approach can calibrate dynamic distortion errors even for wide field applications. Also, this technique can be used simultaneously with a high-performance coronagraph to determine/constrain the masses, composition, atmospheric properties, and planetary system architectures. Numerical simulations and experiments performed at the NASA Ames ACE test bed have shown that the diffractive pupil does not affect the coronagraph performance. Finally, we assess the compatibility of a diffractive pupil telescope with a general astrophysics mission, showing that the spikes are too faint to impact wide field observations.

  2. Lensfree Fluorescent On-Chip Imaging of Transgenic Caenorhabditis elegans Over an Ultra-Wide Field-of-View

    Science.gov (United States)

    Ozcan, Aydogan

    2011-01-01

    We demonstrate lensfree on-chip fluorescent imaging of transgenic Caenorhabditis elegans (C. elegans) over an ultra-wide field-of-view (FOV) of e.g., >2–8 cm2 with a spatial resolution of ∼10µm. This is the first time that a lensfree on-chip platform has successfully imaged fluorescent C. elegans samples. In our wide-field lensfree imaging platform, the transgenic samples are excited using a prism interface from the side, where the pump light is rejected through total internal reflection occurring at the bottom facet of the substrate. The emitted fluorescent signal from C. elegans samples is then recorded on a large area opto-electronic sensor-array over an FOV of e.g., >2–8 cm2, without the use of any lenses, thin-film interference filters or mechanical scanners. Because fluorescent emission rapidly diverges, such lensfree fluorescent images recorded on a chip look blurred due to broad point-spread-function of our platform. To combat this resolution challenge, we use a compressive sampling algorithm to uniquely decode the recorded lensfree fluorescent patterns into higher resolution images, demonstrating ∼10 µm resolution. We tested the efficacy of this compressive decoding approach with different types of opto-electronic sensors to achieve a similar resolution level, independent of the imaging chip. We further demonstrate that this wide FOV lensfree fluorescent imaging platform can also perform sequential bright-field imaging of the same samples using partially-coherent lensfree digital in-line holography that is coupled from the top facet of the same prism used in fluorescent excitation. This unique combination permits ultra-wide field dual-mode imaging of C. elegans on a chip which could especially provide a useful tool for high-throughput screening applications in biomedical research. PMID:21253611

  3. Rapid wide-field Mueller matrix polarimetry imaging based on four photoelastic modulators with no moving parts.

    Science.gov (United States)

    Alali, Sanaz; Gribble, Adam; Vitkin, I Alex

    2016-03-01

    A new polarimetry method is demonstrated to image the entire Mueller matrix of a turbid sample using four photoelastic modulators (PEMs) and a charge coupled device (CCD) camera, with no moving parts. Accurate wide-field imaging is enabled with a field-programmable gate array (FPGA) optical gating technique and an evolutionary algorithm (EA) that optimizes imaging times. This technique accurately and rapidly measured the Mueller matrices of air, polarization elements, and turbid phantoms. The system should prove advantageous for Mueller matrix analysis of turbid samples (e.g., biological tissues) over large fields of view, in less than a second.

  4. Optical System and Desing Of The New 1.6 Meter Wide-Field Telescope With Active Optics

    Science.gov (United States)

    Papushev, Pavel; Denisenko, Sergey; Kamus, Sergey; Pimenov, Yury; Tergoev, Vladim

    2006-08-01

    In this report we present and discuss the design, construction and capabilities of the two meters class wide field survey telescope. The designs based on modified R-C system with two or three lens correctors in visible and near infrared (2,2 mkm) spectral range. The optical systems of the 1.6 meters telescope with up to 3 degrees field of view and less than 15% obscuration area are considered in detail. Optical performance of system, its mount and separate element of the active optics system are examined.

  5. Preliminary Analysis of Ground-based Orbit Determination Accuracy for the Wide Field Infrared Survey Telescope (WFIRST)

    Science.gov (United States)

    Sease, Brad

    2017-01-01

    The Wide Field Infrared Survey Telescope is a 2.4-meter telescope planned for launch to the Sun-Earth L2 point in 2026. This paper details a preliminary study of the achievable accuracy for WFIRST from ground-based orbit determination routines. The analysis here is divided into two segments. First, a linear covariance analysis of early mission and routine operations provides an estimate of the tracking schedule required to meet mission requirements. Second, a simulated operations scenario gives insight into the expected behavior of a daily Extended Kalman Filter orbit estimate over the first mission year given a variety of potential momentum unloading schemes.

  6. ISS-Lobster: A Proposed Wide-Field X-Ray Telescope on the International Space Station

    Science.gov (United States)

    Camp, Jordan

    2012-01-01

    The Lobster wide-field imaging telescope combines simultaneous high FOV, high sensitivity and good position resolution. These characteristics can open the field of X-Ray time domain astronomy, which will study many interesting transient sources, including tidal disruptions of stars, supernova shock breakouts, and high redshift gamma-ray bursts. Also important will be its use for the X-ray follow-up of gravitational wave detections. I will describe our present effort to propose the Lobster concept for deployment on the International Space Station through a NASA Mission of Opportunity this fall.

  7. All sky coordination initiative, simple service for wide-field monitoring systems to cooperate in searching for fast optical transients

    Science.gov (United States)

    Karpov, S.; Sokołowski, M.; Gorbovskoy, E.

    Here we stress the necessity of cooperation between different wide-field monitoring projects (FAVOR/TORTORA, Pi of the Sky, MASTER, etc), aimed for independent detection of fast optical transients, in order to maximize the area of the sky covered at any moment and to coordinate the monitoring of gamma-ray telescopes' field of view. We review current solutions available for it and propose a simple protocol with dedicated service (ASCI) for such systems to share their current status and pointing schedules.

  8. Impacts on the Hubble Space Telescope Wide Field and Planetary Camera 2: Experimental Simulation of Micrometeoroid Capture

    Science.gov (United States)

    Price, M. C.; Kearsley, A. T.; Wozniakiewicz, P. J.; Spratt, J.; Burchell, M. J.; Cole, M. J.; Anz-Meador, P.; Liou, J. C.; Ross, D. K.; Opiela, J.; hide

    2014-01-01

    Hypervelocity impact features have been recognized on painted surfaces returned from the Hubble Space Telescope (HST). Here we describe experiments that help us to understand their creation, and the preservation of micrometeoroid (MM) remnants. We simulated capture of silicate and sulfide minerals on the Zinc orthotitanate (ZOT) paint and Al alloy plate of the Wide Field and Planetary Camera 2 (WFPC2) radiator, which was returned from HST after 16 years in low Earth orbit (LEO). Our results also allow us to validate analytical methods for identification of MM (and orbital debris) impacts in LEO.

  9. Methods for precise photoelectron counting with photomultipliers

    Energy Technology Data Exchange (ETDEWEB)

    Dossi, R.; Ianni, A.; Ranucci, G.; Smirnov, O.Ju. E-mail: smirnov@lngs.infn.itsmipol@cv.jinr.ru

    2000-09-11

    A series of measurements has been performed on a THORN EMI 9351 phototube in order to investigate its response to a low light intensity. Precise procedures to determine the intensity of the incident photon flux have been developed and compared. The data show that the various approaches give consistent and reliable results, thus allowing the precise calibration of the device for applications of photon counting.

  10. Retinal pigment epithelium findings in patients with albinism using wide-field polarization-sensitive optical coherence tomography.

    Science.gov (United States)

    Schütze, Christopher; Ritter, Markus; Blum, Robert; Zotter, Stefan; Baumann, Bernhard; Pircher, Michael; Hitzenberger, Christoph K; Schmidt-Erfurth, Ursula

    2014-11-01

    To investigate pigmentation characteristics of the retinal pigment epithelium (RPE) in patients with albinism using wide-field polarization-sensitive optical coherence tomography compared with intensity-based spectral domain optical coherence tomography and fundus autofluorescence imaging. Five patients (10 eyes) with previously genetically diagnosed albinism and 5 healthy control subjects (10 eyes) were imaged by a wide-field polarization-sensitive optical coherence tomography system (scan angle: 40 × 40° on the retina), sensitive to melanin contained in the RPE, based on the polarization state of backscattered light. Conventional intensity-based spectral domain optical coherence tomography and fundus autofluorescence examinations were performed. Retinal pigment epithelium-pigmentation was analyzed qualitatively and quantitatively based on depolarization assessed by polarization-sensitive optical coherence tomography. This study revealed strong evidence of polarization-sensitive optical coherence tomography to specifically image melanin in the RPE. Depolarization of light backscattered by the RPE in patients with albinism was reduced compared with normal subjects. Heterogeneous RPE-specific depolarization characteristics were observed in patients with albinism. Reduction of depolarization observed in the light backscattered by the RPE in patients with albinism corresponds to expected decrease of RPE pigmentation. The degree of depigmentation of the RPE is possibly associated with visual acuity. Findings suggest that different albinism genotypes result in heterogeneous levels of RPE pigmentation. Polarization-sensitive optical coherence tomography showed a heterogeneous appearance of RPE pigmentation in patients with albinism depending on different genotypes.

  11. Wide-Field Landers Temporary Keratoprosthesis in Severe Ocular Trauma: Functional and Anatomical Results after One Year

    Science.gov (United States)

    Nowomiejska, Katarzyna; Haszcz, Dariusz; Forlini, Cesare; Forlini, Matteo; Moneta-Wielgos, Joanna; Maciejewski, Ryszard; Zarnowski, Tomasz; Juenemann, Anselm G.

    2015-01-01

    Purpose. To evaluate longitudinal functional and anatomical results after combined pars plana vitrectomy (PPV) and penetrating keratoplasty (PKP) using a wide-field Landers intraoperative temporary keratoprosthesis (TKP) in patients with vitreoretinal pathology and corneal opacity due to severe ocular trauma. Material and Methods. Medical records of 12 patients who had undergone PPV/PKP/KP due to severe eye trauma were analyzed. Functional (best-corrected visual acuity) and anatomic outcomes (clarity of the corneal graft, retinal attachment, and intraocular pressure) were assessed during the follow-up (mean 16 months). Results. Final visual acuities varied from NLP to CF to 2 m. Visual acuity improved in 7 cases, was unchanged in 4 eyes, and worsened in 1 eye. The corneal graft was transparent during the follow-up in 3 cases and graft failure was observed in 9 eyes. Silicone oil was used as a tamponade in all cases and retina was reattached in 92% of cases. Conclusions. Combined PPV and PKP with the use of wide-field Landers TKP allowed for surgical intervention in patients with vitreoretinal pathology coexisting with corneal wound. Although retina was attached in most of the cases, corneal graft survived only in one-fourth of patients and final visual acuities were poor. PMID:26617994

  12. Wide-Field InfraRed Survey Telescope (WFIRST) Mission and Synergies with LISA and LIGO-Virgo

    Science.gov (United States)

    Gehrels, N.; Spergel, D.

    2015-01-01

    The Wide-Field InfraRed Survey Telescope (WFIRST) is a NASA space mission in study for launch in 2024. It has a 2.4 m telescope, wide-field IR instrument operating in the 0.7 - 2.0 micron range and an exoplanet imaging coronagraph instrument operating in the 400 - 1000 nm range. The observatory will perform galaxy surveys over thousands of square degrees to J=27 AB for dark energy weak lensing and baryon acoustic oscillation measurements and will monitor a few square degrees for dark energy SN Ia studies. It will perform microlensing observations of the galactic bulge for an exoplanet census and direct imaging observations of nearby exoplanets with a pathfinder coronagraph. The mission will have a robust and wellfunded guest observer program for 25% of the observing time. WFIRST will be a powerful tool for time domain astronomy and for coordinated observations with gravitational wave experiments. Gravitational wave events produced by mergers of nearby binary neutron stars (LIGO-Virgo) or extragalactic supermassive black hole binaries (LISA) will produce electromagnetic radiation that WFIRST can observe.

  13. Wide-field retinal optical coherence tomography with wavefront sensorless adaptive optics for enhanced imaging of targeted regions.

    Science.gov (United States)

    Polans, James; Keller, Brenton; Carrasco-Zevallos, Oscar M; LaRocca, Francesco; Cole, Elijah; Whitson, Heather E; Lad, Eleonora M; Farsiu, Sina; Izatt, Joseph A

    2017-01-01

    The peripheral retina of the human eye offers a unique opportunity for assessment and monitoring of ocular diseases. We have developed a novel wide-field (>70°) optical coherence tomography system (WF-OCT) equipped with wavefront sensorless adaptive optics (WSAO) for enhancing the visualization of smaller (23°) retina. We demonstrated the ability of our WF-OCT system to acquire non wavefront-corrected wide-field images rapidly, which could then be used to locate regions of interest, zoom into targeted features, and visualize the same region at different time points. A pilot clinical study was conducted on seven healthy volunteers and two subjects with prodromal Alzheimer's disease which illustrated the capability to image Drusen-like pathologies as far as 32.5° from the fovea in un-averaged volume scans. This work suggests that the proposed combination of WF-OCT and WSAO may find applications in the diagnosis and treatment of ocular, and potentially neurodegenerative, diseases of the peripheral retina, including diabetes and Alzheimer's disease.

  14. Wide-Field Landers Temporary Keratoprosthesis in Severe Ocular Trauma: Functional and Anatomical Results after One Year

    Directory of Open Access Journals (Sweden)

    Katarzyna Nowomiejska

    2015-01-01

    Full Text Available Purpose. To evaluate longitudinal functional and anatomical results after combined pars plana vitrectomy (PPV and penetrating keratoplasty (PKP using a wide-field Landers intraoperative temporary keratoprosthesis (TKP in patients with vitreoretinal pathology and corneal opacity due to severe ocular trauma. Material and Methods. Medical records of 12 patients who had undergone PPV/PKP/KP due to severe eye trauma were analyzed. Functional (best-corrected visual acuity and anatomic outcomes (clarity of the corneal graft, retinal attachment, and intraocular pressure were assessed during the follow-up (mean 16 months. Results. Final visual acuities varied from NLP to CF to 2 m. Visual acuity improved in 7 cases, was unchanged in 4 eyes, and worsened in 1 eye. The corneal graft was transparent during the follow-up in 3 cases and graft failure was observed in 9 eyes. Silicone oil was used as a tamponade in all cases and retina was reattached in 92% of cases. Conclusions. Combined PPV and PKP with the use of wide-field Landers TKP allowed for surgical intervention in patients with vitreoretinal pathology coexisting with corneal wound. Although retina was attached in most of the cases, corneal graft survived only in one-fourth of patients and final visual acuities were poor.

  15. GravityCam: ground-based wide-field high-resolution imaging and high-speed photometry

    Science.gov (United States)

    Dominik, Martin; Mackay, Craig; Steele, Iain; Snodgrass, Colin; Hirsch, Michael; Gråe Jørgensen, Uffe; Hundertmark, Markus; Rebolo, Rafael; Horne, Keith; Bridle, Sarah; Sicardy, Bruno; Bramich, Daniel; Alsubai, Khalid

    2015-12-01

    The image blurring by the Earth's atmosphere generally poses a substantial limitation to ground-based observations. While opportunities in space are scarce, lucky imaging can correct over a much larger patch of sky and with much fainter reference stars. We propose the first of a new kind of versatile instruments, "GravityCam", composed of ~100 EMCCDs, that will open up two entirely new windows to ground-based astronomy: (1) wide-field high-resolution imaging, and (2) wide-field high-speed photometry. Potential applications include (a) a gravitational microlensing survey going 4 magnitudes deeper than current efforts, and thereby gaining a factor 100 in mass at the same sensitivity, which means probing down to Lunar mass or even below, (b) extra-solar planet hunting via transits in galactic bulge fields, with high time resolution well-suited for transit timing variation studies, (c) variable stars in crowded fields, with sensitivity to very short periods, (d) asteroseismology with many bright stars in one pointing, (e) serendipitous occultations of stars by small solar system bodies, giving access to the small end of the Kuiper Belt size distribution and potentially leading to the first detection of true Oort cloud objects, while predicted occultations at high time resolution can reveal atmospheres, satellites, or rings, (f) general data mining of the high-speed variable sky (down to 40 ms cadence).

  16. AWARE Wide Field View

    Science.gov (United States)

    2016-04-29

    RGB colors to the standard sRGB to allow spectrally consistent colors on monitors for viewing . Finally, the images from each sensor are corrected based ...on the exposure time used and the calibrated sensitivity of each image sensor, again based on the flat field calibration, to allow viewing of imagery...prediction is scaled based on available bandwidth and the computational resources of the cluster. In addition to the interface described in the

  17. Single photon source characterization with a superconducting single photon detector.

    Science.gov (United States)

    Hadfield, Robert H; Stevens, Martin J; Gruber, Steven S; Miller, Aaron J; Schwall, Robert E; Mirin, Richard P; Nam, Sae Woo

    2005-12-26

    Superconducting single photon detectors (SSPD) based on nanopatterned niobium nitride wires offer single photon counting at fast rates, low jitter, and low dark counts, from visible wavelengths well into the infrared. We demonstrate the first use of an SSPD, packaged in a commercial cryocooler, for single photon source characterization. The source is an optically pumped, microcavity-coupled InGaAs quantum dot, emitting single photons at 902 nm. The SSPD replaces the second silicon Avalanche Photodiode (APD) in a Hanbury-Brown Twiss interferometer measurement of the source second-order correlation function, g(2)( ?). The detection efficiency of the superconducting detector system is >2 % (coupling losses included). The SSPD system electronics jitter is 170 ps, versus 550 ps for the APD unit, allowing the source spontaneous emission lifetime to be measured with improved resolution.

  18. Photon technology. Hard photon technology; Photon technology. Hard photon gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Research results of hard photon technology have been summarized as a part of novel technology development highly utilizing the quantum nature of photon. Hard photon technology refers to photon beam technologies which use photon in the 0.1 to 200 nm wavelength region. Hard photon has not been used in industry due to the lack of suitable photon sources and optical devices. However, hard photon in this wavelength region is expected to bring about innovations in such areas as ultrafine processing and material synthesis due to its atom selective reaction, inner shell excitation reaction, and spatially high resolution. Then, technological themes and possibility have been surveyed. Although there are principle proposes and their verification of individual technologies for the technologies of hard photon generation, regulation and utilization, they are still far from the practical applications. For the photon source technology, the laser diode pumped driver laser technology, laser plasma photon source technology, synchrotron radiation photon source technology, and vacuum ultraviolet photon source technology are presented. For the optical device technology, the multi-layer film technology for beam mirrors and the non-spherical lens processing technology are introduced. Also are described the reduction lithography technology, hard photon excitation process, and methods of analysis and measurement. 430 refs., 165 figs., 23 tabs.

  19. A search for a distant companion to the sun with the wide-field infrared survey explorer

    Energy Technology Data Exchange (ETDEWEB)

    Luhman, K. L., E-mail: kluhman@astro.psu.edu [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States); Center for Exoplanets and Habitable Worlds, The Pennsylvania State University, University Park, PA 16802 (United States)

    2014-01-20

    I have used multi-epoch astrometry from the Wide-field Infrared Survey Explorer to perform a search for a distant companion to the Sun via its parallactic motion. I have not found an object of this kind down to W2 = 14.5. This limit corresponds to analogs of Saturn and Jupiter at 28,000 and 82,000 AU, respectively, according to models of the Jovian planets by Fortney and coworkers. Models of brown dwarfs by Burrows and coworkers predict fainter fluxes at a given mass for the age of the solar system, producing a closer distance limit of 26,000 AU for a Jupiter-mass brown dwarf. These constraints exclude most combinations of mass and separation at which a solar companion has been suggested to exist by various studies over the years.

  20. Wide-Field Multi-Parameter FLIM: long-term minimal invasive observation of proteins in living cells.

    Science.gov (United States)

    Vitali, Marco; Picazo, Fernando; Prokazov, Yury; Duci, Alessandro; Turbin, Evgeny; Götze, Christian; Llopis, Juan; Hartig, Roland; Visser, Antonie J W G; Zuschratter, Werner

    2011-02-02

    Time-domain Fluorescence Lifetime Imaging Microscopy (FLIM) is a remarkable tool to monitor the dynamics of fluorophore-tagged protein domains inside living cells. We propose a Wide-Field Multi-Parameter FLIM method (WFMP-FLIM) aimed to monitor continuously living cells under minimum light intensity at a given illumination energy dose. A powerful data analysis technique applied to the WFMP-FLIM data sets allows to optimize the estimation accuracy of physical parameters at very low fluorescence signal levels approaching the lower bound theoretical limit. We demonstrate the efficiency of WFMP-FLIM by presenting two independent and relevant long-term experiments in cell biology: 1) FRET analysis of simultaneously recorded donor and acceptor fluorescence in living HeLa cells and 2) tracking of mitochondrial transport combined with fluorescence lifetime analysis in neuronal processes.

  1. A flexible wide-field FLIM endoscope utilising blue excitation light for label-free contrast of tissue.

    Science.gov (United States)

    Sparks, Hugh; Warren, Sean; Guedes, Joana; Yoshida, Nagisa; Charn, Tze Choong; Guerra, Nadia; Tatla, Taranjit; Dunsby, Christopher; French, Paul

    2015-01-01

    Fluorescence lifetime imaging (FLIM) has previously been shown to provide contrast between normal and diseased tissue. Here we present progress towards clinical and preclinical FLIM endoscopy of tissue autofluorescence, demonstrating a flexible wide-field endoscope that utilised a low average power blue picosecond laser diode excitation source and was able to acquire ∼mm-scale spatial maps of autofluorescence lifetimes from fresh ex vivo diseased human larynx biopsies in ∼8 seconds using an average excitation power of ∼0.5 mW at the specimen. To illustrate its potential for FLIM at higher acquisition rates, a higher power mode-locked frequency doubled Ti:Sapphire laser was used to demonstrate FLIM of ex vivo mouse bowel at up to 2.5 Hz using 10 mW of average excitation power at the specimen. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. KOALA: a wide-field 1000 element integral-field unit for the Anglo-Australian Telescope

    Science.gov (United States)

    Ellis, S. C.; Ireland, M.; Lawrence, J. S.; Tims, J.; Staszak, N.; Brzeski, J.; Parker, Q. A.; Sharp, R.; Bland-Hawthorn, J.; Case, S.; Colless, M.; Croom, S.; Couch, W.; De Marco, O.; Glazebrook, K.; Saunders, W.; Webster, R.; Zucker, D. B.

    2012-09-01

    KOALA, the Kilofibre Optimised Astronomical Lenslet Array, is a wide-field, high efficiency integral field unit being designed for use with the bench mounted AAOmega spectrograph on the AAT. KOALA will have 1000 fibres in a rectangular array with a selectable field of view of either 1390 or 430 sq. arcseconds with a spatial sampling of 1.25" or 0.7" respectively. To achieve this KOALA will use a telecentric double lenslet array with interchangeable fore-optics. The IFU will feed AAOmega via a 31m fibre run. The efficiency of KOALA is expected to be ≍ 52% at 3700A and ≍ 66% at 6563°Å with a throughput of > 52% over the entire wavelength range.

  3. Combining wide-field super-resolution microscopy and electron tomography: rendering nanoscopic correlative arrays on subcellular architecture.

    Science.gov (United States)

    Braet, Filip; Cheng, Delfine; Huynh, Minh; Henriquez, Jeffrey; Shami, Gerry; Lampe, Marko

    2014-01-01

    In this chapter, the authors outline in full detail, an uncomplicated approach that enables the combination of wide-field fluorescence super-resolution microscopy with electron tomography, thereby providing an approach that affords the best possible confidence in the structures investigated. The methodical steps to obtain these high-throughput correlative nanoscopic arrays will be visually explored and outlined in detail. The authors will demonstrate the feasibility of the method on cultured Caco-2 colorectal cancer cells that are labeled for filamentous actin. The presented images, morphometric data, and generated models illustrate the strengths of our correlative approach for future advanced structural-biology-oriented questions. Correlative nanoscopy applications can be readily found in which there is a need to reveal biomolecular information at unprecedented resolution on subcellular behavior in various biological and pathobiological processes. © 2014 Elsevier Inc. All rights reserved.

  4. Mini-Mega-TORTORA wide-field monitoring system with sub-second temporal resolution: first year of operation

    Science.gov (United States)

    Karpov, S.; Beskin, G.; Biryukov, A.; Bondar, S.; Ivanov, E.; Katkova, E.; Perkov, A.; Sasyuk, V.

    2016-12-01

    Here we present the summary of first years of operation and the first results of a novel 9-channel wide-field optical monitoring system with sub-second temporal resolution, Mini-Mega-TORTORA (MMT-9), which is in operation now at Special Astrophysical Observatory on Russian Caucasus. The system is able to observe the sky simultaneously in either wide (˜900 square degrees) or narrow (˜100 square degrees) fields of view, either in clear light or with any combination of color (Johnson-Cousins B, V or R) and polarimetric filters installed, with exposure times ranging from 0.1 s to hundreds of seconds. The real-time system data analysis pipeline performs automatic detection of rapid transient events, both near-Earth and extragalactic. The objects routinely detected by MMT include faint meteors and artificial satellites. The pipeline for a longer time scales variability analysis is still in development.

  5. VizieR Online Data Catalog: Wide-field spectrosc. survey of GCs in Virgo cluster (Ko+, 2017)

    Science.gov (United States)

    Ko, Y.; Hwang, H. S.; Lee, M. G.; Park, H. S.; Lim, S.; Sohn, J.; Jang, I. S.; Hwang, N.; Park, B.-G.

    2017-08-01

    We selected globular cluster (GC) candidates using the Next Generation Virgo Cluster Survey (NGVS; Ferrarese+ 2012ApJS..200....4F) archival images covering the central region of the Virgo cluster. The NGVS is a wide-field imaging survey of the Virgo cluster using MegaCam with a field of view of 1°x1° attached at the Canada-French-Hawaii Telescope. We carried out spectroscopic observation of GC candidates in the Virgo using the Hectospec mounted on the 6.5m Multiple-Mirror Telescope in queue mode under program ID 2014A-UAO-G18 (PI: Myung Gyoon Lee) between 2014 February and March (wavelength range: 3650Å to 9200Å). (3 data files).

  6. Impacts on the Hubble Space Telescope Wide Field and Planetary Camera 2: Microanalysis and Recognition of Micrometeoroid Compositions

    Science.gov (United States)

    Kearsley, A. T.; Ross, D. K.; Anz-Meador, P.; Liou, J. C.; Opiela, J.; Grime, G. W.; Webb, R. P.; Jeynes, C.; Palitsin, V. V.; Colaux, J. L.; hide

    2014-01-01

    Postflight surveys of the Wide Field and Planetary Camera 2 (WFPC2) on the Hubble Space Telescope have located hundreds of features on the 2.2 by 0.8 m curved plate, evidence of hypervelocity impact by small particles during 16 years of exposure to space in low Earth orbit (LEO). The radiator has a 100 - 200 micron surface layer of white paint, overlying 4 mm thick Al alloy, which was not fully penetrated by any impact. Over 460 WFPC2 samples were extracted by coring at JSC. About half were sent to NHM in a collaborative program with NASA, ESA and IBC. The structural and compositional heterogeneity at micrometer scale required microanalysis by electron and ion beam microscopes to determine the nature of the impactors (artificial orbital debris, or natural micrometeoroids, MM). Examples of MM impacts are described elsewhere. Here we describe the development of novel electron beam analysis protocols, required to recognize the subtle traces of MM residues.

  7. Micrometeoroid Impacts on the Hubble Sace Telescope Wide Field and Planetary Camera 2: Ion Beam Analysis of Subtle Impactor Traces

    Science.gov (United States)

    Grime, G. W.; Webb, R. P.; Jeynes, C.; Palitsin, V. V.; Colaux, J. L.; Kearsley, A. T.; Ross, D. K.; Anz-Meador, P.; Liou, J. C.; Opiela, J.; hide

    2014-01-01

    Recognition of origin for particles responsible for impact damage on spacecraft such as the Hubble Space Telescope (HST) relies upon postflight analysis of returned materials. A unique opportunity arose in 2009 with collection of the Wide Field and Planetary Camera 2 (WFPC2) from HST by shuttle mission STS-125. A preliminary optical survey confirmed that there were hundreds of impact features on the radiator surface. Following extensive discussion between NASA, ESA, NHM and IBC, a collaborative research program was initiated, employing scanning electron microscopy (SEM) and ion beam analysis (IBA) to determine the nature of the impacting grains. Even though some WFPC2 impact features are large, and easily seen without the use of a microscope, impactor remnants may be hard to find.

  8. Wide-field infrared survey explorer observations of young stellar objects in the Lynds 1509 dark cloud in Auriga

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wilson M.; McCollum, Bruce; Fajardo-Acosta, Sergio [Infrared Processing and Analysis Center, California Institute of Technology, MC 100-22, Pasadena, CA 91125 (United States); Padgett, Deborah L. [National Aeronautics and Space Administration, Goddard Space Flight Center, Code 665, Greenbelt, MD 20771 (United States); Terebey, Susan; Angione, John [Department of Physics and Astronomy, California State University, Los Angeles, CA 90032 (United States); Rebull, Luisa M. [Spitzer Science Center, California Institute of Technology, MC 314-6, Pasadena, CA 91125 (United States); Leisawitz, David, E-mail: wliu@ipac.caltech.edu [National Aeronautics and Space Administration, Goddard Space Flight Center, Code 605, Greenbelt, MD 20771 (United States)

    2014-06-01

    The Wide-Field Infrared Survey Explorer (WISE) has uncovered a striking cluster of young stellar object (YSO) candidates associated with the L1509 dark cloud in Auriga. The WISE observations, at 3.4 μm, 4.6 μm, 12 μm, and 22 μm, show a number of objects with colors consistent with YSOs, and their spectral energy distributions suggest the presence of circumstellar dust emission, including numerous Class I, flat spectrum, and Class II objects. In general, the YSOs in L1509 are much more tightly clustered than YSOs in other dark clouds in the Taurus-Auriga star forming region, with Class I and flat spectrum objects confined to the densest aggregates, and Class II objects more sparsely distributed. We estimate a most probable distance of 485-700 pc, and possibly as far as the previously estimated distance of 2 kpc.

  9. How to count nanoparticles with the naked eye?

    Science.gov (United States)

    Sinelnik, Artem D.; Samusev, Kirill B.

    2017-09-01

    In this work we experimentally investigated the patterns of optical Laue diffraction from photonic structures. The obtained experimental results and their interpretation allowed us to propose a very simple method of nanoparticles precise counting with the naked eye.

  10. Multi-feature combined cloud and cloud shadow detection in GaoFen-1 wide field of view imagery

    Science.gov (United States)

    Li, Zhiwei; Shen, Huanfeng; Li, Huifang; Xia, Guisong; Gamba, Paolo; Zhang, Liangpei

    2017-03-01

    The wide field of view (WFV) imaging system onboard the Chinese GaoFen-1 (GF-1) optical satellite has a 16-m resolution and four-day revisit cycle for large-scale Earth observation. The advantages of the high temporal-spatial resolution and the wide field of view make the GF-1 WFV imagery very popular. However, cloud cover is an inevitable problem in GF-1 WFV imagery, which influences its precise application. Accurate cloud and cloud shadow detection in GF-1 WFV imagery is quite difficult due to the fact that there are only three visible bands and one near-infrared band. In this paper, an automatic multi-feature combined (MFC) method is proposed for cloud and cloud shadow detection in GF-1 WFV imagery. The MFC algorithm first implements threshold segmentation based on the spectral features and mask refinement based on guided filtering to generate a preliminary cloud mask. The geometric features are then used in combination with the texture features to improve the cloud detection results and produce the final cloud mask. Finally, the cloud shadow mask can be acquired by means of the cloud and shadow matching and follow-up correction process. The method was validated using 108 globally distributed scenes. The results indicate that MFC performs well under most conditions, and the average overall accuracy of MFC cloud detection is as high as 96.8%. In the contrastive analysis with the official provided cloud fractions, MFC shows a significant improvement in cloud fraction estimation, and achieves a high accuracy for the cloud and cloud shadow detection in the GF-1 WFV imagery with fewer spectral bands. The proposed method could be used as a preprocessing step in the future to monitor land-cover change, and it could also be easily extended to other optical satellite imagery which has a similar spectral setting.

  11. Development of a lightweight near-zero CTE optical bench for the Wide-Field Camera 3 instrument

    Science.gov (United States)

    Holz, Jill M.; Kunt, Cengiz; Lashley, Chris; McGuffey, Douglas B.

    2003-02-01

    The design and development of an optical bench (OB) for Wide Field Camera 3 (WFC3), a next generation science instrument for the Hubble Space Telescope (HST) has proven a challenging task. WFC3 will replace Wide Field Planetary Camera 2 (WF/PC 2) during the next servicing mission of the HST in 2004. The WFC3 program is re-using much of the hardware from WF/PC 1, returned from the First Servicing Mission, which has added complexity to the program. This posed some significant packaging challenges, further complicated by WFC3 utilizing two, separate optical channels. The WF/PC 1 optical bench could not house the additional optical components, so a new bench was developed. The new bench had to be designed to accommodate the sometimes-conflicting requirements of the two channels, which operate over a wavelength range of 200nm to 1800nm, from Near Ultraviolet to Near Infrared. In addition, the bench had to interface to the reused WF/PC 1 hardware, which was not optimized for this mission. To aid in the design of the bench, the team used software tools to merge structural, thermal and optical models to obtain performance (STOP) of the optical systems in operation. Several iterations of this performance analysis were needed during the design process to verify the bench would meet requirements. The fabrication effort included a rigorous material characterization program and significant tooling. After assembly, the optical bench underwent an extensive qualification program to prove the design and manufacturing processes. This paper provides the details of the design and development process of this highly optimized optical bench.

  12. Deep wide-field imaging down to the oldest main sequence turn-offs in the Sculptor dwarf spheroidal galaxy

    Science.gov (United States)

    de Boer, T. J. L.; Tolstoy, E.; Saha, A.; Olsen, K.; Irwin, M. J.; Battaglia, G.; Hill, V.; Shetrone, M. D.; Fiorentino, G.; Cole, A.

    2011-04-01

    We present wide-field photometry of resolved stars in the nearby Sculptor dwarf spheroidal galaxy using CTIO/MOSAIC, going down to the oldest main sequence turn-off. The accurately flux calibrated wide field colour-magnitude diagrams can be used to constrain the ages of different stellar populations, and also their spatial distribution. The Sculptor dSph contains a predominantly ancient stellar population (>10 Gyr old) which can be easily resolved into individual stars. A galaxy dominated by an old population provides a clear view of ancient processes of galaxy formation unimpeded by overlying younger populations. By using spectroscopic metallicities of RGB stars in combination with our deep main sequence turn-off photometry we can constrain the ages of different stellar populations with particular accuracy. We find that the known metallicity gradient in Sculptor is well matched to an age gradient. This is the first time that this link with age has been directly quantified. This gradient has been previously observed as a variation in horizontal branch properties and is now confirmed to exist for main sequence turn-offs as well. It is likely the Sculptor dSph first formed an extended metal-poor population at the oldest times, and subsequent more metal-rich, younger stars were formed more towards the centre until the gas was depleted or lost roughly 7 Gyr ago. The fact that these clear radial gradients have been preserved up to the present day is consistent with the apparent lack of signs of recent tidal interactions. Appendices are only available in electronic form at http://www.aanda.org

  13. Polychromatic photons

    DEFF Research Database (Denmark)

    Keller, Ole

    2002-01-01

    A review is given of the space-time wave mechanics of single photons, a subject with an almost century long history. The Landau-Peierls photon wave function, which is related nonlocally to the electromagnetic field is first described, and thereafter the so-called energy wave function, based...... on the positive-frequency Riemann-Silberstein vectors, is discussed. Recent attempts to understand the birth process of a photon emerging from a single atom are summarized. The polychromatic photon concept is introduced, and it is indicated how the wave mechanics of polychromatic photons can be upgraded to wave...... train quantum electrodynamics. A brief description of particle (photon) position operators is given, and it is shown that photons usually are only algebraically confined in an emission process. Finally, it is demonstrated that the profile of the birth domain of a radio-frequency photon emitted...

  14. Portable lensless wide-field microscopy imaging platform based on digital inline holography and multi-frame pixel super-resolution

    National Research Council Canada - National Science Library

    Antonio C Sobieranski; Fatih Inci; H Cumhur Tekin; Mehmet Yuksekkaya; Eros Comunello; Daniel Cobra; Aldo Von Wangenheim; Utkan Demirci

    2015-01-01

      In this paper, an irregular displacement-based lensless wide-field microscopy imaging platform is presented by combining digital in-line holography and computational pixel super-resolution using multi-frame processing...

  15. Flight performance of an advanced CZT imaging detector in a balloon-borne wide-field hard X-ray telescope—ProtoEXIST1

    Science.gov (United States)

    Hong, J.; Allen, B.; Grindlay, J.; Barthelemy, S.; Baker, R.; Garson, A.; Krawczynski, H.; Apple, J.; Cleveland, W. H.

    2011-10-01

    We successfully carried out the first high-altitude balloon flight of a wide-field hard X-ray coded-aperture telescope ProtoEXIST1, which was launched from the Columbia Scientific Balloon Facility at Ft. Sumner, New Mexico on October 9, 2009. ProtoEXIST1 is the first implementation of an advanced CdZnTe (CZT) imaging detector in our ongoing program to establish the technology required for next generation wide-field hard X-ray telescopes such as the High Energy Telescope (HET) in the Energetic X-ray Imaging Survey Telescope (EXIST). The CZT detector plane in ProtoEXIST1 consists of an 8×8 array of closely tiled 2 cm×2 cm×0.5 cm thick pixellated CZT crystals, each with 8×8 pixels, mounted on a set of readout electronics boards and covering a 256 cm2 active area with 2.5 mm pixels. A tungsten mask, mounted at 90 cm above the detector provides shadowgrams of X-ray sources in the 30-600 keV band for imaging, allowing a fully coded field of view of 9°×9° (and 19°×19° for 50% coding fraction) with an angular resolution of 20‧. In order to reduce the background radiation, the detector is surrounded by semi-graded (Pb/Sn/Cu) passive shields on the four sides all the way to the mask. On the back side, a 26 cm×26 cm×2 cm CsI(Na) active shield provides signals to tag charged particle induced events as well as ≳100keV background photons from below. The flight duration was only about 7.5 h due to strong winds (60 knots) at float altitude (38-39 km). Throughout the flight, the CZT detector performed excellently. The telescope observed Cyg X-1, a bright black hole binary system, for ˜1h at the end of the flight. Despite a few problems with the pointing and aspect systems that caused the telescope to track about 6.4° off the target, the analysis of the Cyg X-1 data revealed an X-ray source at 7.2σ in the 30-100 keV energy band at the expected location from the optical images taken by the onboard daytime star camera. The success of this first flight is very

  16. The HST/WFC3 Quicklook Project: A User Interface to Hubble Space Telescope Wide Field Camera 3 Data

    Science.gov (United States)

    Bourque, Matthew; Bajaj, Varun; Bowers, Ariel; Dulude, Michael; Durbin, Meredith; Gosmeyer, Catherine; Gunning, Heather; Khandrika, Harish; Martlin, Catherine; Sunnquist, Ben; Viana, Alex

    2017-06-01

    The Hubble Space Telescope's Wide Field Camera 3 (WFC3) instrument, comprised of two detectors, UVIS (Ultraviolet-Visible) and IR (Infrared), has been acquiring ~ 50-100 images daily since its installation in 2009. The WFC3 Quicklook project provides a means for instrument analysts to store, calibrate, monitor, and interact with these data through the various Quicklook systems: (1) a ~ 175 TB filesystem, which stores the entire WFC3 archive on disk, (2) a MySQL database, which stores image header data, (3) a Python-based automation platform, which currently executes 22 unique calibration/monitoring scripts, (4) a Python-based code library, which provides system functionality such as logging, downloading tools, database connection objects, and filesystem management, and (5) a Python/Flask-based web interface to the Quicklook system. The Quicklook project has enabled large-scale WFC3 analyses and calibrations, such as the monitoring of the health and stability of the WFC3 instrument, the measurement of ~ 20 million WFC3/UVIS Point Spread Functions (PSFs), the creation of WFC3/IR persistence calibration products, and many others.

  17. Development of a Data Reduction Algorithm for Optical Wide Field Patrol (OWL II: Improving Measurement of Lengths of Detected Streaks

    Directory of Open Access Journals (Sweden)

    Sun-Youp Park

    2016-09-01

    Full Text Available As described in the previous paper (Park et al. 2013, the detector subsystem of optical wide-field patrol (OWL provides many observational data points of a single artificial satellite or space debris in the form of small streaks, using a chopper system and a time tagger. The position and the corresponding time data are matched assuming that the length of a streak on the CCD frame is proportional to the time duration of the exposure during which the chopper blades do not obscure the CCD window. In the previous study, however, the length was measured using the diagonal of the rectangle of the image area containing the streak; the results were quite ambiguous and inaccurate, allowing possible matching error of positions and time data. Furthermore, because only one (position, time data point is created from one streak, the efficiency of the observation decreases. To define the length of a streak correctly, it is important to locate the endpoints of a streak. In this paper, a method using a differential convolution mask pattern is tested. This method can be used to obtain the positions where the pixel values are changed sharply. These endpoints can be regarded as directly detected positional data, and the number of data points is doubled by this result.

  18. Wide-field spectral imaging of human ovary autofluorescence and oncologic diagnosis via previously collected probe data

    Science.gov (United States)

    Renkoski, Timothy E.; Hatch, Kenneth D.; Utzinger, Urs

    2012-03-01

    With no sufficient screening test for ovarian cancer, a method to evaluate the ovarian disease state quickly and nondestructively is needed. The authors have applied a wide-field spectral imager to freshly resected ovaries of 30 human patients in a study believed to be the first of its magnitude. Endogenous fluorescence was excited with 365-nm light and imaged in eight emission bands collectively covering the 400- to 640-nm range. Linear discriminant analysis was used to classify all image pixels and generate diagnostic maps of the ovaries. Training the classifier with previously collected single-point autofluorescence measurements of a spectroscopic probe enabled this novel classification. The process by which probe-collected spectra were transformed for comparison with imager spectra is described. Sensitivity of 100% and specificity of 51% were obtained in classifying normal and cancerous ovaries using autofluorescence data alone. Specificity increased to 69% when autofluorescence data were divided by green reflectance data to correct for spatial variation in tissue absorption properties. Benign neoplasm ovaries were also found to classify as nonmalignant using the same algorithm. Although applied ex vivo, the method described here appears useful for quick assessment of cancer presence in the human ovary.

  19. THE LOW-FREQUENCY CHARACTERISTICS OF PSR J0437–4715 OBSERVED WITH THE MURCHISON WIDE-FIELD ARRAY

    Energy Technology Data Exchange (ETDEWEB)

    Bhat, N. D. R.; Ord, S. M.; Tremblay, S. E.; Tingay, S. J.; Oronsaye, S.; Emrich, D. [International Centre for Radio Astronomy Research, Curtin University, Bentley, WA 6102 (Australia); Deshpande, A. A. [Raman Research Institute, Bangalore 560080 (India); Van Straten, W.; Briggs, F. [ARC Centre of Excellence for All-sky Astrophysics (CAASTRO), Curtin University, Bentley, WA 6102 (Australia); Bernardi, G. [Square Kilometre Array South Africa, 3rd Floor, The Park, Park Road, Pinelands, 7405 (South Africa); Bowman, J. D. [School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287 (United States); Cappallo, R. J.; Corey, B. E. [MIT Haystack Observatory, Westford, MA 01886 (United States); Goeke, R.; Hewitt, J. N. [Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Greenhill, L. J.; Kasper, J. C. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Hazelton, B. J. [Department of Physics, University of Washington, Seattle, WA 98195 (United States); Johnston-Hollitt, M. [School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington 6140 (New Zealand); Kaplan, D. L. [Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, WI 53201 (United States); and others

    2014-08-20

    We report on the detection of the millisecond pulsar PSR J0437–4715 with the Murchison Wide-field Array (MWA) at a frequency of 192 MHz. Our observations show rapid modulations of pulse intensity in time and frequency that arise from diffractive scintillation effects in the interstellar medium (ISM), as well as prominent drifts of intensity maxima in the time-frequency plane that arise from refractive effects. Our analysis suggests that the scattering screen is located at a distance of ∼80-120 pc from the Sun, in disagreement with a recent claim that the screen is closer (∼10 pc). Comparisons with higher frequency data from Parkes reveal a dramatic evolution of the pulse profile with frequency, with the outer conal emission becoming comparable in strength to that from the core and inner conal regions. As well as demonstrating the high time resolution science capabilities currently possible with the MWA, our observations underscore the potential to conduct low-frequency investigations of timing-array millisecond pulsars, which may lead to increased sensitivity in the detection of nanoHertz gravitational waves via the accurate characterization of ISM effects.

  20. Mapping the Tidal Destruction of the Hercules Dwarf: A Wide-field DECam Imaging Search for RR Lyrae Stars

    Science.gov (United States)

    Garling, Christopher; Willman, Beth; Sand, David J.; Hargis, Jonathan; Crnojević, Denija; Bechtol, Keith; Carlin, Jeffrey L.; Strader, Jay; Zou, Hu; Zhou, Xu; Nie, Jundan; Zhang, Tianmeng; Zhou, Zhimin; Peng, Xiyan

    2018-01-01

    We investigate the hypothesized tidal disruption of the Hercules ultra-faint dwarf galaxy (UFD). Previous tidal disruption studies of the Hercules UFD have been hindered by the high degree of foreground contamination in the direction of the dwarf. We bypass this issue by using RR Lyrae stars, which are standard candles with a very low field-volume density at the distance of Hercules. We use wide-field imaging from the Dark Energy Camera on CTIO to identify candidate RR Lyrae stars, supplemented with observations taken in coordination with the Beijing–Arizona Sky Survey on the Bok Telescope. Combining color, magnitude, and light-curve information, we identify three new RR Lyrae stars associated with Hercules. All three of these new RR Lyrae stars lie outside its published tidal radius. When considered with the nine RR Lyrae stars already known within the tidal radius, these results suggest that a substantial fraction of Hercules’ stellar content has been stripped. With this degree of tidal disruption, Hercules is an interesting case between a visibly disrupted dwarf (such as the Sagittarius dwarf spheroidal galaxy) and one in dynamic equilibrium. The degree of disruption also shows that we must be more careful with the ways we determine object membership when estimating dwarf masses in the future. One of the three discovered RR Lyrae stars sits along the minor axis of Hercules, but over two tidal radii away. This type of debris is consistent with recent models that suggest Hercules’ orbit is aligned with its minor axis.

  1. An experiment in big data: storage, querying and visualisation of data taken from the Liverpool Telescope's wide field cameras

    Science.gov (United States)

    Barnsley, R. M.; Steele, Iain A.; Smith, R. J.; Mawson, Neil R.

    2014-07-01

    The Small Telescopes Installed at the Liverpool Telescope (STILT) project has been in operation since March 2009, collecting data with three wide field unfiltered cameras: SkycamA, SkycamT and SkycamZ. To process the data, a pipeline was developed to automate source extraction, catalogue cross-matching, photometric calibration and database storage. In this paper, modifications and further developments to this pipeline will be discussed, including a complete refactor of the pipeline's codebase into Python, migration of the back-end database technology from MySQL to PostgreSQL, and changing the catalogue used for source cross-matching from USNO-B1 to APASS. In addition to this, details will be given relating to the development of a preliminary front-end to the source extracted database which will allow a user to perform common queries such as cone searches and light curve comparisons of catalogue and non-catalogue matched objects. Some next steps and future ideas for the project will also be presented.

  2. Development of digital system for the wide-field x-ray imaging detector aboard Kanazawa-SAT3

    Science.gov (United States)

    Kagawa, Yasuaki; Yonetoku, Daisuke; Sawano, Tatsuya; Mihara, Tatehiro; Kyutoku, Koutarou; Ikeda, Hirokazu; Yoshida, Kazuki; Ina, Masao; Ota, Kaichi; Suzuki, Daichi; Miyao, Kouga; Watanabe, Syouta; Hatori, Satoshi; Kume, Kyo; Mizushima, Satoshi; Hasegawa, Takashi

    2017-08-01

    We are planning to launch a micro satellite, Kanazawa-SAT3 , at the end of FY2018 to localize X-ray transients associated with gravitational wave sources. Now we are testing a prototype model of wide-field Xray imaging detector named T-LEX (Transient Localization EXperiment). T-LEX is an orthogonally distributed two sets of 1-dimensional silicon strip detectors with coded aperture masks, and covers more than 1 steradian field of view in the energy range of 1 - 20 keV. Each dimension has 512 readout electrodes (totally 1,024 channels), and they are read out with application specific integrated circuits (ASICs) controlled by two onboard FPGAs. Moreover, each FPGA calculates the cross correlation between the X-ray intensity and mask patterns every 64 msec, makes a histogram of lightcurves and energy spectra, and also plays a role of telemetry/command interface to mission CPU. In this paper, we report an overview of digital electronics system. Especially, we focus on the high-speed imaging processor on FPGA and demonstrate its performance as an X-ray imaging system.

  3. Gradient Permittivity Meta-Structure model for Wide-field Super-resolution imaging with a sub-45 nm resolution.

    Science.gov (United States)

    Cao, Shun; Wang, Taisheng; Xu, Wenbin; Liu, Hua; Zhang, Hongxin; Hu, Bingliang; Yu, Weixing

    2016-03-21

    A gradient permittivity meta-structure (GPMS) model and its application in super-resolution imaging were proposed and discussed in this work. The proposed GPMS consists of alternate metallic and dielectric films with a gradient permittivity which can support surface plasmons (SPs) standing wave interference patterns with a super resolution. By employing the rigorous numerical FDTD simulation method, the GPMS was carefully simulated to find that the period of the SPs interference pattern is only 84 nm for a 532 nm incident light. Furthermore, the potential application of the GPMS for wide-field super-resolution imaging was also discussed and the simulation results show that an imaging resolution of sub-45 nm can be achieved based on the plasmonic structure illumination microscopic method, which means a 5.3-fold improvement on resolution has been achieved in comparison with conventional epifluorescence microscopy. Moreover, besides the super-resolution imaging application, the proposed GPMS model can also be applied for nanolithography and other areas where super resolution patterns are needed.

  4. Cross-Comparative Analysis of GF-1 Wide Field View and Landsat-7 Enhanced Thematic Mapper Plus Data

    Science.gov (United States)

    Wei, X.-Q.; Gu, X.-F.; Meng, Q.-Y.; Yu, T.; Jia, K.; Zhan, Y.-L.; Wang, Ch.-M.

    2017-11-01

    The wide field view (WFV) sensor on-board GF-1 satellite can acquire multi-spectral data with moderate spatial resolution, which holds great potential for monitoring the Earth's surface. This study assesses WFV data through cross-comparison of spectral band reflectances and vegetation indices with Landsat-7 Enhanced Thematic Mapper plus (ETM+) data. The four vegetation indices considered in this study are the normalized difference vegetation index (NDVI), the enhanced vegetation index (EVI), the ratio vegetation index (RVI), and the soil adjusted vegetation index (SAVI). The R2 between the WFV and ETM+ data were 0.82, 0.89, 0.92, and 0.80 for the blue, green, red, and near-infrared bands reflectance, and 0.90, 0.84, 0.83, and 0.91 for NDVI, EVI, RVI, and SAVI, respectively. The results displayed a high correlation between the spectral reflectances and vegetation indices of the two sensors' data, which indicated the reliability of the WFV data. Furthermore, the WFV data were better than the ETM+ data with regards to spatial and temporal resolutions.

  5. Wide field of view tabletop light field display based on piece-wise tracking and off-axis pickup

    Science.gov (United States)

    Zhu, Yanhong; Sang, Xinzhu; Yu, Xunbo; Wang, Peng; Xing, Shujun; Chen, Duo; Yan, Binbin; Wang, Kuiru; Yu, Chongxiu

    2017-11-01

    A wide field of view (FOV) tabletop light field display (LFD) based on piece-wise tracking and off-axis pickup is presented to display the floating three-dimensional (3D) scene, which is 360°surrounding viewable. The demonstrated LFD is specially designed with an integral imaging display (IID) with 83 × 83 viewpoints and a full-parallax holographic functional screen (HFS). To improve the FOV, a piece-wise tracking based FOV enhancement method is proposed. The relationship between the viewing zone and the elemental images (EIs) is formulated. A ray-tracing based method using off-axis pickup instead of parallel pickup directly is adopted to render the 3D scene to EIs. Then the piece-wise tracking method of varying the viewing zone by placing the EIs according to the position of viewer is analyzed. The floating 3D scene with a FOV of 70° × 70°is experimentally demonstrated with a good 3D perception.

  6. ON THE BINARY FREQUENCY OF THE LOWEST MASS MEMBERS OF THE PLEIADES WITH HUBBLE SPACE TELESCOPE WIDE FIELD CAMERA 3

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, E. V. [Lowell Observatory, 1400 West Mars Hill Road, Flagstaff (United States); Dupuy, Trent J. [The University of Texas at Austin, Department of Astronomy, 2515 Speedway C1400, Austin, TX 78712 (United States); Allers, Katelyn N. [Department of Physics and Astronomy, Bucknell University, Lewisburg, PA 17837 (United States); Liu, Michael C. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Deacon, Niall R., E-mail: eugenio.v.garcia@gmail.com [Centre for Astrophysics Research, University of Hertfordshire, College Lane, Hatfield, AL1 5TL (United Kingdom)

    2015-05-01

    We present the results of a Hubble Space Telescope Wide Field Camera 3 (WFC3) imaging survey of 11 of the lowest mass brown dwarfs in the Pleiades known (25–40 M{sub Jup}). These objects represent the predecessors to T dwarfs in the field. Using a semi-empirical binary point-spread function (PSF)-fitting technique, we are able to probe to 0.″ 03 (0.75 pixel), better than 2x the WFC3/UVIS diffraction limit. We did not find any companions to our targets. From extensive testing of our PSF-fitting method on simulated binaries, we compute detection limits which rule out companions to our targets with mass ratios of ≳0.7 and separations ≳4 AU. Thus, our survey is the first to attain the high angular resolution needed to resolve brown dwarf binaries in the Pleiades at separations that are most common in the field population. We constrain the binary frequency over this range of separation and mass ratio of 25–40 M{sub Jup} Pleiades brown dwarfs to be <11% for 1σ (<26% at 2σ). This binary frequency is consistent with both younger and older brown dwarfs in this mass range.

  7. Measuring galaxy [O ii] emission line doublet with future ground-based wide-field spectroscopic surveys

    Science.gov (United States)

    Comparat, Johan; Kneib, Jean-Paul; Bacon, Roland; Mostek, Nick J.; Newman, Jeffrey A.; Schlegel, David J.; Yèche, Christophe

    2013-11-01

    The next generation of wide-field spectroscopic redshift surveys will map the large-scale galaxy distribution in the redshift range 0.7 ≤ z ≤ 2 to measure baryonic acoustic oscillations (BAO). The primary optical signature used in this redshift range comes from the [Oii] emission line doublet, which provides a unique redshift identification that can minimize confusion with other single emission lines. To derive the required spectrograph resolution for these redshift surveys, we simulate observations of the [Oii] (λλ 3727, 3729) doublet for various instrument resolutions, and line velocities. We foresee two strategies for the choice of the resolution for future spectrographs for BAO surveys. For bright [Oii] emitter surveys ([Oii] flux ~30 × 10-17 erg cm-2 s-1 like SDSS-IV/eBOSS), a resolution of R ~ 3300 allows the separation of 90 percent of the doublets. The impact of the sky lines on the completeness in redshift is less than 6 percent. For faint [Oii] emitter surveys ([Oii] flux ~10 × 10-17 erg cm-2 s-1 like DESi), the detection improves continuously with resolution, so we recommend the highest possible resolution, the limit being given by the number of pixels (4k by 4k) on the detector and the number of spectroscopic channels (2 or 3).

  8. Argus+: The Future of Wide-Field, Spectral-Line Imaging at 3-mm with the Green Bank Telescope

    Science.gov (United States)

    Maddalena, Ronald; Frayer, David; Lockman, Felix; O'Neil, Karen; White, Steven; Argus+ Collaboration

    2018-01-01

    The Robert C Byrd Green Bank Telescope has met its design goal of providing high-quality observations at 115 GHz. Observers also have access to the new, 16-pixel, 3-mm Argus receiver, which is providing high-dynamic range images over wide fields for the multitude of spectral lines between 85 and 115 GHz, including CO, 13CO, C18O, SiO, HCN, HCO+, HNC, N2H+, and CS. The small number of pixels in Argus limits its ability to map many of the most interesting objects whose extent exceeds many arc-minutes. The successful performance of Argus, and its modular design, demonstrates that receivers with many more pixels could be built for the GBT. A 12 x 12 array of the Argus design would have mapping speeds about nine times faster than Argus without suffering any degradation in performance for the outer pixels in the array. We present our plans to build the next-generation Argus instrument (Argus+) with 144-pixels, a footprint 5’x5’, and 7" resolution at 110 GHz. The project will be a collaboration between the Green Bank Observatory and university groups, who will supply key components. The key science drivers for Argus+ are studies of molecular filaments in the Milky Way, studies of molecular clouds in nearby galaxies, and the observations of rapidly evolving solar system objects.

  9. THE SIZE EVOLUTION OF PASSIVE GALAXIES: OBSERVATIONS FROM THE WIDE-FIELD CAMERA 3 EARLY RELEASE SCIENCE PROGRAM

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, R. E. Jr. [Physics Department, University of California, Davis, CA 95616 (United States); McCarthy, P. J. [Observatories of the Carnegie Institute of Washington, Pasadena, CA 91101 (United States); Cohen, S. H.; Rutkowski, M. J.; Mechtley, M. R.; Windhorst, R. A. [School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287 (United States); Yan, H. [Center for Cosmology and Astroparticle Physics, Ohio State University, Columbus, OH 43210 (United States); Hathi, N. P. [Department of Physics and Astronomy, University of California, Riverside, CA 92521 (United States); Koekemoer, A. M.; Bond, H. E.; Bushouse, H. [Space Telescope Science Institute, Baltimore, MD 21218 (United States); O' Connell, R. W. [Department of Astronomy, University of Virginia, Charlottesville, VA 22904 (United States); Balick, B. [Department of Astronomy, University of Washington, Seattle, WA 98195 (United States); Calzetti, D. [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States); Crockett, R. M. [Department of Physics, University of Oxford, Oxford OX1 3PU (United Kingdom); Disney, M. [School of Physics and Astronomy, Cardiff University, Cardiff CF24 3AA (United Kingdom); Dopita, M. A. [Research School of Astronomy and Astrophysics, The Australian National University, Weston Creek, ACT 2611 (Australia); Frogel, J. A. [Galaxies Unlimited, Lutherville, MD 21093 (United States); Hall, D. N. B. [Institute for Astronomy, University of Hawaii, Honolulu, HI 96822 (United States); Holtzman, J. A., E-mail: rryan@physics.ucdavis.edu [Department of Astronomy, New Mexico State University, Las Cruces, NM 88003 (United States); and others

    2012-04-10

    We present the size evolution of passively evolving galaxies at z {approx} 2 identified in Wide-Field Camera 3 imaging from the Early Release Science program. Our sample was constructed using an analog to the passive BzK galaxy selection criterion, which isolates galaxies with little or no ongoing star formation at z {approx}> 1.5. We identify 30 galaxies in {approx}40 arcmin{sup 2} to H < 25 mag. By fitting the 10-band Hubble Space Telescope photometry from 0.22 {mu}m {approx}< {lambda}{sub obs} {approx}< 1.6 {mu}m with stellar population synthesis models, we simultaneously determine photometric redshift, stellar mass, and a bevy of other population parameters. Based on the six galaxies with published spectroscopic redshifts, we estimate a typical redshift uncertainty of {approx}0.033(1 + z). We determine effective radii from Sersic profile fits to the H-band image using an empirical point-spread function. By supplementing our data with published samples, we propose a mass-dependent size evolution model for passively evolving galaxies, where the most massive galaxies (M{sub *} {approx} 10{sup 11} M{sub Sun }) undergo the strongest evolution from z {approx} 2 to the present. Parameterizing the size evolution as (1 + z){sup -{alpha}}, we find a tentative scaling of {alpha} Almost-Equal-To (- 0.6 {+-} 0.7) + (0.9 {+-} 0.4)log (M{sub *}/10{sup 9} M{sub Sun }), where the relatively large uncertainties reflect the poor sampling in stellar mass due to the low numbers of high-redshift systems. We discuss the implications of this result for the redshift evolution of the M{sub *}-R{sub e} relation for red galaxies.

  10. Outcome of universal newborn eye screening with wide-field digital retinal image acquisition system: a pilot study.

    Science.gov (United States)

    Goyal, P; Padhi, T R; Das, T; Pradhan, L; Sutar, S; Butola, S; Behera, U C; Jain, L; Jalali, S

    2017-07-24

    PurposeTo evaluate the outcome of universal newborn eye screening with wide-field digital retinal imaging (WFDRI) system.MethodsIn this pilot study, we examined 1152 apparently healthy newborn infants in the obstetrics and gynecology ward of a civil hospital in Eastern India over 1.5 years. The examination included external eye examination, red reflex test and fundus imaging by WFDRI (RetCam II, Clarity medical system, Pleasanton, CA, USA) by a trained optometrist. The pathologies detected, net monetary gain and skilled manpower saved were documented. The results were compared with three similar studies thus far published in the literature.ResultsOcular abnormality of any kind was seen in 172 (14.93%) babies. Retinal hemorrhage in 153 babies (88.9% of all abnormal findings) was the most common abnormality; it was bilateral in 118 (77.12%) babies and 4 babies had foveal hemorrhage. Other abnormalities included vitreous hemorrhage (n=1), congenital glaucoma (n=2), uveal coloboma (n=2), retinopathy mimicking retinopathy of prematurity (n=2), and cystic fovea (n=3). The retinal hemorrhages resolved spontaneously in all eyes. One baby with congenital glaucoma received surgery and the other was treated medically. The benefits included savings in skilled manpower, a net monetary gain of INR 4.195 million (US$ 62,612) and skilled manpower saving by 319.4 h.ConclusionsThe universal neonatal eye screening using WFDRI detected pathologies that needed immediate care or regular follow up; saved skilled manpower with a net monetary gain. But compared to a red reflex test the benefits were marginal in terms of detecting treatment warranting ocular pathologies.Eye advance online publication, 24 July 2017; doi:10.1038/eye.2017.129.

  11. Wide-field human photoreceptor morphological analysis using phase-resolved sensorless adaptive optics swept-source OCT (Conference Presentation)

    Science.gov (United States)

    Ju, Myeong Jin; Heisler, Morgan; Zawadzki, Robert J.; Bonora, Stefano; Jian, Yifan; Sarunic, Marinko V.

    2017-02-01

    Adaptive optics optical coherence tomography (AO-OCT) systems capable of 3D high resolution imaging have been applied to posterior eye imaging in order to resolve the fine morphological features in the retina. Human cone photoreceptors have been extensively imaged and studied for the investigation of retinal degeneration resulting in photoreceptor cell death. However, there are still limitations of conventional approaches to AO in the clinic, such as relatively small field-of-view (FOV) and the complexities in system design and operation. In this research, a recently developed phase-resolved Sensorless AO Swept Source based OCT (SAO-SS-OCT) system which is compact in size and easy to operate is presented. Owing to its lens-based system design, wide-field imaging can be performed up to 6° on the retina. A phase stabilization unit was integrated with the OCT system. With the phase stabilized OCT signal, we constructed retinal micro-vasculature image using a phase variance technique. The retinal vasculature image was used to align and average multiple OCT volumes acquired sequentially. The contrast-enhanced photoreceptor projection image was then extracted from the averaged volume, and analyzed based on its morphological features through a novel photoreceptor structure evaluation algorithm. The retinas of twelve human research subjects (10 normal and 2 pathological cases) were measured in vivo. Quantitative parameters used for evaluating the cone photoreceptor mosaic such as cell density, cell area, and mosaic regularity are presented and discussed. The SAO-SS-OCT system and the proposed photoreceptor evaluation method has significant potential to reveal early stage retinal diseases associated with retinal degeneration.

  12. Active optics and modified-Rumsey wide-field telescopes: MINITRUST demonstrators with vase- and tulip-form mirrors

    Science.gov (United States)

    Lemaître, Gérard R.; Montiel, Pierre; Joulié, Patrice; Dohlen, Kjetil; Lanzoni, Patrick

    2005-12-01

    Wide-field astronomy requires the development of larger aperture telescopes. The optical properties of a three-mirror modified-Rumsey design provide significant advantages when compared to other telescope designs: (i) at any wavelength, the design has a flat field and is anastigmatic; (ii) the system is extremely compact, i.e., it is almost four times shorter than a Schmidt. Compared to the equally compact flat-field Ritchey-Chrétien with a doublet-lens corrector, as developed for the Sloan digital sky survey - and which requires the polishing of six optical surfaces - the proposed modified-Rumsey design requires only a two-surface polishing and provides a better imaging quality. All the mirrors are spheroids of the hyperboloid type. Starting from the classical Rumsey design, it is shown that the use of all eight available free parameters allows the simultaneous aspherization of the primary and tertiary mirrors by active optics methods from a single deformable substrate. The continuity conditions between the primary and the tertiary hyperbolizations are achieved by an intermediate narrow ring of constant thickness that is not optically used. After the polishing of a double vase form in a spherical shape, the primary-tertiary hyperbolizations are achieved by in situ stressing. The tulip-form secondary is hyperbolized by stress polishing. Other active optics alternatives are possible for a space telescope. The modified-Rumsey design is of interest for developing large space- and ground-based survey telescopes in UV, visible, or IR ranges, such as currently demonstrated with the construction of identical telescopes MINITRUST-1 and -2, f/5 - 2° field of view. Double-pass optical tests show diffraction-limited images.

  13. Quantitative analysis of wide field-of-view and broadband quarter-wave plate based on metasurface

    Science.gov (United States)

    Chen, Yanjun; Guo, Zhe; Liu, Ke; Liu, Lihui; Li, Yanqiu

    2018-01-01

    As the numerical aperture (NA) of the projection objective increases continually and the exposure pattern feature size decreases gradually, the polarization illumination is introduced into the lithography system. Therefore, it is necessary to design a wide field-of-view (FOV) wave plate to eliminate the effect of oblique incident light on the phase delay of the traditional zero order wave plate effectively. The quarter-wave plate with 20° FOV based on birefringent optical crystals has been designed in our laboratory by Dong et al. In order to obtain a wider FOV, we explore a previously reported Ag patch ultrathin quarter-wave plate whose performances were not analyzed by finite-difference time-domain (FDTD) method. In this paper, we mainly investigate three performances of the Ag patch quarter-wave plate consisting of FOV, achromatic band and achromatic band transmission. The simulation results indicate that when phase difference error is controlled at +/-2° (1) the range of FOV of the quarter-wave plate is +/-29° at 632nm; (2) the achromatic band ranges from 618nm to 658nm at normal incidence; (3) the achromatic band transmission ranges from 11% to 30%. Compared with the traditional wave plate made of birefringent crystals, the achromatic band and transmission is slightly lower but the FOV of this quarter-wave plate is much wider. Thus, this Ag patch nanoscale wide FOV quarter-wave plate can be effectively used in high NA lithography projection exposure systems to reduce the polarization aberration caused by oblique incidence of light.

  14. THE HUBBLE WIDE FIELD CAMERA 3 TEST OF SURFACES IN THE OUTER SOLAR SYSTEM: SPECTRAL VARIATION ON KUIPER BELT OBJECTS

    Energy Technology Data Exchange (ETDEWEB)

    Fraser, Wesley C. [Herzberg Institute of Astrophysics, 5071 West Saanich Road Victoria, BC V9E 2E7 (Canada); Brown, Michael E. [California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91101 (United States); Glass, Florian, E-mail: wesley.fraser@nrc.ca [Observatoire de Genve, Universit de Genve, 51 chemin des Maillettes, CH-1290 Sauverny (Switzerland)

    2015-05-01

    Here, we present additional photometry of targets observed as part of the Hubble Wide Field Camera 3 (WFC3) Test of Surfaces in the Outer Solar System. Twelve targets were re-observed with the WFC3 in the optical and NIR wavebands designed to complement those used during the first visit. Additionally, all of the observations originally presented by Fraser and Brown were reanalyzed through the same updated photometry pipeline. A re-analysis of the optical and NIR color distribution reveals a bifurcated optical color distribution and only two identifiable spectral classes, each of which occupies a broad range of colors and has correlated optical and NIR colors, in agreement with our previous findings. We report the detection of significant spectral variations on five targets which cannot be attributed to photometry errors, cosmic rays, point-spread function or sensitivity variations, or other image artifacts capable of explaining the magnitude of the variation. The spectrally variable objects are found to have a broad range of dynamical classes and absolute magnitudes, exhibit a broad range of apparent magnitude variations, and are found in both compositional classes. The spectrally variable objects with sufficiently accurate colors for spectral classification maintain their membership, belonging to the same class at both epochs. 2005 TV189 exhibits a sufficiently broad difference in color at the two epochs that span the full range of colors of the neutral class. This strongly argues that the neutral class is one single class with a broad range of colors, rather than the combination of multiple overlapping classes.

  15. Detector Control and Data Acquisition for the Wide-Field Infrared Survey Telescope (WFIRST) with a Custom ASIC

    Science.gov (United States)

    Smith, Brian S.; Loose, Markus; Alkire, Greg; Joshi, Atul; Kelly, Daniel; Siskind, Eric; Rossetti, Dino; Mah, Jonathan; Cheng, Edward; Miko, Laddawan; hide

    2016-01-01

    The Wide-Field Infrared Survey Telescope (WFIRST) will have the largest near-IR focal plane ever flown by NASA, a total of 18 4K x 4K devices. The project has adopted a system-level approach to detector control and data acquisition where 1) control and processing intelligence is pushed into components closer to the detector to maximize signal integrity, 2) functions are performed at the highest allowable temperatures, and 3) the electronics are designed to ensure that the intrinsic detector noise is the limiting factor for system performance. For WFIRST, the detector arrays operate at 90 to 100 K, the detector control and data acquisition functions are performed by a custom ASIC at 150 to 180 K, and the main data processing electronics are at the ambient temperature of the spacecraft, notionally approx.300 K. The new ASIC is the main interface between the cryogenic detectors and the warm instrument electronics. Its single-chip design provides basic clocking for most types of hybrid detectors with CMOS ROICs. It includes a flexible but simple-to-program sequencer, with the option of microprocessor control for more elaborate readout schemes that may be data-dependent. All analog biases, digital clocks, and analog-to-digital conversion functions are incorporated and are connected to the nearby detectors with a short cable that can provide thermal isolation. The interface to the warm electronics is simple and robust through multiple LVDS channels. It also includes features that support parallel operation of multiple ASICs to control detectors that may have more capability or requirements than can be supported by a single chip.

  16. Atmospheric characterization of five hot Jupiters with the wide field Camera 3 on the Hubble space telescope

    Energy Technology Data Exchange (ETDEWEB)

    Ranjan, Sukrit; Charbonneau, David [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Désert, Jean-Michel [Department of Astrophysical and Planetary Sciences, University of Colorado, Boulder, CO 80309 (United States); Madhusudhan, Nikku [Yale Center for Astronomy and Astrophysics, Yale University, New Haven, CT 06511 (United States); Deming, Drake; Wilkins, Ashlee [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Mandell, Avi M., E-mail: sranjan@cfa.harvard.edu [NASA' s Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2014-04-20

    We probe the structure and composition of the atmospheres of five hot Jupiter exoplanets using the Hubble Space Telescope Wide Field Camera 3 (WFC3) instrument. We use the G141 grism (1.1-1.7 μm) to study TrES-2b, TrES-4b, and CoRoT-1b in transit; TrES-3b in secondary eclipse; and WASP-4b in both. This wavelength region includes a predicted absorption feature from water at 1.4 μm, which we expect to be nondegenerate with the other molecules that are likely to be abundant for hydrocarbon-poor (e.g., solar composition) hot Jupiter atmospheres. We divide our wavelength regions into 10 bins. For each bin we produce a spectrophotometric light curve spanning the time of transit or eclipse. We correct these light curves for instrumental systematics without reference to an instrument model. For our transmission spectra, our mean 1σ precision per bin corresponds to variations of 2.1, 2.8, and 3.0 atmospheric scale heights for TrES-2b, TrES-4b, and CoRoT-1b, respectively. We find featureless spectra for these three planets. We are unable to extract a robust transmission spectrum for WASP-4b. For our dayside emission spectra, our mean 1σ precision per bin corresponds to a planet-to-star flux ratio of 1.5 × 10{sup –4} and 2.1 × 10{sup –4} for WASP-4b and TrES-3b, respectively. We combine these estimates with previous broadband measurements and conclude that for both planets isothermal atmospheres are disfavored. We find no signs of features due to water. We confirm that WFC3 is suitable for studies of transiting exoplanets, but in staring mode multivisit campaigns are necessary to place strong constraints on water abundance.

  17. Atmospheric Characterization of Five Hot Jupiters with the Wide Field Camera 3 on the Hubble Space Telescope

    Science.gov (United States)

    Ranjan, Sukrit; Charbonneau, David; Desert, Jean-Michel; Madhusudhan, Nikku; Deming, Drake; Wilkins, Ashlee; Mandell, Avi M.

    2014-01-01

    We probe the structure and composition of the atmospheres of five hot Jupiter exoplanets using the Hubble Space Telescope Wide Field Camera 3 (WFC3) instrument. We use the G141 grism (1.1-1.7 micrometers) to study TrES-2b, TrES-4b, and CoRoT-1b in transit; TrES-3b in secondary eclipse; and WASP-4b in both. This wavelength region includes a predicted absorption feature from water at 1.4 micrometers, which we expect to be nondegenerate with the other molecules that are likely to be abundant for hydrocarbon-poor (e.g., solar composition) hot Jupiter atmospheres. We divide our wavelength regions into 10 bins. For each bin we produce a spectrophotometric light curve spanning the time of transit or eclipse. We correct these light curves for instrumental systematics without reference to an instrument model. For our transmission spectra, our mean 1s precision per bin corresponds to variations of 2.1, 2.8, and 3.0 atmospheric scale heights for TrES-2b, TrES-4b, and CoRoT-1b, respectively. We find featureless spectra for these three planets. We are unable to extract a robust transmission spectrum for WASP-4b. For our dayside emission spectra, our mean 1 sigma precision per bin corresponds to a planet-to-star flux ratio of 1.5 x 10(exp -4) and 2.1 x 10(exp -4) for WASP-4b and TrES-3b, respectively. We combine these estimates with previous broadband measurements and conclude that for both planets isothermal atmospheres are disfavored. We find no signs of features due to water. We confirm that WFC3 is suitable for studies of transiting exoplanets, but in staring mode multivisit campaigns are necessary to place strong constraints on water abundance.

  18. Waveguide-Coupled Superconducting Nanowire Single-Photon Detectors

    Science.gov (United States)

    Beyer, Andrew D.; Briggs, Ryan M.; Marsili, Francesco; Cohen, Justin D.; Meenehan, Sean M.; Painter, Oskar J.; Shaw, Matthew D.

    2015-01-01

    We have demonstrated WSi-based superconducting nanowire single-photon detectors coupled to SiNx waveguides with integrated ring resonators. This photonics platform enables the implementation of robust and efficient photon-counting detectors with fine spectral resolution near 1550 nm.

  19. Microwave photonics

    CERN Document Server

    Lee, Chi H

    2006-01-01

    Wireless, optical, and electronic networks continue to converge, prompting heavy research into the interface between microwave electronics, ultrafast optics, and photonic technologies. New developments arrive nearly as fast as the photons under investigation, and their commercial impact depends on the ability to stay abreast of new findings, techniques, and technologies. Presenting a broad yet in-depth survey, Microwave Photonics examines the major advances that are affecting new applications in this rapidly expanding field.This book reviews important achievements made in m