Critical heat flux correlation for thin rectangular channels
International Nuclear Information System (INIS)
Tanaka, Futoshi; Mishima, Kaichiro; Hibiki, Takashi
2007-01-01
The effect of heated length on Critical heat flux (CHF) in thin rectangular channels was studied based on CHF data obtained under atmospheric pressure. CHF in small channels has been widely studied in the past decades but most of the studies are related to CHF in round tubes. Although basic mechanisms of burnout in thin rectangular channels are similar to tubes, applicability of CHF correlations for tubes to rectangular channels are questionable since CHF in rectangular channels are affected by the existence of non-heated walls and the non-circular geometry of channel circumference. Several studies of CHF in thin rectangular channels have been reported in relation to thermal hydraulic design of research reactors and neutron source targets and CHF correlations have been proposed, but the studies mostly focus on CHFs under geometrical conditions of the application of interest. In his study, existing CHF data obtained in thin rectangular channels were collected and the effect of heated length on CHF was examined. Existing CHF correlations were verified with positive quality flow CHF data but none of the correlations successfully reproduced the CHF for a wide range of heated length. A new CHF correlation for qualify region applicable to a wide range of heated length was developed based on the collected data. (author)
Steady turbulent flow in curved rectangular channels
De Vriend, H.J.
1979-01-01
After the study of fully developed and developing steady laminar flow in curved channels of shallow rectangular wet cross-section (see earlier reports in this series), steady turbulent flow in such channels is investigated as a next step towards a mathematical model of the flow in shallow river
Design of open rectangular and trapezoidal channels
González, C. P.; Vera, P. E.; Carrillo, G.; García, S.
2018-04-01
In this work, the results of designing open channels in rectangular and trapezoidal form are presented. For the development of the same important aspects were taken as determination of flows by means of formula of the rational method, area of the surface for its implementation, optimal form of the flow to meet the needs of that environment. In the design the parameter of the hydraulic radius expressed in terms of the hydraulic area and wet perimeter was determined, considering that the surface on which the fluid flows is the product of the perimeter of the section and the length of the channel and where shear is generated by the condition of no slippage.
Experimental study of natural circulation flow instability in rectangular channels
Energy Technology Data Exchange (ETDEWEB)
Zhou, Tao; Qi, Shi; Song, Mingqiang [North China Electric Power Univ., Beijing (China). School of Nuclear Science and Engineering; Passive Nuclear Safety Technology, Beijing (China). Beijing Key Lab.; Xiao, Zejun [Nuclear, Reactor Thermal Hydraulics Technology, Chengdu (China). CNNC Key Lab.
2017-05-15
Experiments of natural circulation flow instability were conducted in rectangular channels with 5 mm and 10 mm wide gaps. Results for different heating powers were obtained. The results showed that the flow will tend to be instable with the growing of heating power. The oscillation period of pressure D-value and volume flow are the same, but their phase positions are opposite. They both can be described by trigonometric functions. The existence of edge position and secondary flow will strengthen the disturbance of fluid flow in rectangle channels, which contributes to heat transfer. The disturbance of bubble and fluid will be strengthened, especially in the saturated boiling section, which make it possible for the mixing flow. The results also showed that the resistance in 5 mm channel is bigger than that in 10 mm channel, it is less likely to form stable natural circulation in the subcooled region.
Computational Investigations in Rectangular Convergent and Divergent Ribbed Channels
Sivakumar, Karthikeyan; Kulasekharan, N.; Natarajan, E.
2018-05-01
Computational investigations on the rib turbulated flow inside a convergent and divergent rectangular channel with square ribs of different rib heights and different Reynolds numbers (Re=20,000, 40,000 and 60,000). The ribs were arranged in a staggered fashion between the upper and lower surfaces of the test section. Computational investigations are carried out using computational fluid dynamic software ANSYS Fluent 14.0. Suitable solver settings like turbulence models were identified from the literature and the boundary conditions for the simulations on a solution of independent grid. Computations were carried out for both convergent and divergent channels with 0 (smooth duct), 1.5, 3, 6, 9 and 12 mm rib heights, to identify the ribbed channel with optimal performance, assessed using a thermo hydraulic performance parameter. The convergent and divergent rectangular channels show higher Nu values than the standard correlation values.
Study of gas-water flow in horizontal rectangular channels
Chinnov, E. A.; Ron'shin, F. V.; Kabov, O. A.
2015-09-01
The two-phase flow in the narrow short horizontal rectangular channels 1 millimeter in height was studied experimentally. The features of formation of the two-phase flow were studied in detail. It is shown that with an increase in the channel width, the region of the churn and bubble regimes increases, compressing the area of the jet flow. The areas of the annular and stratified flow patterns vary insignificantly.
Regimes of Two-Phase Flow in Short Rectangular Channel
Chinnov, Evgeny A.; Guzanov, Vladimir V.; Cheverda, Vyacheslav; Markovich, Dmitry M.; Kabov, Oleg A.
2009-08-01
Experimental study of two-phase flow in the short rectangular horizontal channel with height 440 μm has been performed. Characteristics of liquid motion inside the channel have been registered and measured by the Laser Induced Fluorescence technique. New information has allowed determining more precisely the characteristics of churn regime and boundaries between different regimes of two-phase flow. It was shown that formation of some two-phase flow regimes and transitions between them are determined by instability of the flow in the lateral parts of the channel.
Performance analysis of SOI MOSFET with rectangular recessed channel
Singh, M.; Mishra, S.; Mohanty, S. S.; Mishra, G. P.
2016-03-01
In this paper a two dimensional (2D) rectangular recessed channel-silicon on insulator metal oxide semiconductor field effect transistor (RRC-SOI MOSFET), using the concept of groove between source and drain regions, which is one of the channel engineering technique to suppress the short channel effect (SCE). This suppression is mainly due to corner potential barrier of the groove and the simulation is carried out by using ATLAS 2D device simulator. To have further improvement of SCE in RRC-SOI MOSFET, three more devices are designed by using dual material gate (DMG) and gate dielectric technique, which results in formation of devices i.e. DMRRC-SOI,MLSMRRC-SOI, MLDMRRC-SOI MOSFET. The effect of different structures of RRC-SOI on AC and RF parameters are investigated and the importance of these devices over RRC MOSFET regarding short channel effect is analyzed.
Azimuthal critical heat flux in narrow rectangular channels
Energy Technology Data Exchange (ETDEWEB)
Kim, Yong Hoon; Noh, Sang Woo; Kim, Sung Joong; Suh, Kune Y. [Seoul National University, Seoul (Korea, Republic of)
2003-07-01
Tests were conducted to examine the critical heat flux (CHF) on the one-dimensional downward heating rectangular channel having a narrow gap by changing the orientation of the copper test heater assembly in a pool of saturated water under the atmospheric pressure. The test parameters include both the gap sizes of 1, 2, 5 and 10mm, and the surface orientation angles from the downward-facing position (180{sup o}) to the vertical position (90{sup o}), respectively. Also, the CHF experiments were performed for pool boiling with varying heater surface orientations in the unconfined space at the atmospheric pressure using the rectangular test section. It was observed that the CHF generally decreases as the surface inclination angle increases and as the gap size decreases. In consistency with several studies reported in the literature, it was found that there exists a transition angle above which the CHF changes with a rapid slope. An engineering correlation is developed for the CHF during natural convective boiling in the inclined, confined rectangular channels with the aid of dimensional analysis.
Flow field induced particle accumulation inside droplets in rectangular channels.
Hein, Michael; Moskopp, Michael; Seemann, Ralf
2015-07-07
Particle concentration is a basic operation needed to perform washing steps or to improve subsequent analysis in many (bio)-chemical assays. In this article we present field free, hydrodynamic accumulation of particles and cells in droplets flowing within rectangular micro-channels. Depending on droplet velocity, particles either accumulate at the rear of the droplet or are dispersed over the entire droplet cross-section. We show that the observed particle accumulation behavior can be understood by a coupling of particle sedimentation to the internal flow field of the droplet. The changing accumulation patterns are explained by a qualitative change of the internal flow field. The topological change of the internal flow field, however, is explained by the evolution of the droplet shape with increasing droplet velocity altering the friction with the channel walls. In addition, we demonstrate that accumulated particles can be concentrated, removing excess dispersed phase by splitting the droplet at a simple channel junction.
Performance analysis of SOI MOSFET with rectangular recessed channel
International Nuclear Information System (INIS)
Singh, M; Mishra, G P; Mishra, S; Mohanty, S S
2016-01-01
In this paper a two dimensional (2D) rectangular recessed channel–silicon on insulator metal oxide semiconductor field effect transistor (RRC-SOI MOSFET), using the concept of groove between source and drain regions, which is one of the channel engineering technique to suppress the short channel effect (SCE). This suppression is mainly due to corner potential barrier of the groove and the simulation is carried out by using ATLAS 2D device simulator. To have further improvement of SCE in RRC-SOI MOSFET, three more devices are designed by using dual material gate (DMG) and gate dielectric technique, which results in formation of devices i.e. DMRRC-SOI,MLSMRRC-SOI, MLDMRRC-SOI MOSFET. The effect of different structures of RRC-SOI on AC and RF parameters are investigated and the importance of these devices over RRC MOSFET regarding short channel effect is analyzed. (paper)
Bubble departure diameter in narrow rectangular channel under rolling condition
Energy Technology Data Exchange (ETDEWEB)
Xie, T.; Chen, B.; Yan, X.; Xu, J.; Huang, Y.; Xiao, Z. [Nuclear Power Inst. of China, Chengdu, Sichuan (China)
2014-07-01
Forced convective subcooled boiling flow experiments were conducted in a vertical upward narrow rectangular channel under rolling motion. A high-speed digital video camera was used to capture the dynamics of the bubble nucleation process. Bubble departure diameters were obtained from the images. A bubble departure model based on force balance analysis was proposed to predict the bubble departure size under rolling condition by considering the additional centrifugal, tangential and Coriolis force. The proposed model agreed well with the experimental data within the averaged relative deviation of 5%. (author)
Counter-current flow limited CHF in thin rectangular channels
International Nuclear Information System (INIS)
Cheng, L.Y.
1990-01-01
An analytical expression for counter-current-flow-limitation (CCFL) was used to predict critical heat flux (CHF) for downward flow in thin vertical rectangular channels which are prototypes of coolant channels in test and research nuclear reactors. Top flooding is the mechanism for counter-current flow limited CHF. The CCFL correlation also was used to determine the circulation and flooding-limited CHF. Good agreements were observed between the period the model predictions and data on the CHF for downflow. The minimum CHF for downflow is lower than the flooding-limited CHF and it is predicted to occur at a liquid flow rate higher than that at the flooding limit. 17 refs., 7 figs
Critical heat flux for free convection boiling in thin rectangular channels
International Nuclear Information System (INIS)
Cheng, Lap Y.; Tichler, P.R.
1991-01-01
A review of the experimental data on free convection boiling critical heat flux (CHF) in vertical rectangular channels reveals three mechanisms of burnout. They are the pool boiling limit, the circulation limit, and the flooding limit associated with a transition in flow regime from churn to annular flow. The dominance of a particular mechanism depends on the dimensions of the channel. Analytical models were developed for each free convection boiling limit. Limited agreement with data is observed. A CHF correlation, which is valid for a wide range of gap sizes, was constructed from the CHFs calculated according to the three mechanisms of burnout. 17 refs., 7 figs
Inertial manipulation of bubbles in rectangular microfluidic channels.
Hadikhani, Pooria; Hashemi, S Mohammad H; Balestra, Gioele; Zhu, Lailai; Modestino, Miguel A; Gallaire, François; Psaltis, Demetri
2018-03-27
Inertial microfluidics is an active field of research that deals with crossflow positioning of the suspended entities in microflows. Until now, the majority of the studies have focused on the behavior of rigid particles in order to provide guidelines for microfluidic applications such as sorting and filtering. Deformable entities such as bubbles and droplets are considered in fewer studies despite their importance in multiphase microflows. In this paper, we show that the trajectory of bubbles flowing in rectangular and square microchannels can be controlled by tuning the balance of forces acting on them. A T-junction geometry is employed to introduce bubbles into a microchannel and analyze their lateral equilibrium position in a range of Reynolds (1 < Re < 40) and capillary numbers (0.1 < Ca < 1). We find that the Reynolds number (Re), the capillary number (Ca), the diameter of the bubble (D[combining macron]), and the aspect ratio of the channel are the influential parameters in this phenomenon. For instance, at high Re, the flow pushes the bubble towards the wall while large Ca or D[combining macron] moves the bubble towards the center. Moreover, in the shallow channels, having aspect ratios higher than one, the bubble moves towards the narrower sidewalls. One important outcome of this study is that the equilibrium position of bubbles in rectangular channels is different from that of solid particles. The experimental observations are in good agreement with the performed numerical simulations and provide insights into the dynamics of bubbles in laminar flows which can be utilized in the design of flow based multiphase flow reactors.
Helium-air counter flow in rectangular channels
International Nuclear Information System (INIS)
Fumizawa, Motoo; Tanaka, Gaku; Zhao, Hong; Hishida, Makoto; Shiina, Yasuaki
2004-01-01
This paper deals with numerical analysis of helium-air counter flow in a rectangular channel with an aspect ratio of 10. The channel has a cross sectional area of 5-50 mm and a length of 200 mm. The inclination angle was varied from 0 to 90 degree. The velocity profiles and concentration profiles were analyzed with a computer program [FLUENT]. Following main features of the counter flow are discussed based on the calculated results. (1) Time required for establishing a quasi-steady state counter flow. (2) The relationship between the inclination angle and the flow patterns of the counter flow. (3) The developing process of velocity profiles and concentration profiles. (4) The relationship between the inclination angle of the channel and the velocity profiles of upward flow and the downward flow. (5) The relationship between the concentration profile and the inclination angle. (6) The relationship between the net in-flow rate and the inclination angle. We compared the computed velocity profile and the net in-flow rate with experimental data. A good agreement was obtained between the calculation results and the experimental results. (author)
Modal density of rectangular structures in a wide frequency range
Parrinello, A.; Ghiringhelli, G. L.
2018-04-01
A novel approach to investigate the modal density of a rectangular structure in a wide frequency range is presented. First, the modal density is derived, in the whole frequency range of interest, on the basis of sound transmission through the infinite counterpart of the structure; then, it is corrected by means of the low-frequency modal behavior of the structure, taking into account actual size and boundary conditions. A statistical analysis reveals the connection between the modal density of the structure and the transmission of sound through its thickness. A transfer matrix approach is used to compute the required acoustic parameters, making it possible to deal with structures having arbitrary stratifications of different layers. A finite element method is applied on coarse grids to derive the first few eigenfrequencies required to correct the modal density. Both the transfer matrix approach and the coarse grids involved in the finite element analysis grant high efficiency. Comparison with alternative formulations demonstrates the effectiveness of the proposed methodology.
International Nuclear Information System (INIS)
Usui, Tohru; Kaminaga, Masanori; Sudo, Yukio.
1988-07-01
Quantitative understanding of critical heat flux (CHF) in the narrow vertical rectangular channel is required for the thermo-hydroulic design and the safety analysis of research reactors in which flat-plate-type fuel is adopted. Especially, critical heat flux under low downward velocity has a close relation with falling water limitation under counter-current flow. Accordingly, CCFL (Counter-current Flow Limitation) experiments were carried out for both vertical rectangular channels and vertical circular tubes varried in their size and configuration of their cross sections, to make clear CCFL characteristics in the vertical rectangular channels. In the experiments, l/de of the rectangular channel was changed from 3.5 to 180. As the results, it was clear that different equivalent hydraulic diameter de, namely width or water gap of channel, gave different CCFL characteristics of rectangular channel. But the influence of channel length l on CCFL characteristics was not observed. Besides, a dimensionless correlation to estimate a relation between upward air velocity and downward water velocity was proposed based on the present experimental results. The difference of CCFL characteristics between rectangular channels and circular tubes was also investigated. Especially for the rectangular channels, dry-patches appearing condition was made clear as a flow-map. (author)
Polydisperse particle-driven gravity currents in non-rectangular cross section channels
Zemach, T.
2018-01-01
We consider a high-Reynolds-number gravity current generated by polydisperse suspension of n types of particles distributed in a fluid of density ρi. Each class of particles in suspension has a different settling velocity. The current propagates along a channel of non-rectangular cross section into an ambient fluid of constant density ρa. The bottom and top of the channel are at z = 0, H, and the cross section is given by the quite general form -f1(z) ≤ y ≤ f2(z) for 0 ≤ z ≤ H. The flow is modeled by the one-layer shallow-water equations obtained for the time-dependent motion. We solve the problem by a finite-difference numerical code to present typical height h, velocity u, and mass fractions of particle (concentrations) (ϕ( j), j = 1, …, n) profiles. The runout length of suspensions in channels of power-law cross sections is analytically predicted using a simplified depth-averaged "box" model. We demonstrate that any degree of polydispersivity adds to the runout length of the currents, relative to that of equivalent monodisperse currents with an average settling velocity. The theoretical predictions are supported by the available experimental data. The present approach is a significant generalization of the particle-driven gravity current problem: on the one hand, now the monodisperse current in non-rectangular channels is a particular case of n = 1. On the other hand, the classical formulation of polydisperse currents for a rectangular channel is now just a particular case, f(z) = const., in the wide domain of cross sections covered by this new model.
Directory of Open Access Journals (Sweden)
A. H. ELBATRAN
2015-07-01
Full Text Available Helical channels have a wide range of applications in petroleum engineering, nuclear, heat exchanger, chemical, mineral and polymer industries. They are used in the separation processes for fluids of different densities. The centrifugal force, free surface and geometrical effects of the helical channel make the flow pattern more complicated; hence it is very difficult to perform physical experiment to predict channel performance. Computational Fluid Dynamics (CFD can be suitable alternative for studying the flow pattern characteristics in helical channels. The different ranges of dimensional parameters, such as curvature and torsion, often cause various flow regimes in the helical channels. In this study, the effects of physical parameters such as curvature, torsion, Reynolds number, Froude number and Dean Number on the characteristics of the turbulent flow in helical rectangular channels have been investigated numerically, using a finite volume RANSE code Fluent of Ansys workbench 10.1 UTM licensed. The physical parameters were reported for range of curvature (δ of 0.16 to 0.51 and torsion (λ of 0.032 to 0.1 .The numerical results of this study showed that the decrease in the channel curvature and the increase in the channel torsion numbers led to the increase of the flow velocity inside the channel and the change in the shape of water free surface at given Dean, Reynolds and Froude numbers.
Preliminary Study of ONB in Narrow-Vertical Rectangular Channel
International Nuclear Information System (INIS)
Omar, S. AL-Yahia; Jo, Daeseong
2015-01-01
The location where the vapor bubble can first exist at the heated surface is called 'onset of nucleate boiling (ONB). The subcooled boiling is highly efficient to remove the heat owing to the high heat transfer coefficient. The heat transfer is affected by the motion of the bulk liquid as well as the latent heat transport of the liquid microlayer between the bubble and the heated wall. However, with increasing in the wall temperature, the bubble growth will increase and may they aggregate at the heated surface forming a vapor film, which will prevent the heat transport from the wall and that leads to highly rise in wall temperature. This phenomenon called departure from nucleate boiling (DNB). Many experimental and numerical CFD methods were carried out to investigate the subcooled boiling because of its importance in the industrial applications. In the present study, vertical narrow rectangular channel heated from both side was simulated by using CFX-14 to investigate the subcooled wall boiling, and identical simulation is done by using TMAP to compare the ONB location between numerical simulation and empirical correlations that implemented in TMAP. The numerical results using CFX-14 are discussed and compared with the results obtained from TMAP. The coolant temperature increases gradually (linearly) in the downward direction owing to the uniform applied heat flux.
Preliminary Study of ONB in Narrow-Vertical Rectangular Channel
Energy Technology Data Exchange (ETDEWEB)
Omar, S. AL-Yahia; Jo, Daeseong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2015-10-15
The location where the vapor bubble can first exist at the heated surface is called 'onset of nucleate boiling (ONB). The subcooled boiling is highly efficient to remove the heat owing to the high heat transfer coefficient. The heat transfer is affected by the motion of the bulk liquid as well as the latent heat transport of the liquid microlayer between the bubble and the heated wall. However, with increasing in the wall temperature, the bubble growth will increase and may they aggregate at the heated surface forming a vapor film, which will prevent the heat transport from the wall and that leads to highly rise in wall temperature. This phenomenon called departure from nucleate boiling (DNB). Many experimental and numerical CFD methods were carried out to investigate the subcooled boiling because of its importance in the industrial applications. In the present study, vertical narrow rectangular channel heated from both side was simulated by using CFX-14 to investigate the subcooled wall boiling, and identical simulation is done by using TMAP to compare the ONB location between numerical simulation and empirical correlations that implemented in TMAP. The numerical results using CFX-14 are discussed and compared with the results obtained from TMAP. The coolant temperature increases gradually (linearly) in the downward direction owing to the uniform applied heat flux.
Counter-current gas-liquid two-phase flow in a narrow rectangular channel
International Nuclear Information System (INIS)
Sohn, Byung Hu; Kim, Byong Joo
2000-01-01
A study of counter-current two-phase flow in a narrow rectangular channel has been performed. Two-phase flow patterns and void fractions were experimentally studied in a 760 mm long and 100 mm wide test section with 3.0 mm gap. The resulting data have been compared to previous transition criteria and empirical correlations. The comparison of experimental data to the transition criteria developed by Taitel and Barnea showed good agreement for the bubbly-to-slug transition. For the criteria of Mishima and Ishii to be applicable to the slug to churn transition, a new model seems to be needed for the accurate prediction of the distribution parameter for the counter-current flow in narrow rectangular channels. For the churn-to-annular transition the model of Taitel and Barnea was found to be close to the experimental data. However the model should be improved in conjunction with the channel geometry to accurately predict the counter-current flow limitation and flow transition. It was verified the distribution parameter was well-correlated by the drift-flux model. The distribution parameter for the present study was found to be about 1.2 for all flow regimes except 1.0 for an annular flow. (author)
Turbulent subcooled boiling flow visualization experiments through a rectangular channel
International Nuclear Information System (INIS)
Estrada-Perez, Carlos E.; Dominguez-Ontiveros, Elvis E.; Hassan, Yassin A.
2008-01-01
Full text of publication follows: Proper characterization of subcooled boiling flow is of importance in many applications. It is of exceptional significance in the development of empirical models for the design of nuclear reactors, steam generators, and refrigeration systems. Most of these models are based on experimental studies that share the characteristics of utilizing point measurement probes with high temporal resolution, e.g. Hot Film Anemometry (HFA), Laser Doppler Velocimetry (LDV), and Fiber Optic Probes (FOP). However there appears to be a scarcity of experimental studies that can capture instantaneous whole-field measurements with a fast time response. Particle Tracking Velocimetry (PTV) may be used to overcome the limitations associated with point measurement techniques. PTV is a whole-flow-field technique providing instantaneous velocity vectors capable of high spatial and temporal resolution. PTV is also an exceptional tool for the analysis of boiling flow due to its ability to differentiate between the gas and liquid phases and subsequently deliver independent velocity fields associated with each phase. In this work, using PTV, liquid velocity fields of a turbulent subcooled boiling flow in a rectangular channel were successfully obtained. The present results agree with similar studies that used point measurement probes. However, the present study provides additional information; not only averaged profiles of the velocity components were obtained, instantaneous 2-D velocity fields were also readily available with a high temporal and spatial resolution. Analysis of fluctuating velocities, Reynolds stresses, and higher order statistics of the flow are presented. This work is an attempt to enrich the database already collected on turbulent subcooled boiling flow, with the hope that it will be useful in turbulence modeling efforts. (authors)
International Nuclear Information System (INIS)
Xu Jianjun; Chen Bingde; Wang Xiaojun
2008-01-01
Flow and heat transfer in the narrow rectangular multi-channel is widely en- countered in the engineering application, hydrodynamic mixing in the narrow rectangular multi-channel is one of the important concerns. With the help of the Computational Fluid Dynamics code CFX, the effect of flow rate distribution of the main channel at the inlet on hydrodynamic mixing in the narrow rectangular multi-channel is numerical simulated. The results show that the flow rate distributions at the inlet have a great effect on hydrodynamics mixing in multi-channel, the flow rate in the main channel doesn't change with increasing the axial mixing section when the average flow rate at the inlet is set. Hydrodynamic mixing will arise in the mixing section when the different ratio of the flow rate distribution at the inlet is set, and hydrodynamic mixing increases with the difference of the flow rate distribution at the inlet increase. The trend of the flow rate distribution of the main channel is consistent during the whole axial mixing section, and hydrodynamic mixing in former 4 mixing section is obvious. (authors)
Modeling on bubbly to churn flow pattern transition in narrow rectangular channel
International Nuclear Information System (INIS)
Wang Yanlin; Chen Bingde; Huang Yanping; Wang Junfeng
2012-01-01
A theoretical model based on some reasonable concepts was developed to predict the bubbly flow to churn flow pattern transition in vertical narrow rectangular channel under flow boiling condition. The maximum size of ideal bubble in narrow rectangular channel was calculated based on previous literature. The thermal hydraulics boundary condition of bubbly to churn flow pattern transition was exported from Helmholtz and maximum size of ideal bubble. The theoretical model was validated by existent experimental data. (authors)
Present status of heat transfer in narrow gap rectangular channel
International Nuclear Information System (INIS)
Sudo, Yukio; Kaminaga, Masanori
1990-01-01
In the safety evaluation for research nuclear reactors, at the time of abnormal transient change and accidents, after the tripping of a primary coolant pump, such event that the flow direction of coolant in a core reverses from steady downward flow to rising flow is supposed. In this case, the coexisting convection field, in which free convection and forced convection coexist, arises in place of forced convection, and especially in the research reactors using plate type fuel like JRR-3, it is important to grasp the heat transfer characteristics in the coexisting convection field in a narrow channel. Jackson et al. proposed the heat transfer correlation equation which can be applied to wide conditions including the coexisting convection zone, but its applicability to a narrow channel has not been confirmed. Based on the experimental results, in this study, the effect that the decrease of gap exerts to the convection heat transfer characteristics reported so far was investigated. The experiment and the results are reported. In this experiment on the coexisting convection zone in a narrow gap, the effect of main flow acceleration arose sufficiently large as compared with the effect of buoyancy, and heat transfer was promoted. (K.I.)
Review of Critical Heat Flux Correlations for Upward Flow in a Vertical Thin Rectangular Channel
Energy Technology Data Exchange (ETDEWEB)
Choi, Gil Sik; Chang, Soon Heung [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)
2014-05-15
From the view point of safety, this type of fuel has higher resistance to earthquake and external impact. The cross section of coolant flow channel in the reactor core composed with the plate fuel is a thin rectangular shape. Thermal-hydraulic characteristics of this thin rectangular channel are different with those of general circular rod fuel bundle flow channel. Accordingly it could be thought that the CHF correlation in a thin rectangular channel is different with that in a circular channel, for which a large number of researches on CHF prediction have been carried out. The objective of this paper is to review previous researches on CHF in a thin rectangular channel, summarize the important conclusion and propose the new simple CHF correlation, which is based on the data set under high pressure and high flow rate condition. The researches on CHF in rectangular channel have been partially carried out according to the pressure, heated surface number, heated surface wettability effect, flow driving force and flow direction conditions. From the literature researches on CHF for upward flow in a vertical thin rectangular channel, some CHF prediction methods were reviewed and compared. There is no universal correlation which can predict CHF at all conditions, but generally, Katto empirical correlation is known to be useful at high pressure and high flow rate. The new simple correlation was developed from the restricted data set, the CHF prediction capacity of which is better than that of Katto. Even though the prediction consistency of the new simple correlation is lower, MAE and RMS error decreased quite. For the more development of the new simple CHF correlation, the more advanced regression analysis method and theoretical analysis should be studied in future.
Review of Critical Heat Flux Correlations for Upward Flow in a Vertical Thin Rectangular Channel
International Nuclear Information System (INIS)
Choi, Gil Sik; Chang, Soon Heung
2014-01-01
From the view point of safety, this type of fuel has higher resistance to earthquake and external impact. The cross section of coolant flow channel in the reactor core composed with the plate fuel is a thin rectangular shape. Thermal-hydraulic characteristics of this thin rectangular channel are different with those of general circular rod fuel bundle flow channel. Accordingly it could be thought that the CHF correlation in a thin rectangular channel is different with that in a circular channel, for which a large number of researches on CHF prediction have been carried out. The objective of this paper is to review previous researches on CHF in a thin rectangular channel, summarize the important conclusion and propose the new simple CHF correlation, which is based on the data set under high pressure and high flow rate condition. The researches on CHF in rectangular channel have been partially carried out according to the pressure, heated surface number, heated surface wettability effect, flow driving force and flow direction conditions. From the literature researches on CHF for upward flow in a vertical thin rectangular channel, some CHF prediction methods were reviewed and compared. There is no universal correlation which can predict CHF at all conditions, but generally, Katto empirical correlation is known to be useful at high pressure and high flow rate. The new simple correlation was developed from the restricted data set, the CHF prediction capacity of which is better than that of Katto. Even though the prediction consistency of the new simple correlation is lower, MAE and RMS error decreased quite. For the more development of the new simple CHF correlation, the more advanced regression analysis method and theoretical analysis should be studied in future
Three-dimensional numerical simulations of turbulent cavitating flow in a rectangular channel
Iben, Uwe; Makhnov, Andrei; Schmidt, Alexander
2018-05-01
Cavitation is a phenomenon of formation of bubbles (cavities) in liquid as a result of pressure drop. Cavitation plays an important role in a wide range of applications. For example, cavitation is one of the key problems of design and manufacturing of pumps, hydraulic turbines, ship's propellers, etc. Special attention is paid to cavitation erosion and to performance degradation of hydraulic devices (noise, fluctuations of the mass flow rate, etc.) caused by the formation of a two-phase system with an increased compressibility. Therefore, development of a model to predict cavitation inception and collapse of cavities in high-speed turbulent flows is an important fundamental and applied task. To test the algorithm three-dimensional simulations of turbulent flow of a cavitating liquid in a rectangular channel have been conducted. The obtained results demonstrate the efficiency and robustness of the formulated model and the algorithm.
International Nuclear Information System (INIS)
Xu Jianjun; Chen Bingde; Wang Xiaojun
2011-01-01
The characteristic of the coalesced sliding bubble was visually observed by wide side and narrow side of the narrow rectangular channel using high speed digital camera. The results show that the coalesced time among the sliding bubbles is quick, and the new formation of coalesced bubble is not lift-off, and it continues to slide along the heated surface in low heat flux for the isolated bubble region. The influence region is about 2 times projected area of the sliding bubble when the sliding bubbles begin to interact. The sliding bubble velocities increase duo to the interaction among the bubbles, which contributes to enhance heat transfer of this region. Finally, the effect of coalesced interaction of growing bubble in the nucleation sites on bubble lift-off was discussed and analysed. (authors)
International Nuclear Information System (INIS)
Choi, Gil Sik; Chang, Soon Heung; Jeong, Yong Hoon
2016-01-01
A study, on the theoretical method to predict the critical heat flux (CHF) of saturated upward flow boiling water in vertical narrow rectangular channels, has been conducted. For the assessment of this CHF prediction method, 608 experimental data were selected from the previous researches, in which the heated sections were uniformly heated from both wide surfaces under the high pressure condition over 41 bar. For this purpose, representative previous liquid film dryout (LFD) models for circular channels were reviewed by using 6058 points from the KAIST CHF data bank. This shows that it is reasonable to define the initial condition of quality and entrainment fraction at onset of annular flow (OAF) as the transition to annular flow regime and the equilibrium value, respectively, and the prediction error of the LFD model is dependent on the accuracy of the constitutive equations of droplet deposition and entrainment. In the modified Levy model, the CHF data are predicted with standard deviation (SD) of 14.0% and root mean square error (RMSE) of 14.1%. Meanwhile, in the present LFD model, which is based on the constitutive equations developed by Okawa et al., the entire data are calculated with SD of 17.1% and RMSE of 17.3%. Because of its qualitative prediction trend and universal calculation convergence, the present model was finally selected as the best LFD model to predict the CHF for narrow rectangular channels. For the assessment of the present LFD model for narrow rectangular channels, effective 284 data were selected. By using the present LFD model, these data are predicted with RMSE of 22.9% with the dryout criterion of zero-liquid film flow, but RMSE of 18.7% with rivulet formation model. This shows that the prediction error of the present LFD model for narrow rectangular channels is similar with that for circular channels.
Energy Technology Data Exchange (ETDEWEB)
Lee, Juh Yung; Chang, Soon Heung; Jeong, Yong [KAIST, Daejeon (Korea, Republic of)
2016-05-15
The onset of flow instability (OFI) is the one of important boiling phenomena since it may induce the premature critical heat flux (CHF) at the lowest heat flux level due to sudden flow excursion in a single channel of multichannel configuration. Especially prediction of OFI for narrow rectangular channel is very crucial in relevant to thermal-hydraulic design and safety analysis of open pool-type research reactors (RRs) using plate-type fuels. Based on high speed video (HSV) technique, the authors observed and determined that OFI and the minimum premature CHF in a narrow rectangular channel are induced by abrupt pressure drop fluctuation due to the mergence of facing bubble boundary layers (BLs) on opposite boiling surfaces. In this study, new mechanistic OFI model for narrow rectangular channel heated on both sides has been derived, which satisfies with the real triggering phenomena. Force balance approach was used for modeling of the maximum BLT since the quantity is comparable to the bubble departure diameter. From the validation with OFI database, it was shown that the new model fairly well predicts OFI heat flux for wide range of conditions.
DNB Mechanistic model assessment based on experimental data in narrow rectangular channel
International Nuclear Information System (INIS)
Zhou Lei; Yan Xiao; Huang Yanping; Xiao Zejun; Huang Shanfang
2011-01-01
The departure from nuclear boiling (DNB) is important concerning about the safety of a PWR. Lacking assessment by experimental data points, it's doubtful whether the existing models can be used in narrow rectangular channels or not. Based on experimental data points in narrow rectangular channels, two kinds of classical DNB models, which include liquid sublayer dryout model (LSDM) and bubble crowding model (BCM), were assessed. The results show that the BCM has much wider application range than the LSDM. Several thermal parameters show systematical influences on the calculated results by the models. The performances of all the models deteriorate as the void fraction increases. The reason may be attributed to the geometrical differences between a circular tube and narrow rectangular channel. (authors)
International Nuclear Information System (INIS)
Wang Yanlin; Chen Bingde; Huang Yanping; Wang Junfeng
2011-01-01
A theoretical model was developed to predict the bubbly to churn flow pattern transition for vertical upward flows in narrow rectangular channel. The model was developed based on the imbalance theory of Helmholtz and some reasonable assumptions. The maximum ideal bubble in narrow rectangular channel and the thermal hydraulics boundary condition leading to bubbly flow to churn flow pattern transition was calculated. The model was validated by experimental data from previous researches. Comparison between predicted result and experimental result shows a reasonable good agreement. (author)
Particle-driven gravity currents in non-rectangular cross section channels
International Nuclear Information System (INIS)
Zemach, T.
2015-01-01
We consider a high-Reynolds-number gravity current generated by suspension of heavier particles in fluid of density ρ i , propagating along a channel into an ambient fluid of the density ρ a . The bottom and top of the channel are at z = 0, H, and the cross section is given by the quite general −f 1 (z) ≤ y ≤ f 2 (z) for 0 ≤ z ≤ H. The flow is modeled by the one-layer shallow-water equations obtained for the time-dependent motion which is produced by release from rest of a fixed volume of mixture from a lock. We solve the problem by the finite-difference numerical code to present typical height h(x, t), velocity u(x, t), and volume fraction of particles (concentration) ϕ(x, t) profiles. The methodology is illustrated for flow in typical geometries: power-law (f(z) = z α and f(z) = (H − z) α , where α is positive constant), trapezoidal, and circle. In general, the speed of propagation of the flows driven by suspensions decreases compared with those driven by a reduced gravity in homogeneous currents. However, the details depend on the geometry of the cross section. The runout length of suspensions in channels of power-law cross sections is analytically predicted using a simplified depth-averaged “box” model. The present approach is a significant generalization of the classical gravity current problem. The classical formulation for a rectangular channel is now just a particular case, f(z) = const., in the wide domain of cross sections covered by this new model
Hydrodynamics of slug flow in a vertical narrow rectangular channel under laminar flow condition
International Nuclear Information System (INIS)
Wang, Yang; Yan, Changqi; Cao, Xiaxin; Sun, Licheng; Yan, Chaoxing; Tian, Qiwei
2014-01-01
Highlights: • Slug flow hydrodynamics in a vertical narrow rectangular duct were investigated. • The velocity of trailing Taylor bubble undisturbed by the leading one was measured. • Correlation of Taylor bubble velocity with liquid slug length ahead it was proposed. • Evolution of length distributions of Taylor bubble and liquid slug was measured. • The model of predicted length distributions was applied to the rectangular channel. - Abstract: The hydrodynamics of gas–liquid two-phase slug flow in a vertical narrow rectangular channel with the cross section of 2.2 mm × 43 mm is investigated using a high speed video camera system. Simultaneous measurements of velocity and duration of Taylor bubble and liquid slug made it possible to determine the length distributions of the liquid slug and Taylor bubble. Taylor bubble velocity is dependent on the length of the liquid slug ahead, and an empirical correlation is proposed based on the experimental data. The length distributions of Taylor bubbles and liquid slugs are positively skewed (log-normal distribution) at all measuring positions for all flow conditions. A modified model based on that for circular tubes is adapted to predict the length distributions in the present narrow rectangular channel. In general, the experimental data is well predicted by the modified model
Critical heat flux of subcooled flow boiling in narrow rectangular channels
International Nuclear Information System (INIS)
Kureta, Masatoshi; Akimoto, Hajime
1999-01-01
In relation to the high-heat-load devices such as a solid-target cooling channel of a high-intensity neutron source, burnout experiments were performed to obtain critical heat flux (CHF) data systematically for vertical upward flow in one-side heated rectangular channels. One of the objectives of this study was to study an extensibility of existing CHF correlations and models, which were proposed for a round tube, to rectangular channels for design calculation. Existing correlations and models were reviewed and compared with obtained data. Sudo's thin liquid layer dryout model, Griffel correlation and Bernath correlation were in good agreement with the experimental data for short-heated-length and low inlet water temperature conditions. (author)
Collapse of Non-Rectangular Channels in a Soft Elastomer
Tepayotl-Ramirez, Daniel; Park, Yong-Lae; Lu, Tong; Majidi, Carmel
2013-03-01
We examine the collapse of microchannels in a soft elastomer by treating the sidewalls as in- denters that penetrate the channel base. This approach leads to a closed-form algebraic mapping between applied pressure and cross-sectional deformation that are in strong agreement with ex- perimental measurements and Finite Element Analysis (FEA) simulation. Applications of this new approach to modeling soft microchannel collapse range from lab-on-a-chip microfluidics for pressure-controlled protein filtration to soft-matter pressures sensing. We demonstrate the latter by comparing theoretical predictions with experimental measurements of the pressure-controlled electrical resistance of liquid-phase Gallium alloy microchannels embedded in a soft silicone elas- tomer.
International Nuclear Information System (INIS)
Su Jiqiang; Sun Zhongning; Fan Guangming; Wang Shiming
2013-01-01
The long stripe coherent structure of the turbulent boundary layer in a small- scale vertical rectangular channel was observed by using hydrogen bubble flow trace visualization technique. The statistical properties of the long stripe in the experimental channel boundary layer were compared with that in the smooth flat plate boundary layer. The pitch characteristics were explained by the formation mechanism of the long stripe. It was analyzed that how the change of y + affected the distribution of the long stripe. In addition, the frequency characteristics of the long stripe were also investigated, and the correlation of the long stripe frequency in such a flow channel was obtained. (authors)
Analysis of flow distribution instability in parallel thin rectangular multi-channel system
Energy Technology Data Exchange (ETDEWEB)
Xia, G.L. [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an City 710049 (China); Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, Harbin Engineering University, Harbin City 150001 (China); Su, G.H., E-mail: ghsu@mail.xjtu.edu.cn [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an City 710049 (China); Peng, M.J. [Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, Harbin Engineering University, Harbin City 150001 (China)
2016-08-15
Highlights: • Flow distribution instability in parallel thin rectangular multi-channel system is studied using RELAP5 codes. • Flow excursion may bring parallel heating channel into the density wave oscillations region. • Flow distribution instability is more likely to happen at low power/flow ratio conditions. • The increase of channel number will not affect the flow distribution instability boundary. • Asymmetry inlet throttling and heating will make system more unstable. - Abstract: The flow distribution instability in parallel thin rectangular multi-channel system has been researched in the present study. The research model of parallel channel system is established by using RELAP5/MOD3.4 codes. The transient process of flow distribution instability is studied at imposed inlet mass flow rate and imposed pressure drop conditions. The influence of heating power, mass flow rate, system pressure and channel number on flow distribution instability are analyzed. Furthermore, the flow distribution instability of parallel two-channel system under asymmetric inlet throttling and heating power is studied. The results show that, if multi-channel system operates at the negative slope region of channel ΔP–G curve, small disturbance in pressure drop will lead to flow redistribution between parallel channels. Flow excursion may bring the operating point of heating channel into the density-wave oscillations region, this will result in out-phase or in-phase flow oscillations. Flow distribution instability is more likely to happen at low power/flow ratio conditions, the stability of parallel channel system increases with system pressure, the channel number has a little effect on system stability, but the asymmetry inlet throttling or heating power will make the system more unstable.
Study on critical heat flux based on wavelet transform in rectangular narrow channels
International Nuclear Information System (INIS)
Zhou Tao; Ju Zhongyun; Zhang Lei; Li Jingjing; Sheng Cheng; Xiao Zejun
2014-01-01
Critical heat flux is very important for the safety of nuclear reactor, and observing temperature rise rate is a feasible method. The wavelet transform is used to analyze the CHF temperature rise curves in rectangular narrow channels, which can remove relative weaker interference and effectively judge CHF. Rectangular narrow channel can strengthen heat transfer and reduce CHF, whose characteristics are proved by temperature rise curves analyzed by wavelet transform. Respectively applying Daubechies function and Haar function is to guarantee the accuracy of the wavelet analysis, and Daubechies function is more accurate than Haar function in the detail signal processing from results. While the wavelet analysis and experimental results are compared and found in good agreement with the experimental results. (authors)
Study on critical heat flux based on wavelet transform in rectangular narrow channels
International Nuclear Information System (INIS)
Zhou Tao; Ju Zhongyun; Zhang Lei; Li Jingjing; Sheng Cheng; Xiao Zejun
2014-01-01
Critical heat flux is very important for nuclear reactor safety, and observing temperature rise rate is a feasible method. Through using the wavelet transform to analyze the CHF temperature rise curves in rectangular narrow channels, it can remove relative weaker interference and effectively judge CHF. Rectangular narrow channel can strengthen heat transfer and reduce CHF, whose characteristics are proved by, temperature rise curves analyzed by wavelet transform. Respectively applying Daubechies function and Haar function is for guarantee the accuracy of the wavelet analysis, and Daubechies function is more accurate than Haar function in the detail signal processing from results. While the wavelet analysis and experimental results are compared and found in good agreement with the experimental results. (authors)
Effect of aspect ratio on the laminar-to-turbulent transition in rectangular channel
International Nuclear Information System (INIS)
Wang Chang; Gao Puzhen; Tan Sichao; Xu Chao
2012-01-01
Highlights: ► Effect of aspect ratio on the transition Reynolds number in rectangular channel is studied. ► Prediction correlation for transition Reynolds number is proposed. ► The initiation location of flow transition is studied. - Abstract: The critical Reynolds number of the laminar-to-turbulent transition in the rectangular channel is investigated based on the energy gradient method. The results show that the critical Reynolds number decreases with the increasing aspect ratio. However, the relative location of laminar breakdown does not migrate significantly with the variation of the aspect ratio. In addition, a theoretical correlation as a function of the aspect ratio is proposed to calculate the transition Reynolds number, and the predicted values are in good agreement with the experimental data obtained in the published literatures.
One-dimensional acoustic standing waves in rectangular channels for flow cytometry.
Austin Suthanthiraraj, Pearlson P; Piyasena, Menake E; Woods, Travis A; Naivar, Mark A; Lόpez, Gabriel P; Graves, Steven W
2012-07-01
Flow cytometry has become a powerful analytical tool for applications ranging from blood diagnostics to high throughput screening of molecular assemblies on microsphere arrays. However, instrument size, expense, throughput, and consumable use limit its use in resource poor areas of the world, as a component in environmental monitoring, and for detection of very rare cell populations. For these reasons, new technologies to improve the size and cost-to-performance ratio of flow cytometry are required. One such technology is the use of acoustic standing waves that efficiently concentrate cells and particles to the center of flow channels for analysis. The simplest form of this method uses one-dimensional acoustic standing waves to focus particles in rectangular channels. We have developed one-dimensional acoustic focusing flow channels that can be fabricated in simple capillary devices or easily microfabricated using photolithography and deep reactive ion etching. Image and video analysis demonstrates that these channels precisely focus single flowing streams of particles and cells for traditional flow cytometry analysis. Additionally, use of standing waves with increasing harmonics and in parallel microfabricated channels is shown to effectively create many parallel focused streams. Furthermore, we present the fabrication of an inexpensive optical platform for flow cytometry in rectangular channels and use of the system to provide precise analysis. The simplicity and low-cost of the acoustic focusing devices developed here promise to be effective for flow cytometers that have reduced size, cost, and consumable use. Finally, the straightforward path to parallel flow streams using one-dimensional multinode acoustic focusing, indicates that simple acoustic focusing in rectangular channels may also have a prominent role in high-throughput flow cytometry. Copyright © 2012 Elsevier Inc. All rights reserved.
Forced convective boiling heat transfer of water in vertical rectangular narrow channel
International Nuclear Information System (INIS)
Chen, Chong; Gao, Pu-zhen; Tan, Si-chao; Chen, Han-ying; Chen, Xian-bing
2015-01-01
Highlights: • Chen correlation cannot well predict the coefficient of rectangular channel. • Kim and Mudawar correlation is the best one among the Chen type correlations. • Lazarek and Black correlation predicted 7.0% of data within the ±30% error band. • The new correlation can well predict the coefficient with a small MAE of 14.4%. - Abstract: In order to research the characteristics of boiling flows in a vertical rectangular narrow channel, a series of convective boiling heat transfer experiments are performed. The test section is made of stainless steel with an inner diameter of 2 × 40 mm and heated length of 1100 mm. The 3194 experimental data points are obtained for a heat flux range of 10–700 kW/m 2 , a mass flux range of 200–2400 kg/m 2 s, a system pressure range of 0.1–2.5 MPa, and a quality range of 0–0.8. Eighteen prediction models are used to predict the flow boiling heat transfer coefficient of the rectangular narrow channel and the predicted value is compared against the database including 3194 data points, the results show that Chen type correlations and Lazarek and Black type correlations are not suitable for the rectangular channel very much. The Kim and Mudawar correlation is the best one among the 18 models. A new correlation is developed based on the superposition concept of nucleate boiling and convective boiling. the new correlation is shown to provide a good prediction against the database, evidenced by an overall MAE of 14.4%, with 95.2% and 98.6% of the data falling within ±30% and ±35% error bands, respectively
International Nuclear Information System (INIS)
Yu Zhiting; Tan Sichao; Yuan Hongsheng; Zhuang Nailiang; Chen Hanying
2015-01-01
An experimental study was conducted to investigate the flow instability in a vertical mini-rectangular channel with distilled water as the working fluid. The rotational speed of the primary pump is gradually reduced to lower the inlet flow rate until the flow becomes unstable, while maintaining all other thermal parameters unchanged. Three types of instability, characterized by large amplitude oscillation, small amplitude oscillation and flow excursion, were identified from the experimental data. A stability map for the vertical mini-rectangular channel under forced circulation was established based on the Subcooling number and Phase Change number. The oscillation periods were correlated with the fluid transit time and the boiling delay time. A flow pattern map for vertical upward flow in a mini-rectangular channel was applied to confirm the flow patterns during the oscillation. The mechanisms of the three types of instability were obtained by considering several types of flow instabilities and comparing them with the oscillations observed in this work. (author)
Premature and stable critical heat flux for downward flow in a narrow rectangular channel
International Nuclear Information System (INIS)
Lee, Juhyung; Chang, Soon Heung; Jeong, Yong Hoon; Jo, Daeseong
2014-01-01
It has been recommended that RRs and MTRs be designed to have sufficient margins for CHF and the onset of FI as well, since unstable flow could leads to premature CHF under very low wall heat flux in comparison to stable CHF. Even the fact and previous studies, however, the understanding of relationship among FI, premature CHF and stable CHF is not sufficient to date. In this regards, subcooled flow boiling in a vertical rectangular channel was experimentally investigated to enhance the understanding of the CHF and the effect of the two-phase flow instability on it under low pressure conditions, especially for downward flow which was adopted for Jordan Research and Training Reactor (JRTR) and Kijang research reactor (KJRR) to achieve easier fuel and irradiation rig loading. In this study, CHF for downward flow of water under low pressure in narrow rectangular channel was experimentally investigated. For conditions such as downward flow, narrow rectangular channel and low pressure, it has been deduced from literature that flow instability could largely influence on triggering CHF at lower heat flux, i. e. premature CHF. Total 54 CHF data, which includes premature and stable data was obtained for various fluid conditions and system configurations including inlet stiffness. The upper and lower boundaries of CHF were newly proposed based on the experiment
Experimental study on downward two-phase flow in narrow rectangular channel
Energy Technology Data Exchange (ETDEWEB)
Kim, T.H.; Jeong, J.H. [Pusan National Univ., Busan (Korea, Republic of)
2014-07-01
Adiabatic vertical two-phase flow of air and water through narrow rectangular channels was investigated. This study involved the observation of flow using a high speed camera and flow regimes were determined by image processing program using a MATLAB. The flows regimes in channel with downward flow are similar to those found by previous studies with upward flow. The flow regimes in downward flow at low liquid velocity are different from the previous studies in upward flow. The flow regimes can be classified into bubbly, cap-bubbly, slug and churn flow. (author)
Phase distribution measurements in narrow rectangular channels using image processing techniques
International Nuclear Information System (INIS)
Bentley, C.; Ruggles, A.
1991-01-01
Many high flux research reactor fuel assemblies are cooled by systems of parallel narrow rectangular channels. The HFIR is cooled by single phase forced convection under normal operating conditions. However, two-phase forced convection or two phase mixed convection can occur in the fueled region as a result of some hypothetical accidents. Such flow conditions would occur only at decay power levels. The system pressure would be around 0.15 MPa in such circumstances. Phase distribution of air-water flow in a narrow rectangular channel is examined using image processing techniques. Ink is added to the water and clear channel walls are used to allow high speed still photographs and video tape to be taken of the air-water flow field. Flow field images are digitized and stored in a Macintosh 2ci computer using a frame grabber board. Local grey levels are related to liquid thickness in the flow channel using a calibration fixture. Image processing shareware is used to calculate the spatially averaged liquid thickness from the image of the flow field. Time averaged spatial liquid distributions are calculated using image calculation algorithms. The spatially averaged liquid distribution is calculated from the time averaged spatial liquid distribution to formulate the combined temporally and spatially averaged fraction values. The temporally and spatially averaged liquid fractions measured using this technique compare well to those predicted from pressure gradient measurements at zero superficial liquid velocity
Laser--Doppler anemometry technique applied to two-phase dispersed flows in a rectangular channel
International Nuclear Information System (INIS)
Lee, S.L.; Srinivasan, J.
1979-01-01
A new optical technique using Laser--Doppler anemometry has been applied to the local measurement of turbulent upward flow of a dilute water droplet--air two-phase dispersion in a vertical rectangular channel. Individually examined were over 20,000 droplet signals coming from each of a total of ten transversely placed measuring points, the closest of which to the channel wall was 250 μ away from the wall. Two flows of different patterns due to different imposed flow conditions were investigated, one with and the other without a liquid film formed on the channel wall. Reported are the size and number density distribution and the axial and lateral velocity distributions for the droplets as well as the axial and lateral velocity distributions for the air
Heat transfer in a compact heat exchanger containing rectangular channels and using helium gas
Olson, D. A.
1991-01-01
Development of a National Aerospace Plane (NASP), which will fly at hypersonic speeds, require novel cooling techniques to manage the anticipated high heat fluxes on various components. A compact heat exchanger was constructed consisting of 12 parallel, rectangular channels in a flat piece of commercially pure nickel. The channel specimen was radiatively heated on the top side at heat fluxes of up to 77 W/sq cm, insulated on the back side, and cooled with helium gas flowing in the channels at 3.5 to 7.0 MPa and Reynolds numbers of 1400 to 28,000. The measured friction factor was lower than that of the accepted correlation for fully developed turbulent flow, although the uncertainty was high due to uncertainty in the channel height and a high ratio of dynamic pressure to pressure drop. The measured Nusselt number, when modified to account for differences in fluid properties between the wall and the cooling fluid, agreed with past correlations for fully developed turbulent flow in channels. Flow nonuniformity from channel-to-channel was as high as 12 pct above and 19 pct below the mean flow.
Shirai, Atsushi; Masuda, Sunao
2013-01-01
The authors have previously presented a mathematical model to predict transit time of a neutrophil through an alveolar capillary segment which was modeled as an axisymmetric arc-shaped constriction settled in a cylindrical straight pipe to investigate the influence of entrance curvature of a capillary on passage of the cell. The axially asymmetric cross section of a capillary also influences the transit time because it requires three-dimensional deformation of a cell when it passes through the capillary and could lead to plasma leakage between the cell surface and the capillary wall. In this study, a rectangular channel was introduced, the side walls of which were moderately constricted, as a representative of axially asymmetric capillaries. Dependence of transit time of a neutrophil passing through the constriction on the constriction geometry, i.e., channel height, throat width and curvature radius of the constriction, was numerically investigated, the transit time being compared with that through the axisymmetric model. It was found that the transit time is dominated by the throat hydraulic diameter and curvature radius of the constriction and that the throat aspect ratio little affects the transit time with a certain limitation, indicating that if an appropriate curvature radius is chosen, such a rectangular channel model can be substituted for an axisymmetric capillary model having the same throat hydraulic diameter in terms of the transit time by choosing an appropriate curvature radius. Thus, microchannels fabricated by the photolithography technique, whose cross section is generally rectangular, are expected to be applicable to in vitro model experiments of neutrophil retention and passage in the alveolar capillaries. PMID:23527190
Effect of the configuration of the corner in a narrow rectangular channel on flow and heat transfer
International Nuclear Information System (INIS)
Xu Jianjun; Chen Bingde; Wang Xiaojun
2009-01-01
In order to further understand the effect of the configuration of the corner in a narrow rectangular channel on flow and heat transfer, flow field and temperature field in a narrow rectangular channel were numerical simulated by using CFD code CFX10.0. The results show under the condition of equal quantity of heat of solid which is obtained by decreasing the solid of the corner, the distributions of inside wall temperature for the orthogonal and circular type configurations of the corner are almost the same as that of the archetypal configuration, and those can simulate heat transfer of the archetypal con- figuration. Under the condition of equal Re, secondary flow and friction pressure of the orthogonal type configuration are almost the same as those of the circular type configuration, which shows that the circular type configuration of the corner in a narrow channel can substituted for the archetypal configuration to simulate flow and heat transfer in a narrow rectangular channel. (authors)
On the prediction of single-phase forced convection heat transfer in narrow rectangular channels
International Nuclear Information System (INIS)
Ghione, Alberto; Noel, Brigitte; Vinai, Paolo; Demazière, Christophe
2014-01-01
In this paper, selected heat transfer correlations for single-phase forced convection are assessed for the case of narrow rectangular channels. The work is of interest in the thermal-hydraulic analysis of the Jules Horowitz Reactor (JHR), which is a research reactor under construction at CEA-Cadarache (France). In order to evaluate the validity of the correlations, about 300 tests from the SULTAN-JHR database were used. The SULTAN-JHR program was carried out at CEA-Grenoble and it includes different kinds of tests for two different vertical rectangular channels with height of 600 mm and gap of 1.51 and 2.16 mm. The experimental conditions range between 2 - 9 bar for the pressure; 0.5 - 18 m/s for the coolant velocity and 0.5 - 7.5 MW/m 2 for the heat flux (whose axial distribution is uniform). Forty-two thermocouples and eight pressure taps were placed at several axial locations, measuring wall temperature and pressure respectively. The analysis focused on turbulent flow with Reynolds numbers between 5.5 x 10 3 - 2.4 x 10 5 and Prandtl numbers between 1.5 - 6. It was shown that standard correlations as the Dittus-Boelter and Seider-Tate significantly under-estimate the heat transfer coefficient, especially at high Reynolds number. Other correlations specifically designed for narrow rectangular channels were also taken into account and compared. The correlation of Popov-Petukhov in the form suggested by Siman-Tov still under-estimates the heat transfer coefficient, even if slight improvements could be seen. A better agreement for the tests with gap equal to 2.16 mm could be found with the correlation of Ma and the one of Liang. However the heat transfer coefficient when the gap is equal to 1.51 mm could not be predicted accurately. Furthermore these correlations were based on data at low Reynolds numbers (up to 13000) and low heat flux, so the use of them for SULTAN-JHR may be questionable. According to the authors’ knowledge, existing models of heat transfer
Experimental study of falling film evaporation in large scale rectangular channel
International Nuclear Information System (INIS)
Huang, X.G.; Yang, Y.H.; Hu, P.
2015-01-01
Highlights: • This paper studies the falling film evaporation in large scale rectangular channel experimentally. • The effects of air flow rate, film temperature and film flow rate on falling film evaporation are analyzed. • Increasing the air flow rate is considered as an efficient method to enhance the evaporation rate. • A correlation including the wave effect for falling film evaporation is derived based on heat and mass transfer analogy. - Abstract: The falling film evaporation in a large scale rectangular channel is experimentally studied in this paper for the design and improvement of passive containment cooling system. The evaporation mass transfer coefficient h D is obtained by the evaporation rate and vapor partial pressure difference of film surface and air bulk. The experimental results indicate that increasing of air flow rate appears to enhance h D , while the film temperature and film flow rate have little effect on h D . Since the wave effect on evaporation is noticed in experiment, the evaporation mass transfer correlation including the wave effect is developed on the basis of heat and mass transfer analogy and experimental data
Experimental investigation of onset of nucleate boiling in this rectangular channels
International Nuclear Information System (INIS)
Belhadj, M.; Christensen, R.N.; Aldemir, T.
1988-01-01
The 10 kW, HEU fueled Ohio State University Research Reactor (OSURR) will be upgraded to operate with plate type LEU U 3 Si 2 , fuel elements in the power range 250-500 kW. The core will be cooled by natural convection and an onset of nucleate boiling (ONB) margin of 1.2 will be maintained in the hot channel under steady-state operation. The validity of the correlations used for predicting ONB in plate type research reactors is not known for low heat flux-low velocity flows. An experiment has been set up at The Ohio State University to investigate ONB for laminar flow in this rectangular channels. The results show that: The Bergles-Rohsenow correlation and the correlation proposed by Ricque and Siboul predict higher and lower ONB fluxes than actual, respectively. The ONB heat flux is flow velocity dependent
International Nuclear Information System (INIS)
Yan Changqi; Jin Guangyuan; Sun Licheng; Wang Yang
2015-01-01
Characteristics of local parameters of bubbly flow were investigated in rectangular channel (40 mm × 3 mm) under inclined and rolling conditions. Under vertical condition, the distribution type 'wall peak' and 'core peak' are observed, and 'core peak' exists when the liquid superficial velocity is low and the gas superficial velocity is high. Under inclined condition, the peaks of two distribution types get strengthened at the top of the channel, and weakened at the bottom. Under rolling condition, the peaks of two distribution types get strengthened compared with the same angle under inclined condition when the angle is getting larger. The influence from rolling motion gets stronger on the peak of two distribution types when the rolling movement is more violent. (authors)
Pressure drop of magnetohydrodynamic two-phase annular flow in rectangular channel
International Nuclear Information System (INIS)
Kumamaru, Hiroshige; Fujiwara, Yoshiki; Ogita, Kenji
1999-01-01
Numerical calculations have been performed on magnetohydrodynamic (MHD) two-phase annular flow in a rectangular channel with a small aspect ratio, i.e.a small ratio of the channel side perpendicular to the applied magnetic field and the side parallel to the field. Results of the present calculation agree nearly with Inoue et al.'s experimental results in the region of large liquid Reynolds numbers and large Hartmann numbers. Calculation results also show that the pressure drop ratio, i.e. the ratio of pressure drop of two-phase flow to that of single-phase flow under the same liquid flow rate and applied magnetic field, becomes lower than ∼0.02 for conditions of a fusion reactor plant. (author)
Khan, Md Imran; Billah, Md. Mamun; Rahman, Mohammed Mizanur; Hasan, Mohammad Nasim
2017-12-01
Numerical simulation of steady two-dimensional heat transfer in a rectangular channel with a centered variable speed cylinder has been performed in this paper. In this setup, an isoflux heater is placed at the bottom wall of the channel while the upper wall is kept isothermal with a low temperature. The cylinder's peripheral speed to maximum inlet fluid velocity ratio (ξ) is varied from 0.5 to 1.5 for both clockwise and anticlockwise rotational cases. Air has been considered as working fluid while other system parameters such as Grashof and Reynolds numbers are varied. The effects of rotational speed, Grashof and Reynolds numbers on the streamline pattern, isothermal lines, local and average Nusselt number are analyzed and presented. It is observed the cylinder's rotational direction and speed has a significant effect on the flow pattern, temperature distribution as well as heat transfer characteristics.
International Nuclear Information System (INIS)
Mishima, K.; Nishihara, H.
1985-01-01
Critical heat flow (CHF) at low flow condition can become important in an MTR-type research reactor under a number of accident conditions. Regardless of the initial stages of these accidents, a condition which is basically the decay heat removal by natural convention boiling can develop. Under such conditions, burnout may occur even at a very low heat flow. In view of this, the CHF at low-flow-rate and low-pressure conditions has been studied for water flowing in thin rectangular channels. Experiments were carried out with two types of rectangular test sections, namely, the one heated from one wide side and the other heated from two opposite sides. In order to observe the effects of gravity, CHF was measured both in upflow and downflow. The CHF at complete bottom blockage was also studied. The results indicate that burnout can occur at a much lower heat flux than pool-boiling CHF or than predicted by the conventional correlations. There was observed a minimum CHF at complete bottom blockage and at very low downflow. The low CHF at very low downflow appears to be due to the stagnation of the bubble in the heated section. This fact indicates that special care should be taken in analyzing the boiling phenomenon which occurs when the coolant flow is very low in a low pressure system. (author)
Heat transfer and friction characteristics in steam cooled rectangular channels with rib turbulators
Energy Technology Data Exchange (ETDEWEB)
Gong, Jianying; Gao, Tieyu; Li, Guojun [Xi' an Jiaotong University, Xi' an (China)
2014-01-15
We studied the heat transfer and friction characteristics in steam-cooled rectangular channels with rib turbulators on W side or H side walls in the Reynolds number (Re) range of 10000-80000. Each of the test channels was welded by four stainless steel plates to simulate the actual geometry and heat transfer structure of blade/vane internal cooling passage. The length of the channel L was 1000 mm, the cross section of the channel was 40 mm X 80 mm, and the pitch-to-rib height ratio p/e was kept at 10. The channel blockage ratio (W/H) was 0.047. Results showed that the Nusselt number (Nu) distributions displayed different trends at the entrance region with the increase of Re for the rib turbulators on the W side walls. The heat transfer performance of the rib turbulators on the H side walls was about 24- 27% higher than that on the W side walls at the same pumping power. In addition, semi-empirical correlations for the two cases, rib turbulators on W side walls and rib turbulators on H side walls, were developed based on the heat transfer results, which could be used in the design of the internal cooling passage of new generation steam-cooled gas turbine blade/vane.
International Nuclear Information System (INIS)
Li Changwei; Cao Xiaxin; Sun Licheng; Jin Guangyuan
2013-01-01
Based on the data of two-phase flow in narrow rectangular channel, the influence of the two-phase flow friction characteristic under the different fluctuant states was analyzed. Through analyzing the experimental data, it is shown that the fluctuant amplitude of the friction pressure drop is affected slightly by the fluctuant period in narrow rectangular channel, but the frequency of the friction pressure drop fluctuation is changed. However, the change of fluctuant period is of little effect on the average frictional pressure drop. Comparing the φ l 2 (φ g 2 )-X variation curves at static condition with the ones at fluctuant condition, using the L-M method, it's found that the two phase frictional pressure drop in the narrow rectangular channel under the fluctuant state can be calculated by the φ l 2 (φ g 2 )-X variation curve at static condition. (authors)
International Nuclear Information System (INIS)
Sturgis, J.C.; Mudawar, I.
1999-01-01
An experimental study was undertaken to examine the enhancement in critical heat flux (CHF) provided by streamwise curvature. Curved and straight rectangular flow channels were fabricated with identical 5.0 x 2.5 mm cross sections and heated lengths of 101.6 mm in which the heat was applied to only one wall--the concave wall (32.3 mm radius) in the curved channel and a side wall in the straight. Tests were conducted using FC-72 liquid with mean inlet velocity and outlet subcooling of 0.25 to 10 m s -1 and 3 to 29 C, respectively. Centripetal acceleration for curved flow reached 315 times earth's gravitational acceleration. Critical heat flux was enhanced due to flow curvature at all conditions but the enhancement decreased with increasing subcooling. For near-saturated conditions, the enhancement was approximately 60% while for highly subcooled flow it was only 20%. The causes for the enhancement were identified as (1) increased pressure on the liquid-vapor interface at wetting fronts, (2) buoyancy forces and (3) increased subcooling at the concave wall. Flow visualization tests were conducted in transparent channels to explore the role of buoyancy forces in enhancing the critical heat flux. These forces were observed to remove vapor from the concave wall and distribute it throughout the cross section. Vapor removal was only effective at near-saturated conditions, yielding the observed substantial enhancement in CHF relative to the straight channel
Energy Technology Data Exchange (ETDEWEB)
Kim, T. H.; Yun, B. J.; Jeong, J. H. [Pusan National University, Geunjeong-gu, Busan (Korea, Republic of)
2015-05-15
Studies were mostly about flow in upward flow in medium size circular tube. Although there are great differences between upward and downward flow, studies on vertical upward flow are much more active than those on vertical downward flow in a channel. In addition, due to the increase of surface forces and friction pressure drop, the pattern of gas-liquid two-phase flow bounded to the gap of inside the rectangular channel is different from that in a tube. The downward flow in a rectangular channel is universally applicable to cool the plate type nuclear fuel in research reactor. The sub-channel of the plate type nuclear fuel is designed with a few millimeters. Downward air-water two-phase flow in vertical rectangular channel was experimentally observed. The depth, width, and length of the rectangular channel is 2.35 mm, 66.7 mm, and 780 mm, respectively. The test section consists of transparent acrylic plates confined within a stainless steel frame. The flow patterns of the downward flow in high liquid velocity appeared to be similar to those observed in previous studies with upward flow. In downward flow, the transition lines for bubbly-slug and slug-churn flow shift to left in the flow regime map constructed with abscissa of the superficial gas velocity and ordinate of the superficial liquid velocity. The flow patterns observed with downward flow at low liquid velocity are different from those with upward flow.
Traffic of leukocytes in microfluidic channels with rectangular and rounded cross-sections.
Yang, Xiaoxi; Forouzan, Omid; Burns, Jennie M; Shevkoplyas, Sergey S
2011-10-07
Traffic of leukocytes in microvascular networks (particularly through arteriolar bifurcations and venular convergences) affects the dynamics of capillary blood flow, initiation of leukocyte adhesion during inflammation, and localization and development of atherosclerotic plaques in vivo. Recently, a growing research effort has been focused on fabricating microvascular networks comprising artificial vessels with more realistic, rounded cross-sections. This paper investigated the impact of the cross-sectional geometry of microchannels on the traffic of leukocytes flowing with human whole blood through a non-symmetrical bifurcation that consisted of a 50 μm mother channel bifurcating into 30 μm and 50 μm daughter branches. Two versions of the same bifurcation comprising microchannels with rectangular and rounded cross-sections were fabricated using conventional multi-layer photolithography to produce rectangular microchannles that were then rounded in situ using a recently developed method of liquid PDMS/air bubble injection. For microchannels with rounded cross-sections, about two-thirds of marginated leukocytes traveling along a path in the top plane of the bifurcation entered the smallest 30 μm daughter branch. This distribution was reversed in microchannels with rectangular cross-sections--the majority of leukocytes traveling along a similar path continued to follow the 50 μm microchannels after the bifurcation. This dramatic difference in the distribution of leukocyte traffic among the branches of the bifurcation can be explained by preferential margination of leukocytes towards the corners of the 50 μm mother microchannels with rectangular cross-sections, and by the additional hindrance to leukocyte entry created by the sharp transition from the 50 μm mother microchannel to the 30 μm daughter branch at the intersection. The results of this study suggest that the trajectories of marginated leukocytes passing through non-symmetrical bifurcations are
Directory of Open Access Journals (Sweden)
Fengming Wang
2012-12-01
Full Text Available The flow and heat transfer characteristics inside a rectangular channel embedded with pin fins were numerically and experimentally investigated. Several differently shaped pin fins (i.e., circular, elliptical, and drop-shaped with the same cross-sectional areas were compared in a staggered arrangement. The Reynolds number based on the obstructed section hydraulic diameter (defined as the ratio of the total wetted surface area to the open duct volume available for flow was varied from 4800 to 8200. The more streamlined drop-shaped pin fins were better at delaying or suppressing separation of the flow passing through them, which decreased the aerodynamic penalty compared to circular pin fins. The heat transfer enhancement of the drop-shaped pin fins was less than that of the circular pin fins. In terms of specific performance parameters, drop-shaped pin fins are a promising alternative configuration to circular pin fins.
Flame Quenching Dynamics of High Velocity Flames in Rectangular Cross-section Channels
Mahuthannan, Ariff Magdoom; Lacoste, Deanna; Damazo, Jason; Kwon, Eddie; Roberts, William L.
2017-01-01
Understanding flame quenching for different conditions is necessary to develop safety devices like flame arrestors. In practical applications, the speed of a deflagration in the lab-fixed reference frame will be a strong function of the geometry through which the deflagration propagates. This study reports on the effect of the flame speed, at the entrance of a quenching section, on the quenching distance. A 2D rectangular channel joining two main spherical vessels is considered for studying this effect. Two different velocity regimes are investigated and referred to as configurations A, and B. For configuration A, the velocity of the flame is 20 m/s, while it is about 100 m/s for configuration B. Methane-air stoichiometric mixtures at 1 bar and 298 K are used. Simultaneous dynamic pressure measurements along with schlieren imaging are used to analyze the quenching of the flame. Risk assessment of re-ignition is also reported and analyzed.
Energy Technology Data Exchange (ETDEWEB)
Kim, Dong Eok; Myung, Byung-Soo [Kyungpook Nat’l Univ., Daegu (Korea, Republic of); Park, Su Cheong; Yu, Dong In [POSTECH, Pohang (Korea, Republic of); Kim, Moo Hwan [Korea Institute of Nuclear Safety (KINS), Daejeon (Korea, Republic of); Ahn, Ho Seon [Incheon Nat’l Univ., Incheon (Korea, Republic of)
2016-06-15
Based on a surface design with rectangular cavities and channels, we investigated the effects of gravity and capillary pressure on pool-boiling Critical Heat Flux (CHF). The microcavity structures could prevent liquid flow by the capillary pressure effect. In addition, the microchannel structures contributed to induce one-dimensional liquid flow on the boiling surface. The relationship between the CHF and capillary flow was clearly established. The driving potentials for the liquid supply into a boiling surface can be generated by the gravitational head and capillary pressure. Through an analysis of pool boiling and visualization data, we reveal that the liquid supplement to maintain the nucleate boiling condition on a boiling surface is closely related to the gravitational pressure head and capillary pressure effect.
Flame Quenching Dynamics of High Velocity Flames in Rectangular Cross-section Channels
Mahuthannan, Ariff Magdoom
2017-01-05
Understanding flame quenching for different conditions is necessary to develop safety devices like flame arrestors. In practical applications, the speed of a deflagration in the lab-fixed reference frame will be a strong function of the geometry through which the deflagration propagates. This study reports on the effect of the flame speed, at the entrance of a quenching section, on the quenching distance. A 2D rectangular channel joining two main spherical vessels is considered for studying this effect. Two different velocity regimes are investigated and referred to as configurations A, and B. For configuration A, the velocity of the flame is 20 m/s, while it is about 100 m/s for configuration B. Methane-air stoichiometric mixtures at 1 bar and 298 K are used. Simultaneous dynamic pressure measurements along with schlieren imaging are used to analyze the quenching of the flame. Risk assessment of re-ignition is also reported and analyzed.
Experimental study on transition characteristics of pulsating flow in narrow rectangular channel
International Nuclear Information System (INIS)
Zhang Chuan; Tan Sichao; Liu Yusheng; Gao Puzhen; Zhao Jianing; Zhang Hong
2013-01-01
Experimental study of flow characteristic in smooth narrow rectangular channel under harmonic pulsating flow which covers laminar to turbulent flow (Reynolds number 7504-450) was carried out. The experimental results show that the frictional factors in acceleration phase of pulsating flow are higher than that in steady state, but lower than that in deceleration phase. Womersley parameter has a significant influence on the critical Reynolds number. The critical Reynolds number decreases with the increase of Womersley parameter in acceleration phase and it is opposite in deceleration phase. An empirical correlation was developed to predict the critical Reynolds number based on the experimental data, and the correlation can fit with critical Reynolds number in steady state. (authors)
Directory of Open Access Journals (Sweden)
Yasuhisa Shinmoto
2017-11-01
Full Text Available The use of immiscible liquids for cooling of surfaces with high heat generation density is proposed based on the experimental verification of its superior cooling characteristics in fundamental systems of pool boiling and flow boiling in a tube. For the purpose of practical applications, however, heat transfer characteristics due to flow boiling in narrow rectangular channels with different small gap sizes need to be investigated. The immiscible liquids employed here are FC72 and water, and the gap size is varied as 2, 1, and 0.5 mm between parallel rectangular plates of 30 mm × 175 mm, where one plate is heated. To evaluate the effect of gap size, the heat transfer characteristics are compared at the same inlet velocity. The generation of large flattened bubbles in a narrow gap results in two opposite trends of the heat transfer enhancement due to thin liquid film evaporation and of the deterioration due to the extension of dry patch in the liquid film. The situation is the same as that observed for pure liquids. The latter negative effect is emphasized for extremely small gap sizes if the flow rate ratio of more-volatile liquid to the total is not reduced. The addition of small flow rate of less-volatile liquid can increase the critical heat flux (CHF of pure more-volatile liquid, while the surface temperature increases at the same time and assume the values between those for more-volatile and less-volatile liquids. By the selection of small flow rate ratio of more-volatile liquid, the surface temperature of pure less-volatile liquid can be decreased without reducing high CHF inherent in the less-volatile liquid employed. The trend of heat transfer characteristics for flow boiling of immiscible mixtures in narrow channels is more sensitive to the composition compared to the flow boiling in a round tube.
Visualization of pre-set vortices in boundary layer flow over wavy surface in rectangular channel
Budiman, Alexander Christantho
2014-12-04
Abstract: Smoke-wire flow visualization is used to study the development of pre-set counter-rotating streamwise vortices in boundary layer flow over a wavy surface in a rectangular channel. The formation of the vortices is indicated by the vortical structures on the cross-sectional plane normal to the wavy surface. To obtain uniform spanwise vortex wavelength which will result in uniform vortex size, two types of spanwise disturbances were used: a series of perturbation wires placed prior and normal to the leading edge of the wavy surface, and a jagged pattern in the form of uniform triangles cut at the leading edge. These perturbation wires and jagged pattern induce low-velocity streaks that result in the formation of counter-rotating streamwise vortices that evolve downstream to form the mushroom-like structures on the cross-sectional plane of the flow. The evolution of the most amplified disturbances can be attributed to the formation of these mushroom-like structures. It is also shown that the size of the mushroom-like structures depends on the channel entrance geometry, Reynolds number, and the channel gap.Graphical Abstract: [Figure not available: see fulltext.
Directory of Open Access Journals (Sweden)
Hanafi Abdalla S.
2008-01-01
Full Text Available This paper presents experimental and numerical studies for the case of turbulent forced and mixed convection flow of water through narrow vertical rectangular channel. The channel is composed of two parallel plates which are heated at a uniform heat flux, whereas, the other two sides of the channel are thermally insulated. The plates are of 64 mm in width, 800 mm in height, and separated from each other at a narrow gap of 2.7 mm. The Nusselt number distribution along the flow direction normalized by the Nusselt number for the case of turbulent forced convection flow is obtained experimentally with a comparison with the numerical results obtained from a commercial computer code. The quantitative determination of the nor- malized Nusselt number with respect to the dimension-less number Z = (Gr/Re21/8Pr0.5 is presented with a comparison with previous experimental results. Qualitative results are presented for the normalized temperature and velocity profiles in the transverse direction with a comparison between the forced and mixed convection flow for both the cases of upward and downward flow directions. The effect of the axial locations and the parameter Gr/Re on the variation of the normalized temperature profiles in the transverse direction for both the regions of forced and mixed convection and for both of the upward and downward flow directions are obtained. The normalized velocity profiles in the transverse directions are also determined at different inlet velocity and heat fluxes for the previous cases. It is found that the normalized Nusselt number is greater than one in the mixed convection region for both the cases of upward and downward flow and correlated well with the dimension-less parameter Z for both of the forced and mixed convection regions. The temperature profiles increase with increasing the axial location along the flow direction or the parameter Gr/Re for both of the forced and mixed convection regions, but this increase is
International Nuclear Information System (INIS)
Sharma, P K; Ambulkar, K K; Parmar, P R; Virani, C G; Thakur, A L; Joshi, L M; Nangru, S C
2010-01-01
A 3.7 GHz., 120 kW (pulsed), lower hybrid current drive (LHCD) system is employed to drive non-inductive plasma current in ADITYA tokamak. The rf power is coupled to the plasma through grill antenna and is placed in vacuum environment. A vacuum break between the pressurized transmission line and the grill antenna is achieved with the help of a multi (eight) channel rectangular RF vacuum window. The phasing between adjacent channels of 8-channel window (arranged in two rows) is important for launching lower hybrid waves and each channel should have independent vacuum window so that phase information is retained. The geometrical parameter of the grill antenna, like periodicity (9mm), channel dimensions (cross sectional dimension of 76mm x 7mm), etc. is to be maintained. These design constraint demanded a development of a multi channel rectangular RF vacuum window. To handle rf losses and thermal effects, high temperature vacuum brazing techniques is desired. Based on the above requirements we have successfully developed a multi channel rectangular rf vacuum window employing high temperature vacuum brazing technique. During the development process we could optimize the chemical processing parameters, brazing process parameters, jigs and fixtures for high temperature brazing and leak testing, etc. Finally the window is tested for low power rf performance using VNA. In this paper we would present the development of the said window in detail along with its mechanical, vacuum and rf performances.
Energy Technology Data Exchange (ETDEWEB)
Sharma, P K; Ambulkar, K K; Parmar, P R; Virani, C G; Thakur, A L [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India); Joshi, L M; Nangru, S C, E-mail: pramod@ipr.res.i [Central Electronics Engineering Research Institute, Pilani, Rajasthan 333 031 (India)
2010-02-01
A 3.7 GHz., 120 kW (pulsed), lower hybrid current drive (LHCD) system is employed to drive non-inductive plasma current in ADITYA tokamak. The rf power is coupled to the plasma through grill antenna and is placed in vacuum environment. A vacuum break between the pressurized transmission line and the grill antenna is achieved with the help of a multi (eight) channel rectangular RF vacuum window. The phasing between adjacent channels of 8-channel window (arranged in two rows) is important for launching lower hybrid waves and each channel should have independent vacuum window so that phase information is retained. The geometrical parameter of the grill antenna, like periodicity (9mm), channel dimensions (cross sectional dimension of 76mm x 7mm), etc. is to be maintained. These design constraint demanded a development of a multi channel rectangular RF vacuum window. To handle rf losses and thermal effects, high temperature vacuum brazing techniques is desired. Based on the above requirements we have successfully developed a multi channel rectangular rf vacuum window employing high temperature vacuum brazing technique. During the development process we could optimize the chemical processing parameters, brazing process parameters, jigs and fixtures for high temperature brazing and leak testing, etc. Finally the window is tested for low power rf performance using VNA. In this paper we would present the development of the said window in detail along with its mechanical, vacuum and rf performances.
Two-phase flow regimes for counter-current air-water flows in narrow rectangular channels
International Nuclear Information System (INIS)
Kim, Byong Joo; Sohn, Byung Hu; Jeong, Si Young
2001-01-01
A study of counter-current two-phase flow in narrow rectangular channels has been performed. Two-phase flow regimes were experimentally investigated in a 760 mm long and 100 mm wide test section with 2.0 and 5.0 mm gap widths. The resulting flow regime maps were compared with the existing transition criteria. The experimental data and the transition criteria of the models showed relatively good agreement. However, the discrepancies between the experimental data and the model predictions of the flow regime transition became pronounced as the gap width increased. As the gap width increased the transition gas superficial velocities increased. The critical void fraction for the bubbly-to-slug transition was observed to be about 0.25. The two-phase distribution parameter for the slug flow was larger for the narrower channel. The uncertainties in the distribution parameter could lead to a disagreement in slug-to-churn transition between the experimental findings and the transition criteria. For the transition from churn to annular flow the effect of liquid superficial velocity was found to be insignificant
Chremmos, Ioannis
2010-01-01
The scattering of a surface plasmon polariton (SPP) by a rectangular dielectric channel discontinuity is analyzed through a rigorous magnetic field integral equation method. The scattering phenomenon is formulated by means of the magnetic-type scalar integral equation, which is subsequently treated through an entire-domain Galerkin method of moments (MoM), based on a Fourier-series plane wave expansion of the magnetic field inside the discontinuity. The use of Green's function Fourier transform allows all integrations over the area and along the boundary of the discontinuity to be performed analytically, resulting in a MoM matrix with entries that are expressed as spectral integrals of closed-form expressions. Complex analysis techniques, such as Cauchy's residue theorem and the saddle-point method, are applied to obtain the amplitudes of the transmitted and reflected SPP modes and the radiated field pattern. Through numerical results, we examine the wavelength selectivity of transmission and reflection against the channel dimensions as well as the sensitivity to changes in the refractive index of the discontinuity, which is useful for sensing applications.
Analytical solutions of heat transfer for laminar flow in rectangular channels
Directory of Open Access Journals (Sweden)
Rybiński Witold
2014-12-01
Full Text Available The paper presents two analytical solutions namely for Fanning friction factor and for Nusselt number of fully developed laminar fluid flow in straight mini channels with rectangular cross-section. This type of channels is common in mini- and microchannel heat exchangers. Analytical formulae, both for velocity and temperature profiles, were obtained in the explicit form of two terms. The first term is an asymptotic solution of laminar flow between parallel plates. The second one is a rapidly convergent series. This series becomes zero as the cross-section aspect ratio goes to infinity. This clear mathematical form is also inherited by the formulae for friction factor and Nusselt number. As the boundary conditions for velocity and temperature profiles no-slip and peripherally constant temperature with axially constant heat flux were assumed (H1 type. The velocity profile is assumed to be independent of the temperature profile. The assumption of constant temperature at the channel’s perimeter is related to the asymptotic case of channel’s wall thermal resistance: infinite in the axial direction and zero in the peripheral one. It represents typical conditions in a minichannel heat exchanger made of metal.
International Nuclear Information System (INIS)
Yan Chaoxing; Yan Changqi; Sun Licheng; Xing Dianchuan; Wang Yang
2013-01-01
On the basis of visual observation, the effects of aspect ratio on relationship between flow resistance and flow regime were investigated experimentally for two-phase flow in three rectangular channels with the same cross-section width of 43 mm and different heights of 1.41, 3 and 10 mm, respectively. According to the criteria in terms of restriction factor C o , the former two channels belong to narrow channel, whereas the last one is conventional channel. The experimental results show that the two-phase pressure drops in rectangular channel with different aspect ratios have different variation trends with the increase of the gas velocity. For the 10 mm channel, the gravitational pressure drop makes the major percentage of total pressure drop at low gas velocity while the frictional pressure drop is dominant for the 1.41 mm and 3 mm channels. With the increase of the gas flow rate, the frictional pressure drop contributes more to total pressure drop. The range of churn flow can be distinguished from its pressure drop characteristic in 10 mm channel. (authors)
New Subarray Readout Patterns for the ACS Wide Field Channel
Golimowski, D.; Anderson, J.; Arslanian, S.; Chiaberge, M.; Grogin, N.; Lim, Pey Lian; Lupie, O.; McMaster, M.; Reinhart, M.; Schiffer, F.; Serrano, B.; Van Marshall, M.; Welty, A.
2017-04-01
At the start of Cycle 24, the original CCD-readout timing patterns used to generate ACS Wide Field Channel (WFC) subarray images were replaced with new patterns adapted from the four-quadrant readout pattern used to generate full-frame WFC images. The primary motivation for this replacement was a substantial reduction of observatory and staff resources needed to support WFC subarray bias calibration, which became a new and challenging obligation after the installation of the ACS CCD Electronics Box Replacement during Servicing Mission 4. The new readout patterns also improve the overall efficiency of observing with WFC subarrays and enable the processing of subarray images through stages of the ACS data calibration pipeline (calacs) that were previously restricted to full-frame WFC images. The new readout patterns replace the original 512×512, 1024×1024, and 2048×2046-pixel subarrays with subarrays having 2048 columns and 512, 1024, and 2048 rows, respectively. Whereas the original square subarrays were limited to certain WFC quadrants, the new rectangular subarrays are available in all four quadrants. The underlying bias structure of the new subarrays now conforms with those of the corresponding regions of the full-frame image, which allows raw frames in all image formats to be calibrated using one contemporaneous full-frame "superbias" reference image. The original subarrays remain available for scientific use, but calibration of these image formats is no longer supported by STScI.
Joekar-Niasar, V.
2013-01-25
Upscaling electroosmosis in porous media is a challenge due to the complexity and scale-dependent nonlinearities of this coupled phenomenon. "Pore-network modeling" for upscaling electroosmosis from pore scale to Darcy scale can be considered as a promising approach. However, this method requires analytical solutions for flow and transport at pore scale. This study concentrates on the development of analytical solutions of flow and transport in a single rectangular channel under combined effects of electrohydrodynamic forces. These relations will be used in future works for pore-network modeling. The analytical solutions are valid for all regimes of overlapping electrical double layers and have the potential to be extended to nonlinear Boltzmann distribution. The innovative aspects of this study are (a) contribution of overlapping of electrical double layers to the Stokes flow as well as Nernst-Planck transport has been carefully included in the analytical solutions. (b) All important transport mechanisms including advection, diffusion, and electromigration have been included in the analytical solutions. (c) Fully algebraic relations developed in this study can be easily employed to upscale electroosmosis to Darcy scale using pore-network modeling. © 2013 Springer Science+Business Media Dordrecht.
Joekar-Niasar, V.; Schotting, R.; Leijnse, A.
2013-01-01
Upscaling electroosmosis in porous media is a challenge due to the complexity and scale-dependent nonlinearities of this coupled phenomenon. "Pore-network modeling" for upscaling electroosmosis from pore scale to Darcy scale can be considered as a promising approach. However, this method requires analytical solutions for flow and transport at pore scale. This study concentrates on the development of analytical solutions of flow and transport in a single rectangular channel under combined effects of electrohydrodynamic forces. These relations will be used in future works for pore-network modeling. The analytical solutions are valid for all regimes of overlapping electrical double layers and have the potential to be extended to nonlinear Boltzmann distribution. The innovative aspects of this study are (a) contribution of overlapping of electrical double layers to the Stokes flow as well as Nernst-Planck transport has been carefully included in the analytical solutions. (b) All important transport mechanisms including advection, diffusion, and electromigration have been included in the analytical solutions. (c) Fully algebraic relations developed in this study can be easily employed to upscale electroosmosis to Darcy scale using pore-network modeling. © 2013 Springer Science+Business Media Dordrecht.
International Nuclear Information System (INIS)
Wang Junfeng; Huang Yanping; Wang Yanlin
2011-01-01
Highlights: → Specific points on the demand curve and flow patterns are visually studied. → Bubbly, churn, and annular flows were observed. → Onset of flow instability and bubbly-churn transition occurs at the same time. → The evolution of specific points and flow pattern transitions were examined. - Abstract: A simultaneous visualization and measurement study on some specific points on demand curves, such as onset of nucleate boiling (ONB), onset of significant void (OSV), onset of flow instability (OFI), and two-phase flow patterns in a single-side heated narrow rectangular channel, having a width of 40 mm and a gap of 3 mm, was carried out. New experimental approaches were adopted to identify OSV and OFI in a narrow rectangular channel. Under experimental conditions, the ONB could be predicted well by the Sato and Matsumura model. The OSV model of Bowring can reasonably predict the OSV if the single-side heated condition is considered. The OFI was close to the saturated boiling point and could be described accurately by Kennedy's correlation. The two-phase flow patterns observed in this experiment could be classified into bubbly, churn, and annular flow. Slug flow was never observed. The OFI always occurred when the bubbles at the channel exit began to coalesce, which corresponded to the beginning of the bubbly-churn transition in flow patterns. Finally, the evolution of specific points and flow pattern transitions were examined in a single-side heated narrow rectangular channel.
Energy Technology Data Exchange (ETDEWEB)
Li, Zi-chao; Qi, Shi; Zhou, Tao; Li, Bing; Shahzad, Muhammad Ali [North China Electric Power Univ., Beijing (China). School of Nuclear Science and Engineering; Beijing Key Laboratory of Passive Safety Technology for Nuclear Energy, Beijing (China); Huang, Yan-ping [Nuclear Reactor Thermal Hydraulics Technology, Chengdu (China). CNNC Key Lab.
2017-12-15
Saturated boiling of two-phase natural circulation has been experimentally investigated based on a natural circulation device with narrow rectangular channels. When heating power reaches a certain range, it is possible to observe the phenomenon of saturated boiling and flow pattern transition in the system. The results show the heat transfer coefficient of saturated boiling decreases with the increasing of pressure, heating power and size of narrow rectangle channels. The buoyancy force causing mixed convection decreases the heat transfer coefficient. Finally, a dimensionless number is introduced, which reflects length to width ratio of rectangular narrow section and Rayleigh number, in order to revise the presented correlation. All errors fall within the range of ±15%.
Prediction of critical heat flux in narrow rectangular channels using an artificial neural network
International Nuclear Information System (INIS)
Zhou Lei; Yan Xiao; Huang Yanping; Xiao Zejun; Yu Jiyang
2011-01-01
The concept of Critical heat flux (CHF) and its importance are introduced and the meaning to research CHF in narrow rectangular channels independently is emphasized. This paper is the first effort to predict CHF in NRCs using aritificial neural network. The mathematical structure of the artificial neural network and the error back-propagation algorithm are introduced. To predict CHF, the four dimensionless groups are inputted to the neural network and the output is the dimensionless CHF. As the hidden nodes increased, the training error decreases while the testing error decreases firstly and then transition occurs. Based on this, the hidden nodes are set as 5 and the trained network predicts all of the training and testing data points with RMS=0.0016 and μ=1.0003, which is better than several well-known existing correlations. Based on the trained network, the effect of several parameters on CHF are simulated and discussed. CHF increases almost linearly as the inlet subcooling increases. And larger mass flux enhances the effect of the inlet subcooling. CHF increases with the mass flux increasing. And the effect seems to be a little stronger for relatively low system pressure. CHF decreases almost linearly as the system pressure increases for the fixed inlet condition. The slope of the curve also increases with higher mass flux. This observation is limited to the ranges of the experimental database. CHF decreases as the heated length is increased and the gradients of the curves become very sharp for relatively short channel. CHF increases slightly with the diameter increasing with the variance of the gap limited within 1 to 3 mm. For relatively low mass flux, the effect of the equivalent diameter on CHF is insignificant. As the width of the channel is large enough, the effect of the gap is quite the same as that of the equivalent diameter. A BPNN is successfully trained based on near 500 CHF data points in NRCs, which has much better performances than the
International Nuclear Information System (INIS)
Zhang Chunwei; Qiu Suizheng; Yan Mingyu; Wang Bulei; Nie Changhua
2005-01-01
The flow regime transition criteria for the boiling water two-phase flow in horizontal rectangular narrow channels (1 x 20 mm, 2 x 20 mm) were theoretically explored. The discernible flow patterns were bubble, intermittent slug, churn, annular and steam-water separation flow. By using two-fluid model, equations of conservation of momentum were established for the two-phase flow. New flow-regime criteria were obtained and agreed well with the experiment data. (authors)
Directory of Open Access Journals (Sweden)
Xi-yue Liu
2017-01-01
Full Text Available A simplified approach which utilizes an isotropic porous medium model has been widely adopted for modeling the flow through a compact heat exchanger. With respect to situations where the compact heat exchangers are partially installed inside a channel, such as the application of recuperators in an intercooled recuperative engine, the use of an isotropic porous medium model needs to be carefully assessed because the flow passing through the heat exchanger is very complicated. For this purpose, in this study the isotropic porous medium model is assessed together with specific pressure–velocity relationships for flow field modeling inside a rectangular channel with a built-in double-U-shaped tube bundle heat exchanger. Firstly, experiments were conducted using models to investigate the relationship between the pressure drop and the inlet velocity for a specific heat exchanger with different installation angles inside a rectangular channel. Secondly, a series of numerical computations were carried out using the isotropic porous medium model and the pressure–velocity relationship was then modified by introducing correction coefficients empirically. Finally, a three-dimensional (3-D direct computation was made using a computational fluid dynamics (CFD method for the comparison of detailed flow fields. The results suggest that the isotropic porous medium model is capable of making precise pressure drop predictions given the reasonable pressure–velocity relationship but is unable to precisely simulate the detailed flow features.
International Nuclear Information System (INIS)
Huang, Dong; Gao, Puzhen; Chen, Chong; Lan, Shu
2013-01-01
Highlights: • Most of the slip ratio models and the Lockhart–Martinelli parameter based models give similar results. • The drift flux void fraction models give relatively small values. • The effect of void fraction correlations on two-phase friction pressure drop is inconspicuous. • The effect of void fraction correlations on two-phase acceleration pressure drop is significant. - Abstract: The void fraction of water during flow boiling in vertical narrow rectangular channel is experimentally investigated. The void fraction is indirectly determined using the present experimental data with various void fraction correlations or models published in the open literature. The effects of mass flux, mass quality, system pressure and inlet subcooling on the void fraction and pressure drop are discussed in detail. In addition, comparison and discussion among the numerous void fraction correlations are carried out. The effect of void fraction correlations on two-phase pressure drop is presented as well. The results reveal that most of the slip ratio correlations and the Lockhart–Martinelli parameter based void fraction correlations have results close to each other at mass quality higher than 0.2. The drift flux void fraction correlations give small values which are incompatible with other models making it inapplicable for narrow rectangular channel. The alteration of void fraction correlations has an inconspicuous effect on two-phase frictional pressure drop, while an obvious effect on two-phase accelerational pressure drop during flow boiling in narrow rectangular channel
International Nuclear Information System (INIS)
Song, Jung-Hyun; Lee, Juhyung; Jeong, Yong Hoon; Chang, Soon Heung
2014-01-01
As the research reactors operates with downward flow, they have some advantages; downward flow can reduce the radioisotopes in the upper part of research reactor and simplify the locking mechanism as countervailing the buoyancy force on the nuclear fuel. However, as the research reactor operates under the low pressure condition, the premature critical heat flux (CHF) can occur during the onset of flow instability (OFI) according to circumstances as the pressure fluctuates significantly. For that reason, it is important to know and set the margin for the onset of nucleate boiling (ONB) which is the preceding phenomena of OFI and CHF to predict and handle with OFI. In addition, research reactor is the nuclear reactor serves neutron source for many research fields such as neutron scattering, non-destructive testing, radioisotope treatment and so on, it is important to avoid ONB to get stable neutron source. IAEA also recommends for research reactors to have enough ONB margin to maintain the normal operation state in 'IAEA-TECDOC-233' (1980). Though the ONB in research reactor is emphasized for these reasons, there isn't sufficient ONB data under downward flow condition and no ONB prediction correlation for downward flow as well. In addition, in many researches; Mosyak et al., Hapke et al., Wu et al. and Hong et al., the existing ONB correlations are not suitable for narrow rectangular channel. In the present work, not only a new ONB prediction correlation would be developed, but also comparison between new correlation with several ONB correlations would be shown. In this paper, ONB data would be analyzed to develop new ONB prediction correlation
Amano, Ryoichi S.; Abou-Ellail, Mohsen M.; Elhaw, Samer; Saeed Ibrahim, Mohamed
2013-09-01
In this work a prediction was numerically modeled for a catalytically stabilized thermal combustion of a lean homogeneous mixture of air and hydrogen. The mixture flows in a narrow rectangular channel lined with a thin coating of platinum catalyst. The solution using an in-house code is based on the steady state partial differential continuity, momentum and energy conservation equations for the mixture and species involved in the reactions. A marching technique is used along the streamwise direction to solve the 2-D plane-symmetric laminar flow of the gas. Two chemical kinetic reaction mechanisms were included; one for the gas phase reactions consisting of 17 elementary reactions; of which 7 are forward-backward reactions while the other mechanism is for the surface reactions—which are the prime mover of the combustion under a lean mixture condition—consisting of 16 elementary reactions. The results were compared with a former congruent experimental work where temperature was measured using thermocouples, while using PLIF laser for measuring water and hydrogen mole fractions. The comparison showed good agreement. More results for the velocities, mole fractions of other species were carried out across the transverse and along the streamwise directions providing a complete picture of overall mechanism—gas and surface—and on the production, consumptions and travel of the different species. The variations of the average OH mole fraction with the streamwise direction showed a sudden increase in the region where the ignition occurred. Also the rate of reactions of the entire surface species were calculated along the streamwise direction and a surface water production flux equation was derived by calculating the law of mass action's constants from the concentrations of hydrogen, oxygen and the rate of formation of water near the surface.
Taha, T.J.; Lefferts, Leonardus; van der Meer, Theodorus H.
2016-01-01
An experimental heat transfer investigation was carried out to examine the influence of carbon nanotubes (CNTs) layer deposits on the convective heat transfer performance inside rectangular microchannels. Successful synthesis of vertically aligned CNTs was achieved using a catalytic vapor deposition
Heat transfer and pressure drop in rectangular channels with crossing fins (a Review)
Sokolov, N. P.; Polishchuk, V. G.; Andreev, K. D.; Rassokhin, V. A.; Zabelin, N. A.
2015-06-01
Channels with crossing finning find wide use in the cooling paths of high-temperature gas turbine blade systems. At different times, different institutions carried out experimental investigations of heat transfer and pressure drop in channels with coplanar finning of opposite walls for obtaining semiempirical dependences of Nusselt criteria (dimensionless heat-transfer coefficients) and pressure drop coefficients on the operating Reynolds number and relative geometrical parameters (or their complexes). The shape of experimental channels, the conditions of experiments, and the used variables were selected so that they would be most suited for solving particular practical tasks. Therefore, the results obtained in processing the experimental data have large scatter and limited use. This article considers the results from experimental investigations of different authors. In comparing the results, additional calculations were carried out for bringing the mathematical correlations to the form of dependences from the same variables. Generalization of the results is carried out. In the final analysis, universal correlations are obtained for determining the pressure drop coefficients and Nusselt number values for the flow of working medium in channels with coplanar finning.
Mansoor, Mohammad M.
2012-02-01
A 3D-conjugate numerical investigation was conducted to predict heat transfer characteristics in a rectangular cross-sectional micro-channel employing simultaneously developing single-phase flows. The numerical code was validated by comparison with previous experimental and numerical results for the same micro-channel dimensions and classical correlations based on conventional sized channels. High heat fluxes up to 130W/cm 2 were applied to investigate micro-channel thermal characteristics. The entire computational domain was discretized using a 120×160×100 grid for the micro-channel with an aspect ratio of (α=4.56) and examined for Reynolds numbers in the laminar range (Re 500-2000) using FLUENT. De-ionized water served as the cooling fluid while the micro-channel substrate used was made of copper. Validation results were found to be in good agreement with previous experimental and numerical data [1] with an average deviation of less than 4.2%. As the applied heat flux increased, an increase in heat transfer coefficient values was observed. Also, the Reynolds number required for transition from single-phase fluid to two-phase was found to increase. A correlation is proposed for the results of average Nusselt numbers for the heat transfer characteristics in micro-channels with simultaneously developing, single-phase flows. © 2011 Elsevier Ltd.
Energy Technology Data Exchange (ETDEWEB)
Gong, Jianying; Li, Guojun; Gao, Tieyu [Xian Jiaotong University, Xian (China)
2014-09-15
The present experiment compares the heat transfer and friction characteristics in steam cooled and air cooled rectangular channels (simulating a gas turbine blade cooling passage) with two opposite rib-roughened walls. The Reynolds number (Re) whose length scale is the hydraulic diameter of the passage is set within the range of 10000-60000. The channel length is 1000 mm. The pitch-to-rib height ratio, the channel aspect ratio and the channel blockage ratio is 10, 0.5 and 0.047, respectively. It is found that the average Nu, the average friction coefficient, and the heat transfer performance of both steam and air in the ribbed channels show almost the same change trend with the increase of Re. Under the same test conditions, the average Nu of steam is 30.2% higher than that of air, the average friction coefficient is 18.4% higher, and the heat transfer performances of steam on the ribbed and the smooth walls are 8.4% and 7.3% higher than those of air, respectively. In addition, semi-empirical correlations for the two test channels are developed, which can predict the Nu under the given test condition. The correlations can be used in the design of the internal cooling passage of new generation steam cooled gas turbine blade/vane.
Air-water upward flow in prismatic channel of rectangular base
International Nuclear Information System (INIS)
Carvalho Tofani, P. de.
1984-01-01
Experiments had carried out to investigate the two-phase upward air-water flow structure, in a rectangular test section, by using independent measuring techniques, which comprise direct viewing and photography, electrical probes and gamma-ray attenuation. Flow pattern maps and correlations for flow pattern transitions, void fraction profiles, liquid film thickness and superficial average void fraction are proposed and compared to available data. (Author) [pt
Bouremel, Yann; Mitsudharmadi, Hatsari; Budiman, Alexander C.; Winoto, Sonny H.
2016-01-01
Particle Image Velocimetry (PIV) has been used to characterize the evolution of counter-rotating streamwise vortices in a rectangular channel with one sided wavy surface. The vortices were created by a uniform set of saw-tooth carved over the leading edge of a flat plate at the entrance of a flat rectangular channel with one-sided wavy wall. PIV measurements were taken over the spanwise and streamwise planes at different locations and at Reynolds number of 2500. Two other Reynolds numbers of 2885 and 3333 have also been considered for quantification purpose. Pairs of counter-rotating streamwise vortices have been shown experimentally to be centred along the spanwise direction at the saw-tooth valley where the vorticity ωz=0ωz=0. It has also been found that the vorticity ωzωz of the pairs of counter-rotating vortices decreases along the streamwise direction, and increases with the Reynolds number. Moreover, different quantifications of such counter-rotating vortices have been discussed such as their size, boundary layer, velocity profile and vorticity. The current study shows that the mixing due to the wall shear stress of counter-rotating streamwise vortices as well as their averaged viscous dissipation rate of kinetic energy decrease over flat and adverse pressure gradient surfaces while increasing over favourable pressure gradient surfaces. Finally, it was also demonstrated that the main direction of stretching is orientated at around 45° with the main flow direction.
Bouremel, Yann
2016-11-01
Particle Image Velocimetry (PIV) has been used to characterize the evolution of counter-rotating streamwise vortices in a rectangular channel with one sided wavy surface. The vortices were created by a uniform set of saw-tooth carved over the leading edge of a flat plate at the entrance of a flat rectangular channel with one-sided wavy wall. PIV measurements were taken over the spanwise and streamwise planes at different locations and at Reynolds number of 2500. Two other Reynolds numbers of 2885 and 3333 have also been considered for quantification purpose. Pairs of counter-rotating streamwise vortices have been shown experimentally to be centred along the spanwise direction at the saw-tooth valley where the vorticity ωz=0ωz=0. It has also been found that the vorticity ωzωz of the pairs of counter-rotating vortices decreases along the streamwise direction, and increases with the Reynolds number. Moreover, different quantifications of such counter-rotating vortices have been discussed such as their size, boundary layer, velocity profile and vorticity. The current study shows that the mixing due to the wall shear stress of counter-rotating streamwise vortices as well as their averaged viscous dissipation rate of kinetic energy decrease over flat and adverse pressure gradient surfaces while increasing over favourable pressure gradient surfaces. Finally, it was also demonstrated that the main direction of stretching is orientated at around 45° with the main flow direction.
International Nuclear Information System (INIS)
Perng, Shiang-Wuu; Wu, Horng-Wen; Jue, Tswen-Chyuan; Cheng, Kuo-Chih
2009-01-01
This paper numerically investigates the installation of the transverse rectangular cylinder along the gas diffusion layer (GDL) in the flow channel for the cell performance enhancement of a proton exchange membrane fuel cell (PEMFC). The effects of the blockage at various gap sizes and the width of the cylinder on the cell performance enhancement have been studied with changing the gap ratios λ = 0.05-0.3, for the same cylinder) and the width-to-height ratios (WR = 0.66-1.66, for the same cylinder height and gap ratio). The results show that the transverse installation of a rectangular cylinder in the fuel flow channel effectively enhances the cell performance of a PEMFC. In addition, the influence of the width of the cylinder on the cell performance is obvious, and the best cell performance enhancement occurs at the gap ratio 0.2 among the gap ratios of 0.05, 0.1, 0.2, and 0.3.
International Nuclear Information System (INIS)
Zhou, Tao; Duan, Jun; Hong, Dexun; Liu, Ping; Sheng, Cheng; Huang, Yanping
2013-01-01
Highlights: ► We observe the behavior of single bubbles in a narrow vertical rectangular channel. ► We analyze the force characteristics of the single bubble. ► Small bubbles in highly subcooled boiling region stick on the wall or slip slowly. ► The bubbles jumping from the wall are affected by drag force. ► The thermophoretic force makes bubbles jump from the wall strongly. - Abstract: The behavior of bubbles has an important influence on heat transfer during subcooled boiling. By observing the behavior of a single bubble in a narrow vertical rectangular channel, and analyzing the force characteristics of the single bubble, it turns out that small bubbles in the highly subcooled boiling region stick on the wall or slip slowly. The bubbles jumping from the wall are affected by drag force, and move with high speed. Maintaining a certain heating power, at the onset of boiling (ONB) point, the bubbles remain in a stable state. Furthermore, the thermophoretic force is considered in this paper. With increasing the temperature gradient in the fluid, the thermophoretic force causes the bubbles to jump from the wall easier
The Effect of Confluence Angle on the Flow Pattern at a Rectangular Open-Channel
Directory of Open Access Journals (Sweden)
F. Rooniyan
2014-02-01
Full Text Available Flow connection in channels is a phenomenon which frequently happens in rivers, water and drainage channels and urban sewage systems. The phenomenon appears to be more complex in rivers than in channels, especially at the y-junction bed joint that causes erosion and sedimentation at some areas resulting to morphological changes. Flow behavior at the channel junction area depends on variables such as channel geometry, discharge ratio, tributary width and y-junction connection angle of the channel, bed level changes at the bed joint, flow characteristic at the bed joint upstream and flow Froude number in different sections. In this research, fluent numerical model and junction angles of 30o, 45o & 60o are used to analyze and evaluate the effect of channel junction geometry on the flow pattern and the flow separation zone dimensions in different ratios of flow discharge (upstream channel discharge to total discharge of the flow. Results for two ratios of flow discharge are represented. Results are in agreement with earlier studies and it is shown that the change of the channel crossing angle affects the flow pattern in the main channel and also that the dimensions of the created separation zone in the main channel become larger when the crossing angle increases. This phenomenon can also be observed when the flow discharge ratio is lower. Analysis showed that the least dimension of the separation zone will be at the crossing angle of 45o .
Wide-band all-angle acoustic self-collimation by rectangular sonic crystals with elliptical bases
International Nuclear Information System (INIS)
Cicek, Ahmet; Kaya, Olgun Adem; Ulug, Bulent
2011-01-01
Self-collimation of acoustic waves in the whole angular range of ±90 0 in the second and third bands of a two-dimensional rectangular sonic crystal with elliptical basis is demonstrated by examining the band structure and equifrequency contours. 70% and 77% of the second and third bands are available for wide-band all-angle self-collimation spanning a bandwidth of approximately 29% and 25% of the central frequencies of the all-angle self-collimation frequency ranges, respectively. Self-collimation of waves over large distances with a small divergence of beam width in the transverse direction is demonstrated through computations based on the finite element method. The second and third bands available for self-collimation are seen to vary linearly in the vast mid-range where a small group velocity dispersion prevents temporal divergence of waves with different frequencies.
Local gas- and liquid-phase measurements for air-water two-phase flows in a rectangular channel
International Nuclear Information System (INIS)
Zhou, X.; Sun, X.; Williams, M.; Fu, Y.; Liu, Y.
2014-01-01
Local gas- and liquid-phase measurements of various gas-liquid two-phase flows, including bubbly, cap-bubbly, slug, and churn-turbulent flows, were performed in an acrylic vertical channel with a rectangular cross section of 30 mm x 10 mm and height of 3.0 m. All the measurements were carried out at three measurement elevations along the flow channel, with z/D h = 9, 72, and 136, respectively, to study the flow development. The gas-phase velocity, void fraction, and bubble number frequency were measured using a double-sensor conductivity probe. A high-speed imaging system was utilized to perform the flow regime visualization and to provide additional quantitative information of the two-phase flow structure. An image processing scheme was developed to obtain the gas-phase velocity, void fraction, Sauter mean diameter, bubble number density, and interfacial area concentration. The liquid-phase velocity and turbulence measurements were conducted using a particle image velocimetry-planar laser-induced fluorescence (PIV-PLIF) system, which enables whole-field and high-resolution data acquisition. An optical phase separation method, which uses fluorescent particles and optical filtration technique, is adopted to extract the velocity information of the liquid phase. An image pre-processing scheme is imposed on the raw PIV images acquired to remove noises due to the presence of bubble residuals and optically distorted particles in the images captured by the PIV-PLIF system. Due to the better light access and less bubble distortion in the narrow rectangular channel, the PIV-PLIF system were able to perform reasonably well in flows of even higher void fractions as compared to the situations with circular pipe test sections. The flow conditions being studied covered various flow regime transitions, void fractions, and liquid-phase flow Reynolds numbers. The obtained experimental data can also be used to validate two-phase CFD results. (author)
Datta, Subhra; Ghosal, Sandip; Patankar, Neelesh A
2006-02-01
Electroosmotic flow in a straight micro-channel of rectangular cross-section is computed numerically for several situations where the wall zeta-potential is not constant but has a specified spatial variation. The results of the computation are compared with an earlier published asymptotic theory based on the lubrication approximation: the assumption that any axial variations take place on a long length scale compared to a characteristic channel width. The computational results are found to be in excellent agreement with the theory even when the scale of axial variations is comparable to the channel width. In the opposite limit when the wavelength of fluctuations is much shorter than the channel width, the lubrication theory fails to describe the solution either qualitatively or quantitatively. In this short wave limit the solution is well described by Ajdari's theory for electroosmotic flow between infinite parallel plates (Ajdari, A., Phys. Rev. E 1996, 53, 4996-5005.) The infinitely thin electric double layer limit is assumed in the theory as well as in the simulation.
Directory of Open Access Journals (Sweden)
James A. Parsons
2001-01-01
Full Text Available The effect of channel rotation on jet impingement cooling by arrays of circular jets in twin channels was studied. Impinging jet flows were in the direction of rotation in one channel and opposite to the direction of rotation in the other channel. The jets impinged normally on the smooth, heated target wall in each channel. The spent air exited the channels through extraction holes in each target wall, which eliminates cross flow on other jets. Jet rotation numbers and jet Reynolds numbers varied from 0.0 to 0.0028 and 5000 to 10,000, respectively. For the target walls with jet flow in the direction of rotation (or opposite to the direction of rotation, as rotation number increases heat transfer decreases up to 25% (or 15% as compared to corresponding results for non-rotating conditions. This is due to the changes in flow distribution and rotation induced Coriolis and centrifugal forces.
Two-phase upward air water flow in a prismatic channel with rectangular base
International Nuclear Information System (INIS)
Carvalho Tofani, P. de
1984-01-01
Two-phase liquid-gas mixtures provide suitable means to simulate water-water vapor flows, which may occur in nuclear reactor cores. The mastery of physical transport phenomena is of great importance, as far as the analysis of such thermal systems is concerned. Within the framework of thermal-hydraulic programs, experiments have been carried out to investigate the two-phase upward air-water flow structure, in a rectangular test section, by using independent measuring techniques, which comprise direct viewing and photography, electrical probes and gamma-ray attenuation. In this paper, flow pattern maps and correlations for flow pattern transitions, void fraction profiles, liquid film thickness and superficial average void fraction are proposed and compared to available data. (Author) [pt
High-frame rate imaging of two-phase flow in a thin rectangular channel using fast neutrons.
Zboray, R; Mor, I; Dangendorf, V; Stark, M; Tittelmeier, K; Cortesi, M; Adams, R
2014-08-01
We have demonstrated the feasibility of performing high-frame-rate, fast neutron radiography of air-water two-phase flows in a thin channel with rectangular cross section. The experiments have been carried out at the accelerator facility of the Physikalisch-Technische Bundesanstalt. A polychromatic, high-intensity fast neutron beam with average energy of 6 MeV was produced by 11.5 MeV deuterons hitting a thick Be target. Image sequences down to 10 ms exposure times were obtained using a fast-neutron imaging detector developed in the context of fast-neutron resonance imaging. Different two-phase flow regimes such as bubbly slug and churn flows have been examined. Two phase flow parameters like the volumetric gas fraction, bubble size and mean bubble velocities have been measured. The first results are promising, improvements for future experiments are also discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.
DEFF Research Database (Denmark)
Jensen, Jesper Rindom; Benesty, Jacob; Christensen, Mads Græsbøll
2013-01-01
In this paper, we introduce a new class of op- timal rectangular filtering matrices for single-channel speech enhancement. The new class of filters exploits the fact that the dimension of the signal subspace is lower than that of the full space. By doing this, extra degrees of freedom...... in the filters, that are otherwise reserved for preserving the signal subspace, can be used for achieving an improved output signal-to-noise ratio (SNR). Moreover, the filters allow for explicit control of the tradeoff between noise reduction and speech distortion via the chosen rank of the signal subspace...... and real signals. The results show a number of interesting things. Firstly, they show how speech distortion can be traded for noise reduction and vice versa in a seamless manner. Moreover, the introduced filter designs are capable of achieving both the upper and lower bounds for the output SNR via...
International Nuclear Information System (INIS)
Wang Junfeng; Huang Yanping; Wang Yanlin; Song Mingliang
2012-01-01
Highlights: ► Flow regimes were visually investigated in a heated narrow rectangular channel. ► Bubbly, churn, and annular flow were observed. Slug flow was never observed. ► Flow regime transition boundary could be predicted by existing criteria. ► Churn zone in present flow regime maps were poorly predicted by existing criteria. - Abstract: Flow regimes are very important in understanding two-phase flow resistance and heat transfer characteristics. In present work, two-phase flow regimes for steam–water flows in a single-side heated narrow rectangular channel, having a width of 40 mm and a gap of 3 mm, were visually studied at relatively low pressure and low mass flux condition. The flow regimes observed in this experiment could be classified into bubbly, churn and annular flow. Slug flow was never observed at any of the conditions in our experiment. Flow regime maps at the pressure of 0.7 MPa and 1.0 MPa were developed, and then the pressure effect on flow regime transition was analyzed. Based on the experimental results, the comparisons with some existing flow regime maps and transition criteria were conducted. The comparison results show that the bubbly transition boundary and annular formation boundary of heated steam–water flow were consistent with that of adiabatic air–water flow. However, the intermediate flow pattern between bubbly and annular flow was different. Hibiki and Mishima criteria could predict the bubbly transition boundary and annular formation boundary satisfactorily, but it poorly predicted churn zone in present experimental data.
Critical heat flux of forced flow boiling in a narrow one-side heated rectangular flow channel
Energy Technology Data Exchange (ETDEWEB)
Limin, Zheng [Shanghai Nuclear Engineering Research and Design Inst., SH (China); Iguchi, Tadashi; Kureta, Masatoshi; Akimoto, Hajime
1997-08-01
The present work deals with the critical heat flux (CHF) under subcooled flow boiling in a narrow one-side uniformly heated rectangular flow channel. The range of interest of parameters such as pressure, flow velocity and subcooling is around 0.1 MPa, 5-15 ms{sup -1} and 50degC, respectively. The rectangular flow channel used is 50 mm long, 12 mm in width and 0.2 to 3 mm in height. Test conditions were selected by combination of the following parameters: Gap=0.2-3.0 mm (D{sub hy}=0.3934-4.8 mm); flow length, 50.0 mm; water mass flux, 4.94-14.82 Mgm{sup -2}s{sup -1} (water flow velocity, 5-15 ms{sup -1}); exit pressure, 0.1 MPa; inlet temperature, 50degC, inlet coolant subcooling, 50degC. Over 40 CHF stable data points were obtained. CHF increased with the gap and flow velocity in a non-linear fashion. HTC increased with flow velocity and decreasing gap. Based on the experimental results, an empirical correlation was developed, indicating the dependence of CHF on the gap and flow velocity. All of data points predicted within {+-}18% error band for the present experimental data. On the other hand, another similitude-based correlation was also developed, indicating the dependence of Boiling number (Bo) on Reynolds number (Re) and the variable of Gap/La, where La is a characteristic length known as Laplace capillary constant. For the limited present experimental data, all of data points were predicted within {+-}16%. (author)
Critical heat flux of forced flow boiling in a narrow one-side heated rectangular flow channel
International Nuclear Information System (INIS)
Zheng Limin; Iguchi, Tadashi; Kureta, Masatoshi; Akimoto, Hajime.
1997-08-01
The present work deals with the critical heat flux (CHF) under subcooled flow boiling in a narrow one-side uniformly heated rectangular flow channel. The range of interest of parameters such as pressure, flow velocity and subcooling is around 0.1 MPa, 5-15 ms -1 and 50degC, respectively. The rectangular flow channel used is 50 mm long, 12 mm in width and 0.2 to 3 mm in height. Test conditions were selected by combination of the following parameters: Gap=0.2-3.0 mm (D hy =0.3934-4.8 mm); flow length, 50.0 mm; water mass flux, 4.94-14.82 Mgm -2 s -1 (water flow velocity, 5-15 ms -1 ); exit pressure, 0.1 MPa; inlet temperature, 50degC, inlet coolant subcooling, 50degC. Over 40 CHF stable data points were obtained. CHF increased with the gap and flow velocity in a non-linear fashion. HTC increased with flow velocity and decreasing gap. Based on the experimental results, an empirical correlation was developed, indicating the dependence of CHF on the gap and flow velocity. All of data points predicted within ±18% error band for the present experimental data. On the other hand, another similitude-based correlation was also developed, indicating the dependence of Boiling number (Bo) on Reynolds number (Re) and the variable of Gap/La, where La is a characteristic length known as Laplace capillary constant. For the limited present experimental data, all of data points were predicted within ±16%. (author)
Directory of Open Access Journals (Sweden)
Adel Asnaashari
2016-01-01
Full Text Available Transitions are structures that can change geometry and flow velocity through varying the cross-sections of their channels. Under subcritical flow and steady flow conditions, it is necessary to reduce the flow velocity gradually due to increasing water pressure and adverse pressure gradients. Due to the separation of flow and subsequent eddy formation, a significant energy loss is incurred along the transition. This study presents the results of experimental investigations of the subcritical flow along the expansive transition of rectangular to trapezoidal channels. A numerical simulation was developed using a finite volume of fluid (VOF method with a Reynolds stress turbulence model. Water surface profiles and velocity distributions of flow through the transition were measured experimentally and compared with the numerical results. A good agreement between the experimental and numerical model results showed that the Reynolds model and VOF method are capable of simulating the hydraulic flow in open channel transitions. Also, the efficiency of the transition and coefficient of energy head loss were calculated. The results show that with an increasing upstream Froude number, the efficiency of the transition and coefficient of energy head loss decrease and increase, respectively. The results also show the ability of numerical simulation to simulate the flow separation zones and secondary current along the transition for different inlet discharges.
Analysis of the Onset of Flow Instability in rectangular heated channel using drift flux model
International Nuclear Information System (INIS)
El-Hadjen, H.; Balistrou, M.; Hamidouche, T.; Bousbia-Salah, A.
2005-01-01
Two-phase flow excursion (Ledinegg) instability in boiling channels is of great concern in the design and operation of numerous practical systems especially in Research Reactors. Such instability can lead to significant reduction in channel flow, thereby causing premature burnout of the heated channel before the CHF point. The present work focuses on a simulation of pressure drop in forced convection boiling in vertical narrow and parallel uniformly heated channels. The objective is to determine the point of Onset of Flow Instability (OFI) by varying input flow rate. The axial void distribution is also provided. The numerical model is based on the finite difference method which transforms the partial differential conservation equation of mass, momentum and energy, in algebraic equations. Closure relationships based upon the drift flux model and other constitutive equations are considered to determine the channel pressure drop under steady state boiling conditions. The model validation is performed by confronting the calculations with the Oak Ridge National Laboratory thermal Hydraulic Test Loop (THTL) experimental data set. Further verification of this model is performed by code- to code verification using the results of RELAP5/Mod 3.2 code. (author)
Effect of the Aligned Flow Obstacles on Downward-Facing CHF in an Inclined Rectangular Channel
Energy Technology Data Exchange (ETDEWEB)
Jeong, Ui ju; Son, Hong Hyun; Seo, Gwang Hyeok; Jeun, Gyoo Dong; Kim, Sung Joong [Hanyang, Seoul (Korea, Republic of)
2016-05-15
The cooling channel consists of the inclined (10 .deg. ) portion of the downward facing heating channel and vertical portion of the heating channel. Features unique to flow boiling with the downward-facing heater surface in the inclined cooling channel where the studs are installed have drawn a considerable attention. That's because prior studies on boiling crisis indicate the orientation of the heated wall can exert substantial influence on CHF. Especially, the concentration of the vapor near the downward facing heater surface makes this region susceptible to premature boiling crisis when compared to vertical or upward-facing heated wall. Also, the installed studs could cause a partial flow blockage, and distort the flow streamline. Due to the distortion, stagnation points may occur in the cooling channel, promoting the concentration of the vapor near the heated wall. Then, the locally degraded heat transfer around the points may result in the formation of vapor pocket. The primary objective of this study is to make available experimental data on the CHF values varying the shape of studs and to improve understanding of the mechanism of flow boiling crisis associated with the aligned flow obstructions by means of visual experimental study. This study presents experimental data for subcooled flow boiling of water at atmospheric pressure and low mass flux conditions. The major outcomes from this investigation can be summarized as follows: (1) The CHF value from bare test section is -320kW/m{sup 2} , significantly lower than the values from the existing correlations even considering the uncertainty in the experiments. (2) The CHF value is remarkably decreased as columnar structures are installed in the channel. It is confirmed that formation and extinction of local dryout occurs repeatedly just behind the first stud at heat flux of -160 kW/m{sup 2}.
International Nuclear Information System (INIS)
Bakkas, M.; Amahmid, A.; Hasnaoui, M.
2006-01-01
In this paper, we perform a numerical investigation of laminar steady natural convection flows in a two-dimensional horizontal channel containing heating rectangular blocks, periodically mounted on its lower wall. The blocks are heated at a constant temperature, T H ' and connected with adiabatic surfaces. The upper wall of the channel is maintained at a cold temperature T C ' . The parameters governing the problem are the Rayleigh number (10 2 = 6 ), the geometric parameter C (0.25=< C=l'/H'=<0.75) and the relative height of the blocks (1/8=< B=h'/H'=<1/2). The effect of the computational domain choice on the multiplicity of solutions is also investigated. The results obtained using air (Pr=0.72) as the working fluid show that the parameters B and C have a significant effect on the fluid flow and temperature fields. The symmetry of the flow is not always maintained although the boundary conditions for this problem are symmetrical, and the difference between two multiple solutions in terms of heat transfer may reach 34% for a given set of the governing parameters
International Nuclear Information System (INIS)
Kozma, R.; van Dam, H.; Hoogenboom, J.E.
1992-01-01
The primary objective of this paper is to introduce results of coolant boiling experiments in a simulated materials test reactor-type fuel assembly with plate fuel in an actual reactor environment. The experiments have been performed in the Hoger Onderwijs Reactor (HOR) research reactor at the Interfaculty Reactor Institute, Delft, The Netherlands. In the analysis, noise signals of self-powered neutron detectors located in the neighborhood of the boiling region and thermocouple in the channel wall and in the coolant are used. Flow patterns in the boiling coolant have been identified by means of analysis of probability density functions and power spectral densities of neutron noise. It is shown that boiling has an oscillating character due to partial channel blockage caused by steam slugs generated periodically between the plates. The observed phenomenon can serve as a basis for a boiling detection method in reactors with plate-type fuels
Experimental study of heat transfer in a heat exchanger with rectangular channels
International Nuclear Information System (INIS)
Hammami, Mahmoud; Ben Said, Akrem; Ben Maad, Rejeb; Rebay, Mourad
2009-01-01
This paper presents the results of an experimental study related to characterisation of a mini channel heat exchanger. Such heat exchanger may be used in water cooling of electronic components. The results obtained show the efficiency of this exchanger even with very low water flow rates. Indeed, in spite of the importance of the extracted heat fluxes which can reach about 50Kw/m 2 , the temperature of the cooled Aluminium bloc remained always lower than the tolerated threshold of 80 degree in electronic cooling. Moreover, several thermal characteristics such as equivalent thermal resistance of the exchanger, the average internal convective heat transfer coefficient and the increase in the temperature of the cooling water have been measured. The results presented have been obtained with in q uinconce r ectangular mini-channel heat exchanger, with a hydraulic diameter D h = 2mm. NOMENCLATURE h D Hydraulic diameter (mm). int
On the influence of plasma DBD actuator on the flow in a rectangular channel
Czech Academy of Sciences Publication Activity Database
Procházka, Pavel P.; Uruba, Václav
2014-01-01
Roč. 14, č. 1 (2014), s. 727-728 ISSN 1617-7061. [Annual Meeting of the International Association of Applied Mathematics and Mechanics /85./. Erlangen, 10.03.2014-14.03.2014] R&D Projects: GA ČR(CZ) GP14-25354P Institutional support: RVO:61388998 Keywords : plasma DBD * boundary layer * channel flow Subject RIV: BK - Fluid Dynamics http://onlinelibrary.wiley.com/doi/10.1002/pamm.201410346/abstract
Lai, Anison K. R.; Chang, Chien-Cheng; Wang, Chang-Yi
2018-04-01
This paper presents a continued study to our previous work on electroosmotic (EO) flow in a channel with vertical baffle plates by further investigating EO flow through an array of baffle plates arranged in parallel to the channel walls. The flow may be driven either in the direction along or in the direction transverse to the plates, thus distinguishing the longitudinal EO pumping (LEOP) and the transverse EO pumping (TEOP). In both types of EO pumping, it is more interesting to examine the cases when the baffle plates develop a higher zeta potential (denoted by α) than that on the channel walls (β). This semi-analytical study enables us to compare between LEOP and TEOP in the pumping efficiency under similar conditions. The TEOP case is more difficult to solve due to the higher order governing partial differential equations caused by the induced non-uniform pressure gradient distribution. In particular, we examine how the EO pumping rates deviate from those predicted by the Helmholtz-Smoluchowski velocity and illustrate the general trend of optimizing the EO pumping rates with respect to the physical and geometric parameters involved.
International Nuclear Information System (INIS)
Vallee, Christophe
2012-01-01
Stratified two-phase flows were investigated at different test facilities with horizontal test sections in order to provide an experimental database for the development and validation of computational fluid dynamics (CFD) codes. These channels were designed with rectangular cross-sections to enable optimal observation conditions for the application of optical measurement techniques. Consequently, the local flow structure was visualised with a high-speed video camera, delivering data with highresolution in space and time as needed for CFD code validation. Generic investigations were performed at atmospheric pressure and room temperature in two air/water channels made of acrylic glass. Divers preliminary experiments were conducted with various measuring systems in a test section mounted between two separators. The second test facility, the Horizontal Air/Water Channel (HAWAC), is dedicated to co-current flow investigations. The hydraulic jump as the quasi-stationary discontinuous transition between super- and subcritical flow was studied in this closed channel. Moreover, the instable wave growth leading to slug flow was investigated from the test section inlet. For quantitative analysis of the optical measurements, an algorithm was developed to recognise the stratified interface in the camera frames, allowing statistical treatments for comparison with CFD calculation results. The third test apparatus was installed in the pressure chamber of the TOPFLOW test facility in order to be operated at reactor typical conditions under pressure equilibrium with the vessel atmosphere. The test section representing a flat model of the hot leg of the German Konvoi pressurised water reactor (PWR) scaled at 1:3 is equipped with large glass side walls in the region of the elbow and of the steam generator inlet chamber to allow visual observations. The experiments were conducted with air and water at room temperature and maximum pressures of 3 bar as well as with steam and water at
Energy Technology Data Exchange (ETDEWEB)
Vallee, Christophe
2012-08-22
Stratified two-phase flows were investigated at different test facilities with horizontal test sections in order to provide an experimental database for the development and validation of computational fluid dynamics (CFD) codes. These channels were designed with rectangular cross-sections to enable optimal observation conditions for the application of optical measurement techniques. Consequently, the local flow structure was visualised with a high-speed video camera, delivering data with highresolution in space and time as needed for CFD code validation. Generic investigations were performed at atmospheric pressure and room temperature in two air/water channels made of acrylic glass. Divers preliminary experiments were conducted with various measuring systems in a test section mounted between two separators. The second test facility, the Horizontal Air/Water Channel (HAWAC), is dedicated to co-current flow investigations. The hydraulic jump as the quasi-stationary discontinuous transition between super- and subcritical flow was studied in this closed channel. Moreover, the instable wave growth leading to slug flow was investigated from the test section inlet. For quantitative analysis of the optical measurements, an algorithm was developed to recognise the stratified interface in the camera frames, allowing statistical treatments for comparison with CFD calculation results. The third test apparatus was installed in the pressure chamber of the TOPFLOW test facility in order to be operated at reactor typical conditions under pressure equilibrium with the vessel atmosphere. The test section representing a flat model of the hot leg of the German Konvoi pressurised water reactor (PWR) scaled at 1:3 is equipped with large glass side walls in the region of the elbow and of the steam generator inlet chamber to allow visual observations. The experiments were conducted with air and water at room temperature and maximum pressures of 3 bar as well as with steam and water at
Study of ebullition inside a rectangular inclinable channel, of large hydraulic diameter
International Nuclear Information System (INIS)
Nehme, H.
1997-01-01
This work is performed in the framework of the investigation of-Severe Accidents of Water Cooled Nuclear Power Plants (PWR). A concept of molten core recovery is based on a retention in the lower head of the reactor vessel or in core-catchers which are externally cooled by water, Critical heat flux must be avoided in this external natural convection two-phase flow. The SULTAN experiment has been launched in order to investigate two-phase flow characteristics at experiment is described. Tests are performed under forced convection conditions for extended analytical investigation of the flow characteristics. They are mainly aimed to measure pressure drops, onset of critical heat flux (CHF), temperature and void fraction profiles in the flow. These results are describe and analyzed in a second part. The flow reveals to be very different from the classical flow in narrow channels. The difference is mainly due to 2-D effects and internal flow re-circulations. The limit of validity of 1-D analytical description of the flow is tested. This approach is improved by the proposal of a new correlation for the prediction of net vapor generation point and for the calculation of the mean density along the subcooled part of the flow. New CHF correlations are proposed. CHF is shown to be the same order of magnitude as these measured on the ULPU facility in UCSB and at the MIT. However 1-D approach has limitations at high qualities for large and inclined channels. A better description must be linked to the use of multi-dimensional numerical two-phase flow codes. (author)
International Nuclear Information System (INIS)
Rawashdeh, A.; Altamimi, R.; Lee, B.; Chung, Y. J.; Park, S.
2013-01-01
The influence of different single-phase heat transfer correlations on the fuel temperature and minimum critical heat flux ratio (MCHFR) during a typical accident of a 5 MW research reactor is investigated. A reactor uses plate type fuel, of which the cooling channels have a narrow rectangular shape. RELAP5/MOD3.3 tends to over-predict the Nusselt number (Nu) at a low Reynolds number (Re) region, and therefore the correlation set is modified to properly describe the thermal behavior at that region. To demonstrate the effect of Nu at a low-Re region on an accident analysis, a two-pump failure accident was chosen as a sample problem. In the accident, the downward core flow decreases by a pump coast-down, and then reverses upward by natural convection. During the pump coast-down and flow reversal, the flow undergoes a laminar flow regime which has a different Nu with respect to the correlation sets. Compared to the results by the original RELAP5/MOD3.3, the modified correlation set predicts the fuel temperature to be a little higher than the original value, and the MCHFR to be a little lower than the original value. Although the modified correlation set predicts the fuel temperature and the MCHFR to be less conservative than those calculated from the original correlation of RELAP5/MOD3.3, the maximum fuel temperature and the MCHFR still satisfy the safety acceptance criteria
Effect of back-pressure forcing on shock train structures in rectangular channels
Gnani, F.; Zare-Behtash, H.; White, C.; Kontis, K.
2018-04-01
The deceleration of a supersonic flow to the subsonic regime inside a high-speed engine occurs through a series of shock waves, known as a shock train. The generation of such a flow structure is due to the interaction between the shock waves and the boundary layer inside a long and narrow duct. The understanding of the physics governing the shock train is vital for the improvement of the design of high-speed engines and the development of flow control strategies. The present paper analyses the sensitivity of the shock train configuration to a back-pressure variation. The complex characteristics of the shock train at an inflow Mach number M = 2 in a channel of constant height are investigated with two-dimensional RANS equations closed by the Wilcox k-ω turbulence model. Under a sinusoidal back-pressure variation, the simulated results indicate that the shock train executes a motion around its mean position that deviates from a perfect sinusoidal profile with variation in oscillation amplitude, frequency, and whether the pressure is first increased or decreased.
Thermohydraulic calculations in rectangular channels for RA-6 type reactors with transition regime
International Nuclear Information System (INIS)
Sillin, N; Vertullo, A.; Masson, V.; Hilal, R
2009-01-01
In August 2000 and within the framework of the RA-6 core conversion from high to low enrichment (20%), a preliminary analysis was performed to evaluate the maximum power that the reactor could operate with the new kernel without makeing substantial changes. This meant keeping intact, for example, the concrete shield of the pool and the nucleus inlet and outlet pipes embedded in the walls. Preliminary results indicated that for these boundary conditions a maximum power of about 3 MWt could be achieved. In August 2005 the project was resumed and new calculations performed taking as a starting point the ECBE plate fuel element(U3O8-Al). A core was developed with cooling channle widths of 2.6 mm for the control fuel elements and 2.7 mm for standard fuel elements. The thermo-hydraulic calculation puts in evidence that coolant flow into the core was in the transitional regime for the vast majority of configurations. While TERMIC code, used for thermo-hydraulic design, has been extensively tested and validated for use in research reactors under turbulent and laminar flows, this is not so for transition conditions. The transition regime is strongly dependent on conditions such as flow inlet characteristics, channel geometry, etc.. and therefore there are no reliable correlations for general use. For this reason we found it convenient to carry out experiments simulating the working conditions in order to adjust the code results with experimental data. In the present work we show the experimental results, the simulation of the experiences using the TERMIC code, and the adjustments made to the correlations used by the code so that it can be applied to the thermo-hydraulic design of the new core. [es
International Nuclear Information System (INIS)
Sudo, Y.; Kaminaga, M.
1990-01-01
The effects of channel gap size on mixed forced and free convective heat transfer characteristics were experimentally investigated for water flowing near atmospheric pressure in a 750 mm long and 50 mm wide channel heated from both sides. The channel gap sizes investigated were 2.5, 6, 18 and 50 mm. Experiments were carried out for both aiding and opposing forced convective flows with a Reynolds number Re x of 4x10 to 6x10 6 and a Grashof number Gr x of 2x10 4 to 6x10 11 , where the distance x from the inlet of the channel is adopted as the characteristic length in Re x and Gr x . As for the results, the following were revealed for the parameters ranges investigated in this study. (1) When the dimensionless parameter, Gr x /Re x 21/8 Pr 1/2 is less than 10 -4 , the flow shows the nature of forced convective heat transfer for a channel with any channel gap size in both aiding and opposing flows. (2) When Gr x /Re x 21/8 Pr 1/2 is larger than 10 -2 , the flow shows the nature of free convective heat transfer for a channel with any channel gap size in both aiding and opposing flows. (3) When Gr x /Re x 21/8 Pr 1/2 is between 10 -4 and 10 -2 for the channel with a channel gap size equal to or larger than 6 mm, the heat transfer coefficients in both aiding and opposing flows become, on the average, higher than those predicted by the previous correlations for either the pure turbulent forced convection or the pure free convection, and can be expressed in simple forms with a combination of Gr x /Re x 21/8 Pr 1/2 and the previous correlation for either the pure turbulent forced convection or the free convection along a flat plate. (4) When Gr x /Re x 21/8 Pr 1/2 is between 10 -4 and 10 -2 for the channel with a channel gap size of 2.5 mm, the heat transfer coefficients in both aiding and opposing flows also become, on the average, higher than those predicted by the previous correlations for either the pure turbulent forced convection or the pure free convection. (orig./GL)
Directory of Open Access Journals (Sweden)
Raj Kumar
2016-05-01
Full Text Available In this work, the effect of angle of attack ( α a of the discrete V-pattern baffle on thermohydraulic performance of rectangular channel has been studied experimentally. The baffle wall was constantly heated and the other three walls of the channel were kept insulated. The experimentations were conducted to collect the data on Nusselt number ( N u b and friction factor ( f b by varying the Reynolds number (Re = 3000–21,000 and angle of attack ( α a from 30° to 70°, for the kept values of relative baffle height ( H b / H = 0 . 50 , relative pitch ratio ( P b / H = 1 . 0 , relative discrete width ( g w / H b = 1 . 5 and relative discrete distance ( D d / L v = 0 . 67 . As compared to the smooth wall, the V-pattern baffle roughened channel enhances the Nusselt number ( N u b and friction factor ( f b by 4.2 and 5.9 times, respectively. The present discrete V-pattern baffle shapes with angle of attack ( α a of 60° equivalent to flow Reynolds number of 3000 yields the greatest thermohydraulic performance. Discrete V-pattern baffle has improved thermal performance as compared to other baffle shapes’ rectangular channel.
Limiting photocurrent analysis of a wide channel photoelectrochemical flow reactor
International Nuclear Information System (INIS)
Davis, Jonathan T; Esposito, Daniel V
2017-01-01
The development of efficient and scalable photoelectrochemical (PEC) reactors is of great importance for the eventual commercialization of solar fuels technology. In this study, we systematically explore the influence of convective mass transport and light intensity on the performance of a 3D-printed PEC flow cell reactor based on a wide channel, parallel plate geometry. Using this design, the limiting current density generated from the hydrogen evolution reaction at a p-Si metal–insulator–semiconductor (MIS) photocathode was investigated under varied reactant concentration, fluid velocity, and light intensity. Additionally, a simple model is introduced to predict the range of operating conditions (reactant concentration, light intensity, fluid velocity) for which the photocurrent generated in a parallel plate PEC flow cell is limited by light absorption or mass transport. This model can serve as a useful guide for the design and operation of wide-channel PEC flow reactors. The results of this study have important implications for PEC reactors operating in electrolytes with dilute reactant concentrations and/or under high light intensities where high fluid velocities are required in order to avoid operation in the mass transport-limited regime. (paper)
International Nuclear Information System (INIS)
Takase, K.; Hasan, M.Z.
1995-01-01
Convective heat transfer in MHD laminar flow through rectangular channels in the plasma-facing components of a fusion reactor has been analyzed numerically to investigate the effects of channel aspect ratio, defined as the ratio of the lengths of the plasma-facing side to the other side. The adverse effect of the nonuniformity of surface heat flus on Nusselt number (Nu) at the plasma-facing side can be alleviated by increasing the aspect ratio of a rectangular duct. At the center and corner of the plasma-facing side of a square duct, the Nu of non-MHD flow are 6.8 and 2.2, respectively, for uniform surface heat flux. In the presence of a strong magnetic field, Nu at the center and corner increases to 22 and 3.6, respectively. However, when the heat flux is highly nonuniform, as in the plasma-facing components, Nu decreases from 22 to 3.1 at the center and from 3.6 to 3.1 at the corner. When the aspect ratio is increased to 4, Nu at the center and corner increase to 5 and 4.7. Along the circumference of a rectangular channel, there are locations where the wall temperature is equal to or less than the bulk coolant temperature, thus making the Nu with conventional definition infinity or negative. The ratio between Nu of MHD flow and Nu of non-MHD flow for various aspect ratios is constant in the region of Hartmann number of more than 200 at least. On the other hand, its ratio increases monotonously with increasing the aspect ratio
Khanjian, Assadour; Habchi, Charbel; Russeil, Serge; Bougeard, Daniel; Lemenand, Thierry
2018-05-01
Convective heat transfer enhancement can be achieved by generating secondary flow structures that are added to the main flow to intensify the fluid exchange between hot and cold regions. One method involves the use of vortex generators to produce streamwise and transverse vortices superimposed to the main flow. This study presents numerical computation results of laminar convection heat transfer in a rectangular channel whose bottom wall is equipped with one row of rectangular wing vortex generators. The governing equations are solved using finite volume method by considering steady state, laminar regime and incompressible flow. Three-dimensional numerical simulations are performed to study the effect of the angle of attack α of the wing on heat transfer and pressure drop. Different values are taken into consideration within the range 0° heat transfer enhancement, Nusselt number and the friction factor are studied on both local and global perspectives. Also, the location of the generated vortices within the channel is studied, as well as their effect on the heat transfer enhancement throughout the channel for all α values . Based on both local and global analysis, our results show that the angle of attack α has a direct impact on the heat transfer enhancement. By increasing its value, it leads to better enhancement until an optimal value is reached, beyond which the thermal performances decrease.
Khozani, Zohreh Sheikh; Bonakdari, Hossein; Zaji, Amir Hossein
2016-01-01
Two new soft computing models, namely genetic programming (GP) and genetic artificial algorithm (GAA) neural network (a combination of modified genetic algorithm and artificial neural network methods) were developed in order to predict the percentage of shear force in a rectangular channel with non-homogeneous roughness. The ability of these methods to estimate the percentage of shear force was investigated. Moreover, the independent parameters' effectiveness in predicting the percentage of shear force was determined using sensitivity analysis. According to the results, the GP model demonstrated superior performance to the GAA model. A comparison was also made between the GP program determined as the best model and five equations obtained in prior research. The GP model with the lowest error values (root mean square error ((RMSE) of 0.0515) had the best function compared with the other equations presented for rough and smooth channels as well as smooth ducts. The equation proposed for rectangular channels with rough boundaries (RMSE of 0.0642) outperformed the prior equations for smooth boundaries.
International Nuclear Information System (INIS)
Juarsa, Mulya; Putra, Nandy; Septiadi, Wayan Nata; Antariksawan, Anhar Riza
2014-01-01
Highlights: • Quenching in narrow rectangular channel with gap sizes variation was investigated. • The mechanism of counter-current flow depends on gap sizes variation. • The results confirmed the existence of CCFL in narrow rectangular channels. • CHF and mass flux gradient in the quenching was about 0.22 times than steady state. • Modification of CHF and mass flow rate dimensionless correlation was established. - Abstract: The quenching process has become an important thermal management study to intensify the safety margin for the integrity of the reactor vessel under the core meltdown condition. The boiling heat transfer mechanism in the channel is one aspect that needs further examination. The present study aimed to investigate the effect of the differences in channel gap size to counter-current flow limitation (CCFL) and critical heat flux (CHF) during transient cooling in atmospheric pressure and quenching using two vertical plates with 1 mm, 2 mm, and 3 mm gap sizes and heated length of 1100 mm. The initial temperature of the plate was set at 600 °C. Cooling water mass flow rate and sib-cooled temperature were set at about 0.089 kg/s and 90 °C, respectively. Calculations were performed to obtain the CHF value through the boiling curve using transient temperature data. Non-dimensional correlations from other research study was used in this research. The influence of gap sizes on CCFL and CHF resulted in an increased value of CHF relative to gap size; additionally, the CHF for gap sizes of 2 mm and 3 mm increased about 34.4% and 140.5%, respectively, compared to the CHF for the 1 mm gap size. In this research, a curve map of the relationship between non-dimensional CHF and non-dimensional mass flux of water flowing downward shows that the correlation of this experimental study has a gradient number of about 0.22 similar to Mishima and Nishihara correlation. The results confirmed the existence of CCFL in the vertical narrow rectangular channels due
Miller, Andrew; Villegas, Arturo; Diez, F Javier
2015-03-01
The solution to the startup transient EOF in an arbitrary rectangular microchannel is derived analytically and validated experimentally. This full 2D transient solution describes the evolution of the flow through five distinct periods until reaching a final steady state. The derived analytical velocity solution is validated experimentally for different channel sizes and aspect ratios under time-varying pressure gradients. The experiments used a time resolved micro particle image velocimetry technique to calculate the startup transient velocity profiles. The measurements captured the effect of time-varying pressure gradient fields derived in the analytical solutions. This is tested by using small reservoirs at both ends of the channel which allowed a time-varying pressure gradient to develop with a time scale on the order of the transient EOF. Results showed that under these common conditions, the effect of the pressure build up in the reservoirs on the temporal development of the transient startup EOF in the channels cannot be neglected. The measurements also captured the analytical predictions for channel walls made of different materials (i.e., zeta potentials). This was tested in channels that had three PDMS and one quartz wall, resulting in a flow with an asymmetric velocity profile due to variations in the zeta potential between the walls. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Salama, Amgad; El-Amin, Mohamed; Sun, Shuyu
2014-01-01
Numerical simulation of flow and heat transfer in two adjacent channels is conducted with one of the channels partially blocked. This system simulates typical channels of a material testing reactor. The blockage is assumed due to the buckling of one of the channel plates inward along its width. The blockage ratio considered in this work is defined as the ratio between the cross-sectional area of the blocked and the unblocked channel. In this work, we consider a blockage ratio of approximately 40%. However, the blockage is different along the width of the channel, ranging from 0% at the end of the channel to 90% in the middle. The channel walls are sandwiching volumetric heat sources that vary spatially as chopped cosine functions. Interesting patterns are highlighted and investigated. The reduction in the flow area of one channel results in the flow redistributing among the two channels according to the changes in their hydraulic conductivities. The results of the numerical simulations show that the maximum wall temperature in the blocked channel is well below the boiling temperature at the operating pressure.
Salama, Amgad
2014-08-25
Numerical simulation of flow and heat transfer in two adjacent channels is conducted with one of the channels partially blocked. This system simulates typical channels of a material testing reactor. The blockage is assumed due to the buckling of one of the channel plates inward along its width. The blockage ratio considered in this work is defined as the ratio between the cross-sectional area of the blocked and the unblocked channel. In this work, we consider a blockage ratio of approximately 40%. However, the blockage is different along the width of the channel, ranging from 0% at the end of the channel to 90% in the middle. The channel walls are sandwiching volumetric heat sources that vary spatially as chopped cosine functions. Interesting patterns are highlighted and investigated. The reduction in the flow area of one channel results in the flow redistributing among the two channels according to the changes in their hydraulic conductivities. The results of the numerical simulations show that the maximum wall temperature in the blocked channel is well below the boiling temperature at the operating pressure.
Energy Technology Data Exchange (ETDEWEB)
Sotelo-Avila, G.; Gallegos-Silva, J. [Universidad Nacional Autonoma de Mexico, Mexico, D.F. (Mexico)
2002-03-01
The study of channel flow usually have its basis in the hydrostatic distribution of pressure and the rectilinear flow hypotheses. It is from this hypothesis that the main flow equations are obtained. However, this is not applicable to a vertically curved flow that is present in a curved bed channel. This kind of channel is used to join two different slopes or in ski jumps. This kind of flow presents several changes from the rectilinear flow as in the velocity and pressure distributions and even in the energy loses. The authors of this article propose an equation of gradually varied flow for vertically-curved bed rectangular channels that adds a coefficient to modify the velocity in the calculus of the local friction gradient. With these results is possible now to analyze flow profiles in vertically-curved bed channels where before were used the methods for straight channels and therefore, increase accuracy. [Spanish] Las hipotesis del movimiento rectilineo y de distribucion hidrostatica de la presion son ciertamente las mas importantes en la hidraulica de canales, y de ellas se derivan los principales modelos de flujo que usualmente emplean. Sin embargo, no es valido aplicar la misma hipotesis y metodos de analisis al flujo curvilineo, que ocurre cuando el canal adopta curvaturas verticales en el fondo, las cuales inducen cambios importantes en la distribucion de la velocidad, presion y hasta en la perdida d energia. Tal es el caso de canales que contienen curvas verticales para unir tramos de distintas pendientes y producir el cambio en la direccion del flujo en cubetas deflectoras y vertedores en tunel. Los autores de este articulo proponen una ecuacion de flujo gradualmente variado en canales rectangulares de fondo curvo, esta es de gran utilidad en la determinacion del perfil del flujo con dichas caracteristicas, donde se plantea la adicion de un factor de amplificacion de la velocidad en el calculo del gradiente local de friccion, para tomar en cuenta el
Energy Technology Data Exchange (ETDEWEB)
Liu Lifang, E-mail: liu_lifang1106@yahoo.cn [School of Nuclear Science and Engineering, North China Electric Power University, Zhuxinzhuang, Dewai, Beijing 102206 (China); State Nuclear Power Software Development Center, Building 1, Compound No. 29, North Third Ring Road, Xicheng District, Beijing 100029 (China); Lu Daogang [School of Nuclear Science and Engineering, North China Electric Power University, Zhuxinzhuang, Dewai, Beijing 102206 (China)
2012-09-15
Highlights: Black-Right-Pointing-Pointer The large amplitude and narrow-band vibration experiment was performed. Black-Right-Pointing-Pointer The added mass theory was used to analyze the test plates' natural vibration characteristics in static water. Black-Right-Pointing-Pointer The occurring condition of the large amplitude and narrow band vibration was investigated. Black-Right-Pointing-Pointer The large amplitude and narrow-band vibration mechanism was investigated. - Abstract: Further experiments and theoretical analysis were performed to investigate mechanism of the large-amplitude and narrow-band vibration behavior of a flexible flat plate in a rectangular channel. Test plates with different thicknesses were adopted in the FIV experiments. The natural vibration characteristics of the flexible flat plates in air were tested, and the added mass theory of column was used to analyze the flexible flat plates' natural vibration characteristics in static water. It was found that the natural vibration frequency of a certain test plate in static water is approximately within the main vibration frequency band of the plate when it was induced to vibrate with the large-amplitude and narrow-band in the rectangular channel. It can be concluded that the harmonic between the flowing fluid and the vibrating plate is one of the key reasons to induce the large-amplitude and narrow-band vibration phenomenon. The occurring condition of the phenomenon and some important narrow-band vibration characteristics of a foursquare fix-supported flexible flat plate were investigated.
International Nuclear Information System (INIS)
Yu, Shengzhi; Wang, Jianjun; Yan, Ming; Yan, Changqi; Cao, Xiaxin
2017-01-01
Highlights: • The phasic difference between flow rate and frictional pressure drop is negligible. • Effect mechanism of rolling motion on flow behaviors of NC is interpreted. • The startup model is proposed and verified. • Steady-state correlations are feasible to predict transient resistance. • The in-house code can simulate instantaneous flow behaviors of NC correctly. - Abstract: Effects of rolling motion on flow characteristics in a natural circulation system were investigated experimentally and numerically. The numerical results from validated code were mainly used to provide detailed information for the discussion and analysis of experimental results. The results indicate that under rolling motion condition, the phasic difference between flow rate and frictional pressure drop of narrow rectangular channel is negligible. Angular acceleration is the eigenvalue for the effects of rolling motion on flow rate under single-phase natural circulation condition. When angular acceleration is approximately equal, even though either the angle or the period of rolling motion is different, peak, trough and time-averaged values of flow rate are approximately equal. Under rolling motion and single-phase natural circulation conditions, the phenomenon that dimensionless time-averaged mass flow rate is smaller than that under steady state condition is controlled by the nonlinear relationship between mass flow rate and the resistance of loop. The factor also causes the result that the absolute difference of dimensionless flow rate between peak and steady state is smaller than that between trough and steady state. The startup model which is proposed in present paper can be used to predict the flow characteristics of single-phase natural circulation system at startup stage of rolling motion favorably. The self-developed code can simulate instantaneous flow characteristics of single-phase natural circulation system under rolling motion and steady state conditions
Directory of Open Access Journals (Sweden)
Calisir Tamer
2015-01-01
Full Text Available Thermal control of electronic components is a continuously emerging problem as power loads keep increasing. The present study is mainly focused on experimental and numerical investigation of impinging jet cooling of 18 (3 × 6 array flash mounted electronic components under a constant heat flux condition inside a rectangular channel in which air, following impingement, is forced to exit in a single direction along the channel formed by the jet orifice plate and impingement plate. Copper blocks represent heat dissipating electronic components. Inlet flow velocities to the channel were measured by using a Laser Doppler Anemometer (LDA system. Flow field observations were performed using a Particle Image Velocimetry (PIV and thermocouples were used for temperature measurements. Experiments and simulations were conducted for Re = 4000 – 8000 at fixed value of H = 10 × Dh. Flow field results were presented and heat transfer results were interpreted using the flow measurement observations. Numerical results were validated with experimental data and it was observed that the results are in agreement with the experiments.
Alheadary, Wael Ghazy; Park, Kihong; Alouini, Mohamed-Slim
2016-01-01
In this paper, we derive the performances of optical wireless communication system utilizing adaptive subcarrier intensity modulation over the Malaga turbulent channel. More specifically, analytical closed-form solutions and asymptotic results
International Nuclear Information System (INIS)
Kinoshita, Hidetaka; Terada, Atsuhiko; Kaminaga, Masanori; Hino, Ryutaro
2001-10-01
In the design of a spallation target system, the water cooling system, for example a proton beam window and a safety hull, is used with narrow channels, in order to remove high heat flux and prevent lowering of system performance by absorption of neutron. And in narrow channel, heat transfer enhancement using 2-D rib is considered for reduction the cost of cooling component and decrease inventory of water in the cooling system, that is, decrease of the amount of irradiated water. But few studies on CHF with rib have been carried out. Experimental and analytical studies with rib-roughened test section, in 10:1 ratio of pitch to height, are being carried out in order to clarify the CHF in rib-roughened channel. This paper presents the review of previous researches on heat transfer in channel with rib roughness, overview of the test facility and the preliminary experimental and analytical results. As a result, wall friction factors were about 3 times as large as that of smooth channel, and heat transfer coefficients are about 2 times as large as that of smooth channel. The obtained CHF was as same as previous mechanistic model by Sudo. (author)
Genome-wide analysis of mechanosensitive channel of small ...
African Journals Online (AJOL)
Mechanosensitive (MS) ion channels are transmembrane proteins that open and close in response to mechanical forces produced by osmotic pressure, sound, touch and gravity. In plants, MS have an important role in different biological processes like gravity detection, maintenance of plastid shape and size, lateral root ...
Mansoor, Mohammad M.; Wong, Kokcheong; Siddique, Mansoor M.
2012-01-01
computational domain was discretized using a 120×160×100 grid for the micro-channel with an aspect ratio of (α=4.56) and examined for Reynolds numbers in the laminar range (Re 500-2000) using FLUENT. De-ionized water served as the cooling fluid while the micro
Alheadary, Wael G.
2016-10-13
In this paper, we derive the performances of optical wireless communication system utilizing adaptive subcarrier intensity modulation over the Malaga turbulent channel. More specifically, analytical closed-form solutions and asymptotic results are derived for average bit error rate, achievable spectral efficiency, outage probability, and ergodic capacity by utilizing series expansion identity of modified Bessel function. Our asymptotic and analytical results based on series solutions with finite numbers highly matched to the numerical results. By exploiting the inherent nature of fading channel, the proposed adaptive scheme enhances the spectral efficiency without additional transmit power while satisfying the required bit error rate criterion. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
International Nuclear Information System (INIS)
Stovall, T.K.; Crabtree, A.; Felde, D.
1995-01-01
The Advanced Neutron Source (ANS) reactor is being designed to provide a research tool with capabilities beyond those of any existing reactors. One portion of its state-of-the-art design requires high speed fluid flow through narrow channels between the fuel plates in the core. Experience with previous reactors has shown that fuel plate damage can occur when debris becomes lodged at the entrance to these channels. Such debris can disrupt the fluid flow to the plate surfaces and prevent adequate cooling of the fuel. Preliminary ANS designs addressed this issue by providing an unheated entrance length for each fuel plate. In theory, any flow disruption would recover within this unheated length, thus providing adequate heat removal from the downstream heated portions of the fuel plates
Energy Technology Data Exchange (ETDEWEB)
Smolentsev, S., E-mail: sergey@fusion.ucla.edu [University of California, Los Angeles (United States); Courtessole, C.; Abdou, M.; Sharafat, S. [University of California, Los Angeles (United States); Sahu, S. [Institute of Plasma Research (India); Sketchley, T. [University of California, Los Angeles (United States)
2016-10-15
Highlights: • Numerical studies were performed as a pre-experimental analysis to the experiment on MHD PbLi flows in a rectangular duct with a flow channel insert (FCI). • Dynamic testing of foam-based SiC foam-based CVD coated FCI has been performed using MaPLE facility at UCLA. • Two physical models were proposed to explain the experimental results and 3D and 2D computations performed using COMSOL, HIMAG and UCLA codes. • The obtained results suggest that more work on FCI development, fabrication and testing has to be done to assure good hermetic properties before the implementation in a fusion device. - Abstract: A flow channel insert (FCI) is the key element of the DCLL blanket concept. The FCI serves as electrical and thermal insulator to reduce the MHD pressure drop and to decouple the temperature-limited ferritic structure from the flowing hot lead-lithium (PbLi) alloy. The main focus of the paper is on numerical computations to simulate MHD flows in the first experiments on PbLi flows in a stainless steel rectangular duct with a foam-based silicon carbide (SiC) FCI. A single uninterrupted long-term (∼6500 h) test has recently been performed on a CVD coated FCI sample in the flowing PbLi in a magnetic field up to 1.5 T at the PbLi temperature of 300 °C using the MaPLE loop at UCLA. An unexpectedly high MHD pressure drop measured in this experiment suggests that a PbLi ingress into the FCI occurred in the course of the experiment, resulting in degradation of electroinsulating FCI properties. The ingress through the protective CVD layer was further confirmed by the post-experimental microscopic analysis of the FCI. The numerical modeling included 2D and 3D computations using HIMAG, COMSOL and a UCLA research code to address important flow features associated with the FCI finite length, fringing magnetic field, rounded FCI corners and also to predict changes in the MHD pressure drop in the unwanted event of a PbLi ingress. Two physical
Directory of Open Access Journals (Sweden)
Foroutani Saeed
2017-01-01
Full Text Available This research investigates the laminar steady-forced convection heat transfer of a Cu-water nanofluid in a 2-D horizontal channel with different block geometries attached to the bottom wall. The block geometries assumed in this research are triangular and curve blocks. The governing equations associated with the required boundary conditions are solved using finite volume method based on the SIMPLE technique and the effects of Reynolds number, nanofluid volume fraction, block geometry, and the numbers of blocks on the local and average Nusselt numbers are explored. The obtained results show that nanoparticles can effectively enhance the heat transfer in a channel. Furthermore, the local and average Nusselt number distribution is strongly dependent on the block geometry. As observed, the heat transfer augments with the increase in the Reynolds number and nanofluid volume fraction for both block geometries. It is also concluded that the average Nusselt number of the curve block is higher than that of the triangular block for different Reynolds numbers which declares the importance of the block geometry in the heat transfer enhancement.
Energy Technology Data Exchange (ETDEWEB)
Zboray, Robert [Paul Scherrer Institute, PSI Villigen 5232 (Switzerland); Dangendorf, Volker; Bromberger, Benjamin; Tittelmeier, Kai [Physikalisch-Technische Bundesanstalt (PTB), Braunschweig 38116 (Germany); Mor, Ilan [Soreq NRC, Yavne 81800 (Israel)
2015-07-15
In a previous work, we have demonstrated the feasibility of high-frame-rate, fast-neutron radiography of generic air-water two-phase flows in a 1.5 cm thick, rectangular flow channel. The experiments have been carried out at the high-intensity, white-beam facility of the Physikalisch-Technische Bundesanstalt, Germany, using an multi-frame, time-resolved detector developed for fast neutron resonance radiography. The results were however not fully optimal and therefore we have decided to modify the detector and optimize it for the given application, which is described in the present work. Furthermore, we managed to improve the image post-processing methodology and the noise suppression. Using the tailored detector and the improved post-processing, significant increase in the image quality and an order of magnitude lower exposure times, down to 3.33 ms, have been achieved with minimized motion artifacts. Similar to the previous study, different two-phase flow regimes such as bubbly slug and churn flows have been examined. The enhanced imaging quality enables an improved prediction of two-phase flow parameters like the instantaneous volumetric gas fraction, bubble size, and bubble velocities. Instantaneous velocity fields around the gas enclosures can also be more robustly predicted using optical flow methods as previously.
Zboray, Robert; Dangendorf, Volker; Mor, Ilan; Bromberger, Benjamin; Tittelmeier, Kai
2015-07-01
In a previous work, we have demonstrated the feasibility of high-frame-rate, fast-neutron radiography of generic air-water two-phase flows in a 1.5 cm thick, rectangular flow channel. The experiments have been carried out at the high-intensity, white-beam facility of the Physikalisch-Technische Bundesanstalt, Germany, using an multi-frame, time-resolved detector developed for fast neutron resonance radiography. The results were however not fully optimal and therefore we have decided to modify the detector and optimize it for the given application, which is described in the present work. Furthermore, we managed to improve the image post-processing methodology and the noise suppression. Using the tailored detector and the improved post-processing, significant increase in the image quality and an order of magnitude lower exposure times, down to 3.33 ms, have been achieved with minimized motion artifacts. Similar to the previous study, different two-phase flow regimes such as bubbly slug and churn flows have been examined. The enhanced imaging quality enables an improved prediction of two-phase flow parameters like the instantaneous volumetric gas fraction, bubble size, and bubble velocities. Instantaneous velocity fields around the gas enclosures can also be more robustly predicted using optical flow methods as previously.
International Nuclear Information System (INIS)
Bakkas, M.; Amahmid, A.; Hasnaoui, M.
2008-01-01
Two-dimensional laminar steady natural convection in a horizontal channel with the upper wall maintained cold at a constant temperature and the lower one provided with rectangular heating blocks, periodically distributed, has been studied numerically. The blocks are connected with adiabatic segments and their surfaces are assumed to release a uniform heat flux. The study is performed using air as the working fluid (Pr = 0.72). The spacing between the blocks is maintained constant (C = l'/H' = 0.5) while the Rayleigh number and the relative height of the blocks are respectively varied in the ranges 10 2 ≤ Ra ≤ 2 x 10 6 and 1/8 ≤ B = h'/H' ≤ 1/2. The effect of the computational domain length on the multiplicity of solutions is investigated. Flow and temperature fields are also produced for various combinations of the governing parameters. It is demonstrated that, depending on the length of the computational domain and the governing parameters, different flow structures can be obtained
Vieru, Dumitru; Fetecau, Corina; Rana, Mehwish
2012-05-01
The unsteady motion of a second grade fluid between two parallel side walls perpendicular to a plate is studied by means of the Fourier sine and cosine transforms. Initially, the fluid is at rest and at time t = 0+, the plate applies an oscillating shear to the fluid. The solutions that have been obtained, presented under integral and series form and written as a sum between steady time-periodic and transient solutions can be easily reduced to the similar solutions for Newtonian fluids performing the same motion. They describe the motion of the fluid some time after its initiation. After that time, when the transient solutions disappear, the motion of the fluid is described by the steady time-periodic solutions that are independent of the initial conditions. In the absence of side walls, more exactly when the distance between walls tends to infinity, all solutions reduce to those corresponding to the motion over an infinite plate. As it was to be expected, the steady time-periodic solutions corresponding to sine and cosine oscillations of the shear stress on the boundary differ by a phase shift. Finally, the influence of side walls on the fluid motion, the required time to reach the steady periodic flow, as well as the distance between walls for which the velocity of the fluid in the middle of the channel is unaffected by their presence are established by numerical calculus and graphical illustrations. As expected, the time needed to reach the steady periodic flows is lower in the presence of side walls. It is lower for Newtonian fluids in comparison with second grade fluids and greater for sine oscillations in comparison to the cosine oscillations of the boundary shear.
International Nuclear Information System (INIS)
Song, Junghyun; Jeong, Yong Hoon; Lee, Juhyung; Chang, Soon Heung
2014-01-01
Research reactor is the nuclear reactor serves neutron source for many research fields such as neutron scattering, non-destructive testing, radioisotope treatment and so on. Due to that characteristic of research reactor, as many people work around the research reactor, research reactor should be designed to have much more conservative margin for normal operation. Boiling heat transfer is the one of the most efficient type in heat transfer modes, however, research reactor needs to avoid onset of nucleate boiling (ONB) in normal operation as IAEA recommend for research reactors to have enough ONB margin to maintain the normal operation state in 'IAEA-TECDOC-233' (1980) for the same reason explained above. Jordan Research and Training Reactor (JRTR) operates under downward flow in narrow rectangular channel in fuel assembly. There isn't sufficient heat transfer data under downward flow condition and only few ONB prediction correlation as well. In the present work, not only a new ONB prediction model would be developed, but also comparison between heat transfer data with several heat transfer correlations could be shown. In addition, as Sudo and Omar S. proposed differently about the Nusselt number behaviors in upward and downward convective heat transfer, the study of convective heat transfer should be conducted continuously to determine it exactly. In this paper, single-phase heat transfer data is analyzed by several heat transfer correlations before developing ONB prediction correlation. In this study, an experiment on the single-phase heat transfer was conducted. As shown in Fig. 5, comparison between experimental data and existing correlations shows quite huge difference as about 40%. Additional experiments on single-phase heat transfer at low heat flux are necessary to clarify the tendency of Nusselt number among heat flux and to develop new correlation for single-phase heat transfer
Directory of Open Access Journals (Sweden)
Ebtehaj Isa
2016-09-01
Full Text Available A vital topic regarding the optimum and economical design of rigid boundary open channels such as sewers and drainage systems is determining the movement of sediment particles. In this study, the incipient motion of sediment is estimated using three datasets from literature, including a wide range of hydraulic parameters. Because existing equations do not consider the effect of sediment bed thickness on incipient motion estimation, this parameter is applied in this study along with the multilayer perceptron (MLP, a hybrid method based on decision trees (DT (MLP-DT, to estimate incipient motion. According to a comparison with the observed experimental outcome, the proposed method performs well (MARE = 0.048, RMSE = 0.134, SI = 0.06, BIAS = -0.036. The performance of MLP and MLP-DT is compared with that of existing regression-based equations, and significantly higher performance over existing models is observed. Finally, an explicit expression for practical engineering is also provided.
Short-channel field-effect transistors with 9-atom and 13-atom wide graphene nanoribbons.
Llinas, Juan Pablo; Fairbrother, Andrew; Borin Barin, Gabriela; Shi, Wu; Lee, Kyunghoon; Wu, Shuang; Yong Choi, Byung; Braganza, Rohit; Lear, Jordan; Kau, Nicholas; Choi, Wonwoo; Chen, Chen; Pedramrazi, Zahra; Dumslaff, Tim; Narita, Akimitsu; Feng, Xinliang; Müllen, Klaus; Fischer, Felix; Zettl, Alex; Ruffieux, Pascal; Yablonovitch, Eli; Crommie, Michael; Fasel, Roman; Bokor, Jeffrey
2017-09-21
Bottom-up synthesized graphene nanoribbons and graphene nanoribbon heterostructures have promising electronic properties for high-performance field-effect transistors and ultra-low power devices such as tunneling field-effect transistors. However, the short length and wide band gap of these graphene nanoribbons have prevented the fabrication of devices with the desired performance and switching behavior. Here, by fabricating short channel (L ch ~ 20 nm) devices with a thin, high-κ gate dielectric and a 9-atom wide (0.95 nm) armchair graphene nanoribbon as the channel material, we demonstrate field-effect transistors with high on-current (I on > 1 μA at V d = -1 V) and high I on /I off ~ 10 5 at room temperature. We find that the performance of these devices is limited by tunneling through the Schottky barrier at the contacts and we observe an increase in the transparency of the barrier by increasing the gate field near the contacts. Our results thus demonstrate successful fabrication of high-performance short-channel field-effect transistors with bottom-up synthesized armchair graphene nanoribbons.Graphene nanoribbons show promise for high-performance field-effect transistors, however they often suffer from short lengths and wide band gaps. Here, the authors use a bottom-up synthesis approach to fabricate 9- and 13-atom wide ribbons, enabling short-channel transistors with 10 5 on-off current ratio.
International Nuclear Information System (INIS)
Zareen Khan Abdul Jalil Khan; Izhar Abu Hussin; Mohd Idris Taib; Nurfarhana Ayuni Joha; Roslan Md Dan
2010-01-01
Wide Range Channel is one of very important part of Reactor Instrumentation and Control system. Current system is using all analog system. The main functions of the new system are to provide Wide-log power and Multi-range linear power. The other functions are to provide Percent power and Power rate of change. The linear power level range is up to 125 % and the log power system to cover from below source level to 150 %. The main function of digital signal processor is for pulse shaping, pulse counting and root mean square signal processing. The system employs automatic on-line self diagnostics and calibration verification. (author)
International Nuclear Information System (INIS)
Schleisiek, K.; Dumaine, J.C.
1989-01-01
In the context of safety research for the OSIRIS reactor, tests have been performed on the Super BOB cell with a view to determining experimentally the internal characteristics (or ''S'' curves) of a channel with a rectangular heating cross-section 2 x 38 mm and 600 mm long. During these tests the maximum pressure at the channel exit was brought to 3 kg/cm 2 abs. The pressurization level in the High Flux Reactor will be higher. That is why tests have been carried out at maximum pressure of 5 kg/cm 2 abs allowable on the ''super BOB'' loop without modifying it. The first objective of this test series was to determine the ''S'' curves and the exchange coefficients experimentally. This document discusses the test conditions and test results
Anomalously-dense firn in an ice-shelf channel revealed by wide-angle radar
Drews, R.; Brown, J.; Matsuoka, K.; Witrant, E.; Philippe, M.; Hubbard, B.; Pattyn, F.
2015-10-01
The thickness of ice shelves, a basic parameter for mass balance estimates, is typically inferred using hydrostatic equilibrium for which knowledge of the depth-averaged density is essential. The densification from snow to ice depends on a number of local factors (e.g. temperature and surface mass balance) causing spatial and temporal variations in density-depth profiles. However, direct measurements of firn density are sparse, requiring substantial logistical effort. Here, we infer density from radio-wave propagation speed using ground-based wide-angle radar datasets (10 MHz) collected at five sites on Roi Baudouin Ice Shelf (RBIS), Dronning Maud Land, Antarctica. Using a novel algorithm including traveltime inversion and raytracing with a prescribed shape of the depth-density relationship, we show that the depth to internal reflectors, the local ice thickness and depth-averaged densities can reliably be reconstructed. For the particular case of an ice-shelf channel, where ice thickness and surface slope change substantially over a few kilometers, the radar data suggests that firn inside the channel is about 5 % denser than outside the channel. Although this density difference is at the detection limit of the radar, it is consistent with a similar density anomaly reconstructed from optical televiewing, which reveals 10 % denser firn inside compared to outside the channel. The denser firn in the ice-shelf channel should be accounted for when using the hydrostatic ice thickness for determining basal melt rates. The radar method presented here is robust and can easily be adapted to different radar frequencies and data-acquisition geometries.
Evaluating the impact of a wide range of vegetation densities on river channel pattern
Pattison, Ian; Roucou, Ron
2016-04-01
develop a simple conceptual model to explain the observations along the wide range of vegetation densities investigated. At low plant densities, each plant acted independently and caused flow separation and convergence around each plant, similar to in the Coulthard (2005] experiment. At medium densities, individual plants start to interact together with narrow channels developing longitudinally between vegetative bars. Finally at very high densities, there was both lateral and longitudinal interaction between plants meaning that flow was diverted around them forming wandering, meandering channels. In summary, the relationship between vegetation density and channel braiding is more complex than previous thought, taking a parabolic shape, with maximum braiding occurring at medium vegetation densities.
International Nuclear Information System (INIS)
Perroud, P.; Rebiere, J.
1965-01-01
Liquid hydrogen flows in a canal of rectangular cross section of 1 x 6 mm ; only one of the larger side is heated (length 190 mm) in order to simulate the cooling of a missile nozzle. The liquid is admitted subcooled at 25 deg. K in average and under a pressure of 8 bars. Mass velocity from 8.9 to 102 g/cm 2 .s, heat flux from 18 to 296.6 W/cm 2 and wall temperature reaching 800 deg. K. Two correlations of local heat transfer coefficients are presented, one for the region in two-phase flow and the other for the region in homogeneous gas-phase which are compared with the formula previously established for a cylindrical canal. An analysis of pressure drop is also given. Gross experimental results are separately published. (authors) [fr
Rectangular cartograms: the game
Berg, de M.T.; Nijnatten, van F.S.B.; Speckmann, B.; Verbeek, K.A.B.
2009-01-01
Raisz [3] introduced rectangular cartograms in 1934 as a way of visualizing spatial information, such as population or economic strength, of a set of regions like countries or states. Rectangular cartograms represent geographic regions by rectangles; the positioning and adjacencies of the rectangles
Jesinghausen, Steffen; Weiffen, Rene; Schmid, Hans-Joachim
2016-09-01
Wall slip is a long-known phenomenon in the field of rheology. Nevertheless, the origin and the evolution are not completely clear yet. Regarding suspensions, the effect becomes even more complicated, because different mechanisms like pure slip or slip due to particle migration have to be taken into account. Furthermore, suspensions themselves show many flow anomalies and the isolation of slip is complicated. In order to develop working physical models, further insight is necessary. In this work, we measured experimentally the wall slip velocities of different highly filled suspensions in a rectangular slit die directly with respect to the particle concentration and the particle size. The slip velocities were obtained using a particle image velocimetry (PIV) system. The suspensions consisting of a castor oil-cinnamon oil blend and PMMA particles were matched in terms of refractive indexes to appear transparent. Hereby, possible optical path lengths larger than 15 mm were achieved. The slip velocities were found to be in a quadratic relation to the wall shear stress. Furthermore, the overall flow rate as well as the particle concentration has a direct influence on the slip. Concerning the shear stress, there seem to be two regions of slip with different physical characteristics. Furthermore, we estimated the slip layer thickness directly from the velocity profiles and propose a new interpretation. The PIV technique is used to investigate the viscosity and implicit the concentration profile in the slit die. It is shown that the particle migration process is quite fast.
Self-organized phenomena of pedestrian counterflow through a wide bottleneck in a channel
Dong, Li-Yun; Lan, Dong-Kai; Li, Xiang
2016-09-01
The pedestrian counterflow through a bottleneck in a channel shows a variety of flow patterns due to self-organization. In order to reveal the underlying mechanism, a cellular automaton model was proposed by incorporating the floor field and the view field which reflects the global information of the studied area and local interactions with others. The presented model can well reproduce typical collective behaviors, such as lane formation. Numerical simulations were performed in the case of a wide bottleneck and typical flow patterns at different density ranges were identified as rarefied flow, laminar flow, interrupted bidirectional flow, oscillatory flow, intermittent flow, and choked flow. The effects of several parameters, such as the size of view field and the width of opening, on the bottleneck flow are also analyzed in detail. The view field plays a vital role in reproducing self-organized phenomena of pedestrian. Numerical results showed that the presented model can capture key characteristics of bottleneck flows. Project supported by the National Basic Research Program of China (Grant No. 2012CB725404) and the National Natural Science Foundation of China (Grant Nos. 11172164 and 11572184).
Updates to Post-Flash Calibration for the Advanced Camera for Surveys Wide Field Channel
Miles, Nathan
2018-03-01
This report presents a new technique for generating the post-flash calibration reference file for the Advanced Camera for Surveys (ACS) Wide Field Channel (WFC). The new method substantially reduces, if not, eliminates all together the presence of dark current artifacts arising from improper dark subtraction, while simultaneously preserving flat-field artifacts. The stability of the post-flash calibration reference file over time is measured using data taken yearly since 2012 and no statistically significant deviations are found. An analysis of all short-flashed darks taken every two days since January 2015 reveals a periodic modulation of the LED intensity on timescales of about one year. This effect is most readily explained by changes to the local temperature in the area surrounding the LED. However, a slight offset between the periods of the temperature and LED modulations lends to the possibility that the effect is a chance observation of the two sinusoids at an unfortunate point in their beat cycle.
Energy Technology Data Exchange (ETDEWEB)
Nehme, H
1997-02-18
This work is performed in the framework of the investigation of-Severe Accidents of Water Cooled Nuclear Power Plants (PWR). A concept of molten core recovery is based on a retention in the lower head of the reactor vessel or in core-catchers which are externally cooled by water, Critical heat flux must be avoided in this external natural convection two-phase flow. The SULTAN experiment has been launched in order to investigate two-phase flow characteristics at experiment is described. Tests are performed under forced convection conditions for extended analytical investigation of the flow characteristics. They are mainly aimed to measure pressure drops, onset of critical heat flux (CHF), temperature and void fraction profiles in the flow. These results are describe and analyzed in a second part. The flow reveals to be very different from the classical flow in narrow channels. The difference is mainly due to 2-D effects and internal flow re-circulations. The limit of validity of 1-D analytical description of the flow is tested. This approach is improved by the proposal of a new correlation for the prediction of net vapor generation point and for the calculation of the mean density along the subcooled part of the flow. New CHF correlations are proposed. CHF is shown to be the same order of magnitude as these measured on the ULPU facility in UCSB and at the MIT. However 1-D approach has limitations at high qualities for large and inclined channels. A better description must be linked to the use of multi-dimensional numerical two-phase flow codes. (author) 87 refs.
Best connected rectangular arrangements
Directory of Open Access Journals (Sweden)
Krishnendra Shekhawat
2016-03-01
Full Text Available It can be found quite often in the literature that many well-known architects have employed either the golden rectangle or the Fibonacci rectangle in their works. On contrary, it is rare to find any specific reason for using them so often. Recently, Shekhawat (2015 proved that the golden rectangle and the Fibonacci rectangle are one of the best connected rectangular arrangements and this may be one of the reasons for their high presence in architectural designs. In this work we present an algorithm that generates n-4 best connected rectangular arrangements so that the proposed solutions can be further used by architects for their designs.
Czech Academy of Sciences Publication Activity Database
Šťastná, Miroslava; Šlais, Karel
2015-01-01
Roč. 36, č. 20 (2015), s. 2579-2586 ISSN 0173-0835 R&D Projects: GA MV VG20112015021 Institutional support: RVO:68081715 Keywords : bidirectional isotachophoresis * trapezoidal void channel * wide pH range * proteins Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.482, year: 2015 http://hdl.handle.net/11104/0250164
Performance analysis for a chaos-based code-division multiple access system in wide-band channel
Directory of Open Access Journals (Sweden)
Ciprian Doru Giurcăneanu
2015-08-01
Full Text Available Code-division multiple access technology is widely used in telecommunications and its performance has been extensively investigated in the past. Theoretical results for the case of wide-band transmission channel were not available until recently. The novel formulae which have been published in 2014 can have an important impact on the future of wireless multiuser communications, but limitations come from the Gaussian approximations used in their derivation. In this Letter, the authors obtain more accurate expressions of the bit error rate (BER for the case when the model of the wide-band channel is two-ray, with Rayleigh fading. In the authors’ approach, the spreading sequences are assumed to be generated by logistic map given by Chebyshev polynomial function of order two. Their theoretical and experimental results show clearly that the previous results on BER, which rely on the crude Gaussian approximation, are over-pessimistic.
Directory of Open Access Journals (Sweden)
Anatoly T. Tshedrin
2014-06-01
Full Text Available The relevance of the study. In the context of religious and philosophical movements of the «New Age» gained channeling phenomenon – «laying channel», «transmission channel» information from the consciousness that is not in human form, to the individual and humanity as a whole. In the socio-cultural environment of the postmodern channeling reflects the problem of finding extraterrestrial intelligence (ETI; «ETC-problem»; SETІ problem and to establish contacts with them, this problem has a different projection, important philosophical and anthropological measurements in culture. Investigation of mechanisms of constructing virtual superhuman personalities in the world web is not only of interest for further analysis of the problem of extraterrestrial intelligence (ETI, but also to extend subject field of anthropology of the Internet as an important area of philosophical and anthropological studies. The purpose of the study. Analysis of the phenomenon of channeling as a projection of the fundamental problems of life ETI, its representation on the World Wide Web, the impact on the archaism of postmodern culture posing problems meta an-thropological dimensions of existence in the universe of reason and contact with him in the doctrinal grounds channeling. Analysis of research on the problem and its empirical base. Clustered nature of the problem of ETI and channeling its element involves the widespread use of radio astronomy paradigm works carriers solve CETI; work in anthropology Internet; works of researchers of the phenomenon of «New Age». Empirical basis of the study are network resources, as well as texts–representatives created and introduced into circulation by the channelers, their predecessors. Research Methodology. Channeling as an object of research, its network of representation – as a matter of methods involve the use of analytical hermeneutics and archaeographic commenting text fractal logic cluster analysis. The main
International Nuclear Information System (INIS)
Frainer, V.J.
1979-01-01
A solution of the time-transient Heat Transfer Differential Equation in rectangular coordinates is presented, leading to a model which describes the temperature drop with time in rectangular bars. It is similar to an other model for cilindrical bars which has been previously developed in the Laboratory of Mechanical Metallurgy of UFRGS. Following these models, a generalization has been made, which permits cooling time evaluation for all profiles. These results are compared with experimental laboratory data in the 1200 to 800 0 C range. Some other existing models were also studied which have the purpose of studing the same phenomenon. Their mathematical forms and their evaluated values are analyzed and compared with experimental ones. (Author) [pt
Experiences with rectangular waveguide
International Nuclear Information System (INIS)
Beltran, J.; Sepulveda, J. J.; Navarro, E. A.
2000-01-01
A simple and didactic experimental arrangement is presented to show wave propagation along a structure with translational symmetry, particularly the rectangular waveguide. Parameters of this waveguide as cutoff frequency, guide wavelength and field distribution of fundamental mode can be measured. For this purpose a large paralelepipedical waveguide structure is designed and built, its dimensions can be varied in order to change its parameters. (Author) 9 refs
Bimodal wireless sensing with dual-channel wide bandgap heterostructure varactors
Deen, David A.; Osinsky, Andrei; Miller, Ross
2014-03-01
A capacitive wireless sensing scheme is developed that utilizes an AlN/GaN-based dual-channel varactor. The dual-channel heterostructure affords two capacitance plateaus within the capacitance-voltage (CV) characteristic, owing to the two parallel two-dimensional electron gases (2DEGs) located at respective AlN/GaN interfaces. The capacitance plateaus are leveraged for the definition of two resonant states of the sensor when implemented in an inductively-coupled resonant LRC network for wireless readout. The physics-based CV model is compared with published experimental results, which serve as a basis for the sensor embodiment. The bimodal resonant sensor is befitting for a broad application space ranging from gas, electrostatic, and piezoelectric sensors to biological and chemical detection.
Bimodal wireless sensing with dual-channel wide bandgap heterostructure varactors
International Nuclear Information System (INIS)
Deen, David A.; Osinsky, Andrei; Miller, Ross
2014-01-01
A capacitive wireless sensing scheme is developed that utilizes an AlN/GaN-based dual-channel varactor. The dual-channel heterostructure affords two capacitance plateaus within the capacitance-voltage (CV) characteristic, owing to the two parallel two-dimensional electron gases (2DEGs) located at respective AlN/GaN interfaces. The capacitance plateaus are leveraged for the definition of two resonant states of the sensor when implemented in an inductively-coupled resonant LRC network for wireless readout. The physics-based CV model is compared with published experimental results, which serve as a basis for the sensor embodiment. The bimodal resonant sensor is befitting for a broad application space ranging from gas, electrostatic, and piezoelectric sensors to biological and chemical detection
Bimodal wireless sensing with dual-channel wide bandgap heterostructure varactors
Energy Technology Data Exchange (ETDEWEB)
Deen, David A.; Osinsky, Andrei; Miller, Ross [Agnitron Technology Incorporated, Eden Prairie, Minnesota 55346 (United States)
2014-03-03
A capacitive wireless sensing scheme is developed that utilizes an AlN/GaN-based dual-channel varactor. The dual-channel heterostructure affords two capacitance plateaus within the capacitance-voltage (CV) characteristic, owing to the two parallel two-dimensional electron gases (2DEGs) located at respective AlN/GaN interfaces. The capacitance plateaus are leveraged for the definition of two resonant states of the sensor when implemented in an inductively-coupled resonant LRC network for wireless readout. The physics-based CV model is compared with published experimental results, which serve as a basis for the sensor embodiment. The bimodal resonant sensor is befitting for a broad application space ranging from gas, electrostatic, and piezoelectric sensors to biological and chemical detection.
Rectangular spectral collocation
Driscoll, Tobin A.
2015-02-06
Boundary conditions in spectral collocation methods are typically imposed by removing some rows of the discretized differential operator and replacing them with others that enforce the required conditions at the boundary. A new approach based upon resampling differentiated polynomials into a lower-degree subspace makes differentiation matrices, and operators built from them, rectangular without any row deletions. Then, boundary and interface conditions can be adjoined to yield a square system. The resulting method is both flexible and robust, and avoids ambiguities that arise when applying the classical row deletion method outside of two-point scalar boundary-value problems. The new method is the basis for ordinary differential equation solutions in Chebfun software, and is demonstrated for a variety of boundary-value, eigenvalue and time-dependent problems.
Hughes Clarke, John E.
2016-01-01
Field observations of turbidity currents remain scarce, and thus there is continued debate about their internal structure and how they modify underlying bedforms. Here, I present the results of a new imaging method that examines multiple surge-like turbidity currents within a delta front channel, as they pass over crescent-shaped bedforms. Seven discrete flows over a 2-h period vary in speed from 0.5 to 3.0 ms−1. Only flows that exhibit a distinct acoustically attenuating layer at the base, appear to cause bedform migration. That layer thickens abruptly downstream of the bottom of the lee slope of the bedform, and the upper surface of the layer fluctuates rapidly at that point. The basal layer is inferred to reflect a strong near-bed gradient in density and the thickening is interpreted as a hydraulic jump. These results represent field-scale flow observations in support of a cyclic step origin of crescent-shaped bedforms. PMID:27283503
Next generation hyper resolution wide swath and multi-channel optical payload for CBERS series
Wang, Weigang
2017-11-01
The China-Brazilian Earth Resources Satellite (CBERS) program, (also called ZY-1) the result of a space technology agreement between China and Brazil, was officially signed in 1988 after the first joint work report produced by National Institute for Space Research (INPE) and the Chinese Academy of Space Technology (CAST). During the 26 years of its existence, the program of cooperation between China and Brazil in space has achieved the successful launch of three satellites. It has become a unique example of cooperation in cutting edge technology between emerging nations. CBERS satellite is the first generation data-transferring remote sensing satellite developed by China. CBERS satellite data are widely applied to crop yield estimation, exploration of land and resources, urban planning, environmental protection and monitoring, disaster reduction, and other fields. CBERS series is just like Landsat series of USA and SPOT series of France.
Emission Channeling Studies on the Behaviour of Light Alkali Atoms in Wide-Band-Gap Semiconductors
Recknagel, E; Quintel, H
2002-01-01
% IS342 \\\\ \\\\ A major problem in the development of electronic devices based on diamond and wide-band-gap II-VI compound semiconductors, like ZnSe, is the extreme difficulty of either n- or p-type doping. The only reports of successful n-type doping of diamond involves ion implanted Li, which was found to be an intersititial donor. Recent theoretical calculations suggest that Na, P and N dopant atoms are also good candidates for n-type doping of diamond. No experimental evidence has been obtained up to now, mainly because of the complex and partly unresolved defect situation created during ion implantation, which is necessary to incorporate potential donor atoms into diamond. \\\\ \\\\In the case of ZnSe, considerable effort has been invested in trying to fabricate pn-junctions in order to make efficient, blue-light emitting diodes. However, it has proved to be very difficult to obtain p-type ZnSe, mainly because of electrical compensation related to background donor impurities. Li and Na are believed to be ampho...
Two-phase flow patterns in horizontal rectangular minichannel
Directory of Open Access Journals (Sweden)
Ron’shin Fedor
2016-01-01
Full Text Available The two-phase flow in a short horizontal channel of rectangular cross-section of 1 × 19 mm2 has been studied experimentally. Five conventional two-phase flow patterns have been detected (bubble, churn, stratified, annular and jet and transitions between them have been determined. It is shown that a change in the width of the horizontal channels has a substantial effect on the boundaries between the flow regimes.
A Characterization of Rectangular Distributions
Terrell, George R.
1983-01-01
It is well known that the smaller and the larger of a random sample of size two are positively correlated. The coefficient of correlation is at most one-half, and the upper bound is attained only for rectangular distributions.
Ultra-wide tuning single channel filter based on one-dimensional photonic crystal with an air cavity
Zhao, Xiaodan; Yang, Yibiao; Chen, Zhihui; Wang, Yuncai; Fei, Hongming; Deng, Xiao
2017-02-01
By inserting an air cavity into a one-dimensional photonic crystal of LiF/GaSb, a tunable filter covering the whole visible range is proposed. Following consideration of the dispersion of the materials, through modulating the thickness of the air cavity, we demonstrate that a single resonant peak can shift from 416.1 to 667.3 nm in the band gap at normal incidence by means of the transfer matrix method. The research also shows that the transmittance of the channel can be maximized when the number of periodic LiF/GaSb layers on one side of the air defect layer is equal to that of the other side. When adding a period to both sides respectively, the full width at half maximum of the defect mode is reduced by one order of magnitude. This structure will provide a promising approach to fabricate practical tunable filters in the visible region with ultra-wide tuning range. Project supported by the National Natural Science Foundation of China (Nos. 61575138, 61307069, 51205273), and the Top Young Academic Leaders and the Outstanding Innovative Teams of Higher Learning Institutions of Shanxi.
Obtaining S values for rectangular--solid tumors inside rectangular--solid host organs
International Nuclear Information System (INIS)
Stinchcomb, T.G.; Durham, J.S.; Fisher, D.R.
1991-01-01
A method is described for obtaining S values between a tumor and its host organ for use with the MIRD formalism. It applies the point-source specific absorbed fractions for an infinite water medium, tabulated by Berger, to a rectangular solid of arbitrary dimensions which contains a rectangular tumor of arbitrary dimensions. Contributions from pairs of source and target volume elements are summed for the S values between the tumor and itself, between the remaining healthy host organ and itself, and between the tumor and the remaining healthy host organ, with the reciprocity theorem assumed for the last. This method labeled MTUMOR, is interfaced with the widely used MIRDOSE program which incorporates the MIRD formalism. An example is calculated
On Hubbell's rectangular source integral
International Nuclear Information System (INIS)
Stalker, John
2001-01-01
The integral H(a,b)=∫ 0 b ∫ 0 a dx dy/(1+x 2 +y 2 ) arises naturally in the study of radiation from a rectangular source and has been studied by many authors. This paper introduces a new series expansion which is rapidly convergent for large a and b
Motion of rectangular prismatic bodies
International Nuclear Information System (INIS)
Poreh, M.; Wray, R.N.
1979-01-01
Rectangular prismatic bodies can assume either a translatory or an auto-rotating mode of motion during free motion in the atmosphere. The translatory mode is stable only when the dimensionless moment of inertia of the bodies is large, however, large perturbations will always start auto-rotation. The characteristics of the auto-rotational mode are shown to depend primarily on the aspect ratio of the bodies which determines the dimensionless rotational speed and the lift coefficient. Both the average drag and lift-coefficients of auto-rotating bodies are estimated, but it is shown that secondary effects make it impossible to determine their exact trajectories in atmospheric flows
Partitioning sparse rectangular matrices for parallel processing
Energy Technology Data Exchange (ETDEWEB)
Kolda, T.G.
1998-05-01
The authors are interested in partitioning sparse rectangular matrices for parallel processing. The partitioning problem has been well-studied in the square symmetric case, but the rectangular problem has received very little attention. They will formalize the rectangular matrix partitioning problem and discuss several methods for solving it. They will extend the spectral partitioning method for symmetric matrices to the rectangular case and compare this method to three new methods -- the alternating partitioning method and two hybrid methods. The hybrid methods will be shown to be best.
Mapping from rectangular to harmonic representation
International Nuclear Information System (INIS)
Schneider, W.; Bateman, G.
1986-08-01
An algorithm is developed to determine the Fourier harmonics representing the level contours of a scalar function given on a rectangular grid. This method is applied to the problem of computing the flux coordinates and flux surface average needed for 1-1/2-D transport codes and MHD stability codes from an equilibrium flux function given on a rectangular grid
Directory of Open Access Journals (Sweden)
Y. Bakhshan
2015-01-01
Full Text Available Micro scale gas flows has attracted significant research interest in the last two decades. In this research, the fluid flow of gases in the stepped micro-channel at a wide range of Knudsen number has been analyzed with using the Lattice Boltzmann (MRT method. In the model, a modified second-order slip boundary condition and a Bosanquet-type effective viscosity are used to consider the velocity slip at the boundaries and to cover the slip and transition regimes of flow and to gain an accurate simulation of rarefied gases. It includes the slip and transition regimes of flow. The flow specifications such as pressure loss, velocity profile, streamline and friction coefficient at different conditions have been presented. The results show good agreement with available experimental data. The calculation shows that the friction coefficient decreases with increasing the Knudsen number and stepping the micro-channel has an inverse effect on the friction coefficient. Furthermore, a new correlation is suggested for calculation of the friction coefficient in the stepped micro-channel as below: C_f Re = 3.113+2.915/(1 +2 Kn+ 0.641 exp(3.203/(1 + 2 Kn
Regimes of Vorticity in the Wake of a Rectangular Vortex Generator
DEFF Research Database (Denmark)
Velte, Clara Marika; Okulov, Valery; Hansen, Martin Otto Laver
2011-01-01
This paper concerns the study of the secondary structures generated in the wake of a wall mounted rectangular vane, commonly referred to as a vortex generator. The study has been conducted by Stereoscopic PIV measurements in a wind tunnel and supplementary flow visualizations in a water channel...
Successive Standardization of Rectangular Arrays
Directory of Open Access Journals (Sweden)
Richard A. Olshen
2012-02-01
Full Text Available In this note we illustrate and develop further with mathematics and examples, the work on successive standardization (or normalization that is studied earlier by the same authors in [1] and [2]. Thus, we deal with successive iterations applied to rectangular arrays of numbers, where to avoid technical difficulties an array has at least three rows and at least three columns. Without loss, an iteration begins with operations on columns: first subtract the mean of each column; then divide by its standard deviation. The iteration continues with the same two operations done successively for rows. These four operations applied in sequence completes one iteration. One then iterates again, and again, and again, ... In [1] it was argued that if arrays are made up of real numbers, then the set for which convergence of these successive iterations fails has Lebesgue measure 0. The limiting array has row and column means 0, row and column standard deviations 1. A basic result on convergence given in [1] is true, though the argument in [1] is faulty. The result is stated in the form of a theorem here, and the argument for the theorem is correct. Moreover, many graphics given in [1] suggest that except for a set of entries of any array with Lebesgue measure 0, convergence is very rapid, eventually exponentially fast in the number of iterations. Because we learned this set of rules from Bradley Efron, we call it “Efron’s algorithm”. More importantly, the rapidity of convergence is illustrated by numerical examples.
International Nuclear Information System (INIS)
Sridhar, S.; Faghri, M.; Lessmann, R.C.
1990-01-01
Experiments have been carried out to study thermal wake effects in arrays of rectangular blocks encountered in electronic equipment. Data were obtained for a series of channel heights and flow velocities. The temperature rise due to wake effects behind a single heated module was found to be fairly independent of the channel height and the position of the heated block, for a given approach velocity. The adiabatic temperature rise data for a module due to a heated element immediately upstream of it for different inter-module spacings were found to correlate well in terms of a new parameter called the surface packing density. This paper reports that it was reported by the authors in an earlier paper that both the adiabatic heat transfer coefficient nd pressure-drop data for regular in-line arrays correlated well in terms of a composite geometric parameter called the column packing density. These experiments have been extended to a higher Reynolds number. Empirical correlations are presented here for friction factor and Nusselt number in terms of the volume packing density, and for the thermal wake effects in terms of the surface packing density. Data from literature for arrays with widely different geometric parameters are shown to agree with these correlations
three dimensional photoelastic investigations on thick rectangular
African Journals Online (AJOL)
user
1983-09-01
Sep 1, 1983 ... Thick rectangular plates are investigated by means of three-dimensional photoelasticity ... a thin plate theory and a higher order thick plate theory. 1. ..... number of fringes lest the accuracy of the results will be considerably.
Rectangular-section mirror light pipes
Energy Technology Data Exchange (ETDEWEB)
Swift, P.D.; Lawlor, R. [School of Physical Sciences, Dublin City University, Dublin 9 (Ireland); Smith, G.B.; Gentle, A. [Department of Applied Physics, University of Technology, Sydney, Broadway, NSW 2007 (Australia)
2008-08-15
Using an integrated-ray approach an expression for the transmission of rectangular section mirror light pipe (MLP) has been derived for the case of collimated light input. The transmittance and the irradiance distribution at the exit aperture of rectangular-section MLPs have been measured experimentally and calculated theoretically for the case of collimated light input. The results presented extend the description of MLPs from the cylindrical case. Measured and calculated transmittances and irradiance distributions are in good agreement. (author)
Random Young diagrams in a Rectangular Box
DEFF Research Database (Denmark)
Beltoft, Dan; Boutillier, Cédric; Enriquez, Nathanaël
We exhibit the limit shape of random Young diagrams having a distribution proportional to the exponential of their area, and confined in a rectangular box. The Ornstein-Uhlenbeck bridge arises from the fluctuations around the limit shape.......We exhibit the limit shape of random Young diagrams having a distribution proportional to the exponential of their area, and confined in a rectangular box. The Ornstein-Uhlenbeck bridge arises from the fluctuations around the limit shape....
Augmented Beta rectangular regression models: A Bayesian perspective.
Wang, Jue; Luo, Sheng
2016-01-01
Mixed effects Beta regression models based on Beta distributions have been widely used to analyze longitudinal percentage or proportional data ranging between zero and one. However, Beta distributions are not flexible to extreme outliers or excessive events around tail areas, and they do not account for the presence of the boundary values zeros and ones because these values are not in the support of the Beta distributions. To address these issues, we propose a mixed effects model using Beta rectangular distribution and augment it with the probabilities of zero and one. We conduct extensive simulation studies to assess the performance of mixed effects models based on both the Beta and Beta rectangular distributions under various scenarios. The simulation studies suggest that the regression models based on Beta rectangular distributions improve the accuracy of parameter estimates in the presence of outliers and heavy tails. The proposed models are applied to the motivating Neuroprotection Exploratory Trials in Parkinson's Disease (PD) Long-term Study-1 (LS-1 study, n = 1741), developed by The National Institute of Neurological Disorders and Stroke Exploratory Trials in Parkinson's Disease (NINDS NET-PD) network. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A study on liquid lithium flow in rectangular duck perpendicular to a intense magnetic field
International Nuclear Information System (INIS)
Shen Xiuzhong; Chen Ke; Liu Yang; Zhang Qinshun
2001-01-01
A research on high-speed liquid-metal lithium flow through a non-expanding rectangular duck under uniform intense magnetic field is presented. A equations set with Poisson equation and Helmholtz equation, which control the electrical field and flow field respectively, has been deduced by analysis and PHsolver, a program to solve the equations set, has also been finished. The current density distribution and flow field in the non-expanding rectangular channel with intense magnetic field have been obtained from PHsolver by applying the wall-function in the boundary wall. The velocity profile in the duck appears M-shaped
Directory of Open Access Journals (Sweden)
K. Rahmani
2018-05-01
Full Text Available In this paper we present a pipeline for high quality semantic segmentation of building facades using Structured Random Forest (SRF, Region Proposal Network (RPN based on a Convolutional Neural Network (CNN as well as rectangular fitting optimization. Our main contribution is that we employ features created by the RPN as channels in the SRF.We empirically show that this is very effective especially for doors and windows. Our pipeline is evaluated on two datasets where we outperform current state-of-the-art methods. Additionally, we quantify the contribution of the RPN and the rectangular fitting optimization on the accuracy of the result.
Partial rectangular metric spaces and fixed point theorems.
Shukla, Satish
2014-01-01
The purpose of this paper is to introduce the concept of partial rectangular metric spaces as a generalization of rectangular metric and partial metric spaces. Some properties of partial rectangular metric spaces and some fixed point results for quasitype contraction in partial rectangular metric spaces are proved. Some examples are given to illustrate the observed results.
Annular flow transition model in channels of various shapes
International Nuclear Information System (INIS)
Osakabe, Masahiro; Tasaka, Kanji; Kawasaki, Yuji.
1988-01-01
The annular transition in the rod bundle is interesting because the small gaps between rods exist in the flow area. This is a very important phenomenon in the boiloff accident of nuclear reactor core. As a first attempt, the effect of small gaps in the flow area was studied by using the vertical rectangular ducts with different narrow gaps (2 x 100, 5 x 100, 10 x 100 mm). Based on the experimental results, the transition void fraction was defined and the transition model was proposed. The model gives a good prediction of the wide range of previous experiments including the data taken in the channels with small gaps. (author)
Annular flow transition model in channels of various shapes
International Nuclear Information System (INIS)
Osakabe, M.; Tasaka, K.; Kawasaki, Y.
1989-01-01
Annular transition in a rod bundle is interesting because small gaps exist between rods in the flow area. This is a very important phenomenon in a boiloff accident of a nuclear reactor core. This paper reports, as a first attempt, the effect of small gaps in the flow area was studied by using vertical rectangular ducts with different narrow gaps (2 x 100, 5 x 100, 10 x 100 mm). Based on the experimental results, the transition void fraction was defined and a transition model is proposed. The model gives a good prediction for a wide range of previous experiments including the data taken in channels with small gaps
Instability of shallow open channel flow with lateral velocity gradients
Energy Technology Data Exchange (ETDEWEB)
Lima, A C; Izumi, N, E-mail: adriano@eng.hokudai.ac.jp, E-mail: nizumi@eng.hokudai.ac.jp [River and Watershed Engineering Laboratory, Hokkaido University, Sapporo, 060-8628 (Japan)
2011-12-22
The turbulent flow in a wide rectangular open channel partially covered with vegetation is studied using linear stability analysis. In the base state normal flow condition, the water depth is constant and the transverse velocity vanishes, while there is a lateral gradient in the streamwise velocity with an inflexion point at the boundary between the vegetated zone and the main channel. The Reynolds stress is expressed by introducing the eddy viscosity, which is obtained from assuming a logarithmic distribution of the velocity near the bed. Perturbation expansions are introduced to the streamwise and transverse velocities, as well as to the water depth. The system of governing equations was solved in order to determine the maximum growth rate of the perturbations as a function of parameters which describe physical characteristics of the channel and the flow.
Measurement on the cavitating vortex shedding behind rectangular obstacles
International Nuclear Information System (INIS)
Hegedus, F; Hos, C; Pandula, Z; Kullmann, L
2010-01-01
Measurement results on the cavitating vortex shedding behind sharp-edged rectangular bodies are presented, intended to provide benchmark cases for the validation of unsteady cavitation models of CFD codes. Rectangular bodies of increasing aspect ratio (1, 2, 3 and 4) were used with a constant 25mm height (12.5% blockage ratio). The water velocity in the 0.2x0.05m test section of the channel was varied between 1 and 12 m/s resulting in a Reynolds number in the range of (0.4-3.5)x105. Pressure signals were measured at several locations, notably in the wake. Dominant frequencies and Strouhal numbers are reported from cavitation-free flow (classic von Karman vortex shedding) up to supercavitation as a function of the free-stream Reynolds number. The results are in good agreement with the literature in case of the square cylinder. We experienced a slight increase of the dominant Strouhal number with increasing aspect ratio. This result is somewhat inconsistent with the literature, in which a fall of the Strouhal number can be observed at side ratio 2. This may be the consequence of the different ranges of Reynolds numbers. It was also found that between the inception of cavitation and the formation of supercavitation the Strouhal number is not affected by cavitation.
Measurement on the cavitating vortex shedding behind rectangular obstacles
Energy Technology Data Exchange (ETDEWEB)
Hegedus, F; Hos, C; Pandula, Z; Kullmann, L, E-mail: hegedusf@hds.bme.h [Department of Hydrodynamic Systems, Budapest University of Technology and Economics Muegyetem rkp. 1, Budapest 1111 (Hungary)
2010-08-15
Measurement results on the cavitating vortex shedding behind sharp-edged rectangular bodies are presented, intended to provide benchmark cases for the validation of unsteady cavitation models of CFD codes. Rectangular bodies of increasing aspect ratio (1, 2, 3 and 4) were used with a constant 25mm height (12.5% blockage ratio). The water velocity in the 0.2x0.05m test section of the channel was varied between 1 and 12 m/s resulting in a Reynolds number in the range of (0.4-3.5)x105. Pressure signals were measured at several locations, notably in the wake. Dominant frequencies and Strouhal numbers are reported from cavitation-free flow (classic von Karman vortex shedding) up to supercavitation as a function of the free-stream Reynolds number. The results are in good agreement with the literature in case of the square cylinder. We experienced a slight increase of the dominant Strouhal number with increasing aspect ratio. This result is somewhat inconsistent with the literature, in which a fall of the Strouhal number can be observed at side ratio 2. This may be the consequence of the different ranges of Reynolds numbers. It was also found that between the inception of cavitation and the formation of supercavitation the Strouhal number is not affected by cavitation.
A Microflow Cytometer with a Rectangular Quasi-Flat-Top Laser Spot
Directory of Open Access Journals (Sweden)
Jingjing Zhao
2016-09-01
Full Text Available This work develops a microflow cytometer, based on a microfluidic chip for three-dimensional (3D hydrodynamic focusing and a binary optical element (BOE for shaping and homogenizing a laser beam. The microfluidic chip utilizes sheath flows to confine the sample flow along the channel centerline with a narrow cross section. In addition to hydrodynamic focusing, secondary flows are generated to strengthen the focusing in the vertical direction. In experiments, the chip was able to focus the sample flow with cross sections of 15 μm high and 8–30 μm wide at 5 m/s, under the condition of the sample flow rates between 10 and 120 μL/min. Instead of using the conventional elliptical Gaussian spot for optical detection, we used a specially designed BOE and obtained a 50 μm × 10 μm rectangular quasi-flat-top spot. The microflow cytometer combining the chip and the BOE was tested to count 3, 5, and 7 μm fluorescence microbeads, and the experimental results were comparable to or better than those derived from two commercial instruments.
Solving the rectangular assignment problem and applications
Bijsterbosch, J.; Volgenant, A.
2010-01-01
The rectangular assignment problem is a generalization of the linear assignment problem (LAP): one wants to assign a number of persons to a smaller number of jobs, minimizing the total corresponding costs. Applications are, e.g., in the fields of object recognition and scheduling. Further, we show
A solution for the narrow rectangular punch
Panek, C.F.; Kalker, J.J.
1977-01-01
This paper considers the problem of a rectangular flat ended punch acting on an elastic half-space. An approximate solution is generated through application of the elastic line integral equations. The results produced by this method are then compared with another approximate solution already
Scattering of E Polarized Plane Wave by Rectangular Cavity With Finite Flanges
Vinogradova, Elena D.
2017-11-01
The rigorous Method of Regularization is implemented for accurate analysis of wave scattering by rectangular cavity with finite flanges. The solution is free from limitations on problem parameters. The calculation of the induced surface current, bistatic radar cross section (RCS) and frequency dependence of monostatic RCS are performed with controlled accuracy in a wide frequency band.
Huixing Li; Yu Liu
2016-01-01
In order to investigate the characteristics of boiling heat transfer for hydrocarbon mixture refrigerant in plate-fin heat exchanger which is used in the petrochemical industry field, a model was established on boiling heat transfer in vertical rectangular channel. The simulated results were compared with the experimental data from literature. The results show that the deviation between the simulated results and experimental data is within ±15%. Meanwhile, the characteristic of boiling heat t...
Directory of Open Access Journals (Sweden)
Jia Guo
2018-01-01
Full Text Available Cyclic nucleotide gated channels (CNGCs play multifaceted roles in plants, particularly with respect to signaling processes associated with abiotic stress signaling and during host-pathogen interactions. Despite key roles during plant survival and response to environment, little is known about the activity and function of CNGC family in common wheat (Triticum aestivum L., a key stable food around the globe. In this study, we performed a genome-wide identification of CNGC family in wheat and identified a total 47 TaCNGCs in wheat, classifying these genes into four major groups (I–IV with two sub-groups (IVa and IVb. Sequence analysis revealed the presence of several conserved motifs, including a phosphate binding cassette (PBC and a “hinge” region, both of which have been hypothesized to be critical for the function of wheat CNGCs. During wheat infection with Pst, the transcript levels of TaCNGC14 and TaCNGC16, both members of group IVb, showed significant induction during a compatible interaction, while a reduction in gene expression was observed in incompatible interactions. In addition, TaCNGC14 and TaCNGC16 mRNA accumulation was significantly influenced by exogenously applied hormones, including abscisic acid (ABA, methyl jasmonate (MeJA, and salicylic acid (SA, suggesting a role in hormone signaling and/or perception. Silencing of TaCNGC14 and TaCNGC16 limited Pst growth and increased wheat resistance against Pst. The results presented herein contribute to our understanding of the wheat CNGC gene family and the mechanism of TaCNGCs signaling during wheat-Pst interaction.
g-Weak Contraction in Ordered Cone Rectangular Metric Spaces
Directory of Open Access Journals (Sweden)
S. K. Malhotra
2013-01-01
Full Text Available We prove some common fixed-point theorems for the ordered g-weak contractions in cone rectangular metric spaces without assuming the normality of cone. Our results generalize some recent results from cone metric and cone rectangular metric spaces into ordered cone rectangular metric spaces. Examples are provided which illustrate the results.
Experimental investigation of turbulent flow in a channel with the backward-facing inclined step
Directory of Open Access Journals (Sweden)
Uruba Václav
2012-04-01
Full Text Available The work deals with the experimental investigation of turbulent flow in a closed channel with the backward-facing inclined step. Experiments were carried by means of the PIV optical measuring method in the channel of the rectangular cross-section in the inlet part and with inclined steps of the constant height H mm and various inclination angles for a wide range of the Reynolds number. The attention was paid especially to the separation region behind the step and to the relaxation of the shear layer after the reattachment in the outlet part of the channel. The dependence of the length of the separation region on the Reynolds number was obtained for various step angles. Optical measurements were completed by the measurement of static pressure distribution in the inlet and outlet part of the channel to estimate energy losses.
Mechanical behavior analysis on electrostatically actuated rectangular microplates
Li, Zhikang; Zhao, Libo; Jiang, Zhuangde; Ye, Zhiying; Dai, Lu; Zhao, Yulong
2015-03-01
Microplates are widely used in various MEMS devices based on electrostatic actuation such as MEMS switches, micro pumps and capacitive micromachined ultrasonic transducers (CMUTs). Accurate predictions for the mechanical behavior of the microplate under electrostatic force are important not only for the design and optimization of these electrostatic devices but also for their operation. This paper presents a novel reduced-order model for electrostatically actuated rectangular and square microplates with a new method to treat the nonlinear electrostatic force. The model was developed using Galerkin method which turned the partial-differential equation governing the microplates into an ordinary equation system. Using this model and cosine-like deflection functions, explicit expressions were established for the deflection and pull-in voltage of the rectangular and square microplates. The theoretical results were well validated with the finite element method simulations and experimental data of literature. The expressions for the deflection analysis are able to predict the deflection up to the pull-in position with an error less than 5.0%. The expressions for the pull-in voltage analysis can determine the pull-in voltages with errors less than 1.0%. Additionally, the method to calculate the capacitance variation of the electrostatically actuated microplates was proposed. These theoretical analyses are helpful for design and optimization of electrostatically actuated microdevices.
Mechanical behavior analysis on electrostatically actuated rectangular microplates
International Nuclear Information System (INIS)
Li, Zhikang; Zhao, Libo; Jiang, Zhuangde; Ye, Zhiying; Zhao, Yulong; Dai, Lu
2015-01-01
Microplates are widely used in various MEMS devices based on electrostatic actuation such as MEMS switches, micro pumps and capacitive micromachined ultrasonic transducers (CMUTs). Accurate predictions for the mechanical behavior of the microplate under electrostatic force are important not only for the design and optimization of these electrostatic devices but also for their operation. This paper presents a novel reduced-order model for electrostatically actuated rectangular and square microplates with a new method to treat the nonlinear electrostatic force. The model was developed using Galerkin method which turned the partial-differential equation governing the microplates into an ordinary equation system. Using this model and cosine-like deflection functions, explicit expressions were established for the deflection and pull-in voltage of the rectangular and square microplates. The theoretical results were well validated with the finite element method simulations and experimental data of literature. The expressions for the deflection analysis are able to predict the deflection up to the pull-in position with an error less than 5.0%. The expressions for the pull-in voltage analysis can determine the pull-in voltages with errors less than 1.0%. Additionally, the method to calculate the capacitance variation of the electrostatically actuated microplates was proposed. These theoretical analyses are helpful for design and optimization of electrostatically actuated microdevices. (paper)
Metamaterial Embedded Wearable Rectangular Microstrip Patch Antenna
Directory of Open Access Journals (Sweden)
J. G. Joshi
2012-01-01
Full Text Available This paper presents an indigenous low-cost metamaterial embedded wearable rectangular microstrip patch antenna using polyester substrate for IEEE 802.11a WLAN applications. The proposed antenna resonates at 5.10 GHz with a bandwidth and gain of 97 MHz and 4.92 dBi, respectively. The electrical size of this antenna is 0.254λ×0.5λ. The slots are cut in rectangular patch to reduce the bending effect. This leads to mismatch the impedance at WLAN frequency band; hence, a metamaterial square SRR is embedded inside the slot. A prototype antenna has been fabricated and tested, and the measured results are presented in this paper. The simulated and measured results of the proposed antenna are found to be in good agreement. The bending effect on the performance of this antenna is experimentally verified.
Anisotropic rectangular metric for polygonal surface remeshing
Pellenard, Bertrand
2013-06-18
We propose a new method for anisotropic polygonal surface remeshing. Our algorithm takes as input a surface triangle mesh. An anisotropic rectangular metric, defined at each triangle facet of the input mesh, is derived from both a user-specified normal-based tolerance error and the requirement to favor rectangle-shaped polygons. Our algorithm uses a greedy optimization procedure that adds, deletes and relocates generators so as to match two criteria related to partitioning and conformity.
Anisotropic rectangular metric for polygonal surface remeshing
Pellenard, Bertrand; Morvan, Jean-Marie; Alliez, Pierre
2013-01-01
We propose a new method for anisotropic polygonal surface remeshing. Our algorithm takes as input a surface triangle mesh. An anisotropic rectangular metric, defined at each triangle facet of the input mesh, is derived from both a user-specified normal-based tolerance error and the requirement to favor rectangle-shaped polygons. Our algorithm uses a greedy optimization procedure that adds, deletes and relocates generators so as to match two criteria related to partitioning and conformity.
Onset of a nucleate boiling and incipient point of net vapor generation in narrow channel
International Nuclear Information System (INIS)
Hong, G.
2014-01-01
An experimental study on onset of nucleate boiling (ONB) and incipient point of net vapor generation (IPNVG) in narrow rectangular channel was presented. Flow direction in the channel was vertical upward. The experimental results indicate that the classical correlations of ONB for conventional channels were not suitable for the present narrow rectangular channel. The wall superheat needed to initiate boiling is found to be higher for the same given values of heat and mass flux. The experimental results of IPNVG indicate that the heat flux, triggering net vapor generation in narrow rectangular channel, is litter lower than that calculated by correlations for conventional channels. The relative prediction error of qIPNVG by Griffith model, Saha model and Sun model ranges from -17.9% to +9.6%. A new correlation was developed to predict the ONB in narrow rectangular channel. The proposed correlation predictions agreed well with the experimental data. (author)
Enhanced heat transfer with corrugated flow channel in anode side of direct methanol fuel cells
International Nuclear Information System (INIS)
Heidary, H.; Abbassi, A.; Kermani, M.J.
2013-01-01
Highlights: • Effect of corrugated flow channel on the heat exchange of DMFC is studied. • Corrugated boundary (except rectangular type) increase heat transfer up to 90%. • Average heat transfer in rectangular-corrugated boundary is less than straight one. • In Re > 60, wavy shape boundary has highest heat transfer. • In Re < 60, triangular shape boundary has highest heat transfer. - Abstract: In this paper, heat transfer and flow field analysis in anode side of direct methanol fuel cells (DMFCs) is numerically studied. To enhance the heat exchange between bottom cold wall and core flow, bottom wall of fluid delivery channel is considered as corrugated boundary instead of straight (flat) one. Four different shapes of corrugated boundary are recommended here: rectangular shape, trapezoidal shape, triangular shape and wavy (sinusoidal) shape. The top wall of the channel (catalyst layer boundary) is taken as hot boundary, because reaction occurs in catalyst layer and the bottom wall of the channel is considered as cold boundary due to coolant existence. The governing equations are numerically solved in the domain by the control volume approach based on the SIMPLE technique (1972). A wide spectrum of numerical studies is performed over a range of various shape boundaries, Reynolds number, triangle block number, and the triangle block amplitude. The performed parametric studies show that corrugated channel with trapezoidal, triangular and wavy shape enhances the heat exchange up to 90%. With these boundaries, cooling purpose of reacting flow in anode side of DMFCs would be better than straight one. Also, from the analogy between the heat and mass transfer problems, it is expected that the consumption of reacting species within the catalyst layer of DMFCs enhance. The present work provides helpful guidelines to the bipolar plate manufacturers of DMFCs to considerably enhance heat transfer and performance of the anode side of DMFC
Billah, Md. Mamun; Khan, Md Imran; Rahman, Mohammed Mizanur; Alam, Muntasir; Saha, Sumon; Hasan, Mohammad Nasim
2017-06-01
A numerical study of steady two dimensional mixed convention heat transfer phenomena in a rectangular channel with active flow modulation is carried out in this investigation. The flow in the channel is modulated via a rotating cylinder placed at the center of the channel. In this study the top wall of the channel is subjected to an isothermal low temperature while a discrete isoflux heater is positioned on the lower wall. The fluid flow under investigation is assumed to have a Prandtl number of 0.71 while the Reynolds No. and the Grashof No. are varied in wide range for four different situations such as: i) plain channel with no cylinder, ii) channel with stationary cylinder, iii) channel with clockwise rotating cylinder and iv) channel with counter clockwise rotating cylinder. The results obtained in this study are presented in terms of the distribution of streamlines, isotherms in the channel while the heat transfer process from the heat source is evaluated in terms of the local Nusselt number, average Nusselt number. The outcomes of this study also indicate that the results are strongly dependent on the type of configuration and direction of rotation of the cylinder and that the average Nusselt number value rises with an increase in Reynolds and Grashof numbers but the correlation between these parameters at higher values of Reynolds and Grashof numbers becomes weak.
Conformal boundary state for the rectangular geometry
Energy Technology Data Exchange (ETDEWEB)
Bondesan, R., E-mail: roberto.bondesan@cea.fr [Institute de Physique Theorique, CEA Saclay, F-91191 Gif-sur-Yvette (France); LPTENS, Ecole Normale Superieure, 24 rue Lhomond, 75231 Paris (France); Institut Henri Poincare, 11 rue Pierre et Marie Curie, 75231 Paris (France); Dubail, J. [Department of Physics, Yale University, P.O. Box 208120, New Haven, CT 06520-8120 (United States); Jacobsen, J.L. [LPTENS, Ecole Normale Superieure, 24 rue Lhomond, 75231 Paris (France); Institut Henri Poincare, 11 rue Pierre et Marie Curie, 75231 Paris (France); Universite Pierre et Marie Curie, 4 place Jussieu, 75252 Paris (France); Saleur, H. [Institute de Physique Theorique, CEA Saclay, F-91191 Gif-sur-Yvette (France); Institut Henri Poincare, 11 rue Pierre et Marie Curie, 75231 Paris (France); Physics Department, USC, Los Angeles, CA 90089-0484 (United States)
2012-09-11
We discuss conformal field theories (CFTs) in rectangular geometries, and develop a formalism that involves a conformal boundary state for the 1+1d open system. We focus on the case of homogeneous boundary conditions (no insertion of a boundary condition changing operator), for which we derive an explicit expression of the associated boundary state, valid for any arbitrary CFT. We check the validity of our solution, comparing it with known results for partition functions, numerical simulations of lattice discretizations, and coherent state expressions for free theories.
Numerical study on rectangular microhollow cathode discharge
International Nuclear Information System (INIS)
He Shoujie; Ouyang Jiting; He Feng; Li Shang
2011-01-01
Rectangular microhollow cathode discharge in argon is investigated by using two-dimensional time-dependent self-consistent fluid model. The electric potential, electric field, particle density, and mean electron energy are calculated. The results show that hollow cathode effect can be onset in the present configuration, with strong electric field and high mean electron energy in the cathode fall while high density and quasineutral plasma in the negative glow. The potential well and electric filed reversal are formed in the negative glow region. It is suggested that the presence of large electron diffusion flux necessitates the field reversal and potential well.
Droplet size in a rectangular Venturi scrubber
Costa, M. A. M.; Henrique, P. R.; Gonçalves, J. A. S.; Coury, J.R.
2004-01-01
The Venturi scrubber is a device which uses liquid in the form of droplets to efficiently remove fine particulate matter from gaseous streams. Droplet size is of fundamental importance for the scrubber performance. In the present experimental study, a laser diffraction technique was used in order to measure droplet size in situ in a Venturi scrubber with a rectangular cross section. Droplet size distribution was measured as a function of gas velocity (58.3 to 74.9 m/s), liquid-to-gas ratio (0...
Hydrodynamic cavitation in micro channels with channel sizes of 100 and 750 micrometers
Rooze, J.; André, M.; van der Gulik, G-J.S.; Fernandez Rivas, David; Gardeniers, Johannes G.E.; Rebrov, E.V.; Schouten, J.C.; Keurentjes, J.T.F.
2012-01-01
Decreasing the constriction size and residence time in hydrodynamic cavitation is predicted to give increased hot spot temperatures at bubble collapse and increased radical formation rate. Cavitation in a 100 × 100 μm2 rectangular micro channel and in a circular 750 μm diameter milli channel has
Hydrodynamic cavitation in micro channels with channel sizes of 100 and 750 micrometers
Rooze, J.; Andre, M.; Gulik, van der G.J.S.; Fernandez-Rivas, D.; Gardeniers, J.G.E.; Rebrov, E.; Schouten, J.C.; Keurentjes, J.T.F.
2012-01-01
Decreasing the constriction size and residence time in hydrodynamic cavitation is predicted to give increased hot spot temperatures at bubble collapse and increased radical formation rate. Cavitation in a 100 × 100 µm2 rectangular micro channel and in a circular 750 µm diameter milli channel has
International Nuclear Information System (INIS)
Ikeda, H.; Tsuboyama, T.; Okuno, S.; Saitoh, Y.; Akamine, T.; Satoh, K.; Inoue, M.; Yamanaka, J.; Mandai, M.; Takeuchi, H.; Kitta, T.; Miyahara, S.; Kamiya, M.
1996-01-01
The wider pitch readout operation of a 50 μm-pitch double-sided silicon micro-strip detector has been studied specifically concerning its ohmic side. Every second readout and ganged configuration was examined by employing a newly developed 64-channel preamplifier array. The observed charge responses for collimated IR light were compared with a numerical model. (orig.)
Plasmonic band-stop filter with asymmetric rectangular ring for WDM networks
International Nuclear Information System (INIS)
Nezhad, Vahid Foroughi; Abrishamian, Mohammad Sadegh; Abaslou, Siamak
2013-01-01
We proposed a simple asymmetric rectangular band-stop filter based on metal–insulator–metal plasmonic waveguides. It is shown that the performance of the structure as a filter strongly depends on the asymmetry of the rectangular structure. An analytical model based on the analogy between MDM waveguides and the microwave transmission line is used to calculate the resonance wavelengths and explain the behavior of the filter. The bandwidth of spectra can be easily manipulated by adjusting the topological parameters of the filter. It is also demonstrated that by adjusting the bandwidth, the filter can be used for CWDM standard channels. The filter behavior is verified using the numerical finite difference time domain (FDTD) method. The filter is compact and has a footprint of 1 μm × 0.5 μm, which is suitable for integrated optical circuits. (paper)
MHD and heat transfer benchmark problems for liquid metal flow in rectangular ducts
International Nuclear Information System (INIS)
Sidorenkov, S.I.; Hua, T.Q.; Araseki, H.
1994-01-01
Liquid metal cooling systems of a self-cooled blanket in a tokamak reactor will likely include channels of rectangular cross section where liquid metal is circulated in the presence of strong magnetic fields. MHD pressure drop, velocity distribution and heat transfer characteristics are important issues in the engineering design considerations. Computer codes for the reliable solution of three-dimensional MHD flow problems are needed for fusion relevant conditions. Argonne National Laboratory and The Efremov Institute have jointly defined several benchmark problems for code validation. The problems, described in this paper, are based on two series of rectangular duct experiments conducted at ANL; one of the series is a joint ANL/Efremov experiment. The geometries consist of variation of aspect ratio and wall thickness (thus wall conductance ratio). The transverse magnetic fields are uniform and nonuniform in the axial direction
International Nuclear Information System (INIS)
Nur Rahmad Yusuf
2013-01-01
Experimental studies to study the mechanism of boiling heat transfer in narrow rectangular channel under severe accident scenarios of TMI-2 nuclear power plant necessary for the understanding of management-related accidents. The research aims to obtain heat flux values and the critical heat flux (CHF) during the process of boiling heat transfer in narrow rectangular channel. Research methods experimentally using the HEATING-02 test section with cooling fluid is water temperature 98 °C. Experiments performed by varying the hot plate initial temperature of 100 °C, 200 °C and 300 °C with channel size 1 mm. Boiling during the cooling process was recorded by a transient temperature on the hot plate. Temperature data used to calculate the heat flux and wall temperature, the results are represented through the boiling curve. The results show that the higher plate temperature, the narrower width of the curve will be narrower and its mean that the plate surface cooling time will be slower. Results visualization is seen that the CCF occurred at the hot plate initial temperature of 100 °C, 200 °C and 300 °C with channel size 1 mm. (author)
Fully developed liquid-metal flow in multiple rectangular ducts in a strong uniform magnetic field
International Nuclear Information System (INIS)
Molokov, S.
1993-01-01
Fully developed liquid-metal flow in a straight rectangular duct with thin conducting walls is investigated. The duct is divided into a number of rectangular channels by electrically conducting dividing walls. A strong uniform magnetic field is applied parallel to the outer side walls and dividing walls and perpendicular to the top and the bottom walls. The analysis of the flow is performed by means of matched asymptotics at large values of the Hartmann number M. The asymptotic solution obtained is valid for arbitrary wall conductance ratio of the side walls and dividing walls, provided the top and bottom walls are much better conductors than the Hartmann layers. The influence of the Hartmann number, wall conductance ratio, number of channels and duct geometry on pressure losses and flow distribution is investigated. If the Hartmann number is high, the volume flux is carried by the core, occupying the bulk of the fluid and by thin layers with thickness of order M -1/2 . In some of the layers, however, the flow is reversed. As the number of channels increases the flow in the channels close to the centre approaches a Hartmann-type flow with no jets at the side walls. Estimation of pressure-drop increase in radial ducts of a self-cooled liquid-metal blanket with respect to flow in a single duct with walls of the same wall conductance ratio gives an upper limit of 30%. (author). 13 refs., 10 figs., 1 tab
Two-phase flow in short horizontal rectangular microchannels with a height of 300 μm
Chinnov, E. A.; Ron'shin, F. V.; Kabov, O. A.
2015-09-01
The two-phase flow in a narrow short horizontal channel with a rectangular cross section is studied experimentally. The channel has a width of 10, 20, or 30 mm and a height of 300 μm. The specifics of formation of such two-phase flows are investigated. It is demonstrated that the regions of bubble and churn flow regimes grow and constrain the region of jet flow as the channel gets wider. The boundaries of the regions of annular and stratified flow regimes remain almost unaltered.
Wang, C.-K.; Liao, W.-H.; Wu, H.-M.; Lo, Y.-H.; Lin, T.-R.; Tung, Y.-C.
2017-11-01
Polydimethylsiloxane (PDMS) has become a widely used material to construct microfluidic devices for various biomedical and chemical applications due to its desirable material properties and manufacturability. PDMS microfluidic devices are usually fabricated using soft lithography replica molding methods with master molds made of photolithogrpahy patterned photoresist layers on silicon wafers. The fabricated microfluidic channels often have rectangular cross-sectional geometries with single or multiple heights. In this paper, we develop a single step sequential PDMS wet etching process that can be used to fabricate microfluidic channels with various cross-sectional geometries from single-layer PDMS microfluidic channels. The cross-sections of the fabricated channel can be non-rectangular, and varied along the flow direction. Furthermore, the fabricated cross-sectional geometries can be numerically simulated beforehand. In the experiments, we fabricate microfluidic channels with various cross-sectional geometries using the developed technique. In addition, we fabricate a microfluidic mixer with alternative mirrored cross-sectional geometries along the flow direction to demonstrate the practical usage of the developed technique.
Total reflection and cloaking by zero index metamaterials loaded with rectangular dielectric defects
Wu, Ying
2013-05-06
In this work, we investigate wave transmission property through a zero index metamaterial (ZIM) waveguide embedded with rectangular dielectric defects. We show that total reflection and total transmission (cloaking) can be achieved by adjusting the geometric sizes and/or permittivities of the defects. Our work provides another possibility of manipulating wave propagation through ZIM in addition to the widely studied dielectric defects with cylindrical geometries.
Total reflection and cloaking by zero index metamaterials loaded with rectangular dielectric defects
Wu, Ying; Li, Jichun
2013-01-01
In this work, we investigate wave transmission property through a zero index metamaterial (ZIM) waveguide embedded with rectangular dielectric defects. We show that total reflection and total transmission (cloaking) can be achieved by adjusting the geometric sizes and/or permittivities of the defects. Our work provides another possibility of manipulating wave propagation through ZIM in addition to the widely studied dielectric defects with cylindrical geometries.
Rectangular source integral and recurrence relations
International Nuclear Information System (INIS)
Prabha, Hem
2007-01-01
In this paper Hubbell's rectangular source integral H'(a,b), which is a double integral, is expressed as a series of many converging single integrals I n (a,b). Recurrence relations relate these integrals. Once one integral I 1 is computed, recurrence relations are used to compute other integrals. I 1 (a,b) can be computed analytically. H'(a,b) is approximated by considering the first seven terms in the series and the results are found to give good results for various values of a and b. Results are presented for the values of a and b (0.1 to 20 and to 2), respectively. The rate of convergence depends on the values of a and b
Droplet size in a rectangular Venturi scrubber
Directory of Open Access Journals (Sweden)
M. A. M. Costa
2004-06-01
Full Text Available The Venturi scrubber is a device which uses liquid in the form of droplets to efficiently remove fine particulate matter from gaseous streams. Droplet size is of fundamental importance for the scrubber performance. In the present experimental study, a laser diffraction technique was used in order to measure droplet size in situ in a Venturi scrubber with a rectangular cross section. Droplet size distribution was measured as a function of gas velocity (58.3 to 74.9 m/s, liquid-to-gas ratio (0.07 to 0.27 l/m³, and distance from liquid injection point (64 to 173 mm. It was found that all these variables significantly affect droplet size. The results were compared with the predictions from correlations found in the literature.
Large - scale Rectangular Ruler Automated Verification Device
Chen, Hao; Chang, Luping; Xing, Minjian; Xie, Xie
2018-03-01
This paper introduces a large-scale rectangular ruler automated verification device, which consists of photoelectric autocollimator and self-designed mechanical drive car and data automatic acquisition system. The design of mechanical structure part of the device refer to optical axis design, drive part, fixture device and wheel design. The design of control system of the device refer to hardware design and software design, and the hardware mainly uses singlechip system, and the software design is the process of the photoelectric autocollimator and the automatic data acquisition process. This devices can automated achieve vertical measurement data. The reliability of the device is verified by experimental comparison. The conclusion meets the requirement of the right angle test procedure.
The demagnetizing factors for the rectangular samples
International Nuclear Information System (INIS)
Akishin, P.G.; Gaganov, I.A.
1990-01-01
The influence of the demagnetization effect on the distribution of internal magnetic fields for finite samples is considered. The boundary integral method is used to compute the space distribution of the magnetic field in rectangular samples. On the basis of these calculations we compute the distribution of demagnetization factors in the sample for μSR experimental set-up with the real field geometry. The corresponding mathematical expectation and dispersion of this distribution are estimated. The results of the calculation are used in the analysis of the μSR data obtained for high T c superconductors. It is shown for these compounds that the correction to the penetration depth related to the broadening of the field distribution, is not more than 5%. 8 refs.; 2 figs.; 1 tab
Method and structure for cache aware transposition via rectangular subsections
Gustavson, Fred Gehrung; Gunnels, John A
2014-02-04
A method and structure for transposing a rectangular matrix A in a computer includes subdividing the rectangular matrix A into one or more square submatrices and executing an in-place transposition for each of the square submatrices A.sub.ij.
direct method of analysis of an isotropic rectangular plate direct
African Journals Online (AJOL)
eobe
This work evaluates the static analysis of an isotropic rectangular plate with various the static analysis ... method according to Ritz is used to obtain the total potential energy of the plate by employing the used to ..... for rectangular plates analysis, as the behavior of the ... results obtained by previous research work that used.
Towards characterizing graphs with a sliceable rectangular dual
Kusters, V.; Speckmann, B.; Di Giacomo, E.; Lubiw, A.
2015-01-01
Let G be a plane triangulated graph. A rectangular dual of G is a partition of a rectangle R into a set R of interior-disjoint rectangles, one for each vertex, such that two regions are adjacent if and only if the corresponding vertices are connected by an edge. A rectangular dual is sliceable if it
Su, Jinghong; Chen, Xiaodong; Hu, Guoqing
2018-03-01
Inertial migration has emerged as an efficient tool for manipulating both biological and engineered particles that commonly exist with non-spherical shapes in microfluidic devices. There have been numerous studies on the inertial migration of spherical particles, whereas the non-spherical particles are still largely unexplored. Here, we conduct three-dimensional direct numerical simulations to study the inertial migration of rigid cylindrical particles in rectangular microchannels with different width/height ratios under the channel Reynolds numbers (Re) varying from 50 to 400. Cylindrical particles with different length/diameter ratios and blockage ratios are also concerned. Distributions of surface force with the change of rotation angle show that surface stresses acting on the particle end near the wall are the major contributors to the particle rotation. We obtain lift forces experienced by cylindrical particles at different lateral positions on cross sections of two types of microchannels at various Re. It is found that there are always four stable equilibrium positions on the cross section of a square channel, while the stable positions are two or four in a rectangular channel, depending on Re. By comparing the equilibrium positions of cylindrical particles and spherical particles, we demonstrate that the equivalent diameter of cylindrical particles monotonously increases with Re. Our work indicates the influence of a non-spherical shape on the inertial migration and can be useful for the precise manipulation of non-spherical particles.
Directory of Open Access Journals (Sweden)
WANG Minhao
2017-08-01
Full Text Available Plate structures with openings are common in many engineering structures. The study of the vibration characteristics of such structures is directly related to the vibration reduction, noise reduction and stability analysis of an overall structure. This paper conducts research into the free vibration characteristics of a thin elastic plate with a rectangular opening parallel to the plate in an arbitrary position. We use the improved Fourier series to represent the displacement tolerance function of the rectangular plate with an opening. We can divide the plate into an eight zone plate to simplify the calculation. We then use linear springs, which are uniformly distributed along the boundary, to simulate the classical boundary conditions and the boundary conditions of the boundaries between the regions. According to the energy functional and variational method, we can obtain the overall energy functional. We can also obtain the generalized eigenvalue matrix equation by studying the extremum of the unknown improved Fourier series expansion coefficients. We can then obtain the natural frequencies and corresponding vibration modes of the rectangular plate with an opening by solving the equation. We then compare the calculated results with the finite element method to verify the accuracy and effectiveness of the method proposed in this paper. Finally, we research the influence of the boundary condition, opening size and opening position on the vibration characteristics of a plate with an opening. This provides a theoretical reference for practical engineering application.
Fluid Flow and Infrared Image Analyses on Endwall Fitted with Short Rectangular Plate Fin
Institute of Scientific and Technical Information of China (English)
Kenyu OYAKAWA; Islam Md. DIDARUL; Minoru YAGA
2006-01-01
An experimental investigation is carried out to study fluid flow and heat transfer characteristics on the endwall fitted with arrays ( 7 × 7 ) of short rectangular plate fins of different pattern (co-angular and zigzag) for different pitch ratio. Experiments were conducted in a rectangular duct of 50 mm height for an air flow of Reynolds number ranged from 18750 to 62500 based on the equivalent diameter and air velocity of the duct. Infrared image analysis technique was employed to make clear the characteristics of local heat transfer coefficients on fin base, endwall and overall surface. Flow pattern around the short rectangular plates were visualized by inducing fluorescent dye in a water channel and longitudinal vortices were observed. Increasing the distance between plates in flow direction causes heat transfer enhancement for co-angular pattern, while decreasing the distance causes heat transfer enhancement for zigzag pattern. Zigzag pattern with pitch ratio 2 is found to be more effective in heat transfer enhancement than any other cases investigated.
Directory of Open Access Journals (Sweden)
Niya Ma
2018-02-01
Full Text Available Developing a three-dimensional laminar flow in the entrance region of rectangular microchannels has been investigated in this paper. When the hydrodynamic development length is the same magnitude as the microchannel length, entrance effects have to be taken into account, especially in relatively short ducts. Simultaneously, there are a variety of non-continuum or rarefaction effects, such as velocity slip and temperature jump. The available data in the literature appearing on this issue is quite limited, the available study is the semi-theoretical approximate model to predict pressure drop of developing slip flow in rectangular microchannels with different aspect ratios. In this paper, we apply the lattice Boltzmann equation method (LBE to investigate the developing slip flow through a rectangular microchannel. The effects of the Reynolds number (1 < Re < 1000, channel aspect ratio (0 < ε < 1, and Knudsen number (0.001 < Kn < 0.1 on the dimensionless hydrodynamic entrance length, and the apparent friction factor, and Reynolds number product, are examined in detail. The numerical solution of LBM can recover excellent agreement with the available data in the literature, which proves its accuracy in capturing fundamental fluid characteristics in the slip-flow regime.
Directory of Open Access Journals (Sweden)
Huixing Li
2016-05-01
Full Text Available In order to investigate the characteristics of boiling heat transfer for hydrocarbon mixture refrigerant in plate-fin heat exchanger which is used in the petrochemical industry field, a model was established on boiling heat transfer in vertical rectangular channel. The simulated results were compared with the experimental data from literature. The results show that the deviation between the simulated results and experimental data is within ±15%. Meanwhile, the characteristic of boiling heat transfer was investigated in vertical rectangular minichannel of plate-fin heat exchanger. The results show that the boiling heat transfer coefficient increases with the increase in quality and mass flux and is slightly impacted by the heat flux. This is because that the main boiling mechanism is forced convective boiling while the contribution of nucleate boiling is slight. The correlation of Liu and Winterton is in good agreement with the simulation results. The deviation between correlation calculations and simulation results is mostly less than ±15%. These results will provide some constructive instructions for the understanding of saturated boiling mechanism in a vertical rectangular minichannel and the prediction of heat transfer performance in plate-fin heat exchanger.
Peristaltic Flow of Carreau Fluid in a Rectangular Duct through a Porous Medium
Directory of Open Access Journals (Sweden)
R. Ellahi
2012-01-01
Full Text Available We have examined the peristaltic flow of Carreau fluid in a rectangular channel through a porous medium. The governing equations of motion are simplified by applying the long wavelength and low Reynolds number approximations. The reduced highly nonlinear partial differential equations are solved jointly by homotopy perturbation and Eigen function expansion methods. The expression for pressure rise is computed numerically by evaluating the numerical integration. The physical features of pertinent parameters have been discussed by plotting graphs of velocity, pressure rise, pressure gradient, and stream functions.
Wakefield accelerator with hybrid plasma-dielectric structure of rectangular cross-section
International Nuclear Information System (INIS)
Kiselev, V.A.; Linnik, A.F.; Mirnyj, V.I.; Onishchenko, I.N.; Uskov, V.V.
2010-01-01
Increase of wakefield intensity at its excitation by a long train of relativistic electron bunches in the rectangular dielectric structure when it is filled with plasma of resonant density was experimentally observed. The first portion of the bunches, produced by electron linac 'Almaz-2', ionizes gas at atmospheric pressure so that plasma frequency becomes equal to bunch repetition frequency and to the frequency of principal Eigen mode of the dielectric structure. Excitation enhancement at such resonant conditions is being studied taking into account the improvement of bunch train propagation in the transit channel caused by charge compensation with plasma and the electrodynamics change of the dielectric structure at filling with plasma.
Directory of Open Access Journals (Sweden)
Luyang Sun
Full Text Available Domestication and selection for important performance traits can impact the genome, which is most often reflected by reduced heterozygosity in and surrounding genes related to traits affected by selection. In this study, analysis of the genomic impact caused by domestication and artificial selection was conducted by investigating the signatures of selection using single nucleotide polymorphisms (SNPs in channel catfish (Ictalurus punctatus. A total of 8.4 million candidate SNPs were identified by using next generation sequencing. On average, the channel catfish genome harbors one SNP per 116 bp. Approximately 6.6 million, 5.3 million, 4.9 million, 7.1 million and 6.7 million SNPs were detected in the Marion, Thompson, USDA103, Hatchery strain, and wild population, respectively. The allele frequencies of 407,861 SNPs differed significantly between the domestic and wild populations. With these SNPs, 23 genomic regions with putative selective sweeps were identified that included 11 genes. Although the function for the majority of the genes remain unknown in catfish, several genes with known function related to aquaculture performance traits were included in the regions with selective sweeps. These included hypoxia-inducible factor 1β. HIFιβ.. and the transporter gene ATP-binding cassette sub-family B member 5 (ABCB5. HIF1β. is important for response to hypoxia and tolerance to low oxygen levels is a critical aquaculture trait. The large numbers of SNPs identified from this study are valuable for the development of high-density SNP arrays for genetic and genomic studies of performance traits in catfish.
Features of two-phase flow patterns in horizontal rectangular microchannels of height 50 μm
Directory of Open Access Journals (Sweden)
Ron’shin Fedor
2016-01-01
Full Text Available The horizontal microchannel with the height of 50 micrometres and width of 40 mm of a rectangular cross-section has been used to study two-phase flow. The classical patterns of two-phase flow in the channel (bubble, stratified, churn, jet, and annular have been detected. Experimental information allows us to define the characteristics of the regimes and to determine precisely the boundaries between the patterns of the two-phase flows.
Flow Characteristics of Rectangular Underexpanded Impinging Jets
Institute of Scientific and Technical Information of China (English)
Minoru YAGA; Yoshio KINJO; Masumi TAMASHIRO; Kenyu OYAKAWA
2006-01-01
In this paper, the flow fields of underexpanded impinging jet issued from rectangular nozzles of aspect ratio 1,3 and 5 are numerically and experimentally studied. Two dimensional temperature and pressure distributions are measured by using infrared camera and the combination of a pressure scanning device and a stepping motor, respectively. The variation of the stagnation pressure on the impinging plate reveals that a hystcretic phenomenon exists during the increasing and decreasing of the pressure ratio for the aspect ratio of 3.0 and 5.0. It is also found that the nozzle of aspect ratio 1.0 caused the largest total pressure loss pc/p0 = 0.27 at the pressure ratio of p0/pb, = 6.5, where pc is the stagnation center pressure on the wall, p0 the upstream stagnation pressure, pb the ambient pressure. The other two nozzles showed that the pressure loss pc / p0=0.52 and 0.55 were achieved by the nozzles of the aspect ratio 3,0 and 5.0, respectively. The comparison between the calculations and experiments is fairly good, showing the three dimensional streamlines and structures of the shock waves in the jets. However, the hysteresis of the pressure variations observed in the experiments between the pressure ratio of 3.5 and 4.5 cannot be confirmed in the calculations.
Physics from angular projection of rectangular grids
International Nuclear Information System (INIS)
Singh, Ashmeet
2015-01-01
In this paper, we present a mathematical model for the angular projection of a rectangular arrangement of points in a grid. This simple yet interesting, problem has both scholarly value and applications for data extraction techniques to study the physics of various systems. Our work may help undergraduate students to understand subtle points in the angular projection of a grid and describes various quantities of interest in the projection with completeness and sufficient rigour. We show that for certain angular ranges, the projection has non-distinctness, and calculate the details of such angles, and correspondingly, the number of distinct points and the total projected length. We focus on interesting trends obtained for the projected length of the grid elements and present a simple application of the model to determine the geometry of an unknown grid whose spatial extensions are known, using measurement of the grid projection at two angles only. Towards the end, our model is shown to have potential applications in various branches of physical sciences, including crystallography, astrophysics, and bulk properties of materials. (paper)
Steady flow in shallow channel bends
De Vriend, H.J.
1981-01-01
Making use of a mathematical model solving the complete NavierStokes equations for steady flow in coiled rectangular pipes, fully-developed laminar flow in shallow curved channels is analysed physically and mathematically. Transverse convection of momentum by the secondary flow is shown to cause
Rectangular maximum-volume submatrices and their applications
Mikhalev, Aleksandr; Oseledets, I.V.
2017-01-01
We introduce a definition of the volume of a general rectangular matrix, which is equivalent to an absolute value of the determinant for square matrices. We generalize results of square maximum-volume submatrices to the rectangular case, show a connection of the rectangular volume with an optimal experimental design and provide estimates for a growth of coefficients and an approximation error in spectral and Chebyshev norms. Three promising applications of such submatrices are presented: recommender systems, finding maximal elements in low-rank matrices and preconditioning of overdetermined linear systems. The code is available online.
Rectangular maximum-volume submatrices and their applications
Mikhalev, Aleksandr
2017-10-18
We introduce a definition of the volume of a general rectangular matrix, which is equivalent to an absolute value of the determinant for square matrices. We generalize results of square maximum-volume submatrices to the rectangular case, show a connection of the rectangular volume with an optimal experimental design and provide estimates for a growth of coefficients and an approximation error in spectral and Chebyshev norms. Three promising applications of such submatrices are presented: recommender systems, finding maximal elements in low-rank matrices and preconditioning of overdetermined linear systems. The code is available online.
Rectangular-cladding silicon slot waveguide with improved nonlinear performance
Huang, Zengzhi; Huang, Qingzhong; Wang, Yi; Xia, Jinsong
2018-04-01
Silicon slot waveguides have great potential in hybrid silicon integration to realize nonlinear optical applications. We propose a rectangular-cladding hybrid silicon slot waveguide. Simulation result shows that, with a rectangular-cladding, the slot waveguide can be formed by narrower silicon strips, so the two-photon absorption (TPA) loss in silicon is decreased. When the cladding material is a nonlinear polymer, the calculated TPA figure of merit (FOMTPA) is 4.4, close to the value of bulk nonlinear polymer of 5.0. This value confirms the good nonlinear performance of rectangular-cladding silicon slot waveguides.
Permuting sparse rectangular matrices into block-diagonal form
Energy Technology Data Exchange (ETDEWEB)
Aykanat, Cevdet; Pinar, Ali; Catalyurek, Umit V.
2002-12-09
This work investigates the problem of permuting a sparse rectangular matrix into block diagonal form. Block diagonal form of a matrix grants an inherent parallelism for the solution of the deriving problem, as recently investigated in the context of mathematical programming, LU factorization and QR factorization. We propose graph and hypergraph models to represent the nonzero structure of a matrix, which reduce the permutation problem to those of graph partitioning by vertex separator and hypergraph partitioning, respectively. Besides proposing the models to represent sparse matrices and investigating related combinatorial problems, we provide a detailed survey of relevant literature to bridge the gap between different societies, investigate existing techniques for partitioning and propose new ones, and finally present a thorough empirical study of these techniques. Our experiments on a wide range of matrices, using state-of-the-art graph and hypergraph partitioning tools MeTiS and PaT oH, revealed that the proposed methods yield very effective solutions both in terms of solution quality and run time.
Attenuation in Rectangular Waveguides with Finite Conductivity Walls
Directory of Open Access Journals (Sweden)
K. C. Yeong
2011-06-01
Full Text Available We present a fundamental and accurate approach to compute the attenuation of electromagnetic waves propagating in rectangular waveguides with finite conductivity walls. The wavenumbers kx and ky in the x and y directions respectively, are obtained as roots of a set of transcendental equations derived by matching the tangential component of the electric field (E and the magnetic field (H at the surface of the waveguide walls. The electrical properties of the wall material are determined by the complex permittivity ε, permeability μ, and conductivity σ. We have examined the validity of our model by carrying out measurements on the loss arising from the fundamental TE10 mode near the cutoff frequency. We also found good agreement between our results and those obtained by others including Papadopoulos’ perturbation method across a wide range of frequencies, in particular in the vicinity of cutoff. In the presence of degenerate modes however, our method gives higher losses, which we attribute to the coupling between modes as a result of dispersion.
Computation of rectangular source integral by rational parameter polynomial method
International Nuclear Information System (INIS)
Prabha, Hem
2001-01-01
Hubbell et al. (J. Res. Nat Bureau Standards 64C, (1960) 121) have obtained a series expansion for the calculation of the radiation field generated by a plane isotropic rectangular source (plaque), in which leading term is the integral H(a,b). In this paper another integral I(a,b), which is related with the integral H(a,b) has been solved by the rational parameter polynomial method. From I(a,b), we compute H(a,b). Using this method the integral I(a,b) is expressed in the form of a polynomial of a rational parameter. Generally, a function f (x) is expressed in terms of x. In this method this is expressed in terms of x/(1+x). In this way, the accuracy of the expression is good over a wide range of x as compared to the earlier approach. The results for I(a,b) and H(a,b) are given for a sixth degree polynomial and are found to be in good agreement with the results obtained by numerically integrating the integral. Accuracy could be increased either by increasing the degree of the polynomial or by dividing the range of integration. The results of H(a,b) and I(a,b) are given for values of b and a up to 2.0 and 20.0, respectively
Paramo, P.; Holbrook, W.; Brown, H.; Lizarralde, D.; Fletcher, J.; Umhoefer, P.; Kent, G.; Harding, A.; Gonzalez, A.; Axen, G.
2005-12-01
We present a velocity model from wide-angle data along with coincident prestack depth migration sections from seismic reflection data collected in the southern Gulf of California. Transect 0E runs NE to SW from the hills of Sierra Madre in mainland Mexico near Mazatlan to approximately 115 km into Gulf of California waters. Wide-angle data were recorded by 9 ocean bottom seismometers, deployed by the R/V New Horizon and 10 Reftek seismometers located along onshore extension of the transect. The average spacing for the OBS and Refteks is ~12 km and shots were fired from the R/V Maurice Ewing at 150 m intervals. Transect 0E crosses what it is believed to be extended continental crust and lies in the initial direction of extension characteristic of the proto-gulf. Preliminary results from the velocity model show upper crustal velocities of 6.1-6.3 km/s and lower crustal velocities of 6.7-7.0 km/s along the entire transect. Seismic velocities and crustal thicknesses observed along transect 0E are characteristic of non-volcanic margins.
Experimental study of critical heat flux in inclined rectangular gap
International Nuclear Information System (INIS)
Kim, S.J.; Kim, Y.H.; Noh, S.W.; Suh, K.Y.; Rempe, J.L.; Cheung, F.B.; Kim, S.B.
2003-01-01
In the TMI-2 accident, the lower part of the reactor pressure vessel was overheated and then rather rapidly cooled down, as was later found out in a vessel investigation project. This accounted for the possibility of gap cooling feasibility. For this reason, a great deal of investigations was performed to determine the critical heat flux (CHF) from the standpoint of in-vessel retention (IVR). As part of a joint Korean-U.S. International Nuclear Energy Research Initiative (INERI) project, Tests were conducted to examine the critical heat flux (CHF) on the one-dimensional downward heating rectangular channel having a narrow gap by changing the orientation of the copper test heater assembly in a pool of saturated water under the atmospheric pressure. The test parameters include both the gap sizes of 1, 2, 5 and 10 mm, and the surface orientation angles from the downward-facing position (180deg) to the vertical position (90deg), respectively. It was observed that the CHF generally decreases as the surface inclination angle increases and as the gap size decreases. However, in downward-facing position (180deg), somewhat differing results were detected relative to previous reports. For a certain gap size having a similar dimension with vapor layer thickness, more efficient heat transfer was detected and this may be interpreted by characteristic property such as the vapor layer thickness of water. In consistency with several studies reported in the literature, it was found that there exists a transition angle above that the CHF changes with a rapid slope. (author)
Steady flow in shallow channel bends
De Vriend, H.J.
1981-01-01
Making use of a mathematical model solving the complete NavierStokes equations for steady flow in coiled rectangular pipes, fully-developed laminar flow in shallow curved channels is analysed physically and mathematically. Transverse convection of momentum by the secondary flow is shown to cause important deformations of the main velocity distribution. The model is also used to investigate simplified computation methods for shallow channels. The usual 'shallow water approximation' is shown to...
International Nuclear Information System (INIS)
Kiselev, V.A.; Linnik, A.F.; Mirnyj, V.I.; Onishchenko, I.N.; Sotnikov, G.V.; Uskov, V.V.
2008-01-01
The possibility to enhance the efficiency of wake wave excitation in dielectric waveguides of rectangular cross-section was investigated by increase of electron bunches coupling with excited wakefield that was achieved by decrease of transit channel cross-section. At that for each configuration the required changes of dielectric plates size were made to for maintain the coincidence concurrence of bunch repetition frequency and frequency of the principal transverse mode of the corresponding dielectric waveguide. It is established, the decrease of transit channel leading to essential changing of topography of total field excited wake wave
Spectral Optical Readout of Rectangular-Miniature Hollow Glass Tubing for Refractive Index Sensing.
Rigamonti, Giulia; Bello, Valentina; Merlo, Sabina
2018-02-16
For answering the growing demand of innovative micro-fluidic devices able to measure the refractive index of samples in extremely low volumes, this paper presents an overview of the performances of a micro-opto-fluidic sensing platform that employs rectangular, miniature hollow glass tubings. The operating principle is described by showing the analytical model of the tubing, obtained as superposition of different optical cavities, and the optical readout method based on spectral reflectivity detection. We have analyzed, in particular, the theoretical and experimental optical features of rectangular tubings with asymmetrical geometry, thus with channel depth larger than the thickness of the glass walls, though all of them in the range of a few tens of micrometers. The origins of the complex line-shape of the spectral response in reflection, due to the different cavities formed by the tubing flat walls and channel, have been investigated using a Fourier transform analysis. The implemented instrumental configuration, based on standard telecom fiberoptic components and a semiconductor broadband optical source emitting in the near infrared wavelength region centered at 1.55 µm, has allowed acquisition of reflectivity spectra for experimental verification of the expected theoretical behavior. We have achieved detection of refractive index variations related to the change of concentration of glucose-water solutions flowing through the tubing by monitoring the spectral shift of the optical resonances.
analytical bending solution of all clamped isotropic rectangular plate
African Journals Online (AJOL)
HP
PLATE ON WINKLER'S FOUNDATION USING CHARACTERISTIC. ORTHOGONAL ... foundations, storage tanks, swimming pools, floor system of buildings, highways ..... “Energy Methods in Theory of Rectangular Plates. (use of Polynomial ...
Rectangular waveform linear transformer driver module design
International Nuclear Information System (INIS)
Zhao Yue; Xie Weiping; Zhou Liangji; Chen Lin
2014-01-01
Linear Transformer Driver is a novel pulsed power technology, its main merits include a parallel LC discharge array and Inductive Voltage Adder. The parallel LC discharge array lowers the whole circuit equivalent inductance and the Inductive Voltage Adder unites the modules in series in order to create a high electric field grads, meanwhile, restricts the high voltage in a small space. The lower inductance in favor of LTD output a fast waveform and IVA confine high voltage in secondary cavity. In recently, some LTD-based pulsed power system has been development yet. The usual LTD architecture provides damped sine shaped output pulses that may not be suitable in flash radiography, high power microwave production, z-pinch drivers, and certain other applications. A more suitable driver output pulse would have a flat or inclined top (slightly rising or falling). In this paper, we present the design of an LTD cavity that generates this type of the output pulse by including within its circular array some number of the harmonic bricks in addition to the standard bricks according to Fourier progression theory. The parallel LC discharge array circuit formula is introduced by Kirchhoff Law, and the sum of harmonic is proofed as an analytic result, meanwhile, rationality of design is proved by simulation. Varying gas spark discharge dynamic resistance with harmonic order and switches jitter are analyzed. The results are as following: The more harmonic order is an approach to the ideal rectangular waveform, but lead to more system complexity. The capacity decreases as harmonic order increase, and gas spark discharge dynamic resistance rises with the capacity. The rising time protracts and flat is decay or even vanishes and the shot to shot reproducibility is degenerate as the switches jitter is high. (authors)
Energy Technology Data Exchange (ETDEWEB)
Perroud, P; Rebiere, J [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires
1965-07-01
Liquid hydrogen flows in a canal of rectangular cross section of 1 x 6 mm ; only one of the larger side is heated (length 190 mm) in order to simulate the cooling of a missile nozzle. The liquid is admitted subcooled at 25 deg. K in average and under a pressure of 8 bars. Mass velocity from 8.9 to 102 g/cm{sup 2}.s, heat flux from 18 to 296.6 W/cm{sup 2} and wall temperature reaching 800 deg. K. Two correlations of local heat transfer coefficients are presented, one for the region in two-phase flow and the other for the region in homogeneous gas-phase which are compared with the formula previously established for a cylindrical canal. An analysis of pressure drop is also given. Gross experimental results are separately published. (authors) [French] L'hydrogene liquide s'ecoule dans un canal de section rectangulaire de 1 x 6 mm, dont une seule grande face est chauffante (longueur: 190 mm), de facon a simuler le refroidissement d'une tuyere de fusee. Le liquide est admis sous-refroidi a 25 deg. K en moyenne et sous une pression de 8 bars. Vitesse massique de 8,9 a 102 g/cm{sup 2}.s, densite de flux de chaleur de 18 a 296,6 W/cm{sup 2} et temperature de paroi atteignant 800 deg. K. Deux correlations des coefficients d'echanges thermiques locaux sont presentees, l'une pour la region en double-phase et l'autre pour la region en phase gazeuse homogene que l'on compare avec les formules etablies precedemment pour le canal cylindrique. Une analyse des pertes de charge est egalement donnee. Les resultats experimentaux bruts sont publies separement. (auteurs)
Tau method approximation of the Hubbell rectangular source integral
International Nuclear Information System (INIS)
Kalla, S.L.; Khajah, H.G.
2000-01-01
The Tau method is applied to obtain expansions, in terms of Chebyshev polynomials, which approximate the Hubbell rectangular source integral:I(a,b)=∫ b 0 (1/(√(1+x 2 )) arctan(a/(√(1+x 2 )))) This integral corresponds to the response of an omni-directional radiation detector situated over a corner of a plane isotropic rectangular source. A discussion of the error in the Tau method approximation follows
Heat Transfer Augmentation in Gas Turbine Blade Rectangular Passages Using Circular Ribs with Fins
Directory of Open Access Journals (Sweden)
Mohammed W. Al-Jibory
2017-11-01
Full Text Available In this paper, an experimental system was designed and built to simulate conditions in the gas turbine blade cooling and run the experimental part. Boundary conditions are: inlet coolant air temperature is 300K with Reynolds numbers (Re=7901 .The surrounding constant hot air temperatures was (673 K.The numerical simulations were done by using software FLUENT version (14.5, in this part, it was presented the effect of using circular ribs having middle fin fitted in rectangular passage channel on fluid flow and heat transfer characteristics. Ribs used with pitch-rib height of 10, rectangular channel of (30x60 mm cross section, 1.5 mm duct thickness and 0.5 m long. The temperature, velocity distribution contours, cooling air temperature distribution at the duct centerline, the inner wall surface temperature of the duct, and thermal performance factor are presented in this paper. it can be seen that the duct with all ribs with middle fins was the better case which leads to increase the coolant air temperature by (10.22 % and decrease the inner wall temperature by (6.15 % . The coolant air flow velocity seems to be accelerated and decelerated through the channel in the presence of ribs, so it was shown that the thermal performance factor along the duct is larger than 1, this is due to the fact that the ribs create turbulent conditions and increasing thermal surface area, and thus increasing heat transfer coefficient than the smooth channel.
Zhai, Xiaofang; Zhu, Xinyan; Xiao, Zhifeng; Weng, Jie
2009-10-01
Historically, cellular automata (CA) is a discrete dynamical mathematical structure defined on spatial grid. Research on cellular automata system (CAS) has focused on rule sets and initial condition and has not discussed its adjacency. Thus, the main focus of our study is the effect of adjacency on CA behavior. This paper is to compare rectangular grids with hexagonal grids on their characteristics, strengths and weaknesses. They have great influence on modeling effects and other applications including the role of nearest neighborhood in experimental design. Our researches present that rectangular and hexagonal grids have different characteristics. They are adapted to distinct aspects, and the regular rectangular or square grid is used more often than the hexagonal grid. But their relative merits have not been widely discussed. The rectangular grid is generally preferred because of its symmetry, especially in orthogonal co-ordinate system and the frequent use of raster from Geographic Information System (GIS). However, in terms of complex terrain, uncertain and multidirectional region, we have preferred hexagonal grids and methods to facilitate and simplify the problem. Hexagonal grids can overcome directional warp and have some unique characteristics. For example, hexagonal grids have a simpler and more symmetric nearest neighborhood, which avoids the ambiguities of the rectangular grids. Movement paths or connectivity, the most compact arrangement of pixels, make hexagonal appear great dominance in the process of modeling and analysis. The selection of an appropriate grid should be based on the requirements and objectives of the application. We use rectangular and hexagonal grids respectively for developing city model. At the same time we make use of remote sensing images and acquire 2002 and 2005 land state of Wuhan. On the base of city land state in 2002, we make use of CA to simulate reasonable form of city in 2005. Hereby, these results provide a proof of
Free and forced Rossby normal modes in a rectangular gulf of arbitrary orientation
Graef, Federico
2016-09-01
A free Rossby normal mode in a rectangular gulf of arbitrary orientation is constructed by considering the reflection of a Rossby mode in a channel at the head of the gulf. Therefore, it is the superposition of four Rossby waves in an otherwise unbounded ocean with the same frequency and wavenumbers perpendicular to the gulf axis whose difference is equal to 2mπ/W, where m is a positive integer and W the gulf's width. The lower (or higher) modes with small m (or large m) are oscillatory (evanescent) in the coordinate along the gulf; these are elucidated geometrically. However for oceanographically realistic parameter values, most of the modes are evanescent. When the gulf is forced at the mouth with a single Fourier component, the response is in general an infinite sum of modes that are needed to match the value of the streamfunction at the gulf's entrance. The dominant mode of the response is the resonant one, which corresponds to forcing with a frequency ω and wavenumber normal to the gulf axis η appropriate to a gulf mode: η =- β sin α/(2ω) ± Mπ/W, where α is the angle between the gulf's axis and the eastern direction (+ve clockwise) and M the resonant's mode number. For zonal gulfs ω drops out of the resonance condition. For the special cases η = 0 in which the free surface goes up and down at the mouth with no flow through it, or a flow with a sinusoidal profile, resonant modes can get excited for very specific frequencies (only for non-zonal gulfs in the η = 0 case). The resonant mode is around the annual frequency for a wide range of gulf orientations α ∈ [40°, 130°] or α ∈ [220°, 310°] and gulf widths between 150 and 200 km; these include the Gulf of California and the Adriatic Sea. If η is imaginary, i.e. a flow with an exponential profile, there is no resonance. In general less modes get excited if the gulf is zonally oriented.
Single phase flow pressure drop and heat transfer in rectangular metallic microchannels
International Nuclear Information System (INIS)
Sahar, Amirah M.; Özdemir, Mehmed R.; Fayyadh, Ekhlas M.; Wissink, Jan; Mahmoud, Mohamed M.; Karayiannis, Tassos G.
2016-01-01
Numerical simulations were performed using Fluent 14.5 to investigate single phase flow and conjugate heat transfer in copper rectangular microchannels. Two different configurations were simulated: (1) single channel with hydraulic diameter of 0.561 mm and (2) multichannel configuration consisting of inlet and outlet manifolds and 25 channels with hydraulic diameter of 0.409 mm. In the single channel configuration, four numerical models were investigated namely, 2D thin-wall, 3D thin-wall (heated from the bottom), 3D thin-wall (three side heated) and 3D full conjugate models. In the multichannel configuration, only 3D full conjugate model was used. The simulation results of the single channel configuration were validated using experimental data of water as a test fluid while the results of the multichannel configuration were validated using experimental data of R134a refrigerant. In the multichannel configuration, flow distribution among the channels was also investigated. The 3D thin-wall model simulation was conducted at thermal boundary conditions similar to those assumed in the experimental data reduction (uniform heat flux) and showed excellent agreement with the experimental data. However, the results of the 3D full conjugate model demonstrated that there is a significant conjugate effect and the heat flux is not uniformly distributed along the channel resulting in significant deviation compared to the experimental data (more than 50%). Also, the results demonstrated that there is a significant difference between the 3D thin-wall and full conjugate models. The simulation of the multichannel configuration with an inlet manifold having gradual decrease in cross sectional area achieved very reasonable uniform flow distribution among the channels which will provide uniform heat transfer rates across the base of the microchannels.
Psyplot: Visualizing rectangular and triangular Climate Model Data with Python
Sommer, Philipp
2016-04-01
The development and use of climate models often requires the visualization of geo-referenced data. Creating visualizations should be fast, attractive, flexible, easily applicable and easily reproducible. There is a wide range of software tools available for visualizing raster data, but they often are inaccessible to many users (e.g. because they are difficult to use in a script or have low flexibility). In order to facilitate easy visualization of geo-referenced data, we developed a new framework called "psyplot," which can aid earth system scientists with their daily work. It is purely written in the programming language Python and primarily built upon the python packages matplotlib, cartopy and xray. The package can visualize data stored on the hard disk (e.g. NetCDF, GeoTIFF, any other file format supported by the xray package), or directly from the memory or Climate Data Operators (CDOs). Furthermore, data can be visualized on a rectangular grid (following or not following the CF Conventions) and on a triangular grid (following the CF or UGRID Conventions). Psyplot visualizes 2D scalar and vector fields, enabling the user to easily manage and format multiple plots at the same time, and to export the plots into all common picture formats and movies covered by the matplotlib package. The package can currently be used in an interactive python session or in python scripts, and will soon be developed for use with a graphical user interface (GUI). Finally, the psyplot framework enables flexible configuration, allows easy integration into other scripts that uses matplotlib, and provides a flexible foundation for further development.
Krylenko, Inna; Belikov, Vitaly; Zavadskii, Aleksander; Borisova, Natalya; Golovlyov, Pavel; Rumyantsev, Alexey
2017-04-01
City Yakutsk (administrative, culture and industrial center of the North East of Russia) situated on the left bank of large Russian river Lena last decades has faced with many problems, concerning intensive channel processes. Most dramatic among them are sediment accumulation near main water intake structure, supplying city Yakutsk by the drinking water, and deterioration in conditions of the navigation roots to the main city ports. Hydrodynamic modelling has been chosen as the main tool for analyses of the modern tendencies in channel processes and for the evaluation of possible channel improvement measures efficiency. STREAM_2D program complex (authors V. Belikov et al.), which is based on the numerical solution of two-dimensional Saint-Venant equations on a hybrid curvilinear quadrangular and rectangular mesh and take into account sediment transport, was used for the simulations. Detailed field data about water regime of the Lena river, bathymetry of the channels and topography of the floodplains was collected for model developing. Model area has covered 75 km of the Lena river valley including branched channels and wide floodplain from Tabaga to Kangalassy gauge cites. Data of these stations were used for model boundary conditions assigning. Data of gauge station city Yakutsk as well as measured during field campaign water levels and flow velocities was taken into account for model calibration and validation. Results of modelling has demonstrated close correspondence with observed water levels and discharges distribution between channel branches for different hydrological situations. Different combinations of hydrographs of 1, 10, 50% exceedance probability was used as input for modelling of channel deformations. Simulation results has shown that in future 10 years aligning of water discharges distribution between main Lena river branches near Yakutsk is possible, that is a positive tendency from the point of view of water supply of the city. More than 15
Energy Technology Data Exchange (ETDEWEB)
Shaha, Poly Rani; Poddar, Nayan Kumar; Mondal, Rabindra Nath, E-mail: rnmondal71@yahoo.com [Department of Mathematics, Jagannath University, Dhaka-1100 (Bangladesh); Rudro, Sajal Kanti [Department of Mathematics, Notredame Colleage, Motijheel, Dhaka (Bangladesh)
2016-07-12
The study of flows through coiled ducts and channels has attracted considerable attention not only because of their ample applications in Chemical, Mechanical, Civil, Nuclear and Biomechanical engineering but also because of their ample applications in other areas, such as blood flow in the veins and arteries of human and other animals. In this paper, a numerical study is presented for the fully developed two-dimensional flow of viscous incompressible fluid through a loosely coiled rectangular duct of large aspect ratio. Numerical calculations are carried out by using a spectral method, and covering a wide range of the Dean number, Dn, for two types of curvatures of the duct. The main concern of the present study is to find out effects of curvature as well as formation of secondary vortices on unsteady solutions whether the unsteady flow is steady-state, periodic, multi-periodic or chaotic, if Dn is increased. Time evolution calculations as well as their phase spaces are performed with a view to study the non-linear behavior of the unsteady solutions, and it is found that the steady-state flow turns into chaotic flow through various flow instabilities, if Dn is increased no matter what the curvature is. It is found that the unsteady flow is a steady-state solution for small Dn’s and oscillates periodically or non-periodically (chaotic) between two- and twelve-vortex solutions, if Dn is increased. It is also found that the chaotic solution is weak for small Dn’s but strong as Dn becomes large. Axial flow distribution is also investigated and shown in contour plots.
International Nuclear Information System (INIS)
Shaha, Poly Rani; Poddar, Nayan Kumar; Mondal, Rabindra Nath; Rudro, Sajal Kanti
2016-01-01
The study of flows through coiled ducts and channels has attracted considerable attention not only because of their ample applications in Chemical, Mechanical, Civil, Nuclear and Biomechanical engineering but also because of their ample applications in other areas, such as blood flow in the veins and arteries of human and other animals. In this paper, a numerical study is presented for the fully developed two-dimensional flow of viscous incompressible fluid through a loosely coiled rectangular duct of large aspect ratio. Numerical calculations are carried out by using a spectral method, and covering a wide range of the Dean number, Dn, for two types of curvatures of the duct. The main concern of the present study is to find out effects of curvature as well as formation of secondary vortices on unsteady solutions whether the unsteady flow is steady-state, periodic, multi-periodic or chaotic, if Dn is increased. Time evolution calculations as well as their phase spaces are performed with a view to study the non-linear behavior of the unsteady solutions, and it is found that the steady-state flow turns into chaotic flow through various flow instabilities, if Dn is increased no matter what the curvature is. It is found that the unsteady flow is a steady-state solution for small Dn’s and oscillates periodically or non-periodically (chaotic) between two- and twelve-vortex solutions, if Dn is increased. It is also found that the chaotic solution is weak for small Dn’s but strong as Dn becomes large. Axial flow distribution is also investigated and shown in contour plots.
Joining of Aluminium Alloy Sheets by Rectangular Mechanical Clinching
International Nuclear Information System (INIS)
Abe, Y.; Mori, K.; Kato, T.
2011-01-01
A mechanical clinching has the advantage of low running costs. However, the joint strength is not high. To improve the maximum load of the joined sheets by a mechanical clinching, square and rectangular mechanical clinching were introduced. In the mechanical clinching, the two sheets are mechanically joined by forming an interlock between the lower and upper sheets by the punch and die. The joined length with the interlock was increased by the rectangular punch and die. The deforming behaviours of the sheets in the mechanical clinching were investigated, and then the interlock in the sheets had distribution in the circumference of the projection. Although the interlocks were formed in both projection side and diagonal, the interlock in the diagonal was smaller because of the long contact length between the lower sheet and the die cavity surface. The maximum load of the joined sheets by the rectangular mechanical clinching was two times larger than the load by the round mechanical clinching.
A two-component NZRI metamaterial based rectangular cloak
Directory of Open Access Journals (Sweden)
Sikder Sunbeam Islam
2015-10-01
Full Text Available A new two-component, near zero refractive index (NZRI metamaterial is presented for electromagnetic rectangular cloaking operation in the microwave range. In the basic design a pi-shaped, metamaterial was developed and its characteristics were investigated for the two major axes (x and z-axis wave propagation through the material. For the z-axis wave propagation, it shows more than 2 GHz bandwidth and for the x-axis wave propagation; it exhibits more than 1 GHz bandwidth of NZRI property. The metamaterial was then utilized in designing a rectangular cloak where a metal cylinder was cloaked perfectly in the C-band area of microwave regime. The experimental result was provided for the metamaterial and the cloak and these results were compared with the simulated results. This is a novel and promising design for its two-component NZRI characteristics and rectangular cloaking operation in the electromagnetic paradigm.
Errors generated with the use of rectangular collimation
International Nuclear Information System (INIS)
Parks, E.T.
1991-01-01
This study was designed to determine whether various techniques for achieving rectangular collimation generate different numbers and types of errors and remakes and to determine whether operator skill level influences errors and remakes. Eighteen students exposed full-mouth series of radiographs on manikins with the use of six techniques. The students were grouped according to skill level. The radiographs were evaluated for errors and remakes resulting from errors in the following categories: cone cutting, vertical angulation, and film placement. Significant differences were found among the techniques in cone cutting errors and remakes, vertical angulation errors and remakes, and total errors and remakes. Operator skill did not appear to influence the number or types of errors or remakes generated. Rectangular collimation techniques produced more errors than did the round collimation techniques. However, only one rectangular collimation technique generated significantly more remakes than the other techniques
Two-Channel Dielectric Wake Field Accelerator
International Nuclear Information System (INIS)
Hirshfield, Jay L.
2012-01-01
Experimental results are reported for test beam acceleration and deflection in a two-channel, cm-scale, rectangular dielectric-lined wakefield accelerator structure energized by a 14-MeV drive beam. The dominant waveguide mode of the structure is at ∼30 GHz, and the structure is configured to exhibit a high transformer ratio (∼12:1). Accelerated bunches in the narrow secondary channel of the structure are continuously energized via Cherenkov radiation that is emitted by a drive bunch moving in the wider primary channel. Observed energy gains and losses, transverse deflections, and changes in the test bunch charge distribution compare favorably with predictions of theory.
Sadeghi, Arman
2018-03-01
Modeling of fluid flow in polyelectrolyte layer (PEL)-grafted microchannels is challenging due to their two-layer nature. Hence, the pertinent studies are limited only to circular and slit geometries for which matching the solutions for inside and outside the PEL is simple. In this paper, a simple variational-based approach is presented for the modeling of fully developed electroosmotic flow in PEL-grafted microchannels by which the whole fluidic area is considered as a single porous medium of variable properties. The model is capable of being applied to microchannels of a complex cross-sectional area. As an application of the method, it is applied to a rectangular microchannel of uniform PEL properties. It is shown that modeling a rectangular channel as a slit may lead to considerable overestimation of the mean velocity especially when both the PEL and electric double layer (EDL) are thick. It is also demonstrated that the mean velocity is an increasing function of the fixed charge density and PEL thickness and a decreasing function of the EDL thickness and PEL friction coefficient. The influence of the PEL thickness on the mean velocity, however, vanishes when both the PEL thickness and friction coefficient are sufficiently high.
Energy Technology Data Exchange (ETDEWEB)
Kim, Sin-Yeob; Shin, Dong-Ho; Park, Goon-Cherl; Cho, Hyoung Kyu [Seoul National Univ., Seoul (Korea, Republic of); Kim, Chan-Soo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2016-10-15
VHTR being developed at Korea Atomic Energy Research Institute adopts an air-cooled Reactor Cavity Cooling System (RCCS) incorporating rectangular riser channels to remove the afterheat emitted from the reactor vessel. Because the performance of RCCS is determined by heat removal rate through the RCCS riser, it is important to understand the heat transfer phenomena in the RCCS riser to ensure the safety of the reactor. In the mixed convection, due to the buoyance force induced by temperature and density differences, local flow structure and heat transfer mode near the heated wall have significantly dissimilar characteristics from both forced convection and free convection. In this study, benchmark calculation was conducted to reproduce the previous statements that V2F turbulence model can capture the mixed convection phenomena with the Shehata's experimental data. Then, the necessity of the model validation for the mixed convection phenomena was confirmed with the CFD analyses for the geometry of the prototype RCCS riser. For the purpose of validating the turbulence models for mixed convection phenomena in the heated rectangular riser duct, validation plan with three experimental tests was introduced. Among them, the flow visualization test facility with preserved cross-section geometry was introduced and a preliminary test result was shown.
An analytical solution for Dean flow in curved ducts with rectangular cross section
Norouzi, M.; Biglari, N.
2013-05-01
In this paper, a full analytical solution for incompressible flow inside the curved ducts with rectangular cross-section is presented for the first time. The perturbation method is applied to solve the governing equations and curvature ratio is considered as the perturbation parameter. The previous perturbation solutions are usually restricted to the flow in curved circular or annular pipes related to the overly complex form of solutions or singularity situation for flow in curved ducts with non-circular shapes of cross section. This issue specifies the importance of analytical studies in the field of Dean flow inside the non-circular ducts. In this study, the main flow velocity, stream function of lateral velocities (secondary flows), and flow resistance ratio in rectangular curved ducts are obtained analytically. The effect of duct curvature and aspect ratio on flow field is investigated as well. Moreover, it is important to mention that the current analytical solution is able to simulate the Taylor-Görtler and Dean vortices (vortices in stable and unstable situations) in curved channels.
Nonlinear Mechanics of MEMS Rectangular Microplates under Electrostatic Actuation
Saghir, Shahid
2016-12-01
The first objective of the dissertation is to develop a suitable reduced order model capable of investigating the nonlinear mechanical behavior of von-Karman plates under electrostatic actuation. The second objective is to investigate the nonlinear static and dynamic behavior of rectangular microplates under small and large actuating forces. In the first part, we present and compare various approaches to develop reduced order models for the nonlinear von-Karman rectangular microplates actuated by nonlinear electrostatic forces. The reduced-order models aim to investigate the static and dynamic behavior of the plate under small and large actuation forces. A fully clamped microplate is considered. Different types of basis functions are used in conjunction with the Galerkin method to discretize the governing equations. First we investigate the convergence with the number of modes retained in the model. Then for validation purpose, a comparison of the static results is made with the results calculated by a nonlinear finite element model. The linear eigenvalue problem for the plate under the electrostatic force is solved for a wide range of voltages up to pull-in. In the second part, we present an investigation of the static and dynamic behavior of a fully clamped microplate. We investigate the effect of different non-dimensional design parameters on the static response. The forced-vibration response of the plate is then investigated when the plate is excited by a harmonic AC load superimposed to a DC load. The dynamic behavior is examined near the primary and secondary (superharmonic and subharmonic) resonances. The microplate shows a strong hardening behavior due to the cubic nonlinearity of midplane stretching. However, the behavior switches to softening as the DC load is increased. Next, near-square plates are studied to understand the effect of geometric imperfections of microplates. In the final part of the dissertation, we investigate the mechanical behavior of
Natural Vibration Analysis of Clamped Rectangular Orthotropic Plates
dalaei, m.; kerr, a. d.
The natural vibrations of clamped rectangular orthotropic plates are analyzed using the extended Kantorovich method. The developed iterative scheme converges very rapidly to the final result. The obtained natural frequencies are evaluated for a square plate made of Kevlar 49 Epoxy and the obtained results are compared with those published by Kanazawa and Kawai, and by Leissa. The agreement was found to be very close. As there are no exact analytical solutions for clamped rectangular plates, the generated closed form expression for the natural modes, and the corresponding natural frequencies, are very suitable for use in engineering analyses.
Perron-Frobenius Theorem for Rectangular Tensors and Directed Hypergraphs
Lu, Linyuan; Yang, Arthur L. B.; Zhao, James J. Y.
2018-01-01
For any positive integers $r$, $s$, $m$, $n$, an $(r,s)$-order $(n,m)$-dimensional rectangular tensor ${\\cal A}=(a_{i_1\\cdots i_r}^{j_1\\cdots j_s}) \\in ({\\mathbb R}^n)^r\\times ({\\mathbb R}^m)^s$ is called partially symmetric if it is invariant under any permutation on the lower $r$ indexes and any permutation on the upper $s$ indexes. Such partially symmetric rectangular tensor arises naturally in studying directed hypergraphs. Ling and Qi [Front. Math. China, 2013] first studied the $(p,q)$-...
A new metamaterial-based wideband rectangular invisibility cloak
Islam, S. S.; Hasan, M. M.; Faruque, M. R. I.
2018-02-01
A new metamaterial-based wideband electromagnetic rectangular cloak is being introduced in this study. The metamaterial unit cell shows sharp transmittances in the C- and X-bands and displays wideband negative effective permittivity region there. The metamaterial unit cell was then applied in designing a rectangular-shaped electromagnetic cloak. The scattering reduction technique was adopted for the cloaking operation. The cloak operates in the certain portion of C-and X-bands that covers more than 4 GHz bandwidth region. The experimental results were provided as well for the metamaterial and the cloak.
Directory of Open Access Journals (Sweden)
Abderraouf Messai
2013-01-01
Full Text Available A rigorous full-wave analysis of high Tc superconducting rectangular microstrip patch over ground plane with rectangular aperture in the case where the patch is printed on a uniaxially anisotropic substrate material is presented. The dyadic Green’s functions of the considered structure are efficiently determined in the vector Fourier transform domain. The effect of the superconductivity of the patch is taken into account using the concept of the complex resistive boundary condition. The accuracy of the analysis is tested by comparing the computed results with measurements and previously published data for several anisotropic substrate materials. Numerical results showing variation of the resonant frequency and the quality factor of the superconducting antenna with regard to operating temperature are given. Finally, the effects of uniaxial anisotropy in the substrate on the resonant frequencies of different TM modes of the superconducting microstrip antenna with rectangular aperture in the ground plane are presented.
Analysis of Rectangular Microstrip Antennas with Air Substrates ...
African Journals Online (AJOL)
This paper presents an analysis of rectangular microstrip antennas with air substrates. The effect of the substrate thickness on the bandwidth and the efficiency are examined. An additional thin layer supporting the dielectric material is added to the air substrate in order to make the antenna mechanically rigid and easy to ...
Graphene-based tunable terahertz filter with rectangular ring ...
Indian Academy of Sciences (India)
A plasmonic band-pass filter based on graphene rectangular ring resonator with double narrow gaps is proposed and numerically investigated by finite-difference time-domain (FDTD) simulations. For the filter with or without gaps, the resonant frequencies can be effectively adjusted by changing the width of the graphene ...
Plasma-ﬁlled rippled wall rectangular backward wave oscillator
Indian Academy of Sciences (India)
Performance of the backward wave oscillator (BWO) is greatly enhanced with the introduction of plasma. Linear theory of the dispersion relation and the growth rate have been derived and analysed numerically for plasma-ﬁlled rippled wall rectangular waveguide driven by sheet electron beam. To see the effect of plasma ...
Internal flow characteristics of a rectangular ramjet air intake
Moerel, J.-L.; Veraar, R.G.; Halswijk, W.H.C.; Pimentel, R.; Corriveau, D.; Hamel, N.; Lesage, F.; Vos, J.B.
2009-01-01
Two research institutes TNO Defence, Security and Safety and DRDC-Valcartier have worked together on the improvement of modeling and simulation tools for the functioning of supersonic air intakes for realistic ramjet engines of tactical missiles. The emphasis laid on complex rectangular intake
The problem of isotropic rectangular plate with four clamped edges
Indian Academy of Sciences (India)
of rectangular plates has been a subject of study in solid mechanics for more than a cen- .... loading is solved first, giving the deflection function for the strip case and .... The authors gratefully acknowledge the advice and encouragement of ...
FDTD Analysis of U-Slot Rectangular Patch Antenna
Luk, K. M.; Tong, K. F.; Shum, S. M.; Lee, K. F.; Lee, R. Q.
1997-01-01
The U-slot rectangular patch antenna (Figure I) has been found experimentally to provide impedance and gain bandwidths of about 300 without the need of stacked or coplanar parasitic elements [1,2]. In this paper, simulation results of the U-slot patch using FDTD analysis are presented. Comparison with measured results are given.
Graphene-based tunable terahertz filter with rectangular ring ...
Indian Academy of Sciences (India)
WEI SU
2017-08-16
Aug 16, 2017 ... Abstract. A plasmonic band-pass filter based on graphene rectangular ring resonator with double narrow gaps is proposed and numerically investigated by finite-difference time-domain (FDTD) simulations. For the filter with or without gaps, the resonant frequencies can be effectively adjusted by changing ...
Optical vortex propagation in few-mode rectangular polymer waveguides
DEFF Research Database (Denmark)
Lyubopytov, Vladimir S.; Chipouline, Arkadi; Zywietz, Urs
2017-01-01
We demonstrate that rectangular few-mode dielectric waveguides, fabricated with standard lithographic technique, can support on-chip propagation of optical vortices. We show that specific superpositions of waveguide eigenmodes form quasi-degenerate modes carrying light with high purity states...
Shielding calculations for changing from circular to a Rectangular ...
African Journals Online (AJOL)
The Radiation Technology Centre (RTC) of the Ghana Atomic Energy Commission operates a 1.85 PBq Co-60 gamma irradiator for research, food preservation and medical sterilization. It has become necessary to improve the do-se rate delivered by changing the circular arrangement of sources to a rectangular one.
Hydraulics of free overfall in -shaped channels
Indian Academy of Sciences (India)
R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22
analysing free overfall in -shaped channels is also presented where the flow over .... Experiments were conducted in two different horizontally laid -shaped .... c. 1 − ˆhc. [. 1. (2 − ˆhe)ˆhe. −. 1. (2 − ˆhc)ˆhc. ] . (20) where c refers to a critical state of .... Ferro V 1992 Flow measurement with rectangular free overfall. J. Irrig. Drain.
Flow dynamics and concentration polarisation in spacer-filled channels
DEFF Research Database (Denmark)
Lipnizki, Jens; Jonsson, Gunnar Eigil
2002-01-01
The key to developing highly efficient spiral-wound modules is the improvement of the mass transfer mechanisms. In this study a study of the mass transfer has been carried out using a flat test cell with six permeate outlets and a rectangular feed channel. Using this experimental set-up, it has b...
Discharge Coefficient of Rectangular Short-Crested Weir with Varying Slope Coefficients
Directory of Open Access Journals (Sweden)
Yuejun Chen
2018-02-01
Full Text Available Rectangular short-crested weirs are widely used for simple structure and high discharge capacity. As one of the most important and influential factors of discharge capacity, side slope can improve the hydraulic characteristics of weirs at special conditions. In order to systemically study the effects of upstream and downstream slope coefficients S1 and S2 on overflow discharge coefficient in a rectangular short-crested weir the Volume of Fluid (VOF method and the Renormalization Group (RNG κ-ε turbulence model are used. In this study, the slope coefficient ranges from V to 3H:1V and each model corresponds to five total energy heads of H0 ranging from 8.0 to 24.0 cm. Comparisons of discharge coefficients and free surface profiles between simulated and laboratory results display a good agreement. The simulated results show that the difference of discharge coefficients will decrease with upstream slopes and increase with downstream slopes as H0 increases. For a given H0, the discharge coefficient has a convex parabolic relation with S1 and a piecewise linearity relation with S2. The maximum discharge coefficient is always obtained at S2 = 0.8. There exists a difference between upstream and downstream slope coefficients in the influence range of free surface curvatures. Furthermore, a proposed discharge coefficient equation by nonlinear regression is a function of upstream and downstream slope coefficients.
Study on density wave oscillation in parallel channel by section form
International Nuclear Information System (INIS)
Huang Jun; Huang Yanping; Wang Yanlin
2013-01-01
Based on 170 density wave oscillation experimental data from parallel round tube and narrow rectangular channel, the experiment method, identification method of oscillation and analysis method of experimental data have be uniformed, and the oscillation boundary of round tube and narrow rectangular channel have be analyzed. The investigation results show that the oscillation boundary is not affected by the channel section forms with identical equivalent diameter with pressure l.0∼19.2 MPa, mass flux 101.9∼1200.0 kg·m-2·s -1 and inlet sub cooling 18.0∼85.2℃. (authors)
Coevolution of bed surface patchiness and channel morphology: 2. Numerical experiments
Nelson, Peter A.; McDonald, Richard R.; Nelson, Jonathan M.; Dietrich, William E.
2015-01-01
In gravel bed rivers, bed topography and the bed surface grain size distribution evolve simultaneously, but it is not clear how feedbacks between topography and grain sorting affect channel morphology. In this, the second of a pair of papers examining interactions between bed topography and bed surface sorting in gravel bed rivers, we use a two-dimensional morphodynamic model to perform numerical experiments designed to explore the coevolution of both free and forced bars and bed surface patches. Model runs were carried out on a computational grid simulating a 200 m long, 2.75 m wide, straight, rectangular channel, with an initially flat bed at a slope of 0.0137. Over five numerical experiments, we varied (a) whether an obstruction was present, (b) whether the sediment was a gravel mixture or a single size, and (c) whether the bed surface grain size feeds back on the hydraulic roughness field. Experiments with channel obstructions developed a train of alternate bars that became stationary and were connected to the obstruction. Freely migrating alternate bars formed in the experiments without channel obstructions. Simulations incorporating roughness feedbacks between the bed surface and flow field produced flatter, broader, and longer bars than simulations using constant roughness or uniform sediment. Our findings suggest that patches are not simply a by-product of bed topography, but they interact with the evolving bed and influence morphologic evolution.
Flow Through a Rectangular-to-Semiannular Diffusing Transition Duct
Foster, Jeff; Wendt, Bruce J.; Reichert, Bruce A.; Okiishi, Theodore H.
1997-01-01
Rectangular-to-semiannular diffusing transition ducts are critical inlet components on supersonic airplanes having bifucated engine inlets. This paper documents measured details of the flow through a rectangular-to-semiannular transition duct having an expansion area ratio of 1.53. Three-dimensional velocity vectors and total pressures at the exit plane of the diffuser are presented. Surface oil-flow visualization and surface static pressure data are shown. The tests were conducted with an inlet Mach number of 0.786 and a Reynolds number based on the inlet centerline velocity and exit diameter of 3.2 x 10(exp 6). The measured data are compared with previously published computational results. The ability of vortex generators to reduce circumferential total pressure distortion is demonstrated.
On the prestressing and deformation of rectangular particle detector frames
International Nuclear Information System (INIS)
Margulies, S.
1978-01-01
Particle detectors such as spark chambers and multiwire proportional chambers (MWPC) generally contain planar electrodes stretched across rectangular frames. For detectors of reasonable size, this can result in fairly large forces acting on the frames. To maintain the electrode planes under uniform tension and to prevent sagging, the frames must be prestressed. This paper contains a detailed examination of the deformation of rectangular frames under stress. A simple model for this phenomenon is presented. The model consists of treating each side of the frame as an elastic beam subject to the condition that the sides remain perpendicular at the corners. The predictions of the model are in good agreement with measured deflections of a MWPC frame. The model is used to determine the optimum value of a single concentrated prestressing force F to best approximate the total distributed force W of a uniformly tensed electrode plane. For most geometries it is found that F is about 62% of W. (Auth.)
Free vibration analysis of rectangular plates with central cutout
Directory of Open Access Journals (Sweden)
Kanak Kalita
2016-12-01
Full Text Available A nine-node isoparametric plate element in conjunction with first-order shear deformation theory is used for free vibration analysis of rectangular plates with central cutouts. Both thick and thin plate problems are solved for various aspect ratios and boundary conditions. In this article, primary focus is given to the effect of rotary inertia on natural frequencies of perforated rectangular plates. It is found that rotary inertia has significant effect on thick plates, while for thin plates the rotary inertia term can be ignored. It is seen that the numerical convergence is very rapid and based on comparison with experimental and analytical data from literature, it is proposed that the present formulation is capable of yielding highly accurate results. Finally, some new numerical solutions are provided here, which may serve as benchmark for future research on similar problems.
Relativistic energy-dispersion relations of 2D rectangular lattices
Ata, Engin; Demirhan, Doğan; Büyükkılıç, Fevzi
2017-04-01
An exactly solvable relativistic approach based on inseparable periodic well potentials is developed to obtain energy-dispersion relations of spin states of a single-electron in two-dimensional (2D) rectangular lattices. Commutation of axes transfer matrices is exploited to find energy dependencies of the wave vector components. From the trace of the lattice transfer matrix, energy-dispersion relations of conductance and valence states are obtained in transcendental form. Graphical solutions of relativistic and nonrelativistic transcendental energy-dispersion relations are plotted to compare how lattice parameters V0, core and interstitial size of the rectangular lattice affects to the energy-band structures in a situation core and interstitial diagonals are of equal slope.
Are Haar-like Rectangular Features for Biometric Recognition Reducible?
DEFF Research Database (Denmark)
Nasrollahi, Kamal; Moeslund, Thomas B.
2013-01-01
Biometric recognition is still a very difficult task in real-world scenarios wherein unforeseen changes in degradations factors like noise, occlusion, blurriness and illumination can drastically affect the extracted features from the biometric signals. Very recently Haar-like rectangular features...... which have usually been used for object detection were introduced for biometric recognition resulting in systems that are robust against most of the mentioned degradations [9]. The problem with these features is that one can define many different such features for a given biometric signal...... and it is not clear whether all of these features are required for the actual recognition or not. This is exactly what we are dealing with in this paper: How can an initial set of Haar-like rectangular features, that have been used for biometric recognition, be reduced to a set of most influential features...
A Novel Dual-Band Circularly Polarized Rectangular Slot Antenna
Directory of Open Access Journals (Sweden)
Biao Li
2016-01-01
Full Text Available A coplanar waveguide fed dual-band circularly polarized rectangular slot antenna is presented. The proposed antenna consists of a rectangular metal frame acting as a ground and an S-shaped monopole as a radiator. The spatial distribution of the surface current density is employed to demonstrate that the circular polarization is generated by the S-shaped monopole which controls the path of the surface currents. An antenna prototype, having overall dimension 37 × 37 × 1 mm3, has been fabricated on FR4 substrate with dielectric constant 4.4. The proposed antenna achieves 10 dB return loss bandwidths and 3 dB axial ratio (AR in the frequency bands 2.39–2.81 GHz and 5.42–5.92 GHz, respectively. Both these characteristics are suitable for WLAN and WiMAX applications.
INTERACTION OF LIQUID FLAT SCREENS WITH GAS FLOW RESTRICTED BY CHANNEL WALLS
Directory of Open Access Journals (Sweden)
S. T. Aksentiev
2005-01-01
Full Text Available The paper gives description of physical pattern of liquid screen interaction that are injected from the internal walls of a rectangular channel with gas flow. Criterion dependences for determination of intersection coordinates of external boundaries with longitudinal channel axis and factor of liquid screen head resistance.
New model for burnout prediction in channels of various cross-section
Energy Technology Data Exchange (ETDEWEB)
Bobkov, V.P.; Kozina, N.V.; Vinogrado, V.N.; Zyatnina, O.A. [Institute of Physics and Power Engineering, Kaluga (Russian Federation)
1995-09-01
The model developed to predict a critical heat flux (CHF) in various channels is presented together with the results of data analysis. A model is the realization of relative method of CHF describing based on the data for round tube and on the system of correction factors. The results of data description presented here are for rectangular and triangular channels, annuli and rod bundles.
Effects of free-surface on design charts for open channels
African Journals Online (AJOL)
2011-12-14
Dec 14, 2011 ... Normal depth is an important parameter for the design of channels and canals. For rectangular, trapezoidal, and circular channel sections it is possible to express normal depth by a trial-and-error procedure or analytically. However, the effects of free-surface on the design charts for determination of the ...
Postbuckling Analysis Of A Rectangular Plate Loaded In Compression
Directory of Open Access Journals (Sweden)
Havran Jozef
2015-12-01
Full Text Available The stability analysis of a thin rectangular plate loaded in compression is presented. The nonlinear FEM equations are derived from the minimum total potential energy principle. The peculiarities of the effects of the initial imperfections are investigated using the user program. Special attention is paid to the influence of imperfections on the post-critical buckling mode. The FEM computer program using a 48 DOF element has been used for analysis. Full Newton-Raphson procedure has been applied.
Bandwidth Study of the Microwave Reflectors with Rectangular Corrugations
Zhang, Liang; He, Wenlong; Donaldson, Craig R.; Cross, Adrian W.
2016-09-01
The mode-selective microwave reflector with periodic rectangular corrugations in the inner surface of a circular metallic waveguide is studied in this paper. The relations between the bandwidth and reflection coefficient for different numbers of corrugation sections were studied through a global optimization method. Two types of reflectors were investigated. One does not consider the phase response and the other does. Both types of broadband reflectors operating at W-band were machined and measured to verify the numerical simulations.
Thermal stresses in rectangular plates: variational and finite element solutions
International Nuclear Information System (INIS)
Laura, P.A.A.; Gutierrez, R.H.; Sanchez Sarmiento, G.; Basombrio, F.G.
1978-01-01
This paper deals with the development of an approximate method for the analysis of thermal stresses in rectangular plates (plane stress problem) and an evaluation of the relative accuracy of the finite element method. The stress function is expanded in terms of polynomial coordinate functions which identically satisfy the boundary conditions, and a variational approach is used to determine the expansion coefficients. The results are in good agreement with a finite element approach. (Auth.)
Diffusion of heat from a finite, rectangular, plane heat source
International Nuclear Information System (INIS)
Ferreri, J.C.; Caballero, C.H.
1985-01-01
Non-dimensional results for the temperature field originating in a rectangular, finite, plane heat source with infinitesimal thickness are introduced. The source decays in time, zero decay being a particular case. Results are useful for obtaining an aproximation of the maximum temperature of a system holding an internal heat source. The range selected for the parameters is specially useful in the case of a nuclear waste repository. The application to the case of mass diffussion arises from analogy. (Author) [es
Basic study on the rectangular numeric keys for touch screen.
Harada, H; Katsuura, T; Kikuchi, Y
1997-06-01
The present study was conducted to examine the optimum inter-key spacing of numeric rectangular keys for touch screens. Six male students (22-25 years old) and three female students (21-24 years old) participated in the experiment. Each subject performed the data entry task using rectangular keys of touch devices. These keys were arranged in both horizontal and vertical layouts. The sizes of the rectangular keys in both layouts were 12 x 21 mm and 15 x 39 mm, and each of the inter-key spacing of each key was 0, 3, 6, 12 and 21 mm. The response time with inter-key spacing of 3 mm was significantly faster than with the inter-key spacing of 0, 12 and 21 mm (p < 0.05). Keys of vertical position produced faster response time than that of horizontal position. The subjective ratings showed that the inter-key spacing of 6 mm was significantly better than the inter-key spacing of 0, 3, 12 and 21 mm (p < 0.05).
Rectangular superpolynomials for the figure-eight knot 41
Kononov, Ya. A.; Morozov, A. Yu.
2017-11-01
We rewrite the recently proposed differential expansion formula for HOMFLY polynomials of the knot 41 in an arbitrary rectangular representation R = [rs] as a sum over all Young subdiagrams λ of R with surprisingly simple coefficients of the Z factors. Intriguingly, these coefficients are constructed from the quantum dimensions of symmetric representations of the groups SL(r) and SL(s) and restrict the summation to diagrams with no more than s rows and r columns. Moreover, the β-deformation to Macdonald dimensions yields polynomials with positive integer coefficients, which are plausible candidates for the role of superpolynomials for rectangular representations. Both the polynomiality and the positivity of the coefficients are nonobvious, nevertheless true. This generalizes the previously known formulas for symmetric representations to arbitrary rectangular representations. The differential expansion allows introducing additional gradings. For the trefoil knot 31, to which our results for the knot 41 are immediately extended, we obtain the so-called fourth grading of hyperpolynomials. The property of factorization in roots of unity is preserved even in the five-graded case.
Research on applications of rectangular beam in micro laser propulsion
International Nuclear Information System (INIS)
Jiao, L.; Cai, J.; Ma, H.H.; Li, G.X.; Li, L.; Shen, Z.W.; Tang, Z.P.
2014-01-01
Highlights: • Diode laser bar of 808 nm is introduced into the micro laser propulsion field. • Double base propellant (DBP) coating with BOPP substrate was obtained. • The combination of laser power and energy decides the propulsion performance. • The new rectangular beam prefers to produce higher impulse. - Abstract: Micro laser propulsion is a new technology with brilliant future. In order to reduce the thruster mass and volume further, laser bar is introduced into the micro laser propulsion field. A new kind of 220 × 20 μm rectangular beam of 808 nm was obtained by oval lens compressing the light of diode at fast axes and slow axes. The effect of laser power, energy and coating thickness of double base propellant on propulsion performance was studied. Propulsion performance of double base propellant under static and dynamic mode shows some different characters. Compared to round beam, the new beam prefers to produce higher impulse. Ablation efficiency of DBP shows better performance in short laser duration. The combination of power density and energy density decides the laser propulsion performance. The new rectangular beam is appropriate for millisecond micro-laser propulsion
Noise control of subsonic cavity flows using plasma actuated receptive channels
International Nuclear Information System (INIS)
Gupta, Arnob Das; Roy, Subrata
2014-01-01
We introduce a passive receptive rectangular channel at the trailing edge of an open rectangular cavity to reduce the acoustic tones generated due to coherent shear layer impingement. The channel is numerically tested at Mach 0.3 using an unsteady three-dimensional large eddy simulation. Results show reduction in pressure fluctuations in the cavity due to which sound pressure levels are suppressed. Two linear dielectric barrier discharge plasma actuators are placed inside the channel to enhance the flow through it. Specifically, acoustic suppression of 7 dB was obtained for Mach 0.3 flow with the plasma actuated channel. Also, the drag coefficient for the cavity reduced by over three folds for the channel and over eight folds for the plasma actuated channel. Such a channel can be useful in noise and drag reduction for various applications, including weapons bay, landing gear and branched piping systems. (fast track communication)
Observation of strong reflection of electron waves exiting a ballistic channel at low energy
Energy Technology Data Exchange (ETDEWEB)
Vaz, Canute I.; Campbell, Jason P.; Ryan, Jason T.; Gundlach, David; Cheung, Kin. P., E-mail: Kin.Cheung@NIST.gov [National Institute of Standards and Technology, Gaithersburg, MD 20899-8120 (United States); Liu, Changze [National Institute of Standards and Technology, Gaithersburg, MD 20899-8120 (United States); Institute of Microelectronics, Peking University, Beijing 100871 (China); Southwick, Richard G. [National Institute of Standards and Technology, Gaithersburg, MD 20899-8120 (United States); IBM Research, Albany, NY 12205 (United States); Oates, Anthony S. [Taiwan Semiconductor Manufacturing Corporation, Hsinchu 30844, Taiwan (China); Huang, Ru [Institute of Microelectronics, Peking University, Beijing 100871 (China)
2016-06-15
Wave scattering by a potential step is a ubiquitous concept. Thus, it is surprising that theoretical treatments of ballistic transport in nanoscale devices, from quantum point contacts to ballistic transistors, assume no reflection even when the potential step is encountered upon exiting the device. Experiments so far seem to support this even if it is not clear why. Here we report clear evidence of coherent reflection when electron wave exits the channel of a nanoscale transistor and when the electron energy is low. The observed behavior is well described by a simple rectangular potential barrier model which the Schrodinger’s equation can be solved exactly. We can explain why reflection is not observed in most situations but cannot be ignored in some important situations. Our experiment also represents a direct measurement of electron injection velocity - a critical quantity in nanoscale transistors that is widely considered not measurable.
International Nuclear Information System (INIS)
Gobbur, S.G.
1983-01-01
It is well understood that due to the wide band noise present in a nuclear analog-to-digital converter, events at the boundaries of adjacent channels are shared. It is a difficult and laborious process to exactly find out the shape of the channels at the boundaries. A simple scheme has been developed for the direct display of channel shape of any type of ADC on a cathode ray oscilliscope display. This has been accomplished by sequentially incrementing the reference voltage of a precision pulse generator by a fraction of a channel and storing ADC data in alternative memory locations of a multichannel pulse height analyser. Alternative channels are needed due to the sharing at the boundaries of channels. In the flat region of the profile alternate memory locations are channels with zero counts and channels with the full scale counts. At the boundaries all memory locations will have counts. The shape of this is a direct display of the channel boundaries. (orig.)
Harmonic Suppressed Slot Antennas Using Rectangular/Circular Defected Ground Structures
Directory of Open Access Journals (Sweden)
Mohammad Saeid Ghaffarian
2012-01-01
Full Text Available Two wide rectangle-shaped microstrip-fed 2.6-GHz slot antennas using defected ground structures (DGSs with a low design complexity are proposed to achieve wideband harmonic suppression. To accomplish this, two rectangular DGSs (RDGSs in the first antenna and two circular DGSs (CDGSs in the second one with various dimensions are etched into the ground plane, which could have a wideband-stop characteristic. Simulated and measured reflection coefficients indicate that the two proposed structures effectively suppress the second and third harmonics up to 23 dB between 3.5 and 10.5 GHz with a maximum ripple of 2.4 dB. In addition, the radiation patterns and peak gains of the antennas can be suppressed at least 17 dB and 7.1 dBi, respectively, at the third harmonic frequency of 7.86 GHz.
A Novel CPW BandPass Filter Integrating Periodic Rectangular Slot Cells
Directory of Open Access Journals (Sweden)
Fouad Aytouna
2015-12-01
Full Text Available In this paper, we introduce the design and the achievement of a Bandpass filter structure based on the use of rectangular slot cell. The originality of this work is to achieve a coplanar filter easy to integrate with microwave planar circuits and having a wide frequency bandwidth. The proposed bandpass filter is a low cost and compact planar filter structure. The final circuit is simulated by using two electromagnetic solvers, ADS and HFSS. The validation into simulation is based on using optimization methods integrated into the both solvers. Simulations have taken into account a high meshing density to cover the whole circuit. The fabricated bandpass filter has an area of 35X31mm2 and having a good insertion loss around -0.75dB in the bandwidth. The comparison between simulation and measurement results presents a good agreement.
Droplet flow along the wall of rectangular channel with gradient of wettability
Kupershtokh, A. L.
2018-03-01
The lattice Boltzmann equations (LBE) method (LBM) is applicable for simulating the multiphysics problems of fluid flows with free boundaries, taking into account the viscosity, surface tension, evaporation and wetting degree of a solid surface. Modeling of the nonstationary motion of a drop of liquid along a solid surface with a variable level of wettability is carried out. For the computer simulation of such a problem, the three-dimensional lattice Boltzmann equations method D3Q19 is used. The LBE method allows us to parallelize the calculations on multiprocessor graphics accelerators using the CUDA programming technology.
Visualization of pre-set vortices in boundary layer flow over wavy surface in rectangular channel
Budiman, Alexander Christantho; Mitsudharmadi, Hatsari; Bouremel, Yann; Winoto, Sonny H.; Low, H. T.
2014-01-01
structures on the cross-sectional plane normal to the wavy surface. To obtain uniform spanwise vortex wavelength which will result in uniform vortex size, two types of spanwise disturbances were used: a series of perturbation wires placed prior and normal
1988-05-01
use of liquid metals for current collectors in homopolar motors and generators has led to the design of machines of superior performance. The steady...In some applications of homopolar generators it becomes necessary not only to start and stop the machines but also to operate them under oscillating...conditions. This could be the case in an application where a homopolar generator behaves as an extremely high energy capacitor. Therefore, one is
Wall Shear Stress Induced by a Large Bubble Rising in an Inclined Rectangular Channel
Czech Academy of Sciences Publication Activity Database
Tihon, Jaroslav; Pěnkavová, Věra; Vejražka, Jiří
2014-01-01
Roč. 67, DEC (2014), s. 76-87 ISSN 0301-9322 R&D Projects: GA ČR(CZ) GAP101/12/0585 Institutional support: RVO:67985858 Keywords : taylor bubble * bubble rise velocity * bubble shape Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.061, year: 2014
Potassium channels in brain mitochondria.
Bednarczyk, Piotr
2009-01-01
Potassium channels are the most widely distributed class of ion channels. These channels are transmembrane proteins known to play important roles in both normal and pathophysiological functions in all cell types. Various potassium channels are recognised as potential therapeutic targets in the treatment of Parkinson's disease, Alzheimer's disease, brain/spinal cord ischaemia and sepsis. In addition to their importance as therapeutic targets, certain potassium channels are known for their beneficial roles in anaesthesia, cardioprotection and neuroprotection. Some types of potassium channels present in the plasma membrane of various cells have been found in the inner mitochondrial membrane as well. Potassium channels have been proposed to regulate mitochondrial membrane potential, respiration, matrix volume and Ca(+) ion homeostasis. It has been proposed that mitochondrial potassium channels mediate ischaemic preconditioning in various tissues. However, the specificity of a pharmacological agents and the mechanisms underlying their effects on ischaemic preconditioning remain controversial. The following potassium channels from various tissues have been identified in the inner mitochondrial membrane: ATP-regulated (mitoK(ATP)) channel, large conductance Ca(2+)-regulated (mitoBK(Ca)) channel, intermediate conductance Ca(2+)-regulated (mitoIK(Ca)) channel, voltage-gated (mitoKv1.3 type) channel, and twin-pore domain (mitoTASK-3) channel. It has been shown that increased potassium flux into brain mitochondria induced by either the mitoK(ATP) channel or mitoBK(Ca) channel affects the beneficial effects on neuronal cell survival under pathological conditions. Recently, differential distribution of mitoBK(Ca) channels has been observed in neuronal mitochondria. These findings may suggest a neuroprotective role for the mitoBK(Ca) channel in specific brain structures. This minireview summarises current data on brain mitochondrial potassium channels and the efforts to identify
International Nuclear Information System (INIS)
Mital, Manu
2013-01-01
Thermal management issues are limiting barriers to high density electronics packaging and miniaturization. Liquid cooling using microchannels is an attractive alternative to bulky aluminum heat sinks. The channels can be integrated directly into a chip, and cooling can be further enhanced using nanofluids. The goals of this study are to evaluate heat transfer improvement of a rectangular channel nanofluid heat sink with developing laminar flow, taking into account the pumping power penalty. The proposed model uses semi-empirical correlations to calculate effective nanofluid thermophysical properties, which are then incorporated into heat transfer and friction factor correlations in literature for single-phase flows. The predictions of the model are found to be in good agreement with experimental studies. The validated model is used to predict the thermal resistance and pumping power as a function of four design variables that include the channel width, the wall width, the flow velocity and the particle volume fraction. The parameters are optimized using a Genetic Algorithm (GA) with minimum thermal resistance as the objective function, and fixed specified value of pumping power as the constraint. For a given value of pumping power, the benefit of nanoparticle addition is evaluated by independently optimizing the heat sink, first with nanofluid, and then with base fluid. Comparing the minimized thermal resistances revealed only a small benefit since the nanoparticles increase the pumping power which can alternately be diverted toward an increased velocity in a pure fluid heat sink. The benefit further diminishes with increase in available pumping power. -- Highlights: ► Validated model used to predict heat transfer and pumping power (p.p.) in nanofluids. ► Genetic algorithm used to minimize thermal resistance with p.p. constraint. ► Heat sink design independently optimized with nanofluid and base fluid coolant. ► No significant benefit through particle
International Nuclear Information System (INIS)
Takashima, Keisuke; Adamovich, Igor V.; Xiong Zhongmin; Kushner, Mark J.; Starikovskaia, Svetlana; Czarnetzki, Uwe; Luggenhoelscher, Dirk
2011-01-01
Fast ionization wave (FIW), nanosecond pulse discharge propagation in nitrogen and helium in a rectangular geometry channel/waveguide is studied experimentally using calibrated capacitive probe measurements. The repetitive nanosecond pulse discharge in the channel was generated using a custom designed pulsed plasma generator (peak voltage 10-40 kV, pulse duration 30-100 ns, and voltage rise time ∼1 kV/ns), generating a sequence of alternating polarity high-voltage pulses at a pulse repetition rate of 20 Hz. Both negative polarity and positive polarity ionization waves have been studied. Ionization wave speed, as well as time-resolved potential distributions and axial electric field distributions in the propagating discharge are inferred from the capacitive probe data. ICCD images show that at the present conditions the FIW discharge in helium is diffuse and volume-filling, while in nitrogen the discharge propagates along the walls of the channel. FIW discharge propagation has been analyzed numerically using quasi-one-dimensional and two-dimensional kinetic models in a hydrodynamic (drift-diffusion), local ionization approximation. The wave speed and the electric field distribution in the wave front predicted by the model are in good agreement with the experimental results. A self-similar analytic solution of the fast ionization wave propagation equations has also been obtained. The analytic model of the FIW discharge predicts key ionization wave parameters, such as wave speed, peak electric field in the front, potential difference across the wave, and electron density as functions of the waveform on the high voltage electrode, in good agreement with the numerical calculations and the experimental results.
Investigation of imaging properties for submillimeter rectangular pinholes
Energy Technology Data Exchange (ETDEWEB)
Xia, Dan, E-mail: dxia@uchicago.edu [The Department of Radiology, The University of Chicago, Chicago, Illinois 60637 (United States); Moore, Stephen C., E-mail: scmoore@bwh.harvard.edu, E-mail: miaepark@bwh.harvard.edu, E-mail: mcervo@bwh.harvard.edu; Park, Mi-Ae, E-mail: scmoore@bwh.harvard.edu, E-mail: miaepark@bwh.harvard.edu, E-mail: mcervo@bwh.harvard.edu; Cervo, Morgan, E-mail: scmoore@bwh.harvard.edu, E-mail: miaepark@bwh.harvard.edu, E-mail: mcervo@bwh.harvard.edu [Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts 02115 (United States); Metzler, Scott D., E-mail: metzler@upenn.edu [The Department of Radiology, The University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States)
2015-12-15
Purpose: Recently, a multipinhole collimator with inserts that have both rectangular apertures and rectangular fields of view (FOVs) has been proposed for SPECT imaging since it can tile the projection onto the detector efficiently and the FOVs in transverse and axial directions become separable. The purpose of this study is to investigate the image properties of rectangular-aperture pinholes with submillimeter apertures sizes. Methods: In this work, the authors have conducted sensitivity and FOV experiments for 18 replicates of a prototype insert fabricated in platinum/iridium (Pt/Ir) alloy with submillimeter square-apertures. A sin{sup q}θ fit to the experimental sensitivity has been performed for these inserts. For the FOV measurement, the authors have proposed a new formula to calculate the projection intensity of a flood image on the detector, taking into account the penumbra effect. By fitting this formula to the measured projection data, the authors obtained the acceptance angles. Results: The mean (standard deviation) of fitted sensitivity exponents q and effective edge lengths w{sub e} were, respectively, 10.8 (1.8) and 0.38 mm (0.02 mm), which were close to the values, 7.84 and 0.396 mm, obtained from Monte Carlo calculations using the parameters of the designed inserts. For the FOV measurement, the mean (standard deviation) of the transverse and axial acceptances were 35.0° (1.2°) and 30.5° (1.6°), which are in good agreement with the designed values (34.3° and 29.9°). Conclusions: These results showed that the physical properties of the fabricated inserts with submillimeter aperture size matched our design well.
Far-field potentials in cylindrical and rectangular volume conductors.
Dumitru, D; King, J C; Rogers, W E
1993-07-01
The occurrence of a transient dipole is one method of producing a far-field potential. This investigation qualitatively defines the characteristics of the near-field and far-field electrical potentials produced by a transient dipole in both cylindrical and rectangular volume conductors. Most body segments of electrophysiologic interest such as arms, legs, thorax, and neck are roughly cylindrical in shape. A centrally located dipole generator produces a nonzero equipotential region which is found to occur along the cylindrical wall at a distance from the dipole of approximately 1.4 times the cylinder's radius and 1.9 times the cylinder's radius for the center of the cylinder. This distance to the equi-potential zone along the surface wall expands but remains less than 3.0 times the cylindrical radius when the dipole is eccentrically placed. The magnitude of the equipotential region resulting from an asymmetrically placed dipole remains identical to that when the dipole is centrally located. This behavior is found to be very similar in rectangular shallow conducting volumes that model a longitudinal slice of the cylinder, thus allowing a simple experimental model of the cylinder to be utilized. Amplitudes of the equipotential region are inversely proportional to the cylindrical or rectangular volume's cross-sectional area at the location of dipolar imbalance. This study predicts that referential electrode montages, when placed at 3.0 times the radius or greater from a dipolar axially aligned far-field generator in cylindrical homogeneous volume conductors, will record only equipotential far-field effects.
Microwave corrosion detection using open ended rectangular waveguide sensors
Energy Technology Data Exchange (ETDEWEB)
Qaddoumi, N.; Handjojo, L.; Bigelow, T.; Easter, J.; Bray, A.; Zoughi, R.
2000-02-01
The use of microwave and millimeter wave nondestructive testing methods utilizing open ended rectangular waveguide sensors has shown great potential for detecting minute thickness variations in laminate structures, in particular those backed by a conducting plate. Slight variations in the dielectric properties of materials may also be detected using a set of optimal parameters which include the standoff distance and the frequency of operation. In a recent investigation, on detecting rust under paint, the dielectric properties of rust were assumed to be similar to those of Fe{sub 2}O{sub 3} powder. These values were used in an electromagnetic model that simulates the interaction of fields radiated by a rectangular waveguide aperture with layered structures to obtain optimal parameters. The dielectric properties of Fe{sub 2}O{sub 3} were measured to be very similar to the properties of paint. Nevertheless, the presence of a simulated Fe{sub 2}O{sub 3} layer under a paint layer was detected. In this paper the dielectric properties of several different rust samples from different environments are measured. The measurements indicate that the nature of real rust is quite diverse and is different from Fe{sub 2}O{sub 3} and paint, indicating that the presence of rust under paint can be easily detected. The same electromagnetic model is also used (with the newly measured dielectric properties of real rust) to obtain an optimal standoff distance at a frequency of 24 GHz. The results indicate that variations in the magnitude as well as the phase of the reflection coefficient can be used to obtain information about the presence of rust. An experimental investigation on detecting the presence of very thin rust layers (2.5--5 x 10{sup {minus}2} mm [09--2.0 x 10{sup {minus}3} in.]) using an open ended rectangular waveguide probe is also conducted. Microwave images of rusted specimens, obtained at 24 GHz, are also presented.
The demagnetizing field of a non-uniform rectangular prism
DEFF Research Database (Denmark)
Smith, Anders; Nielsen, Kaspar Kirstein; Christensen, Dennis
2010-01-01
The effect of demagnetization on the magnetic properties of a rectangular ferromagnetic prism under non-uniform conditions is investigated. A numerical model for solving the spatially varying internal magnetic field is developed, validated and applied to relevant cases. The demagnetizing field...... is solved by an analytical calculation and the coupling between applied field, the demagnetization tensor field and spatially varying temperature is solved through iteration. We show that the demagnetizing field is of great importance in many cases and that it is necessary to take into account the non...
Nonlinear dynamics and control of a vibrating rectangular plate
Shebalin, J. V.
1983-01-01
The von Karman equations of nonlinear elasticity are solved for the case of a vibrating rectangular plate by meams of a Fourier spectral transform method. The amplification of a particular Fourier mode by nonlinear transfer of energy is demonstrated for this conservative system. The multi-mode system is reduced to a minimal (two mode) system, retaining the qualitative features of the multi-mode system. The effect of a modal control law on the dynamics of this minimal nonlinear elastic system is examined.
Experimental study of subsonic microjet escaping from a rectangular nozzle
Aniskin, V. M.; Maslov, A. A.; Mukhin, K. A.
2016-10-01
The first experiments on the subsonic laminar microjets escaping from the nozzles of rectangular shape are carried out. The nozzle size is 83.3x3823 microns. Reynolds number calculated by the nozzle height and the average flow velocity at the nozzle exit ranged from 58 to 154. The working gas was air at room temperature. The velocity decay and velocity fluctuations along the center line of the jet are determined. The fundamental difference between the laminar microjets characteristics and subsonic turbulent jets of macro size is shown. Based on measurements of velocity fluctuations it is shown the presence of laminar-turbulent transition in microjets and its location is determined.
Finite-size resonance dielectric cylinder in a rectangular waveguide
International Nuclear Information System (INIS)
Chuprina, V.N.; Khizhnyak, N.A.
1988-01-01
The problem on resonance spread of an electromagnetic wave by a dielectric circular cylinder of finite size in a rectangular waveguide is solved by a numerical-analytical method. The cylinder axes are parallel. The cylinder can be used as a resonance tuning element in accelerating SHF-sections. Problems on cutting off linear algebraic equation systems, to which relations of macroscopic electrodynamics in the integral differential form written for the concrete problem considered here are reduced by analytical transformations, are investigated in the stage of numerical analysis. Theoretical dependences of the insertion of the voltage standing wave coefficient on the generator wave length calculated for different values of problem parameters are constracted
Applicability of electrical resistance tomography to rectangular vessels
International Nuclear Information System (INIS)
Ichijo, Noriaki; Matsuno, Shinsuke; Tokura, Susumu; Tochigi, Yoshikatsu; Misumi, Ryuta; Nishi, Kazuhiko; Kaminoyama, Meguru
2012-01-01
To ensure a stable operation of Joule-heated glass melters, it is necessary to observe the distribution of platinum group metal particles (noble metals) in molten glass. Electrical resistance tomography (ERT) has a potential to visualize the inside of the melter section because it can be applied at severe conditions such as high temperature and radioactive fields. Due to designing limitations, it is difficult to install electrodes on the wall of the glass melter. In addition, ERT is hardly applied to a rectangular section. To solve these problems, numerical and experimental studies have been implemented. To apply the ERT method, 8 electrodes are inserted from the top of the melter and set near the bottom to visualize the accumulation of noble metals on the bottom area. As a result of the numerical simulation and the experiment, it was clarified that the ERT can be applied to the rectangular vessel by inserting electrodes from the top of the vessel and has a potential to observe the accumulation of noble metals. (author)
The calculation of dose rates from rectangular sources
International Nuclear Information System (INIS)
Hartley, B.M.
1998-01-01
A common problem in radiation protection is the calculation of dose rates from extended sources and irregular shapes. Dose rates are proportional to the solid angle subtended by the source at the point of measurement. Simple methods of calculating solid angles would assist in estimating dose rates from large area sources and therefore improve predictive dose estimates when planning work near such sources. The estimation of dose rates is of particular interest to producers of radioactive ores but other users of bulk radioactive materials may have similar interest. The use of spherical trigonometry can assist in determination of solid angles and a simple equation is derived here for the determination of the dose at any distance from a rectangular surface. The solid angle subtended by complex shapes can be determined by modelling the area as a patchwork of rectangular areas and summing the solid angles from each rectangle. The dose rates from bags of thorium bearing ores is of particular interest in Western Australia and measured dose rates from bags and containers of monazite are compared with theoretical estimates based on calculations of solid angle. The agreement is fair but more detailed measurements would be needed to confirm the agreement with theory. (author)
Measurement strategy for rectangular electrical capacitance tomography sensor
International Nuclear Information System (INIS)
Ye, Jiamin; Ge, Ruihuan; Qiu, Guizhi; Wang, Haigang
2014-01-01
To investigate the influence of the measurement strategy for the rectangular electrical capacitance tomography (ECT) sensor, a Finite Element Method (FEM) is utilized to create the model for simulation. The simulation was carried out using COMSOL Multiphysics(trade mark, serif) and Matlab(trade mark, serif). The length-width ratio of the rectangular sensing area is 5. Twelve electrodes are evenly arranged surrounding the pipe. The covering ratio of the electrodes is 90%. The capacitances between different electrode pairs are calculated for a bar distribution. The air of the relative permittivity 1.0 and the material of the permittivity 3.0 are used for the calibration. The relative permittivity of the second phase is 3.0. The noise free and noise data are used for the image reconstruction using the Linear Back Projection (LBP). The measurement strategies with 1-, 2- and 4- electrode excitation are compared using the correlation coefficient. Preliminary results show that the measurement strategy with 2-electrode excitation outperforms other measurement strategies with 1- or 4-electrode excitation
A Rectangular Planar Spiral Antenna for GIS Partial Discharge Detection
Directory of Open Access Journals (Sweden)
Xiaoxing Zhang
2014-01-01
Full Text Available A rectangular planar spiral antenna sensor was designed for detecting the partial discharge in gas insulation substations (GIS. It can expediently receive electromagnetic waves leaked from basin-type insulators and can effectively suppress low frequency electromagnetic interference from the surrounding environment. Certain effective techniques such as rectangular spiral structure, bow-tie loading, and back cavity structure optimization during the antenna design process can miniaturize antenna size and optimize voltage standing wave ratio (VSWR characteristics. Model calculation and experimental data measured in the laboratory show that the antenna possesses a good radiating performance and a multiband property when working in the ultrahigh frequency (UHF band. A comparative study between characteristics of the designed antenna and the existing quasi-TEM horn antenna was made. Based on the GIS defect simulation equipment in the laboratory, partial discharge signals were detected by the designed antenna, the available quasi-TEM horn antenna, and the microstrip patch antenna, and the measurement results were compared.
Numerical investigation of flow past a row of rectangular rods
Directory of Open Access Journals (Sweden)
S.Ul. Islam
2016-09-01
Full Text Available A numerical study of uniform flow past a row of rectangular rods with aspect ratio defined as R = width/height = 0.5 is performed using the Lattice Boltzmann method. For this study the Reynolds number (Re is fixed at 150, while spacings between the rods (g are taken in the range from 1 to 6. Depending on g, the flow is classified into four patterns: flip-flopping, nearly unsteady-inphase, modulated inphase-antiphase non-synchronized and synchronized. Sudden jumps in physical parameters were observed, attaining either maximum or minimum values, with the change in flow patterns. The mean drag coefficient (Cdmean of middle rod is higher than the second and fourth rod for flip-flopping pattern while in case of nearly unsteady-inphase the middle rod attains minimum drag coefficient. It is also found that the Strouhal number (St of first, second and fifth rod decreases as g increases while that of other two have mixed trend. The results further show that there exist secondary interaction frequencies together with primary vortex shedding frequency due to jet in the gap between rods for 1 ⩽ g ⩽ 3. For the average values of Cdmean and St, an empirical relation is also given as a function of gap spacing. This relation shows that the average values of Cdmean and St approach to those of single rectangular rod with increment in g.
DEFF Research Database (Denmark)
Carrizosa, Emilio; Guerrero, Vanesa; Morales, Dolores Romero
2018-01-01
individuals as adjacent rectangular portions as possible and adding as few false adjacencies, i.e., adjacencies between rectangular portions corresponding to non-adjacent individuals, as possible. We formulate this visualization problem as a Mixed Integer Linear Programming (MILP) model. We propose......In this paper we address the problem of visualizing a frequency distribution and an adjacency relation attached to a set of individuals. We represent this information using a rectangular map, i.e., a subdivision of a rectangle into rectangular portions so that each portion is associated with one...
Enhanced Circular Dichroism of Gold Bilayered Slit Arrays Embedded with Rectangular Holes.
Zhang, Hao; Wang, Yongkai; Luo, Lina; Wang, Haiqing; Zhang, Zhongyue
2017-01-01
Gold bilayered slit arrays with rectangular holes embedded into the metal surface are designed to enhance the circular dichroism (CD) effect of gold bilayered slit arrays. The rectangular holes in these arrays block electric currents and generate localized surface plasmons around these holes, thereby strengthening the CD effect. The CD enhancement factor depends strongly on the rotational angle and the structural parameters of the rectangular holes; this factor can be enhanced further by drilling two additional rectangular holes into the metal surfaces of the arrays. These results help facilitate the design of chiral structures to produce a strong CD effect and large electric fields.
Wire-Mesh Tomography Measurements of Void Fraction in Rectangular Bubble Columns
International Nuclear Information System (INIS)
Reddy Vanga, B.N.; Lopez de Bertodano, M.A.; Zaruba, A.; Prasser, H.M.; Krepper, E.
2004-01-01
Bubble Columns are widely used in the process industry and their scale-up from laboratory scale units to industrial units have been a subject of extensive study. The void fraction distribution in the bubble column is affected by the column size, superficial velocity of the dispersed phase, height of the liquid column, size of the gas bubbles, flow regime, sparger design and geometry of the bubble column. The void fraction distribution in turn affects the interfacial momentum transfer in the bubble column. The void fraction distribution in a rectangular bubble column 10 cm wide and 2 cm deep has been measured using Wire-Mesh Tomography. Experiments were performed in an air-water system with the column operating in the dispersed bubbly flow regime. The experiments also serve the purpose of studying the performance of wire-mesh sensors in batch flows. A 'wall peak' has been observed in the measured void fraction profiles, for the higher gas flow rates. This 'wall peak' seems to be unique, as this distribution has not been previously reported in bubble column literature. Low gas flow rates yielded the conventional 'center peak' void profile. The effect of column height and superficial gas velocity on the void distribution has been investigated. Wire-mesh Tomography also facilitates the measurement of bubble size distribution in the column. This paper presents the measurement principle and the experimental results for a wide range of superficial gas velocities. (authors)
Pohle, Ina; Niebisch, Michael; Müller, Hannes; Schümberg, Sabine; Zha, Tingting; Maurer, Thomas; Hinz, Christoph
2018-07-01
To simulate the impacts of within-storm rainfall variabilities on fast hydrological processes, long precipitation time series with high temporal resolution are required. Due to limited availability of observed data such time series are typically obtained from stochastic models. However, most existing rainfall models are limited in their ability to conserve rainfall event statistics which are relevant for hydrological processes. Poisson rectangular pulse models are widely applied to generate long time series of alternating precipitation events durations and mean intensities as well as interstorm period durations. Multiplicative microcanonical random cascade (MRC) models are used to disaggregate precipitation time series from coarse to fine temporal resolution. To overcome the inconsistencies between the temporal structure of the Poisson rectangular pulse model and the MRC model, we developed a new coupling approach by introducing two modifications to the MRC model. These modifications comprise (a) a modified cascade model ("constrained cascade") which preserves the event durations generated by the Poisson rectangular model by constraining the first and last interval of a precipitation event to contain precipitation and (b) continuous sigmoid functions of the multiplicative weights to consider the scale-dependency in the disaggregation of precipitation events of different durations. The constrained cascade model was evaluated in its ability to disaggregate observed precipitation events in comparison to existing MRC models. For that, we used a 20-year record of hourly precipitation at six stations across Germany. The constrained cascade model showed a pronounced better agreement with the observed data in terms of both the temporal pattern of the precipitation time series (e.g. the dry and wet spell durations and autocorrelations) and event characteristics (e.g. intra-event intermittency and intensity fluctuation within events). The constrained cascade model also
International Nuclear Information System (INIS)
Krishnani, Mayur; Basu, Dipankar N.
2017-01-01
Highlights: • Computational model developed for single-phase rectangular natural circulation loop. • Role of loop inclination to vertical on thermalhydraulic stability is explored. • Inclination has strong stabilizing effect due to lower effective gravitation force. • Increase in tilt angle reduces settling time and highest amplitude of oscillation. • An angle of 15° is suggested for the selected loop geometry. - Abstract: Controlling stability behavior of single-phase natural circulation loops, without significantly affecting its steady-state characteristics, is a topic of wide research interest. Present study explores the role of loop inclination on a particular loop geometry. Accordingly a 3D computational model of a rectangular loop is developed and transient conservation equations are solved to obtain the temporal variation in flow parameters. Starting from the quiescent state, simulations are performed for selected sets of operating conditions and also with a few selected inclination angles. System experiences instability at higher heater powers and also with higher sink temperatures. Inclination is found to have a strong stabilizing influence owing to the reduction in the effective gravitational acceleration and subsequent decline in local buoyancy effects. The settling time and highest amplitude of oscillations substantially reduces for a stable system with a small inclination. Typically-unstable systems can also suppress the oscillations, when subjected to tilting, within a reasonable period of time. It is possible to stabilize the loop within shorter time span by increasing the tilt angle, but at the expense of reduction in steady-state flow rate. Overall a tilt angle of 15° is suggested for the selected geometry. Results from the 3D model is compared with the predictions from an indigenous 1D code. While similar qualitative influence of inclination is observed, the 1D model predicts early appearance of the stability threshold and hence hints
Pharmacological modulation of SK3 channels
DEFF Research Database (Denmark)
Grunnet, M; Jespersen, Thomas; Angelo, K
2001-01-01
Small-conductance, calcium-activated K+ channels (SK channels) are voltage-insensitive channels that have been identified molecularly within the last few years. As SK channels play a fundamental role in most excitable cells and participate in afterhyperpolarization (AHP) and spike-frequency adapt...... at concentrations of 3 microM and above. Amitriptyline, a tricyclic antidepressive widely used clinically, inhibits SK3 channels with an IC50 of 39.1 +/- 10 microM (n=6)....
Directory of Open Access Journals (Sweden)
Sancarlos-González Abel
2017-12-01
Full Text Available AC lines of industrial busbar systems are usually built using conductors with rectangular cross sections, where each phase can have several parallel conductors to carry high currents. The current density in a rectangular conductor, under sinusoidal conditions, is not uniform. It depends on the frequency, on the conductor shape, and on the distance between conductors, due to the skin effect and to proximity effects. Contrary to circular conductors, there are not closed analytical formulas for obtaining the frequency-dependent impedance of conductors with rectangular cross-section. It is necessary to resort to numerical simulations to obtain the resistance and the inductance of the phases, one for each desired frequency and also for each distance between the phases’ conductors. On the contrary, the use of the parametric proper generalized decomposition (PGD allows to obtain the frequency-dependent impedance of an AC line for a wide range of frequencies and distances between the phases’ conductors by solving a single simulation in a 4D domain (spatial coordinates x and y, the frequency and the separation between conductors. In this way, a general “virtual chart” solution is obtained, which contains the solution for any frequency and for any separation of the conductors, and stores it in a compact separated representations form, which can be easily embedded on a more general software for the design of electrical installations. The approach presented in this work for rectangular conductors can be easily extended to conductors with an arbitrary shape.
Sancarlos-González, Abel; Pineda-Sanchez, Manuel; Puche-Panadero, Ruben; Sapena-Bano, Angel; Riera-Guasp, Martin; Martinez-Roman, Javier; Perez-Cruz, Juan; Roger-Folch, Jose
2017-12-01
AC lines of industrial busbar systems are usually built using conductors with rectangular cross sections, where each phase can have several parallel conductors to carry high currents. The current density in a rectangular conductor, under sinusoidal conditions, is not uniform. It depends on the frequency, on the conductor shape, and on the distance between conductors, due to the skin effect and to proximity effects. Contrary to circular conductors, there are not closed analytical formulas for obtaining the frequency-dependent impedance of conductors with rectangular cross-section. It is necessary to resort to numerical simulations to obtain the resistance and the inductance of the phases, one for each desired frequency and also for each distance between the phases' conductors. On the contrary, the use of the parametric proper generalized decomposition (PGD) allows to obtain the frequency-dependent impedance of an AC line for a wide range of frequencies and distances between the phases' conductors by solving a single simulation in a 4D domain (spatial coordinates x and y, the frequency and the separation between conductors). In this way, a general "virtual chart" solution is obtained, which contains the solution for any frequency and for any separation of the conductors, and stores it in a compact separated representations form, which can be easily embedded on a more general software for the design of electrical installations. The approach presented in this work for rectangular conductors can be easily extended to conductors with an arbitrary shape.
Numerical Study of the Buoyancy-Driven Flow in a Four-Electrode Rectangular Electrochemical Cell
Sun, Zhanyu; Agafonov, Vadim; Rice, Catherine; Bindler, Jacob
2009-11-01
Two-dimensional numerical simulation is done on the buoyancy-driven flow in a four-electrode rectangular electrochemical cell. Two kinds of electrode layouts, the anode-cathode-cathode-anode (ACCA) and the cathode-anode-anode-cathode (CAAC) layouts, are studied. In the ACCA layout, the two anodes are placed close to the channel outlets while the two cathodes are located between the two anodes. The CAAC layout can be converted from the ACCA layout by applying higher electric potential on the two middle electrodes. Density gradient was generated by the electrodic reaction I3^-+2e^- =3I^-. When the electrochemical cell is accelerated axially, buoyancy-driven flow occurs. In our model, electro-neutrality is assumed except at the electrodes. The Navier-Stokes equations with the Boussinesq approximation and the Nernst-Planck equations are employed to model the momentum and mass transports, respectively. It is found that under a given axial acceleration, the electrolyte density between the two middle electrodes determines the bulk flow through the electrochemical cell. The cathodic current difference is found to be able to measure the applied acceleration. Other important electro-hydrodynamic characteristics are also discussed.
Simulation analysis of rectangular dielectric-loaded traveling wave amplifiers for THz sources
Directory of Open Access Journals (Sweden)
Changbiao Wang
2007-12-01
Full Text Available Nonlinear simulation results for a 220-GHz rectangular dielectric-loaded traveling-wave amplifier are presented. Simulations are used to check a linear theory that is developed by phenomenological introduction of an effective dielectric parameter for electron beam channel, and it is found that the rf power gains from Pierce three-wave theory and particle simulations are in reasonable agreement. It is shown that the rf power gain during initial beam-wave interaction is positive; the falling on the initial rf power profile, which has been thought to be the rf power transferred to the beam for bunching buildup (negative gain effect, is probably resulting from numerical errors. Beam-wave interaction mechanism is analyzed by examining the evolution of beam bunching centers. Influences of various parameters on amplifier performance are examined, and transverse space-charge effect is analyzed. A symmetric excitation scheme for rf couplers is proposed, and rf field jumps on the common intersection line of vacuum, dielectric, and metal wall, which were found in rf simulations, are explained theoretically.
International Nuclear Information System (INIS)
Erramli, H.; Blondiaux, G.
1994-01-01
Channeling phenomenon was predicted, many years ago, by stark. The first channeling experiments were performed in 1963 by Davies and his coworkers. Parallely Robinson and Oen have investigated this process by simulating trajectories of ions in monocrystals. This technique has been combined with many methods like Rutherford Backscattering Spectrometry (R.B.S.), Particles Induced X-rays Emission (P.I.X.E) and online Nuclear Reaction (N.R.A.) to localize trace elements in the crystal or to determine crystalline quality. To use channeling for material characterization we need data about the stopping power of the incident particle in the channeled direction. The ratios of channeled to random stopping powers of silicon for irradiation in the direction have been investigated and compared to the available theoretical results. We describe few applications of ion channeling in the field of materials characterization. Special attention is given to ion channeling combined with Charged Particle Activation Analysis (C.P.A.A.) for studying the behaviour of oxygen atoms in Czochralski silicon lattices under the influence of internal gettering and in different gaseous atmospheres. Association between ion channeling and C.P.A.A was also utilised for studying the influence of the growing conditions on concentration and position of carbon atoms at trace levels in the MOVPE Ga sub (1-x) Al sub x lattice. 6 figs., 1 tab., 32 refs. (author)
Rectangular amplitudes, conformal blocks, and applications to loop models
Energy Technology Data Exchange (ETDEWEB)
Bondesan, Roberto, E-mail: roberto.bondesan@cea.fr [LPTENS, Ecole Normale Superieure, 24 rue Lhomond, 75231 Paris (France); Institute de Physique Theorique, CEA Saclay, F-91191 Gif-sur-Yvette (France); Jacobsen, Jesper L. [LPTENS, Ecole Normale Superieure, 24 rue Lhomond, 75231 Paris (France); Universite Pierre et Marie Curie, 4 place Jussieu, 75252 Paris (France); Saleur, Hubert [Institute de Physique Theorique, CEA Saclay, F-91191 Gif-sur-Yvette (France); Physics Department, USC, Los Angeles, CA 90089-0484 (United States)
2013-02-21
In this paper we continue the investigation of partition functions of critical systems on a rectangle initiated in [R. Bondesan, et al., Nucl. Phys. B 862 (2012) 553-575]. Here we develop a general formalism of rectangle boundary states using conformal field theory, adapted to describe geometries supporting different boundary conditions. We discuss the computation of rectangular amplitudes and their modular properties, presenting explicit results for the case of free theories. In a second part of the paper we focus on applications to loop models, discussing in details lattice discretizations using both numerical and analytical calculations. These results allow to interpret geometrically conformal blocks, and as an application we derive new probability formulas for self-avoiding walks.
Calculation of control rods in rectangular reactor, and applications (1960)
International Nuclear Information System (INIS)
Goshen, S.; Pazy, A.
1960-01-01
The aim of this report is to find a method for estimating the anti-reactivity of control rods perpendicular to the axis in a cylindrical pile. The paper is divided into two parts. In the first is given a method of calculating control rods in a rectangular pile, similar to the Nordheim-Scalettar method for cylindrical piles. As an example the formulas are given for the theories of one and two neutron groups, the generalisation for several groups being evident. In the second part we find by a variation method a formula for estimating the Laplacian of a pile, which may be divided into parallelepipeds for which the Laplacian are given. Finally, this formula is used to calculate the anti-reactivity of rods perpendicular to the axis in a cylindrical pile. (author) [fr
Critical current studies of a HTS rectangular coil
Energy Technology Data Exchange (ETDEWEB)
Zhong, Z. [Department of Engineering, University of Cambridge (United Kingdom); Chudy, M., E-mail: Michal.chudy@stuba.sk [Graduate School of Technology Management, University of Pretoria (South Africa); Institute of Power and Applied Electrical Engineering, Slovak University of Technology in Bratislava (Slovakia); Ruiz, H.S. [Department of Engineering, University of Leicester, Leicester LE1 7RH (United Kingdom); Zhang, X.; Coombs, T. [Department of Engineering, University of Cambridge (United Kingdom)
2017-05-15
Highlights: • Unique square pancake coil was manufactured. • Measurements in relatively high magnetic field were performed. • Different sections of the coil were characterized. • Parts of the coil which are limiting critical current were identified. - Abstract: Nowadays, superconducting high field magnets are used in numerous applications due to their superior properties. High temperature superconductors (HTS) are usually used for production of circular pancake or racetrack coils. However different geometries of HTS coils might be required for some specific applications. In this study, the HTS coil wound on a rectangular frame was fully characterized in homogeneous DC background field. The study contains measurements of critical current angular dependencies. The critical current of the entire coil and two selected strands under different magnitudes and orientations of external magnetic fields are measured. The critical regions of the coil in different angular regimes are determined. This study brings better understanding of the in- field performance of HTS coils wound on frames with right-angles.
The nanosecond generator RG-1 with near-rectangular pulse
International Nuclear Information System (INIS)
Bulan, V.V.; Grabovskij, E.V.; Gribov, A.N.; Luzhnov, V.G.
1996-01-01
The 300 kV, 17 Ohm generator RG-1, which can deliver near-rectangular pulses with a pulse duration of 80 ns FWHM, is described. The polarity of the output pulse can be changed by a simple switch. The fast capacities of the Marx generator are used instead of the pulse forming line. Multi-spark gas switches were developed to decrease the inductance of the discharged circuit. The generator is supplied by a built-in high voltage source and its operation is controlled by a minicomputer. It is used the power supply-line 220 V. The RG-1 can be used in different modes of operation: gas discharge, particle beam formation, etc. (author). 4 figs., 3 refs
Stress analysis and evaluation of a rectangular pressure vessel
International Nuclear Information System (INIS)
Rezvani, M.A.; Ziada, H.H.; Shurrab, M.S.
1992-10-01
This study addresses structural analysis and evaluation of an abnormal rectangular pressure vessel, designed to house equipment for drilling and collecting samples from Hanford radioactive waste storage tanks. It had to be qualified according to ASME boiler and pressure vessel code, Section VIII; however, it had the cover plate bolted along the long face, a configuration not addressed by the code. Finite element method was used to calculate stresses resulting from internal pressure; these stresses were then used to evaluate and qualify the vessel. Fatigue is not a concern; thus, it can be built according to Section VIII, Division I instead of Division 2. Stress analysis was checked against the code. A stayed plate was added to stiffen the long side of the vessel
The nanosecond generator RG-1 with near-rectangular pulse
Energy Technology Data Exchange (ETDEWEB)
Bulan, V V; Grabovskij, E V; Gribov, A N; Luzhnov, V G [TRINITI, Troitsk (Russian Federation)
1997-12-31
The 300 kV, 17 Ohm generator RG-1, which can deliver near-rectangular pulses with a pulse duration of 80 ns FWHM, is described. The polarity of the output pulse can be changed by a simple switch. The fast capacities of the Marx generator are used instead of the pulse forming line. Multi-spark gas switches were developed to decrease the inductance of the discharged circuit. The generator is supplied by a built-in high voltage source and its operation is controlled by a minicomputer. It is used the power supply-line 220 V. The RG-1 can be used in different modes of operation: gas discharge, particle beam formation, etc. (author). 4 figs., 3 refs.
Specific aspects of turbulent flow in rectangular ducts
Directory of Open Access Journals (Sweden)
Stanković Branislav D.
2017-01-01
Full Text Available The essential ideas of investigations of turbulent flow in a straight rectangular duct are chronologically presented. Fundamentally significant experimental and theoretical studies for mathematical modeling and numerical computations of this flow configuration are analyzed. An important physical aspect of this type of flow is presence of secondary motion in the plane perpendicular to the streamwise direction, which is of interest from both the engineering and the scientific viewpoints. The key facts for a task of turbulence modeling and optimal choice of the turbulence model are obtained through careful examination of physical mechanisms that generate secondary flows. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no.TR-33018: Increase in Energy and Ecology Efficiency of Processes in Pulverized Coal-Fired Furnace and Optimization of Utility Steam Boiler Air Pre-heater by Using In-House Developed Software Tools
Stability Analysis of Nonuniform Rectangular Beams Using Homotopy Perturbation Method
Directory of Open Access Journals (Sweden)
Seval Pinarbasi
2012-01-01
Full Text Available The design of slender beams, that is, beams with large laterally unsupported lengths, is commonly controlled by stability limit states. Beam buckling, also called “lateral torsional buckling,” is different from column buckling in that a beam not only displaces laterally but also twists about its axis during buckling. The coupling between twist and lateral displacement makes stability analysis of beams more complex than that of columns. For this reason, most of the analytical studies in the literature on beam stability are concentrated on simple cases: uniform beams with ideal boundary conditions and simple loadings. This paper shows that complex beam stability problems, such as lateral torsional buckling of rectangular beams with variable cross-sections, can successfully be solved using homotopy perturbation method (HPM.
Thermoelectric effects in a rectangular Aharonov-Bohm geometry
Pye, A. J.; Faux, D. A.; Kearney, M. J.
2016-04-01
The thermoelectric transport properties of a rectangular Aharonov-Bohm ring at low temperature are investigated using a theoretical approach based on Green's functions. The oscillations in the transmission coefficient as the field is varied can be used to tune the thermoelectric response of the ring. Large magnitude thermopowers are obtainable which, in conjunction with low conductance, can result in a high thermoelectric figure of merit. The effects of single site impurities and more general Anderson disorder are considered explicitly in the context of evaluating their effect on the Fano-type resonances in the transmission coefficient. Importantly, it is shown that even for moderate levels of disorder, the thermoelectric figure of merit can remain significant, increasing the appeal of such structures from the perspective of specialist thermoelectric applications.
Free Vibration of Rectangular Plates with Attached Discrete Sprung Masses
Directory of Open Access Journals (Sweden)
Ding Zhou
2012-01-01
Full Text Available A direct approach is used to derive the exact solution for the free vibration of thin rectangular plates with discrete sprung masses attached. The plate is simply supported along two opposite edges and elastically supported along the two other edges. The elastic support can represent a range of boundary conditions from free to clamped supports. Considering only the compatibility of the internal forces between the plate and the sprung masses, the equations of the coupled vibration of the plate-spring-mass system are derived. The exact expressions for mode and frequency equations of the coupled vibration of the plate and sprung masses are determined. The solutions converge steadily and monotonically to exact values. The correctness and accuracy of the solutions are demonstrated through comparison with published results. A parametric study is undertaken focusing on the plate with one or two sprung masses. The results can be used as a benchmark for further investigation.
Magnethohydrodynamic surface and body waves in rectangular and cylindrical geometries
International Nuclear Information System (INIS)
Donnelly, I.J.
1982-03-01
Low frequency magnetohydrodynamic (MHD) waves are studied in both rectangular slab and cylindrical geometry cavities containing low β plasmas. The plasma density distribution is modelled by an inner region of constant density surrounded by an outer region of lower density and a conducting boundary. The wave frequencies and fields are obtained as functions of the density distribution and the wavenumber components k(parall) and k(perp). The lowest frequency wave mode is a surface wave in which the wave fields decrease in magnitude with distance from the interface between the two plasma densities. It has the properties of a shear wave when k(perp)/k(parall) is either small or large but is compressive when k(perp) is approximately equal to k(parall). The surface wave does not exist when k(perp) = 0. Higher frequency modes have the properties of fast magnetosonic waves, at least in the inner density region
Free Vibration Analysis of Rectangular Orthotropic Membranes in Large Deflection
Directory of Open Access Journals (Sweden)
Zheng Zhou-Lian
2009-01-01
Full Text Available This paper reviewed the research on the vibration of orthotropic membrane, which commonly applied in the membrane structural engineering. We applied the large deflection theory of membrane to derive the governing vibration equations of orthotropic membrane, solved it, and obtained the power series formula of nonlinear vibration frequency of rectangular membrane with four edges fixed. The paper gave the computational example and compared the two results from the large deflection theory and the small one, respectively. Results obtained from this paper provide some theoretical foundation for the measurement of pretension by frequency method; meanwhile, the results provide some theoretical foundation for the research of nonlinear vibration of membrane structures and the response solving of membrane structures under dynamic loads.
Impedance of curved rectangular spiral coils around a conductive cylinder
Burke, S. K.; Ditchburn, R. J.; Theodoulidis, T. P.
2008-07-01
Eddy-current induction due to a thin conformable coil wrapped around a long conductive cylinder is examined using a second-order vector potential formalism. Compact closed-form expressions are derived for the self- and mutual impedances of curved rectangular spiral coils (i) in free space and (ii) when wrapped around the surface of the cylindrical rod. The validity of these expressions was tested against the results of a systematic series of experiments using a cylindrical Al-alloy rod and conformable coils manufactured using flexible printed-circuit-board technology. The theoretical expressions were in very good agreement with the experimental measurements. The significance of the results for eddy-current nondestructive inspection using flexible coils and flexible coil arrays is discussed.
Measurement of electron beam bunch phase length by rectangular cavities
International Nuclear Information System (INIS)
Afanas'ev, V.D.; Rudychev, V.G.; Ushakov, V.I.
1976-01-01
An analysis of a phase length of electron bunches with the help of crossed rectangular resonators with the Hsub(102) oscillation type has been made. It has been shown that the electron coordinates after the duplex resonator are described by an ellipse equation for a non-modulated beam. An influence of the initial energy spread upon the electron motion has been studied. It has been ascertained that energy modulation of the electron beam results in displacement of each electron with respect to the ellipse which is proportional to modulation energy, i.e. an error in determination of the phase length of an electron bunch is proportional to the beam energy spread. Relations have been obtained which enable to find genuine values of phases of the analyzed electrons with an accuracy up to linear multipliers
Energy tunneling through narrow waveguide channel and design of small antennas
Directory of Open Access Journals (Sweden)
Mitrović Miranda
2011-01-01
Full Text Available In this paper we investigate the conditions for energy tunneling through narrow channel obtained by reducing the height of rectangular waveguide. Tunneling of the energy occurs at the frequency for which the effective dielectric permittivity of the channel becomes equal to zero, so it can be treated as an ENZ (epsilon-near-zero metamaterial. We investigated how geometry of the channel and dielectric permittivity affect the transmission coefficient and field density in the channel. Adding slots in the channel, which are placed orthogonally to the wave propagation, we designed a small antenna with directivity of 5.44 dBi at the frequency of 3 GHz.
Quantitative study of rectangular waveguide behavior in the THz.
Energy Technology Data Exchange (ETDEWEB)
Rowen, Adam M.; Nordquist, Christopher Daniel; Wanke, Michael Clement
2009-10-01
This report describes our efforts to quantify the behavior of micro-fabricated THz rectangular waveguides on a configurable, robust semiconductor-based platform. These waveguides are an enabling technology for coupling THz radiation directly from or to lasers, mixers, detectors, antennas, and other devices. Traditional waveguides fabricated on semiconductor platforms such as dielectric guides in the infrared or co-planar waveguides in the microwave regions, suffer high absorption and radiative losses in the THz. The former leads to very short propagation lengths, while the latter will lead to unwanted radiation modes and/or crosstalk in integrated devices. This project exploited the initial developments of THz micro-machined rectangular waveguides developed under the THz Grand Challenge Program, but instead of focusing on THz transceiver integration, this project focused on exploring the propagation loss and far-field radiation patterns of the waveguides. During the 9 month duration of this project we were able to reproduce the waveguide loss per unit of length in the waveguides and started to explore how the loss depended on wavelength. We also explored the far-field beam patterns emitted by H-plane horn antennas attached to the waveguides. In the process we learned that the method of measuring the beam patterns has a significant impact on what is actually measured, and this may have an effect on most of the beam patterns of THz that have been reported to date. The beam pattern measurements improved significantly throughout the project, but more refinements of the measurement are required before a definitive determination of the beam-pattern can be made.
Electrical Machines: Turn-to-Turn Capacitance in Formed Windings with Rectangular Cross-Section Wire
Djukic, Nenad; Encica, L.; Paulides, Johan
2015-01-01
Calculation of turn-to-turn capacitance (Ctt) in electrical machines (EMs) with formed windings with rectangular cross-section wire is presented. Three calculation methods are used for the calculation of Ctt in case of rectangular conductors – finite element (FE) method and two previously published
75 FR 82070 - Light-Walled Rectangular Pipe and Tube From China, Korea, and Mexico
2010-12-29
...-Walled Rectangular Pipe and Tube From China, Korea, and Mexico AGENCY: United States International Trade... from China, Korea, and Mexico that were found to be sold at less than fair value. Nacional de Acero S... panel proceeding in Light-Walled Rectangular Pipe and Tube from Mexico, USA-MEX-1904-04, to file...
77 FR 3497 - Light-Walled Rectangular Pipe and Tube From Taiwan
2012-01-24
... Rectangular Pipe and Tube From Taiwan Determination On the basis of the record \\1\\ developed in the subject... order on light-walled rectangular pipe and tube from Taiwan would be likely to lead to continuation or recurrence of material injury to an industry in the United States within a reasonably foreseeable time. \\1...
International Nuclear Information System (INIS)
Tanabe, Akira.
1993-01-01
In a channel box of a BWR type reactor, protruding pads are disposed in axial position on the lateral side of a channel box opposing to a control rod and facing the outer side portion of the control rod in a reactor core loaded state. In the initial loading stage of fuel assemblies, channel fasteners and spacer pads are abutted against each other in the upper portion between the channel boxes sandwiching the control rod therebetween. Further, in the lower portion, a gap as a channel for the movement of the control rod is ensured by the support of fuel support metals. If the channel box is bent toward the control rod along with reactor operation, the pads are abutted against each other to always ensure the gap through which the control rod can move easily. Further, when the pads are brought into contact with each other, the bending deformation of the channel box is corrected by urging to each other. Thus, the control rod can always be moved smoothly to attain reactor safety operation. (N.H.)
International Nuclear Information System (INIS)
Park, Myeong-Il; Choi, Yoon Suk; Yoo, Jae-Hyun; Park, Sang-Hu; Kim, Kyeong-Min; Lee, Yeong-Chul; Lee, Jung-Seok; Lee, Jae-Hyun
2017-01-01
Investment casting for the thin (4 mm thick) rectangular tube (40 mm wide, 80 mm high and 200 mm long) was carried out numerically and experimentally for Alloy 738, which is a precipitation-hardened Ni-base superalloy. Two types of rectangular tubes, one with a regular array (10 mm by 10 mm square array) of protruded rods (3 mm in diameter and 3mm in height) embedded on the outer surface and the other with just smooth surface, were investment-cast at the same time through the side feeding mold design. The investment casting simulation predicted the presence of cavities, particularly in the area away from the gate for both types of rectangular tubes. In particular, for the rectangular tube with embedded protruded rods cavities were found mainly in the areas between the protruded rods. This simulation result was qualitatively consistent with the experimental observation from the X-ray analysis. Also, both prediction and experiment showed that the dimensional shrinkage (particularly in the longitudinal direction) of the investment-cast rectangular tube is reduced by having protruded rods embedded on the outer surface. Additional numerical attempts were made to check how the amount of cavities and dimensional shrinkage change by varying the preheating temperature and the thickness of the mold. The results predicted that the amount of cavities and the dimensional shrinkage are significantly reduced by increasing the preheating temperature of the mold by 200 ℃. However, an increase in mold thickness from 10 mm to 12 mm showed almost no difference in cavity population and a slight decrease in dimensional shrinkage.
Energy Technology Data Exchange (ETDEWEB)
Park, Myeong-Il; Choi, Yoon Suk; Yoo, Jae-Hyun; Park, Sang-Hu [Pusan National University, Busan (Korea, Republic of); Kim, Kyeong-Min; Lee, Yeong-Chul [Sung Il Turbine Co., Ltd., Busan (Korea, Republic of); Lee, Jung-Seok; Lee, Jae-Hyun [Changwon National University, Changwon (Korea, Republic of)
2017-02-15
Investment casting for the thin (4 mm thick) rectangular tube (40 mm wide, 80 mm high and 200 mm long) was carried out numerically and experimentally for Alloy 738, which is a precipitation-hardened Ni-base superalloy. Two types of rectangular tubes, one with a regular array (10 mm by 10 mm square array) of protruded rods (3 mm in diameter and 3mm in height) embedded on the outer surface and the other with just smooth surface, were investment-cast at the same time through the side feeding mold design. The investment casting simulation predicted the presence of cavities, particularly in the area away from the gate for both types of rectangular tubes. In particular, for the rectangular tube with embedded protruded rods cavities were found mainly in the areas between the protruded rods. This simulation result was qualitatively consistent with the experimental observation from the X-ray analysis. Also, both prediction and experiment showed that the dimensional shrinkage (particularly in the longitudinal direction) of the investment-cast rectangular tube is reduced by having protruded rods embedded on the outer surface. Additional numerical attempts were made to check how the amount of cavities and dimensional shrinkage change by varying the preheating temperature and the thickness of the mold. The results predicted that the amount of cavities and the dimensional shrinkage are significantly reduced by increasing the preheating temperature of the mold by 200 ℃. However, an increase in mold thickness from 10 mm to 12 mm showed almost no difference in cavity population and a slight decrease in dimensional shrinkage.
Finite element fatigue analysis of rectangular clutch spring of automatic slack adjuster
Xu, Chen-jie; Luo, Zai; Hu, Xiao-feng; Jiang, Wen-song
2015-02-01
The failure of rectangular clutch spring of automatic slack adjuster directly affects the work of automatic slack adjuster. We establish the structural mechanics model of automatic slack adjuster rectangular clutch spring based on its working principle and mechanical structure. In addition, we upload such structural mechanics model to ANSYS Workbench FEA system to predict the fatigue life of rectangular clutch spring. FEA results show that the fatigue life of rectangular clutch spring is 2.0403×105 cycle under the effect of braking loads. In the meantime, fatigue tests of 20 automatic slack adjusters are carried out on the fatigue test bench to verify the conclusion of the structural mechanics model. The experimental results show that the mean fatigue life of rectangular clutch spring is 1.9101×105, which meets the results based on the finite element analysis using ANSYS Workbench FEA system.
Study on the output factors of asymmetrical rectangular electron beam field
International Nuclear Information System (INIS)
Chen Yinghai; Yang Yueqin; Ma Yuhong; Zheng Jin; Zou Lijuan
2009-01-01
Objective: To evaluate the variant regularity of the output factors of asymmetrical rectangular electron beam field. Methods: The output factors of three special fields with different applicators and energies were measured by ionization chamber method at different off-axis distances. Then deviations of the output factors between asymmetrical and symmetric rectangular fields were calculated. Results: The changes of output factor with different off-axis distances in asymmetrical rectangular fields were basically consistent with those in standard square fields with the same applicator. It revealed that the output factor of asymmetrical rectangular field was related with the off-axis ratio of standard square field. Applicator and field size did not show obvious influence on the output factor. Conclusions: The output factor changes of asymmetrical rectangular field are mainly correlated with the off-axis ratio of standard square field. The correction of the output factor is determined by the off-axis ratio changes in standard square field. (authors)
Analysis of junior high school students' difficulty in resolving rectangular conceptual problems
Utami, Aliksia Kristiana Dwi; Mardiyana, Pramudya, Ikrar
2017-08-01
Geometry is one part of the mathematics that must be learned in school and it has important effects on the development of creative thinking skills of learners, but in fact, there are some difficulties experienced by the students. This research focuses on analysis difficulty in resolving rectangular conceptual problems among junior high school students in every creative thinking skills level. This research used a descriptive method aimed to identify the difficulties and cause of the difficulties experienced by five students. The difficulties are associated with rectangular shapes and related problems. Data collection was done based on students' work through test, interview, and observations. The result revealed that student' difficulties in understanding the rectangular concept can be found at every creative thinking skills level. The difficulties are identifying the objects rectangular in the daily life except for a rectangle and square, analyzing the properties of rectangular shapes, and seeing the interrelationships between figures.
A multi-channel coronal spectrophotometer.
Landman, D. A.; Orrall, F. Q.; Zane, R.
1973-01-01
We describe a new multi-channel coronal spectrophotometer system, presently being installed at Mees Solar Observatory, Mount Haleakala, Maui. The apparatus is designed to record and interpret intensities from many sections of the visible and near-visible spectral regions simultaneously, with relatively high spatial and temporal resolution. The detector, a thermoelectrically cooled silicon vidicon camera tube, has its central target area divided into a rectangular array of about 100,000 pixels and is read out in a slow-scan (about 2 sec/frame) mode. Instrument functioning is entirely under PDP 11/45 computer control, and interfacing is via the CAMAC system.
Weighted OFDM for wireless multipath channels
DEFF Research Database (Denmark)
Prasad, Ramjee; Nikookar, H.
2000-01-01
In this paper the novel method of "weighted OFDM" is addressed. Different types of weighting factors (including Rectangular, Bartlett, Gaussian. Raised cosine, Half-sin and Shanon) are considered. The impact of weighting of OFDM on the peak-to-average power ratio (PAPR) is investigated by means...... of simulation and is compared for the above mentioned weighting factors. Results show that by weighting of the OFDM signal the PAPR reduces. Bit error performance of weighted multicarrier transmission over a multipath channel is also investigated. Results indicate that there is a trade off between PAPR...
International Nuclear Information System (INIS)
Sizmann, R.; Varelas, C.
1976-01-01
There is experimental evidence that swift light ions incident at small angles towards single crystalline surfaces can lose an appreciable fraction of their kinetic energy during reflection. It is shown that these projectiles penetrate into the bulk surface region of the crystal. They can travel as channeled particles along long paths through the solid (surface channeling). The angular distribution and the depth history of the re-emerged projectiles are investigated by computer simulations. A considerable fraction of the penetrating projectiles re-emerges from the crystal with constant transverse energy if the angle of incidence is smaller than the critical angle for axial channeling. Analytical formulae are derived based on a diffusion model for surface channeling. A comparison with experimental data exhibits the relevance of the analytical solutions. (Auth.)
Lima, Rui; Wada, Shigeo; Tanaka, Shuji; Takeda, Motohiro; Ishikawa, Takuji; Tsubota, Ken-ichi; Imai, Yohsuke; Yamaguchi, Takami
2008-04-01
Progress in microfabricated technologies has attracted the attention of researchers in several areas, including microcirculation. Microfluidic devices are expected to provide powerful tools not only to better understand the biophysical behavior of blood flow in microvessels, but also for disease diagnosis. Such microfluidic devices for biomedical applications must be compatible with state-of-the-art flow measuring techniques, such as confocal microparticle image velocimetry (PIV). This confocal system has the ability to not only quantify flow patterns inside microchannels with high spatial and temporal resolution, but can also be used to obtain velocity measurements for several optically sectioned images along the depth of the microchannel. In this study, we investigated the ability to obtain velocity measurements using physiological saline (PS) and in vitro blood in a rectangular polydimethysiloxane (PDMS) microchannel (300 microm wide, 45 microm deep) using a confocal micro-PIV system. Applying this combination, measurements of trace particles seeded in the flow were performed for both fluids at a constant flow rate (Re = 0.02). Velocity profiles were acquired by successive measurements at different depth positions to obtain three-dimensional (3-D) information on the behavior of both fluid flows. Generally, the velocity profiles were found to be markedly blunt in the central region, mainly due to the low aspect ratio (h/w = 0.15) of the rectangular microchannel. Predictions using a theoretical model for the rectangular microchannel corresponded quite well with the experimental micro-PIV results for the PS fluid. However, for the in vitro blood with 20% hematocrit, small fluctuations were found in the velocity profiles. The present study clearly shows that confocal micro-PIV can be effectively integrated with a PDMS microchannel and used to obtain blood velocity profiles along the full depth of the microchannel because of its unique 3-D optical sectioning ability
Energy Technology Data Exchange (ETDEWEB)
Haydon, S. C. [Department of Physics, University of New England, Armidale, NSW (Australia)
1968-04-15
A brief summary is given of the principal methods used for initiating spark channels and the various highly time-resolved techniques developed recently for studies with nanosecond resolution. The importance of the percentage overvoltage in determining the early history and subsequent development of the various phases of the growth of the spark channel is discussed. An account is then given of the recent photographic, oscillographic and spectroscopic investigations of spark channels initiated by co-axial cable discharges of spark gaps at low [{approx} 1%] overvoltages. The phenomena observed in the development of the immediate post-breakdown phase, the diffuse glow structure, the growth of the luminous filament and the final formation of the spark channel in hydrogen are described. A brief account is also given of the salient features emerging from corresponding studies of highly overvolted spark gaps in which the spark channel develops from single avalanche conditions. The essential differences between the two types of channel formation are summarized and possible explanations of the general features are indicated. (author)
Cryogenic microwave channelized receiver
International Nuclear Information System (INIS)
Rauscher, C.; Pond, J.M.; Tait, G.B.
1996-01-01
The channelized receiver being presented demonstrates the use of high temperature superconductor technology in a microwave system setting where superconductor, microwave-monolithic-integrated-circuit, and hybrid-integrated-circuit components are united in one package and cooled to liquid-nitrogen temperatures. The receiver consists of a superconducting X-band four-channel demultiplexer with 100-MHz-wide channels, four commercial monolithically integrated mixers, and four custom-designed hybrid-circuit detectors containing heterostructure ramp diodes. The composite receiver unit has been integrated into the payload of the second-phase NRL high temperature superconductor space experiment (HTSSE-II). Prior to payload assembly, the response characteristics of the receiver were measured as functions of frequency, temperature, and drive levels. The article describes the circuitry, discusses the key issues related to design and implementation, and summarizes the experimental results
Directory of Open Access Journals (Sweden)
Bessem Samet
2011-09-01
Full Text Available Recently, Azam, Arshad and Beg [ Banach contraction principle on cone rectangular metric spaces, Appl. Anal. Discrete Math. 2009] introduced the notion of cone rectangular metric spaces by replacing the triangular inequality of a cone metric space by a rectangular inequality. In this paper, we introduce the notion of c-chainable cone rectangular metric space and we establish a fixed point theorem for uniformly locally contractive mappings in such spaces. An example is given to illustrate our obtained result.
Modelling of ultrasonic nondestructive testing in anisotropic materials - Rectangular crack
International Nuclear Information System (INIS)
Bostroem, A.
2001-12-01
Nondestructive testing with ultrasound is a standard procedure in the nuclear power industry when searching for defects, in particular cracks. To develop and qualify testing procedures extensive experimental work on test blocks is usually required. This can take a lot of time and therefore be quite costly. A good mathematical model of the testing situation is therefore of great value as it can reduce the experimental work to a great extent. A good model can be very useful for parametric studies and as a pedagogical tool. A further use of a model is as a tool in the qualification of personnel. In anisotropic materials, e.g. austenitic welds, the propagation of ultrasound becomes much more complicated as compared to isotropic materials. Therefore, modelling is even more useful for anisotropic materials, and it in particular has a greater pedagogical value. The present project has been concerned with a further development of the anisotropic capabilities of the computer program UTDefect, which has so far only contained a strip-like crack as the single defect type for anisotropic materials. To be more specific, the scattering by a rectangular crack in an anisotropic component has been studied and the result is adapted to include transmitting and receiving ultrasonic probes. The component under study is assumed to be anisotropic with arbitrary anisotropy. On the other hand, it is assumed to be homogeneous, and this in particular excludes most welds, where it is seldom an adequate approximation to assume homogeneity. The anisotropy may be arbitrarily oriented and the same is true of the rectangular crack. The crack may also be located near a backside of the component. To solve the scattering problem for the crack an integral equation method is used. The probe model has been developed in an earlier project and to compute the signal response in the receiving probe an electromechanical reciprocity argument is employed. As a rectangle is a truly 3D scatterer the sizes of the
2013-07-16
...-Walled Rectangular Pipe and Tube From China, Korea, Mexico, and Turkey: Notice of Commission... countervailing duty order on light-walled rectangular pipe and tube from China and the antidumping duty orders on light-walled rectangular pipe and tube from China, Korea, Mexico, and Turkey would be likely to lead to...
2013-12-10
...-Walled Rectangular Pipe and Tube From China, Korea, Mexico, and Turkey; Scheduling of Full Five-Year... the Antidumping Duty Orders on Light-Walled Rectangular Pipe and Tube From China, Korea, Mexico, and... on light- walled rectangular pipe and tube from China, Korea, Mexico, and Turkey would be likely to...
Channel Identification Machines
Directory of Open Access Journals (Sweden)
Aurel A. Lazar
2012-01-01
Full Text Available We present a formal methodology for identifying a channel in a system consisting of a communication channel in cascade with an asynchronous sampler. The channel is modeled as a multidimensional filter, while models of asynchronous samplers are taken from neuroscience and communications and include integrate-and-fire neurons, asynchronous sigma/delta modulators and general oscillators in cascade with zero-crossing detectors. We devise channel identification algorithms that recover a projection of the filter(s onto a space of input signals loss-free for both scalar and vector-valued test signals. The test signals are modeled as elements of a reproducing kernel Hilbert space (RKHS with a Dirichlet kernel. Under appropriate limiting conditions on the bandwidth and the order of the test signal space, the filter projection converges to the impulse response of the filter. We show that our results hold for a wide class of RKHSs, including the space of finite-energy bandlimited signals. We also extend our channel identification results to noisy circuits.
Channel identification machines.
Lazar, Aurel A; Slutskiy, Yevgeniy B
2012-01-01
We present a formal methodology for identifying a channel in a system consisting of a communication channel in cascade with an asynchronous sampler. The channel is modeled as a multidimensional filter, while models of asynchronous samplers are taken from neuroscience and communications and include integrate-and-fire neurons, asynchronous sigma/delta modulators and general oscillators in cascade with zero-crossing detectors. We devise channel identification algorithms that recover a projection of the filter(s) onto a space of input signals loss-free for both scalar and vector-valued test signals. The test signals are modeled as elements of a reproducing kernel Hilbert space (RKHS) with a Dirichlet kernel. Under appropriate limiting conditions on the bandwidth and the order of the test signal space, the filter projection converges to the impulse response of the filter. We show that our results hold for a wide class of RKHSs, including the space of finite-energy bandlimited signals. We also extend our channel identification results to noisy circuits.
Interaction of weak shock waves with rectangular meshes in plate
Directory of Open Access Journals (Sweden)
O.A. Mikulich
2016-09-01
Full Text Available In mechanical engineering, building and other industries a significant part of the process includes the presence of various dynamic loads due to technological and mechanical impacts. Consideration of such load effects allows more accurate assessment of the structural elements strength or machine parts. Aim: The aim is to develop an algorithm for calculating of dynamic stress state of plates with meshes for pulse loading in the form of a weak shock wave. Materials and Methods: An integral and discrete Fourier transform were used to solve the problem. An application of Fourier transform by time allowed reducing the dynamic problem of flat deformation to the solution of a finite number of problems for the established oscillations at fixed cyclic frequency values. In the area of Fourier-images the method of boundary integral equations and the apparatus of a complex variable function theory are used to study the dynamic stress concentration. Results: Based on the developed methodology the distribution change of the dynamic circle stress over time on the edge of a rectangular hole is studied. The time sections of stress distribution fields under the influence of pulse dynamic load is constructed.
Compressibility effects in the shear layer over a rectangular cavity
Energy Technology Data Exchange (ETDEWEB)
Beresh, Steven J.; Wagner, Justin; Casper, Katya Marie
2016-10-26
we studied the influence of compressibility on the shear layer over a rectangular cavity of variable width in a free stream Mach number range of 0.6–2.5 using particle image velocimetry data in the streamwise centre plane. As the Mach number increases, the vertical component of the turbulence intensity diminishes modestly in the widest cavity, but the two narrower cavities show a more substantial drop in all three components as well as the turbulent shear stress. Furthermore, this contrasts with canonical free shear layers, which show significant reductions in only the vertical component and the turbulent shear stress due to compressibility. The vorticity thickness of the cavity shear layer grows rapidly as it initially develops, then transitions to a slower growth rate once its instability saturates. When normalized by their estimated incompressible values, the growth rates prior to saturation display the classic compressibility effect of suppression as the convective Mach number rises, in excellent agreement with comparable free shear layer data. The specific trend of the reduction in growth rate due to compressibility is modified by the cavity width.
Diversity of acoustic streaming in a rectangular acoustofluidic field.
Tang, Qiang; Hu, Junhui
2015-04-01
Diversity of acoustic streaming field in a 2D rectangular chamber with a traveling wave and using water as the acoustic medium is numerically investigated by the finite element method. It is found that the working frequency, the vibration excitation source length, and the distance and phase difference between two separated symmetric vibration excitation sources can cause the diversity in the acoustic streaming pattern. It is also found that a small object in the acoustic field results in an additional eddy, and affects the eddy size in the acoustic streaming field. In addition, the computation results show that with an increase of the acoustic medium's temperature, the speed of the main acoustic streaming decreases first and then increases, and the angular velocity of the corner eddies increases monotonously, which can be clearly explained by the change of the acoustic dissipation factor and shearing viscosity of the acoustic medium with temperature. Commercialized FEM software COMSOL Multiphysics is used to implement the computation tasks, which makes our method very easy to use. And the computation method is partially verified by an established analytical solution. Copyright © 2014 Elsevier B.V. All rights reserved.
Propagation of spiral waves pinned to circular and rectangular obstacles.
Sutthiopad, Malee; Luengviriya, Jiraporn; Porjai, Porramain; Phantu, Metinee; Kanchanawarin, Jarin; Müller, Stefan C; Luengviriya, Chaiya
2015-05-01
We present an investigation of spiral waves pinned to circular and rectangular obstacles with different circumferences in both thin layers of the Belousov-Zhabotinsky reaction and numerical simulations with the Oregonator model. For circular objects, the area always increases with the circumference. In contrast, we varied the circumference of rectangles with equal areas by adjusting their width w and height h. For both obstacle forms, the propagating parameters (i.e., wavelength, wave period, and velocity of pinned spiral waves) increase with the circumference, regardless of the obstacle area. Despite these common features of the parameters, the forms of pinned spiral waves depend on the obstacle shapes. The structures of spiral waves pinned to circles as well as rectangles with the ratio w/h∼1 are similar to Archimedean spirals. When w/h increases, deformations of the spiral shapes are observed. For extremely thin rectangles with w/h≫1, these shapes can be constructed by employing semicircles with different radii which relate to the obstacle width and the core diameter of free spirals.
LEDA 074886: A REMARKABLE RECTANGULAR-LOOKING GALAXY
International Nuclear Information System (INIS)
Graham, Alister W.; Spitler, Lee R.; Forbes, Duncan A.; Lisker, Thorsten; Janz, Joachim; Moore, Ben
2012-01-01
We report the discovery of an interesting and rare rectangular-shaped galaxy. At a distance of 21 Mpc, the dwarf galaxy LEDA 074886 has an absolute R-band magnitude of –17.3 mag. Adding to this galaxy's intrigue is the presence of an embedded, edge-on stellar disk (of extent 2 R e,disk = 12'' = 1.2 kpc) for which Forbes et al. reported v rot /σ ≈ 1.4. We speculate that this galaxy may be the remnant of two (nearly edge-on) merged disk galaxies in which the initial gas was driven inward and subsequently formed the inner disk, while the stars at larger radii effectively experienced a dissipationless merger event resulting in this 'emerald cut galaxy' having very boxy isophotes with a 4 /a = –0.05 to –0.08 from 3 to 5 kpc. This galaxy suggests that knowledge from simulations of both 'wet' and 'dry' galaxy mergers may need to be combined to properly understand the various paths that galaxy evolution can take, with a particular relevance to blue elliptical galaxies.
Camilleri, Mark Anthony
2017-01-01
The distribution channels link the customers with the businesses. For many years, the tourism businesses may have distributed their products and services through intermediaries. However, the latest advances in technology have brought significant changes in this regard. More individuals and corporate customers are increasingly benefiting of ubiquitous technologies, including digital media. The development of mobile devices and their applications, are offering a wide range of possibilities to t...
Athermal channeled spectropolarimeter
Jones, Julia Craven
2015-12-08
A temperature insensitive (athermal) channeled spectropolarimeter (CSP) is described. The athermal CSP includes a crystal retarder formed of a biaxial crystal. The crystal retarder has three crystal axes, wherein each axis has its own distinct index of refraction. The axes are oriented in a particular manner, causing an amplitude modulating carrier frequency induced by the crystal retarder to be thermally invariant. Accordingly, a calibration beam technique can be used over a relatively wide range of ambient temperatures, with a common calibration data set.
On signal design by the R/0/ criterion for non-white Gaussian noise channels
Bordelon, D. L.
1977-01-01
The use of the cut-off rate criterion for modulation system design is investigated for channels with non-white Gaussian noise. A signal space representation of the waveform channel is developed, and the cut-off rate for vector channels with additive non-white Gaussian noise and unquantized demodulation is derived. When the signal input to the channel is a continuous random vector, maximization of the cut-off rate with constrained average signal energy leads to a water-filling interpretation of optimal energy distribution in signal space. The necessary condition for a finite signal set to maximize the cut-off rate with constrained energy and an equally likely probability assignment of signal vectors is presented, and an algorithm is outlined for numerically computing the optimum signal set. As an example, the rectangular signal set which has the water-filling average energy distribution and the optimum rectangular set are compared.
Li, Jichun
2014-12-02
For decades, the widely used finite difference method on staggered grids, also known as the marker and cell (MAC) method, has been one of the simplest and most effective numerical schemes for solving the Stokes equations and Navier–Stokes equations. Its superconvergence on uniform meshes has been observed by Nicolaides (SIAM J Numer Anal 29(6):1579–1591, 1992), but the rigorous proof is never given. Its behavior on non-uniform grids is not well studied, since most publications only consider uniform grids. In this work, we develop the MAC scheme on non-uniform rectangular meshes, and for the first time we theoretically prove that the superconvergence phenomenon (i.e., second order convergence in the (Formula presented.) norm for both velocity and pressure) holds true for the MAC method on non-uniform rectangular meshes. With a careful and accurate analysis of various sources of errors, we observe that even though the local truncation errors are only first order in terms of mesh size, the global errors after summation are second order due to the amazing cancellation of local errors. This observation leads to the elegant superconvergence analysis even with non-uniform meshes. Numerical results are given to verify our theoretical analysis.
DEFF Research Database (Denmark)
Carrizosa, Emilio; Guerrero, Vanesa; Morales, Dolores Romero
In this paper we address the problem of visualizing the proportions and the similarities attached to a set of individuals. We represent this information using a rectangular map, i.e., a subdivision of a rectangle into rectangular portions so that each portion is associated with one individual...... area and adjacency requirements, this visualization problem is formulated as a three-objective Mixed Integer Nonlinear Problem. The first objective seeks to maximize the number of true adjacencies that the rectangular map is able to reproduce, the second one is to minimize the number of false...
Energy Technology Data Exchange (ETDEWEB)
Wang, Dongqiang; Wu, Chengjun [Xi' an Jiaotong University, Xi' an (China)
2016-03-15
Particle damping technology is widely used in mechanical and structural systems or civil engineering to reduce vibration and suppress noise as a result of its high efficiency, simplicity and easy implementation, low cost, and energy-saving characteristic without the need for any auxiliary power equipment. Research on particle damping theory has focused on the vibration response of the particle damping structure, but the acoustic radiation of the particle damping structure is rarely investigated. Therefore, a feasible modeling method to predict the vibration response and acoustic radiation of the particle damping structure is desirable to satisfy the actual requirements in industrial practice. In this paper, a novel simulation method based on multiphase flow theory of gas particle by COMSOL multiphysics is developed to study the vibration and acoustic radiation characteristics of a cantilever rectangular plate with Particle dampers (PDs). The frequency response functions and scattered far-field sound pressure level of the plate without and with PDs under forced vibration are predicted, and the predictions agree well with the experimental results. Results demonstrate that the added PDs have a significant effect on vibration damping and noise reduction for the primary structure. The presented work in this paper shows that the theoretical work is valid, which can provide important theoretical guidance for low-noise optimization design of particle damping structure. This model also has an important reference value for the noise control of this kind of structure.
Variance reduction techniques for 14 MeV neutron streaming problem in rectangular annular bent duct
Energy Technology Data Exchange (ETDEWEB)
Ueki, Kotaro [Ship Research Inst., Mitaka, Tokyo (Japan)
1998-03-01
Monte Carlo method is the powerful technique for solving wide range of radiation transport problems. Its features are that it can solve the Boltzmann`s transport equation almost without approximation, and that the complexity of the systems to be treated rarely becomes a problem. However, the Monte Carlo calculation is always accompanied by statistical errors called variance. In shielding calculation, standard deviation or fractional standard deviation (FSD) is used frequently. The expression of the FSD is shown. Radiation shielding problems are roughly divided into transmission through deep layer and streaming problem. In the streaming problem, the large difference in the weight depending on the history of particles makes the FSD of Monte Carlo calculation worse. The streaming experiment in the 14 MeV neutron rectangular annular bent duct, which is the typical streaming bench mark experiment carried out of the OKTAVIAN of Osaka University, was analyzed by MCNP 4B, and the reduction of variance or FSD was attempted. The experimental system is shown. The analysis model by MCNP 4B, the input data and the results of analysis are reported, and the comparison with the experimental results was examined. (K.I.)
Directory of Open Access Journals (Sweden)
Ljiljana Stošić Mihajlović
2014-07-01
Full Text Available Marketing channel is a set of entities and institutions, completion of distribution and marketing activities, attend the efficient and effective networking of producers and consumers. Marketing channels include the total flows of goods, money and information taking place between the institutions in the system of marketing, establishing a connection between them. The functions of the exchange, the physical supply and service activities, inherent in the system of marketing and trade. They represent paths which products and services are moving after the production, which will ultimately end up buying and eating by the user.
Experimental and numerical study of a premixed flame stabilized by a rectangular section cylinder
Energy Technology Data Exchange (ETDEWEB)
Bailly, P.; Garreton, D. [Electricite de France (EDF), 92 - Clamart (France); Bruel, P.; Champion, M. et al. [Ecole Nationale Superieure de Mecanique et d`Aerotechnique (ENSMA), 86 - Poitiers (France)
1996-12-31
A numerical and experimental study of a turbulent reactive zone stabilized by a rectangular cross-section cylinder positioned in a fully developed turbulent channel flow of a propane-air mixture is presented. Such a flow geometry has been chosen because it features most of the phenomena (recirculation zones, flame stabilization, wall-flame interactions) present in systems of practical interest. The flow is experimentally investigated with a 2-D laser Doppler velocimeter and thin compensated thermocouples. The modelling of the reactive flow is based on a modified Bray-Moss-Libby combustion model associated with a Reynolds-Stress turbulence model. The resulting set of equations is solved by a finite difference Navier-Stokes code on a rectilinear mesh. The comparison between numerical nd experimental results shows that the use of a full second-order model with dedicated equations for both the Reynolds stresses and the scalar turbulent flux does not lead to a significant improvement of the numerical results. Indeed, although the longitudinal scalar turbulent flux exhibits a non-gradient behaviour, the evolution of the mean progress variable introduced by the Bray-Moss-Libby model appears to be mainly controlled by the transverse scalar gradient which follows in all cases a gradient like behaviour. Additional measurements and calculations are required to precise the exact range of mass flow rate, equivalence ratio and obstacle bluffness over which such a tendency can be observed. Nevertheless, the tentative conclusion of this study is that, as soon as a refinement of the modelling of reactive flows in combustors which involve flameholders similar to the one investigated in this study is needed, the use of a Reynolds-Stress model should be the first necessary step. Then, depending on the exact nature of the flow geometry, a second phase should consist in evaluating the need for the use of a full second order model like the one presented in this study. (authors) 25 refs.
Reshadi, Milad; Saidi, Mohammad Hassan; Ebrahimi, Abbas
2018-02-01
This paper presents an analysis of the combined electro-osmotic and pressure-driven axial flows of viscoelastic fluids in a rectangular microchannel with arbitrary aspect ratios. The rheological behavior of the fluid is described by the complete form of Phan-Thien-Tanner (PTT) model with the Gordon-Schowalter convected derivative which covers the upper convected Maxwell, Johnson-Segalman and FENE-P models. Our numerical simulation is based on the computation of 2D Poisson-Boltzmann, Cauchy momentum and PTT constitutive equations. The solution of these governing nonlinear coupled set of equations is obtained by using the second-order central finite difference method in a non-uniform grid system and is verified against 1D analytical solution of the velocity profile with less than 0.06% relative error. Also, a parametric study is carried out to investigate the effect of channel aspect ratio (width to height), wall zeta potential and the Debye-Hückel parameter on 2D velocity profile, volumetric flow rate and the Poiseuille number in the mixed EO/PD flows of viscoelastic fluids with different Weissenberg numbers. Our results show that, for low channel aspect ratios, the previous 1D analytical models underestimate the velocity profile at the channel half-width centerline in the case of favorable pressure gradients and overestimate it in the case of adverse pressure gradients. The results reveal that the inapplicability of the Debye-Hückel approximation at high zeta potentials is more significant for higher Weissenberg number fluids. Also, it is found that, under the specified values of electrokinetic parameters, there is a threshold for velocity scale ratio in which the Poiseuille number is approximately independent of channel aspect ratio.
International Nuclear Information System (INIS)
Herve, Patrick
1975-01-01
This is a theoretical study of an electrically viscous fluid flowing in a straight rectangular cross section channel, a wall of which, infinitely conducting, is placed perpendicularly to the direction of a uniform magnetic induction field. The three other walls of the channel being electrically insulating, remain motionless. Formulas giving velocity distribution law in the straight section of the flow in relation to the Hartmann's number, curves illustrating the accelerating effect produced across the whole section, by the application of the magnetic induction field, and example for the distribution of the electric current lines in case of a square section are given [fr
Investigation of process induced warpage for pultrusion of a rectangular hollow profile
DEFF Research Database (Denmark)
Baran, Ismet; Hattel, Jesper Henri; Akkerman, Remko
2015-01-01
A novel thermo-chemical–mechanical analysis of the pultrusion process is presented. A process simulation is performed for an industrially pultruded rectangular hollow profile containing both unidirectional (UD) roving and continuous filament mat (CFM) layers. The reinforcements are impregnated...
Rapid State Space Modeling Tool for Rectangular Wing Aeroservoelastic Studies
Suh, Peter M.; Conyers, Howard Jason; Mavris, Dimitri N.
2015-01-01
This report introduces a modeling and simulation tool for aeroservoelastic analysis of rectangular wings with trailing-edge control surfaces. The inputs to the code are planform design parameters such as wing span, aspect ratio, and number of control surfaces. Using this information, the generalized forces are computed using the doublet-lattice method. Using Roger's approximation, a rational function approximation is computed. The output, computed in a few seconds, is a state space aeroservoelastic model which can be used for analysis and control design. The tool is fully parameterized with default information so there is little required interaction with the model developer. All parameters can be easily modified if desired. The focus of this report is on tool presentation, verification, and validation. These processes are carried out in stages throughout the report. The rational function approximation is verified against computed generalized forces for a plate model. A model composed of finite element plates is compared to a modal analysis from commercial software and an independently conducted experimental ground vibration test analysis. Aeroservoelastic analysis is the ultimate goal of this tool, therefore, the flutter speed and frequency for a clamped plate are computed using damping-versus-velocity and frequency-versus-velocity analysis. The computational results are compared to a previously published computational analysis and wind-tunnel results for the same structure. A case study of a generic wing model with a single control surface is presented. Verification of the state space model is presented in comparison to damping-versus-velocity and frequency-versus-velocity analysis, including the analysis of the model in response to a 1-cos gust.
Thermal vibration of a rectangular single-layered graphene sheet with quantum effects
International Nuclear Information System (INIS)
Wang, Lifeng; Hu, Haiyan
2014-01-01
The thermal vibration of a rectangular single-layered graphene sheet is investigated by using a rectangular nonlocal elastic plate model with quantum effects taken into account when the law of energy equipartition is unreliable. The relation between the temperature and the Root of Mean Squared (RMS) amplitude of vibration at any point of the rectangular single-layered graphene sheet in simply supported case is derived first from the rectangular nonlocal elastic plate model with the strain gradient of the second order taken into consideration so as to characterize the effect of microstructure of the graphene sheet. Then, the RMS amplitude of thermal vibration of a rectangular single-layered graphene sheet simply supported on an elastic foundation is derived. The study shows that the RMS amplitude of the rectangular single-layered graphene sheet predicted from the quantum theory is lower than that predicted from the law of energy equipartition. The maximal relative difference of RMS amplitude of thermal vibration appears at the sheet corners. The microstructure of the graphene sheet has a little effect on the thermal vibrations of lower modes, but exhibits an obvious effect on the thermal vibrations of higher modes. The quantum effect is more important for the thermal vibration of higher modes in the case of smaller sides and lower temperature. The relative difference of maximal RMS amplitude of thermal vibration of a rectangular single-layered graphene sheet decreases monotonically with an increase of temperature. The absolute difference of maximal RMS amplitude of thermal vibration of a rectangular single-layered graphene sheet increases slowly with the rising of Winkler foundation modulus.
Recovery of the Dirac system from the rectangular Weyl matrix function
International Nuclear Information System (INIS)
Fritzsche, B; Kirstein, B; Roitberg, I Ya; Sakhnovich, A L
2012-01-01
Weyl theory for Dirac systems with rectangular matrix potentials is non-classical. The corresponding Weyl functions are rectangular matrix functions. Furthermore, they are non-expansive in the upper semi-plane. Inverse problems are studied for such Weyl functions, and some results are new even for the square Weyl functions. High-energy asymptotics of Weyl functions and Borg–Marchenko-type uniqueness results are derived too. (paper)
The time of simultaneous tunneling of identical particles through the rectangular quantum barrier
International Nuclear Information System (INIS)
Martsenyuk, L.S.; Omelchenko, S.A.
2010-01-01
Work is devoted to studying the influence of exchange processes on a time of simultaneous crossing by identical particles of a rectangular quantum barrier. It is shown, that such processes essentially influence on the parameters of tunneling. The size of addition to time of identical particles tunneling, arising up because of their exchange interaction in a field of a rectangular quantum barrier is first counted.
Design and construction of a mode converter from TE10(rectangular) to TE11(circular)
International Nuclear Information System (INIS)
Tubbing, B.J.D.
1984-08-01
The design and manufacturing of a wavelength mode converter from the TE 10 (rectangular) mode in oversized rectangular to the TE 11 (circular) mode in oversized circular waveguide is described. A differential equation for the cross-sectional shape of the converter was solved numerically. A stainless-steel mandrel was produced on a numerically controlled milling machine. Sixteen converters were produced by means of electroforming on one mandrel. (Auth.)
Experimental investigation on carbon nano tubes coated brass rectangular extended surfaces
International Nuclear Information System (INIS)
Senthilkumar, Rajendran; Prabhu, Sethuramalingam; Cheralathan, Marimuthu
2013-01-01
Finned surface has been extensively used for free convection cooling of internal combustion engines and several electronic kits etc. Here rectangular brass fin was preferred for analysis. Thermocouples were attached all over the surface of the fin in equal distances. The measurement of surface temperature and calculated convective heat transfer rate were reported for several heat input values. The overall system performance can be improved by enhancing heat transfer rate of extended surfaces. Based on the above requirement, brass surface was coated by carbon nano tubes. The temperature and heat transfer characteristics were investigated using Taguchi method for experimental design. Finally the performances of coated and non-coated rectangular brass fins were compared. The average percentage of increase in heat transfer rate was proved around 12% for carbon nanocoated rectangular brass fins. - Graphical abstract: The designed Natural and Forced convection Heat Transfer Test Rig measures the enhanced rate of heat transfer for nano coated rectangular fins than in non-coated fins. Highlights: ► Rectangular brass fins were preferred for convective heat transfer process. ► The rectangular brass fins are coated with multi wall carbon nano tubes in EBPVD process with nanometer thickness. ► Temperature and heat transfer rate were investigated for nanocoated and non-coated fins by using Taguchi method. ► Multi wall carbon nanotubes act as a pin fin to enhance surface area for effective convective heat transfer rate.
Channel Power in Multi-Channel Environments
M.G. Dekimpe (Marnik); B. Skiera (Bernd)
2004-01-01
textabstractIn the literature, little attention has been paid to instances where companies add an Internet channel to their direct channel portfolio. However, actively managing multiple sales channels requires knowing the customers’ channel preferences and the resulting channel power. Two key
Evaluation of the uniformity of wide circular reference source and application of correction factors
International Nuclear Information System (INIS)
Silva Junior, I.A.; Xavier, M.; Siqueira, P.T.D.; Sordi, G.A.A.; Potiens, M.P.A.
2017-01-01
In this work the uniformity of wide circular reference sources is evaluated. This kind of reference source is still widely used in Brazil. In previous works wide rectangular reference sources were analyzed and it was shown the importance of the application of correction factors in calibration procedures of radiation monitors. Now a transposition of the methods used formerly is performed, evaluating the uniformities of circular reference sources and calculating the associated correction factors. (author)
The KATP channel in migraine pathophysiology
DEFF Research Database (Denmark)
Al-Karagholi, Mohammad Al-Mahdi; Hansen, Jakob Møller; Severinsen, Johanne
2017-01-01
BACKGROUND: To review the distribution and function of KATP channels, describe the use of KATP channels openers in clinical trials and make the case that these channels may play a role in headache and migraine. DISCUSSION: KATP channels are widely present in the trigeminovascular system and play...... an important role in the regulation of tone in cerebral and meningeal arteries. Clinical trials using synthetic KATP channel openers report headache as a prevalent-side effect in non-migraine sufferers, indicating that KATP channel opening may cause headache, possibly due to vascular mechanisms. Whether KATP...... channel openers can provoke migraine in migraine sufferers is not known. CONCLUSION: We suggest that KATP channels may play an important role in migraine pathogenesis and could be a potential novel therapeutic anti-migraine target....
Glăvan, D. O.; Radu, I.; Babanatsas, T.; Babanatis Merce, R. M.; Kiss, I.; Gaspar, M. C.
2018-01-01
The paper presents a pneumatic system with two oscillating masses. The system is composed of a cylinder (framework) with mass m1, which has a piston with mass m2 inside. The cylinder (framework system) has one supplying channel for compressed air and one evicting channel for each work chamber (left and right of the piston). Functionality of the piston position comparatively with the cylinder (framework) is possible through the supplying or evicting of compressed air. The variable force that keeps the movement depends on variation of the pressure that is changing depending on the piston position according to the cylinder (framework) and to the section form that is supplying and evicting channels with compressed air. The paper presents the physical model/pattern, the mathematical model/pattern (differential equations) and numerical solution of the differential equations in hypothesis with the section form of supplying and evicting channels with compressed air is rectangular (variation linear) or circular (variation nonlinear).
International Nuclear Information System (INIS)
Arbeiter, F.; Heinzel, V.; Leichtle, D.; Stratmanns, E.; Gordeev, S.
2006-01-01
The design of the IFMIF High Flux Test Module (HFTM) is based on the predictions for the heat transfer in narrow channels conducting helium flow of 50 o C inlet temperature at 0.3 MPa. The emerging helium flow conditions are in the transition regime of laminar to turbulent flow. The rectangular cooling channels are too short for the full development of the coolant flow. Relaminarization along the cooling passage is expected. At the shorter sides of the channels secondary flow occurs, which may have an impact on the temperature field inside the irradiation specimen's stack. As those conditions are not covered by available experimental data, the dedicated gas loop ITHEX has been constructed to operate up to a pressure of 0.42 MPa and temperatures of 200 o C. It's objective is to conduct experiments for the validation of the STAR-CD CFD code used for the design of the HFTM. As a first stage, two annular test-sections with hydraulic diameter of 1.2 mm have been used, where the experiments have been varied with respect to gas species (N 2 , He), inlet pressure, dimensionless heating span and Reynolds number encompassing the range of operational parameters of the HFTM. Local friction factors and Nusselt numbers have been obtained giving evidence that the transition regime will extend to Reynolds 10,000. For heating rates comparable to the HFTM filled with RAFM steels, local heat transfer coefficients are in consistence with the measured friction data. To validate local velocity profiles the ITHEX facility was further equipped with a flat rectangular test-section and a Laser Doppler Anemometry (LDA) system. An appropriate optical system has been developed and tested for the tiny observation volume of 40 μm diameter. Velocity profiles as induced by the transition of a wide inlet plenum to the flat mini-channels have been measured. Whereas the CFD models were able to reproduce the patterns far away from the nozzle, they show some disagreement for the conditions at the
Ogasawara, Ryosuke; Endoh, Tetsuo
2018-04-01
In this study, with the aim to achieve a wide noise margin and an excellent power delay product (PDP), a vertical body channel (BC)-MOSFET-based six-transistor (6T) static random access memory (SRAM) array is evaluated by changing the number of pillars in each part of a SRAM cell, that is, by changing the cell ratio in the SRAM cell. This 60 nm vertical BC-MOSFET-based 6T SRAM array realizes 0.84 V operation under the best PDP and up to 31% improvement of PDP compared with the 6T SRAM array based on a 90 nm planar MOSFET whose gate length and channel width are the same as those of the 60 nm vertical BC-MOSFET. Additionally, the vertical BC-MOSFET-based 6T SRAM array achieves an 8.8% wider read static noise margin (RSNM), a 16% wider write margin (WM), and an 89% smaller leakage. Moreover, it is shown that changing the cell ratio brings larger improvements of RSNM, WM, and write time in the vertical BC-MOSFET-based 6T SRAM array.
Modulation of ERG channels by XE991
DEFF Research Database (Denmark)
Elmedyb, Pernille; Calloe, Kirstine; Schmitt, Nicole
2007-01-01
In neuronal tissue, KCNQ2-5 channels conduct the physiologically important M-current. In some neurones, the M-current may in addition be conducted partly by ERG potassium channels, which have widely overlapping expression with the KCNQ channel subunits. XE991 and linopiridine are known to be stan......In neuronal tissue, KCNQ2-5 channels conduct the physiologically important M-current. In some neurones, the M-current may in addition be conducted partly by ERG potassium channels, which have widely overlapping expression with the KCNQ channel subunits. XE991 and linopiridine are known...... to be standard KCNQ potassium channel blockers. These compounds have been used in many different tissues as specific pharmacological tools to discern native currents conducted by KCNQ channels from other potassium currents. In this article, we demonstrate that ERG1-2 channels are also reversibly inhibited by XE......991 in the micromolar range (EC(50) 107 microM for ERG1). The effect has been characterized in Xenopus laevis oocytes expressing ERG1-2 and in the mammalian HEK293 cell line stably expressing ERG1 channels. The IC(50) values for block of KCNQ channels by XE991 range 1-65 microM. In conclusion, great...
Zhang, Ruobing; Liang, Dapeng; Zheng, Nanchen; Xiao, Jianfu; Mo, Mengbin; Li, Jing
2013-03-01
Pulsed electric field (PEF) is a novel non-thermal food processing technology that involves the electric discharge of high voltage short pulses through the food product. In PEF study, rectangular pulses are most commonly used for inactivating microorganisms. However, little information is available on the inactivation effect of rising time of rectangular pulse. In this paper, inactivation effects, electric field strength, treatment time and conductivity on staphylococcus aureus inactivation were investigated when the pulse rising time is reduced from 2.5 μs to 200 ns. Experimental results showed that inactivation effect of PEF increased with electric field strength, solution conductivity and treatment time. Rising time of the rectangular pulse had a significant effect on the inactivation of staphylococcus aureus. Rectangular pulses with a rising time of 200 ns had a better inactivation effect than that with 2 μs. In addition, temperature increase of the solution treated by pulses with 200 ns rising time was lower than that with 2 μs. In order to obtain a given inactivation effect, treatment time required for the rectangular pulse with 200 ns rise time was shorter than that with 2 μs.
Optimal design for rectangular isolated footings using the real soil pressure
Directory of Open Access Journals (Sweden)
Arnulfo Luévanos Rojas
2017-05-01
Full Text Available The standard design method (classical method for reinforced concrete rectangular footings is: First, a dimension is proposed and should comply with the allowable stresses; subsequently, the effective depth is obtained from the maximum moment and is checked against the bending shear and the punching shear until, it complies with these conditions and, then, steel reinforcement is obtained, but it is not guarantee that the minimum cost will be obtained. This paper shows an optimal design for reinforced concrete rectangular footings using the new model. A numerical experimentation is presented to show the model capability to estimate the minimum cost design of the materials used for a rectangular footing that supports an axial load and moments in two directions in accordance to the building code requirements for structural concrete and commentary (ACI 318-13. Also, a comparison is made between the optimal design and current design for rectangular footings. The solutions show that the optimal design is more economical and more precise with respect to the current design, because standard design is done by trial and error. Then, the optimal design should be used to obtain the minimum cost design for reinforced concrete rectangular footings.
International Nuclear Information System (INIS)
Zhang, Ruobing; Liang, Dapeng; Xiao, Jianfu; Mo, Mengbin; Li, Jing; Zheng, Nanchen
2013-01-01
Pulsed electric field (PEF) is a novel non-thermal food processing technology that involves the electric discharge of high voltage short pulses through the food product. In PEF study, rectangular pulses are most commonly used for inactivating microorganisms. However, little information is available on the inactivation effect of rising time of rectangular pulse. In this paper, inactivation effects, electric field strength, treatment time and conductivity on staphylococcus aureus inactivation were investigated when the pulse rising time is reduced from 2.5 μs to 200 ns. Experimental results showed that inactivation effect of PEF increased with electric field strength, solution conductivity and treatment time. Rising time of the rectangular pulse had a significant effect on the inactivation of staphylococcus aureus. Rectangular pulses with a rising time of 200 ns had a better inactivation effect than that with 2 μs. In addition, temperature increase of the solution treated by pulses with 200 ns rising time was lower than that with 2 μs. In order to obtain a given inactivation effect, treatment time required for the rectangular pulse with 200 ns rise time was shorter than that with 2 μs.
Analysis of the rectangular resonator with butterfly MMI coupler using SOI
Kim, Sun-Ho; Park, Jun-Hee; Kim, Eudum; Jeon, Su-Jin; Kim, Ji-Hoon; Choi, Young-Wan
2018-02-01
We propose a rectangular resonator sensor structure with butterfly MMI coupler using SOI. It consists of the rectangular resonator, total internal reflection (TIR) mirror, and the butterfly MMI coupler. The rectangular resonator is expected to be used as bio and chemical sensors because of the advantages of using MMI coupler and the absence of bending loss unlike ring resonators. The butterfly MMI coupler can miniaturize the device compared to conventional MMI by using a linear butterfly shape instead of a square in the MMI part. The width, height, and slab height of the rib type waveguide are designed to be 1.5 μm, 1.5 μm, and 0.9 μm, respectively. This structure is designed as a single mode. When designing a TIR mirror, we considered the Goos-Hänchen shift and critical angle. We designed 3:1 MMI coupler because rectangular resonator has no bending loss. The width of MMI is designed to be 4.5 μm and we optimize the length of the butterfly MMI coupler using finite-difference time-domain (FDTD) method for higher Q-factor. It has the equal performance with conventional MMI even though the length is reduced by 1/3. As a result of the simulation, Qfactor of rectangular resonator can be obtained as 7381.
Channelling and electromagnetic radiation of channelling particles
International Nuclear Information System (INIS)
Kalashnikov, N.
1983-01-01
A brief description is presented of the channelling of charged particles between atoms in the crystal lattice. The specificities are discussed of the transverse motion of channelling particles as are the origin and properties of quasi-characteristic radiation of channelling particles which accompany transfers from one band of permissible energies of the transverse motion of channelling particles to the other. (B.S.)
Pore size matters for potassium channel conductance
Moldenhauer, Hans; Pincuntureo, Matías
2016-01-01
Ion channels are membrane proteins that mediate efficient ion transport across the hydrophobic core of cell membranes, an unlikely process in their absence. K+ channels discriminate K+ over cations with similar radii with extraordinary selectivity and display a wide diversity of ion transport rates, covering differences of two orders of magnitude in unitary conductance. The pore domains of large- and small-conductance K+ channels share a general architectural design comprising a conserved narrow selectivity filter, which forms intimate interactions with permeant ions, flanked by two wider vestibules toward the internal and external openings. In large-conductance K+ channels, the inner vestibule is wide, whereas in small-conductance channels it is narrow. Here we raise the idea that the physical dimensions of the hydrophobic internal vestibule limit ion transport in K+ channels, accounting for their diversity in unitary conductance. PMID:27619418
Kramer, W.; Clercx, H.J.H.; van Heijst, G.J.F.
2008-01-01
This paper reports on a numerical study of forced two-dimensional turbulence in a periodic channel with flat no-slip walls. Since corners or curved domain boundaries, which are met in the standard rectangular, square, or circular geometries, are absent in this geometry, the (statistical) analysis of
Kramer, W.; Clercx, H.J.H.; Heijst, van G.J.F.
2008-01-01
This paper reports on a numerical study of forced two-dimensional turbulence in a periodic channel with flat no-slip walls. Since corners or curved domain boundaries, met in the standard rectangular, square or circular geometries, are absent in this geometry, the (statistical) analysis of the flow
Velocity-based analysis of sediment incipient deposition in rigid boundary open channels.
Aksoy, Hafzullah; Safari, Mir Jafar Sadegh; Unal, Necati Erdem; Mohammadi, Mirali
2017-11-01
Drainage systems must be designed in a way to minimize undesired problems such as decrease in hydraulic capacity of the channel, blockage and transport of pollutants due to deposition of sediment. Channel design considering self-cleansing criteria are used to solve the sedimentation problem. Incipient deposition is one of the non-deposition self-cleansing design criteria that can be used as a conservative method for channel design. Experimental studies have been carried out in five different cross-section channels, namely trapezoidal, rectangular, circular, U-shape and V-bottom. Experiments were performed in a tilting flume using four different sizes of sands as sediment in nine different channel bed slopes. Two well-known methods, namely the Novak & Nalluri and Yang methods are considered for the analysis of sediment motion. Equations developed using experimental data are found to be in agreement with the literature. It is concluded that the design velocity depends on the shape of the channel cross-section. Rectangular and V-bottom channels need lower and higher incipient deposition velocities, respectively, in comparison with other channels.
Schmitz, Arne; Schinnenburg, Marc; Gross, James; Aguiar, Ana
For any communication system the Signal-to-Interference-plus-Noise-Ratio of the link is a fundamental metric. Recall (cf. Chapter 9) that the SINR is defined as the ratio between the received power of the signal of interest and the sum of all "disturbing" power sources (i.e. interference and noise). From information theory it is known that a higher SINR increases the maximum possible error-free transmission rate (referred to as Shannon capacity [417] of any communication system and vice versa). Conversely, the higher the SINR, the lower will be the bit error rate in practical systems. While one aspect of the SINR is the sum of all distracting power sources, another issue is the received power. This depends on the transmitted power, the used antennas, possibly on signal processing techniques and ultimately on the channel gain between transmitter and receiver.
International Nuclear Information System (INIS)
Abelin, H.; Birgersson, L.; Widen, H.; Aagren, T.; Moreno, L.; Neretnieks, I.
1990-07-01
Channeling of water flow and tracer transport in real fractures in a granite body at Stripa have been investigated experimentally. The experimental site was located 360 m below the ground level. Two kinds of experiments were performed. In the single hole experiments, 20 cm diameter holes were drilled about 2.5 m into the rock in the plane of the fracture. Specially designed packers were used to inject water into the fracture in 5 cm intervals all along the fracture trace in the hole. The variation of the injection flowrates along the fracture were used to determine the transmissivity variations in the fracture plane. Detailed photographs were taken from inside the hole and the visual fracture aperture was compared with the injection flowrates in the same locations. Geostatistical methods were used to evaluate the results. Five holes were measured in great detail. In addition 7 holes were drilled and scanned by simpler packer systems. A double hole experiment was performed where two parallel holes were drilled in the same fracture plane at nearly 2 m distance. Pressure pulse tests were made between the holes in both directions. Tracers were injected in 5 locations in one hole and monitored for in many locations in the other hole. The single hole experiment and the double hole experiment show that most of the fracture planes are tight but that there are open sections which form connected channels over distances of at least 2 meters. It was also found in the double hole experiment that the investigated fracture was intersected by at least one fracture between the two holes which diverted a large amount of the injected tracers to several distant locations at the tunnel wall. (authours)
PERFORMANCE ANALYSIS OF RECTANGULAR MPA USING DIFFERENT SUBSTRATE MATERIALS FOR WLAN APPLICATION
Directory of Open Access Journals (Sweden)
E Aravindraj
2017-03-01
Full Text Available In this paper, a rectangular microstrip patch antenna (MPA is designed using different substrate materials for analyzing the performance of the MPA. Alumina (Al2O3, Bakelite, Beryllium oxide (BeO, Gallium Arsenide (GaAs, RT-Duroid and Flame Retardant 4 (FR-4 are the six different substrate used in the design. The size of the rectangular microstrip patch antenna varies according to the dielectric constant of substrate materials used. The operating frequency taken for this analysis is 5.8 GHz. The proposed design provides the study on the performance of rectangular microstrip patch antenna for different substrate materials using the same frequency. This study conveys that which substrate material provides better performance. Moreover, this comparative study conveys that which substrate material provides better performance. The simulation parameters are investigated using HFSS.
Palisoc, Arthur L.; Lee, Chin C.
1988-12-01
Using the method of images and the analytical temperature solution to the multilayer infinite plate structure, the thermal profile over finite rectangular multilayer integrated circuit devices can be calculated exactly. The advantage of using the image method lies in the enhanced capability of arriving at an analytical solution for structures where analytical solutions do not apparently exist, e.g., circular or arbitrarily oriented rectangular sources over multilayered rectangular structures. The new approach results in large savings in computer CPU time especially for small sources over large substrates. The method also finds very important applications to integrated circuit devices with heat dissipating elements close to the edge boundaries. Results from two examples indicate that the edge boundaries of a device may also be utilized to remove heat from it. This additional heat removing capability should have important applications in high power devices.
One-dimensional nonlinear theory for rectangular helix traveling-wave tube
Energy Technology Data Exchange (ETDEWEB)
Fu, Chengfang, E-mail: fchffchf@126.com; Zhao, Bo; Yang, Yudong; Ju, Yongfeng [Faculty of Electronic Information Engineering, Huaiyin Institute of Technology, Huai' an 223003 (China); Wei, Yanyu [School of Physical Electronics, University of Electronic and Technology of China, Chengdu 610054 (China)
2016-08-15
A 1-D nonlinear theory of a rectangular helix traveling-wave tube (TWT) interacting with a ribbon beam is presented in this paper. The RF field is modeled by a transmission line equivalent circuit, the ribbon beam is divided into a sequence of thin rectangular electron discs with the same cross section as the beam, and the charges are assumed to be uniformly distributed over these discs. Then a method of computing the space-charge field by solving Green's Function in the Cartesian Coordinate-system is fully described. Nonlinear partial differential equations for field amplitudes and Lorentz force equations for particles are solved numerically using the fourth-order Runge-Kutta technique. The tube's gain, output power, and efficiency of the above TWT are computed. The results show that increasing the cross section of the ribbon beam will improve a rectangular helix TWT's efficiency and reduce the saturated length.
Post-Translational Modifications of TRP Channels
Directory of Open Access Journals (Sweden)
Olaf Voolstra
2014-04-01
Full Text Available Transient receptor potential (TRP channels constitute an ancient family of cation channels that have been found in many eukaryotic organisms from yeast to human. TRP channels exert a multitude of physiological functions ranging from Ca2+ homeostasis in the kidney to pain reception and vision. These channels are activated by a wide range of stimuli and undergo covalent post-translational modifications that affect and modulate their subcellular targeting, their biophysical properties, or channel gating. These modifications include N-linked glycosylation, protein phosphorylation, and covalent attachment of chemicals that reversibly bind to specific cysteine residues. The latter modification represents an unusual activation mechanism of ligand-gated ion channels that is in contrast to the lock-and-key paradigm of receptor activation by its agonists. In this review, we summarize the post-translational modifications identified on TRP channels and, when available, explain their physiological role.
Channel One Online: Advertising Not Educating.
Pasnik, Shelley
Rather than viewing Channel One's World Wide Web site as an authentic news bureau, as the organization claims, it is better understood as an advertising delivery system. The web site is an attempt to expand Channel One's reach into schools, taking advantage of unsuspecting teachers and students who might fall prey to spurious claims. This paper…
International Nuclear Information System (INIS)
Sugano, Y.
1980-01-01
The transient thermal stresses in an orthotropic finite rectangular plate due to arbitrary surface heat-generations on two edges are studied by means of the Airy stress function. The purposes of this paper are to present a method of determing the transient thermal stresses in an orthographic rectangular plate with four edges of distinct thermal boundary condition of the third kind which exactly satisfy the traction-free conditions of shear stress over all boundaries including four corners of the plate, and to consider the effects of the anisotropies of material properties and the convective heat transfer on the upper and lower surfaces on the thermal stress distribution. (orig.)
Cao, Nan; Cao, Fengmei; Lin, Yabin; Bai, Tingzhu; Song, Shengyu
2015-04-01
For a new kind of retina-like senor camera and a traditional rectangular sensor camera, dual cameras acquisition and display system need to be built. We introduce the principle and the development of retina-like senor. Image coordinates transformation and interpolation based on sub-pixel interpolation need to be realized for our retina-like sensor's special pixels distribution. The hardware platform is composed of retina-like senor camera, rectangular sensor camera, image grabber and PC. Combined the MIL and OpenCV library, the software program is composed in VC++ on VS 2010. Experience results show that the system can realizes two cameras' acquisition and display.
International Nuclear Information System (INIS)
Martsenyuk, L.S.
2010-01-01
Research of influence of exchange interaction of identical particles for the time of their simultaneous tunneling through a rectangular quantum barrier is lead. The account of identity leads to necessity of symmetrisation of wave function owing to what in the formula describing interaction of two particles, arises an additional element. In result the parameters of tunneling, including time of tunneling change. Time of tunneling is calculated from the formula received in work from the size of exchange interaction of two particles simultaneously crossing a rectangular quantum barrier.
Lyashko, A. D.
2017-11-01
A new analytical presentation of the solution for steady-state oscillations of orthotopic rectangular prism is found. The corresponding infinite system of linear algebraic equations has been deduced by the superposition method. A countable set of precise eigenfrequencies and elementary eigenforms is found. The identities are found which make it possible to improve the convergence of all the infinite series in the solution of the problem. All the infinite series in presentation of solution are analytically summed up. Numerical calculations of stresses in the rectangular orthotropic prism with a uniform along the border and harmonic in time load on two opposite faces have been performed.
Natural Frequency of F.G. Rectangular Plate by Shear Deformation Theory
International Nuclear Information System (INIS)
Shahrjerdi, Ali; Sapuan, S M; Shahzamanian, M M; Mustapha, F; Zahari, R; Bayat, M
2011-01-01
Natural frequency of functionally graded (F.G.) rectangular plate is carried out by using second-order shear deformation theory (SSDT). The material properties of functionally graded rectangular plates, except the Poisson's ratio, are assumed to vary continuously through the thickness of the plate in accordance with the exponential law distribution. The equations of motion are obtained by energy method. Numerical results for functionally graded plates are given in dimensionless graphical forms and the effects of material properties on natural frequency are determined.
Directory of Open Access Journals (Sweden)
K. Arun
2007-01-01
Full Text Available The present work involves experimental investigation of the effects of aspect ratio, channel orientation angle, rib pitch-to-height ratio (P/e, and number of ribbed walls on friction factor in orthogonally rotating channel with detached ribs. The ribs are separated from the base wall to provide a small region of flow between the base wall and the ribs. Experiments have been conducted at Reynolds number ranging from 10000–17000 with rotation numbers varying from 0–0.38. Pitch-to-rib height ratios (P/e of 5 and 10 at constant rib height-to-hydraulic diameter ratio (e/D of 0.1 and a clearance ratio (C/e of 0.38 are considered. The rib angle of attack with respect to mainstream flow is 90∘. The channel orientation at which the ribbed wall becomes trailing surface (pressure side on which the Coriolis force acts is considered as the 0∘ orientation angle. For one-wall ribbed case, channel is oriented from 0∘ to 180∘ about its axis in steps of 30∘ to change the orientation angle. For two-wall ribbed case, the orientation angle is changed from 0∘ to 90∘ in steps of 30∘. Friction factors for the detached ribbed channels are compared with the corresponding attached ribbed channel. It is found that in one-wall detached ribbed channel, increase in the friction factor ratio with the orientation angle is lower for rectangular channel compared to that of square channel for both the pitch-to-rib height ratios of 5 and 10 at a given Reynolds number and rotation number. Friction factor ratios of two-wall detached ribbed rectangular channel are comparable with corresponding two-wall detached ribbed square channel both under stationary and rotating conditions.
Velocity Vector Field Visualization of Flow in Liquid Acquisition Device Channel
McQuillen, John B.; Chao, David F.; Hall, Nancy R.; Zhang, Nengli
2012-01-01
A capillary flow liquid acquisition device (LAD) for cryogenic propellants has been developed and tested in NASA Glenn Research Center to meet the requirements of transferring cryogenic liquid propellants from storage tanks to an engine in reduced gravity environments. The prototypical mesh screen channel LAD was fabricated with a mesh screen, covering a rectangular flow channel with a cylindrical outlet tube, and was tested with liquid oxygen (LOX). In order to better understand the performance in various gravity environments and orientations at different liquid submersion depths of the screen channel LAD, a series of computational fluid dynamics (CFD) simulations of LOX flow through the LAD screen channel was undertaken. The resulting velocity vector field visualization for the flow in the channel has been used to reveal the gravity effects on the flow in the screen channel.
Genome-wide analysis of mechanosensitive channel of small ...
African Journals Online (AJOL)
ADM
2016-04-13
Schmutz et al., 2014). Brazil is the largest producer with an average annual production of. 3.5 million tons (MAPA, 2015). However, the grain yield in Brazil is considered low and several factors are related to this, as the adverse effects ...
Effect of rotation on convective mass transfer in rotating channels
International Nuclear Information System (INIS)
Pharoah, J.G.; Djilali, N.
2002-01-01
Laminar flow and mass transfer in rotating channels is investigated in the context of centrifugal membrane separation. The effect of orientation with respect to the rotational axis is examined for rectangular channels of aspect ratio 3 and the Rossby number is varied from 0.3 to 20.9. Both Ro and the channel orientation are found to have a significant effect on the flow. Mass transfer calculations corresponding to reverse osmosis desalination are carried out at various operating pressures and all rotating cases exhibit significant process enhancements at relatively low rotation rates. Finally, while it is common in the membrane literature to correlate mass transfer performance with membrane shear rates this is shown not to be valid in the cases presented herein. (author)
Swimming of Paramecium in confined channels
Jung, Sunghwan
2012-02-01
Many living organisms in nature have developed a few different swimming modes, presumably derived from hydrodynamic advantage. Paramecium is a ciliated protozoan covered by thousands of cilia with a few nanometers in diameter and tens of micro-meters in length and is able to exhibit both ballistic and meandering motions. First, we characterize ballistic swimming behaviors of ciliated microorganisms in glass capillaries of different diameters and explain the trajectories they trace out. We develop a theoretical model of an undulating sheet with a pressure gradient and discuss how it affects the swimming speed. Secondly, investigation into meandering swimmings within rectangular PDMS channels of dimension smaller than Paramecium length. We find that Paramecium executes a body-bend (an elastic buckling) using the cilia while it meanders. By considering an elastic beam model, we estimate and show the universal profile of forces it exerts on the walls. Finally, we discuss a few other locomotion of Paramecium in other extreme environments like gel.
2011-10-18
... Rectangular Carbon Steel Tubing From Taiwan: Final Results of the Expedited Sunset Review of the Antidumping... the antidumping duty order on light-walled welded rectangular carbon steel tubing from Taiwan pursuant... steel tubing from Taiwan pursuant to section 751(c) of the Act. See Initiation of Five-Year (``Sunset...
2012-02-02
... Rectangular Carbon Steel Tubing From Taiwan: Continuation of Antidumping Duty Order AGENCY: Import... revocation of the antidumping duty order on light-walled welded rectangular carbon steel tubing from Taiwan would likely lead to a continuation or recurrence of dumping and material injury to an industry in the...
International Nuclear Information System (INIS)
Li, Yanrong; Someya, Satoshi; Okamoto, Koji
2010-01-01
Systems with closed side-branches are liable to an excitation of sound, as called cavity tone. In this study, flow-induced acoustic resonances of piping systems containing closed side-branches were investigated experimentally. The present investigation on the coaxial closed side-branches is the first rudimentary study to measure the pressure at the downstream side opening of the cavity by microphone and to visualize the fluid flow in the cross-section by using PIV. High-time-resolved PIV has a possibility to analyze the velocity field and the relation between sound propagation and flow field. The fluid flows at different points in the cavity interact with some phase differences and the relation can be clarified. (author)
IN SEARCH OF IDEAL FORM- RATIO OF TRIANGULAR CHANNEL
Directory of Open Access Journals (Sweden)
B. C. DAS
2014-11-01
Full Text Available In Search of Ideal Form-Ratio of Triangular Channel. Cross-sectional form of a natural channel is a two dimensional variable which is thoroughly studied by scholars from different fields on natural sciences like hydrology, geology, geomorphology, etc. Average river channels tend to develop their channel-cross sectional form in a way to produce an approximate equilibrium between the channel and the water and sediment it transport. But how far it is deviated from the ideal cross-sectional form can only be determined by knowing the ideal form which was calculated by Hickin for rectangular channel. This ideal cross-sectional form of ‘maximum efficiency’ is virtually a theoretical one and attaining of which the river transports its water and load with least friction with its bed. ‘Ideal form ratio’ provides numerical tools for triangular channel to determine the degree of deviation of a cross-sectional form from that of an ideal one.
Improving flow distribution in influent channels using computational fluid dynamics.
Park, No-Suk; Yoon, Sukmin; Jeong, Woochang; Lee, Seungjae
2016-10-01
Although the flow distribution in an influent channel where the inflow is split into each treatment process in a wastewater treatment plant greatly affects the efficiency of the process, and a weir is the typical structure for the flow distribution, to the authors' knowledge, there is a paucity of research on the flow distribution in an open channel with a weir. In this study, the influent channel of a real-scale wastewater treatment plant was used, installing a suppressed rectangular weir that has a horizontal crest to cross the full channel width. The flow distribution in the influent channel was analyzed using a validated computational fluid dynamics model to investigate (1) the comparison of single-phase and two-phase simulation, (2) the improved procedure of the prototype channel, and (3) the effect of the inflow rate on flow distribution. The results show that two-phase simulation is more reliable due to the description of the free-surface fluctuations. It should first be considered for improving flow distribution to prevent a short-circuit flow, and the difference in the kinetic energy with the inflow rate makes flow distribution trends different. The authors believe that this case study is helpful for improving flow distribution in an influent channel.
MHD-flow in slotted channels with conducting walls
International Nuclear Information System (INIS)
Evtushenko, I.A.; Kirillov, I.R.; Reed, C.B.
1994-07-01
A review of experimental results is presented for magnetohydrodynamic (MHD) flow in rectangular channels with conducting walls and high aspect ratios (longer side parallel to the applied magnetic field), which are called slotted channels. The slotted channel concept was conceived at Efremov Institute as a method for reducing MHD pressure drop in liquid metal cooled blanket design. The experiments conducted by the authors were aimed at studying both fully developed MHD-flow, and the effect of a magnetic field on the hydrodynamics of 3-D flows in slotted channels. Tests were carried out on five models of the slotted geometry. A good agreement between test and theoretical results for the pressure drop in slotted channels was demonstrated. Application of a open-quotes one-electrode movable probeclose quotes for velocity measurement permitted measurement of the M-shape velocity profiles in the slotted channels. Suppression of 3-D inertial effects in slotted channels of complex geometry was demonstrated based on potential distribution data
Optical implementation of (3, 3, 2) regular rectangular CC-Banyan optical network
Yang, Junbo; Su, Xianyu
2007-07-01
CC-Banyan network plays an important role in the optical interconnection network. Based on previous reports of (2, 2, 3) the CC-Banyan network, another rectangular-Banyan network, i.e. (3, 3, 2) rectangular CC-Banyan network, has been discussed. First, according to its construction principle, the topological graph and the routing rule of (3, 3, 2) rectangular CC-Banyan network have been proposed. Then, the optically experimental setup of (3, 3, 2) rectangular CC-Banyan network has been designed and achieved. Each stage of node switch consists of phase spatial light modulator (PSLM) and polarizing beam-splitter (PBS), and fiber has been used to perform connection between adjacent stages. PBS features that s-component (perpendicular to the incident plane) of the incident light beam is reflected, and p-component (parallel to the incident plane) passes through it. According to switching logic, under the control of external electrical signals, PSLM functions to control routing paths of the signal beams, i.e. the polarization of each optical signal is rotated or not rotated 90° by a programmable PSLM. Finally, the discussion and analysis show that the experimental setup designed here can realize many functions such as optical signal switch and permutation. It has advantages of large number of input/output-ports, compact in structure, and low energy loss. Hence, the experimental setup can be used in optical communication and optical information processing.
The Effects of a Rectangular Rapid-Flashing Beacon on Vehicle Speed
VanWagner, Michelle; Van Houten, Ron; Betts, Brian
2011-01-01
In 2008, nearly 31% of vehicle fatalities were related to failure to adhere to safe vehicle speeds (National Highway Traffic Safety Administration [NHTSA], 2009). The current study evaluated the effect of a rectangular rapid-flashing beacon (RRFB) triggered by excessive speed on vehicle speed using a combined alternating treatments and reversal…
Sman, van der R.G.M.
2006-01-01
In this paper we present lattice Boltzmann (LB) schemes for convection diffusion coupled to fluid flow on two-dimensional rectangular lattices. Via inverse Chapman-Enskog analysis of LB schemes including source terms, we show that for consistency with physics it is required that the moments of the
Ji, Shengxiang; Nagpal, Umang; Liao, Wen; de Pablo, Juan; Nealey, Paul
2010-03-01
Patterns of square and rectangular arrays with nanoscale dimensions are scientifically and technologically important. Fabrication of square array patterns in thin films has been demonstrated by directed assembly of cylinder-forming diblock copolymers on chemically patterned substrates, supramolecular assembly of diblock copolymers, and self-assembly of triblock terpolymers. However, a macroscopic area of square array patterns with long-range order has not been achieved, and the fabrication of rectangular arrays has not been reported so far. Here we report a facile approach for fabricating patterns of square and rectangular arrays by directing the assembly of sphere-forming diblock copolymers on chemically patterned substrates. On stripe patterns, a square arrangement of half spheres, corresponding to the (100) plane of the body-centred cubic (BCC) lattice, formed on film surfaces. When the underlying pattern periods mismatched with the copolymer period, the square pattern could be stretched (up to ˜60%) or compressed (˜15%) to form rectangular arrays. Monte Carlo simulations have been further used to verify the experimental results and the 3-dimensional arrangements of spheres.
Rectangular optical filter based on high-order silicon microring resonators
Bao, Jia-qi; Yu, Kan; Wang, Li-jun; Yin, Juan-juan
2017-07-01
The rectangular optical filter is one of the most important optical switching components in the dense wavelength division multiplexing (DWDM) fiber-optic communication system and the intelligent optical network. The integrated highorder silicon microring resonator (MRR) is one of the best candidates to achieve rectangular filtering spectrum response. In general, the spectrum response rectangular degree of the single MRR is very low, so it cannot be used in the DWDM system. Using the high-order MRRs, the bandwidth of flat-top pass band, the out-of-band rejection degree and the roll-off coefficient of the edge will be improved obviously. In this paper, a rectangular optical filter based on highorder MRRs with uniform couplers is presented and demonstrated. Using 15 coupled race-track MRRs with 10 μm in radius, the 3 dB flat-top pass band of 2 nm, the out-of-band rejection ratio of 30 dB and the rising and falling edges of 48 dB/nm can be realized successfully.
Rectangular optical filter based on high-order silicon microring resonators
Institute of Scientific and Technical Information of China (English)
BAO Jia-qi; YU Kan; WANG Li-jun; YIN Juan-juan
2017-01-01
The rectangular optical filter is one of the most important optical switching components in the dense wavelength division multiplexing (DWDM) fiber-optic communication system and the intelligent optical network.The integrated highorder silicon microring resonator (MRR) is one of the best candidates to achieve rectangular filtering spectrum response.In general,the spectrum response rectangular degree of the single MRR is very low,so it cannot be used in the DWDM system.Using the high-order MRRs,the bandwidth of flat-top pass band,the out-of-band rejection degree and the roll-off coefficient of the edge will be improved obviously.In this paper,a rectangular optical filter based on highorder MRRs with uniform couplers is presented and demonstrated.Using 15 coupled race-track MRRs with 10 μm in radius,the 3 dB flat-top pass band of 2 nm,the out-of-band rejection ratio of 30 dB and the rising and falling edges of 48 dB/nm can be realized successfully.
Analytical study of a reversed-field pinch with rectangular cross section
International Nuclear Information System (INIS)
Zhang Peng
1990-01-01
An analyic solution of the force-free equation for a toroidal configuration of rectangular cross section is presented. It is shown that the critical value of contraction ratio for the appearance of a reversed field as well as of the ohmic current increases as the elongation of the cross section increases
Numerical analysis and optimization of 3D magnetohydrodynamic flows in rectangular U-bend
Energy Technology Data Exchange (ETDEWEB)
He, Qingyun, E-mail: hqingyun@mail.ustc.edu.cn; Feng, Jingchao; Chen, Hongli, E-mail: hlchen1@ustc.edu.cn
2016-11-01
Highlights: • MHD flows in rectangular U bends have been investigated under specific magnetic field. • U bends analyzed with different aspect ratio, distance of U bends and the wall conductance ratio. • Pressure optimization of rectangular U bends at corner region. • Studying different inclination of magnetic field cases according to original MHD flows. - Abstract: Liquid metal flow in rectangular bends is a common phenomenon of fusion liquid metal blanket operation, in which the velocity distributions and magnetohydrodynamic (MHD) pressure drop are considered as critical issues. Previous studies mainly aimed at specific fixed geometry for bend flows in LM blanket. The present investigation focuses on numerical analysis of MHD flow in 3D rectangular bends at laminar conditions, which is aimed to reduce MHD pressure drop caused by electromagnetic coupling in conductive flow, especially in bend corner region. The used code has been developed by University of Science and Technology of China (USTC) and validated by recommended benchmark cases such as Shercliff, ALEX experiments and KIT experiment cases, etc. In order to search the optimal duct bending, certain parameters such as different aspect ratio of the duct corner area cross-section, distance of import and export from the elbow and wall conductance ratio have been considered to investigate the pressure drop of MHD flow. Moreover, the effects of different magnetic field direction relative to flow distribution between bends have also been analyzed.
Modeling and Chaotic Dynamics of the Laminated Composite Piezoelectric Rectangular Plate
Directory of Open Access Journals (Sweden)
Minghui Yao
2014-01-01
Full Text Available This paper investigates the multipulse heteroclinic bifurcations and chaotic dynamics of a laminated composite piezoelectric rectangular plate by using an extended Melnikov method in the resonant case. According to the von Karman type equations, Reddy’s third-order shear deformation plate theory, and Hamilton’s principle, the equations of motion are derived for the laminated composite piezoelectric rectangular plate with combined parametric excitations and transverse excitation. The method of multiple scales and Galerkin’s approach are applied to the partial differential governing equation. Then, the four-dimensional averaged equation is obtained for the case of 1 : 3 internal resonance and primary parametric resonance. The extended Melnikov method is used to study the Shilnikov type multipulse heteroclinic bifurcations and chaotic dynamics of the laminated composite piezoelectric rectangular plate. The necessary conditions of the existence for the Shilnikov type multipulse chaotic dynamics are analytically obtained. From the investigation, the geometric structure of the multipulse orbits is described in the four-dimensional phase space. Numerical simulations show that the Shilnikov type multipulse chaotic motions can occur. To sum up, both theoretical and numerical studies suggest that chaos for the Smale horseshoe sense in motion exists for the laminated composite piezoelectric rectangular plate.
Comparison of rectangular and dual-planar positron emission mammography scanners
International Nuclear Information System (INIS)
Qi, Jinyi; Kuo, Chaincy; Huesman, Ronald H.; Klein, Gregory J.; Moses, William W.; Reutter, Bryan W.
2002-01-01
Breast imaging using dedicated positron emission tomography (PEM) has gained much interest in the medical imaging field. In this paper, we compare the performance between a rectangular geometry and a parallel dual-planar geometry. Both geometries are studied with depth of interaction (DOI) detectors and non- DOI detectors. We compare the Fisher-information matrix, lesion detection, and quantitation of the four systems. The lesion detectability is measured by the signal-to-noise ratio (SNR) of a prewhitening numerical observer for detecting a known hot spot on a uniform background. Results show that the rectangular system with DOI has the highest SNR for the detection task and the lowest bias at any given noise level for the quantitation task. They also show that for small simulated lesions the parallel dual-planar system with DOI detectors outperforms the rectangular system with non-DOI detectors, while the rectangular system with non-DOI detectors can outperform the parallel dual-planar system with DOI detectors for large simulated lesions
Edge Effects in a Composite Weakly Reinforced with Fibers of Rectangular Cross Section
Boichuk, V. Yu.
2001-05-01
This paper deal with the edge effect in a composite weakly reinforced with fibers of rectangular cross section and subjected to biaxial uniform loading. The edge effects due to the difference between Poisson's ratios of the composite components are studied. Numerical results are presented
From the rectangular to the quincunx Gabor lattice via fractional Fourier transformation
Bastiaans, M.J.; Leest, van A.J.
1998-01-01
Transformations of Gabor lattices have been associated with operations on the window functions that arise in Gabor theory. In particular it has been shown that transformation from a rectangular to a quincunx lattice can be associated with fractional Fourier transformation. Since a Gaussian function,
Rectangular-to-quincunx Gabor lattice conversion via fractional Fourier transformation
Bastiaans, M.J.; Leest, van A.J.
1998-01-01
Transformations of Gabor lattices are associated with operations on the window functions that arise in Gabor theory. In particular it is shown that transformation from a rectangular to a quincunx lattice can be associated with fractional Fourier transformation. Since a Gaussian function, which plays
Numerical analysis and optimization of 3D magnetohydrodynamic flows in rectangular U-bend
International Nuclear Information System (INIS)
He, Qingyun; Feng, Jingchao; Chen, Hongli
2016-01-01
Highlights: • MHD flows in rectangular U bends have been investigated under specific magnetic field. • U bends analyzed with different aspect ratio, distance of U bends and the wall conductance ratio. • Pressure optimization of rectangular U bends at corner region. • Studying different inclination of magnetic field cases according to original MHD flows. - Abstract: Liquid metal flow in rectangular bends is a common phenomenon of fusion liquid metal blanket operation, in which the velocity distributions and magnetohydrodynamic (MHD) pressure drop are considered as critical issues. Previous studies mainly aimed at specific fixed geometry for bend flows in LM blanket. The present investigation focuses on numerical analysis of MHD flow in 3D rectangular bends at laminar conditions, which is aimed to reduce MHD pressure drop caused by electromagnetic coupling in conductive flow, especially in bend corner region. The used code has been developed by University of Science and Technology of China (USTC) and validated by recommended benchmark cases such as Shercliff, ALEX experiments and KIT experiment cases, etc. In order to search the optimal duct bending, certain parameters such as different aspect ratio of the duct corner area cross-section, distance of import and export from the elbow and wall conductance ratio have been considered to investigate the pressure drop of MHD flow. Moreover, the effects of different magnetic field direction relative to flow distribution between bends have also been analyzed.
The Effect of Mandrel Configuration on the Warpage in Pultrusion of Rectangular Hollow Profiles
Baran, Ismet; Hattel, Jesper H.; Akkerman, Remko
2014-01-01
Thermo-mechanical process simulation of an industrially pultruded rectangular hollow profile is presented. Glass/polyester is used for the continuous filament mat (CFM) and the uni-directional (UD) layers. The process induced residual distortions together with the temperature and degree of cure are
A CPW-Fed Rectangular Ring Monopole Antenna for WLAN Applications
Directory of Open Access Journals (Sweden)
Sangjin Jo
2014-01-01
Full Text Available We present a simple coplanar waveguide- (CPW- fed rectangular ring monopole antenna designed for dual-band wireless local area network (WLAN applications. The antenna is based on a simple structure composed of a CPW feed line and a rectangular ring. Dual-band WLAN operation can be achieved by controlling the distance between the rectangular ring and the ground plane of the CPW feed line, as well as the horizontal vertical lengths of the rectangular ring. Simulated and measured data show that the antenna has a compact size of 21.4×59.4 mm2, an impedance bandwidths of 2.21–2.70 GHz and 5.04–6.03 GHz, and a reflection coefficient of less than −10 dB. The antenna also exhibits an almost omnidirectional radiation pattern. This simple compact antenna with favorable frequency characteristics therefore is attractive for applications in dual-band WLAN.
Behavior of thin rectangular ANCF shell elements in various mesh configurations
DEFF Research Database (Denmark)
Hyldahl, Per; Mikkola, Aki M.; Balling, Ole
2014-01-01
a thorough review of three available formulations, they are used in three different convergence studies. Initially a reference study is conducted to determine how the ANCF performs in an uniform and rectangular mesh. Subsequently, the ANCF methods sensitivity to irregular mesh is investigated and finally...
International Nuclear Information System (INIS)
Tatsuya Matsumoto; Akihiro Uchibori; Ryo Akasaka; Toshinori Seki; Shyuji Kaminishi; Koji Morita; Kenji Fukuda
2002-01-01
In order to develop analytical tools for the analyses of multi dimensional two-phase flow in channels with obstacles, the modified drift flux model has been applied. Numerical simulations of multi dimensional gas-liquid two-phase flow in a channel, with some kinds of obstacles inserted to simulate a simple sub-channel in the fuel bundle, were carried out. Analytical results were compared with experiments, to show the validity of the modified drift flux model. Experiments were carried out with using an apparatus of 2-D/3-D rectangular box with a perforated plate or a horizontal plate with slit hole or a vertical rod inserted. Nitrogen gas-water adiabatic two phase flow was circulated in the box. The apparatus was made of acrylic resin plates and be able to make the flow inside visualized. Two-phase flow pattern were recorded with a high-speed video camera and the mass flow rate of nitrogen gas was measured with a digital gas-mass flow meter. Comparisons between the experimental results and the numerical ones showed good agreements, thus it was verified the model would be applied for predicting flows in more complex geometry with obstacles. (authors)
International Nuclear Information System (INIS)
Hoeld, Alois
2007-01-01
. This package can be adopted as a general element in the simulation of thermal-hydraulic situations of complex systems consisting of a number of special channels. Such systems can represent different types of steam generators, 3D nuclear reactor cores with special attention to the calculation of the mass flow distribution into different parallel channels after non-symmetric perturbations, each of them distinguished by their key numbers. The resulting set of equations can be combined with other ODE-s and constitutive equations from additional parts of such a comprehensive model. The complete system of equations can then (outside of the CCM) be solved by applying appropriate integration routines. Verification and validation test runs over a wide application range have yielded very satisfactory results demonstrating therefore in a convincing way the quality of the CCM. This approach offers an alternative to the currently dominant 'Separate-Phase Models' where each phase within a coolant channel is treated separately. The advantages and disadvantages of these two approaches are discussed in this paper
Digital demodulator for wide bandwidth SAR
DEFF Research Database (Denmark)
Jørgensen, Jørn Hjelm
2000-01-01
A novel approach to the design of efficient digital quadrature demodulators for wide bandwidth SAR systems is described. Efficiency is obtained by setting the intermediate frequency to 1/4 the ADC sampling frequency. One channel is made filter-free by synchronizing the local oscillator...
Directory of Open Access Journals (Sweden)
Wenbo Duan
2017-12-01
Full Text Available Ultrasonic guided waves are widely used to inspect and monitor the structural integrity of plates and plate-like structures, such as ship hulls and large storage-tank floors. Recently, ultrasonic guided waves have also been used to remove ice and fouling from ship hulls, wind-turbine blades and aeroplane wings. In these applications, the strength of the sound source must be high for scanning a large area, or to break the bond between ice, fouling and plate substrate. More than one transducer may be used to achieve maximum sound power output. However, multiple sources can interact with each other, and form a sound field in the structure with local constructive and destructive regions. Destructive regions are weak regions and shall be avoided. When multiple transducers are used it is important that they are arranged in a particular way so that the desired wave modes can be excited to cover the whole structure. The objective of this paper is to provide a theoretical basis for generating particular wave mode patterns in finite-width rectangular plates whose length is assumed to be infinitely long with respect to its width and thickness. The wave modes have displacements in both width and thickness directions, and are thus different from the classical Lamb-type wave modes. A two-dimensional semi-analytical finite element (SAFE method was used to study dispersion characteristics and mode shapes in the plate up to ultrasonic frequencies. The modal analysis provided information on the generation of modes suitable for a particular application. The number of point sources and direction of loading for the excitation of a few representative modes was investigated. Based on the SAFE analysis, a standard finite element modelling package, Abaqus, was used to excite the designed modes in a three-dimensional plate. The generated wave patterns in Abaqus were then compared with mode shapes predicted in the SAFE model. Good agreement was observed between the
Effect of Dissolved gas on bubble behavior of subcooled boiling in narrow channel
International Nuclear Information System (INIS)
Li Shaodan; Tan Sichao; Xu Chao; Gao Puzhen; Xu Jianjun
2013-01-01
An experimental investigation was performed to study the effect of dissolved gas on bubble behavior in narrow rectangular channel under subcooled boiling condition. A high-speed digital video camera was applied to capture the dynamics of the bubble with or without dissolved gas in a narrow rectangular channel. It is found that the dissolved gas has great influence on bubble behavior in subcooled boiling condition. The dissolved gas slows down the rate of bubble growth and condensation and makes the variation of the bubble diameter present some oscillation characteristics. This phenomenon was discussed in the view of the vapor evaporation and condensation. The existence of the dissolved gas can facilitate the survival of the bubble and promote the aggregation of bubbles, and enhence heat transfer enhancement in some ways. (authors)
Physical Hydraulic Model of Side-Channel Spillway of Lambuk DAM, Bali
Harifa, A. C.; Sholichin, M.; Othman, F. B.
2013-12-01
The spillway is among the most important structures of a dam project. A spillway is designed to prevent overtopping of a dam at a place that is not designed for overtopping. Side-channel spillways are commonly used to release water flow from a reservoir in places where the sides are steep and have a considerable height above the dam. Experimental results were collected with a hydraulic model of the side-channel spillway for releasing the peak overflow of Lambuk Dam. This dam is, located on the Lambuk River, which is a tributary of the Yeh Hoo River ~ 34.6 km north of Denpasar on the island of Bali. The bituminous geomembrane faced dam is 24 m in height, with a 35-m wide spillway. The length of the side channel is 35 m long, with 58 m of transition channel, 67.37 m of chuteway channel and 22.71 m of stilling basin. The capacity of the spillway is 231.91 m3/s and the outlet works capacity is 165.28 m3/s. The reservoir is designed for irrigation and water supply. The purpose of this study was to optimize the designed of the structure and to ensure its safe operation. In hydraulic model may help the decision-makers to visualize the flow field before selecting a ';suitable' design. The hydraulic model study was performed to ensure passage of the maximum discharge at maximum reservoir capacity; to study the spillway approach conditions, water surface profiles, and flow patterns in the chuteway; and to reveal potential demerits of the proposed hydraulic design of various structures and explore solutions. The model was constructed at 1 : 40 scale, Reservoir topography was modeled using concrete, the river bed using sand and some gravel, the river berm using concrete, and the spillway and channel using Plexiglas. Water was measured using Rectangular contracted weir. Design floods (with return period in year) were Q2 = 111.40 m3/s, Q5 = 136.84 m3/s, Q10 = 159.32 m3/s, Q25 = 174.61 m3/s, Q50 = 185.13 m3/s, Q100 = 198.08 m3/s, Q200 = 210.55 m3/s, Q1000 = 231.91 m3/s and the
International Nuclear Information System (INIS)
Wang, Hsiang-Li; Wu, Huang-Ching; Kong Wang, S.; Hung, Tzu-Chen; Yang, Ruey-Jen
2013-01-01
In this study, pressure drop and heat transfer characteristics of multiple-mini-channel thermal modules were investigated quantitatively. The flow channels, which were mounted on one side of a copper test section, were designed in three types: (1) the first module consists of fourteen straight and parallel channels with a rectangular cross section of 1 mm × 3 mm, (2) the second module consists of fourteen gradually widening channels with a U-shaped cross section starting from an inlet section of 0.5 mm × 3 mm and increasing to an outlet section of 1 mm × 3 mm, and (3) the third module is similar to the second module except for the rectangular cross section. Visual observations and the measured boiling curves show that, in the straight channels, some bubbles cannot be flushed out of the channels fast enough, so they tend to flow back and accumulate at the entrance. This results in a rather dry channel condition for CHF (critical heat flux) to occur for the cases with low flow rates. For the widening channel modules, no occurrence of CHF was observed under an even lower operating pressure in an attempt to induce the incipient of CHF. Under a similar temperature rise at the channel exit, the maximum heat removal rate of the widening channels reaches 27 W/cm 2 which is at least twice as high as that of the straight channels. -- Highlights: ► Three mini-channel modules were designed, and experiments were carried out on pressure drop and heat transfer characteristics. ► Comparisons were made between one regular straight-channel module and two widening-channel modules with rectangular and U-shaped cross sections. ► It was found that the widening channels yield a stable two-phase heat transfer mode with no occurrence of CHF due to a better movement of the bubbles and the absence of backflow which causes accumulation of bubbles commonly occur at the entrance of the straight-shaped parallel channels. ► The maximum heat removal rate of the widening channels reaches
Flow Boiling in a Micro-Channel Coated With Carbon Nanotubes
Khanikar, Vikash; Mudawar, Issam; Fisher, Timothy
2009-01-01
This study examines the heat transfer enhancement attributes of carbon nanotubes (CNTs) applied to the bottom wall of a shallow rectangular micro-channel. Using deionized water as working fluid, experiments were performed with both a bare copper bottom wall and a CNT-coated copper wall. Boiling curves were generated for both walls, aided by high-speed video analysis of interfacial features. CNT arrays promoted earlier, abundant and intense bubble nucleation at low mass velocities, consistent ...
Effects of carbon nanotube coating on flow boiling in a micro-channel
Khanikar, Vikash; Mudawar, Issam; Fisher, Timothy
2009-01-01
Experiments were performed to assess the heat transfer enhancement benefits of coating the bottom wall of a shallow rectangular micro-channel with carbon nanotubes (CNTs). Using water as working fluid, tests were performed with a bare copper surface and three separate, yet identical CNT-coated surfaces. Each of the CNT-coated surfaces was tested repeatedly at the same mass velocity to explore any time dependence of heat transfer performance parameters, especially critical heat flux (CHIF). Ap...
An LCMV Filter for Single-Channel Noise Cancellation and Reduction in the Time Domain
DEFF Research Database (Denmark)
Jensen, Jesper Rindom; Benesty, Jacob; Christensen, Mads Græsbøll
2013-01-01
In this paper, we consider a recent class of optimal rectangular fil- tering matrices for single-channel speech enhancement. This class of filters exploits the fact that the dimension of the signal subspace is lower than that of the full space. Then, extra degrees of freedom in the filters...... signal-to-interference ratio. This is showed for both synthetic and real speech signals....
minatti, L.
2013-12-01
A finite volume model solving the shallow water equations coupled with the sediments continuity equation in composite channels with irregular geometry is presented. The model is essentially 1D but can handle composite cross-sections in which bedload transport is considered to occur inside the main channel only. This assumption is coherent with the observed behavior of rivers on short time scales where main channel areas exhibit more relevant morphological variations than overbanks. Furthermore, such a model allows a more precise prediction of thalweg elevation and cross section shape variations than fully 1D models where bedload transport is considered to occur uniformly over the entire cross section. The coupling of the equations describing water and sediments dynamics results in a hyperbolic non-conservative system that cannot be solved numerically with the use of a conservative scheme. Therefore, a path-conservative scheme, based on the approach proposed by Pares and Castro (2004) has been devised in order to account for the coupling with the sediments continuity equation and for the concurrent presence of bottom elevation and breadth variations of the cross section. In order to correctly compute numerical fluxes related to bedload transport in main channel areas, a special treatment of the equations is employed in the model. The resulting scheme is well balanced and fully coupled and can accurately model abrupt time variations of flow and bedload transport conditions in wide rivers, characterized by the presence of overbank areas that are less active than the main channel. The accuracy of the model has been first tested in fixed bed conditions by solving problems with a known analytical solution: in these tests the model proved to be able to handle shocks and supercritical flow conditions properly(see Fig. 01). A practical application of the model to the Ombrone river, southern Tuscany (Italy) is shown. The river has shown relevant morphological changes during
DEFF Research Database (Denmark)
Dong, Yunfeng; Johansen, Tom Keinicke; Zhurbenko, Vitaliy
2016-01-01
This paper presents rectangular waveguide-to-coplanar waveguide (CPW) transitions at U-band (40–60 GHz) using E-plane probe and wire bonding. The designs of CPWs based on quartz substrate with and without aluminum cover are explained. The single and double layer rectangular waveguide-to-CPW trans......This paper presents rectangular waveguide-to-coplanar waveguide (CPW) transitions at U-band (40–60 GHz) using E-plane probe and wire bonding. The designs of CPWs based on quartz substrate with and without aluminum cover are explained. The single and double layer rectangular waveguide......-to-CPW transitions using E-plane probe and wire bonding are designed. The proposed rectangular waveguide-to-CPW transition using wire bonding can provide 10 GHz bandwidth at U-band and does not require extra CPWs or connections between CPWs and chips. A single layer rectangular waveguide-to-CPW transition using E......-plane probe with aluminum package has been fabricated and measured to validate the proposed transitions. To the authors' best knowledge, this is the first time that a wire bonding is used as a probe for rectangular waveguide-to-CPW transition at U-band....
Citizens and service channels: channel choice and channel management implications
Pieterson, Willem Jan
2010-01-01
The arrival of electronic channels in the 1990s has had a huge impact on governmental service delivery. The new channels have led to many new opportunities to improve public service delivery, not only in terms of citizen satisfaction, but also in cost reduction for governmental agencies. However,
Generic theory for channel sinuosity.
Lazarus, Eli D; Constantine, José Antonio
2013-05-21
Sinuous patterns traced by fluid flows are a ubiquitous feature of physical landscapes on Earth, Mars, the volcanic floodplains of the Moon and Venus, and other planetary bodies. Typically discussed as a consequence of migration processes in meandering rivers, sinuosity is also expressed in channel types that show little or no indication of meandering. Sinuosity is sometimes described as "inherited" from a preexisting morphology, which still does not explain where the inherited sinuosity came from. For a phenomenon so universal as sinuosity, existing models of channelized flows do not explain the occurrence of sinuosity in the full variety of settings in which it manifests, or how sinuosity may originate. Here we present a generic theory for sinuous flow patterns in landscapes. Using observations from nature and a numerical model of flow routing, we propose that flow resistance (representing landscape roughness attributable to topography or vegetation density) relative to surface slope exerts a fundamental control on channel sinuosity that is effectively independent of internal flow dynamics. Resistance-dominated surfaces produce channels with higher sinuosity than those of slope-dominated surfaces because increased resistance impedes downslope flow. Not limited to rivers, the hypothesis we explore pertains to sinuosity as a geomorphic pattern. The explanation we propose is inclusive enough to account for a wide variety of sinuous channel types in nature, and can serve as an analytical tool for determining the sinuosity a landscape might support.
Advanced porous electrodes with flow channels for vanadium redox flow battery
Bhattarai, Arjun; Wai, Nyunt; Schweiss, Ruediger; Whitehead, Adam; Lim, Tuti M.; Hng, Huey Hoon
2017-02-01
Improving the overall energy efficiency by reducing pumping power and improving flow distribution of electrolyte, is a major challenge for developers of flow batteries. The use of suitable channels can improve flow distribution through the electrodes and reduce flow resistance, hence reducing the energy consumption of the pumps. Although several studies of vanadium redox flow battery have proposed the use of bipolar plates with flow channels, similar to fuel cell designs, this paper presents the use of flow channels in the porous electrode as an alternative approach. Four types of electrodes with channels: rectangular open channel, interdigitated open cut channel, interdigitated circular poked channel and cross poked circular channels, are studied and compared with a conventional electrode without channels. Our study shows that interdigitated open channels can improve the overall energy efficiency up to 2.7% due to improvement in flow distribution and pump power reduction while interdigitated poked channel can improve up to 2.5% due to improvement in flow distribution.
International Nuclear Information System (INIS)
Zhai, Yuling; Li, Zhouhang; Wang, Hua; Xu, Jianxin
2017-01-01
Highlights: • A novel geometry with rectangular and complex channels in each layer is presented. • It shows lower pressure drop and more uniform temperature distribution. • The essence of enhanced heat transfer is analyzed from thermodynamics. - Abstract: Novel double-layered microchannel heat sinks with different channel geometries in each layer (Structure 2 for short) are designed to reduce pressure drop and maintain good heat transfer performance, which is compared with structure 1 (the same of complex channel geometry in each layer). The effect of parallel flow, counter flow and different channel geometries on heat transfer is studied numerically. Moreover, the essence of heat transfer enhancement is analyzed by thermodynamics. On one hand, the synergy relationship between flow field and temperature field is analyzed by field synergy principle. On the other hand, the irreversibility of heat transfer is studied by transport efficiency of thermal energy. The results show that the temperature distribution of counter flow is more uniform than that of parallel flow. Furthermore, heat dissipation and pressure drop of structure 2 are both better and lower than that of structure 1. Form the viewpoint of temperature distribution, structure C2 (i.e., counter flow with rectangular channels in upper layer and complex channels in bottom layer) presents the most uniform bottom temperature for microelectronic cooling. However, comprehensive heat transfer performance of structure P2 (i.e., parallel flow with rectangular channels in upper layer and complex channels in bottom layer) shows the best from the viewpoint of thermodynamics. The reasons can be ascribed to the channel geometry of structure P2 can obviously improve the synergy relationship between temperature and velocity fields, reduce fluid temperature gradient and heat transfer irreversibility.
Cnidarian Toxins Acting on Voltage-Gated Ion Channels
Directory of Open Access Journals (Sweden)
Robert M. Greenberg
2006-04-01
Full Text Available Abstract: Voltage-gated ion channels generate electrical activity in excitable cells. As such, they are essential components of neuromuscular and neuronal systems, and are targeted by toxins from a wide variety of phyla, including the cnidarians. Here, we review cnidarian toxins known to target voltage-gated ion channels, the specific channel types targeted, and, where known, the sites of action of cnidarian toxins on different channels.
Sanada, Akira; Higashiyama, Kouji; Tanaka, Nobuo
2015-01-01
This study deals with the active control of sound transmission through a rectangular panel, based on single input, single output feedforward vibration control using point-force actuators and piezoelectric film sensors. It focuses on the phenomenon in which the sound power transmitted through a finite-sized panel drops significantly at some frequencies just below the resonance frequencies of the panel in the low-frequency range as a result of modal coupling cancellation. In a previous study, it was shown that when point-force actuators are located on nodal lines for the frequency at which this phenomenon occurs, a force equivalent to the incident sound wave can act on the panel. In this study, a practical method for sensing volume velocity using a small number of piezoelectric film strips is investigated. It is found that two quadratically shaped piezoelectric film strips, attached at the same nodal lines as those where the actuators were placed, can sense the volume velocity approximately in the low-frequency range. Results of simulations show that combining the proposed actuation method and the sensing method can achieve a practical control effect at low frequencies over a wide frequency range. Finally, experiments are carried out to demonstrate the validity and feasibility of the proposed method.
International Nuclear Information System (INIS)
Sugano, Yoshihiro; Nakanishi, Takanori; Ito, Masahiko; Saito, Koichi.
1982-01-01
Recently, anisotropic materials have been used widely for reactor core elements and fast flying objects, therefore, the problem of thermal stress in anisotropic bodies has been studied actively. In this study, the unsteady plane thermal stress in an orthotropic rectangular thin plate heated by the temperature of ambient medium was analyzed, taking the heat transfer on both surfaces into account. The influence that the anisotropy of material constants and the heat transfer on both surfaces exert on the temperature and thermal stress of the plate was examined. Moreover, in order to investigate into the effect of the aspect ratio of the plate on the temperature and thermal stress, the unsteady distributions of temperature and thermal stress in an orthotropic semi-infinite band, of which the end surfaces are heated by ambient medium, were analyzed. The numerical calculation was carried out, and the results are shown. Before, it was difficult to satisfy the boundary condition related to shearing stress, accordingly, the analysis has not been performed, but in this study, it was shown that the analysis is possible. (Kako, I.)
DEFF Research Database (Denmark)
Nielsen, Sofus Birkedal; Celestinos, Adrian
2010-01-01
Rectangular rooms are the most common shape for sound reproduction, but at low frequencies the reflections from the boundaries of the room cause large spatial variations in the sound pressure level. Variations up to 30 dB are normal, not only at the room modes, but basically at all frequencies....... As sound propagates in time, it seems natural that the problems can best be analyzed and solved in the time domain. A time based room correction system named CABS (Controlled Acoustical Bass System) has been developed for sound reproduction in rectangular listening rooms. It can control the sound...... sound field in the whole room, and short impulse response. In a standard listening room (180 m3) only 4 loudspeakers are needed, 2 more than a traditional stereo setup. CABS is controlled by a developed DSP system. The time based approached might help with the understanding of sound field control...
Energy Technology Data Exchange (ETDEWEB)
Zhao, Guangpu [School of Mathematical Science, Inner Mongolia University, Hohhot, Inner Mongolia 010021 (China); Jian, Yongjun, E-mail: jianyj@imu.edu.cn [School of Mathematical Science, Inner Mongolia University, Hohhot, Inner Mongolia 010021 (China); Chang, Long [School of Mathematics and Statistics, Inner Mongolia University of Finance and Economics, Hohhot, Inner Mongolia 010051 (China); Buren, Mandula [School of Mathematical Science, Inner Mongolia University, Hohhot, Inner Mongolia 010021 (China)
2015-08-01
By using the method of separation of variables, an analytical solution for the magnetohydrodynamic (MHD) flow of the generalized Maxwell fluids under AC electric field through a two-dimensional rectangular micropump is reduced. By the numerical computation, the variations of velocity profiles with the electrical oscillating Reynolds number Re, the Hartmann number Ha, the dimensionless relaxation time De are studied graphically. Further, the comparison with available experimental data and relevant researches is presented. - Highlights: • MHD flow of the generalized Maxwell fluids under AC electric field is analyzed. • The MHD flow is confined to a two-dimensional rectangular micropump. • Analytical solution is obtained by using the method of separation of variables. • The influences of related parameters on the MHD velocity are discussed.
Feshchenko, R. M.
Recently a new exact transparent boundary condition (TBC) for the 3D parabolic wave equation (PWE) in rectangular computational domain was derived. However in the obtained form it does not appear to be unconditionally stable when used with, for instance, the Crank-Nicolson finite-difference scheme. In this paper two new formulations of the TBC for the 3D PWE in rectangular computational domain are reported, which are likely to be unconditionally stable. They are based on an unconditionally stable fully discrete TBC for the Crank-Nicolson scheme for the 2D PWE. These new forms of the TBC can be used for numerical solution of the 3D PWE when a higher precision is required.
International Nuclear Information System (INIS)
Qi, Jinyi; Klein, Gregory J.; Huesman, Ronald H.
2000-01-01
A positron emission mammography scanner is under development at our Laboratory. The tomograph has a rectangular geometry consisting of four banks of detector modules. For each detector, the system can measure the depth of interaction information inside the crystal. The rectangular geometry leads to irregular radial and angular sampling and spatially variant sensitivity that are different from conventional PET systems. Therefore, it is of importance to study the image properties of the reconstructions. We adapted the theoretical analysis that we had developed for conventional PET systems to the list mode likelihood reconstruction for this tomograph. The local impulse response and covariance of the reconstruction can be easily computed using FFT. These theoretical results are also used with computer observer models to compute the signal-to-noise ratio for lesion detection. The analysis reveals the spatially variant resolution and noise properties of the list mode likelihood reconstruction. The theoretical predictions are in good agreement with Monte Carlo results
Sound absorption effects in a rectangular enclosure with the foamed aluminum sheet absorber
International Nuclear Information System (INIS)
Oh, Jae Eung; Chung, Jin Tai; Kim, Sang Hun; Chung, Kyung Ryul
1998-01-01
For the purpose of finding out the optimal thickness of sound absorber and the sound absorption effects due to the selected thickness at an interested frequency range, the analytical study identifies the interior and exterior sound field characteristics of a rectangular enclosure with foamed aluminum lining and the experimental verification is performed with random noise input. By using a two-microphone impedance tube, we measure experimentally the absorption coefficient and the impedance of simple sound absorbing materials. Measured acoustical parameters of the test samples are applied to the theoretical analysis to predict sound pressure field in the cavity. The sound absorption effects from measurements are compared to predicted ones in both cases with and without foamed aluminum lining in the cavity of the rectangular enclosure
Integral transform solution of bending problem of clamped orthotropic rectangular plates
International Nuclear Information System (INIS)
An, C.; Gu, J.-J.; Su, J.
2011-01-01
The generalized integral transform technique (GITT) is employed to obtain an exact solution for the bending problem of fully clamped orthotropic rectangular plates. The use of the GITT approach in the analysis of the transverse deflection equation leads to a coupled system of fourth order differential equations in the dimensionless longitudinal spatial variable. The resulting transformed ODE system is then numerically solved by making use of the subroutine DBVPFD from IMSL Library. Numerical results with automatic global accuracy control are produced for different values of aspect ratio. Critical comparisons with previously reported numerical results are performed with excellent agreement. Several sets of reference results for clamped orthotropic rectangular plates are also provided for future covalidation purposes. (author)
Comparison of air-standard rectangular cycles with different specific heat models
International Nuclear Information System (INIS)
Wang, Chao; Chen, Lingen; Ge, Yanlin; Sun, Fengrui
2016-01-01
Highlights: • Air-standard rectangular cycle models are built and investigated. • Finite-time thermodynamics is applied. • Different dissipation models and variable specific heats models are adopted. • Performance characteristics of different cycle models are compared. - Abstract: In this paper, performance comparison of air-standard rectangular cycles with constant specific heat (SH), linear variable SH and non-linear variable SH are conducted by using finite time thermodynamics. The power output and efficiency of each cycle model and the characteristic curves of power output versus compression ratio, efficiency versus compression ratio, as well as power output versus efficiency are obtained by taking heat transfer loss (HTL) and friction loss (FL) into account. The influences of HTL, FL and SH on cycle performance are analyzed by detailed numerical examples.
Influence of old rectangular repair patches on the burst pressure of a gas pipeline
International Nuclear Information System (INIS)
Fazzini, Pablo Gabriel; Otegui, Jose Luis
2006-01-01
Seven full scale hydrostatic burst tests were carried out on pipes extracted from an API 5LX52 gas pipeline that contained rectangular and elliptical fillet welded patches and other repairs of different geometries. All breaks took place after widespread yielding. This analysis shows that the patches that generate greater risks are those that: (1) were attached to the pipeline at very low pressure (2) were placed to repair large defects (3) are rectangular, long in the direction of the pipe, and narrow (4) the quality of the weld is doubtful. Based on data reported by In Line Inspection (ILI), of the four conditions mentioned above, only the third can be assessed in order to quantify risks and to schedule replacements
Holmberg, Andreas; Karlsson, Mikael; Åbom, Mats
2015-03-01
Scattering matrices are determined experimentally and used to study the low-amplitude interaction, between the acoustic and the hydrodynamic fields in a T-junction of rectangular ducts. In particular, combinations of grazing and bias flows are investigated in the study. It is observed that for all flow combinations, waves incident on the junction at the downstream side only are attenuated, while waves incident at the other branches may be amplified or attenuated, depending on the Strouhal number. When bias in-flow is introduced to a grazing flow, there is first an increase and then a decrease in both amplification and attenuation, as the bias in-flow Mach number is increased. Comparing with T-junctions of circular ducts, the interaction is stronger for rectangular duct junctions.
Three-dimensional detonation cellular structures in rectangular ducts using an improved CESE scheme
Shen, Yang
2016-11-01
The three-dimensional premixed H2-O2 detonation propagation in rectangular ducts is simulated using an in-house parallel detonation code based on the second-order space–time conservation element and solution element (CE/SE) scheme. The simulation reproduces three typical cellular structures by setting appropriate cross-sectional size and initial perturbation in square tubes. As the cross-sectional size decreases, critical cellular structures transforming the rectangular or diagonal mode into the spinning mode are obtained and discussed in the perspective of phase variation as well as decreasing of triple point lines. Furthermore, multiple cellular structures are observed through examples with typical aspect ratios. Utilizing the visualization of detailed three-dimensional structures, their formation mechanism is further analyzed.
Positronium behaviour in elongated PPT, rectangular MgO and spherical Si nanocavities
International Nuclear Information System (INIS)
Eijt, S.W.H.; Falub, C.V.; Mijnarends, P.E.; Veen, A. van
2001-01-01
The 2D-ACAR para-Ps (p-Ps) spectrum of PPT aramid fibres, which contain structural elongated open spaces in the unit cell, is compared with the spectrum calculated for a Ps wave function in a rectangular cavity. Helium ion implantation in MgO and Si single crystals creates thin layers of nanosize rectangular and spherical cavities, respectively. Depth-selective 2D-ACAR experiments at the positron centre Delft allow the extraction of the p-Ps contribution from the spectra. In both samples p-Ps is not thermalised and has an average energy of the order of a few eV. The energy and momentum distribution of the Ps atoms are extracted and compared with Maxwell distributions. (orig.)
Positronium behaviour in elongated PPT, rectangular MgO and spherical Si nanocavities
Energy Technology Data Exchange (ETDEWEB)
Eijt, S.W.H.; Falub, C.V.; Mijnarends, P.E.; Veen, A. van [Interfaculty Reactor Inst., Delft Univ. of Technology (Netherlands)
2001-07-01
The 2D-ACAR para-Ps (p-Ps) spectrum of PPT aramid fibres, which contain structural elongated open spaces in the unit cell, is compared with the spectrum calculated for a Ps wave function in a rectangular cavity. Helium ion implantation in MgO and Si single crystals creates thin layers of nanosize rectangular and spherical cavities, respectively. Depth-selective 2D-ACAR experiments at the positron centre Delft allow the extraction of the p-Ps contribution from the spectra. In both samples p-Ps is not thermalised and has an average energy of the order of a few eV. The energy and momentum distribution of the Ps atoms are extracted and compared with Maxwell distributions. (orig.)
Directory of Open Access Journals (Sweden)
Zhong-Qi Yue
2012-01-01
Full Text Available This paper presents the stress and displacement fields in a functionally graded material (FGM caused by a load. The FGM is a graded material of Si3N4-based ceramics and is assumed to be of semi-infinite extent. The load is a distributed loading over a rectangular area that is parallel to the external surface of the FGM and either on its external surface or within its interior space. The point-load analytical solutions or so-called Yue’s solutions are used for the numerical integration over the distributed loaded area. The loaded area is discretized into 200 small equal-sized rectangular elements. The numerical integration is carried out with the regular Gaussian quadrature. Weak and strong singular integrations encountered when the field points are located on the loaded plane, are resolved with the classical methods in boundary element analysis. The numerical integration results have high accuracy.
Three-dimensional detonation cellular structures in rectangular ducts using an improved CESE scheme
International Nuclear Information System (INIS)
Shen Yang; Liu Kai-Xin; Chen Pu; Shen Hua; Zhang De-Liang
2016-01-01
The three-dimensional premixed H 2 -O 2 detonation propagation in rectangular ducts is simulated using an in-house parallel detonation code based on the second-order space–time conservation element and solution element (CE/SE) scheme. The simulation reproduces three typical cellular structures by setting appropriate cross-sectional size and initial perturbation in square tubes. As the cross-sectional size decreases, critical cellular structures transforming the rectangular or diagonal mode into the spinning mode are obtained and discussed in the perspective of phase variation as well as decreasing of triple point lines. Furthermore, multiple cellular structures are observed through examples with typical aspect ratios. Utilizing the visualization of detailed three-dimensional structures, their formation mechanism is further analyzed. (paper)
Realization of Rectangular Artificial Spin Ice and Direct Observation of High Energy Topology.
Ribeiro, I R B; Nascimento, F S; Ferreira, S O; Moura-Melo, W A; Costa, C A R; Borme, J; Freitas, P P; Wysin, G M; de Araujo, C I L; Pereira, A R
2017-10-25
In this work, we have constructed and experimentally investigated frustrated arrays of dipoles forming two-dimensional artificial spin ices with different lattice parameters (rectangular arrays with horizontal and vertical lattice spacings denoted by a and b respectively). Arrays with three different aspect ratios γ = a/b = [Formula: see text], [Formula: see text] and [Formula: see text] are studied. Theoretical calculations of low-energy demagnetized configurations for these same parameters are also presented. Experimental data for demagnetized samples confirm most of the theoretical results. However, the highest energy topology (doubly-charged monopoles) does not emerge in our theoretical model, while they are seen in experiments for large enough γ. Our results also insinuate that the string tension connecting two magnetic monopoles in a pair vanishes in rectangular lattices with a critical ratio γ = γ c = [Formula: see text], supporting previous theoretical predictions.