Experimental study of natural circulation flow instability in rectangular channels
Energy Technology Data Exchange (ETDEWEB)
Zhou, Tao; Qi, Shi; Song, Mingqiang [North China Electric Power Univ., Beijing (China). School of Nuclear Science and Engineering; Passive Nuclear Safety Technology, Beijing (China). Beijing Key Lab.; Xiao, Zejun [Nuclear, Reactor Thermal Hydraulics Technology, Chengdu (China). CNNC Key Lab.
2017-05-15
Experiments of natural circulation flow instability were conducted in rectangular channels with 5 mm and 10 mm wide gaps. Results for different heating powers were obtained. The results showed that the flow will tend to be instable with the growing of heating power. The oscillation period of pressure D-value and volume flow are the same, but their phase positions are opposite. They both can be described by trigonometric functions. The existence of edge position and secondary flow will strengthen the disturbance of fluid flow in rectangle channels, which contributes to heat transfer. The disturbance of bubble and fluid will be strengthened, especially in the saturated boiling section, which make it possible for the mixing flow. The results also showed that the resistance in 5 mm channel is bigger than that in 10 mm channel, it is less likely to form stable natural circulation in the subcooled region.
Developing laminar flow in curved rectangular channels
De Vriend, H.J.
1978-01-01
As an intermediate step between earlier investigations on fully developed laminar flow in curved channels of shallow rectancular wet cross-section and the mathematical modeling of turbulent flow in river bends, a mathematical model of developing laminar flow in such channels is investigated. The
End depth in steeply sloping rough rectangular channels
Indian Academy of Sciences (India)
The paper presents a theoretical model to compute the end depth of a free overfall in steeply sloping rough rectangular channels. A momentum equation based on the Boussinesq approximation is applied to obtain the equation of the end depth. The effect ofstreamline curvature at the free surface is utilized to develop the ...
Deformation of an elastic capsule in a rectangular microfluidic channel.
Kuriakose, S; Dimitrakopoulos, P
2013-01-01
In the present study we investigate computationally the deformation of an elastic capsule in a rectangular microfluidic channel and compare it with that of a droplet. In contrast to the bullet or parachute shape in a square or cylindrical channel where the capsule extends along the flow direction, in a rectangular channel the capsule extends mainly along the less-confined lateral direction of the channel cross-section (i.e. the channel width), obtaining a pebble-like shape. The different shape evolution in these two types of solid channels results from the different tension development on the capsule membrane required for interfacial stability. Furthermore, in asymmetric channel flows, capsules show a different deformation compared to droplets with constant surface tension (which extend mainly along the flow direction) and to vesicles which extend along the more-confined channel height. Therefore, our study highlights the different stability dynamics associated with these three types of interfaces. Our findings suggest that the erythrocyte deformation in asymmetric vessels (which is similar to that of capsules) results from the erythrocyte's inner spectrin skeleton rather than from its outer lipid bilayer.
Single and Multi-channel Quantum Dragons from Rectangular Nanotubes
Li, Zhou; Novotny, Mark
2015-03-01
Recently quantum dragons have been discovered theoretically. Quantum dragons are nanostructures with correlated disorder that permit energy-independent total quantum transmission of electrons. Hence the electrical conductance G in a two-terminal measurement should be the conductance quantum G0 = 2e2 / h . The single-band tight banding model is used. An example of a single-channel quantum dragon is a rectangular nanotube with disorder along the direction z of the electron propagation. Quantum dragons are obtained by solving the time-independent Schrödinger equation to obtain the electrical transmission calT as a function of the incoming electron energy E. A quantum dragon has calT (E) =1 for all energies. This work generalizes the solution of the time-independent Schrödinger equation to the case of more than one open channel, and applies the method to nanotubes formed from rectangular lattices. One can envision such single-walled rectangular nanotubes for iron starting from free-standing single-atom-thick Fe membranes which have recently been obtained experimentally. Supported in part by NSF Grant DMR-1206233.
Confined swimming of bio-inspired microrobots in rectangular channels.
Temel, Fatma Zeynep; Yesilyurt, Serhat
2015-02-02
Controlled swimming of bio-inspired microrobots in confined spaces needs to be understood well for potential use in medical applications in conduits and vessels inside the body. In this study, experimental and computational studies are performed for analysis of swimming modes of a bio-inspired microrobot in rectangular channels at low Reynolds number. Experiments are performed on smooth and rough surfaces using a magnetic helical swimmer (MHS), having 0.5 mm diameter and 2 mm length, with left-handed helical tail and radially polarized magnetic head within rotating magnetic field obtained by two electromagnetic coil pairs. Experiments indicate three motion modes of the MHS with respect to the rotation frequency: (i) lateral motion under the effect of a perpendicular force such as gravity and the surface traction at low frequencies, (ii) lateral motion under the effect of fluid forces and gravity at transition frequencies, and (iii) circular motion under the effect of fluid forces at high frequencies. Observed modes of motion for the MHS are investigated with computational fluid dynamics simulations by calculating translational and angular velocities and studying the induced flow fields for different radial positions inside the channel. Results indicate the importance of rotation frequency, surface roughness and flow field on the swimming modes and behaviour of the MHS inside the rectangular channel.
Critical heat flux for free convection boiling in thin rectangular channels
Cheng, Lap Y.; Tichler, P. R.
A review of the experimental data on free convection boiling critical heat flux (CHF) in vertical rectangular channels reveals three mechanisms of burnout. They are the pool boiling limit, the circulation limit, and the flooding limit associated with a transition in flow regime from churn to annular flow. The dominance of a particular mechanism depends on the dimensions of the channel. Analytical models were developed for each free convection boiling limit. Limited agreement with data is observed. A CHF correlation, which is valid for a wide range of gap sizes, was constructed from the CHF's calculated according to the three mechanisms of burnout.
Augmented heat transfer in rectangular channels of narrow aspect ratios with rib turbulators
Han, J. C.; Ou, S.; Park, J. S.; Lei, C. K.
1989-01-01
The effects of the rib angle-of-attack on the distributions of the local heat transfer coefficient and on the friction factors in short rectangular channels of narrow aspect ratios with a pair of opposite rib-roughened walls are determined for Reynolds numbers from 10,000 to 60,000. The channel width-to-height ratios are 2/4 and 1/4; the corresponding rib angles-of-attack are 90, 60, 45, and 30 deg, respectively. The results indicate that the narrow-aspect-ratio channels give better heat transfer performance than the wide-aspect-ratio channels for a constant pumping power. Semiempirical friction and heat transfer correlations are obtained. The results can be used in the design of turbine cooling channels of narrow aspect ratios.
Parametric analysis of laminar pulsating flow in a rectangular channel
Blythman, Richard; Alimohammadi, Sajad; Persoons, Tim; Jeffers, Nick; Murray, Darina B.
2017-10-01
Pulsating flow has potential for enhanced cooling of future electronics and photonics systems. To better understand the mechanisms underlying any heat transfer enhancement, it is necessary to decouple the mechanical and thermal problems. The current work performs a parametric analysis of the flow hydrodynamics using particle image velocimetry (PIV) measurements, CFD simulations and analytical solutions, reorganised in terms of amplitude and phase values using complex notation. To the best of the authors' knowledge, the frequency-dependent behaviour of amplitude and phase of wall shear stress has not been studied in a two-dimensional channel. For laminar flow, the amplitudes are directly proportional to pressure. The amplitudes of various local and mean wall shear stress measures are augmented with frequency compared to steady flow, especially near the short walls and corners. The phases of wall shear stress differ at each wall at moderate frequencies - with the bulk-mean values at the short wall leading those at the long wall - and tend to π/4 in the limit of high frequency. The amplitudes of pressure gradient increase more significantly than wall shear stress magnitudes due to accelerative forces. The boundaries to the quasi-steady, intermediate and inertia-dominated regimes are estimated at Womersley number W o = 1.6 and 27.6 in a rectangular channel, based on the contribution of viscous and inertial terms.
Directory of Open Access Journals (Sweden)
A. H. ELBATRAN
2015-07-01
Full Text Available Helical channels have a wide range of applications in petroleum engineering, nuclear, heat exchanger, chemical, mineral and polymer industries. They are used in the separation processes for fluids of different densities. The centrifugal force, free surface and geometrical effects of the helical channel make the flow pattern more complicated; hence it is very difficult to perform physical experiment to predict channel performance. Computational Fluid Dynamics (CFD can be suitable alternative for studying the flow pattern characteristics in helical channels. The different ranges of dimensional parameters, such as curvature and torsion, often cause various flow regimes in the helical channels. In this study, the effects of physical parameters such as curvature, torsion, Reynolds number, Froude number and Dean Number on the characteristics of the turbulent flow in helical rectangular channels have been investigated numerically, using a finite volume RANSE code Fluent of Ansys workbench 10.1 UTM licensed. The physical parameters were reported for range of curvature (δ of 0.16 to 0.51 and torsion (λ of 0.032 to 0.1 .The numerical results of this study showed that the decrease in the channel curvature and the increase in the channel torsion numbers led to the increase of the flow velocity inside the channel and the change in the shape of water free surface at given Dean, Reynolds and Froude numbers.
Single-channel noise reduction using optimal rectangular filtering matrices.
Long, Tao; Chen, Jingdong; Benesty, Jacob; Zhang, Zhenxi
2013-02-01
This paper studies the problem of single-channel noise reduction in the time domain and presents a block-based approach where a vector of the desired speech signal is recovered by filtering a frame of the noisy signal with a rectangular filtering matrix. With this formulation, the noise reduction problem becomes one of estimating an optimal filtering matrix. To achieve such estimation, a method is introduced to decompose a frame of the clean speech signal into two orthogonal components: One correlated and the other uncorrelated with the current desired speech vector to be estimated. Different optimization cost functions are then formulated from which non-causal optimal filtering matrices are derived. The relationships among these optimal filtering matrices are discussed. In comparison with the classical sample-based technique that uses only forward prediction, the block-based method presented in this paper exploits both the forward and backward prediction as well as the temporal interpolation and, therefore, can improve the noise reduction performance by fully taking advantage of the speech property of self correlation. There is also a side advantage of this block-based method as compared to the sample-based technique, i.e., it is computationally more efficient and, as a result, more suitable for practical implementation.
The coextrusion of two incompressible elastico-viscous fluids through a rectangular channel
Jones, R. S.; Thomas, O. D. J.
1989-05-01
The slow coextrusion of two non-Newtonian fluids through a rectangular channel is considered. The shape of the interface and the secondary flows are investigated and their dependence on the fluid properties determined.
Heat transfer and surface flow visualization around a 180 deg turn in a rectangular channel
Energy Technology Data Exchange (ETDEWEB)
Astarita, G.; Cardone, G.; Carlomagno, G.M. [Univ. of Naples (Italy)
1995-12-31
The efficiency of gas turbine engines strongly depends on the gas entry temperature, the higher the latter, the more efficient is the turbine thermal cycle. Present advanced gas turbines operate at gas entry temperatures much higher than metal creeping temperatures and therefore require intensive cooling of their blades especially in the early stages. The aim of the present study is to obtain detailed measurements of the convective heat transfer coefficient nearby a 180deg sharp turn in a rectangular channel, and to prove that the use of infrared thermography may be appropriate to experimentally study this type of problem. A rectangular two-pass channel, which is 40 mm high and 200 mm wide, is tested for two different geometries of the tip of the partition wall: a square tip and semicircular one. To perform surface flow visualization and heat transfer measurements, the heated-thin-foil technique is used and results in terms of temperature maps and Nusselt number Nu distributions are obtained. Nu is computed by means of the local bulk temperature which is evaluated by making a one-dimensional energy balance along the channel. Reynolds number, based on average inlet velocity and hydraulic diameter of the channel is varied between 1.6 {times} 10{sup 4} and 6.4 {times} 10{sup 4}. By moving in the streamwise direction, at the beginning of the heated zone a rapid increase of the wall temperature is found due to the development of the thermal boundary layer. Two well distinguishable separation zones are found, one at the first outer corner of the channel and the other attached to the partition wall and just downstream of its tip. The influence of the geometry of the latter seems to be limited mainly to the position of the onset of the second separation zone. A third weak recirculation zone seems to appear in the vicinity of the second outer corner at the highest tested Reynolds number.
Directory of Open Access Journals (Sweden)
DAESEONG JO
2014-04-01
Full Text Available Heat transfer characteristics in a narrow rectangular channel are experimentally investigated for upward and downward flows. The experimental data obtained are compared with existing data and predictions by many correlations. Based on the observations, there are differences from others: (1 there are no different heat transfer characteristics between upward and downward flows, (2 most of the existing correlations under-estimate heat transfer characteristics, and (3 existing correlations do not predict the high heat transfer in the entrance region for a wide range of Re. In addition, there are a few heat transfer correlations applicable to narrow rectangular channels. Therefore, a new set of correlations is proposed with and without consideration of the entrance region. Without consideration of the entrance region, heat transfer characteristics are expressed as a function of Re and Pr for turbulent flows, and as a function of Gz for laminar flows. The correlation proposed for turbulent and laminar flows has errors of ±18.25 and ±13.62%, respectively. With consideration of the entrance region, the heat transfer characteristics are expressed as a function of Re, Pr, and z* for both laminar and turbulent flows. The correlation for turbulent and laminar flows has errors of ±19.5 and ±22.0%, respectively.
A research of heat transfer enhancement of rectangular channel with dimples
Directory of Open Access Journals (Sweden)
Fu Zhe
2017-01-01
Full Text Available this thesis is aimed to do numerical simulations on rectangular channel with a new model of dimple in different condition of channel height, dimple depth, dimple distance by using CFD program and RNG k-ε model. It is concluded that, the existence of dimple has changed the velocity and direction of the fluid, as well as the original flow status. Dimple increased the heat exchange area of rectangular channel and broke the boundary layer, enhanced the flow rate of fluid, as a result of enhanced heat transfer performance.
Energy Technology Data Exchange (ETDEWEB)
Choi, Gil Sik, E-mail: choigs@kaist.ac.kr; Chang, Soon Heung; Jeong, Yong Hoon
2016-07-15
A study, on the theoretical method to predict the critical heat flux (CHF) of saturated upward flow boiling water in vertical narrow rectangular channels, has been conducted. For the assessment of this CHF prediction method, 608 experimental data were selected from the previous researches, in which the heated sections were uniformly heated from both wide surfaces under the high pressure condition over 41 bar. For this purpose, representative previous liquid film dryout (LFD) models for circular channels were reviewed by using 6058 points from the KAIST CHF data bank. This shows that it is reasonable to define the initial condition of quality and entrainment fraction at onset of annular flow (OAF) as the transition to annular flow regime and the equilibrium value, respectively, and the prediction error of the LFD model is dependent on the accuracy of the constitutive equations of droplet deposition and entrainment. In the modified Levy model, the CHF data are predicted with standard deviation (SD) of 14.0% and root mean square error (RMSE) of 14.1%. Meanwhile, in the present LFD model, which is based on the constitutive equations developed by Okawa et al., the entire data are calculated with SD of 17.1% and RMSE of 17.3%. Because of its qualitative prediction trend and universal calculation convergence, the present model was finally selected as the best LFD model to predict the CHF for narrow rectangular channels. For the assessment of the present LFD model for narrow rectangular channels, effective 284 data were selected. By using the present LFD model, these data are predicted with RMSE of 22.9% with the dryout criterion of zero-liquid film flow, but RMSE of 18.7% with rivulet formation model. This shows that the prediction error of the present LFD model for narrow rectangular channels is similar with that for circular channels.
Energy Technology Data Exchange (ETDEWEB)
Choi, Gil Sik, E-mail: choigs@kaist.ac.kr; Jeong, Yong Hoon; Chang, Soon Heung
2015-12-01
Highlights: • The empirical CHF correlations for upward flow in a vertical narrow rectangular channel were reviewed, for high pressure condition over 40 bar. • New Correlation-A/B, which were derived by ACE algorithm, show much more improved prediction errors than other previous CHF correlations. • The Look-Up Table (LUT) of ACEL predicts CHF as well as New Correlations. • Comparative analysis shows that LUT with correction factors has potential application greater than New Correlations, for low pressure condition. - Abstract: The previous empirical CHF correlations for upward flow in a vertical narrow rectangular channel which is uniformly heated from both wide sides were reviewed and analyzed by using the experimental data points at pressure condition over 40 bar. The new correlations, that is, Simple Correlation and New Correlation-A/B were derived and proposed by using simple regression and ACE algorithm, and it was shown that they have more improved prediction errors than the other previous correlations. The Look-Up Table (LUT) of AECL also estimates CHF as well as New Correlation—A/B even though LUT was generated from the CHF data points in circular channels. As a result of comparative assessments of LUT and the empirical correlation of low pressure condition, it is reasonably concluded that for wider pressure condition, LUT with proper correction factors is the most pragmatic and universal CHF prediction method for rectangular channel in this study.
BİLGİL, Ahmet
2003-01-01
The determination of velocity distribution in open channel flows is crucial in many critical engineering problems such as channel design, calculation of energy losses and sedimentation. In this study, velocity distribution is experimentally investigated in a smooth rectangular open channel. Wall shear stresses are calculated using measured local velocities. Assuming logarithmic velocity distribution along perpendiculars to a wetted perimeter, dimensionless wall shear stresses K(I) =...
Improvement of film cooling effectiveness in thin rectangular channel by using riblets
Energy Technology Data Exchange (ETDEWEB)
Miura, Takashi; Horiki, Sachiyo; Osakabe, Masahiro
1999-07-01
Film cooling behavior in a thin rectangular channel was experimentally studied by using water and the film cooling effectiveness was compared with previous correlations for a wide space. The flow pattern and the wall temperature distribution were visualized with hydrogen bubbles and liquid crystal sheet, respectively. The wavy temperature distribution was observed on the wall just after the injection slit. The temperature wave slowly moved and oscillated in the streamwise direction. The wave propagation in the spanwise direction was relatively small, but the wave pattern was randomly different in each experimental condition. The low and high temperature regions of the wave corresponded to the high and low speed regions near the wall, respectively. It was suggested that the temperature wave was generated with the several longitudinal vortexes developed downstream of the injection in the thin channel. As thinning the channel, the size of vortexes corresponding to the wave length became smaller and the cooling effectiveness was decreased. The riblets were tentatively used to depress the vortexes and increase the film cooling effectiveness. By using the appropriate riblets, the inrushes of high speed main flow into the film due to the vortexes was reduced and approximately 30% increase of the cooling effectiveness was obtained.
Directory of Open Access Journals (Sweden)
Sunil Chamoli
2015-09-01
Full Text Available The turbulence promoters are widely used to enhance the performance of rectangular channel which were used for turbine blade passage cooling. In the present study, the influence of design parameters of the V down perforated baffle roughened rectangular channel on the heat transfer and friction factor was investigated using RSM and ANN. The quadratic model generated by RSM is used to predict the performance parameters, i.e. Nusselt number and friction factor with reasonably good accuracy. The optimum values of the design parameters of the V down perforated baffle roughened rectangular channel are relative roughness pitch of 2.6, relative roughness height of 0.33, open area ratio of 18% and Reynolds number of 18,500, in the desirable range of the order of 0.95. The training of the experimental data is carried out using 4-10-2 neural network and the predicted values are compared with the experimental values and found deviation in the range of ±10% among predicted and experimental values. The comparison of predicted values by RSM and ANN with the experimental values was carried out for each run of experiment and it was observed that the RSM predicted values are in accord with the experimental values in the uncertainty range of ±5%.
Oscillating flow and separation of species in rectangular channels
Energy Technology Data Exchange (ETDEWEB)
Hacioglu, A., E-mail: ahacioglu@ufl.edu; Narayanan, R., E-mail: ranga@ufl.edu [Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611 (United States)
2016-07-15
The mass transfer and separation of species in a tube using oscillatory flows are strongly affected by the fluid flow profiles in the tube. It has been well established that oscillatory motion in a one-dimensional flow configuration leads to a single tuning dimensionless frequency, where optimum separation may be effected. In this work, the effect on species separation by two-dimensional laminar flow arising in a rectangular cross section is studied and a surprising result is that a second tuning frequency may occur at lower dimensionless oscillation frequencies. The physics reveals that this new optimum disappears when the aspect ratio is either very large or close to unity. These observations are related to the flow profiles at different aspect ratios.
Forced convection of low temperature nitrogen gas in rectangular channels with small aspect ratio
Mo, H. L.; Zhou, Y. X.; Zhu, T. Y.; Guo, T. W.
2004-05-01
Forced convection of low temperature (80-150 K) nitrogen gas flowing through rectangular channels with hydraulic diameters of 0.513-1.814 mm and aspect ratios of 0.013-0.048 has been investigated experimentally. Close attention was focused on the effects of channel depth and heat addition on the heat transfer and flow characteristics, the transition from laminar to turbulent flow and the existence of an optimum channel depth. A dimensionless heating number was adopted to characterize the heating effect. The experimental correlation developed for the Nusselt number shows that the heat addition is the most important effect, followed by the channel aspect ratio, Reynolds number and Prandtl number.
Using two soft computing methods to predict wall and bed shear stress in smooth rectangular channels
Khozani, Zohreh Sheikh; Bonakdari, Hossein; Zaji, Amir Hossein
2017-11-01
Two soft computing methods were extended in order to predict the mean wall and bed shear stress in open channels. The genetic programming (GP) and Genetic Algorithm Artificial Neural Network (GAA) were investigated to determine the accuracy of these models in estimating wall and bed shear stress. The GP and GAA model results were compared in terms of testing dataset in order to find the best model. In modeling both bed and wall shear stress, the GP model performed better with RMSE of 0.0264 and 0.0185, respectively. Then both proposed models were compared with equations for rectangular open channels, trapezoidal channels and ducts. According to the results, the proposed models performed the best in predicting wall and bed shear stress in smooth rectangular channels. The obtained equation for rectangular channels could estimate values closer to experimental data, but the equations for ducts had poor, inaccurate results in predicting wall and bed shear stress. The equation presented for trapezoidal channels did not have acceptable accuracy in predicting wall and bed shear stress either.
Using two soft computing methods to predict wall and bed shear stress in smooth rectangular channels
Khozani, Zohreh Sheikh; Bonakdari, Hossein; Zaji, Amir Hossein
2017-03-01
Two soft computing methods were extended in order to predict the mean wall and bed shear stress in open channels. The genetic programming (GP) and Genetic Algorithm Artificial Neural Network (GAA) were investigated to determine the accuracy of these models in estimating wall and bed shear stress. The GP and GAA model results were compared in terms of testing dataset in order to find the best model. In modeling both bed and wall shear stress, the GP model performed better with RMSE of 0.0264 and 0.0185, respectively. Then both proposed models were compared with equations for rectangular open channels, trapezoidal channels and ducts. According to the results, the proposed models performed the best in predicting wall and bed shear stress in smooth rectangular channels. The obtained equation for rectangular channels could estimate values closer to experimental data, but the equations for ducts had poor, inaccurate results in predicting wall and bed shear stress. The equation presented for trapezoidal channels did not have acceptable accuracy in predicting wall and bed shear stress either.
End depth in steeply sloping rough rectangular channels
Indian Academy of Sciences (India)
known end depth and Nikuradse equivalent sand roughness is also presented. Results from the present model correspond satisfactorily with experimental observations except for some higher roughnesses. Keywords. Brink depth; end depth; free overfall; one-dimensional flow; open channel flow; steady flow. 1. Introduction.
Directory of Open Access Journals (Sweden)
Qiang Zhang
2016-05-01
Full Text Available A numerical simulation was performed to investigate the effects of longitudinal vortices on the heat transfer enhancement of a laminar flow in a rectangle duct mounted with rectangular winglet pair on the bottom wall. The studied Reynolds number which was defined using the hydraulic diameter twice the channel height ranges from 500 to 7000. The comparisons of the fluid flow and heat transfer characteristics for the cases with and without rectangular winglet pair were carried out. The effects of the height and attack angle of vortex generator pair on the heat transfer performance were investigated. The results show that mounting rectangular winglet pair on the bottom wall of the channel can significantly enhance heat transfer. The distributions of secondary flow on the cross sections are consistent with the distributions of Nu and J for different attack angles. The maximum heat transfer performance is obtained when the attack angle is 29° due to the maximum value of secondary flow generated by rectangular winglet pair.
Measurement of heat transfer and pressure drop in rectangular channels with turbulence promoters
Han, J. C.; Park, J. S.; Ibrahim, M. Y.
1986-01-01
Periodic rib turbulators were used in advanced turbine cooling designs to enhance the internal heat transfer. The objective of the present project was to investigate the combined effects of the rib angle of attack and the channel aspect ratio on the local heat transfer and pressure drop in rectangular channels with two opposite ribbed walls for Reynolds number varied from 10,000 to 60,000. The channel aspect ratio (W/H) was varied from 1 to 2 to 4. The rib angle of attack (alpha) was varied from 90 to 60 to 45 to 30 degree. The highly detailed heat transfer coefficient distribution on both the smooth side and the ribbed side walls from the channel sharp entrance to the downstream region were measured. The results showed that, in the square channel, the heat transfer for the slant ribs (alpha = 30 -45 deg) was about 30% higher that of the transverse ribs (alpha = 90 deg) for a constant pumping power. However, in the rectangular channels (W/H = 2 and 4, ribs on W side), the heat transfer at alpha = 30 -45 deg was only about 5% higher than 90 deg. The average heat transfer and friction correlations were developed to account for rib spacing, rib angle, and channel aspect ratio over the range of roughness Reynolds number.
Characteristics of slug flow in narrow rectangular channels under vertical condition
Wang, Yang; Yan, Changqi; Sun, Licheng; Xing, Dianchuan; Yan, Chaoxing; Tian, Daogui
2013-07-01
Gas-liquid slug flow is widely encountered in many practical industrial applications. A detailed understanding of the hydrodynamics of gas slug has important significance for modeling of the slug flow. Non-intrusive flow visualization using a high speed video camera system is applied to study characteristics of slug flow in a vertical narrow rectangular channel (3.25×40 mm2). Ideal Taylor bubbles are hardly observed, and most of the gas slugs are deformed, much more seriously at high liquid superficial velocity. The liquid film thicknesses of left and right narrow sides surrounding gas slug are divergent and wavy, but it has weak effect on liquid film velocity. The gas and liquid velocity as well as the length of gas slug have significant effect on the separating liquid film thickness. The separating liquid film velocity is decreased with the increase of gas superficial velocity at low liquid velocity, and increased with the increase of liquid superficial velocity. The film stops descending and the gas superficial velocity has no significant effect on liquid film separating velocity at high liquid velocity (jL≥1.204 m/s), and it is mainly determined by the liquid flow rate. The shape of slug nose has a significant effect on its velocity, while the effect of its length is very weak. The Ishii&Jones-Zuber drift flux correlation could predict slug velocity well, except at low liquid superficial velocity by reason of that the calculated drift velocity is less than experimental values.
Multi-channel quantum dragons from rectangular nanotubes with even-odd structure
Inkoom, Godfred; Novotny, Mark
Recently, a large class of nanostructures called quantum dragons have been discovered theoretically. Quantum dragons are nanostuctures with correlated disorder but have an electron transmission probability (E) =1 for all energies E when connected to idealized leads. Hence for a single channel, the electrical conductance for a two-probe measurement should give the quantum of conductance Go =2e2/h . The time independent Schrödinger equation for the single band tight binding model is solved exactly to obtain (E) . We have generalized the matrix method and the mapping methods of in order to study multi-channel quantum dragons for rectangular nanotubes with even-odd structure. The studies may be relevant for experimental rectangular nanotubes, such as MgO, copper phthalocyanine or some types of graphyne.. Supported in part by NSF Grant DMR-1206233.
JO, DAESEONG; OMAR S. AL-YAHIA; RAGA'I M. ALTAMIMI; PARK, JONGHARK; CHAE, HEETAEK
2014-01-01
Heat transfer characteristics in a narrow rectangular channel are experimentally investigated for upward and downward flows. The experimental data obtained are compared with existing data and predictions by many correlations. Based on the observations, there are differences from others: (1) there are no different heat transfer characteristics between upward and downward flows, (2) most of the existing correlations under-estimate heat transfer characteristics, and (3) existing correlations do ...
CFD modeling of heat transfer in a rectangular channel with dimplepin finning
Directory of Open Access Journals (Sweden)
Spokoiny M. Yu.
2013-05-01
Full Text Available Using the CFD modeling method, the authors have investigated conjugate heat transfer in a rectangular channel with dimple-pin finning with hight of pins, depth of cavities and Reynolds number values varying in the range, characteristic for heat exchangers designed for liquid cooling of microelectronic devices, such as microprocessors. Criterion dependencies for calculation of heat transfer under these conditions have been obtained.
New data processing of local heat transfer coefficient inside a rectangular channel
Gramazio, P.; Vitali, L.; Fustinoni, D.; Niro, A.
2017-11-01
In this paper, we critically reconsider and discuss the models used in one of our previous work to calculate the local convective heat flux for forced air-flows inside narrow rectangular channel, in order to evaluate the limitations which may be inherent with them. To this end, several numerical FEM models have been developed in COMSOL™ and used to analyze in depth previous data processing procedures; furthermore, experimental tests are made on the channel materials, to determine their thermal conductivities and radiative properties. Here, the results of this analysis are presented and discussed.
Thin-film flow in helically wound rectangular channels with small torsion
Stokes, Y. M.; Duffy, B. R.; Wilson, S. K.; Tronnolone, H.
2013-08-01
Laminar gravity-driven thin-film flow down a helically wound channel of rectangular cross-section with small torsion in which the fluid depth is small is considered. Neglecting the entrance and exit regions we obtain the steady-state solution that is independent of position along the axis of the channel, so that the flow, which comprises a primary flow in the direction of the axis of the channel and a secondary flow in the cross-sectional plane, depends only on position in the two-dimensional cross-section of the channel. A thin-film approximation yields explicit expressions for the fluid velocity and pressure in terms of the free-surface shape, the latter satisfying a nonlinear ordinary differential equation that has a simple exact solution in the special case of a channel of rectangular cross-section. The predictions of the thin-film model are shown to be in good agreement with much more computationally intensive solutions of the small-helix-torsion Navier-Stokes equations. The present work has particular relevance to spiral particle separators used in the mineral-processing industry. The validity of an assumption commonly used in modelling flow in spiral separators, namely, that the flow in the outer region of the separator cross-section is described by a free vortex, is shown to depend on the problem parameters.
Energy Technology Data Exchange (ETDEWEB)
Klymenko, Oleksiy V.; Svir, Irina [Mathematical and Computer Modelling Laboratory, Kharkov National University of Radioelectronics, 14 Lenin Avenue, Kharkov 61166 (Ukraine); Oleinick, Alexander I. [Mathematical and Computer Modelling Laboratory, Kharkov National University of Radioelectronics, 14 Lenin Avenue, Kharkov 61166 (Ukraine); Departement de Chimie, Ecole Normale Superieure, UMR CNRS 8640 ' ' PASTEUR' ' , 24 rue Lhomond, 75231 Paris Cedex 05 (France); Amatore, Christian [Departement de Chimie, Ecole Normale Superieure, UMR CNRS 8640 ' ' PASTEUR' ' , 24 rue Lhomond, 75231 Paris Cedex 05 (France)
2007-12-20
We propose a theoretical method for reconstructing the shape of a hydrodynamic flow profile occurring locally within a rectangular microfluidic channel based on experimental currents measured at double microband electrodes embedded in one channel wall and operating in the generator-collector regime. The ranges of geometrical and flow parameters providing best conditions for the flow profile determination are indicated. The solution of convection-diffusion equation (direct problem) is achieved through the application of the specifically designed conformal mapping of spatial coordinates and an exponentially expanding time grid for obtaining accurate concentration and current distributions. The inverse problem (the problem of flow profile determination) is approached using a variational formulation whose solution is obtained by the Ritz's method. The method may be extended for any number of electrodes in the channel and/or different operating regimes of the system (e.g. generator-generator). (author)
Directory of Open Access Journals (Sweden)
S. V. Shchelkunov
2012-03-01
Full Text Available Experimental results are reported for test beam acceleration and deflection in a two-channel, cm-scale, rectangular dielectric-lined wakefield accelerator structure energized by a 14-MeV drive beam. The dominant waveguide mode of the structure is at ∼30 GHz, and the structure is configured to exhibit a high transformer ratio (∼12∶1. Accelerated bunches in the narrow secondary channel of the structure are continuously energized via Cherenkov radiation that is emitted by a drive bunch moving in the wider primary channel. Observed energy gains and losses, transverse deflections, and changes in the test bunch charge distribution compare favorably with predictions of theory.
Shirai, Atsushi; Masuda, Sunao
2013-01-01
The authors have previously presented a mathematical model to predict transit time of a neutrophil through an alveolar capillary segment which was modeled as an axisymmetric arc-shaped constriction settled in a cylindrical straight pipe to investigate the influence of entrance curvature of a capillary on passage of the cell. The axially asymmetric cross section of a capillary also influences the transit time because it requires three-dimensional deformation of a cell when it passes through the capillary and could lead to plasma leakage between the cell surface and the capillary wall. In this study, a rectangular channel was introduced, the side walls of which were moderately constricted, as a representative of axially asymmetric capillaries. Dependence of transit time of a neutrophil passing through the constriction on the constriction geometry, i.e., channel height, throat width and curvature radius of the constriction, was numerically investigated, the transit time being compared with that through the axisymmetric model. It was found that the transit time is dominated by the throat hydraulic diameter and curvature radius of the constriction and that the throat aspect ratio little affects the transit time with a certain limitation, indicating that if an appropriate curvature radius is chosen, such a rectangular channel model can be substituted for an axisymmetric capillary model having the same throat hydraulic diameter in terms of the transit time by choosing an appropriate curvature radius. Thus, microchannels fabricated by the photolithography technique, whose cross section is generally rectangular, are expected to be applicable to in vitro model experiments of neutrophil retention and passage in the alveolar capillaries. PMID:23527190
Heat transfer in a compact heat exchanger containing rectangular channels and using helium gas
Olson, D. A.
1991-01-01
Development of a National Aerospace Plane (NASP), which will fly at hypersonic speeds, require novel cooling techniques to manage the anticipated high heat fluxes on various components. A compact heat exchanger was constructed consisting of 12 parallel, rectangular channels in a flat piece of commercially pure nickel. The channel specimen was radiatively heated on the top side at heat fluxes of up to 77 W/sq cm, insulated on the back side, and cooled with helium gas flowing in the channels at 3.5 to 7.0 MPa and Reynolds numbers of 1400 to 28,000. The measured friction factor was lower than that of the accepted correlation for fully developed turbulent flow, although the uncertainty was high due to uncertainty in the channel height and a high ratio of dynamic pressure to pressure drop. The measured Nusselt number, when modified to account for differences in fluid properties between the wall and the cooling fluid, agreed with past correlations for fully developed turbulent flow in channels. Flow nonuniformity from channel-to-channel was as high as 12 pct above and 19 pct below the mean flow.
Matsumoto, Tatsuya; Koyama, Shigeru
In the present study, a theoretical analysis for the laminar film condensation in a finned vertical rectangular channel is carried out to clarify the heat transfer characteristics of plate-fin condensers. In the analysis the following assumptions are employed. The bulk vapor is pure and saturated, and the effect of viscous shear of vapor on the liquid film is negligible. The heat conduction in the fin is one-dimensional, and the base surface temperature is a constant. The local characteristics of liquid film shape and fin temperature are examined, and a heat transfer correlation including the effects of fin shape parameters is proposed.
Turbulent intensity and scales of turbulence after hydraulic jump in rectangular channel
Directory of Open Access Journals (Sweden)
Kozioł Adam
2016-06-01
Full Text Available Turbulent intensity and scales of turbulence after hydraulic jump in rectangular channel. Experimental research was undertaken to investigate the changes in spatial turbulence intensity and scales of turbulent eddies (macroeddies in a rectangular channel and the influence of the hydraulic jump on vertical, lateral and streamwise distributions of relative turbulence intensity and scales of turbulent eddies. The results of three tests for different discharges are presented. An intensive turbulent mixing that arises as a result of a hydraulic jump has a significant effect on instantaneous velocity, turbulent intensities and sizes of eddies, as well as their vertical and longitudinal distributions. In the analysed case the most noticeable changes appeared up to 0.5 m downstream the hydraulic jump. In the vertical dimension such an effect was especially seen near the surface. The smallest streamwise sizes of macroeddies were present near the surface, maximum at the depth of z/h = 0.6 and from that point sizes were decreasing towards the bottom. The intensive turbulent mixing within the hydraulic jump generates macroeddies of small sizes.
Evaporation Heat Transfer of HCFC 22 on the Grooved Surfaces Inside a Horizontal Rectangular Channel
Kido, Osao; Uehara, Haruo
The evaporation heat transfer performance on six kinds of grooved surface with 0.15 mm to 0.34 mm of the groove pitch was obtained using a rectangular channel. The upper and lower surfaces inside a horizontal rectangular channel, 10 mm in width, 5 mm in height, and 500 mm in length, were heated electrically by Nichrome heaters. HCFC 22 was used as a working fluid. Evaporating pressure was 0.49 MPa, heat flux was 4.65 kW/m2, vapor quality was varied from 0.1 to 0.9, and mass velocity was varied from 86 to 345 kg/(m2s). The empirical correlations to predict the heat transfer coefficients on upper and lower surfaces were proposed. The maximum heat transfer coefficient on upper surface is obtained on the grooved surface with 2 × 10-8 of the modified bond number. Heat transfer coefficient on lower surface isn't influenced by the groove geometries except for lead angle.
Gravity currents in non-rectangular cross-area channels with stratified ambient
Ungarish, Marius
2014-11-01
The propagation of a high-Reynolds-number gravity current (GC) in a horizontal channel along the horizontal coordinate x is considered. The current is of constant density, ρc, and the ambient has a linear stable stratification, from ρb at the bottom z = 0 to ρo at z = H . The cross-section of the channel is given by the general -f1 (z) model is developed for the solution of a GC of fixed volume released from a lock on the bottom (ρc >=ρb). The dependent variables are the position of the interface, h (x , t) , and the speed (area-averaged), u (x , t) , where t is time. The cross-section geometry enters the formulation via the width of the channel f (z) =f1 (z) +f2 (z) . For a given f (z) , the free input parameters of are the height ratio H /h0 of ambient to lock and the stratification parameter S = (ρb -ρo) / (ρc -ρo) . The equations of motion are a hyperbolic PDE system. The initial motion displays a ``slumping'' stage with constant speed, calculated analytically. An analytical solution for the long-time self-similar propagation is also available for special cases. The model is a significant generalization of the rectangular-channel analysis.
Directory of Open Access Journals (Sweden)
Fengming Wang
2012-12-01
Full Text Available The flow and heat transfer characteristics inside a rectangular channel embedded with pin fins were numerically and experimentally investigated. Several differently shaped pin fins (i.e., circular, elliptical, and drop-shaped with the same cross-sectional areas were compared in a staggered arrangement. The Reynolds number based on the obstructed section hydraulic diameter (defined as the ratio of the total wetted surface area to the open duct volume available for flow was varied from 4800 to 8200. The more streamlined drop-shaped pin fins were better at delaying or suppressing separation of the flow passing through them, which decreased the aerodynamic penalty compared to circular pin fins. The heat transfer enhancement of the drop-shaped pin fins was less than that of the circular pin fins. In terms of specific performance parameters, drop-shaped pin fins are a promising alternative configuration to circular pin fins.
Effect of dynamic load on water flow boiling CHF in rectangular channels
Zhang, Zhao; Song, Baoyin; Li, Gang; Cao, Xi
2017-12-01
Experimental investigation into flow boiling critical heat flux (CHF) characteristics in narrow rectangular channels was performed under rotating state using distilled water as working fluids. The effects of mass velocity, inlet temperature and heating orientation on CHF under dynamic load were analyzed and discussed in this paper. The results show that the dynamic load obviously influences the CHF through enhancing two-phase mixing up and bubble separating. The greater the dynamic load, the higher the CHF values. The CHF values increase with the increase of mass velocity and inlet subcooling in the experimental range. The magnitude of CHF increase with the dynamic load for bottom heating is greater than that for up heating. The present study and its newly correlation may provide some technical supports in designing the airborne vapor cycle system.
Energy Technology Data Exchange (ETDEWEB)
Kim, Dong Eok; Myung, Byung-Soo [Kyungpook Nat’l Univ., Daegu (Korea, Republic of); Park, Su Cheong; Yu, Dong In [POSTECH, Pohang (Korea, Republic of); Kim, Moo Hwan [Korea Institute of Nuclear Safety (KINS), Daejeon (Korea, Republic of); Ahn, Ho Seon [Incheon Nat’l Univ., Incheon (Korea, Republic of)
2016-06-15
Based on a surface design with rectangular cavities and channels, we investigated the effects of gravity and capillary pressure on pool-boiling Critical Heat Flux (CHF). The microcavity structures could prevent liquid flow by the capillary pressure effect. In addition, the microchannel structures contributed to induce one-dimensional liquid flow on the boiling surface. The relationship between the CHF and capillary flow was clearly established. The driving potentials for the liquid supply into a boiling surface can be generated by the gravitational head and capillary pressure. Through an analysis of pool boiling and visualization data, we reveal that the liquid supplement to maintain the nucleate boiling condition on a boiling surface is closely related to the gravitational pressure head and capillary pressure effect.
Flame Quenching Dynamics of High Velocity Flames in Rectangular Cross-section Channels
Mahuthannan, Ariff Magdoom
2017-01-05
Understanding flame quenching for different conditions is necessary to develop safety devices like flame arrestors. In practical applications, the speed of a deflagration in the lab-fixed reference frame will be a strong function of the geometry through which the deflagration propagates. This study reports on the effect of the flame speed, at the entrance of a quenching section, on the quenching distance. A 2D rectangular channel joining two main spherical vessels is considered for studying this effect. Two different velocity regimes are investigated and referred to as configurations A, and B. For configuration A, the velocity of the flame is 20 m/s, while it is about 100 m/s for configuration B. Methane-air stoichiometric mixtures at 1 bar and 298 K are used. Simultaneous dynamic pressure measurements along with schlieren imaging are used to analyze the quenching of the flame. Risk assessment of re-ignition is also reported and analyzed.
Augmentation of heat transfer in a bubble agitated vertical rectangular channel
Mitra, Asish; Dutta, Tapas Kumar; Ghosh, Dibyendu Narayan
2012-04-01
This paper presents the results of an experimental study of convective heat transfer between three parallel vertical plates symmetrically spaced with and without bubble agitation to ascertain the degree of augmentation of the heat transfer coefficients due to agitation. The centre plate was electrically heated, while the other side plates were water-cooled forming two successive parallel vertical rectangular channels of dimensions 20 cm × 3.5 cm × 35 cm (length W, gap L, height H) each. At the bottom of the hot and cold plates air spargers were fitted. Water/ethylene glycol (100%) was used to fill the channels. The superficial gas velocity ranged from 0.0016 to 0.01 m/s. Top, bottom and sides of the channels were open to the water/ethylene glycol in the chamber which is the novel aspect of this study. Experimental data have been correlated as under: Natural convective heat transfer: Nu = 0.60 Gr 0.29, r = 0.96, σ = 0.186, 1.17 E6 < Gr < 1.48 E7; Bubble agitated heat transfer: St = 0.11( ReFrPr 2)-0.23, r = 0.82, σ = 0.002, 1.20 E-2 < ( ReFrPr 2) < 1.36 E2.
Visualization of pre-set vortices in boundary layer flow over wavy surface in rectangular channel
Budiman, Alexander Christantho
2014-12-04
Abstract: Smoke-wire flow visualization is used to study the development of pre-set counter-rotating streamwise vortices in boundary layer flow over a wavy surface in a rectangular channel. The formation of the vortices is indicated by the vortical structures on the cross-sectional plane normal to the wavy surface. To obtain uniform spanwise vortex wavelength which will result in uniform vortex size, two types of spanwise disturbances were used: a series of perturbation wires placed prior and normal to the leading edge of the wavy surface, and a jagged pattern in the form of uniform triangles cut at the leading edge. These perturbation wires and jagged pattern induce low-velocity streaks that result in the formation of counter-rotating streamwise vortices that evolve downstream to form the mushroom-like structures on the cross-sectional plane of the flow. The evolution of the most amplified disturbances can be attributed to the formation of these mushroom-like structures. It is also shown that the size of the mushroom-like structures depends on the channel entrance geometry, Reynolds number, and the channel gap.Graphical Abstract: [Figure not available: see fulltext.
Analytical solutions of heat transfer for laminar flow in rectangular channels
Directory of Open Access Journals (Sweden)
Rybiński Witold
2014-12-01
Full Text Available The paper presents two analytical solutions namely for Fanning friction factor and for Nusselt number of fully developed laminar fluid flow in straight mini channels with rectangular cross-section. This type of channels is common in mini- and microchannel heat exchangers. Analytical formulae, both for velocity and temperature profiles, were obtained in the explicit form of two terms. The first term is an asymptotic solution of laminar flow between parallel plates. The second one is a rapidly convergent series. This series becomes zero as the cross-section aspect ratio goes to infinity. This clear mathematical form is also inherited by the formulae for friction factor and Nusselt number. As the boundary conditions for velocity and temperature profiles no-slip and peripherally constant temperature with axially constant heat flux were assumed (H1 type. The velocity profile is assumed to be independent of the temperature profile. The assumption of constant temperature at the channel’s perimeter is related to the asymptotic case of channel’s wall thermal resistance: infinite in the axial direction and zero in the peripheral one. It represents typical conditions in a minichannel heat exchanger made of metal.
Experimental study of an upward sub-cooled forced convection in a rectangular channel
Kouidri, A.; Madani, B.; Roubi, B.; Hamadouche, A.
2016-07-01
The upward sub-cooled forced convection in a rectangular channel is investigated experimentally. The aim of the present work is the studying of the local heat transfer phenomena. Concerning the experimentation: the n-pentane is used as a working fluid, the independent variables are: the velocity in the range from 0.04 to 0.086 m/s and heat flux density with values between 1.8 and 7.36 W/cm2. The results show that the local Nusselt number distribution is not uniform along the channel; however, uniformity is observed in the mean Nusselt number for Reynolds under 1600. On the other hand, a new correlation to predict the local fluid temperature is established as a function of local wall temperature. The wall's heat is dissipated under the common effect of the sub-cooled regime; therefore, the local heat transfer coefficient is increased. The study of the thermal equilibrium showed that for Reynolds less than 1500; almost all of the heat flux generated by the heater cartridges is absorbed by the fluid.
Laminar thermally developing flow in rectangular channels and parallel plates: uniform heat flux
Smith, Andrew N.; Nochetto, Horacio
2014-05-01
Numerical simulations were conducted for thermally developing laminar flow in rectangular channels with aspect ratios ranging from 1 to 100, and for parallel plates. The simulations were for laminar, thermally developing flow with H1 boundary conditions: uniform heat flux along the length of the channel and constant temperature around the perimeter. In the limit as the non-dimensional length, x* = x/(D h RePr), goes to zero, the Nusselt number is dependent on x* to the negative exponent m. As the non-dimensional length goes to infinity the Nusselt number approaches fully developed values that are independent of x*. General correlations for the local and mean heat transfer coefficients are presented that use an asymptotic blending function to transition between these limiting cases. The discrepancy between the correlation and the numerical results is less than 2.5 % for all aspect ratios. The correlations presented are applicable to all aspect ratios and all non-dimensional lengths, and decrease the discrepancy relative to existing correlations.
Zhang, Jingxian; Yao, Zhaohui; Hao, Pengfei
2016-11-01
Flow in a rectangular channel with superhydrophobic (SH) top and bottom walls was investigated experimentally. Different SH surfaces, including hierarchical structured surfaces and surfaces with different micropost sizes (width and spacing) but the same solid fraction, were fabricated and measured. Pressure loss and flow rate in the channel with SH top and bottom walls were measured, with Reynolds number changing from 700 to 4700, and the corresponding friction factor for the SH surface was calculated. The statuses of the air plastron on different SH surfaces were observed during the experiment. In our experiment, compared with the experiment for the smooth surface, drag reductions were observed for all SH surfaces, with the largest drag reduction of 42.2%. It was found that the hierarchy of the microstructure can increase the drag reduction by decreasing the solid fraction and enhancing the stability of the air-water interface. With a fixed solid fraction, the drag reduction decreases as the post size (width and spacing) increases, due to the increasing curvature and instability effects of the air-water interface. A correlation parameter between the contact angle hysteresis, the air-water interface stability, and the drag reduction of the SH surfaces was found.
Directory of Open Access Journals (Sweden)
Kozioł Adam
2017-12-01
Full Text Available The study presents experimental investigations of spatial turbulence intensity and scales of turbulent eddies (macroeddies in a rectangular channel and the impact of the hydraulic jump on their vertical and streamwise distributions over a flat and scoured bed. The results of four tests and two different discharge rates are presented. Intensive mixing caused by the hydraulic jump has an impact on the instantaneous velocity, turbulence intensity and sizes of macroeddies, as well as their vertical and longitudinal distributions along the channel. The largest differences in turbulence characteristics were reported directly after the hydraulic jump, above the eroded bed. The interaction between the stream of the increased turbulence and the bed is a direct cause of formation of scour downstream water structures, which has a great effect on overall flow characteristics. The scour hole that arose downstream the jump moderated, in a small degree, the turbulence intensity at its end. Just next to the hydraulic jump only the small longitudinal relative sizes of macroeddies were present, while at the end of the analyzed reach, downstream of the scour, the relative scale reached around 1.5 depth of the stream.
Kamajaya, Ketut; Umar, Efrizon; Sudjatmi, K. S.
2012-06-01
This study focused on natural convection heat transfer using a vertical rectangular sub-channel and water as the coolant fluid. To conduct this study has been made pipe heaters are equipped with thermocouples. Each heater is equipped with five thermocouples along the heating pipes. The diameter of each heater is 2.54 cm and 45 cm in length. The distance between the central heating and the pitch is 29.5 cm. Test equipment is equipped with a primary cooling system, a secondary cooling system and a heat exchanger. The purpose of this study is to obtain new empirical correlations equations of the vertical rectangular sub-channel, especially for the natural convection heat transfer within a bundle of vertical cylinders rectangular arrangement sub-channels. The empirical correlation equation can support the thermo-hydraulic analysis of research nuclear reactors that utilize cylindrical fuel rods, and also can be used in designing of baffle-free vertical shell and tube heat exchangers. The results of this study that the empirical correlation equations of natural convection heat transfer coefficients with rectangular arrangement is Nu = 6.3357 (Ra.Dh/x)0.0740.
Joekar-Niasar, V.
2013-01-25
Upscaling electroosmosis in porous media is a challenge due to the complexity and scale-dependent nonlinearities of this coupled phenomenon. "Pore-network modeling" for upscaling electroosmosis from pore scale to Darcy scale can be considered as a promising approach. However, this method requires analytical solutions for flow and transport at pore scale. This study concentrates on the development of analytical solutions of flow and transport in a single rectangular channel under combined effects of electrohydrodynamic forces. These relations will be used in future works for pore-network modeling. The analytical solutions are valid for all regimes of overlapping electrical double layers and have the potential to be extended to nonlinear Boltzmann distribution. The innovative aspects of this study are (a) contribution of overlapping of electrical double layers to the Stokes flow as well as Nernst-Planck transport has been carefully included in the analytical solutions. (b) All important transport mechanisms including advection, diffusion, and electromigration have been included in the analytical solutions. (c) Fully algebraic relations developed in this study can be easily employed to upscale electroosmosis to Darcy scale using pore-network modeling. © 2013 Springer Science+Business Media Dordrecht.
Influence of rheology on laminar heat transfer to viscoelastic fluids in a rectangular channel
Energy Technology Data Exchange (ETDEWEB)
Xie, C.; Hartnett, J.P. (Energy Resources Center, Univ. of Illinois at Chicago, Chicago, IL (US))
1992-03-01
Experimental studies of the laminar pressure drop and heat-transfer behavior of two types of aqueous polymer solutions were carried out in a 2:1 rectangular channel. The fluids studied were 1000 wppm of neutralized Carbopol 934 in deionized water and 1000 wppm of Separan AP-273 in tap water. Three difference thermal boundary conditions were studied. The experimental friction factors for the two polymer solutions agree with the value predicted for a purely viscous power law fluid. The measured Nusselt values for the two polymer solutions were considerably higher than the corresponding values for a power law fluid and higher than the experimental values for water. In this paper it is postulated that these high heat-transfer values are the result of secondary flows which arise from normal stress differences imposed on the boundaries of viscoelastic fluids in laminar flow through noncircular geometries. In addition, it is hypothesized that under laminar flow conditions the low frequency oscillatory behavior determines the relative elasticity, which in turn influences the heat-transfer performance of such fluids.
New Subarray Readout Patterns for the ACS Wide Field Channel
Golimowski, D.; Anderson, J.; Arslanian, S.; Chiaberge, M.; Grogin, N.; Lim, Pey Lian; Lupie, O.; McMaster, M.; Reinhart, M.; Schiffer, F.; Serrano, B.; Van Marshall, M.; Welty, A.
2017-04-01
At the start of Cycle 24, the original CCD-readout timing patterns used to generate ACS Wide Field Channel (WFC) subarray images were replaced with new patterns adapted from the four-quadrant readout pattern used to generate full-frame WFC images. The primary motivation for this replacement was a substantial reduction of observatory and staff resources needed to support WFC subarray bias calibration, which became a new and challenging obligation after the installation of the ACS CCD Electronics Box Replacement during Servicing Mission 4. The new readout patterns also improve the overall efficiency of observing with WFC subarrays and enable the processing of subarray images through stages of the ACS data calibration pipeline (calacs) that were previously restricted to full-frame WFC images. The new readout patterns replace the original 512×512, 1024×1024, and 2048×2046-pixel subarrays with subarrays having 2048 columns and 512, 1024, and 2048 rows, respectively. Whereas the original square subarrays were limited to certain WFC quadrants, the new rectangular subarrays are available in all four quadrants. The underlying bias structure of the new subarrays now conforms with those of the corresponding regions of the full-frame image, which allows raw frames in all image formats to be calibrated using one contemporaneous full-frame "superbias" reference image. The original subarrays remain available for scientific use, but calibration of these image formats is no longer supported by STScI.
Directory of Open Access Journals (Sweden)
Xi-yue Liu
2017-01-01
Full Text Available A simplified approach which utilizes an isotropic porous medium model has been widely adopted for modeling the flow through a compact heat exchanger. With respect to situations where the compact heat exchangers are partially installed inside a channel, such as the application of recuperators in an intercooled recuperative engine, the use of an isotropic porous medium model needs to be carefully assessed because the flow passing through the heat exchanger is very complicated. For this purpose, in this study the isotropic porous medium model is assessed together with specific pressure–velocity relationships for flow field modeling inside a rectangular channel with a built-in double-U-shaped tube bundle heat exchanger. Firstly, experiments were conducted using models to investigate the relationship between the pressure drop and the inlet velocity for a specific heat exchanger with different installation angles inside a rectangular channel. Secondly, a series of numerical computations were carried out using the isotropic porous medium model and the pressure–velocity relationship was then modified by introducing correction coefficients empirically. Finally, a three-dimensional (3-D direct computation was made using a computational fluid dynamics (CFD method for the comparison of detailed flow fields. The results suggest that the isotropic porous medium model is capable of making precise pressure drop predictions given the reasonable pressure–velocity relationship but is unable to precisely simulate the detailed flow features.
National Research Council Canada - National Science Library
Anwar Ilmar Ramadhan; As Natio Lasman; Anggoro Septilarso
2015-01-01
.... In this research, using nanofluid Al2O3-Water with volume fraction of (1%), (2%) and also (3%), used as a cooling fluid in a nuclear reactor core with sub channel PWR fuel element rectangular arrangement...
National Research Council Canada - National Science Library
Zhang, Qiang; Wang, Liang-Bi
2016-01-01
A numerical simulation was performed to investigate the effects of longitudinal vortices on the heat transfer enhancement of a laminar flow in a rectangle duct mounted with rectangular winglet pair on the bottom wall...
Wang, Yuan; Wang, Zhen-guo
2016-11-01
Single phase flow friction factor of FC-72 and ethanol in mini-and micro-channels are experimentally investigated in the present study. High aspect ratio3 rectangular channels are selected, the hydraulic diameters of which are 571 µm, 762 µm and 1454 µm, and the aspect ratios are 20, 20 and 10 respectively. Degassed ethanol and FC-72 are used as working fluids. All the friction factors acquired in the 571 µm and 762 µm channels agree with the conventional friction theory within ±20%-±25%. In the 1454 µm channel, however, deviations from the conventional theory occur and a modified empirical correlation of friction factor as a function of Reynolds number is proposed. Early transition from laminar to transitional flow is captured. Besides, effects of liquid physical properties are discussed. Lower viscosity and higher liquid density are responsible for the higher friction factor of FC-72. The influence of liquid properties weakens as the Reynolds number increases.
Heat transfer and pressure drop in rectangular channels with crossing fins (a Review)
Sokolov, N. P.; Polishchuk, V. G.; Andreev, K. D.; Rassokhin, V. A.; Zabelin, N. A.
2015-06-01
Channels with crossing finning find wide use in the cooling paths of high-temperature gas turbine blade systems. At different times, different institutions carried out experimental investigations of heat transfer and pressure drop in channels with coplanar finning of opposite walls for obtaining semiempirical dependences of Nusselt criteria (dimensionless heat-transfer coefficients) and pressure drop coefficients on the operating Reynolds number and relative geometrical parameters (or their complexes). The shape of experimental channels, the conditions of experiments, and the used variables were selected so that they would be most suited for solving particular practical tasks. Therefore, the results obtained in processing the experimental data have large scatter and limited use. This article considers the results from experimental investigations of different authors. In comparing the results, additional calculations were carried out for bringing the mathematical correlations to the form of dependences from the same variables. Generalization of the results is carried out. In the final analysis, universal correlations are obtained for determining the pressure drop coefficients and Nusselt number values for the flow of working medium in channels with coplanar finning.
Filali, Abdelkader; Khezzar, Lyes; Alshehhi, Mohamed Saeed
2017-08-01
The forced convection heat transfer for non-Newtonian viscoelastic fluids obeying the FENE-P model in a parallel-plate channel with transverse rectangular cavities is carried out numerically using ANSYS-POLYFLOW code. The flow investigated is assumed to be two-dimensional, incompressible, laminar and steady. The flow behavior and temperature distribution influenced by the re-circulation caused by the variation of cross-section area along the stream wise direction have been studied. The constant heat flux condition has been applied and the effects of the different parameters, such as the aspect ratio of channel cavities (AR = 0.25, 0.5), the Reynolds number ( Re = 25, 250, and 500), the fluid elasticity defined by the Weissenberg number ( We), and the extensibility parameter of the model ( L 2), on heat transfer characteristics have been explored for channels of three successive cavities configuration. Different levels of heat transfer enhancement were obtained and discussed.
Mansoor, Mohammad M.
2012-02-01
A 3D-conjugate numerical investigation was conducted to predict heat transfer characteristics in a rectangular cross-sectional micro-channel employing simultaneously developing single-phase flows. The numerical code was validated by comparison with previous experimental and numerical results for the same micro-channel dimensions and classical correlations based on conventional sized channels. High heat fluxes up to 130W/cm 2 were applied to investigate micro-channel thermal characteristics. The entire computational domain was discretized using a 120×160×100 grid for the micro-channel with an aspect ratio of (α=4.56) and examined for Reynolds numbers in the laminar range (Re 500-2000) using FLUENT. De-ionized water served as the cooling fluid while the micro-channel substrate used was made of copper. Validation results were found to be in good agreement with previous experimental and numerical data [1] with an average deviation of less than 4.2%. As the applied heat flux increased, an increase in heat transfer coefficient values was observed. Also, the Reynolds number required for transition from single-phase fluid to two-phase was found to increase. A correlation is proposed for the results of average Nusselt numbers for the heat transfer characteristics in micro-channels with simultaneously developing, single-phase flows. © 2011 Elsevier Ltd.
Hawk, John R., III
1987-03-01
An experimental investigation was conducted to study convective heat transfer in straight and curved rectangular channels of high aspect ratio that approximate plates of infinite extent. Experiments were performed at steady state in the turbulent flow regime with one wall held at a constant heat flux and the opposite wall essentially adiabatic. The effect of curvature induced secondary flow on heat transfer on the concave and convex walls was observed by comparing Nusselt numbers for four different configurations at several different Reynolds numbers. Significant heat transfer enhancement was observed on the concave wall. Correlations for Nusselt number as a function of Reynolds number were calculated for the cases studied.
National Research Council Canada - National Science Library
SUDO, Yukio; USUI, Tohru; KAMINAGA, Masanori
1991-01-01
Counter-current-flow limitation (CCFL) experiments were carried out for both vertical rectangular channels and vertical circular tubes varying in size and in configuration of their cross sections to clarify CCFL characteristics...
Bouremel, Yann
2016-11-01
Particle Image Velocimetry (PIV) has been used to characterize the evolution of counter-rotating streamwise vortices in a rectangular channel with one sided wavy surface. The vortices were created by a uniform set of saw-tooth carved over the leading edge of a flat plate at the entrance of a flat rectangular channel with one-sided wavy wall. PIV measurements were taken over the spanwise and streamwise planes at different locations and at Reynolds number of 2500. Two other Reynolds numbers of 2885 and 3333 have also been considered for quantification purpose. Pairs of counter-rotating streamwise vortices have been shown experimentally to be centred along the spanwise direction at the saw-tooth valley where the vorticity ωz=0ωz=0. It has also been found that the vorticity ωzωz of the pairs of counter-rotating vortices decreases along the streamwise direction, and increases with the Reynolds number. Moreover, different quantifications of such counter-rotating vortices have been discussed such as their size, boundary layer, velocity profile and vorticity. The current study shows that the mixing due to the wall shear stress of counter-rotating streamwise vortices as well as their averaged viscous dissipation rate of kinetic energy decrease over flat and adverse pressure gradient surfaces while increasing over favourable pressure gradient surfaces. Finally, it was also demonstrated that the main direction of stretching is orientated at around 45° with the main flow direction.
Turbulent flow and heat transfer of Water/Al2O3 nanofluid inside a rectangular ribbed channel
Parsaiemehr, Mohammad; Pourfattah, Farzad; Akbari, Omid Ali; Toghraie, Davood; Sheikhzadeh, Ghanbarali
2018-02-01
In present study, the turbulent flow and heat transfer of Water/Al2O3 nanofluid inside a rectangular channel have been numerically simulated. The main purpose of present study is investigating the effect of attack angle of inclined rectangular rib, Reynolds number and volume fraction of nanoparticles on heat transfer enhancement. For this reason, the turbulent flow of nanofluid has been simulated at Reynolds numbers ranging from 15000 to 30000 and volume fractions of nanoparticles from 0 to 4%. The changes attack angle of ribs have been investigated ranging from 0 to 180°. The results show that, the changes of attack angle of ribs, due to the changes of flow pattern and created vortexes inside the channel, have significant effect on fluid mixing. Also, the maximum rate of heat transfer enhancement accomplishes in attack angle of 60°. In Reynolds numbers of 15000, 20000 and 30000 and attack angle of 60°, comparing to the attack angle of 0°, the amount of Nusselt number enhances to 2.37, 1.96 and 2 times, respectively. Also, it can be concluded that, in high Reynolds numbers, by using ribs and nanofluid, the performance evaluation criterion improves.
Directory of Open Access Journals (Sweden)
D.R.S. Raghuraman
2017-03-01
Full Text Available A numerical study has been carried out to investigate the heat transfer enhancement and fluid flow characteristics for various aspect ratios of rectangular micro channel heat sinks (MCHS. The working fluid considered for the analysis is water. The fluid flow and heat transfer characteristics of a three-dimensional MCHS are obtained numerically by solving the appropriate governing equations. The flow domain is discretized as finite volume elements and solved using ANSYS CFX 14.5, commercially available CFD code. The numerically predicted results obtained through CFD code are validated with the experiments carried out and it is found that the maximum deviation between the two is less than 5%. Hence the CFD code is further extended to study the influence of geometrical parameters. The channel size optimization has been carried out numerically to obtain the effective heat removal from the MCHS. Average convective heat transfer coefficient, outlet temperature, friction and pressure drop, pumping power and thermal resistance have been plotted against Reynolds number. Non-dimensional parameter, Nusselt number has been plotted as a function of Reynolds number for three heat sinks with different aspect ratios. Friction factor and pressure drop across the channels are obtained and plotted across the channels.
Directory of Open Access Journals (Sweden)
James A. Parsons
2001-01-01
Full Text Available The effect of channel rotation on jet impingement cooling by arrays of circular jets in twin channels was studied. Impinging jet flows were in the direction of rotation in one channel and opposite to the direction of rotation in the other channel. The jets impinged normally on the smooth, heated target wall in each channel. The spent air exited the channels through extraction holes in each target wall, which eliminates cross flow on other jets. Jet rotation numbers and jet Reynolds numbers varied from 0.0 to 0.0028 and 5000 to 10,000, respectively. For the target walls with jet flow in the direction of rotation (or opposite to the direction of rotation, as rotation number increases heat transfer decreases up to 25% (or 15% as compared to corresponding results for non-rotating conditions. This is due to the changes in flow distribution and rotation induced Coriolis and centrifugal forces.
Energy Technology Data Exchange (ETDEWEB)
Syrjaelae, S. [VTT Chemical Technology, Espoo (Finland). Polymer and Fibre Technology
1996-12-31
This thesis presents numerical studies on the flow and heat transfer behaviour of powerlaw non-Newtonian fluids in rectangular ducts, and in extruder channels of rectangular cross-section. For both applications hydrodynamically and thermally fully developed flows are studied first, and subsequently more realistic situations involving the effects of thermal development, viscous dissipation and temperature-dependent viscosity are considered. All numerical computations are based on the finite element method, and a marching procedure in the streamwise direction is utilized in the thermally developing situations. A salient feature of the present numerical approach is that it employs higher-order elements with quartic polynomial interpolation functions for dependent variables. In all cases studied the numerical procedure adopted yields consistent performance with respect to mesh refinement, and comparisons with available analytical solutions show very good agreement. The influence of different factors, such as shear-thinning, viscous dissipation and temperature-dependent viscosity, is investigated. In the extrusion flow computations the importance of considering the recirculating flow and associated transverse convection is clearly established. (orig.) (30 refs.)
Directory of Open Access Journals (Sweden)
Adel Asnaashari
2016-01-01
Full Text Available Transitions are structures that can change geometry and flow velocity through varying the cross-sections of their channels. Under subcritical flow and steady flow conditions, it is necessary to reduce the flow velocity gradually due to increasing water pressure and adverse pressure gradients. Due to the separation of flow and subsequent eddy formation, a significant energy loss is incurred along the transition. This study presents the results of experimental investigations of the subcritical flow along the expansive transition of rectangular to trapezoidal channels. A numerical simulation was developed using a finite volume of fluid (VOF method with a Reynolds stress turbulence model. Water surface profiles and velocity distributions of flow through the transition were measured experimentally and compared with the numerical results. A good agreement between the experimental and numerical model results showed that the Reynolds model and VOF method are capable of simulating the hydraulic flow in open channel transitions. Also, the efficiency of the transition and coefficient of energy head loss were calculated. The results show that with an increasing upstream Froude number, the efficiency of the transition and coefficient of energy head loss decrease and increase, respectively. The results also show the ability of numerical simulation to simulate the flow separation zones and secondary current along the transition for different inlet discharges.
Hydrodynamic analysis of flagellated bacteria swimming in corners of rectangular channels.
Shum, Henry; Gaffney, Eamonn A
2015-12-01
The influence of nearby solid surfaces on the motility of bacteria is of fundamental importance as these interactions govern the ability of the microorganisms to explore their environment and form sessile colonies. Reducing biofouling in medical implants and controlling the transport of bacterial cells in a microfluidic device are two applications that could benefit from a detailed understanding of swimming in microchannels. In this study, we investigate the self-propelled motion of a model bacterium, driven by rotating a single helical flagellum, in such an environment. In particular, we focus on the corner region of a large channel modeled as two perpendicular sections of no-slip planes joined with a rounded corner. We numerically solve the equations of Stokes flow using the boundary element method to obtain the swimming velocities at different positions and orientations relative to the channel corner. From these velocities, we construct many trajectories to ascertain the general behavior of the swimmers. Considering only hydrodynamic interactions between the bacterium and the channel walls, we show that some swimmers can become trapped near the corner while moving, on average, along the axis of the channel. This result suggests that such bacteria may be found at much higher densities in corners than in other parts of the channel. Another implication is that these corner accumulating bacteria may travel quickly through channels since they are guided directly along the corner and do not turn back or swim transversely across the channel.
Effect of the Aligned Flow Obstacles on Downward-Facing CHF in an Inclined Rectangular Channel
Energy Technology Data Exchange (ETDEWEB)
Jeong, Ui ju; Son, Hong Hyun; Seo, Gwang Hyeok; Jeun, Gyoo Dong; Kim, Sung Joong [Hanyang, Seoul (Korea, Republic of)
2016-05-15
The cooling channel consists of the inclined (10 .deg. ) portion of the downward facing heating channel and vertical portion of the heating channel. Features unique to flow boiling with the downward-facing heater surface in the inclined cooling channel where the studs are installed have drawn a considerable attention. That's because prior studies on boiling crisis indicate the orientation of the heated wall can exert substantial influence on CHF. Especially, the concentration of the vapor near the downward facing heater surface makes this region susceptible to premature boiling crisis when compared to vertical or upward-facing heated wall. Also, the installed studs could cause a partial flow blockage, and distort the flow streamline. Due to the distortion, stagnation points may occur in the cooling channel, promoting the concentration of the vapor near the heated wall. Then, the locally degraded heat transfer around the points may result in the formation of vapor pocket. The primary objective of this study is to make available experimental data on the CHF values varying the shape of studs and to improve understanding of the mechanism of flow boiling crisis associated with the aligned flow obstructions by means of visual experimental study. This study presents experimental data for subcooled flow boiling of water at atmospheric pressure and low mass flux conditions. The major outcomes from this investigation can be summarized as follows: (1) The CHF value from bare test section is -320kW/m{sup 2} , significantly lower than the values from the existing correlations even considering the uncertainty in the experiments. (2) The CHF value is remarkably decreased as columnar structures are installed in the channel. It is confirmed that formation and extinction of local dryout occurs repeatedly just behind the first stud at heat flux of -160 kW/m{sup 2}.
Conjugate analysis of asymmetric heating of supercritical fluids in rectangular channels
Jung, Hogirl
2009-12-01
The conjugate problem of the heat transfer to a supercritical fluid in an asymmetrically heated high aspect ratio (AR) channels was analyzed by a computational approach. The domain included both the fluid and the solid regions. The Navier-Stokes equations along with the continuity and the energy equations were solved in the fluid region and the energy equation only was solved in the solid. The fluid and solid regions were coupled through the interface condition requiring a balance of the heat flux across the fluid-solid interface. An adaptive Cartesian look-up table provided the property information for the supercritical fluid. A modified two-equation model of turbulence was implemented to give turbulence characteristics with secondary motions in the fluid. Because of the high Reynolds of interest, the effect of surface roughness was considered with the equivalent roughness set as ks = 3krms. Two dimensional solutions are used to verify the roughness model and the conjugate heat transfer model. The focus of the results then lies on three-dimensional solutions. From these results, series of cross plane views for channel aspect ratios of 4 and 8 cases are used to show details of the streamlines and velocity vectors in the cross plane along with contours plots of the velocity and temperature profiles. These help to improve the understanding of heat transfer in conjugate, high Reynolds flows. The secondary flow in the channel corners increases the heat transfer and decreases the pressure drop while surface roughness augments the heat transfer and increases the pressure drop. Comparisons of the pressure drops along the channel and the temperature at the outer surface of the solid between the computation and the measured data show qualitatively and quantitatively reasonable agreement. Comparison between the AR = 4 and the AR = 8 channel showed that the latter had a larger heat flux than the AR = 4 channel under the same wall temperature conditions. Under same heat flux
Directory of Open Access Journals (Sweden)
Tzer-Ming Jeng
2013-01-01
Full Text Available This work experimentally investigated the fluid flow and heat transfer characteristics of the pin-fin heat sink with the oscillating air flow. The oscillating air flow would be unstable in the passages among the fins due to the periodical change of flow rate. It might enhance the overall heat-transfer performance. At the present study, the pin-fin heat sinks with various fin heights were installed in the rectangular channel, resulting in different bypass clearances between the pin fins and the shroud of the test channel. The smoke flow visualizations for the oscillating-flow system were completed. The heat-transfer tests under the asymmetrically heated condition were performed to obtain the average Nusselt numbers. The smoke lines with obvious waves in the transverse direction were found in the results of the flow visualizations. By comparing to the steady flow system, there was about 20∼34% increment in the overall heat-transfer performance at the operating state without bypass clearance. However, if the bypass clearance was too big, the heat-exchange capacity of the oscillating flow was less than that of the steady flow. It demonstrates that the oscillating flow promotes the cooling performance of pin-fin heat sink at the non-bypass and specified bypass conditions.
Gas-liquid dynamics at low Reynolds numbers in pillared rectangular micro channels
de Loos, S.R.A.; van der Schaaf, J.; Tiggelaar, Roald M.; Nijhuis, T.A.; de Croon, M.H.J.M.; Schouten, J.C.
2010-01-01
Most heterogeneously catalyzed gas–liquid reactions in micro channels are chemically/kinetically limited because of the high gas–liquid and liquid–solid mass transfer rates that can be achieved. This motivates the design of systems with a larger surface area, which can be expected to offer higher
Gas-liquid two-phase flows in rectangular polymer micro-channels
Kim, Namwon; Evans, Estelle T.; Park, Daniel S.; Soper, Steven A.; Murphy, Michael C.; Nikitopoulos, Dimitris E.
2011-08-01
This study addresses gas-liquid two-phase flows in polymer (PMMA) micro-channels with non-molecularly smooth and poorly wetting walls (typical contact angle of 65°) unlike previous studies conducted on highly wetting molecularly smooth materials (e.g., glass/silicon). Four fundamentally different topological flow regimes (Capillary Bubbly, Segmented, Annular, Dry) were identified along with two transitory ones (Segmented/Annular, Annular/Dry) and regime boundaries were identified from the two different test chips. The regime transition boundaries were influenced by the geometry of the two-phase injection, the aspect ratio of the test micro-channels, and potentially the chip material as evidenced from comparisons with the results of previous studies. Three principal Segmented flow sub-regimes (1, 2, and 3) were identified on the basis of quantified topological characteristics, each closely correlated with two-phase flow pressure drop trends. Irregularity of the Segmented regimes and related influencing factors were addressed and discussed. The average bubble length associated with the Segmented flows scaled approximately with a power law of the liquid volumetric flow ratio, which depends on aspect ratio, liquid superficial velocity, and the injection system. A simplified semi-empirical geometric model of gas bubble and liquid plug volumes provided good estimates of liquid plug length for most of the segmented regime cases and for all test-channel aspect ratios. The two-phase flow pressure drop was measured for the square test channels. Each Segmented flow sub-regime was associated with different trends in the pressure drop scaled by the viscous scale. These trends were explained in terms of the quantified flow topology (measured gas bubble and liquid plug lengths) and the number of bubble/plug pairs. Significant quantitative differences were found between the two-phase pressure drop in the polymer micro-channels of this study and those obtained from previous glass
Elastic particle deformation in rectangular channel flow as a measure of particle stiffness.
Hwang, Margaret Y; Kim, Seo Gyun; Lee, Heon Sang; Muller, Susan J
2018-01-03
In this study, we experimentally observed and characterized soft elastic particle deformation in confined flow in a microchannel with a rectangular cross-section. Hydrogel microparticles of pNIPAM were produced using two different concentrations of crosslinker. This resulted in particles with two different shear moduli of 13.3 ± 5.5 Pa and 32.5 ± 15.7 Pa and compressive moduli of 66 ± 10 Pa and 79 ± 15 Pa, respectively, as measured by capillary micromechanics. Under flow, the particle shapes transitioned from circular to egg, triangular, arrowhead, and ultimately parachute shaped with increasing shear rate. The shape changes were reversible, and deformed particles relaxed back to circular/spherical in the absence of flow. The thresholds for each shape transition were quantified using a non-dimensional radius of curvature at the tip, particle deformation, circularity, and the depth of the concave dimple at the trailing edge. Several of the observed shapes were distinct from those previously reported in the literature for vesicles and capsules; the elastic particles had a narrower leading tip and a lower circularity. Due to variations in the shear moduli between particles within a batch of particles, each flow rate corresponded to a small but finite range of capillary number (Ca) and resulted in a series of shapes. By arranging the images on a plot of Ca versus circularity, a direct correlation was developed between shape and Ca and thus between particle deformation and shear modulus. As the shape was very sensitive to differences in shear modulus, particle deformation in confined flow may allow for better differentiation of microparticle shear modulus than other methods.
Directory of Open Access Journals (Sweden)
Anwar Ilmar Ramadhan
2015-03-01
Full Text Available Safety is a major concern in the design, operation and development of a nuclear reactor. One aspect of nuclear reactor safety factor is thermal-hydraulics aspect. In a PWR-type nuclear power plant has been used lighter fluid coolant is water or H2O. In this research, using nanofluid Al2O3-Water with volume fraction of (1%, (2% and also (3%, used as a cooling fluid in a nuclear reactor core with sub channel PWR fuel element rectangular arrangement. This research was carried out modeling of fuel elements are arranged rectangular, then performed numerical simulations using Computational Fluid Dynamics (CFD code. In order to obtain the characteristic pattern of flow velocity of each fluid, the fluid temperature distribution along the cylinder wall temperature distribution of the fuel element. Then analyzed the heat transfer in a nuclear reactor core with sub channel PWR fuel element rectangular arrangement, including heat transfer coefficient, Nusselt number (Nu, as well as heat transfer correlations. Heat transfer correlation for nanofluid Al2O3-Water (1%, (2% and also (3% proved to core of PWR nuclear reactor fuel element sub channel rectangular arrangement with the Reynolds number (Re is stretched, namely: 404 096
Energy Technology Data Exchange (ETDEWEB)
Vallee, Christophe
2012-08-22
Stratified two-phase flows were investigated at different test facilities with horizontal test sections in order to provide an experimental database for the development and validation of computational fluid dynamics (CFD) codes. These channels were designed with rectangular cross-sections to enable optimal observation conditions for the application of optical measurement techniques. Consequently, the local flow structure was visualised with a high-speed video camera, delivering data with highresolution in space and time as needed for CFD code validation. Generic investigations were performed at atmospheric pressure and room temperature in two air/water channels made of acrylic glass. Divers preliminary experiments were conducted with various measuring systems in a test section mounted between two separators. The second test facility, the Horizontal Air/Water Channel (HAWAC), is dedicated to co-current flow investigations. The hydraulic jump as the quasi-stationary discontinuous transition between super- and subcritical flow was studied in this closed channel. Moreover, the instable wave growth leading to slug flow was investigated from the test section inlet. For quantitative analysis of the optical measurements, an algorithm was developed to recognise the stratified interface in the camera frames, allowing statistical treatments for comparison with CFD calculation results. The third test apparatus was installed in the pressure chamber of the TOPFLOW test facility in order to be operated at reactor typical conditions under pressure equilibrium with the vessel atmosphere. The test section representing a flat model of the hot leg of the German Konvoi pressurised water reactor (PWR) scaled at 1:3 is equipped with large glass side walls in the region of the elbow and of the steam generator inlet chamber to allow visual observations. The experiments were conducted with air and water at room temperature and maximum pressures of 3 bar as well as with steam and water at
Particle-driven gravity currents in non-rectangular cross-section channels
Zemach, Tamar
2015-11-01
Particle-driven gravity currents are suspensions of dense particles that spread into an ambient fluid due to the difference between the density of the suspension and that of the ambient fluid. During the evolution of the current, particles continually sediment and are deposited from the flow. Particle-driven gravity currents are important in many environmental situations (volcanic ash flows, turbidity currents). In the present work we consider the propagation of a high-Reynolds-number gravity current generated by suspension of heavier particles in fluid of density ρi propagating along a channel into an ambient fluid of the density ρa. The bottom and top of the channel are at z = 0 , H , and the cross-section is given by the quite general -f1 (z) <= y <=f2 (z) for 0 <= z <= H . The flow is modeled by the one-layer shallow-water equation. We solve the problem by the finite-difference numerical code to present typical height h (x , t) , velocity u (x , t) and volume fraction of particles ϕ (x , t) profiles. The methodology is illustrated for flow in typical geometries: power-law, trapezoidal and circle. The presence of the particles reduces the speed of propagation, however the details are depend on the geometry of the cross-section.
Sobolev, A. F.; Yakovets, M. A.
2017-11-01
Exact solutions to problems of the propagation of acoustic modes in lined channels with an impedance jump in the presence of a uniform flow are constructed. Two problems that can be solved by the Wiener- Hopf method—the propagation of acoustic modes in an infinite cylindrical channel with a transverse impedance jump and the propagation of acoustic modes in a rectangular channel with an impedance jump on one of its walls—are considered. On the channel walls, the Ingard-Myers boundary conditions are imposed and, as an additional boundary condition in the vicinity of the junction of the linings, the condition expressing the finiteness of the acoustic energy. Analytical expressions for the amplitudes of the transmitted and reflected fields are obtained.
Directory of Open Access Journals (Sweden)
Raj Kumar
2016-05-01
Full Text Available In this work, the effect of angle of attack ( α a of the discrete V-pattern baffle on thermohydraulic performance of rectangular channel has been studied experimentally. The baffle wall was constantly heated and the other three walls of the channel were kept insulated. The experimentations were conducted to collect the data on Nusselt number ( N u b and friction factor ( f b by varying the Reynolds number (Re = 3000–21,000 and angle of attack ( α a from 30° to 70°, for the kept values of relative baffle height ( H b / H = 0 . 50 , relative pitch ratio ( P b / H = 1 . 0 , relative discrete width ( g w / H b = 1 . 5 and relative discrete distance ( D d / L v = 0 . 67 . As compared to the smooth wall, the V-pattern baffle roughened channel enhances the Nusselt number ( N u b and friction factor ( f b by 4.2 and 5.9 times, respectively. The present discrete V-pattern baffle shapes with angle of attack ( α a of 60° equivalent to flow Reynolds number of 3000 yields the greatest thermohydraulic performance. Discrete V-pattern baffle has improved thermal performance as compared to other baffle shapes’ rectangular channel.
Anwar Ilmar Ramadhan; As Natio Lasman; Anggoro Septilarso
2015-01-01
Safety is a major concern in the design, operation and development of a nuclear reactor. One aspect of nuclear reactor safety factor is thermal-hydraulics aspect. In a PWR-type nuclear power plant has been used lighter fluid coolant is water or H2O. In this research, using nanofluid Al2O3-Water with volume fraction of (1%), (2%) and also (3%), used as a cooling fluid in a nuclear reactor core with sub channel PWR fuel element rectangular arrangement. This research was carried out modeling of ...
Limiting photocurrent analysis of a wide channel photoelectrochemical flow reactor
Davis, Jonathan T.; Esposito, Daniel V.
2017-03-01
The development of efficient and scalable photoelectrochemical (PEC) reactors is of great importance for the eventual commercialization of solar fuels technology. In this study, we systematically explore the influence of convective mass transport and light intensity on the performance of a 3D-printed PEC flow cell reactor based on a wide channel, parallel plate geometry. Using this design, the limiting current density generated from the hydrogen evolution reaction at a p-Si metal-insulator-semiconductor (MIS) photocathode was investigated under varied reactant concentration, fluid velocity, and light intensity. Additionally, a simple model is introduced to predict the range of operating conditions (reactant concentration, light intensity, fluid velocity) for which the photocurrent generated in a parallel plate PEC flow cell is limited by light absorption or mass transport. This model can serve as a useful guide for the design and operation of wide-channel PEC flow reactors. The results of this study have important implications for PEC reactors operating in electrolytes with dilute reactant concentrations and/or under high light intensities where high fluid velocities are required in order to avoid operation in the mass transport-limited regime.
Miller, Andrew; Villegas, Arturo; Diez, F Javier
2015-03-01
The solution to the startup transient EOF in an arbitrary rectangular microchannel is derived analytically and validated experimentally. This full 2D transient solution describes the evolution of the flow through five distinct periods until reaching a final steady state. The derived analytical velocity solution is validated experimentally for different channel sizes and aspect ratios under time-varying pressure gradients. The experiments used a time resolved micro particle image velocimetry technique to calculate the startup transient velocity profiles. The measurements captured the effect of time-varying pressure gradient fields derived in the analytical solutions. This is tested by using small reservoirs at both ends of the channel which allowed a time-varying pressure gradient to develop with a time scale on the order of the transient EOF. Results showed that under these common conditions, the effect of the pressure build up in the reservoirs on the temporal development of the transient startup EOF in the channels cannot be neglected. The measurements also captured the analytical predictions for channel walls made of different materials (i.e., zeta potentials). This was tested in channels that had three PDMS and one quartz wall, resulting in a flow with an asymmetric velocity profile due to variations in the zeta potential between the walls. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Sakurai, Hisashi; Koizumi, Yasuo; Ohtake, Hiroyasu
Sub-cooled flow boiling heat transfer experiments were performed for narrow-flat flow passages of 2 mm wide and 0.2 mm high. A heat transfer surface of 2 mm × 2 mm was placed at the just downstream of the flow channel outlet. A fast wall plane-jet was formed on the heat transfer surface and space for vapor generated on the heat transfer surface to leave freely form the plane jet was provided The experiments covered the flow rate from 5 m⁄s through 20 m⁄s and the inlet sub-cooling from 30 K through 70 K. Critical heat fluxes were greatly augmented about twice compared with those in the previous experiments where the heat transfer surface was located at the outlet end of the same flow channel as that in the present experiments. This has indicated that the present idea of the flow system is effective to enhance the critical heat flux. When the flow velocity was slower than 10 m⁄s, a large secondary bubble that was formed as a result of coalescence of many primary bubbles on the heat transfer surface covered the heat transfer surface. The large-coalesced bubble triggered the occurrence of the critical heat flux. When the flow velocity became faster than 10 m⁄s, the heat transfer surface was covered with many tiny-primary bubbles even at the critical heat flux condition. The critical heat fluxes in the present experiments were much larger than predictions of correlations. The triggering mechanism of the critical heat flux condition was proposed based on the observation mentioned above. It has two parts; for low flow velocity and for high flow velocity. The boundary is 10 m⁄s. In both cases, disappearance of a liquid film under the bubble due to evaporation is related to the appearance of the critical heat flux condition. The predicted critical heat fluxes were larger than that measured, however, qualitatively agreed well.
Salama, Amgad
2014-08-25
Numerical simulation of flow and heat transfer in two adjacent channels is conducted with one of the channels partially blocked. This system simulates typical channels of a material testing reactor. The blockage is assumed due to the buckling of one of the channel plates inward along its width. The blockage ratio considered in this work is defined as the ratio between the cross-sectional area of the blocked and the unblocked channel. In this work, we consider a blockage ratio of approximately 40%. However, the blockage is different along the width of the channel, ranging from 0% at the end of the channel to 90% in the middle. The channel walls are sandwiching volumetric heat sources that vary spatially as chopped cosine functions. Interesting patterns are highlighted and investigated. The reduction in the flow area of one channel results in the flow redistributing among the two channels according to the changes in their hydraulic conductivities. The results of the numerical simulations show that the maximum wall temperature in the blocked channel is well below the boiling temperature at the operating pressure.
Energy Technology Data Exchange (ETDEWEB)
Sotelo-Avila, G.; Gallegos-Silva, J. [Universidad Nacional Autonoma de Mexico, Mexico, D.F. (Mexico)
2002-03-01
The study of channel flow usually have its basis in the hydrostatic distribution of pressure and the rectilinear flow hypotheses. It is from this hypothesis that the main flow equations are obtained. However, this is not applicable to a vertically curved flow that is present in a curved bed channel. This kind of channel is used to join two different slopes or in ski jumps. This kind of flow presents several changes from the rectilinear flow as in the velocity and pressure distributions and even in the energy loses. The authors of this article propose an equation of gradually varied flow for vertically-curved bed rectangular channels that adds a coefficient to modify the velocity in the calculus of the local friction gradient. With these results is possible now to analyze flow profiles in vertically-curved bed channels where before were used the methods for straight channels and therefore, increase accuracy. [Spanish] Las hipotesis del movimiento rectilineo y de distribucion hidrostatica de la presion son ciertamente las mas importantes en la hidraulica de canales, y de ellas se derivan los principales modelos de flujo que usualmente emplean. Sin embargo, no es valido aplicar la misma hipotesis y metodos de analisis al flujo curvilineo, que ocurre cuando el canal adopta curvaturas verticales en el fondo, las cuales inducen cambios importantes en la distribucion de la velocidad, presion y hasta en la perdida d energia. Tal es el caso de canales que contienen curvas verticales para unir tramos de distintas pendientes y producir el cambio en la direccion del flujo en cubetas deflectoras y vertedores en tunel. Los autores de este articulo proponen una ecuacion de flujo gradualmente variado en canales rectangulares de fondo curvo, esta es de gran utilidad en la determinacion del perfil del flujo con dichas caracteristicas, donde se plantea la adicion de un factor de amplificacion de la velocidad en el calculo del gradiente local de friccion, para tomar en cuenta el
Pixel History for Advanced Camera for Surveys Wide Field Channel
Borncamp, D.; Grogin, N.; Bourque, M.; Ogaz, S.
2017-06-01
Excess thermal energy present in a Charged Coupled Device (CCD) can result in additional electrical current. This excess charge is trapped within the silicon lattice structure of the CCD electronics. It can persist through multiple exposures and have an adverse effect on science performance of the detectors unless properly flagged and corrected for. The traditional way to correct for this extra charge is to take occasional long-exposure images with the camera shutter closed. These images, generally referred to as "dark" images, allow for the measurement of the thermal-electron contamination present in each pixel of the CCD lattice. This so-called "dark current" can then be subtracted from the science images by re-scaling the dark to the corresponding exposure times. Pixels that have signal above a certain threshold are traditionally marked as "hot" and flagged in the data quality array. Many users will discard these because of the extra current. However, these pixels may not be unusable because of an unreliable dark subtraction; if we find these pixels to be stable over an anneal period, we can properly subtract the charge and the extra Poisson noise from this dark current will be propagated into the error arrays. Here we present the results of a pixel history study that analyzes every individual pixel of the Hubble Space Telescope's (HST) Advanced Camera for Surveys (ACS) Wide Field Channel (WFC) CCDs over time and allows pixels that were previously flagged as unusable to be brought back into the science image as a reliable pixel.
Energy Technology Data Exchange (ETDEWEB)
Kinoshita, Hidetaka; Terada, Atsuhiko; Kaminaga, Masanori; Hino, Ryutaro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment
2001-10-01
In the design of a spallation target system, the water cooling system, for example a proton beam window and a safety hull, is used with narrow channels, in order to remove high heat flux and prevent lowering of system performance by absorption of neutron. And in narrow channel, heat transfer enhancement using 2-D rib is considered for reduction the cost of cooling component and decrease inventory of water in the cooling system, that is, decrease of the amount of irradiated water. But few studies on CHF with rib have been carried out. Experimental and analytical studies with rib-roughened test section, in 10:1 ratio of pitch to height, are being carried out in order to clarify the CHF in rib-roughened channel. This paper presents the review of previous researches on heat transfer in channel with rib roughness, overview of the test facility and the preliminary experimental and analytical results. As a result, wall friction factors were about 3 times as large as that of smooth channel, and heat transfer coefficients are about 2 times as large as that of smooth channel. The obtained CHF was as same as previous mechanistic model by Sudo. (author)
Pagani, Pascal; Pajusco, Patrice
2006-09-01
For the development of future Ultra Wide Band (UWB) communication systems, realistic modeling of the propagation channel is necessary. This article presents an experimental study of the UWB radio channel, based on an extensive sounding campaign covering the indoor office environment. We consider the main characteristics of the UWB channel by studying the propagation loss and wide band parameters, such as the delay spread and the power delay profile decay. From this analysis, we propose a statistical channel model reproducing the UWB channel effects over the frequency bandwidth 3.1-10.6 GHz. To cite this article: P. Pagani, P. Pajusco, C. R. Physique 7 (2006).
Alheadary, Wael G.
2016-10-13
In this paper, we derive the performances of optical wireless communication system utilizing adaptive subcarrier intensity modulation over the Malaga turbulent channel. More specifically, analytical closed-form solutions and asymptotic results are derived for average bit error rate, achievable spectral efficiency, outage probability, and ergodic capacity by utilizing series expansion identity of modified Bessel function. Our asymptotic and analytical results based on series solutions with finite numbers highly matched to the numerical results. By exploiting the inherent nature of fading channel, the proposed adaptive scheme enhances the spectral efficiency without additional transmit power while satisfying the required bit error rate criterion. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Recent emission channeling studies in wide band gap semiconductors
Wahl, Ulrich; Rita, E; Alves, E; Carvalho-Soares, João; De Vries, Bart; Matias, V; Vantomme, A
2005-01-01
We present results of recent emission channeling experiments on the lattice location of implanted Fe and rare earths in wurtzite GaN and ZnO. In both cases the majority of implanted atoms are found on substitutional cation sites. The root mean square displacements from the ideal substitutional Ga and Zn sites are given and the stability of the Fe and rare earth lattice location against thermal annealing is discussed.
Insights from depth-averaged numerical simulation of flow at bridge abutments in compound channels.
2011-07-01
Two-dimensional, depth-averaged flow models are used to study the distribution of flow around spill-through abutments situated on floodplains in compound channels and rectangular channels (flow on very wide floodplains may be treated as rectangular c...
VillageLink: A channel allocation technique for wide-area white space networks
CSIR Research Space (South Africa)
Pejovic, V
2015-01-01
Full Text Available to a graph coloring problem. In white spaces, the wide range of available channels leads to drastic differences in propagation among channels. These differences stem from the variation of free space propagation over frequencies, but also from antenna...
Directory of Open Access Journals (Sweden)
Ebtehaj Isa
2016-09-01
Full Text Available A vital topic regarding the optimum and economical design of rigid boundary open channels such as sewers and drainage systems is determining the movement of sediment particles. In this study, the incipient motion of sediment is estimated using three datasets from literature, including a wide range of hydraulic parameters. Because existing equations do not consider the effect of sediment bed thickness on incipient motion estimation, this parameter is applied in this study along with the multilayer perceptron (MLP, a hybrid method based on decision trees (DT (MLP-DT, to estimate incipient motion. According to a comparison with the observed experimental outcome, the proposed method performs well (MARE = 0.048, RMSE = 0.134, SI = 0.06, BIAS = -0.036. The performance of MLP and MLP-DT is compared with that of existing regression-based equations, and significantly higher performance over existing models is observed. Finally, an explicit expression for practical engineering is also provided.
Short-channel field-effect transistors with 9-atom and 13-atom wide graphene nanoribbons.
Llinas, Juan Pablo; Fairbrother, Andrew; Borin Barin, Gabriela; Shi, Wu; Lee, Kyunghoon; Wu, Shuang; Yong Choi, Byung; Braganza, Rohit; Lear, Jordan; Kau, Nicholas; Choi, Wonwoo; Chen, Chen; Pedramrazi, Zahra; Dumslaff, Tim; Narita, Akimitsu; Feng, Xinliang; Müllen, Klaus; Fischer, Felix; Zettl, Alex; Ruffieux, Pascal; Yablonovitch, Eli; Crommie, Michael; Fasel, Roman; Bokor, Jeffrey
2017-09-21
Bottom-up synthesized graphene nanoribbons and graphene nanoribbon heterostructures have promising electronic properties for high-performance field-effect transistors and ultra-low power devices such as tunneling field-effect transistors. However, the short length and wide band gap of these graphene nanoribbons have prevented the fabrication of devices with the desired performance and switching behavior. Here, by fabricating short channel (L ch ~ 20 nm) devices with a thin, high-κ gate dielectric and a 9-atom wide (0.95 nm) armchair graphene nanoribbon as the channel material, we demonstrate field-effect transistors with high on-current (I on > 1 μA at V d = -1 V) and high I on /I off ~ 10(5) at room temperature. We find that the performance of these devices is limited by tunneling through the Schottky barrier at the contacts and we observe an increase in the transparency of the barrier by increasing the gate field near the contacts. Our results thus demonstrate successful fabrication of high-performance short-channel field-effect transistors with bottom-up synthesized armchair graphene nanoribbons.Graphene nanoribbons show promise for high-performance field-effect transistors, however they often suffer from short lengths and wide band gaps. Here, the authors use a bottom-up synthesis approach to fabricate 9- and 13-atom wide ribbons, enabling short-channel transistors with 10(5) on-off current ratio.
A Geometric Framework for Rectangular Shape Detection.
Li, Qi
2014-07-25
Rectangular shape detection has a wide range of applications, such as license plate detection, vehicle detection and building detection. In this paper, we propose a geometric framework for rectangular shape detection based on the channelscale space of RGB images. The framework consists of algorithms developed to address three issues of a candidate shape (i.e., a connected component of edge points), including: i) outliers, ii) open shape, and iii) fragmentation. Furthermore, we propose an interestness measure for rectangular shapes by integrating imbalanced points (one type of interest points). Our experimental study shows the promise of the proposed framework.
Evaluating the impact of a wide range of vegetation densities on river channel pattern
Pattison, Ian; Roucou, Ron
2016-04-01
develop a simple conceptual model to explain the observations along the wide range of vegetation densities investigated. At low plant densities, each plant acted independently and caused flow separation and convergence around each plant, similar to in the Coulthard (2005] experiment. At medium densities, individual plants start to interact together with narrow channels developing longitudinally between vegetative bars. Finally at very high densities, there was both lateral and longitudinal interaction between plants meaning that flow was diverted around them forming wandering, meandering channels. In summary, the relationship between vegetation density and channel braiding is more complex than previous thought, taking a parabolic shape, with maximum braiding occurring at medium vegetation densities.
Best connected rectangular arrangements
Directory of Open Access Journals (Sweden)
Krishnendra Shekhawat
2016-03-01
Full Text Available It can be found quite often in the literature that many well-known architects have employed either the golden rectangle or the Fibonacci rectangle in their works. On contrary, it is rare to find any specific reason for using them so often. Recently, Shekhawat (2015 proved that the golden rectangle and the Fibonacci rectangle are one of the best connected rectangular arrangements and this may be one of the reasons for their high presence in architectural designs. In this work we present an algorithm that generates n-4 best connected rectangular arrangements so that the proposed solutions can be further used by architects for their designs.
Calibration of BVRI Photometry for the Wide Field Channel of the HST Advanced Camera for Surveys
Saha, Abhijit; Shaw, Richard A.; Claver, Jennifer A.; Dolphin, Andrew E.
2011-04-01
We present new observations of two Galactic globular clusters, PAL4 and PAL14, using the Wide Field Channel of the Advanced Camera for Surveys (ACS) on board the Hubble Space Telescope (HST) and reanalyze archival data from a third, NGC2419. We matched our photometry of hundreds of stars in these fields from the ACS images to existing ground-based photometry of faint sequences that were calibrated on the standard BVRI system of Landolt. These stars are significantly fainter than those generally used for HST calibration purposes and therefore are much better matched to supporting precision photometry of ACS science targets. We were able to derive more accurate photometric transformation coefficients for the commonly used ACS broadband filters, compared with those published by Sirianni et al., due to the use of a factor of several more calibration stars that span a greater range of color. We find that the inferred transformations from each cluster individually do not vary significantly from the average, except for a small offset of the photometric zero point in the F850LP filter. Our results suggest that the published prescriptions for the time-dependent correction of CCD charge transfer efficiency appear to work very well over the ˜3.5 yr interval that spans our observations of PAL4 and PAL14 and the archived images of NGC2419.
Turbulence Measurements of Rectangular Nozzles with Bevel
Bridges, James; Wernet, Mark P.
2015-01-01
This paper covers particle image velocimetry measurements of a family of rectangular nozzles with aspect ratios 2, 4, and 8, in the high subsonic flow regime. Far-field acoustic results, presented previously, showed that increasing aspect ratios increased the high frequency noise, especially directed in the polar plane containing the minor axis of the nozzle. The measurements presented here have important implications in the modeling of turbulent sources for acoustic analogy theories. While the nonaxisymmetric mean flow from the rectangular nozzles can be studied reliably using computational solutions, the nonaxisymmetry of the turbulent fluctuations, particularly at the level of velocity components, cannot; only measurements such as these can determine the impact of nozzle geometry on acoustic source anisotropy. Additional nozzles were constructed that extended the wide lip on one side of these nozzles to form beveled nozzles. The paper first documents the velocity fields, mean and variance, from the round, rectangular, and beveled rectangular nozzles at high subsonic speeds. A second section introduces measures of the isotropy of the turbulence, such as component ratios and lengthscales, first by showing them for a round jet and then for the rectangular nozzles. From these measures the source models of acoustic analogy codes can be judged or modified to account for these anisotropies.
Dowler, ASH; Doufexi, A; Nix, AR
2002-01-01
In this paper channel estimation techniques for a mobile fourth generation coherent orthogonal frequency division multiplexing (OFDM) system are proposed. Coherent detection dictates that a per-subband estimate of the frequency response of the channel is generated for each OFDM symbol. This is achieved by inserting pilot symbols amongst the data symbols in the OFDM modulation grid. With suitable interpolation, the channel estimate at all intermediate symbols can be generated. A number of chan...
Barker, C; Dillon, H
1999-04-01
Compression in hearing aids can be applied with low compression ratios over a wide range of input levels, but reverts to linear amplification below the compression threshold (CT). In this study, we aimed to determine which of two CTs was preferred by subjects as they used their hearing aids in their own environments, and whether they would prefer to have no low ratio compression at all. Subjects were fitted with a multimemory hearing aid incorporating input controlled compression with a 2:1 compression ratio and output controlled compression limiting. The two memories contained identical programs except that they differed in CT. Sixteen mild to moderately sensorineurally hearing-impaired subjects compared low (approximately 40 dB SPL) and moderate (approximately 65 dB SPL) CTs over 2 mo of field trials using hand held remote controls to switch between the alternatives. In a third month's trial, the preferred option (which also included output controlled compression limiting) was compared with compression limiting alone. The higher CT was preferred by 14 of the subjects. The combination of input compression and output compression limiting was preferred to compression limiting alone by 14 of the subjects. Several real world advantages of frequency independent 2:1 compression with a CT of about 65 dB SPL were demonstrated over linear amplification. Extending the compression to much lower input levels appears to carry more disadvantages than advantages, at least for clients with mild and moderate hearing losses, when fitted with single-channel compression aids with a 2:1 compression ratio.
Plyler, Patrick; Hedrick, Mark; Rinehart, Brittany; Tripp, Rebekah
2015-01-01
Both wide dynamic range compression (WDRC) and ChannelFree (CF) processing strategies in hearing aids were designed to improve listener comfort and consonant identification, yet few studies have actually compared them. To determine whether CF processing provides equal or better consonant identification and subjective preference than WDRC. A repeated-measures randomized design was used in which each participant identified consonants from prerecorded nonsense vowel-consonant-vowel syllables in three conditions: unaided, aided using CF processing, and aided using WDRC processing. For each of the three conditions, syllables were presented in quiet and in a speech-noise background. Participants were also asked to rate the two processing schemes according to overall preference, preference in quiet and noise, and sound quality. Twenty adults (seven females; mean age 69.7 yr) with ≥1 yr of hearing aid use participated. Ten participants had previous experience wearing aids with WDRC, and 10 had previous experience with CF processing. Participants were tested with both WDRC and CF processing. Number of consonants correct were measured and used as the dependent variable in analyses of variance with subsequent post hoc testing. For subjective preference, a listener rating form was employed with subsequent χ² analysis. Overall results showed that signal-processing strategy did not significantly affect consonant identification or subjective preference, nor did previous hearing aid use influence results. Listeners with audiometric slopes exceeding 11 dB per octave, however, preferred CF processing and performed better in noise with CF processing. CF processing is a viable alternative to WDRC for listeners with more severely sloping audiometric contours. American Academy of Audiology.
Performance analysis for a chaos-based code-division multiple access system in wide-band channel
Directory of Open Access Journals (Sweden)
Ciprian Doru Giurcăneanu
2015-08-01
Full Text Available Code-division multiple access technology is widely used in telecommunications and its performance has been extensively investigated in the past. Theoretical results for the case of wide-band transmission channel were not available until recently. The novel formulae which have been published in 2014 can have an important impact on the future of wireless multiuser communications, but limitations come from the Gaussian approximations used in their derivation. In this Letter, the authors obtain more accurate expressions of the bit error rate (BER for the case when the model of the wide-band channel is two-ray, with Rayleigh fading. In the authors’ approach, the spreading sequences are assumed to be generated by logistic map given by Chebyshev polynomial function of order two. Their theoretical and experimental results show clearly that the previous results on BER, which rely on the crude Gaussian approximation, are over-pessimistic.
Directory of Open Access Journals (Sweden)
Anatoly T. Tshedrin
2014-06-01
Full Text Available The relevance of the study. In the context of religious and philosophical movements of the «New Age» gained channeling phenomenon – «laying channel», «transmission channel» information from the consciousness that is not in human form, to the individual and humanity as a whole. In the socio-cultural environment of the postmodern channeling reflects the problem of finding extraterrestrial intelligence (ETI; «ETC-problem»; SETІ problem and to establish contacts with them, this problem has a different projection, important philosophical and anthropological measurements in culture. Investigation of mechanisms of constructing virtual superhuman personalities in the world web is not only of interest for further analysis of the problem of extraterrestrial intelligence (ETI, but also to extend subject field of anthropology of the Internet as an important area of philosophical and anthropological studies. The purpose of the study. Analysis of the phenomenon of channeling as a projection of the fundamental problems of life ETI, its representation on the World Wide Web, the impact on the archaism of postmodern culture posing problems meta an-thropological dimensions of existence in the universe of reason and contact with him in the doctrinal grounds channeling. Analysis of research on the problem and its empirical base. Clustered nature of the problem of ETI and channeling its element involves the widespread use of radio astronomy paradigm works carriers solve CETI; work in anthropology Internet; works of researchers of the phenomenon of «New Age». Empirical basis of the study are network resources, as well as texts–representatives created and introduced into circulation by the channelers, their predecessors. Research Methodology. Channeling as an object of research, its network of representation – as a matter of methods involve the use of analytical hermeneutics and archaeographic commenting text fractal logic cluster analysis. The main
Humes, Larry E; Humes, Lauren E; Wilson, Dana L
2004-06-01
The present study used an independent-group design to compare the benefits provided by binaural, single-channel, linear, full-shell in-the-ear hearing aids and binaural, 2-channel, wide-dynamic-range-compression in-the-canal hearing aids in groups of older hearing aid wearers. Hearing aid outcome measures were obtained at both 1-month (n = 53) and 6-month (n = 34) postfit intervals with each device. Outcome measures included multiple measures of speech-recognition performance and self-report measures of hearing aid benefit, satisfaction, and usage. Aided sound-quality measurements were also obtained. Although both devices provided significant benefits to the wearers, there were no significant differences in the benefits provided by either device at the 1-month or 6-month postfit intervals.
Acoustic Measurements of Rectangular Nozzles With Bevel
Bridges, James E.
2012-01-01
A series of convergent rectangular nozzles of aspect ratios 2:1, 4:1, and 8:1 were constructed with uniform exit velocity profiles. Additional nozzles were constructed that extended the wide lip on one side of these nozzles to form beveled nozzles. Far-field acoustic measurements were made and analyzed, and the results presented. The impact of aspect ratio on jet noise was similar to that of enhanced mixing devices: reduction in aft, peak frequency noise with an increase in broadside, high frequency noise. Azimuthally, it was found that rectangular jets produced more noise directed away from their wide sides than from their narrow sides. The azimuthal dependence decreased at aft angles where noise decreased. The effect of temperature, keeping acoustic Mach number constant, was minimal. Since most installations would have the observer on the wide size of the nozzle, the increased high frequency noise has a deleterious impact on the observer. Extending one wide side of the rectangular nozzle, evocative of an aft deck in an installed propulsion system, increased the noise of the jet with increasing length. The impact of both aspect ratio and bevel length were relatively well behaved, allowing a simple bilinear model to be constructed relative to a simple round jet.
Buckling analysis of rectangular composite plates with rectangular ...
Indian Academy of Sciences (India)
Logo of the Indian Academy of Sciences ... A numerical study is carried out using finite element method, to examine the effects of square and rectangular cutout on the buckling behavior of a sixteen ply quasi-isotropic graphite/epoxy symmetrically laminated rectangular composite plate [ 0 ∘ / + 45 ∘ / − 45 ∘ / 90 ∘ ] 2 s ...
Bimodal wireless sensing with dual-channel wide bandgap heterostructure varactors
Deen, David A.; Osinsky, Andrei; Miller, Ross
2014-03-01
A capacitive wireless sensing scheme is developed that utilizes an AlN/GaN-based dual-channel varactor. The dual-channel heterostructure affords two capacitance plateaus within the capacitance-voltage (CV) characteristic, owing to the two parallel two-dimensional electron gases (2DEGs) located at respective AlN/GaN interfaces. The capacitance plateaus are leveraged for the definition of two resonant states of the sensor when implemented in an inductively-coupled resonant LRC network for wireless readout. The physics-based CV model is compared with published experimental results, which serve as a basis for the sensor embodiment. The bimodal resonant sensor is befitting for a broad application space ranging from gas, electrostatic, and piezoelectric sensors to biological and chemical detection.
Rectangular spectral collocation
Driscoll, Tobin A.
2015-02-06
Boundary conditions in spectral collocation methods are typically imposed by removing some rows of the discretized differential operator and replacing them with others that enforce the required conditions at the boundary. A new approach based upon resampling differentiated polynomials into a lower-degree subspace makes differentiation matrices, and operators built from them, rectangular without any row deletions. Then, boundary and interface conditions can be adjoined to yield a square system. The resulting method is both flexible and robust, and avoids ambiguities that arise when applying the classical row deletion method outside of two-point scalar boundary-value problems. The new method is the basis for ordinary differential equation solutions in Chebfun software, and is demonstrated for a variety of boundary-value, eigenvalue and time-dependent problems.
Rectangular diagrams of surfaces: representability
Dynnikov, I. A.; Prasolov, M. V.
2017-06-01
Introduced here is a simple combinatorial way, which is called a rectangular diagram of a surface, to represent a surface in the three-sphere. It has a particularly nice relation to the standard contact structure on S^3 and to rectangular diagrams of links. By using rectangular diagrams of surfaces it is intended, in particular, to develop a method to distinguish Legendrian knots. This requires a lot of technical work of which the present paper addresses only the first basic question: which isotopy classes of surfaces can be represented by a rectangular diagram? Roughly speaking, the answer is this: there is no restriction on the isotopy class of the surface, but there is a restriction on the rectangular diagram of the boundary link arising from the presentation of the surface. The result extends to Giroux's convex surfaces for which this restriction on the boundary has a natural meaning. In a subsequent paper, transformations of rectangular diagrams of surfaces will be considered and their properties will be studied. By using the formalism of rectangular diagrams of surfaces an annulus in S^3 is produced here that is expected to be a counterexample to the following conjecture: if two Legendrian knots cobound an annulus and have zero Thurston-Bennequin numbers relative to this annulus, then they are Legendrian isotopic. Bibliography: 30 titles.
Hughes Clarke, John E.
2016-01-01
Field observations of turbidity currents remain scarce, and thus there is continued debate about their internal structure and how they modify underlying bedforms. Here, I present the results of a new imaging method that examines multiple surge-like turbidity currents within a delta front channel, as they pass over crescent-shaped bedforms. Seven discrete flows over a 2-h period vary in speed from 0.5 to 3.0 ms−1. Only flows that exhibit a distinct acoustically attenuating layer at the base, appear to cause bedform migration. That layer thickens abruptly downstream of the bottom of the lee slope of the bedform, and the upper surface of the layer fluctuates rapidly at that point. The basal layer is inferred to reflect a strong near-bed gradient in density and the thickening is interpreted as a hydraulic jump. These results represent field-scale flow observations in support of a cyclic step origin of crescent-shaped bedforms. PMID:27283503
National Research Council Canada - National Science Library
Yarmand, Hooman; Gharehkhani, Samira; Kazi, Salim Newaz; Sadeghinezhad, Emad; Safaei, Mohammad Reza
2014-01-01
.... The continuity, momentum, and energy equations were solved by means of a finite volume method (FVM). The symmetrical rectangular channel is heated at the top and bottom at a constant heat flux while the sides walls are insulated...
Next generation hyper resolution wide swath and multi-channel optical payload for CBERS series
Wang, Weigang
2017-11-01
The China-Brazilian Earth Resources Satellite (CBERS) program, (also called ZY-1) the result of a space technology agreement between China and Brazil, was officially signed in 1988 after the first joint work report produced by National Institute for Space Research (INPE) and the Chinese Academy of Space Technology (CAST). During the 26 years of its existence, the program of cooperation between China and Brazil in space has achieved the successful launch of three satellites. It has become a unique example of cooperation in cutting edge technology between emerging nations. CBERS satellite is the first generation data-transferring remote sensing satellite developed by China. CBERS satellite data are widely applied to crop yield estimation, exploration of land and resources, urban planning, environmental protection and monitoring, disaster reduction, and other fields. CBERS series is just like Landsat series of USA and SPOT series of France.
Elazhary, Amr Mohamed; Soliman, Hassan M.
2012-10-01
An experimental study was conducted in order to investigate two-phase flow regimes and fully developed pressure drop in a mini-size, horizontal rectangular channel. The test section was machined in the form of an impacting tee junction in an acrylic block (in order to facilitate visualization) with a rectangular cross-section of 1.87-mm height on 20-mm width on the inlet and outlet sides. Pressure drop measurement and flow regime identification were performed on all three sides of the junction. Air-water mixtures at 200 kPa (abs) and room temperature were used as the test fluids. Four flow regimes were identified visually: bubbly, plug, churn, and annular over the ranges of gas and liquid superficial velocities of 0.04 ≤ JG ≤ 10 m/s and 0.02 ≤ JL ≤ 0.7 m/s, respectively, and a flow regime map was developed. Accuracy of the pressure-measurement technique was validated with single-phase, laminar and turbulent, fully developed data. Two-phase experiments were conducted for eight different inlet conditions and various mass splits at the junction. Comparisons were conducted between the present data and former correlations for the fully developed two-phase pressure drop in rectangular channels with similar sizes. Wide deviations were found among these correlations, and the correlations that agreed best with the present data were identified.
Aun, N. F. M.; Soh, P. J.; Jamlos, M. F.; Lago, H.; Al-Hadi, A. A.
2017-01-01
This paper presents the design of a wideband artificial magnetic conductor (AMC) for operation in the Wireless Body Area Network Ultra Wideband (WBAN-UWB) mandatory channel 6. The proposed AMC is incorporated onto a rectangular-ring patch antenna for operation centered at 8 GHz with 2 GHz of bandwidth. The incorporation of the AMC improved the antenna reflection coefficient and impedance bandwidth, besides shielding the radiator against on-body detuning. The prototype is fully fabricated using textiles except for an SMA connector used for feeding. It is observed that the experimental results are in good agreement with the simulations, and bandwidth broadening is successfully achieved and validated.
Emission Channeling Studies on the Behaviour of Light Alkali Atoms in Wide-Band-Gap Semiconductors
Recknagel, E; Quintel, H
2002-01-01
% IS342 \\\\ \\\\ A major problem in the development of electronic devices based on diamond and wide-band-gap II-VI compound semiconductors, like ZnSe, is the extreme difficulty of either n- or p-type doping. The only reports of successful n-type doping of diamond involves ion implanted Li, which was found to be an intersititial donor. Recent theoretical calculations suggest that Na, P and N dopant atoms are also good candidates for n-type doping of diamond. No experimental evidence has been obtained up to now, mainly because of the complex and partly unresolved defect situation created during ion implantation, which is necessary to incorporate potential donor atoms into diamond. \\\\ \\\\In the case of ZnSe, considerable effort has been invested in trying to fabricate pn-junctions in order to make efficient, blue-light emitting diodes. However, it has proved to be very difficult to obtain p-type ZnSe, mainly because of electrical compensation related to background donor impurities. Li and Na are believed to be ampho...
Cid, L P; Montrose-Rafizadeh, C; Smith, D I; Guggino, W B; Cutting, G R
1995-03-01
We have cloned a cDNA from the human epithelial cell line T84 whose predicted amino acid sequence shows 93.9% identity with rat CIC-2. Mapping by somatic cell hybrids and polymerase chain reaction localizes the gene corresponding to this cDNA to chromosome 3q26-qter. The major transcription start site assessed by RNA primer extension is 100 nt upstream of the putative translation initiation codon. Analysis of the 5' flanking sequence revealed a high GC content and lack of common transcriptional elements such as TATA and CCAAT boxes. Northern blot analysis indicated wide organ distribution including tissues affected in cystic fibrosis (CF) and expression in an airway epithelial cell line derived from a CF patient. The high degree of sequence similarity and similar tissue distribution to rat CIC-2 suggests that this cDNA encodes the human CIC-2 voltage-gated chloride channel. Since this chloride channel is present in epithelial tissues it may be amenable to manipulation to circumvent the chloride secretion defect observed in CF.
Hedrick, M S; Rice, T
2000-10-01
Previous studies have shown that altering the amplitude of a consonant in a specific frequency region relative to an adjacent vowel's amplitude in the same frequency region will affect listeners' perception of the consonant place of articulation. Hearing aids with single-channel, fast-acting wide dynamic range compression (WDRC) alter the overall consonant-vowel (CV) intensity ratio by increasing consonant energy. Perhaps one reason WDRC has had limited success in improving speech recognition performance is that the natural amplitude balances between consonant and vowel are altered in crucial frequency regions, thus disturbing the aforementioned amplitude cue for determining place of articulation. The current study investigated the effect of a WDRC circuit on listeners' perception of place of articulation when the relative amplitude of consonant and vowel was manipulated. The stimuli were a continuum of synthetic CV syllables stripped of all place cues except relative consonant amplitudes. Acoustic analysis of the CVs before and after hearing aid processing showed a predictable increase in high-frequency energy, particularly for the burst of the consonant. Alveolar bursts had more high-frequency energy than labial bursts. Twenty-five listeners with normal hearing and 5 listeners with sensorineural hearing loss labeled the consonant sound of the CV syllables in unaided form and after the syllables were recorded through a hearing aid with single-channel WDRC. There were significantly more listeners who were unable to produce a category boundary when labeling the aided stimuli. Of those listeners who did yield a category boundary for both aided and unaided stimuli, there were significantly more alveolar responses for the aided condition. These results can be explained by the acoustic analyses of the aided stimuli.
The hydrodynamic advantages of synchronized swimming in a rectangular pattern.
Daghooghi, Mohsen; Borazjani, Iman
2015-10-08
Fish schooling is a remarkable biological behavior that is thought to provide hydrodynamic advantages. Theoretical models have predicted significant reduction in swimming cost due to two physical mechanisms: vortex hypothesis, which reduces the relative velocity between fish and the flow through the induced velocity of the organized vortex structure of the incoming wake; and the channeling effect, which reduces the relative velocity by enhancing the flow between the swimmers in the direction of swimming. Although experimental observations confirm hydrodynamic advantages, there is still debate regarding the two mechanisms. We provide, to our knowledge, the first three-dimensional simulations at realistic Reynolds numbers to investigate these physical mechanisms. Using large-eddy simulations of self-propelled synchronized swimmers in various rectangular patterns, we find evidence in support of the channeling effect, which enhances the flow velocity between swimmers in the direction of swimming as the lateral distance between swimmers decreases. Our simulations show that the coherent structures, in contrast to the wake of a single swimmer, break down into small, disorganized vortical structures, which have a low chance for constructive vortex interaction. Therefore, the vortex hypothesis, which is relevant for diamond patterns, was not found for rectangular patterns, but needs to be further studied for diamond patterns in the future. Exploiting the channeling mechanism, a fish in a rectangular school swims faster as the lateral distance decreases, while consuming similar amounts of energy. The fish in the rectangular school with the smallest lateral distance (0.3 fish lengths) swims 20% faster than a solitary swimmer while consuming similar amount of energy.
Turbulent flow over thin rectangular riblets
Energy Technology Data Exchange (ETDEWEB)
Ei-Samni, O. A. [The University of Alexandria, Alexandria (Egypt); Yoon, Hyun Sik; Chun, Ho Hwan [Pusan National Univ., Pusan (Korea, Republic of)
2005-09-15
The effect of longitudinal thin rectangular riblets aligned with the flow direction on turbulent channel flow has been investigated using direct numerical simulation. The thin riblets have been modeled using the Immersed Boundary Method (IBM) where the velocities at only one set of vertical nodes at the riblets positions are enforced to be zeros. Different spacings, ranging between 11 and 43 wall units, have been simulated aiming at the getting the optimum spacing corresponding to the maximum drag reduction while keeping the height/spacing ratio at 0.5. Reynolds number based on the friction velocity u{sub {tau}} and the channel half depth {delta} is set to 150. The flow is driven by adjusted pressure gradient so that the mass flow rate is kept constant in all the simulations. This study shows similar trend of the drag ratio to that of the experiments at the different spacings. Also, this research provides an optimum spacing of around 17 wall units leading to maximum drag reduction as experimental data. Explanation of drag increasing/decreasing mechanism is highlighted.
Experimental Study of Rectangular Labyrinth Weir
Directory of Open Access Journals (Sweden)
M. Rezaee
2016-09-01
Full Text Available Introduction: Labyrinth weirs compare with straight weirs had required less freeboard in upstream so they are more appropriate for the irrigation networks. So they could maked more space to sotrage water and restrained foold with higher discharge. Labyrinths weirs have three generally form triangles, trapezoidal and rectangular that Tullis et al. (15 presented formula (3 for discharge coefficient of labyrinth weirs (triangles and rectangular and a few studiescarried out on rectangular shape and its hydraulic characteristics are not specified.Therefore main aim of this paper study and characterized hydraulic characteristics of rectangular labyrinth weirs by using laboratory data. Materials and Methods: In this study rectangular labyrinth weir discharge and coefficient discharge relationships used dimensional analysis and experiment on hydraulic modeling, constant coefficient was defined. Laboratory flume is shown in Figure 2 (0.5 m wide x 12 m long x 0.8 m deep. Models was made from clear plexiglass plate with 10 cm thickness thatcuted using leaserdevice and the crest manualy shaped quadrant with radius 10 cm, all models using silicon glue install in the flume. The upstream depth readership by point gauge that installed in upstream of models. Discharge calcutaed byupsterm depth of triangular weir that installed in down stream of flume.Data were analyzed by SPSS software and to compare relationships with each other used two parameter root mean square error and correlation coefficient and charts darw in Excel Results and Discussion: discharge coefficient formula (11 carried out by using SPSS software that compared with formula (3. Results showed (Tables 2 and 3 that the correlation coefficient of formula (11 was more than a formula (3 and formula (11 RSME was less than formula (3 RSME except in first and fifth hydraulic model (rectengular1 and 5 that they were almost equal. So the formula (11 was more accurate than a formula (3 to peredict
Cadet, J L; Brannock, C; Krasnova, I N; Jayanthi, S; Ladenheim, B; McCoy, M T; Walther, D; Godino, A; Pirooznia, M; Lee, R S
2017-08-01
Epigenetic consequences of exposure to psychostimulants are substantial but the relationship of these changes to compulsive drug taking and abstinence is not clear. Here, we used a paradigm that helped to segregate rats that reduce or stop their methamphetamine (METH) intake (nonaddicted) from those that continue to take the drug compulsively (addicted) in the presence of footshocks. We used that model to investigate potential alterations in global DNA hydroxymethylation in the nucleus accumbens (NAc) because neuroplastic changes in the NAc may participate in the development and maintenance of drug-taking behaviors. We found that METH-addicted rats did indeed show differential DNA hydroxymethylation in comparison with both control and nonaddicted rats. Nonaddicted rats also showed differences from control rats. Differential DNA hydroxymethylation observed in addicted rats occurred mostly at intergenic sites located on long and short interspersed elements. Interestingly, differentially hydroxymethylated regions in genes encoding voltage (Kv1.1, Kv1.2, Kvb1 and Kv2.2)- and calcium (Kcnma1, Kcnn1 and Kcnn2)-gated potassium channels observed in the NAc of nonaddicted rats were accompanied by increased mRNA levels of these potassium channels when compared with mRNA expression in METH-addicted rats. These observations indicate that changes in differentially hydroxymethylated regions and increased expression of specific potassium channels in the NAc may promote abstinence from drug-taking behaviors. Thus, activation of specific subclasses of voltage- and/or calcium-gated potassium channels may provide an important approach to the beneficial treatment for METH addiction.
Pulvirenti, B.; Matalone, A.; Barucca, U.
2010-01-01
Abstract An experimental study on saturated flow boiling heat transfer of HFE-7100 in vertical rectangular channels with offset strip fins is presented. The experiments have been carried out at atmospheric pressure, over a wide range of vapour quality and heat fluxes up to 1.8?105 W/m2. The local boiling heat transfer coefficient has been obtained from experiments and analysed by means of Chen superposition method. Some correlations for convective boiling and nucleate boiling heat ...
Successive Standardization of Rectangular Arrays
Directory of Open Access Journals (Sweden)
Richard A. Olshen
2012-02-01
Full Text Available In this note we illustrate and develop further with mathematics and examples, the work on successive standardization (or normalization that is studied earlier by the same authors in [1] and [2]. Thus, we deal with successive iterations applied to rectangular arrays of numbers, where to avoid technical difficulties an array has at least three rows and at least three columns. Without loss, an iteration begins with operations on columns: first subtract the mean of each column; then divide by its standard deviation. The iteration continues with the same two operations done successively for rows. These four operations applied in sequence completes one iteration. One then iterates again, and again, and again, ... In [1] it was argued that if arrays are made up of real numbers, then the set for which convergence of these successive iterations fails has Lebesgue measure 0. The limiting array has row and column means 0, row and column standard deviations 1. A basic result on convergence given in [1] is true, though the argument in [1] is faulty. The result is stated in the form of a theorem here, and the argument for the theorem is correct. Moreover, many graphics given in [1] suggest that except for a set of entries of any array with Lebesgue measure 0, convergence is very rapid, eventually exponentially fast in the number of iterations. Because we learned this set of rules from Bradley Efron, we call it “Efron’s algorithm”. More importantly, the rapidity of convergence is illustrated by numerical examples.
Directory of Open Access Journals (Sweden)
Y. Bakhshan
2015-01-01
Full Text Available Micro scale gas flows has attracted significant research interest in the last two decades. In this research, the fluid flow of gases in the stepped micro-channel at a wide range of Knudsen number has been analyzed with using the Lattice Boltzmann (MRT method. In the model, a modified second-order slip boundary condition and a Bosanquet-type effective viscosity are used to consider the velocity slip at the boundaries and to cover the slip and transition regimes of flow and to gain an accurate simulation of rarefied gases. It includes the slip and transition regimes of flow. The flow specifications such as pressure loss, velocity profile, streamline and friction coefficient at different conditions have been presented. The results show good agreement with available experimental data. The calculation shows that the friction coefficient decreases with increasing the Knudsen number and stepping the micro-channel has an inverse effect on the friction coefficient. Furthermore, a new correlation is suggested for calculation of the friction coefficient in the stepped micro-channel as below: C_f Re = 3.113+2.915/(1 +2 Kn+ 0.641 exp(3.203/(1 + 2 Kn
Bakhshan, Younes; Omidvar, Alireza
2015-12-01
Micro scale gas flows have attracted significant research interest in the last two decades. In this research, the fluid flow of gases in a stepped micro-channel has been conducted. Wide range of Knudsen number has been implemented using the Lattice Boltzmann (MRT) method in this study. A modified second-order slip boundary condition and a Bosanquet-type effective viscosity are used to consider the velocity slip at the boundaries and to cover the slip and transition regimes of flow to obtain an accurate simulation of rarefied gases. The flow specifications such as pressure loss, velocity profile, stream lines and friction coefficient at different conditions have been presented. The results show, good agreement with available experimental data. The calculation shows, that the friction coefficient decreases with increasing the Knudsen number and stepping the micro-channel has an inverse effect on the friction coefficient value. Furthermore, a new correlation is suggested for calculation of the friction coefficient in the stepped micro-channel flows as below;
Random Young diagrams in a Rectangular Box
DEFF Research Database (Denmark)
Beltoft, Dan; Boutillier, Cédric; Enriquez, Nathanaël
We exhibit the limit shape of random Young diagrams having a distribution proportional to the exponential of their area, and confined in a rectangular box. The Ornstein-Uhlenbeck bridge arises from the fluctuations around the limit shape.......We exhibit the limit shape of random Young diagrams having a distribution proportional to the exponential of their area, and confined in a rectangular box. The Ornstein-Uhlenbeck bridge arises from the fluctuations around the limit shape....
Melting Process of Clathrate in a Rectangular Cell
Chiba, Takashi; Okada, Masashi; Matsumoto, Koji
In order to clarify the mechanism of heat transfer during melting of a clathrate in rectangular cells, two melting processes, namely, two-dimensional melting process with natural convection from a vertical wall and one-dimensional melting process by heat conduction from an upper horizontal wall, are studied experimentally. The R-141b was used for generating clathrate. One experiment was carried out by melting the clathrate filled into a 150mm high and 100mm wide rectangular cell from a vertical wall. And in the other experiment, the clathrate was melted from the upper horizontal wall of a rectangular cell with 88mm height and 180mm width. The temperature distributions in cells were measured. The melting front was measured by pictures taken on fixed times. The concentration of freon in the melt was measured by gas-chromatography. The following results are obtained. (1) In the melting process, the clathrate decomposes into an emulsion region which is a water-freon mixture and a liquid freon region under the emulsion. (2) Concentration gradient of freon in the emulsion plyas an important role in the natural convection in the melt. The Nusselt number on the heated vertical wall is depressed by the concentration gradients.
Double-composite rectangular truss bridge and its joint analysis
Directory of Open Access Journals (Sweden)
Yongjian Liu
2015-08-01
Full Text Available This paper describes a novel composite tubular truss bridge with concrete slab and concrete-filled rectangular chords. With concrete slab plus truss system and joints reinforced with concrete and Perfobond Leiste rib, double composite truss bridge proved to be a fairly suitable solution in negative moment area. Perfobond Leiste shear connector (PBL is widely implemented in the composite structure for its outstanding fatigue resistance. In this pilot bridge, Perfobond Leister ribs (PBR were installed in the truss girder's joints, which played double roles as shear connector and stiffener. An erection method and overall bridge structural analysis were then presented. Typical joints in the pilot bridge were selected to analyze the effect of PBR. Investigation of the effect of PBR in concrete-filled tubular joints was elaborated. Comparison has revealed that concrete-filled tubular joints with PBR have much higher constraint capability than joints without PBR. For rectangular tubular truss, the punching shear force of the concrete filled joint with PBR is approximately 43% larger than that of the joint without PBR. Fatigue performance of the joint installed with PBR was improved, which was found through analysis of the stress concentration factor of joint. The PBR installed in the joints mitigated the stress concentration factor in the chord face. Therefore, the advantages of this new type of bridge are demonstrated, including the convenience of construction using rectangular truss, innovative concept of structural design and better global and local performances.
Partial rectangular metric spaces and fixed point theorems.
Shukla, Satish
2014-01-01
The purpose of this paper is to introduce the concept of partial rectangular metric spaces as a generalization of rectangular metric and partial metric spaces. Some properties of partial rectangular metric spaces and some fixed point results for quasitype contraction in partial rectangular metric spaces are proved. Some examples are given to illustrate the observed results.
Rectangular Seifert circles and arcs system
ANDO, Tatsuo; Hayashi, Chuichiro; Hayashi, Miwa
2014-01-01
Rectangular diagrams of links are link diagrams in the plane ${\\mathbb R}^2$ such that they are composed of vertical line segments and horizontal line segments and vertical segments go over horizontal segments at all crossings. P. R. Cromwell and I. A. Dynnikov showed that rectangular diagrams of links are useful for deciding whether a given link is split or not, and whether a given knot is trivial or not. We show in this paper that an oriented link diagram $D$ with $c(D)$ crossings and $s(D)...
Electrochemical apparatus comprising modified disposable rectangular cuvette
Dattelbaum, Andrew M; Gupta, Gautam; Morris, David E
2013-09-10
Electrochemical apparatus includes a disposable rectangular cuvette modified with at least one hole through a side and/or the bottom. Apparatus may include more than one cuvette, which in practice is a disposable rectangular glass or plastic cuvette modified by drilling the hole(s) through. The apparatus include two plates and some means of fastening one plate to the other. The apparatus may be interfaced with a fiber optic or microscope objective, and a spectrometer for spectroscopic studies. The apparatus are suitable for a variety of electrochemical experiments, including surface electrochemistry, bulk electrolysis, and flow cell experiments.
Calculation of generalized Hubbell rectangular source integral.
Murley, Jonathan; Saad, Nasser
2011-01-01
A simple formula for computing the generalized Hubbell radiation rectangular source integral [formula in text] is introduced. Tables are given to compare the numerical values derived from our approximation formula with those given earlier in the literature. Copyright © 2010 Elsevier Ltd. All rights reserved.
Rectangular Laser Resonators with Astigmatic Compensation
DEFF Research Database (Denmark)
Skettrup, Torben
2005-01-01
An investigation of rectangular resonators with a view to the compensation of astigmatism has been performed. In order to have beam waists placed at the same positions in the tangential and sagittal planes, pairs of equal mirrors were considered. It was found that at least two concave mirrors are...
STABILITY ANALYSIS OF SSSS THIN RECTANGULAR PLATE ...
African Journals Online (AJOL)
This was achieved by truncating the two domain Taylor Maclaurin's series at the seventh term to evolve the general deflection polynomial function for thin rectangular plate continuum. Consequently, the SSSS plate boundary conditions were applied, reducing the polynomial function to four degrees of freedom function.
Huixing Li; Yu Liu
2016-01-01
In order to investigate the characteristics of boiling heat transfer for hydrocarbon mixture refrigerant in plate-fin heat exchanger which is used in the petrochemical industry field, a model was established on boiling heat transfer in vertical rectangular channel. The simulated results were compared with the experimental data from literature. The results show that the deviation between the simulated results and experimental data is within ±15%. Meanwhile, the characteristic of boiling heat t...
G-weak contraction in ordered cone rectangular metric spaces.
Malhotra, S K; Sharma, J B; Shukla, Satish
2013-01-01
We prove some common fixed-point theorems for the ordered g-weak contractions in cone rectangular metric spaces without assuming the normality of cone. Our results generalize some recent results from cone metric and cone rectangular metric spaces into ordered cone rectangular metric spaces. Examples are provided which illustrate the results.
g-Weak Contraction in Ordered Cone Rectangular Metric Spaces
Directory of Open Access Journals (Sweden)
S. K. Malhotra
2013-01-01
Full Text Available We prove some common fixed-point theorems for the ordered g-weak contractions in cone rectangular metric spaces without assuming the normality of cone. Our results generalize some recent results from cone metric and cone rectangular metric spaces into ordered cone rectangular metric spaces. Examples are provided which illustrate the results.
Development and test of a rectangular CERN ConFlat-type flange
Miarnau Marin, Ana; Veness, Raymond
2015-01-01
Standard circular ConFlat® (CF) flanges are widely used in industry due to their high sealing reliability after being subjected to a bakeout process. The Beam Gas Ionisation (BGI) instrument for the CERN Proton Synchrotron accelerator will require a CF-like rectangular sealing system. Although rectangular CF-type flanges with plastically deforming metal seals have been used, no published designs with validated tests for bakeout under UHV conditions are available. Existing circular CERN CF flanges were compared and a design for a rectangular CF flange was proposed. Two prototypes were manufactured along with copper gaskets. The flanges and gaskets were cleaned and prepared for extensive vacuum testing after bakeout cycles up to 350 °C. This paper summarises the design, analysis and manufacturing process and describes the testing procedures and results. Additionally, the limitations when designing a flange of any shape were explored.
Metamaterial Embedded Wearable Rectangular Microstrip Patch Antenna
Directory of Open Access Journals (Sweden)
J. G. Joshi
2012-01-01
Full Text Available This paper presents an indigenous low-cost metamaterial embedded wearable rectangular microstrip patch antenna using polyester substrate for IEEE 802.11a WLAN applications. The proposed antenna resonates at 5.10 GHz with a bandwidth and gain of 97 MHz and 4.92 dBi, respectively. The electrical size of this antenna is 0.254λ×0.5λ. The slots are cut in rectangular patch to reduce the bending effect. This leads to mismatch the impedance at WLAN frequency band; hence, a metamaterial square SRR is embedded inside the slot. A prototype antenna has been fabricated and tested, and the measured results are presented in this paper. The simulated and measured results of the proposed antenna are found to be in good agreement. The bending effect on the performance of this antenna is experimentally verified.
Anisotropic rectangular metric for polygonal surface remeshing
Pellenard, Bertrand
2013-06-18
We propose a new method for anisotropic polygonal surface remeshing. Our algorithm takes as input a surface triangle mesh. An anisotropic rectangular metric, defined at each triangle facet of the input mesh, is derived from both a user-specified normal-based tolerance error and the requirement to favor rectangle-shaped polygons. Our algorithm uses a greedy optimization procedure that adds, deletes and relocates generators so as to match two criteria related to partitioning and conformity.
Calculation of generalized Hubbell rectangular source integral
Energy Technology Data Exchange (ETDEWEB)
Murley, Jonathan [Department of Mathematics and Statistics, University of Prince Edward Island Charlottetown, Prince Edward Island, C1A 4P3 (Canada); Saad, Nasser, E-mail: nsaad@upei.c [Department of Mathematics and Statistics, University of Prince Edward Island Charlottetown, Prince Edward Island, C1A 4P3 (Canada)
2011-01-15
A simple formula for computing the generalized Hubbell radiation rectangular source integral H[(table)]=({sigma}a)/(4{pi}) {integral}{sub 0}{sup b}x{sup {lambda}}(x{sup 2}+p){sup -{alpha}}{sub 2}F{sub 1}({alpha},{beta};{gamma};-(a{sup 2})/(x{sup 2}+p))dx, is introduced. Tables are given to compare the numerical values derived from our approximation formula with those given earlier in the literature.
Research on frictional resistance of bubbly flow in rolling rectangular ducts
Energy Technology Data Exchange (ETDEWEB)
Jin, Guangyuan, E-mail: ocean06151211@126.com [School of Energy and Power Engineering, Northeast Dianli University, Jilin 132012 (China); Yan, Changqi; Sun, Licheng; Wang, Yang; Yan, Chaoxing [Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, Harbin Engineering University, Harbin 150001 (China)
2014-10-15
Highlights: • The frictional resistance of bubbly flow in three rolling rectangular channels is studied. • Additional pressure drop cannot be neglected for duct I with the largest cross section. • The amplitude of frictional pressure drop increases with increase in the height of duct. • New correlation for frictional pressure drop in rolling motion is achieved. - Abstract: For a flow system in a marine vehicle, rolling motion induced by ocean environment usually imposes a periodical force on the system. Experimental investigation was conducted on frictional resistance of bubbly flow in three rectangular ducts in rolling motion. The cross-sections of the three ducts have the same width of 43 mm but different heights of 1.41 mm, 3.25 mm and 9.96 mm. Rolling motion can easily cause the fluctuation of frictional pressure in the rectangular duct with larger height, therefore, a narrow duct is beneficial to restrain the effect of rolling motion on frictional resistance of bubbly flow. The additional pressure drop in ducts with heights of 1.41 mm and 3.25 mm can be neglected. Increasing the gas flow rate and the rolling amplitude or decreasing the rolling period would result in the increase of the fluctuation amplitude of the frictional pressure. A new correlation by modifying the parameter C in the Chisholm correlation was acquired to describe the hydrodynamic performance of bubbly flow for rectangular ducts in rolling motion, showing a good agreement with the experimental data.
Electroosmotic flow and ionic conductance in a pH-regulated rectangular nanochannel
Sadeghi, Morteza; Saidi, Mohammad Hassan; Sadeghi, Arman
2017-06-01
Infinite series solutions are obtained for electrical potential, electroosmotic velocity, ionic conductance, and surface physicochemical properties of long pH-regulated rectangular nanochannels of low surface potential utilizing the double finite Fourier transform method. Closed form expressions are also obtained for channels of large height to width ratio for which the depthwise variations vanish. Neglecting the Stern layer impact, the effects of EDL (Electric Double Layer) overlap, multiple ionic species, and association/dissociation reactions on the surface are all taken into account. Moreover, finite-element-based numerical simulations are conducted to account for the end effects as well as to validate the analytical solutions. We show that, with the exception of the migratory ionic conductivity, all the physicochemical parameters are strong functions of the channel aspect ratio. Accordingly, a slit geometry is not a good representative of a rectangular channel when the width is comparable to the height. It is also observed that the distribution of the electrical potential is not uniform over the surface of a charge-regulated channel. In addition, unlike ordinary channels for which an increase in the background salt concentration is always accompanied by higher flow rates, quite the opposite may be true for a pH-regulated duct at higher salt concentrations.
Humes, L E; Christensen, L; Thomas, T; Bess, F H; Hedley-Williams, A; Bentler, R
1999-02-01
The aided performance and benefit achieved with linear and two-channel wide dynamic range compression (WDRC) in-the-canal (ITC) hearing aids were established in 55 individuals. Study participants had been wearing either linear or adaptive-frequency-response (Bass Increase at Low Levels, BILL) ITC hearing aids for approximately one year before participation in this study. Outcome measures included aided performance and objective benefit in quiet and noise at a variety of speech levels (50, 60, and 75 dB SPL), at various levels of babble background (quiet, signal-to-babble ratios of +5 and +10 dB), and for various types of test materials (monosyllabic words and sentences in connected speech). Several subjective measures of aided performance (sound-quality judgments and magnitude estimates of listening effort) and relative benefit (improvement in listening effort and the Hearing Aid Performance Inventory, HAPI) were also obtained. Finally, self-report measures of hearing-aid use were also obtained using daily logs. Participants completed all outcome measures for the linear ITC hearing aids first, following 2 months of usage, and then repeated all outcome measures for the WDRC instruments after a subsequent 2-month period of use. In general, although both types of hearing aids demonstrated significant benefit, the results indicated that the WDRC instruments were superior to the linear devices for many of the outcome measures. This tended to be the case most frequently when low speech levels were used. Many of the performance differences between devices most likely can be ascribed to differences in gain, and prescriptive approaches (DSL[i/o] vs. NAL-R), for the fixed volume control testing performed in this study.
Billah, Md. Mamun; Khan, Md Imran; Rahman, Mohammed Mizanur; Alam, Muntasir; Saha, Sumon; Hasan, Mohammad Nasim
2017-06-01
A numerical study of steady two dimensional mixed convention heat transfer phenomena in a rectangular channel with active flow modulation is carried out in this investigation. The flow in the channel is modulated via a rotating cylinder placed at the center of the channel. In this study the top wall of the channel is subjected to an isothermal low temperature while a discrete isoflux heater is positioned on the lower wall. The fluid flow under investigation is assumed to have a Prandtl number of 0.71 while the Reynolds No. and the Grashof No. are varied in wide range for four different situations such as: i) plain channel with no cylinder, ii) channel with stationary cylinder, iii) channel with clockwise rotating cylinder and iv) channel with counter clockwise rotating cylinder. The results obtained in this study are presented in terms of the distribution of streamlines, isotherms in the channel while the heat transfer process from the heat source is evaluated in terms of the local Nusselt number, average Nusselt number. The outcomes of this study also indicate that the results are strongly dependent on the type of configuration and direction of rotation of the cylinder and that the average Nusselt number value rises with an increase in Reynolds and Grashof numbers but the correlation between these parameters at higher values of Reynolds and Grashof numbers becomes weak.
Spatially extended sound equalization in rectangular rooms
DEFF Research Database (Denmark)
Santillan, Arturo Orozco
2001-01-01
The results of a theoretical study on global sound equalization in rectangular rooms at low frequencies are presented. The zone where sound equalization can be obtained is a continuous three-dimensional region that occupies almost the complete volume of the room. It is proved that the equalization...... of broadband signals can be achieved by the simulation of a traveling plane wave using FIR filters. The optimal solution has been calculated following the traditional least-squares approximation, where a modeling delay has been applied to minimize reverberation. An advantage of the method is that the sound...
Spatially extended sound equalization in rectangular rooms
DEFF Research Database (Denmark)
Santillan, Arturo Orozco
2001-01-01
of broadband signals can be achieved by the simulation of a traveling plane wave using FIR filters. The optimal solution has been calculated following the traditional least-squares approximation, where a modeling delay has been applied to minimize reverberation. An advantage of the method is that the sound......The results of a theoretical study on global sound equalization in rectangular rooms at low frequencies are presented. The zone where sound equalization can be obtained is a continuous three-dimensional region that occupies almost the complete volume of the room. It is proved that the equalization...
Supersonic jets from bevelled rectangular nozzles
Rice, Edward J.; Raman, Ganesh
1993-01-01
The influence of nozzle exit geometry on jet mixing and noise production was studied experimentally for a series of rectangular nozzles operating at supersonic jet velocities. Both converging (C) and converging-diverging (C-D) nozzles were built with asymmetrical (single bevel) and symmetrical (double bevel) exit chambers and with conventional straight exits for comparison. About a four decibel reduction of peak mixing noise was observed for the double bevelled C-D nozzle operated at design pressure ratio. All bevelled geometries provided screech noise reduction for under-expanded jets and an upstream mixing noise directivity shift which would be beneficial for improved acoustic treatment performance of a shrouded system.
Fully developed liquid-metal flow in multiple rectangular ducts in a strong uniform magnetic field
Energy Technology Data Exchange (ETDEWEB)
Molokov, S. (Kernforschungszentrum Karlsruhe GmbH (Germany). Inst. fuer Angewandte Thermo- und Fluiddynamik (IATF))
1993-01-01
Fully developed liquid-metal flow in a straight rectangular duct with thin conducting walls is investigated. The duct is divided into a number of rectangular channels by electrically conducting dividing walls. A strong uniform magnetic field is applied parallel to the outer side walls and dividing walls and perpendicular to the top and the bottom walls. The analysis of the flow is performed by means of matched asymptotics at large values of the Hartmann number M. The asymptotic solution obtained is valid for arbitrary wall conductance ratio of the side walls and dividing walls, provided the top and bottom walls are much better conductors than the Hartmann layers. The influence of the Hartmann number, wall conductance ratio, number of channels and duct geometry on pressure losses and flow distribution is investigated. If the Hartmann number is high, the volume flux is carried by the core, occupying the bulk of the fluid and by thin layers with thickness of order M[sup -1/2]. In some of the layers, however, the flow is reversed. As the number of channels increases the flow in the channels close to the centre approaches a Hartmann-type flow with no jets at the side walls. Estimation of pressure-drop increase in radial ducts of a self-cooled liquid-metal blanket with respect to flow in a single duct with walls of the same wall conductance ratio gives an upper limit of 30%. (author). 13 refs., 10 figs., 1 tab.
Wang, C.-K.; Liao, W.-H.; Wu, H.-M.; Lo, Y.-H.; Lin, T.-R.; Tung, Y.-C.
2017-11-01
Polydimethylsiloxane (PDMS) has become a widely used material to construct microfluidic devices for various biomedical and chemical applications due to its desirable material properties and manufacturability. PDMS microfluidic devices are usually fabricated using soft lithography replica molding methods with master molds made of photolithogrpahy patterned photoresist layers on silicon wafers. The fabricated microfluidic channels often have rectangular cross-sectional geometries with single or multiple heights. In this paper, we develop a single step sequential PDMS wet etching process that can be used to fabricate microfluidic channels with various cross-sectional geometries from single-layer PDMS microfluidic channels. The cross-sections of the fabricated channel can be non-rectangular, and varied along the flow direction. Furthermore, the fabricated cross-sectional geometries can be numerically simulated beforehand. In the experiments, we fabricate microfluidic channels with various cross-sectional geometries using the developed technique. In addition, we fabricate a microfluidic mixer with alternative mirrored cross-sectional geometries along the flow direction to demonstrate the practical usage of the developed technique.
Products of rectangular random matrices: Singular values and progressive scattering
Akemann, Gernot; Ipsen, Jesper R.; Kieburg, Mario
2013-11-01
We discuss the product of M rectangular random matrices with independent Gaussian entries, which have several applications, including wireless telecommunication and econophysics. For complex matrices an explicit expression for the joint probability density function is obtained using the Harish-Chandra-Itzykson-Zuber integration formula. Explicit expressions for all correlation functions and moments for finite matrix sizes are obtained using a two-matrix model and the method of biorthogonal polynomials. This generalizes the classical result for the so-called Wishart-Laguerre Gaussian unitary ensemble (or chiral unitary ensemble) at M=1, and previous results for the product of square matrices. The correlation functions are given by a determinantal point process, where the kernel can be expressed in terms of Meijer G-functions. We compare the results with numerical simulations and known results for the macroscopic level density in the limit of large matrices. The location of the end points of support for the latter are analyzed in detail for general M. Finally, we consider the so-called ergodic mutual information, which gives an upper bound for the spectral efficiency of a MIMO communication channel with multifold scattering.
Swirling Strength Vortex Study in Confined Rectangular Jet
Kong, Bo; Olsen, Michael; Fox, Rodney; Hill, James
2009-11-01
Vortex behavior in confined rectangular jet (Re = 20K, Re = 50K) were examined by using vortex swirling strength as a defining characteristic. Instantaneous velocity fields were collected for by using Particle Image Velocimetry(PIV). Swirling strength fields were calculated from velocity fields, and then filtered with a universal threshold of 1.5 times of swirling strength RMS value. By identifying clusters in filtered swirling strength fields, vortex structures were defined. Both instantaneous swirling strength field data and vortex population calculation indicate that the positively (counterclockwise) rotating vortices are dominant on the left side of the jet, and negatively (clockwise) rotating vortices are dominant on the right side. As flow develops further downstream, vortex population decreases and the flow approach channel flow. At the locations of the left peak of turbulent kinetic energy, two point spatial cross-correlation of swirling strength with velocity fluctuation were calculated. Linear stochastic estimation was also used to interpret the spatial correlation results and to determine conditional flow structures. High speed PIV data were also analyzed by using swirling strength technique to trace development of vortices. Vortex trajectories were found by tracing individual swirling strength clusters. The speed and strength of individual vortex were also studied by using this method.
Total reflection and cloaking by zero index metamaterials loaded with rectangular dielectric defects
Wu, Ying
2013-05-06
In this work, we investigate wave transmission property through a zero index metamaterial (ZIM) waveguide embedded with rectangular dielectric defects. We show that total reflection and total transmission (cloaking) can be achieved by adjusting the geometric sizes and/or permittivities of the defects. Our work provides another possibility of manipulating wave propagation through ZIM in addition to the widely studied dielectric defects with cylindrical geometries.
The problem of isotropic rectangular plate with four clamped edges
Indian Academy of Sciences (India)
This report discusses in exact solution of the governing equation of an isotropic rectangular plate with four clamped edges. A numerical method for clamped isotropic rectangular plate under distributed loads and an exact solution of the governing equation in terms of trigonometric and hyperbolic function are given. Finally ...
Helping Students Acquainted with Multiplication in Rectangular Model
Tasman, Fridgo; den Hertog, Jaap; Zulkardi; Hartono, Yusuf
2011-01-01
Usually, multiplication is introduced to students to represent quantities that come in groups. However there is also rectangular array model which is also related to multiplication. Barmby et al. (2009) has shown that the rectangular model such as array representations encourage students to develop their thinking about multiplication as a binary…
3D Flow around a Rectangular Cylinder: a review | Odesola ...
African Journals Online (AJOL)
This paper presents the review of 3D flow around a rectangular cylinder using large eddy simulation as the turbulence model and the computational study is developed in the frame of the Benchmark on the Aerodynamics of aRectangular Cylinder (BARC). Different simulations around bluff bodies were reviewed and the ...
Directory of Open Access Journals (Sweden)
Huixing Li
2016-05-01
Full Text Available In order to investigate the characteristics of boiling heat transfer for hydrocarbon mixture refrigerant in plate-fin heat exchanger which is used in the petrochemical industry field, a model was established on boiling heat transfer in vertical rectangular channel. The simulated results were compared with the experimental data from literature. The results show that the deviation between the simulated results and experimental data is within ±15%. Meanwhile, the characteristic of boiling heat transfer was investigated in vertical rectangular minichannel of plate-fin heat exchanger. The results show that the boiling heat transfer coefficient increases with the increase in quality and mass flux and is slightly impacted by the heat flux. This is because that the main boiling mechanism is forced convective boiling while the contribution of nucleate boiling is slight. The correlation of Liu and Winterton is in good agreement with the simulation results. The deviation between correlation calculations and simulation results is mostly less than ±15%. These results will provide some constructive instructions for the understanding of saturated boiling mechanism in a vertical rectangular minichannel and the prediction of heat transfer performance in plate-fin heat exchanger.
Directory of Open Access Journals (Sweden)
WANG Minhao
2017-08-01
Full Text Available Plate structures with openings are common in many engineering structures. The study of the vibration characteristics of such structures is directly related to the vibration reduction, noise reduction and stability analysis of an overall structure. This paper conducts research into the free vibration characteristics of a thin elastic plate with a rectangular opening parallel to the plate in an arbitrary position. We use the improved Fourier series to represent the displacement tolerance function of the rectangular plate with an opening. We can divide the plate into an eight zone plate to simplify the calculation. We then use linear springs, which are uniformly distributed along the boundary, to simulate the classical boundary conditions and the boundary conditions of the boundaries between the regions. According to the energy functional and variational method, we can obtain the overall energy functional. We can also obtain the generalized eigenvalue matrix equation by studying the extremum of the unknown improved Fourier series expansion coefficients. We can then obtain the natural frequencies and corresponding vibration modes of the rectangular plate with an opening by solving the equation. We then compare the calculated results with the finite element method to verify the accuracy and effectiveness of the method proposed in this paper. Finally, we research the influence of the boundary condition, opening size and opening position on the vibration characteristics of a plate with an opening. This provides a theoretical reference for practical engineering application.
Peristaltic transport of a Carreau fluid in a compliant rectangular duct
Directory of Open Access Journals (Sweden)
Arshad Riaz
2014-06-01
Full Text Available The study of peristaltic flow of a Carreau fluid in a compliant rectangular channel has been analyzed in this article. The assumptions of low Reynolds number and long wavelength approximation are utilized here to simplify the complicated governing equations for the three dimensional flow geometry. The resulting highly non-linear partial differential constitutive equations are solved jointly by homotopy perturbation and Eigen function expansion methods. The effects of various physical parameters on velocity distribution have been observed graphically for both two and three dimensional aspects. The trapping scheme has also been discussed by plotting stream lines.
Regimes of Vorticity in the Wake of a Rectangular Vortex Generator
DEFF Research Database (Denmark)
Velte, Clara Marika; Okulov, Valery; Hansen, Martin Otto Laver
2011-01-01
This paper concerns the study of the secondary structures generated in the wake of a wall mounted rectangular vane, commonly referred to as a vortex generator. The study has been conducted by Stereoscopic PIV measurements in a wind tunnel and supplementary flow visualizations in a water channel....... The results show that the vane produces not only the anticipated primary vortex, but at least five vortex structures. Further, the vorticity map can be subject to various regimes, showing a dependency on the circulation of the primary vortex and the height of its center above the wall....
Particle transport in a two-dimensional septate channel
Energy Technology Data Exchange (ETDEWEB)
Borromeo, M. [Dipartimento di Fisica, Universita di Perugia, I-06123 Perugia (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, I-06123 Perugia (Italy); Marchesoni, F., E-mail: fabio.marchesoni@pg.infn.it [Dipartimento di Fisica, Universita di Camerino, I-62032 Camerino (Italy); Department of Physics, Boston University, Boston, MA 02215 (United States)
2010-10-05
Graphical abstract: {open_square}{open_square}{open_square}. - Abstract: We analyze the transport properties of a Brownian particle diffusing along a two-dimensional septate channel, namely, a channel formed by equal rectangular cavities separated by narrow pores, subjected to an external longitudinal drive. We determine analytical formulas for the dependence of the particle mobility and diffusivity on the geometric channel parameters at zero and large applied drives. Finally, we rule out anomalous negative mobility for pointlike particles in a septate channel.
Rectangular maximum-volume submatrices and their applications
Mikhalev, Aleksandr
2017-10-18
We introduce a definition of the volume of a general rectangular matrix, which is equivalent to an absolute value of the determinant for square matrices. We generalize results of square maximum-volume submatrices to the rectangular case, show a connection of the rectangular volume with an optimal experimental design and provide estimates for a growth of coefficients and an approximation error in spectral and Chebyshev norms. Three promising applications of such submatrices are presented: recommender systems, finding maximal elements in low-rank matrices and preconditioning of overdetermined linear systems. The code is available online.
Epidemic Spreading in Random Rectangular Networks
Estrada, Ernesto; Moreno, Yamir
2015-01-01
Recently, Estrada and Sheerin (Phys. Rev. E 91, 042805 (2015)) developed the random rectangular graph (RRG) model to account for the spatial distribution of nodes in a network allowing the variation of the shape of the unit square commonly used in random geometric graphs (RGGs). Here, we consider an epidemics dynamics taking place on the nodes and edges of an RRG and we derive analytically a lower bound for the epidemic threshold for a Susceptible-Infected-Susceptible (SIS) or Susceptible-Infected-Recovered (SIR) model on these networks. Using extensive numerical simulations of the SIS dynamics we show that the lower bound found is very tight. We conclude that the elongation of the area in which the nodes are distributed makes the network more resilient to the propagation of an epidemics due to the fact that the epidemic threshold increases with the elongation of the rectangle. On the other hand, using the "classical" RGG for modeling epidemics on non-squared cities generates a larger error due to the effects...
Attenuation in Rectangular Waveguides with Finite Conductivity Walls
Directory of Open Access Journals (Sweden)
K. C. Yeong
2011-06-01
Full Text Available We present a fundamental and accurate approach to compute the attenuation of electromagnetic waves propagating in rectangular waveguides with finite conductivity walls. The wavenumbers kx and ky in the x and y directions respectively, are obtained as roots of a set of transcendental equations derived by matching the tangential component of the electric field (E and the magnetic field (H at the surface of the waveguide walls. The electrical properties of the wall material are determined by the complex permittivity ε, permeability μ, and conductivity σ. We have examined the validity of our model by carrying out measurements on the loss arising from the fundamental TE10 mode near the cutoff frequency. We also found good agreement between our results and those obtained by others including Papadopoulos’ perturbation method across a wide range of frequencies, in particular in the vicinity of cutoff. In the presence of degenerate modes however, our method gives higher losses, which we attribute to the coupling between modes as a result of dispersion.
Permuting sparse rectangular matrices into block-diagonal form
Energy Technology Data Exchange (ETDEWEB)
Aykanat, Cevdet; Pinar, Ali; Catalyurek, Umit V.
2002-12-09
This work investigates the problem of permuting a sparse rectangular matrix into block diagonal form. Block diagonal form of a matrix grants an inherent parallelism for the solution of the deriving problem, as recently investigated in the context of mathematical programming, LU factorization and QR factorization. We propose graph and hypergraph models to represent the nonzero structure of a matrix, which reduce the permutation problem to those of graph partitioning by vertex separator and hypergraph partitioning, respectively. Besides proposing the models to represent sparse matrices and investigating related combinatorial problems, we provide a detailed survey of relevant literature to bridge the gap between different societies, investigate existing techniques for partitioning and propose new ones, and finally present a thorough empirical study of these techniques. Our experiments on a wide range of matrices, using state-of-the-art graph and hypergraph partitioning tools MeTiS and PaT oH, revealed that the proposed methods yield very effective solutions both in terms of solution quality and run time.
Hydraulics of free overfall in -shaped channels
Indian Academy of Sciences (India)
R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22
International Organization for Standardization, Geneva. ISO 4371 1984 End depth method for estimation of flow in non-rectangular channels with a free overfall. International Organization for Standardization, Geneva. Jaeger C 1948 Hauteur d'eau a l'extremite d'un long deversoir. La Houille Blanche 3: 518–523. Jaeger C ...
Kazi, Salim Newaz; Sadeghinezhad, Emad
2014-01-01
Thermal characteristics of turbulent nanofluid flow in a rectangular pipe have been investigated numerically. The continuity, momentum, and energy equations were solved by means of a finite volume method (FVM). The symmetrical rectangular channel is heated at the top and bottom at a constant heat flux while the sides walls are insulated. Four different types of nanoparticles Al2O3, ZnO, CuO, and SiO2 at different volume fractions of nanofluids in the range of 1% to 5% are considered in the present investigation. In this paper, effect of different Reynolds numbers in the range of 5000 channel is investigated. The numerical results indicate that SiO2-water has the highest Nusselt number compared to other nanofluids while it has the lowest heat transfer coefficient due to low thermal conductivity. The Nusselt number increases with the increase of the Reynolds number and the volume fraction of nanoparticles. The results of simulation show a good agreement with the existing experimental correlations. PMID:25254236
Directory of Open Access Journals (Sweden)
Hooman Yarmand
2014-01-01
Full Text Available Thermal characteristics of turbulent nanofluid flow in a rectangular pipe have been investigated numerically. The continuity, momentum, and energy equations were solved by means of a finite volume method (FVM. The symmetrical rectangular channel is heated at the top and bottom at a constant heat flux while the sides walls are insulated. Four different types of nanoparticles Al2O3, ZnO, CuO, and SiO2 at different volume fractions of nanofluids in the range of 1% to 5% are considered in the present investigation. In this paper, effect of different Reynolds numbers in the range of 5000 < Re < 25000 on heat transfer characteristics of nanofluids flowing through the channel is investigated. The numerical results indicate that SiO2-water has the highest Nusselt number compared to other nanofluids while it has the lowest heat transfer coefficient due to low thermal conductivity. The Nusselt number increases with the increase of the Reynolds number and the volume fraction of nanoparticles. The results of simulation show a good agreement with the existing experimental correlations.
Computation of conjugate depths in cubic-shape open channels ...
African Journals Online (AJOL)
For rectangular channels, an explicit equation for obtaining the conjugate depth has been derived and is available in any standard hydraulics text. This paper is to develop a procedure for computing the conjugate depth in cubic-shaped open channels, given an initial depth. This procedure involves the use of a table or a ...
Analysis of Rectangular Loop Antenna Printed on Magnetic Plate
Taguchi, Mitsuo; Matsunaga, Yuki; Tanaka, Shinya; Shimoda, Hideaki
2006-01-01
In this paper, a rectangular loop antenna printed on the low loss magnetic plate is numerically and experimentally analyzed. In the numerical analysis, the electromagnetic simulator Micro-Stripes based on the transmission line matrix method is used.
Triple-band metamaterial absorption utilizing single rectangular hole
Kim, Seung Jik; Yoo, Young Joon; Kim, Young Ju; Lee, YoungPak
2017-01-01
In the general metamaterial absorber, the single absorption band is made by the single meta-pattern. Here, we introduce the triple-band metamaterial absorber only utilizing single rectangular hole. We also demonstrate the absorption mechanism of the triple absorption. The first absorption peak was caused by the fundamental magnetic resonance in the metallic part between rectangular holes. The second absorption was generated by induced tornado magnetic field. The process of realizing the second band is also presented. The third absorption was induced by the third-harmonic magnetic resonance in the metallic region between rectangular holes. In addition, the visible-range triple-band absorber was also realized by using similar but smaller single rectangular-hole structure. These results render the simple metamaterials for high frequency in large scale, which can be useful in the fabrication of metamaterials operating in the optical range.
Directory of Open Access Journals (Sweden)
Luyang Sun
Full Text Available Domestication and selection for important performance traits can impact the genome, which is most often reflected by reduced heterozygosity in and surrounding genes related to traits affected by selection. In this study, analysis of the genomic impact caused by domestication and artificial selection was conducted by investigating the signatures of selection using single nucleotide polymorphisms (SNPs in channel catfish (Ictalurus punctatus. A total of 8.4 million candidate SNPs were identified by using next generation sequencing. On average, the channel catfish genome harbors one SNP per 116 bp. Approximately 6.6 million, 5.3 million, 4.9 million, 7.1 million and 6.7 million SNPs were detected in the Marion, Thompson, USDA103, Hatchery strain, and wild population, respectively. The allele frequencies of 407,861 SNPs differed significantly between the domestic and wild populations. With these SNPs, 23 genomic regions with putative selective sweeps were identified that included 11 genes. Although the function for the majority of the genes remain unknown in catfish, several genes with known function related to aquaculture performance traits were included in the regions with selective sweeps. These included hypoxia-inducible factor 1β. HIFιβ.. and the transporter gene ATP-binding cassette sub-family B member 5 (ABCB5. HIF1β. is important for response to hypoxia and tolerance to low oxygen levels is a critical aquaculture trait. The large numbers of SNPs identified from this study are valuable for the development of high-density SNP arrays for genetic and genomic studies of performance traits in catfish.
Cicek, Mine S; Koestler, Devin C; Fridley, Brooke L; Kalli, Kimberly R; Armasu, Sebastian M; Larson, Melissa C; Wang, Chen; Winham, Stacey J; Vierkant, Robert A; Rider, David N; Block, Matthew S; Klotzle, Brandy; Konecny, Gottfried; Winterhoff, Boris J; Hamidi, Habib; Shridhar, Viji; Fan, Jian-Bing; Visscher, Daniel W; Olson, Janet E; Hartmann, Lynn C; Bibikova, Marina; Chien, Jeremy; Cunningham, Julie M; Goode, Ellen L
2013-08-01
Ovarian cancer remains the leading cause of death in women with gynecologic malignancies, despite surgical advances and the development of more effective chemotherapeutics. As increasing evidence indicates that clear-cell ovarian cancer may have unique pathogenesis, further understanding of molecular features may enable us to begin to understand the underlying biology and histology-specific information for improved outcomes. To study epigenetics in clear-cell ovarian cancer, fresh frozen tumor DNA (n = 485) was assayed on Illumina Infinium HumanMethylation450 BeadChips. We identified a clear-cell ovarian cancer tumor methylation profile (n = 163) which we validated in two independent replication sets (set 1, n = 163; set 2, n = 159), highlighting 22 CpG loci associated with nine genes (VWA1, FOXP1, FGFRL1, LINC00340, KCNH2, ANK1, ATXN2, NDRG21 and SLC16A11). Nearly all of the differentially methylated CpGs showed a propensity toward hypermethylation among clear-cell cases. Several loci methylation inversely correlated with tumor gene expression, most notably KCNH2 (HERG, a potassium channel) (P = 9.5 × 10(-7)), indicating epigenetic silencing. In addition, a predicted methylation class mainly represented by the clear-cell cases (20 clear cell out of 23 cases) had improved survival time. Although these analyses included only 30 clear-cell carcinomas, results suggest that loss of expression of KCNH2 (HERG) by methylation could be a good prognostic marker, given that overexpression of the potassium (K(+)) channel Eag family members promotes increased proliferation and results in poor prognosis. Validation in a bigger cohort of clear-cell tumors of the ovary is warranted.
Hagopian, John; Armani, Nerses; Bartusek, Lisa; Casey, Tom; Content, Dave; Conturie, Yves; Gao, Guangjun; Jurling, Alden; Marx, Cathy; Marzouk, Joe; Pasquale, Bert; Smith, J. Scott; Tang, Hong; Whipple, Arthur
2017-08-01
The Wide-Field Infrared Survey Telescope (WFIRST) mission[1] is the top-ranked large space mission in the New Worlds, New Horizon (NWNH) Decadal Survey of Astronomy and Astrophysics. WFIRST will settle essential questions in both exoplanet and dark energy research and will advance topics ranging from galaxy evolution to the study of objects within the galaxy. The WFIRST mission uses a repurposed 2.4-m Forward Optical Telescope assembly (FOA), which, when completed with new aft optics will be an Integrated Optical Assembly (IOA). WFIRST is equipped with a Wide Field Instrument (WFI) and a Coronagraph Instrument (CGI). An Instrument Carrier (IC) meters these payload elements together and to the spacecraft bus (S/C). A distributed ground system receives the data, uploads commands and software updates, and processes the data. After transition from the study phase, Pre-Phase-A (a.k.a., "Cycle 6") design to NASA Phase A formulation, a significant change to the IOA was initiated; including moving the tertiary mirror from the instrument package to a unified three-mirror anastigmat (TMA) placement, that provides a wide 0.28-sq° instrumented field of view to the Wide Field Instrument (WFI). In addition, separate relays from the primary and secondary mirror feed the Wide Field Instrument (WFI) and Coronagraph Instrument (CGI). During commissioning the telescope is aligned using wavefront sensing with the WFI[2]. A parametric and Monte-Carlo analysis was performed, which determined that alignment compensation with the secondary mirror alone degraded performance in the other instruments. This led to the addition of a second compensator in the WFI optical train to alleviate this concern. This paper discusses the trades and analyses that were performed and resulting changes to the WFIRST telescope architecture.
A wideband stepped-impedance rectangular-ring resonator bandpass filter with multiple notched bands
Nakhlestani, Amir; Movahhedi, Masoud; Hakimi, Ahmad
2014-07-01
A configuration of wideband bandpass filter (BPF) with multiple notched bands is presented. Proposed BPF is based on stepped-impedance resonator. By utilising dual stepped-impedance resonators in folded topology a rectangular-ring resonator is formed. Two notched bands in the passband are achieved without using asymmetrical coupled lines. In other words, the filter configuration is capable of producing notched bands. It should be noted that additional information on filter performance and design is presented. Measurement results are presented to approve propounded filter characteristics. The measured passband of the second proposed filter is from 3.68 to 10.2 GHz with insertion loss of -1.76 dB in the first passband at the centre frequency of 4.45 GHz. The measured notched band frequencies are about 5.45 and 7.95 GHz with rejection of -21.77 and -20.82 dB, respectively. The return loss in the passband is better than -11.4 dB.
Zhai, Xiaofang; Zhu, Xinyan; Xiao, Zhifeng; Weng, Jie
2009-10-01
Historically, cellular automata (CA) is a discrete dynamical mathematical structure defined on spatial grid. Research on cellular automata system (CAS) has focused on rule sets and initial condition and has not discussed its adjacency. Thus, the main focus of our study is the effect of adjacency on CA behavior. This paper is to compare rectangular grids with hexagonal grids on their characteristics, strengths and weaknesses. They have great influence on modeling effects and other applications including the role of nearest neighborhood in experimental design. Our researches present that rectangular and hexagonal grids have different characteristics. They are adapted to distinct aspects, and the regular rectangular or square grid is used more often than the hexagonal grid. But their relative merits have not been widely discussed. The rectangular grid is generally preferred because of its symmetry, especially in orthogonal co-ordinate system and the frequent use of raster from Geographic Information System (GIS). However, in terms of complex terrain, uncertain and multidirectional region, we have preferred hexagonal grids and methods to facilitate and simplify the problem. Hexagonal grids can overcome directional warp and have some unique characteristics. For example, hexagonal grids have a simpler and more symmetric nearest neighborhood, which avoids the ambiguities of the rectangular grids. Movement paths or connectivity, the most compact arrangement of pixels, make hexagonal appear great dominance in the process of modeling and analysis. The selection of an appropriate grid should be based on the requirements and objectives of the application. We use rectangular and hexagonal grids respectively for developing city model. At the same time we make use of remote sensing images and acquire 2002 and 2005 land state of Wuhan. On the base of city land state in 2002, we make use of CA to simulate reasonable form of city in 2005. Hereby, these results provide a proof of
Keidser, Gitte; Rohrseitz, Kristin; Dillon, Harvey; Hamacher, Volkmar; Carter, Lyndal; Rass, Uwe; Convery, Elizabeth
2006-10-01
This study examined the effect that signal processing strategies used in modern hearing aids, such as multi-channel WDRC, noise reduction, and directional microphones have on interaural difference cues and horizontal localization performance relative to linear, time-invariant amplification. Twelve participants were bilaterally fitted with BTE devices. Horizontal localization testing using a 360 degrees loudspeaker array and broadband pulsed pink noise was performed two weeks, and two months, post-fitting. The effect of noise reduction was measured with a constant noise present at 80 degrees azimuth. Data were analysed independently in the left/right and front/back dimension and showed that of the three signal processing strategies, directional microphones had the most significant effect on horizontal localization performance and over time. Specifically, a cardioid microphone could decrease front/back errors over time, whereas left/right errors increased when different microphones were fitted to left and right ears. Front/back confusions were generally prominent. Objective measurements of interaural differences on KEMAR explained significant shifts in left/right errors. In conclusion, there is scope for improving the sense of localization in hearing aid users.
Diffraction model of short-range longitudinal wakefields in circular and rectangular structures
Smirnov, A V
2002-01-01
Diffraction models based on the Green function technique and 'image' field concept were developed for analytical calculation of high-frequency radiation in rectangular iris-loaded structures. The models for single-cell and periodic structures were considered as an extension of the Lawson and Sessler-Vainshtein approaches and were applied to circular, infinitely wide planar and 'muffin-tin' geometry. The calculated spectral radiation losses are in good agreement with existing formulae. For a 2.5D muffin-tin structure a special semi-analytical frequency domain model was built to compare the diffraction model with the matched field technique based on eigenmodes calculations.
Study of an End-Fed Dipole Antenna Excited by a Rectangular Waveguide
Bukhtiyarov, D. A.; Gorbachev, A. P.
2017-06-01
We present the results of analysis of a dipole antenna fed via a rectangular waveguide and based on a recently proposed end-fed dipole. Both the radiation resistance and the complex input impedance of such an antenna are determined using the mirror image theory and the induced EMF method. The principles used for an optimal choice of the radius of the antenna conductors and the size of the wide wall of the waveguide are discussed. The experimental results indicate that the proposed approach is correct.
Krylenko, Inna; Belikov, Vitaly; Zavadskii, Aleksander; Borisova, Natalya; Golovlyov, Pavel; Rumyantsev, Alexey
2017-04-01
City Yakutsk (administrative, culture and industrial center of the North East of Russia) situated on the left bank of large Russian river Lena last decades has faced with many problems, concerning intensive channel processes. Most dramatic among them are sediment accumulation near main water intake structure, supplying city Yakutsk by the drinking water, and deterioration in conditions of the navigation roots to the main city ports. Hydrodynamic modelling has been chosen as the main tool for analyses of the modern tendencies in channel processes and for the evaluation of possible channel improvement measures efficiency. STREAM_2D program complex (authors V. Belikov et al.), which is based on the numerical solution of two-dimensional Saint-Venant equations on a hybrid curvilinear quadrangular and rectangular mesh and take into account sediment transport, was used for the simulations. Detailed field data about water regime of the Lena river, bathymetry of the channels and topography of the floodplains was collected for model developing. Model area has covered 75 km of the Lena river valley including branched channels and wide floodplain from Tabaga to Kangalassy gauge cites. Data of these stations were used for model boundary conditions assigning. Data of gauge station city Yakutsk as well as measured during field campaign water levels and flow velocities was taken into account for model calibration and validation. Results of modelling has demonstrated close correspondence with observed water levels and discharges distribution between channel branches for different hydrological situations. Different combinations of hydrographs of 1, 10, 50% exceedance probability was used as input for modelling of channel deformations. Simulation results has shown that in future 10 years aligning of water discharges distribution between main Lena river branches near Yakutsk is possible, that is a positive tendency from the point of view of water supply of the city. More than 15
Energy Technology Data Exchange (ETDEWEB)
Shaha, Poly Rani; Poddar, Nayan Kumar; Mondal, Rabindra Nath, E-mail: rnmondal71@yahoo.com [Department of Mathematics, Jagannath University, Dhaka-1100 (Bangladesh); Rudro, Sajal Kanti [Department of Mathematics, Notredame Colleage, Motijheel, Dhaka (Bangladesh)
2016-07-12
The study of flows through coiled ducts and channels has attracted considerable attention not only because of their ample applications in Chemical, Mechanical, Civil, Nuclear and Biomechanical engineering but also because of their ample applications in other areas, such as blood flow in the veins and arteries of human and other animals. In this paper, a numerical study is presented for the fully developed two-dimensional flow of viscous incompressible fluid through a loosely coiled rectangular duct of large aspect ratio. Numerical calculations are carried out by using a spectral method, and covering a wide range of the Dean number, Dn, for two types of curvatures of the duct. The main concern of the present study is to find out effects of curvature as well as formation of secondary vortices on unsteady solutions whether the unsteady flow is steady-state, periodic, multi-periodic or chaotic, if Dn is increased. Time evolution calculations as well as their phase spaces are performed with a view to study the non-linear behavior of the unsteady solutions, and it is found that the steady-state flow turns into chaotic flow through various flow instabilities, if Dn is increased no matter what the curvature is. It is found that the unsteady flow is a steady-state solution for small Dn’s and oscillates periodically or non-periodically (chaotic) between two- and twelve-vortex solutions, if Dn is increased. It is also found that the chaotic solution is weak for small Dn’s but strong as Dn becomes large. Axial flow distribution is also investigated and shown in contour plots.
A two-component NZRI metamaterial based rectangular cloak
Directory of Open Access Journals (Sweden)
Sikder Sunbeam Islam
2015-10-01
Full Text Available A new two-component, near zero refractive index (NZRI metamaterial is presented for electromagnetic rectangular cloaking operation in the microwave range. In the basic design a pi-shaped, metamaterial was developed and its characteristics were investigated for the two major axes (x and z-axis wave propagation through the material. For the z-axis wave propagation, it shows more than 2 GHz bandwidth and for the x-axis wave propagation; it exhibits more than 1 GHz bandwidth of NZRI property. The metamaterial was then utilized in designing a rectangular cloak where a metal cylinder was cloaked perfectly in the C-band area of microwave regime. The experimental result was provided for the metamaterial and the cloak and these results were compared with the simulated results. This is a novel and promising design for its two-component NZRI characteristics and rectangular cloaking operation in the electromagnetic paradigm.
Energy Technology Data Exchange (ETDEWEB)
Kim, Sin-Yeob; Shin, Dong-Ho; Park, Goon-Cherl; Cho, Hyoung Kyu [Seoul National Univ., Seoul (Korea, Republic of); Kim, Chan-Soo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2016-10-15
VHTR being developed at Korea Atomic Energy Research Institute adopts an air-cooled Reactor Cavity Cooling System (RCCS) incorporating rectangular riser channels to remove the afterheat emitted from the reactor vessel. Because the performance of RCCS is determined by heat removal rate through the RCCS riser, it is important to understand the heat transfer phenomena in the RCCS riser to ensure the safety of the reactor. In the mixed convection, due to the buoyance force induced by temperature and density differences, local flow structure and heat transfer mode near the heated wall have significantly dissimilar characteristics from both forced convection and free convection. In this study, benchmark calculation was conducted to reproduce the previous statements that V2F turbulence model can capture the mixed convection phenomena with the Shehata's experimental data. Then, the necessity of the model validation for the mixed convection phenomena was confirmed with the CFD analyses for the geometry of the prototype RCCS riser. For the purpose of validating the turbulence models for mixed convection phenomena in the heated rectangular riser duct, validation plan with three experimental tests was introduced. Among them, the flow visualization test facility with preserved cross-section geometry was introduced and a preliminary test result was shown.
Low-frequency velocity correlation spectrum of fluid in a rectangular microcapillary.
Fornés, José A; de Zárate, José M Ortiz
2007-11-06
In addition to the fast correlation for local stochastic motion, the velocity correlation function in a fluid enclosed within the pore boundaries features a slow long time-tail decay. At late times, the flow approaches that of an incompressible fluid. Here, we consider the motion of a viscous fluid, at constant temperature, in a rectangular semipermeable channel. The fluid is driven through the rectangular capillary by a uniform main pressure gradient. Tiny pressure gradients are allowed perpendicular to the main flux. We solve numerically the three-dimensional Navier-Stokes equations for the velocity field to obtain the steady solution. We then set and solve the Langevin equation for the fluid velocity. We report hydrodynamic fluctuations for the center-line velocity together with the corresponding relaxation times as a function of the size of the observing region and the Reynolds number. The effective diffusion coefficient for the fluid in the microchannel is also estimated (Deff = 1.43 x 10(-10) m2.s-1 for Re = 2), which is in accordance with measurements reported for a similar system (Stepisnik, J.; Callaghan, P. T. Physica B 2000, 292, 296-301; Stepisnik, J.; Callaghan, P. T. Magn. Reson. Imaging 2001, 19, 469-472).
A new metamaterial-based wideband rectangular invisibility cloak
Islam, S. S.; Hasan, M. M.; Faruque, M. R. I.
2018-02-01
A new metamaterial-based wideband electromagnetic rectangular cloak is being introduced in this study. The metamaterial unit cell shows sharp transmittances in the C- and X-bands and displays wideband negative effective permittivity region there. The metamaterial unit cell was then applied in designing a rectangular-shaped electromagnetic cloak. The scattering reduction technique was adopted for the cloaking operation. The cloak operates in the certain portion of C-and X-bands that covers more than 4 GHz bandwidth region. The experimental results were provided as well for the metamaterial and the cloak.
GARCON - Genetic Algorithm for Rectangular Cuts OptimizatioN.
Drozdetskiy, A
2007-01-01
We will present Genetic Algorithm for Rectangular Cuts OptimizatioN (GARCON) program and demonstrate its functionality on a simple HEP analysis example. The program automatically performs rectangular cuts optimization and verification for stability in a multi-dimensional cuts phase space. The program has been successfully used by a number of different analyses presented in the Compact Muon Solenoid (CMS collaboration) Physics Technical Design Report (Large Hadron Collider (LHC), CERN, Geneva, Switzerland), corresponding results are also published in a number of papers in 2006.
Nonlinear Mechanics of MEMS Rectangular Microplates under Electrostatic Actuation
Saghir, Shahid
2016-12-01
The first objective of the dissertation is to develop a suitable reduced order model capable of investigating the nonlinear mechanical behavior of von-Karman plates under electrostatic actuation. The second objective is to investigate the nonlinear static and dynamic behavior of rectangular microplates under small and large actuating forces. In the first part, we present and compare various approaches to develop reduced order models for the nonlinear von-Karman rectangular microplates actuated by nonlinear electrostatic forces. The reduced-order models aim to investigate the static and dynamic behavior of the plate under small and large actuation forces. A fully clamped microplate is considered. Different types of basis functions are used in conjunction with the Galerkin method to discretize the governing equations. First we investigate the convergence with the number of modes retained in the model. Then for validation purpose, a comparison of the static results is made with the results calculated by a nonlinear finite element model. The linear eigenvalue problem for the plate under the electrostatic force is solved for a wide range of voltages up to pull-in. In the second part, we present an investigation of the static and dynamic behavior of a fully clamped microplate. We investigate the effect of different non-dimensional design parameters on the static response. The forced-vibration response of the plate is then investigated when the plate is excited by a harmonic AC load superimposed to a DC load. The dynamic behavior is examined near the primary and secondary (superharmonic and subharmonic) resonances. The microplate shows a strong hardening behavior due to the cubic nonlinearity of midplane stretching. However, the behavior switches to softening as the DC load is increased. Next, near-square plates are studied to understand the effect of geometric imperfections of microplates. In the final part of the dissertation, we investigate the mechanical behavior of
TWO-CHANNEL DIELECTRIC WAKE FIELD ACCELERATOR
Energy Technology Data Exchange (ETDEWEB)
Jay L. Hirshfield
2012-05-30
Experimental results are reported for test beam acceleration and deflection in a two-channel, cm-scale, rectangular dielectric-lined wakefield accelerator structure energized by a 14-MeV drive beam. The dominant waveguide mode of the structure is at {approx}30 GHz, and the structure is configured to exhibit a high transformer ratio ({approx}12:1). Accelerated bunches in the narrow secondary channel of the structure are continuously energized via Cherenkov radiation that is emitted by a drive bunch moving in the wider primary channel. Observed energy gains and losses, transverse deflections, and changes in the test bunch charge distribution compare favorably with predictions of theory.
Directory of Open Access Journals (Sweden)
Abderraouf Messai
2013-01-01
Full Text Available A rigorous full-wave analysis of high Tc superconducting rectangular microstrip patch over ground plane with rectangular aperture in the case where the patch is printed on a uniaxially anisotropic substrate material is presented. The dyadic Green’s functions of the considered structure are efficiently determined in the vector Fourier transform domain. The effect of the superconductivity of the patch is taken into account using the concept of the complex resistive boundary condition. The accuracy of the analysis is tested by comparing the computed results with measurements and previously published data for several anisotropic substrate materials. Numerical results showing variation of the resonant frequency and the quality factor of the superconducting antenna with regard to operating temperature are given. Finally, the effects of uniaxial anisotropy in the substrate on the resonant frequencies of different TM modes of the superconducting microstrip antenna with rectangular aperture in the ground plane are presented.
Large eddy simulations and experiments on mixing in a confined rectangular turbulent jet
Kong, Bo; Gokarn, Anup; Battaglia, Francine; Olsen, Michael; Fox, Rodney; Hill, James
2007-11-01
Large eddy simulations were performed for a confined rectangular co-flowing liquid jet at Reynolds number 20,000 based on the average velocity and hydraulic diameter of the channel. An incompressible finite-difference formulation of the filtered Navier-Stokes and mass conservation equations on a partially-staggered grid was used. The effects of grid resolution, numerical schemes, and subgrid models on the LES solutions were studied. Validation was performed by comparing LES statistics with those obtained from low- and high-speed particle image velocimetry and laser-induced fluorescence measurements. These statistics include mean, velocity and scalar variances, Reynolds stress, one- and two-point correlation coefficients, skewness, and kurtosis; all compare well with experimental data. The good agreement with two-point spatial correlations suggests that structures in the LES field are similar to those in the actual flow.
Rectangular grids formed by hydrogen-bonding interactions ...
Indian Academy of Sciences (India)
Administrator
Rectangular grids formed by hydrogen-bonding interactions between successive chains of linear polymers. [Co(II)-4,4¢-bpy-Co(II)]n and their inclusion properties: Synthesis and single crystal investigations. E SURESH 1 and MOHAN M BHADBHADE 2. 1Silicates and Catalysis Division, Central Salt & Marine Chemicals ...
direct method of analysis of an isotropic rectangular plate direct ...
African Journals Online (AJOL)
eobe
This work. This work evaluates the static analysis of an isotropic rectangular plate with various ... used to obtain the total potential energy of the plate by employing the static elastic theory of plate. static elastic theory of plate. The shape func he shape func he shape .... finite site particles and the overall response of such a.
stability analysis of ssss thin rectangular plate using multi
African Journals Online (AJOL)
user
The stability analysis of all four edges simply supported (SSSS) thin rectangular plate using multi-degrees of freedom (MDOF) Taylor ... polynomial function in plates' continuum analysis other than SDOF. In which .... The percentage differences (error) between this study, Ibearugbulem et. al and Ezeh et. al with of those of ...
Dynamic response of ground supported rectangular water tanks to ...
African Journals Online (AJOL)
... reinforced concrete rectangular water tank under earthquake excitation. A linear three-dimensional finite element analysis and SAP2000 software have been used to predict tank response. The variable analysis parameters considered are the aspect ratio (tank height to length ratio) and tank water level, while the tank wall ...
Hydroelastic analysis of a rectangular plate subjected to slamming loads
Wang, Shan; Guedes Soares, C.
2017-12-01
A hydroelastic analysis of a rectangular plate subjected to slamming loads is presented. An analytical model based on Wagner theory is used for calculations of transient slamming load on the ship plate. A thin isotropic plate theory is considered for determining the vibration of a rectangular plate excited by an external slamming force. The forced vibration of the plate is calculated by the modal expansion method. Analytical results of the transient response of a rectangular plate induced by slamming loads are compared with numerical calculations from finite element method. The theoretical slamming pressure based on Wagner model is applied on the finite element model of a plate. Good agreement is obtained between the analytical and numerical results for the structural deflection of a rectangular plate due to slamming pressure. The effects of plate dimension and wave profile on the structural vibration are discussed as well. The results show that a low impact velocity and a small wetted radial length of wave yield negligible effects of hydroelasticity.
On Typical Elastic Problem of Green's Function For Rectangular ...
African Journals Online (AJOL)
... is on the method of the separation of variables. Here, the Green's function of the Neumann's problem for Poisson's equation is adopted. Unlike the problems of the full and half strips, the problem of the rectangular strip admits known formulae of the hyperbolic functions in addition to conventional trigonometric functions.
Sound Radiation Characteristics of a Rectangular Duct with Flexible Walls
Directory of Open Access Journals (Sweden)
Praveena Raviprolu
2016-01-01
Full Text Available Acoustic breakout noise is predominant in flexible rectangular ducts. The study of the sound radiated from the thin flexible rectangular duct walls helps in understanding breakout noise. The current paper describes an analytical model, to predict the sound radiation characteristics like total radiated sound power level, modal radiation efficiency, and directivity of the radiated sound from the duct walls. The analytical model is developed based on an equivalent plate model of the rectangular duct. This model has considered the coupled and uncoupled behaviour of both acoustic and structural subsystems. The proposed analytical model results are validated using finite element method (FEM and boundary element method (BEM. Duct acoustic and structural modes are analysed to understand the sound radiation behaviour of a duct and its equivalence with monopole and dipole sources. The most efficient radiating modes are identified by vibration displacement of the duct walls and for these the radiation efficiencies have been calculated. The calculated modal radiation efficiencies of a duct compared to a simple rectangular plate indicate similar radiation characteristics.
FDTD Analysis of U-Slot Rectangular Patch Antenna
Luk, K. M.; Tong, K. F.; Shum, S. M.; Lee, K. F.; Lee, R. Q.
1997-01-01
The U-slot rectangular patch antenna (Figure I) has been found experimentally to provide impedance and gain bandwidths of about 300 without the need of stacked or coplanar parasitic elements [1,2]. In this paper, simulation results of the U-slot patch using FDTD analysis are presented. Comparison with measured results are given.
A bounds on the resonant frequency of rectangular microstrip antennas
Bailey, M. C.
1980-01-01
The calculation of currents induced by a transverse electric plane wave normally incident upon an infinite strip embedded in a grounded dielectric slab is used to infer a lower bound on the resonant frequency (or resonant-E-plane dimension) for rectangular microstrip antennas. An upper bound is provided by the frequency for which the E-plane dimension is a half-wavelength.
Dynamic Response of Ground Supported Rectangular Water Tanks ...
African Journals Online (AJOL)
Bheema
Review of design Codes. Some of the structural design codes that tackle fluid tank systems are the American Concrete. Institute, ACI 350.3, the Euro Code 8 and the Standards Association of New Zealand, NZS. These codes address ground supported circular and rectangular concrete tanks having fixed or flexible bases.
Relationship between room shape and acoustics of rectangular concert halls
DEFF Research Database (Denmark)
Klosak, Andrzej K.; Gade, Anders Christian
2008-01-01
Extensive acoustics computer simulations have been made using Odeon computer simulation software. In 24 rectangular rooms representing "shoe-box" type concert halls with volumes of 8 000 m3, 12 000 m3 and 16 000 m3 from 300 to 850 measurements positions have been analysed. Only room averaged...
Optical vortex propagation in few-mode rectangular polymer waveguides
DEFF Research Database (Denmark)
Lyubopytov, Vladimir S.; Chipouline, Arkadi; Zywietz, Urs
2017-01-01
We demonstrate that rectangular few-mode dielectric waveguides, fabricated with standard lithographic technique, can support on-chip propagation of optical vortices. We show that specific superpositions of waveguide eigenmodes form quasi-degenerate modes carrying light with high purity states...
Analysis of Rectangular Microstrip Antennas with Air Substrates ...
African Journals Online (AJOL)
This paper presents an analysis of rectangular microstrip antennas with air substrates. The effect of the substrate thickness on the bandwidth and the efficiency are examined. An additional thin layer supporting the dielectric material is added to the air substrate in order to make the antenna mechanically rigid and easy to ...
Evaluation of Double Perforated Baffles Installed in Rectangular Secondary Clarifiers
Directory of Open Access Journals (Sweden)
Byonghi Lee
2017-06-01
Full Text Available Double perforated baffles in rectangular secondary clarifiers were studied to determine whether they contribute to producing high-quality effluents. The Computational Fluid Dynamics (CFD simulations indicated that bio-flocculation occurred at the front of the baffle and the longitudinal movement of the settled sludge was hampered whenever the clarifier had high inflow. Simulation results showed that the rectangular clarifier with the double perforated baffle produced an effluent with lower suspended solid (SS concentrations than the effluent from the clarifier without the baffle. To verify the simulation results, a double perforated baffle was installed in two of the 48 rectangular clarifiers in a 300,000 m3/d-capacity wastewater treatment plant. To study the effect of the baffle on solid removal, the effluent turbidity of the clarifier with and without the double perforated baffle was measured simultaneously. Experimental data showed that the double perforated baffle played a significant role in reducing effluent turbidity. The effluent turbidity reduction ratio with the baffle decreased when the Sludge Volume Index (SVI of the Mixed Liquor Suspended Solids (MLSS was below 100 mL/g. The overall average reduction ratio was 24.3% for SVI < 100 mL/g and 45.1% for SVI > 100 mL/g. The results of this study suggest that double perforated baffles must be installed in secondary rectangular clarifiers to produce high-quality effluent regardless of the operational conditions.
analytical bending solution of all clamped isotropic rectangular plate
African Journals Online (AJOL)
HP
to the governing differential equation of the plate on Winkler foundation to obtain the deflection coefficient, . Numerical example was presented at the end to compare the results obtained by this method and those from earlier studies. The percentage difference obtained for central deflection of all clamped rectangular plate ...
Energy levels in rectangular quantum well wires based on a ...
Indian Academy of Sciences (India)
Abstract. The effect of a spatially dependent effective mass on the energy levels in a rectangular quantum wire with finite barrier potential is considered. The heterojunction is modelled by an error function rather than a step function to more accurately model the material transition region at the interface between the two ...
The problem of isotropic rectangular plate with four clamped edges
Indian Academy of Sciences (India)
... received considerable attention because of its technical importance. This paper analyses the deflections of an isotropic rectangular clamped thin plates under uniformly distributed loads. A plate is called thin when its thickness is at least one order of magnitude smaller than the span of the plate. The bending and buckling.
Natural convection in rectangular enclosures with one thermally ...
African Journals Online (AJOL)
Natural convective fluid flow and heat transfer in rectangular enclosures bounded by three adiabatic walls and one thermally active and differentially heated vertical side were predicted by using the finite difference method. The effects of different temperature functions, aspect ratio and Rayleigh numbers on the natural ...
Plasma-filled rippled wall rectangular backward wave oscillator ...
Indian Academy of Sciences (India)
Performance of the backward wave oscillator (BWO) is greatly enhanced with the introduction of plasma. Linear theory of the dispersion relation and the growth rate have been derived and analysed numerically for plasma-ﬁlled rippled wall rectangular waveguide driven by sheet electron beam. To see the effect of plasma ...
Hydroelastic analysis of a rectangular plate subjected to slamming loads
Wang, Shan; Guedes Soares, C.
2017-10-01
A hydroelastic analysis of a rectangular plate subjected to slamming loads is presented. An analytical model based on Wagner theory is used for calculations of transient slamming load on the ship plate. A thin isotropic plate theory is considered for determining the vibration of a rectangular plate excited by an external slamming force. The forced vibration of the plate is calculated by the modal expansion method. Analytical results of the transient response of a rectangular plate induced by slamming loads are compared with numerical calculations from finite element method. The theoretical slamming pressure based on Wagner model is applied on the finite element model of a plate. Good agreement is obtained between the analytical and numerical results for the structural deflection of a rectangular plate due to slamming pressure. The effects of plate dimension and wave profile on the structural vibration are discussed as well. The results show that a low impact velocity and a small wetted radial length of wave yield negligible effects of hydroelasticity.
Graphene-based tunable terahertz filter with rectangular ring ...
Indian Academy of Sciences (India)
WEI SU
2017-08-16
Aug 16, 2017 ... Abstract. A plasmonic band-pass filter based on graphene rectangular ring resonator with double narrow gaps is proposed and numerically investigated by finite-difference time-domain (FDTD) simulations. For the filter with or without gaps, the resonant frequencies can be effectively adjusted by changing ...
Graphene-based tunable terahertz filter with rectangular ring ...
Indian Academy of Sciences (India)
A plasmonic band-pass filter based on graphene rectangular ring resonator with double narrow gaps is proposed and numerically investigated by finite-difference time-domain (FDTD) simulations. For the filter with or without gaps, the resonant frequencies can be effectively adjusted by changing the width of the graphene ...
Biaxial charts for rectangular reinforced columns in accordance with ...
African Journals Online (AJOL)
Biaxial charts for rectangular reinforced columns in accordance with the Ethiopian building code standard EBCS-2:Part1. ... Questions about PDFs. Alternatively, you can download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link above.
2D Flow around a Rectangular Cylinder: A Computational Study ...
African Journals Online (AJOL)
The influence of vortical structure and pressure distribution around the section of rectangular cylinders are examined and reported. The integral aerodynamic parameters are also reported. Strouhal numbers for Reynolds numbers of 55, 75, 100, 150, 250 and 400 are 0.102, 0.122, 0.129, 0.136, 0.139 and 0.158 respectively.
Internal flow characteristics of a rectangular ramjet air intake
Moerel, J.-L.; Veraar, R.G.; Halswijk, W.H.C.; Pimentel, R.; Corriveau, D.; Hamel, N.; Lesage, F.; Vos, J.B.
2009-01-01
Two research institutes TNO Defence, Security and Safety and DRDC-Valcartier have worked together on the improvement of modeling and simulation tools for the functioning of supersonic air intakes for realistic ramjet engines of tactical missiles. The emphasis laid on complex rectangular intake
Directory of Open Access Journals (Sweden)
Swarna Bais
2016-12-01
Full Text Available Praziquantel (PZQ is effectively the only drug currently available for treatment and control of schistosomiasis, a disease affecting hundreds of millions of people worldwide. Many anthelmintics, likely including PZQ, target ion channels, membrane protein complexes essential for normal functioning of the neuromusculature and other tissues. Despite this fact, only a few classes of parasitic helminth ion channels have been assessed for their pharmacological properties or for their roles in parasite physiology. One such overlooked group of ion channels is the transient receptor potential (TRP channel superfamily. TRP channels share a common core structure, but are widely diverse in their activation mechanisms and ion selectivity. They are critical to transducing sensory signals, responding to a wide range of external stimuli. They are also involved in other functions, such as regulating intracellular calcium and organellar ion homeostasis and trafficking. Here, we review current literature on parasitic helminth TRP channels, focusing on those in schistosomes. We discuss the likely roles of these channels in sensory and locomotor activity, including the possible significance of a class of TRP channels (TRPV that is absent in schistosomes. We also focus on evidence indicating that at least one schistosome TRP channel (SmTRPA has atypical, TRPV1-like pharmacological sensitivities that could potentially be exploited for future therapeutic targeting.
Directory of Open Access Journals (Sweden)
A. K. A. SHATI
2012-04-01
Full Text Available The effects of natural convection with and without the interaction of surface radiation in square and rectangular enclosures have been studied, numerically and theoretically. The analyses were carried out over a wide range of enclosure aspect ratios ranging from 0.0625 to 16, including square enclosures in sizes from 40cm to 240cm, with cold wall temperatures ranging from 283 to 373 K, and hot to cold temperature ratios ranging from 1.02 to 2.61. The work was carried out using four different fluids whose properties are varying with temperature. FLUENT software was used to carry out the numerical study. Turbulence was modelled using the RNG k-ε model with a non-uniform grid. The Discrete Transfer Radiation Model (DTRM was used for radiation simulation. A correlation equation for the new dimensionless group represented by the ratio of natural convection to radiation, as a function of Nusselt, Grashof, Prandtl numbers and temperature ratio also, the average Nusselt number without radiation as a function of Grashof and Prandtl numbers have been provided along with the constants needed to use them as a function of temperature ratio. This provides a generalised equation for heat transfer in square and rectangular enclosures both with and without radiation.
Geometrical models of quadratic-rectangular sets with particular examples of composite solutions
Directory of Open Access Journals (Sweden)
Polezhaev Yuriy Olegovich
Full Text Available During the current decades the aspect of geometrography compositions formation on the basis of basic images has been actively developed. The basic images possess the qualities of harmonies, expressed by lines, squares, tone, color. The relations of square-rectangular forms belonging to plane geometry of parabolic, hyperbolic and elliptic fields has been already analyzed by scientists. This article introduces equiareals construction of square-rectangular shapes, as well as their rows - in classical composition of elementary figures of "squaring the circle". Variations of such constructions, in their turn, offer the possibility to seek and capture new geometrical graphical compositions, practical application of which can be wide enough in technology design and mechanical engineering, architecture and construction, decoration of household items, arts and crafts and costume fabrics, et cetera. The authors consider the topic of plane geometry "Field-M", which is based on a rectilinear grid of ortholines with circulations in its nodal points. The conclusions made by the authors is that the necessity of solutions for more and more various and complicated problems in the conditions of time limitation determines the development of geometrography methods as an effective operating system along with program methods of cognitive graphics.
A Novel Dual-Band Circularly Polarized Rectangular Slot Antenna
Directory of Open Access Journals (Sweden)
Biao Li
2016-01-01
Full Text Available A coplanar waveguide fed dual-band circularly polarized rectangular slot antenna is presented. The proposed antenna consists of a rectangular metal frame acting as a ground and an S-shaped monopole as a radiator. The spatial distribution of the surface current density is employed to demonstrate that the circular polarization is generated by the S-shaped monopole which controls the path of the surface currents. An antenna prototype, having overall dimension 37 × 37 × 1 mm3, has been fabricated on FR4 substrate with dielectric constant 4.4. The proposed antenna achieves 10 dB return loss bandwidths and 3 dB axial ratio (AR in the frequency bands 2.39–2.81 GHz and 5.42–5.92 GHz, respectively. Both these characteristics are suitable for WLAN and WiMAX applications.
Differential expansion and rectangular HOMFLY for the figure eight knot
Directory of Open Access Journals (Sweden)
A. Morozov
2016-10-01
Full Text Available Differential expansion (DE for a Wilson loop average in representation R is built to respect degenerations of representations for small groups. At the same time it behaves nicely under some changes of the loop, e.g. of some knots in the case of 3d Chern–Simons theory. Especially simple is the relation between the DE for the trefoil 31 and for the figure eight knot 41. Since arbitrary colored HOMFLY for the trefoil are known from the Rosso–Jones formula, it is therefore enough to find their DE in order to make a conjecture for the figure eight. We fulfill this program for all rectangular representation R=[rs], i.e. make a plausible conjecture for the rectangularly colored HOMFLY of the figure eight knot, which generalizes the old result for totally symmetric and antisymmetric representations.
Flow Through a Rectangular-to-Semiannular Diffusing Transition Duct
Foster, Jeff; Wendt, Bruce J.; Reichert, Bruce A.; Okiishi, Theodore H.
1997-01-01
Rectangular-to-semiannular diffusing transition ducts are critical inlet components on supersonic airplanes having bifucated engine inlets. This paper documents measured details of the flow through a rectangular-to-semiannular transition duct having an expansion area ratio of 1.53. Three-dimensional velocity vectors and total pressures at the exit plane of the diffuser are presented. Surface oil-flow visualization and surface static pressure data are shown. The tests were conducted with an inlet Mach number of 0.786 and a Reynolds number based on the inlet centerline velocity and exit diameter of 3.2 x 10(exp 6). The measured data are compared with previously published computational results. The ability of vortex generators to reduce circumferential total pressure distortion is demonstrated.
Fractional Fourier transforms of electromagnetic rectangular Gaussian Schell model beams
Liu, Xiayin; Zhao, Daomu
2015-06-01
We extend the scalar rectangular Gaussian Schell model (RGSM) beams to the electromagnetic domain and obtain the analytical expression for the propagation of the electromagnetic RGSM (EM RGSM) beams through an ABCD optical system. As a practical application, we illustrate how the spectral density, the spectral degree of polarization and the spectral degree of coherence of the EM RGSM beams through the fractional Fourier transform (FRFT) optical system depend on the FRFT order p and the value of beam profile M. It is found that the periods of the on-axis spectral density, the on-axis degree of polarization and the transverse degree of coherence for the FRFT order are all 2. In addition, it is of interest that the profiles of the transverse spectral intensity and the degree of polarization in the standard Fourier transform plane (i.e., p=1) are shown to form flat rectangular region which is wider for larger values of M.
Free vibration analysis of rectangular plates with central cutout
Directory of Open Access Journals (Sweden)
Kanak Kalita
2016-12-01
Full Text Available A nine-node isoparametric plate element in conjunction with first-order shear deformation theory is used for free vibration analysis of rectangular plates with central cutouts. Both thick and thin plate problems are solved for various aspect ratios and boundary conditions. In this article, primary focus is given to the effect of rotary inertia on natural frequencies of perforated rectangular plates. It is found that rotary inertia has significant effect on thick plates, while for thin plates the rotary inertia term can be ignored. It is seen that the numerical convergence is very rapid and based on comparison with experimental and analytical data from literature, it is proposed that the present formulation is capable of yielding highly accurate results. Finally, some new numerical solutions are provided here, which may serve as benchmark for future research on similar problems.
Mode conversion in rectangular-core optical fibers.
Bullington, Amber L; Pax, Paul H; Sridharan, Arun K; Heebner, John E; Messerly, Michael J; Dawson, Jay W
2012-01-01
Mode conversion from the fundamental to a higher-order mode in a rectangular-core optical fiber is accomplished by applying pressure with the edge of a flat plate. Modal analysis of the near and far field images of the fiber's transmitted beam determines the purity of the converted mode. Mode conversion reaching 75% of the targeted higher-order mode is achieved using this technique. Conversion from a higher-order mode back to the fundamental mode is also demonstrated with comparable efficiency. Propagation of a higher-order mode in a rectangular-core fiber allows for better thermal management and bend-loss immunity than conventional circular-core fibers, extending the power-handling capabilities of optical fibers. © 2012 Optical Society of America
Shielding calculations for changing from circular to a Rectangular ...
African Journals Online (AJOL)
From these calculations, the dose rates at the occupied sites ³ 5.0 m, require concrete wall shielding of thickness, t = 183.1 cm as against the 190 cm which is now in place at the RTC. This implies that the biological shi-eld in place is adequate for the replacement of the cylindrical source cage with a rectangular or plaque ...
Partitioning Rectangular and Structurally Nonsymmetric Sparse Matrices for Parallel Processing
Energy Technology Data Exchange (ETDEWEB)
B. Hendrickson; T.G. Kolda
1998-09-01
A common operation in scientific computing is the multiplication of a sparse, rectangular or structurally nonsymmetric matrix and a vector. In many applications the matrix- transpose-vector product is also required. This paper addresses the efficient parallelization of these operations. We show that the problem can be expressed in terms of partitioning bipartite graphs. We then introduce several algorithms for this partitioning problem and compare their performance on a set of test matrices.
Simple formula for computing the Hubbell radiation rectangular source integral
Energy Technology Data Exchange (ETDEWEB)
Murley, Jonathan, E-mail: Jmurley@stu1.cs.upei.c [Department of Mathematics and Statistics, University of Prince Edward Island, Charlottetown, Prince Edward Island, C1A 4P3 (Canada); Saad, Nasser, E-mail: nsaad@upei.c [Department of Mathematics and Statistics, University of Prince Edward Island, Charlottetown, Prince Edward Island, C1A 4P3 (Canada)
2011-01-15
A simple analytic formula is derived for use in solving the Hubbell radiation rectangular source integrals H(a,b)={integral}{sub 0}{sup b}(x{sup 2}+1){sup -1/2}arctan(a(x{sup 2}+1){sup -1/2})dx,0
Diffraction of electromagnetic waves by a rectangular wedge structure
Makarov, G. I.; Sozonov, A. P.
A theoretical problem of electromagnetic wave diffraction in a system of two rectangular wedges is examined: a perfectly conducting wedge and a wedge with finite relative permittivity, the two wedges having a common face. For the Fourier component of the diffraction field, a shifting Riemann boundary value problem is obtained. This problem is reduced to a convolution-type integral equation for the semiaxis, with the kernel taking the form of the sum of the difference and regular kernels.
INTERACTION OF LIQUID FLAT SCREENS WITH GAS FLOW RESTRICTED BY CHANNEL WALLS
Directory of Open Access Journals (Sweden)
S. T. Aksentiev
2005-01-01
Full Text Available The paper gives description of physical pattern of liquid screen interaction that are injected from the internal walls of a rectangular channel with gas flow. Criterion dependences for determination of intersection coordinates of external boundaries with longitudinal channel axis and factor of liquid screen head resistance.
Effects of free-surface on design charts for open channels
African Journals Online (AJOL)
2011-12-14
Dec 14, 2011 ... Normal depth is an important parameter for the design of channels and canals. For rectangular, trapezoidal, and circular channel sections it is possible to express normal depth by a trial-and-error procedure or analytically. However, the effects of free-surface on the design charts for determination of the ...
Effective stress assessment at rectangular rounded lateral notches
Directory of Open Access Journals (Sweden)
Enrico Maggiolini
2015-07-01
Full Text Available Rectangular lateral notches are not common engineering components, thus little research attention has been directed towards the investigation of their stress field properties. Indeed, no in-depth investigations have been conducted to date to assess their effective stress distributions according to the effective stress definitions provided by more recent non-local approaches (i.e. critical distance, average values, implicit gradient values, etc.. In fact, the potential applications of this kind of investigation are not even particularly relevant. However, rectangular notches could provide an interesting theoretical and experimental benchmark or reference case in order to validate the effective stress definitions. The aim of this paper is to investigate the linear elastic stress field at edges, corners and in the surrounding material of rectangular, sharp or rounded lateral notches. The consequent effective values of these notches are evaluated in relation to brittle fracture or their predicted fatigue strength values. The main goal of this paper is to investigate the relationship between geometrical proportions and the location of critical failure points according to the definitions of effective stress proposed in the literature.
Free vibration of rectangular plates with a small initial curvature
Adeniji-Fashola, A. A.; Oyediran, A. A.
1988-01-01
The method of matched asymptotic expansions is used to solve the transverse free vibration of a slightly curved, thin rectangular plate. Analytical results for natural frequencies and mode shapes are presented in the limit when the dimensionless bending rigidity, epsilon, is small compared with in-plane forces. Results for different boundary conditions are obtained when the initial deflection is: (1) a polynomial in both directions, and (2) the product of a polynomial and a trigonometric function, and arbitrary. For the arbitrary initial deflection case, the Fourier series technique is used to define the initial deflection. The results obtained show that the natural frequencies of vibration of slightly curved plates are coincident with those of perfectly flat, prestressed rectangular plates. However, the eigenmodes are very different from those of initially flat prestressed rectangular plates. The total deflection is found to be the sum of the initial deflection, the deflection resulting from the solution of the flat plate problem, and the deflection resulting from the static problem.
Fluid flow and heat transfer in microchannels with rectangular cross section
Jung, Jung-Yeul; Kwak, Ho-Young
2008-07-01
Forced convective heat transfer coefficients and friction factors for flow of water in microchannels with a rectangular cross section were measured. An integrated microsystem consisting of five microchannels on one side and a localized heater and seven polysilicon temperature sensors along the selected channels on the other side was fabricated using a double-polished-prime silicon wafer. For the microchannels tested, the friction factor constant 2{C} = 2{f}Re_{{Dh }} obtained are values between 53.7 and 60.4, which are close to the theoretical value from a correlation for macroscopic dimension, 56.9 for D h = 100 μm. The heat transfer coefficients obtained by measuring the wall temperature along the micro channels were linearly dependent on the wall temperature, in turn, the heat transfer mechanism is strongly dependent on the fluid properties such as viscosity. The measured Nusselt number in the laminar flow regime tested could be correlated by Nu = 0.00058{Re_{Dh}} ^{{1.15}} Pr^{1/3} μ ( 2{T} ) 2{T}_{infty } μ ^{2.76} {2{W}/2{H}} )}^{{0.3}} , which is quite different from the constant value obtained in macrochannels.
Directory of Open Access Journals (Sweden)
Yonghui Xie
2015-01-01
Full Text Available Flow characteristics and heat transfer performances in rectangular tubes with protrusions are numerically investigated in this paper. The thermal heat transfer enhancement of composite structures and flow resistance reduction of non-Newtonian fluid are taken advantage of to obtain a better thermal performance. Protrusion channels coupled with different CMC concentration solutions are studied, and the results are compared with that of smooth channels with water flow. The comprehensive influence of turbulence effects, structural effects, and secondary flow effects on the CMC’s flow in protrusion tubes is extensively investigated. The results indicate that the variation of flow resistance parameters of shear-thinning power-law fluid often shows a nonmonotonic trend, which is different from that of water. It can be concluded that protrusion structure can effectively enhance the heat transfer of CMC solution with low pressure penalty in specific cases. Moreover, for a specific protrusion structure and a fixed flow velocity, there exists an optimal solution concentration showing the best thermal performance.
Chun, Myung-Suk; Jeong, Sohyun; Kim, Jae Hun; Lee, Tae Seok
2015-11-01
Among the passive separations, hydrodynamic filtration (HDF) can perform the fractionation of cells or particles by selective extraction of streamlines controlled by the flow fraction at each branch. Only the stream near the sidewall enters the branches as the focusing, with the amount of fluid leaving the main channel being determined by the flow distribution related to the hydraulic flow resistances. Its understanding is important, but in-depth consideration has not been treated until now. The virtual boundary of the fluid layer should be first specified, and the parabolic velocity profile starts to form from the steady state flow with high Péclet numbers. We computed the 3-dimensional flow profile at the rectangular cross-section with any aspect ratios, by considering electrokinetic transport coupled with the Poisson-Boltzmann and Navier-Stokes equations. The chip was designed with the parameters rigorously determined by the complete analysis of laminar flow for flow fraction and complicated networks of main and multi-branched channels for cell sorting into the finite number of subpopulations. For potential applications to the precise sorting, our designed microfluidic chip can be validated by applying model cells consisting of heterogeneous subpopulations. Supported by the KIST Institutional Program (No. 2E25382).
Central schemes for open-channel flow
Gottardi, Guido; Venutelli, Maurizio
2003-03-01
The resolution of the Saint-Venant equations for modelling shock phenomena in open-channel flow by using the second-order central schemes of Nessyahu and Tadmor (NT) and Kurganov and Tadmor (KT) is presented. The performances of the two schemes that we have extended to the non-homogeneous case and that of the classical first-order Lax-Friedrichs (LF) scheme in predicting dam-break and hydraulic jumps in rectangular open channels are investigated on the basis of different numerical and physical conditions. The efficiency and robustness of the schemes are tested by comparing model results with analytical or experimental solutions.
DEFF Research Database (Denmark)
Mbugua, Allan Wainaina; Fan, Wei; Ji, Yilin
2018-01-01
Virtual antenna arrays are versatile and costeffective tools for millimeter-wave (mm-wave) channel characterization. Massive sampling of the channel in space with virtual antenna arrays enables high spatial resolution in channel sounding. In this paper a uniform cubic array (UCuA) is used...... rectangular array (URA) which acts as the base station (BS) and with users under LOS and OLOS conditions. Results show interference suppression with zero forcing beamforming (ZF-BF) performs well even in critical multi-user scenarios based on the measured channels, i.e. a scenario with closely spaced users...
Harmonic Suppressed Slot Antennas Using Rectangular/Circular Defected Ground Structures
Directory of Open Access Journals (Sweden)
Mohammad Saeid Ghaffarian
2012-01-01
Full Text Available Two wide rectangle-shaped microstrip-fed 2.6-GHz slot antennas using defected ground structures (DGSs with a low design complexity are proposed to achieve wideband harmonic suppression. To accomplish this, two rectangular DGSs (RDGSs in the first antenna and two circular DGSs (CDGSs in the second one with various dimensions are etched into the ground plane, which could have a wideband-stop characteristic. Simulated and measured reflection coefficients indicate that the two proposed structures effectively suppress the second and third harmonics up to 23 dB between 3.5 and 10.5 GHz with a maximum ripple of 2.4 dB. In addition, the radiation patterns and peak gains of the antennas can be suppressed at least 17 dB and 7.1 dBi, respectively, at the third harmonic frequency of 7.86 GHz.
Quantitative observation of co-current stratified two-phase flow in a horizontal rectangular channel
Directory of Open Access Journals (Sweden)
Seungtae Lee
2015-04-01
The gas superficial velocity varied from 1.2 m/s to 2.0 m/s for air and from 1.2 m/s to 2.8 m/s for steam under a fixed inlet water superficial velocity of 0.025 m/s. Some advanced measurement methods have been applied to measure the local characteristics of the water layer thickness, temperature, and velocity fields in a horizontal stratified flow. The instantaneous velocity and temperature fields inside the water layer were measured using laser-induced fluorescence and particle image velocimetry, respectively. In addition, the water layer thickness was measured through an ultrasonic method.
Modestov, M.; Kolemen, E.; Fisher, A. E.; Hvasta, M. G.
2018-01-01
The behavior of free-surface, liquid-metal flows exposed to both magnetic fields and an injected electric current is investigated via experiment and numerical simulations. The purpose of this paper is to provide an experimental and theoretical proof-of-concept for enhanced thermal mixing within fast-flowing, free-surface, liquid-metal plasma facing components that could be used in next-generation fusion reactors. The enhanced hydrodynamic and thermal mixing induced by non-uniform current density near the electrodes appears to improve heat transfer through the thickness of the flowing metal. Also, the outflow heat flux profile is strongly affected by the impact of the J × B forces on flow velocity. The experimental results are compared to COMSOL simulations in order to lay the groundwork for future liquid-metal research.
Energy Technology Data Exchange (ETDEWEB)
Takashima, Keisuke; Adamovich, Igor V. [Department of Mechanical and Aerospace Engineering, Ohio State University, Columbus, Ohio 43210 (United States); Xiong Zhongmin; Kushner, Mark J. [Department of Electrical Engineering, University of Michigan, Ann Arbor, Michigan 48109 (United States); Starikovskaia, Svetlana [Ecole Polytechnique, Paris (France); Czarnetzki, Uwe; Luggenhoelscher, Dirk [Department of Physics and Astronomy, Ruhr University Bochum, Bochum (Germany)
2011-08-15
Fast ionization wave (FIW), nanosecond pulse discharge propagation in nitrogen and helium in a rectangular geometry channel/waveguide is studied experimentally using calibrated capacitive probe measurements. The repetitive nanosecond pulse discharge in the channel was generated using a custom designed pulsed plasma generator (peak voltage 10-40 kV, pulse duration 30-100 ns, and voltage rise time {approx}1 kV/ns), generating a sequence of alternating polarity high-voltage pulses at a pulse repetition rate of 20 Hz. Both negative polarity and positive polarity ionization waves have been studied. Ionization wave speed, as well as time-resolved potential distributions and axial electric field distributions in the propagating discharge are inferred from the capacitive probe data. ICCD images show that at the present conditions the FIW discharge in helium is diffuse and volume-filling, while in nitrogen the discharge propagates along the walls of the channel. FIW discharge propagation has been analyzed numerically using quasi-one-dimensional and two-dimensional kinetic models in a hydrodynamic (drift-diffusion), local ionization approximation. The wave speed and the electric field distribution in the wave front predicted by the model are in good agreement with the experimental results. A self-similar analytic solution of the fast ionization wave propagation equations has also been obtained. The analytic model of the FIW discharge predicts key ionization wave parameters, such as wave speed, peak electric field in the front, potential difference across the wave, and electron density as functions of the waveform on the high voltage electrode, in good agreement with the numerical calculations and the experimental results.
Shaaban, Mahmoud; Mohany, Atef
2015-04-01
A passive method for controlling the flow-excited acoustic resonance resulting from subsonic flows over rectangular cavities in channels is investigated. A cavity with length to depth ratio of is tested in air flow of Mach number up to 0.45. When the acoustic resonance is excited, the sound pressure level in the cavity reaches 162 dB. Square blocks are attached to the surface of the channel and centred upstream of the cavity leading edge to suppress the flow-excited acoustic resonance in the cavity. Six blocks of different widths are tested at three different upstream distances. The results show that significant attenuation of up to 30 dB of the excited sound pressure level is achieved using a block with a width to height ratio of 3, while blocks that fill the whole width of the channel amplify the pressure of the excited acoustic resonance. Moreover, it is found that placing the block upstream of the cavity causes the onset of the acoustic resonance to occur at higher flow velocities. In order to investigate the nature of the interactions that lead to suppression of the acoustic resonance and to identify the changes in flow patterns due to the placement of the block, 2D measurements of turbulence intensity in the shear layer and the block wake region are performed. The location of the flow reattachment point downstream of the block relative to the shear layer separation point has a major influence on the suppression level of the excited acoustic resonance. Furthermore, higher attenuation of noise is related to lower span-wise correlation of the shear-layer perturbation.
Channel Aggregation Schemes for Cognitive Radio Networks
Lee, Jongheon; So, Jaewoo
This paper proposed three channel aggregation schemes for cognitive radio networks, a constant channel aggregation scheme, a probability distribution-based variable channel aggregation scheme, and a residual channel-based variable channel aggregation scheme. A cognitive radio network can have a wide bandwidth if unused channels in the primary networks are aggregated. Channel aggregation schemes involve either constant channel aggregation or variable channel aggregation. In this paper, a Markov chain is used to develop an analytical model of channel aggregation schemes; and the performance of the model is evaluated in terms of the average sojourn time, the average throughput, the forced termination probability, and the blocking probability. Simulation results show that channel aggregation schemes can reduce the average sojourn time of cognitive users by increasing the channel occupation rate of unused channels in a primary network.
Simulation of collagen solution flow in rectangular capillary
Kysela, Bohus; Skocilas, Jan; Zitny, Rudolf; Stancl, Jaromir; Houska, Milan; Landfeld, Ales
The viscoelastic properties of foods and polymers can be evaluated from flow of the material in capillary with specified dimension and shape. The extrusion rheometer equipped by capillary with rectangular cross-section was used for determination of the rheological behaviour of water collagen solution. The measurements of the axial profiles in longitudinal direction of the total stresses at capillary wall were performed for various shear rates. The linear viscoelastic model of Oldroyd B type: White-Metzner model was used for simulation of fluid flow in OpenFOAM software package. The simulations describe the effect of relaxation time on wall total stress in convergent-divergent capillary.
Single-crystalline vanadium dioxide nanowires with rectangular cross sections.
Guiton, Beth S; Gu, Qian; Prieto, Amy L; Gudiksen, Mark S; Park, Hongkun
2005-01-19
We report the synthesis of single-crystalline VO2 nanowires with rectangular cross sections using a vapor transport method. These nanowires have typical diameters of 60 (+/-30) nm and lengths up to >10 mum. Electron microscopy and diffraction measurements show that the VO2 nanowires are single crystalline and exhibit a monoclinic structure. Moreover, they preferentially grow along the [100] direction and are bounded by the (01) and (011) facets. These VO2 nanowires should provide promising materials for fundamental investigations of nanoscale metal-insulator transitions.
Acoustic-Gravity Waves Interacting with a Rectangular Trench
Directory of Open Access Journals (Sweden)
Usama Kadri
2015-01-01
Full Text Available A mathematical solution of the two-dimensional linear problem of an acoustic-gravity wave interacting with a rectangular trench, in a compressible ocean, is presented. Expressions for the flow field on both sides of the trench are derived. The dynamic bottom pressure produced by the acoustic-gravity waves on both sides of the trench is measurable, though on the transmission side it decreases with the trench depth. A successful recording of the bottom pressures could assist in the early detection of tsunami.
The demagnetizing field of a non-uniform rectangular prism
DEFF Research Database (Denmark)
Smith, Anders; Nielsen, Kaspar Kirstein; Christensen, Dennis
2010-01-01
The effect of demagnetization on the magnetic properties of a rectangular ferromagnetic prism under non-uniform conditions is investigated. A numerical model for solving the spatially varying internal magnetic field is developed, validated and applied to relevant cases. The demagnetizing field...... is solved by an analytical calculation and the coupling between applied field, the demagnetization tensor field and spatially varying temperature is solved through iteration. We show that the demagnetizing field is of great importance in many cases and that it is necessary to take into account the non...
A New Fuzzy System Based on Rectangular Pyramid
Jiang, Mingzuo; Yuan, Xuehai; Li, Hongxing; Wang, Jiaxia
2015-01-01
A new fuzzy system is proposed in this paper. The novelty of the proposed system is mainly in the compound of the antecedents, which is based on the proposed rectangular pyramid membership function instead of t-norm. It is proved that the system is capable of approximating any continuous function of two variables to arbitrary degree on a compact domain. Moreover, this paper provides one sufficient condition of approximating function so that the new fuzzy system can approximate any continuous function of two variables with bounded partial derivatives. Finally, simulation examples are given to show how the proposed fuzzy system can be effectively used for function approximation. PMID:25874253
Stability of rectangular concrete-filled steel tubes
Directory of Open Access Journals (Sweden)
Kanishchev Ruslan
2017-01-01
Full Text Available The paper deals with the theoretical analysis of the influence of imperfections on the stability and carrying capacity of axially compressed cold-formed rectangular steel tubes filled with concrete, which use as bearing structures in the structural engineering, bridges, underground subway systems and tunnels. The behavior of the mentioned above composite structures under load were presented by numerical modelling in software ABAQUS. The support conditions of loaded edges of the steel section were considered as clamped in the models. The results of the analysis were shown the influence of imperfections on the stability and carrying capacity of the composite columns.
Coupling effects in bilayer thick metal films perforated with rectangular nanohole arrays
Directory of Open Access Journals (Sweden)
Li Yuan
2013-09-01
Full Text Available The coupling effects in bilayer thick metal (silver films perforated with rectangular nanohole arrays are investigated using the finite-difference time-domain technique. Many interesting light phenomena are observed as the distance between the metal rectangular nanohole arrays varies. Coupling effects are found to play very important roles on the optical and electronic properties of bilayer metal rectangular nanohole arrays: antisymmetric coupling between surface plasmon polaritons near the top and bottom film plane, and antisymmetric coupling between localized surface plasmon resonances near the two long sides of the rectangular hole, are probably excited in each layer of bilayer metal rectangular nanohole arrays; antisymmetric and symmetric magnetic coupling probably occur between the metal rectangular nanohole arrays.
Raju, K. K.; Rao, G. V.; Raju, I. S.
1978-01-01
The effect of geometric nonlinearity on the free flexural vibrations of moderately thick rectangular plates is studied in this paper. Finite element formulation is employed to obtain the non-linear to linear period ratios for some rectangular plates. A conforming finite element of rectangular shape wherein the effects of shear deformation and rotatory inertia are included, is developed and used for the analysis. Results are presented for both simply supported and clamped boundary conditions.
Chen, Ni; Yeom, Jiwoon; Jung, Jae-Hyun; Park, Jae-Hyeung; Lee, Byoungho
2011-12-19
We compare the resolution of the hologram reconstruction synthesis methods based on integral imaging using rectangular and hexagonal lens arrays. By using a hexagonal lens array instead of conventional rectangular lens array, the three-dimensional objects are sampled with hexagonal grids. Due to more efficient sampling of the hexagonal grid, the resolution of the reconstructed object is higher compared with the case of using rectangular lens array. We analyze the resolution enhancement of the hologram reconstruction quantitatively and verify it experimentally.
Sampling requirements for forage quality characterization of rectangular hay bales
Energy Technology Data Exchange (ETDEWEB)
Sheaffer, C.C.; Martin, N.P.; Jewett, J.G.; Halgerson, J.; Moon, R.D.; Cuomo, G.R.
2000-02-01
Commercial lots of alfalfa (Medicago sativa L.) hay are often bought and sold on the basis of forage quality. Proper sampling is essential to obtain accurate forage quality results for pricing of alfalfa hay, but information about sampling is limited to small, 20- to 40-kg rectangular bales. Their objectives were to determine the within-bale variation in 400-kg rectangular bales and to determine the number and distribution of core samples required to represent the crude protein (CP), acid detergent fiber (ADF), neutral detergent fiber (NDF), and dry matter (DM) concentration in commercial lots of alfalfa hay. Four bales were selected from each of three hay lots and core sampled nine times per side for a total of 54 cores per bale. There was no consistent pattern of forage quality variation within bales. Averaged across lots, any portion of a bale was highly correlated with bale grand means for CP, ADF, NDF, and DM. Three lots of hay were probed six times per bale, one core per bale side from 55, 14, and 14 bales per lot. For determination of CP, ADF, NDF, and DM concentration, total core numbers required to achieve an acceptable standard error (SE) were minimized by sampling once per bale. Bootstrap analysis of data from the most variable hay lot suggested that forage quality of any lot of 400-kg alfalfa hay bales should be adequately represented by 12 bales sampled once per bale.
A Rectangular Planar Spiral Antenna for GIS Partial Discharge Detection
Directory of Open Access Journals (Sweden)
Xiaoxing Zhang
2014-01-01
Full Text Available A rectangular planar spiral antenna sensor was designed for detecting the partial discharge in gas insulation substations (GIS. It can expediently receive electromagnetic waves leaked from basin-type insulators and can effectively suppress low frequency electromagnetic interference from the surrounding environment. Certain effective techniques such as rectangular spiral structure, bow-tie loading, and back cavity structure optimization during the antenna design process can miniaturize antenna size and optimize voltage standing wave ratio (VSWR characteristics. Model calculation and experimental data measured in the laboratory show that the antenna possesses a good radiating performance and a multiband property when working in the ultrahigh frequency (UHF band. A comparative study between characteristics of the designed antenna and the existing quasi-TEM horn antenna was made. Based on the GIS defect simulation equipment in the laboratory, partial discharge signals were detected by the designed antenna, the available quasi-TEM horn antenna, and the microstrip patch antenna, and the measurement results were compared.
Numerical investigation of flow past a row of rectangular rods
Directory of Open Access Journals (Sweden)
S.Ul. Islam
2016-09-01
Full Text Available A numerical study of uniform flow past a row of rectangular rods with aspect ratio defined as R = width/height = 0.5 is performed using the Lattice Boltzmann method. For this study the Reynolds number (Re is fixed at 150, while spacings between the rods (g are taken in the range from 1 to 6. Depending on g, the flow is classified into four patterns: flip-flopping, nearly unsteady-inphase, modulated inphase-antiphase non-synchronized and synchronized. Sudden jumps in physical parameters were observed, attaining either maximum or minimum values, with the change in flow patterns. The mean drag coefficient (Cdmean of middle rod is higher than the second and fourth rod for flip-flopping pattern while in case of nearly unsteady-inphase the middle rod attains minimum drag coefficient. It is also found that the Strouhal number (St of first, second and fifth rod decreases as g increases while that of other two have mixed trend. The results further show that there exist secondary interaction frequencies together with primary vortex shedding frequency due to jet in the gap between rods for 1 ⩽ g ⩽ 3. For the average values of Cdmean and St, an empirical relation is also given as a function of gap spacing. This relation shows that the average values of Cdmean and St approach to those of single rectangular rod with increment in g.
Natural convection heat transfer along vertical rectangular ducts
Energy Technology Data Exchange (ETDEWEB)
Ali, M. [King Saud University, Mechanical Engineering Department, Riyadh (Saudi Arabia)
2009-12-15
Experimental investigations have been reported on steady state natural convection from the outer surface of vertical rectangular and square ducts in air. Seven ducts have been used; three of them have a rectangular cross section and the rest have square cross section. The ducts are heated using internal constant heat flux heating elements. The temperatures along the vertical surface and the peripheral directions of the duct wall are measured. Axial (perimeter averaged) heat transfer coefficients along the side of each duct are obtained for laminar and transition to turbulent regimes of natural convection heat transfer. Axial (perimeter averaged) Nusselt numbers are evaluated and correlated using the modified Rayleigh numbers for laminar and transition regime using the vertical axial distance as a characteristic length. Critical values of the modified Rayleigh numbers are obtained for transition to turbulent. Furthermore, total overall averaged Nusselt numbers are correlated with the modified Rayleigh numbers and the area ratio for the laminar regimes. The local axial (perimeter averaged) heat transfer coefficients are observed to decrease in the laminar region and increase in the transition region. Laminar regimes are obtained at the lower half of the ducts and its chance to appear decreases as the heat flux increases. (orig.)
Directory of Open Access Journals (Sweden)
Sancarlos-González Abel
2017-12-01
Full Text Available AC lines of industrial busbar systems are usually built using conductors with rectangular cross sections, where each phase can have several parallel conductors to carry high currents. The current density in a rectangular conductor, under sinusoidal conditions, is not uniform. It depends on the frequency, on the conductor shape, and on the distance between conductors, due to the skin effect and to proximity effects. Contrary to circular conductors, there are not closed analytical formulas for obtaining the frequency-dependent impedance of conductors with rectangular cross-section. It is necessary to resort to numerical simulations to obtain the resistance and the inductance of the phases, one for each desired frequency and also for each distance between the phases’ conductors. On the contrary, the use of the parametric proper generalized decomposition (PGD allows to obtain the frequency-dependent impedance of an AC line for a wide range of frequencies and distances between the phases’ conductors by solving a single simulation in a 4D domain (spatial coordinates x and y, the frequency and the separation between conductors. In this way, a general “virtual chart” solution is obtained, which contains the solution for any frequency and for any separation of the conductors, and stores it in a compact separated representations form, which can be easily embedded on a more general software for the design of electrical installations. The approach presented in this work for rectangular conductors can be easily extended to conductors with an arbitrary shape.
Rotating hydraulic adjustment in a parabolic channel
Helfrich, K.
2003-04-01
Rotating hydraulics forms the basis of our interpretation of flows through oceanic straits and abyssal passages. These theories are used to predict overflow transport and characteristics of hydraulic features such as jumps. However, details of the transient hydraulic adjustment and the properties of hydraulic jumps and bores have been explored only for unrealistic rectangular cross-section channel geometry. Here the classic problem of upstream influence due to the introduction of an obstacle is extended to a rotating channel with parabolic cross-section. The critical obstacle height for upstream influence as a function of Froude number is found under the assumptions of single-layer (reduced-gravity) semi-geostrophic flow with uniform potential vorticity. The theoretical development is supplemented with two-dimensional numerical simulations of the transient adjustment to hydraulically controlled states. The numerical results reveal novel features including upstream propagating disturbances that consist of both a localized shock-like feature and non-local rarefaction upstream of the shock. The non-locality poses an impediment for the development of a shock-joining theory. Downstream hydraulic jumps from super to subcritical flow occur as both depth and width transitions. However, the lateral expansions in a parabolic channel are not as abrupt as their rectangular channel counterparts. This may help explain the lack of oceanic observations of abrupt hydraulic jumps downstream of abyssal sills.
Heat transfer in thin, compact heat exchangers with circular, rectangular, or pin-fin flow passages
Olson, D. A.
1992-01-01
Heat transfer and pressure drop have been measured of three thin, compact heat exchangers in helium gas at 3.5 MPa and higher, with Reynolds numbers of 450 to 36,000. The flow geometries for the three heat exchanger specimens were: circular tube, rectangular channel, and staggered pin fin with tapered pins. The specimens were heated radiatively at heat fluxes up to 77 W/sq cm. Correlations were developed for the isothermal friction factor as a function of Reynolds number, and for the Nusselt number as a function of Reynolds number and the ratio of wall temperature to fluid temperature. The specimen with the pin fin internal geometry had significantly better heat transfer than the other specimens, but it also had higher pressure drop. For certain conditions of helium flow and heating, the temperature more than doubled from the inlet to the outlet of the specimens, producing large changes in gas velocity, density, viscosity, and thermal conductivity. These changes in properties did not affect the correlations for friction factor and Nusselt number in turbulent flow.
Simulation analysis of rectangular dielectric-loaded traveling wave amplifiers for THz sources
Directory of Open Access Journals (Sweden)
Changbiao Wang
2007-12-01
Full Text Available Nonlinear simulation results for a 220-GHz rectangular dielectric-loaded traveling-wave amplifier are presented. Simulations are used to check a linear theory that is developed by phenomenological introduction of an effective dielectric parameter for electron beam channel, and it is found that the rf power gains from Pierce three-wave theory and particle simulations are in reasonable agreement. It is shown that the rf power gain during initial beam-wave interaction is positive; the falling on the initial rf power profile, which has been thought to be the rf power transferred to the beam for bunching buildup (negative gain effect, is probably resulting from numerical errors. Beam-wave interaction mechanism is analyzed by examining the evolution of beam bunching centers. Influences of various parameters on amplifier performance are examined, and transverse space-charge effect is analyzed. A symmetric excitation scheme for rf couplers is proposed, and rf field jumps on the common intersection line of vacuum, dielectric, and metal wall, which were found in rf simulations, are explained theoretically.
Structural models of TREK channels and their gating mechanism
National Research Council Canada - National Science Library
Milac, Adina; Anishkin, Andriy; Fatakia, Sarosh N; Chow, Carson C; Sukharev, Sergei; Guy, H. Robert
2011-01-01
Mechanosensitive TREK channels belong to the family of K2P channels, a family of widely distributed, well modulated channels that uniquely have two similar or identical subunits, each with two TM1-P-TM2 motifs...
Calculation of wakefields in 2D rectangular structures
Energy Technology Data Exchange (ETDEWEB)
Zagorodnov, I. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Bane, K.L.F.; Stupakov, G. [Stanford Univ., CA (United States). SLAC National Accelerator Lab.
2015-08-15
We consider the calculation of electromagnetic fields generated by an electron bunch passing through a vacuum chamber structure that, in general, consists of an entry pipe, followed by some kind of transition or cavity, and ending in an exit pipe. We limit our study to structures having rectangular cross-section, where the height can vary as function of longitudinal coordinate but the width and side walls remain fixed. For such structures, we derive a Fourier representation of the wake potentials through one-dimensional functions. A new numerical approach for calculating the wakes in such structures is proposed and implemented in the computer code ECHO(2D). The computation resource requirements for this approach are moderate and comparable to those for finding the wakes in 2D rotationally symmetric structures. Numerical examples obtained with the new numerical code are presented.
Calculation of wakefields in 2D rectangular structures
Directory of Open Access Journals (Sweden)
I. Zagorodnov
2015-10-01
Full Text Available We consider the calculation of electromagnetic fields generated by an electron bunch passing through a vacuum chamber structure that, in general, consists of an entry pipe, followed by some kind of transition or cavity, and ending in an exit pipe. We limit our study to structures having rectangular cross section, where the height can vary as function of longitudinal coordinate but the width and side walls remain fixed. For such structures, we derive a Fourier representation of the wake potentials through one-dimensional functions. A new numerical approach for calculating the wakes in such structures is proposed and implemented in the computer code echo(2d. The computation resource requirements for this approach are moderate and comparable to those for finding the wakes in 2D rotationally symmetric structures. Numerical examples obtained with the new numerical code are presented.
Are Haar-like Rectangular Features for Biometric Recognition Reducible?
DEFF Research Database (Denmark)
Nasrollahi, Kamal; Moeslund, Thomas B.
2013-01-01
? This paper proposes total sensitivity analysis about the mean for this purpose for two different biometric traits, iris and face. Experimental results on multiple public databases show the superiority of the proposed system, using the found influential features, compared to state-of-the-art biometric......Biometric recognition is still a very difficult task in real-world scenarios wherein unforeseen changes in degradations factors like noise, occlusion, blurriness and illumination can drastically affect the extracted features from the biometric signals. Very recently Haar-like rectangular features...... which have usually been used for object detection were introduced for biometric recognition resulting in systems that are robust against most of the mentioned degradations [9]. The problem with these features is that one can define many different such features for a given biometric signal...
Metamaterial absorbers realized in an X-band rectangular waveguide
Huang, Yong-Jun; Wen, Guang-Jun; Li, Jian; Zhong, Jing-Ping; Wang, Ping; Sun, Yuan-Hua; O., Gordon; Zhu, Wei-Ren
2012-11-01
In this paper, we demonstrate six types of metamaterial absorbers (MMAs) by measuring their absorptivities in an X-band (8-12 GHz) rectangular waveguide. Some of the MMAs have been demonstrated previously by using the free space measurement method, and the others are proposed firstly in this paper. The measured results show that all of the six MMAs exhibit high absorptivities above 98%, which have similar absorbing characteristics to those measured in the free space. The numerically obtained surface current densities for each MMA show that the absorbing mechanism is the same as that under the free space conditions. Such a demonstration method is superior to the conventional free space measurement method due to the small-scale test samples required, the simple measure device, and its low cost. Most importantly, the proposed method opens a way to enable MMAs to be used in microwave applications such as matched terminations.
Complex Ohmic conductance of electrolytes in rectangular microchannels
Campisi, Michele; Accoto, Dino; Dario, Paolo
2006-04-01
Motivated by the interest that microelectrolytic systems are gaining in the development of the so-called lab-on-a-chip systems, i.e., miniature microfluidic devices for biochemical analysis, we present an analytical study of Ohmic conduction in rectangular charged microchannels filled with electrolytic solution. The study complements a previous one [M. Campisi et al., J. Chem. Phys. 123, 204724 (2005)], concerning ac electro-osmosis. The problem is framed within the theory of nonequilibrium thermodynamics and is based on the solution of the incompressible Navier-Stokes equation with an electrical body force due to the interaction of the applied electric field with the charged electric double layer (EDL) which forms at the solid-liquid interface. We analyze in detail the dependence of the system complex conductance on the ratio linear dimensions over Debye length with an eye on finite EDL effects, and compare its scaling properties with those of electrokinetic and hydraulic complex conductances.
Free Vibration Analysis of Rectangular Orthotropic Membranes in Large Deflection
Directory of Open Access Journals (Sweden)
Zheng Zhou-Lian
2009-01-01
Full Text Available This paper reviewed the research on the vibration of orthotropic membrane, which commonly applied in the membrane structural engineering. We applied the large deflection theory of membrane to derive the governing vibration equations of orthotropic membrane, solved it, and obtained the power series formula of nonlinear vibration frequency of rectangular membrane with four edges fixed. The paper gave the computational example and compared the two results from the large deflection theory and the small one, respectively. Results obtained from this paper provide some theoretical foundation for the measurement of pretension by frequency method; meanwhile, the results provide some theoretical foundation for the research of nonlinear vibration of membrane structures and the response solving of membrane structures under dynamic loads.
Mechanisms of rectangular groove-induced multiple-microdroplet coalescences
Shen, Feng; Li, Yi; Wang, Guiren; Liu, Zhaomiao
2017-06-01
The mechanism of microdroplet coalescence is a fundamental issue for droplet-based microfluidics. We developed an asymmetric expansion (a rectangular groove) along one side of a microchannel to achieve multiple-microdroplet trapping, collision, and coalescence. Compared with reported symmetric expansions, this asymmetric groove could easily trap microdroplets and control two or three microdroplet coalescences precisely without a requirement for temporal and spatial synchronization. To reveal the mechanisms of multiple-droplet coalescences in a groove, we observed five different coalescence patterns under different flow conditions. Moreover, we characterized the flow behavior quantitatively by simulating the velocity vector fields in both the microdroplets and continuous phase, finding good agreement with experiments. Finally, a map of coalescence forms with different capillary numbers (0.001droplet-based microfluidic devices.
Spatial impulse response of a rectangular double curved transducer
DEFF Research Database (Denmark)
Bæk, David; Jensen, Jørgen Arendt; Willatzen, Morten
2012-01-01
Calculation of the pressure field from transducers having both a convex and a concave surface geometry is a complicated assignment that often is accomplished by subdividing the transducer surface into smaller flat elements of which the spatial impulse response is known. This method is often seen...... applied to curved transducers because an analytical solution is un-known. In this work a semi-analytical algorithm for the exact solution to a first order in diffraction effect of the spatial impulse response of rectangular shaped double curved transducers is presented. The algorithm and an approximation...... approximations ranging from 0.03 % to 0.8 % relative to a numerical solution for the spatial impulse response. It is shown that the presented algorithm gives consistent results with Field II for a linear flat, a linear focused, and a convex non-focused element. Best solution was found to be 0.01 % with a three...
Self-induced vortex ring dynamics in subsonic rectangular jets
Grinstein, Fernando F.
1995-10-01
The development in space and time of vortex rings in low aspect-ratio (AR) rectangular jets is investigated. By design, the present studies isolate the self-induced ring dynamics from effects of unsteady events otherwise present upstream and downstream of the rings in developed jets. The simulations show that the vortex rings undergo quite regular self-induced nonplanar deformations, approximately recovering their shape and flatness with axis rotated with respect to their initial configuration. The axis-rotation periods are in good agreement with previously reported data for pseudoelliptic rings, and exhibit nearly linear growth rate as a function of AR. For the larger aspect-ratio case studied (AR=4), bifurcation of the ring due to vortex reconnection into roughly round rings is observed, followed by collision of the split rings and a new reconnection process, suggesting pathways for transition to turbulence based on self-induced vortex deformations and reconnections.
Critical current studies of a HTS rectangular coil
Energy Technology Data Exchange (ETDEWEB)
Zhong, Z. [Department of Engineering, University of Cambridge (United Kingdom); Chudy, M., E-mail: Michal.chudy@stuba.sk [Graduate School of Technology Management, University of Pretoria (South Africa); Institute of Power and Applied Electrical Engineering, Slovak University of Technology in Bratislava (Slovakia); Ruiz, H.S. [Department of Engineering, University of Leicester, Leicester LE1 7RH (United Kingdom); Zhang, X.; Coombs, T. [Department of Engineering, University of Cambridge (United Kingdom)
2017-05-15
Highlights: • Unique square pancake coil was manufactured. • Measurements in relatively high magnetic field were performed. • Different sections of the coil were characterized. • Parts of the coil which are limiting critical current were identified. - Abstract: Nowadays, superconducting high field magnets are used in numerous applications due to their superior properties. High temperature superconductors (HTS) are usually used for production of circular pancake or racetrack coils. However different geometries of HTS coils might be required for some specific applications. In this study, the HTS coil wound on a rectangular frame was fully characterized in homogeneous DC background field. The study contains measurements of critical current angular dependencies. The critical current of the entire coil and two selected strands under different magnitudes and orientations of external magnetic fields are measured. The critical regions of the coil in different angular regimes are determined. This study brings better understanding of the in- field performance of HTS coils wound on frames with right-angles.
Generation of high current, long duration rectangular pulses
Faugeras, Paul E; Zanasco, J P
1973-01-01
The excitation of the fast pulsed kicker magnets foreseen for the CERN 400 GeV proton synchrotron requires rectangular pulses with a current amplitude of 3000 A to 10000 A, a pulse duration adjustable between 1 and 24 mu sec, and short rise and fall times. These pulses are generated by a LC ladder network discharged with fast switches. Several kinds of switches have been tested: multigap thyratrons of standard design, a composite switch called 'thyragnitron' and made of a normal thyratron by-passed ignitrons, and finally special thyratrons with a second cathode assembly in place of the usual anode. Experimental pulse shapes and results of life tests for these different switches are presented and discussed. (8 refs).
Park, Hae-Kyun; Chung, Bum-Jin
2016-12-01
The turbulent forced convection heat transfer of rectangular fins in a duct was investigated by varying the tip clearance and Pr. Mass transfer experiments using a H2SO4-CuSO4 electroplating system were performed based on the analogy between heat and mass transfers. FLUENT 6.3 was used for calculations. Turbulent models were tested and the Reynolds Stress Model was chosen, which showed a 1.15 % discrepancy with the existing correlation for a simple tube flow when Pr = 2, but 13 % when Pr = 2014. For a more complex fin channel, the discrepancy increased up to 30 %. The optimal tip clearances, corresponding to maximum heat transfer rates, did not vary with Pr, which is explained using the temperature contours. The results were also compared with the laminar case where Pr influenced the optimal tip clearance.
DEFF Research Database (Denmark)
Carrizosa, Emilio; Guerrero, Vanesa; Morales, Dolores Romero
In this paper we address the problem of visualizing the proportions and the similarities attached to a set of individuals. We represent this information using a rectangular map, i.e., a subdivision of a rectangle into rectangular portions so that each portion is associated with one individual, th...
DEFF Research Database (Denmark)
Carrizosa, Emilio; Guerrero, Vanesa; Morales, Dolores Romero
2018-01-01
In this paper we address the problem of visualizing a frequency distribution and an adjacency relation attached to a set of individuals. We represent this information using a rectangular map, i.e., a subdivision of a rectangle into rectangular portions so that each portion is associated with one ...
Piezoelectrically forced vibrations of rectangular SC-cut quartz plates
Lee, P. C. Y.; Lin, W. S.
1998-06-01
A system of two-dimensional first-order equations for piezoelectric crystal plates with general symmetry and with electroded faces was recently deduced from the three-dimensional equations of linear piezoelectricity. Solutions of these equations for AT-cut plates of quartz were shown to give accurate dispersion curves without corrections, and the resonances predicted agree closely with the experimental data of Koga and Fukuyo [I. Koga and H. Fukuyo, J. Inst. Electr. Commun. Eng. Jpn. 36, 59 (1953)] and that of Nakazawa, Horiuchi, and Ito (M. Nakazawa, K. Horiuchi, and H. Ito, Proceedings of the 1990 IEEE Ultrasonics Symposium, pp. 547-555). In this article, these equations are employed to study the free as well as the forced vibrations of doubly rotated quartz plates. Solutions of straight-crested vibrational modes varying in the x1 and x3 directions of SC-cut quartz plates of infinite extent are obtained and from which dispersion curves are computed. Comparison of those dispersion curves with those from the three-dimensional equations shows that the agreement is very close without any corrections. Resonance frequencies for free vibrations and capacitance ratios for piezoelectrically forced vibrations are computed and examined for various length-to-thickness or width-to-thickness ratios of rectangular SC-cut quartz plates. The capacitance ratio as a function of forcing frequency is computed for a rectangular AT-cut quartz and compared with the experimental data of Seikimoto, Watanabe, and Nakazawa (H. Sekimoto, Y. Watanabe, and M. Nakazawa, Proceedings of the 1992 IEEE Frequency Control Symposium, pp. 532-536) and is in close agreement.
Quantitative study of rectangular waveguide behavior in the THz.
Energy Technology Data Exchange (ETDEWEB)
Rowen, Adam M.; Nordquist, Christopher Daniel; Wanke, Michael Clement
2009-10-01
This report describes our efforts to quantify the behavior of micro-fabricated THz rectangular waveguides on a configurable, robust semiconductor-based platform. These waveguides are an enabling technology for coupling THz radiation directly from or to lasers, mixers, detectors, antennas, and other devices. Traditional waveguides fabricated on semiconductor platforms such as dielectric guides in the infrared or co-planar waveguides in the microwave regions, suffer high absorption and radiative losses in the THz. The former leads to very short propagation lengths, while the latter will lead to unwanted radiation modes and/or crosstalk in integrated devices. This project exploited the initial developments of THz micro-machined rectangular waveguides developed under the THz Grand Challenge Program, but instead of focusing on THz transceiver integration, this project focused on exploring the propagation loss and far-field radiation patterns of the waveguides. During the 9 month duration of this project we were able to reproduce the waveguide loss per unit of length in the waveguides and started to explore how the loss depended on wavelength. We also explored the far-field beam patterns emitted by H-plane horn antennas attached to the waveguides. In the process we learned that the method of measuring the beam patterns has a significant impact on what is actually measured, and this may have an effect on most of the beam patterns of THz that have been reported to date. The beam pattern measurements improved significantly throughout the project, but more refinements of the measurement are required before a definitive determination of the beam-pattern can be made.
Energy Technology Data Exchange (ETDEWEB)
Park, Myeong-Il; Choi, Yoon Suk; Yoo, Jae-Hyun; Park, Sang-Hu [Pusan National University, Busan (Korea, Republic of); Kim, Kyeong-Min; Lee, Yeong-Chul [Sung Il Turbine Co., Ltd., Busan (Korea, Republic of); Lee, Jung-Seok; Lee, Jae-Hyun [Changwon National University, Changwon (Korea, Republic of)
2017-02-15
Investment casting for the thin (4 mm thick) rectangular tube (40 mm wide, 80 mm high and 200 mm long) was carried out numerically and experimentally for Alloy 738, which is a precipitation-hardened Ni-base superalloy. Two types of rectangular tubes, one with a regular array (10 mm by 10 mm square array) of protruded rods (3 mm in diameter and 3mm in height) embedded on the outer surface and the other with just smooth surface, were investment-cast at the same time through the side feeding mold design. The investment casting simulation predicted the presence of cavities, particularly in the area away from the gate for both types of rectangular tubes. In particular, for the rectangular tube with embedded protruded rods cavities were found mainly in the areas between the protruded rods. This simulation result was qualitatively consistent with the experimental observation from the X-ray analysis. Also, both prediction and experiment showed that the dimensional shrinkage (particularly in the longitudinal direction) of the investment-cast rectangular tube is reduced by having protruded rods embedded on the outer surface. Additional numerical attempts were made to check how the amount of cavities and dimensional shrinkage change by varying the preheating temperature and the thickness of the mold. The results predicted that the amount of cavities and the dimensional shrinkage are significantly reduced by increasing the preheating temperature of the mold by 200 ℃. However, an increase in mold thickness from 10 mm to 12 mm showed almost no difference in cavity population and a slight decrease in dimensional shrinkage.
Energy tunneling through narrow waveguide channel and design of small antennas
Directory of Open Access Journals (Sweden)
Mitrović Miranda
2011-01-01
Full Text Available In this paper we investigate the conditions for energy tunneling through narrow channel obtained by reducing the height of rectangular waveguide. Tunneling of the energy occurs at the frequency for which the effective dielectric permittivity of the channel becomes equal to zero, so it can be treated as an ENZ (epsilon-near-zero metamaterial. We investigated how geometry of the channel and dielectric permittivity affect the transmission coefficient and field density in the channel. Adding slots in the channel, which are placed orthogonally to the wave propagation, we designed a small antenna with directivity of 5.44 dBi at the frequency of 3 GHz.
Analysis of junior high school students' difficulty in resolving rectangular conceptual problems
Utami, Aliksia Kristiana Dwi; Mardiyana, Pramudya, Ikrar
2017-08-01
Geometry is one part of the mathematics that must be learned in school and it has important effects on the development of creative thinking skills of learners, but in fact, there are some difficulties experienced by the students. This research focuses on analysis difficulty in resolving rectangular conceptual problems among junior high school students in every creative thinking skills level. This research used a descriptive method aimed to identify the difficulties and cause of the difficulties experienced by five students. The difficulties are associated with rectangular shapes and related problems. Data collection was done based on students' work through test, interview, and observations. The result revealed that student' difficulties in understanding the rectangular concept can be found at every creative thinking skills level. The difficulties are identifying the objects rectangular in the daily life except for a rectangle and square, analyzing the properties of rectangular shapes, and seeing the interrelationships between figures.
Disentangling rectangularization and life span extension with the moving rectangle method
DEFF Research Database (Denmark)
Schalkwijk, Frank H; Koopman, Jacob J E; Ghariq, Eidrees
2016-01-01
PURPOSE: The moving rectangle method is used to disentangle the contributions of rectangularization and life span extension to the increase in life expectancy. It requires the choice of an endpoint of the survival curve that approaches the maximum age at death. We examined the effect of choosing...... of rectangularization and life span extension to the increase in life expectancy were calculated using the moving rectangle method. RESULTS: The choice of different survival values as end points profoundly influenced the estimated contributions of rectangularization and life span extension to the increase in life...... expectancy. When choosing 0.001, rectangularization contributed most years, whereas when choosing 0.1, life span extension contributed most years. CONCLUSIONS: When the moving rectangle method is used to estimate the contributions of rectangularization and life span extension to the increase in life...
Finite element fatigue analysis of rectangular clutch spring of automatic slack adjuster
Xu, Chen-jie; Luo, Zai; Hu, Xiao-feng; Jiang, Wen-song
2015-02-01
The failure of rectangular clutch spring of automatic slack adjuster directly affects the work of automatic slack adjuster. We establish the structural mechanics model of automatic slack adjuster rectangular clutch spring based on its working principle and mechanical structure. In addition, we upload such structural mechanics model to ANSYS Workbench FEA system to predict the fatigue life of rectangular clutch spring. FEA results show that the fatigue life of rectangular clutch spring is 2.0403×105 cycle under the effect of braking loads. In the meantime, fatigue tests of 20 automatic slack adjusters are carried out on the fatigue test bench to verify the conclusion of the structural mechanics model. The experimental results show that the mean fatigue life of rectangular clutch spring is 1.9101×105, which meets the results based on the finite element analysis using ANSYS Workbench FEA system.
Directory of Open Access Journals (Sweden)
Bessem Samet
2011-09-01
Full Text Available Recently, Azam, Arshad and Beg [ Banach contraction principle on cone rectangular metric spaces, Appl. Anal. Discrete Math. 2009] introduced the notion of cone rectangular metric spaces by replacing the triangular inequality of a cone metric space by a rectangular inequality. In this paper, we introduce the notion of c-chainable cone rectangular metric space and we establish a fixed point theorem for uniformly locally contractive mappings in such spaces. An example is given to illustrate our obtained result.
Weighted OFDM for wireless multipath channels
DEFF Research Database (Denmark)
Prasad, Ramjee; Nikookar, H.
2000-01-01
In this paper the novel method of "weighted OFDM" is addressed. Different types of weighting factors (including Rectangular, Bartlett, Gaussian. Raised cosine, Half-sin and Shanon) are considered. The impact of weighting of OFDM on the peak-to-average power ratio (PAPR) is investigated by means...... of simulation and is compared for the above mentioned weighting factors. Results show that by weighting of the OFDM signal the PAPR reduces. Bit error performance of weighted multicarrier transmission over a multipath channel is also investigated. Results indicate that there is a trade off between PAPR...
A multi-channel coronal spectrophotometer.
Landman, D. A.; Orrall, F. Q.; Zane, R.
1973-01-01
We describe a new multi-channel coronal spectrophotometer system, presently being installed at Mees Solar Observatory, Mount Haleakala, Maui. The apparatus is designed to record and interpret intensities from many sections of the visible and near-visible spectral regions simultaneously, with relatively high spatial and temporal resolution. The detector, a thermoelectrically cooled silicon vidicon camera tube, has its central target area divided into a rectangular array of about 100,000 pixels and is read out in a slow-scan (about 2 sec/frame) mode. Instrument functioning is entirely under PDP 11/45 computer control, and interfacing is via the CAMAC system.
2012-01-12
... Rectangular Pipe and Tube from Mexico'' from Christian Marsh, Deputy Assistant Secretary for Antidumping and... International Trade Administration Light-Walled Rectangular Pipe and Tube From Mexico; Final Results of... antidumping duty order on light-walled rectangular pipe and tube from Mexico.\\1\\ This administrative review...
Alawadi, Wisam; Al-Rekabi, Wisam S.; Al-Aboodi, Ali H.
2018-03-01
The Shiono and Knight Method (SKM) is widely used to predict the lateral distribution of depth-averaged velocity and boundary shear stress for flows in compound channels. Three calibrating coefficients need to be estimated for applying the SKM, namely eddy viscosity coefficient ( λ), friction factor ( f) and secondary flow coefficient ( k). There are several tested methods which can satisfactorily be used to estimate λ, f. However, the calibration of secondary flow coefficients k to account for secondary flow effects correctly is still problematic. In this paper, the calibration of secondary flow coefficients is established by employing two approaches to estimate correct values of k for simulating asymmetric compound channel with different side slopes of the internal wall. The first approach is based on Abril and Knight (2004) who suggest fixed values for main channel and floodplain regions. In the second approach, the equations developed by Devi and Khatua (2017) that relate the variation of the secondary flow coefficients with the relative depth ( β) and width ratio ( α) are used. The results indicate that the calibration method developed by Devi and Khatua (2017) is a better choice for calibrating the secondary flow coefficients than using the first approach which assumes a fixed value of k for different flow depths. The results also indicate that the boundary condition based on the shear force continuity can successfully be used for simulating rectangular compound channels, while the continuity of depth-averaged velocity and its gradient is accepted boundary condition in simulations of trapezoidal compound channels. However, the SKM performance for predicting the boundary shear stress over the shear layer region may not be improved by only imposing the suitable calibrated values of secondary flow coefficients. This is because difficulties of modelling the complex interaction that develops between the flows in the main channel and on the floodplain in this
Li, Jichun
2014-12-02
For decades, the widely used finite difference method on staggered grids, also known as the marker and cell (MAC) method, has been one of the simplest and most effective numerical schemes for solving the Stokes equations and Navier–Stokes equations. Its superconvergence on uniform meshes has been observed by Nicolaides (SIAM J Numer Anal 29(6):1579–1591, 1992), but the rigorous proof is never given. Its behavior on non-uniform grids is not well studied, since most publications only consider uniform grids. In this work, we develop the MAC scheme on non-uniform rectangular meshes, and for the first time we theoretically prove that the superconvergence phenomenon (i.e., second order convergence in the (Formula presented.) norm for both velocity and pressure) holds true for the MAC method on non-uniform rectangular meshes. With a careful and accurate analysis of various sources of errors, we observe that even though the local truncation errors are only first order in terms of mesh size, the global errors after summation are second order due to the amazing cancellation of local errors. This observation leads to the elegant superconvergence analysis even with non-uniform meshes. Numerical results are given to verify our theoretical analysis.
Efficient computation of coherent synchrotron radiation in a rectangular chamber
Directory of Open Access Journals (Sweden)
Robert L. Warnock
2016-09-01
Full Text Available We study coherent synchrotron radiation (CSR in a perfectly conducting vacuum chamber of rectangular cross section, in a formalism allowing an arbitrary sequence of bends and straight sections. We apply the paraxial method in the frequency domain, with a Fourier development in the vertical coordinate but with no other mode expansions. A line charge source is handled numerically by a new method that rids the equations of singularities through a change of dependent variable. The resulting algorithm is fast compared to earlier methods, works for short bunches with complicated structure, and yields all six field components at any space-time point. As an example we compute the tangential magnetic field at the walls. From that one can make a perturbative treatment of the Poynting flux to estimate the energy deposited in resistive walls. The calculation was motivated by a design issue for LCLS-II, the question of how much wall heating from CSR occurs in the last bend of a bunch compressor and the following straight section. Working with a realistic longitudinal bunch form of r.m.s. length 10.4 μm and a charge of 100 pC we conclude that the radiated power is quite small (28 W at a 1 MHz repetition rate, and all radiated energy is absorbed in the walls within 7 m along the straight section.
Instability of Flow Over a Periodic Array of Rectangular Cylinders
Parker, Scott; Balachandar, S.
1999-11-01
Arrays of rectangular cylinders represent a simplified model of the geometry seen in many industrial heat exchangers. Flow in such geometries is governed by the interaction of multiple bluff body wakes, and exhibits greater complexity than flow over a single body. The present work examines array flow using a specialized multi-domain spectral element code. Through stability analysis the present study characterizes the onset of wake instability in these array types, for which the critical Reynolds number, shedding frequency, and eigenfunction have been determined. These results are compared with those of an isolated body in order to demonstrate the effects of array geometry on vortex shedding and heat transfer. The generation of surface vortices from the leading edge of an object in an array is shown to be a feature of the wake instability of upstream objects. The dynamics of the non-linear saturation of the wake instability and the generation of surface vortices are examined. The results of the use of oscillating flow to amplify the wake instability are discussed in terms of its impact on the critical Reynolds number, nonlinear saturation, and surface vortex generation.
Compressibility effects in the shear layer over a rectangular cavity
Energy Technology Data Exchange (ETDEWEB)
Beresh, Steven J.; Wagner, Justin; Casper, Katya Marie
2016-10-26
we studied the influence of compressibility on the shear layer over a rectangular cavity of variable width in a free stream Mach number range of 0.6–2.5 using particle image velocimetry data in the streamwise centre plane. As the Mach number increases, the vertical component of the turbulence intensity diminishes modestly in the widest cavity, but the two narrower cavities show a more substantial drop in all three components as well as the turbulent shear stress. Furthermore, this contrasts with canonical free shear layers, which show significant reductions in only the vertical component and the turbulent shear stress due to compressibility. The vorticity thickness of the cavity shear layer grows rapidly as it initially develops, then transitions to a slower growth rate once its instability saturates. When normalized by their estimated incompressible values, the growth rates prior to saturation display the classic compressibility effect of suppression as the convective Mach number rises, in excellent agreement with comparable free shear layer data. The specific trend of the reduction in growth rate due to compressibility is modified by the cavity width.
Convective flow patterns in inclined rectangular cavities with rotation
Avila, Ruben; Perez-Espejel, Diana
2015-11-01
The natural convection in inclined three dimensional rectangular cavities with rotation is numerically investigated by using a spectral element method. When the rate of rotation (Ta number) is equal to zero, the critical Rayleigh number Rac for the onset of transverse or longitudinal rolls is obtained by solving (using the Tau-Chebyshev spectral method) the equations of the linear stability theory. In the numerical approach, the rotation is imposed once the steady state of the longitudinal or transverse rolls is attained. The cavity rotates around an axis that is orthogonal to its cold and hot surfaces, and passes through the center of these surfaces. In all the analyzed cases, the tilted angle δ, from the horizontal, varies in the interval 0° <= δ <90° (the cavity is heated from its lower surface, then an unstable condition prevails) and 90° < δ <= 180° (the cavity is heated from its upper surface, then a stable condition prevails). We report the influence of the Ta number on the critical Ra number, the average Nusselt number (evaluated at the hot surface), and the flow patterns in the tilted cavity. DGAPA-PAPIIT Project: IN117314-3.
Experimental study on mixing efficiency in water supply rectangular tanks
Bateman, A.; Medina, V.; Mujal, A.
2009-04-01
Phenomenon of mixing in drinking water storage tanks and reservoirs has a direct effect on the quality of water. Creation of poor mixing zones and volume stratification can have negative effects in public health. The design of a storage tank must consider the conditions of the inlet and outlets, and also their orientation (vertical or horizontal) to prevent the formation of these zones. Experiments done in a reduced scaled-model with a rectangular base and three different inlets (two waterfalls and a pipe inlet) had the objective to decide which of these inlets achieved the best mixing efficiency. Four situations were considered while three entrances, two unsteady: filling and drawing, and two steady with different outlets. Moreover the effects of columns that support the roof of the tank were studied by running the three entrances with and without columns in the four situations. Neglecting the viscous scale effects, the time taken to mix the volume stored depends on the distance between the inlet and the opposite wall as though as its orientation. Taking into account the whole tank columns have a negative effect on mixing efficiency although they divide the flux and create local zones of turbulence around them, increasing local mixing. Using a digital treating image technique the results are found in a quantitative way.
Capacitive micromachined ultrasonic Lamb wave transducers using rectangular membranes.
Badi, Mohammed H; Yaralioglu, Goksen G; Ergun, A Sanli; Hansen, Sean T; Wong, Eehern J; Khuri-Yakub, Butrus T
2003-09-01
This paper details the theory, fabrication, and characterization of a new Lamb wave device. Built using capacitive micromachined ultrasonic transducers (CMUTs), the structure described uses rectangular membranes to excite and receive Lamb waves on a silicon substrate. An equivalent circuit model for the transducer is proposed that produces results, which match well with those observed by experiment. During the derivation of this model, emphasis is placed on the resistance presented to the transducer membranes by the Lamb wave modes. Finite element analysis performed in this effort shows that the dominant propagating mode in the device is the lowest order antisymmetric flexural wave (A0). Furthermore, most of the power that couples into the Lamb wave is due to energy in the vibrating membrane that is transferred to the substrate through the supporting posts of the device. The manufacturing process of the structure, which relies solely on fundamental IC-fabrication techniques, is also discussed. The resulting device has an 18-microm-thick substrate that is almost entirely made up of crystalline silicon and operates at a frequency of 2.1 MHz. The characterization of this device includes S-parameter and laser vibrometer measurements as well as delay-line transmission data. The insertion loss, as determined by both S-parameter and delay-line transmission measurements, is 20 dB at 2.1 MHz. When configured as a delay-line oscillator, the device functions well as a sensor with sensitivity to changes in the mass loading of its substrate.
Diversity of acoustic streaming in a rectangular acoustofluidic field.
Tang, Qiang; Hu, Junhui
2015-04-01
Diversity of acoustic streaming field in a 2D rectangular chamber with a traveling wave and using water as the acoustic medium is numerically investigated by the finite element method. It is found that the working frequency, the vibration excitation source length, and the distance and phase difference between two separated symmetric vibration excitation sources can cause the diversity in the acoustic streaming pattern. It is also found that a small object in the acoustic field results in an additional eddy, and affects the eddy size in the acoustic streaming field. In addition, the computation results show that with an increase of the acoustic medium's temperature, the speed of the main acoustic streaming decreases first and then increases, and the angular velocity of the corner eddies increases monotonously, which can be clearly explained by the change of the acoustic dissipation factor and shearing viscosity of the acoustic medium with temperature. Commercialized FEM software COMSOL Multiphysics is used to implement the computation tasks, which makes our method very easy to use. And the computation method is partially verified by an established analytical solution. Copyright © 2014 Elsevier B.V. All rights reserved.
Technical Performance of Universal and Enhanced Intraoral Imaging Rectangular Collimators.
Johnson, K Brandon; Mauriello, Sally M; Ludlow, John B; Platin, Enrique
2015-08-01
The purpose of this study was to compare the number and type of technical errors between 2 rectangular collimators, time/motion effort and radiographer preference. Subjects (n=17) were recruited to expose an 18 projection full mouth series (FMX) using Tru-Align™ (enhanced) and Rinn® (universal) collimator devices. Both FMXs were exposed using photostimulable phosphor (PSP) digital sensors on a DXTTR manikin with an intraoral x-ray unit. A 5-question survey evaluated ease of device use, time required and device preference. Data were analyzed using frequencies, paired t-test, ANOVA and least squares means using a general linear model. A lower mean number of technique errors per FMX occurred with the enhanced device (9.7) compared to the universal device (12.1). Collimator centering errors occurred 3-times more often with the universal device. The mean numbers of diagnostically unacceptable errors per FMX were similar (Universal=3.2 vs Enhanced=2.9). The least squares means adjusted model showed a statistically significant difference of errors between the 2 devices (p=0.0478) and errors by location when comparing posterior to anterior and posterior to bitewing (pradiographs more efficiently with fewer collimator centering errors; however, it does so with a 35% greater exposure area and a concomitant increase in patient dose. Copyright © 2015 The American Dental Hygienists’ Association.
Modulation of ERG channels by XE991
DEFF Research Database (Denmark)
Elmedyb, Pernille; Calloe, Kirstine; Schmitt, Nicole
2007-01-01
In neuronal tissue, KCNQ2-5 channels conduct the physiologically important M-current. In some neurones, the M-current may in addition be conducted partly by ERG potassium channels, which have widely overlapping expression with the KCNQ channel subunits. XE991 and linopiridine are known to be stan...
Comments on Ionization Cooling Channel Characteristics
Energy Technology Data Exchange (ETDEWEB)
Neuffer, David [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States). Fermilab Center for Particle Astrophysics
2013-12-04
Ionization cooling channels with a wide variety of characteristics and cooling properties are being developed. These channels can produce cooling performances that are largely consistent with the ionization cooling theory developed previously. In this paper we review ionization cooling theory, discuss its application to presently developing cooling channels, and discuss criteria for optimizing cooling.
Thiruramanathan, P.; Sharma, Sanjeev K.; Sankar, S.; Sankar Ganesh, R.; Marikani, A.; Kim, Deuk Young
2016-12-01
The bismuth titanate (Bi4Ti3O12) or BTO nanopowder was synthesized from the combustion method and fabricated a microstrip rectangular patch antenna (MPA). The crystal structure and lattice spacing of BTO were evaluated from XRD, TEM, and SAED analysis. The crystal structure of BTO (annealed at 900 °C) was observed to be the orthorhombic phase with fcc lattice. The microstructure of BTO nanoparticles was confirmed the spherical and hexagonal shapes, which were slightly agglomerated due to the lack of stabilizing surfactants. The presence of weak and wide bands in Raman spectrum quantified the mechanical compressions to the uniform directions of elongated lattice constants and tensions to the lattice constriction of crystalline bismuth titanate. To fabricate the MPA, pellets of BTO nanopowder were prepared by applying the uniaxial pressure in the dimension of 1.5 mm thickness and 8 mm diameter. These pellets were formed a densely packed structure close to the theoretical density. The coercivity and remanence polarization of BTO ceramics increased as the applied field increased. The inexpensive combustion synthesis method of BTO nanopowder showed the high dielectric constant (ɛ' = 450) and low dielectric loss (tan δ = 0.98), which has a potential implication of the cost-effectiveness in the field of miniaturized microelectronics. The synthesis and measurements of BTO ceramics are found to be suitable for wireless communication systems.
Directory of Open Access Journals (Sweden)
Yongfeng Luo
2014-01-01
Full Text Available Modifying wood by high intensive microwave pretreatment method is widely researched for the fabrication of wood-based nanocomposites, but the temperature uniformity and energy efficiency of microwave pretreatment have not reached the ideal state. In this study, the pretreated wood in rectangular cavity by high intensive microwave is theoretically studied by the finite element method based on the Maxwell electromagnetic field equations and the heat and mass transfer theory. The results show that the temperature uniformity and energy efficiency are related to the microwave feeding modes. Compared with the single-port and the two-port feeding mode, the four-port feeding mode is the best case on temperature uniformity and energy efficiency. The optimized parameters of cavity to pretreatment wood are achieved, which are that the height of cavities is between 0.08 m and 0.11 m in the four-port feeding mode when the thickness of wood is 0.06 m.
Directory of Open Access Journals (Sweden)
Tiemin Li
2016-01-01
Full Text Available This paper presents the derivation of empirical compliance equations of the constant rectangular cross section flexure hinge. The stress concentration caused by changes in cross section is analyzed based on finite element analysis results for the purpose of overcoming compliance calculation errors. It shows that the stress concentration has great influence on axial compliance calculation, while it has little influence on shear and bending compliance calculation. Then empirical compliance equations with a relative wide range of h/L and t/L are derived based on the exponential model in conjunction with consideration of all geometrical parameters of flexure hinges and the influence of the stress concentration on axial compliance calculation. Finally, in order to verify the validity of the empirical equations, the input/output compliance and displacement amplification ratios of bridge-type microdisplacement amplification mechanisms are analyzed. Meanwhile, an experimental platform of displacement amplification mechanisms is set up. The experimental results and finite element method (FEM values are in good agreement with the theoretical arithmetic, which demonstrates the accuracy of the empirical compliance equations. It provides a reference point for further studies on the design and optimization of flexure hinges and compliant mechanisms.
Variance reduction techniques for 14 MeV neutron streaming problem in rectangular annular bent duct
Energy Technology Data Exchange (ETDEWEB)
Ueki, Kotaro [Ship Research Inst., Mitaka, Tokyo (Japan)
1998-03-01
Monte Carlo method is the powerful technique for solving wide range of radiation transport problems. Its features are that it can solve the Boltzmann`s transport equation almost without approximation, and that the complexity of the systems to be treated rarely becomes a problem. However, the Monte Carlo calculation is always accompanied by statistical errors called variance. In shielding calculation, standard deviation or fractional standard deviation (FSD) is used frequently. The expression of the FSD is shown. Radiation shielding problems are roughly divided into transmission through deep layer and streaming problem. In the streaming problem, the large difference in the weight depending on the history of particles makes the FSD of Monte Carlo calculation worse. The streaming experiment in the 14 MeV neutron rectangular annular bent duct, which is the typical streaming bench mark experiment carried out of the OKTAVIAN of Osaka University, was analyzed by MCNP 4B, and the reduction of variance or FSD was attempted. The experimental system is shown. The analysis model by MCNP 4B, the input data and the results of analysis are reported, and the comparison with the experimental results was examined. (K.I.)
Back-pressure effects on unsteadiness of separation shock in a rectangular duct at Mach 3
Xiong, Bing; Fan, Xiao-qiang; Wang, Yi; Zhou, Liang; Tao, Yuan
2017-12-01
To evaluate back-pressure effects on unsteadiness of separation shock in a rectangular duct, some test cases were designed and conducted in a supersonic air-breathing wind tunnel. High-speed Schlieren technique and high-frequency pressure measurements were utilized for data acquisition. Different back-pressure levels were applied by changing downstream throttling ratio. Some parameters for estimating canonical separation flows, such as zero-crossing frequency and intermittency, have been introduced to analyze the duct separation flow. The experimental results show that the separation shock oscillation frequencies increase and the intermittent region lengths decrease with the increasing back-pressure level. A comparison between the unsteadiness of shock/boundary layer interactions for the canonical flow and the duct internal flow were made. It is found that the normalized Strouhal number for the duct internal separation flow ranges from 0.01 to 0.03, which share the similar range with canonical separation flows. That is to say, the physics of separation shock unsteadiness is similar over a wide range of interaction flows, which may share the inherent flow mechanism.
On signal design by the R/0/ criterion for non-white Gaussian noise channels
Bordelon, D. L.
1977-01-01
The use of the cut-off rate criterion for modulation system design is investigated for channels with non-white Gaussian noise. A signal space representation of the waveform channel is developed, and the cut-off rate for vector channels with additive non-white Gaussian noise and unquantized demodulation is derived. When the signal input to the channel is a continuous random vector, maximization of the cut-off rate with constrained average signal energy leads to a water-filling interpretation of optimal energy distribution in signal space. The necessary condition for a finite signal set to maximize the cut-off rate with constrained energy and an equally likely probability assignment of signal vectors is presented, and an algorithm is outlined for numerically computing the optimum signal set. As an example, the rectangular signal set which has the water-filling average energy distribution and the optimum rectangular set are compared.
Experimental and numerical study of a premixed flame stabilized by a rectangular section cylinder
Energy Technology Data Exchange (ETDEWEB)
Bailly, P.; Garreton, D. [Electricite de France (EDF), 92 - Clamart (France); Bruel, P.; Champion, M. et al. [Ecole Nationale Superieure de Mecanique et d`Aerotechnique (ENSMA), 86 - Poitiers (France)
1996-12-31
A numerical and experimental study of a turbulent reactive zone stabilized by a rectangular cross-section cylinder positioned in a fully developed turbulent channel flow of a propane-air mixture is presented. Such a flow geometry has been chosen because it features most of the phenomena (recirculation zones, flame stabilization, wall-flame interactions) present in systems of practical interest. The flow is experimentally investigated with a 2-D laser Doppler velocimeter and thin compensated thermocouples. The modelling of the reactive flow is based on a modified Bray-Moss-Libby combustion model associated with a Reynolds-Stress turbulence model. The resulting set of equations is solved by a finite difference Navier-Stokes code on a rectilinear mesh. The comparison between numerical nd experimental results shows that the use of a full second-order model with dedicated equations for both the Reynolds stresses and the scalar turbulent flux does not lead to a significant improvement of the numerical results. Indeed, although the longitudinal scalar turbulent flux exhibits a non-gradient behaviour, the evolution of the mean progress variable introduced by the Bray-Moss-Libby model appears to be mainly controlled by the transverse scalar gradient which follows in all cases a gradient like behaviour. Additional measurements and calculations are required to precise the exact range of mass flow rate, equivalence ratio and obstacle bluffness over which such a tendency can be observed. Nevertheless, the tentative conclusion of this study is that, as soon as a refinement of the modelling of reactive flows in combustors which involve flameholders similar to the one investigated in this study is needed, the use of a Reynolds-Stress model should be the first necessary step. Then, depending on the exact nature of the flow geometry, a second phase should consist in evaluating the need for the use of a full second order model like the one presented in this study. (authors) 25 refs.
Population, characteristics and kinematics of vortices in a confined rectangular jet with a co-flow
Kong, B.; Olsen, M. G.; Fox, R. O.; Hill, J. C.
2011-06-01
Vortex behavior and characteristics in a confined rectangular jet with a co-flow were examined using vortex swirling strength as a defining characteristic. On the left side of the jet, the positively (counterclockwise) rotating vortices are dominant, while negatively rotating vortices are dominant on the right side of the jet. The characteristics of vortices, such as population density, average size and strength, and deviation velocity, were calculated and analyzed in both the cross-stream direction and the streamwise direction. In the near-field of the jet, the population density, average size and strength of the dominant direction vortices show high values on both sides of the center stream with a small number of counter-rotating vortices produced in the small wake regions close to jet outlet. As the flow develops, the wake regions disappear, these count-rotating vortices also disappear, and the population of the dominant direction vortices increase and spread in the jet. The mean size and strength of the vortices decrease monotonically with streamwise coordinate. The signs of vortex deviation velocity indicate the vortices transfer low momentum to high-velocity region and high momentum to the low velocity region. The developing trends of these characteristics were also identified by tracing vortices using time-resolved particle image velocimetry data. Both the mean tracked vortex strength and size decrease with increasing downstream distance overall. At the locations of the left peak of turbulent kinetic energy, the two-point spatial cross-correlation of swirling strength with velocity fluctuation and concentration fluctuation were calculated. All the correlation fields contain one positively correlated region and one negatively correlated region although the orientations of the correlation fields varied, due to the flow transitioning from wake, to jet, to channel flow. Finally, linear stochastic estimation was used to calculate conditional structures. The large
Reshadi, Milad; Saidi, Mohammad Hassan; Ebrahimi, Abbas
2017-04-01
This paper presents an analysis of the combined electro-osmotic and pressure-driven axial flows of viscoelastic fluids in a rectangular microchannel with arbitrary aspect ratios. The rheological behavior of the fluid is described by the complete form of Phan-Thien-Tanner (PTT) model with the Gordon-Schowalter convected derivative which covers the upper convected Maxwell, Johnson-Segalman and FENE-P models. Our numerical simulation is based on the computation of 2D Poisson-Boltzmann, Cauchy momentum and PTT constitutive equations. The solution of these governing nonlinear coupled set of equations is obtained by using the second-order central finite difference method in a non-uniform grid system and is verified against 1D analytical solution of the velocity profile with less than 0.06% relative error. Also, a parametric study is carried out to investigate the effect of channel aspect ratio (width to height), wall zeta potential and the Debye-Hückel parameter on 2D velocity profile, volumetric flow rate and the Poiseuille number in the mixed EO/PD flows of viscoelastic fluids with different Weissenberg numbers. Our results show that, for low channel aspect ratios, the previous 1D analytical models underestimate the velocity profile at the channel half-width centerline in the case of favorable pressure gradients and overestimate it in the case of adverse pressure gradients. The results reveal that the inapplicability of the Debye-Hückel approximation at high zeta potentials is more significant for higher Weissenberg number fluids. Also, it is found that, under the specified values of electrokinetic parameters, there is a threshold for velocity scale ratio in which the Poiseuille number is approximately independent of channel aspect ratio.
Pitts, Katie L.; Fenech, Marianne
2013-01-01
It is desired to understand the effect of alginic acid sodium salt from brown algae (alginate) as a viscosity modifier on the behavior of blood in vitro using a micro-particle image velocimetry (µPIV) system. The effect of alginate on the shape of the velocity profile, the flow rate and the maximum velocity achieved in rectangular microchannels channels are measured. The channels were constructed of polydimethylsiloxane (PDMS), a biocompatible silicone. Porcine blood cells suspended in saline was used as the working fluid at twenty percent hematocrit (H = 20). While alginate was only found to have minimal effect on the maximum velocity and the flow rate achieved, it was found to significantly affect the shear rate at the wall by between eight to a hundred percent. PMID:24023655
Directory of Open Access Journals (Sweden)
Katie L Pitts
Full Text Available It is desired to understand the effect of alginic acid sodium salt from brown algae (alginate as a viscosity modifier on the behavior of blood in vitro using a micro-particle image velocimetry (µPIV system. The effect of alginate on the shape of the velocity profile, the flow rate and the maximum velocity achieved in rectangular microchannels channels are measured. The channels were constructed of polydimethylsiloxane (PDMS, a biocompatible silicone. Porcine blood cells suspended in saline was used as the working fluid at twenty percent hematocrit (H = 20. While alginate was only found to have minimal effect on the maximum velocity and the flow rate achieved, it was found to significantly affect the shear rate at the wall by between eight to a hundred percent.
Simulation of natural circulation in a rectangular loop using CFD code PHOENICS
Energy Technology Data Exchange (ETDEWEB)
Kumar, M.; Borghain, A.; Maheshwari, N.K.; Vijayan, P.K. [Bhabha Atomic Reseach Centre, Trombay, Mumbai (India). Reactor Engineering Div.
2011-05-15
Single phase natural circulation in a rectangular loop is simulated using the PHOENICS code, a general purpose Computational Fluid Dynamics (CFD) code. The rectangular loop, having different operating power levels, has been modeled with the help of the Multiple Block Fine Grid Embedment (MBFGE) technique. The Co-located Co-variant Method (CCM) is used to simulate this loop in PHOENICS. Extensive experimental and CFD studies have been conducted on single phase natural circulation in a rectangular loop. The paper presents the results of three-dimensional CFD analysis for the prediction of steady state behavior in a rectangular loop and its comparison with experimental data. The results of code prediction and readily available experimental data show good agreement. (orig.)
On the Regularization independence of the Casimir energy for rectangular geometries
Manzoni, Luiz
2011-04-01
The Ramanujan sum of a divergent series is employed to investigate the regularization independence of the Casimir energy in d-dimensional rectangular geometries. As an specific application we consider the piston geometry for the scalar field.
MEMS in microfluidic channels.
Energy Technology Data Exchange (ETDEWEB)
Ashby, Carol Iris Hill; Okandan, Murat; Michalske, Terry A.; Sounart, Thomas L.; Matzke, Carolyn M.
2004-03-01
Microelectromechanical systems (MEMS) comprise a new class of devices that include various forms of sensors and actuators. Recent studies have shown that microscale cantilever structures are able to detect a wide range of chemicals, biomolecules or even single bacterial cells. In this approach, cantilever deflection replaces optical fluorescence detection thereby eliminating complex chemical tagging steps that are difficult to achieve with chip-based architectures. A key challenge to utilizing this new detection scheme is the incorporation of functionalized MEMS structures within complex microfluidic channel architectures. The ability to accomplish this integration is currently limited by the processing approaches used to seal lids on pre-etched microfluidic channels. This report describes Sandia's first construction of MEMS instrumented microfluidic chips, which were fabricated by combining our leading capabilities in MEMS processing with our low-temperature photolithographic method for fabricating microfluidic channels. We have explored in-situ cantilevers and other similar passive MEMS devices as a new approach to directly sense fluid transport, and have successfully monitored local flow rates and viscosities within microfluidic channels. Actuated MEMS structures have also been incorporated into microfluidic channels, and the electrical requirements for actuation in liquids have been quantified with an elegant theory. Electrostatic actuation in water has been accomplished, and a novel technique for monitoring local electrical conductivities has been invented.
Channel Identification Machines
Directory of Open Access Journals (Sweden)
Aurel A. Lazar
2012-01-01
Full Text Available We present a formal methodology for identifying a channel in a system consisting of a communication channel in cascade with an asynchronous sampler. The channel is modeled as a multidimensional filter, while models of asynchronous samplers are taken from neuroscience and communications and include integrate-and-fire neurons, asynchronous sigma/delta modulators and general oscillators in cascade with zero-crossing detectors. We devise channel identification algorithms that recover a projection of the filter(s onto a space of input signals loss-free for both scalar and vector-valued test signals. The test signals are modeled as elements of a reproducing kernel Hilbert space (RKHS with a Dirichlet kernel. Under appropriate limiting conditions on the bandwidth and the order of the test signal space, the filter projection converges to the impulse response of the filter. We show that our results hold for a wide class of RKHSs, including the space of finite-energy bandlimited signals. We also extend our channel identification results to noisy circuits.
Single phase channel flow forced convection heat transfer
Energy Technology Data Exchange (ETDEWEB)
Hartnett, J.P.
1999-04-01
A review of the current knowledge of single phase forced convection channel flow of liquids (Pr > 5) is presented. Two basic channel geometries are considered, the circular tube and the rectangular duct. Both laminar flow and turbulent flow are covered. The review begins with a brief overview of the heat transfer behavior of Newtonian fluids followed by a more detailed presentation of the behavior of purely viscous and viscoelastic Non-Newtonian fluids. Recent developments dealing with aqueous solutions of high molecular weight polymers and aqueous solutions of surfactants are discussed. The review concludes by citing a number of challenging research opportunities.
Solutal-thermo-diffusion convection in a vibrating rectangular cavity
Energy Technology Data Exchange (ETDEWEB)
Chacha, M. [UAE University, Department of Mechanical Engineering, PO Box 17555, AD, Al Ain (United Arab Emirates); Saghir, M.Z. [Ryerson University, Department of Mechanical Engineering, 350 Victoria Street, ON, M5B 2K3, Toronto (Canada)
2005-01-01
Diffusion-dominated experiments on-board the International Space Station and other free-flying platforms are affected by the convective flow due to the residual acceleration field and/or to the oscillatory accelerations (g-jitters) caused by several external sources. We are interested in investigating these effects on the solutal-thermo-diffusion for a binary fluid mixture. We considered a rectangular rigid cavity filled with methane (20%) and normal butane (80%), subject to a temperature difference on its lateral walls and radiation heat transfer on the horizontal walls. The full transient Navier-Stokes equations, accounting for a unique mode of oscillatory acceleration, coupled with the mass and heat transfer formulations and the equation of state of the fluid were solved numerically using the control volume technique. The species transport equation accounts for varying diffusion coefficients with the temperature and the fluid composition and their effect is analysed as compared to that of their average constant values. Results revealed that convection is enhanced and temperature and species profiles distortion from purely diffusive (zero-gravity) condition increases in a buoyancy-destabilizing configuration. The numerical study shows that by elimination both the residual gravity and the g-jitter levels are essential to achieve nearly purely diffusive conditions when their direction is orthogonal to that of the temperature gradient. For the configuration investigated, the g-jitter is found to reduce compositional variation. When quasi-steady state conditions are attained, thermal and compositional quantities fluctuate following a mode whose fundamental (primary) frequency is equal to that of the initially imposed vibration. (authors)
Martínez-González, A.; Moreno-Hernández, D.; Monzón-Hernández, D.; León-Rodríguez, M.
2017-06-01
In the schlieren method, the deflection of light by the presence of an inhomogeneous medium is proportional to the gradient of its refractive index. Such deflection, in a schlieren system, is represented by light intensity variations on the observation plane. Then, for a digital camera, the intensity level registered by each pixel depends mainly on the variation of the medium refractive index and the status of the digital camera settings. Therefore, in this study, we regulate the intensity value of each pixel by controlling the camera settings such as exposure time, gamma and gain values in order to calibrate the image obtained to the actual temperature values of a particular medium. In our approach, we use a color digital camera. The images obtained with a color digital camera can be separated on three different color-channels. Each channel corresponds to red, green, and blue color, moreover, each one has its own sensitivity. The differences in sensitivity allow us to obtain a range of temperature values for each color channel. Thus, high, medium and low sensitivity correspond to green, blue, and red color channel respectively. Therefore, by adding up the temperature contribution of each color channel we obtain a wide range of temperature values. Hence, the basic idea in our approach to measure temperature, using a schlieren system, is to relate the intensity level of each pixel in a schlieren image to the corresponding knife-edge position measured at the exit focal plane of the system. Our approach was applied to the measurement of instantaneous temperature fields of the air convection caused by a heated rectangular metal plate and a candle flame. We found that for the metal plate temperature measurements only the green and blue color-channels were required to sense the entire phenomena. On the other hand, for the candle case, the three color-channels were needed to obtain a complete measurement of temperature. In our study, the candle temperature was took as
Directory of Open Access Journals (Sweden)
Ljiljana Stošić Mihajlović
2014-07-01
Full Text Available Marketing channel is a set of entities and institutions, completion of distribution and marketing activities, attend the efficient and effective networking of producers and consumers. Marketing channels include the total flows of goods, money and information taking place between the institutions in the system of marketing, establishing a connection between them. The functions of the exchange, the physical supply and service activities, inherent in the system of marketing and trade. They represent paths which products and services are moving after the production, which will ultimately end up buying and eating by the user.
Headward growth and branching in subterranean channels
Kudrolli, Arshad; Ionkin, Nikolay; Panaitescu, Andreea
2017-11-01
We investigate the erosive growth of channels in a thin subsurface sedimentary layer driven by hydrodynamic drag toward understanding subterranean networks and their relation to river networks charged by ground water. Building on a model based on experimental observations of fluid-driven evolution of bed porosity, we focus on the characteristics of the channel growth and their bifurcations in a horizontal rectangular domain subject to various fluid source and sink distributions. We find that the erosion front between low- and high-porosity regions becomes unstable, giving rise to branched channel networks, depending on the spatial fluctuations of the fluid flow near the front and the degree to which the flow is above the erodibility threshold of the medium. Focusing on the growth of a network starting from a single channel, and by identifying the channel heads and their branch points, we find that the number of branches increases sublinearly and is affected by the source distribution. The mean angles between branches are found to be systematically lower than river networks in humid climates and depend on the domain geometry.
Channel Power in Multi-Channel Environments
M.G. Dekimpe (Marnik); B. Skiera (Bernd)
2004-01-01
textabstractIn the literature, little attention has been paid to instances where companies add an Internet channel to their direct channel portfolio. However, actively managing multiple sales channels requires knowing the customers’ channel preferences and the resulting channel power. Two key
ANALYSIS OF NANO CHANNEL FORMATION IN QUARTZ CUBES BY LASER-INDUCED PROCESS
Institute of Scientific and Technical Information of China (English)
QIN S.J.; Li Wen J.
2004-01-01
A novel laser processing technique was developed for making channels in the nano regime in this paper. A Nd:YAG laser was used to dry fabricate micro channels (25μm～100μm diameter) in a 1 cm3 fused silica substrate by thermal-induced processing. By controlling the locations of these initiating micro channels on a silica cube, 1D-controllable self-connecting nano fractures can be formed as rectangular channels. These nano channels are smooth and with extremely high aspect ratio (～104 depth to width ratio). A possible mechanism is proposed to explain the formation of the nano channels. This laser-based nano channel fabrication technique is fast and inexpensive, and with potential applications in capillary electrophoresis and electro-osmosis driven nano-filtration.
The KATP channel in migraine pathophysiology
DEFF Research Database (Denmark)
Al-Karagholi, Mohammad Al-Mahdi; Hansen, Jakob Møller; Severinsen, Johanne
2017-01-01
BACKGROUND: To review the distribution and function of KATP channels, describe the use of KATP channels openers in clinical trials and make the case that these channels may play a role in headache and migraine. DISCUSSION: KATP channels are widely present in the trigeminovascular system and play...... an important role in the regulation of tone in cerebral and meningeal arteries. Clinical trials using synthetic KATP channel openers report headache as a prevalent-side effect in non-migraine sufferers, indicating that KATP channel opening may cause headache, possibly due to vascular mechanisms. Whether KATP...... channel openers can provoke migraine in migraine sufferers is not known. CONCLUSION: We suggest that KATP channels may play an important role in migraine pathogenesis and could be a potential novel therapeutic anti-migraine target....
Hydrodynamic instability of meandering channels
Ali, Sk Zeeshan; Dey, Subhasish
2017-12-01
In this paper, we explore the hydrodynamic instability of meandering channels driven by the turbulent flow. The governing equations of channel dynamics with suitable boundary conditions are closed with the fluid and granular constitutive relationships. A regular expansion of the fundamental variables is employed to linearize the parent equations by superimposing the perturbations on the basic unperturbed flow. The channel dynamics reveal a resonance phenomenon which occurs when the key variables fall in the vicinity of the distinct critical values. The resonance phenomenon preserves its distinctive signature in different flow regimes which are guided by the characteristic values of the shear Reynolds number. The hydrodynamic analysis indicates that the fluid friction and the volumetric sediment flux play a decisive role to characterize the channel instability in different flow regimes. The growths of azimuthal velocity perturbation in phase with curvature, bed topography perturbation, bend amplification rate, and meander propagation speed in different flow regimes are investigated by varying the meander wavenumber, Shields number, channel aspect ratio, and relative roughness number. The analysis is capable to capture the effects of grain size on azimuthal velocity perturbation, bed topography perturbation, bend amplification rate, and meandering propagation speed over a wide range of shear Reynolds numbers. The variations of resonant wavenumbers in different flow regimes with the Shields number, channel aspect ratio, and relative roughness number are addressed. For a specific flow regime, the upstream and downstream migrations of meandering channels are typically governed by the Shields number, channel aspect ratio, and relative roughness number.
On Shor's Channel Extension and Constrained Channels
Holevo, A. S.; Shirokov, M. E.
Several equivalent formulations of the additivity conjecture for constrained channels, which formally is substantially stronger than the unconstrained additivity, are given. To this end a characteristic property of the optimal ensemble for such a channel is derived, generalizing the maximal distance property. It is shown that the additivity conjecture for constrained channels holds true for certain nontrivial classes of channels. After giving an algebraic formulation for Shor's channel extension, its main asymptotic property is proved. It is then used to show that additivity for two constrained channels can be reduced to the same problem for unconstrained channels, and hence, ``global'' additivity for channels with arbitrary constraints is equivalent to additivity without constraints.
Energy Technology Data Exchange (ETDEWEB)
Saito, T. (Yamaguchi University, Yamaguchi (Japan). Faculty of Engineering)
1993-11-01
The mean velocity distribution of an open channel turbulent flow on a sawtooth riblet surface. The long open channel of 60 cm wide, 25 cm deep and 10 m long was used, and equilateral triangle riblets of 2 mm in edge were laid longitudinally all over the bottom surface of the channel. Flow velocity was measured by pitot tube with a rectangular open section of 0.5 [times] 3 mm. As an experimental result, as the apparent origin of velocity profiles was evaluated assuming the presence of a viscous bottom layer, the coefficient of frictional drag agreed with previous experimental ones, however, the apparent origin descended from a riblet peak with an increase in drag reduction rate. The velocity profile in a buffer region differed remarkably from that on a smooth wall, and the maximum mixing length was found at 80-100 in non-dimensional water depth (Y[sup +]) increasing with the drag reduction rate. From a mixing length profile, as the apparent origin lay at 20-30 in Y[sup +], the logarithmic velocity profile was found in a range over 150 in Y[sup +]. 7 refs., 10 figs., 1 tab.
Transverse operator method for wakefields in a rectangular dielectric loaded accelerating structure
Directory of Open Access Journals (Sweden)
S. S. Baturin
2013-05-01
Full Text Available Cherenkov radiation generated by a relativistic electron bunch in a rectangular dielectric-loaded waveguide is analyzed under the assumption that the dielectric layers are inhomogeneous normal to the beam path. We propose a method that uses eigenfunctions of the transverse operator applied to develop a rigorous full solution for the wakefields that are generated. The dispersion equation for the structure is derived and the wakefield analysis is carried out. The formalism developed here allows the direct solution of the inhomogeneous system of Maxwell equations, an alternative analytic approach to the analysis of wakefields in contrast to the previously used impedance method for rectangular structure analysis. The formalism described here was successfully applied to the analysis of rectangular dielectric-lined structures that have been recently beam tested at the Argonne (ANL/AWA and Brookhaven (BNL/ATF accelerator facilities.
Mode filtering based on ponderomotive force nonlinearity in a plasma filled rectangular waveguide
Sobhani, H.; Sabouhi, H. R.; Feili, S.; Dadar, E.
2017-10-01
Here a new scheme for mode filtering is proposed. Based on the ponderomotive force effect, propagation of the microwave dual-mode through a plasma-filled metallic rectangular waveguide is investigated. To excite the TE20 mode in a rectangular waveguide, the existence of fundamental modes is unavoidable. To filter the destructive mode (TE10), the waveguide is filled with a collisional plasma. Based on the coupling effect, the energy of this destructive TE10 mode is transferred to the TE20 mode. The proposed structure acts like a mode convertor. The TE10 mode become more attenuated and instead the TE20 mode is amplified. The plasma filled rectangular waveguide acts as a mode filtering tool.
Left-Handed Effect of Composite Rectangular SRRs and Its Application in Patch Antennae
Huang, Ming; Zhou, Yue-Qun; Shen, Ting-Gen
2010-01-01
We concentrate on describing the important influence and physical law of the split resonant ring (SRR) based left-handed materials on patch antennae. The finite-difference time-domain method, together with the finite element method is used to study the characteristics of patch antennae based on composite rectangular SRRs. A novel composite rectangular SRR system is formed by assembling the conventional patch antennae and SRRs, it is found that electromagnetic wave resonance occurs near f = 3.15 GHz, the equivalent permittivity and permeability are both negative, and the electromagnetic wave's tunnel effect and evanescent waves' enhancing effect are formed, which can improve the localization extent of electromagnetic wave's energy apparently. Such effects can improve the antenna's radiation gain and its matching condition. The phenomenon indicates that such composite rectangular patch antennae are promising in wireless communications such as mobile phones, satellite communication and aviation.
Statistical properties of rectangular cusped random beams propagating in oceanic turbulence.
Lu, Chuanyi; Zhao, Daomu
2017-08-10
The analytical formula for the cross-spectral density function of the rectangular cusped random beams, also known as fractional multi-Gaussian Schell-model beams, propagating in oceanic turbulence, is derived. The statistical properties incorporating the spectral density and the spectral degree of coherence of the beams on propagation are investigated. It is found that the beams maintain a rectangular-shaped cusped profile in weak turbulence just as in free space, whereas in strong turbulence or at sufficiently long propagation distances, the beams profile would be destroyed little by little, turning out to be Gaussian profile eventually. Moreover, the beams with smaller coherence length exhibit a more obvious rectangular outline. In addition, the spectral density and the spectral degree of coherence are both affected by various turbulence parameters.
One-dimensional nonlinear theory for rectangular helix traveling-wave tube
Energy Technology Data Exchange (ETDEWEB)
Fu, Chengfang, E-mail: fchffchf@126.com; Zhao, Bo; Yang, Yudong; Ju, Yongfeng [Faculty of Electronic Information Engineering, Huaiyin Institute of Technology, Huai' an 223003 (China); Wei, Yanyu [School of Physical Electronics, University of Electronic and Technology of China, Chengdu 610054 (China)
2016-08-15
A 1-D nonlinear theory of a rectangular helix traveling-wave tube (TWT) interacting with a ribbon beam is presented in this paper. The RF field is modeled by a transmission line equivalent circuit, the ribbon beam is divided into a sequence of thin rectangular electron discs with the same cross section as the beam, and the charges are assumed to be uniformly distributed over these discs. Then a method of computing the space-charge field by solving Green's Function in the Cartesian Coordinate-system is fully described. Nonlinear partial differential equations for field amplitudes and Lorentz force equations for particles are solved numerically using the fourth-order Runge-Kutta technique. The tube's gain, output power, and efficiency of the above TWT are computed. The results show that increasing the cross section of the ribbon beam will improve a rectangular helix TWT's efficiency and reduce the saturated length.
Seo, Hyeon-Seok; Boo, Jin-Hyo; Kim, Youn-Jea
2015-10-01
This study numerically investigated the flow characteristics in a rectangular enclosure filled with oil-based ferrofluid (EFH-1, Ferrotec.) under the influence of external magnetic fields. The rectangular enclosure contained obstacles with different shapes, such as a rectangle and a triangle mounted on the top and bottom wall surfaces. In order to generate external magnetic fields, a permanent magnet was located in the lower part of the rectangular enclosure, and its direction was selected to be either horizontal or vertical. Our results showed that the ferrofluid flow fields were affected by the applied external magnetic field direction and eddy flow phenomena in the working fluid were generated in the vicinity of high magnetic flux density distributions, such as at the edge of the permanent magnet. It was also confirmed that the magnetophoretic force distributions in the analysis model played a significant role in the development of the ferrofluid flow fields.
PERFORMANCE ANALYSIS OF RECTANGULAR MPA USING DIFFERENT SUBSTRATE MATERIALS FOR WLAN APPLICATION
Directory of Open Access Journals (Sweden)
E Aravindraj
2017-03-01
Full Text Available In this paper, a rectangular microstrip patch antenna (MPA is designed using different substrate materials for analyzing the performance of the MPA. Alumina (Al2O3, Bakelite, Beryllium oxide (BeO, Gallium Arsenide (GaAs, RT-Duroid and Flame Retardant 4 (FR-4 are the six different substrate used in the design. The size of the rectangular microstrip patch antenna varies according to the dielectric constant of substrate materials used. The operating frequency taken for this analysis is 5.8 GHz. The proposed design provides the study on the performance of rectangular microstrip patch antenna for different substrate materials using the same frequency. This study conveys that which substrate material provides better performance. Moreover, this comparative study conveys that which substrate material provides better performance. The simulation parameters are investigated using HFSS.
Neal, Jeffrey; Odoni, Nicholas; Trigg, Mark; Freer, Jim; Garcia-Pintado, Javier; Mason, David; Wood, Melissa; Bates, Paul
2015-04-01
This work explores the challenge of representing structural differences in river channel cross-section geometry for regional to global scale river hydraulic models and the effect this can have on simulations of flood wave dynamics. Classically, channel geometry is defined using data, yet at larger scales the necessary information and model structures do not exist to take this approach. We therefore propose a fundamentally different approach where the structural uncertainty in channel geometry is represented using a simple parameterization and that can then be estimated through calibration or data assimilation. We first outline the development of a computationally efficient numerical scheme to represent generalised channel shapes using a single parameter, which is then validated using a simple straight channel test case and shown to predict wetted perimeter to within 2% for the channels tested. An application to the River Severn, UK and Niger Inner Delta, Mali are also presented, along with an analysis of model sensitivity to channel shape, depth and friction. The channel shape parameter was shown to improve model simulations of river level, particularly for more physically plausible channel roughness and depth parameter ranges. Calibrating channel Manning's coefficient in a rectangular channel provided similar water level simulation accuracy in terms of Nash-Sutcliffe efficiency to a model where friction and shape or depth were calibrated. However, the calibrated Manning coefficient in the rectangular channel model was greater by 0.015-0.02 than the more complex channel shape and this erroneously slowed wave propagation times through the 30 km reach by 1.4 hours (17%). Even a poor estimate of channel shape resulted in more physically realistic calibration of channel Manning's coefficient and channel depth. On the River Niger, where the river depth and shape are unknown, we calibrate depth, shape and friction using ICEsat data for a number of reaches. Including the
Velocity-based analysis of sediment incipient deposition in rigid boundary open channels.
Aksoy, Hafzullah; Safari, Mir Jafar Sadegh; Unal, Necati Erdem; Mohammadi, Mirali
2017-11-01
Drainage systems must be designed in a way to minimize undesired problems such as decrease in hydraulic capacity of the channel, blockage and transport of pollutants due to deposition of sediment. Channel design considering self-cleansing criteria are used to solve the sedimentation problem. Incipient deposition is one of the non-deposition self-cleansing design criteria that can be used as a conservative method for channel design. Experimental studies have been carried out in five different cross-section channels, namely trapezoidal, rectangular, circular, U-shape and V-bottom. Experiments were performed in a tilting flume using four different sizes of sands as sediment in nine different channel bed slopes. Two well-known methods, namely the Novak & Nalluri and Yang methods are considered for the analysis of sediment motion. Equations developed using experimental data are found to be in agreement with the literature. It is concluded that the design velocity depends on the shape of the channel cross-section. Rectangular and V-bottom channels need lower and higher incipient deposition velocities, respectively, in comparison with other channels.
Rabbi, Khan Md.; Rakib, Tawfiqur; Das, Sourav; Mojumder, Satyajit; Saha, Sourav
2016-07-01
This paper demonstrates magneto-hydrodynamic (MHD) mixed convection flow through a channel with a rectangular obstacle at the entrance region using non-Newtonian power law fluid. The obstacle is kept at uniformly high temperature whereas the inlet and top wall of the channel are maintained at a temperature lower than obstacle temperature. Poiseuille flow is implemented as the inlet velocity boundary condition. Grid independency test and code validation are performed to justify the computational accuracy before solving the present problem. Galerkin weighted residual method has been appointed to solve the continuity, momentum and energy equations. The problem has been solved for wide range of pertinent parameters like Richardson number (Ri = 0.1 - 10) at a constant Reynolds number (Re = 100), Hartmann number (Ha = 0 - 100), power index (n = 0.6 - 1.6). The flow and thermal field have been thoroughly discussed through streamline and isothermal lines respectively. The heat transfer performance of the given study has been illustrated by average Nusselt number plots. It is observed that increment of Hartmann number (Ha) tends to decrease the heat transfer rate up to a critical value (Ha = 20) and then let increase the heat transfer performance. Thus maximum heat transfer rate has been recorded for higher Hartmann number and Rayleigh number in case of pseudo-plastic (n = 0.6) non-Newtonian fluid flow.
DEFF Research Database (Denmark)
Celestinos, Adrian; Nielsen, Sofus Birkedal
2006-01-01
Rectangular rooms have strong influence on the low frequency performance of loudspeakers. Simulations of three different room sizes have been carried out using finite-difference time-domain method (FDTD) in order to predict the behaviour of the sound field at low frequencies. By using an enhancem......Rectangular rooms have strong influence on the low frequency performance of loudspeakers. Simulations of three different room sizes have been carried out using finite-difference time-domain method (FDTD) in order to predict the behaviour of the sound field at low frequencies. By using...
Reichert, B. A.; Hingst, W. R.; Okiishi, T. H.
1991-01-01
Circular-to-rectangular transition duct flows with and without inlet swirl were investigated experimentally in order to determine the effect of inlet swirl on the transition duct flow field and to provide detailed duct flow data for comparison with numerical code predictions. Coefficients based on detailed measurements of velocity, total pressure and static pressure, acquired in four cross stream planes within a circular-to-rectangular transition duct, with and without inlet swirl, are presented, as are surface static pressure and surface oil film visualization results.
Lyashko, A. D.
2017-11-01
A new analytical presentation of the solution for steady-state oscillations of orthotopic rectangular prism is found. The corresponding infinite system of linear algebraic equations has been deduced by the superposition method. A countable set of precise eigenfrequencies and elementary eigenforms is found. The identities are found which make it possible to improve the convergence of all the infinite series in the solution of the problem. All the infinite series in presentation of solution are analytically summed up. Numerical calculations of stresses in the rectangular orthotropic prism with a uniform along the border and harmonic in time load on two opposite faces have been performed.
Cao, Nan; Cao, Fengmei; Lin, Yabin; Bai, Tingzhu; Song, Shengyu
2015-04-01
For a new kind of retina-like senor camera and a traditional rectangular sensor camera, dual cameras acquisition and display system need to be built. We introduce the principle and the development of retina-like senor. Image coordinates transformation and interpolation based on sub-pixel interpolation need to be realized for our retina-like sensor's special pixels distribution. The hardware platform is composed of retina-like senor camera, rectangular sensor camera, image grabber and PC. Combined the MIL and OpenCV library, the software program is composed in VC++ on VS 2010. Experience results show that the system can realizes two cameras' acquisition and display.
Directory of Open Access Journals (Sweden)
Mustafa TEMİZ
2005-02-01
Full Text Available This study focuses on power and probability expressions belong to normalized frequency and normalized propagation constant of electric field in the rectangular quantum well. The confinement effects of the properties of confined carriers in the energy levels have been studied. Normalized frequency and normalized propagation constant are especially functions of the ordinates and abscissas of the energy eigenvalues for electrons or holes in the rectangular quantum well in the normalized coordinate system (?-?. Our calculations also give more accurate results, and present more sensitive comparative examples.
Prangsma, J C; van Oosten, D; Kuipers, L
2011-09-13
The optical properties of rectangular subwavelength holes in a gold film are investigated using the light generated when a focused beam of electrons impinges on the sample close to the hole. Using this technique, multi-spectral maps of the holes are obtained with a resolution beyond the optical diffraction limit. The results show the influence of hole shape on the spectrum of locally scattered light. Rectangular holes of varying shape and size are investigated, and the spatial distribution of the polarization of the observed light is measured. The influence of neighbouring holes is investigated by measuring small clusters of holes.
Su, Wei; Chen, Bingyan
2017-09-01
A plasmonic band-pass filter based on graphene rectangular ring resonator with double narrow gaps is proposed and numerically investigated by finite-difference time-domain (FDTD) simulations. For the filter with or without gaps, the resonant frequencies can be effectively adjusted by changing the width of the graphene nanoribbon, the coupling distance and chemical potential of graphene. In addition, by introducing narrow gaps in the rectangular ring resonators, it shows the single frequency filtering effect. Moreover, the structure also shows high sensitivity for different surrounding mediums. This work provides a novel method for designing all-optical integrated components in optical communication.
Ultrasound source using a rectangular vibrating plate combined with rigid walls
Sato, Ryo; Asami, Takuya; Miura, Hikaru
2017-07-01
Ultrasound sources that use a stripe-mode rectangular vibrating plate radiate strong ultrasound waves in the air. In this study, we investigated the design strategy for combining the vibrating plate with rigid walls and evaluated the intense ultrasound waves radiated by the sound source. First, we examined the design method for a rectangular transverse vibrating plate with both ends fixed and the vibration amplitude distribution of the vibrating plate. Second, we measured the sound pressure distribution in the formation of the standing wave field. Finally, we clarified the relationship between the input power and sound pressure of the standing wave field antinodes.
A study of natural convection cooling of multiple discrete heat sources in a vertical channel
Willson, Thomas D.
1988-06-01
Natural convection liquid cooling of simulated electronic components in a vertical channel was investigated. The test surface contained a single column of eight rectangular, protruding heated elements, each simulating a 20 pin dual-in-line package. Temperature measurements and flow visualization were performed for a number of power dissipation levels and channel widths. Collectively, this information was used in interpreting the flow and transport characteristics. A correlation to predict the heat transfer rates was developed based on the component surface temperatures. Optimum channel widths were determined from these surface temperature measurements for the range of power levels investigated. Temperature distributions in the fluid were measured using a traversing thermocouple probe.
Pore size matters for potassium channel conductance
Moldenhauer, Hans; Pincuntureo, Matías
2016-01-01
Ion channels are membrane proteins that mediate efficient ion transport across the hydrophobic core of cell membranes, an unlikely process in their absence. K+ channels discriminate K+ over cations with similar radii with extraordinary selectivity and display a wide diversity of ion transport rates, covering differences of two orders of magnitude in unitary conductance. The pore domains of large- and small-conductance K+ channels share a general architectural design comprising a conserved narrow selectivity filter, which forms intimate interactions with permeant ions, flanked by two wider vestibules toward the internal and external openings. In large-conductance K+ channels, the inner vestibule is wide, whereas in small-conductance channels it is narrow. Here we raise the idea that the physical dimensions of the hydrophobic internal vestibule limit ion transport in K+ channels, accounting for their diversity in unitary conductance. PMID:27619418
Directory of Open Access Journals (Sweden)
K. Arun
2007-01-01
Full Text Available The present work involves experimental investigation of the effects of aspect ratio, channel orientation angle, rib pitch-to-height ratio (P/e, and number of ribbed walls on friction factor in orthogonally rotating channel with detached ribs. The ribs are separated from the base wall to provide a small region of flow between the base wall and the ribs. Experiments have been conducted at Reynolds number ranging from 10000–17000 with rotation numbers varying from 0–0.38. Pitch-to-rib height ratios (P/e of 5 and 10 at constant rib height-to-hydraulic diameter ratio (e/D of 0.1 and a clearance ratio (C/e of 0.38 are considered. The rib angle of attack with respect to mainstream flow is 90∘. The channel orientation at which the ribbed wall becomes trailing surface (pressure side on which the Coriolis force acts is considered as the 0∘ orientation angle. For one-wall ribbed case, channel is oriented from 0∘ to 180∘ about its axis in steps of 30∘ to change the orientation angle. For two-wall ribbed case, the orientation angle is changed from 0∘ to 90∘ in steps of 30∘. Friction factors for the detached ribbed channels are compared with the corresponding attached ribbed channel. It is found that in one-wall detached ribbed channel, increase in the friction factor ratio with the orientation angle is lower for rectangular channel compared to that of square channel for both the pitch-to-rib height ratios of 5 and 10 at a given Reynolds number and rotation number. Friction factor ratios of two-wall detached ribbed rectangular channel are comparable with corresponding two-wall detached ribbed square channel both under stationary and rotating conditions.
Thermodynamic optimization of conjugate convection from a finned channel using genetic algorithms
Rakshit, Dibakar; Balaji, C.
2005-04-01
For the first time, this study reports the results of numerical investigation of conjugate convection from a finned channel. The computational domain of investigation consists of a horizontal channel with vertical rectangular fins being mounted on outside of the channel. The equations governing two-dimensional, steady, incompressible, constant property laminar flow have been solved for the fluid flowing outside the channel. In doing this, Boussinesq assumption is assumed to be valid for the fluid flowing outside the channel along the fins. For the fluid flowing inside the channel, flow is assumed to be turbulent with forced convection as the mode of heat transfer. From a large volume of numerically generated data correlations have been proposed for (1) Nusselt number and (2) Entropy generated by the system. These correlations are finally used to obtain thermodynamic optimum where in we seek a solution with minimum total entropy generation rate for varying heat duties, by using the state-of-the art Genetic algorithms.
2011-04-01
... International Trade Administration Light-Walled Rectangular Pipe and Tube From Mexico; Extension of Time Limit... the antidumping duty order on light-walled rectangular pipe and tube from Mexico, covering the period...) and 777(i) of the Act. Dated: March 28, 2011. Christian Marsh, Deputy Assistant Secretary for...
Post-Translational Modifications of TRP Channels
Voolstra, Olaf; Huber, Armin
2014-01-01
Transient receptor potential (TRP) channels constitute an ancient family of cation channels that have been found in many eukaryotic organisms from yeast to human. TRP channels exert a multitude of physiological functions ranging from Ca2+ homeostasis in the kidney to pain reception and vision. These channels are activated by a wide range of stimuli and undergo covalent post-translational modifications that affect and modulate their subcellular targeting, their biophysical properties, or channel gating. These modifications include N-linked glycosylation, protein phosphorylation, and covalent attachment of chemicals that reversibly bind to specific cysteine residues. The latter modification represents an unusual activation mechanism of ligand-gated ion channels that is in contrast to the lock-and-key paradigm of receptor activation by its agonists. In this review, we summarize the post-translational modifications identified on TRP channels and, when available, explain their physiological role. PMID:24717323
Post-Translational Modifications of TRP Channels
Directory of Open Access Journals (Sweden)
Olaf Voolstra
2014-04-01
Full Text Available Transient receptor potential (TRP channels constitute an ancient family of cation channels that have been found in many eukaryotic organisms from yeast to human. TRP channels exert a multitude of physiological functions ranging from Ca2+ homeostasis in the kidney to pain reception and vision. These channels are activated by a wide range of stimuli and undergo covalent post-translational modifications that affect and modulate their subcellular targeting, their biophysical properties, or channel gating. These modifications include N-linked glycosylation, protein phosphorylation, and covalent attachment of chemicals that reversibly bind to specific cysteine residues. The latter modification represents an unusual activation mechanism of ligand-gated ion channels that is in contrast to the lock-and-key paradigm of receptor activation by its agonists. In this review, we summarize the post-translational modifications identified on TRP channels and, when available, explain their physiological role.
Energy Technology Data Exchange (ETDEWEB)
Schmeling, D., E-mail: Daniel.Schmeling@dlr.de [German Aerospace Center (DLR), Institute of Aerodynamics and Flow Technology, Bunsenstrasse 10, D-37073 Goettingen (Germany); Westhoff, A.; Kuehn, M.; Bosbach, J.; Wagner, C. [German Aerospace Center (DLR), Institute of Aerodynamics and Flow Technology, Bunsenstrasse 10, D-37073 Goettingen (Germany)
2011-10-15
Highlights: > Superposition of forced and thermal convection is studied in a rectangular cavity. > For pure forced convection the mean wind exhibits a solid body rotation. > Four buoyancy induced convection rolls are formed for mixed convection at Ar {approx} 3.3. > The enthalpy flux difference between out- and inflowing air has a maximum at Ar {approx} 0.6. - Abstract: Results of an experimental study of flow structure formation and heat transport in turbulent forced and mixed convection are presented. The experiments were conducted in a rectangular cavity with a square cross section, which has an aspect ratio between length and height of {Gamma}{sub xz} = 5. Air at atmospheric pressure was used as working fluid. The air inflow was supplied through a slot below the ceiling, while exhausting was provided by another slot, which is located directly above the floor. Both vents extend over the whole length of the cell. In order to induce thermal convection the bottom of the cell is heated while the ceiling is maintained at a constant temperature. This configuration allows to generate and study mixed convection under well defined conditions. Results of forced convection at Re = 1.07 x 10{sup 4} as well as mixed convection at 1.01 x 10{sup 4} {<=} Re {<=} 3.4 x 10{sup 4} and Ra = 2.4 x 10{sup 8} (3.3 {>=} Ar {>=} 0.3), which were obtained by means of Particle Image Velocimetry and local temperature measurements, are presented. For purely forced convection a 2D mean wind, which can be approximated by a solid body rotation, is found. With increasing Archimedes number this structure becomes unstable, leading to a transition of the solid body rotation into additional smaller convection rolls. Proper orthogonal decomposition of the instantaneous velocity fields has been performed for further analysis of these coherent large-scale structures. Their fingerprint is found in the spatial temperature distribution of the out flowing air at the end of the outlet channel, which
Flow dynamics and concentration polarisation in spacer-filled channels
DEFF Research Database (Denmark)
Lipnizki, Jens; Jonsson, Gunnar Eigil
2002-01-01
been shown that the mass transport along the membrane is not fully described by the Sherwood correlation, which describes a decreasing mass transfer with an increasing distance from the inlet. It was observed that in open channel without spacers, the slope of the Sherwood correlation is decreasing......The key to developing highly efficient spiral-wound modules is the improvement of the mass transfer mechanisms. In this study a study of the mass transfer has been carried out using a flat test cell with six permeate outlets and a rectangular feed channel. Using this experimental set-up, it has....... This phenomenon was also observed in spacer-filled channels. In this case the stripes on the surface depended on the spacer geometry. Furthermore, the experiments were used to calculate the energy consumption vs. the mass transfer coefficient for different spacers. This research can be used as a foundation...
DEFF Research Database (Denmark)
Dong, Yunfeng; Johansen, Tom Keinicke; Zhurbenko, Vitaliy
2016-01-01
This paper presents rectangular waveguide-to-coplanar waveguide (CPW) transitions at U-band (40–60 GHz) using E-plane probe and wire bonding. The designs of CPWs based on quartz substrate with and without aluminum cover are explained. The single and double layer rectangular waveguide-to-CPW...... transitions using E-plane probe and wire bonding are designed. The proposed rectangular waveguide-to-CPW transition using wire bonding can provide 10 GHz bandwidth at U-band and does not require extra CPWs or connections between CPWs and chips. A single layer rectangular waveguide-to-CPW transition using E......-plane probe with aluminum package has been fabricated and measured to validate the proposed transitions. To the authors' best knowledge, this is the first time that a wire bonding is used as a probe for rectangular waveguide-to-CPW transition at U-band....
Circular Versus Rectangular Waveguide All-Inductive Dual-Mode Filters
Guglielmi, M.; Hannes, D.; Gerini, G.; Schmitt, D.
2001-01-01
In this paper we compare the electrical behavior of classical dual mode filters in circular waveguide with the one of a new family of low-loss, inductive, dual-mode filters in rectangular waveguide. The comparison shows that the simplicity of the new filter structure and its electrical performance
Modeling and Chaotic Dynamics of the Laminated Composite Piezoelectric Rectangular Plate
Directory of Open Access Journals (Sweden)
Minghui Yao
2014-01-01
Full Text Available This paper investigates the multipulse heteroclinic bifurcations and chaotic dynamics of a laminated composite piezoelectric rectangular plate by using an extended Melnikov method in the resonant case. According to the von Karman type equations, Reddy’s third-order shear deformation plate theory, and Hamilton’s principle, the equations of motion are derived for the laminated composite piezoelectric rectangular plate with combined parametric excitations and transverse excitation. The method of multiple scales and Galerkin’s approach are applied to the partial differential governing equation. Then, the four-dimensional averaged equation is obtained for the case of 1 : 3 internal resonance and primary parametric resonance. The extended Melnikov method is used to study the Shilnikov type multipulse heteroclinic bifurcations and chaotic dynamics of the laminated composite piezoelectric rectangular plate. The necessary conditions of the existence for the Shilnikov type multipulse chaotic dynamics are analytically obtained. From the investigation, the geometric structure of the multipulse orbits is described in the four-dimensional phase space. Numerical simulations show that the Shilnikov type multipulse chaotic motions can occur. To sum up, both theoretical and numerical studies suggest that chaos for the Smale horseshoe sense in motion exists for the laminated composite piezoelectric rectangular plate.
Hubbell rectangular source integral calculation using a fast Chebyshev wavelets method.
Manai, K; Belkadhi, K
2016-07-01
An integration method based on Chebyshev wavelets is presented and used to calculate the Hubbell rectangular source integral. A study of the convergence and the accuracy of the method was carried out by comparing it to previous studies. Copyright © 2016 Elsevier Ltd. All rights reserved.
Heat transfer in a vertical rectangular duct filled with a porous matrix ...
African Journals Online (AJOL)
This paper presents the results of a comprehensive numerical study to analyze free convective heat transfer in a vertical rectangular duct filled with porous matrix and saturated with nanofluid for temperature dependent viscosity. Using the Darcy- Forchhiemer model, the momentum in the porous medium was simulated.
Kutner, R.; Beijeren, H. van
1987-01-01
An approximate theory is developed for tracer diffusion in rectangular lattice gas models with anisotropic jump rates to neighboring unoccupied sites in different directions. Comparison with Monte Carlo simulations on quadratic lattices with several ratios for the jump rates in orthogonal directions
DEFF Research Database (Denmark)
Krabbenhøft, Jørgen; Lazarov, Boyan Stefanov
2007-01-01
Rectangular tanks filled with shallow liquid, also know as shallow-water type Tuned Liquid Dampers, have been investigated by several researchers. Common to the approaches is that an energy conserving form of the nonlinear shallow water equations is used for describing the sloshing motion...
Rectangular optical filter based on high-order silicon microring resonators
Bao, Jia-qi; Yu, Kan; Wang, Li-jun; Yin, Juan-juan
2017-07-01
The rectangular optical filter is one of the most important optical switching components in the dense wavelength division multiplexing (DWDM) fiber-optic communication system and the intelligent optical network. The integrated highorder silicon microring resonator (MRR) is one of the best candidates to achieve rectangular filtering spectrum response. In general, the spectrum response rectangular degree of the single MRR is very low, so it cannot be used in the DWDM system. Using the high-order MRRs, the bandwidth of flat-top pass band, the out-of-band rejection degree and the roll-off coefficient of the edge will be improved obviously. In this paper, a rectangular optical filter based on highorder MRRs with uniform couplers is presented and demonstrated. Using 15 coupled race-track MRRs with 10 μm in radius, the 3 dB flat-top pass band of 2 nm, the out-of-band rejection ratio of 30 dB and the rising and falling edges of 48 dB/nm can be realized successfully.
Improvements of the smearing technique for cross-stiffened thin rectangular plates
DEFF Research Database (Denmark)
Luan, Yu; Ohlrich, Mogens; Jacobsen, Finn
2011-01-01
New developments in the simplified smearing technique for modeling vibrations of cross-stiffened, thin rectangular plates are presented. The computationally efficient smearing technique has been known for many years, but so far the accuracy of, say, predicted natural frequencies has been inadequa...
A CPW-Fed Rectangular Ring Monopole Antenna for WLAN Applications
Directory of Open Access Journals (Sweden)
Sangjin Jo
2014-01-01
Full Text Available We present a simple coplanar waveguide- (CPW- fed rectangular ring monopole antenna designed for dual-band wireless local area network (WLAN applications. The antenna is based on a simple structure composed of a CPW feed line and a rectangular ring. Dual-band WLAN operation can be achieved by controlling the distance between the rectangular ring and the ground plane of the CPW feed line, as well as the horizontal vertical lengths of the rectangular ring. Simulated and measured data show that the antenna has a compact size of 21.4×59.4 mm2, an impedance bandwidths of 2.21–2.70 GHz and 5.04–6.03 GHz, and a reflection coefficient of less than −10 dB. The antenna also exhibits an almost omnidirectional radiation pattern. This simple compact antenna with favorable frequency characteristics therefore is attractive for applications in dual-band WLAN.
Stress analysis of un-lapped rectangular hollow 'k' joints by the finite ...
African Journals Online (AJOL)
Finite element stress analysis relevant for the study of welded hollow rectangular 'K' Joints is presented. Thin shell theory and iso-parametric formulation are employed to obtain equilibrium equations. Thereafter, the effect of brace spacing is investigated by varying the spacing between the two braces and making computer ...
Developing Multiplicative Thinking with Rectangular Array Tasks in a Computer Environment
Huang, Amy I-Yu
2013-01-01
This study reports findings from a teaching experiment in which 4th grade children engaged in solving multiplication tasks with rectangular arrays in a computer environment. The environment provided flexible task-solving through dynamic virtual manipulatives (VMs) so children could use their existing knowledge of multiplication to complete array…
Sman, van der R.G.M.
2006-01-01
In this paper we present lattice Boltzmann (LB) schemes for convection diffusion coupled to fluid flow on two-dimensional rectangular lattices. Via inverse Chapman-Enskog analysis of LB schemes including source terms, we show that for consistency with physics it is required that the moments of the
Detection of incomplete enclosures of rectangular shape in remotely sensed images
Zingman, I.; Saupe, D.; Lambers, K.
2015-01-01
We develop an approach for detection of ruins of livestock enclosures in alpine areas captured by high-resolution remotely sensed images. These structures are usually of approximately rectangular shape and appear in images as faint fragmented contours in complex background. We address this problem
Rectangular nanovoids in helium-implanted and thermally annealed MgO(100)
Kooi, B.J.; Veen, A. van; Hosson, J.Th.M. De; Schut, H.; Fedorov, A.V.; Labohm, F.
2000-01-01
Cleaved MgO(100) single crystals were implanted with 30 keV 3He ions with doses varying from 1×10^19 to 1×10^20 m-2 and subsequently thermally annealed from 100 to 1100 °C. Transmission electron microscopy observations revealed the existence of sharply rectangular nanosize voids at a depth slightly
Comparison of CAD Formulas, Method of Moments and Experiments for Rectangular Microstrip Antennas
Directory of Open Access Journals (Sweden)
Z. Novacek
2003-04-01
Full Text Available Calculations of several cases for rectangular microstrip patchantennas using more accurate cavity model have been compared with theconventional cavity calculations, expressions generated by curvefitting to full wave solutions and method of moments. Calculated aswell as experimental values have been studied for different thickness,patch sizes and substrate materials with different permittivities andlosses.
Disentangling rectangularization and life span extension with the moving rectangle method
Schalkwijk, F.H.; Koopman, J.J.E.; Ghariq, E.; de Beer, J.A.A.; van Bodegom, D.; Westendorp, R.G.J.
2016-01-01
Purpose The moving rectangle method is used to disentangle the contributions of rectangularization and life span extension to the increase in life expectancy. It requires the choice of an endpoint of the survival curve that approaches the maximum age at death. We examined the effect of choosing
Prangsma, J.C.; van Oosten, D.|info:eu-repo/dai/nl/269286470; Kuipers, L.
2011-01-01
The optical properties of rectangular subwavelength holes in a gold film are investigated using the light generated when a focused beam of electrons impinges on the sample close to the hole. Using this technique, multi-spectral maps of the holes are obtained with a resolution beyond the optical
Analysis and design of broadband U-slot cut rectangular microstrip ...
Indian Academy of Sciences (India)
Home; Journals; Sadhana; Volume 42; Issue 10. Analysis and design of broadband U-slot cut rectangular microstrip antennas ... However, in most of the reported work, an in-depth explanation about the mode introduced by U-slot and procedure to design U-slot cut antennas at any given frequency is not explained.
Rectangular distribution whose width is not exactly known: isocurvilinear trapezoidal distribution
Kacker, Raghu N.; Lawrence, James F.
2009-06-01
After the Gaussian distribution, the probability distribution most commonly used in evaluation of uncertainty in measurement is the rectangular distribution. If the half-width of a rectangular distribution is specified, the mid-point is uncertain, and the probability distribution of the mid-point may be represented by another (narrower) rectangular distribution then the resulting distribution is an isosceles trapezoidal distribution. However, in metrological applications, it is more common that the mid-point is specified but the half-width is uncertain. If the probability distribution of the half-width may be represented by another (narrower) rectangular distribution, then the resulting distribution looks like an isosceles trapezoid whose sloping sides are curved. We can refer to such a probability distribution as an isocurvilinear trapezoidal distribution. We describe the main characteristics of an isocurvilinear trapezoidal distribution which arises when the half-width is uncertain. When the uncertainty in specification of the half-width is not excessive, the isocurvilinear trapezoidal distribution can be approximated by an isosceles trapezoidal distribution.
Liu, Yongxun; Ishii, Kenichi; Masahara, Meishoku; Tsutsumi, Toshiyuki; Takashima, Hidenori; Yamauchi, Hiromi; Suzuki, Eiichi
2004-04-01
The dependence of short-channel effects (SCEs) on the cross-sectional channel shape of the fin-type double-gate metal oxide semiconductor field-effect transistors (MOSFETs) has been experimentally investigated from the viewpoint of fin fabrication. The three types of fin-type double-gate MOSFETs (FinFETs) with a rectangular-cross-section channel on a (110)-oriented silicon-on-insulator (SOI) wafer, and a triangular and trapezoidal channels on a (100)-oriented SOI wafer were fabricated using the same orientation-dependent wet etching process. The experimental results show that the SCEs in rectangular-cross-section silicon (Si)-fin channel devices are well suppressed compared with those in a triangular or a trapezoidal Si-fin channel device fabricated using a similar mask pattern, in the regimes of the gate length of less than 85 nm and Si fin height of larger than 65 nm. The presented experimental results are valuable for FinFET design and fabrication.
Major dealers' expert power in distribution channels
National Research Council Canada - National Science Library
Richard Chinomona; Marius Pretorius
2011-01-01
The importance of major dealers’ expertise in distribution channels and effects on exchange relations is widely acknowledged by many SMEs in Africa and yet there seem to be a paucity of research on this matter...
Digital demodulator for wide bandwidth SAR
DEFF Research Database (Denmark)
Jørgensen, Jørn Hjelm
2000-01-01
A novel approach to the design of efficient digital quadrature demodulators for wide bandwidth SAR systems is described. Efficiency is obtained by setting the intermediate frequency to 1/4 the ADC sampling frequency. One channel is made filter-free by synchronizing the local oscillator with the o......A novel approach to the design of efficient digital quadrature demodulators for wide bandwidth SAR systems is described. Efficiency is obtained by setting the intermediate frequency to 1/4 the ADC sampling frequency. One channel is made filter-free by synchronizing the local oscillator...
Positive Surge Propagation in Sloping Channels
Directory of Open Access Journals (Sweden)
Daniele Pietro Viero
2017-07-01
Full Text Available A simplified model for the upstream propagation of a positive surge in a sloping, rectangular channel is presented. The model is based on the assumptions of a flat water surface and negligible energy dissipation downstream of the surge, which is generated by the instantaneous closure of a downstream gate. Under these hypotheses, a set of equations that depends only on time accurately describes the surge wave propagation. When the Froude number of the incoming flow is relatively small, an approximate analytical solution is also proposed. The predictive ability of the model is validated by comparing the model results with the results of an experimental investigation and with the results of a numerical model that solves the full shallow water equations.
Improving flow distribution in influent channels using computational fluid dynamics.
Park, No-Suk; Yoon, Sukmin; Jeong, Woochang; Lee, Seungjae
2016-10-01
Although the flow distribution in an influent channel where the inflow is split into each treatment process in a wastewater treatment plant greatly affects the efficiency of the process, and a weir is the typical structure for the flow distribution, to the authors' knowledge, there is a paucity of research on the flow distribution in an open channel with a weir. In this study, the influent channel of a real-scale wastewater treatment plant was used, installing a suppressed rectangular weir that has a horizontal crest to cross the full channel width. The flow distribution in the influent channel was analyzed using a validated computational fluid dynamics model to investigate (1) the comparison of single-phase and two-phase simulation, (2) the improved procedure of the prototype channel, and (3) the effect of the inflow rate on flow distribution. The results show that two-phase simulation is more reliable due to the description of the free-surface fluctuations. It should first be considered for improving flow distribution to prevent a short-circuit flow, and the difference in the kinetic energy with the inflow rate makes flow distribution trends different. The authors believe that this case study is helpful for improving flow distribution in an influent channel.
DEFF Research Database (Denmark)
Jensen, Jesper Rindom; Benesty, Jacob; Christensen, Mads Græsbøll
2013-01-01
. An interesting aspect is that the framework in which the filters are derived unifies the ideas of optimal filtering and subspace methods. A number of different optimal filter designs are derived in this framework, and the properties and performance of these are studied using both synthetic, periodic signals...... and real signals. The results show a number of interesting things. Firstly, they show how speech distortion can be traded for noise reduction and vice versa in a seamless manner. Moreover, the introduced filter designs are capable of achieving both the upper and lower bounds for the output SNR via...
Directory of Open Access Journals (Sweden)
Wenbo Duan
2017-12-01
Full Text Available Ultrasonic guided waves are widely used to inspect and monitor the structural integrity of plates and plate-like structures, such as ship hulls and large storage-tank floors. Recently, ultrasonic guided waves have also been used to remove ice and fouling from ship hulls, wind-turbine blades and aeroplane wings. In these applications, the strength of the sound source must be high for scanning a large area, or to break the bond between ice, fouling and plate substrate. More than one transducer may be used to achieve maximum sound power output. However, multiple sources can interact with each other, and form a sound field in the structure with local constructive and destructive regions. Destructive regions are weak regions and shall be avoided. When multiple transducers are used it is important that they are arranged in a particular way so that the desired wave modes can be excited to cover the whole structure. The objective of this paper is to provide a theoretical basis for generating particular wave mode patterns in finite-width rectangular plates whose length is assumed to be infinitely long with respect to its width and thickness. The wave modes have displacements in both width and thickness directions, and are thus different from the classical Lamb-type wave modes. A two-dimensional semi-analytical finite element (SAFE method was used to study dispersion characteristics and mode shapes in the plate up to ultrasonic frequencies. The modal analysis provided information on the generation of modes suitable for a particular application. The number of point sources and direction of loading for the excitation of a few representative modes was investigated. Based on the SAFE analysis, a standard finite element modelling package, Abaqus, was used to excite the designed modes in a three-dimensional plate. The generated wave patterns in Abaqus were then compared with mode shapes predicted in the SAFE model. Good agreement was observed between the
Genome-wide analysis of mechanosensitive channel of small ...
African Journals Online (AJOL)
Subcellular localization predictions of PvMSL family revealed their location to plasma and chloroplast membrane. Phylogenetic analysis of nine PvMSL proteins resulted in two main classes. The predicted gene structure, conserved motif, domain and presence of transmembrane regions in each PvMSL strongly supported ...
Versatile control of multiphase laminar flow for in-channel microfabrication.
Gao, Yunxiang; Chen, Liwei
2008-10-01
We have improved the multiphase laminar flow based in-channel fabrication method to overcome diffusion-induced broadening. A sheathing phase with protecting molecules confines metal wire deposition and allows for flexible control of the location, width, and uniformity of deposited metal wires. Two-layered T-junctions are introduced to form vertically stacked multiphase laminar flow. Combining these techniques, we fabricate quadrupole silver electrodes on the four sidewalls of rectangular polydimethylsiloxane (PDMS) microchannels that are 3 cm in length.
An LCMV Filter for Single-Channel Noise Cancellation and Reduction in the Time Domain
DEFF Research Database (Denmark)
Jensen, Jesper Rindom; Benesty, Jacob; Christensen, Mads Græsbøll
2013-01-01
In this paper, we consider a recent class of optimal rectangular fil- tering matrices for single-channel speech enhancement. This class of filters exploits the fact that the dimension of the signal subspace is lower than that of the full space. Then, extra degrees of freedom in the filters...... signal-to-interference ratio. This is showed for both synthetic and real speech signals....
FDTD analysis of dielectric-loaded longitudinally slotted rectangular waveguides.
Al-Rizzo, Hussain M; Younies, Hassan Z; Clark, Ken G; Tranquilla, Jim M
2003-01-01
A versatile electromagnetic (EM) computational algorithm, based on the Finite-Difference Time-Domain (FDTD) technique, is developed to analyze longitudinally oriented, square-ended, single slot fixtures and slot-pair configurations cut in the broad wall of a WR-975 guide operating at a frequency of 915 MHz. The finite conductivity of the waveguide walls is accounted for by employing a time-domain Surface-Impedance Boundary Conditions (SIBC) formulation. The proposed FDTD algorithm has been validated against measurements performed on a probe-excited slot cut along the center line of the broad wall of a WR-284 guide and available experimental data for energy coupled from a longitudinal slot pair in the broad wall of a WR-340 guide. Numerical results are-presented to exploit the influence of the constitutive parameters of the processed material as well as protective insulating window slabs mounted on the exterior surface of the slots. Particular attention is given to the resonant length, scattering parameters, and the electric field distribution within lossy objects placed in the near-field region over a range of slot offsets and workloads with extensive results being reported for the first time. It is shown that the FDTD technique can accurately predict the coupling and power absorption characteristics in loads located in the near field zone of the slotted waveguide structures and, therefore, should prove to be a powerful design tool applicable to a wide class of slotted waveguide applicators that may be difficult to analyze using other available techniques.
Nimmagadda, Rajesh; Venkatasubbaiah, K.
2017-06-01
The present study investigates the laminar forced convection flow of single walled carbon nanotube (SWCNT), gold (Au), aluminum oxide (Al2O3), silver (Ag) and hybrid (Al2O3 + Ag) nanofluids (HyNF) in a wide rectangular micro-channel at low Reynolds numbers. The heat transfer characteristics of de-ionized (DI) water and SWCNT nanofluid with different nanoparticle volume concentrations have been experimental studied. Furthermore, numerical study has also been carried out to investigate the flow and heat transfer characteristics of DI water, SWCNT, Au, Al2O3, Ag and HyNF at different Reynolds numbers with different nanoparticle volume concentrations and particle diameters. The numerical study consider the effects of both inertial and viscous forces by solving the full Navier-Stokes equations at low Reynolds numbers. A two dimensional conjugate heat transfer multiphase mixture model has been developed and used for numerical study. A significant enhancement in the average Nusselt number is observed both experimentally and numerically for nanofluids. The study presents four optimized combinations of nanofluids (1 vol% SWCNT and 1 vol% Au with d_p = 50 nm), (2 vol% SWCNT and 3 vol% Au with d_p = 70 nm), (3 vol% Al2O3 and 2 vol% Au with d_p = 70 nm) as well as (3 vol% HyNF (2.4% Al2O3 + 0.6% Ag) and 3 vol% Au with d_p = 50 nm) that provides a better switching option in choosing efficient working fluid with minimum cost based on cooling requirement. The conduction phenomenon of the solid region at bottom of the micro-channel is considered in the present investigation. This phenomenon shows that the interface temperature between solid and fluid region increases along the length of the channel. The present results has been validated with the experimental and numerical results available in the literature.
Energy Technology Data Exchange (ETDEWEB)
Zhao, Guangpu [School of Mathematical Science, Inner Mongolia University, Hohhot, Inner Mongolia 010021 (China); Jian, Yongjun, E-mail: jianyj@imu.edu.cn [School of Mathematical Science, Inner Mongolia University, Hohhot, Inner Mongolia 010021 (China); Chang, Long [School of Mathematics and Statistics, Inner Mongolia University of Finance and Economics, Hohhot, Inner Mongolia 010051 (China); Buren, Mandula [School of Mathematical Science, Inner Mongolia University, Hohhot, Inner Mongolia 010021 (China)
2015-08-01
By using the method of separation of variables, an analytical solution for the magnetohydrodynamic (MHD) flow of the generalized Maxwell fluids under AC electric field through a two-dimensional rectangular micropump is reduced. By the numerical computation, the variations of velocity profiles with the electrical oscillating Reynolds number Re, the Hartmann number Ha, the dimensionless relaxation time De are studied graphically. Further, the comparison with available experimental data and relevant researches is presented. - Highlights: • MHD flow of the generalized Maxwell fluids under AC electric field is analyzed. • The MHD flow is confined to a two-dimensional rectangular micropump. • Analytical solution is obtained by using the method of separation of variables. • The influences of related parameters on the MHD velocity are discussed.
On the Lateral Static Stability of Low-Aspect-Ratio Rectangular Wings
Linehan, Thomas; Mohseni, Kamran
2017-11-01
Low-aspect-ratio rectangular wings experience a reduction in lateral static stability at angles of attack distinct from that of lift stall. Stereoscopic digital particle image velocimetry is used to elucidate the flow physics behind this trend. Rectangular wings of AR = 0.75, 1, 1.5, 3 were tested at side-slip angles β = -10° and 0° with angle of attack varied in the range α =10° -40° . In side-slip, the leading-edge separation region emerges on the leeward wing where leading-edge flow reattachment is highly intermittent due to vortex shedding. The tip vortex downwash of the AR flow underneath it. The downwash of the AR = 3 wing is insufficient to reattach the leading-edge flow at high incidence. The flow stalls on the leeward wing with stalled flow expanding upstream toward the windward wing with increasing angle of attack.
Shi, Junpeng; Hu, Guoping; Sun, Fenggang; Zong, Binfeng; Wang, Xin
2017-08-24
This paper proposes an improved spatial differencing (ISD) scheme for two-dimensional direction of arrival (2-D DOA) estimation of coherent signals with uniform rectangular arrays (URAs). We first divide the URA into a number of row rectangular subarrays. Then, by extracting all the data information of each subarray, we only perform difference-operation on the auto-correlations, while the cross-correlations are kept unchanged. Using the reconstructed submatrices, both the forward only ISD (FO-ISD) and forward backward ISD (FB-ISD) methods are developed under the proposed scheme. Compared with the existing spatial smoothing techniques, the proposed scheme can use more data information of the sample covariance matrix and also suppress the effect of additive noise more effectively. Simulation results show that both FO-ISD and FB-ISD can improve the estimation performance largely as compared to the others, in white or colored noise conditions.
Fast Noncircular 2D-DOA Estimation for Rectangular Planar Array.
Xu, Lingyun; Wen, Fangqing
2017-04-12
A novel scheme is proposed for direction finding with uniform rectangular planar array. First, the characteristics of noncircular signals and Euler's formula are exploited to construct a new real-valued rectangular array data. Then, the rotational invariance relations for real-valued signal space are depicted in a new way. Finally the real-valued propagator method is utilized to estimate the pairing two-dimensional direction of arrival (2D-DOA). The proposed algorithm provides better angle estimation performance and can discern more sources than the 2D propagator method. At the same time, it has very close angle estimation performance to the noncircular propagator method (NC-PM) with reduced computational complexity.
Free Vibration Analysis of a Rectangular Plate with Kelvin Type Boundary Conditions
Directory of Open Access Journals (Sweden)
R. Kırışık
2007-01-01
Full Text Available The transverse vibrations of a rectangular plate with the Kelvin type boundary conditions at four corners are investigated. The plate is modeled as being attached to four lumped spring-damper systems at the corners. An analytical procedure is proposed based on the modal analysis. The completely free case of the plate is first studied. The expressions for the eigenfrequencies and eigenfunctions of the plate are obtained by utilizing the separation of variables. Then, the case in which the stiffness and the viscous damping as external forces acting at the corners of the plate is studied. Following the modal analysis procedure, the general solution for the equation of motion of the rectangular plate is derived. Some numerical results are presented.
Development of high speed computation algorithm for transient analysis of rectangular plates
Energy Technology Data Exchange (ETDEWEB)
Choi, M. S.; Jang, D. J. [Chonnam National University, Yeosu (Korea, Republic of); Kim, Y. B.; Jang, J. S.; Moon, D. H. [Pukyong National University, Busan (Korea, Republic of)
2009-12-15
A new transient analysis method for a rectangular plate structure comprised of a large number of plate elements was developed in order to significantly reduce computational time and memory. This algorithm was derived from the combination of the transfer technique of the transfer mass coefficient method, the modeling technique of the finite element method, and the numerical integration technique of Newmark's method. In this paper, the algorithm for the transient analysis of a rectangular plate structure is formulated by the proposed method. In order to verify the computational accuracy and efficiency of the proposed method, the results obtained by the proposed method were compared with those obtained by the finite element method and the finite element-transfer matrix method. The proposed method, the finite element-transfer mass coefficient method, could considerably reduce the computation time without the loss of accuracy, in spite of using small computation memory, by using the transfer rules successively
Directory of Open Access Journals (Sweden)
Kiran D. Mali
2013-01-01
Full Text Available This paper is concerned with a vibration analysis of perforated rectangular plates with rectangular perforation pattern of circular holes. The study is particularly useful in the understanding of the vibration of sound absorbing screens, head plates, end covers, or supports for tube bundles typically including tube sheets and support plates used in the mechanical devices. An energy method is developed to obtain analytical frequencies of the perforated plates with clamped edge, support conditions. Perforated plate is considered as plate with uniformly distributed mass. Holes are considered as concentrated negative masses. The analytical procedure using the Galerkin method is adopted. The deflected surface of the plate is approximated by the cosine series which satisfies the boundary conditions. Finite element method (FEM results have been used to illustrate the validity of the analytical model. The comparisons show that the analytical model predicts natural frequencies reasonably well for holes of small size.
Three-dimensional detonation cellular structures in rectangular ducts using an improved CESE scheme
Shen, Yang
2016-11-01
The three-dimensional premixed H2-O2 detonation propagation in rectangular ducts is simulated using an in-house parallel detonation code based on the second-order space–time conservation element and solution element (CE/SE) scheme. The simulation reproduces three typical cellular structures by setting appropriate cross-sectional size and initial perturbation in square tubes. As the cross-sectional size decreases, critical cellular structures transforming the rectangular or diagonal mode into the spinning mode are obtained and discussed in the perspective of phase variation as well as decreasing of triple point lines. Furthermore, multiple cellular structures are observed through examples with typical aspect ratios. Utilizing the visualization of detailed three-dimensional structures, their formation mechanism is further analyzed.
Unpinning of spiral waves from rectangular obstacles by stimulated wave trains
Ponboonjaroenchai, Benjamas; Srithamma, Panatda; Kumchaiseemak, Nakorn; Sutthiopad, Malee; Müller, Stefan C.; Luengviriya, Chaiya; Luengviriya, Jiraporn
2017-09-01
Pinned spiral waves are exhibited in many excitable media. In cardiology, lengthened tachycardia correspond to propagating action potential in forms of spiral waves pinned to anatomical obstacles including veins and scares. Thus, elimination such waves is important particularly in medical treatments. We present study of unpinning of a spiral wave by a wave train initiated by periodic stimuli at a given location. The spiral wave is forced to leave the rectangular obstacle when the period of the wave train is shorter than a threshold Tunpin. For small obstacles, Tunpin decreases when the obstacle size is increased. Furthermore, Tunpin depends on the obstacle orientation with respect to the wave train propagation. For large obstacles, Tunpin is independent to the obstacle size. It implies that the orientation of the obstacle plays an important role in the unpinning of the spiral wave, especially for small rectangular obstacles.
Directory of Open Access Journals (Sweden)
Hassan Saghi
2016-03-01
Full Text Available Sloshing phenomenon is a complicated free surface flow problem that increases the dynamic pressure on the sidewalls and the bottom of the storage tanks. When the storage tanks are partially filled, it is essential to be able to evaluate the fluid dynamic loads on the tank's perimeter. In this paper, a numerical code was developed to determine the pressure distribution on the rectangular and trapezoidal storage tanks' perimeters due to liquid sloshing phenomenon. Assuming the fluid to be inviscid, the Laplace equation and the nonlinear free surface boundary conditions were solved using coupled boundary element – finite element method. The code performance for sloshing modeling was validated using Nakayama and Washizu's results. Finally, this code was used for partially filled rectangular and trapezoidal storage tanks and free surface displacement, pressure distribution and horizontal and vertical forces exerted on the tanks' perimeters due to liquid sloshing phenomenon were estimated and discussed.
Design of high-efficient freeform LED lens for illumination of elongated rectangular regions.
Moiseev, Mikhail A; Doskolovich, Leonid L; Kazanskiy, Nikolay L
2011-05-09
We propose a method for the design of an optical element generating the required irradiance distribution in a rectangular area with a large aspect ratio. Application fields include streetlights, the illumination of halls or corridors, and so forth. The design assumes that the optical element has a complex form and contains two refractive surfaces. The first one converts a spherical beam from the light source to a cylindrical beam. The second one transforms an incident cylindrical beam and generates the required irradiance distribution in the target plane. Two optical elements producing a uniform irradiance distribution from a Cree® XLamp® source in rectangular regions of 17 m × 4 m and 17 m × 2 m are designed. The light efficiency of the designed optical element is larger than 83%, whereas the irradiance nonuniformity is less than 9%.
DEFF Research Database (Denmark)
Nielsen, Sofus Birkedal; Celestinos, Adrian
2010-01-01
Rectangular rooms are the most common shape for sound reproduction, but at low frequencies the reflections from the boundaries of the room cause large spatial variations in the sound pressure level. Variations up to 30 dB are normal, not only at the room modes, but basically at all frequencies....... As sound propagates in time, it seems natural that the problems can best be analyzed and solved in the time domain. A time based room correction system named CABS (Controlled Acoustical Bass System) has been developed for sound reproduction in rectangular listening rooms. It can control the sound...... distribution in the room at low frequencies by using multiple loudspeakers together with an optimal placement of the loudspeakers. At low frequencies CABS will create a plane wave from the front wall loudspeakers which will be absorbed by additional loudspeakers at the rear wall giving an almost homogeneous...
Cyclic Load Responses of GFRP-Strengthened Hollow Rectangular Bridge Piers
Directory of Open Access Journals (Sweden)
Junfeng Jia
2014-01-01
Full Text Available This study investigated the seismic behavior of glass fiber reinforced polymer (GFRP strengthened hollow rectangular bridge piers. Cyclic testing of reinforced concrete (RC piers retrofitted with GFRP was carried out under constant axial loading and lateral bending. The failure characteristics, flexural ductility, dissipated energy, and hysteretic behaviors, were analyzed based on experimental results. A simplified GFRP-confined concrete model is developed by considering effective strength coefficient and area distribution ratio of GFRP sheets. The results indicate that the failure modes and damage region would be changed and the ductility and dissipated energy of the GFRP-strengthened hollow rectangular bridge piers were improved greatly but not much improvement for the lateral load capacity. The analytical results of the force-displacement hysteretic loops based on the GFRP-confined concrete model developed in this paper agreed well with the experimental data.
Jalinous, Reza; Lisanby, Sarah H.
2013-01-01
A novel transcranial magnetic stimulation (TMS) device with controllable pulse width (PW) and near rectangular pulse shape (cTMS) is described. The cTMS device uses an insulated gate bipolar transistor (IGBT) with appropriate snubbers to switch coil currents up to 7 kA, enabling PW control from 5 μs to over 100 μs. The near-rectangular induced electric field pulses use 22–34% less energy and generate 67–72% less coil heating compared to matched conventional cosine pulses. CTMS is used to stimulate rhesus monkey motor cortex in vivo with PWs of 20 to 100 μs, demonstrating the expected decrease of threshold pulse amplitude with increasing PW. The technological solutions used in the cTMS prototype can expand functionality, and reduce power consumption and coil heating in TMS, enhancing its research and therapeutic applications. PMID:18232369
Scattered acoustic field above a grating of non-parallel rectangular cavities
Khanfir, A.; Faiz, A.; Ducourneau, J.; Chatillon, J.; Lami, S. Skali
2016-01-01
Geometric or acoustical irregularities induces acoustic scattering. In this paper, a generalization of the model proposed by Khanfir et al. [8] (Journal of Sound and Vibration 332 (4) (2013)) to determine the scattered acoustic field above gratings of parallel rectangular cavities is developed, addressing the case of gratings of non-parallel rectangular cavities. The results provided by the model were compared both to numerical results, obtained with the finite element method, and to experimental ones. The observed agreement between the analytical predictions and the numerical and experimental results supports the validity of the proposed model. The coupling between the different cavities was investigated, in order to attain an explanation for its dependence on frequency and on the spacing between cavities.
Dynamic model of heat and mass transfer in rectangular adsorber of a solar adsorption machine
Chekirou, W.; Boukheit, N.; Karaali, A.
2016-10-01
This paper presents the study of a rectangular adsorber of solar adsorption cooling machine. The modeling and the analysis of the adsorber are the key point of such studies; because of the complex coupled heat and mass transfer phenomena that occur during the working cycle. The adsorber is heated by solar energy and contains a porous medium constituted of activated carbon AC-35 reacting by adsorption with methanol. To study the solar collector type effect on system's performances, the used model takes into account the variation of ambient temperature and solar intensity along a simulated day, corresponding to a total daily insolation of 26.12 MJ/m2 with ambient temperature average of 27.7 °C, which is useful to know the daily thermal behavior of the rectangular adsorber.
Tagawa, Kazuyoshi; Yamada, Takahiro; Tanaka, Hiromi T
2013-01-01
In this paper, we propose a rectangular tetrahedral adaptive mesh based corotated finite element model for interactive soft tissue simulation. Our approach consists of several computation reduction techniques. They are as follows: 1) an efficient calculation approach for computing internal forces of nodes of elastic objects to take advantage of the rectangularity of the tetrahedral adaptive mesh; 2) fast shape matching approach by using a new scaling of polar decomposition; 3) an approach for the reduction of the number of times of shape matching by using the hierarchical structure. We implemented the approach into our surgery simulator and compared the accuracy of the deformation and the computation time among 1) proposed approach, 2) L-FE), and 3) NL-FEM. Finally, we show the effectiveness of our proposed approach.
Advanced porous electrodes with flow channels for vanadium redox flow battery
Bhattarai, Arjun; Wai, Nyunt; Schweiss, Ruediger; Whitehead, Adam; Lim, Tuti M.; Hng, Huey Hoon
2017-02-01
Improving the overall energy efficiency by reducing pumping power and improving flow distribution of electrolyte, is a major challenge for developers of flow batteries. The use of suitable channels can improve flow distribution through the electrodes and reduce flow resistance, hence reducing the energy consumption of the pumps. Although several studies of vanadium redox flow battery have proposed the use of bipolar plates with flow channels, similar to fuel cell designs, this paper presents the use of flow channels in the porous electrode as an alternative approach. Four types of electrodes with channels: rectangular open channel, interdigitated open cut channel, interdigitated circular poked channel and cross poked circular channels, are studied and compared with a conventional electrode without channels. Our study shows that interdigitated open channels can improve the overall energy efficiency up to 2.7% due to improvement in flow distribution and pump power reduction while interdigitated poked channel can improve up to 2.5% due to improvement in flow distribution.
Reflectionless wave dynamics in channels of variable depth and width
Pelinovsky, Efim; Didenkulova, Ira; Shurgalina, Ekaterina
2017-04-01
In this work we discuss long wave dynamics in rectangular channels of variable depth and width. Demonstrated, that for conditions of "self-consistent channel" when Bc = const (B is a channel width, and c is a celerity), the wave propagates without inner reflection from the channel bottom and walls even if the function c(x) is arbitrary. It is shown, in the framework of the linear shallow-water theory, that the temporal shape of the travelling wave does not change with the distance; its amplitude and duration are constant. However, the spatial shape of the wave varies due to the change in celerity along the channel. In the framework of the nonlinear shallow-water theory, it is shown that the travelling wave deforms while the inner reflection from the channel bottom and walls is still absent. In this case dispersive effects lead to a disintegration of the initial wave into solitons. This process is studied in detail. Such unusual waves may propagate over long distances without loss of energy.
Simple haptotactic gradient generation within a triangular microfluidic channel.
Park, Jungyul; Kim, Deok-Ho; Kim, Gabriel; Kim, Younghoon; Choi, Eunpyo; Levchenko, Andre
2010-08-21
Most microfluidic devices developed to date for the analysis of live cells incorporate channels with relatively simple constant rectangular or semi-circular cross-sections, relying on complex channel network geometries rather than alteration of the shapes of the channels themselves for development of diverse functional fluidic controls, e.g., spatial gradients of bioactive ligands. In this study we describe a simple alternative method to create highly defined and predictable gradients of surface bound molecules. This method relies on the generation of a considerable variation in the spatial distribution of flow velocities within a channel with a triangular cross-section. The triangular shape can be easily implemented by using bulk wet etching and polydimethylsiloxane (PDMS) replica molding techniques. By analytical modeling and simulation, we predict that the deposition of the solute onto a channel boundary depends on the local flow rate values, yielding gradient spanning the whole width of the channel. This prediction was validated by direct visualization of the flow rate and fibronectin-rhodamine deposition in a fabricated microchannel. Using this experimental platform, we assessed cell migration in response to a fibronectin gradient deposited in the microchannels. We find that this gradient could induce robust haptotaxis of Chinese Hamster Ovary (CHO) cells towards the areas of higher fibronectin surface density. We propose that the described simple gradient generation method can help to avoid complexity present in many current device designs, allowing to introduce more easily other potentially useful design features.
Han, Samuel S.; Schafer, Charles F.
1988-01-01
A numerical analysis of transient heat and solute transport across a rectangular cavity with combined horizontal temperature and concentration gradients is performed by a numerical method based on the SIMPLE. Numerical results show that the average Nusselt and Sherwood numbers both decrease markedly when the solutal and thermal buoyancy forces act in the opposite directions. When the solutal and thermal buoyancy forces act in the same directions, however, the average Sherwood number increases significantly and yet the average Nusselt number decreases slightly.
Environmental Effects on Flutter Characteristics of Laminated Composite Rectangular and Skew Panels
Directory of Open Access Journals (Sweden)
T.V.R. Chowdary
1996-01-01
Full Text Available A finite element method is presented for predicting the flutter response of laminated composite panels subjected to moisture concentration and temperature. The analysis accounts for material properties at elevated temperature and moisture concentration. The analysis is based on the first-order approximation to the linear piston theory and laminated plate theory that includes shear deformation. Both rectangular and skew panels are considered. Stability boundaries at moisture concentrations and temperatures for various lamination schemes and boundary conditions are discussed.
RF Magnetic Field Uniformity of Rectangular Planar Coils for Resonance Imaging
2016-02-04
uniform magnetic field. The NQR signal strength at different positions along the length of the coils determine the uniformity of the magnetic field...magnetic, potassium chlorate, nuclear quadrupole resonance, uniform field, coil, surface coil I. INTRODUCTION QR is a magnetic resonance phenomenon...magnetic field along the length of a rectangular coil with small width needs to be studied. This paper investigates the uniformity of the RF
Cyclic Load Responses of GFRP-Strengthened Hollow Rectangular Bridge Piers
Junfeng Jia; Qiang Han; Zigang Xu; Dongjie Zhang
2014-01-01
This study investigated the seismic behavior of glass fiber reinforced polymer (GFRP) strengthened hollow rectangular bridge piers. Cyclic testing of reinforced concrete (RC) piers retrofitted with GFRP was carried out under constant axial loading and lateral bending. The failure characteristics, flexural ductility, dissipated energy, and hysteretic behaviors, were analyzed based on experimental results. A simplified GFRP-confined concrete model is developed by considering effective strength ...
A physical model for aftershocks triggered by dislocation on a rectangular fault
Console, R.; F. Catalli
2005-01-01
We find the static displacement, stress, strain and the modified Columb failure stress produced in an elastic medium by a finite size rectangular fault after its dislocation with uniform stress drop but a non uniform dislocation on the source. The time-dependent rate of triggered earthquakes is estimated by a rate-state model applied to a uniformly distributed population of faults whose equilibrium is perturbated by a stress change caused only by the first dislocation. The rate of triggered e...
Filtro paso-bajo en guía-onda rectangular usando postes circulares
Vera Castejón, Pedro; Quesada Pereira, Fernando Daniel; Álvarez Melcón , Alejandro; Parreño Marchante, Alfredo
2011-01-01
Número de publicación: 2 355 341 Número de solicitud: 201130200 Filtro paso-bajo en guía-onda rectangular usando postes circulares, caracterizado porque utilizan postes circulares como inversores de impedancia de tipo capacitativo, y el radio de cada poste circular introducido en la estructura es variable, con el fin de obtener los valores de inversores de impedancia requeridos para sintetizar la función de transferencia deseada. Universidad Politécnica de Cartagena...
Visualization of liquid Helium flows generated by an oscillating rectangular cylinder
Švančara, Patrik
2015-01-01
For the first time, a cylinder of rectangular cross section, performing quasi-harmonic oscillations in liquid helium, was employed for the experimental study of the dynamics of macroscopic vortex structures shed at the sharp edges of the obstacle. The flow of liquid helium was visualized by the motion of small, solidified deuterium particles, dispersed in the experimental cell and illuminated by a thin laser sheet. Experiments in He I, a classical viscous fluid, and He II, a fluid displaying ...
GARCON: Genetic Algorithm for Rectangular Cuts OptimizatioN. User's manual for version 2.0
Abdullin, S.; Bartalini, P.; Cavanaugh, R.; Drozdetskiy, A.; Karapostoli, G.; Mitselmakher, Guenakh; Pakhotin, Yu.; Scurlock, B.; Spiropulu, M.; Pakhotin, Yu.
2006-01-01
This paper presents GARCON program, illustrating its functionality on a simple HEP analysis example. The program automatically performs rectangular cuts optimization and verification for stability in a multi-dimensional phase space. The program has been successfully used by a number of very different analyses presented in the CMS Physics Technical Design Report. The current version GARCON 2.0 incorporates the feedback the authors have received. User's Manual is included as a part of the note.
Release of metal ions from round and rectangular NiTi wires
Directory of Open Access Journals (Sweden)
Arash Azizi
2016-04-01
Full Text Available Abstract Background The aim of this study was to evaluate the amount of nickel and titanium ions released from two wires with different shapes and a similar surface area. Methods Forty round nickel-titanium (NiTi arch wires with the diameter of 0.020 in. and 40 rectangular NiTi arch wires with the diameter of 0.016 × 0.016 in. were immersed in artificial saliva during a 21-day period. The surface area of both wires was 0.44 in.2. Wires were separately dipped into polypropylene tubes containing 50 ml of buffer solution and were incubated and maintained at 37 °C. Inductively coupled plasma atomic emission spectrometry (ICP-AES was used to measure the amount of ions released after exposure lengths of 1 h, 24 h, 1 week, and 3 weeks. Repeated measures ANOVA and Tukey tests were used to evaluate the data. Results The results indicated that the amount of nickel and titanium concentrations was significantly higher in the rectangular wire group. The most significant release of all metals was measured after the first hour of immersion. In the rectangular wire group, 243 ± 4.2 ng/ml of nickel was released after 1 h, while 221.4 ± 1.7 ng/ml of nickel was released in the round wire group. Similarly, 243.3 ± 2.8 ng/ml of titanium was released in the rectangular wire group and a significantly lower amount of 211.9 ± 2.3 ng/ml of titanium was released in the round wire group. Conclusions Release of metal ions was influenced by the shape of the wire and increase of time.
Taji, S. G.; Parishwad, G. V.; Sane, N. K.
2014-07-01
This paper presents results of the experimental study conducted on heated horizontal rectangular fin array under natural convection. The temperature mapping and the prediction of the flow patterns over the fin array with variable fin spacing is carried out. Dimensionless fin spacing to height (S/H) ratio is varied from 0.05 to 0.3 and length to height ratio (L/H) = 5 is kept constant. The heater input to the fin array assembly is varied from 25 to 100 W. The single chimney flow pattern is observed from 8 to 12 mm fin spacing. The end flow is choked below 6 mm fin spacing. The single chimney flow pattern changes to sliding or end flow choking at 6 mm fin spacing. The average heat transfer coefficient (ha) is very small (2.52-5.78 W/m2 K) at 100 W for S = 5-12 mm. The ha is very small (1.12-1.8 W/m2 K) at 100 W for 2-4 mm fin spacing due to choked fin array end condition. The end flow is not sufficient to reach up to central portion of fin array and in the middle portion there is an unsteady down and up flow pattern resulting in sliding chimney. The central bottom portion of fin array channel does not contribute much in heat dissipation for S = 2-4 mm. The ha has significantly improved at higher spacing as compared to lower spacing region. The single chimney flow pattern is preferred from heat transfer point of view. The optimum spacing is confirmed in the range of 8-10 mm. The average heat transfer results are compared with previous literature and showed similar trend and satisfactory agreement. An empirical equation has been proposed to correlate the average Nusselt number as a function of Grashof number and fin spacing to height ratio. The average error for this equation is -0.32 %.
Huang, Chi-Hung; Chen, Yi-Yu
2006-02-01
The transverse vibration of piezoceramic rectangular thin plates is investigated theoretically and experimentally using the Ritz's method incorporated with the defined equivalent constants. The equivalent constants are derived by comparing the characteristic equations of transverse resonant frequencies between isotropic and piezoceramic disks. By replacing the Poisson's ratio and flexural rigidity with the equivalent constants, the well-known Ritz's method can be used to investigate the transverse vibration of piezoceramic rectangular plates. Two different types of boundary conditions-clamped-free-free-free (CFFF) and clamped-free-clamped-free (CFCF)-are analyzed in this paper. For the experimental measurement, two optical techniques-amplitude-fluctuation electronic speckle pattern interferometry (AF-ESPI) and laser Doppler vibrometer (LDV)-are used to validate the analytical results. Both the transverse vibration modes and resonant frequencies of piezoceramic rectangular plates are obtained by the AF-ESPI method. Numerical calculations using the finite-element method (FEM) are performed, and the results are compared with the theoretical analysis and experimental measurements. Excellent agreements are obtained for results of both resonant frequencies and mode shapes. According to the theoretical calculations with different equivalent Poisson's ratios, resonant frequency variations versus aspect ratios ranging from 0.1 to 10 also are discussed for the first several modes in the work.
Kostichev, P. I.; Poddubnyi, I. I.; Razuvanov, N. G.
2017-11-01
In some DEMO blanket designs liquid metal flows in vertical ducts of rectangular cross-section between ceramic breeder units providing their cooling. Heat exchange in these conditions is governed by the influence of magnetic field (coplanar) and by buoyancy effects that depend on the flow orientation to the gravity vector (downward and upward flow). Magnetohydrodynamic and heat transfer of liquid metal in vertical rectangular ducts is not well researched. Experimental study of buoyancy effects in rectangular duct with coplanar magnetic field for one-sided heat load and downward and upward flowsis presented in this paper. The detail research with has been done on mercury MHD close loop with using of the probe technique allow to discover several advantageous and disadvantageous effects. The intensive impact of buoyancy force has been observed in a few regime of downward flow which has been laminarized by magnetic field. Due to the development in the flow of the secondary large-scale vortices heat transfer improved and the temperature fluctuations of the abnormally high intensity have been fixed. On the contrary, in the upward flow the buoyancy force stabilized the flow which lead to decreasing of the turbulence heat transfer ratio and, consequently, deterioration of heat transfer.
Development of an Empirical Methods for Predicting Jet Mixing Noise of Cold Flow Rectangular Jets
Russell, James W.
1999-01-01
This report presents an empirical method for predicting the jet mixing noise levels of cold flow rectangular jets. The report presents a detailed analysis of the methodology used in development of the prediction method. The empirical correlations used are based on narrow band acoustic data for cold flow rectangular model nozzle tests conducted in the NASA Langley Jet Noise Laboratory. There were 20 separate nozzle test operating conditions. For each operating condition 60 Hz bandwidth microphone measurements were made over a frequency range from 0 to 60,000 Hz. Measurements were performed at 16 polar directivity angles ranging from 45 degrees to 157.5 degrees. At each polar directivity angle, measurements were made at 9 azimuth directivity angles. The report shows the methods employed to remove screech tones and shock noise from the data in order to obtain the jet mixing noise component. The jet mixing noise was defined in terms of one third octave band spectral content, polar and azimuth directivity, and overall power level. Empirical correlations were performed over the range of test conditions to define each of these jet mixing noise parameters as a function of aspect ratio, jet velocity, and polar and azimuth directivity angles. The report presents the method for predicting the overall power level, the average polar directivity, the azimuth directivity and the location and shape of the spectra for jet mixing noise of cold flow rectangular jets.
Approximate natural vibration analysis of rectangular plates with openings using assumed mode method
Directory of Open Access Journals (Sweden)
Dae Seung Cho
2013-09-01
Full Text Available Natural vibration analysis of plates with openings of different shape represents an important issue in naval architecture and ocean engineering applications. In this paper, a procedure for vibration analysis of plates with openings and arbitrary edge constraints is presented. It is based on the assumed mode method, where natural frequencies and modes are determined by solving an eigenvalue problem of a multi-degree-of-freedom system matrix equation derived by using Lagrange's equations of motion. The presented solution represents an extension of a procedure for natural vibration analysis of rectangular plates without openings, which has been recently presented in the literature. The effect of an opening is taken into account in an intuitive way, i.e. by subtracting its energy from the total plate energy without opening. Illustrative numerical examples include dynamic analysis of rectangular plates with rectangular, elliptic, circular as well as oval openings with various plate thicknesses and different combinations of boundary conditions. The results are compared with those obtained by the finite element method (FEM as well as those available in the relevant literature, and very good agreement is achieved.
Jet Surface Interaction Scrubbing Noise from High Aspect-Ratio Rectangular Jets
Khavaran, Abbas; Bozak, Richard F.
2015-01-01
Concepts envisioned for the future of civil air transport consist of unconventional propulsion systems in the close proximity of the airframe. Distributed propulsion system with exhaust configurations that resemble a high aspect ratio rectangular jet are among geometries of interest. Nearby solid surfaces could provide noise shielding for the purpose of reduced community noise. Interaction of high-speed jet exhaust with structure could also generate new sources of sound as a result of flow scrubbing past the structure, and or scattered noise from sharp edges. The present study provides a theoretical framework to predict the scrubbing noise component from a high aspect ratio rectangular exhaust in proximity of a solid surface. The analysis uses the Greens function (GF) to the variable density Pridmore-Brown equation in a transversely sheared mean flow. Sources of sound are defined as the auto-covariance function of second-rank velocity fluctuations in the jet plume, and are modeled using a RANS-based acoustic analogy approach. Acoustic predictions are presented in an 8:1 aspect ratio rectangular exhaust at three subsonic Mach numbers. The effect of nearby surface on the scrubbing noise component is shown on both reflected and shielded sides of the plate.
Two-Layer Error Control Codes Combining Rectangular and Hamming Product Codes for Cache Error
Directory of Open Access Journals (Sweden)
Meilin Zhang
2014-02-01
Full Text Available We propose a novel two-layer error control code, combining error detection capability of rectangular codes and error correction capability of Hamming product codes in an efficient way, in order to increase cache error resilience for many core systems, while maintaining low power, area and latency overhead. Based on the fact of low latency and overhead of rectangular codes and high error control capability of Hamming product codes, two-layer error control codes employ simple rectangular codes for each cache line to detect cache errors, while loading the extra Hamming product code checks bits in the case of error detection; thus enabling reliable large-scale cache operations. Analysis and experiments are conducted to evaluate the cache fault-tolerant capability of various existing solutions and the proposed approach. The results show that the proposed approach can significantly increase Mean-Error-To-Failure (METF and Mean-Time-To-failure (MTTF up to 2.8×, reduce storage overhead by over 57%, and increase instruction per-cycle (IPC up to 7%, compared to complex four-way 4EC5ED; and it increases METF and MTTF up to 133×, reduces storage overhead by over 11%, and achieves a similar IPC compared to simple eight-way single-error correcting double-error detecting (SECDED. The cost of the proposed approach is no more than 4% external memory access overhead.
Incorporating channel geometric uncertainty into a regional scale flood inundation model
Neal, Jeffrey; Odoni, Nick; Trigg, Mark; Freer, Jim; Bates, Paul
2013-04-01
Models that simulate the dynamics of river and floodplain water surface elevations over large regions have a wide range of applications including regional scale flood risk estimation and simulating wetland inundation dynamics, while potential emerging applications include estimating river discharge from level observations as part of a data assimilation system. The river routing schemes used by global land surface models are often relatively simple in that they are based on wave speed, kinematic and diffusive physics. However, as the research on large scale river modelling matures, approaches are being developed that resemble scaled-up versions of the hydrodynamic models traditionally applied to rivers at the reach scale. These developments are not surprising given that such models can be significantly more accurate than traditional routing schemes at simulating water surface elevation. This presentation builds on the work of Neal et al. (2012) who adapted a reach scale dynamic flood inundation model for large scale application with the addition of a sub-grid parameterisation for channel flow. The scheme was shown to be numerically stable and scalable, with the aid of some simple test cases, before it was applied to an 800 km reach of the River Niger that includes the complex waterways and lakes of the Niger Inland Delta in Mali. However, the model was significantly less accurate at low to moderate flows than at high flow due, in part, to assuming that the channel geometry was rectangular. Furthermore, this made it difficult to calibrate channel parameters with water levels during typical flow conditions. This presentation will describe an extension of this sub-grid model that allows the channel shape to be defined as an exponent of width, along with a regression based approach to approximate the wetted perimeter length for the new geometry. By treating the geometry in this way uncertainty in the channel shape can be considered as a model parameter, which for the
High-energy noiselike rectangular pulse in a passively mode-locked figure-eight fiber laser
Zheng, Xu-Wu; Luo, Zhi-Chao; Liu, Hao; Zhao, Nian; Ning, Qiu-Yi; Liu, Meng; Feng, Xin-Huan; Xing, Xiao-Bo; Luo, Ai-Ping; Xu, Wen-Cheng
2014-04-01
We report on the generation of a high-energy noiselike rectangular pulse in a mode-locked figure-eight fiber laser. The noiselike pulse appeared to have a rectangular shape on the oscilloscope. The pulse duration increased with increasing pump power, while the peak amplitude remained constant, which is very similar to the pulse evolution of dissipative soliton resonance. However, the pulse type is confirmed as a noiselike pulse using an autocorrelator. With the maximum pump power of 350 mW, the 135 nJ noiselike rectangular pulse with 76 ns duration was achieved. The results provide a new guideline for clarifying an alternative formation mechanism of the high-energy rectangular pulses in fiber lasers.
2013-07-16
... light-walled rectangular pipe and tube from China, Korea, Mexico, and Turkey would be likely to lead to... on 202-205-1810. Persons with mobility impairments who will need special assistance in gaining access...
PIV analysis of the homogeneity of energy deposition during development of a plasma actuator channel
Glazyrin, F. N.; Znamenskaya, I. A.; Mursenkova, I. V.; Naumov, D. S.; Sysoev, N. N.
2016-01-01
Nonstationary velocity fields that arise during the development of flows behind shock (blast) waves initiated by pulsed surface sliding discharge in air at a pressure of (2-4) × 104 Pa have been experimentally studied by the particle image velocimetry (PIV) technique. Plasma sheets (nanosecond discharges slipping over a dielectric surface) were initiated on walls of a rectangular chamber. Spatial analysis of the shape of shock-wave fronts and the distribution of flow velocities behind these waves showed that the pulsed energy deposition is homogeneous along discharge channels of a plasma sheet, while the integral visible plasma glow intensity decreases in the direction of channel propagation.
Citizens and service channels: channel choice and channel management implications
Pieterson, Willem Jan
2010-01-01
The arrival of electronic channels in the 1990s has had a huge impact on governmental service delivery. The new channels have led to many new opportunities to improve public service delivery, not only in terms of citizen satisfaction, but also in cost reduction for governmental agencies. However,
2015-07-01
COMPUTING SHAPES AND STRESS DISTRIBUTIONS FOR QUASI-RECTANGULAR HOLES USING EXCEL VBA .......... 35 APPENDIX B: LISTING OF FADD2D INPUT DECK FOR STRESS...from which Kt values may be readily calculated, have been implemented in a Microsoft Excel spreadsheet using the Visual Basic for Applications ( VBA ...UNCLASSIFIED Appendix A: Functions for computing shapes and stress distributions for quasi-rectangular holes using Excel VBA What follows is the VBA
Olson, Marvin
2016-01-12
A method, system, and apparatus for installing channel nuts includes a shank, a handle formed on a first end of a shank, and an end piece with a threaded shaft configured to receive a channel nut formed on the second end of the shaft. The tool can be used to insert or remove a channel nut in a channel framing system and then removed from the channel nut.
Energy Technology Data Exchange (ETDEWEB)
Choi, Chi Woong; Yu, Dong In; Kim, Moo Hwan [Pohang University of Science and Technology, Pohang (Korea, Republic of)
2009-12-15
Wettability is a critical parameter in micro-scale two-phase system. Several previous results indicate that wettability has influential affect on two-phase flow pattern in a microchannel. However, previous studies conducted using circular microtube, which was made by conventional fabrication techniques. Although most applications for micro thermal hydraulic system has used a rectangular microchannel, data for the rectangular microchannel is totally lack. In this study, a hydrophilic rectangular microchannel was fabricated using a photosensitive glass. And a hydrophobic rectangular microchannel was prepared using silanization of glass surfaces with OTS (octa-dethy1-trichloro-siliane). Experiments of two-phase flow in the hydrophilic and the hydrophobic rectangular microchannels were conducted using water and nitrogen gas. Visualization of two-phase flow pattern was carried out using a high-speed camera and a long distance microscope. Visualization results show that the wettability was important for two-phase flow pattern in rectangular microchannel. In addition, two-phase frictional pressure drop was highly related with flow patterns. Finally, Two-phase frictional pressure drop was analyzed with flow patterns.
Red cell membrane elasticity as determined by flow channel technique.
Chien, S; Sung, L A; Lee, M M; Skalak, R
1992-01-01
The elasticity of red cell membrane was determined in a rectangular flow channel under controlled shear flow. The relation between shear stress and cell extension ratio (lambda) has been analyzed with the use of Evans' two-dimensional model. The deformed cell shapes observed experimentally agreed well with the model with lambda up to 1.4. The best correlation was found at lambda = 1.2. The analysis suggests a nonlinear extensional membrane modulus in the low stress range encountered in the flow channel. In terms of an appropriate strain parameter, the elastic modulus is shown to rise toward the level encountered in micropipette aspiration experiments. The implications of the present findings in modeling of cell mechanics and in cell hemolysis are discussed.
Sea Anemone Toxins Affecting Potassium Channels
Diochot, Sylvie; Lazdunski, Michel
The great diversity of K+ channels and their wide distribution in many tissues are associated with important functions in cardiac and neuronal excitability that are now better understood thanks to the discovery of animal toxins. During the past few decades, sea anemones have provided a variety of toxins acting on voltage-sensitive sodium and, more recently, potassium channels. Currently there are three major structural groups of sea anemone K+ channel (SAK) toxins that have been characterized. Radioligand binding and electrophysiological experiments revealed that each group contains peptides displaying selective activities for different subfamilies of K+ channels. Short (35-37 amino acids) peptides in the group I display pore blocking effects on Kv1 channels. Molecular interactions of SAK-I toxins, important for activity and binding on Kv1 channels, implicate a spot of three conserved amino acid residues (Ser, Lys, Tyr) surrounded by other less conserved residues. Long (58-59 amino acids) SAK-II peptides display both enzymatic and K+ channel inhibitory activities. Medium size (42-43 amino acid) SAK-III peptides are gating modifiers which interact either with cardiac HERG or Kv3 channels by altering their voltage-dependent properties. SAK-III toxins bind to the S3C region in the outer vestibule of Kv channels. Sea anemones have proven to be a rich source of pharmacological tools, and some of the SAK toxins are now useful drugs for the diagnosis and treatment of autoimmune diseases.
Investigating the Structures of Turbulence in a Multi-Stream, Rectangular, Supersonic Jet
Magstadt, Andrew S.
Supersonic flight has become a standard for military aircraft, and is being seriously reconsidered for commercial applications. Engine technologies, enabling increased mission capabilities and vehicle performance, have evolved nozzles into complex geometries with intricate flow features. These engineering solutions have advanced at a faster rate than the understanding of the flow physics, however. The full consequences of the flow are thus not known, and using predictive tools becomes exceedingly difficult. Additionally, the increasing velocities associated with supersonic flight exacerbate the preexisting jet noise problem, which has troubled the engineering community for nearly 65 years. Even in the simplest flows, the full consequences of turbulence, e.g. noise production, are not fully understood. For composite flows, the fluid mechanics and acoustic properties have been studied even less sufficiently. Before considering the aeroacoustic problem, the development, structure, and evolution of the turbulent flow-field must be considered. This has prompted an investigation into the compressible flow of a complex nozzle. Experimental evidence is sought to explain the stochastic processes of the turbulent flow issuing from a complex geometry. Before considering the more complicated configuration, an experimental campaign of an axisymmetric jet is conducted. The results from this study are presented, and guide research of the primary flow under investigation. The design of a nozzle representative of future engine technologies is then discussed. Characteristics of this multi-stream rectangular supersonic nozzle are studied via time-resolved schlieren imaging, stereo PIV measurements, dynamic pressure transducers, and far-field acoustics. Experiments are carried out in the anechoic chamber at Syracuse University, and focus primarily on the flow-field. An extensive data set is generated, which reveals a detailed view of a very complex flow. Shear, shock waves, unequal
Application of the GRP scheme to open channel flow equations
Birman, A.; Falcovitz, J.
2007-03-01
The GRP (generalized Riemann problem) scheme, originally conceived for gasdynamics, is reformulated for the numerical integration of the shallow water equations in channels of rectangular cross-section, variable width and bed profile, including a friction model for the fluid-channel shear stress. This scheme is a second-order analytic extension of the first-order Godunov-scheme, based on time-derivatives of flow variables at cell-interfaces resulting from piecewise-linear data reconstruction in cells. The second-order time-integration is based on solutions to generalized Riemann problems at cell-interfaces, thus accounting for the full governing equations, including source terms. The source term due to variable bed elevation is treated in a well-balanced way so that quiescent flow is exactly replicated; this is done by adopting the Surface Gradient Method (SGM). Several problems of steady or unsteady open channel flow are considered, including the terms corresponding to variable channel width and bed elevation, as well as to shear stress at the fluid-channel interface (using the Manning friction model). In all these examples remarkable agreement is obtained between the numerical integration and the exact or accurate solutions.
Physical Hydraulic Model of Side-Channel Spillway of Lambuk DAM, Bali
Harifa, A. C.; Sholichin, M.; Othman, F. B.
2013-12-01
The spillway is among the most important structures of a dam project. A spillway is designed to prevent overtopping of a dam at a place that is not designed for overtopping. Side-channel spillways are commonly used to release water flow from a reservoir in places where the sides are steep and have a considerable height above the dam. Experimental results were collected with a hydraulic model of the side-channel spillway for releasing the peak overflow of Lambuk Dam. This dam is, located on the Lambuk River, which is a tributary of the Yeh Hoo River ~ 34.6 km north of Denpasar on the island of Bali. The bituminous geomembrane faced dam is 24 m in height, with a 35-m wide spillway. The length of the side channel is 35 m long, with 58 m of transition channel, 67.37 m of chuteway channel and 22.71 m of stilling basin. The capacity of the spillway is 231.91 m3/s and the outlet works capacity is 165.28 m3/s. The reservoir is designed for irrigation and water supply. The purpose of this study was to optimize the designed of the structure and to ensure its safe operation. In hydraulic model may help the decision-makers to visualize the flow field before selecting a ';suitable' design. The hydraulic model study was performed to ensure passage of the maximum discharge at maximum reservoir capacity; to study the spillway approach conditions, water surface profiles, and flow patterns in the chuteway; and to reveal potential demerits of the proposed hydraulic design of various structures and explore solutions. The model was constructed at 1 : 40 scale, Reservoir topography was modeled using concrete, the river bed using sand and some gravel, the river berm using concrete, and the spillway and channel using Plexiglas. Water was measured using Rectangular contracted weir. Design floods (with return period in year) were Q2 = 111.40 m3/s, Q5 = 136.84 m3/s, Q10 = 159.32 m3/s, Q25 = 174.61 m3/s, Q50 = 185.13 m3/s, Q100 = 198.08 m3/s, Q200 = 210.55 m3/s, Q1000 = 231.91 m3/s and the
Wave Dynamics in the Channels of Variable Cross-Section
Directory of Open Access Journals (Sweden)
E.N. Pelinovsky
2017-06-01
Full Text Available Dynamics of long sea waves in the channels of variable depth and variable rectangular cross-section is discussed within various approximations – from the shallow water equations to those of nonlinear dispersion theory. General approach permitting to find traveling (non-reflective waves in inhomogeneous channels is demonstrated within the framework of the shallow water linear theory. The appropriate conditions are determined by solving a system of ordinary differential equations. The so-called self-consistent channel in which the width is connected with its depth in a specific way is studied in detail. Within the linear theory of shallow water, a wave does not reflect from the bottom irregularities. The wave shape remains unchanged on the records of the wave gauges (mareographs fixed along the channel axis, but it varies in space. Nonlinearity and dispersion lead to the wave transformation in such a channel. Within the framework of the shallow water weakly nonlinear theory, the wave shape is described by the Riemann solution, and the wave breaks (gradient catastrophe quicker in the zones of decreasing depth. The modified Korteweg – de Vries equation describing evolution of a solitary wave of weak but finite amplitude in a self-consistent channel, the depth of which can vary arbitrary, is derived. Some examples of a solitary wave transformation in such a channel are analyzed (particularly, a soliton adiabatic transformation in the channel with the slowly varying parameters, and a solitary wave fission into the group of solitons after it has passed the zone where the depth changes abruptly. The obtained solutions extend the class of those represented earlier by S.F. Dotsenko and his colleagues.
Heat Transfer Enhancement in a Channel with Rib-Groove Turbulators
Kaewkohkiat, Y.; Kongkaitpaiboon, V.; Eiamsa-ard, S.; Pimsarn, M.
2010-03-01
This paper presents the effects of the rib-groove turbulators on the heat transfer and friction characteristics in a rectangular channel. The experiments encompass the Reynolds number range from 1800 to 10,000; pitch ratios (PR = P/e) 6.6-13.3 by using air as the working fluid. The obtained results demonstrate that heat transfer rate in term of Nusselt number (Nu) increases with the increase of Reynolds number, whereas friction factor (f) shows the opposite trend. Both Nusselt number and friction factor increase with decreasing pitch ratio. It is also observed that heat transfer rate and friction factor for the channels with rib-groove turbulators are higher than those for the smooth channel under similar test conditions. In addition, the correlations for heat transfer rate in term of Nusselt number (Nu) and friction factor (f) for channel with rib-groove turbulators are also presented.
[Memory and potassium channels].
Solntseva, E I; Bukanova, Iu V; Skrebitskiĭ, V G
2003-01-01
The K(+)-channels of the surface membrane play a crucial role in the generation of electrical activity of a neuron. There is a large diversity of the K(+)-channels that depends on a great number (over 200) of genes encoding channels proteins. An evolutionary conservation of channel's proteins is determined. The K(+)-channels were found to have a great importance in the memory processes. It was shown on different model systems that K(+)-current of the surface membrane decreases during the learning. The antagonists of K(+)-channels were found to improve the learning and memory. It was revealed in electrophysiological experiments that K(+)-channels antagonists can either themselves induce a long-term synaptic potentiation or intensify the synaptic potentiation induced by a tetanization. The disfunction of K(+)-channels is believed to be an important link in the mechanisms of memory disturbances. In animal mutants with K(+)-channels disfunction, learning and memory are deficient. In behavioral experiments, the use of K(+)-channels openers make the learning worse. Amnesia caused by cerebral ischemia is explained by strong activity of K(+)-channels which not only inhibits neuronal excitement but also causes neurodegeneration. The question on the K(+)-channels involvement into pathophysiology of Alzheimer's disease is discussed. Neurotoxic peptide beta-amyloid, which is supposed to be involved into mechanisms of Alzheimer's disease, modulates K(+)-channels function. The effect of beta-amyloid depends on the subtype of K(+)-channels: A-channels are inhibited, and KDR-channels, on the contrary, become stronger. The effect of the cognitive enhancers (vinpocetine, piracetam, tacrine, linopirdine) on K(+)-current also depends on the subtype of K(+)-channels. Slow-inactivating K(+)-currents (IDR, IK(Ca), IM) are inhibited in the presence of these drugs, while fast-in-activating K(+)-current (A-current) remains unchanged or even increases.
Hadamard quantum broadcast channels
Wang, Qingle; Das, Siddhartha; Wilde, Mark M.
2017-10-01
We consider three different communication tasks for quantum broadcast channels, and we determine the capacity region of a Hadamard broadcast channel for these various tasks. We define a Hadamard broadcast channel to be such that the channel from the sender to one of the receivers is entanglement-breaking and the channel from the sender to the other receiver is complementary to this one. As such, this channel is a quantum generalization of a degraded broadcast channel, which is well known in classical information theory. The first communication task we consider is classical communication to both receivers, the second is quantum communication to the stronger receiver and classical communication to other, and the third is entanglement-assisted classical communication to the stronger receiver and unassisted classical communication to the other. The structure of a Hadamard broadcast channel plays a critical role in our analysis: The channel to the weaker receiver can be simulated by performing a measurement channel on the stronger receiver's system, followed by a preparation channel. As such, we can incorporate the classical output of the measurement channel as an auxiliary variable and solve all three of the above capacities for Hadamard broadcast channels, in this way avoiding known difficulties associated with quantum auxiliary variables.
Geometric wakefield regimes study of a rectangular tapered collimator for ATF2
Fuster-Martinez, Nuria; Latina, Andrea; Snuverink, Jochem
2016-01-01
In this paper we study the discrepancy found between the wakefield impact effect induced by a rectangular tapered collimator prototype for ATF2 calculated using analytical models, calculated from CST PS numerical simulations and implemented in the tracking code PLACET v1.0.0. In order to get consistent results between the analytical calculations, CST PS simulations and the tracking code PLACET v1.0.0 the collimator wakefield module in PLACET v1.0.0 has to be modified. The changes have been implemented in the tracking code PLACET v1.0.1.
Gillman, Eric D.; Amatucci, W. E.
2014-06-01
These experiments utilize a linear hollow cathode to create a dense, rectangular plasma sheet to simulate the plasma layer surrounding vehicles traveling at hypersonic velocities within the Earth's atmosphere. Injection of fine dielectric microparticles significantly reduces the electron density and therefore lowers the electron plasma frequency by binding a significant portion of the bulk free electrons to the relatively massive microparticles. Measurements show that microwave transmission through this previously overly dense, impenetrable plasma layer increases with the injection of alumina microparticles approximately 60 μm in diameter. This method of electron depletion is a potential means of mitigating the radio communications blackout experienced by hypersonic vehicles.
Energy Technology Data Exchange (ETDEWEB)
Sasada, Ichiro, E-mail: sasada@ence.kyushu-u.ac.jp [Applied Science for Electronics and Materials, Kyushu University, Kasuga (Japan)
2014-05-07
A method to reduce ac conductive losses in a thin rectangular busbar made of copper is presented. The method is based on a technique, which makes the distribution of the ac current in the cross section of a busbar flatter. Edges of a thin busbar are covered with low permeability magnetic thin layers as caps. The magnetic cap makes the impedance experienced by the current flowing near the edge comparatively larger so that currents cannot get crowded near the edges of a busbar. This method is numerically verified.
Sasada, Ichiro
2014-05-01
A method to reduce ac conductive losses in a thin rectangular busbar made of copper is presented. The method is based on a technique, which makes the distribution of the ac current in the cross section of a busbar flatter. Edges of a thin busbar are covered with low permeability magnetic thin layers as caps. The magnetic cap makes the impedance experienced by the current flowing near the edge comparatively larger so that currents cannot get crowded near the edges of a busbar. This method is numerically verified.
The effect of mandrel configuration on the warpage in pultrusion of rectangular hollow profiles
DEFF Research Database (Denmark)
Baran, Ismet; Hattel, Jesper Henri; Akkerman, Remko
2014-01-01
Thermo-mechanical process simulation of an industrially pultruded rectangular hollow pro- file is presented. Glass/polyester is used for the continuous filament mat (CFM) and the uni-directional (UD) layers. The process induced residual distortions together with the temperature and degree of cure...... pultrusion company. In addition, the predicted warpage behaviour is further analysed by adjusting the mandrel length as well as including the mandrel heating. Using the proposed process model, the effect of the mandrel configurations on the quality of the pultrusion is investigated in terms of temperature...
Comparative Study on the Design of Square,Rectangular and Circular Concrete Water Tanks
S.Vijaya Bhaskar Reddy; S.Raja shekar
2015-01-01
Reinforced concrete overhead water tanks are used to store and supply safe drinking water. Design and cost estimation of overhead water tanks is a time consuming task, which requires a great deal of expertise. This study therefore examines the efficiency of Rectangular and Circular tanks. Tanks of 30m3, 90m3, 140m3 and 170m3 capacities were used in order to draw reasonable inferences on tank‟s shape design effectiveness, relative cost implications of tank types and structural capa...
The Detection of Water Flow in Rectangular Microchannels by Terahertz Time Domain Spectroscopy.
Song, Yan; Zhao, Kun; Zuo, Jian; Wang, Cuicui; Li, Yizhang; Miao, Xinyang; Zhao, Xiaojing
2017-10-13
Flow characteristics of water were tested in a rectangular microchannel for Reynolds number (Re) between 0 and 446 by terahertz time domain spectroscopy (THz-TDS). Output THz peak trough intensities and the calculated absorbances of the flow were analyzed theoretically. The results show a rapid change for Re flow beginning nearly at Re = 250. Then this finding is confirmed in the plot of the flow resistant. Our results demonstrate that the THz-TDS could be a valuable tool to monitor and character the flow performance in microscale structures.
A cellular automaton for population diffusion in the homogeneous rectangular area
Directory of Open Access Journals (Sweden)
WenJun Zhang
2015-03-01
Full Text Available In this paper, a cellular automaton for population diffusion was introduced. A group of discrete partial differential equations was used to simulate population diffusion in the homogeneous rectangular area. The population dynamics was described by Malthus model, Logistic model, and oscillation model. The cellular automaton can be used to analyze the effects of initial distribution of organisms on diffusion process and distribution pattern, to estimate the diffusion speed and possible diffusion directions, and to determine the major regions occupied by organisms.
Sulyok, Georg; Durstberger-Rennhofer, Katharina; Summhammer, Johann
2015-09-04
When a quantum particle traverses a rectangular potential created by a quantum field both photon exchange and entanglement between particle and field take place. We present the full analytic solution of the Schrödinger equation of the composite particle-field system allowing investigation of these phenomena in detail and comparison to the results of a classical field treatment. Besides entanglement formation, remarkable differences also appear with respect to the symmetry between energy emission and absorption, resonance effects and if the field initially occupies the vacuum state.
Larmor precession and dwell time of a relativistic particle scattered by a rectangular quantum well
Li, Z J; Liang, J J; Liang, J Q
2003-01-01
The Larmor precession of a relativistic neutral spin particle in a uniform constant magnetic field confined to the region of a one-dimensional rectangular potential well is investigated. The spin precession serves as a clock to measure the time spent by a quantum particle dwelling at a potential well. With the help of a general spin coherent state it is explicitly shown that the spin precession time is equal to the dwell time in the first-order approximation of the infinitesimal field limit. The comparison of the time in a potential well with that in free space shows apparent superluminality.
Transmission line model for coupled rectangular double split‐ring resonators
DEFF Research Database (Denmark)
Yan, Lei; Tang, Meng; Krozer, Viktor
2011-01-01
In this work, a model based on a coupled transmission line formulation is developed for microstrip rectangular double split‐ring resonators (DSRRs). This model allows using the physical dimensions of the DSRRs as an input avoiding commonly used extraction of equivalent parameters. The model...... DSRRs, which allows for an accurate modeling of densely packed multiresonator structures. The model is verified by comparison with measured DSRRs‐loaded microstrip line performance. The developed model can be effectively used to save computation resources associated with full wave electromagnetic...
Bagdasarov, G. A.; Bobrova, N. A.; Boldarev, A. S.; Olkhovskaya, O. G.; Sasorov, P. V.; Gasilov, V. A.; Barber, S. K.; Bulanov, S. S.; Gonsalves, A. J.; Schroeder, C. B.; van Tilborg, J.; Esarey, E.; Leemans, W. P.; Levato, T.; Margarone, D.; Korn, G.; Kando, M.; Bulanov, S. V.
2017-12-01
A method for the asymmetric focusing of electron bunches, based on the active plasma lensing technique, is proposed. This method takes advantage of the strong inhomogeneous magnetic field generated inside the capillary discharge plasma to focus on the ultrarelativistic electrons. The plasma and magnetic field parameters inside the capillary discharge are described theoretically and modeled with dissipative magnetohydrodynamic computer simulations enabling analysis of the capillaries of rectangle cross-sections. Large aspect ratio rectangular capillaries might be used to transport electron beams with high emittance asymmetries, as well as assist in forming spatially flat electron bunches for final focusing before the interaction point.
Stein, Manuel
1959-01-01
The nonlinear large-deflection equations of von Karman for plates are converted into a set of linear equations by expanding the displacements Into a power series in terms of an arbitrary parameter. The postbuckling behavior of simply supported rectangular plates subjected to longitudinal compression and subject to a uniform temperature rise is investigated in detail by solving the first few of the equations. Experimental data are presented for the compression problem. Comparisons are made for total shortening and local strains and deflections which indicate good agreement between experimental and theoretical results.
Post-buckling capacity of bi-axially loaded rectangular steel plates
DEFF Research Database (Denmark)
Jönsson, Jeppe; Bondum, T. H.
2012-01-01
Results from a detailed numerical investigation of the post-buckling behaviour of rectangular simply supported steel plates subjected to biaxial in-plane loading are presented. The Steel plates are loaded through forced edge displacements. The effects of initial imperfections, aspect ratio, plate...... for biaxial stress. It is of great interest that short wave imperfections of a lower magnitude compared to conventionally used imperfections are seen to lower the capacity of the bi-axially loaded plates. The topic is of major concern in the flange plates of long span bridges with multi box girder...
Boundary layer suction through rectangular orifices: effects of aspect ratio and orientation
Van Buren, T.; Smits, A. J.; Amitay, M.
2017-07-01
The flow field generated by suction through a rectangular orifice within a laminar boundary layer is investigated using stereoscopic particle image velocimetry. For orifice aspect ratios of 6, 12, and 18, the impact of suction on the surrounding flow field appears to be self-similar, scaling with aspect ratio and suction velocity. Changing the orifice pitch angle had almost no impact on the surrounding boundary layer, but, as expected, changing the skew angle significantly altered the extent of the suction impact on the flow field.
Hui, Yi; Yoshida, Akihito; Tamura, Yukio
2013-02-01
This study investigates the interference effects between two rectangular-section high-rise buildings by wind tunnel experiments, focusing on local peak pressure coefficients. Wind tunnel experiments were carried out under 72 wind incidence angles for various configurations. Two building arrangements were considered: parallel and perpendicular. To evaluate the interference effects for local peak pressures in detail, interference factors for largest positive and smallest negative peak pressures are presented and discussed. The results show that interference effects greatly depend on configuration and wind direction. Unfavorable positions are generally concentrated at the edges and corners of a building. Flow visualization was also conducted to check the flow field between two buildings.
On the generation of secondary motion in circular to rectangular transition ducts
Demuren, A. O.
1993-01-01
A computer code has been developed for the calculation of three-dimensional turbulent flow in circular to rectangular transition ducts. The governing equations are written in a general curvilinear coordinate system so that all singly-connected geometrical configurations can be accommodated. Turbulence closure is through the standard k-epsilon model or a Reynolds stress closure model. Computed results show qualitative agreement with experimental data. Pressure-induced secondary flow is the dominant mode through the transition, but turbulence-induced secondary flow becomes prominent some distance downstream of the transition.
Terahertz spectrum splitting by a graphene-covered array of rectangular grooves.
Tavakol, Mohammad Reza; Saba, Amirhossein; Jafargholi, Amir; Khavasi, Amin
2017-12-01
We propose a bidirectional terahertz (THz) spectrum splitter using a practically simple metamaterial structure consisting of rectangular grooves covered by graphene. Thanks to the graphene optoelectronic tunability and by adjusting the grooves width, this structure provides nearly 2π phase shift. At the same time, the reflection efficiency is acceptable throughout the phase shifts. We design each of the meta-atoms using a circuit model, and then we synthesize the final supercell based on the generalized Snell's law so that the structure reflects different frequency waves to totally different directions. The full-wave simulations demonstrate the beam splitting with a remarkable efficiency of around 80%.
Influence of impedance phase angle on sound pressures and reverberation times in a rectangular room
DEFF Research Database (Denmark)
Jeong, Cheol-Ho; Lee, Doheon; Santurette, Sébastien
2014-01-01
In most room acoustic predictions, phase shift on reflection has been overlooked. This study aims to quantify the effects of the surface impedance phase angle of the boundary surfaces on room acoustic conditions. As a preliminary attempt, a medium-sized rectangular room is simulated by a phased b...... beam tracing model, after verifying it numerically against boundary element simulations. First, the absorption characteristic of the boundary surfaces varies uniformly from 0.2 to 0.8, but with various impedance phase angles. Second, typical non-uniform cases having hard walls and floor...
Band gaps electromagnéticos unidimensionales en guía de onda rectangular
Gómez Gómez, Álvaro; Solano Vérez, Miguel Ángel; Lakhtakia, Akhlesh; Vegas García, Ángel
2003-01-01
En esta comunicación se analiza la propagación, para modos TE y modos TM, en guía de onda rectangular, de una estructura periódica formada por un número de celdas dieléctricas constituidas por dos dieléctricos de diferente permitividad. El análisis se efectúa primeramente para una estructura ideal infinita, a través del teorema de Floquet, y después se realiza una análisis de la estructura real, en la que se tiene en cuenta una periodicidad finita (número de celdas fin...
Investigation on Harmonic Tuning for Active Ku-Band Rectangular Dielectric Resonator Antennas
Directory of Open Access Journals (Sweden)
Anda Guraliuc
2008-01-01
Full Text Available A slot-coupled rectangular dielectric resonator antenna (DRA operating in the 14–14.5 GHz frequency band is investigated as a possible radiating element for an active integrated antenna of a transmitting phased array. The effectiveness of the resonator shape factor on achieving harmonic tuning is addressed. Simulation results show that the DRA shape factor can be used to provide a fine tuning of the DRA input impedance both at the fundamental frequency and its first harmonics, so synthesizing the proper load for the optimization of the microwave amplifier power-added efficiency (PAE.
Theory of the special Smith-Purcell radiation from a rectangular grating
Energy Technology Data Exchange (ETDEWEB)
Liu, Weihao, E-mail: liuwhao@ustc.edu.cn; He, Zhigang, E-mail: hezhg@ustc.edu.cn; Jia, Qika [National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230029 (China); Li, Weiwei [National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230029 (China); Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Frascati, via E. Fermi 40, 00044 Frascati, RM (Italy)
2015-12-15
The recently uncovered special Smith-Purcell radiation (S-SPR) from the rectangular grating has significantly higher intensity than the ordinary Smith-Purcell radiation (SPR). Its monochromaticity and directivity are also much better. Here we explored the mechanism of the S-SPR by applying the fundamental electromagnetic theory and simulations. We have confirmed that the S-SPR is exactly from the radiating eigen modes of the grating. Its frequency and direction are well correlated with the beam velocity and structure parameters, which indicates its promising applications in tunable wave generation and beam diagnostic.
Solution of the two- dimensional heat equation for a rectangular plate
Directory of Open Access Journals (Sweden)
Nurcan BAYKUŞ SAVAŞANERİL
2015-11-01
Full Text Available Laplace equation is a fundamental equation of applied mathematics. Important phenomena in engineering and physics, such as steady-state temperature distribution, electrostatic potential and fluid flow, are modeled by means of this equation. The Laplace equation which satisfies boundary values is known as the Dirichlet problem. The solutions to the Dirichlet problem form one of the most celebrated topics in the area of applied mathematics. In this study, a novel method is presented for the solution of two-dimensional heat equation for a rectangular plate. In this alternative method, the solution function of the problem is based on the Green function, and therefore on elliptic functions.
USACE Navigation Channels 2012
California Department of Resources — This dataset represents both San Francisco and Los Angeles District navigation channel lines. All San Francisco District channel lines were digitized from CAD files...
Calcium channel blocker overdose
... page: //medlineplus.gov/ency/article/002580.htm Calcium-channel blocker overdose To use the sharing features on this page, please enable JavaScript. Calcium-channel blockers are a type of medicine used to ...
Jonathan W. Long; Alvin L. Medina; Daniel G. Neary
2012-01-01
Channel morphology has become an increasingly important subject for analyzing the health of rivers and associated fish populations, particularly since the popularization of channel classification and assessment methods. Morphological data can help to evaluate the flows of sediment and water that influence aquatic and riparian habitat. Channel classification systems,...
DEFF Research Database (Denmark)
Stott, Jennifer B; Jepps, Thomas Andrew; Greenwood, Iain A
2014-01-01
Potassium channels are key regulators of smooth muscle tone, with increases in activity resulting in hyperpolarisation of the cell membrane, which acts to oppose vasoconstriction. Several potassium channels exist within smooth muscle, but the KV7 family of voltage-gated potassium channels have been...
López, Ana María Camacho; Regueras, José María Gutiérrez
2017-10-01
The new goals of automotive industry related with environment concerns, the reduction of fuel emissions and the security requirements have driven up to new designs which main objective is reducing weight. It can be achieved through new materials such as nano-structured materials, fibre-reinforced composites or steels with higher strength, among others. Into the last group, the Advance High Strength Steels (AHSS) and particularly, dual-phase steels are in a predominant situation. However, despite of their special characteristics, they present issues related to their manufacturability such as springback, splits and cracks, among others. This work is focused on the deep drawing processof rectangular shapes, a very usual forming operation that allows manufacturing several automotive parts like oil pans, cases, etc. Two of the main parameters in this process which affect directly to the characteristics of final product are blank thickness (t) and die radius (Rd). Influence of t and Rd on the formability of dual-phase steels has been analysed considering values typically used in industrial manufacturing for a wide range of dual-phase steels using finite element modelling and simulation; concretely, the influence of these parameters in the percentage of thickness reduction pt(%), a quite important value for manufactured parts by deep drawing operations, which affects to its integrity and its service behaviour. Modified Morh Coulomb criteria (MMC) has been used in order to obtain Fracture Forming Limit Diagrams (FFLD) which take into account an important failure mode in dual-phase steels: shear fracture. Finally, a relation between thickness reduction percentage and studied parameters has been established fordual-phase steels, obtaining a collection of equations based on Design of Experiments (D.O.E) technique, which can be useful in order to predict approximate results.
Duda, D.; Švančara, P.; La Mantia, M.; Rotter, M.; Skrbek, L.
2015-08-01
The motions of micrometer-sized solid deuterium particles in liquid 4He, at temperatures between approximately 1.2 and 3 K, are visualized in the proximity of an oscillating cylinder of rectangular cross section (3 mm high and 10 mm wide). The cylinder is oscillating vertically, perpendicularly to its cross-section width, at frequencies between 0.05 and 1.25 Hz, and amplitudes of 5 and 10 mm, resulting in Reynolds numbers R e up to 105. The aim of the reported experiments is to investigate systematically the macroscopic vortical structures shed at the cylinder sharp edges, by tracking the deuterium particles. We find that large-scale, millimeter-sized vortices are generated in the surrounding fluid by the oscillating cylinder, both in viscous He I and superfluid He II. An estimate of the strength of the shed vortical structures reveals that, for R e >104 , the corresponding magnitudes are approximately equal in He I and He II if, in He II, the kinematic viscosity is suitably defined. For R e <104 , the strength of the large-scale vortices is smaller in He II than in He I. Although the outcome is partly affected by the larger scatter of the He I data and possibly also by the much larger heat conductivity of superfluid 4He, we argue that the fundamental physical reason for observing this difference is that, at these Reynolds numbers, the experimentally probed length scales in He II are smaller than the average distance between quantized vortices—the quantum length scale of the flow. The result strongly suggests that, similarly to thermal counterflow, both viscous and quantum features can be observed in mechanically driven flows of He II, depending on the length scales at which the quantum flow is probed.
A Survey of Channel Modeling for UAV Communications
Khuwaja, Aziz Altaf
2018-01-23
Unmanned aerial vehicles (UAVs) have gained great interest for rapid deployment in both civil and military applications. UAV communication has its own distinctive channel characteristics compared with widely used cellular and satellite systems. Thus, accurate channel characterization is crucial for the performance optimization and design of efficient UAV communication systems. However, several challenges exist in UAV channel modeling. For example, propagation characteristics of UAV channels are still less explored for spatial and temporal variations in non-stationary channels. Also, airframe shadowing has not yet been investigated for small size rotary UAVs. This paper provides an extensive survey on the measurement campaigns launched for UAV channel modeling using low altitude platforms and discusses various channel characterization efforts. We also review the contemporary perspective of UAV channel modeling approaches and outline some future research challenges in this domain.
Ion channel model development and validation
Nelson, Peter Hugo
2010-03-01
The structure of the KcsA ion channel selectivity filter is used to develop three simple models of ion channel permeation. The quantitative predictions of the knock-on model are tested by comparison with experimental data from single-channel recordings of the KcsA channel. By comparison with experiment, students discover that the knock-on model can't explain saturation of ion channel current as the concentrations of the bathing solutions are increased. By inverting the energy diagram, students derive the association-dissociation model of ion channel permeation. This model predicts non-linear Michaelis-Menten saturating behavior that requires students to perform non-linear least-squares fits to the experimental data. This is done using Excel's solver feature. Students discover that this simple model does an excellent job of explaining the qualitative features of ion channel permeation but cannot account for changes in voltage sensitivity. The model is then extended to include an electrical dissociation distance. This rapid translocation model is then compared with experimental data from a wide variety of ion channels and students discover that this model also has its limitations. Support from NSF DUE 0836833 is gratefully acknowledged.
... Scope | Glossary | References | Site Map | Credits Hospital eTool Administration Central Supply Clinical Services Dietary Emergency Engineering Healthcare Wide Hazards Heliport Housekeeping ICU Laboratory Laundry ...
Khazaee, I.
2015-08-01
In this study, the performance of a PEM fuel cell is investigated experimentally and numerically by changing the geometry of the channels. At first an experimental setup is used and three different fuel cells with rectangular, elliptical and triangular serpentine channels are constructed. The active area of each cell is 25 cm2 that its weight is 1,300 g. The material of the gas diffusion layer is carbon clothes, the membrane is nafion 117 and the catalyst layer is a plane with 0.004 g cm-2 platinum. Then a complete three-dimensional model for fuel cell is used to investigate the effect of using this channels geometry on the performance. The proposed model is a full cell model, which includes all the parts of the PEM fuel cell, flow channels, gas diffusion electrodes, catalyst layers and the membrane. Coupled transport and electrochemical kinetics equations are solved in a single domain; therefore no interfacial boundary condition is required at the internal boundaries between cell components. The results show that the predicted polarization curves by using this model are in good agreement with the experimental results. Also the results show that when the geometry of channel is rectangular the performance of the cell is better than the triangular and elliptical channel.
Wide bandgap matrix switcher, amplifier and oscillator
Energy Technology Data Exchange (ETDEWEB)
Sampayan, Stephen
2016-08-16
An electronic device comprising an optical gate, an electrical input an electrical output and a wide bandgap material positioned between the electrical input and the electrical output to control an amount of current flowing between the electrical input and the electrical output in response to a stimulus received at the optical gate can be used in wideband telecommunication applications in transmission of multi-channel signals.
Shelton, John; Sunkavalli, Abhishek
2017-11-01
Like the canonical, two-dimensional, square lid-driven cavity problem that serves as its cornerstone, the two-dimensional, rectangular lid-driven cavity is a well-studied extension that also generates dynamically stable, well-defined, flow structures within the laminar flow regimes. Mathematical time-dependent perturbations to these flow structures have been shown to generate a region of metastability as the system transitions towards a turbulent flow regime. By replacing the mathematically-generated, time-dependent perturbations of previous investigations into this phenomena with the particle-fluid and particle-particle interactions present within a multiphase flow, a unique perspective on the stability of these flow structures within the laminar flow regimes of the two-dimensional lid-driven cavity can be obtained. Therefore, the objective of this study is to investigate the effect varying area fractions and relative densities of suspended granular particles have on traditionally laminar and stable flows found at Reynolds numbers of 100, 400, and 1000 of a rectangular lid-driven cavity with an aspect ratio of 1.5. These studies and analyses will aid in the determination how granular materials can be used to enhance desirable flow characteristics of fluid behaviors.
Electromagnetic Scattering From a Rectangular Cavity Recessed in a 3-D Conducting Surface
Deshpande, M. D.; Reddy, C. J.
1995-01-01
The problem of electromagnetic (EM) scattering from an aperture backed by a rectangular cavity recessed in a three-dimensional conducting body is analyzed using the coupled field integral equation approach. Using the free-space Green's function, EM fields scattered outside the cavity are determined in terms of (1) an equivalent electric surface current density flowing on the three-dimensional conducting surface of the object including the cavity aperture and (2) an equivalent magnetic surface current density flowing over the aperture only. The EM fields inside the cavity are determined using the waveguide modal expansion functions. Making the total tangential electric and magnetic fields across the aperture continuous and subjecting the total tangential electric field on the outer conducting three-dimensional surface of the object to zero, a set of coupled integral equations is obtained. The equivalent electric and magnetic surface currents are then obtained by solving the coupled integral equation using the Method of Moments. The numerical results on scattering from rectangular cavities embedded in various three-dimensional objects are compared with the results obtained by other numerical techniques.
Zhang, Wenjian; Abramovitch, Kenneth; Thames, Walter; Leon, Inga-Lill K; Colosi, Dan C; Goren, Arthur D
2009-07-01
The objective of this study was to compare the operating efficiency and technical accuracy of 3 different rectangular collimators. A full-mouth intraoral radiographic series excluding central incisor views were taken on training manikins by 2 groups of undergraduate dental and dental hygiene students. Three types of rectangular collimator were used: Type I ("free-hand"), Type II (mechanical interlocking), and Type III (magnetic collimator). Eighteen students exposed one side of the manikin with a Type I collimator and the other side with a Type II. Another 15 students exposed the manikin with Type I and Type III respectively. Type I is currently used for teaching and patient care at our institution and was considered as the control to which both Types II and III were compared. The time necessary to perform the procedure, subjective user friendliness, and the number of technique errors (placement, projection, and cone cut errors) were assessed. The Student t test or signed rank test was used to determine statistical difference (P errors. Type III collimation was also more user friendly, but generated more cone cut errors. Further optimization of these collimators is expected to improve operator/clinician performance and utility.
Directory of Open Access Journals (Sweden)
Klimenta Dardan O.
2016-01-01
Full Text Available The main objective of this paper is to propose an algorithm for the determination of the allowable ampacities of single rectangular-section bus bars without the occurrence of correction factors. Without correction factors, the ampacity computation of the copper and aluminium bus bars is fully automatized. The analytical algorithm has been implemented in a computer program code that along with the allowable ampacity can compute the bus bar temperature and the individual heat transfer coefficient for each side of the bus bar, as well as their corresponding power losses. Natural and forced convection correlations for rectangular bus bars are applied. Effects of the solar radiation and radiation heat losses from the bus bar surface are taken into consideration as well. The finite element method (FEM has been used for the linear/non-linear steady-state thermal analysis, i.e. for validation of the analytical algorithm. All FEM-based numerical computations were carried out using the COMSOL Heat Transfer Module. [Projekat Ministarstva nauke Republike Srbije, br. TR33046
3D DSD calculation in a rectangular bar by the direct algorithm
Partom, Yehuda
2012-03-01
According to detonation shock dynamics (DSD), the normal front velocity at any point on a detonation front is Dn(k), where k is the local mean curvature. In rectangular coordinates a point on the front therefore moves according to: dx/dt=Dncos(n,x), dy/dt=Dncos(n,y) and dz/dt=Dncos(n,z). The direct DSD algorithm makes use of these simple equations. We define the detonation surface by putting discrete points on it as densely as needed. At each point we have the above three ODEs. For n such points we therefore have a system of 3n ODEs. We propagate the front by solving them simultaneously, where we calculate the mean curvature k by a finite difference approximation. At the boundaries we apply the limiting angle constraint. In the paper we demonstrate the use of the direct algorithm for a special relatively easy case of detonation in a bar with a rectangular cross section, with different values of a/b. We compute the size effect curves and compare with the diameter effect curve of a circular bar of the same cross section area.
Simplified Method for the Characterization of Rectangular Straw Bales (RSB) Thermal Conductivity
Conti, Leonardo; Goli, Giacomo; Monti, Massimo; Pellegrini, Paolo; Rossi, Giuseppe; Barbari, Matteo
2017-10-01
This research aims to design and implement tools and methods focused at the assessment of the thermal properties of full size Rectangular Straw Bales (RSB) of various nature and origin, because their thermal behaviour is one of the key topics in market development of sustainable building materials. As a first approach a method based on a Hot-Box in agreement with the ASTM C1363 – 11 standard was adopted. This method was found to be difficult for the accurate measurement of energy flows. Instead, a method based on a constant energy input was developed. With this approach the thermal conductivity of a Rectangular Straw-Bale (RSB λ) can be determined by knowing the thermal conductivity of the materials used to build the chamber and the internal and external temperature of the samples and of the chamber. A measurement a metering chamber was built and placed inside a climate chamber, maintained at constant temperature. A known quantity of energy was introduced inside the metering chamber. A series of thermopiles detects the temperature of the internal and external surfaces of the metering chamber and of the specimens allowing to calculate the thermal conductivity of RSB in its natural shape. Different cereal samples were tested. The values were found consistent with those published in scientific literature.
Effects of Annular and Rectangular Confinement on the Hydrodynamics of Reacting, Swirling Jets
Emerson, Benjamin; Lieuwen, Tim
2015-11-01
In gas turbine combustors, flames are stabilized in the shear layers of swirling jets. In such devices, the flame's dynamics and its unsteady heat release are strongly governed by the fluid dynamics of the swirling jet flow. This unsteady heat release can couple with an acoustic mode of the combustor to cause a troublesome self-excited oscillation known as combustion instability. This coupling often occurs through the fluid dynamics, where the flame is dynamically wrinkled by acoustically excited vortical structures. This study uses linear stability analysis to study the effects of confinement on the fluid dynamics of reacting, swirling jets. Previous studies have explored confinement effects of an outer cylindrical wall. This study investigates other types of confinement. The analysis compares the classical arrangement, with flow through an outer cylindrical wall, to two other arrangements: flows through annular or rectangular confinements. The analysis shows that these confinement changes can have significant impacts on the instability growth rates, frequencies, and mode shapes. For example, changing a cylindrical confinement to a rectangular confinement tends to alter the hydrodynamic mode shape by straightening the nodal lines in the hydrodynamic velocity field.
Mixing Characteristics of Elliptical and Rectangular Subsonic Jets with Swirling Co-flow
Gopinath, S.; Sundararaj, M.; Elangovan, S.; Rathakrishnan, E.
2015-04-01
This paper presents a computational analysis of effects of swirling co-flow and non-circular subsonic compressible inner jets on centerline velocity decay, mass entrainment and jet spreading rate. Three different exit shapes of elliptical, rectangular and circular inner jets were compared for three different co-flow conditions such as no co-flow, straight co-flow and swirling co-flow. Co-flow is issuing from a circular annular duct. Swirling co-flow is created in the co-flow duct by introducing a swirler with stationary angular vanes of 50° oblique to the jet axis. Reynolds number of inner jet is calculated based on its equivalent diameter as 200342. It is found that the swirling co-flow has strong influence on the boundary condition of inner jet and alters the major features of the jet such as jet potential core length, centerline velocity decay rate and jet spread rate. Streamwise corner vortices of different jet conditions have been captured using velocity vector plot to show the effect of swirling co-flow on the jet flow field. Swirling co-flow with elliptical inner jet exhibits higher velocity decay rate and jet spreading rate than the equivalent area circular and rectangular jet.
Rakowska, Adriana; Zadurska, Malgorzata; Czuwara, Joanna; Warszawik-Hendzel, Olga; Kurzeja, Marta; Maj, Malgorzata; Olszewska, Malgorzata; Rudnicka, Lidia
2015-03-31
Loose anagen hair syndrome (LAHS) is typically diagnosed in girls older than 2 years who present with hair that "will not grow". Hair microscopic examination shows absent inner and outer root sheaths, ruffling of the cuticle on the proximal hair shaft and deformed pigmented anagen bulbs. The aim of the study was to assess whether there are characteristic trichoscopic features favoring the diagnosis of LAHS. Eighty nine children patients were included into the study (24 girls with LAHS, 25 with alopecia areata, 20 with telogen effluvium and 20 healthy children). In all groups trichoscopy was performed. Trichoscopy images were analyzed for abnormalities in the hairs shafts, the hair follicle openings and the interfollicular area. Dirty dots were present in all groups. A unique feature of LAHS was the presence of rectangular black granular structures which differs from dense black dots seen in patients with alopecia areata. This feature was observed in 71% of patients with LAHS. Follicular units with single hairs constituted 92,9% of hair units in these patients (65,5% in telogen effluvium and 53% in the control group). Solitary yellow dots were found in 50% of patient with LAHS and in 24% of patients with alopecia areata, but was not found in control group or in patients with telogen effluvium. The trichoscopy features favoring the diagnosis of LAHS are: rectangular black granular structures, solitary yellow dots and major predominance of follicular units with single hairs.
Applicability of URANS and DES Simulations of Flow Past Rectangular Cylinders and Bridge Sections
Directory of Open Access Journals (Sweden)
Claudio Mannini
2015-09-01
Full Text Available This paper discusses the results of computational fluid dynamics simulations carried out for rectangular cylinders with various side ratios of interest for many civil engineering structures. A bridge deck of common cross-section geometry was also considered. Unsteady Reynolds-averaged Navier–Stokes (URANS equations were solved in conjunction with either an eddy viscosity or a linearized explicit algebraic Reynolds stress model. The analysis showed that for the case studies considered, the 2D URANS approach was able to give reasonable results if coupled with an advanced turbulence model and a suitable computational mesh. The simulations even reproduced, at least qualitatively, complex phenomena observed in the wind tunnel, such as Reynolds number effects for a sharp-edged geometry. The study focused both on stationary and harmonically oscillating bodies. For the latter, self-excited forces and flutter derivatives were calculated and compared to experimental data. In the particular case of a benchmark rectangular 5:1 cylinder, 3D detached eddy simulations were also carried out, highlighting the improvement in the accuracy of the results with respect to both 2D and 3D URANS calculations. All of the computations were performed with the Tau code, a non-commercial unstructured solver developed by the German Aerospace Center.
Springback Mechanism Analysis and Experiments on Robotic Bending of Rectangular Orthodontic Archwire
Jiang, Jin-Gang; Han, Ying-Shuai; Zhang, Yong-De; Liu, Yan-Jv; Wang, Zhao; Liu, Yi
2017-05-01
Fixed-appliance technology is the most common and effective malocclusion orthodontic treatment method, and its key step is the bending of orthodontic archwire. The springback of archwire did not consider the movement of the stress-strain-neutral layer. To solve this problem, a springback calculation model for rectangular orthodontic archwire is proposed. A bending springback experiment is conducted using an orthodontic archwire bending springback measurement device. The springback experimental results show that the theoretical calculation results using the proposed model coincide better with the experimental testing results than when movement of the stress-strain-neutral layer was not considered. A bending experiment with rectangular orthodontic archwire is conducted using a robotic orthodontic archwire bending system. The patient expriment result show that the maximum and minimum error ratios of formed orthodontic archwire parameters are 22.46% and 10.23% without considering springback and are decreased to 11.35% and 6.13% using the proposed model. The proposed springback calculation model, which considers the movement of the stress-strain-neutral layer, greatly improves the orthodontic archwire bending precision.
Springback Mechanism Analysis and Experiments on Robotic Bending of Rectangular Orthodontic Archwire
Jiang, Jin-Gang; Han, Ying-Shuai; Zhang, Yong-De; Liu, Yan-Jv; Wang, Zhao; Liu, Yi
2017-11-01
Fixed-appliance technology is the most common and effective malocclusion orthodontic treatment method, and its key step is the bending of orthodontic archwire. The springback of archwire did not consider the movement of the stress-strain-neutral layer. To solve this problem, a springback calculation model for rectangular orthodontic archwire is proposed. A bending springback experiment is conducted using an orthodontic archwire bending springback measurement device. The springback experimental results show that the theoretical calculation results using the proposed model coincide better with the experimental testing results than when movement of the stress-strain-neutral layer was not considered. A bending experiment with rectangular orthodontic archwire is conducted using a robotic orthodontic archwire bending system. The patient expriment result show that the maximum and minimum error ratios of formed orthodontic archwire parameters are 22.46% and 10.23% without considering springback and are decreased to 11.35% and 6.13% using the proposed model. The proposed springback calculation model, which considers the movement of the stress-strain-neutral layer, greatly improves the orthodontic archwire bending precision.
van der Sman, R G M
2006-08-01
In this paper we present lattice Boltzmann (LB) schemes for convection diffusion coupled to fluid flow on two-dimensional rectangular lattices. Via inverse Chapman-Enskog analysis of LB schemes including source terms, we show that for consistency with physics it is required that the moments of the equilibrium distributions equal those of the Maxwell-Boltzmann distribution. These constraints can be satisfied for the rectangular D2Q9 lattice for only fluid flow in the weakly compressible regime. The analysis of source terms shows that fluxes are really defined on the boundaries of the Wigner-Seitz cells, and not on the lattice sites where the densities are defined-which is quite similar to the staggered grid finite-volume schemes. Our theoretical findings are confirmed by numerical solutions of benchmark problems for convection diffusion and natural convection. The lattice Boltzmann scheme shows remarkably good performance for convection diffusion, showing little to non-numerical diffusion or numerical dispersion, even at high grid Peclet numbers.
[Strong and tunable field enhancement obtained by periodic rectangular pit structure].
Wang, Meng; Wang, Bin; Fu, Su-yang; Huang, Sen-peng; Guo, Ting-ke; Li, Hao-yu; Xu, Xiao-xuan; Wang, Yu-fang
2015-02-01
The authors have designed a novel type of periodic rectangular pit nanostructure substrate based on the surface plasmon principle. Finite element method was employed to simulate the optical near-field distribution. Strongly enhanced field whose electric intensity Emax/E0 can be as high as 20 at resonance frequency appears around pithead of the periodic structure. As the period of structure, pit length l, width w and environment change, the authors observe the regular shifting of plasmon resonant wavelength which can cover the range from 500 to 1000 nm. The red shifts of SPR resonance peaks are increased with the increment of period Px when incident light is polarized along x axis. An abrupt decrease in localized electric field in the pit is observed as incident wavelength approaches Px. This is due to the satisfaction of wave vector matching condition and the excitation of propagating SPP. SPR resonance peaks also red shifts with the increment on pit length l and environment dielectric refractive index, presenting a linear dependence with pit length l. While the resonance peaks are blue shifted with the increment of pit width w. The results presented in this paper will provide a way to tune the plasmon resonant wavelength. Inspired by Jain's report, SPR resonance peaks' shifting with the changing of structure parameters can be explained by viewing the rectangular pit nanostructure as combination of two pairs of dipole-dipole coupling models along x and y axis respectively.
Conversion of output factor from square field into rectangular field in electron beam
Wang Jian Hua; Xu Yi Fei
2002-01-01
Objective: A simple and accurate calculation method was designed to convert output factor from square field into rectangular field in electron beam, which can be easily implemented in clinical practice. Methods: 6, 12, 15 MeV electron beam, field size 6.0 cm x 7.5 cm, 5.0 cm x 10.0 cm, 6.0 cm x 12.0 cm, TL3000C dosimeter and source-to-surface distance method were used in dose measurement. The measured dose values were compared with the calculated ones from three theoretical equations with the conformation evaluated. Results: The calculated dose values from three theoretical equations differed from the measured ones by 0.23%, 1.30% and 1.10% (6 MeV), 0.63%, 0.90% and 0.73% (12 MeV), 0.50%, 1.80% and 3.40% (15 MeV), conforming best to the equation OUF (X, Y)=[OUF(X,X). OUF(Y,Y)] sup 1 sup / sup 2. When the size of the field was longer than Rp, the difference between the calculated values and measured ones was relatively very small. Conclusions: The output factor in rectangular fields can be accurately calculate...
High-T{sub c} superconducting rectangular microstrip patch covered with a dielectric layer
Energy Technology Data Exchange (ETDEWEB)
Bedra, Sami, E-mail: s_bedra@yahoo.fr [Department of Industrial Engineering, University of Khenchela, 40004 Khenchela (Algeria); Fortaki, Tarek [Electronics Department, University of Batna, 05000 Batna (Algeria)
2016-05-15
Highlights: • We model a microstrip antenna with a dielectric cover and superconductor patch. • The extended full-wave analysis is used to solve for the antenna characteristics • The accuracy of the method is checked by comparing our results with published data • The superconducting patch affects the resonant characteristics of the antenna • Patch on substrate–superstrate configuration is more advantageous than the one on single layer. - Abstract: This paper presents a full-wave method to calculate the resonant characteristics of rectangular microstrip antenna with and without dielectric cover, to explain the difference of performance with temperature between superconducting and normal conducting antenna. Especially the characteristics of high temperature superconducting (HTS) antenna were almost ideal around the critical temperature (T{sub c}). The dyadic Green's functions of the considered structure are efficiently determined in the vector Fourier transform domain. The effect of the superconductivity of the patch is taken into account using the concept of the complex resistive boundary condition. The computed results are found to be in good agreement with results obtained using other methods. Also, the effects of the superstrate on the resonant frequency and bandwidth of rectangular microstrip patch in a substrate–superstrate configuration are investigated. This type of configuration can be used for wider bandwidth by proper selection of superstrate thickness and its dielectric constants.
Energy Technology Data Exchange (ETDEWEB)
Benkouda, Siham; Messai, Abderraouf [Electronics Department, University of Constantine 1, 25000 Constantine (Algeria); Amir, Mounir; Bedra, Sami [Electronics Department, University of Batna, 05000 Batna (Algeria); Fortaki, Tarek, E-mail: t_fortaki@yahoo.fr [Electronics Department, University of Batna, 05000 Batna (Algeria)
2014-07-15
Highlights: • We model a microstrip antenna with anisotropic substrate and superconductor patch. • The extended full-wave analysis is used to solve for the antenna characteristics. • The accuracy of the method is checked by comparing our results with published data. • Uniaxial anisotropy affects the resonant characteristics of the antenna. • Patch on uniaxial substrate is more advantageous than the one on isotropic medium. - Abstract: Resonant characteristics of a high T{sub c} superconducting rectangular microstrip patch printed on uniaxially anisotropic substrate are investigated using a full-wave spectral analysis in conjunction with the complex resistive boundary condition. The uniaxial medium shows anisotropy of an electric type as well as anisotropy of a magnetic type. Both permittivity and permeability tensors of the substrate are included in the formulation of the dyadic Green’s function of the problem. The accuracy of the analysis is tested by comparing the computed results with previously published data for several anisotropic substrate materials. Numerical data of the resonant frequency and bandwidth as a function of electric anisotropy ratio are presented. Variations of the resonant frequency and bandwidth with the magnetic anisotropy ratio are also given. Finally, results showing the influence of the temperature on the resonant frequency and quality factor of the high T{sub c} superconducting rectangular microstrip patch on a uniaxial substrate are also given.
Rectangular AgIn(WO{sub 4}){sub 2} nanotubes: a promising photoelectric material
Energy Technology Data Exchange (ETDEWEB)
Song, Shuyan; Zhang, Yu; Xing, Yan; Wang, Cheng; Feng, Jing; Shi, Weidong; Zheng, Guoli; Zhang, Hongjie [Key Laboratory of Rare Earth Chemistry and Physics, Changchun Institute of Applied Chemistry (China); Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Changchun (China)
2008-08-22
Rectangular AgIn(WO{sub 4}){sub 2} nanotubes with a diameter range of 80 to 120 nm and length up to 2 {mu}m have been synthesized by a hydrothermal method. These nanotubes exhibit interesting white light emissions when using 320 nm as the excitation wavelength. A photocatalytic reaction for water decomposition to evolve H{sub 2} was performed under UV irradiation, and the rate of H{sub 2} evolution is nearly seven times that of the sample prepared by a solid-state reaction, which shows much higher photocatalytic activities compared with their bulk counterparts. The activity of AgIn(WO{sub 4}){sub 2} nanotubes for degrading rhodamine B in water irradiated by UV light was about twice that of using bulk materials. The formation mechanism of the rectangular nanotubes is proposed based on the anisotropic intrinsic crystalline structure of AgIn(WO{sub 4}){sub 2}. The enhancement of the photoelectric properties is attributed to the nanometer-scale size and tubular structure. (Abstract Copyright [2008], Wiley Periodicals, Inc.)
Weak commutation relations and eigenvalue statistics for products of rectangular random matrices.
Ipsen, Jesper R; Kieburg, Mario
2014-03-01
We study the joint probability density of the eigenvalues of a product of rectangular real, complex, or quaternion random matrices in a unified way. The random matrices are distributed according to arbitrary probability densities, whose only restriction is the invariance under left and right multiplication by orthogonal, unitary, or unitary symplectic matrices, respectively. We show that a product of rectangular matrices is statistically equivalent to a product of square matrices. Hereby we prove a weak commutation relation of the random matrices at finite matrix sizes, which previously has been discussed for infinite matrix size. Moreover, we derive the joint probability densities of the eigenvalues. To illustrate our results, we apply them to a product of random matrices drawn from Ginibre ensembles and Jacobi ensembles as well as a mixed version thereof. For these weights, we show that the product of complex random matrices yields a determinantal point process, while the real and quaternion matrix ensembles correspond to Pfaffian point processes. Our results are visualized by numerical simulations. Furthermore, we present an application to a transport on a closed, disordered chain coupled to a particle bath.
Effects of anisotropic properties on bursting behavior of rectangular cup with a V-notch
Energy Technology Data Exchange (ETDEWEB)
Kim, Jeong Tai [R and D Center, TERA Co. Ltd., Seoul (Korea, Republic of); Kim, Sang Mok [R and D Center, Hyosung Power and Industrial Systems PG, Changwon (Korea, Republic of); Kang, Beom Soo [Dept. of Aerospace Engineering, Pusan National University, Busan (Korea, Republic of); Ku, Tae Wan [Engineering Research Center of Innovative Technology on Advanced Forming, Pusan National University, Busan (Korea, Republic of)
2016-09-15
Effects of mechanical anisotropic properties on bursting failure and its pressure of rectangular deep-drawn cup fabricated by using AA3005-H14 thin sheet are investigated to utilize for electrolyte container of lithium-ion secondary batteries. The V-notch shape with a depth of 0.1 mm and an angle of 20.0 degrees is defined on the rectangular cup, which has a thickness of 0.20 mm on the major surface and that of 0.30 mm on the minor surface. With the measured mechanical properties by uni-axial tensile tests and the defined V-notch geometry, a series of numerical prediction models considering isotropic, planar and normal anisotropic characteristics, are built-up and the bursting simulations are performed. Thereafter, the bursting fracture behavior is investigated by adopting ductile fracture criterion proposed by Cockcroft and Latham. The results predicted for the planar and the normal anisotropic models show that the bursting fracture pressure is well matched to 0.400 MPa, and the isotropic and the planar anisotropic models present a bursting fracture height of about 4.95 mm and 4.92 mm, respectively. A series of experimental investigations are undertaken to verify the bursting deformation that had been predicted. The bursting pressure and its height during experimental verifications are shown to be in good agreement with each variation of about 5.88% and roughly 0.20% with respect to the numerical results obtained using the planar anisotropic model.
Zhorov, B S; Brovtsyna, N B; Gmiro, V E; Lukomskaya NYa; Serdyuk, S E; Potapyeva, N N; Magazanik, L G; Kurenniy, D E; Skok, V I
1991-04-01
Relationship between the size of the molecule in the series of organic ions Et3+N--(CH2)5--+NR1R2R3 (Ri--alkyl or cycloalkyl substituents) and their abilities to block nicotinic acetylcholine receptors (AChRs) due to their open-channel blockade in the neurons of autonomic ganglia and in frog end-plate was analyzed. All low-energy equilibrium conformations of the drugs were calculated by the molecular mechanics method. A unique rectangular channel profile 6.1 x 8.3 A, for which the best correlation between blocking activity of the drugs and total population of their conformations being able to penetrate into the channel, was deduced from all those tested.
Camerino, Diana Conte; Tricarico, Domenico; Desaphy, Jean-François
2007-04-01
Because ion channels are involved in many cellular processes, drugs acting on ion channels have long been used for the treatment of many diseases, especially those affecting electrically excitable tissues. The present review discusses the pharmacology of voltage-gated and neurotransmitter-gated ion channels involved in neurologic diseases, with emphasis on neurologic channelopathies. With the discovery of ion channelopathies, the therapeutic value of many basic drugs targeting ion channels has been confirmed. The understanding of the genotype-phenotype relationship has highlighted possible action mechanisms of other empirically used drugs. Moreover, other ion channels have been pinpointed as potential new drug targets. With regards to therapy of channelopathies, experimental investigations of the intimate drug-channel interactions have demonstrated that channel mutations can either increase or decrease affinity for the drug, modifying its potential therapeutic effect. Together with the discovery of channel gene polymorphisms that may affect drug pharmacodynamics, these findings highlight the need for pharmacogenetic research to allow identification of drugs with more specific effects on channel isoforms or mutants, to increase efficacy and reduce side effects. With a greater understanding of channel genetics, structure, and function, together with the identification of novel primary and secondary channelopathies, the number of ion channel drugs for neurologic channelopathies will increase substantially.
VillageLink: Wide-Area Wireless Coverage
CSIR Research Space (South Africa)
Pejovic, V
2014-01-01
Full Text Available White spaces promise to revolutionize the way wireless connectivity is delivered over wide areas. However, large-scale white space networks face the problem of allocating channels to multiple contending users in the wide white space band. To tackle...
Riparian zones of streams in northwestern Mississippi have been impacted by agriculture, channelization, channel incision, and gully erosion. Riparian gully formation has resulted in the fragmentation of remnant riparian zones within agricultural watersheds. One widely used conservation practice for...
Dividing Streamline Formation Channel Confluences by Physical Modeling
Directory of Open Access Journals (Sweden)
Minarni Nur Trilita
2010-02-01
Full Text Available Confluence channels are often found in open channel network system and is the most important element. The incoming flow from the branch channel to the main cause various forms and cause vortex flow. Phenomenon can cause erosion of the side wall of the channel, the bed channel scour and sedimentation in the downstream confluence channel. To control these problems needed research into the current width of the branch channel. The incoming flow from the branch channel to the main channel flow bounded by a line distributors (dividing streamline. In this paper, the wide dividing streamline observed in the laboratory using a physical model of two open channels, a square that formed an angle of 30º. Observations were made with a variety of flow coming from each channel. The results obtained in the laboratory observation that the width of dividing streamline flow is influenced by the discharge ratio between the channel branch with the main channel. While the results of a comparison with previous studies showing that the observation in the laboratory is smaller than the results of previous research.