WorldWideScience

Sample records for whistler mode chorus

  1. New results of investigations of whistler-mode chorus emissions

    Czech Academy of Sciences Publication Activity Database

    Santolík, Ondřej

    2008-01-01

    Roč. 15, č. 4 (2008), s. 621-630 ISSN 1023-5809 R&D Projects: GA AV ČR IAA301120601 Grant - others: NASA (US) NNX07AI24G; ESA PECS(XE) 98025 Institutional research plan: CEZ:AV0Z30420517 Keywords : chorus emissions * whistler-mode * Earth's magnetosphere Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.022, year: 2008 http://www.nonlin-processes-geophys.net/15/621/2008/

  2. Rapid flattening of butterfly pitch angle distributions of radiation belt electrons by whistler-mode chorus

    Science.gov (United States)

    Yang, Chang; Su, Zhenpeng; Xiao, Fuliang; Zheng, Huinan; Wang, Yuming; Wang, Shui; Spence, H. E.; Reeves, G. D.; Baker, D. N.; Blake, J. B.; Funsten, H. O.

    2016-08-01

    Van Allen radiation belt electrons exhibit complex dynamics during geomagnetically active periods. Investigation of electron pitch angle distributions (PADs) can provide important information on the dominant physical mechanisms controlling radiation belt behaviors. Here we report a storm time radiation belt event where energetic electron PADs changed from butterfly distributions to normal or flattop distributions within several hours. Van Allen Probes observations showed that the flattening of butterfly PADs was closely related to the occurrence of whistler-mode chorus waves. Two-dimensional quasi-linear STEERB simulations demonstrate that the observed chorus can resonantly accelerate the near-equatorially trapped electrons and rapidly flatten the corresponding electron butterfly PADs. These results provide a new insight on how chorus waves affect the dynamic evolution of radiation belt electrons.

  3. Rapid flattening of butterfly pitch angle distributions of radiation belt electrons by whistler-mode chorus

    International Nuclear Information System (INIS)

    Yang, Chang; Changsha University of Science and Technology, Changsha; Su, Zhenpeng; Xiao, Fuliang; Zheng, Huinan

    2016-01-01

    Van Allen radiation belt electrons exhibit complex dynamics during geomagnetically active periods. Investigation of electron pitch angle distributions (PADs) can provide important information on the dominant physical mechanisms controlling radiation belt behaviors. In this paper, we report a storm time radiation belt event where energetic electron PADs changed from butterfly distributions to normal or flattop distributions within several hours. Van Allen Probes observations showed that the flattening of butterfly PADs was closely related to the occurrence of whistler-mode chorus waves. Two-dimensional quasi-linear STEERB simulations demonstrate that the observed chorus can resonantly accelerate the near-equatorially trapped electrons and rapidly flatten the corresponding electron butterfly PADs. Finally, these results provide a new insight on how chorus waves affect the dynamic evolution of radiation belt electrons.

  4. Evidence for acceleration of outer zone electrons to relativistic energies by whistler mode chorus

    Directory of Open Access Journals (Sweden)

    N. P. Meredith

    2002-07-01

    Full Text Available We use plasma wave and electron data from the Combined Release and Radiation Effects Satellite (CRRES to investigate the viability of a local stochastic electron acceleration mechanism to relativistic energies driven by gyroresonant interactions with whistler mode chorus. In particular, we examine the temporal evolution of the spectral response of the electrons and the waves during the 9 October 1990 geomagnetic storm. The observed hardening of the electron energy spectra over about 3 days in the recovery phase is coincident with prolonged substorm activity, as monitored by the AE index and enhanced levels of whistler mode chorus waves. The observed spectral hardening is observed to take place over a range of energies appropriate to the resonant energies associated with Doppler-shifted cyclotron resonance, as supported by the construction of realistic resonance curves and resonant diffusion surfaces. Furthermore, we show that the observed spectral hardening is not consistent with energy-independent radial diffusion models. These results provide strong circumstantial evidence for a local stochastic acceleration mechanism, involving the energisation of a seed population of electrons with energies of the order of a few hundred keV to relativistic energies, driven by wave-particle interactions involving whistler mode chorus. The results suggest that this mechanism contributes to the reformation of the relativistic outer zone population during geomagnetic storms, and is most effective when the recovery phase is characterised by prolonged substorm activity. An additional significant result of this paper is that we demonstrate that the lower energy part of the storm-time electron distribution is in steady-state balance, in accordance with the Kennel and Petschek (1966 theory of limited stably-trapped particle fluxes.Key words. Magnetospheric physics (storms and substorms, energetic particles, trapped – Space plasma physics (wave-particle interactions

  5. Examining Coherency Scales, Substructure, and Propagation of Whistler Mode Chorus Elements With Magnetospheric Multiscale (MMS)

    Science.gov (United States)

    Turner, D. L.; Lee, J. H.; Claudepierre, S. G.; Fennell, J. F.; Blake, J. B.; Jaynes, A. N.; Leonard, T.; Wilder, F. D.; Ergun, R. E.; Baker, D. N.; Cohen, I. J.; Mauk, B. H.; Strangeway, R. J.; Hartley, D. P.; Kletzing, C. A.; Breuillard, H.; Le Contel, O.; Khotyaintsev, Yu. V.; Torbert, R. B.; Allen, R. C.; Burch, J. L.; Santolik, O.

    2017-11-01

    Whistler mode chorus waves are a naturally occurring electromagnetic emission observed in Earth's magnetosphere. Here, for the first time, data from NASA's Magnetospheric Multiscale (MMS) mission were used to analyze chorus waves in detail, including the calculation of chorus wave normal vectors, fi>k. A case study was examined from a period of substorm activity around the time of a conjunction between the MMS constellation and NASA's Van Allen Probes mission on 07 April 2016. Chorus wave activity was simultaneously observed by all six spacecraft over a broad range of L shells (5.5 flat or falling frequency following the peak, and all the elements exhibited complex and well-organized substructure observed consistently at all four MMS spacecraft at separations up to 70 km (60 km perpendicular and 38 km parallel to the background magnetic field). The waveforms in field-aligned coordinates also demonstrated that these waves were all phase coherent, allowing for the direct calculation of fi>k. Error estimates on calculated fi>k revealed that the plane wave approximation was valid for six of the eight elements and most of the subelements. The wave normal vectors were within 20-30° from the direction antiparallel to the background field for all elements and changed from subelement to subelement through at least two of the eight elements. The azimuthal angle of fi>k in the perpendicular plane was oriented earthward and was oblique to that of the Poynting vector, which has implications for the validity of cold plasma theory.

  6. Cyclotron Acceleration of Relativistic Electrons through Landau Resonance with Obliquely Propagating Whistler Mode Chorus Emissions

    Science.gov (United States)

    Omura, Y.; Hsieh, Y. K.; Foster, J. C.; Erickson, P. J.; Kletzing, C.; Baker, D. N.

    2017-12-01

    A recent test particle simulation of obliquely propagating whistler mode wave-particle interaction [Hsieh and Omura, 2017] shows that the perpendicular wave electric field can play a significant role in trapping and accelerating relativistic electrons through Landau resonance. A further theoretical and numerical investigation verifies that there occurs nonlinear wave trapping of relativistic electrons by the nonlinear Lorentz force of the perpendicular wave magnetic field. An electron moving with a parallel velocity equal to the parallel phase velocity of an obliquely propagating wave basically see a stationary wave phase. Since the electron position is displaced from its gyrocenter by a distance ρ*sin(φ), where ρ is the gyroradius and φ is the gyrophase, the wave phase is modulated with the gyromotion, and the stationary wave fields as seen by the electron are expanded as series of Bessel functions Jn with phase variations n*φ. The J1 components of the wave electric and magnetic fields rotate in the right-hand direction with the gyrofrequency, and they can be in resonance with the electron undergoing the gyromotion, resulting in effective electron acceleration and pitch angle scattering. We have performed a subpacket analysis of chorus waveforms observed by the Van Allen Probes [Foster et al., 2017], and calculated the energy gain by the cyclotron acceleration through Landau resonance. We compare the efficiencies of accelerations by cyclotron and Landau resonances in typical events of rapid electron acceleration observed by the Van Allen Probes.References:[1] Hsieh, Y.-K., and Y. Omura (2017), Nonlinear dynamics of electrons interacting with oblique whistler mode chorus in the magnetosphere, J. Geophys. Res. Space Physics, 122, 675-694, doi:10.1002/2016JA023255.[2] Foster, J. C., P. J. Erickson, Y. Omura, D. N. Baker, C. A. Kletzing, and S. G. Claudepierre (2017), Van Allen Probes observations of prompt MeV radiation belt electron acceleration in nonlinear

  7. Electron acceleration at Jupiter: input from cyclotron-resonant interaction with whistler-mode chorus waves

    Directory of Open Access Journals (Sweden)

    E. E. Woodfield

    2013-10-01

    Full Text Available Jupiter has the most intense radiation belts of all the outer planets. It is not yet known how electrons can be accelerated to energies of 10 MeV or more. It has been suggested that cyclotron-resonant wave-particle interactions by chorus waves could accelerate electrons to a few MeV near the orbit of Io. Here we use the chorus wave intensities observed by the Galileo spacecraft to calculate the changes in electron flux as a result of pitch angle and energy diffusion. We show that, when the bandwidth of the waves and its variation with L are taken into account, pitch angle and energy diffusion due to chorus waves is a factor of 8 larger at L-shells greater than 10 than previously shown. We have used the latitudinal wave intensity profile from Galileo data to model the time evolution of the electron flux using the British Antarctic Survey Radiation Belt (BAS model. This profile confines intense chorus waves near the magnetic equator with a peak intensity at ∼5° latitude. Electron fluxes in the BAS model increase by an order of magnitude for energies around 3 MeV. Extending our results to L = 14 shows that cyclotron-resonant interactions with chorus waves are equally important for electron acceleration beyond L = 10. These results suggest that there is significant electron acceleration by cyclotron-resonant interactions at Jupiter contributing to the creation of Jupiter's radiation belts and also increasing the range of L-shells over which this mechanism should be considered.

  8. Survey of Poynting flux of whistler mode chorus in the outer zone

    Czech Academy of Sciences Publication Activity Database

    Santolík, Ondřej; Pickett, J. S.; Gurnett, D. A.; Menietti, J. D.; Tsurutani, B. T.; Verkhoglyadova, O.

    2010-01-01

    Roč. 115, - (2010), A00F13/1-A00F13/13 ISSN 0148-0227 R&D Projects: GA AV ČR IAA301120601; GA ČR GA205/09/1253 Grant - others:GA MŠk(CZ) ME 842 Institutional research plan: CEZ:AV0Z30420517 Keywords : chorus * Polar spacecraft * Poynting flux Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 3.303, year: 2010

  9. Propagation of whistler-mode chorus to low altitudes: divergent ray trajectories and ground accessibility

    Directory of Open Access Journals (Sweden)

    J. Chum

    2005-12-01

    Full Text Available We investigate the ray trajectories of nonductedly propagating lower-band chorus waves with respect to their initial angle θ0, between the wave vector and ambient magnetic field. Although we consider a wide range of initial angles θ0, in order to be consistent with recent satellite observations, we pay special attention to the intervals of initial angles θ0, for which the waves propagate along the field lines in the source region, i.e. we mainly focus on waves generated with &theta0 within an interval close to 0° and on waves generated within an interval close to the Gendrin angle. We demonstrate that the ray trajectories of waves generated within an interval close to the Gendrin angle with a wave vector directed towards the lower L-shells (to the Earth significantly diverge at the frequencies typical for the lower-band chorus. Some of these diverging trajectories reach the topside ionosphere having θ close to 0°; thus, a part of the energy may leak to the ground at higher altitudes where the field lines have a nearly vertical direction. The waves generated with different initial angles are reflected. A small variation of the initial wave normal angle thus very dramatically changes the behaviour of the resulting ray. Although our approach is rather theoretical, based on the ray tracing simulation, we show that the initial angle θ0 of the waves reaching the ionosphere (possibly ground is surprisingly close - differs just by several degrees from the initial angles which fits the observation of magnetospherically reflected chorus revealed by CLUSTER satellites. We also mention observations of diverging trajectories on low altitude satellites.

  10. Observations Directly Linking Relativistic Electron Microbursts to Whistler Mode Chorus: Van Allen Probes and FIREBIRD II

    Czech Academy of Sciences Publication Activity Database

    Breneman, A. W.; Crew, A.; Sample, J.; Klumpar, D.; Johnson, A.; Agapitov, O.; Shumko, M.; Turner, D. L.; Santolík, Ondřej; Wygant, J. R.; Cattell, C. A.; Thaller, S. A.; Blake, B.; Spence, H.; Kletzing, C. A.

    2017-01-01

    Roč. 44, č. 22 (2017), s. 11265-11272 ISSN 0094-8276 R&D Projects: GA ČR GA17-07027S Grant - others:AV ČR(CZ) AP1401 Program:Akademická prémie - Praemium Academiae Institutional support: RVO:68378289 Keywords : VLF-CHORUS * RADIATION BELT * ZONE ELECTRONS * SOURCE REGION * AURORAL-ZONE * GEM STORMS * PRECIPITATION * ASSOCIATION * RESOLUTION * EMISSIONS Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 4.253, year: 2016 http://onlinelibrary.wiley.com/doi/10.1002/2017GL075001/epdf

  11. Location and size of the global source region of whistler-mode chorus

    Czech Academy of Sciences Publication Activity Database

    Hayosh, Mykhaylo; Santolík, Ondřej; Parrot, M.

    2010-01-01

    Roč. 115, - (2010), A00F06/1-A00F06/8 ISSN 0148-0227 R&D Projects: GA MŠk ME09107; GA ČR GA205/09/1253; GA AV ČR IAA301120601 Grant - others:ESA PECS (XE) 98025; CNRS/DREI(FR) PICS 3725 Institutional research plan: CEZ:AV0Z30420517 Keywords : CLUSTER * ray-tracing * chorus Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 3.303, year: 2010

  12. Wave normal angles of whistler mode chorus rising and falling tones

    Czech Academy of Sciences Publication Activity Database

    Taubenschuss, U.; Khotyaintsev, Y. V.; Santolík, Ondřej; Vaivads, A.; Cully, C. M.; Contel Le, O.; Angelopoulos, V.

    2014-01-01

    Roč. 119, č. 12 (2014), s. 9567-9578 ISSN 2169-9380 R&D Projects: GA MŠk 7E12026; GA ČR GAP205/10/2279; GA MŠk(CZ) LH11122 Institutional support: RVO:68378289 Keywords : chorus * wavenormal Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 3.426, year: 2014 http://onlinelibrary.wiley.com/doi/10.1002/2014JA020575/abstract;jsessionid=A6BE5229FEE7EF89202CAA0D5663E8CC.f04t01

  13. Examining Coherency Scales, Substructure, and Propagation of Whistler Mode Chorus Elements With Magnetospheric Multiscale (MMS)

    Czech Academy of Sciences Publication Activity Database

    Turner, D. L.; Lee, J.H.; Claudepierre, S.G.; Fennell, J.F.; Blake, J. B.; Jaynes, A.N.; Leonard, T.; Wilder, F.D.; Ergun, R. E.; Baker, D. N.; Cohen, I.J.; Mauk, B.H.; Strangeway, R. J.; Hartley, D. P.; Kletzing, C. A.; Breuillard, H.; Le Contel, O.; Khotyaintsev, Y. V.; Torbert, R. B.; Allen, R.C.; Burch, J.L.; Santolík, Ondřej

    2017-01-01

    Roč. 122, č. 11 (2017), s. 11201-11226 ISSN 2169-9380 R&D Projects: GA MŠk(CZ) LH15304 Grant - others:AV ČR(CZ) AP1401 Program:Akademická prémie - Praemium Academiae Institutional support: RVO:68378289 Keywords : outer radiation belt * relativistic electron-scattering * storm -time chorus * wave-form data * inner magnetosphere * plasmaspheric hiss * source region * generation mechanisms * phase-space * acceleration Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 2.733, year: 2016 http://onlinelibrary.wiley.com/doi/10.1002/2017JA024474/pdf

  14. Direct Observations of ULF and Whistler-Mode Chorus Modulation of 500eV EDI Electrons by MMS

    Science.gov (United States)

    Paulson, K. W.; Argall, M. R.; Ahmadi, N.; Torbert, R. B.; Le Contel, O.; Ergun, R.; Khotyaintsev, Y. V.; Strangeway, R. J.; Magnes, W.; Russell, C. T.

    2016-12-01

    We present here direct observations of chorus-wave modulated field-aligned 500 eV electrons using the Electron Drift Instrument (EDI) on board the Magnetospheric Multiscale mission. These periods of wave activity were additionally observed to be modulated by Pc5-frequency magnetic perturbations, some of which have been identified as drifting mirror-mode structures. The spacecraft encountered these mirror-mode structures just inside of the duskside magnetopause. Using the high sampling rate provided by EDI in burst sampling mode, we are able to observe the individual count fluctuations of field-aligned electrons in this region up to 512 Hz. We use the multiple look directions of EDI to generate both pitch angle and gyrophase plots of the fluctuating counts. Our observations often show unidirectional flow of these modulated electrons along the background field, and in some cases demonstrate gyrophase bunching in the wave region.

  15. Whistler Triggered Upper Band Chorus Observed in Alaska

    Science.gov (United States)

    Hosseini, P.; Golkowski, M.

    2017-12-01

    VLF radiation from lightning discharges is one of several sources of energy injection into the inner magnetosphere from the Earth. Lightning discharges initially produce a broadband impulse or `sferic' but after propagation in the dispersive magnetosphere this waveform soon becomes quasi narrow band with the characteristic spectrographic form of the whistler. Most of the lightning induced VLF wave energy injected into the magnetosphere will be unducted with a k-vector which becomes increasingly oblique. Although unducted radiation is ubiquitous throughout the inner magnetosphere, it is generally of a low amplitude due to Landau damping and is not expected to produce strong nonlinear phenomena such as triggered emissions and chorus waves. However, VLF wave energy ducted or trapped in field-aligned plasma density enhancements can have relatively large amplitudes due to focusing and also linear cyclotron resonance growth. Therefore high amplitude ducted whistler waves can trigger a number of complex nonlinear phenomena. These include the triggering of VLF emissions and triggering of VLF hiss or chorus. Such phenomena are generally considered to result from nonlinear electron cyclotron phase trapping. Observation of such VLF emissions triggered by natural whistlers have been reported since the 1970s in Antarctica. We present observations of whistlers triggered upper band chorus emission from Alaska. Dispersion analyze of whistlers determine the L-shell range to be 4.5 clear frequency band gap between upper and lower band of the observed chorus emissions. The observations point to ducted chorus generation in the vicinity of the plasmapause boundary.

  16. Relation between fine structure of energy spectra for pulsating aurora electrons and frequency spectra of whistler mode chorus waves

    Czech Academy of Sciences Publication Activity Database

    Miyoshi, Y.; Saito, S.; Seki, K.; Nishiyama, T.; Kataoka, R.; Asamura, K.; Katoh, Y.; Ebihara, Y.; Sakanoi, T.; Hirahara, M.; Oyama, S.; Kurita, S.; Santolík, Ondřej

    2015-01-01

    Roč. 120, č. 9 (2015), s. 7728-7736 ISSN 2169-9380 R&D Projects: GA MŠk LH12231 Institutional support: RVO:68378289 Keywords : pulsating aurora * chorus waves * wave-particle interactions * computer simulation * Reimei satellite Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 3.318, year: 2015 http://onlinelibrary.wiley.com/doi/10.1002/2015JA021562/full

  17. Whistler-triggered chorus emissions observed during daytime at low latitude ground station Jammu

    Science.gov (United States)

    Pratap Patel, Ravindra; Singh, K. K.; Singh, A. K.; Singh, R. P.

    In this paper, we present whistler-triggered chorus emission recorded during daytime at low latitude ground station Jammu (geomag. Lat. = 22 degree 26 minute N; L = 1.17) during the period from 1996 to 2003. After analysis of the eight years collected data, we found out 29 events, which are definitely identified as chorus emission triggered by whistlers. During the observation period the magnetic activity is high. Analysis shows that the whistlers have propagated along the geomagnetic field line having L-values lying between L = 1.9 and 4.4. These waves could have propagated along the geomagnetic field lines either in ducted mode or pro-longitudinal mode. The measured relative intensity of the triggered emission and whistler wave is approximately the same and also varies from one event to another. It is proposed that these waves are generated through a process of wave-particle interaction and wave-wave interactions. Related parameters of this interaction are computed for different L-value and wave amplitude. With the help of dynamic spectra of these emissions, the proposed mechanisms are explained.

  18. The characteristic response of whistler mode waves to interplanetary shocks

    Science.gov (United States)

    Yue, C.; Chen, L.; Bortnik, J.; Ma, Q.; Thorne, R. M.; Angelopoulos, V.; Li, J.; An, X.; Zhou, C.

    2017-12-01

    Magnetospheric whistler mode waves play a key role in regulating the dynamics of the electron radiation belts. Recent satellite observations indicate a significant influence of interplanetary (IP) shocks on whistler mode wave power in the inner magnetosphere. In this study, we statistically investigate the response of whistler mode chorus and plasmaspheric hiss to IP shocks based on Van Allen Probes and THEMIS satellite observations. Immediately after the IP shock arrival, chorus wave power is usually intensified, often at dawn, while plasmaspheric hiss wave power predominantly decreases near the dayside but intensifies near the nightside. We conclude that chorus wave intensification outside the plasmasphere is probably associated with the suprathermal electron flux enhancement caused by the IP shock. On the other hand, the solar wind dynamic pressure increase changes the magnetic field configuration to favor ray penetration into the nightside and promote ray refraction away from the dayside, explaining the magnetic local time (MLT) dependent responses of plasmaspheric hiss waves following IP shock arrivals.

  19. Wave-Particle Interactions Involving Correlated Electron Bursts and Whistler Chorus in Earth's Radiation Belts

    Science.gov (United States)

    Echterling, N.; Schriver, D.; Roeder, J. L.; Fennell, J. F.

    2017-12-01

    During the recovery phase of substorm plasma injections, the Van Allen Probes commonly observe events of quasi-periodic energetic electron bursts correlating with simultaneously detected upper-band, whistler-mode chorus emissions. These electron bursts exhibit narrow ranges of pitch angles (75-80° and 100-105°) and energies (20-40 keV). Electron cyclotron harmonic (ECH) emissions are also commonly detected, but typically do not display correlation with the electron bursts. To examine sources of free energy and the generation of these wave emissions, an observed electron velocity distribution on January 13, 2013 is used as the starting condition for a particle in cell (PIC) simulation. Effects of temperature anisotropy (perpendicular temperature greater than parallel temperature), the presence of a loss cone and a cold electron population on the generation of whistler and ECH waves are examined to understand wave generation and nonlinear interactions with the particle population. These nonlinear interactions produce energy diffusion along with strong pitch angle scattering into the loss cone on the order of milliseconds, which is faster than a typical bounce period of seconds. To examine the quasi-periodic nature of the electron bursts, a loss-cone recycling technique is implemented to model the effects of the periodic emptying of the loss cone and electron injection on the growth of whistler and ECH waves. The results of the simulations are compared to the Van Allen Probe observations to determine electron acceleration, heating and transport in Earth's radiation belts due to wave-particle interactions.

  20. Parameter spaces for linear and nonlinear whistler-mode waves

    International Nuclear Information System (INIS)

    Summers, Danny; Tang, Rongxin; Omura, Yoshiharu; Lee, Dong-Hun

    2013-01-01

    We examine the growth of magnetospheric whistler-mode waves which comprises a linear growth phase followed by a nonlinear growth phase. We construct time-profiles for the wave amplitude that smoothly match at the transition between linear and nonlinear wave growth. This matching procedure can only take place over a limited “matching region” in (N h /N 0 ,A T )-space, where A T is the electron thermal anisotropy, N h is the hot (energetic) electron number density, and N 0 is the cold (background) electron number density. We construct this matching region and determine how the matching wave amplitude varies throughout the region. Further, we specify a boundary in (N h /N 0 ,A T )-space that separates a region where only linear chorus wave growth can occur from the region in which fully nonlinear chorus growth is possible. We expect that this boundary should prove of practical use in performing computationally expensive full-scale particle simulations, and in interpreting experimental wave data

  1. On whistler-mode group velocity

    International Nuclear Information System (INIS)

    Sazhin, S.S.

    1986-01-01

    An analytical of the group velocity of whistler-mode waves propagating parallel to the magnetic field in a hot anisotropic plasma is presented. Some simple approximate formulae, which can be used for the magnetospheric applications, are derived. These formulae can predict some properties of this group velocity which were not previously recognized or were obtained by numerical methods. In particular, it is pointed out that the anisotropy tends to compensate for the influence of the electron temperature on the value of the group velocity when the wave frequency is well below the electron gyrofrequency. It is predicted, that under conditions at frequencies near the electron gyrofrequency, this velocity tends towards zero

  2. Whistler-mode signals: Group delay by cross correlation

    International Nuclear Information System (INIS)

    Thomson, N.R.

    1975-01-01

    Group travel times of 18.6 kHz whistler-mode signals from NLK, Seattle, to Wellington, New Zealand, are now being measured using the normal FSK transmissions. This is done using a mini-computer programmed to perform real-time cross correlations between two receivers: one receiver gets its signal from a whip aerial on which the ground wave (subionospheric mode) dominates, while the other gets its signal from a loop oriented for minimum ground wave. Group travel time can thus be measured continuously while there are whistler-mode signals present. Delays of 0.2--0.8 seconds have been found

  3. Nonlinear damping of oblique whistler mode waves through Landau resonance

    Science.gov (United States)

    Hsieh, Y.; Omura, Y.

    2017-12-01

    Nonlinear trapping of electrons through Landau resonance is a characteristic dynamics in oblique whistler-mode wave particle interactions. The resonance velocity of the Landau resonance at quasi-parallel propagation becomes very close to the parallel group velocity of whistler-mode wave at frequency around 0.5 Ωe, causing a long distance of resonant interaction and strong acceleration of resonant electrons [1]. We demonstrate these effective accelerations for electrons with high equatorial pitch angle ( > 60°) by test particle simulations with parameters for the Earth's inner magnetosphere at L=5. In the simulations, we focus on slightly oblique whistler mode waves with wave normal angle 10.1002/2016JA023255.

  4. Using the cold plasma dispersion relation and whistler mode waves to quantify the antenna sheath impedance of the Van Allen Probes EFW instrument

    Czech Academy of Sciences Publication Activity Database

    Hartley, D. P.; Kletzing, C. A.; Kurth, W. S.; Bounds, S. R.; Averkamp, T. F.; Hospodarsky, G. B.; Wygant, J. R.; Bonnell, J. W.; Santolík, Ondřej; Watt, C. E. J.

    2016-01-01

    Roč. 121, č. 5 (2016), s. 4590-4606 ISSN 2169-9380 R&D Projects: GA MŠk(CZ) LH15304 Institutional support: RVO:68378289 Keywords : EFW * EMFISIS * plasmaspheric hiss * sheath impedance * Van Allen Probes * whistler mode chorus Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.733, year: 2016 http://onlinelibrary.wiley.com/doi/10.1002/2016JA022501/abstract

  5. Systematic analysis of whistler-mode emissions below the lower hybrid frequency based on the data of the Cluster project.

    Science.gov (United States)

    Nemec, F.; Santolik, O.; Gereova, K.; Macusova, E.; Cornilleau-Wehrlin, N.

    2003-12-01

    We report results of a systematic analysis of equatorial noise below the local lower hybrid frequency. Our analysis is based on the entire data set collected by the STAFF-SA instruments on board the Cluster spacecraft during the first two years of operation (2001 - 2002). We compare intensities of equatorial noise with other whistler-mode emissions, for example with chorus or hiss. The results indicate that these emissions can play a significant role in the dynamics of the inner magnetosphere. Using the multipoint measurement we show considerable spatio-temporal variations of the wave intensity.

  6. Effect of boundary conditions on radial mode structure of whistlers

    International Nuclear Information System (INIS)

    Boswell, R.W.

    1983-01-01

    The dispersion of the radical eigen modes of a cylindrical m=1 whistler wave with Ωsub(i) << ω << Ωsub(e) << ωsub(pe) are investigated for both conducting and insulating boundaries, where Ωsub(e) and Ωsub(i) are the electron and ion gyro frequencies, Ωsub(pe) is the electron plasma frequency. The effects of electron inertia and resistivity on the modes are discussed

  7. Dependence of Whistler-mode Wave Induced Electron Precipitation on k-vector Direction.

    Science.gov (United States)

    Kulkarni, P.; Inan, U. S.; Bell, T. F.; Bortnik, J.

    2007-12-01

    Whistler-mode waves that are either spontaneously generated in-situ (i.e., chorus), or externally injected (lightning, VLF transmitters) are known to be responsible for the loss of radiation belt electrons. An important determinant in the quantification of this loss is the dependence of the cyclotron resonant pitch angle scattering on the initial wave normal angles of the driving waves. Inan et al. (U.S. Inan et al., Controlled precipitation of radiation belt electrons, Journal of Geophysical Research-Space Physics, 108 (A5), 1186, doi: 10.1029/2002JA009580, 2003.) suggested that the lifetime of > 1 MeV electrons in the inner radiation belts might be moderated by in situ injection of VLF whistler mode waves at frequencies of a few kHz. The formulation of Wang and Bell (T.N.C. Wang and T.F. Bell, Radiation resisitance of a short dipole immersed in a cold magnetoionic medium, Radio Science, 4(2), 167-177, February 1969) for an electric dipole antenna located in the inner magnetosphere established that most of the radiated power is concentrated in waves whose wave normal angles lie near the local resonance cone. Such waves, compared to those injected at less oblique initial wave normal angles, undergo several more magnetospheric reflections, persist in the magnetospheric cavity for longer periods of time, and resonate with electrons of higher energies. Accordingly, such waves may be highly effective in contributing to the loss of electrons from the inner belt and slot regions [Inan et al., 2006]. Nevertheless, it has been noted (Inan et al. [2006], Inan and Bell [1991] and Albert [1999]) that > 1 MeV electrons may not be effectively scattered by waves propagating with very high wave normal angles, due to the generally reduced gyroresonant diffusion coefficients for wave normals near the resonance cone. We use the Stanford 2D VLF raytracing program to determine the energetic electron pitch angle scattering and the precipitated flux signatures that would be detected for

  8. Whistler mode startup in the Michigan Mirror Machine

    International Nuclear Information System (INIS)

    Booske, J.; Getty, W.D.; Gilgenbach, R.M.; Goodman, T.; Whaley, D.; Olivieri, R.; Pitcher, E.; Simonetti, L.

    1985-01-01

    Results of investigations of whistler mode ECRH plasma startup in the Michigan Mirror Machine are presented. Electron-velocity-distribution and plasma-spatial-distribution time evolution are characterized by measurements from axially and radially moveable Langmuir probes, an endloss current detector, an electron cyclotron emission radiometer, a foil-filtered X-ray detector, and a diamagnetic loop at the mirror midplane. Measurements of the buildup of both electron density and perpendicular pressure (nkT/sub perpendicular/) are compared to predictions from various numerical models. Both modeling and data suggest the creation of a highly anisotropic electron velocity distribution function with a ''sloshing electron'' axial density profile

  9. Propagation of lower-band whistler-mode waves in the outer Van Allen belt: Systematic analysis of 11 years of multi-component data from the Cluster spacecraft

    Czech Academy of Sciences Publication Activity Database

    Santolík, Ondřej; Macúšová, Eva; Kolmašová, Ivana; Cornilleau-Wehrlin, N.; De Conchy, Y.

    2014-01-01

    Roč. 41, č. 8 (2014), s. 2729-2737 ISSN 0094-8276 R&D Projects: GA MŠk 7E12026; GA ČR GAP205/10/2279 Institutional support: RVO:68378289 Keywords : whistler-mode chorus * wave vector directions * Van Allen radiation belts Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 4.456, year: 2013 http://onlinelibrary.wiley.com/doi/10.1002/2014GL059815/abstract

  10. Effect of parallel electric fields on the whistler mode wave propagation in the magnetosphere

    International Nuclear Information System (INIS)

    Gupta, G.P.; Singh, R.N.

    1975-01-01

    The effect of parallel electric fields on whistler mode wave propagation has been studied. To account for the parallel electric fields, the dispersion equation has been analyzed, and refractive index surfaces for magnetospheric plasma have been constructed. The presence of parallel electric fields deforms the refractive index surfaces which diffuse the energy flow and produce defocusing of the whistler mode waves. The parallel electric field induces an instability in the whistler mode waves propagating through the magnetosphere. The growth or decay of whistler mode instability depends on the direction of parallel electric fields. It is concluded that the analyses of whistler wave records received on the ground should account for the role of parallel electric fields

  11. Observations of whistler mode waves in the Jovian system and their consequences for the onboard processing within the RPWI instrument for JUICE

    Science.gov (United States)

    Santolik, O.; Soucek, J.; Kolmasova, I.; Grison, B.; Wahlund, J.-E.; Bergmann, J.

    2013-09-01

    Evidence for a magnetosphere at Ganymede has been found in 1996 using measurements of plasma waves onboard the Galileo spacecraft (fig. 1). This discovery demonstrates the importance of measurements of waves in plasmas around Jovian moons [1]. Galileo also observed whistler-mode waves in the magnetosphere of Ganymede similar to important classes of waves in the Earth magnetosphere: chorus and hiss [2]. Data from the Galileo spacecraft have therefore shown the importance of measurements of waves in plasmas around Jovian moons, especially in the light of recent advances in analysis of whistler-mode waves in the Earth magnetosphere and their importance for acceleration of radiation belt electrons to relativistic energies. Multicomponent measurements of the fluctuating magnetic and electric fields are needed for localization and characterization of source regions of these waves. Radio & Plasma Waves Investigation (RPWI) experiment will be implemented on the JUICE (JUpiter ICy moon Explorer) spacecraft. RPWI is a highly integrated instrument package that provides a comprehensive set of plasma and fields measurements. Proposed measurement modes for the low frequency receiver subsystem of RPWI include onboard processing which will be suitable for analysis of whistler-mode waves: (1) Polarization and propagation analysis based on phase relations to identify wave modes and propagation directions (2) Poynting vector to determine source regions (3) Detailed frequency-time structure, polarization, wave vector directions to identify linear or nonlinear source mechanisms

  12. Quasi-parallel whistler mode waves observed by THEMIS during near-earth dipolarizations

    Science.gov (United States)

    Le Contel, O.; Roux, A.; Jacquey, C.; Robert, P.; Berthomier, M.; Chust, T.; Grison, B.; Angelopoulos, V.; Sibeck, D.; Chaston, C. C.; Cully, C. M.; Ergun, B.; Glassmeier, K.-H.; Auster, U.; McFadden, J.; Carlson, C.; Larson, D.; Bonnell, J. W.; Mende, S.; Russell, C. T.; Donovan, E.; Mann, I.; Singer, H.

    2009-06-01

    We report on quasi-parallel whistler emissions detected by the near-earth satellites of the THEMIS mission before, during, and after local dipolarization. These emissions are associated with an electron temperature anisotropy α=T⊥e/T||e>1 consistent with the linear theory of whistler mode anisotropy instability. When the whistler mode emissions are observed the measured electron anisotropy varies inversely with β||e (the ratio of the electron parallel pressure to the magnetic pressure) as predicted by Gary and Wang (1996). Narrow band whistler emissions correspond to the small α existing before dipolarization whereas the broad band emissions correspond to large α observed during and after dipolarization. The energy in the whistler mode is leaving the current sheet and is propagating along the background magnetic field, towards the Earth. A simple time-independent description based on the Liouville's theorem indicates that the electron temperature anisotropy decreases with the distance along the magnetic field from the equator. Once this variation of α is taken into account, the linear theory predicts an equatorial origin for the whistler mode. The linear theory is also consistent with the observed bandwidth of wave emissions. Yet, the anisotropy required to be fully consistent with the observations is somewhat larger than the measured one. Although the discrepancy remains within the instrumental error bars, this could be due to time-dependent effects which have been neglected. The possible role of the whistler waves in the substorm process is discussed.

  13. Quasi-parallel whistler mode waves observed by THEMIS during near-earth dipolarizations

    Directory of Open Access Journals (Sweden)

    O. Le Contel

    2009-06-01

    Full Text Available We report on quasi-parallel whistler emissions detected by the near-earth satellites of the THEMIS mission before, during, and after local dipolarization. These emissions are associated with an electron temperature anisotropy α=T⊥e/T||e>1 consistent with the linear theory of whistler mode anisotropy instability. When the whistler mode emissions are observed the measured electron anisotropy varies inversely with β||e (the ratio of the electron parallel pressure to the magnetic pressure as predicted by Gary and Wang (1996. Narrow band whistler emissions correspond to the small α existing before dipolarization whereas the broad band emissions correspond to large α observed during and after dipolarization. The energy in the whistler mode is leaving the current sheet and is propagating along the background magnetic field, towards the Earth. A simple time-independent description based on the Liouville's theorem indicates that the electron temperature anisotropy decreases with the distance along the magnetic field from the equator. Once this variation of α is taken into account, the linear theory predicts an equatorial origin for the whistler mode. The linear theory is also consistent with the observed bandwidth of wave emissions. Yet, the anisotropy required to be fully consistent with the observations is somewhat larger than the measured one. Although the discrepancy remains within the instrumental error bars, this could be due to time-dependent effects which have been neglected. The possible role of the whistler waves in the substorm process is discussed.

  14. Pitch Angle Scattering of Upgoing Electron Beams in Jupiter's Polar Regions by Whistler Mode Waves

    Science.gov (United States)

    Elliott, S. S.; Gurnett, D. A.; Kurth, W. S.; Clark, G.; Mauk, B. H.; Bolton, S. J.; Connerney, J. E. P.; Levin, S. M.

    2018-02-01

    The Juno spacecraft's Jupiter Energetic-particle Detector Instrument has observed field-aligned, unidirectional (upgoing) electron beams throughout most of Jupiter's entire polar cap region. The Waves instrument detected intense broadband whistler mode emissions occurring in the same region. In this paper, we investigate the pitch angle scattering of the upgoing electron beams due to interactions with the whistler mode waves. Profiles of intensity versus pitch angle for electron beams ranging from 2.53 to 7.22 Jovian radii show inconsistencies with the expected adiabatic invariant motion of the electrons. It is believed that the observed whistler mode waves perturb the electron motion and scatter them away from the magnetic field line. The diffusion equation has been solved by using diffusion coefficients which depend on the magnetic intensity of the whistler mode waves.

  15. An analysis of whistler mode radiation from a 100 mA electron beam

    International Nuclear Information System (INIS)

    Goerke, R.T.; Kellogg, P.J.; Monson, S.J.

    1990-01-01

    Observations of whistler mode radiation generated by 2-, 4-, and 8-keV electron beams with a current of 100 mA, are analyzed. The electron accelerator was carried to ionospheric heights by a Nike Black Brant V rocket (National Research Council of Canada NVB-06). The instability causing the whistler mode radiation is investigated. Spectral measurements (0.1-13.0 MHz), from a sweeping receiver located on the ejected forward payload, are used to determine the nature of the instability. The sweeping receiver was connected alternatively to an electric or a magnetic dipole antenna. Most of the whistler mode radiation detected was consistent with Cerenkov radiation. The radiation fields observed were too large (cB ∼ 0.1 μV/m Hz 1/2 ) to be explained by incoherent processes. If electrostatic bunching in the beam at the plasma frequency is responsible for the whistler radiation, there would be a correlation between the plasma frequency radiation, and the whistler mode radiation for electron beams that are fired toward the detector. The observed correlation is minimal. Hence no evidence was found to support the hypothesis that electrostatic bunching at the plasma frequency was responsible for the enhancement of the whistler mode radiation produced by the NVB-06 electron beam

  16. Quasi-parallel whistler mode waves observed by THEMIS during near-earth dipolarizations

    Directory of Open Access Journals (Sweden)

    O. Le Contel

    2009-06-01

    Full Text Available We report on quasi-parallel whistler emissions detected by the near-earth satellites of the THEMIS mission before, during, and after local dipolarization. These emissions are associated with an electron temperature anisotropy α=Te/T||e>1 consistent with the linear theory of whistler mode anisotropy instability. When the whistler mode emissions are observed the measured electron anisotropy varies inversely with β||e (the ratio of the electron parallel pressure to the magnetic pressure as predicted by Gary and Wang (1996. Narrow band whistler emissions correspond to the small α existing before dipolarization whereas the broad band emissions correspond to large α observed during and after dipolarization. The energy in the whistler mode is leaving the current sheet and is propagating along the background magnetic field, towards the Earth. A simple time-independent description based on the Liouville's theorem indicates that the electron temperature anisotropy decreases with the distance along the magnetic field from the equator. Once this variation of α is taken into account, the linear theory predicts an equatorial origin for the whistler mode. The linear theory is also consistent with the observed bandwidth of wave emissions. Yet, the anisotropy required to be fully consistent with the observations is somewhat larger than the measured one. Although the discrepancy remains within the instrumental error bars, this could be due to time-dependent effects which have been neglected. The possible role of the whistler waves in the substorm process is discussed.

  17. Propagation Spectrograms of Whistler-Mode Radiation from Lightning

    Czech Academy of Sciences Publication Activity Database

    Santolík, Ondřej; Parrot, M.; Chum, Jaroslav

    2008-01-01

    Roč. 36, č. 4 (2008), s. 1166-1167 ISSN 0093-3813 Institutional research plan: CEZ:AV0Z30420517 Keywords : propagation spectrograms * whistlers Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.447, year: 2008

  18. Fine structure of large amplitude chorus wave packets

    Czech Academy of Sciences Publication Activity Database

    Santolík, Ondřej; Kletzing, C. A.; Kurth, W. S.; Hospodarsky, G. B.; Bounds, S. R.

    2014-01-01

    Roč. 41, č. 2 (2014), s. 293-299 ISSN 0094-8276 R&D Projects: GA MŠk 7E12026; GA ČR GAP205/10/2279 Institutional support: RVO:68378289 Keywords : whistler-mode chorus * waveform measurements * nonlinear phenomena Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 4.456, year: 2013 http://onlinelibrary.wiley.com/doi/10.1002/2013GL058889/abstract

  19. Generation mechanism of the whistler-mode waves in the plasma sheet prior to magnetic reconnection

    Czech Academy of Sciences Publication Activity Database

    Wei, X. H.; Cao, J. B.; Zhou, G. C.; Fu, H. S.; Santolík, Ondřej; Reme, H.; Dandouras, I.; Cornilleau, N.; Fazakerley, A.

    2013-01-01

    Roč. 52, č. 1 (2013), s. 205-210 ISSN 0273-1177 Institutional support: RVO:68378289 Keywords : whistler-mode waves * electron temperature anisotropy * Reconnection * the plasma sheet Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.238, year: 2013 http://www.sciencedirect.com/science/article/pii/S0273117713001221

  20. Ducted whistler-mode signals received at two widely spaced locations

    Directory of Open Access Journals (Sweden)

    M. A. Clilverd

    Full Text Available Whistler-mode signals from a single VLF transmitter that have propagated in the same duct, have been observed simultaneously at Faraday, Antarctica (65°S, 64°W and Dunedin, New Zealand (46°S, 171°E. The signals received have group-delay times that differ in the order of 10 ms, which can be explained by the differences in southern-hemisphere sub-ionospheric propagation time from duct exit region to receiver for the two sites. This difference has been used to determine the location of the duct exit region, with confirmation provided by arrival-bearing information from both sites. The whistler-mode signals typically occur one or two days after geomagnetic activity, with Kpgeq5. The sub-ionospheric-propagation model, LWPC, is used to estimate the whistler-mode power radiated from the duct exit region. These results are then combined with estimated loss values for ionospheric and ducted transmission to investigate the role of wave-particle amplification or absorption. On at least half of the events studied, plasmaspheric amplification of the signals appears to be needed to explain the observed whistler-mode signal strengths.

  1. Ducted whistler-mode signals received at two widely spaced locations

    Directory of Open Access Journals (Sweden)

    M. A. Clilverd

    1996-06-01

    Full Text Available Whistler-mode signals from a single VLF transmitter that have propagated in the same duct, have been observed simultaneously at Faraday, Antarctica (65°S, 64°W and Dunedin, New Zealand (46°S, 171°E. The signals received have group-delay times that differ in the order of 10 ms, which can be explained by the differences in southern-hemisphere sub-ionospheric propagation time from duct exit region to receiver for the two sites. This difference has been used to determine the location of the duct exit region, with confirmation provided by arrival-bearing information from both sites. The whistler-mode signals typically occur one or two days after geomagnetic activity, with Kp\\geq5. The sub-ionospheric-propagation model, LWPC, is used to estimate the whistler-mode power radiated from the duct exit region. These results are then combined with estimated loss values for ionospheric and ducted transmission to investigate the role of wave-particle amplification or absorption. On at least half of the events studied, plasmaspheric amplification of the signals appears to be needed to explain the observed whistler-mode signal strengths.

  2. Comparison of electric dipole and magnetic loop antennas for exciting whistler modes

    International Nuclear Information System (INIS)

    Stenzel, R. L.; Urrutia, J. M.

    2016-01-01

    The excitation of low frequency whistler modes from different antennas has been investigated experimentally in a large laboratory plasma. One antenna consists of a linear electric dipole oriented across the uniform ambient magnetic field B_0. The other antenna is an elongated loop with dipole moment parallel to B_0. Both antennas are driven by the same rf generator which produces a rf burst well below the electron cyclotron frequency. The antenna currents as well as the wave magnetic fields from each antenna are measured. Both the antenna currents and the wave fields of the loop antenna exceed that of the electric dipole by two orders of magnitude. The conclusion is that loop antennas are far superior to dipole antennas for exciting large amplitude whistler modes, a result important for active wave experiments in space plasmas.

  3. Comparison of electric dipole and magnetic loop antennas for exciting whistler modes

    Energy Technology Data Exchange (ETDEWEB)

    Stenzel, R. L.; Urrutia, J. M. [Department of Physics and Astronomy, University of California, Los Angeles, California 90095-1547 (United States)

    2016-08-15

    The excitation of low frequency whistler modes from different antennas has been investigated experimentally in a large laboratory plasma. One antenna consists of a linear electric dipole oriented across the uniform ambient magnetic field B{sub 0}. The other antenna is an elongated loop with dipole moment parallel to B{sub 0}. Both antennas are driven by the same rf generator which produces a rf burst well below the electron cyclotron frequency. The antenna currents as well as the wave magnetic fields from each antenna are measured. Both the antenna currents and the wave fields of the loop antenna exceed that of the electric dipole by two orders of magnitude. The conclusion is that loop antennas are far superior to dipole antennas for exciting large amplitude whistler modes, a result important for active wave experiments in space plasmas.

  4. Nonlinear Whistler Wave Physics in the Radiation Belts

    Science.gov (United States)

    Crabtree, Chris

    2016-10-01

    Wave particle interactions between electrons and whistler waves are a dominant mechanism for controlling the dynamics of energetic electrons in the radiation belts. They are responsible for loss, via pitch-angle scattering of electrons into the loss cone, and energization to millions of electron volts. It has previously been theorized that large amplitude waves on the whistler branch may scatter their wave-vector nonlinearly via nonlinear Landau damping leading to important consequences for the global distribution of whistler wave energy density and hence the energetic electrons. It can dramatically reduce the lifetime of energetic electrons in the radiation belts by increasing the pitch angle scattering rate. The fundamental building block of this theory has now been confirmed through laboratory experiments. Here we report on in situ observations of wave electro-magnetic fields from the EMFISIS instrument on board NASA's Van Allen Probes that show the signatures of nonlinear scattering of whistler waves in the inner radiation belts. In the outer radiation belts, whistler mode chorus is believed to be responsible for the energization of electrons from 10s of Kev to MeV energies. Chorus is characterized by bursty large amplitude whistler mode waves with frequencies that change as a function of time on timescales corresponding to their growth. Theories explaining the chirping have been developed for decades based on electron trapping dynamics in a coherent wave. New high time resolution wave data from the Van Allen probes and advanced spectral techniques are revealing that the wave dynamics is highly structured, with sub-elements consisting of multiple chirping waves with discrete frequency hops between sub-elements. Laboratory experiments with energetic electron beams are currently reproducing the complex frequency vs time dynamics of whistler waves and in addition revealing signatures of wave-wave and beat-wave nonlinear wave-particle interactions. These new data

  5. Radial plasma drifts deduced from VLF whistler mode signals - A modelling study

    Science.gov (United States)

    Poulter, E. M.; Andrews, M. K.; Bailey, G. J.; Moffett, R. J.

    1984-05-01

    VLF whistler mode signals have previously been used to infer radial plasma drifts in the equatorial plane of the plasmasphere and the field-aligned ionosphere-protonosphere coupling fluxes. Physical models of the plasmasphere consisting of O(+) adn H(+) ions along dipole magnetic field lines, and including radial E x B drifts, are applied to a mid-latitude flux tube appropriate to whistler mode signals received at Wellington, New Zealand, from the fixed frequency VLF transmitter NLK (18.6 kHz) in Seattle, U.S.A. These models are first shown to provide a good representation of the recorded Doppler shift and group delay data. They are then used to simulate the process of deducing the drifts and fluxes from the recorded data. Provided the initial whistler mode duct latitude and the ionospheric contributions are known, the drifts at the equatorial plane can be estimated to about + or - 20 m/s (approximately 10-15 percent), and the two hemisphere ionosphere-protonosphere coupling fluxes to about + or - 10 to the 12th/sq m-sec (approximately 40 percent).

  6. Observation of proton chorus waves close to the equatorial plane by Cluster

    Science.gov (United States)

    Grison, B.; Pickett, J. S.; Santolik, O.; Robert, P.; Cornilleau-Wehrlin, N.; Engebretson, M. J.; Constantinescu, D. O.

    2009-12-01

    Whistler mode chorus waves are a widely studied phenomena. They are present in numerous regions of the magnetosphere and are presumed to originate in the magnetic equatorial region. In a spectrogram they are characterized by narrowband features with rise (or fall) in frequency over short periods of time. Being whistler mode waves around a few tenths of the electron cyclotron frequency they interact mainly with electrons. In the present study we report observations by the Cluster spacecraft of what we call proton chorus waves. They have spectral features with rising frequency, similar to the electron chorus waves, but they are detected in a frequency range that starts roughly at 0.50fH+ up to fH+ (the local proton gyro-frequency). The lower part of their spectrum seems to originate from monochromatic Pc 1 waves (1.5 Hz). Proton chorus waves are detected close to the magnetic equatorial plane in both hemispheres during the same event. Our interpretation of these waves as proton chorus is supported by polarization analysis with the Roproc procedures and the Prassadco software using both the magnetic (STAFF-SC) and electric (EFW) parts of the fluctuations spectrum.

  7. A Statistical Test of the Relationship Between Chorus Wave Activation and Anisotropy of Electron Phase Space Density

    Directory of Open Access Journals (Sweden)

    Dong-Hee Lee

    2014-12-01

    Full Text Available Whistler mode chorus wave is considered to play a critical role in accelerating and precipitating the electrons in the outer radiation belt. In this paper we test a conventional scenario of triggering chorus using THEMIS satellite observations of waves and particles. Specifically, we test if the chorus onset is consistent with development of anisotropy in the electron phase space density (PSD. After analyzing electron PSD for 73 chorus events, we find that, for ~80 % of them, their onsets are indeed associated with development of the positive anisotropy in PSD where the pitch angle distribution of electron velocity peaks at 90 degrees. This PSD anisotropy is prominent mainly at the electron energy range of ≤ ~20 keV. Interestingly, we further find that there is sometimes a time delay among energies in the increases of the anisotropy: A development of the positive anisotropy occurs earlier by several minutes for lower energy than for an adjacent higher energy.

  8. Magnetic antenna excitation of whistler modes. IV. Receiving antennas and reciprocity

    Energy Technology Data Exchange (ETDEWEB)

    Stenzel, R. L., E-mail: stenzel@physics.ucla.edu; Urrutia, J. M. [Department of Physics and Astronomy, University of California, Los Angeles, California 90095-1547 (United States)

    2015-07-15

    Antenna radiation patterns are an important property of antennas. Reciprocity holds in free space and the radiation patterns for exciting and receiving antennas are the same. In anisotropic plasmas, radiation patterns are complicated by the fact that group and phase velocities differ and certain wave properties like helicity depend on the direction of wave propagation with respect to the background magnetic field B{sub 0}. Interference and wave focusing effects are different than in free space. Reciprocity does not necessarily hold in a magnetized plasma. The present work considers the properties of various magnetic antennas used for receiving whistler modes. It is based on experimental data from exciting low frequency whistler modes in a large uniform laboratory plasma. By superposition of linear waves from different antennas, the radiation patterns of antenna arrays are derived. Plane waves are generated and used to determine receiving radiation patterns of different receiving antennas. Antenna arrays have radiation patterns with narrow lobes, whose angular position can be varied by physical rotation or electronic phase shifting. Reciprocity applies to broadside antenna arrays but not to end fire arrays which can have asymmetric lobes with respect to B{sub 0}. The effect of a relative motion between an antenna and the plasma has been modeled by the propagation of a short wave packet moving along a linear antenna array. An antenna moving across B{sub 0} has a radiation pattern characterized by an oscillatory “whistler wing.” A receiving antenna in motion can detect any plane wave within the group velocity resonance cone. The radiation pattern also depends on loop size relative to the wavelength. Motional effects prevent reciprocity. The concept of the radiation pattern loses its significance for wave packets since the received signal does not only depend on the antenna but also on the properties of the wave packet. The present results are of fundamental

  9. Magnetic antenna excitation of whistler modes. IV. Receiving antennas and reciprocity

    International Nuclear Information System (INIS)

    Stenzel, R. L.; Urrutia, J. M.

    2015-01-01

    Antenna radiation patterns are an important property of antennas. Reciprocity holds in free space and the radiation patterns for exciting and receiving antennas are the same. In anisotropic plasmas, radiation patterns are complicated by the fact that group and phase velocities differ and certain wave properties like helicity depend on the direction of wave propagation with respect to the background magnetic field B 0 . Interference and wave focusing effects are different than in free space. Reciprocity does not necessarily hold in a magnetized plasma. The present work considers the properties of various magnetic antennas used for receiving whistler modes. It is based on experimental data from exciting low frequency whistler modes in a large uniform laboratory plasma. By superposition of linear waves from different antennas, the radiation patterns of antenna arrays are derived. Plane waves are generated and used to determine receiving radiation patterns of different receiving antennas. Antenna arrays have radiation patterns with narrow lobes, whose angular position can be varied by physical rotation or electronic phase shifting. Reciprocity applies to broadside antenna arrays but not to end fire arrays which can have asymmetric lobes with respect to B 0 . The effect of a relative motion between an antenna and the plasma has been modeled by the propagation of a short wave packet moving along a linear antenna array. An antenna moving across B 0 has a radiation pattern characterized by an oscillatory “whistler wing.” A receiving antenna in motion can detect any plane wave within the group velocity resonance cone. The radiation pattern also depends on loop size relative to the wavelength. Motional effects prevent reciprocity. The concept of the radiation pattern loses its significance for wave packets since the received signal does not only depend on the antenna but also on the properties of the wave packet. The present results are of fundamental interest and of

  10. Ducting of the Whistler-Mode Waves by Magnetic Field-Aligned Density Enhancements in the Radiation Belt

    Science.gov (United States)

    Streltsov, A. V.; Bengtson, M.; English, D.; Miller, M.; Turco, L.

    2017-12-01

    Whistler-mode waves (or whistlers) are the right-hand polarized electromagnetic waves with a frequency in the range above the lower hybrid frequency and below the electron cyclotron frequency. They can efficiently interact with energetic electrons in the equatorial magnetosphere and remediate them from the earth's radiation belt. These interactions are non-linear, they depend on the wave amplitude, and for them to be efficient the wave power needs to be delivered from the transmitter to the interaction region without significant losses. The main physical mechanism which can solve this problem is ducting/guiding of whistlers by magnetic field-aligned density inhomogeneities or ducts. We present results from a modeling of whistler-mode waves observed by the NASA Van Allen Probes satellites inside the ducts formed by density enhancements (also known as, high-density ducts or HDD). Our previous studies suggest that HDD can confine without leakage only waves with some particular parameters (frequency, perpendicular and parallel wavelength) connected with the parameters of the duct (like duct's "width" and "depth"). Our numerical results confirm that 1) the high-density ducts with amplitudes and perpendicular sizes observed by the RBSP satellites can indeed guide whistlers over significant distances along the ambient magnetic field with small leakage, and 2) the quality of the ducting indeed depends on the wave perpendicular and parallel wavelengths and, therefore, the fact that the wave is ducted by HDD can be used to determine parameters of the wave.

  11. Conjugate Ground-Spacecraft Observations of VLF Chorus Elements

    Czech Academy of Sciences Publication Activity Database

    Demekhov, A. G.; Manninen, J.; Santolík, Ondřej; Titova, E. E.

    2017-01-01

    Roč. 44, č. 23 (2017), s. 11735-11744 ISSN 0094-8276 Grant - others:AV ČR(CZ) AP1401 Program:Akademická prémie - Praemium Academiae Institutional support: RVO:68378289 Keywords : VAN ALLEN PROBES * WHISTLER-MODE WAVES * MAGNETOSPHERIC CHORUS * PROPAGATION * EMISSIONS * BAND * FREQUENCY * AMPLITUDE * MASER * GUIDE Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 4.253, year: 2016 http://onlinelibrary.wiley.com/doi/10.1002/2017GL076139/epdf

  12. Spatio-temporal structure of storm-time chorus

    Czech Academy of Sciences Publication Activity Database

    Santolík, Ondřej; Gurnett, D. A.; Pickett, J. S.; M. Parrot, M.; Cornilleau-Wehrlin, N.

    2003-01-01

    Roč. 108, A7 (2003), s. 7-1-7-14, doi:10.1029/2002JA009791, 2003 ISSN 0148-0227 R&D Projects: GA ČR GA202/03/0832; GA MŠk ME 650 Grant - others:NASA(US) NAG5-9974 Institutional research plan: CEZ:AV0Z3042911; CEZ:MSM 113200004 Keywords : storm -time chorus emissions * whistler mode * propagation analysis Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.992, year: 2003

  13. Nonlinear Electrostatic Steepening of Whistler Waves: The Guiding Factors and Dynamics in Inhomogeneous Systems

    Science.gov (United States)

    Agapitov, O.; Drake, J. F.; Vasko, I.; Mozer, F. S.; Artemyev, A.; Krasnoselskikh, V.; Angelopoulos, V.; Wygant, J.; Reeves, G. D.

    2018-03-01

    Whistler mode chorus waves are particularly important in outer radiation belt dynamics due to their key role in controlling the acceleration and scattering of electrons over a very wide energy range. The efficiency of wave-particle resonant interactions is defined by whistler wave properties which have been described by the approximation of plane linear waves propagating through the cold plasma of the inner magnetosphere. However, recent observations of extremely high-amplitude whistlers suggest the importance of nonlinear wave-particle interactions for the dynamics of the outer radiation belt. Oblique chorus waves observed in the inner magnetosphere often exhibit drastically nonsinusoidal (with significant power in the higher harmonics) waveforms of the parallel electric field, presumably due to the feedback from hot resonant electrons. We have considered the nature and properties of such nonlinear whistler waves observed by the Van Allen Probes and Time History of Events and Macroscale Interactions define during Substorms in the inner magnetosphere, and we show that the significant enhancement of the wave electrostatic component can result from whistler wave coupling with the beam-driven electrostatic mode through the resonant interaction with hot electron beams. Being modulated by a whistler wave, the electron beam generates a driven electrostatic mode significantly enhancing the parallel electric field of the initial whistler wave. We confirm this mechanism using a self-consistent particle-in-cell simulation. The nonlinear electrostatic component manifests properties of the beam-driven electron acoustic mode and can be responsible for effective electron acceleration in the inhomogeneous magnetic field.

  14. Electrostatic lower hybrid waves excited by electromagnetic whistler mode waves scattering from planar magnetic-field-aligned plasma density irregularities

    International Nuclear Information System (INIS)

    Bell, T.F.; Ngo, H.D.

    1990-01-01

    Recent satellite observations demonstrate that high amplitude, short wavelength (5 m ≤ λ ≤ 100 m) electrostatic waves are commonly excited by electromagnetic whistler mode waves propagating in regions of the magnetosphere and topside ionosphere where small-scale magnetic-field-aligned plasma density irregularities are thought to exist. A new theoretical model of this phenomenon is presented, based upon passive linear scattering in a cold magnetoplasma. In this model the electrostatic waves are excited by linear mode coupling as the incident electromagnetic whistler mode waves scatter from the magnetic-field-aligned plasma density irregularities. The excited short wavelength waves are quasi-electrostatic whistler mode waves, a type of lower hybrid wave, whose wave normal lies near the whistler mode resonance cone where the wave refractive index becomes very large. The amplitude of the excited electrostatic lower hybrid waves is calculated for a wide range of values of input electromagnetic wave frequency, wave normal direction, electron plasma frequency, gyrofrequency, ion composition, and irregularity scale and density enhancement. Results indicate that high amplitude lower hybrid waves can be excited over a wide range of parameters for irregularity density enhancements as low as 5% whenever the scale of the irregularity is of the same order as the lower hybrid wavelength

  15. Automated Identification and Shape Analysis of Chorus Elements in the Van Allen Radiation Belts

    Science.gov (United States)

    Sen Gupta, Ananya; Kletzing, Craig; Howk, Robin; Kurth, William; Matheny, Morgan

    2017-12-01

    An important goal of the Van Allen Probes mission is to understand wave-particle interaction by chorus emissions in terrestrial Van Allen radiation belts. To test models, statistical characterization of chorus properties, such as amplitude variation and sweep rates, is an important scientific goal. The Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) instrumentation suite provides measurements of wave electric and magnetic fields as well as DC magnetic fields for the Van Allen Probes mission. However, manual inspection across terabytes of EMFISIS data is not feasible and as such introduces human confirmation bias. We present signal processing techniques for automated identification, shape analysis, and sweep rate characterization of high-amplitude whistler-mode chorus elements in the Van Allen radiation belts. Specifically, we develop signal processing techniques based on the radon transform that disambiguate chorus elements with a dominant sweep rate against hiss-like chorus. We present representative results validating our techniques and also provide statistical characterization of detected chorus elements across a case study of a 6 s epoch.

  16. Evidence of more efficient whistler-mode transmission during periods of increased magnetic activity

    Directory of Open Access Journals (Sweden)

    N. R. Thomson

    Full Text Available In a previous study it was reported that whistler- mode signals received at Faraday, Antarctica (65°S,64°W and Dunedin, New Zealand (46°S,171°E with entry regions in Pacific longitudes (typically from the VLF transmitter NLK, Seattle, USA showed an increase in transmission of wave energy as magnetic activity increased. However, signals with entry regions in Atlantic longitudes (typically from the NSS transmitter, Annapolis, USA did not appear to show such a relationship. This paper reports the results of a study of the same two longitude ranges but with the opposite transmitter providing additional whistler-mode signal information, with L-values in the range 1.8–2.6. Transmissions from NLK once again indicate a relationship between the transmission of wave energy and magnetic activity even though the signals were propagating in Atlantic longitudes, not Pacific. Any trend in NSS events observed at Dunedin was obscured by a limited range of magnetic activity, and duct exit regions so close to the receiver that small-scale excitation effects appeared to be occurring. However, by combining data from both longitudes, i.e Pacific and Atlantic, and using only ducts with exit regions that were >500km from the receiver, NSS events were found to show the same trend as NLK events. No significant longitude-dependent or transmitter-dependent variations in duct efficiency could be detected. Duct efficiency increases by a factor of about 30 with Kp=2–8 and this result is discussed in terms of changes in wave-particle interactions and duct size.

  17. Evidence of more efficient whistler-mode transmission during periods of increased magnetic activity

    Directory of Open Access Journals (Sweden)

    N. R. Thomson

    1997-08-01

    Full Text Available In a previous study it was reported that whistler- mode signals received at Faraday, Antarctica (65°S,64°W and Dunedin, New Zealand (46°S,171°E with entry regions in Pacific longitudes (typically from the VLF transmitter NLK, Seattle, USA showed an increase in transmission of wave energy as magnetic activity increased. However, signals with entry regions in Atlantic longitudes (typically from the NSS transmitter, Annapolis, USA did not appear to show such a relationship. This paper reports the results of a study of the same two longitude ranges but with the opposite transmitter providing additional whistler-mode signal information, with L-values in the range 1.8–2.6. Transmissions from NLK once again indicate a relationship between the transmission of wave energy and magnetic activity even though the signals were propagating in Atlantic longitudes, not Pacific. Any trend in NSS events observed at Dunedin was obscured by a limited range of magnetic activity, and duct exit regions so close to the receiver that small-scale excitation effects appeared to be occurring. However, by combining data from both longitudes, i.e Pacific and Atlantic, and using only ducts with exit regions that were >500km from the receiver, NSS events were found to show the same trend as NLK events. No significant longitude-dependent or transmitter-dependent variations in duct efficiency could be detected. Duct efficiency increases by a factor of about 30 with Kp=2–8 and this result is discussed in terms of changes in wave-particle interactions and duct size.

  18. Modelling substorm chorus events in terms of dispersive azimuthal drift

    Directory of Open Access Journals (Sweden)

    A. B. Collier

    2004-12-01

    Full Text Available The Substorm Chorus Event (SCE is a radio phenomenon observed on the ground after the onset of the substorm expansion phase. It consists of a band of VLF chorus with rising upper and lower cutoff frequencies. These emissions are thought to result from Doppler-shifted cyclotron resonance between whistler mode waves and energetic electrons which drift into a ground station's field of view from an injection site around midnight. The increasing frequency of the emission envelope has been attributed to the combined effects of energy dispersion due to gradient and curvature drifts, and the modification of resonance conditions and variation of the half-gyrofrequency cutoff resulting from the radial component of the ExB drift.

    A model is presented which accounts for the observed features of the SCE in terms of the growth rate of whistler mode waves due to anisotropy in the electron distribution. This model provides an explanation for the increasing frequency of the SCE lower cutoff, as well as reproducing the general frequency-time signature of the event. In addition, the results place some restrictions on the injected particle source distribution which might lead to a SCE.

    Key words. Space plasma physics (Wave-particle interaction – Magnetospheric physics (Plasma waves and instabilities; Storms and substorms

  19. Modelling substorm chorus events in terms of dispersive azimuthal drift

    Directory of Open Access Journals (Sweden)

    A. B. Collier

    2004-12-01

    Full Text Available The Substorm Chorus Event (SCE is a radio phenomenon observed on the ground after the onset of the substorm expansion phase. It consists of a band of VLF chorus with rising upper and lower cutoff frequencies. These emissions are thought to result from Doppler-shifted cyclotron resonance between whistler mode waves and energetic electrons which drift into a ground station's field of view from an injection site around midnight. The increasing frequency of the emission envelope has been attributed to the combined effects of energy dispersion due to gradient and curvature drifts, and the modification of resonance conditions and variation of the half-gyrofrequency cutoff resulting from the radial component of the ExB drift. A model is presented which accounts for the observed features of the SCE in terms of the growth rate of whistler mode waves due to anisotropy in the electron distribution. This model provides an explanation for the increasing frequency of the SCE lower cutoff, as well as reproducing the general frequency-time signature of the event. In addition, the results place some restrictions on the injected particle source distribution which might lead to a SCE. Key words. Space plasma physics (Wave-particle interaction – Magnetospheric physics (Plasma waves and instabilities; Storms and substorms

  20. Overview of Emic Triggered Chorus Emissions in Cluster Data

    Science.gov (United States)

    Grison, B.; Pickett, J. S.; Omura, Y.; Santolik, O.; Engebretson, M. J.; Dandouras, I. S.; Masson, A.; Decreau, P. M.; Adrian, M. L.; Cornilleau Wehrlin, N.

    2010-12-01

    Electromagnetic ion cyclotron (EMIC) triggered emissions have been recently observed onboard the Cluster spacecraft close to the plasmapause in the equatorial region of the magnetosphere (Pickett et al., 2010). The nonlinear mechanism of the wave amplification is the same as for the well known whistler-mode chorus emissions (Omura et al., 2010). The EMIC triggered emissions appear as risers: electromagnetic structures that have a positive frequency drift with time. They can thus be considered as the EMIC analogue of rising frequency whistler-mode chorus emissions. In addition, they propagate away from the magnetic equator. These EMIC risers are not common in Cluster data. We present an overview of the properties of all the identified cases. Risers can be sorted out in two groups: in the first one the starting frequency of EMIC emissions is close to one half of the local proton gyrofrequency and the risers have a clear left-hand polarization. In the second group the risers have an opposite polarization with a starting frequency close to one half of the He+ gyrofrequency. Most of the cases have been detected close to 22 MLT (magnetic local time). This dependence will be investigated to determine if it is linked to the orbit effects or if there is a physical cause.

  1. Marching Choruses

    DEFF Research Database (Denmark)

    Lech, Marcel Lysgaard

    2009-01-01

    conflict with our text of the plays and literary texts decribing the theatrical context; the lexicographical writings may reflect their own time or other types of choruses e.g. dithyrambic, and can therefore not be held as evidence for 1) the performance of the chorus in fifth-century Athens, 2) tragic...

  2. Study of Oblique Propagating Whistler Mode Waves in Presence of Parallel DC Electric Field in Magnetosphere of Saturn

    Directory of Open Access Journals (Sweden)

    R. Kaur

    2017-03-01

    Full Text Available In this paper whistler mode waves have been investigated in magnetosphere of Saturn. The derivation for perturbed distribution function, dispersion relation and growth rate have been determined by using the method of characteristic and kinetic approach. Analytical expressions for growth rate and real frequency of whistlers propagating oblique to magnetic field direction are attained. Calculations have been performed at 6 radial distances in plasma sheet region of Saturn’s magnetosphere as per data provided by Cassini. Work has been extended for bi-Maxwellian as well as Loss-cone distribution function. Parametric analysis show that temperature anisotropy, increase in number density, energy density and angle of propagation increases the growth rate of whistler waves along with significant shift in wave number. In case of Loss-cone distribution, increase in growth rate of whistlers is significantly more than for bi-Maxwellian distribution function. Generation of second harmonics can also be seen in the graphs plotted. It is concluded that parallel DC field stabilizes the wave and temperature anisotropy, angle of propagation, number density and energy density of electrons enhances the growth rate. Thus the results are of importance in analyzing observed VLF emissions over wide spectrum of frequency range in Saturnian magnetosphere. The analytical model developed can also be used to study various types of instabilities in planetary magnetospheres.

  3. EMIC triggered chorus emissions in Cluster data

    Science.gov (United States)

    Grison, B.; SantolíK, O.; Cornilleau-Wehrlin, N.; Masson, A.; Engebretson, M. J.; Pickett, J. S.; Omura, Y.; Robert, P.; Nomura, R.

    2013-03-01

    Electromagnetic ion cyclotron (EMIC) triggered chorus emissions have recently been a subject of several experimental, theoretical and simulation case studies, noting their similarities with whistler-mode chorus. We perform a survey of 8 years of Cluster data in order to increase the database of EMIC triggered emissions. The results of this is that EMIC triggered emissions have been unambiguously observed for only three different days. These three events are studied in detail. All cases have been observed at the plasmapause between 22 and 24 magnetic local time (MLT) and between - 15° and 15° magnetic latitude (λm). Triggered emissions are also observed for the first time below the local He+ gyrofrequency (fHe+). The number of events is too low to produce statistical results, nevertheless we point out a variety of common properties of those waves. The rising tones have a high level of coherence and the waves propagate away from the equatorial region. The propagation angle and degree of polarization are related to the distance from the equator, whereas the slope and the frequency extent vary from one event to the other. From the various spacecraft separations, we determine that the triggering process is a localized phenomenon in space and time. However, we are unable to determine the occurrence rates of these waves. Small frequency extent rising tones are more common than large ones. The newly reported EMIC triggered events are generally observed during periods of large AE index values and in time periods close to solar maximum.

  4. Long-term evolution of electron distribution function due to nonlinear resonant interaction with whistler mode waves

    Science.gov (United States)

    Artemyev, Anton V.; Neishtadt, Anatoly I.; Vasiliev, Alexei A.

    2018-04-01

    Accurately modelling and forecasting of the dynamics of the Earth's radiation belts with the available computer resources represents an important challenge that still requires significant advances in the theoretical plasma physics field of wave-particle resonant interaction. Energetic electron acceleration or scattering into the Earth's atmosphere are essentially controlled by their resonances with electromagnetic whistler mode waves. The quasi-linear diffusion equation describes well this resonant interaction for low intensity waves. During the last decade, however, spacecraft observations in the radiation belts have revealed a large number of whistler mode waves with sufficiently high intensity to interact with electrons in the nonlinear regime. A kinetic equation including such nonlinear wave-particle interactions and describing the long-term evolution of the electron distribution is the focus of the present paper. Using the Hamiltonian theory of resonant phenomena, we describe individual electron resonance with an intense coherent whistler mode wave. The derived characteristics of such a resonance are incorporated into a generalized kinetic equation which includes non-local transport in energy space. This transport is produced by resonant electron trapping and nonlinear acceleration. We describe the methods allowing the construction of nonlinear resonant terms in the kinetic equation and discuss possible applications of this equation.

  5. Quasi-coherent chorus properties: 1. Implications for wave-particle interactions

    Czech Academy of Sciences Publication Activity Database

    Tsurutani, B. T.; Falkowski, B. J.; Verkhoglyadova, O. P.; Pickett, J. S.; Santolík, Ondřej; Lakhina, D. G.

    2011-01-01

    Roč. 116, - (2011), A09210/1-A09210/18 ISSN 0148-0227 R&D Projects: GA ČR GAP205/10/2279; GA MŠk(CZ) ME10001 Institutional research plan: CEZ:AV0Z30420517 Keywords : WHISTLER-MODE CHORUS * RELATIVISTIC ELECTRON MICROBURSTS * PITCH ANGLE SCATTERING * RADIATION BELT * AURORAL-ZONE * RESONANT DIFFUSION * MAGNETIC STORMS * GENDRIN MODE * VLF WAVES * MAGNETOSPHERE Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 3.021, year: 2011 http://www.agu.org/pubs/crossref/2011/2010JA016237.shtml

  6. Space-time evolution of whistler mode wave growth in the magnetosphere

    International Nuclear Information System (INIS)

    Carlson, C.R.; Helliwell, R.A.; Inan, U.S.

    1990-01-01

    A new model is developed to simulate the space-time evolution of a propagating coherent whistler mode wave pulse in the magnetosphere. The model is applied to the case of single frequency (2-6 kHz) wave pulses injected into the magnetosphere near L ≅ 4, using the VLF transmitting facility at Siple Station, Antarctica. The mechanism for growth is cyclotron resonance between the circularly polarized waves and the gyrating energetic electrons of the radiation belts. Application of this model reproduces observed exponential wave growth up to a saturated level. Additionally, the model predicts the observed initial linear increase in the output frequency versus time. This is the first time these features have been reproduced using applied wave intensities small enough to be consistent with satellite measurements. The center velocities of the electrons entering the wave pulse are selected in a way which maximizes the growth rate. The results show the importance of the transient aspects in the wave growth process. The growth established as the wave propagates toward the geomagnetic equator results in a spatially advancing wave phase structure due mainly to the geomagnetic inhomogeneity. Through the feedback of this radiation upon other electrons, conditions are established which result in a linearly increasing output frequency with time

  7. Spatial and temporal variability of chorus and hiss

    Science.gov (United States)

    Santolik, O.; Hospodarsky, G. B.; Kurth, W. S.; Kletzing, C.

    2017-12-01

    Whistler-mode electromagnetic waves, especially natural emissions of chorus and hiss, have been shown to influence the dynamics of the Van Allen radiation belts via quasi-linear or nonlinear wave particle interactions, transferring energy between different electron populations. Average intensities of chorus and hiss emissions have been found to increase with increasing levels of geomagnetic activity but their stochastic variations in individual spacecraft measurements are usually larger these large-scale temporal effects. To separate temporal and spatial variations of wave characteristics, measurements need to be simultaneously carried out in different locations by identical and/or well calibrated instrumentation. We use two-point survey measurements of the Waves instruments of the Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) onboard two Van Allen Probes to asses spatial and temporal variability of chorus and hiss. We take advantage of a systematic analysis of this large data set which has been collected during 2012-2017 over a range of separation vectors of the two spacecraft. We specifically address the question whether similar variations occur at different places at the same time. Our results indicate that power variations are dominated by separations in MLT at scales larger than 0.5h.

  8. Precipitated Fluxes of Radiation Belt Electrons via Injection of Whistler-Mode Waves

    Science.gov (United States)

    Kulkarni, P.; Inan, U. S.; Bell, T. F.

    2005-12-01

    Inan et al. (U.S. Inan et al., Controlled precipitation of radiation belt electrons, Journal of Geophysical Research-Space Physics, 108 (A5), 1186, doi: 10.1029/2002JA009580, 2003.) suggested that the lifetime of energetic (a few MeV) electrons in the inner radiation belts may be moderated by in situ injection of whistler mode waves at frequencies of a few kHz. We use the Stanford 2D VLF raytracing program (along with an accurate estimation of the path-integrated Landau damping based on data from the HYDRA instrument on the POLAR spacecraft) to determine the distribution of wave energy throughout the inner radiation belts as a function of injection point, wave frequency and injection wave normal angle. To determine the total wave power injected and its initial distribution in k-space (i.e., wave-normal angle), we apply the formulation of Wang and Bell ( T.N.C. Wang and T.F. Bell, Radiation resistance of a short dipole immersed in a cold magnetoionic medium, Radio Science, 4 (2), 167-177, February 1969) for an electric dipole antenna placed at a variety of locations throughout the inner radiation belts. For many wave frequencies and wave normal angles the results establish that most of the radiated power is concentrated in waves whose wave normals are located near the resonance cone. The combined use of the radiation pattern and ray-tracing including Landau damping allows us to make quantitative estimates of the magnetospheric distribution of wave power density for different source injection points. We use these results to estimate the number of individual space-based transmitters needed to significantly impact the lifetimes of energetic electrons in the inner radiation belts. Using the wave power distribution, we finally determine the energetic electron pitch angle scattering and the precipitated flux signatures that would be detected.

  9. Whistler mode resonance-cone transmissions at 100 kHz in the OEDIPUS-C experiment

    Czech Academy of Sciences Publication Activity Database

    Chugunov, Y. V.; Fiala, Vladimír; Hayosh, Mykhaylo; James, H. G.

    2012-01-01

    Roč. 47, č. 6 (2012), RS6002/1-RS6002/11 ISSN 0048-6604 Grant - others:Rada Programu interní podpory projektů mezinárodní spolupráce AV ČR(CZ) M100420904 Program:M Institutional support: RVO:68378289 Keywords : OEDIPUS-C * dipole * pulse distortion * resonance cone * whistler mode Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.000, year: 2012 http://onlinelibrary.wiley.com/doi/10.1029/2012RS005054/abstract

  10. Observation of chorus waves by the Van Allen Probes: dependence on solar wind parameters and scale size

    Science.gov (United States)

    Aryan, H.; Sibeck, D. G.; Balikhin, M. A.; Agapitov, O. V.; Kletzing, C.

    2016-12-01

    Highly energetic electrons in the Earth's Van Allen radiation belts can cause serious damage to spacecraft electronic systems, and affect the atmospheric composition if they precipitate into the upper atmosphere. Whistler mode chorus waves have attracted significant attention in recent decades for their crucial role in the acceleration and loss of energetic electrons that ultimately change the dynamics of the radiation belts. The distribution of these waves in the inner magnetosphere is commonly presented as a function of geomagnetic activity. However, geomagnetic indices are non-specific parameters that are compiled from imperfectly covered ground based measurements. The present study uses wave data from the two Van Allen Probes to present the distribution of lower band chorus waves not only as functions of single geomagnetic index and solar wind parameters, but also as functions of combined parameters. Also the current study takes advantage of the unique equatorial orbit of the Van Allen Probes to estimate the average scale size of chorus wave packets, during close separations between the two spacecraft, as a function of radial distance, magnetic latitude, and geomagnetic activity respectively. Results show that the average scale size of chorus wave packets is approximately 1300 - 2300 km. The results also show that the inclusion of combined parameters can provide better representation of the chorus wave distributions in the inner magnetosphere, and therefore can further improve our knowledge of the acceleration and loss of radiation belt electrons.

  11. High-frequency and time resolution rocket observations of structured low- and medium-frequency whistler mode emissions in the auroral ionosphere

    Science.gov (United States)

    LaBelle, J.; McAdams, K. L.; Trimpi, M. L.

    High bandwidth electric field waveform measurements on a recent auroral sounding rocket reveal structured whistler mode signals at 400-800 kHz. These are observed intermittently between 300 and 500 km with spectral densities 0-10 dB above the detection threshold of 1.5×10-11V2/m2Hz. The lack of correlation with local particle measurements suggests a remote source. The signals are composed of discrete structures, in one case having bandwidths of about 10 kHz and exhibiting rapid frequency variations of the order of 200 kHz per 100 ms. In one case, emissions near the harmonic of the whistler mode signals are detected simultaneously. Current theories of auroral zone whistler mode emissions have not been applied to explain quantitatively the fine structure of these signals, which resemble auroral kilometric radiation (AKR) rather than auroral hiss.

  12. On the observations of unique low latitude whistler-triggered VLF/ELF emissions

    Science.gov (United States)

    Altaf, M.; Singh, K. K.; Singh, A. K.; Lalmani

    A detailed analysis of the VLF/ELF wave data obtained during a whistler campaign under All India Coordinated Program of Ionosphere Thermosphere Studies (AICPITS) at our low latitude Indian ground station Jammu (geomag. lat. = 22° 26‧ N, L = 1.17) has yielded two types of unusual and unique whistler-triggered VLF/ELF emissions. These include (1) whistler-triggered hook emissions and (2) whistler-triggered long enduring discrete chorus riser emissions in VLF/ELF frequency range during night time. Such types of whistler-triggered emissions have not been reported earlier from any of the ground observations at low latitudes. In the present study, the observed characteristics of these emissions are described and interpreted. Dispersion analysis of these emissions show that the whistlers as well as emissions have propagated along a higher geomagnetic field line path with L-values lying ∼L = 4, suggesting that these triggered emissions are to be regarded as mid-latitude emissions. These waves could have propagated along the geomagnetic field lines either in a ducted mode or in a pro-longitudinal (PL) mode. The measured intensity of the triggered emissions is almost equal to that of the source waves and does not vary throughout the period of observation on that day. It is speculated that these emissions may have been generated through a process of resonant interaction of the whistler waves with energetic electrons. Parameters related to this interaction are computed for different values of L and wave amplitude. The proposed mechanism explains some aspects of the dynamic spectra.

  13. Anisotropic electron distribution functions and the transition between the Weibel and the whistler instabilities

    International Nuclear Information System (INIS)

    Pegoraro, F.; Palodhi, L.; Califano, F.

    2013-01-01

    Electron distribution functions that are anisotropic in phase space are a common feature of collisionless plasmas both in space and in the laboratory and the investigation of the processes through which these distributions relax is of primary interest. In fact, the free energy that is made available by the unbalance of the particle “temperatures” in the different directions can be transferred, depending on the plasma conditions, to quasistatic magnetic fields, to electromagnetic or electrostatic coherent structures or to particle acceleration. The anisotropy of the electron distribution function in an unmagnetized plasma can give rise to the onset of the well known Weibel instability which generates a quasistatic magnetic field. If a magnetic field is already present in the plasma, the Weibel instability driven by the anisotropy of the electron energy distribution turns into the so called whistler instability, in which case circularly polarized whistler waves are generated by the relaxation of the electron distribution function. Whistler waves are actually ubiquitous in plasmas and their generation has been extensively studied in recent years in the laboratory. Whistler instabilities have been reported in space where bursts of whistler mode magnetic noise are found to be present in the magnetosphere, close to the magnetopause and are also a likely source of several different magnetospheric fluctuations including plasmaspheric hiss and magnetospheric chorus. In this presentation the transition between non resonant (Weibel-type) and resonant (whistler) instabilities is investigated numerically in plasma configurations with an ambient magnetic field of increasing amplitudes. The Vlasov-Maxwell system is solved in a configuration where the fields have three components but depend only on one coordinate and on time. The nonlinear evolution of these instabilities is shown to lead to the excitation of electromagnetic and electrostatic modes at the first few harmonics

  14. Magnetic Field Control of the Entry into the Ionosphere of Whistler-Mode Waves Produced by Venus Lightning

    Science.gov (United States)

    Russell, Christopher; Wei, Hanying; Zhang, Tielong

    The sampling rate of the Venus Express fluxgate magnetometer was set so that it could register the 100 Hz signals previously reported by the electric antenna on the Pioneer Venus Orbiter. At least two minutes of each periapsis pass is devoted to recording at 128 Hz. Many of these passes do observe signals near 100 Hz, and these signals invariably have the properties expected for whistler-mode waves. They are nearly circularly polarized, and they propagate very closely to along the magnetic field. The waves are also only a fraction of a second in duration. They do not occur every orbit. The magnetic field is often nearly horizontal throughout the periapsis pass. When it is, no signals are seen. When the field deviates more than 15o from the horizontal, signals can reach the spacecraft but they again are not always present. The number 15o is quite similar to the size of the cone of non-propagation of the whistler-mode perpendicular to the magnetic field. Thus this observation, too, is consistent with a cloud level source of electric discharges whose electromagnetic radiation is refracted along the vertical upon entering the ionosphere. Only when and where this field is inclined to the horizontal can the signal enter the ionosphere. We continue to refine our estimate of the rate of lightning on Venus, but it is clear that the rate is very significant, comparable to activity in the terrestrial atmosphere.

  15. Generation of Electron Whistler Waves at the Mirror Mode Magnetic Holes: MMS Observations and PIC Simulation

    Science.gov (United States)

    Ahmadi, N.; Wilder, F. D.; Usanova, M.; Ergun, R.; Argall, M. R.; Goodrich, K.; Eriksson, S.; Germaschewski, K.; Torbert, R. B.; Lindqvist, P. A.; Le Contel, O.; Khotyaintsev, Y. V.; Strangeway, R. J.; Schwartz, S. J.; Giles, B. L.; Burch, J.

    2017-12-01

    The Magnetospheric Multiscale (MMS) mission observed electron whistler waves at the center and at the gradients of magnetic holes on the dayside magnetosheath. The magnetic holes are nonlinear mirror structures which are anti-correlated with particle density. We used expanding box Particle-in-cell simulations and produced the mirror instability magnetic holes. We show that the electron whistler waves can be generated at the gradients and the center of magnetic holes in our simulations which is in agreement with MMS observations. At the nonlinear regime of mirror instability, the proton and electron temperature anisotropy are anti-correlated with the magnetic hole. The plasma is unstable to electron whistler waves at the minimum of the magnetic field structures. In the saturation regime of mirror instability, when magnetic holes are dominant, electron temperature anisotropy develops at the edges of the magnetic holes and electrons become isotropic at the magnetic field minimum. We investigate the possible mechanism for enhancing the electron temperature anisotropy and analyze the electron pitch angle distributions and electron distribution functions in our simulations and compare it with MMS observations.

  16. Whistlers and related ionospheric phenomena

    CERN Document Server

    Helliwell, Robert A

    2006-01-01

    The investigation of whistlers and related phenomena is a key element in studies of very-low-frequency propagation, satellite communication, the outer ionosphere, and solar-terrestrial relationships. This comprehensive text presents a history of the study of the phenomena and includes all the elements necessary for the calculation of the characteristics of whistlers and whistler-mode signals.An introduction and brief history are followed by a summary of the theory of whistlers and a detailed explanation of the calculation of their characteristics. Succeeding chapters offer a complete atlas of

  17. Multipoint investigation of the source region of storm-time chorus

    Directory of Open Access Journals (Sweden)

    O. Santolík

    2004-07-01

    Full Text Available In this case study we investigate the source region of whistler-mode chorus located close to the geomagnetic equator at a radial distance of 4.4 Earth radii. We use measurements from the four Cluster spacecraft at separations of less than a few hundreds of km, recorded during the geomagnetic storm of 18 April 2002. The waveforms of the electric field fluctuations were obtained by the WBD instruments in the frequency range 50Hz-9.5kHz. Using these data, we calculate linear and rank correlation coefficients of the frequency averaged power-spectral density measured by the different spacecraft. Those coefficients have been recently shown to decrease with spacecraft separation distance perpendicular to the static magnetic field cchor03 with a characteristic scale length of 100km. We find this characteristic scale varying between 60 and 200km for different data intervals inside the source region. We examine possible explanations for the observed large scatter of the correlation coefficients, and we suggest a simultaneously acting effect of random positions of locations at which the individual chorus wave packets are generated. The statistical properties of the observations are approximately reproduced by a simple 2-D model of the source region, assuming a perpendicular half-width of 35km (approximately one wavelength of the whistler-mode waves for the distribution of power radiated from individual active areas.

  18. Bandwidths and amplitudes of chorus-like banded emissions measured by the TC-1 Double Star spacecraft

    Czech Academy of Sciences Publication Activity Database

    Macúšová, Eva; Santolík, Ondřej; Cornilleau-Wehrlin, N.; Yearby, K. H.

    2015-01-01

    Roč. 120, č. 2 (2015), s. 1057-1071 ISSN 2169-9380 R&D Projects: GA MŠk(CZ) LH11122; GA ČR GAP205/10/2279; GA ČR(CZ) GAP209/11/2280 EU Projects: European Commission(XE) 284520 - MAARBLE Program:FP7 Institutional support: RVO:68378289 Keywords : Earth's magnetosphere * geomagnetic activity * whistler-mode * chorus emissions Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 3.318, year: 2015 http://onlinelibrary.wiley.com/doi/10.1002/2014JA020440/abstract

  19. Pulsating aurora from electron scattering by chorus waves

    Science.gov (United States)

    Kasahara, S.; Miyoshi, Y.; Yokota, S.; Mitani, T.; Kasahara, Y.; Matsuda, S.; Kumamoto, A.; Matsuoka, A.; Kazama, Y.; Frey, H. U.; Angelopoulos, V.; Kurita, S.; Keika, K.; Seki, K.; Shinohara, I.

    2018-02-01

    Auroral substorms, dynamic phenomena that occur in the upper atmosphere at night, are caused by global reconfiguration of the magnetosphere, which releases stored solar wind energy. These storms are characterized by auroral brightening from dusk to midnight, followed by violent motions of distinct auroral arcs that suddenly break up, and the subsequent emergence of diffuse, pulsating auroral patches at dawn. Pulsating aurorae, which are quasiperiodic, blinking patches of light tens to hundreds of kilometres across, appear at altitudes of about 100 kilometres in the high-latitude regions of both hemispheres, and multiple patches often cover the entire sky. This auroral pulsation, with periods of several to tens of seconds, is generated by the intermittent precipitation of energetic electrons (several to tens of kiloelectronvolts) arriving from the magnetosphere and colliding with the atoms and molecules of the upper atmosphere. A possible cause of this precipitation is the interaction between magnetospheric electrons and electromagnetic waves called whistler-mode chorus waves. However, no direct observational evidence of this interaction has been obtained so far. Here we report that energetic electrons are scattered by chorus waves, resulting in their precipitation. Our observations were made in March 2017 with a magnetospheric spacecraft equipped with a high-angular-resolution electron sensor and electromagnetic field instruments. The measured quasiperiodic precipitating electron flux was sufficiently intense to generate a pulsating aurora, which was indeed simultaneously observed by a ground auroral imager.

  20. Study of Wave-Particle Interactions for Whistler Mode Waves at Oblique Angles by Utilizing the Gyroaveraging Method

    Science.gov (United States)

    Hsieh, Yi-Kai; Omura, Yoshiharu

    2017-10-01

    We investigate the properties of whistler mode wave-particle interactions at oblique wave normal angles to the background magnetic field. We find that electromagnetic energy of waves at frequencies below half the electron cyclotron frequency can flow nearly parallel to the ambient magnetic field. We thereby confirm that the gyroaveraging method, which averages the cyclotron motion to the gyrocenter and reduces the simulation from two-dimensional to one-dimensional, is valid for oblique wave-particle interaction. Multiple resonances appear for oblique propagation but not for parallel propagation. We calculate the possible range of resonances with the first-order resonance condition as a function of electron kinetic energy and equatorial pitch angle. To reveal the physical process and the efficiency of electron acceleration by multiple resonances, we assume a simple uniform wave model with constant amplitude and frequency in space and time. We perform test particle simulations with electrons starting at specific equatorial pitch angles and kinetic energies. The simulation results show that multiple resonances contribute to acceleration and pitch angle scattering of energetic electrons. Especially, we find that electrons with energies of a few hundred keV can be accelerated efficiently to a few MeV through the n = 0 Landau resonance.

  1. Simulation and modeling of whistler-mode wave growth through cyclotron resonance with energetic electrons in the magnetosphere

    International Nuclear Information System (INIS)

    Carlson, C.R.

    1987-01-01

    New models and simulations of wave growth experienced by electromagnetic waves propagating through the magnetosphere in the whistler mode are presented. For these waves, which have frequencies below the electron gyro and plasma frequencies, the magnetospheric plasma acts like a natural amplifier often amplifying the waves by ∼ 30 dB. The mechanism for growth is cyclotron resonance between the circularly polarized waves and the gyrating energetic electrons which make up the Van Allen radiation belts. The main emphasis is to simulate single-frequency wave pulses, in the 2-6 kHz range, that have been injected into the magnetosphere, near L ∼ 4, by the Stanford transmitting facility at Siple station, Antarctica. However, the results can also be applied to naturally occurring signals, signals from other transmitters, non-CW signals, and signals in other parts of the magnetosphere not probed by the Siple Station transmitter. Results show the importance of the transient aspects in the wave-growth process. The wave growth established as the wave propagates toward the equator, is given a spatially advancing wave phase structure by the geomagnetic inhomogeneity. Through the feedback of this radiation upon other electrons, conditions are set up that results in the linearly increasing output frequency with time

  2. The Role of Higher-Order Modes on the Electromagnetic Whistler-Cyclotron Wave Fluctuations of Thermal and Non-Thermal Plasmas

    Science.gov (United States)

    Vinas, Adolfo F.; Moya, Pablo S.; Navarro, Roberto; Araneda, Jamie A.

    2014-01-01

    Two fundamental challenging problems of laboratory and astrophysical plasmas are the understanding of the relaxation of a collisionless plasmas with nearly isotropic velocity distribution functions and the resultant state of nearly equipartition energy density with electromagnetic plasma turbulence. Here, we present the results of a study which shows the role that higher-order-modes play in limiting the electromagnetic whistler-like fluctuations in a thermal and non-thermal plasma. Our main results show that for a thermal plasma the magnetic fluctuations are confined by regions that are bounded by the least-damped higher order modes. We further show that the zone where the whistler-cyclotron normal modes merges the electromagnetic fluctuations shifts to longer wavelengths as the beta(sub e) increases. This merging zone has been interpreted as the beginning of the region where the whistler-cyclotron waves losses their identity and become heavily damped while merging with the fluctuations. Our results further indicate that in the case of nonthermal plasmas, the higher-order modes do not confine the fluctuations due to the effective higher-temperature effects and the excess of suprathermal plasma particles. The analysis presented here considers the second-order theory of fluctuations and the dispersion relation of weakly transverse fluctuations, with wave vectors parallel to the uniform background magnetic field, in a finite temperature isotropic bi-Maxwellian and Tsallis-kappa-like magnetized electron-proton plasma. Our results indicate that the spontaneously emitted electromagnetic fluctuations are in fact enhanced over these quasi modes suggesting that such modes play an important role in the emission and absorption of electromagnetic fluctuations in thermal or quasi-thermal plasmas.

  3. Van Allen Probe Observations of Chorus Wave Activity, Source and Seed electrons, and the Radiation Belt Response During ICME and CIR Storms

    Science.gov (United States)

    Bingham, S.; Mouikis, C.; Kistler, L. M.; Farrugia, C. J.; Paulson, K. W.; Huang, C. L.; Boyd, A. J.; Spence, H. E.; Kletzing, C.

    2017-12-01

    Whistler mode chorus waves are electromagnetic waves that have been shown to be a major contributor to enhancements in the outer radiation belt during geomagnetic storms. The temperature anisotropy of source electrons (10s of keV) provides the free energy for chorus waves, which can accelerate sub-relativistic seed electrons (100s of keV) to relativistic energies. This study uses Van Allen Probe observations to examine the excitation and plasma conditions associated with chorus wave observations, the development of the seed population, and the outer radiation belt response in the inner magnetosphere, for 25 ICME and 35 CIR storms. Plasma data from the Helium Oxygen Proton Electron (HOPE) instrument and magnetic field measurements from the Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) are used to identify chorus wave activity and to model a linear theory based proxy for chorus wave growth. A superposed epoch analysis shows a peak of chorus wave power on the dawnside during the storm main phase that spreads towards noon during the storm recovery phase. According to the linear theory results, this wave activity is driven by the enhanced convection driving plasma sheet electrons across the dayside. Both ICME and CIR storms show comparable levels of wave growth. Plasma data from the Magnetic Electron Ion Spectrometer (MagEIS) and the Relativistic Electron Proton Telescope (REPT) are used to observe the seed and relativistic electrons. A superposed epoch analysis of seed and relativistic electrons vs. L shows radiation belt enhancements with much greater frequency in the ICME storms, coinciding with a much stronger and earlier seed electron enhancement in the ICME storms.

  4. Night-time radial plasma drifts and coupling fluxes at L = 2.3 from whistler mode measurements

    International Nuclear Information System (INIS)

    Andrews, M.K.

    1980-01-01

    A method recently reported for measuring radial drifts in the equatorial plane, and ionosphere-magnetosphere coupling fluxes from the Doppler shifts and group delays on whistler mode signals is applied to VLF transmissions from station NLK on 18.6kHz. Data from 22 nights, primarily during the months November to February, are analysed. When averaged over a time of about 90 min, drifts found are accurate to +-20ms -1 , corresponding to an equatorial electric field accuracy of +-0.05mVm -1 , and fluxes, to +-1.5 x 10 12 el m -2 s -1 (two hemisphere total). Given currently accepted values of coupling fluxes, the flux accuracy is of marginal value on individual nights, but useful information on average behaviour may be obtained. It is found that fluxes generally contribute less than 20% to the measured Doppler shift, most of which is therefore produced by cross-L drifts. To an accuracy of about 20% then, Doppler data alone may give information on these drifts. Doppler shift data previously accumulated over a number of years and relating to signals in ducts near L = 2.3 are re-examined. Dominating the nightly behaviour is an inward drift which reaches a maximum of approximately 100m s -1 as the duct ends cross the dusk terminator, and an outward drift at dawn of the same magnitude which is intitiated when the duct end crosses the terminator in the E or lower F-region. In some months, separate effects can be seen corresponding to sunrise at each end of the duct. (author)

  5. On the conditions for nonlinear growth in magnetospheric chorus and triggered emissions

    Science.gov (United States)

    Gołkowski, Mark; Gibby, Andrew R.

    2017-09-01

    The nonlinear whistler mode instability associated with magnetospheric chorus and VLF triggered emissions continues to be poorly understood. Following up on formulations of other authors, an analytical exploration of the stability of the phenomenon from a new vantage point is given. This exploration derives an additional requirement on the anisotropy of the energetic electron distribution relative to the linear treatment of the instability, and shows that the nonlinear instability is most favorable to increasing growth rate when electrons become initially trapped in the wave potential of a constant frequency wave. These results imply that the initiation of the nonlinear instability at the equator requires a positive frequency sweep rate, while the initiation of the instability by a constant frequency triggering wave must occur at a location downstream of the geomagnetic equator.

  6. DO OBLIQUE ALFVÉN/ION-CYCLOTRON OR FAST-MODE/WHISTLER WAVES DOMINATE THE DISSIPATION OF SOLAR WIND TURBULENCE NEAR THE PROTON INERTIAL LENGTH?

    International Nuclear Information System (INIS)

    He Jiansen; Tu Chuanyi; Marsch, Eckart; Yao Shuo

    2012-01-01

    To determine the wave modes prevailing in solar wind turbulence at kinetic scales, we study the magnetic polarization of small-scale fluctuations in the plane perpendicular to the data sampling direction (namely, the solar wind flow direction, V SW ) and analyze its orientation with respect to the local background magnetic field B 0,local . As an example, we take only measurements made in an outward magnetic sector. When B 0,local is quasi-perpendicular to V SW , we find that the small-scale magnetic-field fluctuations, which have periods from about 1 to 3 s and are extracted from a wavelet decomposition of the original time series, show a polarization ellipse with right-handed orientation. This is consistent with a positive reduced magnetic helicity, as previously reported. Moreover, for the first time we find that the major axis of the ellipse is perpendicular to B 0,local , a property that is characteristic of an oblique Alfvén wave rather than oblique whistler wave. For an oblique whistler wave, the major axis of the magnetic ellipse is expected to be aligned with B 0,local , thus indicating significant magnetic compressibility, and the polarization turns from right to left handedness as the wave propagation angle (θ kB ) increases toward 90°. Therefore, we conclude that the observation of a right-handed polarization ellipse with orientation perpendicular to B 0,local seems to indicate that oblique Alfvén/ion-cyclotron waves rather than oblique fast-mode/whistler waves dominate in the 'dissipation' range near the break of solar wind turbulence spectra occurring around the proton inertial length.

  7. Resonant scattering of energetic electrons in the plasmasphere by monotonic whistler-mode waves artificially generated by ionospheric modification

    Directory of Open Access Journals (Sweden)

    S. S. Chang

    2014-05-01

    Full Text Available Modulated high-frequency (HF heating of the ionosphere provides a feasible means of artificially generating extremely low-frequency (ELF/very low-frequency (VLF whistler waves, which can leak into the inner magnetosphere and contribute to resonant interactions with high-energy electrons in the plasmasphere. By ray tracing the magnetospheric propagation of ELF/VLF emissions artificially generated at low-invariant latitudes, we evaluate the relativistic electron resonant energies along the ray paths and show that propagating artificial ELF/VLF waves can resonate with electrons from ~ 100 keV to ~ 10 MeV. We further implement test particle simulations to investigate the effects of resonant scattering of energetic electrons due to triggered monotonic/single-frequency ELF/VLF waves. The results indicate that within the period of a resonance timescale, changes in electron pitch angle and kinetic energy are stochastic, and the overall effect is cumulative, that is, the changes averaged over all test electrons increase monotonically with time. The localized rates of wave-induced pitch-angle scattering and momentum diffusion in the plasmasphere are analyzed in detail for artificially generated ELF/VLF whistlers with an observable in situ amplitude of ~ 10 pT. While the local momentum diffusion of relativistic electrons is small, with a rate of −7 s−1, the local pitch-angle scattering can be intense near the loss cone with a rate of ~ 10−4 s−1. Our investigation further supports the feasibility of artificial triggering of ELF/VLF whistler waves for removal of high-energy electrons at lower L shells within the plasmasphere. Moreover, our test particle simulation results show quantitatively good agreement with quasi-linear diffusion coefficients, confirming the applicability of both methods to evaluate the resonant diffusion effect of artificial generated ELF/VLF whistlers.

  8. Quasi-Linear Evolution of Trapped Electron Fluxes Under the Influence of Realistic Whistler-Mode Waves

    Science.gov (United States)

    Agapitov, O. V.; Mourenas, D.; Artemyev, A.; Krasnoselskikh, V.

    2014-12-01

    The evolution of fluxes of energetic trapped electrons as a function of geomagnetic activity is investigated using brand new statistical models of chorus waves derived from Cluster observations in the radiation belts. The new wave models provide the distributions of wave power and wave-normal angle with latitude as a function of either Dst or Kp indices. Lifetimes and energization of energetic electrons are examined, as well as the relevant uncertainties related to some of the wave models implicit assumptions.From the presented results, different implications concerning the characterization of relativistic flux enhancements and losses are provided.

  9. Detection of Chorus Elements and other Wave Signatures Using Geometric Computational Techniques in the Van Allen radiation belts

    Science.gov (United States)

    Sengupta, A.; Kletzing, C.; Howk, R.; Kurth, W. S.

    2017-12-01

    An important goal of the Van Allen Probes mission is to understand wave particle interactions that can energize relativistic electron in the Earth's Van Allen radiation belts. The EMFISIS instrumentation suite provides measurements of wave electric and magnetic fields of wave features such as chorus that participate in these interactions. Geometric signal processing discovers structural relationships, e.g. connectivity across ridge-like features in chorus elements to reveal properties such as dominant angles of the element (frequency sweep rate) and integrated power along the a given chorus element. These techniques disambiguate these wave features against background hiss-like chorus. This enables autonomous discovery of chorus elements across the large volumes of EMFISIS data. At the scale of individual or overlapping chorus elements, topological pattern recognition techniques enable interpretation of chorus microstructure by discovering connectivity and other geometric features within the wave signature of a single chorus element or between overlapping chorus elements. Thus chorus wave features can be quantified and studied at multiple scales of spectral geometry using geometric signal processing techniques. We present recently developed computational techniques that exploit spectral geometry of chorus elements and whistlers to enable large-scale automated discovery, detection and statistical analysis of these events over EMFISIS data. Specifically, we present different case studies across a diverse portfolio of chorus elements and discuss the performance of our algorithms regarding precision of detection as well as interpretation of chorus microstructure. We also provide large-scale statistical analysis on the distribution of dominant sweep rates and other properties of the detected chorus elements.

  10. Resonant and non-resonant whistlers-particle interaction in the radiation belts

    NARCIS (Netherlands)

    E. Camporeale (Enrico)

    2015-01-01

    htmlabstractWe study the wave-particle interactions between lower band chorus whistlers and an anisotropic tenuous population of relativistic electrons. We present the first direct comparison of first-principle Particle-in-Cell (PIC) simulations with a quasi-linear diffusion code. In the PIC

  11. Resonant and non-resonant whistlers-particle interaction in the radiation belts

    NARCIS (Netherlands)

    E. Camporeale (Enrico)

    2014-01-01

    htmlabstractWe study the wave-particle interactions between lower band chorus whistlers and an anisotropic tenuous population of relativistic electrons. We present the first direct comparison of first-principle Particle-in-Cell (PIC) simulations with a quasi-linear diffusion code, in this context.

  12. Upconversion of whistler waves by gyrating ion beams in a plasma

    Indian Academy of Sciences (India)

    It is shown that a gyrating ion-beam frequency upconverts the whistler waves separated by harmonics of beam gyro-frequency. The expression for the growth rate of whistler mode waves has been derived. In Case 1, a high-amplitude whistler wave decays into two lower frequency waves, called a low-frequency mode and a ...

  13. Parametric validations of analytical lifetime estimates for radiation belt electron diffusion by whistler waves

    Directory of Open Access Journals (Sweden)

    A. V. Artemyev

    2013-04-01

    Full Text Available The lifetimes of electrons trapped in Earth's radiation belts can be calculated from quasi-linear pitch-angle diffusion by whistler-mode waves, provided that their frequency spectrum is broad enough and/or their average amplitude is not too large. Extensive comparisons between improved analytical lifetime estimates and full numerical calculations have been performed in a broad parameter range representative of a large part of the magnetosphere from L ~ 2 to 6. The effects of observed very oblique whistler waves are taken into account in both numerical and analytical calculations. Analytical lifetimes (and pitch-angle diffusion coefficients are found to be in good agreement with full numerical calculations based on CRRES and Cluster hiss and lightning-generated wave measurements inside the plasmasphere and Cluster lower-band chorus waves measurements in the outer belt for electron energies ranging from 100 keV to 5 MeV. Comparisons with lifetimes recently obtained from electron flux measurements on SAMPEX, SCATHA, SAC-C and DEMETER also show reasonable agreement.

  14. Competing processes of whistler and electrostatic instabilities in the magnetosphere

    International Nuclear Information System (INIS)

    Omura, Y.; Matsumoto, H.

    1987-01-01

    Competing processes of whistler mode and electrostatic mode instabilities induced by an electron beam are studied by a linear growth rate analysis and by an electromagnetic particle simulation. In addition to a background cold plasma we assumed an electron beam drifting along a static magnetic field. We studied excitation of whistler and electrostatic mode waves in the direction of the static magnetic field. We first calculated linear growth rates for the whistler mode and electrostatic mode instabilities, assuming various possible parameters in the equatorial magnetosphere. We found that the growth rate for the electrostatic instability is always larger than that of the whistler mode instability. A short simulation run with a monoenergetic electron beam demonstrates that a monoenergetic beam can hardly give energy to whistler mode waves as a result of competition with faster growing electrostatic waves, because the beam electrons are trapped and diffused by the electrostatic waves, and hence the growth rates for whistler mode waves become very small. A long simulation run starting with a warm electron beam demonstrates that whistler mode waves are excited in spite of the small growth rates and the coexisting quasi-linear electrostatic diffusion process

  15. Nonlinear electron magnetohydrodynamics physics. IV. Whistler instabilities

    International Nuclear Information System (INIS)

    Urrutia, J. M.; Stenzel, R. L.; Strohmaier, K. D.

    2008-01-01

    A very large low-frequency whistler mode is excited with magnetic loop antennas in a uniform laboratory plasma. The wave magnetic field exceeds the ambient field causing in one polarity a field reversal, and a magnetic topology resembling that of spheromaks in the other polarity. These propagating ''whistler spheromaks'' strongly accelerate the electrons and create non-Maxwellian distributions in their toroidal current ring. It is observed that the locally energized electrons in the current ring excite new electromagnetic instabilities and emit whistler modes with frequencies unrelated to the applied frequency. Emissions are also observed from electrons excited in X-type neutral lines around the antenna. The properties of the excited waves such as amplitudes, frequency spectra, field topologies, propagation, polarization, growth, and damping have been investigated. The waves remain linear (B wave 0 ) and convert a small part of the electron kinetic energy into wave magnetic energy (B wave 2 /2μ 0 e )

  16. New aspects of whistler waves driven by an electron beam studied by a 3-D electromagnetic code

    Science.gov (United States)

    Nishikawa, Ken-Ichi; Buneman, Oscar; Neubert, Torsten

    1994-01-01

    We have restudied electron beam driven whistler waves with a 3-D electromagnetic particle code. The simulation results show electromagnetic whistler wave emissions and electrostatic beam modes like those observed in the Spacelab 2 electron beam experiment. It has been suggested in the past that the spatial bunching of beam electrons associated with the beam mode may directly generate whistler waves. However, the simulation results indicate several inconsistencies with this picture: (1) whistler waves continue to be generated even after the beam mode space charge modulation looses its coherence, (2) the parallel (to the background magnetic field) wavelength of the whistler wave is longer than that of the beam instability, and (3) the parallel phase velocity of the whistler wave is smaller than that of the beam mode. The complex structure of the whistler waves in the vicinity of the beam suggest that the transverse motion (gyration) of the beam and background electrons is also involved in the generation of whistler waves.

  17. Evolution of Field-Aligned Electron and Ion Densities From Whistler Mode Radio Soundings During Quiet to Moderately Active Period and Comparisons With SAMI2 Simulations

    Science.gov (United States)

    Reddy, A.; Sonwalkar, V. S.; Huba, J. D.

    2018-02-01

    Knowledge of field-aligned electron and ion distributions is necessary for understanding the physical processes causing variations in field-aligned electron and ion densities. Using whistler mode sounding by Radio Plasma Imager/Imager for Magnetopause-to-Aurora Global Exploration (RPI/IMAGE), we determined the evolution of dayside electron and ion densities along L ˜ 2 and L ˜ 3 (90-4,000 km) during a 7 day (21-27 November 2005) geomagnetically quiet to moderately active period. Over this period the O+/H+ transition height was ˜880 ± 60 km and ˜1000 ± 100 km, respectively, at L ˜ 2 and L ˜ 3. The electron density varied in a complex manner; it was different at L ˜ 2 and L ˜ 3 and below and above the O+/H+ transition height. The measured electron and ion densities are consistent with those from Challenging Minisatellite Payload (CHAMP) and Defense Meteorological Satellite Program (DMSP) and other past measurements, but they deviated from bottomside sounding and International Reference Ionosphere (IRI) 2012 empirical model results. Using SAMI2 (Naval Research Laboratory (NRL) ionosphere model) with reasonably adjusted values of inputs (neutral densities, winds, electric fields, and photoelectron heating), we simulated the evolution of O+/H+ transition height and field-aligned electron and ion densities so that a fair agreement was obtained between the simulation results and observations. Simulation studies indicated that reduced neutral densities (H and/or O) with time limited O+-H charge exchange process. This reduction in neutral densities combined with changes in neutral winds and plasma temperature led to the observed variations in the electron and ion densities. The observation/simulation method presented here can be extended to investigate the role of neutral densities and composition, disturbed winds, and prompt penetration electric fields in the storm time ionosphere/plasmasphere dynamics.

  18. Hook whistlers observed at low latitude ground station Varanasi

    International Nuclear Information System (INIS)

    Khosa, P.N.; Lalmani; Ahmed, M.M.; Singh, B.D.

    1983-01-01

    Employing the Haselgrove ray tracing equations and a diffusive equilibrium model of the ionosphere, the propagation characteristics of hook whistlers recorded at low-latitude ground station Varanasi (geomag. lat., 16 0 6'N) are discussed. It is shown that the two traces of the hook whistlers are caused by the VLF waves radiated from the return stroke of a lightning discharge which after penetrating the ionosphere at two different entry points, propagated to the opposite hemisphere in the whistler mode and were received at 16 geomagnetic latitude. Further the crossing of ray paths for the same frequency leads to the explanation of the hook whistler. The lower and higher cut-off frequencies are explained in terms of their deviating away from the bunch of the recorded whistler waves and crossing of ray paths for the same frequency. (Auth.)

  19. Self-focusing of whistler waves

    Science.gov (United States)

    Karpman, V. I.; Kaufman, R. N.; Shagalov, A. G.

    1992-01-01

    The theory of axially symmetric self-focusing of whistler waves, based on the full system of Maxwell equations, is developed. The plasma is described by the magnetohydrodynamic equations including the ponderomotive force from RF field. The nonlinear Schrodinger equations (NSE) for arbitrary azimuthal modes of whistler waves are derived. It is shown that they differ from the NSE for a scalar field; this is connected with an intrinsic angular momentum due to the rotating polarization of whistlers. It is shown that the self-focusing, as described by the NSE, differs in its final stage from the results following the full set of Maxwell equations. The latter gives defocusing after sufficient narrowing of the initial wave beam, due to transformation of the trapped wave into a nontrapped branch which is not contained in the NSE description. The oscillatory character of the defocusing is demonstrated.

  20. Decay instability of a whistler in a plasma

    International Nuclear Information System (INIS)

    Tewari, D.P.; Sharma, R.R.

    1982-01-01

    The parametric instabilities of a high power whistler in a high density plasma possess large growth rate when the scattered sideband is an electrostatic lower hybrid mode. The efficient channels of decay include oscillating two stream instability, nonlinear Landau damping and resonant decay involving ion acoustic and ion cyclotron modes. The processes of nonlinear scattering, i.e., the ones possessing whistler sidebands are relatively less significant. (author)

  1. On low-frequency whistler propagation in ionosphere

    International Nuclear Information System (INIS)

    Mazur, V.A.

    1988-01-01

    The propagation along the Earth surface of an electromagnetic wave with frequency below the ion gyrofrequency is theoretically investigated. In Hall layer of the ionosphere this wave is the whistler mode. It is shown that - contrary to previous works - Ohmic dissipation makes impossible the long-distance propagation of low-frequency whistlers. A many-layer model of the medium is used. The geomagnetic field is considered inclined. The eigen modes and evolution of the initial perturbation are considered

  2. Oblique whistler instability in the earth's foreshock

    International Nuclear Information System (INIS)

    Sentman, D.D.; Thomsen, M.F.; Gary, S.P.; Feldman, W.C.; Hoppe, M.M.

    1983-01-01

    The linear Vlasov stability properties of electron velocity distributions, similar to those observed in the upstream foreshock region in association with obliquely propagating whistler waves at approximately 1 Hz, are studied. These distributions are modeled by a sum of bi-Maxwellians with drift speeds parallel to the magnetic field B. We find such distributions to be stable to modes with wavevectors k parallel to B but unstable to whistler waves propagating obliquely to the magnetic field. The frequencies and wavelengths of these unstable modes agree well with those of whistlers observed upstream of the earth's bow shock. The free energy source driving the instability is a region of positive parallel slope partialf/sub e//partialv/sub parallel/>0 at large pitch angles (about 85 0 ) and intermediate energies (about 20 eV), probably corresponding to the solar wind electrons magnetostatically reflected from the magnetic ramp of the bow shock. The whistlers grow via electromagnetic Landau resonance with this free energy source

  3. Dispersion properties of ducted whistlers, generated by lightning discharge

    Directory of Open Access Journals (Sweden)

    D. L. Pasmanik

    2005-06-01

    Full Text Available Whistler-mode wave propagation in magnetospheric ducts of enhanced cold plasma density is studied. The case of the arbitrary ratio of the duct radius to the whistler wavelength is considered, where the ray-tracing method is not applicable. The set of duct eigenmodes and their spatial structure are analysed and dependencies of eigenmode propagation properties on the duct characteristics are studied. Special attention is paid to the analysis of the group delay time of one-hop propagation of the whistler wave packet along the duct. We found that, in contrast to the case of a wide duct, the group delay time in a rather narrow duct decreases as the eigenmode number increases. The results obtained are suggested for an explanation of some types of multi-component whistler signals.

  4. Resonance zones and quasi-linear diffusion coefficients for radiation belt energetic electron interaction with oblique chorus waves in the Dungey magnetosphere

    International Nuclear Information System (INIS)

    Shi Run; Ni, Binbin; Gu Xudong; Zhao Zhengyu; Zhou Chen

    2012-01-01

    The resonance regions for resonant interactions of radiation belt electrons with obliquely propagating whistler-mode chorus waves are investigated in detail in the Dungey magnetic fields that are parameterized by the intensity of uniform southward interplanetary magnetic field (IMF) Bz or, equivalently, by the values of D=(M/B z,0 ) 1/3 (where M is the magnetic moment of the dipole and B z,0 is the uniform southward IMF normal to the dipole’s equatorial plane). Adoption of background magnetic field model can considerably modify the determination of resonance regions. Compared to the results for the case of D = 50 (very close to the dipole field), the latitudinal coverage of resonance regions for 200 keV electrons interacting with chorus waves tends to become narrower for smaller D-values, regardless of equatorial pitch angle, resonance harmonics, and wave normal angle. In contrast, resonance regions for 1 MeV electrons tend to have very similar spatial lengths along the field line for various Dungey magnetic field models but cover different magnetic field intervals, indicative of a strong dependence on electron energy. For any given magnetic field line, the resonance regions where chorus-electron resonant interactions can take place rely closely on equatorial pitch angle, resonance harmonics, and kinetic energy. The resonance regions tend to cover broader latitudinal ranges for smaller equatorial pitch angles, higher resonance harmonics, and lower electron energies, consistent with the results in Ni and Summers [Phys. Plasmas 17, 042902, 042903 (2010)]. Calculations of quasi-linear bounce-averaged diffusion coefficients for radiation belt electrons due to nightside chorus waves indicate that the resultant scattering rates differ from using different Dungey magnetic field models, demonstrating a strong dependence of wave-induced electron scattering effect on the adoption of magnetic field model. Our results suggest that resonant wave-particle interaction processes

  5. First Direct Observation of Runaway-Electron-Driven Whistler Waves in Tokamaks

    Science.gov (United States)

    Spong, D. A.; Heidbrink, W. W.; Paz-Soldan, C.; Du, X. D.; Thome, K. E.; Van Zeeland, M. A.; Collins, C.; Lvovskiy, A.; Moyer, R. A.; Austin, M. E.; Brennan, D. P.; Liu, C.; Jaeger, E. F.; Lau, C.

    2018-04-01

    DIII-D experiments at low density (ne˜1019 m-3 ) have directly measured whistler waves in the 100-200 MHz range excited by multi-MeV runaway electrons. Whistler activity is correlated with runaway intensity (hard x-ray emission level), occurs in novel discrete frequency bands, and exhibits nonlinear limit-cycle-like behavior. The measured frequencies scale with the magnetic field strength and electron density as expected from the whistler dispersion relation. The modes are stabilized with increasing magnetic field, which is consistent with wave-particle resonance mechanisms. The mode amplitudes show intermittent time variations correlated with changes in the electron cyclotron emission that follow predator-prey cycles. These can be interpreted as wave-induced pitch angle scattering of moderate energy runaways. The tokamak runaway-whistler mechanisms have parallels to whistler phenomena in ionospheric plasmas. The observations also open new directions for the modeling and active control of runaway electrons in tokamaks.

  6. The effect of subionospheric propagation on whistlers recorded by the DEMETER satellite – observation and modelling

    Directory of Open Access Journals (Sweden)

    O. E. Ferencz

    2007-06-01

    Full Text Available During a routine analysis of whistlers on the wide-band VLF recording of the DEMETER satellite, a specific signal structure of numerous fractional-hop whistlers, termed the "Spiky Whistler" (SpW was identified. These signals appear to be composed of a conventional whistler combined by the compound mode-patterns of guided wave propagation, suggesting a whistler excited by a lightning "tweek" spheric. Rigorous, full-wave modelling of tweeks, formed by the long subionospheric guided spheric propagation and of the impulse propagation across an arbitrarily inhomogeneous ionosphere, gave an accurate description of the SpW signals. The electromagnetic impulses excited by vertical, preferably CG lightning discharge, exhibited the effects of guided behaviour and of the dispersive ionospheric plasma along their paths. This modelling and interpretation provides a consistent way to determine the generation and propagation characteristics of the recorded SpW signals, as well as to describe the traversed medium.

  7. Status of the CHORUS experiment

    CERN Document Server

    Zucchelli, P

    1995-01-01

    A large number of experiments are currently trying to observe the phenomenon of neutrino oscillation in various ways. Among these, the CHORUS appearance experiment focuses on v,, ---> vT and v. ---> vT detection through the observation of vT induced interactions in the Wide Band neutrino Beam at SPS (CERN). The vT identification is performed in nuclear emulsions by searching for the decay of the r lepton in a sample of events "enriched" by kinematical selection. The detection technique will be discussed and the measured performances of the apparatus will be reported.

  8. Overall whistler observation by RTWA

    International Nuclear Information System (INIS)

    Okada, Toshimi; Iwai, Akira; Otsu, Jinsuke; Hayakawa, Masashi

    1978-01-01

    Both time- and space-wise characteristics of occurrence of whistlers were studied by general ground observations, i.e. routine observation and combined RTWA (real time whistler analyzer) and direction search. Thereby the basic data of the position, move and lifetime of duct were obtained in an attempt to look into the processes of duct formation and disappearance. Observations were made for six months from November, 1977, to April, 1978, at the Moshiri Observatory at magnetic latitude of 34.5 deg. N, Hokkaido. The apparatus operated well as expected, providing useful data. During the period, a relatively large magnetic storm of ΣK = 40 occurred on January 3, so that intriguing whistler phenomena were able to be observed. The lifetime of ducts permitting effective whistler trap differs widely. Considering duct construction, the enhancement factor of each duct is excited to different value in the formation process. The formation process is followed by decay process, and the duration falling to minimum enhancement for whistler trapping differs individually. (J.P.N.)

  9. The CHORUS calorimeter: test results

    International Nuclear Information System (INIS)

    Buontempo, S.; Capone, A.; Cocco, A.G.; De Pedis, D.; Di Capua, E.; Dore, U.; Ereditato, A.; Ferroni, M.; Fiorillo, G.; Loverre, P.F.; Luppi, C.; Macina, D.; Mazzoni, M.A.; Migliozzi, P.; Palladino, V.; Piredda, G.; Riccardi, F.; Righini, P.P.; Saitta, B.; Santacesaria, R.; Strolin, P.; Zucchelli, P.

    1995-01-01

    In the framework of the CHORUS experiment for the search of ν μ ν τ oscillations at CERN, we have built the high resolution calorimeter, intended for the measurement of the energy of hadronic showers produced in neutrino interactions. The calorimeter consists of three parts. The first two are made of lead and plastic scintillating fibers in the volume ratio 4 : 1, such as to achieve compensation. The third is a sandwich of lead plates and scintillator strips in the same volume ratio. The techniques used for the construction of the calorimeter are described, as well as its performance in shower and muon detection. We used electron, pion and muon beams in the energy range 2-100 GeV for this purpose. (orig.)

  10. Synchronized whistlers recorded at Varanasi

    Indian Academy of Sciences (India)

    [10] M J Rycroft, A review of whistlers and energetic electron precipitations, Review of Radio. Sciences edited by W R Stone, 1990-1992 URSI (Oxford University Press, Oxford, 1993) p. 631. [11] V Y Trakhtengertz and M J Rycroft, J. Atmos. Solar Terr. Phys. 62 (2000). [12] W C Armstrong, Nature (London) 327, 405 (1987).

  11. On Electron-Scale Whistler Turbulence in the Solar Wind

    Science.gov (United States)

    Narita, Y.; Nakamura, R.; Baumjohann, W.; Glassmeier, K.-H.; Motschmann, U.; Giles, B.; Magnes, W.; Fischer, D.; Torbert, R. B.; Russell, C. T.

    2016-01-01

    For the first time, the dispersion relation for turbulence magnetic field fluctuations in the solar wind is determined directly on small scales of the order of the electron inertial length, using four-point magnetometer observations from the Magnetospheric Multiscale mission. The data are analyzed using the high-resolution adaptive wave telescope technique. Small-scale solar wind turbulence is primarily composed of highly obliquely propagating waves, with dispersion consistent with that of the whistler mode.

  12. Whistler dominated quasi-collisionless magnetic reconnection

    International Nuclear Information System (INIS)

    Biskamp, D.; Drake, J.F.

    1995-05-01

    A theory of fast quasi-collisionless reconnection is presented. For spatial scales smaller than the ion inertia length the electrons decouple from the ions and the dynamics is described by electron magnetohydrodynamics (EMHD). A qualitative analysis of the reconnection region is obtained, which is corroborated by numerical simulations. The main results are that in contrast to resistive reconnection no macroscopic current sheet is generated, and the reconnection rate is independent of the smallness parameters of the system, i.e. the electron inertia length and the dissipation coefficients. At larger scales the coupling to the ions is important, which, however, does not change the small-scale dynamics. The reconnection rate is only limited by ion inertia being independent of the electron inertia scale and the dissipation coefficients. Reconnection is much faster than in the absence of the whistler mode. (orig.)

  13. Whistlers in space plasma, their role for particle populations in the inner magnetosphere

    Science.gov (United States)

    Shklyar, David

    Of many wave modes, which propagate in the plasmaspheric region of the magnetosphere, whistler waves play the most important role in the dynamics of energetic particles (chiefly elec-trons, but not excepting protons), as their resonant interactions are very efficient. There are three main sources of whistler mode waves in the magnetosphere, namely, lightning strokes, VLF transmitter signals, and far and away various kinds of kinetic instabilities leading to generation of whistler mode waves. Resonant interactions of energetic electrons with whistlers may lead to electron acceleration, scattering into loss-cone, and consequent precipitation into the iono-sphere and atmosphere. While electron resonant interaction with lightning-induced whistlers and VLF transmitter signals may, to a certain approximation, be considered as particle dy-namics in given electromagnetic fields, resonant wave-particle interaction in the case of plasma instability is intrinsically a self-consistent process. An important aspect of whistler-electron interactions (particularly in the case of plasma instability) is the possibility of energy exchange between different energetic electron populations. Thus, in many cases, whistler wave growth rate is determined by "competition" between the first cyclotron and Cerenkov resonances, one (depending on energetic electron distribution) leading to wave growth and the other one to wave damping. Since particles which give rise to wave growth loose their energy, while parti-cles which lead to wave damping gain energy at the expense of the wave, and since the first cyclotron and Cerenkov resonances correspond to different particle energies, wave generation as the result of plasma instability may lead, at the same time, to energy exchange between two populations of energetic particles. While the role of whistlers in dynamics of energetic electrons in the magnetosphere is gener-ally recognized, their role for protons seems to be underestimated. At the same

  14. Two types of magnetospheric ELF chorus and their substorm dependences

    International Nuclear Information System (INIS)

    Tsurutani, B.T.; Smith, E.J.

    1977-01-01

    Extremely low frequency (10--1500 Hz) magnetospheric chorus has been analyzed to investigate a possible dependence on substorms. Care was taken to separate effects from temporal effects by analyzing an entire year of data acquired by the Ogo 5 search coil magnetometer. A major finding of the study of spatial dependences is that chorus occurs principally in two magnetic latitude regions. Equatorial chorus is detected near the equator, and high-latitude chorus is found at magnetic latitudes above 15 0 . When chorus in these two regions is analyzed separately, substorm dependences become apparent. Comparisons with AE indicate that equatorial chorus occurs primarily during substorms. High-latitude chorus is not strongly dependent on AE and often occurs during intervals of prolonged quiet with AE 0 , a region where cyclotron resonance is most efficient. The L value of maximum chorus occurrence increases from 5--8 postmidnight to 7--11 postdawn, a dependence which is consistent with generation by electrons which have undergone drift shell splitting. Delay times between substorms and the onset of equatorial chorus are consistent with a gradient drift of approx.25-keV electrons. Equatorial postmidnight chorus and postdawn chorus have similar occurrence rates and wave intensities. The maximum chorus ocurrence rates are 54% postmidnight and 56% postdawn

  15. Poynting vector and wave vector directions of equatorial chorus

    Czech Academy of Sciences Publication Activity Database

    Taubenschuss, Ulrich; Santolík, Ondřej; Breuillard, H.; Li, W.; Le Contel, O.

    2016-01-01

    Roč. 121, č. 12 (2016), s. 11912-11928 ISSN 2169-9380 R&D Projects: GA ČR(CZ) GA14-31899S; GA MŠk(CZ) LH15304 Grant - others:AV ČR(CZ) AP1401 Program:Akademická prémie - Praemium Academiae Institutional support: RVO:68378289 Keywords : whistler-mode waves * Earth 's inner magnetosphere * Van Allen probes * plasmaspheric hiss * magnetic reconnection * outer magnetosphere * source region * emissions * propagation * THEMIS Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.733, year: 2016

  16. Observations of unusual whistlers during daytime at Jammu

    Indian Academy of Sciences (India)

    1999-03-08

    spectra of these events is briefly presented. 1. Introduction. Whistler ... tude whistlers and the determination of various plasma parameters in .... (Date of whistler recording March 8, 1999). Total. Time of. Equatorial electron observation. Nose electron content NT hours. Dispersion frequency density. 10. 13 el/(cm. 2. Whistler.

  17. Photometric evidence of electron precipitation induced by first hop whistlers

    International Nuclear Information System (INIS)

    Doolittle, J.H.; Carpenter, D.L.

    1983-01-01

    Electron precipitation events induced by discrete VLF whistler mode waves have previously been detected by photometers at Siple Station, Antarctica. This paper presents the first observations of ionospheric optical emissions correlated with VLF waves at the conjugate location, near Roberval, Quebec. Since most whistlers recorded at Siple or Roberval originate in the north, Roberval affords a clear perspective on the direct precipitation induced during the first pass of the wave as it propagates southward. For such a wave the direct precipitation and that induced in the ''mirrored mode'' by the returning two-hop wave should differ in arrival time by roughly twice the wave propagation time between hemispheres, while at Siple the effects of the direct and mirrored modes may overlap in time. A well defined series of observations of structured lambda4278 optical emissions was observed on August 30, 1979 in the aftermath of an intense magnetic storm. The optical emissions were found to lead the arrival time of the two-hop waves by about 0.7 s instead of lagging the local waves by about 1--2 s as had been previously observed for whistler driven events at Siple. The observed arrival time relationships are consistent with the predictions of a cyclotron resonance interaction model, and thus support previous observations of x-rays at Roberval. The importance of the first pass of the wave is further emphasized by an approximate proportionality between the amplitude of the VLF waves recorded at Siple and the intensity of the optical emission bursts at Roberval. Although structured optical emissions correlated with wave bursts can clearly be detected at Roberval, relatively large magnetospheric particle fluxes may be required to produce such events

  18. Particle simulations of nonlinear whistler and Alfven wave instabilities - Amplitude modulation, decay, soliton and inverse cascading

    International Nuclear Information System (INIS)

    Omura, Yoshiharu; Matsumoto, Hiroshi.

    1989-01-01

    Past theoretical and numerical studies of the nonlinear evolution of electromagnetic cyclotron waves are reviewed. Such waves are commonly observed in space plasmas such as Alfven waves in the solar wind or VLF whistler mode waves in the magnetosphere. The use of an electromagnetic full-particle code to study an electron cyclotron wave and of an electromagnetic hybrid code to study an ion cyclotron wave is demonstrated. Recent achievements in the simulations of nonlinear revolution of electromagnetic cyclotron waves are discussed. The inverse cascading processes of finite-amplitude whistler and Alfven waves is interpreted in terms of physical elementary processes. 65 refs

  19. Electron and ion heating by whistler turbulence: Three-dimensional particle-in-cell simulations

    International Nuclear Information System (INIS)

    Hughes, R. Scott; Gary, S. Peter; Wang, Joseph

    2014-01-01

    Three-dimensional particle-in-cell simulations of decaying whistler turbulence are carried out on a collisionless, homogeneous, magnetized, electron-ion plasma model. In addition, the simulations use an initial ensemble of relatively long wavelength whistler modes with a broad range of initial propagation directions with an initial electron beta β e = 0.05. The computations follow the temporal evolution of the fluctuations as they cascade into broadband turbulent spectra at shorter wavelengths. Three simulations correspond to successively larger simulation boxes and successively longer wavelengths of the initial fluctuations. The computations confirm previous results showing electron heating is preferentially parallel to the background magnetic field B o , and ion heating is preferentially perpendicular to B o . The new results here are that larger simulation boxes and longer initial whistler wavelengths yield weaker overall dissipation, consistent with linear dispersion theory predictions of decreased damping, stronger ion heating, consistent with a stronger ion Landau resonance, and weaker electron heating

  20. A generation mechanism for chorus emission

    Directory of Open Access Journals (Sweden)

    V. Y. Trakhtengerts

    1999-01-01

    Full Text Available A chorus generation mechanism is discussed, which is based on interrelation of ELF/VLF noise-like and discrete emissions under the cyclotron wave-particle interactions. A natural ELF/VLF noise radiation is excited by the cyclotron instability mechanism in ducts with enhanced cold plasma density or at the plasmapause. This process is accompanied by a step-like deformation of the energetic electron distribution function in the velocity space, which is situated at the boundary between resonant and nonresonant particles. The step leads to the strong phase correlation of interacting particles and waves and to a new backward wave oscillator (BWO regime of wave generation, when an absolute cyclotron instability arises at the central cross section of the geomagnetic trap, in the form of a succession of discrete signals with growing frequency inside each element. The dynamical spectrum of a separate element is formed similar to triggered ELF/VLF emission, when the strong wavelet starts from the equatorial plane. The comparison is given of the model developed using some satellite and ground-based data. In particular, the appearance of separate groups of chorus signals with a duration 2-10 s can be connected with the preliminary stage of the step formation. BWO regime gives a succession period smaller than the bounce period of energetic electrons between the magnetic mirrors and can explain the observed intervals between chorus elements.Key words. Magnetospheric physics (Energetic particles · trapped. Space plasma physics (wave-particle interactions; waves and instabilities

  1. A generation mechanism for chorus emission

    Directory of Open Access Journals (Sweden)

    V. Y. Trakhtengerts

    Full Text Available A chorus generation mechanism is discussed, which is based on interrelation of ELF/VLF noise-like and discrete emissions under the cyclotron wave-particle interactions. A natural ELF/VLF noise radiation is excited by the cyclotron instability mechanism in ducts with enhanced cold plasma density or at the plasmapause. This process is accompanied by a step-like deformation of the energetic electron distribution function in the velocity space, which is situated at the boundary between resonant and nonresonant particles. The step leads to the strong phase correlation of interacting particles and waves and to a new backward wave oscillator (BWO regime of wave generation, when an absolute cyclotron instability arises at the central cross section of the geomagnetic trap, in the form of a succession of discrete signals with growing frequency inside each element. The dynamical spectrum of a separate element is formed similar to triggered ELF/VLF emission, when the strong wavelet starts from the equatorial plane. The comparison is given of the model developed using some satellite and ground-based data. In particular, the appearance of separate groups of chorus signals with a duration 2-10 s can be connected with the preliminary stage of the step formation. BWO regime gives a succession period smaller than the bounce period of energetic electrons between the magnetic mirrors and can explain the observed intervals between chorus elements.

    Key words. Magnetospheric physics (Energetic particles · trapped. Space plasma physics (wave-particle interactions; waves and instabilities

  2. On the interactions between energetic electrons and lightning whistler waves observed at high L-shells on Van Allen Probes

    Science.gov (United States)

    Zheng, H.; Holzworth, R. H., II; Brundell, J. B.; Hospodarsky, G. B.; Jacobson, A. R.; Fennell, J. F.; Li, J.

    2017-12-01

    Lightning produces strong broadband radio waves, called "sferics", which propagate in the Earth-ionosphere waveguide and are detected thousands of kilometers away from their source. Global real-time detection of lightning strokes including their time, location and energy, is conducted with the World Wide Lightning Location Network (WWLLN). In the ionosphere, these sferics couple into very low frequency (VLF) whistler waves which propagate obliquely to the Earth's magnetic field. A good match has previously been shown between WWLLN sferics and Van Allen Probes lightning whistler waves. It is well known that lightning whistler waves can modify the distribution of energetic electrons in the Van Allen belts by pitch angle scattering into the loss cone, especially at low L-Shells (referred to as LEP - Lightning-induced Electron Precipitation). It is an open question whether lightning whistler waves play an important role at high L-shells. The possible interactions between energetic electrons and lightning whistler waves at high L-shells are considered to be weak in the past. However, lightning is copious, and weak pitch angle scattering into the drift or bounce loss cone would have a significant influence on the radiation belt populations. In this work, we will analyze the continuous burst mode EMFISIS data from September 2012 to 2016, to find out lightning whistler waves above L = 3. Based on that, MAGEIS data are used to study the related possible wave-particle interactions. In this talk, both case study and statistical analysis results will be presented.

  3. Calibration and performance of the CHORUS calorimeter

    International Nuclear Information System (INIS)

    Buontempo, S.; Capone, A.; Cocco, A.G.; De Pedis, D.; Di Capua, E.; Dore, U.; Ereditato, A.; Ferroni, M.; Fiorillo, G.; Loverre, P.F.; Luppi, C.; Macina, D.; Marchetti-Stasi, F.; Mazzoni, M.A.; Migliozzi, P.; Palladino, V.; Piredda, G.; Ricciardi, S.; Righini, P.P.; Saitta, B.; Santacesaria, R.; Strolin, P.; Zucchelli, P.

    1995-01-01

    A high resolution calorimeter has been built for CHORUS, an experiment which searches for ν μ →ν τ oscillation in the CERN neutrino beam. Aim of the calorimeter is to measure the energy and direction of hadronic showers produced in interactions of the neutrinos in a nuclear emulsion target and to track through-going muons. It is a longitudinally segmented sampling device made of lead and scintillating fibers or strips. This detector has been exposed to beams of pions and electrons of defined momentum for calibration. The method used for energy calibration and results on the calorimeter performance are reported. (orig.)

  4. Inertial-range spectrum of whistler turbulence

    Directory of Open Access Journals (Sweden)

    Y. Narita

    2010-02-01

    Full Text Available We develop a theoretical model of an inertial-range energy spectrum for homogeneous whistler turbulence. The theory is a generalization of the Iroshnikov-Kraichnan concept of the inertial-range magnetohydrodynamic turbulence. In the model the dispersion relation is used to derive scaling laws for whistler waves at highly oblique propagation with respect to the mean magnetic field. The model predicts an energy spectrum for such whistler waves with a spectral index −2.5 in the perpendicular component of the wave vector and thus provides an interpretation about recent discoveries of the second inertial-range of magnetic energy spectra at high frequencies in the solar wind.

  5. Whistler wave trapping in a density crest

    International Nuclear Information System (INIS)

    Sugai, H.; Niki, H.; Inutake, M.; Takeda, S.

    1979-11-01

    The linear trapping process of whistler waves in a field-aligned density crest is investigated theoretically and experimentally below ω = ωsub(c)/2 (half gyrofrequency). The conditions of the crest trapping are derived in terms of the frequency ω/ωsub(c), the incident wave-normal angle theta sub(i), and the density ratio n sub(i)/n sub(o), where n sub(i) and n sub(o) denote the density at the incident point and that at the ridge, respectively. The oscillation length of the trapped ray path is calculated for a parabolic density profile. The experiment on antenna-excited whistler wave has been performed in a large magnetized plasma with the density crest. The phase and amplitude profile of the whistler wave is measured along and across the crest. The measurement has verified characteristic behaviors of the crest trapping. (author)

  6. Chorus and chorus-like emissions seen by the ionospheric satellite DEMETER

    Czech Academy of Sciences Publication Activity Database

    Parrot, M.; Santolík, Ondřej; Němec, František

    2016-01-01

    Roč. 121, č. 4 (2016), s. 3781-3792 ISSN 2169-9380 R&D Projects: GA ČR(CZ) GA14-31899S; GA MŠk(CZ) LH15304 Institutional support: RVO:68378289 Keywords : chorus * ionosphere Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.733, year: 2016 http://onlinelibrary.wiley.com/doi/10.1002/2015JA022286/full

  7. Whistlers and audio-frequency emissions monthly summaries of whistlers and emissions for the period July 1957 - December 1958

    CERN Document Server

    Morgan, M G

    1965-01-01

    Annals of the International Geophysical Year, Volume 37: Whistlers and Audio-Frequency Emissions presents the principal results obtained in Whistlers-East synoptic program publications. Although whistlers can be observed at any time of day, it is found that they occur primarily at night. The greatest incidence of whistlers during the International Geophysical Year (IGY) period occurred in both hemispheres in the geomagnetic latitude range 50-60ʻ. The day-to-day correlation of whistler activity at geomagnetically conjugate stations was sometimes very low and sometimes remarkably high. This book

  8. Aggressive interactions and intermale spacing in choruses of the ...

    African Journals Online (AJOL)

    1989-03-28

    Mar 28, 1989 ... distance using an advertisement call, an encounter call and physical combat (or the threat of combat). An ... the effects of chorus density on the nearest neighbour ..... matched by the disadvantages of spending increased.

  9. Nonlinear whistler wave model for lion roars in the Earth's magnetosheath

    Science.gov (United States)

    Dwivedi, N. K.; Singh, S.

    2017-09-01

    In the present study, we construct a nonlinear whistler wave model to explain the magnetic field spectra observed for lion roars in the Earth's magnetosheath region. We use two-fluid theory and semi-analytical approach to derive the dynamical equation of whistler wave propagating along the ambient magnetic field. We examine the magnetic field localization of parallel propagating whistler wave in the intermediate beta plasma applicable to the Earth's magnetosheath. In addition, we investigate spectral features of the magnetic field fluctuations and the spectral slope value. The magnetic field spectrum obtained by semi-analytical approach shows a spectral break point and becomes steeper at higher wave numbers. The observations of IMP 6 plasma waves and magnetometer experiment reveal the existence of short period magnetic field fluctuations in the magnetosheath. The observation shows the broadband spectrum with a spectral slope of -4.5 superimposed with a narrow band peak. The broadband fluctuations appear due to the energy cascades attributed by low-frequency magnetohydrodynamic modes, whereas, a narrow band peak is observed due to the short period lion roars bursts. The energy spectrum predicted by the present theoretical model shows a similar broadband spectrum in the wave number domain with a spectral slope of -3.2, however, it does not show any narrow band peak. Further, we present a comparison between theoretical energy spectrum and the observed spectral slope in the frequency domain. The present semi-analytical model provides exposure to the whistler wave turbulence in the Earth's magnetosheath.

  10. Whistler instability in a magnetospheric duct

    International Nuclear Information System (INIS)

    Talukdar, I.; Tripathi, V.K.; Jain, V.K.

    1989-01-01

    A whistler wave propagating through a preformed magnetospheric duct is susceptible to growth/amplification by an electron beam. The interaction is non-local and could be of Cerenkov or slow-cyclotron type. First-order perturbation theory is employed to obtain the growth rate for flat and Gaussian beam densities. (author)

  11. VLF emissions and whistlers observed during geomagnetic storms

    Science.gov (United States)

    Ondoh, T.; Tanaka, Y.; Nishizaki, R.; Nagayama, M.

    1974-01-01

    Whistler-triggered emissions and a narrowband hiss are described which were observed over Japan by ISIS 2 during the main phase of the geomagnetic storm of August 9, 1972. The characteristics of the narrowband hiss and increases in the whistler rate during the storm are discussed, and the ISIS-2 data are compared with data on whistler cutoffs and VLF noise breakups obtained by OGO 4 and Alouette I. Since the whistlers and narrowband hiss are usually observed inside and outside the plasmapause, it is thought that the plasmapause may have been located near the low-latitude end of the narrowband hiss during the main phase of the storm. It is suggested that the increases in the whistler rate may have been caused by the formation of whistler ducts in the disturbed plasmapause.

  12. Heat Flux Inhibition by Whistlers: Experimental Confirmation

    International Nuclear Information System (INIS)

    Eichler, D.

    2002-01-01

    Heat flux in weakly magnetized collisionless plasma is, according to theoretical predictions, limited by whistler turbulence that is generated by heat flux instabilities near threshold. Observations of solar wind electrons by Gary and coworkers appear to confirm the limit on heat flux as being roughly the product of the magnetic energy density and the electron thermal velocity, in agreement with prediction (Pistinner and Eichler 1998)

  13. Monotest in the complement fixation test: the Chorus system

    Directory of Open Access Journals (Sweden)

    Laura Meli

    2009-06-01

    Full Text Available The complement fixation test (CFT is a method used for the detection of antibodies against pathogens of infectious diseases, it has been proved to be a useful diagnostic method in the detection of acute disease in many medical laboratories.The test performed manually is time consuming and needs very skilled personnel.This study evaluates the automated Chorus CFT system with 87 serum samples in comparison with manual method using Virion-Serion reagents, against a panel of antigens, such as Adenovirus, Influenza A and B virus, Respiratory Syncythial Virus, Parainfluenza Mix, Mycoplasma Pneumoniae, and Echinococcus. The Chorus system includes standardized reagents and a monotest device to perform the single assay. In comparison to the manual CFT method, the correlation is 91.6% (7/83.The results obtained show that the automated Chorus system can be applied for detecting complement fixation antibodies against different infectious disease agents.

  14. Chorusing, synchrony and the evolutionary functions of rhythm

    Directory of Open Access Journals (Sweden)

    Andrea eRavignani

    2014-10-01

    Full Text Available A central goal of biomusicology is to understand the biological basis of human musicality. One approach to this problem has been to compare core components of human musicality (relative pitch perception, entrainment, etc. with similar capacities in other animal species. Here we extend and clarify this comparative approach with respect to rhythm. First, whereas most comparisons between human music and animal acoustic behavior have focused on spectral properties (melody and harmony, we argue for the central importance of temporal properties, and propose that this domain is ripe for further comparative research. Second, whereas most rhythm research in non-human animals has examined animal timing in isolation, we consider how chorusing dynamics can shape individual timing, as in human music and dance, making group behavior key to understand the adaptive functions of rhythm. To illustrate the interdependence between individual and chorusing dynamics, we present a computational model of chorusing agents relating individual call timing with synchronous group behavior. Third, we distinguish and clarify mechanistic and functional explanations of rhythmic phenomena, often conflated in the literature, arguing that this distinction is key for understanding the evolution of musicality. Fourth, we expand biomusicological discussions beyond the species typically considered, providing an overview of chorusing and rhythmic behavior across a broad range of taxa (orthopterans, fireflies, frogs, birds, and primates. Finally, we propose an Evolving Signal Timing hypothesis, suggesting that similarities between timing abilities in biological species will be based on comparable chorusing behaviors. We conclude that the comparative study of chorusing species can provide important insights into the adaptive function(s of rhythmic behavior in our proto-musical primate ancestors, and thus inform our understanding of the biology and evolution of rhythm in human music and

  15. Chorusing, synchrony, and the evolutionary functions of rhythm.

    Science.gov (United States)

    Ravignani, Andrea; Bowling, Daniel L; Fitch, W Tecumseh

    2014-01-01

    A central goal of biomusicology is to understand the biological basis of human musicality. One approach to this problem has been to compare core components of human musicality (relative pitch perception, entrainment, etc.) with similar capacities in other animal species. Here we extend and clarify this comparative approach with respect to rhythm. First, whereas most comparisons between human music and animal acoustic behavior have focused on spectral properties (melody and harmony), we argue for the central importance of temporal properties, and propose that this domain is ripe for further comparative research. Second, whereas most rhythm research in non-human animals has examined animal timing in isolation, we consider how chorusing dynamics can shape individual timing, as in human music and dance, arguing that group behavior is key to understanding the adaptive functions of rhythm. To illustrate the interdependence between individual and chorusing dynamics, we present a computational model of chorusing agents relating individual call timing with synchronous group behavior. Third, we distinguish and clarify mechanistic and functional explanations of rhythmic phenomena, often conflated in the literature, arguing that this distinction is key for understanding the evolution of musicality. Fourth, we expand biomusicological discussions beyond the species typically considered, providing an overview of chorusing and rhythmic behavior across a broad range of taxa (orthopterans, fireflies, frogs, birds, and primates). Finally, we propose an "Evolving Signal Timing" hypothesis, suggesting that similarities between timing abilities in biological species will be based on comparable chorusing behaviors. We conclude that the comparative study of chorusing species can provide important insights into the adaptive function(s) of rhythmic behavior in our "proto-musical" primate ancestors, and thus inform our understanding of the biology and evolution of rhythm in human music and

  16. Whistler wave propagation in the antenna near and far fields in the Naval Research Laboratory Space Physics Simulation Chamber

    International Nuclear Information System (INIS)

    Blackwell, David D.; Walker, David N.; Amatucci, William E.

    2010-01-01

    In previous papers, early whistler propagation measurements were presented [W. E. Amatucci et al., IEEE Trans. Plasma Sci. 33, 637 (2005)] as well as antenna impedance measurements [D. D. Blackwell et al., Phys. Plasmas 14, 092106 (2007)] performed in the Naval Research Laboratory Space Physics Simulation Chamber (SPSC). Since that time there have been major upgrades in the experimental capabilities of the laboratory in the form of improvement of both the plasma source and antennas. This has allowed access to plasma parameter space that was previously unattainable, and has resulted in measurements that provide a significantly clearer picture of whistler propagation in the laboratory environment. This paper presents some of the first whistler experimental results from the upgraded SPSC. Whereas previously measurements were limited to measuring the cyclotron resonance cutoff and elliptical polarization indicative of the whistler mode, now it is possible to experimentally plot the dispersion relation itself. The waves are driven and detected using balanced dipole and loop antennas connected to a network analyzer, which measures the amplitude and phase of the wave in two dimensions (r and z). In addition the frequency of the signals is also swept over a range of several hundreds of megahertz, providing a comprehensive picture of the near and far field antenna radiation patterns over a variety of plasma conditions. The magnetic field is varied from a few gauss to 200 G, with the density variable over at least 3 decades from 10 7 to 10 10 cm -3 . The waves are shown to lie on the dispersion surface for whistler waves, with observation of resonance cones in agreement with theoretical predictions. The waves are also observed to propagate without loss of amplitude at higher power, a result in agreement with previous experiments and the notion of ducted whistlers.

  17. A Possible Population-Driven Phase Transition in Cicada Chorus

    International Nuclear Information System (INIS)

    Gu Siyuan; Jin Yuliang; Zhao Xiaoxue; Huang Jiping

    2009-01-01

    We investigate the collective synchronization of cicada chirping. Using both experimental and phenomenological numerical techniques, here we show that the onset of a periodic two-state acoustic synchronous behavior in cicada chorus depends on a critical size of population N c = 21, above which a typical chorus state appears periodically with a 30 second-silence state in between, and further clarify its possibility concerning a new class of phase transition, which is unusually driven by population. This work has relevance to acoustic synchronization and to general physics of phase transition. (general)

  18. Solar wind heat flux regulation by the whistler instability

    International Nuclear Information System (INIS)

    Gary, S.P.; Feldman, W.C.

    1977-01-01

    This paper studies the role of the whistler instability in the regulation of the solar wind heat flux near 1 AU. A comparison of linear and second-order theory with experimental results provides strong evidence that the whistler may at times contribute to the limitation of this heat flux

  19. Bursty emission of whistler waves in association with plasmoid collision

    Directory of Open Access Journals (Sweden)

    K. Fujimoto

    2017-07-01

    Full Text Available A new mechanism to generate whistler waves in the course of collisionless magnetic reconnection is proposed. It is found that intense whistler emissions occur in association with plasmoid collisions. The key processes are strong perpendicular heating of the electrons through a secondary magnetic reconnection during plasmoid collision and the subsequent compression of the ambient magnetic field, leading to whistler instability due to the electron temperature anisotropy. The emissions have a bursty nature, completing in a short time within the ion timescales, as has often been observed in the Earth's magnetosphere. The whistler waves can accelerate the electrons in the parallel direction, contributing to the generation of high-energy electrons. The present study suggests that the bursty emission of whistler waves could be an indicator of plasmoid collisions and the associated particle energization during collisionless magnetic reconnection.

  20. Verification of Bwo Model of Vlf Chorus Generation Using Magion 5 Data

    Science.gov (United States)

    Titova, E. E.; Kozelov, B. V.; Jiricek, F.; Smilauer, J.; Demekhov, A. G.; Trakhtengerts, V. Yu.

    We present a detailed study of chorus emissions in the magnetosphere detected on- board the Magion 5, when the satellite was at low magnetic latitudes. We determine the frequency sweep rate and the periods of electromagnetic VLF chorus emissions. These results are considered within the concept of the backward wave oscillator (BWO) regime of chorus generation. Comparison of the frequency sweep rate of chorus el- ements shows: (i) There is a correlation between the frequency sweep rates and the chorus amplitudes. The frequency sweep rate increases with chorus amplitude in ac- cord with expectations from the BWO model. (ii) The chorus growth rate, estimated from the frequency sweep rate, is in accord with that inferred from the BWO gener- ation mechanism. (iii) The BWO regime of chorus generation ensures the observed decrease in the frequency sweep rate of the chorus elements with increasing L shell. We also discuss the relationship between the observed periods of chorus elements with the predictions following from the BWO model of chorus generation.

  1. Lightning, whistlers, and hiss - A possible relationship

    International Nuclear Information System (INIS)

    Sonwalkar, V.S.

    1990-01-01

    While it has been established that whistlers originate in terrestrial lightning, the generation mechanism remains unclear and is intractable by means of quasi-linear theory, which does not account for the generation of hiss from the background thermal noise. Observational data are presently discussed which indicate that the wave energy introduced in the magnetosphere by atmospheric lightning discharges may play an important role both in the loss of particles through wave-induced precipitation and in the embrionic generation of hiss. 13 refs

  2. The Chorus Conflict and Loss of Separation Resolution Algorithms

    Science.gov (United States)

    Butler, Ricky W.; Hagen, George E.; Maddalon, Jeffrey M.

    2013-01-01

    The Chorus software is designed to investigate near-term, tactical conflict and loss of separation detection and resolution concepts for air traffic management. This software is currently being used in two different problem domains: en-route self- separation and sense and avoid for unmanned aircraft systems. This paper describes the core resolution algorithms that are part of Chorus. The combination of several features of the Chorus program distinguish this software from other approaches to conflict and loss of separation resolution. First, the program stores a history of state information over time which enables it to handle communication dropouts and take advantage of previous input data. Second, the underlying conflict algorithms find resolutions that solve the most urgent conflict, but also seek to prevent secondary conflicts with the other aircraft. Third, if the program is run on multiple aircraft, and the two aircraft maneuver at the same time, the result will be implicitly co-ordinated. This implicit coordination property is established by ensuring that a resolution produced by Chorus will comply with a mathematically-defined criteria whose correctness has been formally verified. Fourth, the program produces both instantaneous solutions and kinematic solutions, which are based on simple accel- eration models. Finally, the program provides resolutions for recovery from loss of separation. Different versions of this software are implemented as Java and C++ software programs, respectively.

  3. Aggressive interactions and intermale spacing in choruses of the ...

    African Journals Online (AJOL)

    Intermale spacing was examined in caged Afrixalus delicatuschoruses. Males maintained an individual distance using an advertisement call, an encounter call and physical combat (or the threat of combat). An increase from low to intermediate chorus size (2-4 males) led to a decrease in nearest calling neighbour distances ...

  4. Multiflash whistlers in ELF-band observed at low latitude

    Directory of Open Access Journals (Sweden)

    A. K. Singh

    2011-01-01

    Full Text Available Multiflash whistler-like event in the ELF-band, observed during March 1998 at low latitude station Jammu, is reported. The most prominent feature of these events is the multiflash nature along with the decrease in frequency within a very short span of time resembling similar to terrestrial whistlers. The events have a significantly smaller time duration (0.5–3.5 s than those reported earlier from high, mid and low latitudes and also display a diurnal maximum occurring around 09:30 h (IST. There have been similar reportings from other latitudes, but whistlers in the ELF-band with a multiflash nature along with a precursor emission have never been reported. Lightning seems to be the dominant source for the ELF whistlers reported here.

  5. Wavenumber spectrum of whistler turbulence: Particle-in-cell simulation

    International Nuclear Information System (INIS)

    Saito, S.; Gary, S. Peter; Narita, Y.

    2010-01-01

    The forward cascade of decaying whistler turbulence is studied in low beta plasma to understand essential properties of the energy spectrum at electron scales, by using a two-dimensional electromagnetic particle-in-cell (PIC) simulation. This simulation demonstrates turbulence in which the energy cascade rate is greater than the dissipation rate at the electron inertial length. The PIC simulation shows that the magnetic energy spectrum of forward-cascaded whistler turbulence at electron inertial scales is anisotropic and develops a very steep power-law spectrum which is consistent with recent solar wind observations. A comparison of the simulated spectrum with that predicted by a phenomenological turbulence scaling model suggests that the energy cascade at the electron inertial scale depends on both magnetic fluctuations and electron velocity fluctuations, as well as on the whistler dispersion relation. Thus, not only kinetic Alfven turbulence but also whistler turbulence may explain recent solar wind observations of very steep magnetic spectra at short scales.

  6. Analytic properties of the whistler dispersion function

    International Nuclear Information System (INIS)

    Daniell, G.J.

    1986-01-01

    The analytic properties of the dispersion function of a whistler are investigated in the complex frequency plane. It possesses a pole and a branch point at a frequency equal to the minimum value of the electron gyrofrequency along the path of propagation. An integral equation relates the dispersion function to the distribution of magnetospheric electrons along the path and the solution of this equation is obtained. It is found that the electron density in the equatorial plane is very simply related to the dispersion function. A discussion of approximate formulae to represent the dispersion shows how particular terms can be related to attributes of the electron density distribution, and a new approximate formula is proposed. (author)

  7. Enhanced Plasma Confinement in a Magnetic Well by Whistler Waves

    DEFF Research Database (Denmark)

    Balmashnov, A. A.; Juul Rasmussen, Jens

    1981-01-01

    The propagation of whistler waves in a magnetic field of mirror configuration is investigated experimentally. The strong interaction between waves and particles at the electron-cyclotron resonance leads to enhanced confinement in the magnetic well.......The propagation of whistler waves in a magnetic field of mirror configuration is investigated experimentally. The strong interaction between waves and particles at the electron-cyclotron resonance leads to enhanced confinement in the magnetic well....

  8. Whistler Observations on DEMETER Compared with Full Electromagnetic Wave Simulations

    Science.gov (United States)

    Compston, A. J.; Cohen, M.; Lehtinen, N. G.; Inan, U.; Linscott, I.; Said, R.; Parrot, M.

    2014-12-01

    Terrestrial Very Low Frequency (VLF) electromagnetic radiation, which strongly impacts the Van Allen radiation belt electron dynamics, is injected across the ionosphere into the Earth's plasmasphere from two primary sources: man-made VLF transmitters and lightning discharges. Numerical models of trans-ionospheric propagation of such waves remain unvalidated, and early models may have overestimated the absorption, hindering a comprehensive understanding of the global impact of VLF waves in the loss of radiation belt electrons. In an attempt to remedy the problem of a lack of accurate trans-ionospheric propagation models, we have used a full electromagnetic wave method (FWM) numerical code to simulate the propagation of lightning-generated whistlers into the magnetosphere and compared the results with whistlers observed on the DEMETER satellite and paired with lightning stroke data from the National Lightning Detection Network (NLDN). We have identified over 20,000 whistlers occuring in 14 different passes of DEMETER over the central United States during the summer of 2009, and 14,000 of those occured within the 2000 km x 2000 km simulation grid we used. As shown in the attached figure, which shows a histogram of the ratio of the simulated whistler energy to the measured whistler energy for the 14,000 whistlers we compared, the simulation tends to slightly underestimate the total whistler energy injected by about 5 dB. However, the simulation underestimates the DEMETER measurements more as one gets further from the source lightning stroke, so since the signal to noise ratio of more distant whistlers will be smaller, possibly additive noise in the DEMETER measurements (which of course is not accounted for in the model) may explain some of the observed discrepancy.

  9. Outlying plasmasphere structure detected by whistlers

    International Nuclear Information System (INIS)

    Ho, D.; Carpenter, D.L.

    1976-01-01

    Whistlers recorded at Eights (L approximately equal to 4) and Byrd (L approximately equal to 7), Antarctica have been used to study large-scale structure in equatorial plasma density at geocentric distances approximately equal to 3 to 6 Rsub(E). The observations were made during conditions of magnetic quieting following moderate disturbance. The structures were detected by a 'scanning' process involving relative motion, at about one tenth of the Earth's angular velocity or greater, between the observed density features and the observing whistler station or stations. Three case studies are described, from 26 March 1965, 11 May 1965 and 29 August 1966. The cases support satellite results by showing outlying high density regions at approximately equal to 4 to 6 Rsub(E) that are separated from the main plasmasphere by trough-like depressions ranging in width from 0.2 to 1 Rsub(E). The structures evidently endured for periods of 12 hr or more. In the cases of deepest quieting their slow east-west motions with respect to the Earth are probably of dynamo origin. The cases observed during deep quieting (11 May 1965 and 29 August 1966) suggest the approximate rotation with the Earth of structure formed during previous moderate disturbance activity in the dusk sector. The third case, from 26 March 1965, may represent a structure formed near local midnight. The reported structures appear to be closely related to the bulge phenomenon. The present work supports other experimental and theoretical evidence that the dusk sector is one of major importance in the generation of outlying density structure. (author)

  10. Effects of whistler mode hiss waves in March 2013

    Czech Academy of Sciences Publication Activity Database

    Ripoll, J.-F.; Santolík, Ondřej; Reeves, G. D.; Kurth, W. S.; Denton, M. H.; Loridan, V.; Thaller, S. A.; Kletzing, C. A.; Turner, D. L.

    2017-01-01

    Roč. 122, č. 7 (2017), s. 7433-7462 ISSN 2169-9380 R&D Projects: GA ČR(CZ) GA17-07027S; GA MŠk(CZ) LH15304 Grant - others:AV ČR(CZ) AP1401 Program:Akademická prémie - Praemium Academiae Institutional support: RVO:68378289 Keywords : van allen probes * radiation-belt electrons * linear diffusion-coefficients Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 2.733, year: 2016 http://onlinelibrary.wiley.com/doi/10.1002/2017JA024139/full

  11. Chasing Lightning: Sferics, Tweeks and Whistlers

    Science.gov (United States)

    Webb, P. A.; Franzen, K.; Garcia, L.; Schou, P.; Rous, P.

    2008-12-01

    We all know what lightning looks like during a thunderstorm, but the visible flash we see is only part of the story. This is because lightning also generates light with other frequencies that we cannot perceive with our eyes, but which are just as real as visible light. Unlike the visible light from lightning, these other frequencies can carry the lightning's energy hundreds or thousands of miles across the surface of the Earth in the form of special signals called "tweeks" and "sferics". Some of these emissions can even travel tens of thousands of miles out into space before returning to the Earth as "whistlers". The INSPIRE Project, Inc is a non-profit scientific and educational corporation whose beginning mission was to bring the excitement of observing these very low frequency (VLF) natural radio waves emissions from lightning to high school students. Since 1989, INSPIRE has provided specially designed radio receiver kits to over 2,600 participants around the world to make observations of signals in the VLF frequency range. Many of these participants are using the VLF data they collect in very creative projects that include fiction, music and art exhibitions. During the Fall 2008 semester, the first INSPIRE based university-level course was taught at University of Maryland Baltimore County (UMBC) as part of its First-Year Seminar (FYS) series. The FYS classes are limited to 20 first-year students per class and are designed to create an active-learning environment that encourages student participation and discussion that might not otherwise occur in larger first-year classes. This presentation will cover the experiences gained from using the INSPIRE kits as the basis of a university course. This will include the lecture material that covers the basic physics of lightning, thunderstorms and the Earth's atmosphere, as well as the electronics required to understand the basic workings of the VLF kit. It will also cover the students assembly of the kit in an

  12. Lightning-generated whistler waves observed by probes on the Communication/Navigation Outage Forecast System satellite at low latitudes

    Science.gov (United States)

    Holzworth, R. H.; McCarthy, M. P.; Pfaff, R. F.; Jacobson, A. R.; Willcockson, W. L.; Rowland, D. E.

    2011-06-01

    Direct evidence is presented for a causal relationship between lightning and strong electric field transients inside equatorial ionospheric density depletions. In fact, these whistler mode plasma waves may be the dominant electric field signal within such depletions. Optical lightning data from the Communication/Navigation Outage Forecast System (C/NOFS) satellite and global lightning location information from the World Wide Lightning Location Network are presented as independent verification that these electric field transients are caused by lightning. The electric field instrument on C/NOFS routinely measures lightning-related electric field wave packets or sferics, associated with simultaneous measurements of optical flashes at all altitudes encountered by the satellite (401-867 km). Lightning-generated whistler waves have abundant access to the topside ionosphere, even close to the magnetic equator.

  13. Proton beam generation of whistler waves in the earth's foreshock

    Science.gov (United States)

    Wong, H. K.; Goldstein, M. L.

    1987-01-01

    It is shown that proton beams, often observed upstream of the earth's bow shock and associated with the generation of low-frequency hydromagnetic fluctuations, are also capable of generating whistler waves. The waves can be excited by an instability driven by two-temperature streaming Maxwellian proton distributions which have T (perpendicular)/T(parallel) much greater than 1. It can also be excited by gyrating proton beam distributions. These distributions generate whistler waves with frequencies ranging from 10 to 100 times the proton cyclotron frequency (in the solar wind reference frame) and provide another mechanism for generating the '1-Hz' waves often seen in the earth's foreshock.

  14. Proton beam generation of whistler waves in the Earth's foreshock

    International Nuclear Information System (INIS)

    Wong, H.K.; Goldstein, M.L.

    1987-01-01

    We show that proton beams, often observed upstream of the Earth's bow shock and associated with the generation of low-frequency hydromagnetic fluctuations, are also capable of generating whistler waves. The waves can be excited by an instability driven by two-temperature streaming Maxwellian proton distributions which have T/sub perpendicular//T/sub parallel/>>1. It can also be excited by gyrating proton beam distributions. These distributions generate whistler waves with frequencies ranging from 10 to 100 times the proton cyclotron frequency (in the solar wind reference frame) and provide another mechanism for generating the ''1-Hz'' waves often seen in the Earth's foreshock

  15. Source location of chorus emissions observed by Cluster

    Directory of Open Access Journals (Sweden)

    M. Parrot

    Full Text Available One of the objectives of the Cluster mission is to study sources of various electromagnetic waves using the four satellites. This paper describes the methods we have applied to data recorded from the STAFF spectrum analyser. This instrument provides the cross spectral matrix of three magnetic and two electric field components. This spectral matrix is analysed to determine, for each satellite, the direction of the wave normal relative to the Earth’s magnetic field as a function of frequency and of time. Due to the Cluster orbit, chorus emissions are often observed close to perigee, and the data analysis determines the direction of these waves. Three events observed during different levels of magnetic activity are reported. It is shown that the component of the Poynting vector parallel to the magnetic field changes its sense when the satellites cross the magnetic equator, which indicates that the chorus waves propagate away from the equator. Detailed analysis indicates that the source is located in close vicinity of the plane of the geomagnetic equator.

    Key words. Magnetospheric physics (plasma waves and instabilities; storms and substorms; Space plasma physics (waves and instabilities

  16. Signal interactions and interference in insect choruses: singing and listening in the social environment.

    Science.gov (United States)

    Greenfield, Michael D

    2015-01-01

    Acoustic insects usually sing amidst conspecifics, thereby creating a social environment-the chorus-in which individuals communicate, find mates, and avoid predation. A temporal structure may arise in a chorus because of competitive and cooperative factors that favor certain signal interactions between neighbors. This temporal structure can generate significant acoustic interference among singers that pose problems for communication, mate finding, and predator detection. Acoustic insects can reduce interference by means of selective attention to only their nearest neighbors and by alternating calls with neighbors. Alternatively, they may synchronize, allowing them to preserve call rhythm and also to listen for predators during the silent intervals between calls. Moreover, males singing in choruses may benefit from reduced per capita predation risk as well as enhanced vigilance. They may also enjoy greater per capita attractiveness to females, particularly in the case of synchronous choruses. In many cases, however, the overall temporal structure of the chorus is only an emergent property of simple, pairwise interactions between neighbors. Nonetheless, the chorus that emerges can impose significant selection pressure on the singing of those individual males. Thus, feedback loops may occur and potentially influence traits at both individual and group levels in a chorus.

  17. Decoding Group Vocalizations: The Acoustic Energy Distribution of Chorus Howls Is Useful to Determine Wolf Reproduction.

    Directory of Open Access Journals (Sweden)

    Vicente Palacios

    Full Text Available Population monitoring is crucial for wildlife management and conservation. In the last few decades, wildlife researchers have increasingly applied bioacoustics tools to obtain information on several essential ecological parameters, such as distribution and abundance. One such application involves wolves (Canis lupus. These canids respond to simulated howls by emitting group vocalizations known as chorus howls. These responses to simulated howls reveal the presence of wolf litters during the breeding period and are therefore often used to determine the status of wolf populations. However, the acoustic structure of chorus howls is complex and discriminating the presence of pups in a chorus is sometimes difficult, even for experienced observers. In this study, we evaluate the usefulness of analyses of the acoustic energy distribution in chorus howls to identify the presence of pups in a chorus. We analysed 110 Iberian wolf chorus howls with known pack composition and found that the acoustic energy distribution is concentrated at higher frequencies when there are pups vocalizing. We built predictive models using acoustic energy distribution features to determine the presence of pups in a chorus, concluding that the acoustic energy distribution in chorus howls can be used to determine the presence of wolf pups in a pack. The method we outline here is objective, accurate, easily implemented, and independent of the observer's experience. These advantages are especially relevant in the case of broad scale surveys or when many observers are involved. Furthermore, the analysis of the acoustic energy distribution can be implemented for monitoring other social canids that emit chorus howls such as jackals or coyotes, provides an easy way to obtain information on ecological parameters such as reproductive success, and could be useful to study other group vocalizations.

  18. Decoding Group Vocalizations: The Acoustic Energy Distribution of Chorus Howls Is Useful to Determine Wolf Reproduction

    Science.gov (United States)

    López-Bao, José Vicente; Llaneza, Luis; Fernández, Carlos; Font, Enrique

    2016-01-01

    Population monitoring is crucial for wildlife management and conservation. In the last few decades, wildlife researchers have increasingly applied bioacoustics tools to obtain information on several essential ecological parameters, such as distribution and abundance. One such application involves wolves (Canis lupus). These canids respond to simulated howls by emitting group vocalizations known as chorus howls. These responses to simulated howls reveal the presence of wolf litters during the breeding period and are therefore often used to determine the status of wolf populations. However, the acoustic structure of chorus howls is complex and discriminating the presence of pups in a chorus is sometimes difficult, even for experienced observers. In this study, we evaluate the usefulness of analyses of the acoustic energy distribution in chorus howls to identify the presence of pups in a chorus. We analysed 110 Iberian wolf chorus howls with known pack composition and found that the acoustic energy distribution is concentrated at higher frequencies when there are pups vocalizing. We built predictive models using acoustic energy distribution features to determine the presence of pups in a chorus, concluding that the acoustic energy distribution in chorus howls can be used to determine the presence of wolf pups in a pack. The method we outline here is objective, accurate, easily implemented, and independent of the observer's experience. These advantages are especially relevant in the case of broad scale surveys or when many observers are involved. Furthermore, the analysis of the acoustic energy distribution can be implemented for monitoring other social canids that emit chorus howls such as jackals or coyotes, provides an easy way to obtain information on ecological parameters such as reproductive success, and could be useful to study other group vocalizations. PMID:27144887

  19. Performance of the CHORUS lead-scintillating fiber calorimeter

    CERN Document Server

    Buontempo, S

    1997-01-01

    We report on the design and performance of the lead-scintillating fiber calorimeter of the CHORUS experiment, which searches for νμ-ντ oscillations in the CERN Wide Band Neutrino beam. Two of the three sectors in which the calorimeter is divided are made of lead and plastic scintillating fibers, and they represent the first large scale application of this technique for combined electromagnetic and hadronic calorimetry. The third sector is built using the sandwich technique with lead plates and scintillator strips and acts as a tail catcher for the hadronic energy flow. From tests performed at the CERN SPS and PS an energy resolution of σ(E)/E=(32.3±2.4)%/E(GeV)+(1.4±0.7)% was measured for pions, and σ(E)/E=(13.8±0.9)%/E(GeV)+(−0.2±0.4)% for electrons.

  20. Construction and test of calorimeter modules for the CHORUS experiment

    International Nuclear Information System (INIS)

    Buontempo, S.; Capone, A.; Cocco, A.G.; De Pedis, D.; Di Capua, E.; Dore, U.; Ereditato, A.; Ferroni, M.; Fiorillo, G.; Loverre, P.F.; Luppi, C.; Macina, D.; Marchetti-Stasi, F.; Mazzoni, M.A.; Migliozzi, P.; Palladino, V.; Piredda, G.; Riccardi, F.; Ricciardi, S.; Righini, P.; Saitta, B.; Santacesaria, R.; Strolin, P.; Zucchelli, P.

    1994-01-01

    The construction of modules and the assembly of the calorimeter for CHORUS, an experiment that searches for ν μ ν τ oscillation, have been completed. Within the experiment, the calorimeter is required to measure the energy of hadronic showers produced in neutrino interactions with a resolution of similar 30%/√(E(GeV)). To achieve this performance, the technique, developed in recent years, of embedding scintillating fibers of 1 mm diameter into a lead matrix has been adopted for the most upstream part of the calorimeter. A more conventional system, of alternating layers of lead and scintillator strips, was used for the rest. Details of module construction as well as results obtained when modules were exposed to electron and muon beams are presented. ((orig.))

  1. Stimulated ion Compton scattering instability of whistlers in plasmas

    International Nuclear Information System (INIS)

    Shukla, P. K.; Shukla, Nitin; Stenflo, L.

    2006-01-01

    The nonlinear interactions between magnetic field-aligned broadband whistler wave packets (hereafter referred to as whistlerons) and ion quasimodes in magnetized plasmas are considered. By treating the whistlerons as quasiparticles, their nonlinear propagation in a slowly varying medium supported by ion quasimode density perturbations is studied. A nonlinear dispersion relation within the framework of the wave-kinetic (for the whistlerons) and Vlasov (for the ion quasimodes) descriptions is derived. The dispersion relation admits a kinetic modulational instability. The growth rate of the latter is presented. The present result can improve our understanding of the nonlinear propagation of incoherent whistlers, which have been frequently observed in the Earth's magnetosphere as well as in laboratory plasmas

  2. Millimeter wave scattering off a whistler wave in a tokamak

    International Nuclear Information System (INIS)

    Sawhney, B.K.; Singh, S.V.; Tripathi, V.K.

    1994-01-01

    Obliquely propagating whistler waves through a plasma cause density perturbations. A high frequency electromagnetic wave sent into such a perturbed region suffers scattering. The process can be used as a diagnostics for whistler. We have developed a theory of electromagnetic wave scattering in a tokamak where density profile is taken a parabolic. Numerical calculations have been carried out to evaluate the ratio of the power of the scattered electromagnetic wave to that of the incident electromagnetic wave. The scattered power decreases with the frequency of the incident electromagnetic wave. For typical parameters, the ratio of the power of the scattered to the incident electromagnetic wave comes out to be of the order of 10 -4 at a scattering angle of 3 which can be detected. (author). 2 refs, 1 fig

  3. SUPRATHERMAL ELECTRON STRAHL WIDTHS IN THE PRESENCE OF NARROW-BAND WHISTLER WAVES IN THE SOLAR WIND

    Energy Technology Data Exchange (ETDEWEB)

    Kajdič, P. [Instituto de Geofísica, Universidad Nacional Autónoma de México, Mexico City (Mexico); Alexandrova, O.; Maksimovic, M.; Lacombe, C. [LESIA, Observatoire de Paris, PSL Research University, CNRS, UPMC UniversitéParis 06, Université Paris-Diderot, 5 Place Jules Janssen, F-92190 Meudon (France); Fazakerley, A. N., E-mail: primoz@geofisica.unam.mx [Mullard Space Science Laboratory, University College London (United Kingdom)

    2016-12-20

    We perform the first statistical study of the effects of the interaction of suprathermal electrons with narrow-band whistler mode waves in the solar wind (SW). We show that this interaction does occur and that it is associated with enhanced widths of the so-called strahl component. The latter is directed along the interplanetary magnetic field away from the Sun. We do the study by comparing the strahl pitch angle widths in the SW at 1 AU in the absence of large scale discontinuities and transient structures, such as interplanetary shocks, interplanetary coronal mass ejections, stream interaction regions, etc. during times when the whistler mode waves were present and when they were absent. This is done by using the data from two Cluster instruments: Spatio Temporal Analysis of Field Fluctuations experiment (STAFF) data in the frequency range between ∼0.1 and ∼200 Hz were used for determining the wave properties and Plasma Electron And Current Experiment (PEACE) data sets at 12 central energies between ∼57 eV (equivalent to ∼10 typical electron thermal energies in the SW, E{sub T}) and ∼676 eV (∼113 E{sub T}) for pitch angle measurements. Statistical analysis shows that, during the intervals with the whistler waves, the strahl component on average exhibits pitch angle widths between 2° and 12° larger than during the intervals when these waves are not present. The largest difference is obtained for the electron central energy of ∼344 eV (∼57 ET).

  4. SUPRATHERMAL ELECTRON STRAHL WIDTHS IN THE PRESENCE OF NARROW-BAND WHISTLER WAVES IN THE SOLAR WIND

    International Nuclear Information System (INIS)

    Kajdič, P.; Alexandrova, O.; Maksimovic, M.; Lacombe, C.; Fazakerley, A. N.

    2016-01-01

    We perform the first statistical study of the effects of the interaction of suprathermal electrons with narrow-band whistler mode waves in the solar wind (SW). We show that this interaction does occur and that it is associated with enhanced widths of the so-called strahl component. The latter is directed along the interplanetary magnetic field away from the Sun. We do the study by comparing the strahl pitch angle widths in the SW at 1 AU in the absence of large scale discontinuities and transient structures, such as interplanetary shocks, interplanetary coronal mass ejections, stream interaction regions, etc. during times when the whistler mode waves were present and when they were absent. This is done by using the data from two Cluster instruments: Spatio Temporal Analysis of Field Fluctuations experiment (STAFF) data in the frequency range between ∼0.1 and ∼200 Hz were used for determining the wave properties and Plasma Electron And Current Experiment (PEACE) data sets at 12 central energies between ∼57 eV (equivalent to ∼10 typical electron thermal energies in the SW, E T ) and ∼676 eV (∼113 E T ) for pitch angle measurements. Statistical analysis shows that, during the intervals with the whistler waves, the strahl component on average exhibits pitch angle widths between 2° and 12° larger than during the intervals when these waves are not present. The largest difference is obtained for the electron central energy of ∼344 eV (∼57 ET).

  5. Rare observation of daytime whistlers at very low latitude (L = 1.08)

    Science.gov (United States)

    Gokani, Sneha A.; Singh, Rajesh; Tulasi Ram, S.; Venkatesham, K.; Veenadhari, B.; Kumar, Sandeep; Selvakumaran, R.

    2018-04-01

    The source region and propagation mechanism of low latitude whistlers (Geomag. lat. point. But the plausible conditions of ionospheric medium through which they travel are still uncertain. In addition to that, the whistlers in daytime are never observed at geomagnetic latitudes less than 20°. Here, for the first time, we present a rare observations of whistlers during sunlit hours from a very low-latitude station Allahabad (Geomag. Lat: 16.79°N, L = 1.08) in India on 04 February 2011. More than 90 whistlers are recorded during 1200-1300 UT during which the whole propagation path from lightning source region to whistler observation site is under sunlit. The favorable factors that facilitated the whistlers prior to the sunset are investigated in terms of source lightning characteristics, geomagnetic and background ionospheric medium conditions. The whistler activity period was found to be geomagnetically quiet. However, a significant suppression in ionospheric total electron content (TEC) compared to its quiet day average is found. This shows that background ionospheric conditions may play a key role in low latitude whistler propagation. This study reveals that whistlers can occur under sunlit hours at latitudes as low as L = 1.08 when the source lightning and ionospheric medium characteristics are optimally favorable.

  6. Nonlinear whistler wave model for lion roars in the Earth’s magnetosheath

    DEFF Research Database (Denmark)

    Dwivedi, N. K.; Singh, S.

    2017-01-01

    In the present study, we construct a nonlinear whistler wave model to explain the magnetic field spectra observed for lion roars in the Earth’s magnetosheath region. We use two-fluid theory and semi-analytical approach to derive the dynamical equation of whistler wave propagating along the ambient...... magnetic field. We examine the magnetic field localization of parallel propagating whistler wave in the intermediate beta plasma applicable to the Earth’s magnetosheath. In addition, we investigate spectral features of the magnetic field fluctuations and the spectral slope value. The magnetic field...... semi-analytical model provides exposure to the whistler wave turbulence in the Earth’s magnetosheath....

  7. Delayed storm-time increases in the whistler rate at mid-latitudes

    International Nuclear Information System (INIS)

    Andrews, M.K.

    1975-01-01

    The occurrence of whistlers during 105 magnetic storms in the period 1963 to 1968 is studied. Evidence that more whistlers occur during the storm recovery period is presented. Assuming that the increased whistler rate implies the presence of more ducts, similarities are noted between the storm-time duct population and the incidence of mid-latitude spread-F in both time and space. It is suggested that a fresh examination of the physical processes involved in spread-F may aid understanding of the formation of whistler ducts. (author)

  8. EBW and Whistler propagation and damping in a linear device

    Science.gov (United States)

    Diem, S. J.; Caughman, J. B. O.; Harvey, R. W.; Petrov, Yu.

    2011-10-01

    Linear plasma devices are an economic method to study plasma-material interactions under high heat and particle fluxes. ORNL is developing a large cross section, high-density helicon plasma generator with additional resonant electron heating to study plasma-material interactions in ITER like conditions. The device will produce a heat flux of 10-20 MW/m2 and particle flux of 1024 /m2/s in a high recycling plasma near a target plate with a magnetic field of ~1 T. As part of this effort, heating of overdense plasma is being studied using a microwave-based plasma experiment. The plasma is initiated with a high-field launch of 18 GHz whistler waves producing a moderate-density plasma of ne ~1018 m-3. Electron heating of the overdense plasma can be provided by either whistler waves or EBW at 6 and 18 GHz. A modified GENRAY (GENRAY-C) ray-tracing code has been used to determine EBW and ECH whistler wave accessibility for these overdense plasmas. These results combined with emission measurements will be used to determine launcher designs and their placement. ORNL is managed by UT-Battelle, LLC, for the U.S. DOE under contract DE-AC-05-00OR22725.

  9. Statistical study of chorus wave distributions in the inner magnetosphere using Ae and solar wind parameters

    Science.gov (United States)

    Aryan, Homayon; Yearby, Keith; Balikhin, Michael; Agapitov, Oleksiy; Krasnoselskikh, Vladimir; Boynton, Richard

    2014-08-01

    Energetic electrons within the Earth's radiation belts represent a serious hazard to geostationary satellites. The interactions of electrons with chorus waves play an important role in both the acceleration and loss of radiation belt electrons. The common approach is to present model wave distributions in the inner magnetosphere under different values of geomagnetic activity as expressed by the geomagnetic indices. However, it has been shown that only around 50% of geomagnetic storms increase flux of relativistic electrons at geostationary orbit while 20% causes a decrease and the remaining 30% has relatively no effect. This emphasizes the importance of including solar wind parameters such as bulk velocity (V), density (n), flow pressure (P), and the vertical interplanetary magnetic field component (Bz) that are known to be predominately effective in the control of high energy fluxes at the geostationary orbit. Therefore, in the present study the set of parameters of the wave distributions is expanded to include the solar wind parameters in addition to the geomagnetic activity. The present study examines almost 4 years (1 January 2004 to 29 September 2007) of Spatio-Temporal Analysis of Field Fluctuation data from Double Star TC1 combined with geomagnetic indices and solar wind parameters from OMNI database in order to present a comprehensive model of wave magnetic field intensities for the chorus waves as a function of magnetic local time, L shell (L), magnetic latitude (λm), geomagnetic activity, and solar wind parameters. Generally, the results indicate that the intensity of chorus emission is not only dependent upon geomagnetic activity but also dependent on solar wind parameters with velocity and southward interplanetary magnetic field Bs (Bz < 0), evidently the most influential solar wind parameters. The largest peak chorus intensities in the order of 50 pT are observed during active conditions, high solar wind velocities, low solar wind densities, high

  10. The SPS Target Station for CHORUS and NOMAD Neutrino Experiments

    CERN Document Server

    Péraire, S; Zazula, J M

    1996-01-01

    A new SPS target station, T9, has been constructed for the CHORUS and NOMAD neutrino experiments at CERN. The heart of the station is the target box : 11 beryllium rods are aligned in a cast aluminium box ; they are cooled by a closed circuit helium gas with adjusted flow to each rod. The box is motorised horizontally and vertically at both ends, to remotely optimise the secondary particle production by aligning the target with the incident proton beam. Radiation protection around the station is guaranteed by more than 100 tons of shielding material (iron, copper, marble). This presentation describes briefly the various components of the target station ; it emphasises particularly the thermal and mechanical calculations which define a safe maximum beam intensity on the beryllium rods. Over the first two years of successful operation, the station has received more than 2€1019 protons at 450 GeV/c, with intensity peaks of 2.8€1013 protons per machine cycle.

  11. Mapping lightning discharges on Earth with lightning-generated whistlers wave emission in space and their effects on radiation belt electrons

    Science.gov (United States)

    Farges, T.; Ripoll, J. F.; Santolik, O.; Kolmasova, I.; Kurth, W. S.; Hospodarsky, G. B.; Kletzing, C.

    2017-12-01

    It is widely accepted that the slot region of the Van Allen radiation belts is sculpted by the presence of whistler mode waves especially by plasmaspheric hiss emissions. In this work, we investigate the role of lightning-generated whistler waves (LGW), which also contribute to scatter electrons trapped in the plasmaphere but, in general, to a lesser extent due to their low mean amplitude and occurrence rate. Our goal is to revisit the characterization of LGW occurrence in the Earth's atmosphere and in space as well as the computation of LGW effects by looking at a series of particular events, among which intense events, in order to characterize maximal scattering effects. We use multicomponent measurements of whistler mode waves by the Waves instrument of Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) onboard the Van Allen Probes spacecraft as our primary data source. We combine this data set with local measurements of the plasma density. We also use the data of the World Wide Lightning Location Network in order to localize the source of lightning discharges on Earth and their radiated energy, both locally at the footprint of the spacecraft and, globally, along the drift path. We discuss how to relate the signal measured in space with the estimation of the power emitted in the atmosphere and the associated complexity. Using these unique data sets we model the coefficients of quasi-linear pitch angle diffusion and we estimate effects of these waves on radiation belt electrons. We show evidence that lightning generated whistlers can, at least in some cases, influence the radiation belt dynamics.

  12. Chorus source region localization in the Earth's outer magnetosphere using THEMIS measurements

    Directory of Open Access Journals (Sweden)

    O. Agapitov

    2010-06-01

    Full Text Available Discrete ELF/VLF chorus emissions, the most intense electromagnetic plasma waves observed in the Earth's radiation belts and outer magnetosphere, are thought to propagate roughly along magnetic field lines from a localized source region near the magnetic equator towards the magnetic poles. THEMIS project Electric Field Instrument (EFI and Search Coil Magnetometer (SCM measurements were used to determine the spatial scale of the chorus source localization region on the day side of the Earth's outer magnetosphere. We present simultaneous observations of the same chorus elements registered onboard several THEMIS spacecraft in 2007 when all the spacecraft were in the same orbit. Discrete chorus elements were observed at 0.15–0.25 of the local electron gyrofrequency, which is typical for the outer magnetosphere. We evaluated the Poynting flux and wave vector distribution and obtained chorus wave packet quasi-parallel propagation to the local magnetic field. Amplitude and phase correlation data analysis allowed us to estimate the characteristic spatial correlation scale transverse to the local magnetic field to be in the 2800–3200 km range.

  13. Dawn chorus variation in East-Asian tropical montane forest birds and its ecological and morphological correlates

    NARCIS (Netherlands)

    Chen, W.-M.; Lee, Y.-F.; Tsai, C.-F.; Yao, C.-T.; Chen, Y.-H.; Li, S.-H.; Kuo, Y.-M.

    2015-01-01

    Many birds in breeding seasons engage in vigorous dawn singing that often turns to a prominent chorus. We examined dawn chorus variation of avian assemblages in a tropical montane forest in Taiwan and tested the hypothesis that onset sequence is affected by eye sizes, foraging heights, and diet of

  14. Excitation of an ion-acoustic wave by two whistlers in a collisionless magnetoplasma

    International Nuclear Information System (INIS)

    Sodha, M.S.; Singh, T.; Singh, D.P.; Sharma, R.P.

    1981-01-01

    An investigation is made into the excitation of an ion-acoustic wave in a collisionless hot magnetoplasma by two whistlers. On account of the interaction of the two whistlers, of frequencies ω 1 and ω 2 , ponderomotive force at frequency Δω(=ω 1 -ω 2 ) leads to the generation of an ion-acoustic wave. When the two whistlers have initially Gaussian intensity distributions, a d.c. component of the ponderomotive force leads to the redistribution of the background electron/ion density, and cross-focusing of the whistlers occurs. The power of the generated ion-acoustic wave, being dependent on the background ion density and powers of the whistlers, is further modified. The ion-acoustic wave power also changes drastically with the strength of the static magnetic field. (author)

  15. On the Self-Focusing of Whistler Waves in a Radial Inhomogeneous Plasma

    DEFF Research Database (Denmark)

    Balmashnov, A. A.

    1980-01-01

    The process of whistler wave self-focusing is experimentally investigated. It was found that a whistler wave propagating along the plasma column with a density crest excites a longitudinal wave of the same frequency propagating across the external magnetic field. The amplitude modulation of the l......The process of whistler wave self-focusing is experimentally investigated. It was found that a whistler wave propagating along the plasma column with a density crest excites a longitudinal wave of the same frequency propagating across the external magnetic field. The amplitude modulation...... of the latter wave is accompanied by a density modification, which leads to trapping of the whistler wave in a density trough in the center of the plasma column....

  16. Particle-in-cell Simulation of Dipolarization Front Associated Whistlers

    Science.gov (United States)

    Lin, D.; Scales, W.; Ganguli, G.; Crabtree, C. E.

    2017-12-01

    Dipolarization fronts (DFs) are dipolarized magnetic field embedded in the Earthward propagating bursty bulk flows (BBFs), which separates the hot, tenuous high-speed flow from the cold, dense, and slowly convecting surrounding plasma [Runov et al. 2011]. Broadband fluctuations have been observed at DFs including the electromagnetic whistler waves and electrostatic lower hybrid waves in the Very Low Frequency (VLF) range [e.g., Zhou et al. 2009, Deng et al. 2010]. There waves are suggested to be able heat electrons and play a critical role in the plasma sheet dynamics [Chaston et al., 2012, Angelopoulos et al., 2013]. However, their generation mechanism and role in the energy conversion are still under debate. The gradient scale of magnetic field, plasma density at DFs in the near-Earth magnetotail is comparable to or lower than the ion gyro radius [Runov et al., 2011, Fu et al., 2012, Breuillard et al., 2016]. Such strongly inhomogeneous configuration could be unstable to the electron-ion hybrid (EIH) instability, which arises from strongly sheared transverse flow and is in the VLF range [Ganguli et al. 1988, Ganguli et al. 2014]. The equilibrium of the EIH theory implies an anisotropy of electron temperature, which are likely to drive the whistler waves observed in DFs [Deng et al., 2010, Gary et al., 2011]. In order to better understand how the whistler waves are generated in DFs and whether the EIH theory is applicable, a fully electromagnetic particle-in-cell (EMPIC) model is used to simulate the EIH instability with similar equilibrium configurations in DF observations. The EMPIC model deals with three dimensions in the velocity space and two dimensions in the configuration space, which is quite ready to include the third configuration dimension. Simulation results will be shown in this presentation.

  17. TRANS-TEXTUALIZATION AND CARNIVALIZATION IN "WHISTLER," BY ONDJAKI

    Directory of Open Access Journals (Sweden)

    Karine Miranda Campos

    2013-04-01

    Full Text Available This article aims to observe the phenomenon of carnivalization and trans­textuality the novel The Whistler, the Angolan writer Ondjaki. Comprise the theoretical analysis of Bakhtin’s theory on carnivalization and its im­portance for social subversion of monologic discourse established by of­ficial bodies, the theory of Gérard Genette on transtextuality pointing five possible textual relationships. An understanding of the theories and car­nivalization transtextuality pervades the concepts of animism and taboo presented the theory of Sigmund Freud.

  18. Analysis of subprotonospheric whistlers observed by DEMETER: A case study

    Czech Academy of Sciences Publication Activity Database

    Chum, Jaroslav; Santolík, Ondřej; Parrot, M.

    2009-01-01

    Roč. 114, A02 (2009), A02307/1-A02307/17 ISSN 0148-0227 R&D Projects: GA ČR GA205/06/1267; GA ČR GA205/06/0875; GA AV ČR IAA300420603; GA AV ČR IAA301120601 Grant - others:Lapland Atmosphere-Biosphere Facility - 2 (LAPBIAT-2)(XE) RITA -CT-2006-025969 Institutional research plan: CEZ:AV0Z30420517 Keywords : waves in plasma * propagation and reflection of lightning induced whistlers * ion composition in the upper ionosphere Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 3.082, year: 2009

  19. Preliminary Assessment of Tecplot Chorus for Analyzing Ensemble of CTH Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Agelastos, Anthony Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Stevenson, Joel O. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Attaway, Stephen W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Peterson, David

    2015-04-01

    The exploration of large parameter spaces in search of problem solution and uncertainty quantifcation produces very large ensembles of data. Processing ensemble data will continue to require more resources as simulation complexity and HPC platform throughput increase. More tools are needed to help provide rapid insight into these data sets to decrease manual processing time by the analyst and to increase knowledge the data can provide. One such tool is Tecplot Chorus, whose strengths are visualizing ensemble metadata and linked images. This report contains the analysis and conclusions from evaluating Tecplot Chorus with an example problem that is relevant to Sandia National Laboratories.

  20. ELF whistler events with a reduced intensity observed by the DEMETER spacecraft

    Science.gov (United States)

    Zahlava, J.; Nemec, F.; Santolik, O.; Kolmasova, I.; Parrot, M.

    2017-12-01

    A survey of VLF frequency-time spectrograms obtained by the DEMETER spacecraft (2004-2010, altitude about 700 km) revealed that the intensity of fractional hop whistlers is sometimes significantly reduced at specific frequencies. These frequencies are typically above about 3.4 kHz (second cutoff frequency of the Earth-ionosphere waveguide), and they vary smoothly in time. The events were explained by the wave propagation in the Earth-ionosphere waveguide, and a resulting interference of the first few waveguide modes. We analyze the events whose frequency-time structure is rather similar, but at frequencies below 1 kHz. Altogether, 284 events are identified during the periods with active Burst mode, when high resolution data are measured by DEMETER. The vast majority of events (93%) occurs during the nighttime. All six electromagnetic field components are available, which allows us to perform a detailed wave analysis. An overview of the properties of these events is presented, and their possible origin is discussed.

  1. Solar Wind Electron Scattering by Kinetic Instabilities and Whistler Turbulence

    Science.gov (United States)

    Gary, S. P.

    2015-12-01

    The expansion of the solar wind away from the Sun drives electron velocity distributions away from the thermal Maxwellian form, yielding distributions near 1 AU which typically can be characterized as consisting of three anisotropic components: a more dense, relatively cool core, a relatively tenuous , relatively warm halo and a similarly tenuous, warm strahl. Each of these nonthermal components are potential sources of kinetic plasma instabilities; the enhanced waves from each instability can scatter the electrons, acting to reduce the various anisotropies and making their overall velocity distribution more nearly (but not completely) thermal. In contrast, simulations are demonstrating that the forward decay of whistler turbulence can lead to the development of a T||> T_perp electron anisotropy. This presentation will review linear theories of electron-driven kinetic instabilities (following the presentation by Daniel Verscharen at the 2015 SHINE Workshop), and will further consider the modification of electron velocity distributions as obtained from particle-in-cell simulations of such instabilities as well as from the decay of whistler turbulence.

  2. Performance and calibration of the CHORUS scintillating fiber tracker and opto-electronics readout system

    International Nuclear Information System (INIS)

    Annis, P.; Aoki, S.; Brunner, J.; De Jong, M.; Fabre, J.P.; Ferreira, R.; Flegel, W.; Frekers, D.; Gregoire, G.; Herin, J.; Kobayashi, M.; Konijn, J.; Lemaitre, V.; Macina, D.; Meijer Drees, R.; Meinhard, H.; Michel, L.; Mommaert, C.; Nakamura, K.; Nakamura, M.; Nakano, T.; Niwa, K.; Niu, E.; Panman, J.; Riccardi, F.; Rondeshagen, D.; Sato, O.; Stefanini, G.; Vander Donckt, M.; Vilain, P.; Wilquet, G.; Winter, K.; Wong, H.T.

    1995-01-01

    An essential component of the CERN WA95/CHORUS experiment is a scintillating fiber tracker system for precise track reconstruction of particles. The tracker design, its opto-electronics readout and calibration system are discussed. Performances of the detector are presented. (orig.)

  3. CIMI simulations with recently developed multi-parameter chorus and plasmaspheric hiss models

    Science.gov (United States)

    Aryan, Homayon; Sibeck, David; Kang, Suk-bin; Balikhin, Michael; Fok, Mei-ching

    2017-04-01

    Simulation studies of the Earth's radiation belts are very useful in understanding the acceleration and loss of energetic particles. The Comprehensive Inner Magnetosphere-Ionosphere (CIMI) model considers the effects of the ring current and plasmasphere on the radiation belts. CIMI was formed by merging the Comprehensive Ring Current Model (CRCM) and the Radiation Belt Environment (RBE) model to solves for many essential quantities in the inner magnetosphere, including radiation belt enhancements and dropouts. It incorporates chorus and plasmaspheric hiss wave diffusion of energetic electrons in energy, pitch angle, and cross terms. Usually the chorus and plasmaspheric hiss models used in CIMI are based on single-parameter geomagnetic index (AE). Here we integrate recently developed multi-parameter chorus and plasmaspheric hiss wave models based on geomagnetic index and solar wind parameters. We then perform CIMI simulations for different storms and compare the results with data from the Van Allen Probes and the Two Wide-angle Imaging Neutral-atom Spectrometers and Akebono satellites. We find that the CIMI simulations with multi-parameter chorus and plasmaspheric hiss wave models are more comparable to data than the single-parameter wave models.

  4. Observations of chorus at Saturn using the Cassini Radio and Plasma Wave Science Instrument

    Czech Academy of Sciences Publication Activity Database

    Hospodarsky, G. B.; Averkamp, T. F.; Kurth, W. S.; Gurnett, D. A.; Menietti, J. D.; Santolík, Ondřej; Dougherty, M. K.

    2008-01-01

    Roč. 113, č. 12 (2008), A12206/1-A12206/13 ISSN 0148-0227 Grant - others:National Aeronautics and Space Administration (US) 1279973 Institutional research plan: CEZ:AV0Z30420517 Keywords : Saturn * chorus Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 3.147, year: 2008

  5. Restrictions on the Quasi-Linear Description of Electron-Chorus Interaction in the Earth's Magnetosphere

    Science.gov (United States)

    Khazanov, George V.; Sibeck, David G.

    2013-01-01

    The interaction of electrons with coherent chorus waves in the random phase approximation can be described as quasi-linear diffusion for waves with amplitudes below some limit. The limit is calculated for relativistic and non-relativistic electrons. For stronger waves, the friction force should be taken into account.

  6. On the gyro resonance electron-whistler interaction in transition layers of near-earth plasma

    International Nuclear Information System (INIS)

    Erokhin, N.S.; Zol'nikova, N.N.; Mikhajlovskaya, L.A.

    1996-01-01

    Gyro resonance interaction of electrons with low amplitude triggered whistler in the transition layers of the ionospheric and magnetospheric plasma that correspond to the blurred jumps of the magnetic field and plasma concentration was studied

  7. Whistler waves with electron temperature anisotropy and non-Maxwellian distribution functions

    Directory of Open Access Journals (Sweden)

    M. Usman Malik

    2018-05-01

    Full Text Available The previous works on whistler waves with electron temperature anisotropy narrated the dependence on plasma parameters, however, they did not explore the reasons behind the observed differences. A comparative analysis of the whistler waves with different electron distributions has not been made to date. This paper attempts to address both these issues in detail by making a detailed comparison of the dispersion relations and growth rates of whistler waves with electron temperature anisotropy for Maxwellian, Cairns, kappa and generalized (r, q distributions by varying the key plasma parameters for the problem under consideration. It has been found that the growth rate of whistler instability is maximum for flat-topped distribution whereas it is minimum for the Maxwellian distribution. This work not only summarizes and complements the previous work done on the whistler waves with electron temperature anisotropy but also provides a general framework to understand the linear propagation of whistler waves with electron temperature anisotropy that is applicable in all regions of space plasmas where the satellite missions have indicated their presence.

  8. Reestablecimiento de Choromytilus chorus (Molina, 1782 (Bivalvia: Mytilidae en el norte de Chile Reestablishment of Choromytilus chorus (Molina, 1782 (Bivalvia: Mytilidae in northern Chile

    Directory of Open Access Journals (Sweden)

    Miguel Avendaño

    2011-07-01

    Full Text Available Hasta fines del siglo pasado no existían registros de la presencia de Choromytilus chorus al norte de los 23°S, pese a antecedentes que señalaban su existencia en épocas pasadas. Ciertos cambios relacionados con las masas de agua costeras de esta zona, habrían generado la ausencia o escasez que presentaba el entorno costero actual. Sin embargo, hace una década atrás, su presencia en el norte de Chile, comienza a tener connotación pesquera. En el presente trabajo se confirma su reestablecimiento en las regiones de Antofagasta y Tarapacá, mediante prospecciones realizadas en seis lugares donde se registró su presencia, así como mediante la captación de semilla en colectores suspendidos. Se indica interacción con Aulacomya ater, a la cual ha desplazado a estratos más profundos, mientras que su reestablecimiento, iniciado en las regiones de Atacama y Antofagasta, y que se amplió posteriormente a la región de Tarapacá; permite postular la hipótesis que la dinámica de estos bancos, respondería a una estructura de metapoblación, dado el sistema de corrientes y vientos que predominan en la zona norte, permitiendo la advección larval de poblaciones existentes en la región de Coquimbo.Despite indications of its presence in past ages, until the end of the last century, no records showed Choromytilus chorus north of 23°S. Certain changes related to coastal water masses in the zone could be responsible for the present lack or scarcity of this species in the coastal area. However, a decade ago, this species appeared in northern Chile in the context of fisheries. This study confirms the re-establishment of C. chorus in the Antofagasta and Tarapaca regions through surveys at six sites where the species had been registered and spat collection using suspended collectors. This species has interacted with Aulacomya ater, displacing it towards deeper habitats. The re-establishment of C. chorus began in the Atacama and Antofagasta regions and

  9. The Unforgettables: a chorus for people with dementia with their family members and friends.

    Science.gov (United States)

    Mittelman, Mary Sherman; Papayannopoulou, Panayiota Maria

    2018-01-29

    Summary/Abstract Our experience evaluating a museum program for people with dementia together with their family members demonstrated benefits for all participants. We hypothesized that participation in a chorus would also have positive effects, giving them an opportunity to share a stimulating and social activity that could improve their quality of life. We inaugurated a chorus for people with dementia and their family caregivers in 2011, which rehearses and performs regularly. Each person with dementia must be accompanied by a friend or family member and must commit to attending all rehearsals and the concert that ensues. A pilot study included a structured assessment, take home questionnaires and focus groups. Analyses of pre-post scores were conducted; effect size was quantified using Cohen's d. Results showed that quality of life and communication with the other member of the dyad improved (Effect size: Cohen's d between 0.32 and 0.72) for people with dementia; quality of life, social support, communication and self-esteem improved (d between 0.29 and 0.68) for caregivers. Most participants stated that benefits included belonging to a group, having a normal activity together and learning new skills. Participants attended rehearsals in spite of harsh weather conditions. The chorus has been rehearsing and performing together for more than 6 years and contributing to its costs. Results of this pilot study suggest that people in the early to middle stage of dementia and their family members and friends can enjoy and learn from rehearsing and performing in concerts that also engage the wider community. It is essential to conduct additional larger studies of the benefits of participating in a chorus, which may include improved quality of life and social support for all, and reduced cognitive decline among people with dementia.

  10. Chorus observations by the Polar spacecraft near the mid-altitude cusp

    Czech Academy of Sciences Publication Activity Database

    Menietti, J. D.; Santolík, Ondřej; Abaci, P. C.

    2009-01-01

    Roč. 57, č. 12 (2009), s. 1412-1418 ISSN 0032-0633 R&D Projects: GA AV ČR IAA301120601 Grant - others:NSF(US) ATM-04-43531; NASA (US) NNG05GM52G.; GA MŠk(CZ) ME 842 Institutional research plan: CEZ:AV0Z30420517 Keywords : chorus * mid-altitude cusp * Polar spacecraft Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.067, year: 2009

  11. Polar PWI and CEPPAD observations of chorus emissions and radiation belt electron acceleration: Four case studies

    Czech Academy of Sciences Publication Activity Database

    Sigsbee, K.; Menietti, J. D.; Santolík, Ondřej; Blake, J. B.

    2008-01-01

    Roč. 70, č. 14 (2008), s. 1774-1788 ISSN 1364-6826 R&D Projects: GA AV ČR IAA301120601 Grant - others: NASA (US) NNG05GM52G; NSF(US) 0307319 Institutional research plan: CEZ:AV0Z30420517 Keywords : chorus * outer radiation belt Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 1.667, year: 2008

  12. Geological and climatic forces driving speciation in the continentally distributed trilling chorus frogs (Pseudacris).

    Science.gov (United States)

    Lemmon, Emily Moriarty; Lemmon, Alan R; Cannatella, David C

    2007-09-01

    Tertiary geological events and Quaternary climatic fluctuations have been proposed as important factors of speciation in the North American flora and fauna. Few studies, however, have rigorously tested hypotheses regarding the specific factors driving divergence of taxa. Here, we test explicit speciation hypotheses by correlating geologic events with divergence times among species in the continentally distributed trilling chorus frogs (Pseudacris). In particular, we ask whether marine inundation of the Mississippi Embayment, uplift of the Appalachian Mountains, or modification of the ancient Teays-Mahomet River system contributed to speciation. To examine the plausibility of ancient rivers causing divergence, we tested whether modern river systems inhibit gene flow. Additionally, we compared the effects of Quaternary climatic factors (glaciation and aridification) on levels of genetic variation. Divergence time estimates using penalized likelihood and coalescent approaches indicate that the major lineages of chorus frogs diversified during the Tertiary, and also exclude Quaternary climate change as a factor in speciation of chorus frogs. We show the first evidence that inundation of the Mississippi Embayment contributed to speciation. We reject the hypotheses that Cenozoic uplift of the Appalachians and that diversion of the Teays-Mahomet River contributed to speciation in this clade. We find that by reducing gene flow, rivers have the potential to cause divergence of lineages. Finally, we demonstrate that populations in areas affected by Quaternary glaciation and aridification have reduced levels of genetic variation compared to those from more equable regions, suggesting recent colonization.

  13. CIMI simulations with newly developed multiparameter chorus and plasmaspheric hiss wave models

    Science.gov (United States)

    Aryan, Homayon; Sibeck, David G.; Kang, Suk-Bin; Balikhin, Michael A.; Fok, Mei-Ching; Agapitov, Oleksiy; Komar, Colin M.; Kanekal, Shrikanth G.; Nagai, Tsugunobu

    2017-09-01

    Numerical simulation studies of the Earth's radiation belts are important to understand the acceleration and loss of energetic electrons. The Comprehensive Inner Magnetosphere-Ionosphere (CIMI) model considers the effects of the ring current and plasmasphere on the radiation belts to obtain plausible results. The CIMI model incorporates pitch angle, energy, and cross diffusion of electrons, due to chorus and plasmaspheric hiss waves. These parameters are calculated using statistical wave distribution models of chorus and plasmaspheric hiss amplitudes. However, currently, these wave distribution models are based only on a single-parameter, geomagnetic index (AE) and could potentially underestimate the wave amplitudes. Here we incorporate recently developed multiparameter chorus and plasmaspheric hiss wave models based on geomagnetic index and solar wind parameters. We then perform CIMI simulations for two geomagnetic storms and compare the flux enhancement of MeV electrons with data from the Van Allen Probes and Akebono satellites. We show that the relativistic electron fluxes calculated with multiparameter wave models resemble the observations more accurately than the relativistic electron fluxes calculated with single-parameter wave models. This indicates that wave models based on a combination of geomagnetic index and solar wind parameters are more effective as inputs to radiation belt models.

  14. Application of multi-parameter chorus and plasmaspheric hiss wave models in radiation belt modeling

    Science.gov (United States)

    Aryan, H.; Kang, S. B.; Balikhin, M. A.; Fok, M. C. H.; Agapitov, O. V.; Komar, C. M.; Kanekal, S. G.; Nagai, T.; Sibeck, D. G.

    2017-12-01

    Numerical simulation studies of the Earth's radiation belts are important to understand the acceleration and loss of energetic electrons. The Comprehensive Inner Magnetosphere-Ionosphere (CIMI) model along with many other radiation belt models require inputs for pitch angle, energy, and cross diffusion of electrons, due to chorus and plasmaspheric hiss waves. These parameters are calculated using statistical wave distribution models of chorus and plasmaspheric hiss amplitudes. In this study we incorporate recently developed multi-parameter chorus and plasmaspheric hiss wave models based on geomagnetic index and solar wind parameters. We perform CIMI simulations for two geomagnetic storms and compare the flux enhancement of MeV electrons with data from the Van Allen Probes and Akebono satellites. We show that the relativistic electron fluxes calculated with multi-parameter wave models resembles the observations more accurately than the relativistic electron fluxes calculated with single-parameter wave models. This indicates that wave models based on a combination of geomagnetic index and solar wind parameters are more effective as inputs to radiation belt models.

  15. Calling at the highway: The spatiotemporal constraint of road noise on Pacific chorus frog communication.

    Science.gov (United States)

    Nelson, Danielle V; Klinck, Holger; Carbaugh-Rutland, Alexander; Mathis, Codey L; Morzillo, Anita T; Garcia, Tiffany S

    2017-01-01

    Loss of acoustic habitat due to anthropogenic noise is a key environmental stressor for vocal amphibian species, a taxonomic group that is experiencing global population declines. The Pacific chorus frog ( Pseudacris regilla ) is the most common vocal species of the Pacific Northwest and can occupy human-dominated habitat types, including agricultural and urban wetlands. This species is exposed to anthropogenic noise, which can interfere with vocalizations during the breeding season. We hypothesized that Pacific chorus frogs would alter the spatial and temporal structure of their breeding vocalizations in response to road noise, a widespread anthropogenic stressor. We compared Pacific chorus frog call structure and ambient road noise levels along a gradient of road noise exposures in the Willamette Valley, Oregon, USA. We used both passive acoustic monitoring and directional recordings to determine source level (i.e., amplitude or volume), dominant frequency (i.e., pitch), call duration, and call rate of individual frogs and to quantify ambient road noise levels. Pacific chorus frogs were unable to change their vocalizations to compensate for road noise. A model of the active space and time ("spatiotemporal communication") over which a Pacific chorus frog vocalization could be heard revealed that in high-noise habitats, spatiotemporal communication was drastically reduced for an individual. This may have implications for the reproductive success of this species, which relies on specific call repertoires to portray relative fitness and attract mates. Using the acoustic call parameters defined by this study (frequency, source level, call rate, and call duration), we developed a simplified model of acoustic communication space-time for this species. This model can be used in combination with models that determine the insertion loss for various acoustic barriers to define the impact of anthropogenic noise on the radius of communication in threatened species

  16. Dynamics of Quasi-Electrostatic Whistler waves in Earth's Radiation belts

    Science.gov (United States)

    Goyal, R.; Sharma, R. P.; Gupta, D. N.

    2017-12-01

    A numerical model is proposed to study the dynamics of high amplitude quasi-electrostatic whistler waves propagating near resonance cone angle and their interaction with finite frequency kinetic Alfvén waves (KAWs) in Earth's radiation belts. The quasi-electrostatic character of whistlers is narrated by dynamics of wave propagating near resonance cone. A high amplitude whistler wave packet is obtained using the present analysis which has also been observed by S/WAVES instrument onboard STEREO. The numerical simulation technique employed to study the dynamics, leads to localization (channelling) of waves as well as turbulent spectrum suggesting the transfer of wave energy over a range of frequencies. The turbulent spectrum also indicates the presence of quasi-electrostatic whistlers and density fluctuations associated with KAW in radiation belts plasma. The ponderomotive force of pump quasi-electrostatic whistlers (high frequency) is used to excite relatively much lower frequency waves (KAWs). The wave localization and steeper spectra could be responsible for particle energization or heating in radiation belts.

  17. Systematic errors in VLF direction-finding of whistler ducts

    International Nuclear Information System (INIS)

    Strangeways, H.J.; Rycroft, M.J.

    1980-01-01

    In the previous paper it was shown that the systematic error in the azimuthal bearing due to multipath propagation and incident wave polarisation (when this also constitutes an error) was given by only three different forms for all VLF direction-finders currently used to investigate the position of whistler ducts. In this paper the magnitude of this error is investigated for different ionospheric and ground parameters for these three different systematic error types. By incorporating an ionosphere for which the refractive index is given by the full Appleton-Hartree formula, the variation of the systematic error with ionospheric electron density and latitude and direction of propagation is investigated in addition to the variation with wave frequency, ground conductivity and dielectric constant and distance of propagation. The systematic bearing error is also investigated for the three methods when the azimuthal bearing is averaged over a 2 kHz bandwidth. This is found to lead to a significantly smaller bearing error which, for the crossed-loops goniometer, approximates the bearing error calculated when phase-dependent terms in the receiver response are ignored. (author)

  18. Control of runaway electron energy using externally injected whistler waves

    Science.gov (United States)

    Guo, Zehua; McDevitt, Christopher J.; Tang, Xian-Zhu

    2018-03-01

    One way of mitigating runaway damage of the plasma-facing components in a tokamak fusion reactor is by limiting the runaway electron energy under a few MeV, while not necessarily reducing the runaway current appreciably. Here, we describe a physics mechanism by which such momentum space engineering of the runaway distribution can be facilitated by externally injected high-frequency electromagnetic waves such as whistler waves. The drastic impact that wave-induced scattering can have on the runaway energy distribution is fundamentally the result of its ability to control the runaway vortex in the momentum space. The runaway vortex, which is a local circulation of runaways in momentum space, is the outcome of the competition between Coulomb collisions, synchrotron radiation damping, and runaway acceleration by the parallel electric field. By introducing a wave that resonantly interacts with runaways in a particular range of energies which is mildly relativistic, the enhanced scattering would reshape the vortex by cutting off the part that is highly relativistic. The efficiency of resonant scattering accentuates the requirement that the wave amplitude can be small so the power requirement from external wave injection is practical for the mitigation scheme.

  19. EXPERIMENTAL DETERMINATION OF WHISTLER WAVE DISPERSION RELATION IN THE SOLAR WIND

    Energy Technology Data Exchange (ETDEWEB)

    Stansby, D.; Horbury, T. S.; Chen, C. H. K.; Matteini, L., E-mail: david.stansby14@imperial.ac.uk [Department of Physics, Imperial College London, London SW7 2AZ (United Kingdom)

    2016-09-20

    The origins and properties of large-amplitude whistler wavepackets in the solar wind are still unclear. In this Letter, we utilize single spacecraft electric and magnetic field waveform measurements from the ARTEMIS mission to calculate the plasma frame frequency and wavevector of individual wavepackets over multiple intervals. This allows direct comparison of experimental measurements with theoretical dispersion relations to identify the observed waves as whistler waves. The whistlers are right-hand circularly polarized, travel anti-sunward, and are aligned with the background magnetic field. Their dispersion is strongly affected by the local electron parallel beta in agreement with linear theory. The properties measured are consistent with the electron heat flux instability acting in the solar wind to generate these waves.

  20. Three-dimensional kinetic simulations of whistler turbulence in solar wind on parallel supercomputers

    Science.gov (United States)

    Chang, Ouliang

    The objective of this dissertation is to study the physics of whistler turbulence evolution and its role in energy transport and dissipation in the solar wind plasmas through computational and theoretical investigations. This dissertation presents the first fully three-dimensional (3D) particle-in-cell (PIC) simulations of whistler turbulence forward cascade in a homogeneous, collisionless plasma with a uniform background magnetic field B o, and the first 3D PIC simulation of whistler turbulence with both forward and inverse cascades. Such computationally demanding research is made possible through the use of massively parallel, high performance electromagnetic PIC simulations on state-of-the-art supercomputers. Simulations are carried out to study characteristic properties of whistler turbulence under variable solar wind fluctuation amplitude (epsilon e) and electron beta (betae), relative contributions to energy dissipation and electron heating in whistler turbulence from the quasilinear scenario and the intermittency scenario, and whistler turbulence preferential cascading direction and wavevector anisotropy. The 3D simulations of whistler turbulence exhibit a forward cascade of fluctuations into broadband, anisotropic, turbulent spectrum at shorter wavelengths with wavevectors preferentially quasi-perpendicular to B o. The overall electron heating yields T ∥ > T⊥ for all epsilone and betae values, indicating the primary linear wave-particle interaction is Landau damping. But linear wave-particle interactions play a minor role in shaping the wavevector spectrum, whereas nonlinear wave-wave interactions are overall stronger and faster processes, and ultimately determine the wavevector anisotropy. Simulated magnetic energy spectra as function of wavenumber show a spectral break to steeper slopes, which scales as k⊥lambda e ≃ 1 independent of betae values, where lambdae is electron inertial length, qualitatively similar to solar wind observations. Specific

  1. Numerical simulation of whistler-triggered VLF emissions observed in Antartica

    Energy Technology Data Exchange (ETDEWEB)

    Nunn, D. [Southhampton Univ., Southhampton (United Kingdom); Smith, A.J. [British Antarctic Survey, Cambridge (United Kingdom)

    1996-03-01

    The authors have extracted from VLF databases from British Antarctica Survey data taken at Halley and Faraday stations, examples of whistler-triggered emissions (WTE). The WTE are relatively narrow band emissions triggered by natural background whistlers undergoing nonlinear wave particle interactions generally in the equatorial regions. They occur with either rising or falling frequency relative to the triggering waves. Using a Vlasov type code the authors are able to simulate the types of emissions which are observed. 24 refs., 8 figs., 3 tabs.

  2. Modeling Whistler Wave Generation Regimes In Magnetospheric Cyclotron Maser

    Science.gov (United States)

    Pasmanik, D. L.; Demekhov, A. G.; Trakhtengerts, V. Y.; Parrot, M.

    Numerical analysis of the model for cyclotron instability development in the Earth magnetosphere is made.This model, based on the self-consistent set of equations of quasi-linear plasma theory, describes different regimes of wave generation and related energetic particle precipitation. As the source of free energy the injection of energetic electrons with transverse anisotropic distribution function to the interaction region is considered. Two different mechanisms of energetic electron loss from the interaction region are discussed. The first one is precipitation of energetic particles via the loss cone. The other mechanism is drift of particles away from the interaction region across the mag- netic field line. In the case of interaction in plasmasphere or rather large areas of cold plasma density enhancement the loss cone precipitation are dominant. For interaction in a subauroral duct losses due to drift are most effective. A parametric study of the model for both mechanisms of particle losses is made. The main attention is paid to the analysis of generation regimes for different characteristics of energetic electron source, such as the shape of pitch-angle distributions and elec- tron density. We show that in addition to the well-known stationary generation and periodic regime with successive spikes of similar shape, more complex forms of wave spectrum exist. In particular, we found a periodic regime, in which a single period in- cludes two separate spikes with different spectral shapes. In another regime, periodic generation of spikes at higher frequencies together with quasi-stationary generation at lower frequencies occurs. Quasi-periodic regime with spike overlapping, i.e. when generation of a new spike begins before the previous one is over is also found. Results obtained are compared with experimental data on quasi-periodic regimes of whistler wave generation.

  3. Modeling whistler wave generation regimes in magnetospheric cyclotron maser

    Directory of Open Access Journals (Sweden)

    D. L. Pasmanik

    2004-11-01

    quasi-periodic whistler wave emissions is verified.

  4. Pseudacris triseriata (western chorus frog) and Rana sylvatica (wood frog) chytridiomycosis

    Science.gov (United States)

    Rittman, S.E.; Muths, E.; Green, D.E.

    2003-01-01

    The chytrid fungus Batrachochytrium dendrobatidis is a known pathogen of anuran amphibians, and has been correlated with amphibian die-offs worldwide (Daszak et. al. 1999. Emerging Infectious Diseases 5:735-748). In Colorado, B. dendrobatidis has infected Boreal toads (Bufo boreas) (Muths et. al., in review) and has been identified on museum specimens of northern leopard frogs (Rana pipiens) (Carey et. al. 1999. Develop. Comp. Immunol. 23:459-472). We report the first verified case of chytrid fungus in chorus frogs (Pseudacris triseriata) and wood frogs (Rana sylvatica) in the United States. We collected seven P. triseriata, and two adult and two juvenile R. sylvatica in the Kawuneeche Valley in Rocky Mountain National Park (RMNP) during June 2001. These animals were submitted to the National Wildlife Health Center (NWHC) as part of an amphibian health evaluation in RMNP. Chorus frogs were shipped in one container. Wood frog adults and juveniles were shipped in two separate containers. Histological examinations of all chorus frogs and 3 of 4 wood frogs were positive for chytrid fungus infection. The fourth (adult) wood frog was too decomposed for meaningful histology. Histological findings consisted of multifocally mild to diffusely severe infections of the epidermis of the ventrum and hindlimb digital skin. Chytrid thalli were confined to the thickened epidermis (hyperkeratosis), were spherical to oval, and occasional thalli contained characteristic discharge pores or zoospores (Green and Kagarise Sherman 1999. J. Herpetol 35:92-103; Fellers et al. 2001. Copeia 2001:945-953). We cannot confirm that all specimens carried the fungus at collection, because infection may have spread from one individual to all other individuals in each container during transport. Further sampling of amphibians in Kawuneeche Valley is warranted to determine the rate of infection and mortality in these populations.

  5. The statistical study of Chorus waves using the Double star TC1 data

    Science.gov (United States)

    Yearby, K.; Aryan, H.; Balikhin, M. A.; Krasnoselskikh, V.; Agapitov, O. V.

    2013-12-01

    The Double star satellite was launched on 29 December 2003 into an equatorial elliptical orbit with a perigee of 570km and an apogee of 78970km and an inclination of 28.5°. The satellite operated until 14 October 2007. The Double star TC1 data provides extensive coverage of the inner magnetosphere regions in the range of L shells >1.1L*, and a wide range of latitudes. This study presents a detailed statistical study of the Chorus waves during 4 years of the Double star operation.

  6. Multispacecraft observations of chorus emissions as a tool for the plasma density fluctuations’ remote sensing

    Czech Academy of Sciences Publication Activity Database

    Agapitov, O.; Krasnoselskikh, V.; de Wit, T. D.; Khotyaintsev, Y.; Pickett, J. S.; Santolík, Ondřej; Rolland, G.

    2011-01-01

    Roč. 106, - (2011), A09222/1-A09222/12 ISSN 0148-0227 R&D Projects: GA ČR GAP205/10/2279; GA MŠk(CZ) ME10001; GA MŠk(CZ) LH11122 Institutional research plan: CEZ:AV0Z30420517 Keywords : STORM-TIME CHORUS * SOURCE REGION * OUTER MAGNETOSPHERE * CLUSTER * WAVE * PROPAGATION * GENERATION * GEOTAIL * FIELD Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 3.021, year: 2011 http://www.agu.org/pubs/crossref/2011/2011JA016540.shtml

  7. The CHORUS experiment to search for νμ→ντ oscillation

    International Nuclear Information System (INIS)

    Eskut, E.; Kayis, A.; Onenguet, G.

    1997-01-01

    A new experimental apparatus, designed principally for a high sensitivity search for ν μ →ν τ oscillation, has been successfully constructed and made operational by the CHORUS Collaboration for the CERN-WA95 experiment. It consists of a large emulsion target, a scintillating fiber tracker system with optoelectronics read-out, an air-core magnet, a set of trigger hodoscopes, a calorimeter based on the lead/scintillating-fiber technique, and a muon spectrometer. The design, construction and performance of the entire apparatus and of the different detectors are described. (orig.)

  8. Simulation of VLF chorus emissions in the magnetosphere and comparison with THEMIS spacecraft data

    Czech Academy of Sciences Publication Activity Database

    Demekhov, A. G.; Taubenschuss, Ulrich; Santolík, Ondřej

    2017-01-01

    Roč. 122, č. 1 (2017), s. 166-184 ISSN 2169-9380 R&D Projects: GA MŠk(CZ) LH15304 Grant - others:AV ČR(CZ) AP1401 Program:Akademická prémie - Praemium Academiae Institutional support: RVO:68378289 Keywords : VLF chorus * THEMIS data * numerical simulations Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 2.733, year: 2016 http://onlinelibrary.wiley.com/doi/10.1002/2016JA023057/full

  9. New chorus wave properties near the equator from Van Allen Probes wave observations

    Czech Academy of Sciences Publication Activity Database

    Li, W.; Santolík, Ondřej; Bortnik, J.; Thorne, R. M.; Kletzing, C. A.; Kurth, W. S.; Hospodarsky, G. B.

    2016-01-01

    Roč. 43, č. 10 (2016), s. 4725-4735 ISSN 0094-8276 R&D Projects: GA MŠk(CZ) LH15304 Grant - others:AV ČR(CZ) AP1401 Program:Akademická prémie - Praemium Academiae Institutional support: RVO:68378289 Keywords : chorus wave * wave normal angles * oblique * quasi-parallel * quasi-electrostatic Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 4.253, year: 2016 http://onlinelibrary.wiley.com/doi/10.1002/2016GL068780/abstract

  10. Electron acceleration during the decay of nonlinear Whistler waves in low-beta electron-ion plasma

    International Nuclear Information System (INIS)

    Umeda, Takayuki; Saito, Shinji; Nariyuki, Yasuhiro

    2014-01-01

    Relativistic electron acceleration through dissipation of a nonlinear, short-wavelength, and monochromatic electromagnetic whistler wave in low-beta plasma is investigated by utilizing a one-dimensional fully relativistic electromagnetic particle-in-cell code. The nonlinear (large-amplitude) parent whistler wave decays through the parametric instability which enhances electrostatic ion acoustic waves and electromagnetic whistler waves. These waves satisfy the condition of three-wave coupling. Through the decay instability, the energy of electron bulk velocity supporting the parent wave is converted to the thermal energy perpendicular to the background magnetic field. Increase of the perpendicular temperature triggers the electron temperature anisotropy instability which generates broadband whistler waves and heats electrons in the parallel direction. The broadband whistler waves are inverse-cascaded during the relaxation of the electron temperature anisotropy. In lower-beta conditions, electrons with a pitch angle of about 90° are successively accelerated by inverse-cascaded whistler waves, and selected electrons are accelerated to over a Lorentz factor of 10. The result implies that the nonlinear dissipation of a finite-amplitude and short-wavelength whistler wave plays an important role in producing relativistic nonthermal electrons over a few MeV especially at lower beta plasmas.

  11. Generation of Nonlinear Electric Field Bursts in the Outer Radiation Belt through Electrons Trapping by Oblique Whistler Waves

    Science.gov (United States)

    Agapitov, Oleksiy; Drake, James; Mozer, Forrest

    2016-04-01

    Huge numbers of different nonlinear structures (double layers, electron holes, non-linear whistlers, etc. referred to as Time Domain Structures - TDS) have been observed by the electric field experiment on board the Van Allen Probes. A large part of the observed non-linear structures are associated with whistler waves and some of them can be directly driven by whistlers. The parameters favorable for the generation of TDS were studied experimentally as well as making use of 2-D particle-in-cell (PIC) simulations for the system with inhomogeneous magnetic field. It is shown that an outward propagating front of whistlers and hot electrons amplifies oblique whistlers which collapse into regions of intense parallel electric field with properties consistent with recent observations of TDS from the Van Allen Probe satellites. Oblique whistlers seed the parallel electric fields that are driven by the beams. The resulting parallel electric fields trap and heat the precipitating electrons. These electrons drive spikes of intense parallel electric field with characteristics similar to the TDSs seen in the VAP data. The decoupling of the whistler wave and the nonlinear electrostatic component is shown in PIC simulation in the inhomogeneous magnetic field system. These effects are observed by the Van Allen Probes in the radiation belts. The precipitating hot electrons propagate away from the source region in intense bunches rather than as a smooth flux.

  12. A study of the effect of geomagnetic storms on low latitude whistlers

    International Nuclear Information System (INIS)

    Rao, Manoranjan; Somayajulu, V.V.; Dikshit, S.K.

    1974-01-01

    This paper presents the results of a detailed study of the influence of geomagnetic storms on low latitude whistlers recorded on ground. Studied in detail is the effect of the geomagnetic storm of March 6-10, 1970 on whistlers recorded at Gulmarg (Geomagnetic coordinates: 24 0 10'N; 147 0 24'E); results of analysis for the earlier storm of January 13-15, 1967 are included for comparison. Some of the important results of the present study are: (i) Both the whistler occurrence rate and dispersion increase simultaneously with Kp, (ii) During the decaying phase of the storm, changes in occurrence rate and in dispersion lag behind those in Kp, (iii) There is an indication of the existence of a cross-over latitude where tube contents may not change appreciably during storm periods, (iv) Multipath whistlers are observed only during disturbed conditions, (v) Duct life ranges between several hours to few days and (vi) Maximum number of ducts is observed during the main and recovery phases of the storm. (auth.)

  13. Propagation of unducted whistlers from their source lightning: a case study

    Czech Academy of Sciences Publication Activity Database

    Santolík, O.; Parrot, M.; Inan, U. S.; Burešová, Dalia; Gurnett, D. A.; Chum, Jaroslav

    2009-01-01

    Roč. 114, - (2009), A03212/1-A03212/11 ISSN 0148-0227 R&D Projects: GA AV ČR IAA301120601 Institutional research plan: CEZ:AV0Z30420517 Keywords : unducted whistler * DEMETER * ray-tracing Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 3.082, year: 2009

  14. Interaction of suprathermal solar wind electron fluxes with sheared whistler waves: fan instability

    Directory of Open Access Journals (Sweden)

    C. Krafft

    Full Text Available Several in situ measurements performed in the solar wind evidenced that solar type III radio bursts were some-times associated with locally excited Langmuir waves, high-energy electron fluxes and low-frequency electrostatic and electromagnetic waves; moreover, in some cases, the simultaneous identification of energetic electron fluxes, Langmuir and whistler waves was performed. This paper shows how whistlers can be excited in the disturbed solar wind through the so-called "fan instability" by interacting with energetic electrons at the anomalous Doppler resonance. This instability process, which is driven by the anisotropy in the energetic electron velocity distribution along the ambient magnetic field, does not require any positive slope in the suprathermal electron tail and thus can account for physical situations where plateaued reduced electron velocity distributions were observed in solar wind plasmas in association with Langmuir and whistler waves. Owing to linear calculations of growth rates, we show that for disturbed solar wind conditions (that is, when suprathermal particle fluxes propagate along the ambient magnetic field, the fan instability can excite VLF waves (whistlers and lower hybrid waves with characteristics close to those observed in space experiments.

    Key words. Space plasma physics (waves and instabilities – Radio Science (waves in plasma – Solar physics, astrophysics and astronomy (radio emissions

  15. Interaction of suprathermal solar wind electron fluxes with sheared whistler waves: fan instability

    Directory of Open Access Journals (Sweden)

    C. Krafft

    2003-07-01

    Full Text Available Several in situ measurements performed in the solar wind evidenced that solar type III radio bursts were some-times associated with locally excited Langmuir waves, high-energy electron fluxes and low-frequency electrostatic and electromagnetic waves; moreover, in some cases, the simultaneous identification of energetic electron fluxes, Langmuir and whistler waves was performed. This paper shows how whistlers can be excited in the disturbed solar wind through the so-called "fan instability" by interacting with energetic electrons at the anomalous Doppler resonance. This instability process, which is driven by the anisotropy in the energetic electron velocity distribution along the ambient magnetic field, does not require any positive slope in the suprathermal electron tail and thus can account for physical situations where plateaued reduced electron velocity distributions were observed in solar wind plasmas in association with Langmuir and whistler waves. Owing to linear calculations of growth rates, we show that for disturbed solar wind conditions (that is, when suprathermal particle fluxes propagate along the ambient magnetic field, the fan instability can excite VLF waves (whistlers and lower hybrid waves with characteristics close to those observed in space experiments.Key words. Space plasma physics (waves and instabilities – Radio Science (waves in plasma – Solar physics, astrophysics and astronomy (radio emissions

  16. Characteristics of electron-ion whistlers and their application to ionospheric probing

    International Nuclear Information System (INIS)

    Singh, S.N.; Tiwari, S.; Tolpadi, S.K.

    1976-01-01

    In this communication the effect of ion temperature on the propagation of electron-ion whistlers in the ionosphere is investigated. A general expression including the effect of ion temperature is derived for the group travel time for the electron-ion whistler as it travels from the base of the ionosphere to the satellite. A study of the dependence of the group travel time for the proton whislters. Further, from the expression for the group travel time including the effect of the ion temperature in conjunction with the generalized dispersion relation a relation for the cyclotron damping rate (both temporal and spatial) has been obtained. A detailed study if the cyclotron damping rate with travel time and ion temperature leads to the conclusion that the observed amplitude cutoff characteristics for the proton whistler can be explained on the basis of the mechanism of cyclotron damping. It is also shown that the knowledge of the group travel time of an electron-ion whistler can be used to estimate the ion temperature at the satellite

  17. Book review: A chorus of cranes: The cranes of North America and the world

    Science.gov (United States)

    Pearse, Aaron T.

    2017-01-01

    Cranes (Gruidae) are widely distributed throughout the world, have lived on Earth for several million years, and currently reside on five continents. Archaeological evidence and historical references suggest that humans have interacted with and been captivated by cranes for many thousands of years (e.g., Leslie 1988, Muellner 1990). A glimpse of our reverence for these birds can be found in A Chorus of Cranes by Paul A. Johnsgard, with photographs by Thomas D. Mangelsen. Many species of cranes are currently identified as threatened or endangered, and their future will likely rest in the hands of humans; this book presents their plight and some of the measures that have been taken to conserve them. Dr. Johnsgard, an emeritus professor at the University of Nebraska-Lincoln, is a prolific writer, having written more than 60 books in ornithology and other topics. This book serves as the latest update of previous efforts concerning crane biology, conservation, and management. A review without making comparisons to his past works is difficult, yet this assessment will primarily focus on the content of the current book, with little reference to past endeavors.A Chorus of Cranes: The Cranes of North America and the World by Paul A. Johnsgard. 2015. University Press of Colorado, Boulder, CO, USA. x + 208 pp., 38 color photographs, 41 figures. ISBN 978-1-60732-436-2. $23.95 (Ebook). ISBN 978-1-60732-436-9.

  18. Habitat associations of chorusing anurans in the Lower Mississippi River Alluvial valley

    Science.gov (United States)

    Lichtenberg, J.S.; King, S.L.; Grace, J.B.; Walls, S.C.

    2006-01-01

    Amphibian populations have declined worldwide. To pursue conservation efforts adequately, land managers need more information concerning amphibian habitat requirements. To address this need, we examined relationships between anurans and habitat characteristics of wetlands in the Lower Mississippi River Alluvial Valley (LMAV). We surveyed chorusing anurans in 31 wetlands in 2000 and 28 wetlands in 2001, and measured microhabitat variables along the shoreline within the week following each survey. We recorded 12 species of anurans during our study. Species richness was significantly lower in 2000 than 2001 (t-test, P < 0.001) and correlated with an ongoing drought. We found species richness to be significantly greater at lake sites compared to impoundment, swale, and riverine sites (ANOVA, P = 0.002). We used stepwise regression to investigate the wetland types and microhabitat characteristics associated with species richness of chorusing anurans. Microhabitat characteristics associated with species richness included dense herbaceous vegetation and accumulated litter along the shoreline. Individual species showed species-specific habitat associations. The bronze frog, American bullfrog, and northern cricket frog were positively associated with lake sites (Fisher's Exact Test, P < 0.05), however wetland type did not significantly influence any additional species. Using bivariate correlations, we found that six of the seven most common species had significant associations with microhabitat variables. Overall, our findings support the view that conservation and enhancement of amphibian communities in the LMAV and elsewhere requires a matrix of diverse wetland types and habitat conditions. ?? 2006, The Society of Wetland Scientists.

  19. White-throated sparrows alter songs differentially in response to chorusing anurans and other background noise.

    Science.gov (United States)

    Lenske, Ariel K; La, Van T

    2014-06-01

    Animals can use acoustic signals to attract mates and defend territories. As a consequence, background noise that interferes with signal transmission has the potential to reduce fitness, especially in birds that rely on song. While much research on bird song has investigated vocal flexibility in response to urban noise, weather and other birds, the possibility of inter-class acoustic competition from anurans has not been previously studied. Using sound recordings from central Ontario wetlands, we tested if white-throated sparrows (Zonotrichia albicolis) make short-term changes to their singing behaviour in response to chorusing spring peepers (Pseudacris crucifer), as well as to car noise, wind and other bird vocalizations. White-throated sparrow songs that were sung during the spring peeper chorus were shorter with higher minimum frequencies and narrower bandwidths resulting in reduced frequency overlap. Additionally, sparrows were less likely to sing when car noise and the vocalizations of other birds were present. These patterns suggest that birds use multiple adjustment strategies. This is the first report to demonstrate that birds may alter their songs differentially in response to different sources of noise. This article is part of a Special Issue entitled: insert SI title. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. A case study of lightning, whistlers, and associated ionospheric effects during a substorm particle injection event

    International Nuclear Information System (INIS)

    Rodriguez, J.V.; Inan, U.S.; Li, Y.Q.; Holzworth, R.H.; Smith, A.J.; Orville, R.E.; Rosenberg, T.J.

    1992-01-01

    Simultaneous ground-based observations of narrowband and broadband VLF radio waves and of cloud-to-ground lightning were made at widely spaced locations during the 1987 Wave-Induced Particle Precipitation (WIPP) campaign, conducted from Wallops Island, Virginia. Based on these observations, the first case study has been made of the relationships among located cloud-to-ground (CG) lightning flashes, whistlers, and associated ionospheric effects during a substorm particle injection event. This event took place 2 days after the strongest geomagnetic storm of 1987, during a reintensification in geomagnetic activity that did not affect the high rate of whistlers observed at Faraday Station, Antarctica. At the time of the injection event, several intense nighttime thunderstorms were located over Long Island and the coast of New England, between 400 km northwest and 600 km north of the region geomagnetically conjugate to Faraday. About two thirds of the CG flashes that were detected in these thunderstorms during the hour following the injection event onset were found to be causatively associated with whistlers received at Faraday. During the same period the amplitude of the 24.0-kHz signal from the NAA transmitter in Cutler, Maine, propagating over the thunderstorm centers toward Wallops Island was repeatedly perturbed in a manner characteristic of previously reported VLF signatures of transient and localized ionization enhancements at D region altitudes. Though such enhancements may have been caused by whistler-induced bursts electron precipitation from the magnetosphere, the data in this case are insufficient to establish a clear connection between the NAA amplitude perturbations and the Faraday Station whistlers. In view of the proximity of the NAA great circle path to the storm center, having the lower ionosphere by intense radiation from lightning may also have played a role in the observed VLF perturbations

  1. Generation of lower hybrid and whistler waves by an ion velocity ring distribution

    International Nuclear Information System (INIS)

    Winske, D.; Daughton, W.

    2012-01-01

    Using fully kinetic simulations in two and three spatial dimensions, we consider the generation and nonlinear evolution of lower hybrid waves produced by a cold ion ring velocity distribution in a low beta plasma. We show that the initial development of the instability is very similar in two and three dimensions and not significantly modified by electromagnetic effects, consistent with linear theory. At saturation, the level of electric field fluctuations is a small fraction of the background thermal energy; the electric field and corresponding density fluctuations consist of long, field-aligned striations. Energy extracted from the ring goes primarily into heating the background ions and the electrons at comparable rates. The initial growth and saturation of the magnetic components of the lower hybrid waves are related to the electric field components, consistent with linear theory. As the growing electric field fluctuations saturate, parallel propagating whistler waves develop by the interaction of two lower hybrid waves. At later times, these whistlers are replaced by longer wavelength, parallel propagating whistlers that grow through the decay of the lower hybrid fluctuations. Wave matching conditions demonstrate these conversion processes of lower hybrid waves to whistler waves. The conversion efficiency (=ratio of the whistler wave energy to the energy in the saturated lower hybrid waves) is computed and found to be significant (∼15%) for the parameters of the three-dimensional simulation (and even larger in the two-dimensional simulation), although when normalized in terms of the initial kinetic energy in the ring ions the overall efficiency is very small ( −4 ). The results are compared with relevant linear and nonlinear theory.

  2. New Discoveries about Janáček’s Choruses from 1873 to 1876 (Texts – Parts – Chronology)

    Czech Academy of Sciences Publication Activity Database

    Procházková, Jarmila

    2017-01-01

    Roč. 54, č. 2 (2017), s. 117-178 ISSN 0018-7003 Institutional support: RVO:68378076 Keywords : Leoš Janáček (1854-1928) * choruses * chronology of the early work * musical arrangements Subject RIV: AL - Art, Architecture, Cultural Heritage OBOR OECD: Performing arts studies (Musicology, Theater science, Dramaturgy)

  3. Whistler mode waves and the electron heat flux in the solar wind: Cluster observations

    Czech Academy of Sciences Publication Activity Database

    Lacombe, C.; Alexandrova, O.; Matteini, L.; Santolík, Ondřej; Cornilleau-Wehrlin, N.; Mangeney, A.; De Conchy, Y.; Maksimovic, M.

    2014-01-01

    Roč. 796, č. 1 (2014), s. 1-11 ISSN 0004-637X R&D Projects: GA ČR GAP205/10/2279; GA MŠk LH12231 Institutional support: RVO:68378289 Keywords : solar wind * turbulence * waves Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 5.993, year: 2014 http://iopscience.iop.org/0004-637X/796/1/5/article

  4. Magnetospherically reflected chorus waves revealed by ray tracing with CLUSTER data

    Directory of Open Access Journals (Sweden)

    M. Parrot

    Full Text Available This paper is related to the propagation characteristics of a chorus emission recorded simultaneously by the 4 satellites of the CLUSTER mission on 29 October 2001 between 01:00 and 05:00 UT. During this day, the spacecraft (SC 1, 2, and 4 are relatively close to each other but SC3 has been delayed by half an hour. We use the data recorded aboard CLUSTER by the STAFF spectrum analyser. This instrument provides the cross spectral matrix of three magnetic and two electric field components. Dedicated software processes this spectral matrix in order to determine the wave normal directions relative to the Earth’s magnetic field. This calculation is done for the 4 satellites at different times and different frequencies and allows us to check the directions of these waves. Measurements around the magnetic equator show that the parallel component of the Poynting vector changes its sign when the satellites cross the equator region. It indicates that the chorus waves propagate away from this region which is considered as the source area of these emissions. This is valid for the most intense waves observed on the magnetic and electric power spectrograms. But it is also observed on SC1, SC2, and SC4 that lower intensity waves propagate toward the equator simultaneously with the SC3 intense chorus waves propagating away from the equator. Both waves are at the same frequency. Using the wave normal directions of these waves, a ray tracing study shows that the waves observed by SC1, SC2, and SC4 cross the equatorial plane at the same location as the waves observed by SC3. SC3 which is 30 minutes late observes the waves that originate first from the equator; meanwhile, SC1, SC2, and SC4 observe the same waves that have suffered a Lower Hybrid Resonance (LHR reflection at low altitudes (based on the ray tracing analysis and now return to the equator at a different location with a lower intensity. Similar phenomenon is observed when all SC are on the other side

  5. Magnetospherically reflected chorus waves revealed by ray tracing with CLUSTER data

    Directory of Open Access Journals (Sweden)

    M. Parrot

    2003-05-01

    Full Text Available This paper is related to the propagation characteristics of a chorus emission recorded simultaneously by the 4 satellites of the CLUSTER mission on 29 October 2001 between 01:00 and 05:00 UT. During this day, the spacecraft (SC 1, 2, and 4 are relatively close to each other but SC3 has been delayed by half an hour. We use the data recorded aboard CLUSTER by the STAFF spectrum analyser. This instrument provides the cross spectral matrix of three magnetic and two electric field components. Dedicated software processes this spectral matrix in order to determine the wave normal directions relative to the Earth’s magnetic field. This calculation is done for the 4 satellites at different times and different frequencies and allows us to check the directions of these waves. Measurements around the magnetic equator show that the parallel component of the Poynting vector changes its sign when the satellites cross the equator region. It indicates that the chorus waves propagate away from this region which is considered as the source area of these emissions. This is valid for the most intense waves observed on the magnetic and electric power spectrograms. But it is also observed on SC1, SC2, and SC4 that lower intensity waves propagate toward the equator simultaneously with the SC3 intense chorus waves propagating away from the equator. Both waves are at the same frequency. Using the wave normal directions of these waves, a ray tracing study shows that the waves observed by SC1, SC2, and SC4 cross the equatorial plane at the same location as the waves observed by SC3. SC3 which is 30 minutes late observes the waves that originate first from the equator; meanwhile, SC1, SC2, and SC4 observe the same waves that have suffered a Lower Hybrid Resonance (LHR reflection at low altitudes (based on the ray tracing analysis and now return to the equator at a different location with a lower intensity. Similar phenomenon is observed when all SC are on the other side

  6. Intervening function of the chorus em "As primícias"

    Directory of Open Access Journals (Sweden)

    Lourdes Kaminski Alves

    2012-11-01

    Full Text Available This study addresses the female character in the play As Primícias (1970, by Dias Gomes, with respect to the aspects of rupture and dissent represented by the structural elements that approximate the tragic genre. In the speech of the character named “Proprietário” (Owner there is the determinism of the social and political conditions prevailing in his lands and in the fate of men. The fact of being characterized by a social role instead of a name is a reference to the universal situation of power abuse. Although the play moves away from the genre in some aspects, in others it maintains a strong intertextuality with ancient tragedy regarding the stylization of the heroin, the presence of radical antinomies and the interventionist role of the chorus.

  7. On the stability of whistler and 'pearl' type electromagnetic waves in the magnetosphere

    International Nuclear Information System (INIS)

    Buloshnikov, A.M.; Feodorov, E.E.

    1977-01-01

    Nonlinear evolution of 'whistlers' and pearls in magnetosphere has been considered. The analysis of the possibility of side-band generation in two particular cases (for the train with abrupt boundaries and for the wave train with the amplitude which is increasing gradually) has been studied. The theoretical results have been compared with the known experimental data to solve the problem. The investigation concerns mainly electron-cyclotron waves. The conclusions are the following: the stability of whistler depends on the steepness of wave train increase. It is possible that such effect was observed in the side-bands generation by the pearls. It is a positive argument in the application of nonlinear theory of side-bands with the ion-cyclotron waves propagating in the magnetosphere of the earth

  8. Correlated observations of intensified whistler waves and electron acceleration around the geostationary orbit

    International Nuclear Information System (INIS)

    Xiao Fuliang; He Zhaoguo; Tang Lijun; Zong Qiugang; Wang Chengrui; Su Zhenpeng

    2012-01-01

    We report correlated observations of enhanced whistler waves and energetic electron acceleration collected by multiple satellites specifically near the geostationary orbit during the 7–10 November 2004 superstorms, together with multi-site observations of ULF wave power measured on the ground. Energetic (>0.6 MeV) electron fluxes are found to increase significantly during the recovery phase, reaching a peak value by ∼100 higher than the prestorm level. In particular, such high electron flux corresponds to intensified whistler wave activities but to the weak ULF wave power. This result suggests that wave–particle interaction appears to be more important than inward radial diffusion in acceleration of outer radiation belt energetic electrons in this event, assisting to better understand the acceleration mechanism. (paper)

  9. Discovery of rapid whistlers close to Jupiter implying lightning rates similar to those on Earth

    Science.gov (United States)

    Kolmašová, Ivana; Imai, Masafumi; Santolík, Ondřej; Kurth, William S.; Hospodarsky, George B.; Gurnett, Donald A.; Connerney, John E. P.; Bolton, Scott J.

    2018-06-01

    Electrical currents in atmospheric lightning strokes generate impulsive radio waves in a broad range of frequencies, called atmospherics. These waves can be modified by their passage through the plasma environment of a planet into the form of dispersed whistlers1. In the Io plasma torus around Jupiter, Voyager 1 detected whistlers as several-seconds-long slowly falling tones at audible frequencies2. These measurements were the first evidence of lightning at Jupiter. Subsequently, Jovian lightning was observed by optical cameras on board several spacecraft in the form of localized flashes of light3-7. Here, we show measurements by the Waves instrument8 on board the Juno spacecraft9-11 that indicate observations of Jovian rapid whistlers: a form of dispersed atmospherics at extremely short timescales of several milliseconds to several tens of milliseconds. On the basis of these measurements, we report over 1,600 lightning detections, the largest set obtained to date. The data were acquired during close approaches to Jupiter between August 2016 and September 2017, at radial distances below 5 Jovian radii. We detected up to four lightning strokes per second, similar to rates in thunderstorms on Earth12 and six times the peak rates from the Voyager 1 observations13.

  10. Pulsed currents carried by whistlers. IV. Electric fields and radiation excited by an electrode

    International Nuclear Information System (INIS)

    Stenzel, R.L.; Urrutia, J.M.; Rousculp, C.L.

    1995-01-01

    Electromagnetic properties of current pulses carried by whistler wave packets are obtained from a basic laboratory experiment. While the magnetic field and current density are described in the preceding companion paper (Part III), the present analysis starts with the electric field. The inductive and space charge electric field contributions are separately calculated in Fourier space from the measured magnetic field and Ohm's law along B 0 . Inverse Fourier transformation yields the total electric field in space and time, separated into rotational and divergent contributions. The space-charge density in whistler wave packets is obtained. The cross-field tensor conductivity is determined. The frozen-in condition is nearly satisfied, E+v e xB congruent 0. The dissipation is obtained from Poynting's theorem. The waves are collisionally damped; Landau damping is negligible. A radiation resistance for the electrode is determined. Analogous to Poynting's theorem, the transport of helicity is analyzed. Current helicity is generated by a flow of helicity between pulses traveling in opposite directions which carry opposite signs of helicity. Helicity is dissipated by collisions. These observations complete a detailed description of whistler/current pulses which can occur in various laboratory and space plasmas. copyright 1995 American Institute of Physics

  11. Hatching success in salamanders and chorus frogs at two sites in Colorado, USA: Effects of acidic deposition and climate

    Science.gov (United States)

    Muths, E.; Campbell, D.H.; Corn, P.S.

    2003-01-01

    The snowpack in the vicinity of the Mount Zirkel Wilderness Area is among the most acidic in the western United States. We analyzed water chemistry and examined hatching success in tiger salamanders and chorus frogs at ponds there and at nearby Rabbit Ears Pass (Dumont) to determine whether acid deposition affects amphibians or their breeding habitats at these potentially sensitive locations. We found a wide range of acid neutralizing capacity among ponds within sites; the minimum pH recorded during the experiment was 5.4 at one of 12 ponds with all others at pH ??? 5.7. At Dumont, hatching success for chorus frogs was greater in ponds with low acid neutralizing capacity; however, lowest pHs were >5.8. At current levels of acid deposition, weather and pond characteristics are likely more important than acidity in influencing hatching success in amphibian larvae at these sites.

  12. Parametric excitation of very low frequency (VLF) electromagnetic whistler waves and interaction with energetic electrons in radiation belt

    Science.gov (United States)

    Sotnikov, V.; Kim, T.; Caplinger, J.; Main, D.; Mishin, E.; Gershenzon, N.; Genoni, T.; Paraschiv, I.; Rose, D.

    2018-04-01

    The concept of a parametric antenna in ionospheric plasma is analyzed. Such antennas are capable of exciting electromagnetic radiation fields, specifically the creation of whistler waves generated at the very low frequency (VLF) range, which are also capable of propagating large distances away from the source region. The mechanism of whistler wave generation is considered a parametric interaction of quasi-electrostatic whistler waves (also known as low oblique resonance (LOR) oscillations) excited by a conventional loop antenna. The interaction of LOR waves with quasi-neutral density perturbations in the near field of an antenna gives rise to electromagnetic whistler waves on combination frequencies. It is shown in this work that the amplitude of these waves can considerably exceed the amplitude of whistler waves directly excited by a loop. Additionally, particle-in-cell simulations, which demonstrate the excitation and spatial structure of VLF waves excited by a loop antenna, are presented. Possible applications including the wave-particle interactions to mitigate performance anomalies of low Earth orbit satellites, active space experiments, communication via VLF waves, and modification experiments in the ionosphere will be discussed.

  13. Spatial distribution and temporal variations of occurrence frequency of lightning whistlers observed by VLF/WBA onboard Akebono

    Science.gov (United States)

    Oike, Yuta; Kasahara, Yoshiya; Goto, Yoshitaka

    2014-09-01

    We statistically analyzed lightning whistlers detected from the analog waveform data below 15 kHz observed by the VLF instruments onboard Akebono. We examined the large amount of data obtained at Uchinoura Space Center in Japan for 22 years from 1989 to 2010. The lightning whistlers were mainly observed inside the L shell region below 2. Seasonal dependence of the occurrence frequency of lightning whistlers has two peaks around July to August and December to January. As lightning is most active in summer, in general, these two peaks correspond to summer in the Northern and Southern Hemispheres, respectively. Diurnal variation of the occurrence frequency showed that lightning whistlers begin to increase in the early evening and remain at a high-occurrence level through the night with a peak around 21 in magnetic local time (MLT). This peak shifts toward nightside compared with lightning activity, which begins to rise around noon and peaks in the late afternoon. This trend is supposed to be caused by attenuation of VLF wave in the ionosphere in the daytime. Comparison study with the ground-based observation revealed consistent results, except that the peak of the ground-based observation appeared after midnight while our measurements obtained by Akebono was around 21 in MLT. This difference is explained qualitatively in terms that lightning whistlers measured at the ground station passed through the ionosphere twice above both source region and the ground station. These facts provide an important clue to evaluate quantitatively the absorption effect of lightning whistler in the ionosphere.

  14. Effects of Drift-Shell Splitting by Chorus Waves on Radiation Belt Electrons

    Science.gov (United States)

    Chan, A. A.; Zheng, L.; O'Brien, T. P., III; Tu, W.; Cunningham, G.; Elkington, S. R.; Albert, J.

    2015-12-01

    Drift shell splitting in the radiation belts breaks all three adiabatic invariants of charged particle motion via pitch angle scattering, and produces new diffusion terms that fully populate the diffusion tensor in the Fokker-Planck equation. Based on the stochastic differential equation method, the Radbelt Electron Model (REM) simulation code allows us to solve such a fully three-dimensional Fokker-Planck equation, and to elucidate the sources and transport mechanisms behind the phase space density variations. REM has been used to perform simulations with an empirical initial phase space density followed by a seed electron injection, with a Tsyganenko 1989 magnetic field model, and with chorus wave and ULF wave diffusion models. Our simulation results show that adding drift shell splitting changes the phase space location of the source to smaller L shells, which typically reduces local electron energization (compared to neglecting drift-shell splitting effects). Simulation results with and without drift-shell splitting effects are compared with Van Allen Probe measurements.

  15. Nocturnal Vocal Activity in Captive Bottlenose Dolphins (Tursiops truncatus: Could Dolphins have Presleep Choruses?

    Directory of Open Access Journals (Sweden)

    Dorothee Kremers

    2014-11-01

    Full Text Available Nocturnal vocal activity in dolphins is often thought to be associated with feeding activity. However, when no food resources are available dolphins spend their time for the most part resting/sleeping. While unihemispherically sleeping, dolphins mostly swim slowly and synchronously in close proximity with one or more other individuals. Although vocal activity is lower during resting/sleeping, dolphins are not entirely silent the entire night. However, nothing is known about the temporal patterning of vocal activity at night and its potential relation with activity in dolphins. Here we recorded the vocal activity of a group of five captive bottlenose dolphins at night while having no feeding opportunity, examined whether there was any temporal pattern and/or a relation with breathing activity, used here as an index of overall activity. The temporal pattern revealed two peaks of intense whistle activity (8 p.m. and midnight, which were followed by a strong decrease of whistle rate and a slight decrease of respiration rate. We suggest that the high vocal activity at the peak periods might indicate socializing periods and that dolphins, like many other species, show periods of increased social and vocal interactions (chorusing? before starting to rest/sleep, maybe to ensure the synchrony of slow swimming observed in this species. These findings contribute to a better understanding of nocturnal vocal activity in cetaceans and suggest new lines of research on vocal/social activity of dolphins in relation to presleep and resting behavior.

  16. Factors influencing survival and mark retention in postmetamorphic boreal chorus frogs

    Science.gov (United States)

    Swanson, Jennifer E; Bailey, Larissa L.; Muths, Erin L.; Funk, W. Chris

    2013-01-01

    The ability to track individual animals is crucial in many field studies and often requires applying marks to captured individuals. Toe clipping has historically been a standard marking method for wild amphibian populations, but more recent marking methods include visual implant elastomer and photo identification. Unfortunately, few studies have investigated the influence and effectiveness of marking methods for recently metamorphosed individuals and as a result little is known about this life-history phase for most amphibians. Our focus was to explore survival probabilities, mark retention, and mark migration in postmetamorphic Boreal Chorus Frogs (Psuedacris maculata) in a laboratory setting. One hundred forty-seven individuals were assigned randomly to two treatment groups or a control group. Frogs in the first treatment group were marked with visual implant elastomer, while frogs in the second treatment group were toe clipped. Growth and mortality were recorded for one year and resulting data were analyzed using known-fate models in Program MARK. Model selection results suggested that survival probabilities of frogs varied with time and showed some variation among marking treatments. We found that frogs with multiple toes clipped on the same foot had lower survival probabilities than individuals in other treatments, but individuals can be marked by clipping a single toe on two different feet without any mark loss or negative survival effects. Individuals treated with visual implant elastomer had a mark migration rate of 4% and mark loss rate of 6%, and also showed very little negative survival impacts relative to control individuals.

  17. Propagation of a whistler wave incident from above on the lower nighttime ionosphere

    Directory of Open Access Journals (Sweden)

    P. Bespalov

    2017-05-01

    Full Text Available The problems of reflection and transmission of a whistler wave incident in the nighttime ionosphere from above are considered. Numerical solution of the wave equations for a typical condition of the lower ionosphere is found. The solution area comprises both the region of strong wave refraction and a sharp boundary of the nighttime ionosphere (∼ 100 km. The energy reflection coefficient and horizontal wave magnetic field on the ground surface are calculated. The results obtained are important for analysis of the extremely low-frequency and very low-frequency (ELF–VLF emission phenomena observed from both the satellites and the ground-based observatories.

  18. Bidirectional Energy Cascades and the Origin of Kinetic Alfvenic and Whistler Turbulence in the Solar Wind

    Science.gov (United States)

    Che, H.; Goldstein, M. L.; Vinas, A. F.

    2014-01-01

    The observed steep kinetic scale turbulence spectrum in the solar wind raises the question of how that turbulence originates. Observations of keV energetic electrons during solar quiet time suggest them as a possible source of free energy to drive kinetic turbulence. Using particle-in-cell simulations, we explore how the free energy released by an electron two-stream instability drives Weibel-like electromagnetic waves that excite wave-wave interactions. Consequently, both kinetic Alfvénic and whistler turbulence are excited that evolve through inverse and forward magnetic energy cascades.

  19. Long-wavelength instability of periodic flows and whistler waves in electron magnetohydrodynamics

    International Nuclear Information System (INIS)

    Lakhin, V.P.; Levchenko, V.D.

    2003-01-01

    Stability analysis of periodic flows and whistlers with respect to long-wavelength perturbations within the framework of dissipative electron magnetohydrodynamics (EMHD) based on two-scale asymptotic expansion technique is presented. Several types of flows are considered: two-dimensional Kolmogorov-like flow, helical flow, and anisotropic helical flow. It is shown hat the destabilizing effect on the long-wavelength perturbations is due to either the negative resistivity effect related to flow anisotropy or α-like effect to its micro helicity. The criteria of the corresponding instabilities are obtained. Numerical simulations of EMHD equations with the initial conditions corresponding to two types of periodic flows are presented. (author)

  20. Hot times in Whistler : energy saving hybrid systems in area hotels

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2008-01-15

    The resort of Whistler in British Columbia is to host the 2010 Winter Olympics, and the town of Whistler has committed to reducing energy consumption and emissions output in the community's 9500 dwelling units. Commercial hotels and mountain operations in the region are facing higher costs associated with tanked propane supply systems and higher infrastructure costs for some of the proposed alternatives. This article described a hybrid heating system designed by Sempa Power Systems. The systems have now been installed in conference centres and on all large mountain lodge complexes in the region. The hybrid heating system is a patent-pending system that automatically load-balances fossil fuel sources with electricity consumption to reduce energy costs, decrease GHG emissions, and increase efficiencies. Clients at the complexes are monitored online in real time and analyses of empirical data are compared with actual consumption to historical baseline averages. It was concluded that complexes in which the systems have been installed are averaging 28 per cent energy savings, a 39 per cent reduction in greenhouse gases (GHGs), and a 13 per cent reduction in energy consumption. 2 figs.

  1. Remote sensing of electron density and ion composition using nonducted whistler observations on OGO 1 and Van Allen Probes

    Science.gov (United States)

    Sonwalkar, V. S.; Butler, J.; Reddy, A.

    2017-12-01

    We present a new method to remotely measure magnetospheric electron density and ion composition using lightning generated nonducted whistlers observed on a satellite. Electron and ion densities play important roles in magnetospheric processes such as wave-particle interactions in the equatorial region and ion-neutral dynamics in the ionosphere, and are important for calculating space weather effects such as particle precipitation, GPS scintillations, and satellite drag. The nonducted whistler resulting from a single lightning appears on a spectrogram as a series of magnetospherically reflected traces with characteristic dispersion (time delay versus frequency) and upper and lower cut off frequencies. Ray tracing simulations show that these observed characteristics depend on the magnetospheric electron density and ion composition. The cut off frequencies depend on both electron density and ion composition. The dispersion depends strongly on electron density, but weakly on ion composition. Using an iterative process to fit the measured dispersion and cutoff frequencies to those obtained from ray tracing simulations, it is possible to construct the electron and ion density profiles of the magnetosphere. We demonstrate our method by applying it to nonducted whistlers observed on OGO 1 and Van Allen probe satellites. In one instance (08 Nov 1965), whistler traces observed on OGO 1 (L = 2.4, λm = -6°) displayed a few seconds of dispersion and cutoff frequencies in the 1-10 kHz range. Ray tracing analysis showed that a diffusive equilibrium density model with the following parameters can reproduce the observed characteristics of the whistler traces: 1900 el/cc at L=2.4 and the equator, 358,000 el/cc at F2 peak (hmF2 = 220 km), the relative ion concentrations αH+ = 0.2, αHe+ = 0.2, and αO+ = 0.6 at 1000 km, and temperature 1600 K. The method developed here can be applied to whistlers observed on the past, current, and future magnetospheric satellite missions carrying

  2. Control of hydrocarbon radicals and film deposition by using an RF Whistler wave discharge

    International Nuclear Information System (INIS)

    Mieno, Tetsu; Shoji, Tatsuo; Kadota, Kiyoshi.

    1991-10-01

    Production of hydrocarbon radicals is controlled by using an RF Whistler wave discharge in a low pressure region (∼0.1 Pa). Plasma density of 10 10 - 10 13 cm -3 , electron temperature of 2-20 eV is obtained for the discharge of admixture of Ar and small content of source gases (CH 4 , C 2 H 2 , CO). Spectroscopic measurement indicates that densities of CH and H radicals and deposition rate of amorphous carbon:H film increase with electron density, electron temperature and source gas pressure. The etching effect of H atoms influences on the deposition rate and a high deposition rate (90 μm/hr for CO/Ar discharge) is obtained even in a low neutral pressure discharge. (author)

  3. Statistical analysis of monochromatic whistler waves near the Moon detected by Kaguya

    Directory of Open Access Journals (Sweden)

    Y. Tsugawa

    2011-05-01

    Full Text Available Observations are presented of monochromatic whistler waves near the Moon detected by the Lunar Magnetometer (LMAG on board Kaguya. The waves were observed as narrowband magnetic fluctuations with frequencies close to 1 Hz, and were mostly left-hand polarized in the spacecraft frame. We performed a statistical analysis of the waves to identify the distributions of their intensity and occurrence. The results indicate that the waves were generated by the solar wind interaction with lunar crustal magnetic anomalies. The conditions for observation of the waves strongly depend on the solar zenith angle (SZA, and a high occurrence rate is recognized in the region of SZA between 40° to 90° with remarkable north-south and dawn-dusk asymmetries. We suggest that ion beams reflected by the lunar magnetic anomalies are a possible source of the waves.

  4. MMS observations of the Earth bow shock during magnetosphere compression and expansion: comparison of whistler wave properties around the shock ramp

    Science.gov (United States)

    Russell, C. T.; Strangeway, R. J.; Schwartz, S. J.

    2017-12-01

    The Magnetospheric Multiscale (MMS) spacecraft, with their state-of-the-art plasma and field instruments onboard, allow us to investigate electromagnetic waves at the bow shock and their association with small-scale disturbances in the shocked plasmas. Understanding these waves could improve our knowledge on the heating of electrons and ions across the shock ramp and the energy dissipation of supercritical shocks. We have found broad-band and narrow band waves across the shock ramp and slightly downstream. The broad-band waves propagate obliquely to the magnetic field direction and have frequencies up to the electron cyclotron frequency, while the narrow-band waves have frequencies of a few hundred Hertz, durations under a second, and are right-handed circularly polarized and propagate along the magnetic field lines. Both wave types are likely to be whistler mode with different generation mechanisms. When the solar wind pressure changes, MMS occasionally observed a pair of bow shocks when the magnetosphere was compressed and then expanded. We compare the wave observations under these two situations to understand their roles in the shock ramp as well as the upstream and downstream plasmas.

  5. A global model of thunderstorm electricity and the prediction of whistler duct formation

    International Nuclear Information System (INIS)

    Stansbery, E.K.

    1989-01-01

    A two-dimensional numerical model is created to calculate the electric field and current that flow from a thunderstorm source into the global electrical circuit. The model includes a hemisphere in which the thunderstorm is located, an equalization layer, and a passive magnetic conjugate hemisphere. To maintain the fair weather electric field, the output current from the thunderstorm is allowed to spread out in the ionosphere or flow along the magnetic field lines into the conjugate hemisphere. The vertical current is constant up to approximately 65 km, decays and is redirected horizontally in the ionosphere. Approximately half of the current that reaches the ionosphere flows along magnetic field lines into the conjugate hemisphere while the rest is spread out in the ionosphere and redirected to the fair weather portion of the storm hemisphere. Our results show that it is important to include a realistic model of the equalization layer to evaluate the role of thunderstorm charging of the global circuit. The mapping of thunderstorm electric fields at middle and subauroral latitudes into the magnetic equatorial plane is studied. The geomagnetic field lines are assumed to be dipolar above approximately 150 km. The horizontal electric field computed in the ionosphere by our model is of sufficient size and shape for the formation of electron density irregularities in the magnetosphere. The mechanism involves a localized convection of ionization tubes by ExB drift. It is shown that the horizontal range of the electric field disturbance in the ionosphere must be within approximately 160 km to produce density irregularities necessary for the formation of whistler ducts. Although the electric field strength at ionospheric heights depends sensitively on the conductivity profile, the results presented show that whistler duct formation is possible by thunderstorm generated electric fields.*

  6. Helicon modes in uniform plasmas. III. Angular momentum

    International Nuclear Information System (INIS)

    Stenzel, R. L.; Urrutia, J. M.

    2015-01-01

    Helicons are electromagnetic waves with helical phase fronts propagating in the whistler mode in magnetized plasmas and solids. They have similar properties to electromagnetic waves with angular momentum in free space. Helicons are circularly polarized waves carrying spin angular momentum and orbital angular momentum due to their propagation around the ambient magnetic field B 0 . These properties have not been considered in the community of researchers working on helicon plasma sources, but are the topic of the present work. The present work focuses on the field topology of helicons in unbounded plasmas, not on helicon source physics. Helicons are excited in a large uniform laboratory plasma with a magnetic loop antenna whose dipole axis is aligned along or across B 0 . The wave fields are measured in orthogonal planes and extended to three dimensions (3D) by interpolation. Since density and B 0 are uniform, small amplitude waves from loops at different locations can be superimposed to generate complex antenna patterns. With a circular array of phase shifted loops, whistler modes with angular and axial wave propagation, i.e., helicons, are generated. Without boundaries radial propagation also arises. The azimuthal mode number m can be positive or negative while the field polarization remains right-hand circular. The conservation of energy and momentum implies that these field quantities are transferred to matter which causes damping or reflection. Wave-particle interactions with fast electrons are possible by Doppler shifted resonances. The transverse Doppler shift is demonstrated. Wave-wave interactions are also shown by showing collisions between different helicons. Whistler turbulence does not always have to be created by nonlinear wave-interactions but can also be a linear superposition of waves from random sources. In helicon collisions, the linear and/or orbital angular momenta can be canceled, which results in a great variety of field topologies. The work

  7. European Blackbirds Exposed to Aircraft Noise Advance Their Chorus, Modify Their Song and Spend More Time Singing

    Directory of Open Access Journals (Sweden)

    Javier Sierro

    2017-06-01

    Full Text Available Noise pollution has a strong impact on wildlife by disrupting vocal communication or inducing physiological stress. Songbirds are particularly reliant on vocal communication as they use song during territorial and sexual interactions. Birds living in noisy environments have been shown to change the acoustic and temporal parameters of their song presumably to maximize signal transmissibility. Also, research shows that birds advance their dawn chorus in urban environments to avoid the noisiest hours, but little is known on the consequences of these changes in the time they spent singing at dawn. Here we present a comprehensive view of the European blackbird singing behavior living next to a large airport in Madrid, using as a control a population living in a similar but silent forest. Blackbird song is composed of two parts: a series of loud low-frequency whistles (motif and a final flourish (twitter. We found that airport blackbirds were more likely to sing songs without the twitter part. Also, when songs included a twitter part, airport blackbirds used a smaller proportion of song for the twitter than control blackbirds. Interestingly, our results show no differences in song frequency between airport and control populations. However airport blackbirds not only sang earlier but also increased the time they spent singing when chorus and aircraft traffic overlapped on time. This effect disappeared as the season progressed and the chorus and the aircraft traffic schedule were separated on time. We propose that the typical urban upshift in frequency might not be useful under the noise conditions and landscape structure found near airports. We suggest that the modifications in singing behavior induced by aircraft noise may be adaptive and that they are specific to airport acoustic habitat. Moreover, we found that adjustment of singing activity in relation to noise is plastic and possibly optimized to cope with aircraft traffic activity. In a

  8. Ionosphere-Magnetosphere Energy Interplay in the Regions of Diffuse Aurora

    Science.gov (United States)

    Khazanov, G. V.; Glocer, A.; Sibeck, D. G.; Tripathi, A. K.; Detweiler, L.G.; Avanov, L. A.; Singhal, R. P.

    2016-01-01

    Both electron cyclotron harmonic (ECH) waves and whistler mode chorus waves resonate with electrons of the Earths plasma sheet in the energy range from tens of eV to several keV and produce the electron diffuse aurora at ionospheric altitudes. Interaction of these superthermal electrons with the neutral atmosphere leads to the production of secondary electrons (E500600 eV) and, as a result, leads to the activation of lower energy superthermal electron spectra that can escape back to the magnetosphere and contribute to the thermal electron energy deposition processes in the magnetospheric plasma. The ECH and whistler mode chorus waves, however, can also interact with the secondary electrons that are coming from both of the magnetically conjugated ionospheres after they have been produced by initially precipitated high-energy electrons that came from the plasma sheet. After their degradation and subsequent reflection in magnetically conjugate atmospheric regions, both the secondary electrons and the precipitating electrons with high (E600 eV) initial energies will travel back through the loss cone, become trapped in the magnetosphere, and redistribute the energy content of the magnetosphere-ionosphere system. Thus, scattering of the secondary electrons by ECH and whistler mode chorus waves leads to an increase of the fraction of superthermal electron energy deposited into the core magnetospheric plasma.

  9. Ion sense of polarization of the electromagnetic wave field in the electron whistler frequency band

    Directory of Open Access Journals (Sweden)

    B. Lundin

    Full Text Available It is shown that the left-hand (or ion-type sense of polarization can appear in the field interference pattern of two plane electron whistler waves. Moreover, it is demonstrated that the ion-type polarized wave electric fields can be accompanied by the presence at the same observation point of electron-type polarized wave magnetic fields. The registration of ion-type polarized fields with frequencies between the highest ion gyrofrequency and the electron gyrofrequency in a cold, overdense plasma is a sufficient indication for the existence of an interference wave pattern, which can typically occur near artificial or natural reflecting magnetospheric plasma regions, inside waveguides (as in helicon discharges, for example, in fields resonantly emitted by beams of charged particles or, in principle, in some self-sustained, nonlinear wave field structures. A comparison with the conventional spectral matrix data processing approach is also presented in order to facilitate the calculations of the analyzed polarization parameters.

    Key words. Ionosphere (wave propagation Radio science (waves in plasma Space plasma physics (general or miscellaneous

  10. Ion sense of polarization of the electromagnetic wave field in the electron whistler frequency band

    Directory of Open Access Journals (Sweden)

    B. Lundin

    2002-08-01

    Full Text Available It is shown that the left-hand (or ion-type sense of polarization can appear in the field interference pattern of two plane electron whistler waves. Moreover, it is demonstrated that the ion-type polarized wave electric fields can be accompanied by the presence at the same observation point of electron-type polarized wave magnetic fields. The registration of ion-type polarized fields with frequencies between the highest ion gyrofrequency and the electron gyrofrequency in a cold, overdense plasma is a sufficient indication for the existence of an interference wave pattern, which can typically occur near artificial or natural reflecting magnetospheric plasma regions, inside waveguides (as in helicon discharges, for example, in fields resonantly emitted by beams of charged particles or, in principle, in some self-sustained, nonlinear wave field structures. A comparison with the conventional spectral matrix data processing approach is also presented in order to facilitate the calculations of the analyzed polarization parameters.Key words. Ionosphere (wave propagation Radio science (waves in plasma Space plasma physics (general or miscellaneous

  11. The Distribution of Chorus and Plasmaspheric Hiss Waves in the Inner Magnetospahere as Functions of Geomagnetic Activity and Solar Wind Parameters as Observed by The Van Allen Probes.

    Science.gov (United States)

    Aryan, H.; Sibeck, D. G.; Balikhin, M. A.; Agapitov, O. V.; Kletzing, C.

    2015-12-01

    The dynamics of the radiation belts is dependent upon the acceleration and loss of radiation belt electrons that is largely determined by the interaction of georesonant wave particles with chorus and plasmaspheric hiss waves. The distribution of these waves in the inner magnetosphere is commonly presented as a function of geomagnetic activity as expressed by the geomagnetic indices (Ae, Kp, and Dst). However, it has been shown that not all geomagnetic storms necessarily increase the flux of energetic electrons at the radiation belts. In fact, almost 20% of all geomagnetic storms cause a decrease in the flux of energetic electrons, while 30% has relatively no effect. Also, the geomagnetic indices are indirect, nonspecific parameters compiled from imperfectly covered ground based measurements that lack time history. This emphasises the need to present wave distributions as a function of both geomagnetic activity and solar wind parameters, such as velocity (V), density (n), and interplanetary magnetic field component (Bz), that are known to be predominantly effective in the control of radiation belt energetic electron fluxes. This study presents the distribution of chorus and plasmaspheric hiss waves in the inner magnetosphere as functions of both geomagnetic activity and solar wind parameters for different L-shell, magnetic local time, and magnetic latitude. This study uses almost three years of data measured by the EMFISIS on board the Van Allen Probes. Initial results indicate that the intensity of chorus and plasmaspheric hiss emissions are not only dependent on the geomagnetic activity but also dependent on solar wind parameters. The largest average wave intensities are observed with equatorial chorus in the region 4

  12. Nonlinear features of the electron temperature gradient mode and electron thermal transport in tokamaks

    International Nuclear Information System (INIS)

    Kaw, P.K.; Singh, R.; Weiland, J.G.

    2001-01-01

    Analytical investigations of several linear and nonlinear features of ETG turbulence are reported. The linear theory includes effects such as finite beta induced electromagnetic shielding, coupling to electron magnetohydrodynamic modes like whistlers etc. It is argued that nonlinearly, turbulence and transport are dominated by radially extended modes called 'streamers'. A nonlinear mechanism generating streamers based on a modulational instability theory of the ETG turbulence is also presented. The saturation levels of the streamers using a Kelvin Helmholtz secondary instability mechanism are calculated and levels of the electron thermal transport due to streamers are estimated. (author)

  13. First results from the Cluster wideband plasma wave investigation

    Directory of Open Access Journals (Sweden)

    D. A. Gurnett

    2001-09-01

    Full Text Available In this report we present the first results from the Cluster wideband plasma wave investigation. The four Cluster spacecraft were successfully placed in closely spaced, high-inclination eccentric orbits around the Earth during two separate launches in July – August 2000. Each spacecraft includes a wideband plasma wave instrument designed to provide high-resolution electric and magnetic field wave-forms via both stored data and direct downlinks to the NASA Deep Space Network. Results are presented for three commonly occurring magnetospheric plasma wave phenomena: (1 whistlers, (2 chorus, and (3 auroral kilometric radiation. Lightning-generated whistlers are frequently observed when the spacecraft is inside the plasmasphere. Usually the same whistler can be detected by all spacecraft, indicating that the whistler wave packet extends over a spatial dimension at least as large as the separation distances transverse to the magnetic field, which during these observations were a few hundred km. This is what would be expected for nonducted whistler propagation. No case has been found in which a strong whistler was detected at one spacecraft, with no signal at the other spacecraft, which would indicate ducted propagation. Whistler-mode chorus emissions are also observed in the inner region of the magnetosphere. In contrast to lightning-generated whistlers, the individual chorus elements seldom show a one-to-one correspondence between the spacecraft, indicating that a typical chorus wave packet has dimensions transverse to the magnetic field of only a few hundred km or less. In one case where a good one-to-one correspondence existed, significant frequency variations were observed between the spacecraft, indicating that the frequency of the wave packet may be evolving as the wave propagates. Auroral kilometric radiation, which is an intense radio emission generated along the auroral field lines, is frequently observed over the polar regions. The

  14. First results from the Cluster wideband plasma wave investigation

    Directory of Open Access Journals (Sweden)

    D. A. Gurnett

    Full Text Available In this report we present the first results from the Cluster wideband plasma wave investigation. The four Cluster spacecraft were successfully placed in closely spaced, high-inclination eccentric orbits around the Earth during two separate launches in July – August 2000. Each spacecraft includes a wideband plasma wave instrument designed to provide high-resolution electric and magnetic field wave-forms via both stored data and direct downlinks to the NASA Deep Space Network. Results are presented for three commonly occurring magnetospheric plasma wave phenomena: (1 whistlers, (2 chorus, and (3 auroral kilometric radiation. Lightning-generated whistlers are frequently observed when the spacecraft is inside the plasmasphere. Usually the same whistler can be detected by all spacecraft, indicating that the whistler wave packet extends over a spatial dimension at least as large as the separation distances transverse to the magnetic field, which during these observations were a few hundred km. This is what would be expected for nonducted whistler propagation. No case has been found in which a strong whistler was detected at one spacecraft, with no signal at the other spacecraft, which would indicate ducted propagation. Whistler-mode chorus emissions are also observed in the inner region of the magnetosphere. In contrast to lightning-generated whistlers, the individual chorus elements seldom show a one-to-one correspondence between the spacecraft, indicating that a typical chorus wave packet has dimensions transverse to the magnetic field of only a few hundred km or less. In one case where a good one-to-one correspondence existed, significant frequency variations were observed between the spacecraft, indicating that the frequency of the wave packet may be evolving as the wave propagates. Auroral kilometric radiation, which is an intense radio emission generated along the auroral field lines, is frequently observed over the polar regions. The

  15. Polarization properties of Gendrin mode waves observed in the Earth's magnetosphere: observations and theory

    Directory of Open Access Journals (Sweden)

    O. P. Verkhoglyadova

    2009-12-01

    Full Text Available We show a case of an outer zone magnetospheric electromagnetic wave propagating at the Gendrin angle, within uncertainty of the measurements. The chorus event occurred in a "minimum B pocket". For the illustrated example, the measured angle of wave propagation relative to the ambient magnetic field θkB was 58°±4°. For this event the theoretical Gendrin angle was 62°. Cold plasma model is used to demonstrate that Gendrin mode waves are right-hand circularly polarized, in excellent agreement with the observations.

  16. Evidence for Asian dust effects from aerosol plume measurements during INTEX-B 2006 near Whistler, BC

    Directory of Open Access Journals (Sweden)

    W. R. Leaitch

    2009-06-01

    Full Text Available Several cases of aerosol plumes resulting from trans-Pacific transport were observed between 2 km and 5.3 km at Whistler, BC from 22 April 2006 to 15 May 2006. The fine particle (<1 μm chemical composition of most of the plumes was dominated by sulphate that ranged from 1–5 μg m−3 as measured with a Quadrapole Aerosol Mass Spectrometer (Q-AMS. Coarse particles (>1 μm were enhanced in all sulphate plumes. Fine particle organic mass concentrations were relatively low in most plumes and were nominally anti-correlated with the increases in the number concentrations of coarse particles. The ion chemistry of coarse particles sampled at Whistler Peak was dominated by calcium, sodium, nitrate, sulphate and formate. Scanning transmission X-ray microscopy of coarse particles sampled from the NCAR C-130 aircraft relatively close to Whistler indicated carbonate, potassium and organic functional groups, in particular the carboxyl group. Asian plumes reaching Whistler, BC during the INTEX-B study were not only significantly reduced of fine particle organic material, but organic compounds were attached to coarse particles in significant quantities. Suspension of dust with deposited organic material and scavenging of organic materials by dust near anthropogenic sources are suggested, and if any secondary organic aerosol (SOA was formed during transport from Asian source regions across the Pacific it was principally associated with the coarse particles. An average of profiles indicates that trans-Pacific transport between 2 and 5 km during this period increased ozone by about 10 ppbv and fine particle sulphate by 0.2–0.5 μg m−3. The mean sizes of the fine particles in the sulphate plumes were larger when dust particles were present and smaller when the fine particle organic mass concentration was larger and dust was absent. The coarse particles of dust act to accumulate sulphate, nitrate and organic material in larger particles

  17. Fiber fine structure during solar type IV radio bursts: Observations and theory of radiation in presence of localized whistler turbulence

    International Nuclear Information System (INIS)

    Bernold, T.E.X.; Treumann, R.A.

    1983-01-01

    Observations with a digital spectrometer within the frequency band between 250 and 273 MHz of fiber fine structures during the type IV solar radio burst of 1978 October 1 are presented and analyzed. The results are summarized in histograms. Typical values for drift rates are in the range between -2.3 and -9.9 MHz s -1 . Frequency intervals between absorption and emission within the spectrum were measured to be within 0.9 and 2.7 MHz. Several types of spectra are discussed. A theoretical interpretation is based upon the model of a population of electrons trapped within a magnetic-mirror loop-configuration. It is shown that the fiber emission can be explained assuming an interaction between spatially localized strong whistler turbulence (solitons) and a broad-band Langmuir wave spectrum. Estimates using the observed flux values indicate that a fiber is composed of some 10 11 --10 14 solitons occupying a volume of about 10 5 --10 8 km 3 . Ducting of whistler solitons in low-density magnetic loops provides a plausible explanation for coherent behavior during the lifetime of an individual fiber. The magnetic field strength is found to be 6.2< or =B< or =35 gauss at the radio source and 15.3< or =B< or =76 gauss at the lower hybrid wave level respectively. The quasi-periodicity of the fiber occurrence is interpreted as periodically switched-on soliton production

  18. Wave-particle Interactions in Space and Laboratory Plasmas

    Science.gov (United States)

    An, Xin

    This dissertation presents a study of wave-particle interactions in space and in the laboratory. To be concrete, the excitation of whistler-mode chorus waves in space and in the laboratory is studied in the first part. The relaxation of whistler anisotropy instability relevant to whistler-mode chorus waves in space is examined. Using a linear growth rate analysis and kinetic particle-in-cell simulations, the electron distributions are demonstrated to be well-constrained by the whistler anisotropy instability to a marginal-stability state, consistent with measurements by Van Allen Probes. The electron parallel beta beta ∥e separates the excited whistler waves into two groups: (i) quasi-parallel whistler waves for beta∥e > 0.02 and (ii) oblique whistler waves close to the resonance cone for beta∥e cell simulations. Motivated by the puzzles of chorus waves in space and by their recognized importance, the excitation of whistler-mode chorus waves is studied in the Large Plasma Device by the injection of a helical electron beam into a cold plasma. Incoherent broadband whistler waves similar to magnetospheric hiss are observed in the laboratory plasma. Their mode structures are identified by the phase-correlation technique. It is demonstrated that the waves are excited through a combination of Landau resonance, cyclotron resonance and anomalous cyclotron resonance. To account for the finite size effect of the electron beam, linear unstable eigenmodes of whistler waves are calculated by matching the eigenmode solution at the boundary. It is shown that the perpendicular wave number inside the beam is quantized due to the constraint imposed by the boundary condition. Darwin particle-in-cell simulations are carried out to study the simultaneous excitation of Langmuir and whistler waves in a beam-plasma system. The electron beam is first slowed down and relaxed by the rapidly growing Langmuir wave parallel to the background magnetic field. The tail of the core electrons

  19. Refractory black carbon at the Whistler Peak High Elevation Research Site - Measurements and simulations

    Science.gov (United States)

    Hanna, Sarah J.; Xu, Jun-Wei; Schroder, Jason C.; Wang, Qiaoqiao; McMeeking, Gavin R.; Hayden, Katherine; Leaitch, W. Richard; Macdonald, AnneMarie; von Salzen, Knut; Martin, Randall V.; Bertram, Allan K.

    2018-05-01

    Measurements of black carbon at remote and high altitude locations provide an important constraint for models. Here we present six months of refractory black carbon (rBC) data collected in July-August of 2009, June-July of 2010, and April-May of 2012 using a single particle soot photometer (SP2) at the remote Whistler High Elevation Research Site in the Coast Mountains of British Columbia (50.06°N, 122.96°W, 2182 m a.m.s.l). In order to reduce regional boundary layer influences, only measurements collected during the night (2000-0800 PST) were considered. Times impacted by local biomass burning were removed from the data set, as were periods of in-cloud sampling. Back trajectories and back trajectory cluster analysis were used to classify the sampled air masses as Southern Pacific, Northern Pacific, Western Pacific/Asian, or Northern Canadian in origin. The largest rBC mass median diameter (182 nm) was seen for air masses in the Southern Pacific cluster, and the smallest (156 nm) was seen for air masses in the Western Pacific/Asian cluster. Considering all the clusters, the median mass concentration of rBC was 25.0 ± 7.6 ng/m3-STP. The Northern Pacific, Southern Pacific, Western Pacific/Asian, and Northern Canada clusters had median mass concentrations of 25.0 ± 7.6, 21.3 ± 6.9, 25.0 ± 7.9, and 40.6 ± 12.9 ng/m3-STP, respectively. We compared these measurements with simulations from the global chemical transport model GEOS-Chem. The default GEOS-Chem simulations overestimated the median rBC mass concentrations for the different clusters by a factor of 1.2-2.2. The largest difference was observed for the Northern Pacific cluster (factor of 2.2) and the smallest difference was observed for the Northern Canada cluster (factor of 1.2). A sensitivity simulation that excluded Vancouver emissions still overestimated the median rBC mass concentrations for the different clusters by a factor of 1.1-2.0. After implementation of a revised wet scavenging scheme, the

  20. Variation Process of Radiation Belt Electron Fluxes due to Interaction With Chorus and EMIC Rising-tone Emissions Localized in Longitude

    Science.gov (United States)

    Kubota, Y.; Omura, Y.

    2017-12-01

    Using results of test particle simulations of a large number of electrons interacting with a pair of chorus emissions, we create Green's functions to model the electron distribution function after all of the possible interactions with the waves [Omura et al., 2015]. Assuming that the waves are generated in a localized range of longitudes in the dawn side, we repeat taking the convolution integral of the Green's function with the distribution function of the electrons injected into the generation region of the localized waves. From numerical and theoretical analyses, we find that electron acceleration process only takes place efficiently below 4 MeV. Because extremely relativistic electrons go through the wave generation region rapidly due to grad-B0 and curvature drift, they don't have enough interaction time to be accelerated. In setting up the electrons after all interaction with chorus emissions as initial electron distribution function, we also compute the loss process of radiation belt electron fluxes due to interaction with EMIC rising-tone emissions generated in a localized range of longitudes in the dusk side [Kubota and Omura,2017]. References: (1) Omura, Y., Y. Miyashita, M. Yoshikawa, D. Summers, M. Hikishima, Y. Ebihara, and Y. Kubota (2015), Formation process of relativistic electron flux through interaction with chorus emissions in the Earth's inner magnetosphere, J. Geophys. Res. Space Physics, 120, 9545-9562, doi:10.1002/2015JA021563. (2) Kubota, Y., and Y. Omura (2017), Rapid precipitation of radiation belt electrons induced by EMIC rising tone emissions localized in longitude inside and outside the plasmapause, J. Geophys. Res. Space Physics, 122, 293-309, doi:10.1002/2016JA023267.

  1. Effects of hydroperiod duration on survival, developmental rate, and size at metamorphosis in boreal chorus frog tadpoles (Pseudacris maculata)

    Science.gov (United States)

    Amburgey, Staci; Funk, W. Chris; Murphy, Melanie; Muths, Erin

    2012-01-01

    Understanding the relationship between climate-driven habitat conditions and survival is key to preserving biodiversity in the face of rapid climate change. Hydroperiod—the length of time water is in a wetland—is a critical limiting habitat variable for amphibians as larvae must metamorphose before ponds dry. Changes in precipitation and temperature patterns are affecting hydroperiod globally, but the impact of these changes on amphibian persistence is poorly understood. We studied the responses of Boreal Chorus Frog (Pseudacris maculata) tadpoles to simulated hydroperiods (i.e., water level reductions) in the laboratory using individuals collected from ponds spanning a range of natural hydroperiods (Colorado Front Range, USA). To assess the effects of experimental hydroperiod reduction, we measured mortality, time to metamorphosis, and size at metamorphosis. We found that tadpoles grew at rates reflecting the hydroperiods of their native ponds, regardless of experimental treatment. Tadpoles from permanent ponds metamorphosed faster than those from ephemeral ponds across all experimental treatments, a pattern which may represent a predation selection gradient or countergradient variation in developmental rates. Size at metamorphosis did not vary across experimental treatments. Mortality was low overall but varied with pond of origin. Our results suggest that adaptation to local hydroperiod and/or predation and temperature conditions is important in P. maculata. Moreover, the lack of a plastic response to reduced hydroperiods suggests that P. maculata may not be able to metamorphose quickly enough to escape drying ponds. These results have important implications for amphibian persistence in ponds predicted to dry more quickly due to rapid climate change.

  2. The producing of an ECR plasma using 2450MHz Whistler Wave and the investigating of its parameters

    International Nuclear Information System (INIS)

    Fang Yude; Zhang Jiande; Fu Keming; Lu Xiangyu; Liu Dengcheng; Wang Xianyu; Xie Weidong; Bao Dinghua; Yin Xiejin

    1988-12-01

    A stable ECR plasma was produced and sustained in HER mirror using 2450MHz Whistler wave. The parameters of the ECR plasma and their chaining characters were studied in detail and were compared with those of the DC discharge plasmas. The conclusion is that the ECR plasma is a high ionizability, low temperature, middle density plasma, its peak density may much exceed the cutoff density of the pump wave (when ω = ω pe ) and arrive at the order of 10 12 cm -3 . The ECR plasma includes some high energy hot electrons (20Kev-200Kev) and middle energy warm electrons (< 20Kev). Those two kinds of electron created some strong X-ray emissions in a wide frequency range. The ECR plasma has higher edge density and can strongly interact with the wall. (author). 9 refs, 17 figs

  3. The magnetoionic modes and propagation properties of auroral radio emissions

    International Nuclear Information System (INIS)

    Calvert, W.; Hashimoto, Kozo

    1990-01-01

    The different magnetoionic wave modes which accompany the aurora are identified using DE 1 not only by their appearance on satellite radio spectrograms, but also by concurrent measurements of their wave polarization and arrival directions, and by ray-tracing models of their expected propagation behavior. Of the four possible propagation modes, designated O, X, W, and Z for the ordinary, extraordinary, whistler, and Z modes, respectively, all four are found to occur in the auroral zone, as follows: The most intense, of course, is the well-known auroral kilometric radiation (AKR), which originates primarily in the X mode near the electron cyclotron frequency, but which is frequently also accompanied by a weaker O-mode component from the same location. The next most prominent auroral emission is the W-mode auroral hiss originating from altitudes always well below the DE 1 satellite at frequencies below the local cyclotron frequency. The previously reported Z-mode auroral radiation was also detected, but from sources also below the satellite and at the poleward edge of the cavity, and not from the expected AKR source at the cyclotron frequency. A weaker O-mode component seems to accompany these emissions also, both within the polar cap poleward of the source and inside the cavity, the latter seemingly being guided upward by the cavity's lower plasma densities. Finally, exactly on the source field lines at the poleward edge of the cavity, there also occasionally seems to be localized Z-mode emissions extending from the Z-mode cutoff at quite low frequencies up to and above the plasma frequency

  4. Two Step Acceleration Process of Electrons in the Outer Van Allen Radiation Belt by Time Domain Electric Field Bursts and Large Amplitude Chorus Waves

    Science.gov (United States)

    Agapitov, O. V.; Mozer, F.; Artemyev, A.; Krasnoselskikh, V.; Lejosne, S.

    2014-12-01

    A huge number of different non-linear structures (double layers, electron holes, non-linear whistlers, etc) have been observed by the electric field experiment on the Van Allen Probes in conjunction with relativistic electron acceleration in the Earth's outer radiation belt. These structures, found as short duration (~0.1 msec) quasi-periodic bursts of electric field in the high time resolution electric field waveform, have been called Time Domain Structures (TDS). They can quite effectively interact with radiation belt electrons. Due to the trapping of electrons into these non-linear structures, they are accelerated up to ~10 keV and their pitch angles are changed, especially for low energies (˜1 keV). Large amplitude electric field perturbations cause non-linear resonant trapping of electrons into the effective potential of the TDS and these electrons are then accelerated in the non-homogeneous magnetic field. These locally accelerated electrons create the "seed population" of several keV electrons that can be accelerated by coherent, large amplitude, upper band whistler waves to MeV energies in this two step acceleration process. All the elements of this chain acceleration mechanism have been observed by the Van Allen Probes.

  5. Symphonic Cantata «In the Temple of Golden Dreams» by Arthur Lourie for Mixed Chorus a cappella (1919: Innovation in the Field of Musical Language

    Directory of Open Access Journals (Sweden)

    Zaytseva Marina

    2017-01-01

    Full Text Available The article scientifically proves the importance of choral genres in the works by Arthur Lourie. The features of composition and the musical language of the symphonic cantata «In the Temple of Golden Dreams» by Arthur Lourie are identified. It is proved that the trends of symbolism and avant-garde affected the formation of the logic of intonation development , composite and harmonic solutions of the cantata. It is justified that the composer’s experiments in the fields of harmonic language, metroritm, texture, timbre brilliance largely anticipate the trends of the world music development. On the basis of the «In the Temple of Golden Dreams» symphonic cantata for mixed chorus a cappella A. Lurie, innovative methods of convergence of expressive possibilities of symphonic and choral scores, aimed at strengthening the capabilities of color and expressive choral sound are identified.

  6. Plasma Modes

    Science.gov (United States)

    Dubin, D. H. E.

    This chapter explores several aspects of the linear electrostatic normal modes of oscillation for a single-species non-neutral plasma in a Penning trap. Linearized fluid equations of motion are developed, assuming the plasma is cold but collisionless, which allow derivation of the cold plasma dielectric tensor and the electrostatic wave equation. Upper hybrid and magnetized plasma waves in an infinite uniform plasma are described. The effect of the plasma surface in a bounded plasma system is considered, and the properties of surface plasma waves are characterized. The normal modes of a cylindrical plasma column are discussed, and finally, modes of spheroidal plasmas, and finite temperature effects on the modes, are briefly described.

  7. Tacoma mode

    International Nuclear Information System (INIS)

    Courant, E.D.; Ruth, R.D.; Wang, J.M.

    1979-01-01

    The name Tacoma refers to the Tacoma Narrows Bridge which collapsed on November 8, 1940 due to massive oscillations caused by high winds. One of the destructive modes was a torsion mode which was excited by transverse wind, a dipole force, and continued until the bridge collapsed. The name is used to refer to a coherent mode of oscillation of a spectrum of oscillators in which the amplitude vs frequency graph contains one node, where the node occurs near the driving frequency and a ω is not symmetric about zero. When this result is applied to vertical instabilities in coasting beams, it implies the existence of a coherent skew quadrupole moment, Q/sub xy/, whenever a coherent dipole oscillation exists

  8. Tacoma mode

    International Nuclear Information System (INIS)

    Courant, E.D.; Ruth, R.D.; Wang, J.M.

    1979-01-01

    The name Tacoma refers to the Tacoma Narrows Bridge which collapsed on November 8, 1940 due to massive oscillations caused by high winds. One of the destructive modes was a torsion mode which was excited by transverse wind, a dipole force, and continued until the bridge collapsed. The name is used to refer to a coherent mode of oscillation of a spectrum of oscillators in which the amplitude vs frequency graph contains one node, where the node occurs near the driving frequency and a(ω) is not symmetric about zero. When this result is applied to vertical instabilities in coasting beams, it implies the existence of a coherent skew quadrupole moment, whenever a coherent dipole oscillation exists

  9. Failure Modes

    DEFF Research Database (Denmark)

    Jakobsen, K. P.; Burcharth, H. F.; Ibsen, Lars Bo

    1999-01-01

    The present appendix contains the derivation of ten different limit state equations divided on three different failure modes. Five of the limit state equations can be used independently of the characteristics of the subsoil, whereas the remaining five can be used for either drained or undrained s...

  10. 55th Annual Canadian Society for Molecular Biosciences Conference on Epigenetics and Genomic Stability. Whistler, British Columbia, Canada, 14–18 March 2012.

    Science.gov (United States)

    Nelson, Christopher J; Ausió, Juan

    2012-06-01

    The 55th Annual Canadian Society for Molecular Biosciences Conference on Epigenetics and Genomic Stability in Whistler, Canada, 14-18 March 2012, brought together 31 speakers from different nationalities. The organizing committee, led by Jim Davie (Chair) at the University of Manitoba (Manitoba, Canada), consisted of several established researchers in the fields of chromatin and epigenetics from across Canada. The meeting was centered on the contribution of epigenetics to gene expression, DNA damage and repair, and the role of environmental factors. A few interesting talks on replication added some insightful information on the controversial issue of histone post-translational modifications as genuine epigenetic marks that are inherited through cell division.

  11. Bayesian Techniques for Plasma Theory to Bridge the Gap Between Space and Lab Plasmas

    Science.gov (United States)

    Crabtree, Chris; Ganguli, Gurudas; Tejero, Erik

    2017-10-01

    We will show how Bayesian techniques provide a general data analysis methodology that is better suited to investigate phenomena that require a nonlinear theory for an explanation. We will provide short examples of how Bayesian techniques have been successfully used in the radiation belts to provide precise nonlinear spectral estimates of whistler mode chorus and how these techniques have been verified in laboratory plasmas. We will demonstrate how Bayesian techniques allow for the direct competition of different physical theories with data acting as the necessary arbitrator. This work is supported by the Naval Research Laboratory base program and by the National Aeronautics and Space Administration under Grant No. NNH15AZ90I.

  12. Geosynchronous Relativistic Electron Events Associated with High-Speed Solar Wind Streams in 2006

    Directory of Open Access Journals (Sweden)

    Sungeun Lee

    2009-12-01

    Full Text Available Recurrent enhancements of relativistic electron events at geosynchronous orbit (GREEs were observed in 2006. These GREE enhancements were associated with high-speed solar wind streams coming from the same coronal hole. For the first six months of 2006, the occurrence of GREEs has 27 day periodicity and the GREEs were enhanced with various flux levels. Several factors have been studied to be related to GREEs: (1 High speed stream, (2 Pc5 ULF wave activity, (3 Southward IMF Bz, (4 substorm occurrence, (5 Whistler mode chorus wave, and (6 Dynamic pressure. In this paper, we have examined the effectiveness about those parameters in selected periods.

  13. VLF Wave Properties During Geomagnetic Storms

    Science.gov (United States)

    Blancarte, J.; Artemyev, A.; Mozer, F.; Agapitov, O. V.

    2017-12-01

    Whistler-mode chorus is important for the global dynamics of the inner magnetosphere electron population due to its ability to scatter and accelerate electrons of a wide energy range in the outer radiation belt. The parameters of these VLF emissions change dynamically during geomagnetic storms. Presented is an analysis of four years of Van Allen probe data, utilizing electric and magnetic field in the VLF range focused on the dynamics of chorus wave properties during the enhancement of geomagnetic activity. It is found that VLF emissions respond to geomagnetic storms in more complicated ways than just by affecting the waves' amplitude growth or depletion. Oblique wave amplitudes grow together with parallel waves during periods of intermediate geomagnetic activity, while the occurrence rate of oblique waves decreases during larger geomagnetic storms.

  14. Onboard software of Plasma Wave Experiment aboard Arase: instrument management and signal processing of Waveform Capture/Onboard Frequency Analyzer

    Science.gov (United States)

    Matsuda, Shoya; Kasahara, Yoshiya; Kojima, Hirotsugu; Kasaba, Yasumasa; Yagitani, Satoshi; Ozaki, Mitsunori; Imachi, Tomohiko; Ishisaka, Keigo; Kumamoto, Atsushi; Tsuchiya, Fuminori; Ota, Mamoru; Kurita, Satoshi; Miyoshi, Yoshizumi; Hikishima, Mitsuru; Matsuoka, Ayako; Shinohara, Iku

    2018-05-01

    We developed the onboard processing software for the Plasma Wave Experiment (PWE) onboard the Exploration of energization and Radiation in Geospace, Arase satellite. The PWE instrument has three receivers: Electric Field Detector, Waveform Capture/Onboard Frequency Analyzer (WFC/OFA), and the High-Frequency Analyzer. We designed a pseudo-parallel processing scheme with a time-sharing system and achieved simultaneous signal processing for each receiver. Since electric and magnetic field signals are processed by the different CPUs, we developed a synchronized observation system by using shared packets on the mission network. The OFA continuously measures the power spectra, spectral matrices, and complex spectra. The OFA obtains not only the entire ELF/VLF plasma waves' activity but also the detailed properties (e.g., propagation direction and polarization) of the observed plasma waves. We performed simultaneous observation of electric and magnetic field data and successfully obtained clear wave properties of whistler-mode chorus waves using these data. In order to measure raw waveforms, we developed two modes for the WFC, `chorus burst mode' (65,536 samples/s) and `EMIC burst mode' (1024 samples/s), for the purpose of the measurement of the whistler-mode chorus waves (typically in a frequency range from several hundred Hz to several kHz) and the EMIC waves (typically in a frequency range from a few Hz to several hundred Hz), respectively. We successfully obtained the waveforms of electric and magnetic fields of whistler-mode chorus waves and ion cyclotron mode waves along the Arase's orbit. We also designed the software-type wave-particle interaction analyzer mode. In this mode, we measure electric and magnetic field waveforms continuously and transfer them to the mission data recorder onboard the Arase satellite. We also installed an onboard signal calibration function (onboard SoftWare CALibration; SWCAL). We performed onboard electric circuit diagnostics and

  15. Spin modes

    International Nuclear Information System (INIS)

    Gaarde, C.

    1985-01-01

    An analysis of spectra of (p,n) reactions showed that they were very selective in exciting spin modes. Charge exchange reactions at intermediate energies give important new understanding of the M1-type of excitations and of the spin structure of continuum p spectra in general. In this paper, the author discusses three charge exchange reactions: (p,n); ( 3 H,t); and (d,2p) at several targets. Low-lying states and the Δ region are discussed separately. Finally, the charge exchange reaction with heavy ion beams is briefly discussed. (G.J.P./Auth.)

  16. Banded Structures in Electron Pitch Angle Diffusion Coefficients from Resonant Wave Particle Interactions

    Science.gov (United States)

    Tripathi, A. K.; Singhal, R. P.; Khazanov, G. V.; Avanov, L. A.

    2016-01-01

    Electron pitch angle (D (alpha)) and momentum (D(pp)) diffusion coefficients have been calculated due to resonant interactions with electrostatic electron cyclotron harmonic (ECH) and whistler mode chorus waves. Calculations have been performed at two spatial locations L = 4.6 and 6.8 for electron energies 10 keV. Landau (n = 0) resonance and cyclotron harmonic resonances n = +/-1, +/-2,...+/-5 have been included in the calculations. It is found that diffusion coefficient versus pitch angle (alpha) profiles show large dips and oscillations or banded structures. The structures are more pronounced for ECH and lower band chorus (LBC) and particularly at location 4.6. Calculations of diffusion coefficients have also been performed for individual resonances. It is noticed that the main contribution of ECH waves in pitch angle diffusion coefficient is due to resonances n = +1 and n = +2. A major contribution to momentum diffusion coefficients appears from n = +2. However, the banded structures in D alpha and Dpp coefficients appear only in the profile of diffusion coefficients for n = +2. The contribution of other resonances to diffusion coefficients is found to be, in general, quite small or even negligible. For LBC and upper band chorus waves, the banded structures appear only in Landau resonance. The Dpp diffusion coefficient for ECH waves is one to two orders smaller than D alpha coefficients. For chorus waves, Dpp coefficients are about an order of magnitude smaller than D alpha coefficients for the case n does not = 0. In case of Landau resonance, the values of Dpp coefficient are generally larger than the values of D alpha coefficients particularly at lower energies. As an aid to the interpretation of results, we have also determined the resonant frequencies. For ECH waves, resonant frequencies have been estimated for wave normal angle 89 deg and harmonic resonances n = +1, +2, and +3, whereas for whistler mode waves, the frequencies have been calculated for angle

  17. Banded Structures in Electron Pitch Angle Diffusion Coefficients from Resonant Wave-Particle Interactions

    Science.gov (United States)

    Tripathi, A. K.; Singhal, R. P.; Khazanov, G. V.; Avanov, L. A.

    2016-01-01

    Electron pitch angle (D(sub (alpha alpha))) and momentum (D(sub pp)) diffusion coefficients have been calculated due to resonant interactions with electrostatic electron cyclotron harmonic (ECH) and whistler mode chorus waves. Calculations have been performed at two spatial locations L=4.6 and 6.8 for electron energies less than or equal to 10 keV. Landau (n=0) resonance and cyclotron harmonic resonances n= +/- 1, +/-2, ... +/-5 have been included in the calculations. It is found that diffusion coefficient versus pitch angle (alpha) profiles show large dips and oscillations or banded structures. The structures are more pronounced for ECH and lower band chorus (LBC) and particularly at location 4.6. Calculations of diffusion coefficients have also been performed for individual resonances. It is noticed that the main contribution of ECH waves in pitch angle diffusion coefficient is due to resonances n=+1 and n=+2. A major contribution to momentum diffusion coefficients appears from n=+2. However, the banded structures in D(sub alpha alpha) and D(sub pp) coefficients appear only in the profile of diffusion coefficients for n=+2. The contribution of other resonances to diffusion coefficients is found to be, in general, quite small or even negligible. For LBC and upper band chorus waves, the banded structures appear only in Landau resonance. The D(sub pp) diffusion coefficient for ECH waves is one to two orders smaller than D(sub alpha alpha) coefficients. For chorus waves, D(sub pp) coefficients are about an order of magnitude smaller than D(sub alpha alpha) coefficients for the case n does not equal 0. In case of Landau resonance, the values of D(sub pp) coefficient are generally larger than the values of D(sub alpha alpha) coefficients particularly at lower energies. As an aid to the interpretation of results, we have also determined the resonant frequencies. For ECH waves, resonant frequencies have been estimated for wave normal angle 89 deg and harmonic resonances

  18. Microtearing modes

    International Nuclear Information System (INIS)

    Garbet, X.; Mourgues, F.; Samain, A.; Zou, X.

    1990-01-01

    A serious degradation of confinement with additional heating is commonly observed on most tokamaks. The microtearing modes could provide an explanation for this experimental fact. They are driven linearly unstable by diamagnetism in collisional regimes, but it may be shown that the collisions in non linear regimes provide a small diffusion coefficient which can be only significant at the plasme edge. In the bulk of the plasma, the microtearing turbulence could play a basic role if it is unstable in the collisionless regime. While it is linearly stable without collisions, it could be driven unstable in realistic regimes by the radial diffusion it induces. To study this effect, we have used a model where the non linear action of the modes on a given helicity component is represented by a diffusion operator. They are found unstable for reasonable β p =2μ o nT/B 2 p , with a special radial profile of the potential vector A. The problem arises the validity of this model where non linearities in the trajectories behaviour are replaced by the diffusion which broadens resonances. To test this procedure, we calculate the actual electron distribution function when it is determined by the ergodicity of the field lines. We compute the correlations of the distribution function with the magnetic perturbation and compare them with the analytical expressions derived from the resonance broadening model. (author) 3 refs., 2 figs

  19. Simultaneous Cooperation and Competition in the Evolution of Musical Behavior: Sex-Related Modulations of the Singer's Formant in Human Chorusing

    Directory of Open Access Journals (Sweden)

    Peter E. Keller

    2017-09-01

    Full Text Available Human interaction through music is a vital part of social life across cultures. Influential accounts of the evolutionary origins of music favor cooperative functions related to social cohesion or competitive functions linked to sexual selection. However, work on non-human “chorusing” displays, as produced by congregations of male insects and frogs to attract female mates, suggests that cooperative and competitive functions may coexist. In such chorusing, rhythmic coordination between signalers, which maximizes the salience of the collective broadcast, can arise through competitive mechanisms by which individual males jam rival signals. Here, we show that mixtures of cooperative and competitive behavior also occur in human music. Acoustic analyses of the renowned St. Thomas Choir revealed that, in the presence of female listeners, boys with the deepest voices enhance vocal brilliance and carrying power by boosting high spectral energy. This vocal enhancement may reflect sexually mature males competing for female attention in a covert manner that does not undermine collaborative musical goals. The evolutionary benefits of music may thus lie in its aptness as a medium for balancing sexually motivated behavior and group cohesion.

  20. Parvalbumin-expressing interneurons can act solo while somatostatin-expressing interneurons act in chorus in most cases on cortical pyramidal cells.

    Science.gov (United States)

    Safari, Mir-Shahram; Mirnajafi-Zadeh, Javad; Hioki, Hiroyuki; Tsumoto, Tadaharu

    2017-10-06

    Neural circuits in the cerebral cortex consist primarily of excitatory pyramidal (Pyr) cells and inhibitory interneurons. Interneurons are divided into several subtypes, in which the two major groups are those expressing parvalbumin (PV) or somatostatin (SOM). These subtypes of interneurons are reported to play distinct roles in tuning and/or gain of visual response of pyramidal cells in the visual cortex. It remains unclear whether there is any quantitative and functional difference between the PV → Pyr and SOM → Pyr connections. We compared unitary inhibitory postsynaptic currents (uIPSCs) evoked by electrophysiological activation of single presynaptic interneurons with population IPSCs evoked by photo-activation of a mass of interneurons in vivo and in vitro in transgenic mice in which PV or SOM neurons expressed channelrhodopsin-2, and found that at least about 14 PV neurons made strong connections with a postsynaptic Pyr cell while a much larger number of SOM neurons made weak connections. Activation or suppression of single PV neurons modified visual responses of postsynaptic Pyr cells in 6 of 7 pairs whereas that of single SOM neurons showed no significant modification in 8 of 11 pairs, suggesting that PV neurons can act solo whereas most of SOM neurons may act in chorus on Pyr cells.

  1. First estimates of the probability of survival in a small-bodied, high-elevation frog (Boreal Chorus Frog, Pseudacris maculata), or how historical data can be useful

    Science.gov (United States)

    Muths, Erin L.; Scherer, R. D.; Amburgey, S. M.; Matthews, T.; Spencer, A. W.; Corn, P.S.

    2016-01-01

    In an era of shrinking budgets yet increasing demands for conservation, the value of existing (i.e., historical) data are elevated. Lengthy time series on common, or previously common, species are particularly valuable and may be available only through the use of historical information. We provide first estimates of the probability of survival and longevity (0.67–0.79 and 5–7 years, respectively) for a subalpine population of a small-bodied, ostensibly common amphibian, the Boreal Chorus Frog (Pseudacris maculata (Agassiz, 1850)), using historical data and contemporary, hypothesis-driven information–theoretic analyses. We also test a priori hypotheses about the effects of color morph (as suggested by early reports) and of drought (as suggested by recent climate predictions) on survival. Using robust mark–recapture models, we find some support for early hypotheses regarding the effect of color on survival, but we find no effect of drought. The congruence between early findings and our analyses highlights the usefulness of historical information in providing raw data for contemporary analyses and context for conservation and management decisions.

  2. A generalized two-fluid picture of non-driven collisionless reconnection and its relation to whistler waves

    Science.gov (United States)

    Yoon, Young Dae

    2017-10-01

    analyzing reconnection. A mechanism for whistler wave generation and propagation is also described, with comparisons to recent spacecraft observations. National Science Foundation under Award no. 1059519, Air Force Office of Scientific Research under Award No. FA9550-11-1-0184, U.S. Department of Energy Office of Science, Office of Fusion Energy Sciences under Award No. DE-FG02-04ER54755.

  3. Wave-Particle Interactions in the Radiation Belts, Aurora,and Solar Wind: Opportunities for Lab Experiments

    Science.gov (United States)

    Kletzing, C.

    2017-12-01

    The physics of the creation, loss, and transport of radiation belt particles is intimately connected to the electric and magnetic fields which mediate these processes. A large range of field and particle interactions are involved in this physics from large-scale ring current ion and magnetic field dynamics to microscopic kinetic interactions of whistler-mode chorus waves with energetic electrons. To measure these kinds of radiation belt interactions, NASA implemented the two-satellite Van Allen Probes mission. As part of the mission, the Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) investigation is an integrated set of instruments consisting of a triaxial fluxgate magnetometer (MAG) and a Waves instrument which includes a triaxial search coil magnetometer (MSC). We show a variety of waves thought to be important for wave particle interactionsin the radiation belts: low frequency ULF pulsations, EMIC waves, and whistler mode waves including upper and lower band chorus. Outside ofthe radiation belts, Alfven waves play a key role in both solar wind turbulenceand auroral particle acceleration. Several of these wave modes could benefit (or have benefitted) from laboratory studies to further refineour understanding of the detailed physics of the wave-particle interactionswhich lead to energization, pitch angle scattering, and cross-field transportWe illustrate some of the processes and compare the wave data with particle measurements to show relationships between wave activity and particle processobserved in the inner magnetosphere and heliosphere.

  4. Finding your mate at a cocktail party: frequency separation promotes auditory stream segregation of concurrent voices in multi-species frog choruses.

    Directory of Open Access Journals (Sweden)

    Vivek Nityananda

    Full Text Available Vocal communication in crowded social environments is a difficult problem for both humans and nonhuman animals. Yet many important social behaviors require listeners to detect, recognize, and discriminate among signals in a complex acoustic milieu comprising the overlapping signals of multiple individuals, often of multiple species. Humans exploit a relatively small number of acoustic cues to segregate overlapping voices (as well as other mixtures of concurrent sounds, like polyphonic music. By comparison, we know little about how nonhuman animals are adapted to solve similar communication problems. One important cue enabling source segregation in human speech communication is that of frequency separation between concurrent voices: differences in frequency promote perceptual segregation of overlapping voices into separate "auditory streams" that can be followed through time. In this study, we show that frequency separation (ΔF also enables frogs to segregate concurrent vocalizations, such as those routinely encountered in mixed-species breeding choruses. We presented female gray treefrogs (Hyla chrysoscelis with a pulsed target signal (simulating an attractive conspecific call in the presence of a continuous stream of distractor pulses (simulating an overlapping, unattractive heterospecific call. When the ΔF between target and distractor was small (e.g., ≤3 semitones, females exhibited low levels of responsiveness, indicating a failure to recognize the target as an attractive signal when the distractor had a similar frequency. Subjects became increasingly more responsive to the target, as indicated by shorter latencies for phonotaxis, as the ΔF between target and distractor increased (e.g., ΔF = 6-12 semitones. These results support the conclusion that gray treefrogs, like humans, can exploit frequency separation as a perceptual cue to segregate concurrent voices in noisy social environments. The ability of these frogs to segregate

  5. Use of clearance rate in Choromytilus chorus (Bivalvia: Mytilidae as a non-destructive biomarker of aquatic pollution El uso de la tasa de aclaramiento en Choromytilus chorus (Bivalvia: Mytilidae como biomarcador no destructivo de la polución acuática

    Directory of Open Access Journals (Sweden)

    BEATRIZ TORO

    2003-06-01

    Full Text Available Reduction in clearance rate was observed in the mussel Choromytilus chorus in relation to the degree of environmental pollution. Three sampling sites included the polluted San Vicente Bay, middling polluted Corral Bay, and weakly polluted Yaldad Bay in southern Chile. Pollution levels were estimated by quantitative analysis of polynuclear aromatic hydrocarbons (PAHs in mussel tissue from the three sites. Mussels from San Vicente showed lowest clearance rates and highest PAHs levels in both spring 1998 and summer 1999. Populations from Corral and Yaldad showed generally low levels of PAHs, so the mussels from Yaldad showed the highest rates of clearance in comparison to Corral and San Vicente populations. The significant negative relationship (P Se observó un deterioro de la tasa de aclaramiento en Choromytilus chorus de acuerdo al grado de polución ambiental. Se incluyeron tres sitios de muestreos, la bahía de San Vicente muy contaminada, la bahía de Corral con una polución intermedia y la bahía de Yaldad, al sur de Chile, con una baja contaminación. Los niveles de polución fueron estimados por análisis cuantitativos de hidrocarburos aromáticos polinucleares (HAPs en el tejido de los choros zapatos de los tres sitios de muestreo. Los choros zapatos de San Vicente mostraron la menor tasa de aclaramiento y altos niveles de HAPs, tanto en la primavera de 1998 como en el verano de 1999. Las poblaciones de Corral y Yaldad mostraron en general bajos niveles de HAPs, en tanto que los ejemplares de Yaldad presentaron altas tasas de aclaramiento en comparación con las poblaciones de Corral y San Vicente. La relación negativa significativa (P < 0,001 entre la polución en el tejido de los choros zapatos y sus tasas de aclaramiento, argumenta la utilidad del método como un biomarcador no destructivo para evaluar el impacto ambiental de la polución en las especies marinas

  6. Whistler intensities above thunderstorms

    Czech Academy of Sciences Publication Activity Database

    Fišer, Jiří; Chum, Jaroslav; Diendorfer, G.; Parrot, M.; Santolík, Ondřej

    2010-01-01

    Roč. 28, č. 1 (2010), s. 37-46 ISSN 0992-7689 R&D Projects: GA ČR GA205/09/1253 Institutional research plan: CEZ:AV0Z30420517 Keywords : Ionosphere (Wave propagation) * Meteorology and atmospheric dynamics ( Lightning ) * Radio science (Waves in plasma) Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.620, year: 2010 http://www.ann-geophys.net/28/37/2010/angeo-28-37-2010.pdf

  7. The Comprehensive Inner Magnetosphere-Ionosphere Model

    Science.gov (United States)

    Fok, M.-C.; Buzulukova, N. Y.; Chen, S.-H.; Glocer, A.; Nagai, T.; Valek, P.; Perez, J. D.

    2014-01-01

    Simulation studies of the Earth's radiation belts and ring current are very useful in understanding the acceleration, transport, and loss of energetic particles. Recently, the Comprehensive Ring Current Model (CRCM) and the Radiation Belt Environment (RBE) model were merged to form a Comprehensive Inner Magnetosphere-Ionosphere (CIMI) model. CIMI solves for many essential quantities in the inner magnetosphere, including ion and electron distributions in the ring current and radiation belts, plasmaspheric density, Region 2 currents, convection potential, and precipitation in the ionosphere. It incorporates whistler mode chorus and hiss wave diffusion of energetic electrons in energy, pitch angle, and cross terms. CIMI thus represents a comprehensive model that considers the effects of the ring current and plasmasphere on the radiation belts. We have performed a CIMI simulation for the storm on 5-9 April 2010 and then compared our results with data from the Two Wide-angle Imaging Neutral-atom Spectrometers and Akebono satellites. We identify the dominant energization and loss processes for the ring current and radiation belts. We find that the interactions with the whistler mode chorus waves are the main cause of the flux increase of MeV electrons during the recovery phase of this particular storm. When a self-consistent electric field from the CRCM is used, the enhancement of MeV electrons is higher than when an empirical convection model is applied. We also demonstrate how CIMI can be a powerful tool for analyzing and interpreting data from the new Van Allen Probes mission.

  8. H-mode physics

    International Nuclear Information System (INIS)

    Itoh, Sanae.

    1991-06-01

    After the discovery of the H-mode in ASDEX ( a tokamak in Germany ) the transition between the L-mode ( Low confinement mode ) and H-mode ( High confinement mode ) has been observed in many tokamaks in the world. The H-mode has made a breakthrough in improving the plasma parameters and has been recognized to be a universal phenomena. Since its discovery, the extensive studies both in experiments and in theory have been made. The research on H-mode has been casting new problems of an anomalous transport across the magnetic surface. This series of lectures will provide a brief review of experiments for explaining H-mode and a model theory of H-mode transition based on the electric field bifurcation. If the time is available, a new theoretical model of the temporal evolution of the H-mode will be given. (author)

  9. Interaction of tearing modes

    International Nuclear Information System (INIS)

    Satya, Y.; Schmidt, G.

    1979-01-01

    A fully developed tearing mode modifies the magnetic field profile. The effect of this profile modification on the linear growth rate of a different tearing mode in a slab and cylindrical geometry is investigated

  10. Streaming tearing mode

    Science.gov (United States)

    Shigeta, M.; Sato, T.; Dasgupta, B.

    1985-01-01

    The magnetohydrodynamic stability of streaming tearing mode is investigated numerically. A bulk plasma flow parallel to the antiparallel magnetic field lines and localized in the neutral sheet excites a streaming tearing mode more strongly than the usual tearing mode, particularly for the wavelength of the order of the neutral sheet width (or smaller), which is stable for the usual tearing mode. Interestingly, examination of the eigenfunctions of the velocity perturbation and the magnetic field perturbation indicates that the streaming tearing mode carries more energy in terms of the kinetic energy rather than the magnetic energy. This suggests that the streaming tearing mode instability can be a more feasible mechanism of plasma acceleration than the usual tearing mode instability.

  11. Single-Mode VCSELs

    Science.gov (United States)

    Larsson, Anders; Gustavsson, Johan S.

    The only active transverse mode in a truly single-mode VCSEL is the fundamental mode with a near Gaussian field distribution. A single-mode VCSEL produces a light beam of higher spectral purity, higher degree of coherence and lower divergence than a multimode VCSEL and the beam can be more precisely shaped and focused to a smaller spot. Such beam properties are required in many applications. In this chapter, after discussing applications of single-mode VCSELs, we introduce the basics of fields and modes in VCSELs and review designs implemented for single-mode emission from VCSELs in different materials and at different wavelengths. This includes VCSELs that are inherently single-mode as well as inherently multimode VCSELs where higher-order modes are suppressed by mode selective gain or loss. In each case we present the current state-of-the-art and discuss pros and cons. At the end, a specific example with experimental results is provided and, as a summary, the most promising designs based on current technologies are identified.

  12. Double-mode pulsation

    International Nuclear Information System (INIS)

    Cox, A.N.

    1982-01-01

    Double mode pulsation is a very pervasive phenomenon in stars all over the Hertzsprung-Russell diagram. In order of increasing radius, examples are: ZZ Ceti stars, the sun, the delta Scuti stars, RR Lyrae variables, the β Cephei variables and those related to them, Cepheids, and maybe even the Mira stars. These many modes have been interpreted as both radial and nonradial modes, but in many cases the actual mode has not been clearly identified. Yellow giants seem to be the most simple pulsators with a large majority of the RR Lyrae variables and Cepheids showing only one pulsation period. We limit this review to those very few cases for classical Cepheids and RR Lyrae variables which display two modes. For these we know many facts about these stars, but the actual cause of the pulsation in two modes simultaneously remains unknown

  13. Streaming gravity mode instability

    International Nuclear Information System (INIS)

    Wang Shui.

    1989-05-01

    In this paper, we study the stability of a current sheet with a sheared flow in a gravitational field which is perpendicular to the magnetic field and plasma flow. This mixing mode caused by a combined role of the sheared flow and gravity is named the streaming gravity mode instability. The conditions of this mode instability are discussed for an ideal four-layer model in the incompressible limit. (author). 5 refs

  14. Dual-Mode Combustor

    Science.gov (United States)

    Trefny, Charles J (Inventor); Dippold, Vance F (Inventor)

    2013-01-01

    A new dual-mode ramjet combustor used for operation over a wide flight Mach number range is described. Subsonic combustion mode is usable to lower flight Mach numbers than current dual-mode scramjets. High speed mode is characterized by supersonic combustion in a free-jet that traverses the subsonic combustion chamber to a variable nozzle throat. Although a variable combustor exit aperture is required, the need for fuel staging to accommodate the combustion process is eliminated. Local heating from shock-boundary-layer interactions on combustor walls is also eliminated.

  15. Antipastorialism : Resistant Georgic Mode

    National Research Council Canada - National Science Library

    Zimmerman, Donald

    2000-01-01

    .... Abolitionists, women, Afro-British slaves, and those who protested land enclosure developed a multivalent, resistant mode of writing, which I name 'antipastoralism', that countered orthodox, poetical...

  16. Nonlinear drift tearing mode

    International Nuclear Information System (INIS)

    Zelenyj, L.M.; Kuznetsova, M.M.

    1989-01-01

    Nonlinear study of magnetic perturbation development under single-mode conditions in collision-free plasma in configurations with the magnetic field shear is investigated. Results are obtained with regard of transverse component of electrical field and its effect on ion dynamics within wide range of ion Larmor radius value and values of magnetic field shear. Increments of nonlinear drift tearing mode are obtained and it is shown that excitation drastic conditions of even linearly stable modes are possible. Mechanism of instability nonlinear stabilization is considered and the value of magnetic island at the saturation threshold is estimeted. Energy of nonlinear drift tearing mode is discussed

  17. Microwave plasma mode conversion

    International Nuclear Information System (INIS)

    Torres, H.S.; Sakanaka, P.H.; Villarroel, C.H.

    1985-01-01

    The behavior of hot electrons during the process of laser-produced plasma is studied. The basic equations of mode conversion from electromagnetic waves to electrostatic waves are presented. It is shown by mode conversion, that, the resonant absorption and parametric instabilities appear simultaneously, but in different plasma regions. (M.C.K.) [pt

  18. Excursions through KK modes

    Energy Technology Data Exchange (ETDEWEB)

    Furuuchi, Kazuyuki [Manipal Centre for Natural Sciences, Manipal University,Manipal, Karnataka 576104 (India)

    2016-07-07

    In this article we study Kaluza-Klein (KK) dimensional reduction of massive Abelian gauge theories with charged matter fields on a circle. Since local gauge transformations change position dependence of the charged fields, the decomposition of the charged matter fields into KK modes is gauge dependent. While whole KK mass spectrum is independent of the gauge choice, the mode number depends on the gauge. The masses of the KK modes also depend on the field value of the zero-mode of the extra dimensional component of the gauge field. In particular, one of the KK modes in the KK tower of each massless 5D charged field becomes massless at particular values of the extra-dimensional component of the gauge field. When the extra-dimensional component of the gauge field is identified with the inflaton, this structure leads to recursive cosmological particle productions.

  19. Excursions through KK modes

    International Nuclear Information System (INIS)

    Furuuchi, Kazuyuki

    2016-01-01

    In this article we study Kaluza-Klein (KK) dimensional reduction of massive Abelian gauge theories with charged matter fields on a circle. Since local gauge transformations change position dependence of the charged fields, the decomposition of the charged matter fields into KK modes is gauge dependent. While whole KK mass spectrum is independent of the gauge choice, the mode number depends on the gauge. The masses of the KK modes also depend on the field value of the zero-mode of the extra dimensional component of the gauge field. In particular, one of the KK modes in the KK tower of each massless 5D charged field becomes massless at particular values of the extra-dimensional component of the gauge field. When the extra-dimensional component of the gauge field is identified with the inflaton, this structure leads to recursive cosmological particle productions.

  20. Effect of modes interaction on the resistive wall mode stability

    International Nuclear Information System (INIS)

    Chen Longxi; Wu Bin

    2013-01-01

    Effects of modes interaction on the resistive wall mode (RWM) stability are studied. When considering the modes interaction effects, the linear growth rate of the most unstable (3, 1) mode decreases. After linear evolution, the RWM saturates at the nonlinear phase. The saturation can be attributed to flux piling up on the resistive wall. When some modes exist, the (3, 1) mode saturates at lower level compared with single mode evolution. Meanwhile, the magnetic energy of the (5, 2) mode increases correspondingly, but the magnetic energy saturation level of the (2, 1) mode changes weakly. (authors)

  1. Surface modes in physics

    CERN Document Server

    Sernelius, Bo E

    2011-01-01

    Electromagnetic surface modes are present at all surfaces and interfaces between material of different dielectric properties. These modes have very important effects on numerous physical quantities: adhesion, capillary force, step formation and crystal growth, the Casimir effect etc. They cause surface tension and wetting and they give rise to forces which are important e.g. for the stability of colloids.This book is a useful and elegant approach to the topic, showing how the concept of electromagnetic modes can be developed as a unifying theme for a range of condensed matter physics. The

  2. Study of complex modes

    International Nuclear Information System (INIS)

    Pastrnak, J.W.

    1986-01-01

    This eighteen-month study has been successful in providing the designer and analyst with qualitative guidelines on the occurrence of complex modes in the dynamics of linear structures, and also in developing computer codes for determining quantitatively which vibration modes are complex and to what degree. The presence of complex modes in a test structure has been verified. Finite element analysis of a structure with non-proportional dumping has been performed. A partial differential equation has been formed to eliminate possible modeling errors

  3. Switch mode power supply

    International Nuclear Information System (INIS)

    Kim, Hui Jun

    1993-06-01

    This book concentrates on switch mode power supply. It has four parts, which are introduction of switch mode power supply with DC-DC converter such as Buck converter boost converter, Buck-boost converter and PWM control circuit, explanation for SMPS with DC-DC converter modeling and power mode control, resonance converter like resonance switch, converter, multi resonance converter and series resonance and parallel resonance converters, basic test of SMPS with PWM control circuit, Buck converter, Boost converter, flyback converter, forward converter and IC for control circuit.

  4. Higher Order Mode Fibers

    DEFF Research Database (Denmark)

    Israelsen, Stine Møller

    This PhD thesis considers higher order modes (HOMs) in optical fibers. That includes their excitation and characteristics. Within the last decades, HOMs have been applied both for space multiplexing in optical communications, group velocity dispersion management and sensing among others......-radial polarization as opposed to the linear polarization of the LP0X modes. The effect is investigated numerically in a double cladding fiber with an outer aircladding using a full vectorial modesolver. Experimentally, the bowtie modes are excited using a long period grating and their free space characteristics...... and polarization state are investigated. For this fiber, the onset of the bowtie effect is shown numerically to be LP011. The characteristics usually associated with Bessel-likes modes such as long diffraction free length and selfhealing are shown to be conserved despite the lack of azimuthal symmetry...

  5. Propagating annular modes

    Science.gov (United States)

    Sheshadri, A.; Plumb, R. A.

    2017-12-01

    The leading "annular mode", defined as the dominant EOF of surface pressure or of zonal mean zonal wind variability, appears as a dipolar structure straddling the mean midlatitude jet and thus seems to describe north-south wobbling of the jet latitude. However, extratropical zonal wind anomalies frequently tend to migrate poleward. This behavior can be described by the first two EOFs, the first (AM1) being the dipolar structure, and the second (AM2) having a tripolar structure centered on the mean jet. Taken in isolation, AM1 thus describes a north-south wobbling of the jet position, while AM2 describes a strengthening and narrowing of the jet. However, despite the fact that they are spatially orthogonal, and their corresponding time series temporally orthogonal, AM1 and AM2 are not independent, but show significant lag-correlations which reveal the propagation. The EOFs are not modes of the underlying dynamical system governing the zonal flow evolution. The true modes can be estimated using principal oscillation pattern (POP) analysis. In the troposphere, the leading POPs manifest themselves as a pair of complex conjugate structures with conjugate eigenvalues thus, in reality, constituting a single, complex, mode that describes propagating anomalies. Even though the principal components associated with the two leading EOFs decay at different rates, each decays faster than the true mode. These facts have implications for eddy feedback and the susceptibility of the mode to external perturbations. If one interprets the annular modes as the modes of the system, then simple theory predicts that the response to steady forcing will usually be dominated by AM1 (with the longest time scale). However, such arguments should really be applied to the true modes. Experiments with a simplified GCM show that climate response to perturbations do not necessarily have AM1 structures. Implications of these results for stratosphere-troposphere interactions are explored. The POP

  6. Collective Lyapunov modes

    International Nuclear Information System (INIS)

    Takeuchi, Kazumasa A; Chaté, Hugues

    2013-01-01

    We show, using covariant Lyapunov vectors in addition to standard Lyapunov analysis, that there exists a set of collective Lyapunov modes in large chaotic systems exhibiting collective dynamics. Associated with delocalized Lyapunov vectors, they act collectively on the trajectory and hence characterize the instability of its collective dynamics. We further develop, for globally coupled systems, a connection between these collective modes and the Lyapunov modes in the corresponding Perron–Frobenius equation. We thereby address the fundamental question of the effective dimension of collective dynamics and discuss the extensivity of chaos in the presence of collective dynamics. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Lyapunov analysis: from dynamical systems theory to applications’. (paper)

  7. Sliding mode control and observation

    CERN Document Server

    Shtessel, Yuri; Fridman, Leonid; Levant, Arie

    2014-01-01

    The sliding mode control methodology has proven effective in dealing with complex dynamical systems affected by disturbances, uncertainties and unmodeled dynamics. Robust control technology based on this methodology has been applied to many real-world problems, especially in the areas of aerospace control, electric power systems, electromechanical systems, and robotics. Sliding Mode Control and Observation represents the first textbook that starts with classical sliding mode control techniques and progresses toward newly developed higher-order sliding mode control and observation algorithms and their applications. The present volume addresses a range of sliding mode control issues, including: *Conventional sliding mode controller and observer design *Second-order sliding mode controllers and differentiators *Frequency domain analysis of conventional and second-order sliding mode controllers *Higher-order sliding mode controllers and differentiators *Higher-order sliding mode observers *Sliding mode disturbanc...

  8. Mode selection laser

    DEFF Research Database (Denmark)

    2014-01-01

    spatial reflector variations, may be combined to generate a laser beam containing a plurality of orthogonal modes. The laser beam may be injected into a few- mode optical fiber, e.g. for the purpose of optical communication. The VCSEL may have intra-cavity contacts (31,37) and a Tunnel junction (33......) for current confinement into the active layer (34). An air-gap layer (102) may be provided between the upper reflector (15) and the SOI wafer (50) acting as a substrate. The lower reflector may be designed as a high-contrast grating (51) by etching....

  9. Magnetic modes in superlattices

    International Nuclear Information System (INIS)

    Oliveira, F.A.

    1990-04-01

    A first discussion of reciprocal propagation of magnetic modes in a superlattice is presented. In the absence of an applied external magnetic field a superllatice made of alternate layers of the type antiferromagnetic-non-magnetic materials presents effects similar to those of phonons in a dielectric superlattice. (A.C.A.S.) [pt

  10. Thermodynamics of Radiation Modes

    Science.gov (United States)

    Pina, Eduardo; de la Selva, Sara Maria Teresa

    2010-01-01

    We study the equilibrium thermodynamics of the electromagnetic radiation in a cavity of a given volume and temperature. We found three levels of description, the thermodynamics of one mode, the thermodynamics of the distribution of frequencies in a band by summing over the frequencies in it and the global thermodynamics by summing over all the…

  11. Thermal Operating Modes

    International Nuclear Information System (INIS)

    Bechtel SAIC Company

    2002-01-01

    Higher and lower temperature operating modes (e.g., above and below the boiling point of water) are alternative approaches to managing the heat produced by the radioactive decay of spent nuclear fuel. Current analyses indicate that a repository at the Yucca Mountain site is likely to comply with applicable safety standards regardless of the particular thermal operating mode. Both modes have potential advantages and disadvantages. With a higher temperature operating mode (HTOM), waste packages (WPs) can be placed closer together. This reduces the number of drifts, the required emplacement area, construction costs, and occupational risks to construction workers. In addition, the HTOM would minimize the amount of water that might contact the waste for hundreds of years after closure. On the other hand, higher temperatures introduce uncertainties in the understanding of the long-term performance of the repository because of uncertainties in the thermal effects on WP lifetime and the near-field environment around the drifts. A lower temperature operating mode (LTOM) has the potential to reduce uncertainties in long-term performance of the repository by limiting the effects of temperature on WP lifetime and on the near-field environment around the drifts. Depending on the combination of operating parameters, a LTOM could require construction of additional drifts, a larger emplacement area, increased construction costs, increased occupational risks to construction works, and a longer period of ventilation than a HTOM. The repository design for the potential Yucca Mountain site is flexible and can be constructed and operated in various operating modes to achieve specific technical objectives, accommodate future policy decisions, and use of new information. For example, the flexible design can be operated across a range of temperatures and can be tailored to achieve specific thermal requirements in the future. To accommodate future policy decisions, the repository can be

  12. The Properties of Lion Roars and Electron Dynamics in Mirror Mode Waves Observed by the Magnetospheric MultiScale Mission

    Science.gov (United States)

    Breuillard, H.; Le Contel, O.; Chust, T.; Berthomier, M.; Retino, A.; Turner, D. L.; Nakamura, R.; Baumjohann, W.; Cozzani, G.; Catapano, F.; Alexandrova, A.; Mirioni, L.; Graham, D. B.; Argall, M. R.; Fischer, D.; Wilder, F. D.; Gershman, D. J.; Varsani, A.; Lindqvist, P.-A.; Khotyaintsev, Yu. V.; Marklund, G.; Ergun, R. E.; Goodrich, K. A.; Ahmadi, N.; Burch, J. L.; Torbert, R. B.; Needell, G.; Chutter, M.; Rau, D.; Dors, I.; Russell, C. T.; Magnes, W.; Strangeway, R. J.; Bromund, K. R.; Wei, H.; Plaschke, F.; Anderson, B. J.; Le, G.; Moore, T. E.; Giles, B. L.; Paterson, W. R.; Pollock, C. J.; Dorelli, J. C.; Avanov, L. A.; Saito, Y.; Lavraud, B.; Fuselier, S. A.; Mauk, B. H.; Cohen, I. J.; Fennell, J. F.

    2018-01-01

    Mirror mode waves are ubiquitous in the Earth's magnetosheath, in particular behind the quasi-perpendicular shock. Embedded in these nonlinear structures, intense lion roars are often observed. Lion roars are characterized by whistler wave packets at a frequency ˜100 Hz, which are thought to be generated in the magnetic field minima. In this study, we make use of the high time resolution instruments on board the Magnetospheric MultiScale mission to investigate these waves and the associated electron dynamics in the quasi-perpendicular magnetosheath on 22 January 2016. We show that despite a core electron parallel anisotropy, lion roars can be generated locally in the range 0.05-0.2fce by the perpendicular anisotropy of electrons in a particular energy range. We also show that intense lion roars can be observed up to higher frequencies due to the sharp nonlinear peaks of the signal, which appear as sharp spikes in the dynamic spectra. As a result, a high sampling rate is needed to estimate correctly their amplitude, and the latter might have been underestimated in previous studies using lower time resolution instruments. We also present for the first-time 3-D high time resolution electron velocity distribution functions in mirror modes. We demonstrate that the dynamics of electrons trapped in the mirror mode structures are consistent with the Kivelson and Southwood (1996) model. However, these electrons can also interact with the embedded lion roars: first signatures of electron quasi-linear pitch angle diffusion and possible signatures of nonlinear interaction with high-amplitude wave packets are presented. These processes can lead to electron untrapping from mirror modes.

  13. Observations on resistive wall modes

    International Nuclear Information System (INIS)

    Gerwin, R.A.; Finn, J.M.

    1996-01-01

    Several results on resistive wall modes and their application to tokamaks are presented. First, it is observed that in the presence of collisional parallel dynamics there is an exact cancellation to lowest order of the dissipative and sound wave effects for an ideal Ohm's law. This is easily traced to the fact that the parallel dynamics occurs along the perturbed magnetic field lines for such electromagnetic modes. Such a cancellation does not occur in the resistive layer of a tearing-like mode. The relevance to models for resistive wall modes using an electrostatic Hammett-Perkins type operator to model Landau damping will be discussed. Second, we observe that with an ideal Ohm's law, resistive wall modes can be destabilized by rotation in that part of parameter space in which the ideal MHD modes are stable with the wall at infinity. This effect can easily be explained by interpreting the resistive wall instability in terms of mode coupling between the backward stable MHD mode and a stable mode locked into the wall. Such an effect can occur for very small rotation for tearing-resistive wall modes in which inertia dominates viscosity in the layer, but the mode is stabilized by further rotation. For modes for which viscosity dominates in the layer, rotation is purely stabilizing. For both tearing models, a somewhat higher rotation frequency gives stability essentially whenever the tearing mode is stable with a perfectly conducting wall. These tearing/resistive wall results axe also simply explained in terms of mode coupling. It has been shown that resonant external ideal modes can be stabilized in the presence of resistive wall and resistive plasma with rotation of order the nominal tearing mode growth rate. We show that these modes behave as resistive wall tearing modes in the sense above. This strengthens the suggestion that rotational stabilization of the external kink with a resistive wall is due to the presence of resistive layers, even for ideal modes

  14. The strange physics of low frequency mirror mode turbulence in the high temperature plasma of the magnetosheath

    Directory of Open Access Journals (Sweden)

    R. A. Treumann

    2004-01-01

    in mirror modes and redistribute energy (cf. for instance, Chisham et al. 1998. Such trapped electrons excite banded whistler wave emission known under the name of lion roars and indicating that the mirror modes contain a trapped particle component while leading to the splitting of particle distributions (see Baumjohann et al., 1999 into trapped and passing particles. The most amazing fact about mirror modes is, however, that they evolve in the practically fully collisionless regime of high temperature plasma where it is on thermodynamic reasons entirely impossible to expel any magnetic field from the plasma. The fact that magnetic fields are indeed locally extracted makes mirror modes similar to 'superconducting' structures in matter as known only at extremely low temperatures. Of course, microscopic quantum effects do not play a role in mirror modes. However, it seems that all mirror structures have typical scales of the order of the ion inertial length which implies that mirrors evolve in a regime where the transverse ion and electron motions decouple. In this case the Hall kinetics comes into play. We estimate that in the marginally stationary nonlinear state of the evolution of mirror modes the modes become stretched along the magnetic field with k||=0 and that a small number the order of a few percent of the particle density is responsible only for the screening of the field from the interior of the mirror bubbles.

  15. Boosting Majorana Zero Modes

    Directory of Open Access Journals (Sweden)

    Torsten Karzig

    2013-11-01

    Full Text Available One-dimensional topological superconductors are known to host Majorana zero modes at domain walls terminating the topological phase. Their non-Abelian nature allows for processing quantum information by braiding operations that are insensitive to local perturbations, making Majorana zero modes a promising platform for topological quantum computation. Motivated by the ultimate goal of executing quantum-information processing on a finite time scale, we study domain walls moving at a constant velocity. We exploit an effective Lorentz invariance of the Hamiltonian to obtain an exact solution of the associated quasiparticle spectrum and wave functions for arbitrary velocities. Essential features of the solution have a natural interpretation in terms of the familiar relativistic effects of Lorentz contraction and time dilation. We find that the Majorana zero modes remain stable as long as the domain wall moves at subluminal velocities with respect to the effective speed of light of the system. However, the Majorana bound state dissolves into a continuous quasiparticle spectrum after the domain wall propagates at luminal or even superluminal velocities. This relativistic catastrophe implies that there is an upper limit for possible braiding frequencies even in a perfectly clean system with an arbitrarily large topological gap. We also exploit our exact solution to consider domain walls moving past static impurities present in the system.

  16. Guaranteed performance in reaching mode of sliding mode ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    addresses the design of constant plus proportional rate reaching law-based SMC for second-order ... Reaching mode; sliding mode controlled systems; output tracking ... The uncertainty in the input distribution function g is expressed as.

  17. Mode-to-mode energy transfers in convective patterns

    Indian Academy of Sciences (India)

    Abstract. We investigate the energy transfer between various Fourier modes in a low- dimensional model for thermal convection. We have used the formalism of mode-to-mode energy transfer rate in our calculation. The evolution equations derived using this scheme is the same as those derived using the hydrodynamical ...

  18. Azimuthal decomposition of optical modes

    CSIR Research Space (South Africa)

    Dudley, Angela L

    2012-07-01

    Full Text Available This presentation analyses the azimuthal decomposition of optical modes. Decomposition of azimuthal modes need two steps, namely generation and decomposition. An azimuthally-varying phase (bounded by a ring-slit) placed in the spatial frequency...

  19. Localized Acoustic Surface Modes

    KAUST Repository

    Farhat, Mohamed

    2015-08-04

    We introduce the concept of localized acoustic surface modes (ASMs). We demonstrate that they are induced on a two-dimensional cylindrical rigid surface with subwavelength corrugations under excitation by an incident acoustic plane wave. Our results show that the corrugated rigid surface is acoustically equivalent to a cylindrical scatterer with uniform mass density that can be represented using a Drude-like model. This, indeed, suggests that plasmonic-like acoustic materials can be engineered with potential applications in various areas including sensing, imaging, and cloaking.

  20. Raman amplification of OAM modes

    DEFF Research Database (Denmark)

    Ingerslev, Kasper; Gregg, Patrick; Galili, Michael

    2017-01-01

    The set of fibre modes carrying orbital angular momentum (OAM) is a possible basis for mode division multiplexing. In this regard, fibres supporting OAM modes have been fabricated [1], and optical communication using these fibres, has been demonstrated [2]. A vital part of any long range...

  1. ACCA College English Teaching Mode

    Science.gov (United States)

    Ding, Renlun

    2008-01-01

    This paper elucidates a new college English teaching mode--"ACCA" (Autonomous Cooperative Class-teaching All-round College English Teaching Mode). Integrated theories such as autonomous learning and cooperative learning into one teaching mode, "ACCA", which is being developed and advanced in practice as well, is the achievement…

  2. Fluxon modes in superconducting multilayers

    DEFF Research Database (Denmark)

    Pedersen, Niels Falsig; Madsen, Søren Peder

    2004-01-01

    We show how to construct fluxon modes from plasma modes in the inductively coupled stacked Josephson junctions, and consider some special cases of these fluxon modes analytically. In some cases we can find exact analytical solutions when we choose the bias current in a special way. We also consid...

  3. Standardization of Keyword Search Mode

    Science.gov (United States)

    Su, Di

    2010-01-01

    In spite of its popularity, keyword search mode has not been standardized. Though information professionals are quick to adapt to various presentations of keyword search mode, novice end-users may find keyword search confusing. This article compares keyword search mode in some major reference databases and calls for standardization. (Contains 3…

  4. Spin and isospin modes

    International Nuclear Information System (INIS)

    Suzuki, T.; Sagawa, H.

    2000-01-01

    Complete text of publication follows. Spin and isospin modes in nuclei are investigated. We discuss some of the following topics. 1. Spin-dipole excitations in 12 C and 16 O are studied (1). Effects of tensor and spin-orbit interactions on the distribution of the strengths are investigated, and neutral current neutrino scattering cross sections in 16 O are obtained for heavy-flavor neutrinos from the supernovae. 2. Gamow-Teller (GT) and spin-dipole (SD) modes in 208 Bi are investigated. Quenching and fragmentation of the GT strength are discussed (2). SD excitations and electric dipole (E1) transitions between the GT and SD states are studied (3). Calculated E1 strengths are compared with the sum rule values obtained within the 1p-1h and 1p-1h + 2p-2h configuration spaces. 3. Coulomb displacement energy (CDE) of the IAS of 14 Be is calculated, and the effects of the halo on the CDE and the configuration of the halo state are investigated. 4. Spreading width of IAS and isospin dependence of the width are investigated (4). Our formula for the width explains very well the observed isospin dependence (5). (author)

  5. Modes of fossil preservation

    Science.gov (United States)

    Schopf, J.M.

    1975-01-01

    The processes of geologic preservation are important for understanding the organisms represented by fossils. Some fossil differences are due to basic differences in organization of animals and plants, but the interpretation of fossils has also tended to be influenced by modes of preservation. Four modes of preservation generally can be distinguished: (1) Cellular permineralization ("petrifaction") preserves anatomical detail, and, occasionally, even cytologic structures. (2) Coalified compression, best illustrated by structures from coal but characteristic of many plant fossils in shale, preserves anatomical details in distorted form and produces surface replicas (impressions) on enclosing matrix. (3) Authigenic preservation replicates surface form or outline (molds and casts) prior to distortion by compression and, depending on cementation and timing, may intergrade with fossils that have been subject to compression. (4) Duripartic (hard part) preservation is characteristic of fossil skeletal remains, predominantly animal. Molds, pseudomorphs, or casts may form as bulk replacements following dissolution of the original fossil material, usually by leaching. Classification of the kinds of preservation in fossils will aid in identifying the processes responsible for modifying the fossil remains of both animals and plants. ?? 1975.

  6. Surface tearing modes in tokamaks

    International Nuclear Information System (INIS)

    Takizuka, Tomonori; Kurita, Gen-ichi; Azumi, Masafumi; Takeda, Tatsuoki

    1985-10-01

    Surface tearing modes in tokamaks are studied numerically and analytically. The eigenvalue problem is solved to obtain the growth rate and the mode structure. We investigate in detail dependences of the growth rate of the m/n = 2/1 resistive MHD modes on the safety factor at the plasma surface, current profile, wall position, and resistivity. The surface tearing mode moves the plasma surface even when the wall is close to the surface. The stability diagram for these modes is presented. (author)

  7. Short-duration Electron Precipitation Studied by Test Particle Simulation

    Directory of Open Access Journals (Sweden)

    Jaejin Lee

    2015-12-01

    Full Text Available Energy spectra of electron microbursts from 170 keV to 340 keV have been measured by the solid-state detectors aboard the low-altitude (680 km polar-orbiting Korean STSAT-1 (Science and Technology SATellite. These measurements have revealed two important characteristics unique to the microbursts: (1 They are produced by a fast-loss cone-filling process in which the interaction time for pitch-angle scattering is less than 50 ms and (2 The e-folding energy of the perpendicular component is larger than that of the parallel component, and the loss cone is not completely filled by electrons. To understand how wave-particle interactions could generate microbursts, we performed a test particle simulation and investigated how the waves scattered electron pitch angles within the timescale required for microburst precipitation. The application of rising-frequency whistler-mode waves to electrons of different energies moving in a dipole magnetic field showed that chorus magnetic wave fields, rather than electric fields, were the main cause of microburst events, which implied that microbursts could be produced by a quasi-adiabatic process. In addition, the simulation results showed that high-energy electrons could resonate with chorus waves at high magnetic latitudes where the loss cone was larger, which might explain the decreased e-folding energy of precipitated microbursts compared to that of trapped electrons.

  8. Pramana – Journal of Physics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    It is shown that a gyrating ion-beam frequency upconverts the whistler waves separated by harmonics of beam gyro-frequency. The expression for the growth rate of whistler mode waves has been derived. In Case 1, a high-amplitude whistler wave decays into two lower frequency waves, called a low-frequency mode and a ...

  9. Whistlers, helicons, and lower hybrid waves: The physics of radio frequency wave propagation and absorption for current drive via Landau damping

    International Nuclear Information System (INIS)

    Pinsker, R. I.

    2015-01-01

    This introductory-level tutorial article describes the application of plasma waves in the lower hybrid range of frequencies (LHRF) for current drive in tokamaks. Wave damping mechanisms in a nearly collisionless hot magnetized plasma are briefly described, and the connections between the properties of the damping mechanisms and the optimal choices of wave properties (mode, frequency, wavelength) are explored. The two wave modes available for current drive in the LHRF are described and compared. The terms applied to these waves in different applications of plasma physics are elucidated. The character of the ray paths of these waves in the LHRF is illustrated in slab and toroidal geometries. Applications of these ideas to experiments in the DIII-D tokamak are discussed

  10. Pitch Angle Scattering of Energetic Electrons by Plasmaspheric Hiss Emissions

    Science.gov (United States)

    Tobita, M.; Omura, Y.; Summers, D.

    2017-12-01

    We study scattering of energetic electrons in pitch angles and kinetic energies through their resonance with plasmaspheric hiss emissions consisting of many coherent discrete whistler-mode wave packets with rising and falling frequencies [1,2,3]. Using test particle simulations, we evaluate the efficiency of scattering, which depends on the inhomogeneity ratio S of whistler mode wave-particle interaction [4]. The value of S is determined by the wave amplitude, frequency sweep rate, and the gradient of the background magnetic field. We first modulate those parameters and observe variations of pitch angles and kinetic energies of electrons with a single wave under various S values so as to obtain basic understanding. We then include many waves into the system to simulate plasmaspheric hiss emissions. As the wave packets propagate away from the magnetic equator, the nonlinear trapping potential at the resonance velocity is deformed, making a channel of gyrophase for untrapped electrons to cross the resonance velocity, and causing modulations in their pitch angles and kinetic energies. We find efficient scattering of pitch angles and kinetic energies because of coherent nonlinear wave-particle interaction, resulting in electron precipitations into the polar atmosphere. We compare the results with the bounce averaged pitch angle diffusion coefficient based on quasi-linear theory, and show that the nonlinear wave model with many coherent packets can cause scattering of resonant electrons much faster than the quasi-linear diffusion process. [1] Summers, D., Omura, Y., Nakamura, S., and C. A. Kletzing (2014), Fine structure of plasmaspheric hiss, J. Geophys. Res., 119, 9134-9149. [2] Omura, Y., Y. Miyashita, M. Yoshikawa, D. Summers, M. Hikishima, Y. Ebihara, and Y. Kubota (2015), Formation process of relativistic electron flux through interaction with chorus emissions in the Earth's inner magnetosphere, J. Geophys. Res. Space Physics, 120, 9545-9562. [3] Nakamura, S., Y

  11. The Integrated Mode Management Interface

    Science.gov (United States)

    Hutchins, Edwin

    1996-01-01

    Mode management is the processes of understanding the character and consequences of autoflight modes, planning and selecting the engagement, disengagement and transitions between modes, and anticipating automatic mode transitions made by the autoflight system itself. The state of the art is represented by the latest designs produced by each of the major airframe manufacturers, the Boeing 747-400, the Boeing 777, the McDonnell Douglas MD-11, and the Airbus A320/A340 family of airplanes. In these airplanes autoflight modes are selected by manipulating switches on the control panel. The state of the autoflight system is displayed on the flight mode annunciators. The integrated mode management interface (IMMI) is a graphical interface to autoflight mode management systems for aircraft equipped with flight management computer systems (FMCS). The interface consists of a vertical mode manager and a lateral mode manager. Autoflight modes are depicted by icons on a graphical display. Mode selection is accomplished by touching (or mousing) the appropriate icon. The IMMI provides flight crews with an integrated interface to autoflight systems for aircraft equipped with flight management computer systems (FMCS). The current version is modeled on the Boeing glass-cockpit airplanes (747-400, 757/767). It runs on the SGI Indigo workstation. A working prototype of this graphics-based crew interface to the autoflight mode management tasks of glass cockpit airplanes has been installed in the Advanced Concepts Flight Simulator of the CSSRF of NASA Ames Research Center. This IMMI replaces the devices in FMCS equipped airplanes currently known as mode control panel (Boeing), flight guidance control panel (McDonnell Douglas), and flight control unit (Airbus). It also augments the functions of the flight mode annunciators. All glass cockpit airplanes are sufficiently similar that the IMMI could be tailored to the mode management system of any modern cockpit. The IMMI does not replace the

  12. Linear stability of tearing modes

    International Nuclear Information System (INIS)

    Cowley, S.C.; Kulsrud, R.M.; Hahm, T.S.

    1986-05-01

    This paper examines the stability of tearing modes in a sheared slab when the width of the tearing layer is much smaller than the ion Larmor radius. The ion response is nonlocal, and the quasineutrality retains its full integal form. An expansion procedure is introduced to solve the quasineutrality equation in powers of the width of the tearing layer over the ion Larmor radius. The expansion procedure is applied to the collisionless and semi-collisional tearing modes. The first order terms in the expansion we find to be strongly stabilizing. The physics of the mode and of the stabilization is discussed. Tearing modes are observed in experiments even though the slab theory predicts stability. It is proposed that these modes grow from an equilibrium with islands at the rational surfaces. If the equilibrium islands are wider than the ion Larmor radius, the mode is unstable when Δ' is positive

  13. Audit mode change, corporate governance

    OpenAIRE

    Limei Cao; Wanfu Li; Limin Zhang

    2015-01-01

    This study investigates changes in audit strategy in China following the introduction of risk-based auditing standards rather than an internal control-based audit mode. Specifically, we examine whether auditors are implementing the risk-based audit mode to evaluate corporate governance before distributing audit resources. The results show that under the internal control-based audit mode, the relationship between audit effort and corporate governance was weak. However, implementation of the ri...

  14. A long-lived refilling event of the slot region between the Van Allen radiation belts from Nov 2004 to Jan 2005

    Science.gov (United States)

    Yang, X.

    2015-12-01

    A powerful relativistic electron enhancement in the slot region between the inner and outer radiation belts is investigated by multi-satellites measurements. The measurement from Space Particle Component Detectors (SPCDs) aboard Fengyun-1 indicates that the relativistic electron (>1.6MeV) flux began to enhance obviously on early 10 November with the flux peak fixed at L~3.0. In the next day, the relativistic electron populations increased dramatically. Subsequently, the flux had been enhancing slowly, but unceasingly, until 17 November, and the maximum flux reached up to 7.8×104 cm-2·sr-1·s-1 at last. The flux peak fixed at L~3.0 and the very slow decay rate in this event make it to be an unusual long-lived slot region refilling event. We trace the cause of the event back to the interplanetary environment and find that there were two evident magnetic cloud constructions: dramatically enhanced magnetic field strength and long and smooth rotation of field vector from late 7 to 8 November and from late 9 to 10 November, respectively; solar wind speed increased in 'step-like' fashion on late 7 November and persisted the level of high speed >560 km·s-1 for about 124 hours. Owed to the interplanetary disturbances, very strong magnetic storms and substorms occurred in the magnetosphere. Responding to the extraordinarily magnetic perturbations, the plasmasphere shrank sharply. The location of plasmapause inferred from Dst indicates that the plasmapause shrank inward to as low as L~2.5. On account of these magnetospheric conditions, strong chorus emissions are expected near the earth. In fact, the STAFF on Cluster mission measured intensive whistler mode chorus emissions on 10 and 12 November, corresponding to the period of the remarkable enhancement of relativistic electron. Furthermore, we investigate the radial profile of phase space density (PSD) by electron flux from multi-satellites, and the evolution of the phase space density profile reveals that the local

  15. Zero modes and entanglement entropy

    Energy Technology Data Exchange (ETDEWEB)

    Yazdi, Yasaman K. [Perimeter Institute for Theoretical Physics,31 Caroline St. N., Waterloo, ON, N2L 2Y5 (Canada); Department of Physics and Astronomy, University of Waterloo,200 University Avenue West, Waterloo, ON, N2L 3G1 (Canada)

    2017-04-26

    Ultraviolet divergences are widely discussed in studies of entanglement entropy. Also present, but much less understood, are infrared divergences due to zero modes in the field theory. In this note, we discuss the importance of carefully handling zero modes in entanglement entropy. We give an explicit example for a chain of harmonic oscillators in 1D, where a mass regulator is necessary to avoid an infrared divergence due to a zero mode. We also comment on a surprising contribution of the zero mode to the UV-scaling of the entanglement entropy.

  16. Normal modes of Bardeen discs

    International Nuclear Information System (INIS)

    Verdaguer, E.

    1983-01-01

    The short wavelength normal modes of self-gravitating rotating polytropic discs in the Bardeen approximation are studied. The discs' oscillations can be seen in terms of two types of modes: the p-modes whose driving forces are pressure forces and the r-modes driven by Coriolis forces. As a consequence of differential rotation coupling between the two takes place and some mixed modes appear, their properties can be studied under the assumption of weak coupling and it is seen that they avoid the crossing of the p- and r-modes. The short wavelength analysis provides a basis for the classification of the modes, which can be made by using the properties of their phase diagrams. The classification is applied to the large wavelength modes of differentially rotating discs with strong coupling and to a uniformly rotating sequence with no coupling, which have been calculated in previous papers. Many of the physical properties and qualitative features of these modes are revealed by the analysis. (author)

  17. Magnetorheological dampers in shear mode

    International Nuclear Information System (INIS)

    Wereley, N M; Cho, J U; Choi, Y T; Choi, S B

    2008-01-01

    In this study, three types of shear mode damper using magnetorheological (MR) fluids are theoretically analyzed: linear, rotary drum, and rotary disk dampers. The damping performance of these shear mode MR dampers is characterized in terms of the damping coefficient, which is the ratio of the equivalent viscous damping at field-on status to the damping at field-off status. For these three types of shear mode MR damper, the damping coefficient or dynamic range is derived using three different constitutive models: the Bingham–plastic, biviscous, and Herschel–Bulkley models. The impact of constitutive behavior on shear mode MR dampers is theoretically presented and compared

  18. Mode Combinations and International Operations

    DEFF Research Database (Denmark)

    Benito, Gabriel R. G.; Petersen, Bent; Welch, Lawrence S.

    2011-01-01

    reveals that companies tend to combine modes of operation; thereby producing unique foreign operation mode “packages” for given activities and/or countries, and that the packages are liable to be modified over time – providing a potentially important optional path for international expansion. Our data...... key markets (China, UK and USA) as the basis for an exploration of the extent to which, and how and why, companies combine clearly different foreign operation modes. We examine their use of foreign operation mode combinations within given value activities as well as within given countries. The study...

  19. Mode Combinations and International Operations

    DEFF Research Database (Denmark)

    Benito, Gabriel R. G.; Petersen, Bent; Welch, Lawrence S.

    2011-01-01

    reveals that companies tend to combine modes of operation; thereby producing unique foreign operation mode “packages” for given activities and/or countries, and that the packages are liable to be modified over time—providing a potentially important optional path for international expansion. The data show...... markets (China, UK and USA) is used as the basis for an exploration of the extent to which, and how and why, companies combine clearly different foreign operation modes. We examine their use of foreign operation mode combinations within given value activities as well as within given countries. The study...

  20. Ballooning modes or Fourier modes in a toroidal plasma?

    International Nuclear Information System (INIS)

    Connor, J.W.; Taylor, J.B.

    1987-01-01

    The relationship between two different descriptions of eigenmodes in a torus is investigated. In one the eigenmodes are similar to Fourier modes in a cylinder and are highly localized near a particular rational surface. In the other they are the so-called ballooning modes that extend over many rational surfaces. Using a model that represents both drift waves and resistive interchanges the transition from one of these structures to the other is investigated. In this simplified model the transition depends on a single parameter which embodies the competition between toroidal coupling of Fourier modes (which enhances ballooning) and variation in frequency of Fourier modes from one rational surface to another (which diminishes ballooning). As the coupling is increased each Fourier mode acquires a sideband on an adjacent rational surface and these sidebands then expand across the radius to form the extended mode described by the conventional ballooning mode approximation. This analysis shows that the ballooning approximation is appropriate for drift waves in a tokamak but not for resistive interchanges in a pinch. In the latter the conventional ballooning effect is negligible but they may nevertheless show a ballooning feature. This is localized near the same rational surface as the primary Fourier mode and so does not lead to a radially extended structure

  1. EMIC triggered chorus emissions in Cluster data

    Czech Academy of Sciences Publication Activity Database

    Grison, Benjamin; Santolík, Ondřej; Cornilleau-Wehrlin, N.; Masson, A.; Engebretson, M. J.; Pickett, J. S.; Omura, Y.; Robert, P.; Nomura, R.

    2013-01-01

    Roč. 118, č. 3 (2013), s. 1159-1169 ISSN 2169-9380 R&D Projects: GA MŠk 7E12026; GA ČR(CZ) GPP209/11/P848; GA ČR GAP205/10/2279; GA MŠk(CZ) LH11122 EU Projects: European Commission(XE) 284520 - MAARBLE Program:FP7 Institutional support: RVO:68378289 Keywords : EMIC wave * triggered emission * plasmapause Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 3.440, year: 2013 http://onlinelibrary.wiley.com/doi/10.1002/jgra.50178/abstract

  2. Spatial-mode switchable ring fiber laser based on low mode-crosstalk all-fiber mode MUX/DEMUX

    Science.gov (United States)

    Ren, Fang; Yu, Jinyi; Wang, Jianping

    2018-05-01

    We report an all-fiber ring laser that emits linearly polarized (LP) modes based on the intracavity all-fiber mode multiplexer/demultiplexer (MUX/DEMUX). Multiple LP modes in ring fiber laser are generated by taking advantage of mode MUX/DEMUX. The all-fiber mode MUX/DEMUX are composed of cascaded mode-selective couplers (MSCs). The output lasing mode of the ring fiber laser can be switched among the three lowest-order LP modes by employing combination of a mode MUX and a simple N × 1 optical switch. The slope efficiencies, optical spectra and mode profiles are measured.

  3. Generation of high order modes

    CSIR Research Space (South Africa)

    Ngcobo, S

    2012-07-01

    Full Text Available with the location of the Laguerre polynomial zeros. The Diffractive optical element is used to shape the TEM00 Gassian beam and force the laser to operate on a higher order TEMp0 Laguerre-Gaussian modes or high order superposition of Laguerre-Gaussian modes...

  4. Homogeneous modes of cosmological instantons

    Energy Technology Data Exchange (ETDEWEB)

    Gratton, Steven; Turok, Neil

    2001-06-15

    We discuss the O(4) invariant perturbation modes of cosmological instantons. These modes are spatially homogeneous in Lorentzian spacetime and thus not relevant to density perturbations. But their properties are important in establishing the meaning of the Euclidean path integral. If negative modes are present, the Euclidean path integral is not well defined, but may nevertheless be useful in an approximate description of the decay of an unstable state. When gravitational dynamics is included, counting negative modes requires a careful treatment of the conformal factor problem. We demonstrate that for an appropriate choice of coordinate on phase space, the second order Euclidean action is bounded below for normalized perturbations and has a finite number of negative modes. We prove that there is a negative mode for many gravitational instantons of the Hawking-Moss or Coleman{endash}De Luccia type, and discuss the associated spectral flow. We also investigate Hawking-Turok constrained instantons, which occur in a generic inflationary model. Implementing the regularization and constraint proposed by Kirklin, Turok and Wiseman, we find that those instantons leading to substantial inflation do not possess negative modes. Using an alternate regularization and constraint motivated by reduction from five dimensions, we find a negative mode is present. These investigations shed new light on the suitability of Euclidean quantum gravity as a potential description of our universe.

  5. Homogeneous modes of cosmological instantons

    International Nuclear Information System (INIS)

    Gratton, Steven; Turok, Neil

    2001-01-01

    We discuss the O(4) invariant perturbation modes of cosmological instantons. These modes are spatially homogeneous in Lorentzian spacetime and thus not relevant to density perturbations. But their properties are important in establishing the meaning of the Euclidean path integral. If negative modes are present, the Euclidean path integral is not well defined, but may nevertheless be useful in an approximate description of the decay of an unstable state. When gravitational dynamics is included, counting negative modes requires a careful treatment of the conformal factor problem. We demonstrate that for an appropriate choice of coordinate on phase space, the second order Euclidean action is bounded below for normalized perturbations and has a finite number of negative modes. We prove that there is a negative mode for many gravitational instantons of the Hawking-Moss or ColemanendashDe Luccia type, and discuss the associated spectral flow. We also investigate Hawking-Turok constrained instantons, which occur in a generic inflationary model. Implementing the regularization and constraint proposed by Kirklin, Turok and Wiseman, we find that those instantons leading to substantial inflation do not possess negative modes. Using an alternate regularization and constraint motivated by reduction from five dimensions, we find a negative mode is present. These investigations shed new light on the suitability of Euclidean quantum gravity as a potential description of our universe

  6. Intelligence and musical mode preference

    DEFF Research Database (Denmark)

    Bonetti, Leonardo; Costa, Marco

    2016-01-01

    The relationship between fluid intelligence and preference for major–minor musical mode was investigated in a sample of 80 university students. Intelligence was assessed by the Raven’s Advanced Progressive Matrices. Musical mode preference was assessed by presenting 14 pairs of musical stimuli...... differences at the cognitive and personality level related to the enjoyment of sad music....

  7. Mode coupling trigger of neoclassical magnetohydrodynamic tearing modes in tokamaks

    International Nuclear Information System (INIS)

    Gianakon, T.A.; Hegna, C.C.; Callen, J.D.

    1997-05-01

    Numerical studies of the nonlinear evolution of coupled magnetohydrodynamic - type tearing modes in three-dimensional toroidal geometry with neoclassical effects are presented. The inclusion of neoclassical physics introduces an additional free-energy source for the nonlinear formation of magnetic islands through the effects of a bootstrap current in Ohm's law. The neoclassical tearing mode is demonstrated to be destabilized in plasmas which are otherwise Δ' stable, albeit once a threshold island width is exceeded. A possible mechanism for exceeding or eliminating this threshold condition is demonstrated based on mode coupling due to toroidicity with a pre-existing instability at the q = 1 surface

  8. Inter-comb synchronization by mode-to-mode locking

    Science.gov (United States)

    Chun, Byung Jae; Kim, Young-Jin; Kim, Seung-Woo

    2016-08-01

    Two combs of fiber femtosecond lasers are synchronized through the optical frequency reference created by injection-locking of a diode laser to a single comb mode. Maintaining a mHz-level narrow linewidth, the optical frequency reference permits two combs to be stabilized by mode-to-mode locking with a relative stability of 1.52  ×  10-16 at 10 s with a frequency slip of 2.46 mHz. This inter-comb synchronization can be utilized for applications such as dual-comb spectroscopy or ultra-short pulse synthesis without extra narrow-linewidth lasers.

  9. Damping Measurements of Plasma Modes

    Science.gov (United States)

    Anderegg, F.; Affolter, M.; Driscoll, C. F.

    2010-11-01

    For azimuthally symmetric plasma modes in a magnesium ion plasma, confined in a 3 Tesla Penning-Malmberg trap with a density of n ˜10^7cm-3, we measure a damping rate of 2s-1plasma column, alters the frequency of the mode from 16 KHz to 192 KHz. The oscillatory fluid displacement is small compared to the wavelength of the mode; in contrast, the fluid velocity, δvf, can be large compared to v. The real part of the frequency satisfies a linear dispersion relation. In long thin plasmas (α> 10) these modes are Trivelpiece-Gould (TG) modes, and for smaller values of α they are Dubin spheroidal modes. However the damping appears to be non-linear; initially large waves have weaker exponential damping, which is not yet understood. Recent theoryootnotetextM.W. Anderson and T.M. O'Neil, Phys. Plasmas 14, 112110 (2007). calculates the damping of TG modes expected from viscosity due to ion-ion collisions; but the measured damping, while having a similar temperature and density dependence, is about 40 times larger than calculated. This discrepancy might be due to an external damping mechanism.

  10. Mode synthesizing atomic force microscopy and mode-synthesizing sensing

    Science.gov (United States)

    Passian, Ali; Thundat, Thomas George; Tetard, Laurene

    2013-05-17

    A method of analyzing a sample that includes applying a first set of energies at a first set of frequencies to a sample and applying, simultaneously with the applying the first set of energies, a second set of energies at a second set of frequencies, wherein the first set of energies and the second set of energies form a multi-mode coupling. The method further includes detecting an effect of the multi-mode coupling.

  11. Dual-cavity mode converter for a fundamental mode output in an over-moded relativistic backward-wave oscillator

    International Nuclear Information System (INIS)

    Li, Jiawei; Huang, Wenhua; Xiao, Renzhen; Bai, Xianchen; Zhang, Yuchuan; Zhang, Xiaowei; Shao, Hao; Chen, Changhua; Zhu, Qi

    2015-01-01

    A dual-cavity TM 02 –TM 01 mode converter is designed for a dual-mode operation over-moded relativistic backward-wave oscillator. With the converter, the fundamental mode output is achieved. Particle-in-cell simulation shows that the efficiency of beam-wave conversion was over 46% and a pureTM 01 mode output was obtained. Effects of end reflection provided by the mode converter were studied. Adequate TM 01 mode feedback provided by the converter enhances conversion efficiency. The distance between the mode converter and extraction cavity critically affect the generation of microwaves depending on the reflection phase of TM 01 mode feedback

  12. Equilibrium calculations and mode analysis

    International Nuclear Information System (INIS)

    Herrnegger, F.

    1987-01-01

    The STEP asymptotic stellarator expansion procedure was used to study the MHD equilibrium and stability properties of stellarator configurations without longitudinal net-current, which also apply to advanced stellarators. The effects of toroidal curvature and magnetic well, and the Shafranov shift were investigated. A classification of unstable modes in toroidal stellarators is given. For WVII-A coil-field configurations having a β value of 1% and a parabolic pressure profile, no free-boundary modes are found. This agrees with the experimental fact that unstable behavior of the plasma column is not observed for this parameter range. So a theoretical β-limit for stability against ideal MHD modes can be estimated by mode analysis for the WVII-A device

  13. Tapping mode microwave impedance microscopy

    KAUST Repository

    Lai, K.; Kundhikanjana, W.; Peng, H.; Cui, Y.; Kelly, M. A.; Shen, Z. X.

    2009-01-01

    We report tapping mode microwave impedance imaging based on atomic force microscope platforms. The shielded cantilever probe is critical to localize the tip-sample interaction near the tip apex. The modulated tip-sample impedance can be accurately

  14. Common mode and coupled failure

    International Nuclear Information System (INIS)

    Taylor, J.R.

    1975-10-01

    Based on examples and data from Abnormal Occurence Reports for nuclear reactors, a classification of common mode or coupled failures is given, and some simple statistical models are investigated. (author)

  15. Amplitude damping of vortex modes

    CSIR Research Space (South Africa)

    Dudley, Angela L

    2010-09-01

    Full Text Available An interferometer, mimicking an amplitude damping channel for vortex modes, is presented. Experimentally the action of the channel is in good agreement with that predicted theoretically. Since we can characterize the action of the channel on orbital...

  16. Peeling mode relaxation ELM model

    International Nuclear Information System (INIS)

    Gimblett, C. G.

    2006-01-01

    This paper discusses an approach to modelling Edge Localised Modes (ELMs) in which toroidal peeling modes are envisaged to initiate a constrained relaxation of the tokamak outer region plasma. Relaxation produces both a flattened edge current profile (which tends to further destabilise a peeling mode), and a plasma-vacuum negative current sheet which has a counteracting stabilising influence; the balance that is struck between these two effects determines the radial extent (rE) of the ELM relaxed region. The model is sensitive to the precise position of the mode rational surfaces to the plasma surface and hence there is a 'deterministic scatter' in the results that has an accord with experimental data. The toroidal peeling stability criterion involves the edge pressure, and using this in conjunction with predictions of rE allows us to evaluate the ELM energy losses and compare with experiment. Predictions of trends with the edge safety factor and collisionality are also made

  17. Fiber cavities with integrated mode matching optics.

    Science.gov (United States)

    Gulati, Gurpreet Kaur; Takahashi, Hiroki; Podoliak, Nina; Horak, Peter; Keller, Matthias

    2017-07-17

    In fiber based Fabry-Pérot Cavities (FFPCs), limited spatial mode matching between the cavity mode and input/output modes has been the main hindrance for many applications. We have demonstrated a versatile mode matching method for FFPCs. Our novel design employs an assembly of a graded-index and large core multimode fiber directly spliced to a single mode fiber. This all-fiber assembly transforms the propagating mode of the single mode fiber to match with the mode of a FFPC. As a result, we have measured a mode matching of 90% for a cavity length of ~400 μm. This is a significant improvement compared to conventional FFPCs coupled with just a single mode fiber, especially at long cavity lengths. Adjusting the parameters of the assembly, the fundamental cavity mode can be matched with the mode of almost any single mode fiber, making this approach highly versatile and integrable.

  18. Evidence of the wobbling mode

    International Nuclear Information System (INIS)

    Odegaard, S.W.; Tjoem, P.O.; Hagemann, G.B.; Jensen, D.R.; Bergstroem, M.; Herskind, B.; Sletten, G.; Toermaenen, S.; Wilson, J.N.; Hamamoto, I.; Spohr, K.; Huebel, H.; Goergen, A.; Schoenwasser, G.; Bracco, A.; Leoni, S.; Maj, A.; Petrache, C.M.; Bednarczyk, P.; Curien, D.

    2002-01-01

    The wobbling mode is a direct consequence of rotational motion of a triaxial body. The wobbling degree of freedom introduces sequences of bands with increasing number of wobbling quanta and a characteristic ΔI=1 decay pattern between the bands in competition with the in-band decay. A favorable candidate for establishing this exotic excitation mode is found for the first time in one of the Lu-isotopes for which stable triaxial superdeformed shapes are expected

  19. The evolution of transmission mode

    Science.gov (United States)

    Forbes, Mark R.; Hauffe, Heidi C.; Kallio, Eva R.; Okamura, Beth; Sait, Steven M.

    2017-01-01

    This article reviews research on the evolutionary mechanisms leading to different transmission modes. Such modes are often under genetic control of the host or the pathogen, and often in conflict with each other via trade-offs. Transmission modes may vary among pathogen strains and among host populations. Evolutionary changes in transmission mode have been inferred through experimental and phylogenetic studies, including changes in transmission associated with host shifts and with evolution of the unusually complex life cycles of many parasites. Understanding the forces that determine the evolution of particular transmission modes presents a fascinating medley of problems for which there is a lack of good data and often a lack of conceptual understanding or appropriate methodologies. Our best information comes from studies that have been focused on the vertical versus horizontal transmission dichotomy. With other kinds of transitions, theoretical approaches combining epidemiology and population genetics are providing guidelines for determining when and how rapidly new transmission modes may evolve, but these are still in need of empirical investigation and application to particular cases. Obtaining such knowledge is a matter of urgency in relation to extant disease threats. This article is part of the themed issue ‘Opening the black box: re-examining the ecology and evolution of parasite transmission’. PMID:28289251

  20. Packaged mode multiplexer based on silicon photonics

    NARCIS (Netherlands)

    Chen, H.; Koonen, A.M.J.; Snyder, B.; Raz, O.; Boom, van den H.P.A.; Chen, X.

    2012-01-01

    A silicon photonics based mode multiplexer is proposed. Four chirped grating couplers structure can support all 6 channels in a two-mode fiber and realize LP01 and LP11 mode selective exciting. The packaged device is tested.

  1. Challenges in higher order mode Raman amplifiers

    DEFF Research Database (Denmark)

    Rottwitt, Karsten; Nielsen, Kristian; Friis, Søren Michael Mørk

    2015-01-01

    A higher order Raman amplifier model that take random mode coupling into account ispresented. Mode dependent gain and signal power fluctuations at the output of the higher order modeRaman amplifier are discussed......A higher order Raman amplifier model that take random mode coupling into account ispresented. Mode dependent gain and signal power fluctuations at the output of the higher order modeRaman amplifier are discussed...

  2. Two-mode PLC-based mode multi/demultiplexer for mode and wavelength division multiplexed transmission.

    Science.gov (United States)

    Hanzawa, Nobutomo; Saitoh, Kuimasa; Sakamoto, Taiji; Matsui, Takashi; Tsujikawa, Kyozo; Koshiba, Masanori; Yamamoto, Fumihiko

    2013-11-04

    We proposed a PLC-based mode multi/demultiplexer (MUX/DEMUX) with an asymmetric parallel waveguide for mode division multiplexed (MDM) transmission. The mode MUX/DEMUX including a mode conversion function with an asymmetric parallel waveguide can be realized by matching the effective indices of the LP(01) and LP(11) modes of two waveguides. We report the design of a mode MUX/DEMUX that can support C-band WDM-MDM transmission. The fabricated mode MUX/DEMUX realized a low insertion loss of less than 1.3 dB and high a mode extinction ratio that exceeded 15 dB. We used the fabricated mode MUX/DEMUX to achieve a successful 2 mode x 4 wavelength x 10 Gbps transmission over a 9 km two-mode fiber with a penalty of less than 1 dB.

  3. Tearing modes in toroidal geometry

    International Nuclear Information System (INIS)

    Connor, J.W.; Cowley, S.C.; Hastie, R.J.; Hender, T.C.; Hood, A.; Martin, T.J.

    1988-01-01

    The separation of the cylindrical tearing mode stability problem into a resistive resonant layer calculation and an external marginal ideal magnetohydrodynamic (MHD) calculation (Δ' calculation) is generalized to axisymmetric toroidal geometry. The general structure of this separation is analyzed and the marginal ideal MHD information (the toroidal generalization of Δ') required to discuss stability is isolated. This can then, in principle, be combined with relevant resonant layer calculations to determine tearing mode growth rates in realistic situations. Two examples are given: the first is an analytic treatment of toroidally coupled (m = 1, n = 1) and (m = 2, n = 1) tearing modes in a large aspect ratio torus; the second, a numerical treatment of the toroidal coupling of three tearing modes through finite pressure effects in a large aspect ratio torus. In addition, the use of a coupling integral approach for determining the stability of coupled tearing modes is discussed. Finally, the possibility of using initial value resistive MHD codes in realistic toroidal geometry to determine the necessary information from the ideal MHD marginal solution is discussed

  4. Boundary methods for mode estimation

    Science.gov (United States)

    Pierson, William E., Jr.; Ulug, Batuhan; Ahalt, Stanley C.

    1999-08-01

    This paper investigates the use of Boundary Methods (BMs), a collection of tools used for distribution analysis, as a method for estimating the number of modes associated with a given data set. Model order information of this type is required by several pattern recognition applications. The BM technique provides a novel approach to this parameter estimation problem and is comparable in terms of both accuracy and computations to other popular mode estimation techniques currently found in the literature and automatic target recognition applications. This paper explains the methodology used in the BM approach to mode estimation. Also, this paper quickly reviews other common mode estimation techniques and describes the empirical investigation used to explore the relationship of the BM technique to other mode estimation techniques. Specifically, the accuracy and computational efficiency of the BM technique are compared quantitatively to the a mixture of Gaussian (MOG) approach and a k-means approach to model order estimation. The stopping criteria of the MOG and k-means techniques is the Akaike Information Criteria (AIC).

  5. Audit mode change, corporate governance

    Directory of Open Access Journals (Sweden)

    Limei Cao

    2015-12-01

    Full Text Available This study investigates changes in audit strategy in China following the introduction of risk-based auditing standards rather than an internal control-based audit mode. Specifically, we examine whether auditors are implementing the risk-based audit mode to evaluate corporate governance before distributing audit resources. The results show that under the internal control-based audit mode, the relationship between audit effort and corporate governance was weak. However, implementation of the risk-based mode required by the new auditing standards has significantly enhanced the relationship between audit effort and corporate governance. Since the change in audit mode, the Big Ten have demonstrated a significantly better grasp of governance risk and allocated their audit effort accordingly, relative to smaller firms. The empirical evidence indicates that auditors have adjusted their audit strategy to meet the regulations, risk-based auditing is being achieved to a degree, reasonable and effective corporate governance helps to optimize audit resource allocation, and smaller auditing firms in particular should urgently strengthen their risk-based auditing capability. Overall, our findings imply that the mandatory switch to risk-based auditing has optimized audit effort in China.

  6. Tapping mode microwave impedance microscopy

    KAUST Repository

    Lai, K.

    2009-01-01

    We report tapping mode microwave impedance imaging based on atomic force microscope platforms. The shielded cantilever probe is critical to localize the tip-sample interaction near the tip apex. The modulated tip-sample impedance can be accurately simulated by the finite-element analysis and the result agrees quantitatively to the experimental data on a series of thin-film dielectric samples. The tapping mode microwave imaging is also superior to the contact mode in that the thermal drift in a long time scale is totally eliminated and an absolute measurement on the dielectric properties is possible. We demonstrated tapping images on working nanodevices, and the data are consistent with the transport results. © 2009 American Institute of Physics.

  7. Reconfigurable Mixed Mode Universal Filter

    Directory of Open Access Journals (Sweden)

    Neelofer Afzal

    2014-01-01

    Full Text Available This paper presents a novel mixed mode universal filter configuration capable of working in voltage and transimpedance mode. The proposed single filter configuration can be reconfigured digitally to realize all the five second order filter functions (types at single output port. Other salient features of proposed configuration include independently programmable filter parameters, full cascadability, and low sensitivity figure. However, all these features are provided at the cost of quite large number of active elements. It needs three digitally programmable current feedback amplifiers and three digitally programmable current conveyors. Use of six active elements is justified by introducing three additional reduced hardware mixed mode universal filter configurations and its comparison with reported filters.

  8. Quasiadiabatic modes from viscous inhomogeneities

    CERN Document Server

    Giovannini, Massimo

    2016-04-20

    The viscous inhomogeneities of a relativistic plasma determine a further class of entropic modes whose amplitude must be sufficiently small since curvature perturbations are observed to be predominantly adiabatic and Gaussian over large scales. When the viscous coefficients only depend on the energy density of the fluid the corresponding curvature fluctuations are shown to be almost adiabatic. After addressing the problem in a gauge-invariant perturbative expansion, the same analysis is repeated at a non-perturbative level by investigating the nonlinear curvature inhomogeneities induced by the spatial variation of the viscous coefficients. It is demonstrated that the quasiadiabatic modes are suppressed in comparison with a bona fide adiabatic solution. Because of its anomalously large tensor to scalar ratio the quasiadiabatic mode cannot be a substitute for the conventional adiabatic paradigm so that, ultimately, the present findings seems to exclude the possibility of a successful accelerated dynamics solely...

  9. Macroscopic (and microscopic massless modes

    Directory of Open Access Journals (Sweden)

    Michael C. Abbott

    2015-05-01

    Full Text Available We study certain spinning strings exploring the flat directions of AdS3×S3×S3×S1, the massless sector cousins of su(2 and sl(2 sector spinning strings. We describe these, and their vibrational modes, using the D(2,1;α2 algebraic curve. By exploiting a discrete symmetry of this structure which reverses the direction of motion on the spheres, and alters the masses of the fermionic modes s→κ−s, we find out how to treat the massless fermions which were previously missing from this formalism. We show that folded strings behave as a special case of circular strings, in a sense which includes their mode frequencies, and we are able to recover this fact in the worldsheet formalism. We use these frequencies to calculate one-loop corrections to the energy, with a version of the Beisert–Tseytlin resummation.

  10. Physics of resistive wall modes

    International Nuclear Information System (INIS)

    Igochine, V.

    2012-01-01

    The advanced tokamak regime is a promising candidate for steady-state tokamak operation which is desirable for a fusion reactor. This regime is characterized by a high bootstrap current fraction and a flat or reversed safety factor profile, which leads to operation close to the pressure limit. At this limit, an external kink mode becomes unstable. This external kink is converted into the slowly growing resistive wall mode (RWM) by the presence of a conducting wall. Reduction of the growth rate allows one to act on the mode and to stabilize it. There are two main factors which determine the stability of the RWM. The first factor comes from external magnetic perturbations (error fields, resistive wall, feedback coils, etc). This part of RWM physics is the same for tokamaks and reversed field pinch configurations. The physics of this interaction is relatively well understood and based on classical electrodynamics. The second ingredient of RWM physics is the interaction of the mode with plasma flow and fast particles. These interactions are particularly important for tokamaks, which have higher plasma flow and stronger trapped particle effects. The influence of the fast particles will also be increasingly more important in ITER and DEMO which will have a large fraction of fusion born alpha particles. These interactions have kinetic origins which make the computations challenging since not only particles influence the mode, but also the mode acts on the particles. Correct prediction of the ‘plasma–RWM’ interaction is an important ingredient which has to be combined with external field's influence (resistive wall, error fields and feedback) to make reliable predictions for RWM behaviour in tokamaks. All these issues are reviewed in this paper. (special topic)

  11. Renormalized modes in cuprate superconductors

    Science.gov (United States)

    Gupta, Anushri; Kumari, Anita; Verma, Sanjeev K.; Indu, B. D.

    2018-04-01

    The renormalized mode frequencies are obtained with the help of quantum dynamical approach of many body phonon Green's function technique via a general Hamiltonian (excluding BCS Hamiltonian) including the effects of phonons and electrons, anharmonicities and electron-phonon interactions. The numerical estimates have been carried out to study the renormalized mode frequency of high temperature cuprate superconductor (HTS) YBa2Cu3O7-δ using modified Born-Mayer-Huggins interaction potential (MBMHP) best applicable to study the dynamical properties of all HTS.

  12. Transformation and Modes of Production

    DEFF Research Database (Denmark)

    Høst, Jeppe Engset

    2015-01-01

    modes of production and examine the ways of life that are enabled by the two modes of production. The central questions are around how market-based fisheries management transforms the principal preconditions for the self-employed fishers; and, in turn, why capitalist organized large-scale fisheries......The introduction of private and individual transferable quotas is widely considered to have a negative impact on small- and medium-sized fishing operations. In this chapter, I set out to explore this in a theoretical manner. I discuss the differences in the fishing operations as two contrasting...

  13. Soft mode of lead zirconate

    International Nuclear Information System (INIS)

    Pan'ko, G.F.; Prisedskij, V.V.; Klimov, V.V.

    1983-01-01

    Anisotropic diffusional scattering of electrons on PbZrO 3 crystal in the temperature range of phase transition has been recorded. As a result of its analysis it has been established that in lead zirconate the rotational vibrational mode G 25 plays the role of soft mode. The experiment is carried out using PbZrO 3 monocrystals in translucent electron microscope EhM-200, operating in the regime of microdiffraction at accelerating voltage of 150 kV and beam current 50 μA; sample preparation is realized using the method of shearing and fragmentation

  14. Mode

    DEFF Research Database (Denmark)

    Mackinney-Valentin, Maria

    A textbook for school children 13-16 on fashion. Ethics, designers, social identity, zeitgeist, and gender are among the key themes.......A textbook for school children 13-16 on fashion. Ethics, designers, social identity, zeitgeist, and gender are among the key themes....

  15. Theory of Modes and Impulses

    Science.gov (United States)

    Apsche, Jack A.

    2005-01-01

    In his work on the Theory of Modes, Beck (1996) suggested that there were flaws with his cognitive theory. He suggested that though there are shortcomings to his cognitive theory, there were not similar shortcomings to the practice of Cognitive Therapy. The author suggests that if there are shortcomings to cognitive theory the same shortcomings…

  16. News on the Scissors Mode

    Science.gov (United States)

    Pietralla, N.; Beller, J.; Beck, T.; Derya, V.; Löher, B.; Romig, C.; Savran, D.; Scheck, M.; Tornow, W.; Zweidinger, M.

    2014-09-01

    We report on our recent nuclear resonance fluorescence experiments on l52,l54,l56Gd. Decay branches of the scissors mode to intrinsic excitations are observed. They are interpreted as a new signature for a spherical-to-deformed nuclear shape phase transition.

  17. Single-mode optical fibres

    CERN Document Server

    Cancellieri, G

    1991-01-01

    This book describes signal propagation in single-mode optical fibres for telecommunication applications. Such description is based on the analysis of field propagation, considering waveguide properties and also some of the particular characteristics of the material fibre. The book covers such recent advances as, coherent transmissions; optical amplification; MIR fibres; polarization maintaining; polarization diversity and photon counting.

  18. Rubble Mound Breakwater Failure Modes

    DEFF Research Database (Denmark)

    Burcharth, H. F.; Z., Liu

    1995-01-01

    The RMBFM-Project (Rubble Mound Breakwater Failure Modes) is sponsored by the Directorate General XII of the Commission of the European Communities under the Contract MAS-CT92- 0042, with the objective of contributing to the development of rational methods for the design of rubble mound breakwate...

  19. Mode structure of active resonators

    NARCIS (Netherlands)

    Ernst, G.J.; Witteman, W.J.

    1973-01-01

    An analysis is made of the mode structure of lasers when the interaction with the active medium is taken into account. We consider the combined effect of gain and refractive-index variations for arbitrary mirror configurations. Using a dimensionless round-trip matrix for a medium with a quadratic

  20. Energy balance in tearing modes

    International Nuclear Information System (INIS)

    Wesson, J.A.

    1993-01-01

    The energy balance in tearing modes is described in terms of exact separate energy balance equations. Each of these equations describes identified physical processes, and their sum gives the conservation of total energy. One of the energy balance equations corresponds to Furth's description. (Author)

  1. Quantum Accelerator Modes from the Farey Tree

    International Nuclear Information System (INIS)

    Buchleitner, A.; D'Arcy, M.B.; Fishman, S.; Gardiner, S.A.; Guarneri, I.; Ma, Z.-Y.; Rebuzzini, L.; Summy, G.S.

    2006-01-01

    We show that mode locking finds a purely quantum nondissipative counterpart in atom-optical quantum accelerator modes. These modes are formed by exposing cold atoms to periodic kicks in the direction of the gravitational field. They are anchored to generalized Arnol'd tongues, parameter regions where driven nonlinear classical systems exhibit mode locking. A hierarchy for the rational numbers known as the Farey tree provides an ordering of the Arnol'd tongues and hence of experimentally observed accelerator modes

  2. Dual-cavity mode converter for a fundamental mode output in an over-moded relativistic backward-wave oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jiawei; Huang, Wenhua [Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei 230027 (China); Science and Technology on High Power Microwave Laboratory, Northwest Institute of Nuclear Technology, Xi' an 710024 (China); Xiao, Renzhen; Bai, Xianchen; Zhang, Yuchuan; Zhang, Xiaowei; Shao, Hao; Chen, Changhua [Science and Technology on High Power Microwave Laboratory, Northwest Institute of Nuclear Technology, Xi' an 710024 (China); Zhu, Qi [Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei 230027 (China)

    2015-03-16

    A dual-cavity TM{sub 02}–TM{sub 01} mode converter is designed for a dual-mode operation over-moded relativistic backward-wave oscillator. With the converter, the fundamental mode output is achieved. Particle-in-cell simulation shows that the efficiency of beam-wave conversion was over 46% and a pureTM{sub 01} mode output was obtained. Effects of end reflection provided by the mode converter were studied. Adequate TM{sub 01} mode feedback provided by the converter enhances conversion efficiency. The distance between the mode converter and extraction cavity critically affect the generation of microwaves depending on the reflection phase of TM{sub 01} mode feedback.

  3. Scaling Fiber Lasers to Large Mode Area: An Investigation of Passive Mode-Locking Using a Multi-Mode Fiber.

    Science.gov (United States)

    Ding, Edwin; Lefrancois, Simon; Kutz, Jose Nathan; Wise, Frank W

    2011-01-01

    The mode-locking of dissipative soliton fiber lasers using large mode area fiber supporting multiple transverse modes is studied experimentally and theoretically. The averaged mode-locking dynamics in a multi-mode fiber are studied using a distributed model. The co-propagation of multiple transverse modes is governed by a system of coupled Ginzburg-Landau equations. Simulations show that stable and robust mode-locked pulses can be produced. However, the mode-locking can be destabilized by excessive higher-order mode content. Experiments using large core step-index fiber, photonic crystal fiber, and chirally-coupled core fiber show that mode-locking can be significantly disturbed in the presence of higher-order modes, resulting in lower maximum single-pulse energies. In practice, spatial mode content must be carefully controlled to achieve full pulse energy scaling. This paper demonstrates that mode-locking performance is very sensitive to the presence of multiple waveguide modes when compared to systems such as amplifiers and continuous-wave lasers.

  4. Single-mode fiber laser based on core-cladding mode conversion.

    Science.gov (United States)

    Suzuki, Shigeru; Schülzgen, Axel; Peyghambarian, N

    2008-02-15

    A single-mode fiber laser based on an intracavity core-cladding mode conversion is demonstrated. The fiber laser consists of an Er-doped active fiber and two fiber Bragg gratings. One Bragg grating is a core-cladding mode converter, and the other Bragg grating is a narrowband high reflector that selects the lasing wavelength. Coupling a single core mode and a single cladding mode by the grating mode converter, the laser operates as a hybrid single-mode laser. This approach for designing a laser cavity provides a much larger mode area than conventional large-mode-area step-index fibers.

  5. Toroidal Trivelpiece-Gould modes

    International Nuclear Information System (INIS)

    Stoessel, F.P.

    1979-01-01

    Electron plasma waves are treated in quasi-electrostatic approximation in a toroidal cavity of rectangular cross-section in an infinitely strong azimuthal magnetic field. The differential equation for the electrostatic potential, derived from fluid equations, can be separated using cylindrical coordinates. The eigenvalue problem for the radial dependence is solved numerically by a shooting method. Eigenvalues are given for different aspect ratios. Comparison with appropriate modes of the straight geometry shows that the toroidal frequencies generally lie some percent above those for the straight case. Plots of the eigenfunctions demonstrate clearly the influence of toroidicity. The deviation from symmetry (which should appear for straight geometry) depends not only on the aspect ratio but also strongly on the mode numbers. (author)

  6. Hypersonic modes in nanophononic semiconductors.

    Science.gov (United States)

    Hepplestone, S P; Srivastava, G P

    2008-09-05

    Frequency gaps and negative group velocities of hypersonic phonon modes in periodically arranged composite semiconductors are presented. Trends and criteria for phononic gaps are discussed using a variety of atomic-level theoretical approaches. From our calculations, the possibility of achieving semiconductor-based one-dimensional phononic structures is established. We present results of the location and size of gaps, as well as negative group velocities of phonon modes in such structures. In addition to reproducing the results of recent measurements of the locations of the band gaps in the nanosized Si/Si{0.4}Ge{0.6} superlattice, we show that such a system is a true one-dimensional hypersonic phononic crystal.

  7. Nuclear scissors mode with pairing

    International Nuclear Information System (INIS)

    Balbutsev, E. B.; Malov, L. A.; Schuck, P.; Urban, M.; Vinas, X.

    2008-01-01

    The coupled dynamics of the scissors mode and the isovector giant quadrupole resonance are studied using a generalized Wigner function moments method, taking into account pair correlations. Equations of motion for angular momentum, quadrupole moment, and other relevant collective variables are derived on the basis of the time-dependent Hartree-Fock-Bogolyubov equations. Analytical expressions for energy centroids and transition probabilities are found for the harmonic-oscillator model with the quadrupole-quadrupole residual interaction and monopole pairing force. Deformation dependences of energies and B(M1) values are correctly reproduced. The inclusion of pair correlations leads to a drastic improvement in the description of qualitative and quantitative characteristics of the scissors mode.

  8. Wobbling mode in 167Ta

    International Nuclear Information System (INIS)

    Hartley, D. J.; Ludington, A.; Pifer, R.; Seyfried, E. P.; Vanhoy, J. R.; Janssens, R. V. F.; Carpenter, M. P.; Lauritsen, T.; McCutchan, E. A.; Zhu, S.; Riedinger, L. L.; Darby, I. G.; Riley, M. A.; Aguilar, A.; Wang, X.; Chiara, C. J.; Chowdhury, P.; Lakshmi, S.; Tandel, S. K.; Tandel, U.

    2009-01-01

    The collective wobbling mode, the strongest signature for the rotation of a triaxial nucleus, has previously been seen only in a few Lu isotopes in spite of extensive searches in nearby isotopes. A sequence of transitions in the N=94 167 Ta nucleus exhibiting features similar to those attributed to the wobbling bands in the Lu nuclei has now been found. This band feeds into the πi 13/2 band at a relative energy similar to that seen in the established wobbling bands and its dynamic moment of inertia and alignment properties are nearly identical to the i 13/2 structure over a significant frequency range. Given these characteristics, it is likely that the wobbling mode has been observed for the first time in a nucleus other than Lu, making this collective motion a more general phenomenon.

  9. Fracture modes in human teeth.

    Science.gov (United States)

    Lee, J J-W; Kwon, J-Y; Chai, H; Lucas, P W; Thompson, V P; Lawn, B R

    2009-03-01

    The structural integrity of teeth under stress is vital to functional longevity. We tested the hypothesis that this integrity is limited by fracture of the enamel. Experiments were conducted on molar teeth, with a metal rod loaded onto individual cusps. Fracture during testing was tracked with a video camera. Two longitudinal modes of cracking were observed: median cracking from the contact zone, and margin cracking along side walls. Median cracks initiated from plastic damage at the contact site, at first growing slowly and then accelerating to the tooth margin. Margin cracks appeared to originate from the cemento-enamel junction, and traversed the tooth wall adjacent to the loaded cusp from the gingival to the occlusal surface. All cracks remained confined within the enamel shell up to about 550 N. At higher loads, additional crack modes--such as enamel chipping and delamination--began to manifest themselves, leading to more comprehensive failure of the tooth structure.

  10. Tilting mode in field-reversed configurations

    International Nuclear Information System (INIS)

    Schwarzmeier, J.L.; Barnes, D.C.; Lewis, H.R.; Seyler, C.E.; Shestakov, A.I.

    1982-01-01

    Field Reversed Configurations (FRCs) experimentally have exhibited remarkable stability on the magnetohydrodynamic (MHD) timescale, despite numerous MHD calculations showing FRCs to be unstable. It is easy to believe that local modes are stabilized by finite Larmor radius (FLR) effects, but more puzzling is the apparent stability of FRCs against global modes, where one would expect FLR effects to be less important. In this paper we study the tilting mode, which MHD has shown to be a rapidly growing global mode. The tilting mode in FRCs is driven by the pressure gradient, and magnetic compression and field line bending are the stabilizing forces. A schematic of the evolution of the tilting mode is shown. The tilting mode is considered dangerous, because it would lead to rapid tearing across the separatrix. Unlike spheromaks, the tilting mode in FRCs has a separatrix that is fixed in space, so that the mode is strictly internal

  11. Protected Edge Modes without Symmetry

    Directory of Open Access Journals (Sweden)

    Michael Levin

    2013-05-01

    Full Text Available We discuss the question of when a gapped two-dimensional electron system without any symmetry has a protected gapless edge mode. While it is well known that systems with a nonzero thermal Hall conductance, K_{H}≠0, support such modes, here we show that robust modes can also occur when K_{H}=0—if the system has quasiparticles with fractional statistics. We show that some types of fractional statistics are compatible with a gapped edge, while others are fundamentally incompatible. More generally, we give a criterion for when an electron system with Abelian statistics and K_{H}=0 can support a gapped edge: We show that a gapped edge is possible if and only if there exists a subset of quasiparticle types M such that (1 all the quasiparticles in M have trivial mutual statistics, and (2 every quasiparticle that is not in M has nontrivial mutual statistics with at least one quasiparticle in M. We derive this criterion using three different approaches: a microscopic analysis of the edge, a general argument based on braiding statistics, and finally a conformal field theory approach that uses constraints from modular invariance. We also discuss the analogous result for two-dimensional boson systems.

  12. A History of Emerging Modes?

    Directory of Open Access Journals (Sweden)

    Schmitz Michael

    2016-03-01

    Full Text Available In this paper I first introduce Tomasello’s notion of thought and his account of its emergence and development through differentiation, arguing that it calls into question the theory bias of the philosophical tradition on thought as well as its frequent atomism. I then raise some worries that he may be overextending the concept of thought, arguing that we should recognize an area of intentionality intermediate between action and perception on the one hand and thought on the other. After that I argue that the co-operative nature of humans is reflected in the very structure of their intentionality and thought: in co-operative modes such as the mode of joint attention and action and the we-mode, they experience and represent others as co-subjects of joint relations to situations in the world rather than as mere objects. In conclusion, I briefly comment on what Tomasello refers to as one of two big open questions in the theory of collective intentionality, namely that of the irreducibility of jointness.

  13. Mode pumping experiments on biomolecules

    International Nuclear Information System (INIS)

    Austin, R.H.; Erramilli, S.; Xie, A.; Schramm, A.

    1995-01-01

    We will explore several aspects of protein dynamics and energy transfer that can be explored by using the intense, picosecond, tunable mid-IR output of the FEL. In order of appearance they are: (1) Saturation recovery and inter-level coupling of the low temperature amide-I band in acetanilide. This is a continuation of earlier experiments to test soliton models in crystalline hydrogen bonded solids. In this experiment we utilize the sub-picosecond time resolution and low repetition rate of the Stanford SCLA FEL to do both T 1 and T 2 relaxation measurements at 1650 cm -1 . (2) Probing the influence of collective dynamics in sensory rhodopsin. In this experiment we use the FIR output of the Stanford FIREFLY FEL to determine the lifetime of collective modes in the photo-active protein sensory rhodopsin, and begin experiments on the influence of collective modes on retinal reaction dynamics. (3) Probing the transition states of enzymes. This experiment, in the initial stages, attempts to use the intense IR output of the FEL to probe and influence the reaction path of a transition state analog for the protein nucleoside hydrolase. The transition state of the inosine substrate is believed to have critical modes softened by the protein so that bond-breaking paths show absorption at approximately 800 cm -1 . A form of action spectrum using FEL excitation will be used to probe this state

  14. Predicting the Diversity of Foreign Entry Modes

    DEFF Research Database (Denmark)

    Hashai, Niron; Geisler Asmussen, Christian; Benito, Gabriel

    2007-01-01

    diversity across value chain activities and host markets. Analyzing a sample of Israeli based firms we show that larger firms exhibit a higher degree of entry mode diversity both across value chain activities and across host markets. Higher levels of knowledge intensity are also associated with more......This paper expands entry mode literature by referring to multiple modes exerted in different value chain activities within and across host markets, rather than to a single entry mode at the host market level. Scale of operations and knowledge intensity are argued to affect firms' entry mode...... diversity in firms' entry modes across both dimensions....

  15. Nonlinear surface elastic modes in crystals

    Science.gov (United States)

    Gorentsveig, V. I.; Kivshar, Yu. S.; Kosevich, A. M.; Syrkin, E. S.

    1990-03-01

    The influence of nonlinearity on shear horizontal surface elastic waves in crystals is described on the basis of the effective nonlinear Schrödinger equation. It is shown that the corresponding solutions form a set of surface modes and the simplest mode coincides with the solution proposed by Mozhaev. The higher order modes have internal frequencies caused by the nonlinearity. All these modes decay in the crystal as uoexp(- z/ zo) atz≫ zo- u o-1 ( z is the distance from the crystal surface, uo the wave amplitude at the surface). The creation of the modes from a localized surface excitation has a threshold. The stability of the modes is discussed.

  16. Effect of helium irradiation on fracture modes

    International Nuclear Information System (INIS)

    Hanamura, T.; Jesser, W.A.

    1982-01-01

    The objective of this work is to determine the crack opening mode during in-situ HVEM tensile testing and how it is influenced by test temperature and helium irradiation. Most cracks were mixed mode I and II. However, between 250 0 C and room temperature the effect of helium irradiation is to increase the amount of mode I crack propagation. Mode II crack opening was observed as grain boundary sliding initiated by a predominantly mode I crack steeply intersecting the grain boundary. Mode II crack opening was absent in irradiated specimens tested between 250 0 C and room temperature, but could be restored by a post irradiation anneal

  17. Mixed-Mode Crack Growth in Wood

    Directory of Open Access Journals (Sweden)

    Octavian POP

    2012-09-01

    Full Text Available In timber elements the mixed mode dependsessentially of wood anatomy and load configuration.In these conditions, in order to evaluate the materialbehavior and the fracture process, it’s necessary toseparate the part of each mode. The mixed modeseparation allows evaluating the amplitude offracture mode. In the present paper, using a mixedmodecrack growth specimen made in Douglas fir,the mixed mode crack growth process is studythanks to marks tracking method. Using the markstracking method the characteristic displacementsassociated to opening and shear mode aremeasured. From the experimental measurements,the energy release rate associated to opening andshear modes is calculated into to account the crackadvancement during the test.

  18. Accurate mode characterization of two-mode optical fibers by in-fiber acousto-optics.

    Science.gov (United States)

    Alcusa-Sáez, E; Díez, A; Andrés, M V

    2016-03-07

    Acousto-optic interaction in optical fibers is exploited for the accurate and broadband characterization of two-mode optical fibers. Coupling between LP 01 and LP 1m modes is produced in a broadband wavelength range. Difference in effective indices, group indices, and chromatic dispersions between the guided modes, are obtained from experimental measurements. Additionally, we show that the technique is suitable to investigate the fine modes structure of LP modes, and some other intriguing features related with modes' cut-off.

  19. PLC-based LP₁₁ mode rotator for mode-division multiplexing transmission.

    Science.gov (United States)

    Saitoh, Kunimasa; Uematsu, Takui; Hanzawa, Nobutomo; Ishizaka, Yuhei; Masumoto, Kohei; Sakamoto, Taiji; Matsui, Takashi; Tsujikawa, Kyozo; Yamamoto, Fumihiko

    2014-08-11

    A PLC-based LP11 mode rotator is proposed. The proposed mode rotator is composed of a waveguide with a trench that provides asymmetry of the waveguide. Numerical simulations show that converting LP11a (LP11b) mode to LP11b (LP11a) mode can be achieved with high conversion efficiency (more than 90%) and little polarization dependence over a wide wavelength range from 1450 nm to 1650 nm. In addition, we fabricate the proposed LP11 mode rotator using silica-based PLC. It is confirmed that the fabricated mode rotator can convert LP11a mode to LP11b mode over a wide wavelength range.

  20. Higher order mode optical fiber Raman amplifiers

    DEFF Research Database (Denmark)

    Rottwitt, Karsten; Friis, Søren Michael Mørk; Usuga Castaneda, Mario A.

    2016-01-01

    We review higher order mode Raman amplifiers and discuss recent theoretical as well as experimental results including system demonstrations.......We review higher order mode Raman amplifiers and discuss recent theoretical as well as experimental results including system demonstrations....

  1. Path planning during combustion mode switch

    Science.gov (United States)

    Jiang, Li; Ravi, Nikhil

    2015-12-29

    Systems and methods are provided for transitioning between a first combustion mode and a second combustion mode in an internal combustion engine. A current operating point of the engine is identified and a target operating point for the internal combustion engine in the second combustion mode is also determined. A predefined optimized transition operating point is selected from memory. While operating in the first combustion mode, one or more engine actuator settings are adjusted to cause the operating point of the internal combustion engine to approach the selected optimized transition operating point. When the engine is operating at the selected optimized transition operating point, the combustion mode is switched from the first combustion mode to the second combustion mode. While operating in the second combustion mode, one or more engine actuator settings are adjusted to cause the operating point of the internal combustion to approach the target operating point.

  2. Management modes for iodine-129

    International Nuclear Information System (INIS)

    White, I.F.; Smith, G.M.

    1984-01-01

    This study completes a two-stage programme, supported by the Commission of the European Communities, on management modes for iodine-129. The models for the radiological assessment of iodine-129 management modes have been reviewed and, where necessary, revised, and a generic radiological assessment has been carried out using these models. Cost benefit analysis has been demonstrated for a variety of iodine-129 management modes; for a wide range of assumptions, the costs of abatement of atmospheric discharges would be outweighed by the radiological benefits. The cost benefit analysis thus complements and confirms the preliminary conclusion of the previous study: iodine-129 should be trapped to a large extent from the off-gases of a large reprocessing plant and disposed of by other suitable means, in order to ensure that all exposures from this radionuclide are as low as reasonably achievable. Once the major fraction of the iodine-129 throughput of a reprocessing plant has been trapped from the dissolver off-gases, there are unlikely to be strong radiation protection incentives either for further trapping from the dissolver off-gases or for trapping from the vessel off-gases. In a generic study it is not possible to state an optimum choice of process(es) for abatement of atmospheric discharges of iodine-129. This choice must be determined by assessments in the specific context of a particular reprocessing plant, its site, the waste disposal routes that are actually available, and also in the wider context of the management plans for all radioactive wastes at the plant in question

  3. On the origin of lower hybrid whistlers

    International Nuclear Information System (INIS)

    Boshkova, Ya.; Irzhichek, F.; Mal'tseva, O.A.; Rostovskij-na-Donu Gosudarstvennyj Univ., Rostov-na-Donu; AN SSSR, Kol'skij Filial. Polyarnyj Geofizicheskij Inst.)

    1988-01-01

    Experimental properties are given and formation mechanism for lower-hybrid (LH) whistles is suggested in accordance with observations, conducted by means of low-flying Interkosmos satellites. Description of LH-whistles is based on the analysis of distribution of quasielectrostatic VLF-waves near LH-frequency, with regard to the fact, that within LH leveling there is maximum. LH-whistles are shown to be observed, when satellite is lower, tnan LH maximum; in this case, boundary frequency, where the trace of LH-whistle approximates asymptotically, corresponds to LH maximal frequency over the satellite. Numerical trajectory calculations add and verify analytical considerations

  4. Language Differences and Operation Mode

    DEFF Research Database (Denmark)

    Dasi, Angels; Pedersen, Torben

    2013-01-01

    Language serves different purposes depending on the international activity in question. Language has many dimensions and firms’ communicative requirements vary by operational platform. We argue that different dimensions of language vary in their importance depending on the operation mode chosen...... for a foreign market, so that language distance matters in the case of a home-based sales force, while language incidence is key when operating through a local agent. The hypotheses are tested on a large data set encompassing 462 multinational corporations headquartered in Finland, South Korea, New Zealand......, and Sweden that have undertaken a business operation in a foreign country....

  5. Psaltic Modes - Meanings and Symbolics

    Directory of Open Access Journals (Sweden)

    Domin Adam

    2015-10-01

    Full Text Available The Universe of Byzantine music is a profound one, that is why every side should be analysed for getting to the essence of psaltical soul of the singing. Every sign has a certain meaning, every mode has a certain composition and every singing genre is interpreted in a certain way. It is important to search and analyse the historical evolution of every of the mentioned categories for being able to form a holistic image about what Byzantine music meant and means.

  6. Applications of sliding mode control

    CERN Document Server

    Ghommam, Jawhar; Zhu, Quanmin

    2017-01-01

    This book presents essential studies and applications in the context of sliding mode control, highlighting the latest findings from interdisciplinary theoretical studies, ranging from computational algorithm development to representative applications. Readers will learn how to easily tailor the techniques to accommodate their ad hoc applications. To make the content as accessible as possible, the book employs a clear route in each paper, moving from background to motivation, to quantitative development (equations), and lastly to case studies/illustrations/tutorials (simulations, experiences, curves, tables, etc.). Though primarily intended for graduate students, professors and researchers from related fields, the book will also benefit engineers and scientists from industry. .

  7. Normal modes and continuous spectra

    International Nuclear Information System (INIS)

    Balmforth, N.J.; Morrison, P.J.

    1994-12-01

    The authors consider stability problems arising in fluids, plasmas and stellar systems that contain singularities resulting from wave-mean flow or wave-particle resonances. Such resonances lead to singularities in the differential equations determining the normal modes at the so-called critical points or layers. The locations of the singularities are determined by the eigenvalue of the problem, and as a result, the spectrum of eigenvalues forms a continuum. They outline a method to construct the singular eigenfunctions comprising the continuum for a variety of problems

  8. Acoustic rotation modes in complex plasmas

    International Nuclear Information System (INIS)

    Bai Dongxue; Wang Zhengxiong; Wang Xiaogang

    2004-01-01

    Acoustic rotation modes in complex plasmas are investigated in a cylindrical system with an axial symmetry. The linear mode solution is derived. The mode in an infinite area is reduced to a classical dust acoustic wave in the region away from the centre. When the dusty plasma is confined in a finite region, the breathing and rotating-void behaviour are observed. Vivid structures of different mode number solutions are illustrated

  9. Mode damping in a commensurate monolayer solid

    DEFF Research Database (Denmark)

    Bruch, Ludwig Walter; Hansen, Flemming Yssing

    1997-01-01

    with an elastic-continuum theory of the response of modes of either parallel or perpendicular polarization for a spherical adsorbate on a hexagonal substrate. The results are applied to the discussion of computer simulations and inelastic atomic-scattering experiments for adsorbates on graphite. The extreme...... of substrate modes with strong anomalous dispersion, and enables a semiquantitative account of observed avoided crossings of the adlayer perpendicular vibration mode and the substrate Rayleigh mode....

  10. Multimode optical fibers: steady state mode exciter.

    Science.gov (United States)

    Ikeda, M; Sugimura, A; Ikegami, T

    1976-09-01

    The steady state mode power distribution of the multimode graded index fiber was measured. A simple and effective steady state mode exciter was fabricated by an etching technique. Its insertion loss was 0.5 dB for an injection laser. Deviation in transmission characteristics of multimode graded index fibers can be avoided by using the steady state mode exciter.

  11. Viscoelastic modes in chiral liquid crystals

    Indian Academy of Sciences (India)

    amit@fs.rri.local.net (Amit Kumar Agarwal)

    our studies on the viscoelastic modes of some chiral liquid crystals using dynamic light scattering. We discuss viscoelastic ... In the vicinity of the direct beam for a sample aligned in the Bragg mode and. 297 ... experimental investigations on these modes. Duke and Du ..... scattering volume is not true in practice. In an actual ...

  12. Spiral modes in cold cylindrical systems

    International Nuclear Information System (INIS)

    Robe, H.

    1975-01-01

    The linearized hydrodynamical equations governing the non-axisymmetric free modes of oscillation of cold cylindrical stellar systems are separated in cylindrical coordinates and solved numerically for two models. Short-wavelength unstable modes corresponding to tight spirals do not exist; but there exists an unstable growing mode which has the form of trailing spirals which are quite open. (orig.) [de

  13. Silicon Photonic Integrated Circuit Mode Multiplexer

    DEFF Research Database (Denmark)

    Ding, Yunhong; Ou, Haiyan; Xu, Jing

    2013-01-01

    We propose and demonstrate a novel silicon photonic integrated circuit enabling multiplexing of orthogonal modes in a few-mode fiber (FMF). By selectively launching light to four vertical grating couplers, all six orthogonal spatial and polarization modes supported by the FMF are successfully...

  14. MDM: A Mode Diagram Modeling Framework

    DEFF Research Database (Denmark)

    Wang, Zheng; Pu, Geguang; Li, Jianwen

    2012-01-01

    Periodic control systems used in spacecrafts and automotives are usually period-driven and can be decomposed into different modes with each mode representing a system state observed from outside. Such systems may also involve intensive computing in their modes. Despite the fact that such control...

  15. PLC-based mode multi/demultiplexers for mode division multiplexing

    Science.gov (United States)

    Saitoh, Kunimasa; Hanzawa, Nobutomo; Sakamoto, Taiji; Fujisawa, Takeshi; Yamashita, Yoko; Matsui, Takashi; Tsujikawa, Kyozo; Nakajima, Kazuhide

    2017-02-01

    Recently developed PLC-based mode multi/demultiplexers (MUX/DEMUXs) for mode division multiplexing (MDM) transmission are reviewed. We firstly show the operation principle and basic characteristics of PLC-based MUX/DEMUXs with an asymmetric directional coupler (ADC). We then demonstrate the 3-mode (2LP-mode) multiplexing of the LP01, LP11a, and LP11b modes by using fabricated PLC-based mode MUX/DEMUX on one chip. In order to excite LP11b mode in the same plane, a PLC-based LP11 mode rotator is introduced. Finally, we show the PLC-based 6-mode (4LP-mode) MUX/DEMUX with a uniform height by using ADCs, LP11 mode rotators, and tapered waveguides. It is shown that the LP21a mode can be excited from the LP11b mode by using ADC, and the two nearly degenerated LP21b and LP02 modes can be (de)multiplexed separately by using tapered mode converter from E13 (E31) mode to LP21b (LP02) mode.

  16. Parametric Landau damping of space charge modes

    Energy Technology Data Exchange (ETDEWEB)

    Macridin, Alexandru [Fermilab; Burov, Alexey [Fermilab; Stern, Eric [Fermilab; Amundson, James [Fermilab; Spentzouris, Panagiotis [Fermilab

    2016-09-23

    Landau damping is the mechanism of plasma and beam stabilization; it arises through energy transfer from collective modes to the incoherent motion of resonant particles. Normally this resonance requires the resonant particle's frequency to match the collective mode frequency. We have identified an important new damping mechanism, parametric Landau damping, which is driven by the modulation of the mode-particle interaction. This opens new possibilities for stability control through manipulation of both particle and mode-particle coupling spectra. We demonstrate the existence of parametric Landau damping in a simulation of transverse coherent modes of bunched accelerator beams with space charge.

  17. Topological Coherent Modes in Trapped Bose Gas

    International Nuclear Information System (INIS)

    Yukalov, V.I.; Marzlin, K.-P.; Yukalova, E.P.; Bagnato, V.S.

    2005-01-01

    The report reviews the problem of topological coherent modes, which are nonlinear collective states of Bose-condensed atoms. Such modes can be generated by means of alternating external fields, whose frequencies are in resonance with the transition frequencies between the related modes. The Bose gas with generated topological coherent modes is a collective nonlinear analog of a resonant atom. Such systems exhibit a variety of nontrivial effects, e.g. interference fringes, interference current, mode locking, dynamic transitions, critical phenomena, chaotic motion, harmonic generation, parametric conversion, atomic squeezing, and entanglement production

  18. 'Snowflake' H Mode in a Tokamak Plasma

    International Nuclear Information System (INIS)

    Piras, F.; Coda, S.; Duval, B. P.; Labit, B.; Marki, J.; Moret, J.-M.; Pitzschke, A.; Sauter, O.; Medvedev, S. Yu.

    2010-01-01

    An edge-localized mode (ELM) H-mode regime, supported by electron cyclotron heating, has been successfully established in a 'snowflake' (second-order null) divertor configuration for the first time in the TCV tokamak. This regime exhibits 2 to 3 times lower ELM frequency and 20%-30% increased normalized ELM energy (ΔW ELM /W p ) compared to an identically shaped, conventional single-null diverted H mode. Enhanced stability of mid- to high-toroidal-mode-number ideal modes is consistent with the different snowflake ELM phenomenology. The capability of the snowflake to redistribute the edge power on the additional strike points has been confirmed experimentally.

  19. Nonlinear coupling of kink modes in Tokamaks

    International Nuclear Information System (INIS)

    Dagazian, R.Y.

    1975-07-01

    The m = 2, n = 1 kink mode is shown to be capable of destabilizing the m = 1, n = 1 internal kink. A nonlinear Lagrangian theory is developed for the coupling of modes of different pitch, and it is applied to the interaction of these modes. The coupling to the m = 2 mode provides sufficient additional destabilization to the internal mode to permit it to account even quantitatively (where it had failed when considered by itself) for many of the features of the disruptive instability. (U.S.)

  20. Critical cladding radius for hybrid cladding modes

    Science.gov (United States)

    Guyard, Romain; Leduc, Dominique; Lupi, Cyril; Lecieux, Yann

    2018-05-01

    In this article we explore some properties of the cladding modes guided by a step-index optical fiber. We show that the hybrid modes can be grouped by pairs and that it exists a critical cladding radius for which the modes of a pair share the same electromagnetic structure. We propose a robust method to determine the critical cladding radius and use it to perform a statistical study on the influence of the characteristics of the fiber on the critical cladding radius. Finally we show the importance of the critical cladding radius with respect to the coupling coefficient between the core mode and the cladding modes inside a long period grating.

  1. Accelerated reliability demonstration under competing failure modes

    International Nuclear Information System (INIS)

    Luo, Wei; Zhang, Chun-hua; Chen, Xun; Tan, Yuan-yuan

    2015-01-01

    The conventional reliability demonstration tests are difficult to apply to products with competing failure modes due to the complexity of the lifetime models. This paper develops a testing methodology based on the reliability target allocation for reliability demonstration under competing failure modes at accelerated conditions. The specified reliability at mission time and the risk caused by sampling of the reliability target for products are allocated for each failure mode. The risk caused by degradation measurement fitting of the target for a product involving performance degradation is equally allocated to each degradation failure mode. According to the allocated targets, the accelerated life reliability demonstration test (ALRDT) plans for the failure modes are designed. The accelerated degradation reliability demonstration test plans and the associated ALRDT plans for the degradation failure modes are also designed. Next, the test plan and the decision rules for the products are designed. Additionally, the effects of the discreteness of sample size and accepted number of failures for failure modes on the actual risks caused by sampling for the products are investigated. - Highlights: • Accelerated reliability demonstration under competing failure modes is studied. • The method is based on the reliability target allocation involving the risks. • The test plan for the products is based on the plans for all the failure modes. • Both failure mode and degradation failure modes are considered. • The error of actual risks caused by sampling for the products is small enough

  2. Distributed mode filtering rod fiber amplifier delivering 292W with improved mode stability

    DEFF Research Database (Denmark)

    Laurila, Marko; Jørgensen, Mette Marie; Hansen, Kristian Rymann

    2012-01-01

    We demonstrate a high power fiber (85μm core) amplifier delivering up to 292Watts of average output power using a mode-locked 30ps source at 1032nm. Utilizing a single mode distributed mode filter bandgap rod fiber, we demonstrate 44% power improvement before the threshold-like onset of mode inst...

  3. Identifying modes of large whispering-gallery mode resonators from the spectrum and emission pattern

    DEFF Research Database (Denmark)

    Schunk, Gerhard; Fuerst, Josef U.; Förtsch, Michael

    2014-01-01

    Identifying the mode numbers in whispering-gallery mode resonators (WGMRs) is important for tailoring them to experimental needs. Here we report on a novel experimental mode analysis technique based on the combination of frequency analysis and far-field imaging for high mode numbers of large WGMR...

  4. Tearing mode instability due to anomalous resistivity

    International Nuclear Information System (INIS)

    Furuya, Atsushi; Itoh, Sanae I.; Yagi, Masatoshi

    2000-01-01

    Tearing mode instability in the presence of microscopic truculence is investigates. The effects of microscopic turbulence on tearing mode are taken as drags which are calculated by one-point renormalization method and mean-field approximation. These effects are reduced to effective diffusivities in reduced MHD equations. Using these equations, the stability analyses of the tearing mode are performed. It is shown that a finite amplitude of fluctuation enhances the growth rate of tearing mode. For very high values of turbulent diffusivities, marginally stable state exists. The effects of each turbulent diffusivity on mode stability are examined near marginal stability boundary. Parameter dependence of the resistive ballooning mode turbulence on tearing mode is analyzed as an example. (author)

  5. Anomalous normal mode oscillations in semiconductor microcavities

    Energy Technology Data Exchange (ETDEWEB)

    Wang, H. [Univ. of Oregon, Eugene, OR (United States). Dept. of Physics; Hou, H.Q.; Hammons, B.E. [Sandia National Labs., Albuquerque, NM (United States)

    1997-04-01

    Semiconductor microcavities as a composite exciton-cavity system can be characterized by two normal modes. Under an impulsive excitation by a short laser pulse, optical polarizations associated with the two normal modes have a {pi} phase difference. The total induced optical polarization is then expected to exhibit a sin{sup 2}({Omega}t)-like oscillation where 2{Omega} is the normal mode splitting, reflecting a coherent energy exchange between the exciton and cavity. In this paper the authors present experimental studies of normal mode oscillations using three-pulse transient four wave mixing (FWM). The result reveals surprisingly that when the cavity is tuned far below the exciton resonance, normal mode oscillation in the polarization is cos{sup 2}({Omega}t)-like, in contrast to what is expected form the simple normal mode model. This anomalous normal mode oscillation reflects the important role of virtual excitation of electronic states in semiconductor microcavities.

  6. Mode-routed fiber-optic add-drop filter

    Science.gov (United States)

    Moslehi, Behzad (Inventor); Black, Richard James (Inventor); Shaw, Herbert John (Inventor)

    2000-01-01

    New elements mode-converting two-mode grating and mode-filtering two-mode coupler are disclosed and used as elements in a system for communications, add-drop filtering, and strain sensing. Methods of fabrication for these new two-mode gratings and mode-filtering two-mode couplers are also disclosed.

  7. GATS Mode 4 Negotiation and Policy Options

    Directory of Open Access Journals (Sweden)

    Kil-Sang Yoo

    2004-06-01

    Full Text Available This study reviews the characteristics and issues of GATS Mode 4 and guesses the effects of Mode 4 liberalization on Korean economy and labor market to suggest policy options to Korea. Mode 4 negotiation started from the trade perspective, however, since Mode 4 involves international labor migration, it also has migration perspective. Thus developed countries, that have competitiveness in service sector, are interested in free movement of skilled workers such as intra-company transferees and business visitors. On the other hand, developing countries, that have little competitiveness in service sector, are interested in free movement of low-skilled workers. Empirical studies predict that the benefits of Mode 4 liberalization will be focused on developed countries rather than developing countries. The latter may suffer from brain drain and reduction of labor supply. Nevertheless developed countries are reluctant to Mode 4 negotiation because they can utilize skilled workers from developing countries by use of their own temporary visa programs. They are interested in Mode 4 related with Mode 3 in order to ease direct investment and movement of natural persons to developing countries. Regardless of the direction of a single undertaking of Mode 4 negotiation, the net effects of Mode 4 liberalization on Korean economy and labor market may be negative. The Korean initial offer on Mode 4 is the same as the UR offer. Since Korean position on Mode 4 is most defensive, it is hard to expect that Korean position will be accepted as the single undertaking of Mode 4 negotiation. Thus Korea has to prepare strategic package measures to minimize the costs of Mode 4 liberalization and improve competitiveness of service sector.

  8. A view of the upper atmosphere from Antarctica

    International Nuclear Information System (INIS)

    Rycroft, M.

    1985-01-01

    The paper reviews the phenomena associated with the earth's upper atmosphere, as detected from field stations on the Antarctic continent. A description is given of the earth's atmosphere, including the auroral regions, the ionosphere and magnetosphere. Geospace phenomena investigated from the Antarctic are described, and include whistlers, chorus and trimpi events. The earth's geomagnetic field is measured at several Antarctic stations. Possibilities for future projects in Antarctica are also discussed. (U.K.)

  9. Resonant MHD modes with toroidal coupling

    International Nuclear Information System (INIS)

    Connor, J.W.; Hastie, R.J.; Taylor, J.B.

    1990-07-01

    This is part 2 of a study of resonant perturbations, such as resistive tearing and ballooning modes, in a torus. These are described by marginal ideal mhd equations in the regions between resonant surfaces; matching across these surfaces provides the dispersion relation. In part 1 we described how all the necessary information from the ideal mhd calculations could be represented by a so-called E-matrix. We also described the calculation of this E-matrix for tearing modes (even parity in perturbed magnetic field) in a large aspect ratio torus. There the toroidal modes comprise coupled cylinder tearing modes and the E-matrix is a generalization of the familiar Δ' quantity in a cylinder. In the present paper we discuss resistive ballooning, or twisting-modes, which have odd-parity in perturbed magnetic field. We show that, unlike the tearing modes, these odd-parity modes are instrinsically toroidal and are not directly related to the odd-parity modes in a cylinder. This is evident from the analysis of the high-n limit in ballooning-space, where a transition from a stable Δ' to an unstable Δ' occurs for the twisting mode when the ballooning effect exceeds the interchange effect, which can occur even at large aspect ratio (as in a tokamak). Analysis of the high-n limit in coordinate space, rather than ballooning space, clarifies this singular behaviour and indicates how one may define twisting-mode Δ'. It also yields a prescription for treating low-n twisting modes and a method for calculating an E-matrix for resistive ballooning modes in a large aspect ratio tokamak. The elements of this matrix are given in terms of cylindrical tearing mode solutions

  10. Investigation of exotic fission modes

    International Nuclear Information System (INIS)

    Poenaru, D. N.; Gherghescu, R. A.; Greiner, W.; Nagame, Y.; Hamilton, J. H.; Ramayya, A. V.

    2002-01-01

    Fission approach to the cluster radioactivities and α-decay has been systematically developed during the last two decades. A more complex process, the ternary fission, was observed since 1946 both in neutron-induced and spontaneous fission. We obtained interesting results concerning the binary fission saddle-point reflection asymmetric nuclear shapes, and we can explain how a possible nuclear quasimolecular state is formed during the 10 Be accompanied cold fission of 252 Cf. The equilibrium nuclear shapes in fission theory are usually determined by minimizing the deformation energy for a given surface equation. We developed a method allowing to obtain a very general saddle-point shape as a solution of a differential equation without an a priori introduction of a shape parametrization. In the approach based on a liquid drop model (LDM), saddle-point shapes are always reflection symmetric: the deformation energy increases with the mass-asymmetry parameter η = (A 1 - A 2 )/(A 1 + A 2 ). By adding the shell corrections to the LDM deformation energy, we obtained minima at a finite mass asymmetry for parent nuclei 238 U, 232,228 Th in agreement with experiments. This correction was calculated phenomenologically. A technique based on the fragment identification by using triple γ coincidences in the large arrays of Ge-detectors, like GAMMASPHERE, was employed at Vanderbilt University to discover new characteristics of the fission process, and new decay modes. The possibility of a whole family of new decay modes, the multicluster accompanied fission, was envisaged. Besides the fission into two or three fragments, a heavy or superheavy nucleus spontaneously breaks into four, five or six nuclei of which two are asymmetric or symmetric heavy fragments and the others are light clusters, e.g. α-particles, 10 Be, 14 C, or combinations of them. Examples were presented for the two-, three- and four cluster accompanied cold fission of 252 Cf and 262 Rf, in which the emitted

  11. Circular waveguide mode converters at 140 GHz

    International Nuclear Information System (INIS)

    Trulsen, J.; Woskoboinikow, P.; Temkin, R.J.

    1986-01-01

    A unified derivation of the coupled mode equations for circular waveguide is presented. Also, approximate design criteria for TE/sub 0n/ to TE/sub 0n'/ axisymmetric, TE 01 to TE 11 wriggle, and TE 01 to TM 11 bend converters are reviewed. Numerically solving the coupled mode equations, an optimized set of mode converters has been designed for conversion of a 2 millimeter wave TE 03 mode into TE 11 . This set consists of axisymmetric TE 03 to TE 02 and TE 02 to TE 01 converters followed by a wriggle TE 01 to TE 11 converter. This mode converter set was fabricated and tested using a 3 kW, 137 GHz gyrotron. A TE 11 mode purity of better than 97% was achieved. The TE 01 to TE 11 wriggle converter was experimentally optimized for a measured conversion efficiency of better than 99% not including ohmic losses

  12. Mixed-mode fracture of ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Petrovic, J.J.

    1985-01-01

    The mixed-mode fracture behavior of ceramic materials is of importance for monolithic ceramics in order to predict the onset of fracture under generalized loading conditions and for ceramic composites to describe crack deflection toughening mechanisms. Experimental data on surface flaw mixed-mode fracture in various ceramics indicate that the flaw-plane normal stress at fracture decreases with increasing in-flaw-plane shear stress, although present data exhibit a fairly wide range in details of this sigma - tau relationship. Fracture from large cracks suggests that Mode II has a greater effect on Mode I fracture than Mode III. A comparison of surface flaw and large crack mixed-mode I-II fracture responses indicated that surface flaw behavior is influenced by shear resistance effects.

  13. Mode conversion in hybrid optical fiber coupler

    Science.gov (United States)

    Stasiewicz, Karol A.; Marc, P.; Jaroszewicz, Leszek R.

    2012-04-01

    Designing of all in-line fiber optic systems with a supercontinuum light source gives some issues. The use of a standard single mode fiber (SMF) as an input do not secure single mode transmission in full wavelength range. In the paper, the experimental results of the tested hybrid fiber optic coupler were presented. It was manufactured by fusing a standard single mode fiber (SMF28) and a photonic crystal fiber (PCF). The fabrication process is based on the standard fused biconical taper technique. Two types of large mode area fibers (LMA8 and LAM10 NKT Photonics) with different air holes arrangements were used as the photonic crystal fiber. Spectral characteristics within the range of 800 nm - 1700 nm were presented. All process was optimized to obtain a mode conversion between SMF and PCF and to reach a single mode transmission in the PCF output of the coupler.

  14. OBSERVATIONS OF SAUSAGE MODES IN MAGNETIC PORES

    International Nuclear Information System (INIS)

    Morton, R. J.; Erdelyi, R.; Jess, D. B.; Mathioudakis, M.

    2011-01-01

    We present here evidence for the observation of the magnetohydrodynamic (MHD) sausage modes in magnetic pores in the solar photosphere. Further evidence for the omnipresent nature of acoustic global modes is also found. The empirical decomposition method of wave analysis is used to identify the oscillations detected through a 4170 A 'blue continuum' filter observed with the Rapid Oscillations in the Solar Atmosphere (ROSA) instrument. Out of phase, periodic behavior in pore size and intensity is used as an indicator of the presence of magnetoacoustic sausage oscillations. Multiple signatures of the magnetoacoustic sausage mode are found in a number of pores. The periods range from as short as 30 s up to 450 s. A number of the magnetoacoustic sausage mode oscillations found have periods of 3 and 5 minutes, similar to the acoustic global modes of the solar interior. It is proposed that these global oscillations could be the driver of the sausage-type magnetoacoustic MHD wave modes in pores.

  15. Tearing mode analysis in tokamaks, revisited

    International Nuclear Information System (INIS)

    Nishimura, Y.; Callen, J.D.; Hegna, C.C.

    1997-12-01

    A new Δ' shooting code has been developed to investigate tokamak plasma tearing mode stability in a cylinder and large aspect ratio (ε ≤ 0.25) toroidal geometries, neglecting toroidal mode coupling. A different computational algorithm is used (shooting out from the singular surface instead of into it) to resolve the strong singularities at the mode rational surface, particularly in the presence of finite pressure term. Numerical results compare favorably with Furth et al. results. The effects of finite pressure, which are shown to decrease Δ', are discussed. It is shown that the distortion of the flux surfaces by the Shafranov shift, which modifies the geometry metric element stabilizes the tearing mode significantly, even in a low β regime before the toroidal magnetic curvature effects come into play. Double tearing modes in toroidal geometries are examined as well. Furthermore, m ≥ 2 tearing mode stability criteria are compared with three dimensional initial value MHD simulation by the FAR code

  16. Identifying modes of large whispering-gallery mode resonators from the spectrum and emission pattern.

    Science.gov (United States)

    Schunk, Gerhard; Fürst, Josef U; Förtsch, Michael; Strekalov, Dmitry V; Vogl, Ulrich; Sedlmeir, Florian; Schwefel, Harald G L; Leuchs, Gerd; Marquardt, Christoph

    2014-12-15

    Identifying the mode numbers in whispering-gallery mode resonators (WGMRs) is important for tailoring them to experimental needs. Here we report on a novel experimental mode analysis technique based on the combination of frequency analysis and far-field imaging for high mode numbers of large WGMRs. The radial mode numbers q and the angular mode numbers p = ℓ-m are identified and labeled via far-field imaging. The polar mode numbers ℓ are determined unambiguously by fitting the frequency differences between individual whispering gallery modes (WGMs). This allows for the accurate determination of the geometry and the refractive index at different temperatures of the WGMR. For future applications in classical and quantum optics, this mode analysis enables one to control the narrow-band phase-matching conditions in nonlinear processes such as second-harmonic generation or parametric down-conversion.

  17. Adaptive variational mode decomposition method for signal processing based on mode characteristic

    Science.gov (United States)

    Lian, Jijian; Liu, Zhuo; Wang, Haijun; Dong, Xiaofeng

    2018-07-01

    Variational mode decomposition is a completely non-recursive decomposition model, where all the modes are extracted concurrently. However, the model requires a preset mode number, which limits the adaptability of the method since a large deviation in the number of mode set will cause the discard or mixing of the mode. Hence, a method called Adaptive Variational Mode Decomposition (AVMD) was proposed to automatically determine the mode number based on the characteristic of intrinsic mode function. The method was used to analyze the simulation signals and the measured signals in the hydropower plant. Comparisons have also been conducted to evaluate the performance by using VMD, EMD and EWT. It is indicated that the proposed method has strong adaptability and is robust to noise. It can determine the mode number appropriately without modulation even when the signal frequencies are relatively close.

  18. Effects of multiple modes interaction on the resistive wall mode instability

    International Nuclear Information System (INIS)

    Chen, Longxi; Lei, Wenqing; Ma, Zhiwei; Wu, Bin

    2013-01-01

    The effects of multiple modes interaction on the resistive wall mode (RWM) are studied in a slab geometry with and without plasma flow. The modes interaction can have a large effect on both the linear growth rate and the nonlinear saturation level of the RWM. We found that modes interaction can suppress the linear growth rate for the most unstable mode. The plasma flow can also help to control the growth of the RWM. The RWM can be stabilized completely by a plasma flow when considering the modes interaction. The effect of modes interaction on the RWM is stronger for the mode rational surface in the vacuum than that in the plasma. The modes interaction results in a substantially lowered saturation level for the most unstable RWM. (paper)

  19. A Minimal Model to Explore the Influence of Distant Modes on Mode-Coupling Instabilities

    Science.gov (United States)

    Kruse, Sebastian; Hoffmann, Norbert

    2010-09-01

    The phenomenon of mode-coupling instability is one of the most frequently explored mechanisms to explain self-excited oscillation in sliding systems with friction. A mode coupling instability is usually due to the coupling of two modes. However, further modes can have an important influence on the coupling of two modes. This work extends a well-known minimal model to describe mode-coupling instabilities in order to explore the influence of a distant mode on the classical mode-coupling pattern. This work suggests a new minimal model. The model is explored and it is shown that a third mode can have significant influence on the classical mode-coupling instabilities where two modes are coupling. Different phenomena are analysed and it is pointed out that distant modes can only be ignored in very special cases and that the onset friction-induced oscillations can even be very sensitive to minimal variation of a distant mode. Due to the chosen academic minimal-model and the abandonment of a complex Finite-Element model the insight stays rather phenomenological but a better understanding of the mode-coupling mechnanism can be gained.

  20. Quantum random walks using quantum accelerator modes

    International Nuclear Information System (INIS)

    Ma, Z.-Y.; Burnett, K.; D'Arcy, M. B.; Gardiner, S. A.

    2006-01-01

    We discuss the use of high-order quantum accelerator modes to achieve an atom optical realization of a biased quantum random walk. We first discuss how one can create coexistent quantum accelerator modes, and hence how momentum transfer that depends on the atoms' internal state can be achieved. When combined with microwave driving of the transition between the states, a different type of atomic beam splitter results. This permits the realization of a biased quantum random walk through quantum accelerator modes

  1. A simple theory of linear mode conversion

    International Nuclear Information System (INIS)

    Cairns, R.A.; Lashmore-Davies, C.N.; Woods, A.M.

    1984-01-01

    A summary is given of the basic theory of linear mode conversion involving the construction of differential equations for the mode amplitudes based on the properties of the dispersion relation in the neighbourhood of the mode conversion point. As an example the transmission coefficient for tunneling from the upper hybrid resonance through the evanescent region to the adjacent cut-off is treated. 7 refs, 3 figs

  2. Ponderomotive modification of drift tearing modes

    International Nuclear Information System (INIS)

    Urquijo, G.; Singh, R.; Sen, A.

    1997-01-01

    The linear characteristics of drift tearing modes are investigated in the presence of a significant background of radio-frequency (RF) waves in the ion cyclotron range of frequencies. The ponderomotive force, arising from the radial gradients in the RF field energy, is found to significantly modify the inner layer solutions of the drift tearing modes. It can have a stabilizing influence, even at moderate RF powers, provided the field energy has a decreasing radial profile at the mode rational surface. (author)

  3. Coupled mode theory of periodic waveguides arrays

    DEFF Research Database (Denmark)

    Lavrinenko, Andrei; Chigrin, Dmitry N.

    We apply the scalar coupled mode theory to the case of waveguides array consisting om two periodic waveguides. One of the waveguides is arbitrary shifted along another. A longitudinal shift acts as a parameter in the coupled mode theory. The proposed theory explains peculiarities of modes dispers...... dispersion and transmission in coupled periodic waveguides systems. Analytical results are compared with the numerical ones obtained by the plane wave expansion and FDTD methods....

  4. Majorana Zero Modes in Graphene

    Directory of Open Access Journals (Sweden)

    P. San-Jose

    2015-12-01

    Full Text Available A clear demonstration of topological superconductivity (TS and Majorana zero modes remains one of the major pending goals in the field of topological materials. One common strategy to generate TS is through the coupling of an s-wave superconductor to a helical half-metallic system. Numerous proposals for the latter have been put forward in the literature, most of them based on semiconductors or topological insulators with strong spin-orbit coupling. Here, we demonstrate an alternative approach for the creation of TS in graphene-superconductor junctions without the need for spin-orbit coupling. Our prediction stems from the helicity of graphene’s zero-Landau-level edge states in the presence of interactions and from the possibility, experimentally demonstrated, of tuning their magnetic properties with in-plane magnetic fields. We show how canted antiferromagnetic ordering in the graphene bulk close to neutrality induces TS along the junction and gives rise to isolated, topologically protected Majorana bound states at either end. We also discuss possible strategies to detect their presence in graphene Josephson junctions through Fraunhofer pattern anomalies and Andreev spectroscopy. The latter, in particular, exhibits strong unambiguous signatures of the presence of the Majorana states in the form of universal zero-bias anomalies. Remarkable progress has recently been reported in the fabrication of the proposed type of junctions, which offers a promising outlook for Majorana physics in graphene systems.

  5. Correlations between locked modes and impurity influxes

    Energy Technology Data Exchange (ETDEWEB)

    Fishpool, G M [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking; Lawson, K D [UKAEA Culham Lab., Abingdon (United Kingdom)

    1994-07-01

    An analysis of pulses that were disturbed by medium Z impurity influxes (Cl, Cr, Fe and Ni) recorded during the 91/92 JET operations, has demonstrated that such influxes can result in MHD modes which subsequently ``lock``. A correlation is found between the power radiated by the influx and the time difference between the start of the influx and the beginning of the locked mode. The growth in the amplitude of the locked mode itself can lead to further impurity influxes. A correlation is noted between intense influxes (superior to 10 MW) and the mode ``unlocking``. (authors). 4 refs., 4 figs.

  6. Theory of tokamak resistive fishbone modes

    International Nuclear Information System (INIS)

    Shi Bingren; Sui Guofang

    1995-12-01

    A special kind of internal kink mode, the fishbone, can be excited by the energetic particles in tokamak plasmas. Theoretical analyses of fishbone modes based on the ideal MHD framework have predicted that two branches of modes exists. One is the Chen-White branch with ω∼ω-bar dm , corresponding to a higher threshold in β h ; the other is the Coppis branch with ω∼ω *i , and a much lower threshold in β h . The latter mode would put a rather unfavourable restriction on heating efficiency and on plasma confinement. However. It is found that the resistivity effect is essential for this mode. In this paper, a new resistive fishbone mode analysis is carried out. In the (γ mhd ,β H ) space, the stability diagram shows complicate structure, the Coppis branch is replaced by a weakly unstable mode and there is no longer closed stable region. The growth rate of this mode varies with β h , its peak value is still very low compared to other internal modes. The implications of these results to future tokamak experiments are discussed. (8 figs.)

  7. Suspensions with reduced violin string modes

    International Nuclear Information System (INIS)

    Lee, B H; Ju, L; Blair, D G

    2006-01-01

    We discuss the possibility of significantly reducing the number and Q-factor of violin string modes in the mirror suspension. Simulations of a bar-flexure suspension and an orthogonal ribbon have shown a reduction in the number of violin string modes when compared to a normal ribbon suspension. By calculating the expected suspension thermal noise, we find that the orthogonal ribbon provides a promising suspension alternative. A lower number of violin modes oscillating in the direction of the laser and a reduction in violin mode peak values of at least 23dB can be achieved with a slight increase in thermal noise above 40Hz

  8. Suspensions with reduced violin string modes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, B H; Ju, L; Blair, D G [School of Physics, University of Western Australia, Crawley 6009, WA (Australia)

    2006-03-02

    We discuss the possibility of significantly reducing the number and Q-factor of violin string modes in the mirror suspension. Simulations of a bar-flexure suspension and an orthogonal ribbon have shown a reduction in the number of violin string modes when compared to a normal ribbon suspension. By calculating the expected suspension thermal noise, we find that the orthogonal ribbon provides a promising suspension alternative. A lower number of violin modes oscillating in the direction of the laser and a reduction in violin mode peak values of at least 23dB can be achieved with a slight increase in thermal noise above 40Hz.

  9. H-mode study in CHS

    International Nuclear Information System (INIS)

    Toi, K.; Morisaki, T.; Sakakibara, S.

    1995-02-01

    In CHS rapid H-mode transition is observed in NBI heated deuterium and hydrogen plasmas without obvious isotope effect, when a net plasma current is ramped up to increase the external rotational transform. The H-mode of CHS has many similarities with those in tokamaks. Recent measurement with fast response Langmuir probes has revealed that the rapid change in floating potential occurs at the transition, but the change follows the formation of edge transport barrier. The presence of ι/2π = 1 surface near the edge and sawtooth crash triggered by internal modes may play an important role for determining the H-mode transition in CHS. (author)

  10. Acoustic propagation mode in a cylindrical plasma

    International Nuclear Information System (INIS)

    Ishida, Yoshio; Idehara, Toshitaka; Inada, Hideyo

    1975-01-01

    The sound velocity in a cylindrical plasma produced by a high frequency discharge is measured by an interferometer system. The result shows that the acoustic wave guide effect does exist in a neutral gas and in a plasma. It is found that the wave propagates in the mode m=2 in a rigid boundary above the cut-off frequency fsub(c) and in the mode m=0 below fsub(c). Because the mode m=0 is identical to a plane wave, the sound velocity in free space can be evaluated exactly. In the mode m=2, the sound velocity approaches the free space value, when the frequency increases sufficiently. (auth.)

  11. Mode coupling in spin torque oscillators

    International Nuclear Information System (INIS)

    Zhang, Steven S.-L.; Zhou, Yan; Li, Dong; Heinonen, Olle

    2016-01-01

    A number of recent experimental works have shown that the dynamics of a single spin torque oscillator can exhibit complex behavior that stems from interactions between two or more modes of the oscillator, such as observed mode-hopping or mode coexistence. There has been some initial work indicating how the theory for a single-mode (macro-spin) spin torque oscillator should be generalized to include several modes and the interactions between them. In the present work, we rigorously derive such a theory starting with the Landau–Lifshitz–Gilbert equation for magnetization dynamics by expanding up to third-order terms in deviation from equilibrium. Our results show how a linear mode coupling, which is necessary for observed mode-hopping to occur, arises through coupling to a magnon bath. The acquired temperature dependence of this coupling implies that the manifold of orbits and fixed points may shift with temperature. - Highlights: • Deriving equations for coupled modes in spin torque oscillators. • Including Hamiltonian formalism and elimination of three–magnon processes. • Thermal bath of magnons central to mode coupling. • Numerical examples of circular and elliptical devices.

  12. Turbulence and Solar p-Mode Oscillations

    Science.gov (United States)

    Bi, S. L.; Xu, H. Y.

    The discrepancy between observed and theoretical mode frequencies can be used to examine the reliability of the standard solar model as a faithful representation of solar real situation. With the help of an improved time-dependent convective model that takes into account contribution of the full spatial and temporal turbulent energy spectrum, we study the influence of turbulent pressure on structure and solar p-mode frequencies. For the radial modes we find that the Reynolds stress produces signification modifications in structure and p-mode spectrum. Compared with an adiabatic approximation, the discrepancy is largely removed by the turbulent correction.

  13. Failure Modes of thin supported Membranes

    DEFF Research Database (Denmark)

    Hendriksen, Peter Vang; Høgsberg, J.R.; Kjeldsen, Ane Mette

    2007-01-01

    Four different failure modes relevant to tubular supported membranes (thin dense films on a thick porous support) were analyzed. The failure modes were: 1) Structural collapse due to external pressure 2) burst of locally unsupported areas, 3) formation of surface cracks in the membrane due to TEC......-mismatches, and finally 4) delamination between membrane and support due to expansion of the membrane on use. Design criteria to minimize risk of failure by the four different modes are discussed. The theoretical analysis of the two last failure modes is compared to failures observed on actual components....

  14. Research of the Power Plant Operational Modes

    Directory of Open Access Journals (Sweden)

    Koismynina Nina M.

    2017-01-01

    Full Text Available In this article the algorithm of the power plant operational modes research is offered. According to this algorithm the program for the modes analysis and connection power transformers choice is developed. The program can be used as educational means for studying of the power plant electric part, at the same time basic data are provided. Also the program can be used for the analysis of the working power plants modes. Checks of the entered data completeness and a choice correctness of the operational modes are provided in the program; in all cases of a deviation from the correct decisions to the user the relevant information is given.

  15. Mode coupling in spin torque oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Steven S.-L., E-mail: ZhangShule@missouri.edu [Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211 (United States); Zhou, Yan, E-mail: yanzhou@hku.hk [Department of Physics, The University of Hong Kong, Hong Kong (China); Center of Theoretical and Computational Physics, University of Hong Kong, Hong Kong (China); Li, Dong, E-mail: geodesic.ld@gmail.com [Department of Physics, Centre for Nonlinear Studies, and Beijing-Hong Kong-Singapore Joint Centre for Nonlinear and Complex Systems, Hong Kong Baptist University, Kowloon Tong, Hong Kong (China); Heinonen, Olle, E-mail: heinonen@anl.gov [Material Science Division, Argonne National Laboratory, Lemont, IL 60439 (United States); Northwestern-Argonne Institute of Science and Technology, 2145 Sheridan Road, Evanston, IL 60208 (United States); Computation Institute, The Unversity of Chicago, 5735 S Ellis Avenue, Chicago, IL 60637 (United States)

    2016-09-15

    A number of recent experimental works have shown that the dynamics of a single spin torque oscillator can exhibit complex behavior that stems from interactions between two or more modes of the oscillator, such as observed mode-hopping or mode coexistence. There has been some initial work indicating how the theory for a single-mode (macro-spin) spin torque oscillator should be generalized to include several modes and the interactions between them. In the present work, we rigorously derive such a theory starting with the Landau–Lifshitz–Gilbert equation for magnetization dynamics by expanding up to third-order terms in deviation from equilibrium. Our results show how a linear mode coupling, which is necessary for observed mode-hopping to occur, arises through coupling to a magnon bath. The acquired temperature dependence of this coupling implies that the manifold of orbits and fixed points may shift with temperature. - Highlights: • Deriving equations for coupled modes in spin torque oscillators. • Including Hamiltonian formalism and elimination of three–magnon processes. • Thermal bath of magnons central to mode coupling. • Numerical examples of circular and elliptical devices.

  16. Spatial mode discriminator based on leaky waveguides

    Science.gov (United States)

    Xu, Jing; Liu, Jialing; Shi, Hongkang; Chen, Yuntian

    2018-06-01

    We propose a conceptually simple and experimentally compatible configuration to discriminate the spatial mode based on leaky waveguides, which are inserted in-between the transmission link. The essence of such a spatial mode discriminator is to introduce the leakage of the power flux on purpose for detection. Importantly, the leaky angle of each individual spatial mode with respect to the propagation direction are different for non-degenerated modes, while the radiation patterns of the degenerated spatial modes in the plane perpendicular to the propagation direction are also distinguishable. Based on these two facts, we illustrate the operation principle of the spatial mode discriminators via two concrete examples; a w-type slab leaky waveguide without degeneracy, and a cylindrical leaky waveguide with degeneracy. The correlation between the leakage angle and the spatial mode distribution for a slab leaky waveguide, as well as differences between the in-plane radiation patterns of degenerated modes in a cylindrical leaky waveguide, are verified numerically and analytically. Such findings can be readily useful in discriminating the spatial modes for optical communication or optical sensing.

  17. Transverse multibunch modes for non-rigid bunches, including mode coupling

    Energy Technology Data Exchange (ETDEWEB)

    Berg, J S; Ruth, R D [Stanford Linear Accelerator Center, Menlo Park, CA (United States)

    1996-08-01

    A method for computing transverse multibunch growth rates and frequency shifts in rings, which has been described previously, is applied to the PEP-II B factory. The method allows multibunch modes with different internal-bunch oscillation modes to couple to one another, similar to single-bunch mode coupling. Including coupling between the multibunch modes gives effects similar to those seen in single-bunch mode coupling. These effects occur at currents that are lower than the single-bunch mode coupling threshold. (author)

  18. Discrimination of orbital angular momentum modes of the terahertz vortex beam using a diffractive mode transformer.

    Science.gov (United States)

    Liu, Changming; Wei, Xuli; Niu, Liting; Wang, Kejia; Yang, Zhengang; Liu, Jinsong

    2016-06-13

    We present an efficient method to discriminate orbital angular momentum (OAM) of the terahertz (THz) vortex beam using a diffractive mode transformer. The mode transformer performs a log-polar coordinate transformation of the input THz vortex beam, which consists of two 3D-printed diffractive elements. A following lens separates each transformed OAM mode to a different lateral position in its focal plane. This method enables a simultaneous measurement over multiple OAM modes of the THz vortex beam. We experimentally demonstrate the measurement of seven individual OAM modes and two multiplexed OAM modes, which is in good agreement with simulations.

  19. Competition and evolution of dielectric waveguide mode and plasmonic waveguide mode

    Science.gov (United States)

    Yuan, Sheng-Nan; Fang, Yun-Tuan

    2017-10-01

    In order to study the coupling and evolution law of the waveguide mode and two plasmonic surface modes, we construct a line defect waveguide based on hexagonal honeycomb plasmonic photonic crystal. Through adjusting the radius of the edge dielectric rods, the competition and evolution behaviors occur between dielectric waveguide mode and plasmonic waveguide mode. There are three status: only plasmonic waveguide modes occur for rA 0.25a; two kinds of modes coexist for 0.09a advantages in achieving slow light.

  20. Nonlinear mode coupling in rotating stars and the r-mode instability in neutron stars

    International Nuclear Information System (INIS)

    Schenk, A.K.; Arras, P.; Flanagan, E.E.; Teukolsky, S.A.; Wasserman, I.

    2002-01-01

    We develop the formalism required to study the nonlinear interaction of modes in rotating Newtonian stars, assuming that the mode amplitudes are only mildly nonlinear. The formalism is simpler than previous treatments of mode-mode interactions for spherical stars, and simplifies and corrects previous treatments for rotating stars. At linear order, we elucidate and extend slightly a formalism due to Schutz, show how to decompose a general motion of a rotating star into a sum over modes, and obtain uncoupled equations of motion for the mode amplitudes under the influence of an external force. Nonlinear effects are added perturbatively via three-mode couplings, which suffices for moderate amplitude modal excitations; the formalism is easy to extend to higher order couplings. We describe a new, efficient way to compute the modal coupling coefficients, to zeroth order in the stellar rotation rate, using spin-weighted spherical harmonics. The formalism is general enough to allow computation of the initial trends in the evolution of the spin frequency and differential rotation of the background star. We apply this formalism to derive some properties of the coupling coefficients relevant to the nonlinear interactions of unstable r modes in neutron stars, postponing numerical integrations of the coupled equations of motion to a later paper. First, we clarify some aspects of the expansion in stellar rotation frequency Ω that is often used to compute approximate mode functions. We show that, in zero-buoyancy stars, the rotational modes (those modes whose frequencies vanish as Ω→0) are orthogonal to zeroth order in Ω. From an astrophysical viewpoint, the most interesting result of this paper is that many couplings of r modes to other rotational modes are small: either they vanish altogether because of various selection rules, or they vanish to lowest order in Ω or in compressibility. In particular, in zero-buoyancy stars, the coupling of three r modes is forbidden

  1. Mode coupling in hybrid square-rectangular lasers for single mode operation

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Xiu-Wen; Huang, Yong-Zhen, E-mail: yzhuang@semi.ac.cn; Yang, Yue-De; Xiao, Jin-Long; Weng, Hai-Zhong; Xiao, Zhi-Xiong [State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors and University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100083 (China)

    2016-08-15

    Mode coupling between a square microcavity and a Fabry-Pérot (FP) cavity is proposed and demonstrated for realizing single mode lasers. The modulations of the mode Q factor as simulation results are observed and single mode operation is obtained with a side mode suppression ratio of 46 dB and a single mode fiber coupling loss of 3.2 dB for an AlGaInAs/InP hybrid laser as a 300-μm-length and 1.5-μm-wide FP cavity connected to a vertex of a 10-μm-side square microcavity. Furthermore, tunable single mode operation is demonstrated with a continuous wavelength tuning range over 10 nm. The simple hybrid structure may shed light on practical applications of whispering-gallery mode microcavities in large-scale photonic integrated circuits and optical communication and interconnection.

  2. Orbital angular momentum of general astigmatic modes

    International Nuclear Information System (INIS)

    Visser, Jorrit; Nienhuis, Gerard

    2004-01-01

    We present an operator method to obtain complete sets of astigmatic Gaussian solutions of the paraxial wave equation. In case of general astigmatism, the astigmatic intensity and phase distribution of the fundamental mode differ in orientation. As a consequence, the fundamental mode has a nonzero orbital angular momentum, which is not due to phase singularities. Analogous to the operator method for the quantum harmonic oscillator, the corresponding astigmatic higher-order modes are obtained by repeated application of raising operators on the fundamental mode. The nature of the higher-order modes is characterized by a point on a sphere, in analogy with the representation of polarization on the Poincare sphere. The north and south poles represent astigmatic Laguerre-Gaussian modes, similar to circular polarization on the Poincare sphere, while astigmatic Hermite-Gaussian modes are associated with points on the equator, analogous to linear polarization. We discuss the propagation properties of the modes and their orbital angular momentum, which depends on the degree of astigmatism and on the location of the point on the sphere

  3. Mode Contributions to the Casimir Effect

    Science.gov (United States)

    Intravaia, F.; Henkel, C.

    2010-04-01

    Applying a sum-over-modes approach to the Casimir interaction between two plates with finite conductivity, we isolate and study the contributions of surface plasmons and Foucault (eddy current) modes. We show in particular that for the TE-polarization eddy currents provide a repulsive force that cancels, at high temperatures, the Casimir free energy calculated with the plasma model.

  4. Line-mode browser development days

    CERN Multimedia

    Anna Pantelia

    2013-01-01

    Twelve talented web developers have travelled to CERN from all over the world to recreate a piece of web history: the line-mode browser. See the line-mode browser simulator that they created here. Read more about the birth of the web here.

  5. Simultaneous Emotions: Entwining Modes in Children's Books

    Science.gov (United States)

    Cadden, Mike

    2005-01-01

    Critics and teachers tend to pay attention to genre and ignore mode as an area of consideration. This study examines three novels for young readers that are comparable in terms of their entwining opposing modes (irony and romance, comedy and tragedy) as a successful crossover strategy for appeal to readers young and old. I share implications for…

  6. Spatial mode discrimination using second harmonic generation

    DEFF Research Database (Denmark)

    Delaubert, Vincent; Lassen, Mikael Østergaard; Pulford, David

    2007-01-01

    Second harmonic generation can be used as a technique for controlling the spatial mode structure of optical beams. We demonstrate experimentally the generation of higher order spatial modes, and that it is possible to use nonlinear phase matching as a predictable and robust technique for the conv...

  7. Innovation of University Teaching Faculty Management Mode

    Science.gov (United States)

    Han, Yuzheng; Wang, Boyu

    2015-01-01

    With the deepening of university reform in China, the traditional teaching faculty management mode has been exposed more and more defects. To make innovation of the university teaching faculty management mode becomes the voice of the times. Universities should conduct careful research on this issue in the development. Starting from the…

  8. Tapping mode atomic force microscopy in liquid

    NARCIS (Netherlands)

    Putman, Constant A.J.; Putman, C.A.J.; van der Werf, Kees; de Grooth, B.G.; van Hulst, N.F.; Greve, Jan

    1994-01-01

    We show that standard silicon nitride cantilevers can be used for tapping mode atomic force microscopy (AFM) in air, provided that the energy of the oscillating cantilever is sufficiently high to overcome the adhesion of the water layer. The same cantilevers are successfully used for tapping mode

  9. Multiple Modes of Inquiry in Earth Science

    Science.gov (United States)

    Kastens, Kim A.; Rivet, Ann

    2008-01-01

    To help teachers enrich their students' understanding of inquiry in Earth science, this article describes six modes of inquiry used by practicing geoscientists (Earth scientists). Each mode of inquiry is illustrated by using examples of seminal or pioneering research and provides pointers to investigations that enable students to experience these…

  10. Angular-momentum-bearing modes in fission

    International Nuclear Information System (INIS)

    Moretto, L.G.; Peaslee, G.F.; Wozniak, G.J.

    1989-03-01

    The angular-momentum-bearing degrees of freedom involved in the fission process are identified and their influence on experimental observables is discussed. The excitation of these modes is treated in the ''thermal'' limit, and the resulting distributions of observables are calculated. Experiments demonstrating the role of these modes are presented and discussed. 61 refs., 12 figs

  11. On-chip mode division multiplexing technologies

    DEFF Research Database (Denmark)

    Ding, Yunhong; Frellsen, Louise Floor; Guan, Xiaowei

    2016-01-01

    Space division multiplexing (SDM) is currently widely investigated in order to provide enhanced capacity thanks to the utilization of space as a new degree of multiplexing freedom in both optical fiber communication and on-chip interconnects. Basic components allowing the processing of spatial...... photonic integrated circuit mode (de) multiplexer for few-mode fibers (FMFs)....

  12. Connection between adiabaticity and the mirror mode

    International Nuclear Information System (INIS)

    Cohen, R.H.

    1976-01-01

    The size of magnetic moment jumps of a particle in a long, thin equilibrium magnetic mirror field is shown to be related to the complex zeroes of the mirror mode parameter B + 4πdP/sub perpendicular//dB. A consequence is that adiabaticity places a lower limit on β than does the mirror mode

  13. Confinement mechanisms in the radiatively improved mode

    NARCIS (Netherlands)

    Tokar, M. Z.; R. Jaspers,; Koslowski, H. R.; Kramer-Flecken, A.; Messiaen, A. M.; Ongena, J.; Rogister, A. A.; Unterberg, B.; Weynants, R. R.

    1999-01-01

    The characteristics of the toroidal ion temperature gradient (ITG) instability, considered as the main source of anomalous transport in the low (L) confinement mode of tokamaks, are analysed for the conditions of the radiatively improved (RI) mode triggered by seeding of impurities. Based on

  14. Viscoresistive g-modes and ballooning

    International Nuclear Information System (INIS)

    Dagazian, R.Y.; Paris, R.B.

    1980-01-01

    The resistive G-mode and its particular form, the resistive ballooning mode, are treated as limits of a single simple model. MHD theory including parallel and perpendicular viscosity, finite shear, and finite beta is employed to study their linear stability

  15. Modes and Mode Volumes for Leaky Optical Cavities and Plasmonic Nanoresonators

    DEFF Research Database (Denmark)

    Hughes, Stephen; Kristensen, Philip Trøst

    2013-01-01

    Electromagnetic cavity modes in photonic and plasmonic resonators offer rich and attractive regimes for tailoring the properties of light–matter interactions, yet there is a disturbing lack of a precise definition for what constitutes a cavity mode, and as a result their mathematical properties r...... methods for quasinormal modes of both photonic and plasmonic resonators and the concept of a generalized effective mode volume, and we illustrate the theory with several representative cavity structures from the fields of photonic crystals and nanoplasmonics....

  16. High degree modes and instrumental effects

    Energy Technology Data Exchange (ETDEWEB)

    Korzennik, S G [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (United States); Rabello-Soares, M C; Schou, J [Stanford University, Stanford, CA (United States)], E-mail: skorzennik@cfa.harvard.edu

    2008-10-15

    Full-disk observations taken with the Michelson Doppler Imager (MDI) on board the Solar and Heliospheric Observatory (SOHO) spacecraft, or the upgraded Global Oscillations Network Group (GONG) instruments, have enough spatial resolution to resolve modes up to {iota} = 1000 if not {iota} = 1500. The inclusion of such high-degree modes (i.e., {iota} {<=} 1000) improves dramatically inferences near the surface. Unfortunately, observational and instrumental effects cause the characterization of high degree modes to be quite complicated. Indeed, the characteristics of the solar acoustic spectrum are such that, for a given order, mode lifetimes get shorter and spatial leaks get closer in frequency as the degree of a mode increases. A direct consequence of this property is that individual modes are resolved only at low and intermediate degrees. At high degrees the individual modes blend into ridges and the power distribution of the ridge defines the ridge central frequency, masking the underlying mode frequency. An accurate model of the amplitude of the peaks that contribute to the ridge power distribution is needed to recover the underlying mode frequency from fitting the ridge. We present a detailed discussion of the modeling of the ridge power distribution, and the contribution of the various observational and instrumental effects on the spatial leakage, in the context of the MDI instrument. We have constructed a physically motivated model (rather than an ad hoc correction scheme) that results in a methodology that can produce unbiased estimates of high-degree modes. This requires that the instrumental characteristics are well understood, a task that has turned out to pose a major challenge. We also present our latest results, where most of the known instrumental and observational effects that affect specifically high-degree modes were removed. These new results allow us to focus our attention on changes with solar activity. Finally, we present variations of mode

  17. Physics of the H-mode

    International Nuclear Information System (INIS)

    Hinton, F.L.; Chu, M.S.; Dominguez, R.R.

    1985-01-01

    A theoretical picture of the H-mode is proposed which explains some of the most important features of this good confinement mode in neutral beam heated plasmas with divertors. From consideration of the transport through the separatrix and along the open field lines outside the separatrix, as well as the stability of the plasma inside the separatrix, we show that a bifurcation in the operating parameters is possible. At high edge temperatures, very large particle confinement times are possible because of the Ware pinch. The transport of particles and heat along the open field lines to the divertor region depends on temperature in a non-monotonic way, and the bifurcation of the thermal equilibrium which is implied may correspond to the L- to H-mode transition. The improvement of the interior confinement in the H-mode, when the edge temperature is higher, is shown to follow from the tearing mode stability properties of current profiles with pedestals. (author)

  18. Newer nonconventional modes of mechanical ventilation

    Directory of Open Access Journals (Sweden)

    Preet Mohinder Singh

    2014-01-01

    Full Text Available The conventional modes of ventilation suffer many limitations. Although they are popularly used and are well-understood, often they fail to match the patient-based requirements. Over the years, many small modifications in ventilators have been incorporated to improve patient outcome. The ventilators of newer generation respond to patient′s demands by additional feedback systems. In this review, we discuss the popular newer modes of ventilation that have been accepted in to clinical practice. Various intensive care units over the world have found these modes to improve patient ventilator synchrony, decrease ventilator days and improve patient safety. The various modes discusses in this review are: Dual control modes (volume assured pressure support, volume support, Adaptive support ventilation, proportional assist ventilation, mandatory minute ventilation, Bi-level airway pressure release ventilation, (BiPAP, neurally adjusted ventilatory assist and NeoGanesh. Their working principles with their advantages and clinical limitations are discussed in brief.

  19. Tearing mode saturation with finite pressure

    International Nuclear Information System (INIS)

    Lee, J.K.

    1988-01-01

    With finite pressure, the saturation of the current-driven tearing mode is obtained in three-dimensional nonlinear resistive magnetohydrodynamic simulations for Tokamak plasmas. To effectively focus on the tearing modes, the perturbed pressure effects are excluded while the finite equilibrium pressure effects are retained. With this model, the linear growth rates of the tearing modes are found to be very insensitive to the equilibrium pressure increase. The nonlinear aspects of the tearing modes, however, are found to be very sensitive to the pressure increase in that the saturation level of the nonlinear harmonics of the tearing modes increases monotonically with the pressure rise. The increased level is associated with enhanced tearing island sizes or increased stochastic magnetic field region. (author)

  20. Operating modes of superconducting tunnel junction device

    Energy Technology Data Exchange (ETDEWEB)

    Maehata, Keisuke [Kyushu Univ., Fukuoka (Japan). Faculty of Engineering

    1998-07-01

    In the Electrotechnical Laboratory, an Nb type superconducting tunnel junction (STJ) device with 200 x 200 sq. micron in area and super high quality was manufactured. By using 55-fe source, response of this large area STJ to X-ray was measured. In this measurement, two action modes with different output wave height from front amplifier were observed. Then, in this study, current-voltage feature of the element in each action mode was analyzed to elucidate a mechanism to form such two action modes. The feature was analyzed by using first order approximate solution on cavity resonance mode of Sine-Gordon equation. From the analytical results, it could be supposed that direction and magnitude of effective magnetic field penetrating into jointed area changed by an induction current effect owing to impressing speed of the magnetic field, which brings two different current-voltage features to make possible to observe two action modes with different pulse wave height. (G.K.)

  1. Reynolds stress of localized toroidal modes

    International Nuclear Information System (INIS)

    Zhang, Y.Z.; Mahajan, S.M.

    1995-02-01

    An investigation of the 2D toroidal eigenmode problem reveals the possibility of a new consistent 2D structure, the dissipative BM-II mode. In contrast to the conventional ballooning mode, the new mode is poloidally localized at π/2 (or -π/2), and possesses significant radial asymmetry. The radial asymmetry, in turn, allows the dissipative BM-II to generate considerably larger Reynolds stress as compared to the standard slab drift type modes. It is also shown that a wide class of localized dissipative toroidal modes are likely to be of the dissipative BM-II nature, suggesting that at the tokamak edge, the fluctuation generated Reynolds stress (a possible source of poloidal flow) can be significant

  2. Transportation Modes Classification Using Sensors on Smartphones

    Directory of Open Access Journals (Sweden)

    Shih-Hau Fang

    2016-08-01

    Full Text Available This paper investigates the transportation and vehicular modes classification by using big data from smartphone sensors. The three types of sensors used in this paper include the accelerometer, magnetometer, and gyroscope. This study proposes improved features and uses three machine learning algorithms including decision trees, K-nearest neighbor, and support vector machine to classify the user’s transportation and vehicular modes. In the experiments, we discussed and compared the performance from different perspectives including the accuracy for both modes, the executive time, and the model size. Results show that the proposed features enhance the accuracy, in which the support vector machine provides the best performance in classification accuracy whereas it consumes the largest prediction time. This paper also investigates the vehicle classification mode and compares the results with that of the transportation modes.

  3. Alfven frequency modes and global Alfven eigenmodes

    International Nuclear Information System (INIS)

    Villard, L.; Vaclavik, J.

    1996-07-01

    The spectrum of n=0 Alfven modes is calculated analytically and numerically in cylindrical and toroidal geometries. It includes Global Alfven Eigenmodes (GAE) and Surface Modes (SM) of the fast magnetoacoustic wave. These modes are not induced by toroidicity. The n=0 GAEs owe their existence to the shear. The frequency spacing between different radial and poloidal modes and the correlation of eigenfrequencies with changes in the edge density are examined and found in complete agreement with experimental observations of what has been named the 'Alfven Frequency Mode' (AFM) so far. Although the eigenfrequency is related to the edge density, the n=0 GAE (AFM) is not necessarily edge-localized. (author) figs., tabs., refs

  4. Reynolds stress of localized toroidal modes

    International Nuclear Information System (INIS)

    Zhang, Y.Z.; Mahajan, S.M.

    1995-01-01

    An investigation of the 2D toroidal eigenmode problem reveals the possibility of a new consistent 2D structure, the dissipative BM-II mode. In contrast to the conventional ballooning mode, the new mode is poloidally localized at π/2 (or -π/2), and possesses significant radial asymmetry. The radial asymmetry, in turn, allows the dissipative BM-II to generate considerably larger Reynolds stress as compared to the standard slab drift type modes. It is also shown that a wide class of localized dissipative toroidal modes are likely to be of the dissipative BM-II nature, suggesting that at the tokamak edge, the fluctuation generated Reynolds stress (a possible source of poloidal flow) can be significant. (author). 15 refs

  5. Poloidal rotation and the evolution of H-mode and VH-mode profiles

    International Nuclear Information System (INIS)

    Hinton, F.L.; Staebler, G.M.; Kim, Y.B.

    1993-12-01

    The physics which determines poloidal rotation, and its role in the development of profiles during H- and VH-modes, is discussed. A simple phenomenological transport model, which incorporates the rvec E x rvec B flow shear suppression of turbulence, is shown to predict profile evolution similar to that observed experimentally during H-mode and VH-mode

  6. Few-mode erbium-doped fiber amplifier with photonic lantern for pump spatial mode control

    NARCIS (Netherlands)

    Lopez-Galmiche, G.; Eznaveh, Z. Sanjabi; Antonio-Lopez, J.E.; Benitez, A. M. Velazquez; Rodriguez-Asomoza, Jorge; Mondragon, J. J. Sanchez; Gonnet, C.; Sillard, P.; Li, G.; Schülzgen, A.; Okonkwo, C.M.; Amezcua Correa, R.

    2016-01-01

    We demonstrate a few-mode erbium-doped fiber amplifier employing a mode-selective photonic lantern for controlling the modal content of the pump light. Amplification of six spatial modes in a 5 m long erbium-doped fiber to x223C;6.2x2009;x2009;dBm average power is obtained while maintaining high

  7. Exploiting selective excitation of strongly coupled modes to reduce DMGD in multi-mode transmission systems

    NARCIS (Netherlands)

    van Weerdenburg, J.J.A.; Antonio-Lopez, J.E.; Alvarado-Zacarias, J.; Molin, D.; Bigot-Astruc, M.; van Uden, R.; de Waardt, H.; Koonen, A.M.J.; Amezcua-Correa, R.; Sillard, P.; Okonkwo, C.M.

    2016-01-01

    By exploiting strong coupling in higher-order modes, we experimentally demonstrate reduced differential mode group delay by a factor of 3. Comparing LP02+LP21 with respect to LP01+LP11 3-mode transmission, a 27% reduction in equalizer length is shown after 53.4km MMF transmission.

  8. Informed Design of Mixed-Mode Surveys : Evaluating mode effects on measurement and selection error

    NARCIS (Netherlands)

    Klausch, Thomas|info:eu-repo/dai/nl/341427306

    2014-01-01

    “Mixed-mode designs” are innovative types of surveys which combine more than one mode of administration in the same project, such as surveys administered partly on the web (online), on paper, by telephone, or face-to-face. Mixed-mode designs have become increasingly popular in international survey

  9. Experimental verification of microbending theory using mode coupling to discrete cladding modes

    DEFF Research Database (Denmark)

    Probst, C. B.; Bjarklev, Anders Overgaard; Andreasen, S. B.

    1989-01-01

    a microbending theory in which coupling between the guided mode and a number of discrete cladding modes is considered. Very good agreement between theory and measurement is achieved. The consequences of the existence of discrete cladding modes with regard to the proper choice of artificial microbending spectrum...

  10. The H-mode Pedestal and Edge Localized Modes in NSTX

    International Nuclear Information System (INIS)

    Maingi, R.; Fredrickson, E.D.; Menard, J.E.; Nishino, N.; Roquemore, A.L.; Sabbagh, S.A.; Tritz, K.

    2004-01-01

    The research program of the National Spherical Torus Experiment (NSTX) routinely utilizes the H-mode confinement regime to test and extend beta and pulse length limits. As in conventional aspect ratio tokamaks, NSTX observes a variety of edge localized modes (ELMs) in H-mode. Hence a significant part of the research program is dedicated to ELMs studies

  11. Limiter H-mode experiments on TFTR

    Energy Technology Data Exchange (ETDEWEB)

    Bush, C [Oak Ridge National Lab., TN (USA); Bretz, N L; Fredrickson, E D; McGuire, K M; Nazikian, R; Park, H K; Schivell, J; Taylor, G; Bitter, B; Budny, R; Cohen, S A; Kilpatrick, S J; LeBlanc, B; Manos, D M; Meade, D; Paul, S F; Scott, S D; Stratton, B C; Synakowski, E J; Towner, H H; Weiland, R M; Arunasalam, V; Bateman, G; Bell, M G; Bell, R; Boivin, R; Cavallo, A; Cheng, C Z; Chu, T K; Cowl,

    1990-12-15

    Limiter H-modes with centrally peaked density profiles have been obtained in TFTR using a highly conditioned graphite limiter. The transition to these centrally peaked H-modes takes place from the supershot to the H-mode rather than the usual L- to H-mode transition observed on other tokamaks. Bi-directional beam heating is required to induce the transition. Density peaking factors, n{sub e}(0)/{l angle}n{sub e}{r angle}, >2.3 are obtained and at the same time the H-mode characteristics are similar to those of limiter H-modes on other tokamaks and the global confinement, {tau}{sub E}, can be >2.5 times L-mode scaling. The TRANSP analysis shows that transport in these H-modes is similar to that of supershots within the inner 60 cm of the plasma, but the stored electron energy (calculated using measured values of T{sub e} and n{sub e}) is higher for the H-mode at the plasma edge. Microwave scattering near the edge shows broad spectra at k = 5.5 cm{sup {minus}1} which begin at the drop in D{sub {alpha}} radiation and are strongly shifted in the electron diamagnetic drift direction. At the same time beam emission spectroscopy shows a coherent mode near the boundary with m = 15--20 at 20--30 kHz which is propagating in the ion direction. During an ELM event these apparent rotations cease and Mirnov fluctuations in the 50--500 kHz increase in intensity.

  12. Completeness of non-normalizable modes

    International Nuclear Information System (INIS)

    Mannheim, Philip D; Simbotin, Ionel

    2006-01-01

    We establish the completeness of some characteristic sets of non-normalizable modes by constructing fully localized square steps out of them, with each such construction expressly displaying the Gibbs phenomenon associated with trying to use a complete basis of modes to fit functions with discontinuous edges. As well as being of interest in and of itself, our study is also of interest to the recently introduced large extra dimension brane-localized gravity program of Randall and Sundrum, since the particular non-normalizable mode bases that we consider (specifically the irregular Bessel functions and the associated Legendre functions of the second kind) are associated with the tensor gravitational fluctuations which occur in those specific brane worlds in which the embedding of a maximally four-symmetric brane in a five-dimensional anti-de Sitter bulk leads to a warp factor which is divergent. Since the brane-world massless four-dimensional graviton has a divergent wavefunction in these particular cases, its resulting lack of normalizability is thus not seen to be any impediment to its belonging to a complete basis of modes, and consequently its lack of normalizability should not be seen as a criterion for not including it in the spectrum of observable modes. Moreover, because the divergent modes we consider form complete bases, we can even construct propagators out of them in which these modes appear as poles with residues which are expressly finite. Thus, even though normalizable modes appear in propagators with residues which are given as their finite normalization constants, non-normalizable modes can just as equally appear in propagators with finite residues too-it is just that such residues will not be associated with bilinear integrals of the modes

  13. Even nanomechanical modes transduced by integrated photonics

    Energy Technology Data Exchange (ETDEWEB)

    Westwood-Bachman, J. N.; Diao, Z.; Sauer, V. T. K.; Hiebert, W. K., E-mail: wayne.hiebert@nrc-cnrc.gc.ca [Department of Physics, University of Alberta, Edmonton T6G 2E1 (Canada); National Institute for Nanotechnology, 11421 Saskatchewan Drive, Edmonton T6G 2M9 (Canada); Bachman, D. [Department of Electrical Engineering, University of Alberta, Edmonton T6G 2V4 (Canada)

    2016-02-08

    We demonstrate the actuation and detection of even flexural vibrational modes of a doubly clamped nanomechanical resonator using an integrated photonics transduction scheme. The doubly clamped beam is formed by releasing a straight section of an optical racetrack resonator from the underlying silicon dioxide layer, and a step is fabricated in the substrate beneath the beam. The step causes uneven force and responsivity distribution along the device length, permitting excitation and detection of even modes of vibration. This is achieved while retaining transduction capability for odd modes. The devices are actuated via optical force applied with a pump laser. The displacement sensitivities of the first through third modes, as obtained from the thermomechanical noise floor, are 228 fm Hz{sup −1/2}, 153 fm Hz{sup −1/2}, and 112 fm Hz{sup −1/2}, respectively. The excitation efficiency for these modes is compared and modeled based on integration of the uneven forces over the mode shapes. While the excitation efficiency for the first three modes is approximately the same when the step occurs at about 38% of the beam length, the ability to tune the modal efficiency of transduction by choosing the step position is discussed. The overall optical force on each mode is approximately 0.4 pN μm{sup −1} mW{sup −1}, for an applied optical power of 0.07 mW. We show a potential application that uses the resonant frequencies of the first two vibrational modes of a buckled beam to measure the stress in the silicon device layer, estimated to be 106 MPa. We anticipate that the observation of the second mode of vibration using our integrated photonics approach will be useful in future mass sensing experiments.

  14. High-mode-number ballooning modes in a heliotron/torsatron system. II. Stability

    International Nuclear Information System (INIS)

    Nakajima, N.

    1996-01-01

    In heliotron/torsatron systems that have a large Shafranov shift, the local magnetic shear is found to have no stabilizing effect on high-mode-number ballooning modes at the outer side of the torus, even in the region where the global shear is stellarator-like in nature. The disappearance of this stabilization, in combination with the compression of the flux surfaces at the outer side of the torus, leads at relatively low values of the plasma pressure to significant modifications of the stabilizing effect due to magnetic field-line bending on high-mode-number ballooning modes-specifically, that the field-line bending stabilization can be remarkably suppressed or enhanced. In an equilibrium that is slightly Mercier-unstable or completely Mercier-stable due to peaked pressure profiles, such as those used in standard stability calculations, high-mode-number ballooning modes are destabilized due to these modified stability effects, with their eigenfunctions highly localized along the field line. Highly localized mode structures such as these cause the ballooning mode eigenvalues ω 2 to have a strong field line dependence (i.e., α-variation) through the strong dependence of the local magnetic curvature, such that the level surfaces of ω 2 (ψ,θ k ,α) (≤0) become spheroids in (ψ,θ k ,α) space, where ψ labels flux surfaces and θ k is the radial wave number. Because the spheroidal level surfaces for unstable eigenvalues are surrounded by level surfaces for stable eigenvalues of high-mode-number toroidal Alfvacute en eigenmodes, those high-mode-number ballooning modes never lead to low-mode-number modes. In configuration space, these high-mode-number modes are localized in a single toroidal pitch of the helical coils, and hence they may experience substantial stabilization due to finite Larmor radius effects. copyright 1996 American Institute of Physics

  15. Cross-correlated imaging of single-mode photonic crystal rod fiber with distributed mode filtering

    DEFF Research Database (Denmark)

    Laurila, Marko; Barankov, Roman; Jørgensen, Mette Marie

    2013-01-01

    Photonic crystal bandgap fibers employing distributed mode filtering design provide near diffraction-limited light outputs, a critical property of fiber-based high-power lasers. Microstructure of the fibers is tailored to achieve single-mode operation at specific wavelength by resonant mode...... identify regimes of resonant coupling between higher-order core modes and cladding band. We demonstrate a passive fiber design in which the higher-order modal content inside the single-mode guiding regime is suppressed by at least 20 dB even for significantly misaligned input-coupling configurations....

  16. Preconditioned dynamic mode decomposition and mode selection algorithms for large datasets using incremental proper orthogonal decomposition

    Science.gov (United States)

    Ohmichi, Yuya

    2017-07-01

    In this letter, we propose a simple and efficient framework of dynamic mode decomposition (DMD) and mode selection for large datasets. The proposed framework explicitly introduces a preconditioning step using an incremental proper orthogonal decomposition (POD) to DMD and mode selection algorithms. By performing the preconditioning step, the DMD and mode selection can be performed with low memory consumption and therefore can be applied to large datasets. Additionally, we propose a simple mode selection algorithm based on a greedy method. The proposed framework is applied to the analysis of three-dimensional flow around a circular cylinder.

  17. Normalized modes at selected points without normalization

    Science.gov (United States)

    Kausel, Eduardo

    2018-04-01

    As every textbook on linear algebra demonstrates, the eigenvectors for the general eigenvalue problem | K - λM | = 0 involving two real, symmetric, positive definite matrices K , M satisfy some well-defined orthogonality conditions. Equally well-known is the fact that those eigenvectors can be normalized so that their modal mass μ =ϕT Mϕ is unity: it suffices to divide each unscaled mode by the square root of the modal mass. Thus, the normalization is the result of an explicit calculation applied to the modes after they were obtained by some means. However, we show herein that the normalized modes are not merely convenient forms of scaling, but that they are actually intrinsic properties of the pair of matrices K , M, that is, the matrices already "know" about normalization even before the modes have been obtained. This means that we can obtain individual components of the normalized modes directly from the eigenvalue problem, and without needing to obtain either all of the modes or for that matter, any one complete mode. These results are achieved by means of the residue theorem of operational calculus, a finding that is rather remarkable inasmuch as the residues themselves do not make use of any orthogonality conditions or normalization in the first place. It appears that this obscure property connecting the general eigenvalue problem of modal analysis with the residue theorem of operational calculus may have been overlooked up until now, but which has in turn interesting theoretical implications.Á

  18. Black Hole Spectroscopy with Coherent Mode Stacking.

    Science.gov (United States)

    Yang, Huan; Yagi, Kent; Blackman, Jonathan; Lehner, Luis; Paschalidis, Vasileios; Pretorius, Frans; Yunes, Nicolás

    2017-04-21

    The measurement of multiple ringdown modes in gravitational waves from binary black hole mergers will allow for testing the fundamental properties of black holes in general relativity and to constrain modified theories of gravity. To enhance the ability of Advanced LIGO/Virgo to perform such tasks, we propose a coherent mode stacking method to search for a chosen target mode within a collection of multiple merger events. We first rescale each signal so that the target mode in each of them has the same frequency and then sum the waveforms constructively. A crucial element to realize this coherent superposition is to make use of a priori information extracted from the inspiral-merger phase of each event. To illustrate the method, we perform a study with simulated events targeting the ℓ=m=3 ringdown mode of the remnant black holes. We show that this method can significantly boost the signal-to-noise ratio of the collective target mode compared to that of the single loudest event. Using current estimates of merger rates, we show that it is likely that advanced-era detectors can measure this collective ringdown mode with one year of coincident data gathered at design sensitivity.

  19. Mode structure of a quantum cascade laser

    Science.gov (United States)

    Bogdanov, A. A.; Suris, R. A.

    2011-03-01

    We analyze the mode structure of a quantum cascade laser (QCL) cavity considering the surface plasmon-polariton modes and familiar modes of hollow resonator jointly, within a single model. We present a comprehensive mode structure analysis of the laser cavity, varying its geometric parameters and free electron concentration inside cavity layers within a wide range. Our analysis covers, in particular, the cases of metal-insulator-metal and insulator-metal-insulator waveguides. We discuss the phenomenon of negative dispersion for eigenmodes in detail and explain the nature of this phenomenon. We specify a waveguide parameters domain in which negative dispersion exists. The mode structure of QCL cavity is considered in the case of the anisotropic electrical properties of the waveguide materials. We show that anisotropy of the waveguide core results in propagation of Langmuir modes that are degenerated in the case of the isotropic core. Comparative analysis of optical losses due to free carrier absorption is presented for different modes within the frequency range from terahertz to ultraviolet frequencies.

  20. OSCILLATING MODE OF TOPINAMBUR TUBERS DRYING

    Directory of Open Access Journals (Sweden)

    A. V. Golubkivich

    2015-01-01

    Full Text Available Specifics of a chemical composition of tubers and green material of a topinambur (Helianthus tuberosus, high efficiency and ecological plasticity, profitability of growing, biotechnological potential of use enable to identify a topinambur as a of high-energy cultures of the future. High moisture of various topinambur parts, features of the mechanism of a heat and mass transfer set a problem of search of the new drying methods promoting to increase dehydration efficiency and produce a quality product. A method of calculation of duration of the oscillating mode of topinambur tubers drying in a dense layer is worked out. The topinambur tubers cut on cubes with the side of 6 mm were taken as object of researches. Researches were conducted in the setting of various drying modes: two experiences at the oscillating mode with height of a material layer of 0.07 m and 0.17 m; and also as a check experiment was material drying at a constant temperature of the drying agent. Duration of the oscillating mode of topinambur tubers drying was calculated on their basis of received curves of changes of moisture content at various modes of drying. Estimate indicators were confirmed with experimental data. Results of determination of duration of the oscillating modes of topinambur tubers drying proved that efficiency of the oscillating modes is 18 percent higher, than at control experiment.