WorldWideScience

Sample records for wetlands icw concept

  1. Development of a "Hydrologic Equivalent Wetland" Concept for Modeling Cumulative Effects of Wetlands on Watershed Hydrology

    Science.gov (United States)

    Wang, X.; Liu, T.; Li, R.; Yang, X.; Duan, L.; Luo, Y.

    2012-12-01

    Wetlands are one of the most important watershed microtopographic features that affect, in combination rather than individually, hydrologic processes (e.g., routing) and the fate and transport of constituents (e.g., sediment and nutrients). Efforts to conserve existing wetlands and/or to restore lost wetlands require that watershed-level effects of wetlands on water quantity and water quality be quantified. Because monitoring approaches are usually cost or logistics prohibitive at watershed scale, distributed watershed models, such as the Soil and Water Assessment Tool (SWAT), can be a best resort if wetlands can be appropriately represented in the models. However, the exact method that should be used to incorporate wetlands into hydrologic models is the subject of much disagreement in the literature. In addition, there is a serious lack of information about how to model wetland conservation-restoration effects using such kind of integrated modeling approach. The objectives of this study were to: 1) develop a "hydrologic equivalent wetland" (HEW) concept; and 2) demonstrate how to use the HEW concept in SWAT to assess effects of wetland restoration within the Broughton's Creek watershed located in southwestern Manitoba of Canada, and of wetland conservation within the upper portion of the Otter Tail River watershed located in northwestern Minnesota of the United States. The HEWs were defined in terms of six calibrated parameters: the fraction of the subbasin area that drains into wetlands (WET_FR), the volume of water stored in the wetlands when filled to their normal water level (WET_NVOL), the volume of water stored in the wetlands when filled to their maximum water level (WET_MXVOL), the longest tributary channel length in the subbasin (CH_L1), Manning's n value for the tributary channels (CH_N1), and Manning's n value for the main channel (CH_N2). The results indicated that the HEW concept allows the nonlinear functional relations between watershed processes

  2. Using the ecosystem services concept to analyse stakeholder involvement in wetland management

    NARCIS (Netherlands)

    Cohen-Shacham, E.; Dayan, T.; Groot, de R.S.; Beltrame, C.; Guillet, F.; Feitelson, E.

    2015-01-01

    Wetland management usually involves multiple stakeholders. This paper describes how the use of the ecosystem services (ES) concept can help to identify the main stakeholders associated with wetland conservation, using the Hula Wetland in the Sea of Galilee’s watershed as a case study. We conducted a

  3. A combined emitter threat assessment method based on ICW-RCM

    Science.gov (United States)

    Zhang, Ying; Wang, Hongwei; Guo, Xiaotao; Wang, Yubing

    2017-08-01

    Considering that the tradition al emitter threat assessment methods are difficult to intuitively reflect the degree of target threaten and the deficiency of real-time and complexity, on the basis of radar chart method(RCM), an algorithm of emitter combined threat assessment based on ICW-RCM (improved combination weighting method, ICW) is proposed. The coarse sorting is integrated with fine sorting in emitter combined threat assessment, sequencing the emitter threat level roughly accordance to radar operation mode, and reducing task priority of the low-threat emitter; On the basis of ICW-RCM, sequencing the same radar operation mode emitter roughly, finally, obtain the results of emitter threat assessment through coarse and fine sorting. Simulation analyses show the correctness and effectiveness of this algorithm. Comparing with classical method of emitter threat assessment based on CW-RCM, the algorithm is visual in image and can work quickly with lower complexity.

  4. Computational modelling of internally cooled wet (ICW) electrodes for radiofrequency ablation: impact of rehydration, thermal convection and electrical conductivity.

    Science.gov (United States)

    Trujillo, Macarena; Bon, Jose; Berjano, Enrique

    2017-09-01

    (1) To analyse rehydration, thermal convection and increased electrical conductivity as the three phenomena which distinguish the performance of internally cooled electrodes (IC) and internally cooled wet (ICW) electrodes during radiofrequency ablation (RFA), (2) Implement a RFA computer model with an ICW which includes these phenomena and (3) Assess their relative influence on the thermal and electrical tissue response and on the coagulation zone size. A 12-min RFA in liver was modelled using an ICW electrode (17 G, 3 cm tip) by an impedance-control pulsing protocol with a constant current of 1.5 A. A model of an IC electrode was used to compare the ICW electrode performance and the computational results with the experimental results. Rehydration and increased electrical conductivity were responsible for an increase in coagulation zone size and a delay (or absence) in the occurrence of abrupt increases in electrical impedance (roll-off). While the increased electrical conductivity had a remarkable effect on enlarging the coagulation zone (an increase of 0.74 cm for differences in electrical conductivity of 0.31 S/m), rehydration considerably affected the delay in roll-off, which, in fact, was absent with a sufficiently high rehydration level. In contrast, thermal convection had an insignificant effect for the flow rates considered (0.05 and 1 mL/min). Computer results suggest that rehydration and increased electrical conductivity were mainly responsible for the absence of roll-off and increased size of the coagulation zone, respectively, and in combination allow the thermal and electrical performance of ICW electrodes to be modelled during RFA.

  5. Tlokoeng Valley Community's Conceptions of Wetlands: Prospects for More Sustainable Water Resources Management

    Science.gov (United States)

    Mokuku, Tšepo; Taylor, Jim

    2015-01-01

    This article explores prospects for community-based water resources management in Tlokoeng Valley, in the northern district of Lesotho. A qualitative survey was conducted to establish the pre-knowledge of the valley community. This provided a basis for a community education programme on wetlands conservation. Fifteen focus group interviews (FGIs)…

  6. Adaptive neuro-fuzzy inference system for real-time monitoring of integrated-constructed wetlands.

    Science.gov (United States)

    Dzakpasu, Mawuli; Scholz, Miklas; McCarthy, Valerie; Jordan, Siobhán; Sani, Abdulkadir

    2015-01-01

    Monitoring large-scale treatment wetlands is costly and time-consuming, but required by regulators. Some analytical results are available only after 5 days or even longer. Thus, adaptive neuro-fuzzy inference system (ANFIS) models were developed to predict the effluent concentrations of 5-day biochemical oxygen demand (BOD5) and NH4-N from a full-scale integrated constructed wetland (ICW) treating domestic wastewater. The ANFIS models were developed and validated with a 4-year data set from the ICW system. Cost-effective, quicker and easier to measure variables were selected as the possible predictors based on their goodness of correlation with the outputs. A self-organizing neural network was applied to extract the most relevant input variables from all the possible input variables. Fuzzy subtractive clustering was used to identify the architecture of the ANFIS models and to optimize fuzzy rules, overall, improving the network performance. According to the findings, ANFIS could predict the effluent quality variation quite strongly. Effluent BOD5 and NH4-N concentrations were predicted relatively accurately by other effluent water quality parameters, which can be measured within a few hours. The simulated effluent BOD5 and NH4-N concentrations well fitted the measured concentrations, which was also supported by relatively low mean squared error. Thus, ANFIS can be useful for real-time monitoring and control of ICW systems.

  7. Performance Evaluation of Integrated Constructed Wetland for Domestic Wastewater Treatment.

    Science.gov (United States)

    Sehar, Shama; Naz, Iffat; Khan, Sumera; Naeem, Sana; Perveen, Irum; Ali, Naeem; Ahmed, Safia

    2016-03-01

    Simple, budget friendly, laboratory-scale integrated constructed wetland (ICW) was designed to assess domestic wastewater treatment performance at a loading rate of 75 mm/d, planted with native plant species: Veronica-angallis aquatica and compared with non-vegetative control system at various residence times of 4, 8, 12, 16, 20, 24, and 28 days. Results revealed that the vegetated ICW demonstrated superior performance over non-vegetated control: 69.12 vs 17.12%, 67.77 vs 16.04%, 68 vs 16.48%, 71.19 vs 6.56%, 71.54 vs 14.80%, and 72.04 vs 11.41% for total dissolved solids, total suspended solids, phosphates (PO4(-)), sulfate (SO4(-)), nitrate (NO3(-)), and nitrite (NO2(-)), respectively, at 20 days residence times. Reduction in bacterial counts (2.79 × 10(4) CFU/mL) and fecal pathogens (345.5 MPN index/100 mL) was observed in V. aquatica at 20 days residence time. Therefore, the present study highlights not only the presence of vegetation but also appropriate residence time in constructed wetlands for better performances.

  8. Phosphorus Sorption Capacities of Steel Slag in Pilot-Scale Constructed Wetlands for Treating Urban Runoff: Saturation Potential and Longevity

    Science.gov (United States)

    Guo, W. J.; Zhao, L. Y.; Zhao, W. H.; Li, Q. Y.; Wu, Z. B.

    2017-01-01

    Two parallel pilot-scale integrated constructed wetland (ICW) systems were constructed on the bank of Nanfeihe River. The phosphate (PO4 3-) isothermal adsorption properties of the upper substrate steel furnace slag (SFS) in up-flow chamber was investigated during one-year operation period. The maximum phosphorus (P) adsorption capacity of SFS 9, 11, 13, 15, 17, 19 months service time were 848.9 mg/kg, 968.1 mg/kg, 824.5 mg/kg, 788.7 mg/kg, 864.7 mg/kg and 960.3 mg/kg, respectively. The saturated adsorption amount of SFS had not decreased with the service time prolonging in ICW. The longevity of a full-scale system could not be reliably estimated only based on the theoretical saturated adsorption capacity from laboratory experiments.

  9. Constructed Wetlands

    Science.gov (United States)

    these systems can improve water quality, engineers and scientists construct systems that replicate the functions of natural wetlands. Constructed wetlands are treatment systems that use natural processes

  10. National Wetlands Inventory - Wetlands

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This data set represents the extent, approximate location and type of wetlands and deepwater habitats in the United States and its Territories. These data delineate...

  11. Wetland Hydrology

    Science.gov (United States)

    This chapter discusses the state of the science in wetland hydrology by touching upon the major hydraulic and hydrologic processes in these complex ecosystems, their measurement/estimation techniques, and modeling methods. It starts with the definition of wetlands, their benefit...

  12. National Wetlands Inventory Lines

    Data.gov (United States)

    Minnesota Department of Natural Resources — Linear wetland features (including selected streams, ditches, and narrow wetland bodies) mapped as part of the National Wetlands Inventory (NWI). The National...

  13. Introduction to the Wetland Book 1: Wetland structure and function, management, and nethods

    Science.gov (United States)

    Davidson, Nick C.; Middleton, Beth A.; McInnes, Robert J.; Everard, Mark; Irvine, Kenneth; Van Dam, Anne A.; Finlayson, C. Max; Finlayson, C. Max; Everard, Mark; Irvine, Kenneth; McInnes, Robert J.; Middleton, Beth A.; Van Dam, Anne A.; Davidson, Nick C.

    2016-01-01

    The Wetland Book 1 is designed as a ‘first port-of-call’ reference work for information on the structure and functions of wetlands, current approaches to wetland management, and methods for researching and understanding wetlands. Contributions by experts summarize key concepts, orient the reader to the major issues, and support further research on such issues by individuals and multidisciplinary teams. The Wetland Book 1 is organized in three parts - Wetland structure and function; Wetland management; and Wetland methods - each of which is divided into a number of thematic Sections. Each Section starts with one or more overview chapters, supported by chapters providing further information and case studies on different aspects of the theme.

  14. Virginia ESI: Wetlands (Wetland Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains vector polygons representing the coastal wetlands for Virginia, classified according to the Environmental Sensitivity Index (ESI)...

  15. In situ denitrification and DNRA rates in groundwater beneath an integrated constructed wetland.

    Science.gov (United States)

    Jahangir, M M R; Fenton, O; Müller, C; Harrington, R; Johnston, P; Richards, K G

    2017-03-15

    Evaluation of the environmental benefits of constructed wetlands (CWs) requires an understanding of their impacts on the groundwater quality under the wetlands. Empirical mass-balance (nitrogen in/nitrogen out) approaches for estimating nitrogen (N) removal in CWs do not characterise the final fate of N; where nitrate (NO3--N) could be reduced to either ammonium (NH4+-N) or N2 with the potential for significant production of N2O. Herein, in situ denitrification and DNRA (dissimilatory nitrate reduction to ammonium) rates were measured in groundwater beneath cells of an earthen lined integrated constructed wetland (ICW, used to remove the nutrients from municipal wastewater) using the 15N-enriched NO3--N push-pull method. Experiments were conducted utilising replicated (n = 3) shallow (1 m depth) and deep (4 m depth) piezometers installed along two control planes. These control planes allowed for the assessment of groundwater underlying high (Cell 2, septic tank waste) and low (Cell 3) load cells of the ICW. Background piezometers were also installed off-site. Results showed that denitrification (N2O-N + N2-N) and DNRA were major NO3--N consumption processes accounting together for 54-79% of the total biochemical consumption of the applied NO3--N. Of which 14-16% and 40-63% were consumed by denitrification and DNRA, respectively. Both processes differed significantly across ICW cells indicating that N transformation depends on nutrient loading rates and were significantly higher in shallow compared to the deep groundwater. In such a reduced environment (low dissolved oxygen and low redox potential), higher DNRA over the denitrification rate can be attributed to the high C concentration and high TC/NO3--N ratio. Low pH (6.5-7.1) in this system might have limited denitrification to some extent to an incomplete state, evidenced by a high N2O-N/(N2O-N+N2-N) ratio (0.35 ± 0.17, SE). A relatively higher N2O-N/(N2O-N+N2-N) ratio and higher DNRA rate over

  16. National Wetlands Inventory Polygons

    Data.gov (United States)

    Minnesota Department of Natural Resources — Wetland area features mapped as part of the National Wetlands Inventory (NWI). The National Wetlands Inventory is a national program sponsored by the US Fish and...

  17. National Wetlands Inventory Points

    Data.gov (United States)

    Minnesota Department of Natural Resources — Wetland point features (typically wetlands that are too small to be as area features at the data scale) mapped as part of the National Wetlands Inventory (NWI). The...

  18. Kansas Playa Wetlands

    Data.gov (United States)

    Kansas Data Access and Support Center — This digital dataset provides information about the distribution, areal extent, and morphometry of playa wetlands throughout western Kansas. Playa wetlands were...

  19. "Wetlands: Water Living Filters?",

    OpenAIRE

    Dordio, Ana; Palace, A. J.; Pinto, Ana Paula

    2008-01-01

    Human societies have indirectly used natural wetlands as wastewater discharge sites for many centuries. Observations of the wastewater depuration capacity of natural wetlands have led to a greater understanding of the potential of these ecosystems for pollutant assimilation and have stimulated the development of artificial wetlands systems for treatment of wastewaters from a variety of sources. Constructed wetlands, in contrast to natural wetlands, are human-made systems that are designed, bu...

  20. Ohio Uses Wetlands Program Development Grants to Protect Wetlands

    Science.gov (United States)

    The wetland water quality standards require the use of ORAM score to determine wetland quality. OEPA has also used these tools to evaluate wetland mitigation projects, develop performance standards for wetland mitigation banks and In Lieu Fee programs an.

  1. Wonderful Wetlands: An Environmental Education Curriculum Guide for Wetlands.

    Science.gov (United States)

    King County Parks Div., Redmond, WA.

    This curriculum guide was designed to give teachers, students, and society a better understanding of wetlands in the hope that they learn why wetlands should be valued and preserved. It explores what is meant by wetlands, functions and values of wetlands, wetland activities, and wetland offerings which benefit animal and plant life, recreation,…

  2. Geographically isolated wetlands: Rethinking a misnomer

    Science.gov (United States)

    Mushet, David M.; Calhoun, Aram J.K.; Alexander, Laurie C.; Cohen, Matthew J.; DeKeyser, Edward S.; Fowler, Laurie G.; Lane, Charles R.; Lang, Megan W.; Rains, Mark C.; Walls, Susan

    2015-01-01

    We explore the category “geographically isolated wetlands” (GIWs; i.e., wetlands completely surrounded by uplands at the local scale) as used in the wetland sciences. As currently used, the GIW category (1) hampers scientific efforts by obscuring important hydrological and ecological differences among multiple wetland functional types, (2) aggregates wetlands in a manner not reflective of regulatory and management information needs, (3) implies wetlands so described are in some way “isolated,” an often incorrect implication, (4) is inconsistent with more broadly used and accepted concepts of “geographic isolation,” and (5) has injected unnecessary confusion into scientific investigations and discussions. Instead, we suggest other wetland classification systems offer more informative alternatives. For example, hydrogeomorphic (HGM) classes based on well-established scientific definitions account for wetland functional diversity thereby facilitating explorations into questions of connectivity without an a priori designation of “isolation.” Additionally, an HGM-type approach could be used in combination with terms reflective of current regulatory or policymaking needs. For those rare cases in which the condition of being surrounded by uplands is the relevant distinguishing characteristic, use of terminology that does not unnecessarily imply isolation (e.g., “upland embedded wetlands”) would help alleviate much confusion caused by the “geographically isolated wetlands” misnomer.

  3. Wetland Program Pilot Grants

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Wetland Grant Database (WGD) houses grant data for Wetland Program Development Grants (created by EPA in 1990 under the Clean Water Act Section 104(b)(3)...

  4. Artesian Wetlands Survey

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Artesian Wetlands Survey includes data on the wetlands in the San Luis Valley in Colorado. Data recorded includes location, area of influence, area inundated,...

  5. VSWI Wetlands Advisory Layer

    Data.gov (United States)

    Vermont Center for Geographic Information — This dataset represents the DEC Wetlands Program's Advisory layer. This layer makes the most up-to-date, non-jurisdictional, wetlands mapping avaiable to the public...

  6. Why are wetlands important?

    Science.gov (United States)

    Wetlands are among the most productive ecosystems in the world, comparable to rain forests and coral reefs. An immense variety of species of microbes, plants, insects, amphibians, reptiles, birds, fish, and mammals can be part of a wetland ecosystem.

  7. The Legal Structure of Taiwan’s Wetland Conservation Act

    Directory of Open Access Journals (Sweden)

    Yi-Yuan Su

    2014-12-01

    Full Text Available In July of 2013, Taiwan passed its Wetland Conservation Act and will begin the implementation of the Act on 2 February 2015. With this Act, Taiwan has become the second Asian country to have specific legislation on wetland conservation and protection. This new law enables the society to achieve sustainable utilization on wetland ecological services. The core concepts of the Wetland Conversation Act include biological diversity conservation and wise use of wetland resources. Special political circumstances prevent Taiwan from registering its wetlands as a conservation priority under the Ramsar Convention. This new law allows the government to evaluate and assign a specific area as a “Wetland of Importance.” Under this status, any development activities within the designated area shall be prohibited unless the developer prepares a usage plan for review. The usage plan and the original usage of the natural resources within the wetland area shall also follow the “wise use” principle to protect the wetland and biological service system. However, this new law does not provide clear separation between the two different “wise use” standards. If the development is deemed necessary, new law provides compensation mitigation measures to extend the surface of the wetland and provides additional habitats for various species. Wetland conservation and management rely heavily on systematic research and fundamental data regarding Taiwan’s wetlands. Determining how to adopt these scientific methodologies and transfer them into enforceable mechanisms is a sizeable challenge for both biologists and lawyers as the Wetland Conservation Act creates many legal norms without clarifying definitions. This article will review the current wetland regulations from the legal perspective and provide suggestions for enforcement in the future.

  8. Freshwater Wetlands: A Citizen's Primer.

    Science.gov (United States)

    Catskill Center for Conservation and Development, Inc., Hobart, NY.

    The purpose of this "primer" for the general public is to describe the general characteristics of wetlands and how wetland alteration adversely affects the well-being of humans. Particular emphasis is placed on wetlands in New York State and the northeast. Topics discussed include wetland values, destruction of wetlands, the costs of…

  9. Colorado wetlands initiative : 1997-2000 : Protecting Colorado's wetlands resource

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Colorado Wetlands Initiative is an endeavor to protect wetlands and wetland-dependent wildlife through the use of voluntary, incentive-based mechanisms. It is a...

  10. Pipeline corridors through wetlands

    Energy Technology Data Exchange (ETDEWEB)

    Zimmerman, R.E.; Wilkey, P.L. [Argonne National Lab., IL (United States); Isaacson, H.R. [Gas Research Institute (United States)

    1992-12-01

    This paper presents preliminary findings from six vegetational surveys of gas pipeline rights-of-way (ROW) through wetlands and quantifies the impacts of a 20-year-old pipeline ROW through a boreal forest wetland. Six sites of various ages were surveyed in ecosystems ranging from coastal marsh to forested wetland. At all sites except one, both the number and the percentage of wetland species on the Row approximated or exceeded those in the adjacent natural area. The boreal forest study showed that (1) adjacent natural wetland areas were not altered in type; (2) water sheet flow restriction had been reversed by nature; (3) no nonnative plant species invaded the natural area; (4) three-quarters of the ROW area was a wetland, and (5) the ROW increased diversity.

  11. Pipeline corridors through wetlands

    Energy Technology Data Exchange (ETDEWEB)

    Zimmerman, R.E.; Wilkey, P.L. (Argonne National Lab., IL (United States)); Isaacson, H.R. (Gas Research Institute (United States))

    1992-01-01

    This paper presents preliminary findings from six vegetational surveys of gas pipeline rights-of-way (ROW) through wetlands and quantifies the impacts of a 20-year-old pipeline ROW through a boreal forest wetland. Six sites of various ages were surveyed in ecosystems ranging from coastal marsh to forested wetland. At all sites except one, both the number and the percentage of wetland species on the Row approximated or exceeded those in the adjacent natural area. The boreal forest study showed that (1) adjacent natural wetland areas were not altered in type; (2) water sheet flow restriction had been reversed by nature; (3) no nonnative plant species invaded the natural area; (4) three-quarters of the ROW area was a wetland, and (5) the ROW increased diversity.

  12. Accommodating state shifts within the conceptual framework of the wetland continuum

    Science.gov (United States)

    Mushet, David M.; McKenna, Owen; LaBaugh, James W.; Euliss, Ned H.; Rosenberry, Donald O.

    2018-01-01

    The Wetland Continuum is a conceptual framework that facilitates the interpretation of biological studies of wetland ecosystems. Recently summarized evidence documenting how a multi-decadal wet period has influenced aspects of wetland, lake and stream systems in the southern prairie-pothole region of North America has revealed the potential for wetlands to shift among alternate states. We propose that incorporation of state shifts into the Wetland Continuum, as originally proposed or as modified by Hayashi et al., is a relatively simple matter if one allows for shifts of wetlands along the horizontal, groundwater axis of the framework under conditions of extreme and sustained wet or dry conditions. We suggest that the ease by which state shifts can be accommodated within both the original and modified frameworks of the Wetland Continuum is a testament to the robustness of the concept when it is related to the alternative-stable-state concept.

  13. Wetland Surface Water Processes

    National Research Council Canada - National Science Library

    1993-01-01

    .... Temporary storage includes channel, overbank, basin, and groundwater storage. Water is removed from the wetland through evaporation, plant transpiration, channel, overland and tidal flow, and groundwater recharge...

  14. Simulated wetland conservation-restoration effects on water quantity and quality at watershed scale.

    Science.gov (United States)

    Wang, Xixi; Shang, Shiyou; Qu, Zhongyi; Liu, Tingxi; Melesse, Assefa M; Yang, Wanhong

    2010-07-01

    Wetlands are one of the most important watershed microtopographic features that affect hydrologic processes (e.g., routing) and the fate and transport of constituents (e.g., sediment and nutrients). Efforts to conserve existing wetlands and/or to restore lost wetlands require that watershed-level effects of wetlands on water quantity and water quality be quantified. Because monitoring approaches are usually cost or logistics prohibitive at watershed scale, distributed watershed models such as the Soil and Water Assessment Tool (SWAT), enhanced by the hydrologic equivalent wetland (HEW) concept developed by Wang [Wang, X., Yang, W., Melesse, A.M., 2008. Using hydrologic equivalent wetland concept within SWAT to estimate streamflow in watersheds with numerous wetlands. Trans. ASABE 51 (1), 55-72.], can be a best resort. However, there is a serious lack of information about simulated effects using this kind of integrated modeling approach. The objective of this study was to use the HEW concept in SWAT to assess effects of wetland restoration within the Broughton's Creek watershed located in southwestern Manitoba, and of wetland conservation within the upper portion of the Otter Tail River watershed located in northwestern Minnesota. The results indicated that the HEW concept allows the nonlinear functional relations between watershed processes and wetland characteristics (e.g., size and morphology) to be accurately represented in the models. The loss of the first 10-20% of the wetlands in the Minnesota study area would drastically increase the peak discharge and loadings of sediment, total phosphorus (TP), and total nitrogen (TN). On the other hand, the justifiable reductions of the peak discharge and loadings of sediment, TP, and TN in the Manitoba study area may require that 50-80% of the lost wetlands be restored. Further, the comparison between the predicted restoration and conservation effects revealed that wetland conservation seems to deserve a higher priority

  15. Regional Guidebook for Applying the Hydrogeomorphic Approach to Assessing the Functions of Headwater Slope Wetlands on the Mississippi and Alabama Coastal Plans

    National Research Council Canada - National Science Library

    Noble, Chris V; Wakeley, James S; Roberts, Thomas H; Henderson, Cindy

    2007-01-01

    The Hydrogeomorphic (HGM) Approach is a collection of concepts and methods for developing functional indices and subsequently using them to assess the capacity of a wetland to perform functions relative to similar wetlands in a region...

  16. Neotropical coastal wetlands

    Science.gov (United States)

    McKee, Karen L.; Batzer, Darold P.; Baldwin, Andrew H.

    2012-01-01

    The Neotropical region, which includes the tropical Americas, is one of the world's eight biogeographic zones. It contains some of the most diverse and unique wetlands in the world, some of which are still relatively undisturbed by humans. This chapter focuses on the northern segment of the Neotropics (south Florida, the Caribbean islands, Mexico, and Central America), an area that spans a latitudinal gradient from about 7 N to 29 N and 60 W to 112 W. Examples of coastal wetlands in this realm include the Everglades (Florida, USA), Ten Thousand Islands (Florida, USA), Laguna de Terminos (Mexico), Twin Cays (Belize), and Zapata Swamp (Cuba). Coastal wetlands are dominated by mangroves, which will be emphasized here, but also include freshwater swamps and marshes, saline marshes, and seagrass beds. The aim of this chapter is to provide a broad overview of Neotropical coastal wetlands of the North American continent, with an emphasis on mangroves, since this is the dominant vegetation type and because in-depth coverage of all wetland types is impossible here. Instead, the goal is to describe the environmental settings, plant and animal communities, key ecological controls, and some conservation concerns, with specific examples. Because this book deals with wetlands of North America, this chapter excludes coastal wetlands of South America. However, much of the information is applicable to mangrove, marsh, and seagrass communities of other tropicaI regions.

  17. Wetlands Inventory Nevada

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Nevada wetlands inventory is a unit of a nationwide survey undertaken by the Fish and Wildlife Service to locate and tabulate by habitat types the important...

  18. Coastal Wetland Restoration Bibliography

    National Research Council Canada - National Science Library

    Yozzo, David

    1997-01-01

    This bibliography was compiled to provide biologists, engineers, and planners at Corps Districts and other agencies/ institutions with a guide to the diverse body of literature on coastal wetland restoration...

  19. Avian utilization of subsidence wetlands

    Energy Technology Data Exchange (ETDEWEB)

    Nawrot, J.R.; Conley, P.S.; Smout, C.L. [Southern Illinois Univ., Carbondale, IL (United States)

    1995-09-01

    Diverse and productive wetlands have resulted from coal mining in the midwest. The trend from surface to underground mining has increased the potential for subsidence. Planned subsidence of longwall mining areas provides increased opportunities for wetland habitat establishment. Planned subsidence over a 180 meter (590 foot) deep longwall mine in southern Illinois during 1984 to 1986 produced three subsidence wetlands totaling 15 hectares (38 acres). The resulting palustrine emergent wetlands enhanced habitat diversity within the surrounding palustrine forested unsubsided area. Habitat assessments and evaluations of avian utilization of the subsidence wetlands were conducted during February 1990 through October 1991. Avian utilization was greatest within the subsided wetlands. Fifty-three bird species representing seven foraging guilds utilized the subsidence wetlands. Wading/fishing, dabbling waterfowl, and insectivorous avian guilds dominated the subsidence wetlands. The subsidence wetlands represented ideal habitat for wood ducks and great blue herons which utilized snags adjacent to and within the wetlands for nesting (19 great blue heron nests produced 25 young). Dense cover and a rich supply of macroinvertebrates provide excellent brood habitat for wood ducks, while herpetofauna and ichthyofauna provided abundant forage in shallow water zones for great blue herons and other wetland wading birds. The diversity of game and non-game avifauna utilizing the subsidence areas demonstrated the unique value of these wetlands. Preplanned subsidence wetlands can help mitigate loss of wetland habitats in the midwest.

  20. [Research progress on wetland ecotourism].

    Science.gov (United States)

    Wang, Li-Long; Lu, Lin

    2009-06-01

    Wetland is rich in biodiversity and cultural diversity, possessing higher tourism value and environmental education and community participation functions. Wetland ecotourism reflects the sustainable development of tourism economy and wetland protection, having received great concern from governments and scholars at home and abroad. This paper summarized the related theories and practices, discussed the research advances in wetland ecotourism from the aspects of significance, progress, contents, methods and results, and pointed out the important research fields in the future, aimed to accelerate the development of wetland ecotourism research and to provide reference about the resources exploitation, environment protection, and scientific administration of wetland and related scenic areas.

  1. Wetland InSAR

    Science.gov (United States)

    Wdowinski, S.; Kim, S.; Amelung, F.; Dixon, T.

    2006-12-01

    Wetlands are transition zones where the flow of water, the nutrient cycling, and the sun energy meet to produce a unique and very productive ecosystem. They provide critical habitat for a wide variety of plant and animal species, including the larval stages of many ocean fish. Wetlands also have a valuable economical importance, as they filter nutrients and pollutants from fresh water used by human and provide aquatic habitats for outdoor recreation, tourism, and fishing. Globally, many such regions are under severe environmental stress, mainly from urban development, pollution, and rising sea level. However, there is increasing recognition of the importance of these habitats, and mitigation and restoration activities have begun in a few regions. A key element in wetlands conservation, management, and restoration involves monitoring its hydrologic system, as the entire ecosystem depends on its water supply. Heretofore, hydrologic monitoring of wetlands are conducted by stage (water level) stations, which provide good temporal resolution, but suffer from poor spatial resolution, as stage station are typically distributed several, or even tens of kilometers, from one another. Wetland application of InSAR provides the needed high spatial resolution hydrological observations, complementing the high temporal resolution terrestrial observations. Although conventional wisdom suggests that interferometry does not work in vegetated areas, several studies have shown that both L- and C-band interferograms with short acquisition intervals (1-105 days) can maintain excellent coherence over wetlands. In this study we explore the usage of InSAR for detecting water level changes in various wetland environments around the world, including the Everglades (south Florida), Louisiana Coast (southern US), Chesapeake Bay (eastern US), Pantanal (Brazil), Okavango Delta (Botswana), and Lena Delta (Siberia). Our main study area is the Everglades wetland (south Florida), which is covered by

  2. Metro Multnomah Wetlands - Multnomah Channel Wetland Restoration Monitoring Project

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Multnomah Channel Wetland Restoration Monitoring Project characterizes wetlands use by juvenile salmonids and other fishes in the Multnomah Channel Marsh Natural...

  3. Wetlands & Deepwater Habitats - MO 2012 East West Gateway Wetlands (SHP)

    Data.gov (United States)

    NSGIC State | GIS Inventory — Cowardin’s Classification of Wetlands and Deep Water Habitats of the United States (http://www.npwrc.usgs.gov/resource/wetlands/classwet/index.htm), together with...

  4. Reconstruction of Anacostia wetlands: success?

    Science.gov (United States)

    Hammerschlag, R.S.; Perry, M.C.

    2002-01-01

    Historically, the tidal Anacostia River in Washington, D.C. had been an extensive system of freshwater tidal marshes replete with a full array of wetland vegetation dominated by wild rice. The local Nacochtank Indians had found the abundant fish and wildlife sufficient to sustain their daily lives. White man's intrusion upon the landscape gradually brought about deterioration of the natural (and associated cultural) system. Total demise followed mid-20th century dredge and fill channelization, which was conducted from the confluence of the Anacostia with the Potomac near the heart of Washington, D.C. to the terminus of the tidal regime at Bladensburg, Maryland. The National Park Service (NPS) became the manager for much of the land along the Anacostia, particularly the eastern bank. As part of its planning effort, the NPS envisioned returning portions of the Anacostia under its control to a natural system as a vignette. The concept was based on bringing back as comprehensive a collection of vegetation and wildlife as possible through the reestablishment of tidal marshes at Kenilworth and Kingman. The resultant wetlands were to be made accessible to the public both logistically and through a well designed interpretative program. In fact, this vision has been realized due to an impressive cooperative effort among a number of Federal and local agencies and organizations. In 1993, 32 acres of freshwater tidal marsh were reconstructed at Kenilworth. Based upon the 5-year monitoring program that has been in place since reconstruction, several generalizations may be made concerning the degree of success of the marsh reconstruction. Water quality in the marsh system and nearby tidal waters has not been noticeably improved. The poor quality may be clue to the overwhelmingly high loads (e.g., sediment, nutrients, etc.) brought in on the twice daily tidal cycle from the Anacostia and to the relatively small volume of water which actually interacts with the emergent marsh

  5. The cost of poor land use practices in Lake Nakivale Wetland in ...

    African Journals Online (AJOL)

    Collection of data involved a household survey, interviews, focused group discussions and wetland resource ranking. The impact analysis approach was used to estimate the value of the affected wetland resources. This was based on the market price and the concept of willingness to either pay or accept compensation for ...

  6. Wetland plants: biology and ecology

    National Research Council Canada - National Science Library

    Cronk, Julie K; Fennessy, M. Siobhan

    2001-01-01

    Providing a detailed account of the biology and ecology of wetland plants as well as applications of wetland plant science, this book presents a synthesis of studies and reviews from biology, plant...

  7. Wetland Restoration and Sediment Removal

    Data.gov (United States)

    Department of the Interior — In 2008, Minnesota’s Private Lands Program and Wetland Management Districts began to compare different methods of restoring prairie pothole wetlands to see if there...

  8. Wetlands Restoration Definitions and Distinctions

    Science.gov (United States)

    Ecological restoration is a valuable endeavor that has proven very difficult to define. The term indicates that degraded and destroyed natural wetland systems will be reestablished to sites where they once existed. But, what wetland ecosystems are we talki

  9. Wetland Program Development Grants (WPDGs)

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Wetland Grant Database (WGD) houses grant data for Wetland Program Development Grants (created by EPA in 1990 under the Clean Water Act Section 104(b)(3)...

  10. Constructed Wetlands for Wastewater Treatment

    OpenAIRE

    Jan Vymazal

    2010-01-01

    The first experiments using wetland macrophytes for wastewater treatment were carried out in Germany in the early 1950s. Since then, the constructed wetlands have evolved into a reliable wastewater treatment technology for various types of wastewater. The classification of constructed wetlands is based on: the vegetation type (emergent, submerged, floating leaved, free-floating); hydrology (free water surface and subsurface flow); and subsurface flow wetlands can be further classified accordi...

  11. Sustainable wetland management and support of ecosystem services

    Science.gov (United States)

    Smith, Loren M.; Euliss, Ned H.; Wilcox, Douglas A.; Brinson, Mark M.

    2009-01-01

    This article is a follow-up on a previous piece in the National Wetlands Newsletter in which we outlined problems associated with a static, local approach to wetland management versus an alternative that proposes a temporal and geomorphic approach (Euliss et al. 2009). We extend that concept by drawing on companion papers recently published in the journal Wetlands (Euliss et al. 2008, Smith et al. 2008). Here we highlight reasons for the failure of many managed wetlands to provide a suite of ecosystem services (e.g., carbon storage, diodiversity, ground-water recharge, contaminant filtering, floodwater storage). Our principal theme is that wetland management is best approached by giving consideration to the hydrogeomorphic processes that maintain productive ecosystems and by removing physical and social impediments to those processes. Traditional management actions are often oriented toward maintaining static conditions in wetlands without considering the temporal cycles that wetlands need to undergo or achieve productivity for specific groups of wildlife, such as waterfowl. Possibly more often, a manager's ability to influence hydrogeomorphic processes is restricted by activities in surrounding watersheds. These could be dams, for example, which do not allow management of flood-pulse processes essential to productivity of riparian systems. In most cases, sediments and nutrients associated with land use in contributing watersheds complicate management of wetlands for a suite of services, including wildlife. Economic or policy forces far-removed from a wetland often interact to prevent occurrence of basic ecosystem processes. Our message is consistent with recommendation of supply-side sustainability of Allen et al. (2002) in which ecosystems are managed "for the system that produces outputs rather than the outputs themselves."

  12. Wetland soils, hydrology and geomorphology

    Science.gov (United States)

    C. Rhett Jackson; James A. Thompson; Randall K. Kolka

    2014-01-01

    The hydrology, soils, and watershed processes of a wetland all interact with vegetation and animals over time to create the dynamic physical template upon which a wetland's ecosystem is based (Fig. 2.1). With respect to many ecosystem processes, the physical factors defining a wetland environment at any particular time are often treated as independent variables,...

  13. Comprehensive Conservation Plan: Huron Wetland Management District, Madison Wetland Management District, Sand Lake Wetland Management District

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This Comprehensive Conservation Plan (CCP) was written to guide management on Huron Wetland Management District, Madison Wetland Management District, and Sand Lake...

  14. Wetland and water supply

    Science.gov (United States)

    Baker, John Augustus

    1960-01-01

    The Geological Survey has received numerous inquiries about the effects of proposed changes in the wetland environment. The nature of the inquiries suggests a general confusion in the public mind as to wetland values and an increasing concern by the public with the need for facts as a basis for sound decisions when public action is required. Perhaps the largest gap in our knowledge is in regard to the role played by the wetland in the natural water scheme. Specialists in such fields as agriculture and conservation have studied the wetland in relation to its special uses and values for farming and as a habitat for fish and wildlife. However, except as studied incidentally by these specialists, the role of the wetland with respect to water has been largely neglected. This facet of the wetland problem is of direct concern to the Geological Survey. We commonly speak of water in terms of its place in the hydrologic environment---as, for example, surface water or ground water. These terms imply that water can be neatly pigeonholed. With respect to the wetland environment nothing can be further from the truth. In fact, one objective of this discussion is to demonstrate that for the wetland environment surface water, ground water, and soil water cannot be separated realistically, but are closely interrelated and must be studied together. It should be noted that this statement holds true for the hydrologic environment in general, and that the wetland environment is by no means unique in this respect. Our second and principal objective is to identify some of the problems that must be studied in order to clarify the role of the wetland in relation to water supply. We have chosen to approach these objectives by briefly describing one area for which we have some information, and by using this example to point out some of the problems that need study. First, however, let us define what we, as geohydrologists, mean by wetland and briefly consider wetland classifications. For our

  15. Constructed Wetlands for Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    Jan Vymazal

    2010-08-01

    Full Text Available The first experiments using wetland macrophytes for wastewater treatment were carried out in Germany in the early 1950s. Since then, the constructed wetlands have evolved into a reliable wastewater treatment technology for various types of wastewater. The classification of constructed wetlands is based on: the vegetation type (emergent, submerged, floating leaved, free-floating; hydrology (free water surface and subsurface flow; and subsurface flow wetlands can be further classified according to the flow direction (vertical or horizontal. In order to achieve better treatment performance, namely for nitrogen, various types of constructed wetlands could be combined into hybrid systems.

  16. FGD liner experiments with wetlands

    Energy Technology Data Exchange (ETDEWEB)

    Mitsch, W.J.; Ahn, C.; Wolfe, W.E.

    1999-07-01

    The construction of artificial wetlands for wastewater treatment often requires impermeable liners not only to protect groundwater resources but also to ensure that there is adequate water in the wetland to support appropriate aquatic life, particularly wetland vegetation. Liners or relatively impervious site soils are very important to the success of constructed treatment wetlands in areas where ground water levels are typically close to the ground surface. This study, carried out at the Olentangy River Wetland Research Park, investigated the use of FGD material from sulfur scrubbers as a possible liner material for constructed wetlands. While several studies have investigated the use of FGD material to line ponds, no studies have investigated the use of this material as a liner for constructed wetlands. They used experimental mesocosms to see the effect of FGD liner materials in constructed wetlands on water quality and on wetland plant growth. This paper presents the results of nutrient analyses and physicochemical investigation of leachate and surface outflow water samples collected from the mesocosms. Plant growth and biomass of wetland vegetation are also included in this paper. First two year results are reported by Ahn et al. (1998, 1999). The overall goal of this study is the identification of advantages and disadvantages of using FGD by-product as an artificial liner in constructed wetlands.

  17. Final Environmental Impact Statement : Water rights acquisition for Lahontan Valley Wetlands : Volume 2 Appendix

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The appendices in this document include: Public Law 101-618, the Stillwater WMA Management Plan, scoping reports for Lahontan Valley Wetlands, a concept paper...

  18. Microbiology of wetlands

    NARCIS (Netherlands)

    Bodelier, P.L.E.; Dedysh, S.N.

    2013-01-01

    Watersaturated soil and sediment ecosystems (i.e. wetlands) are ecologically as well as economically important systems due to their high productivity, their nutrient (re)cycling capacities and their prominent contribution to global greenhouse gas emissions. Being on the transition between

  19. Natural wetland in China

    African Journals Online (AJOL)

    AJL

    2011-01-04

    Jan 4, 2011 ... and (3) flat land with lower elevation is represented by. Nagqu, Ruergai, chaidamud and permafrost, and back- water areas adjacent to alpine glacier and snow cover, and swampy wetlands exist extensively in regions of this kind in Qinghai-Tibetan Plateau. Three-river Source Region, which is located in ...

  20. Electricity from wetlands

    NARCIS (Netherlands)

    Wetser, Koen; Dieleman, Kim; Buisman, Cees; Strik, David

    2017-01-01

    Application of the plant microbial fuel cell (PMFC) in wetlands should be invisible without excavation of the soil. The preferred design is a tubular design with the anode directly between the plant roots and an oxygen reducing biocathode inside the tube. Oxygen should be passively supplied to

  1. Natural wetland emissions of methylated trace elements

    NARCIS (Netherlands)

    Vriens, B.; Lenz, M.; Charlet, L.; Berg, M.; Winkel, L.H.E.

    2014-01-01

    Natural wetlands are well known for their significant methane emissions. However, trace element emissions via biomethylation and subsequent volatilization from pristine wetlands are virtually unstudied, even though wetlands constitute large reservoirs for trace elements. Here we show that the

  2. Alaska LandCarbon Wetland Distribution Map

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This product provides regional estimates of specific wetland types (bog and fen) in Alaska. Available wetland types mapped by the National Wetlands Inventory (NWI)...

  3. Factors affecting biological recovery of wetland restorations

    Science.gov (United States)

    1999-06-01

    This report describes a long-term study to monitor and evaluate the ecosystem recovery of seven wetland restorations in south central Minnesota. The study looks at the impact of planting on wetland restoration success in inland wetlands and develops ...

  4. Nyando Wetland in the Future.

    OpenAIRE

    Opaa, B.O.; Okotto-Okotto, J.; Nyandiga, C.O.; Masese, F.O.

    2012-01-01

    The future of Nyando Wetland seem to be at cross-roads between community livelihood support and biodiversity conservation. This important wetland ecosystem, currently threatened by pollution from both diffuse and point sources, Climate Change and variability, poverty manifesting itself as low income, knowledge and food insecurity portend serious and deleterious effects on the ecosystem integrity as well as the socioeconomic well-being of Nyando Wetland-dependent communities. The degradation o...

  5. Restoration of ailing wetlands.

    Directory of Open Access Journals (Sweden)

    Oswald J Schmitz

    2012-01-01

    Full Text Available It is widely held that humankind's destructive tendencies when exploiting natural resources leads to irreparable harm to the environment. Yet, this thinking runs counter to evidence that many ecological systems damaged by severe natural environmental disturbances (e.g., hurricanes can restore themselves via processes of natural recovery. The emerging field of restoration ecology is capitalizing on the natural restorative tendencies of ecological systems to build a science of repairing the harm inflicted by humans on natural environment. Evidence for this, for example, comes from a new meta-analysis of 124 studies that synthesizes recovery of impacted wetlands worldwide. While it may take up to two human generations to see full recovery, there is promise, given human will, to restore many damaged wetlands worldwide.

  6. Incentives for wetlands conservation in the Mufindi wetlands of the ...

    African Journals Online (AJOL)

    Sustainable wetland management has to some extent become a high priority for world's environmentalists. Achieving sustainable wetland management may require an increase in the voluntary adoption of best management practices by both local communities and the government. This may be preceded by more tailored ...

  7. Carbon dynamics in wetland restoration

    Energy Technology Data Exchange (ETDEWEB)

    Kovalenko, K.; Ciborowski, J.; Gardner-Costa, J.; Slama, C. [Windsor Univ., ON (Canada); Daly, C.; Hornung, J. [Suncor Energy, Calgary, AB (Canada); Dixon, G.; Farwell, A. [Waterloo Univ., ON (Canada); Foote, L.; Frederick, K.; Roy, M. [Alberta Univ., Edmonton, AB (Canada); Liber, K. [Saskatchewan Univ., Saskatoon, SK (Canada); Smits, J. [Calgary Univ., AB (Canada); Wytrykush, C. [Syncrude Canada Ltd., Edmonton, AB (Canada)

    2010-07-01

    This study focused on the reclamation of wetland ecosystems impacted by oil sands development in the boreal wetlands. Although these wetlands play an important role in global carbon balance, their ecosystem function is compromised by direct and regional anthropogenic disturbance and climate change. Large oil sand mining areas that require reclamation generate substantial quantities of extraction process-affected materials. In order to determine if the reclaimed wetlands were restored to equivalent ecosystem function, this study evaluated carbon flows and food web structure in oil sands-affected wetlands. The purpose was to determine whether a prescribed reclamation strategy or topsoil amendment accelerates reclaimed wetland development to produce self-sustaining peatlands. In addition to determining carbon fluxes, this study measured compartment standing stocks for residual hydrocarbons, organic substrate, bacterioplankton, phytoplankton, biofilm, macrophytes, detritus, zoobenthos and aquatic-terrestrial exports. Most biotic 28 compartments differed between oil-sands-affected and reference wetlands, but the difference lessened with age. Macroinvertebrate trophic diversity was lower in oil sands-affected wetlands. Peat amendment seemed to speed convergence for some compartments but not others. These results were discussed in the context of restoration of ecosystem function and optimization of reclamation strategies.

  8. Carbon Storage in US Wetlands.

    Science.gov (United States)

    Background/Question/Methods Wetland soils contain some of the highest stores of soil carbon in the biosphere. However, there is little understanding of the quantity and distribution of carbon stored in US wetlands or of the potential effects of human disturbance on these stocks. ...

  9. Tropical wetlands and REDD+: Three unique scientific challenges for policy

    Directory of Open Access Journals (Sweden)

    Daniel A Friess

    2013-07-01

    Full Text Available The carbon sequestration and storage value of terrestrial habitats is now increasingly appreciated, and is the basis for Payment for Ecosystem Service (PES policies such as REDD+. Tropical wetlands may be suitable for inclusion in such schemes because of the disproportionately large volume of carbon they are able to store. However, tropical wetlands offer a number of unique challenges for carbon management and policy compared to terrestrial forest systems: 1 Tropical wetlands are dynamic and subject to a wide range of physical and ecological processes that affect their long-term carbon storage potential – thus, such systems can quickly become a carbon source instead of a sink; 2 Carbon dynamics in tropical wetlands often operate over longer time-scales than are currently covered by REDD+ payments; and 3 Much of the carbon in a tropical wetland is stored in the soil, so monitoring, reporting and verification (MRV needs to adequately encapsulate the entire ecosystem and not just the vegetative component. This paper discusses these physical and biological concepts, and highlights key legal, management and policy questions that must be considered when constructing a policy framework to conserve these crucial ecosystems.

  10. Climate Change and Intertidal Wetlands

    Directory of Open Access Journals (Sweden)

    Pauline M. Ross

    2013-03-01

    Full Text Available Intertidal wetlands are recognised for the provision of a range of valued ecosystem services. The two major categories of intertidal wetlands discussed in this contribution are saltmarshes and mangrove forests. Intertidal wetlands are under threat from a range of anthropogenic causes, some site-specific, others acting globally. Globally acting factors include climate change and its driving cause—the increasing atmospheric concentrations of greenhouse gases. One direct consequence of climate change will be global sea level rise due to thermal expansion of the oceans, and, in the longer term, the melting of ice caps and glaciers. The relative sea level rise experienced at any one locality will be affected by a range of factors, as will the response of intertidal wetlands to the change in sea level. If relative sea level is rising and sedimentation within intertidal wetlands does not keep pace, then there will be loss of intertidal wetlands from the seaward edge, with survival of the ecosystems only possible if they can retreat inland. When retreat is not possible, the wetland area will decline in response to the “squeeze” experienced. Any changes to intertidal wetland vegetation, as a consequence of climate change, will have flow on effects to biota, while changes to biota will affect intertidal vegetation. Wetland biota may respond to climate change by shifting in distribution and abundance landward, evolving or becoming extinct. In addition, impacts from ocean acidification and warming are predicted to affect the fertilisation, larval development, growth and survival of intertidal wetland biota including macroinvertebrates, such as molluscs and crabs, and vertebrates such as fish and potentially birds. The capacity of organisms to move and adapt will depend on their life history characteristics, phenotypic plasticity, genetic variability, inheritability of adaptive characteristics, and the predicted rates of environmental change.

  11. Wetlands: Water, Wildlife, Plants, and People.

    Science.gov (United States)

    Vandas, Steve

    1992-01-01

    Describes wetlands and explains their importance to man and ecology. Delineates the role of water in wetlands. Describes how wetlands are classified: estuarine, riverine, lacustrine, palustrine, and marine. Accompanying article is a large, color poster on wetlands. Describes an activity where metaphors are used to explore the functions of…

  12. Unit Process Wetlands for Removal of Trace Organic Contaminants and Pathogens from Municipal Wastewater Effluents

    Science.gov (United States)

    Jasper, Justin T.; Nguyen, Mi T.; Jones, Zackary L.; Ismail, Niveen S.; Sedlak, David L.; Sharp, Jonathan O.; Luthy, Richard G.; Horne, Alex J.; Nelson, Kara L.

    2013-01-01

    Abstract Treatment wetlands have become an attractive option for the removal of nutrients from municipal wastewater effluents due to their low energy requirements and operational costs, as well as the ancillary benefits they provide, including creating aesthetically appealing spaces and wildlife habitats. Treatment wetlands also hold promise as a means of removing other wastewater-derived contaminants, such as trace organic contaminants and pathogens. However, concerns about variations in treatment efficacy of these pollutants, coupled with an incomplete mechanistic understanding of their removal in wetlands, hinder the widespread adoption of constructed wetlands for these two classes of contaminants. A better understanding is needed so that wetlands as a unit process can be designed for their removal, with individual wetland cells optimized for the removal of specific contaminants, and connected in series or integrated with other engineered or natural treatment processes. In this article, removal mechanisms of trace organic contaminants and pathogens are reviewed, including sorption and sedimentation, biotransformation and predation, photolysis and photoinactivation, and remaining knowledge gaps are identified. In addition, suggestions are provided for how these treatment mechanisms can be enhanced in commonly employed unit process wetland cells or how they might be harnessed in novel unit process cells. It is hoped that application of the unit process concept to a wider range of contaminants will lead to more widespread application of wetland treatment trains as components of urban water infrastructure in the United States and around the globe. PMID:23983451

  13. Unit Process Wetlands for Removal of Trace Organic Contaminants and Pathogens from Municipal Wastewater Effluents.

    Science.gov (United States)

    Jasper, Justin T; Nguyen, Mi T; Jones, Zackary L; Ismail, Niveen S; Sedlak, David L; Sharp, Jonathan O; Luthy, Richard G; Horne, Alex J; Nelson, Kara L

    2013-08-01

    Treatment wetlands have become an attractive option for the removal of nutrients from municipal wastewater effluents due to their low energy requirements and operational costs, as well as the ancillary benefits they provide, including creating aesthetically appealing spaces and wildlife habitats. Treatment wetlands also hold promise as a means of removing other wastewater-derived contaminants, such as trace organic contaminants and pathogens. However, concerns about variations in treatment efficacy of these pollutants, coupled with an incomplete mechanistic understanding of their removal in wetlands, hinder the widespread adoption of constructed wetlands for these two classes of contaminants. A better understanding is needed so that wetlands as a unit process can be designed for their removal, with individual wetland cells optimized for the removal of specific contaminants, and connected in series or integrated with other engineered or natural treatment processes. In this article, removal mechanisms of trace organic contaminants and pathogens are reviewed, including sorption and sedimentation, biotransformation and predation, photolysis and photoinactivation, and remaining knowledge gaps are identified. In addition, suggestions are provided for how these treatment mechanisms can be enhanced in commonly employed unit process wetland cells or how they might be harnessed in novel unit process cells. It is hoped that application of the unit process concept to a wider range of contaminants will lead to more widespread application of wetland treatment trains as components of urban water infrastructure in the United States and around the globe.

  14. Two science communities and coastal wetlands policy

    Energy Technology Data Exchange (ETDEWEB)

    LeVine, J.B.

    1984-01-01

    This study compares the attitudes of academic and government wetlands scientists about wetlands science and policy. Analysis of one thousand seven hundred responses to Delphi-type questions posed to twenty California scientists on a wide range of issues about California coastal wetlands found significant differences between academic and government scientists about wetlands definitions, threats to wetlands, wetlands policies, wetlands health, and wetlands mitigation strategies. These differences were consistent with descriptive models of political sociology developed by D. Price and C.P. Snow and with normative models of the philosophy of science developed in the renaissance by F. Bacon and R. Descartes. Characteristics, preferences, and personality attributes consistent with group functions and roles have been described in these models. These findings have serious implications for policy. When academic and government wetlands scientists act as advisors to the major parties in land use conflicts, basic differences in perspective have contributed to costly contention over the future use of wetlands.

  15. Methane Fluxes from Subtropical Wetlands

    Science.gov (United States)

    DeLucia, N.; Gomez-Casanovas, N.; Bernacchi, C.

    2013-12-01

    It is well documented that green house gas concentrations have risen at unequivocal rates since the industrial revolution but the disparity between anthropogenic sources and natural sources is uncertain. Wetlands are one example of a natural ecosystem that can be a substantial source or sink for methane (CH4) depending on climate conditions. Due to strict anaerobic conditions required for CH4-generating microorganisms, natural wetlands are one of the main sources for biogenic CH4. Although wetlands occupy less than 5% of total land surface area, they contribute approximately 20% of total CH4 emissions to the atmosphere. The processes regulating CH4 emissions are sensitive to land use and management practices of areas surrounding wetlands. Variation in adjacent vegetation or grazing intensity by livestock can, for example, alter CH4 fluxes from wetland soils by altering nutrient balance, carbon inputs and hydrology. Therefore, understanding how these changes will affect wetland source strength is essential to understand the impact of wetland management practices on the global climate system. In this study we quantify wetland methane fluxes from subtropical wetlands on a working cattle ranch in central Florida near Okeechobee Lake (27o10'52.04'N, 81o21'8.56'W). To determine differences in CH4 fluxes associated with land use and management, a replicated (n = 4) full factorial experiment was designed for wetlands where the surrounding vegetation was (1) grazed or un-grazed and (2) composed of native vegetation or improved pasture. Net exchange of CH4 and CO2 between the land surface and the atmosphere were sampled with a LICOR Li-7700 open path CH4 analyzer and Li-7500A open path CO2/H20 analyzer mounted in a 1-m3 static gas-exchange chamber. Our results showed and verified that CH4 emissions from subtropical wetlands were larger when high soil moisture was coupled with high temperatures. The presence of cattle only amplified these results. These results help quantify

  16. Guam and the Northern Mariana Islands ESI: WETLANDS (Wetland Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains vector polygons representing the coastal wetland habitats for Guam and the Northern Mariana Islands classified according to the Environmental...

  17. 76 FR 22785 - Wetland Conservation

    Science.gov (United States)

    2011-04-25

    ... 7 CFR Part 12 RIN 0578-AA58 Wetland Conservation AGENCY: Office of the Secretary, United States... concerning the Natural Resources Conservation Service's (NRCS) coordination responsibilities. DATES..., Director, Ecological Sciences Division, U.S. Department of Agriculture, Natural Resources Conservation...

  18. Wetland plants: biology and ecology

    National Research Council Canada - National Science Library

    Cronk, Julie K; Fennessy, M. Siobhan

    2001-01-01

    .... You get a thorough discussion of the range of wetland plant adaptations to life in water or saturated soils, high salt or high sulfur, low light and low carbon dioxide levels, as well as a detailed...

  19. Constructed Wetlands for Wastewater Treatment

    Science.gov (United States)

    This presentation is a general introductory overview of constructed wetlands for wastewater treatment. Photographs show a wide range of applications and sizes. Summary data on cost and performance from previously published documents by WERF and EPA is presented. Previously pre...

  20. Wetland Hydrology | Science Inventory | US EPA

    Science.gov (United States)

    This chapter discusses the state of the science in wetland hydrology by touching upon the major hydraulic and hydrologic processes in these complex ecosystems, their measurement/estimation techniques, and modeling methods. It starts with the definition of wetlands, their benefits and types, and explains the role and importance of hydrology on wetland functioning. The chapter continues with the description of wetland hydrologic terms and related estimation and modeling techniques. The chapter provides a quick but valuable information regarding hydraulics of surface and subsurface flow, groundwater seepage/discharge, and modeling groundwater/surface water interactions in wetlands. Because of the aggregated effects of the wetlands at larger scales and their ecosystem services, wetland hydrology at the watershed scale is also discussed in which we elaborate on the proficiencies of some of the well-known watershed models in modeling wetland hydrology. This chapter can serve as a useful reference for eco-hydrologists, wetland researchers and decision makers as well as watershed hydrology modelers. In this chapter, the importance of hydrology for wetlands and their functional role are discussed. Wetland hydrologic terms and the major components of water budget in wetlands and how they can be estimated/modeled are also presented. Although this chapter does not provide a comprehensive coverage of wetland hydrology, it provides a quick understanding of the basic co

  1. Michigan Wetlands: Yours To Protect. A Citizen's Guide to Local Involvement in Wetland Protection. Second Edition.

    Science.gov (United States)

    Cwikiel, Wilfred

    This guidebook is designed to assist concerned Michigan citizens, local governments, conservation organizations, landowners, and others in their efforts to initiate wetlands protection activities. Chapter 1 focuses on wetland functions, values, losses, and the urgent need to protect wetland resources. Chapter 2 discusses wetland identification and…

  2. National Wetlands Inventory (nwi_rway_plus)

    Data.gov (United States)

    National Park Service, Department of the Interior — nwi_rway_plus is National Wetlands Inventory data that has been converted to ArcGIS shapefile format. NWI maps depict wetland point, line, and area features with...

  3. Wetland related livelihoods, institutions and incentives for ...

    African Journals Online (AJOL)

    Balanced utilization of wetland ecosystems can be achieved if wetland related livelihoods, institutions and incentives for their management are well planned, in place ... These include connectors, whistle blowers, enforcement, information exchange, management, education and capacity building, lobbying, entrepreneurs,

  4. Designated Wetlands and Setback Distances in Iowa

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — This GIS layer depicts wetlands designated for protection in the state of Iowa. Designated wetland is defined in Iowa Code subsection 459.102(21) as follows: 21....

  5. West Virginia's Wetlands. Uncommon, Valuable Wildlands.

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This booklet summarizes the most up-to-date information on West Virginia's wetlands for the general public. It provides brief descriptions of the state's wetlands,...

  6. Elemental composition of native wetland plants in constructed mesocosm treatment wetlands.

    Science.gov (United States)

    Collins, Beverly S; Sharitz, Rebecca R; Coughlin, Daniel P

    2005-05-01

    Plants that accumulate a small percentage of metals in constructed treatment wetlands can contribute to remediation of acidic, metal contaminated runoff waters from coal mines or processing areas. We examined root and shoot concentrations of elements in four perennial wetland species over two seasons in mesocosm wetland systems designed to remediate water from a coal pile runoff basin. Deep wetlands in each system contained Myriophyllum aquaticum and Nymphaea odorata; shallow wetlands contained Juncus effusus and Pontederia cordata. Shoot elemental concentrations differed between plants of deep and shallow wetlands, with higher Zn, Al, and Fe concentrations in plants in shallow wetlands and higher Na, Mn, and P concentrations in plants in deep wetlands. Root and shoot concentrations of most elements differed between species in each wetland type. Over two seasons, these four common wetland plants did help remediate acidic, metal-contaminated runoff from a coal storage pile.

  7. Effect of the Urbanization of Wetlands on Microclimate: A Case Study of Xixi Wetland, Hangzhou, China

    OpenAIRE

    Wei Zhang; Yubi Zhu; Jingang Jiang

    2016-01-01

    Urbanization affects the microclimate and forms a unique urban climate environment. To deepen the understanding on the microclimate regulation function of an urban wetland, this study analyzed the influence of a suburb wetland’s urbanization process on the local climate through contrast observations of the protected wetland area and the former wetland area in Xixi wetland. Results show that the urbanization of suburb wetlands has an impact on the local microclimate and decreases human comfort...

  8. Mapping wetland characteristics for sustainable development in ...

    African Journals Online (AJOL)

    Wetland ecosystems are under threat from agriculture and urbanisation, affecting water supply and quality in urban areas like the City of Harare. With the need to protect wetlands that remain, the spatial extent of the Highlands, Borrowdale West, Mukuvisi and National Sports wetlands was established. LANDSAT and SPOT ...

  9. Description of the Wetlands Research Programme

    CSIR Research Space (South Africa)

    Walmsley, RD

    1988-01-01

    Full Text Available This report presents a rationale to the development of a multidisciplinary South African Wetland Research Programme. A definition of what is meant by the term wetland is given along with a general description of what types of wetland occur in South...

  10. Hydrology of a natural hardwood forested wetland

    Science.gov (United States)

    George M. Chescheir; Devendra M. Amatya; R. Wayne Skaggs

    2008-01-01

    This paper documents the hydrology of a natural forested wetland near Plymouth, NC, USA. The research site was located on one of the few remaining, undrained non-riverine, palustrine forested hardwood wetlands on the lower coastal plain of North Carolina. A 137 ha watershed within the 350ha wetland was selected for intensive field study. Water balance components...

  11. North Dakota Wetlands Discovery Guide. Photocopy Booklet.

    Science.gov (United States)

    Dietz, Nancy J., Ed.; And Others

    This booklet contains games and activities that can be photocopied for classroom use. Activities include Wetland Terminology, Putting on the Map, Erosional Forces, Water in...Water out, Who Lives Here?, Wetlands in Disguise, Dichotomous Plant Game, Algae Survey, Conducting an Algal Survey, Water Quality Indicators Guide, Farming Wetlands, Wetlands…

  12. 40 CFR 258.12 - Wetlands.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Wetlands. 258.12 Section 258.12... SOLID WASTE LANDFILLS Location Restrictions § 258.12 Wetlands. (a) New MSWLF units and lateral expansions shall not be located in wetlands, unless the owner or operator can make the following...

  13. 75 FR 18146 - Wetlands Reserve Enhancement Program

    Science.gov (United States)

    2010-04-09

    ... Commodity Credit Corporation Wetlands Reserve Enhancement Program AGENCY: Commodity Credit Corporation and... available in fiscal year (FY) 2010 for the Wetlands Reserve Enhancement Program (WREP) throughout the United... enhance conservation outcomes on wetlands and adjacent lands. WREP targets and leverages resources to...

  14. Conservation of Louisiana's coastal wetland forests

    Science.gov (United States)

    Jim L. Chambers; Richard F. Keim; William H. Conner; John W. Jr. Day; Stephen P. Faulkner; Emile S. Gardiner; Melinda s. Hughes; Sammy L. King; Kenneth W. McLeod; Craig A. Miller; J. Andrew Nyman; Gary P. Shaffer

    2006-01-01

    Large-scale efforts to protect and restore coastal wetlands and the concurrent renewal of forest harvesting in cypress-tupelo swamps have brought new attention to Louisiana's coastal wetland forests in recent years. Our understanding of these coastal wetland forests has been limited by inadequate data and the lack of a comprehensive review of existing information...

  15. Methane flux from wetlands areas

    OpenAIRE

    BAKER-BLOCKER, ANITA; DONAHUE, THOMAS M.; MANCY, KHALIL H.

    2011-01-01

    Ebullient gases from Michigan wetlands have been collected and analyzed to deduce in situ methane fluxes. Methane flux has been found to be a function of mean air temperature. This relationship has been utilized to extrapolate observed methane fluxes to estimates of fluxes from the Pripet marshes, Sudd, Everglades, and Ugandan swamps. These four wetlands together provide a yearly source of 6.8 × 1013 g of methane to the atmosphere.DOI: 10.1111/j.2153-3490.1977.tb00731.x

  16. National Wetland Mitigation Banking Study Wetland Migitation Banking.

    Science.gov (United States)

    1994-02-01

    many species offish, reptiles , mammals, and birds, including migratory waterfowl. Supports consumptive (e.g., hunting) and non-consumptive (e.g...resources and coastal areas including wetlands - includes the Willamette River Greenway which prohibits any change in land use within designated

  17. A Review of Wetland Remote Sensing

    Directory of Open Access Journals (Sweden)

    Meng Guo

    2017-04-01

    Full Text Available Wetlands are some of the most important ecosystems on Earth. They play a key role in alleviating floods and filtering polluted water and also provide habitats for many plants and animals. Wetlands also interact with climate change. Over the past 50 years, wetlands have been polluted and declined dramatically as land cover has changed in some regions. Remote sensing has been the most useful tool to acquire spatial and temporal information about wetlands. In this paper, seven types of sensors were reviewed: aerial photos coarse-resolution, medium-resolution, high-resolution, hyperspectral imagery, radar, and Light Detection and Ranging (LiDAR data. This study also discusses the advantage of each sensor for wetland research. Wetland research themes reviewed in this paper include wetland classification, habitat or biodiversity, biomass estimation, plant leaf chemistry, water quality, mangrove forest, and sea level rise. This study also gives an overview of the methods used in wetland research such as supervised and unsupervised classification and decision tree and object-based classification. Finally, this paper provides some advice on future wetland remote sensing. To our knowledge, this paper is the most comprehensive and detailed review of wetland remote sensing and it will be a good reference for wetland researchers.

  18. A Review of Wetland Remote Sensing.

    Science.gov (United States)

    Guo, Meng; Li, Jing; Sheng, Chunlei; Xu, Jiawei; Wu, Li

    2017-04-05

    Wetlands are some of the most important ecosystems on Earth. They play a key role in alleviating floods and filtering polluted water and also provide habitats for many plants and animals. Wetlands also interact with climate change. Over the past 50 years, wetlands have been polluted and declined dramatically as land cover has changed in some regions. Remote sensing has been the most useful tool to acquire spatial and temporal information about wetlands. In this paper, seven types of sensors were reviewed: aerial photos coarse-resolution, medium-resolution, high-resolution, hyperspectral imagery, radar, and Light Detection and Ranging (LiDAR) data. This study also discusses the advantage of each sensor for wetland research. Wetland research themes reviewed in this paper include wetland classification, habitat or biodiversity, biomass estimation, plant leaf chemistry, water quality, mangrove forest, and sea level rise. This study also gives an overview of the methods used in wetland research such as supervised and unsupervised classification and decision tree and object-based classification. Finally, this paper provides some advice on future wetland remote sensing. To our knowledge, this paper is the most comprehensive and detailed review of wetland remote sensing and it will be a good reference for wetland researchers.

  19. A Review of Wetland Remote Sensing

    Science.gov (United States)

    Guo, Meng; Li, Jing; Sheng, Chunlei; Xu, Jiawei; Wu, Li

    2017-01-01

    Wetlands are some of the most important ecosystems on Earth. They play a key role in alleviating floods and filtering polluted water and also provide habitats for many plants and animals. Wetlands also interact with climate change. Over the past 50 years, wetlands have been polluted and declined dramatically as land cover has changed in some regions. Remote sensing has been the most useful tool to acquire spatial and temporal information about wetlands. In this paper, seven types of sensors were reviewed: aerial photos coarse-resolution, medium-resolution, high-resolution, hyperspectral imagery, radar, and Light Detection and Ranging (LiDAR) data. This study also discusses the advantage of each sensor for wetland research. Wetland research themes reviewed in this paper include wetland classification, habitat or biodiversity, biomass estimation, plant leaf chemistry, water quality, mangrove forest, and sea level rise. This study also gives an overview of the methods used in wetland research such as supervised and unsupervised classification and decision tree and object-based classification. Finally, this paper provides some advice on future wetland remote sensing. To our knowledge, this paper is the most comprehensive and detailed review of wetland remote sensing and it will be a good reference for wetland researchers. PMID:28379174

  20. Lake Superior Coastal Wetland Fish Assemblages and ...

    Science.gov (United States)

    The role of the coastal margin and the watershed context in defining the ecology of even very large lakes is increasingly being recognized and examined. Coastal wetlands are both important contributors to the biodiversity and productivity of large lakes and important mediators of the lake-basin connection. We explored wetland-watershed connections and their relationship to wetland function and condition using data collected from 37 Lake Superior wetlands spanning a substantial geographic and geomorphic gradient. While none of these wetlands are particularly disturbed, there were nevertheless clear relationships between watershed landuse and wetland habitat and biota, and these varied consistently across wetland type categories that reflected the strength of connection to the watershed. For example, water clarity and vegetation structure complexity declined with decreasing percent natural land cover, and these effects were strongest in riverine wetlands (having generally large watersheds and tributary-dominated hydrology) and weakest in lagoon wetlands (having generally small watersheds and lake-dominate hydrology). Fish abundance and species richness both increased with decreasing percent natural land cover while species diversity decreased, and again the effect was strongest in riverine wetlands. Lagoonal wetlands, which lack any substantial tributary, consistently harbored the fewest species of fish and a composition different from the more watershed-lin

  1. Nevada Test Site Wetlands Assessment

    Energy Technology Data Exchange (ETDEWEB)

    D. J. Hansen

    1997-05-01

    This report identifies 16 Nevada Test Site (NTS) natural water sources that may be classified by the U.S. Army Corps of Engineers (USACE) as jurisdictional wetlands and identifies eight water sources that may be classified as waters of the United States. These water sources are rare, localized habitats on the NTS that are important to regional wildlife and to isolated populations of water tolerant plants and aquatic organisms. No field investigations on the NTS have been conducted in the past to identify those natural water sources which would be protected as rare habitats and which may fall under regulatory authority of the Clean Water Act (CWA) of 1997. This report identifies and summarizes previous studies of NTS natural water sources, and identifies the current DOE management practices related to the protection of NTS wetlands. This report also presents management goals specific for NTS wetlands that incorporate the intent of existing wetlands legislation, the principles of ecosystem management, and the interests of regional land managers and other stakeholders.

  2. China's natural wetlands: past problems, current status, and future challenges

    Science.gov (United States)

    Shuqing An; Harbin Li; Baohua Guan; Changfang Zhou; Zhongsheng Wang; Zifa Deng; Yingbiao Zhi; Yuhong Liu; Chi Xu; Shubo Fang; Jinhui Jiang; Hongli Li

    2007-01-01

    Natural wetlands, occupying 3.8% of China's land and providing 54.9% of ecosystem services, are unevenly distributed among eight wetland regions. Natural wetlands in China suffered great loss and degradation (e.g., 23.0% freshwater swamps, 51.2% coastal wetlands) because of the wetland reclamation during China's long history of civilization, and the...

  3. Wetlands and agriculture: Are we heading for confrontation or conservation

    Science.gov (United States)

    Brij Gopal

    2000-01-01

    Wetlands and agriculture are closely linked. Historically, agriculture had its beginning in riparian wetland habitats and expanded into other wetlands. Later, large areas of riverine, palustrine, and coastal wetlands were converted into paddy fields or drained for agriculture. Agriculture has grown most at the expense of natural wetlands. Today, the intensive...

  4. USGS research on Florida's isolated freshwater wetlands

    Science.gov (United States)

    Torres, Arturo E.; Haag, Kim H.; Lee, Terrie M.; Metz, Patricia A.

    2011-01-01

    The U.S. Geological Survey (USGS) has studied wetland hydrology and its effects on wetland health and ecology in Florida since the 1990s. USGS wetland studies in Florida and other parts of the Nation provide resource managers with tools to assess current conditions and regional trends in wetland resources. Wetland hydrologists in the USGS Florida Water Science Center (FLWSC) have completed a number of interdisciplinary studies assessing the hydrology, ecology, and water quality of wetlands. These studies have expanded the understanding of wetland hydrology, ecology, and related processes including: (1) the effects of cyclical changes in rainfall and the influence of evapotranspiration; (2) surface-water flow, infiltration, groundwater movement, and groundwater and surfacewater interactions; (3) the effects of water quality and soil type; (4) the unique biogeochemical components of wetlands required to maintain ecosystem functions; (5) the effects of land use and other human activities; (6) the influences of algae, plants, and invertebrates on environmental processes; and (7) the effects of seasonal variations in animal communities that inhabit or visit Florida wetlands and how wetland function responds to changes in the plant community.

  5. [Clogging characteristics of the subsurface flow wetland].

    Science.gov (United States)

    Yan, Lu; Wang, Shi-He; Huang, Juan; Liu, Yang; Wang, Feng

    2008-03-01

    In order to resolve clogging problem of constructed wetlands caused by improper design or imperfect management and reveal the clogging mechanism, clogging characteristics of the horizontal flow reed wetland and vertical flow reed wetland were studied. Operation stabilities of two types of wetlands were compared. It shows that organic matter accumulates in medium and the concentration is 1.5% - 5%. It mostly occurs in the fore section of top layer in wetland and the concentration is 4% - 5%. The negative correlation between the organic matter content and the subsurface depth was demonstrated. The clogging mechanisms in the horizontal flow wetland and the vertical flow wetland are different. The hydraulic retention time of the horizontal flow wetland is 3.5154 d which is shortened by 21.88%. While the hydraulic retention time of the vertical flow wetland is 5.4648 d and extended by 21.44%. The results indicate that clogging decreases the treatment capacity and running stability conspicuously. The clogging phenomenon of the vertical flow wetland is worse comparatively.

  6. Engineered wetlands : an innovative environmental solution

    Energy Technology Data Exchange (ETDEWEB)

    Wallace, S.; Davis, B.M. [Jacques Whitford NAWE, White Bear Lake, MN (United States)

    2008-03-15

    Engineered wetlands are now considered as an emerging technology for the in situ remediation of hydrocarbon-contaminated soil and waters. Engineered wetlands incorporate a horizontal subsurface flow gravel bed reactor lined with impermeable liners, and are equipped with forced bed aeration systems in order to enhance oxygen delivery to the wetland's aerobic micro-organisms. The wetlands typically emphasize specific characteristics of wetland ecosystems to improve treatment capacities. This article discussed an engineered wetlands installed at a set of pipeline terminals as well as at a former British Petroleum (BP) refinery. The pipeline terminal generated contact wastewater containing BTEX and ammonia, and a subsurface engineered wetland was built in 1998. To date, the 16,000{sup 2} foot wetland has treated a flow-equalized input of approximately 1.5 m{sup 3} per day of contaminants. At the refinery, a wetland treatment system was designed to treat 6000 m{sup 3} of benzene, toluene, ethylbenzene and xylene (BTEX) and volatile organic compounds (VOCs). The treatment site consists of a golf course, river front trails, and a white water kayak course. A cascade aeration system was used for iron oxidation and air-stripping. A soil matrix biofilter was used for passive gas phase benzene removal, as well as for the removal of ferric hydroxide precipitates. It was concluded that engineered wetlands can offer long-term solutions to site remediation challenges. 1 fig.

  7. BOOK REVIEW: WETLAND DESIGN, PRINCIPLES AND PRACTICES FOR LANDSCAPE ARCHITECTS AND LAND-USE PLANNERS

    Science.gov (United States)

    The book is organized in such a way that it provides a stepwise guide that begins with a basic historical and aesthetic overview of wetland design. The book then summarizes the key concepts involved in cumultive impacts from a landscape ecology persepetive, and then delves furth...

  8. Inventory of wetland birds occupying WPAs in the Devils Lake Wetland Management District

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The primary focus of this survey was the non-game bird species found in wetlands; game bird species found to be using the wetlands were also recorded. Both diversity...

  9. EnviroAtlas - Potential Wetland Areas - Contiguous United States

    Data.gov (United States)

    U.S. Environmental Protection Agency — The EnviroAtlas Potential Wetland Areas (PWA) dataset shows potential wetland areas at 30-meter resolution. Beginning two centuries ago, many wetlands were turned...

  10. Are wetlands the reservoir for avian cholera?

    Science.gov (United States)

    Samuel, M.D.; Shadduck, D.J.; Goldberg, Diana R.

    2004-01-01

    Wetlands have long been suspected to be an important reservoir for Pasteurella multocida and therefore the likely source of avian cholera outbreaks. During the fall of 1995a??98 we collected sediment and water samples from 44 wetlands where avian cholera epizootics occurred the previous winter or spring. We attempted to isolate P. multocida in sediment and surface water samples from 10 locations distributed throughout each wetland. We were not able to isolate P. multocida from any of the 440 water and 440 sediment samples collected from these wetlands. In contrast, during other investigations of avian cholera we isolated P. multocida from 20 of 44 wetlands, including 7% of the water and 4.5% of the sediment samples collected during or shortly following epizootic events. Our results indicate that wetlands are an unlikely reservoir for the bacteria that causes avian cholera.

  11. 7 CFR 12.33 - Use of wetland and converted wetland.

    Science.gov (United States)

    2010-01-01

    ... intended to protect remaining functions and values of the wetlands described therein. Persons may continue... converted wetland that is not exempt under § 12.5 of this part. (c) Abandonment is the cessation for five consecutive years of management or maintenance operations related to the use of a farmed wetland or a farmed...

  12. Wetland features and landscape context predict the risk of wetland habitat loss

    Science.gov (United States)

    Kevin J. Gutzwiller; Curtis H. Flather

    2011-01-01

    Wetlands generally provide significant ecosystem services and function as important harbors of biodiversity. To ensure that these habitats are conserved, an efficient means of identifying wetlands at risk of conversion is needed, especially in the southern United States where the rate of wetland loss has been highest in recent decades. We used multivariate adaptive...

  13. Application of the EPA Wetland Research Program Approach to a floodplain wetland restoration assessment

    Science.gov (United States)

    R. K. Kolka; C. C. Trettin; E. A. Nelson; C. D. Barton; D. E. Fletcher

    2002-01-01

    Forested wetland restoration assessment is difficult because of the timeframe necessary for the development of a forest ecosystem. The development of a forested wetland ecosystem includes the recovery of hydrology, soils, vegetation, and faunal communities. To assess forested wetland restoration projects, measures need to be developed that are sensitive to early...

  14. Diverse characteristics of wetlands restored under the Wetlands Reserve Program in the Southeastern United States

    Science.gov (United States)

    Diane De Steven; Joel M. Gramling

    2012-01-01

    The Wetlands Reserve Program (WRP) restores converted or degraded wetlands on private working lands; however, the nature and outcomes of such efforts are undocumented in the Southeastern U.S. Identification of wetland types is needed to assess the program's conservation benefits, because ecological functions differ with hydrogeomorphic (HGM) type. We reviewed...

  15. SLOSS or Not? Factoring Wetland Size Into Decisions for Wetland Conservation, Enhancement, Restoration, and Creation

    Science.gov (United States)

    Mitigation or replacement of several small impacted wetlands or sites with fewer large wetlands can occur deliberately through the application of functional assessment methods (e.g., Adamus 1997) or coincidentally as the result of market-based mechanisms for wetland mitigation ba...

  16. Effect of the Urbanization of Wetlands on Microclimate: A Case Study of Xixi Wetland, Hangzhou, China

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    2016-09-01

    Full Text Available Urbanization affects the microclimate and forms a unique urban climate environment. To deepen the understanding on the microclimate regulation function of an urban wetland, this study analyzed the influence of a suburb wetland’s urbanization process on the local climate through contrast observations of the protected wetland area and the former wetland area in Xixi wetland. Results show that the urbanization of suburb wetlands has an impact on the local microclimate and decreases human comfort, and that wetlands can effectively regulate the microclimate. The fragmentation of urban wetlands caused by urban sprawl decreases their microclimate regulation function, a decrease that is particularly evident in summer. Additionally, wetlands stabilize the microclimate in all seasons. For every land cover type in wetlands, vegetation has a better stabilizing effect on temperature, whereas a water body has a better stabilizing effect on wind speed and humidity. Meteorological conditions also affect the microclimate regulation function of wetlands. Temperature, humidity, atmospheric pressure, and wind speed influence the cooling function of urban wetlands, while solar radiation modifies the humidifying function of urban wetlands.

  17. Water supply from wetlands in Tanzania

    OpenAIRE

    Mihayo, J.M.

    1993-01-01

    This paper gives a brief discussion on water supply from wetlands in Tanzania. The majordrainage basins in Tanzania are described and the status and role of the Division of WaterResearch in the monitoring of water resources and data collection from wetlands and watersources are highlighted. The role of wetlands in the hydrological cycle, and the utilisation ofwetlands as water supply sources are discussed. The need for conservation and protection ofwetlands and other water sources is outlined.

  18. Impact of riverine wetlands construction and operation on stream channel stability: Conceptual framework for geomorphic assessment

    Science.gov (United States)

    Rhoads, Bruce L.; Miller, Michael V.

    1990-11-01

    Wetland conservation is a critical environmental management issue. An emerging approach to this issue involves the construction of wetland environments. Because our understanding of wetlands function is incomplete and such projects must be monitored closely because they may have unanticipated impacts on ecological, hydrological, and geomorphological systems. Assessment of project-related impacts on stream channel stability is an important component of riverine wetlands construction and operation because enhanced erosion or deposition associated with unstable rivers can lead to loss of property, reductions in channel capacity, and degradation of water quality, aquatic habitat, and riparian aesthetics. The water/sediment budget concept provides a scientific framework for evaluating the impact of riverine wetlands construction and operation on stream channel stability. This concept is based on the principle of conservation of mass, i.e., the total amount of water and sediment moving through a specific reach of river must be conserved. Long-term measurements of channel sediment storage and other water/sediment budget components provide the basis for distinguishing between project-related impacts and those resulting from other causes. Changes in channel sediment storage that occur as a result of changes in internal inputs of water or sediment signal a project-related impact, whereas those associated with changes in upstream or tributary inputs denote a change in environmental conditions elsewhere in the watershed. A geomorphic assessment program based on the water/sediment budget concept has been implemented at the site of the Des Plaines River Wetlands Demonstration Projection near Chicago, Illinois, USA. Channel sediment storage changed little during the initial construction phase, suggesting that thus far the project has not affected stream channel stability.

  19. Nomination of the Lahontan Valley Wetlands Nevada, U.S.A. as Wetlands of International Importance under the RAMSAR Convention

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This report is a proposal to list the Lahontan Valley Wetlands as a Wetlands of International Importance. The Lahontan Valley Wetlands are an important habitat for...

  20. [A review on algae ecology in wetland].

    Science.gov (United States)

    Xiong, Li; Xie, Liqiang; Sheng, Xiumei; Wu, Zhenbin; Xia, Yicheng

    2003-06-01

    The research advance in algae ecology in wetland was introduced in this paper, which included the algae population structure and its function, and the algae productivity and its affecting factors. Almost all kinds of algae occurred in wetland, including four assemblages: epipelon, epiphyton, metaphyton and phytoplankton, among which, diatom, green and blue algae were the predominant species. Algae were the fundamental players in the physical, chemical and biological processes that characterized wetland ecosystems. Most obvious was their role as primary producers and their place in the wetland food web. Algae were an important food resource for herbivores, and contributed to wetland nutrient cycle as the sources of dissolved organic matter and N. They could also be used as biomarkers for monitoring environment pollution. The affecting factors on algae's productivity were hydraulic factor, nutrition, temperature, illumination, herbivores and some other animals, and so on. Because of their functions in wetland, future research on algae in wetland should expand our knowledge of the environmental controls on algal biomass, productivity, and species composition in wetlands with particular in areas for which knowledge was incomplete. Included among these, may be a detailed evaluation of the proportionate contributions by epipelon, epiphyton, metaphyton, and phytoplankton to food web dynamics in wetlands, and a further study of the genetic technique in controlling hazardous algae.

  1. Chromium mobility in freshwater wetlands

    Science.gov (United States)

    Mattuck, Rosemary; Nikolaidis, Nikolaos P.

    1996-07-01

    A wetland at a chromium-contaminated electroplating site was studied to determine its ability to immobilize subsurface chromium contamination. First, a site characterization was conducted to determine the lateral and vertical extent of chromium contamination in the sediment and pore water. The wetland was found to be highly contaminated, with sediment concentrations of up to 50,000 μg g -1. Chromium was partitioned largely on the sediment, with Kd's up to 317,000 mL g -1. No Cr(VI) was detected in the pore water. Sequential chemical extractions performed on the sediment found 60-90% of the chromium bound in the {Fe}/{Mn}- oxide and residual fractions of the soil, with very little exchangeable or organic-bound chromium present. These results indicate that the chromium is very tightly bound to the sediment. XPS determined a very low {Cr}/{Si} ratio on the solid surface. Batch leaching experiments using the contaminated sediment were conducted at pH 3, 4, and 5. Leaching of chromium from the sediment increased with lower pH, ranging from 0.02% to 0.34% of the total, and appeared to be solubility controlled. Results indicate that the wetland has been highly effective in immobilizing Cr, by reducing the Cr(VI) and precipitating it as a relatively insoluble Cr(III)-hydroxide.

  2. Concepts and Procedures for Updating the National Wetland Plant List

    Science.gov (United States)

    2008-09-01

    completes its life cycle, from seed to seed, in one year. Autonym: A subspecies or variety name that is the duplicate of the specific epithet ...for support, without drawing nutrients from it. Epithet : The part of a taxonomic name identifying a subordinate unit within a genus. ERDC/CRREL TN...the genus and specific epithet are identical. This practice is permitted in zoological nomenclature, but not in botany, so only old, no-longer-valid

  3. North American Wetlands and Mosquito Control

    Directory of Open Access Journals (Sweden)

    Gabrielle E. Sakolsky-Hoopes

    2012-12-01

    Full Text Available Wetlands are valuable habitats that provide important social, economic, and ecological services such as flood control, water quality improvement, carbon sequestration, pollutant removal, and primary/secondary production export to terrestrial and aquatic food chains. There is disagreement about the need for mosquito control in wetlands and about the techniques utilized for mosquito abatement and their impacts upon wetlands ecosystems. Mosquito control in wetlands is a complex issue influenced by numerous factors, including many hard to quantify elements such as human perceptions, cultural predispositions, and political climate. In spite of considerable progress during the last decades, habitat protection and environmentally sound habitat management still remain inextricably tied to politics and economics. Furthermore, the connections are often complex, and occur at several levels, ranging from local businesses and politicians, to national governments and multinational institutions. Education is the key to lasting wetlands conservation. Integrated mosquito abatement strategies incorporate many approaches and practicable options, as described herein, and need to be well-defined, effective, and ecologically and economically sound for the wetland type and for the mosquito species of concern. The approach will certainly differ in response to disease outbreaks caused by mosquito-vectored pathogens versus quality of life issues caused by nuisance-biting mosquitoes. In this contribution, we provide an overview of the ecological setting and context for mosquito control in wetlands, present pertinent information on wetlands mosquitoes, review the mosquito abatement options available for current wetlands managers and mosquito control professionals, and outline some necessary considerations when devising mosquito control strategies. Although the emphasis is on North American wetlands, most of the material is applicable to wetlands everywhere.

  4. North American Wetlands and Mosquito Control

    Science.gov (United States)

    Rey, Jorge R.; Walton, William E.; Wolfe, Roger J.; Connelly, Roxanne; O’Connell, Sheila M.; Berg, Joe; Sakolsky-Hoopes, Gabrielle E.; Laderman, Aimlee D.

    2012-01-01

    Wetlands are valuable habitats that provide important social, economic, and ecological services such as flood control, water quality improvement, carbon sequestration, pollutant removal, and primary/secondary production export to terrestrial and aquatic food chains. There is disagreement about the need for mosquito control in wetlands and about the techniques utilized for mosquito abatement and their impacts upon wetlands ecosystems. Mosquito control in wetlands is a complex issue influenced by numerous factors, including many hard to quantify elements such as human perceptions, cultural predispositions, and political climate. In spite of considerable progress during the last decades, habitat protection and environmentally sound habitat management still remain inextricably tied to politics and economics. Furthermore, the connections are often complex, and occur at several levels, ranging from local businesses and politicians, to national governments and multinational institutions. Education is the key to lasting wetlands conservation. Integrated mosquito abatement strategies incorporate many approaches and practicable options, as described herein, and need to be well-defined, effective, and ecologically and economically sound for the wetland type and for the mosquito species of concern. The approach will certainly differ in response to disease outbreaks caused by mosquito-vectored pathogens versus quality of life issues caused by nuisance-biting mosquitoes. In this contribution, we provide an overview of the ecological setting and context for mosquito control in wetlands, present pertinent information on wetlands mosquitoes, review the mosquito abatement options available for current wetlands managers and mosquito control professionals, and outline some necessary considerations when devising mosquito control strategies. Although the emphasis is on North American wetlands, most of the material is applicable to wetlands everywhere. PMID:23222252

  5. East African wetland-catchment data base for sustainable wetland management

    Directory of Open Access Journals (Sweden)

    C. Leemhuis

    2016-10-01

    Full Text Available Wetlands cover an area of approx. 18 Mio ha in the East African countries of Kenya, Rwanda, Uganda and Tanzania, with still a relative small share being used for food production. Current upland agricultural use intensification in these countries due to demographic growth, climate change and globalization effects are leading to an over-exploitation of the resource base, followed by an intensification of agricultural wetland use. We aim on translating, transferring and upscaling knowledge on experimental test-site wetland properties, small-scale hydrological processes, and water related ecosystem services under different types of management from local to national scale. This information gained at the experimental wetland/catchment scale will be embedded as reference data within an East African wetland-catchment data base including catchment physical properties and a regional wetland inventory serving as a base for policy advice and the development of sustainable wetland management strategies.

  6. East African wetland-catchment data base for sustainable wetland management

    Science.gov (United States)

    Leemhuis, Constanze; Amler, Esther; Diekkrüger, Bernd; Gabiri, Geofrey; Näschen, Kristian

    2016-10-01

    Wetlands cover an area of approx. 18 Mio ha in the East African countries of Kenya, Rwanda, Uganda and Tanzania, with still a relative small share being used for food production. Current upland agricultural use intensification in these countries due to demographic growth, climate change and globalization effects are leading to an over-exploitation of the resource base, followed by an intensification of agricultural wetland use. We aim on translating, transferring and upscaling knowledge on experimental test-site wetland properties, small-scale hydrological processes, and water related ecosystem services under different types of management from local to national scale. This information gained at the experimental wetland/catchment scale will be embedded as reference data within an East African wetland-catchment data base including catchment physical properties and a regional wetland inventory serving as a base for policy advice and the development of sustainable wetland management strategies.

  7. Analysis of Unmanned Aerial Vehicle (UAV) hyperspectral remote sensing monitoring key technology in coastal wetland

    Science.gov (United States)

    Ma, Yi; Zhang, Jie; Zhang, Jingyu

    2016-01-01

    hyperspectral images based on time sequence. The research results of this paper will help to break the traditional concept of remote sensing monitoring coastal wetlands by satellite and manned aerial vehicle, lead the trend of this monitoring technology, and put forward a new technical proposal for grasping the distribution of the coastal wetland and the changing trend and carrying out the protection and management of the coastal wetland.

  8. Concept Maps

    OpenAIRE

    Schwendimann, Beat Adrian

    2014-01-01

    A concept map is a node-link diagram showing the semantic relationships among concepts. The technique for constructing concept maps is called "concept mapping". A concept map consists of nodes, arrows as linking lines, and linking phrases that describe the relationship between nodes. Two nodes connected with a labeled arrow are called a proposition. Concept maps are versatile graphic organizers that can represent many different forms of relationships between concepts. The relationship between...

  9. Ecohydrological characterization of the Nyando wetland, Lake ...

    African Journals Online (AJOL)

    A combination of these hydrological and human factors is the main cause of the Nyando Wetland evolution. If the land use trend continues unabated, then the increase in papyrus losses will pose a big challenge to the ecological functioning of the wetland and its support to sustaining community livelihoods. Key words: ...

  10. 76 FR 777 - National Wetland Plant List

    Science.gov (United States)

    2011-01-06

    ... the FWS database on the NWPL, and links to botanical literature and plant ecology information to... Department of the Army, Corps of Engineers ZRIN 0710-ZA06 National Wetland Plant List AGENCY: U. S. Army Corps of Engineers, Department of Defense. ACTION: Notice. SUMMARY: The National Wetland Plant List...

  11. Wetland distribution assumptions: consequences for Methane emissions

    Science.gov (United States)

    Kleinen, Thomas; Brovkin, Victor

    2017-04-01

    Wetlands are the largest natural source of methane to the atmosphere. While process models of wetland methane emissions have advanced considerably in recent years, all of these models critically depend on estimates of the methane-emitting area. These estimates are highly uncertain, however. We investigate several approaches for estimating the wetland area and the consequences these assumptions have for the spatial and temporal distributions of wetland methane emissions. For this investigation we use JSBACH, the land surface component of the Max Planck Institute Earth System Model MPI-ESM, extended with modules for the generation and soil transport of methane. We drive the model with an ensemble of simulations of climate over the historical period from the MPI-ESM CMIP5 archive, as well as observed climate from CRU-NCEP. We impose both static and dynamic wetland maps, as well as modelled wetland distributions, and determine the wetland methane emissions resulting from these estimates. Results are compared to methane fluxes from atmospheric inversions to evaluate the consequences of the assumptions on wetland area.

  12. Advancing the use of minirhizotrons in wetlands

    Science.gov (United States)

    C. M. Iversen; M. T. Murphy; M. F. Allen; J. Childs; D. M. Eissenstat; E.A. Lilleskov; T. M. Sarjala; V. L. Sloan; P. F. Sullivan

    2012-01-01

    Background. Wetlands store a substantial amount of carbon (C) in deep soil organic matter deposits, and play an important role in global fluxes of carbon dioxide and methane. Fine roots (i.e., ephemeral roots that are active in water and nutrient uptake) are recognized as important components of biogeochemical cycles in nutrient-limited wetland ecosystems. However,...

  13. Carbon Cycling in Wetland Forest Soils

    Science.gov (United States)

    Carl C. Trettin; Martin F. Jurgensen

    2003-01-01

    Wetlands comprise a small proportion (i.e., 2 to 3%) of earth's terrestrial surface, yet they contain a significant proportion of the terrestrial carbon (C) pool. Soils comprise the largest terrestrial C pool (ca. 1550 Pg C in upper 100 cm; Eswaran et al., 1993; Batjes, 1996), and wetlands contain the single largest component, with estimates ranging between 18...

  14. Macroinvertebrate variation in endorheic depression wetlands in ...

    African Journals Online (AJOL)

    Aquatic macroinvertebrates are rarely used in wetland assessments due to their variation. However, in terms of biodiversity, these invertebrates form an important component of wetland fauna. Spatial and temporal variation of macroinvertebrate assemblages in endorheic depressions (locally referred to as 'pans') in ...

  15. Diversity patterns of temporary wetland macroinvertebrate ...

    African Journals Online (AJOL)

    Although macroinvertebrates are potentially useful for assessing the condition of temporary wetlands, little is yet known about them. Macroinvertebrate assemblages were assessed in 138 temporary wetlands in the south-western Cape, recording 126 taxa. However, predicted richness estimates were all higher than the ...

  16. 40 CFR 257.9 - Wetlands.

    Science.gov (United States)

    2010-07-01

    ... not locate such units in wetlands, unless the owner or operator can make the following demonstrations to the Director of an approved State: (1) Where applicable under section 404 of the Clean Water Act... extent required under section 404 of the Clean Water Act or applicable State wetlands laws, steps have...

  17. A Simulation Model of Carbon Cycling and Methane Emissions in Amazon Wetlands

    Science.gov (United States)

    Potter, Christopher; Melack, John; Hess, Laura; Forsberg, Bruce; Novo, Evlyn Moraes; Klooster, Steven

    2004-01-01

    An integrative carbon study is investigating the hypothesis that measured fluxes of methane from wetlands in the Amazon region can be predicted accurately using a combination of process modeling of ecosystem carbon cycles and remote sensing of regional floodplain dynamics. A new simulation model has been build using the NASA- CASA concept for predicting methane production and emission fluxes in Amazon river and floodplain ecosystems. Numerous innovations area being made to model Amazon wetland ecosystems, including: (1) prediction of wetland net primary production (NPP) as the source for plant litter decomposition and accumulation of sediment organic matter in two major vegetation classes - flooded forests (varzea or igapo) and floating macrophytes, (2) representation of controls on carbon processing and methane evasion at the diffusive boundary layer, through the lake water column, and in wetland sediments as a function of changes in floodplain water level, (3) inclusion of surface emissions controls on wetland methane fluxes, including variations in daily surface temperature and of hydrostatic pressure linked to water level fluctuations. A model design overview and early simulation results are presented.

  18. On leadership and success in professional wetland science

    Science.gov (United States)

    The Society of Wetland Scientists and the wetland profession are fortunate to have an abundance of leaders. These leaders respond to the needs of the Society for guidance and direction. They also consistently advance wetland science and improve the quality of wetland management...

  19. The Urgency of the Ramsar Convention on Wetlands in Africa

    African Journals Online (AJOL)

    Administrator

    2008-02-08

    Feb 8, 2008 ... Specifically, the regional group identified the following issue framing priorities: 1. Wetlands and human health. 2. Mining and extractive industries. 3. Threats and challenges for African wetlands. 4. Wetlands and Climate Change. 5. Links to poverty eradication. 6. Financing wetlands-related projects. 7.

  20. Methods for increasing biodiversity in wetland creation and restoration efforts

    Science.gov (United States)

    Ross Coleman

    1999-01-01

    Many wetland creation and restoration projects have successfully restored or created appropriate hydrologic conditions for the support of wetland ecosystems but have not been as successful in establishing a diverse biota of native wetland vegetation. Recent work in the propagation and transplanting of native wetland plant seedlings offers promise for increasing...

  1. Floristic Quality Index of Restored Wetlands in Coastal Louisiana

    Science.gov (United States)

    2017-08-01

    to conserve , create, or enhance wetland form and to achieve wetland function that approaches natural conditions. Measures of wetland condition have...services ( food and freshwater); and cultural services (recreational and aesthetic); to maintaining high biological productivity and serving as...collectively (Louisiana Coastal Wetlands Conservation and Restoration Task Force (LCWCRTF) 2015a). Additionally, the Louisiana Coastal Master Plan

  2. Natural wetland in China | Pan | African Journal of Environmental ...

    African Journals Online (AJOL)

    As it is known to all, wetland is one of the most crucial ecosystems in the world, with large varieties in China. How to protect wetland in China has become a more serious problem and five typical wetlands were selected in the article to illustrate the condition. Through the comparison between the past and present of wetland, ...

  3. 7 CFR 1410.10 - Restoration of wetlands.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Restoration of wetlands. 1410.10 Section 1410.10... Restoration of wetlands. (a) An owner or operator who entered into a CRP contract on land that is suitable for restoration to wetlands or that was restored to wetlands while under such contract, may, if approved by CCC...

  4. 44 CFR 10.14 - Flood plains and wetlands.

    Science.gov (United States)

    2010-10-01

    ... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Flood plains and wetlands. 10... Flood plains and wetlands. For any action taken by FEMA in a flood plain or wetland, the provisions of... Executive Order 11988, Flood Plain Management, and Executive Order 11990, Protection of Wetlands (44 CFR...

  5. 7 CFR 1467.9 - Wetlands Reserve Enhancement Program.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Wetlands Reserve Enhancement Program. 1467.9 Section... CORPORATION, DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS WETLANDS RESERVE PROGRAM § 1467.9 Wetlands Reserve Enhancement Program. (a) Wetlands Reserve Enhancement Program (WREP). (1) The...

  6. Macrophyte diversity in polluted and non-polluted wetlands in ...

    African Journals Online (AJOL)

    The macrophyte species identified were both terrestrial, aquatic and wetland species, some of which have already been tested in other countries in constructed wetlands for wastewater treatment. The number of macrophyte species recorded in the polluted wetlands was low compared with that of the wetlands in the rural ...

  7. BUFFER ZONE METHOD, LAND USE PLANNING AND CONSERVATION STRATEGIES ABOUT WETLANDS UNDER URBANIZATION PRESSURE IN TURKEY

    OpenAIRE

    Ergen, Baris

    2010-01-01

    Wetlands are special areas that they offer habitat for terrestrial and water life. Wetlands are nest sides also for amphibian, for this reason wetlands offer wide range diversity for species. Wetlands are also reproduction regions for birds. Wetlands have special importance for ecosystem because they obstruct erosion. Wetlands absorb contaminants from water therefore wetlands contribute to clean water and they offer more potable water. Wetlands obstruct waterflood. In that case wetlands must ...

  8. Preconstruction Biogeochemical Analysis of Mercury in Wetlands Bordering the Hamilton Army Airfield (HAAF) Wetlands Restoration Site. Part 3

    Science.gov (United States)

    2009-12-01

    ER D C/ EL T R- 09 -2 1 Preconstruction Biogeochemical Analysis of Mercury in Wetlands Bordering the Hamilton Army Airfield (HAAF) Wetlands...Preconstruction Biogeochemical Analysis of Mercury in Wetlands Bordering the Hamilton Army Airfield (HAAF) Wetlands Restoration Site Part 3 Elly P. H...38 Mercury analysis and quality control ........................................................................................39 Results and

  9. Development and validation of a global dynamical wetlands extent scheme

    OpenAIRE

    Stacke, T.; Hagemann, S.

    2012-01-01

    In this study we present the development of the dynamical wetland extent scheme (DWES) and its validation against present day wetland observations. The DWES is a simple, global scale hydrological scheme that solves the water balance of wetlands and estimates their extent dynamically. The extent depends on the balance of water flows in the wetlands and the slope distribution within the grid cells. In contrast to most models, the DWES is not directly calibrated against wetland extent observatio...

  10. Urban wetlands: restoration or designed rehabilitation?

    Directory of Open Access Journals (Sweden)

    Beth Ravit

    2017-05-01

    Full Text Available The continuing loss of urban wetlands due to an expanding human population and urban development pressures makes restoration or creation of urban wetlands a high priority. However, urban wetland restorations are particularly challenging due to altered hydrologic patterns, a high proportion of impervious surface and stormwater runoff, degraded urban soils, historic contamination, and competitive pressure from non-native species. Urban wetland projects must also consider human-desired socio-economic benefits. We argue that using current wetland restoration approaches and existing regulatory “success” criteria, such as meeting restoration targets for vegetation structure based on reference sites in non-urban locations, will result in “failed” urban restorations. Using three wetland Case Studies in highly urbanized locations, we describe geophysical tools, stormwater management methods, and design approaches useful in addressing urban challenges and in supporting “successful” urban rehabilitation outcomes. We suggest that in human-dominated landscapes, the current paradigm of “restoration” to a previous state must shift to a paradigm of “rehabilitation”, which prioritizes wetland functions and values rather than vegetation structure in order to provide increased ecological benefits and much needed urban open space amenities.

  11. Characterization and Placement of Wetlands for Integrated ...

    Science.gov (United States)

    Constructed wetlands have been recognized as an efficient and cost-effective conservation practice to protect water quality through reducing the transport of sediments and nutrients from upstream croplands to downstream water bodies. The challenge resides in targeting the strategic location of wetlands within agricultural watersheds to maximize the reduction in nutrient loads while minimizing their impact on crop production. Furthermore, agricultural watersheds involve complex interrelated processes requiring a systems approach to evaluate the inherent relationships between wetlands and multiple sediment/nutrient sources (sheet, rill, ephemeral gully, channels) and other conservation practices (filter strips). This study describes new capabilities of the USDA’s Annualized Agricultural Non-Point Source pollutant loading model, AnnAGNPS. A developed AnnAGNPS GIS-based wetland component, AgWet, is introduced to identify potential sites and characterize individual artificial or natural wetlands at a watershed scale. AgWet provides a simplified, semi-automated, and spatially distributed approach to quantitatively evaluate wetlands as potential conservation management alternatives. AgWet is integrated with other AnnAGNPS components providing seamless capabilities of estimating the potential sediment/nutrient reduction of individual wetlands. This technology provides conservationists the capability for improved management of watershed systems and support for nutrient

  12. Wetlands Research Program. Wetland Evaluation Technique (WET). Volume 1. Literature Review and Evaluation Rationale.

    Science.gov (United States)

    1991-10-01

    especially if water- retentive vegetation predominates (e.g., unsaturated moss wetlands), the wetland may act for short periods like a sponge . In most...to a causeway. Wetlands re- ceiving stormwater for treatment accreted 0.78 inch/year (Striegl 1987). In summary, most studies of sediment retention...or to the placement of cities at the mouths of rivers and other ecological- ly rich sites traditionally used by wildlife (Erwin et al. 1987/US:E

  13. NEW ZEALAND'S WETLANDS: CONSERVATION AND WISE USE

    Directory of Open Access Journals (Sweden)

    H. L. Maranhão

    2017-02-01

    Full Text Available New Zealand is unique when it comes to landscapes and biodiversity, being one of the countries which has the highest numbers of endemism. With such vast diversity, wetlands play a key role maintaining many of these species and also providing essential ecosystem services for the local communities. However, New Zealand has been largely degraded on wetland areas in the last two hundred years, remaining only 10% of the original composition which brings a special attention to the country. In this case, this review provides an overview of New Zealand’s wetlands highlighting aspects such as definitions, uses, values, threats and management.

  14. Pre-Construction Biogeochemical Analysis of Mercury in Wetlands Bordering the Hamilton Army Airfield Wetlands Restoration Site

    Science.gov (United States)

    2005-09-01

    ER D C /E L TR -0 5- 15 Pre-Construction Biogeochemical Analysis of Mercury in Wetlands Bordering the Hamilton Army Airfield Wetlands...unlimited. ERDC/EL TR-05-15 September 2005 Pre-Construction Biogeochemical Analysis of Mercury in Wetlands Bordering the Hamilton Army Airfield...sediments and soils of tidal marsh and seasonal wetlands bordering the HAAF Wetlands Restoration Site was assessed by same-sample analysis for total mercury

  15. GlobWetland Africa: Implementing Sustainable Earth Observation Based Wetland Monitoring Capacity in Africa and Beyond

    DEFF Research Database (Denmark)

    Tottrup, Christian; Riffler, Michael; Wang, Tiejun

    representative for wetlands. Therefore, the Ramsar secretariat, the global coordinating body of the Ramsar Convention on Wetlands, has long recommended making more use of new and innovative technologies, such as those offered by remote sensing. Yet, access to suitable remote sensing data for monitoring wetlands......Lack of data, appropriate information and challenges in human and institutional capacity put a serious constraint on effective monitoring and management of wetlands in Africa. Conventional data are often lacking in time or space, of poor quality or available at locations that are not necessarily...

  16. Application of EPA wetland research program approach to a floodplain wetland restoration assessment.

    Energy Technology Data Exchange (ETDEWEB)

    Kolka, R., K.; Trettin, C., C.; Nelson, E., A.; Barton, C., D.; Fletcher, D., E.

    2002-01-01

    Kolka, R.K., C.C. Trettin, E.A. Nelson, C.D. Barton, and D.E. Fletcher. 2002. Application of the EPA Wetland Research Program Approach to a floodplain wetland restoration assessment. J. Env. Monitoring & Restoration 1(1):37-51. Forested wetland restoration assessment is difficult because of the timeframe necessary for the development of a forest ecosystem. The development of a forested wetland ecosystem includes the recovery of hydrology, soils, vegetation, and faunal communities. To assess forested wetland restoration projects, measures need to be developed that are sensitive to early changes in community development and are predictive of future conditions. In this study we apply the EPS's Wetland Research Program's (WRP) approach to assess the recovery of two thermally altered riparian wetland systems in South Carolina. In one of the altered wetland systems, approximately 75% of the wetland was planted with bottomland tree seedlings in an effort to hasten recovery. Individual studies addressing hydrology, soils, vegetation, and faunal communities indicate variable recovery responses.

  17. Historical range of variation assessment for wetland and riparian ecosystems, U.S. Forest Service Rocky Mountain Region

    Science.gov (United States)

    Edward Gage; David J. Cooper

    2013-01-01

    This document provides an overview of historical range of variation concepts and explores their application to wetland and riparian ecosystems in the US Forest Service Rocky Mountain Region (Region 2), which includes National Forests and National Grasslands occurring in the states of Colorado, Wyoming, Nebraska, Kansas, and South Dakota. For each of five ecosystem...

  18. 40 CFR 230.41 - Wetlands.

    Science.gov (United States)

    2010-07-01

    ... environment, particularly where emergent vegetation merges with submerged vegetation over a broad area in such... environment when vegetation from the two regions merges over a broad area. (3) Wetland vegetation consists of...

  19. Methane emissions in Danish riparian wetlands

    DEFF Research Database (Denmark)

    Audet, Joachim; Johansen, Jan Ravn; Andersen, Peter Mejlhede

    2013-01-01

    the spatial and temporal variability in the fluxes. Fluxes of CH4 were monitored in 12 wetland plots over a year using static chambers, yielding a dataset with more than 800 measured fluxes of CH4. Yearly emissions of CH4 ranged from −0.2 to 38.3 g CH4-C m−2 year−1, and significant effects of groundwater......The present study was conducted to (i) investigate parameters influencing the fluxes of the greenhouse gas methane (CH4) in Danish riparian wetlands with contrasting vegetation characteristics and (ii) develop models relating CH4 emissions to soil and/or vegetation parameters integrating...... CH4 emission. Both models gave reliable predictions of the yearly CH4 fluxes in riparian wetlands (modeling efficiency > 0.35). Our findings support the use of vegetation, possibly in combination with some soil parameters such as peat depth, as indicator of CH4 emission in wetlands....

  20. The size of the Lake Chilwa wetland

    African Journals Online (AJOL)

    , start- ing off with efferts to establish the present biological status of the wetland. This work was done at theirequest of the Government of Malawi, which needed the data to gain accession to the. Ramsar Convention, the international ...

  1. Geospatial wetlands impacts and mitigation forecasting models.

    Science.gov (United States)

    2017-06-30

    The South Carolina Department of Transportation (SCDOT) develops near (3-5 years) and long (15- 20 years) range plans for road widening, alignment, bridge replacement, and new road construction. Each road/bridge project may impact wetlands or streams...

  2. Coastal wetlands: an integrated ecosystem approach

    Science.gov (United States)

    Perillo, G. M. E.; Wolanski, E.; Cahoon, D.R.; Brinson, M.M.

    2009-01-01

    Coastal wetlands are under a great deal of pressure from the dual forces of rising sea level and the intervention of human populations both along the estuary and in the river catchment. Direct impacts include the destruction or degradation of wetlands from land reclamation and infrastructures. Indirect impacts derive from the discharge of pollutants, changes in river flows and sediment supplies, land clearing, and dam operations. As sea level rises, coastal wetlands in most areas of the world migrate landward to occupy former uplands. The competition of these lands from human development is intensifying, making the landward migration impossible in many cases. This book provides an understanding of the functioning of coastal ecosystems and the ecological services that they provide, and suggestions for their management. In this book a CD is included containing color figures of wetlands and estuaries in different parts of the world.

  3. Protection of the remaining Rainwater Basins Wetlands

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The report begins with a review of the significant waterfowl values of the Basins wetlands, and it points out how those values have been degraded significantly by...

  4. VT National Wetlands Inventory Map Data - lines

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) VCGI downloaded NWI quads from the US FWS web site and reprojected to VCS NAD83. NWI digital data files are records of wetlands location and...

  5. VT National Wetlands Inventory Map Data - polygons

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) VCGI downloaded NWI quads from the US FWS web site and reprojected to VCS NAD83. NWI digital data files are records of wetlands location and...

  6. NOAA C-CAP National Wetland Potential

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The probability rating which covers landcover mapping provides a continuum of wetness from dry to water. The layer is not a wetland classification but provides the...

  7. Site specific agreement : Lake Mason Wetland

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The site-specific agreement describes purpose and scope of the partnership between Ducks Unlimited, Inc. and U.S. Fish and Wildlife Service to manage wetlands for...

  8. Narrative Report Fergus Falls Wetland Management District

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Minnesota Wetlands Complex outlines District accomplishments for FY 1974. The report begins by summarizing the weather conditions,...

  9. Windom Wetland Management District : Fiscal Year 2002

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Windom Wetland Management District summarizes activities during the 2002 fiscal year. The report begins with an introduction to the...

  10. Mountain wetlands: efficient uranium filters - potential impacts

    Science.gov (United States)

    Owen, D.E.; Otton, J.K.

    1995-01-01

    Sediments in 67 of 145 Colorado wetlands sampled by the US Geological Survey contain moderate (20 ppm) or greater concentrations of uranium (some as high as 3000 ppm) based on dry weight. The proposed maximum contaminant level (MCL) for uranium in drinking water is 20 ??g/l or 20 ppb. By comparison, sediments in many of these wetlands contain 3 to 5 orders of magnitude more uranium than the proposed MCL. Wetlands near the workings of old mines may be trapping any number of additional metals/elements including Cu, Pb, Zn, As and Ag. Anthropogenic disturbances and natural changes may release uranium and other loosely bound metals presently contained in wetland sediments. -from Authors

  11. Feasibility of using geothermal effluents for waterfowl wetlands

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-09-01

    This project was conducted to evaluate the feasibility of using geothermal effluents for developing and maintaining waterfowl wetlands. Information in the document pertains to a seven State area the West where geothermal resources have development potential. Information is included on physiochemical characteristics of geothermal effluents; known effects of constituents in the water on a wetland ecosystem and water quality criteria for maintaining a viable wetland; potential of sites for wetland development and disposal of effluent water from geothermal facilities; methods of disposal of effluents, including advantages of each method and associated costs; legal and institutional constraints which could affect geothermal wetland development; potential problems associated with depletion of geothermal resources and subsidence of wetland areas; potential interference (adverse and beneficial) of wetlands with ground water; special considerations for wetlands requirements including size, flows, and potential water usage; and final conclusions and recommendations for suitable sites for developing demonstration wetlands.

  12. UPAYA MITIGASI PENCEMARAN LAUT DENGAN ARTIFICIAL WETLANDS

    OpenAIRE

    Tjokrokusumo, Sabaruddin Wagiman

    2011-01-01

    Indonesia is an archipelago country which has coastline up to 81 000 kmwith rich and bountiful wetlands, especially coastal wetlands. Wetlandareas estimated is more than 40.5 millions hectare, including mangroveforest around 6.3 millions hectare. As world environmental condition isdegraded, Indonesia marine and coastal environments have beenexperienced degradation, especially mass fish killed incident quite oftenoccurred in water environments due to eutrophiocation. This incidencehas lead to ...

  13. Flora characteristics of Chenier Wetland in Bohai Bay and biogeographic relations with adjacent wetlands

    Science.gov (United States)

    Zhao, Yanyun; Lu, Zhaohua; Liu, Jingtao; Hu, Shugang

    2017-12-01

    A key step towards the restoration of heavily disturbed fragile coastal wetland ecosystems is determining the composition and characteristics of the plant communities involved. This study determined and characterized the community of higher plants in the Chenier wetland of Bohai Bay using a combination of field surveys, quadrat approaches, and multivariate statistical analyses. This community was then compared to other adjacent wetlands (Tianjin, Qinhuangdao, Laizhouwan, Jiaozhouwan, and Yellow River Delta wetland) located near the Huanghai and Bohai Seas using principal coordinate analysis (PCoA). Results showed a total of 56 higher plant species belonging to 52 genera from 20 families in Chenier wetland, the majority of which were dicotyledons. Single-species families were predominant, while larger families, including Gramineae, Compositae, Leguminosae, and Chenopodiaceae contained a higher number of species (each⩾6 species). Cosmopolitan species were also dominant with apparent intrazonality. Abundance (number of species) of temperate species was twice that of tropical taxa. Species number of perennial herbs, such as Gramineae and Compositae, was generally higher. Plant diversity in the Chenier wetland, based on the Shannon-Wiener index, was observed to be between the Qinhuangdao and Laizhouwan indices, while no significant difference was found in other wetlands using the Simpson index. Despite these slight differences in diversity, PCoA based on species abundance and composition of the wetland flora suggest that the Bohai Chenier community was highly similar to the coastal wetlands in Tianjin and Laizhouwan, further suggesting that these two wetlands could be important breeding grounds and resources for the restoration of the plant ecosystem in the Chenier wetland.

  14. Concepts of formal concept analysis

    Science.gov (United States)

    Žáček, Martin; Homola, Dan; Miarka, Rostislav

    2017-07-01

    The aim of this article is apply of Formal Concept Analysis on concept of world. Formal concept analysis (FCA) as a methodology of data analysis, information management and knowledge representation has potential to be applied to a verity of linguistic problems. FCA is mathematical theory for concepts and concept hierarchies that reflects an understanding of concept. Formal concept analysis explicitly formalizes extension and intension of a concept, their mutual relationships. A distinguishing feature of FCA is an inherent integration of three components of conceptual processing of data and knowledge, namely, the discovery and reasoning with concepts in data, discovery and reasoning with dependencies in data, and visualization of data, concepts, and dependencies with folding/unfolding capabilities.

  15. Projecting the Hydrologic Impacts of Climate Change on Montane Wetlands.

    Directory of Open Access Journals (Sweden)

    Se-Yeun Lee

    Full Text Available Wetlands are globally important ecosystems that provide critical services for natural communities and human society. Montane wetland ecosystems are expected to be among the most sensitive to changing climate, as their persistence depends on factors directly influenced by climate (e.g. precipitation, snowpack, evaporation. Despite their importance and climate sensitivity, wetlands tend to be understudied due to a lack of tools and data relative to what is available for other ecosystem types. Here, we develop and demonstrate a new method for projecting climate-induced hydrologic changes in montane wetlands. Using observed wetland water levels and soil moisture simulated by the physically based Variable Infiltration Capacity (VIC hydrologic model, we developed site-specific regression models relating soil moisture to observed wetland water levels to simulate the hydrologic behavior of four types of montane wetlands (ephemeral, intermediate, perennial, permanent wetlands in the U. S. Pacific Northwest. The hybrid models captured observed wetland dynamics in many cases, though were less robust in others. We then used these models to a hindcast historical wetland behavior in response to observed climate variability (1916-2010 or later and classify wetland types, and b project the impacts of climate change on montane wetlands using global climate model scenarios for the 2040s and 2080s (A1B emissions scenario. These future projections show that climate-induced changes to key driving variables (reduced snowpack, higher evapotranspiration, extended summer drought will result in earlier and faster drawdown in Pacific Northwest montane wetlands, leading to systematic reductions in water levels, shortened wetland hydroperiods, and increased probability of drying. Intermediate hydroperiod wetlands are projected to experience the greatest changes. For the 2080s scenario, widespread conversion of intermediate wetlands to fast-drying ephemeral wetlands will

  16. Projecting the Hydrologic Impacts of Climate Change on Montane Wetlands.

    Science.gov (United States)

    Lee, Se-Yeun; Ryan, Maureen E; Hamlet, Alan F; Palen, Wendy J; Lawler, Joshua J; Halabisky, Meghan

    2015-01-01

    Wetlands are globally important ecosystems that provide critical services for natural communities and human society. Montane wetland ecosystems are expected to be among the most sensitive to changing climate, as their persistence depends on factors directly influenced by climate (e.g. precipitation, snowpack, evaporation). Despite their importance and climate sensitivity, wetlands tend to be understudied due to a lack of tools and data relative to what is available for other ecosystem types. Here, we develop and demonstrate a new method for projecting climate-induced hydrologic changes in montane wetlands. Using observed wetland water levels and soil moisture simulated by the physically based Variable Infiltration Capacity (VIC) hydrologic model, we developed site-specific regression models relating soil moisture to observed wetland water levels to simulate the hydrologic behavior of four types of montane wetlands (ephemeral, intermediate, perennial, permanent wetlands) in the U. S. Pacific Northwest. The hybrid models captured observed wetland dynamics in many cases, though were less robust in others. We then used these models to a) hindcast historical wetland behavior in response to observed climate variability (1916-2010 or later) and classify wetland types, and b) project the impacts of climate change on montane wetlands using global climate model scenarios for the 2040s and 2080s (A1B emissions scenario). These future projections show that climate-induced changes to key driving variables (reduced snowpack, higher evapotranspiration, extended summer drought) will result in earlier and faster drawdown in Pacific Northwest montane wetlands, leading to systematic reductions in water levels, shortened wetland hydroperiods, and increased probability of drying. Intermediate hydroperiod wetlands are projected to experience the greatest changes. For the 2080s scenario, widespread conversion of intermediate wetlands to fast-drying ephemeral wetlands will likely reduce

  17. Projecting the Hydrologic Impacts of Climate Change on Montane Wetlands

    Science.gov (United States)

    Hamlet, Alan F.; Palen, Wendy J.; Lawler, Joshua J.; Halabisky, Meghan

    2015-01-01

    Wetlands are globally important ecosystems that provide critical services for natural communities and human society. Montane wetland ecosystems are expected to be among the most sensitive to changing climate, as their persistence depends on factors directly influenced by climate (e.g. precipitation, snowpack, evaporation). Despite their importance and climate sensitivity, wetlands tend to be understudied due to a lack of tools and data relative to what is available for other ecosystem types. Here, we develop and demonstrate a new method for projecting climate-induced hydrologic changes in montane wetlands. Using observed wetland water levels and soil moisture simulated by the physically based Variable Infiltration Capacity (VIC) hydrologic model, we developed site-specific regression models relating soil moisture to observed wetland water levels to simulate the hydrologic behavior of four types of montane wetlands (ephemeral, intermediate, perennial, permanent wetlands) in the U. S. Pacific Northwest. The hybrid models captured observed wetland dynamics in many cases, though were less robust in others. We then used these models to a) hindcast historical wetland behavior in response to observed climate variability (1916–2010 or later) and classify wetland types, and b) project the impacts of climate change on montane wetlands using global climate model scenarios for the 2040s and 2080s (A1B emissions scenario). These future projections show that climate-induced changes to key driving variables (reduced snowpack, higher evapotranspiration, extended summer drought) will result in earlier and faster drawdown in Pacific Northwest montane wetlands, leading to systematic reductions in water levels, shortened wetland hydroperiods, and increased probability of drying. Intermediate hydroperiod wetlands are projected to experience the greatest changes. For the 2080s scenario, widespread conversion of intermediate wetlands to fast-drying ephemeral wetlands will likely reduce

  18. Feedbacks on Convection from an African Wetland

    Science.gov (United States)

    Taylor, Christopher

    2010-05-01

    The Niger Inland Delta in Mali floods every year late in the wet season. This is in response to rainfall many hundreds of kilometres upstream. Once flooded, the wetland produces a strong mesoscale contrast in surface fluxes. The ready availability of water for evaporation within the wetland contrasts with the strongly moisture-limited sparse vegetation in the surrounding region. This study examines the impact of the wetland on convection in the region using a satellite thermal infra-red (TIR) dataset spanning 24 years. The temporal variability in the wetland extent is quantified using cloud-free data by estimating the morning warming rate of the surface. The same TIR dataset is also used to examine the diurnal cycle of cold (Niger and its tributaries, producing a wetland of varying extent and timing depending on upstream conditions. Via the processes highlighted here, the wetland then affects both local and regional rainfall. This feedback raises the possibility that changes in upstream water use, for example through large-scale hydroelectric schemes, could have a climatic impact over a wide area.

  19. Do geographically isolated wetlands influence landscape functions?

    Science.gov (United States)

    Cohen, Matthew J.; Creed, Irena F.; Alexander, Laurie C.; Basu, Nandita; Calhoun, Aram J.K.; Craft, Christopher; D’Amico, Ellen; DeKeyser, Edward S.; Fowler, Laurie; Golden, Heather E.; Jawitz, James W.; Kalla, Peter; Kirkman, L. Katherine; Lane, Charles R.; Lang, Megan; Leibowitz, Scott G.; Lewis, David Bruce; Marton, John; McLaughlin, Daniel L.; Mushet, David M.; Raanan-Kiperwas, Hadas; Rains, Mark C.; Smith, Lora; Walls, Susan C.

    2015-01-01

    Geographically isolated wetlands (GIWs), those surrounded by uplands, exchange materials, energy, and organisms with other elements in hydrological and habitat networks, contributing to landscape functions, such as flow generation, nutrient and sediment retention, and biodiversity support. GIWs constitute most of the wetlands in many North American landscapes, provide a disproportionately large fraction of wetland edges where many functions are enhanced, and form complexes with other water bodies to create spatial and temporal heterogeneity in the timing, flow paths, and magnitude of network connectivity. These attributes signal a critical role for GIWs in sustaining a portfolio of landscape functions, but legal protections remain weak despite preferential loss from many landscapes. GIWs lack persistent surface water connections, but this condition does not imply the absence of hydrological, biogeochemical, and biological exchanges with nearby and downstream waters. Although hydrological and biogeochemical connectivity is often episodic or slow (e.g., via groundwater), hydrologic continuity and limited evaporative solute enrichment suggest both flow generation and solute and sediment retention. Similarly, whereas biological connectivity usually requires overland dispersal, numerous organisms, including many rare or threatened species, use both GIWs and downstream waters at different times or life stages, suggesting that GIWs are critical elements of landscape habitat mosaics. Indeed, weaker hydrologic connectivity with downstream waters and constrained biological connectivity with other landscape elements are precisely what enhances some GIW functions and enables others. Based on analysis of wetland geography and synthesis of wetland functions, we argue that sustaining landscape functions requires conserving the entire continuum of wetland connectivity, including GIWs.

  20. Surface-flow wetland for water reclamation at Batamindo Industrial Park

    OpenAIRE

    Salim Chris; Rachmania Andita; Dewi Rahma

    2017-01-01

    The reclamation of wastewater as clean water resource is essential in the concept of water conservation. In industries, this will also lead to overall plant operational cost reduction. In this study, a pilot-scale surface-flow constructed wetland system filled with water hyacinth was used to treat effluent from existing sewage treatment plant at Batamindo Industrial Park. The sewage treatment plant effluent with quality fulfilling the regulation of Indonesian Ministry of Environment No.5/2014...

  1. Identification and characterization of wetlands in the Bear Creek watershed

    Energy Technology Data Exchange (ETDEWEB)

    Rosensteel, B.A. [JAYCOR, Oak Ridge, TN (United States); Trettin, C.C. [Oak Ridge National Lab., TN (United States)

    1993-10-01

    The primary objective of this study was to identify, characterize, and map the wetlands in the Bear Creek watershed. A preliminary wetland categorization system based on the Cowardin classification system (Cowardin et al. 1979) with additional site-specific topographic, vegetation, and disturbance characteristic modifiers was developed to characterize the type of wetlands that exist in the Bear Creek watershed. An additional objective was to detect possible relationships among site soils, hydrology, and the occurrence of wetlands in the watershed through a comparison of existing data with the field survey. Research needs are discussed in the context of wetland functions and values and regulatory requirements for wetland impact assessment and compensatory mitigation.

  2. National Wetland Condition Assessment 2011: A Collaborative Survey of the Nation's Wetlands

    Science.gov (United States)

    The National Wetland Condition Assessment 2011: A Collaborative Survey presents the results of an unprecedented assessment of the nation’s wetlands. This report is part of the National Aquatic Resource Surveys, a series of statistically based surveys designed to provide the publi...

  3. Inclusion of Riparian Wetland Module (RWM) into the SWAT model for assessment of wetland hydrological benefit

    Science.gov (United States)

    Wetlands are an integral part of many agricultural watersheds. They provide multiple ecosystem functions, such as improving water quality, mitigating flooding, and serving as natural habitats. Those functions are highly depended on wetland hydrological characteristics and their connectivity to the d...

  4. Monitoring and assessment of wetlands using Earth Observation: the GlobWetland project.

    Science.gov (United States)

    Jones, Kevin; Lanthier, Yannick; van der Voet, Paul; van Valkengoed, Eric; Taylor, Doug; Fernández-Prieto, Diego

    2009-05-01

    The overall objective of the Ramsar Convention, signed in 1971, is the conservation and wise use of wetlands by national action and international cooperation as a means to achieving sustainable development. This complex and challenging task requires national, local and international bodies involved in the implementation of the convention to rely on suitable geo-information to better understand wetland areas, complete national inventories, perform monitoring activities, carry out assessments and put in practice suitable management plans based on updated and reliable information. In the last years, Earth Observation (EO) technology has been revealed as a key tool and unique information source to support the environmental community in different application domains, including wetlands' conservation and management. In this context, the European Space Agency (ESA) in collaboration with the Ramsar Secretariat launched in 2003 the "GlobWetland" project in order to demonstrate the current capabilities of Earth Observation technology to support inventorying, monitoring, and assessment of wetland ecosystems. This paper collects the main results and findings of the "GlobWetland" project, providing an overview of the current capabilities and limits of EO technology as a tool to support the implementation of the Ramsar Convention. The project was carried out in collaboration with several regional, national and local conservation authorities and wetland managers, involving 50 different wetlands across 21 countries on four continents. This large range of users provided an excellent test bed to assess the potential of this technology to be applied in different technical, economic and social conditions.

  5. Agricultural use of wetlands: opportunities and limitations.

    Science.gov (United States)

    Verhoeven, Jos T A; Setter, Tim L

    2010-01-01

    Wetlands are species-rich habitats performing valuable ecosystem services such as flood protection, water quality enhancement, food chain support and carbon sequestration. Worldwide, wetlands have been drained to convert them into agricultural land or industrial and urban areas. A realistic estimate is that 50 % of the world's wetlands have been lost. This paper reviews the relationship between wetlands and agriculture with the aim to identify the successes and failures of agricultural use in different types of wetlands, with reference to short-term and long-term benefits and issues of sustainability. It also addresses a number of recent developments which will lead to pressure to reclaim and destroy natural wetlands, i.e. the continuous need for higher production to feed an increasing world population and the increasing cultivation of energy crops. Finally, attention is paid to the development of more flood-tolerant crop cultivars. Agriculture has been carried out in several types of (former) wetlands for millennia, with crop fields on river floodplain soils and rice fields as major examples. However, intensive agricultural use of drained/reclaimed peatlands has been shown to lead to major problems because of the oxidation and subsidence of the peat soil. This does not only lead to severe carbon dioxide emissions, but also results in low-lying land which needs to be protected against flooding. Developments in South-East Asia, where vast areas of tropical peatlands are being converted into oil palm plantations, are of great concern in this respect. Although more flood-tolerant cultivars of commercial crop species are being developed, these are certainly not suitable for cultivation in wetlands with prolonged flooding periods, but rather will survive relatively short periods of waterlogging in normally improved agricultural soils. From a sustainability perspective, reclamation of peatlands for agriculture should be strongly discouraged. The opportunities for

  6. Springs as Ecosystems: Clarifying Groundwater Dependence and Wetland Status (Invited)

    Science.gov (United States)

    Stevens, L.; Springer, A. E.; Ledbetter, J. D.

    2013-12-01

    natural variation in flow, and many of the 12 springs types do not develop hydric soils or wetland vegetation. These factors and their normally small size preclude springs as jurisdictional wetlands by U.S. Environmental Protection Agency and Army Corps of Engineers criteria. Helocrenes (springfed wet meadows, cienegas, and some fens) are considered as wetlands, but the other 11 types of terrestrial springs often are not. The use of the phrase 'GDE' applies to any aquatic ecosystem supported by groundwater, and the utility of this phrase as a descriptor of springs is diluted by its application to all subterranean and surface aquatic habitats. The failure to recognize the importance of springs ecosystems has become a quiet but global crisis, in part due to inappropriate conceptual understanding and poor jurisdictional terminology. We clarify relationships between these concepts and terms to establish effective, consistent monitoring, assessment, restoration, management, and monitoring goals and protocols for improving springs stewardship.

  7. The effects of bird use on nutrient removal in a constructed wastewater-treatment wetland

    Science.gov (United States)

    Andersen, D.C.; Sartoris, J.J.; Thullen, J.S.; Reusch, P.G.

    2003-01-01

    concept that a constructed wetland can be designed both to reduce nutrients in municipal wastewater and to provide habitat for wetland birds.

  8. Development of an indicator to monitor mediterranean wetlands.

    Science.gov (United States)

    Sanchez, Antonio; Abdul Malak, Dania; Guelmami, Anis; Perennou, Christian

    2015-01-01

    Wetlands are sensitive ecosystems that are increasingly subjected to threats from anthropogenic factors. In the last decades, coastal Mediterranean wetlands have been suffering considerable pressures from land use change, intensification of urban growth, increasing tourism infrastructure and intensification of agricultural practices. Remote sensing (RS) and Geographic Information Systems (GIS) techniques are efficient tools that can support monitoring Mediterranean coastal wetlands on large scales and over long periods of time. The study aims at developing a wetland indicator to support monitoring Mediterranean coastal wetlands using these techniques. The indicator makes use of multi-temporal Landsat images, land use reference layers, a 50m numerical model of the territory (NMT) and Corine Land Cover (CLC) for the identification and mapping of wetlands. The approach combines supervised image classification techniques making use of vegetation indices and decision tree analysis to identify the surface covered by wetlands at a given date. A validation process is put in place to compare outcomes with existing local wetland inventories to check the results reliability. The indicator´s results demonstrate an improvement in the level of precision of change detection methods achieved by traditional tools providing reliability up to 95% in main wetland areas. The results confirm that the use of RS techniques improves the precision of wetland detection compared to the use of CLC for wetland monitoring and stress the strong relation between the level of wetland detection and the nature of the wetland areas and the monitoring scale considered.

  9. Wetland Polygons, California, 2016, California Aquatic Resources Inventory

    Data.gov (United States)

    U.S. Environmental Protection Agency — This feature class contains polgon features depicting wetlands that are standardized to a common wetland classification system (CARI) and provide additional source...

  10. Geothermal wetlands: an annotated bibliography of pertinent literature

    Energy Technology Data Exchange (ETDEWEB)

    Stanley, N.E.; Thurow, T.L.; Russell, B.F.; Sullivan, J.F.

    1980-05-01

    This annotated bibliography covers the following topics: algae, wetland ecosystems; institutional aspects; macrophytes - general, production rates, and mineral absorption; trace metal absorption; wetland soils; water quality; and other aspects of marsh ecosystems. (MHR)

  11. Wetland Paleoecological Study of Coastal Louisiana: X-radiographs

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Wetland sediment data was collected from coastal Louisiana as part of a pilot study to develop a diatom-based proxy for past wetland water chemistry and the...

  12. Wetlands Management Review of St. Vincent Island NWR

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of this wetland review was to evaluate past management and provide recommendations for future management of the impounded wetlands on St. Vincent Island....

  13. Managing Wetlands for Improved Food Security in Uganda | IDRC ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    fed 683 lowland ecologies in Uganda. Download PDF. Journal articles. Total economic value of wetlands products and services in Uganda. Download PDF. Journal articles. Contribution of wetland resources to household food security in Uganda.

  14. a comparison of wetland valuation purposes in lagos metropolis and ...

    African Journals Online (AJOL)

    Osondu

    abundance, storm buffering, recreation, and uniqueness heritage. Woodward and Wui (2001) identify the various functions performed by wetlands, though not exhaustive, to include: reservoirs of biodiversity; climate change mitigation; cultural value; flood control; groundwater replenishment; wetland products; including.

  15. Wind power wetland survey and duck pair count instructions

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Initial Survey Instructions for wind power wetland survey and duck pair count instructions for Kulm Wetland Management District. This survey has two surveying...

  16. Mapping Flood Reduction Benefits of Potential Wetlands Restoration

    Science.gov (United States)

    Public officials and environmental managers face difficult decisions when allocating funds to prioritize the most beneficial wetlands conservation or restoration projects, and often face difficulty even characterizing benefits. One benefit of natural and constructed wetlands is t...

  17. New species of Eunotia from small isolated wetlands in Florida

    Science.gov (United States)

    Diatom species composition of small wetlands is diverse and unique due to a plethora of spatial and temporal variables. Diatoms from small wetlands can contribute greatly to better understanding microbial biodiversity, distribution, dispersal and populations.

  18. A restoration framework to build coastal wetland resiliency

    Science.gov (United States)

    An increase in the frequency and intensity of storms and flooding events are adversely impacting coastal wetlands. Coastal wetlands provide flood abatement, carbon and nutrient sequestration, water quality maintenance, and habitat for fish, shellfish, and wildlife, including spec...

  19. Oregon Tidal Wetland vegetation and edaphic data 2010 - 2012

    Data.gov (United States)

    U.S. Environmental Protection Agency — Data includes edaphic and vegetation field data from four Oregon tidal wetlands. National Wetlands Inventory (NWI) classification: low marsh, high marsh, and...

  20. WETLAND VEGETATION INTEGRITY ASSESSMENT WITH LOW ALTITUDE MULTISPECTRAL UAV IMAGERY

    National Research Council Canada - National Science Library

    M. A. Boon; S. Tesfamichael

    2017-01-01

    .... Applications of these sensors for mapping of wetland ecosystems are rare. Here, we evaluate the performance of low altitude multispectral UAV imagery to determine the state of wetland vegetation in a localised spatial area...

  1. Loss of forested wetlands - questions, answers, and more questions

    Science.gov (United States)

    Susan-Marie. Stedman

    2016-01-01

    The most recent study (2004 – 2009) on the status and trends of wetlands in the coastal watersheds of the US indicates a connection between forested wetland loss and areas being used for silviculture.

  2. Wetland resources investigation based on 3S technology

    Science.gov (United States)

    Lin, Hui; Jing, Haitao; Zhang, Lianpeng

    2008-10-01

    Wetland is a special ecosystem between land and water . It can provide massive foods, raw material, water resources and habitat for human being, animals and plants, Wetlands are so important that wetlands' development, management and protection have become the focus of public attention ."3S" integration technology was applied to investigate wetland resources in Shandong Province ,the investigation is based on remote sensing(RS) information, combining wetlandrelated geographic information system(GIS) data concerning existing geology, hydrology, land, lakes, rivers, oceans and environmental protection, using the Global Positioning System (GPS) to determine location accurately and conveniently , as well as multi-source information to demonstrate each other based on "3S" integration technology. In addition, the remote sensing(RS) interpretation shall be perfected by combining house interpretation with field survey and combining interpretation results with known data.By contrasting various types of wetland resources with the TM, ETM, SPOT image and combining with the various types of information, remote sensing interpretation symbols of various types of wetland resources are established respectively. According to the interpretation symbols, we systematically interpret the wetland resources of Shandong Province. In accordance with the purpose of different work, we interpret the image of 1987, 1996 and 2000. Finally, various interpretation results are processed by computer scanning, Vectored, projection transformation and image mosaic, wetland resources distribution map is worked out and wetland resources database of Shandong Province is established in succession. Through the investigation, wetland resource in Shandong province can be divided into 4 major categories and 17 sub-categories. we have ascertained the range and area of each category as well as their present utilization status.. By investigating and calculating, the total area of wetland in Shandong Province is

  3. Artificial wetlands performance: nitrogen removal.

    Science.gov (United States)

    Durán-de-Bazúa, Carmen; Guido-Zárate, Alejandro; Huanosta, Thalía; Padrón-López, Rosa Martha; Rodríguez-Monroy, Jesús

    2008-01-01

    Artificial wetlands (AW) are a promising option for wastewater treatment in small communities due to their high performance in nutrients removal and low operation and maintenance costs. Nitrogen can favour the growth of algae in water bodies causing eutrophication when present at high concentrations. Nitrogen can be removed through different mechanisms (e.g. nitrification-denitrification, adsorption and plant uptake). Environmental conditions such as temperature and relative humidity can play an important role in the performance of these systems by promoting the growth of macrophytes such as reeds and cattails (e.g. Phragmites australis, Typha latifolia respectively). In this paper, two AW systems were compared, one located in Mexico City, Mexico at an altitude higher than 2,000 m above the sea level, and the second one located in Villahermosa, Tabasco, Mexico at an a altitude near the sea level (27 m). Both systems comprised five reactors (147-L plastic boxes) filled with volcanic slag and gravel and intermittently fed with synthetic water. The removal nitrogen efficiency found for the system located in Mexico City was higher than that of the Tabasco system (90 and 80% as TKN respectively). The higher temperatures in the Tabasco system did not enhanced the nitrogen removal as expected. Copyright IWA Publishing 2008.

  4. Wetland Use by Waterbirds That Winter in Coastal Texas.

    Science.gov (United States)

    1996-09-01

    rushes (Juncus spp.), sedges ( Carex spp. and Cyperus spp.), bulrushes (Scirpus spp.), and cordgrasses (Spartina spp.). Palustrine wetlands are the...bottom mud wetlands. Ruddy turnstones { Arenaria interpres) used 10 wetland types that represented 47.0% of the available wetland habitat. Density (F...Black turnstone ( Arenaria melanocephala) abundance in California was thought to be influenced by algae (Page et al. 1979). Dowitchers, red knots

  5. Wildlife resources and tourism in wetlands of Tanzania

    OpenAIRE

    Mpemba, E.B.

    1993-01-01

    The presence of wetlands in the various protected areas in Tanzania (national parks, gamereserves, controlled areas and the NgorongoroSpecial Conservation Area) is described. The value of tourism in wetlands and the problems of wildlife in wetlands is discussed.Recommendations for the management of wetlands in reserves emphasises the necessaryinvolvement of people who live adjacent tothese areas and are affected by management decisions.

  6. Responses of Isolated Wetland Herpetofauna to Upland Forest Management

    Energy Technology Data Exchange (ETDEWEB)

    Russell, K.R.; Hanlin, H.G.; Wigley, T.B.; Guynn, D.C., Jr.

    2002-01-02

    Measurement of responses of herpetofauna at isolated wetlands in the Coastal Plain of South Carolina to disturbance of adjacent loblolly pine forest. Many species of isolated wetland herpetofauna in the Southeastern Coastal Plain may tolerate some disturbance in adjacent upland stands. Responses of isolated wetland herpetofauna to upland silviculture and the need for adjacent forested buffers likely depend on the specific landscape context in which the wetlands occur and composition of the resident herpetofaunal community.

  7. Evaluation of Wetland Hydrology in Formerly Irrigated Areas

    Science.gov (United States)

    2017-07-01

    ER D C/ EL T R- 17 -1 3 Wetlands Regulatory Assistance Program Evaluation of Wetland Hydrology in Formerly Irrigated Areas En vi ro nm...EL TR-17-13 July 2017 Evaluation of Wetland Hydrology in Formerly Irrigated Areas Jacob F. Berkowitz, Jason P. Pietroski, and Steven J. Currie...following report is the first to evaluate the capacity of wetland hydrology to persist following the cessation of external water inputs for the

  8. Aquatic herbivores facilitate the emission of methane from wetlands

    OpenAIRE

    Dingemans, B.J.J.; Bakker, E.S.; Bodelier, P.L.E.

    2011-01-01

    Wetlands are significant sources of atmospheric methane. Methane produced by microbes enters roots and escapes to the atmosphere through the shoots of emergent wetland plants. Herbivorous birds graze on helophytes, but their effect on methane emission remains unknown. We hypothesized that grazing on shoots of wetland plants can modulate methane emission from wetlands. Diffusive methane emission was monitored inside and outside bird exclosures, using static flux chambers placed over whole vege...

  9. Greenhouse gas flux dynamics in wetlands

    Energy Technology Data Exchange (ETDEWEB)

    Silvola, J.; Alm, J.; Saarnio, S. [Joensuu Univ. (Finland). Dept. of Biology; Martikainen, P.J. [National Public Health Inst., Kuopio (Finland). Dept. of Environmental Microbiology

    1996-12-31

    Two important greenhouse gases, CO{sub 2} and CH{sub 4}, are closely connected to the carbon cycling of wetlands. Although virgin wetlands are mostly carbon accumulating ecosystems, major proportion of the CO{sub 2} bound annually in photosynthesis is released back to the atmosphere. Main portion of the carbon cycling in wetlands is quite fast while a small proportion of carbon diffusing from soil is released from organic matter, which may be ten thousand years old. Methane is formed in the anaerobic layers of wetlands, from where it is released gradually to the atmosphere. The decomposition in anaerobic conditions is very slow, which means that usually only a few percent of the annual carbon cycling takes place as methane. Research on CO{sub 2} fluxes of different virgin and managed peatlands was the main topic of this project during the first phase of SILMU. The measurements were made during two seasons in varying conditions in c. 30 study sites. In the second phase of SILMU the research topics were the spatial and temporal variation of CO{sub 2} and CH{sub 4} fluxes, the relationships between vegetation and gas fluxes as well as carbon balance studies in wetlands at some intensive sites

  10. Constructed wetlands as biofuel production systems

    Science.gov (United States)

    Liu, Dong; Wu, Xu; Chang, Jie; Gu, Baojing; Min, Yong; Ge, Ying; Shi, Yan; Xue, Hui; Peng, Changhui; Wu, Jianguo

    2012-03-01

    Clean biofuel production is an effective way to mitigate global climate change and energy crisis. Progress has been made in reducing greenhouse-gas (GHG) emissions and nitrogen fertilizer consumption through biofuel production. Here we advocate an alternative approach that efficiently produces cellulosic biofuel and greatly reduces GHG emissions using waste nitrogen through wastewater treatment with constructed wetlands in China. Our combined experimental and literature data demonstrate that the net life-cycle energy output of constructed wetlands is higher than that of corn, soybean, switchgrass, low-input high-diversity grassland and algae systems. Energy output from existing constructed wetlands is ~237% of the input for biofuel production and can be enhanced through optimizing the nitrogen supply, hydrologic flow patterns and plant species selection. Assuming that all waste nitrogen in China could be used by constructed wetlands, biofuel production can account for 6.7% of national gasoline consumption. We also find that constructed wetlands have a greater GHG reduction than the existing biofuel production systems in a full life-cycle analysis. This alternative approach is worth pursuing because of its great potential for straightforward operation, its economic competitiveness and many ecological benefits.

  11. Broken connections of wetland cultural knowledge

    Science.gov (United States)

    Middleton, Beth A.

    2016-01-01

    As global agriculture intensifies, cultural knowledge of wetland utilization has eroded as natural resources become more stressed, and marginal farmers move away from the land. The excellent paper by Fawzi et al. (2016) documents a particularly poignant case of traditional knowledge loss among the Marsh Arab women of Iraq. Through interviews, the authors document the breakdown of skill transfer from the older to younger generation of women. The authors link the loss of their cultural knowledge with the loss of wetlands in the region. Women no longer can help provide for their families using wetland products, and along with that, their ancient knowledge of plant usage is lost. These ancient skills included medicinal uses, and reed harvesting for weaving and water buffalo fodder. As, the majority of the Mesopotamian Marshes have dried, this way of life is being forgotten (Fawzi et al. 2015). The global tragedy is that while the careful alliance of wetlands and people have sustained human cultures for millennia, degraded wetlands lose their ability to provide these services (Maltby 1980).

  12. Delineating wetland catchments and modeling hydrologic ...

    Science.gov (United States)

    In traditional watershed delineation and topographic modeling, surface depressions are generally treated as spurious features and simply removed from a digital elevation model (DEM) to enforce flow continuity of water across the topographic surface to the watershed outlets. In reality, however, many depressions in the DEM are actual wetland landscape features with seasonal to permanent inundation patterning characterized by nested hierarchical structures and dynamic filling–spilling–merging surface-water hydrological processes. Differentiating and appropriately processing such ecohydrologically meaningful features remains a major technical terrain-processing challenge, particularly as high-resolution spatial data are increasingly used to support modeling and geographic analysis needs. The objectives of this study were to delineate hierarchical wetland catchments and model their hydrologic connectivity using high-resolution lidar data and aerial imagery. The graph-theory-based contour tree method was used to delineate the hierarchical wetland catchments and characterize their geometric and topological properties. Potential hydrologic connectivity between wetlands and streams were simulated using the least-cost-path algorithm. The resulting flow network delineated potential flow paths connecting wetland depressions to each other or to the river network on scales finer than those available through the National Hydrography Dataset. The results demonstrated that

  13. Factors Affecting Sustainability Of Wetland Agriculture Within Lake ...

    African Journals Online (AJOL)

    In recent years, the high rate of conversion of wetlands for agriculture has raised environmental concerns in Uganda. A study was therefore conducted to identify issues that need to be addressed if communities are to continue deriving livelihoods from wetland agriculture, without causing stress to the wetlands of Lake ...

  14. Valuing wetland attributes in the Lake Champlain Basin

    Science.gov (United States)

    Donald F. Dennis; Walter F. Kuentzel

    1998-01-01

    This research explores the use of conjoint analysis to assess and understand wetland values. A conjoint rating survey was designed and mailed to landowners in the Laplatte River Basin (Lake Champlain) in Vermont. Landowners rated options to protect wetlands that varied by the wetland's ability to decrease pollutants entering Lake Champlain, value in providing food...

  15. Local institutions for sustaining wetland resources and community ...

    African Journals Online (AJOL)

    Administrator

    permitting authority, taxes/ local levies for using the wetland resources, recent institutional changes observed affecting wetland resource-use activities ... rice, sweet potatoes, vegetables, maize, sugar cane and fruit trees mainly for subsistence and cotton as a cash crop. The wetland vegetation has been extensively cleared ...

  16. Development of soil properties and nitrogen cycling in created wetlands

    Science.gov (United States)

    Wolf, K.L.; Ahn, C.; Noe, G.B.

    2011-01-01

    Mitigation wetlands are expected to compensate for the loss of structure and function of natural wetlands within 5–10 years of creation; however, the age-based trajectory of development in wetlands is unclear. This study investigates the development of coupled structural (soil properties) and functional (nitrogen cycling) attributes of created non-tidal freshwater wetlands of varying ages and natural reference wetlands to determine if created wetlands attain the water quality ecosystem service of nitrogen (N) cycling over time. Soil condition component and its constituents, gravimetric soil moisture, total organic carbon, and total N, generally increased and bulk density decreased with age of the created wetland. Nitrogen flux rates demonstrated age-related patterns, with younger created wetlands having lower rates of ammonification, nitrification, nitrogen mineralization, and denitrification potential than older created wetlands and natural reference wetlands. Results show a clear age-related trajectory in coupled soil condition and N cycle development, which is essential for water quality improvement. These findings can be used to enhance N processing in created wetlands and inform the regulatory evaluation of mitigation wetlands by identifying structural indicators of N processing performance.

  17. Appreciating tropical coastal wetlands from a landscape perspective

    Science.gov (United States)

    Katherine C. Ewel

    2010-01-01

    Freshwater forested wetlands are often found just upslope from mangrove forests in both high- and low-rainfall areas in the tropics. A case study on the island of Kosrae, Federated States of Micronesia, demonstrates how important both wetland types are to each other hydrologically and to local economies as well. Together, these wetlands form a landscape that provides...

  18. Wetlands as early warning (eco)systems for water resource ...

    African Journals Online (AJOL)

    Implications for water resources management are considered, with particular attention paid to determining the Ecological Reserve for wetlands, and the potential role that wetlands could play in providing an early warning of hydrological change in a catchment. Keywords: wetland ecology, delineation, water resources ...

  19. The road to higher permanence and biodiversity in exurban wetlands.

    Science.gov (United States)

    Urban, Mark C; Roehm, Robert

    2018-01-01

    Exurban areas are expanding throughout the world, yet their effects on local biodiversity remain poorly understood. Wetlands, in particular, face ongoing and substantial threats from exurban development. We predicted that exurbanization would reduce the diversity of wetland amphibian and invertebrate communities and that more spatially aggregated residential development would leave more undisturbed natural land, thereby promoting greater local diversity. Using structural equation models, we tested a series of predictions about the direct and indirect pathways by which exurbanization extent, spatial pattern, and wetland characteristics might affect diversity patterns in 38 wetlands recorded during a growing season. We used redundancy, indicator species, and nested community analyses to evaluate how exurbanization affected species composition. In contrast to expectations, we found higher diversity in exurban wetlands. We also found that housing aggregation did not significantly affect diversity. Exurbanization affected biodiversity indirectly by increasing roads and development, which promoted permanent wetlands with less canopy cover and more aquatic vegetation. These pond characteristics supported greater diversity. However, exurbanization was associated with fewer temporary wetlands and fewer of the species that depend on these habitats. Moreover, the best indicator species for an exurban wetland was the ram's head snail, a common disease vector in disturbed ponds. Overall, results suggest that exurbanization is homogenizing wetlands into more permanent water bodies. These more permanent, exurban ponds support higher overall animal diversity, but exclude temporary wetland specialists. Conserving the full assemblage of wetland species in expanding exurban regions throughout the world will require protecting and creating temporary wetlands.

  20. Structural and functional loss in restored wetland ecosystems.

    Directory of Open Access Journals (Sweden)

    David Moreno-Mateos

    2012-01-01

    Full Text Available Wetlands are among the most productive and economically valuable ecosystems in the world. However, because of human activities, over half of the wetland ecosystems existing in North America, Europe, Australia, and China in the early 20th century have been lost. Ecological restoration to recover critical ecosystem services has been widely attempted, but the degree of actual recovery of ecosystem functioning and structure from these efforts remains uncertain. Our results from a meta-analysis of 621 wetland sites from throughout the world show that even a century after restoration efforts, biological structure (driven mostly by plant assemblages, and biogeochemical functioning (driven primarily by the storage of carbon in wetland soils, remained on average 26% and 23% lower, respectively, than in reference sites. Either recovery has been very slow, or postdisturbance systems have moved towards alternative states that differ from reference conditions. We also found significant effects of environmental settings on the rate and degree of recovery. Large wetland areas (>100 ha and wetlands restored in warm (temperate and tropical climates recovered more rapidly than smaller wetlands and wetlands restored in cold climates. Also, wetlands experiencing more (riverine and tidal hydrologic exchange recovered more rapidly than depressional wetlands. Restoration performance is limited: current restoration practice fails to recover original levels of wetland ecosystem functions, even after many decades. If restoration as currently practiced is used to justify further degradation, global loss of wetland ecosystem function and structure will spread.

  1. The effects of fire on wetland structure and functioning | Kotze ...

    African Journals Online (AJOL)

    Fire is an extensively used wetland management tool in both tropical and temperate areas, but its effects on wetlands are not well understood. The purpose of this paper is to review the effects of fire on wetland hydrology, biogeochemical cycling and vegetation composition, including primary effects that take place during the ...

  2. Fish resources of Lagos State coastal wetlands | Ayodele | African ...

    African Journals Online (AJOL)

    ... estimated total catch of 19,383.6 Ton/yr. The Coastal wetland is believed to be producing less than it's potential, yet it is the source of income and livelihood for many of Coastal wetland inhabitants. Therefore, effort must be made towards its sustainability. Keywords: Fish, Resources, Lagos State wetlands. (Af J of Livestock ...

  3. Water and nutrient management in natural and constructed wetlands

    National Research Council Canada - National Science Library

    Vymazal, Jan

    2010-01-01

    ... are also used in constructed wetlands for wastewater treatment but within a more controlled environment. In addition, wetlands provide the supporting services necessary for the production of all other ecosystem services such as soil formation and retention, nutrient cycling, primary production or water cycling. In short, wetlands are clearly among t...

  4. Livelihoods and economic benefits of wetland utilization in the Little ...

    African Journals Online (AJOL)

    Information on the contribution of wetland agriculture production to socio - economic in the Little Ruaha sub-catchment is scanty thus constraining the wise use and sustainable utilization of the wetlands. This study was conducted in the wetlands of the Little Ruaha sub-catchment to assess livelihoods and economic benefits ...

  5. Biodiversity studies in three Coastal Wetlands in Ghana, West Africa ...

    African Journals Online (AJOL)

    Plant biodiversity studies of three coastal wetlands in Ghana were made. The wetlands are the Sakumo, Muni-Pomadze and Densu Delta Ramsar sites. Each wetland is made up of a flood plain which consists of salt marsh (about 20%), mangrove swamps (between 15 and 30%), fresh water swamp (about 40 - 45%), and in ...

  6. 7 CFR 1410.11 - Farmable Wetlands Program.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Farmable Wetlands Program. 1410.11 Section 1410.11... Wetlands Program. (a) In addition to other allowable enrollments, land may be enrolled in this program through the Farmable Wetlands Program (FWP) within the overall Conservation Reserve Program provided for...

  7. 32 CFR 644.319 - Protection of wetlands.

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 4 2010-07-01 2010-07-01 true Protection of wetlands. 644.319 Section 644.319... ESTATE HANDBOOK Disposal § 644.319 Protection of wetlands. The requirements of Executive Order 11990, Protection of Wetlands, 42 FR 26961, (24 May 1977) are applicable to the disposal of Federal lands and...

  8. 76 FR 79145 - Floodplain Management and Protection of Wetlands

    Science.gov (United States)

    2011-12-21

    ... Wetlands Correction In proposed rule document 2011-31629 appearing on pages 77162-77175 in the issue of... as set forth below: Table 1 Type of proposed action Type of proposed action (new Wetlands or 100- Non-wetlands area reviewable action or an year floodplain outside of the amendment) \\1\\ Floodways Coastal high...

  9. 7 CFR 623.13 - Wetlands reserve plan of operations.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Wetlands reserve plan of operations. 623.13 Section... CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE WATER RESOURCES EMERGENCY WETLANDS RESERVE PROGRAM § 623.13 Wetlands reserve plan of operations. (a) After NRCS has accepted the applicant for enrollment in the...

  10. Socio-Economic Determinants of Wetland Cultivation in Kemise ...

    African Journals Online (AJOL)

    A study of wetland use in Kemise, central Illubabor, southwestern Ethiopia, shows food shortage as the main factor behind wetland cultivation in the locality. However, discriminant analysis results indicate that it is the wealthier farmers who tend to cultivate wetlands rather than the economically less fortunate ones.

  11. Global Biology Research Program: Biogeochemical Processes in Wetlands

    Science.gov (United States)

    Bartlett, D. S. (Editor)

    1984-01-01

    The results of a workshop examining potential NASA contributions to research on wetland processes as they relate to global biogeochemical cycles are summarized. A wetlands data base utilizing remotely sensed inventories, studies of wetland/atmosphere exchange processes, and the extrapolation of local measurements to global biogeochemical cycling processes were identified as possible areas for NASA support.

  12. Albuquerque's constructed wetland pilot project for wastewater polishing

    Science.gov (United States)

    Michael D. Marcus; Shannon M. House; Nathan A. Bowles; Robert T. Sekiya; J. Steven Glass

    1999-01-01

    The City of Albuquerque has funded the Constructed Wetland Pilot Project (CWPP) since 1995 at the City's Southside Water Reclamation Plant (SWRP). Results from CWPP and other wetland treatment projects indicate that appropriately designed surface-flow wetlands could increase the cost-efficiencies of wastewater treatment, as well as help the City meet present and...

  13. Denitrification in alluvial wetlands in an urban landscape.

    Science.gov (United States)

    Harrison, Melanie D; Groffman, Peter M; Mayer, Paul M; Kaushal, Sujay S; Newcomer, Tamara A

    2011-01-01

    Riparian wetlands have been shown to be effective "sinks" for nitrate N (NO3-), minimizing the downstream export of N to streams and coastal water bodies. However, the vast majority of riparian denitrification research has been in agricultural and forested watersheds, with relatively little work on riparian wetland function in urban watersheds. We investigated the variation and magnitude of denitrification in three constructed and two relict oxbow urban wetlands, and in two forested reference wetlands in the Baltimore metropolitan area. Denitrification rates in wetland sediments were measured with a 15N-enriched NO3- "push-pull" groundwater tracer method during the summer and winter of 2008. Mean denitrification rates did not differ among the wetland types and ranged from 147 +/- 29 microg N kg soil(-1) d(-1) in constructed stormwater wetlands to 100 +/- 11 microg N kg soil(-1) d(-1) in relict oxbows to 106 +/- 32 microg N kg soil(-1) d(-1) in forested reference wetlands. High denitrification rates were observed in both summer and winter, suggesting that these wetlands are sinks for NO3- year round. Comparison of denitrification rates with NO3- standing stocks in the wetland water column and stream NO3- loads indicated that mass removal of NO3- in urban wetland sediments by denitrification could be substantial. Our results suggest that urban wetlands have the potential to reduce NO3- in urban landscapes and should be considered as a means to manage N in urban watersheds.

  14. When Wetland Conservation Works - an Assessment from Lao PDR

    OpenAIRE

    Phoupet Kyophilapong

    2009-01-01

    Wetlands are among the most important habitats for wildlife in the world. However, across Southeast Asia many wetland areas are under threat from water extraction and a range of other development pressures. This study finds that conserving wetlands can provide significant economic benefits.

  15. Concept theory

    DEFF Research Database (Denmark)

    Hjørland, Birger

    2009-01-01

      Concept theory is an extremely broad, interdisciplinary and complex field of research related to many deep fields with very long historical traditions without much consensus. However, information science and knowledge organization cannot avoid relating to theories of concepts. Knowledge...... organizing systems (e.g. classification systems, thesauri and ontologies) should be understood as systems basically organizing concepts and their semantic relations. The same is the case with information retrieval systems. Different theories of concepts have different implications for how to construe......). It is also argued that the historicist and pragmatist understandings of concepts are the most fruitful views and that this understanding may be part of a broader paradigm shift that is also beginning to take place in information science.  The importance of historicist and pragmatic theories of concepts...

  16. Multiple factors influence the vegetation composition of Southeast U.S. wetlands restored in the Wetlands Reserve Program

    Science.gov (United States)

    Diane De Steven; Joel M. Gramling

    2013-01-01

    Degradation of wetlands on agricultural lands contributes to the loss of local or regional vegetation diversity. The U.S. Department of Agriculture’s Wetlands Reserve Program (WRP) funds the restoration of degraded wetlands on private ‘working lands’, but these WRP projects have not been studied in the Southeast United States. Wetland hydrogeomorphic type influences...

  17. Capitalized amenity value of urban wetlands: a hedonic property price approach to urban wetlands in Perth, Western Australia

    OpenAIRE

    Tapsuwan, Sorada; Ingram, Gordon; Burton, Michael P.; Brennan, Donna C.

    2009-01-01

    Up to 60 per cent of potable water supplied to Perth, Western Australia, is extracted from the groundwater system that lies below the northern part of the metropolitan area. Many of the urban wetlands are groundwater-dependent and excessive groundwater extraction and climate change have resulted in a decline in water levels in the wetlands. In order to inform decisions on conserving existing urban wetlands, it is beneficial to be able to estimate the economic value of the urban wetlands. Appl...

  18. Methan Dynamics in an Arctic Wetland

    DEFF Research Database (Denmark)

    Nielsen, Cecilie Skov

    Rising temperatures in the Arctic have the potential to increase methane (CH4) emissions from arctic wetlands due to increased decomposition, changes in vegetation cover, and increased substrate input from vegetation and thawing permafrost. The effects of warming and changes in vegetation cover...... be used to oxidize CH4. The over all effect of the presence of sedges on the CH4 budget is unknown for most arctic species. Here the effects of warming and changes in plant cover on CH4 dynamics and emissions in a wetland in Blæsedalen, Disko Island, W. Greenland were investigated. The importance of CH4...... on CH4 emissions are however still largely unknown for the Arctic. Many wetlands plants such as sedges can increase CH4 emissions by transporting the CH4 through internal air tissue. However, at the same time the plants can reduce the CH4 emissions by transporting oxygen to the rhizosphere where it can...

  19. Restoring tides to reduce methane emissions in impounded wetlands: A new and potent Blue Carbon climate change intervention

    Science.gov (United States)

    Kroeger, Kevin D.; Crooks, Stephen; Moseman-Valtierra, Serena; Tang, Jianwu

    2017-01-01

    Coastal wetlands are sites of rapid carbon (C) sequestration and contain large soil C stocks. Thus, there is increasing interest in those ecosystems as sites for anthropogenic greenhouse gas emission offset projects (sometimes referred to as “Blue Carbon”), through preservation of existing C stocks or creation of new wetlands to increase future sequestration. Here we show that in the globally-widespread occurrence of diked, impounded, drained and tidally-restricted salt marshes, substantial methane (CH4) and CO2 emission reductions can be achieved through restoration of disconnected saline tidal flows. Modeled climatic forcing indicates that tidal restoration to reduce emissions has a much greater impact per unit area than wetland creation or conservation to enhance sequestration. Given that GHG emissions in tidally-restricted, degraded wetlands are caused by human activity, they are anthropogenic emissions, and reducing them will have an effect on climate that is equivalent to reduced emission of an equal quantity of fossil fuel GHG. Thus, as a landuse-based climate change intervention, reducing CH4 emissions is an entirely distinct concept from biological C sequestration projects to enhance C storage in forest or wetland biomass or soil, and will not suffer from the non-permanence risk that stored C will be returned to the atmosphere.

  20. Restoring tides to reduce methane emissions in impounded wetlands: A new and potent Blue Carbon climate change intervention.

    Science.gov (United States)

    Kroeger, Kevin D; Crooks, Stephen; Moseman-Valtierra, Serena; Tang, Jianwu

    2017-09-20

    Coastal wetlands are sites of rapid carbon (C) sequestration and contain large soil C stocks. Thus, there is increasing interest in those ecosystems as sites for anthropogenic greenhouse gas emission offset projects (sometimes referred to as "Blue Carbon"), through preservation of existing C stocks or creation of new wetlands to increase future sequestration. Here we show that in the globally-widespread occurrence of diked, impounded, drained and tidally-restricted salt marshes, substantial methane (CH4) and CO2 emission reductions can be achieved through restoration of disconnected saline tidal flows. Modeled climatic forcing indicates that tidal restoration to reduce emissions has a much greater impact per unit area than wetland creation or conservation to enhance sequestration. Given that GHG emissions in tidally-restricted, degraded wetlands are caused by human activity, they are anthropogenic emissions, and reducing them will have an effect on climate that is equivalent to reduced emission of an equal quantity of fossil fuel GHG. Thus, as a landuse-based climate change intervention, reducing CH4 emissions is an entirely distinct concept from biological C sequestration projects to enhance C storage in forest or wetland biomass or soil, and will not suffer from the non-permanence risk that stored C will be returned to the atmosphere.

  1. Proceedings of the National Wetland Symposium: Wetland Hydrology Held in Chicago, Illinois on September 16-18 1987

    Science.gov (United States)

    1987-09-16

    BF --. channel B. SURFACE WATER DEPRESION WETLAND SR PP C. GROUNDWATER DEPRESSION WETlAND clay sealG -- D. OYBROTROPHIC DIVIDE WETLAND PI>T E...Many genetic and Plant spec. richness T M SA A physiological factors seem involved (Kozlowski, Dominance T M S A A- 1984). Others have noted tree

  2. Design and development of two novel constructed wetlands: the duplex-constructed wetland and the constructed wetroof

    NARCIS (Netherlands)

    Zapater Pereyra, M.

    2015-01-01

    Maribel Zapater Pereyra Abstract thesis:  Design and development of two novel constructed wetlands: the Duplex-constructed wetland and the Constructed wetroof Constructed wetlands (CWs) are among the few natural treatment systems that can guarantee an efficient wastewater treatment and an

  3. Hydrological disturbance diminishes predator control in wetlands.

    Science.gov (United States)

    Dorn, Nathan J; Cook, Mark I

    2015-11-01

    Effects of predators on prey populations can be especially strong in aquatic ecosystems, but disturbances may mediate the strength of predator limitation and even allow outbreaks of some prey populations. In a two-year study we investigated the numerical responses of crayfish (Procambarus fallax) and small fishes (Poeciliidae and Fundulidae) to a brief hydrological disturbance in replicated freshwater wetlands with an experimental drying and large predatory fish reduction. The experiment and an in situ predation assay tested the component of the consumer stress model positing that disturbances release prey from predator limitation. In the disturbed wetlands, abundances of large predatory fish were seasonally reduced, similar to dynamics in the Everglades (southern Florida). Densities of small fish were unaffected by the disturbance, but crayfish densities, which were similar across all wetlands before drying, increased almost threefold in the year after the disturbance. Upon re-flooding, juvenile crayfish survival was inversely related to the abundance of large fish across wetlands, but we found no evidence for enhanced algal food quality. At a larger landscape scale (500 km2 of the Everglades), crayfish densities over eight years were positively correlated with the severity of local dry disturbances (up to 99 days dry) during the preceding dry season. In contrast, densities of small-bodied fishes in the same wetlands were seasonally depressed by dry disturbances. The results from our experimental wetland drought and the observations of crayfish densities in the Everglades represent a large-scale example of prey population release following a hydrological disturbance in a freshwater ecosystem. The conditions producing crayfish pulses in the Everglades appear consistent with the mechanics of the consumer stress model, and we suggest crayfish pulses may influence the number of nesting wading birds in the Everglades.

  4. Development and evaluation of a global dynamical wetlands extent scheme

    Directory of Open Access Journals (Sweden)

    T. Stacke

    2012-08-01

    Full Text Available In this study we present the development of the dynamical wetland extent scheme (DWES and evaluate its skill to represent the global wetland distribution. The DWES is a simple, global scale hydrological scheme that solves the water balance of wetlands and estimates their extent dynamically. The extent depends on the balance of water flows in the wetlands and the slope distribution within the grid cells. In contrast to most models, the DWES is not directly calibrated against wetland extent observations. Instead, wetland affected river discharge data are used to optimise global parameters of the model. The DWES is not a complete hydrological model by itself but implemented into the Max Planck Institute – Hydrology Model (MPI-HM. However, it can be transferred into other models as well.

    For present climate, the model evaluation reveals a good agreement for the spatial distribution of simulated wetlands compared to different observations on the global scale. The best results are achieved for the Northern Hemisphere where not only the wetland distribution pattern but also their extent is simulated reasonably well by the DWES. However, the wetland fraction in the tropical parts of South America and Central Africa is strongly overestimated. The simulated extent dynamics correlate well with monthly inundation variations obtained from satellites for most locations. Also, the simulated river discharge is affected by wetlands resulting in a delay and mitigation of peak flows. Compared to simulations without wetlands, we find locally increased evaporation and decreased river flow into the oceans due to the implemented wetland processes.

    In summary, the evaluation demonstrates the DWES' ability to simulate the distribution of wetlands and their seasonal variations for most regions. Thus, the DWES can provide hydrological boundary conditions for wetland related studies. In future applications, the DWES may be implemented into an Earth

  5. Coastal wetlands and global change: overview

    Science.gov (United States)

    Guntenspergen, G.R.; Vairin, B.; Burkett, V.R.

    1997-01-01

    The potential impacts of climate change are of great practical concern to those interested in coastal wetland resources. Among the areas of greatest risk in the United States are low-lying coastal habitats with easily eroded substrates which occur along the northern Gulf of Mexico and southeast Atlantic coasts. The Intergovernmental Panel on Climate Change (IPCC) and the World Meteorological Organization (WMO) have identified coastal wetlands as ecosystems most vulnerable to direct, large-scale impacts of climate change, primarily because of their sensitivity to increases in sea-level rise.

  6. Soil and Human Interactions in Maya Wetlands

    Science.gov (United States)

    Beach, Timothy; Luzzadder-Beach, Sheryl

    2013-04-01

    Since the early 1990s, we have studied Maya interaction with soils in Mexico, Belize, Guatemala, and elsewhere. We studied upland and lowland soils, but here we focus on seasonal or 'Bajo' wetlands and perennial wetlands for different reasons. Around the bajos, the ancient Maya focused on intensive agriculture and habitation despite the difficulties their Vertisol soils posed. For the perennial wetlands, small populations spread diffusely through Mollisol and Histisol landscapes with large scale, intensive agro-ecosystems. These wetlands also represent important repositories for both environmental change and how humans responded in situ to environmental changes. Work analyzing bajo soils has recorded significant diversity but the soil and sediment record shows two main eras of soil instability: the Pleistocene-Holocene transition as rainfall fluctuated and increased and tropical forest pulsed through the region, and the Maya Preclassic to Classic 3000 to 1000 BP as deforestation, land use intensity, and drying waxed and waned. The ancient Maya adapted their bajo soil ecosystems successfully through agro-engineering but they also withdrew in many important places in the Late Preclassic about 2000 BP and Terminal Classic about 1200 BP. We continue to study and debate the importance of perennial wetland agro-ecosystems, but it is now clear that Maya interaction with these soil landscapes was significant and multifaceted. Based on soil excavation and coring with a broad toolkit of soil stratigraphy, chemistry, and paleoecology from 2001 to 2013, our results show the ancient Maya interacted with their wetland soils to maintain cropland for maize, tree crops, arrow root, and cassava against relative sea level rise, increased flooding, and aggradation by gypsum precipitation and sedimentation. We have studied these interactions across an area of 2000 km2 in Northern Belize to understand how Maya response varied and how these soil environments varied over time and distance

  7. Wetland Resources Action Planning (WRAP) toolkit

    DEFF Research Database (Denmark)

    Bunting, Stuart W.; Smith, Kevin G.; Lund, Søren

    2013-01-01

    The Wetland Resources Action Planning (WRAP) toolkit is a toolkit of research methods and better management practices used in HighARCS (Highland Aquatic Resources Conservation and Sustainable Development), an EU-funded project with field experiences in China, Vietnam and India. It aims to communi......The Wetland Resources Action Planning (WRAP) toolkit is a toolkit of research methods and better management practices used in HighARCS (Highland Aquatic Resources Conservation and Sustainable Development), an EU-funded project with field experiences in China, Vietnam and India. It aims...

  8. Mapping long-term wetland response to climate

    Science.gov (United States)

    Zhou, Q.; Gallant, A.; Rover, J.

    2016-12-01

    Wetlands provide unique feeding and breeding habitat for numerous waterfowl species. The distribution of wetlands has been considerably changed due to agricultural land conversion and hydrologic modification. Climate change may further impact wetlands through altered moisture regimes. This study characterized long-term variation in wetland conditions by using dense time series from all available Landsat data from 1985 to 2014. We extracted harmonic frequencies from 30 years to two years to delineate the long-term variation in all seven Landsat bands. A cluster analysis and unsupervised classification then enabled us to map different classes of wetland response. We demonstrated the method in the Prairie Pothole Region in North Dakota.

  9. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: North Carolina: WETLANDS (Wetland Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains vector polygons representing the coastal wetlands for North Carolina. This data set comprises a portion of the ESI data for North Carolina....

  10. Waterbirds increase more rapidly in Ramsar-designated wetlands than in unprotected wetlands

    NARCIS (Netherlands)

    Kleijn, D.; Cherkaoui, I.; Goedhart, P.W.; Hout, van der J.; Lammertsma, D.R.

    2014-01-01

    There is a general lack of information on how international conservation treaties affect biodiversity. The Ramsar convention on the protection of internationally important wetlands is such an international conservation policy. It initiated the worldwide establishment of over 2000 protected areas

  11. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: Mississippi: WETLANDS (Wetland Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains vector polygons representing coastal wetlands classified according to the Environmental Sensitivity Index (ESI) classification system for...

  12. Mapped Wetland Features for an Unnamed Wetland in the Lower Brule Indian Reservation

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Real-time kinematic global navigation satellite systems equipment was used to map features of wetlands at six locations of interest to the Lower Brule Sioux Tribe....

  13. Conservation of Mexican wetlands: role of the North American Wetlands Conservation Act

    Science.gov (United States)

    Wilson, M.H.; Ryan, D.A.

    1997-01-01

    Mexico's wetlands support a tremendous biological diversity and provide significant natural resource benefits to local communities. Because they are also critical stopover and wintering grounds for much of North America's waterfowl and other migratory birds, Mexico has become an important participant in continental efforts to conserve these resources through the North American Wetlands Conservation Act. Funding from the Act has supported partnerships in a number of Mexico's priority wetlands to conduct data analyses and dissemination, mapping, environmental education, wetland restoration, development of sustainable economic alternatives for local people, and reserve planning and management. These partnerships, with the close involvement of Mexico's Federal Government authority, the Instituto Nacional de Ecologia, have advanced conservation in a uniquely Mexican model that differs from that employed in the United States and Canada.

  14. Connecting the Dots: Hydrologic Connectivity Between Wetlands and Other Wetlands and Waterbodies

    Science.gov (United States)

    Wetlands perform numerous ecosystem functions that in turn provide abundant ecosystem services beneficial to humankind. These may include, but are not limited to, flood water storage and release, nutrient transformations, carbon sequestration, and the provision of habitat or ref...

  15. Wetlands of South Africa: Hydrology and Human Use

    Science.gov (United States)

    Price, J. S.; Grundling, P.; Grundling, A.

    2009-05-01

    South Africa has a relatively dry climate (average 479 mm/y), and consequently wetlands are sparse covering 10-12% of the land surface, but locally extremely important hydrologically, ecologically and as a resource for human use. Given the climate, peatlands occur only where strong and sustained groundwater discharge occurs - either from regional-scale hydrogeological formations or from more localized aquifers such as coastal dunes, etc., and comprise 8-10% of South African wetlands. Elsewhere, the seasonal variation in precipitation typically results in ephemeral wetlands (without peat). In either case the perennial or seasonal availability of fresh-water is a focus of ecological activity and often of human interaction. Human use of wetlands includes water abstraction, grazing and harvesting of materials for building and handicrafts , often done in a sustainable manner. Other activities include totally unsustainable peat extraction and partly sustainable cultivation. Activities adjacent to wetlands including mining, timber plantations and groundwater exploitation for mining, commercial agriculture and urban water needs can also profoundly affect their water supply. Disturbances upstream or within wetlands can cause severe erosion and gullying. From 30 - 50% of wetlands have been lost due to landuse changes in their drainage basins or in the wetland itself. Ecohydrological feedback to even relatively modest disturbance of these systems can elicit a cycle of destructive and ongoing degradation. Wetland management requires a good understanding of the ecohydrological and landscape factors that support wetlands, proactive measures for restoration, and sensitivity to the needs of poverty-stricken users of wetland resources.

  16. Seasonal Change in Wetland Coherence as an Aid to Wetland Monitoring

    Directory of Open Access Journals (Sweden)

    Brian Brisco

    2017-02-01

    Full Text Available Water is an essential natural resource, and information about surface water conditions can support a wide variety of applications, including urban planning, agronomy, hydrology, electrical power generation, disaster relief, ecology and preservation of natural areas. Synthetic Aperture Radar (SAR is recognized as an important source of data for monitoring surface water, especially under inclement weather conditions, and is used operationally for flood mapping applications. The canopy penetration capability of the microwaves also allows for mapping of flooded vegetation as a result of enhanced backscatter from what is generally believed to be a double-bounce scattering mechanism between the water and emergent vegetation. Recent investigations have shown that, under certain conditions, the SAR response signal from flooded vegetation may remain coherent during repeat satellite over-passes, which can be exploited for interferometric SAR (InSAR measurements to estimate changes in water levels and water topography. InSAR results also suggest that coherence change detection (CCD might be applied to wetland monitoring applications. This study examines wetland vegetation characteristics that lead to coherence in RADARSAT-2 InSAR data of an area in eastern Canada with many small wetlands, and determines the annual variation in the coherence of these wetlands using multi-temporal radar data. The results for a three-year period demonstrate that most swamps and marshes maintain coherence throughout the ice-/snow-free time period for the 24-day repeat cycle of RADARSAT-2. However, open water areas without emergent aquatic vegetation generally do not have suitable coherence for CCD or InSAR water level estimation. We have found that wetlands with tree cover exhibit the highest coherence and the least variance; wetlands with herbaceous cover exhibit high coherence, but also high variability of coherence; and wetlands with shrub cover exhibit high coherence, but

  17. Hydrological science and wetland restoration: some case studies from Europe

    Directory of Open Access Journals (Sweden)

    2007-01-01

    Full Text Available Throughout the world, wetlands are increasingly being recognised as important elements of the landscape because of their high biodiversity and goods and services they provide to mankind. After many decades of wetland destruction and conversion, large areas of wetlands are now protected under the International Convention on Wetlands (Ramsar and regional or national legislation such as the European Union Habitats Directive. In many cases, there is a need to restore the ecological character of the wetland through appropriate water management. This paper provides examples of scientific knowledge of wetland hydrology that can guide such restoration. It focuses on the need for sound hydrological science on a range of issues including water level control, topography, flood storage, wetland connections with rivers and sustainability of water supply under climate change.

  18. Evaluation of a market in wetland credits: entrepreneurial wetland banking in Chicago.

    Science.gov (United States)

    Robertson, Morgan; Hayden, Nicholas

    2008-06-01

    With the rise of market-led approaches to environmental policy, compensation for permitted discharge of dredge or fill material into wetlands under Section 404 of the U.S. Clean Water Act has been purchased increasingly from entrepreneurial third-party providers. The growth of this practice (i.e., entrepreneurial wetland banking) has resolved many challenges associated with wetland compensation. But it has also produced (1) quantifiable temporal loss of wetland ecological functions, (2) spatial redistribution of wetland area, and (3) a degree of regulatory instability that may pose a threat to entrepreneurial compensation as a sustainable component of wetland-compensation policy. We used achieved compensation ratios, lapse between bank credit sale and the attainment of performance standards, distance between impact and bank site, and changes in bank market area to examine these 3 factors. We analyzed data from a census of all such transactions in the Chicago District of the U.S. Army Corps of Engineers, compiled from site visits, Corps databases, and contacts with consultants and Section 404 permittees. Entrepreneurial banking provided compensation at a lower overall ratio than nonbank forms of compensation. Approximately 60% of bank credits were sold after site-protection standards were met but before ecological performance standards were met at the bank site. The average distance between bank and impact site was approximately 26 km. The area of markets within which established banks can sell wetland credits has fluctuated considerably over the study period. Comparing these data with similar data for other compensation mechanisms will assist in evaluating banking as an element of conservation policy. Data characterizing the performance of entrepreneurial wetland banks in actual regulatory environments are scarce, even though it is the most established of similar markets that have become instrumental to federal policy in administering several major environmental

  19. East African wetland-catchment data base for sustainable wetland management

    OpenAIRE

    Leemhuis, Constanze; Amler, Esther; Diekkrüger, Bernd; Gabiri, Geofrey; Näschen, Kristian

    2016-01-01

    Wetlands cover an area of approx. 18 Mio ha in the East African countries of Kenya, Rwanda, Uganda and Tanzania, with still a relative small share being used for food production. Current upland agricultural use intensification in these countries due to demographic growth, climate change and globalization effects are leading to an over-exploitation of the resource base, followed by an intensification of agricultural wetland use. We aim on translating, transferring and upscali...

  20. The development of a wetland classification and risk assessment index (WCRAI) for non-wetland specialists for the management of natural freshwater wetland ecosystems

    CSIR Research Space (South Africa)

    Oberholster, Paul J

    2014-02-01

    Full Text Available 7599, South Africa 4ESKOM, Research, Testing and Development, Private Bag 40175, Cleveland 2022, South Africa 5Department of Genetics, University of Stellenbosch, Matieland, 7601, South Africa Corresponding author: Prof A-M Botha Department of Genetic... Types Landform and Hydrology Wetland Size Wetland Boundary Hydroperiod Description: Description: Description: Description: Description: Lake wetlands: Depressions in valley bottoms, w hich may be temporarily, seasonally, or permanently, inundated. Unlike...

  1. Education and training of future wetland scientists and managers

    Science.gov (United States)

    Wilcox, D.A.

    2008-01-01

    Wetland science emerged as a distinct discipline in the 1980s. In response, courses addressing various aspects of wetland science and management were developed by universities, government agencies, and private firms. Professional certification of wetland scientists began in the mid-1990s to provide confirmation of the quality of education and experience of persons involved in regulatory, management, restoration/construction, and research involving wetland resources. The education requirements for certification and the need for persons with specific wetland training to fill an increasing number of wetland-related positions identified a critical need to develop curriculum guidelines for an undergraduate wetland science and management major for potential accreditation by the Society of Wetland Scientists. That proposed major contains options directed toward either wetland science or management. Both options include required basic courses to meet the general education requirements of many universities, required upper-level specialized courses that address critical aspects of physical and biological sciences applicable to wetlands, and a minimum of four additional upper-level specialized courses that can be used to tailor a degree to students' interests. The program would be administered by an independent review board that would develop guidelines and evaluate university applications for accreditation. Students that complete the required coursework will fulfill the education requirements for professional wetland scientist certification and possess qualifications that make them attractive candidates for graduate school or entry-level positions in wetland science or management. Universities that offer this degree program could gain an advantage in recruiting highly qualified students with an interest in natural resources. Alternative means of educating established wetland scientists are likewise important, especially to provide specialized knowledge and experience or

  2. Defining Hydrophytes for Wetland Identification and Delineation

    Science.gov (United States)

    2012-01-01

    Corps of Engineers Wetlands Delineation Manual (Environmental Laboratory 1987) “Large plants (macrophytes), such as aquatic mosses , liverworts...Agency, U.S. Fish and Wildlife Service, and USDA Soil Conservation Service. Lichvar, R., and J. Kartesz. 2009. North American digital flora : National

  3. Plant biodiversity changes in Carboniferous tropical wetlands

    DEFF Research Database (Denmark)

    Cleal, C. J.; Uhl, D.; Cascales-Miñana, B.

    2012-01-01

    Using a combination of species richness, polycohort and constrained cluster analyses, the plant biodiversity of Pennsylvanian (late Carboniferous) tropical wetlands (“coal swamps”) has been investigated in five areas in Western Europe and eastern North America: South Wales, Pennines, Ruhr, Saarland...

  4. Methane emission from wetland rice fields

    NARCIS (Netherlands)

    Denier van der Gon, H.A.C.

    1996-01-01


    Methane (CH 4 ) is an important greenhouse gas and plays a key role in tropospheric and stratospheric chemistry. Wetland rice fields are an important source of methane, accounting for approximately 20% of the global anthropogenic

  5. 2011 Summary: Coastal wetland restoration research

    Science.gov (United States)

    Kowalski, Kurt P.; Wiley, Michael J.; Wilcox, Douglas A.; Carlson Mazur, Martha L.; Czayka, Alex; Dominguez, Andrea; Doty, Susan; Eggleston, Mike; Green, Sean; Sweetman, Amanda

    2014-01-01

    The Great Lakes Restoration Initiative (GLRI) projects currently taking place in Great Lakes coastal wetlands provide a unique opportunity to study ecosystem response to management actions as practitioners strive to improve wetland function and increase ecosystem services. Through a partnership between the U.S. Geological Survey – Great Lakes Science Center (GLSC), U.S. Fish and Wildlife Service (USFWS), and Ducks Unlimited, a GLRI-funded project has reestablished the hydrologic connection between an intensively managed impounded wetland (Pool 2B) and Crane Creek, a small Lake Erie tributary, by building a water-control structure that was opened in the spring of 2011. The study site is located within the USFWS Ottawa National Wildlife Refuge (ONWR) and lies within the boundaries of the U.S. Environmental Protection Agency (EPA)-designated Maumee River Area of Concern. The broad objective of the project is to evaluate how hydrologically reconnecting a previously diked wetland impacts fish, mollusks, and other biota and affects nutrient transport, nutrient cycling, water quality, flood storage, and many other abiotic conditions. The results from this project suggest large system-wide benefits from sustainable reestablishment of lake-driven hydrology in this and other similar systems. We comprehensively sampled water chemistry, fish, birds, plants, and invertebrates in Crane Creek coastal wetlands, Pool 2A (a reference diked wetland), and Pool 2B (the reconnected wetland) in 2010 and 2011 to: 1) Characterize spatial and seasonal patterns for these parameters. 2) Examine ecosystem response to the opening of a water-control structure that allows fish passage Our sampling efforts have yielded data that reveal striking changes in water quality, hydrology, and fish assemblages in our experimental unit (2B). Prior to the reconnection, the water chemistry in pools 2A and 2B were very similar. Afterwards, we found that the water chemistry in reconnected Pool 2B was more

  6. Wetlands Evapotranspiration Using Remotely Sensed Solar Radiation

    Science.gov (United States)

    Jacobs, J. M.; Myers, D. A.; Anderson, M. C.

    2001-12-01

    The application of remote sensing methods to estimate evapotranspiration has the advantage of good spatial resolution and excellent spatial coverage, but may have the disadvantage of infrequent sampling and considerable expense. The GOES satellites provide enhanced temporal resolution with hourly estimates of solar radiation and have a spatial resolution that is significantly better than that available from most ground-based pyranometer networks. As solar radiation is the primary forcing variable in wetland evapotranspiration, the opportunity to apply GOES satellite data to wetland hydrologic analyses is great. An accuracy assessment of the remote sensing product is important and the subsequent validation of the evapotranspiration estimates are a critical step for the use of this product. A wetland field experiment was conducted in the Paynes Prairie Preserve, North Central Florida during a growing season characterized by significant convective activity. Evapotranspiration and other surface energy balance components of a wet prairie community dominated by Panicum hemitomon (maiden cane), Ptilimnium capillaceum (mock bishop's weed), and Eupatorium capillifolium (dog fennel) were investigated. Incoming solar radiation derived from GOES-8 satellite observations, in combination with local meteorological measurements, were used to model evapotranspiration from a wetland. The satellite solar radiation, derived net radiation and estimated evapotranspiration estimates were compared to measured data at 30-min intervals and daily times scales.

  7. Ecohydrological characterization of the Nyando wetland, Lake ...

    African Journals Online (AJOL)

    ihe

    Time series hydrological data (1950-2009) were statistically tested for homogeneity using the Spearman's ... for change point analysis, and split-record tests performed for variance (F-test) and mean (t-test). In addition, data ... increase in papyrus losses will pose a big challenge to the ecological functioning of the wetland.

  8. Are constructed treatment wetlands sustainable sanitation solutions?

    Science.gov (United States)

    Langergraber, Guenter

    2013-01-01

    The main objective of sanitation systems is to protect and promote human health by providing a clean environment and breaking the cycle of disease. In order to be sustainable, a sanitation system has to be not only economically viable, socially acceptable and technically and institutionally appropriate, but it should also protect the environment and the natural resources. 'Resources-oriented sanitation' describes the approach in which human excreta and water from households are recognized as resource made available for reuse. Nowadays, 'resources-oriented sanitation' is understood in the same way as 'ecological sanitation'. For resources-oriented sanitation systems to be truly sustainable they have to comply with the definition of sustainable sanitation as given by the Sustainable Sanitation Alliance (SuSanA, www.susana.org). Constructed treatment wetlands meet the basic criteria of sustainable sanitation systems by preventing diseases, protecting the environment, and being an affordable, acceptable, and simple technology. Additionally, constructed treatment wetlands produce treated wastewater of high quality, which is fostering reuse, which in turn makes them applicable in resources-oriented sanitation systems. The paper discusses the features that make constructed treatment wetlands a suitable solution in sustainable resources-oriented sanitation systems, the importance of system thinking for sustainability, as well as key factors for sustainable implementation of constructed wetland systems.

  9. Wetlands Conservation and Use. Issue Pac.

    Science.gov (United States)

    Fish and Wildlife Service (Dept. of Interior), Washington, DC.

    The materials in this educational packet are designed for use with students in grades 4 through 7. They consist of an overview, teaching guides and student data sheets for three activities, and a poster. The overview stresses the significance of wetland habitats in all 50 states. The needs of wildlife and humans are also considered in respect to…

  10. Plant microbial fuel cell applied in wetlands

    NARCIS (Netherlands)

    Wetser, Koen; Liu, Jia; Buisman, Cees; Strik, David

    2015-01-01

    The plant microbial fuel cell (PMFC) has to be applied in wetlands to be able to generate electricity on a large scale. The objective of this PMFC application research is to clarify the differences in electricity generation between a Spartina anglica salt marsh and Phragmites australis peat soil

  11. 398 ASSESSMENT OF WETLAND VALUATION PROCESSES FOR ...

    African Journals Online (AJOL)

    Osondu

    priorities and allocate spending on conservation initiatives. Valuation can also be used to consider the values attached to ... conservation activities and wetland management. By giving objective evidence of the monetary ... tolerant of salt water and occurs primarily in a salt water or estuarine habitat; and any swamp, marsh ...

  12. Effects of wastewater on forested wetlands

    Science.gov (United States)

    Doyle, Thomas W.

    2002-01-01

    Cycling nutrient-enriched wastewater from holding ponds through natural, forested wetlands is a practice that municipal waste treatment managers are considering as a viable option for disposing of wastewater. In this wastewater cycling process, sewer effluent that has been circulated through aerated ponds is discharged into neighboring wetland systems. To understand how wastewater cycling affects forest and species productivity, researchers at the USGS National Wetlands Research Center conducted dendroecological investigations in a swamp system and in a bog system that have been exposed to wastewater effluent for many decades. Dendroecology involves the study of forest changes over time as interpreted from tree rings. Tree-ring chronologies describe the pattern and history of growth suppression and release that can be associated with aging and disturbances such as hurricanes, floods, and fires. But because of limited monitoring, little is known about the potential for long-term effects on forested wetlands as a result of wastewater flooding. USGS researchers used tree rings to detect the effect of wastewater cycling on tree growth. Scientists expected to find that tree-ring width would be increased as a result of added nutrients.

  13. MANUAL - CONSTRUCTED WETLANDS TREATMENT OF MUNICIPAL WASTEWATERS

    Science.gov (United States)

    Constructed wetlands are man-made wastewater treatment systems. They usually have one or more cells less than 1 meter deep and are planted with aquatic greenery. Water outlet structures control the flow of wastewater through the system to keep detention times and water levels at ...

  14. Native plants for effective coastal wetland restoration

    Science.gov (United States)

    Howard, Rebecca J.

    2003-01-01

    Plant communities, along with soils and appropriate water regimes, are essential components of healthy wetland systems. In Louisiana, the loss of wetland habitat continues to be an issue of major concern. Wetland loss is caused by several interacting factors, both natural and human-induced (e.g., erosion and saltwater intrusion from the construction of canals and levees). Recent estimates of annual coastal land loss rates of about 62 km2 (24 mi2 ) over the past decade emphasize the magnitude of this problem. In an attempt to slow the rate of loss and perhaps halt the overall trend, resource managers in Louisiana apply various techniques to restore damaged or degraded habitats to functioning wetland systems.Researchers at the U.S. Geological Survey’s National Wetlands Research Center (NWRC) have cooperated with the Louisiana Department of Natural Resources in studies that address effective restoration strategies for coastal wetlands. The studies have identified differences in growth that naturally exist in native Louisiana wetland plant species and genetic varieties (i.e., clones) within species. Clones of a species have a distinctive genetic identity, and some clones may also have distinctive growth responses under various environmental conditions (i.e., preferences). Indeed, large areas of coastal marsh are typically populated by several clones of a plant species, each growing in a microenvironment suited to its preferences.These studies will provide information that will assist resource managers in selecting plant species and clones of species with known growth characteristics that can be matched to environmental conditions at potential restoration sites. Before the studies began, a collection of several clones from four plant species native to coastal Louisiana was established. The species collected included saltgrass (Distichlis spicata), common reed (Phragmites australis), giant bulrush (Schoenoplectus californicus), and saltmarsh bulrush (Schoenoplectus

  15. Assessing invasive plant infestation in freshwater wetlands

    Science.gov (United States)

    Torbick, Nathan M.

    Recent shifts in wetland ecosystem management goals have directed efforts toward measuring ecological integrity, rather than only using physical and chemical measures of ecosystems as health indicators. Invasive species pose one of the largest threats to wetlands integrity. Resource managers can benefit from improved methods for identifying invasive plant species, assessing infestation, and monitoring control measures. The utilization of advanced remote sensing tools for species-level mapping has been increasing and techniques need to be explored for identifying species of interest and characterizing infestation. The overarching goal of this research was to develop monitoring technologies to map invasive plants and quantify wetland infestation. The first field-level objective was to characterize absorption and reflectance features and assess processing techniques for separating wetland species. The second field-level objective was to evaluate the abilities of a shape filter to identify wetland invasive plant species. The first landscape-level objective was to classify hyperspectral imagery in order to identify invasives of interest. The second landscape-level objective was to quantify infestation within the study area. Field-level hyperspectral data (350-2500nm) were collected for twenty-two wetland plant species in a wetland located in the lower Muskegon River watershed in Michigan, USA. The Jeffries-Matusita distance measure, continuum removal, and a shape-filter were applied to hyperspectral species reflectance data to characterize spectral features. Generally, continuum removal decreased separation distance for the invasive species of interest. Using the shape-filter, Lythrum salicaria, Phragmites australis, and Typha latifolia possessed maximum separation (distinguished from other species) at the near-infrared edge (700nm) and water absorption region (1350nm), the near-infrared down slope (1000 and 1100nm), and the visible/chlorophyll absorption region (500nm

  16. Buffering Capacity Studies in a Rural and Urban Wetlands in Lake ...

    African Journals Online (AJOL)

    Wetlands also reduce the impact of flooding, speed of flow, and hence store water while releasing it slowly. The extent to which the wetlands perform these roles was investigated in two wetlands, Kinawataka wetland with an industrial and heavily populated catchment, and Kisoma wetland with subsistence agricultural ...

  17. Managing the wetlands. People and rivers: Africa.

    Science.gov (United States)

    Dugan, P

    1993-01-01

    At the current population growth rate in Africa, the population will reach 1 billion by 2010. Water is needed to sustain these people, yet rainfall in Africa is erratic. Africans are already confronting a shortage of freshwater. Agriculture supports 66% of the population of sub-Saharan Africa. Sound agricultural development is needed to curb rural-urban migration, but a constant supply of freshwater is essential. Major rivers (the Limpopo in southern Africa and the Save/Sabi in Zimbabwe and Mozambique) now flow only seasonally. The flows of the Chari-Logona, the Nile, and the Zambezi are falling. Continual mismanagement of Africa's river basins coupled with current projections of global climate change will expand desiccation. All but the White Nile and the Zaire rivers flood seasonally every year, thereby expanding Africa's wetlands. Wetlands have been targeted for development projects (e.g., hydroelectric projects and large dams), largely to meet urban-industrial demands. Development planners tend to ignore the economic value of the wetlands. For example, the Niger Inland Delta sustains 550,000 people, 1 million cattle, and 1 million sheep. Wetlands replenish ground water and serve as natural irrigation. River basin planning often results in environmentally disastrous schemes which do not understand local management practices. Hydrologists, engineers, geologists, and economics design these schemes, but sociologists, anthropologists, and development experts should be included. The unfinished Jonglei Canal in southern Sudan would have adversely affected 400,000 pastoralists. The Volta River Authority's Akosombo Dam displaced 84,000 people and flooded the most productive agricultural land in Ghana. A sustainable future in Africa depends on understanding the interactions of human uses and the ways in which they relate to the natural variations in river flow. The IUCN Wetlands Programme, based on the principles of the World Conservation Strategy, is working with

  18. Fate of viruses in artificial wetlands.

    Science.gov (United States)

    Gersberg, R M; Lyon, S R; Brenner, R; Elkins, B V

    1987-04-01

    Little is known about the ability of wetlands to remove disease-causing viruses from municipal wastewater. In this study we examined the survival of several indicators of viral pollution (indigenous F-specific bacteriophages, seeded MS2 bacteriophage, and seeded human poliovirus type 1) applied in primary municipal wastewater to artificial wetland ecosystems. Only about 1% of the indigenous F-specific RNA bacteriophages survived flow through the vegetated wetland beds at a 5-cm-day-1 hydraulic application rate during the period from June through December 1985. The total number of indigenous F-specific bacteriophages (F-specific RNA and F-specific DNA phages) was also reduced by about 99% by wetland treatment, with the mean inflow concentration over the period of an entire year reduced from 3,129 to 33 PFU ml-1 in the outflow of a vegetated bed and to 174 PFU ml-1 in the outflow of an unvegetated bed. Such superior treatment by the vegetated bed demonstrates the significant role of higher aquatic plants in the removal process. Seeded MS2 bacteriophage and seeded poliovirus were removed more efficiently than were the indigenous bacteriophages, with less than 0.2% of MS2 and 0.1% of the poliovirus surviving flow at the same hydraulic application rate. The decay rate (k) of MS2 in a stagnant wetlands (k = 0.012 to 0.028 h-1) was lower than that for flowing systems (k = 0.44 to 0.052 h-1), reflecting the enhanced capacity for filtration or adsorption of viruses by the root-substrate complex (and associated biofilm).(ABSTRACT TRUNCATED AT 250 WORDS)

  19. Travelling Concepts

    DEFF Research Database (Denmark)

    Simonsen, Karen-Margrethe

    2013-01-01

    Review of "Travelling Concepts, Metaphors, and Narratives: Literary and Cultural Studies in an Age of Interdisciplinary Research" ed. by Sibylle Baumgarten, Beatrice Michaelis and Ansagar Nünning, Trier; Wissenschaftlicher Verlag Trier, 2012......Review of "Travelling Concepts, Metaphors, and Narratives: Literary and Cultural Studies in an Age of Interdisciplinary Research" ed. by Sibylle Baumgarten, Beatrice Michaelis and Ansagar Nünning, Trier; Wissenschaftlicher Verlag Trier, 2012...

  20. Wetland Management - A Success Story In Transition - Restoration of Bhoj Wetland, India

    Science.gov (United States)

    Mudgal, M. K.; Tech, B. M.; Miwwa

    Wetlands are beautiful, biologically diverse, hydrologically disperse and ecological vibrant landscape world wide, embracing soils, water, plants, animals and human be- ing. The population growth in the catchment of wetlands led to multifarious human interventions for deriving maximum benefit from the wetlands and their catchments neglecting and disrespecting the principles of sustainability. This act of destruction has been pronounced in developing countries which are under the grip of poverty, illiteracy and lack of environmental education. SBhoj WetlandS is a Lake situated ´ in Central India, Earthen Dam across the river KOLANS in 1061 AD by then ruler king BHOJ. Till 1950 this Wetland was served as a principal source of water supply, even not requiring filtration. As the city grew and the wetland started getting encir- cled by habitation and urban development, the anthropogenic pressures on the lake increased, thus accelerating the process of eutrophication, making the water unfit for human consumption without due treatment due to deterioration of quality of water. For the conservation and management of Bhoj Wetland (Lake Bhopal) a project is under- taken in the financial assistance from Japan Bank for International Cooperation (JBIC, Japan). The project envisages tackle various issues of conservation and management ofn the wetlands under a multi prongs strategies and manner. Although these issues are deeply interrelated and interlinked but for operational and management ease, these issues have been divided into various sub projects which are being tackled indepen- dently, albeit with undercurrent knowledge and understanding of the related issues and interconnectivity with each other. The Project itself is an apt example of the spectrum of varied problems and issues that come to light when attempts are made for sustain- able conservation and management of a wetland. The Project as envisaged intends to conserve and manage through 14 sub projects as under:- Sub

  1. The significant surface-water connectivity of "geographically isolated wetlands"

    Science.gov (United States)

    Calhoun, Aram J.K.; Mushet, David M.; Alexander, Laurie C.; DeKeyser, Edward S.; Fowler, Laurie; Lane, Charles R.; Lang, Megan W.; Rains, Mark C.; Richter, Stephen; Walls, Susan

    2017-01-01

    We evaluated the current literature, coupled with our collective research expertise, on surface-water connectivity of wetlands considered to be “geographically isolated” (sensu Tiner Wetlands 23:494–516, 2003a) to critically assess the scientific foundation of grouping wetlands based on the singular condition of being surrounded by uplands. The most recent research on wetlands considered to be “geographically isolated” shows the difficulties in grouping an ecological resource that does not reliably indicate lack of surface water connectivity in order to meet legal, regulatory, or scientific needs. Additionally, the practice of identifying “geographically isolated wetlands” based on distance from a stream can result in gross overestimates of the number of wetlands lacking ecologically important surface-water connections. Our findings do not support use of the overly simplistic label of “geographically isolated wetlands”. Wetlands surrounded by uplands vary in function and surface-water connections based on wetland landscape setting, context, climate, and geographic region and should be evaluated as such. We found that the “geographically isolated” grouping does not reflect our understanding of the hydrologic variability of these wetlands and hence does not benefit conservation of the Nation’s diverse wetland resources. Therefore, we strongly discourage use of categorizations that provide overly simplistic views of surface-water connectivity of wetlands fully embedded in upland landscapes.

  2. Modeling the hydrological significance of wetland restoration scenarios.

    Science.gov (United States)

    Martinez-Martinez, Edwin; Nejadhashemi, A Pouyan; Woznicki, Sean A; Love, Bradley J

    2014-01-15

    Wetlands provide multiple socio-economic benefits, among them mitigating flood through short- and long-term water storage functions and assisting with reduction of downstream flood peaks. However, their effectiveness in controlling floods is dictated by wetland size and distribution within a watershed. Due to the complexity of wetland hydrological processes at the watershed scale, the Soil and Water Assessment Tool (SWAT) was used to study the impact of wetland restoration on streamflow rates and peaks in the Shiawassee River watershed of Michigan. Wetland restoration scenarios were developed based on combinations of wetland area (50, 100, 250, and 500 ha) and wetland depth (15, 30, 61, and 91 cm). Increasing wetland area, rather than depth, had a greater impact on long-term average daily streamflow. Wetland implementation resulted in negligible reductions in daily peak flow rates and frequency of peak flow events at the watershed outlet. In developing high impact areas for wetland restoration, similar locations were identified for reduction of subbasin and watershed outlet streamflow. However, the best combinations of area/depth differed depending on the goal of the restoration plan. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Options for water-level control in developed wetlands

    Science.gov (United States)

    Kelley, J. R.; Laubhan, M. K.; Reid, F. A.; Wortham, J. S.; Fredrickson, L. H.

    1993-01-01

    Wetland habitats in the United States currently are lost at a rate of 260,000 acres/year (105,218 ha/year). Consequently, water birds concentrate in fewer and smaller areas. Such concentrations may deplete food supplies and influence behavior, physiology, and survival. Continued losses increase the importance of sound management of the remaining wetlands because water birds depend on them. Human activities modified the natural hydrology of most remaining wetlands in the conterminous United States, and such hydrologic alterations frequently reduce wetland productivity. The restoration of original wetland functions and productivity often requires the development of water distribution and discharge systems to emulate natural hydrologic regimes. Construction of levees and correct placement of control structures and water-delivery and water-discharge systems are necessary to (1) create soil and water conditions for the germination of desirable plants, (2) control nuisance vegetation, (3) promote the production of invertebrates, and (4) make foods available for wildlife that depends of wetlands (Leaflets 13.2.1 and 13.4.6). This paper provides basic guidelines for the design of wetlands that benefit wildlife. If biological considerations are not incorporated into such designs, the capability of managing wetlands for water birds is reduced and costs often are greater. Although we address the development of palustrine wetlands in migration and wintering areas, many of the discussed principles are applicable to the development of other wetland types and in other locations.

  4. The cost of wetland creation and restoration. Final report

    Energy Technology Data Exchange (ETDEWEB)

    King, D.; Bohlen, C.

    1995-08-01

    This report examines the economics of wetland creation, restoration, and enhancement projects, especially as they are used within the context of mitigation for unavoidable wetland losses. Complete engineering-cost-accounting profiles of over 90 wetland projects were developed in collaboration with leading wetland restoration and creation practitioners around the country to develop a primary source database. Data on the costs of over 1,000 wetland projects were gathered from published sources and other available databases to develop a secondary source database. Cases in both databases were carefully analyzed and a set of baseline cost per acre estimates were developed for wetland creation, restoration, and enhancement. Observations of costs varied widely, ranging from $5 per acre to $1.5 million per acre. Differences in cost were related to the target wetland type, and to site-specific and project-specific factors that affected the preconstruction, construction, and post-construction tasks necessary to carry out each particular project. Project-specific and site-specific factors had a much larger effect on project costs than wetland type for non-agricultural projects. Costs of wetland creation and restoration were also shown to differ by region, but not by as much as expected, and in response to the regulatory context. The costs of wetland creation, restoration, and enhancement were also analyzed in a broader economic context through examination of the market for wetland mitigation services, and through the development of a framework for estimating compensation ratios-the number of acres of created, restored, or enhanced wetland required to compensate for an acre of lost natural wetland. The combination of per acre creation, restoration, and enhancement costs and the compensation ratio determine the overall mitigation costs associated with alternative mitigation strategies.

  5. Food web structure in oil sands reclaimed wetlands.

    Science.gov (United States)

    Kovalenko, K E; Ciborowski, J J H; Daly, C; Dixon, D G; Farwell, A J; Foote, A L; Frederick, K R; Costa, J M Gardner; Kennedy, K; Liber, K; Roy, M C; Slama, C A; Smits, J E G

    2013-07-01

    Boreal wetlands play an important role in global carbon balance. However, their ecosystem function is threatened by direct anthropogenic disturbance and climate change. Oil sands surface mining in the boreal regions of Western Canada denudes tracts of land of organic materials, leaves large areas in need of reclamation, and generates considerable quantities of extraction process-affected materials. Knowledge and validation of reclamation techniques that lead to self-sustaining wetlands has lagged behind development of protocols for reclaiming terrestrial systems. It is important to know whether wetlands reclaimed with oil sands process materials can be restored to levels equivalent to their original ecosystem function. We approached this question by assessing carbon flows and food web structure in naturally formed and oil sands-affected wetlands constructed in 1970-2004 in the postmining landscape. We evaluated whether a prescribed reclamation strategy, involving organic matter amendment, accelerated reclaimed wetland development, leading to wetlands that were more similar to their natural marsh counterparts than wetlands that were not supplemented with organic matter. We measured compartment standing stocks for bacterioplankton, microbial biofilm, macrophytes, detritus, and zoobenthos; concentrations of dissolved organic carbon and residual naphthenic acids; and microbial production, gas fluxes, and aquatic-terrestrial exports (i.e., aquatic insect emergence). The total biomass of several biotic compartments differed significantly between oil sands and reference wetlands. Submerged macrophyte biomass, macroinvertebrate trophic diversity, and predator biomass and richness were lower in oil sands-affected wetlands than in reference wetlands. There was insufficient evidence to conclude that wetland age and wetland amendment with peat-mineral mix mitigate effects of oil sands waste materials on the fully aquatic biota. Although high variability was observed within

  6. Rejuvenating the Largest Treatment Wetland in Florida: Tracer Moment and Model Analysis of Wetland Hydraulic Performance

    Science.gov (United States)

    White, J. R.; Wang, H.; Jawitz, J. W.; Sees, M. D.

    2004-12-01

    The Orlando Easterly Wetland (OEW), the largest municipal treatment wetland in Florida, began operation in 1987 mainly for reducing nutrient loads in tertiary treated domestic wastewater produced by the city of Orlando. After more than ten years of operation, a decrease in total P removal effectiveness has occurred since 1999, even though the effluent concentration of the wetland has remained below the permitted limit of 0.2 mg/L,. Hydraulic inefficiency in the wetland, especially in the front-end cells of the north flow train, was identified as a primary cause of the reduced treatment effectiveness. In order to improve the hydraulic performance of the OEW and maintain its efficient phosphorus treatment, a rejuvenation program (including muck removal followed by re-vegetation) was initiated on the front-end cells of the north flow train in 2002. The effectiveness of this activity for the improvement of hydraulic performance was evaluated with a tracer test and subsequent moment and model analyses for the tracer resident time distribution (RTDs). Results were compared to similar tracer tests conducted prior to rejuvenation activities. The models included one-path tank-in-series (TIS), two-path TIS, one-dimensional transport with inflow and storage (OTIS), plug flow with dispersion (PFD), and plug flow with fractional dispersion (PFFD). The hydraulic performance was characterized by both wetland hydraulic efficiency and the spreading of tracers. The results demonstrated that the rejuvenation considerably improved the hydraulic performance in the restored area. Also presented is a comparison of the wetland response between both bromide and lithium tracers, and the determination of the complete moments of residence time distributions (RTD) in cell-network wetlands.

  7. Placing prairie pothole wetlands along spatial and temporal continua to improve integration of wetland function in ecological investigations

    Science.gov (United States)

    Euliss, Ned H.; Mushet, David M.; Newton, Wesley E.; Otto, Clint R.V.; Nelson, Richard D.; LaBaugh, James W.; Scherff, Eric J.; Rosenberry, Donald O.

    2014-01-01

    We evaluated the efficacy of using chemical characteristics to rank wetland relation to surface and groundwater along a hydrologic continuum ranging from groundwater recharge to groundwater discharge. We used 27 years (1974–2002) of water chemistry data from 15 prairie pothole wetlands and known hydrologic connections of these wetlands to groundwater to evaluate spatial and temporal patterns in chemical characteristics that correspond to the unique ecosystem functions each wetland performed. Due to the mineral content and the low permeability rate of glacial till and soils, salinity of wetland waters increased along a continuum of wetland relation to groundwater recharge, flow-through or discharge. Mean inter-annual specific conductance (a proxy for salinity) increased along this continuum from wetlands that recharge groundwater being fresh to wetlands that receive groundwater discharge being the most saline, and wetlands that both recharge and discharge to groundwater (i.e., groundwater flow-through wetlands) being of intermediate salinity. The primary axis from a principal component analysis revealed that specific conductance (and major ions affecting conductance) explained 71% of the variation in wetland chemistry over the 27 years of this investigation. We found that long-term averages from this axis were useful to identify a wetland’s long-term relation to surface and groundwater. Yearly or seasonal measurements of specific conductance can be less definitive because of highly dynamic inter- and intra-annual climate cycles that affect water volumes and the interaction of groundwater and geologic materials, and thereby influence the chemical composition of wetland waters. The influence of wetland relation to surface and groundwater on water chemistry has application in many scientific disciplines and is especially needed to improve ecological understanding in wetland investigations. We suggest ways that monitoring in situ wetland conditions could be linked

  8. Methane emissions from global wetlands: An assessment of the uncertainty associated with various wetland extent data sets

    Science.gov (United States)

    Zhang, Bowen; Tian, Hanqin; Lu, Chaoqun; Chen, Guangsheng; Pan, Shufen; Anderson, Christopher; Poulter, Benjamin

    2017-09-01

    A wide range of estimates on global wetland methane (CH4) fluxes has been reported during the recent two decades. This gives rise to urgent needs to clarify and identify the uncertainty sources, and conclude a reconciled estimate for global CH4 fluxes from wetlands. Most estimates by using bottom-up approach rely on wetland data sets, but these data sets show largely inconsistent in terms of both wetland extent and spatiotemporal distribution. A quantitative assessment of uncertainties associated with these discrepancies among wetland data sets has not been well investigated yet. By comparing the five widely used global wetland data sets (GISS, GLWD, Kaplan, GIEMS and SWAMPS-GLWD), it this study, we found large differences in the wetland extent, ranging from 5.3 to 10.2 million km2, as well as their spatial and temporal distributions among the five data sets. These discrepancies in wetland data sets resulted in large bias in model-estimated global wetland CH4 emissions as simulated by using the Dynamic Land Ecosystem Model (DLEM). The model simulations indicated that the mean global wetland CH4 emissions during 2000-2007 were 177.2 ± 49.7 Tg CH4 yr-1, based on the five different data sets. The tropical regions contributed the largest portion of estimated CH4 emissions from global wetlands, but also had the largest discrepancy. Among six continents, the largest uncertainty was found in South America. Thus, the improved estimates of wetland extent and CH4 emissions in the tropical regions and South America would be a critical step toward an accurate estimate of global CH4 emissions. This uncertainty analysis also reveals an important need for our scientific community to generate a global scale wetland data set with higher spatial resolution and shorter time interval, by integrating multiple sources of field and satellite data with modeling approaches, for cross-scale extrapolation.

  9. Tree establishment in response to hydrology at IDOT wetland mitigation sites.

    Science.gov (United States)

    2015-02-01

    The Illinois Department of Transportation (IDOT) has compensated for unavoidable impacts to wetlands in transportation : project corridors by restoring and creating wetlands throughout Illinois. As part of the IDOT Wetlands Program, monitoring : of p...

  10. Groundwater–surface water interactions in wetlands for integrated water resources management (preface)

    NARCIS (Netherlands)

    Schot, P.P.; Winter, T.C.

    2006-01-01

    Groundwater–surface water interactions constitute an important link between wetlands and the surrounding catchment. Wetlands may develop in topographic lows where groundwater exfiltrates. This water has its functions for ecological processes within the wetland, while surface water outflow from

  11. Mapping and Monitoring Wetlands Using SENTINEL-2 Satellite Imagery

    Science.gov (United States)

    Kaplan, G.; Avdan, U.

    2017-11-01

    Mapping and monitoring of wetlands as one of the world`s most valuable natural resource has gained importance with the developed of the remote sensing techniques. This paper presents the capabilities of Sentinel-2 successfully launched in June 2015 for mapping and monitoring wetlands. For this purpose, three different approaches were used, pixel-based, object-based and index-based classification. Additional, for more successful extraction of wetlands, a combination of object-based and index-based method was proposed. It was proposed the use of object-based classification for extraction of the wetlands boundaries and the use of Normalized Difference Vegetation Index (NDVI) and Normalized Difference Water Index (NDWI) for classifying the contents within the wetlands boundaries. As a study area in this paper Sakarbasi spring in Eskisehir, Turkey was chosen. The results showed successful mapping and monitoring of wetlands with kappa coefficient of 0.95.

  12. Landscape hydrology. The hydrological legacy of deforestation on global wetlands.

    Science.gov (United States)

    Woodward, C; Shulmeister, J; Larsen, J; Jacobsen, G E; Zawadzki, A

    2014-11-14

    Increased catchment erosion and nutrient loading are commonly recognized impacts of deforestation on global wetlands. In contrast, an increase in water availability in deforested catchments is well known in modern studies but is rarely considered when evaluating past human impacts. We used a Budyko water balance approach, a meta-analysis of global wetland response to deforestation, and paleoecological studies from Australasia to explore this issue. After complete deforestation, we demonstrated that water available to wetlands increases by up to 15% of annual precipitation. This can convert ephemeral swamps to permanent lakes or even create new wetlands. This effect is globally significant, with 9 to 12% of wetlands affected, including 20 to 40% of Ramsar wetlands, but is widely unrecognized because human impact studies rarely test for it. Copyright © 2014, American Association for the Advancement of Science.

  13. Wetlands Assessment for site characterization, Advanced Neutron Source (ANS)

    Energy Technology Data Exchange (ETDEWEB)

    Wade, M.C.; Socolof, M.L. [Oak Ridge National Lab., TN (United States). Energy Div.; Rosensteel, B.; Awl, D. [JAYCOR, Vienna, VA (United States)

    1994-10-01

    This Wetlands Assessment has been prepared in accordance with the Department of Energy`s (DOE) Code of Federal Regulations (CFR) 10 CFR 1022, Compliance with Floodplain/Wetlands Environmental Review Requirements, which established the policy and procedure for implementing Executive Order 11990, Protection of Wetlands. The proposed action is to conduct characterization activities in or near wetlands at the ANS site. The proposed action will covered under a Categorical Exclusion, therefore this assessment is being prepared as a separate document [10 CFR 1022.12(c)]. The purpose of this Wetlands Assessment is to fulfill the requirements of 10 CFR 1022.12(a) by describing the project, discussing the effects of the proposed action upon the wetlands, and considering alternatives to the proposed action.

  14. Effects of energy development on wetland plants and macroinvertebrate communities in Prairie Pothole Region wetlands

    Science.gov (United States)

    Preston, Todd M.; Ray, Andrew M.

    2016-01-01

    Energy production in the Williston Basin, USA, results in the coproduction of highly saline, sodium chloride-dominated water (brine). The Prairie Pothole Region (PPR) overlies the northeastern portion of the Williston Basin. Although PPR wetlands span a range of salinity, the dominant salt is sodium sulfate, and salinities are much lower than brine. Introduction of brine to wetlands can result in pronounced water-quality changes; however, the ecological effects of such contamination are poorly understood. We examined the effects of brine contamination on primary productivity, emergent macrophyte tissue chemistry, and invertebrate communities from 10 wetlands in the PPR. Based on a recognized Contamination Index (CI) used to identify brine contamination in the PPR, water-quality samples indicated that six wetlands were uncontaminated while four were contaminated. Across this gradient, we observed a significant decrease in above-ground biomass and a significant increase in tissue chloride concentrations of hardstem bulrush (Schoenoplectus acutus) with increased CI values. Additionally, a significant decrease in macroinvertebrate taxonomic richness with increased CI values was observed. These findings provide needed insight on the biological effects of brine contamination on PPR wetlands.

  15. Accumulation of Cd, Pb and Zn by 19 wetland plant species in constructed wetland.

    Science.gov (United States)

    Liu, Jianguo; Dong, Yuan; Xu, Hai; Wang, Deke; Xu, Jiakuan

    2007-08-25

    Uptake and distribution of Cd, Pb and Zn by 19 wetland plant species were investigated with experiments in small-scale plot constructed wetlands, into which artificial wastewater dosed with Cd, Pb and Zn at concentrations of 0.5, 2.0 and 5.0mgl(-1) was irrigated. The results showed that the removal efficiency of Cd, Pb and Zn from the wastewater were more than 90%. Generally, there were tens differences among the 19 plant species in the concentrations and quantity accumulations of the heavy metals in aboveground part, underground part and whole plants. The distribution ratios into aboveground parts for the metals absorbed by plants varied also largely from about 30% to about 90%. All the plants accumulated, in one harvest, 19.85% of Cd, 22.55% of Pb and 23.75% of Zn that were added into the wastewater. Four plant species, e.g. Alternanthera philoxeroides, Zizania latifolia, Echinochloa crus-galli and Polygonum hydropiper, accumulated high amounts of Cd, Pb and Zn. Monochoria vaginalis was capable for accumulating Cd and Pb, Isachne globosa for Cd and Zn, and Digitaria sanguinalis and Fimbristylis miliacea for Zn. The results indicated that the plants, in constructed wetland for the treatment of wastewater polluted by heavy metals, can play important roles for removal of heavy metals through phytoextraction. Selection of plant species for use in constructed wetland will influence considerably removal efficiency and the function duration of the wetland.

  16. Surface-flow wetland for water reclamation at Batamindo Industrial Park

    Directory of Open Access Journals (Sweden)

    Salim Chris

    2017-01-01

    Full Text Available The reclamation of wastewater as clean water resource is essential in the concept of water conservation. In industries, this will also lead to overall plant operational cost reduction. In this study, a pilot-scale surface-flow constructed wetland system filled with water hyacinth was used to treat effluent from existing sewage treatment plant at Batamindo Industrial Park. The sewage treatment plant effluent with quality fulfilling the regulation of Indonesian Ministry of Environment No.5/2014/XLVII-Group I was treated further to meet the raw water quality standard of Class I defined by Indonesian Government Regulation No.82/2001 as potable water resource. The system was able to maintain high chemical oxygen demand removal efficiency of around 80% from initial value of 100 mg/L in sewage treatment plant effluent despite the change of flow rate from 10 to 40 m3/day (corresponding to hydraulic retention time of 2 to 0.5 days in constructed wetland respectively. The constructed wetland could successfully increase dissolved oxygen concentration, remove coliform bacteria and improve clarity (reduce turbidity of water while maintaining neutral pH and low TSS values. Some additional post-treatments such as simple aeration and ultraviolet irradiation may improve the water quality further to meet the Class I Standard of potable water resource.

  17. Effects of sediment removal on vegetation communities in Rainwater Basin playa wetlands.

    Science.gov (United States)

    Beas, Benjamin J; Smith, Loren M; LaGrange, Theodore G; Stutheit, Randy

    2013-10-15

    Sedimentation from cultivated agricultural land use has altered the natural hydrologic regimes of depressional wetlands in the Great Plains. These alterations can negatively affect native wetland plant communities. Our objective was to determine if restored wetlands are developing plant communities similar to reference wetland conditions following hydrologic restoration. For this study, hydrology was restored via sediment removal. Thirty-four playa wetlands in reference, restored, and agricultural condition within the Rainwater Basin Region of Nebraska were sampled in 2008 and 2009. In 2008, reference and restored wetlands had higher species richness and more native, annual, and perennial species than agricultural wetlands. Restored wetlands had similar exotic species richness compared to reference and agricultural wetlands; however, reference wetlands contained more than agricultural wetlands. Restored wetlands proportion of exotics was 3.5 and 2 times less than agricultural wetlands and reference wetlands respectively. In 2009, reference and restored wetlands had higher species richness, more perennial species, and more native species than agricultural wetlands. Restored wetlands contained a greater number and proportion of annuals than reference and agricultural wetlands. Canonical Correspondence Analysis showed that reference, restored, and agricultural wetlands are dominated by different plant species and guilds. Restored wetland plant communities do not appear to be acting as intermediates between reference and agricultural wetland conditions or on a trajectory to reach reference conditions. This may be attributed to differing seed bank communities between reference and restored wetlands, dispersal limitations of perennial plant guilds associated with reference wetland conditions, and/or management activities may be preventing restored wetlands from reaching reference status. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Assessing the impact of African wetlands on rainfall

    Science.gov (United States)

    Taylor, Christopher; Dadson, Simon; Prigent, Catherine

    2015-04-01

    Wetlands are an important component of the landscape in many low-lying tropical regions. Compared to their surroundings, wetlands provide strongly contrasting fluxes of sensible and latent heat into the atmosphere, with the potential to affect convective rainfall locally and regionally. The extents of many tropical wetlands exhibit strong seasonal and interannual variations, in response to rain which may have fallen in previous seasons, many hundreds of kilometres upstream. The timing and extent of wetland flooding is also vulnerable to upstream water management. This suggests that future rainfall patterns around wetlands may change in response to both remote rainfall, and new water infrastructure, for example in hydropower and irrigation projects. Here we use a range of observational datasets to explore the impacts of different wetlands across sub-Saharan Africa on rainfall under current climate conditions. Satellite observations include gridded 3-hourly precipitation (e.g. CMORPH), TRMM precipitation radar, and a dynamic wetland extent dataset based on multiple satellites. These remotely-sensed sources are complemented by river discharge and gauge-based rainfall data. We find that regions containing extensive wetlands typically exhibit suppressed daytime rainfall over the wetland itself, whilst new convective rain events are more likely to develop above nearby drier surfaces. This behaviour, previously documented around the Niger Inland Delta in Mali, is consistent with the development of wetland breezes which provide local convergence zones favourable for convective initiation. In some regions, where long-lived organised convective systems contribute substantially to rainfall totals, local wetland triggers can therefore influence rainfall over a much larger area. Around wetlands which exhibit strong interannual variability driven by remote upstream rainfall, the analysis provides evidence for a surface feedback

  19. Optimizing processes for biological nitrogen removal in Nakivubo wetland, Uganda

    OpenAIRE

    Kyambadde, Joseph

    2005-01-01

    The ability of Nakivubo wetland (which has performed tertiary water treatment for Kampala city for the past 40 years) to respond to pollution and to protect the water quality of Inner Murchison Bay of Lake Victoria was investigated. The aim of this study was to assess the capacity of Nakivubo wetland to remove nitrogen from the wastewater after its recent encroachment and modification, in order to optimize biological nitrogen removal processes using constructed wetland technology. Field studi...

  20. Comparison of vertical and horizontal systems of constructed wetlands

    OpenAIRE

    Vidmar, Urša

    2011-01-01

    The constructed wetlands (CW) or artificial wetlands with the wastewater treatment as their primary function are complex systems of water, substrate, plants, animals and microorganisms (bacteria). In practice there are two general systems in use, the system with the surface and the system with the subsurface flow, which is further divided into the system with the horizontal water flow and in the system with the vertical water flow. Understanding of constructed wetlands function...

  1. Nedern Brook Wetland SSSI. Phase 1, hydrological monitoring

    OpenAIRE

    Farr, Gareth

    2016-01-01

    This report provides a description of the first targeted hydrological and hydrogeological investigation at the Nedern Brook Wetland SSSI (described as ‘the wetland’) South Wales. The wetland is designated for its importance for overwintering and wading birds. The Nedern Brook – the water course that flows through the wetland from north to south is classified as a main river, however it has been heavily modified in its lower reaches. Historical alterations to the Nedern Brook, such as straight...

  2. The I-70 Greenfield Rest Area Wetland Projects

    OpenAIRE

    Kao, Shih-Chieh; Chang, Ting Pong; Sultana, Rebeka; Konopka, Thomas; Govindaraju, Rao S.; Partridge, Barry

    2009-01-01

    On-site treatment of wastewater at highway rest areas poses some unique and difficult challenges because of the rural locale, high variability in wastewater flow rate and strength, and lack of knowledgeable personnel on-site. As a potential alternative, a constructed subsurface wetland system was built at the I-70 rest stop nearby Greenfield, Indiana, in 2003. This wetland system, mainly composed of three wetland cells, also includes draw-and-fill and recirculation mechanisms to increase oxyg...

  3. The state of oil sands wetland reclamation

    Energy Technology Data Exchange (ETDEWEB)

    Foote, L. [Alberta Univ., Edmonton, AB (Canada)

    2010-07-01

    The state of oil sand and wetlands reclamation was the subject of this presentation. Wildlife habitat and response, plant community and production, and microbial biology were examples of research areas surrounding this body of knowledge. Hydrological research and landscape ecology were discussed along with peatlands and marshes such as the Corvette and the Kia. A few examples of what has been learned in the area of wetlands reclamation was presented. Other topics were also discussed, such as timeframes, pragmatic policy approaches, reclamation costs, research needs and some ideas on maturing the field. It was concluded that environmental conditions change with time and area because of time, chemistry, physics, stoichiometry, as well as biotic mediation and facilitation. figs.

  4. Rodentborne fungal pathogens in wetland agroecosystem

    Directory of Open Access Journals (Sweden)

    Manuel Thomas

    2012-03-01

    Full Text Available The past few decades have witnessed an overwhelming increase in the incidence of fungal infections, particularly in immunocompromised individuals. Consequently, zoonotic diseases, especially through rodents constitute a prominent group among the emerging diseases. Rodents are commensal to man and related health risks are common. Water rats (Rattus norvegicus are typical to Vembanadu-Kol wetland agroecosystems, where they can act as a good carrier nexus for pathogens. The present study evaluates the carrier status of water rats with respect to fungal pathogens. A total of fifty two fungi covering eighteen families were isolated. Among the isolates, eight were dermaptophytes and Chrysosporium sp. (89.18% was the frequent isolate. The source-wise analyses showed an increased isolation from ventral hair (67 isolates. Water rats of Vembanadu-Kol wetland agroecosystem are potent carrier of dermaptophytes and other opportunistic fungi, and strong carrier paths are existing too.

  5. Establishment of a constructed wetland in extreme dryland.

    Science.gov (United States)

    Tencer, Yoram; Idan, Gil; Strom, Marjorie; Nusinow, Uri; Banet, Dorit; Cohen, Eli; Schröder, Peter; Shelef, Oren; Rachmilevitch, Shimon; Soares, Ines; Gross, Amit; Golan-Goldhirsh, Avi

    2009-11-01

    The project was set to construct an extensive wetland in the southernmost region of Israel at Kibbutz Neot Smadar (30 degree 02'45" N and 35 degree 01'19" E). The results of the first period of monitoring, summary, and perspectives are presented. The constructed wetland (CW) was built and the subsequent monitoring performed in the framework of the Southern Arava Sustainable Waste Management Plan, funded by the EU LIFE Fund. The specific aims were: (1) To end current sewage disposal and pollution of the ground, the aquifer, and the dry river bed (wadi) paths by biologically treating the sewage as part of the creation of a sustainable wetland ecosystem. (2) Serve as an example of CW in the Negev highlands and the Arava Valley climates for neighboring communities and as a test ground for plants and building methods appropriate to hyper arid climate. (3) Serve as an educational resource and tourist attraction for groups to learn about water reuse, recycling, local wildlife and migrating birds, including serving the heart of a planned Ecological-Educational Bird Park. This report is intended to allow others who are planning similar systems in hyper arid climates to learn from our experience. The project is located in an extreme arid desert with less than 40 mm of rain annually and temperature ranges of -5 degree C to +42 degree C. The site receives 165-185 m3 of municipal and agricultural wastes daily, including cowshed and goat wastes and winery outflow. The CW establishment at Neot Smadar was completed in October 2006. For 8 months, clean water flowed through the system while the plants were taking root. In June 2007, the wetland was connected to the oxidation pond and full operation began. Because of seepage and evaporation, during the first several months, the water level was not high enough to allow free flow from one bed to the next. To bed A, the water was pumped periodically from the oxidation pond (Fig. 1) and from there flowed by gravitation through the rest

  6. Analysis of Selected Functional Characteristics of Wetlands.

    Science.gov (United States)

    1979-02-01

    functioning in this capa- *1 city . Assessing the value of wetlands for water quality improvements also de- pends on one’s individual bias or perspective... sponges ; rather they release excess moisture during wet periods and deplete supply during dry months. *R. R. Bay, (1967) in a study on forested peat...1, Water Quality. Indeed, the research re- quirements for shoreline protection, stormwater storage, and groundwater re- charge are all similar and can

  7. A description of the wetlands research programme

    CSIR Research Space (South Africa)

    Walmsley, RD

    1988-01-01

    Full Text Available with research related to environmental problems. The national programme includes research activities in inland waters and terrestrial ecosystems and deals with aspects of nature conservation. The Wetland Research Programme has been initiated in order...). There has also been a healthy contribution to the international literature with more than 100 papers published in international refereed journals (Huntley 1987). According to the International Union for Conservation of Nature and Natural resources (IUCN...

  8. Assessing Man’s Impact on Wetlands,

    Science.gov (United States)

    1980-12-01

    WETLANS Wetland is a collective term encompassing ... areas such as swamps, marshes, and bogs. It shares their hydrologic, vege - tative, and soil...center of much of this activity, developed GRID, a computer graphic display system.14 GRID divides the study area into square cells (of various sizes...and permits the analyst to assign values to the cell for each feature being considered. A computer printed (not plotted) map is easily prepared for the

  9. Concept Mapping.

    Science.gov (United States)

    Callison, Daniel

    2001-01-01

    Explains concept mapping as a heuristic device that is helpful in visualizing the relationships between and among ideas. Highlights include how to begin a map; brainstorming; map applications, including document or information summaries and writing composition; and mind mapping to strengthen note-taking. (LRW)

  10. Hybrid constructed wetlands for wastewater treatment: a worldwide review

    National Research Council Canada - National Science Library

    Sayadi, M.H; Kargar, R; Doosti, M.R; Salehi, H

    2012-01-01

    .... This study aimed to assess the potentiality of hybrid constructed wetlands for treating of landfill leachate, river polluted water, domestic, industrial, hospital, runoff and agricultural wastewater...

  11. [Recreational attraction of urban park wetlands in Beijing].

    Science.gov (United States)

    Li, Fen; Sun, Ran-Hao; Chen, Li-Ding

    2012-08-01

    Taking the 20 urban park wetlands in Beijing as test objects, a 3-layer evaluation index system including urban park wetland landscape quality, location condition, and accessibility for the recreational attraction of urban bark wetlands was established, and, by using analytic hierarchy process (AHP) and an integrating index evaluation method, the recreational attraction of the urban park wetlands in Beijing was quantitatively assessed, and validated with questionnaire data. In Beijing, the urban park wetlands with high recreational attraction were in the order of the Summer Palace, Olympic Park, Qinglong Lake Park, Beihai Park, Yuanmingyuan Park, Yuyuantan Park, Shidu, Golden Sea Lake scenic area, Taoranting Park, and Yeyahu wetland. The Rice Fragrance Lake wetland and Zhenzhuhu scenic area had the lowest recreational attraction, and the others were fair. The evaluation results were supported by the questionnaire data, which indicated that the index system and evaluation model were useful. According to the recreational services, the 20 park wetlands in Beijing could be clustered into four categories, which could be managed in different ways. Appropriately assessing the recreational services of urban park wetlands could help the decision-making on the urban parks optimal planning and designing, improve human living environment, and optimize the spatial distribution of urban landscape.

  12. Constructed wetlands for pollution control: processes, performance, design and operation

    National Research Council Canada - National Science Library

    2000-01-01

    .... Types of constructed wetland, major design parameters, role of vegetation, hydraulic patterns, loadings, treatment efficiency, construction, operation and maintenance costs are discussed in depth...

  13. Wetlands and Water Framework Directive: Protection, Management and Climate Change

    National Research Council Canada - National Science Library

    Ignar, Stefan; Grygoruk, Mateusz

    2015-01-01

    .... Although the general scientific interest in specific issues such as wetlands, climate change, nature conservation and the WFD enjoy a well established position in international environmental research...

  14. SAFARI 2000 Wetlands Data Set, 1-Deg (Matthews and Fung)

    Data.gov (United States)

    National Aeronautics and Space Administration — This database provides information on the distribution and environmental characteristics of natural wetlands. The database was developed to evaluate the role of...

  15. SAFARI 2000 Wetlands Data Set, 1-Deg (Matthews and Fung)

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This database provides information on the distribution and environmental characteristics of natural wetlands. The database was developed to evaluate the...

  16. Disturbance metrics predict a wetland Vegetation Index of Biotic Integrity

    Science.gov (United States)

    Stapanian, Martin A.; Mack, John; Adams, Jean V.; Gara, Brian; Micacchion, Mick

    2013-01-01

    Indices of biological integrity of wetlands based on vascular plants (VIBIs) have been developed in many areas in the USA. Knowledge of the best predictors of VIBIs would enable management agencies to make better decisions regarding mitigation site selection and performance monitoring criteria. We use a novel statistical technique to develop predictive models for an established index of wetland vegetation integrity (Ohio VIBI), using as independent variables 20 indices and metrics of habitat quality, wetland disturbance, and buffer area land use from 149 wetlands in Ohio, USA. For emergent and forest wetlands, predictive models explained 61% and 54% of the variability, respectively, in Ohio VIBI scores. In both cases the most important predictor of Ohio VIBI score was a metric that assessed habitat alteration and development in the wetland. Of secondary importance as a predictor was a metric that assessed microtopography, interspersion, and quality of vegetation communities in the wetland. Metrics and indices assessing disturbance and land use of the buffer area were generally poor predictors of Ohio VIBI scores. Our results suggest that vegetation integrity of emergent and forest wetlands could be most directly enhanced by minimizing substrate and habitat disturbance within the wetland. Such efforts could include reducing or eliminating any practices that disturb the soil profile, such as nutrient enrichment from adjacent farm land, mowing, grazing, or cutting or removing woody plants.

  17. [Problems and countermeasures in the application of constructed wetlands].

    Science.gov (United States)

    Huang, Jin-Lou; Chen, Qin; Xu, Lian-Huang

    2013-01-01

    Constructed wetlands as a wastewater eco-treatment technology are developed in recent decades. It combines sewage treatment with the eco-environment in an efficient way. It treats the sewage effectively, and meanwhile beautifies the environment, creates ecological landscape, and brings benefits to the environment and economics. The unique advantages of constructed wetlands have attracted intensive attention since developed. Constructed wetlands are widely used in treatment of domestic sewage, industrial wastewater, and wastewater from mining and petroleum production. However, many problems are found in the practical application of constructed wetland, e. g. they are vulnerable to changes in climatic conditions and temperature, their substrates are easily saturated and plugged, they are readily affected by plant species, they often occupy large areas, and there are other problems including irrational management, non-standard design, and a single function of ecological service. These problems to a certain extent influence the efficiency of constructed wetlands in wastewater treatment, shorten the life of the artificial wetland, and hinder the application of artificial wetland. The review presents correlation analysis and countermeasures for these problems, in order to improve the efficiency of constructed wetland in wastewater treatment, and provide reference for the application and promotion of artificial wetland.

  18. Copper stable isotopes to trace copper behavior in wetland systems.

    Science.gov (United States)

    Babcsányi, Izabella; Imfeld, Gwenaël; Granet, Mathieu; Chabaux, François

    2014-05-20

    Wetlands are reactive zones of the landscape that can sequester metals released by industrial and agricultural activities. Copper (Cu) stable isotope ratios (δ(65)Cu) have recently been used as tracers of transport and transformation processes in polluted environments. Here, we used Cu stable isotopes to trace the behavior of Cu in a stormwater wetland receiving runoff from a vineyard catchment (Alsace, France). The Cu loads and stable isotope ratios were determined in the dissolved phase, suspended particulate matter (SPM), wetland sediments, and vegetation. The wetland retained >68% of the dissolved Cu and >92% of the SPM-bound Cu, which represented 84.4% of the total Cu in the runoff. The dissolved Cu became depleted in (65)Cu when passing through the wetland (Δ(65)Cuinlet-outlet from 0.03‰ to 0.77‰), which reflects Cu adsorption to aluminum minerals and organic matter. The δ(65)Cu values varied little in the wetland sediments (0.04 ± 0.10‰), which stored >96% of the total Cu mass within the wetland. During high-flow conditions, the Cu flowing out of the wetland became isotopically lighter, indicating the mobilization of reduced Cu(I) species from the sediments and Cu reduction within the sediments. Our results demonstrate that the Cu stable isotope ratios may help trace Cu behavior in redox-dynamic environments such as wetlands.

  19. Ecosystem response to interventions: lessons from restored and created wetland ecosystems

    National Research Council Canada - National Science Library

    Moreno‐Mateos, David; Meli, Paula; Vara‐Rodríguez, María Isabel; Aronson, James; Strecker, Angela

    2015-01-01

    .... We estimated effect sizes from measurements of biotic assemblage structure and biogeochemical functions at 628 restored and created wetlands globally, in comparison with 499 reference wetlands...

  20. Carbon content on perturbed wetlands of Yucatan

    Science.gov (United States)

    Morales Ojeda, S. M.; Orellana, R.; Herrera Silveira, J.

    2013-05-01

    The north coast of Yucatan Peninsula is a karstic scenario where the water flows mainly underground through the so called "cenotes"-ring system ("sink holes") toward the coast. This underground water system enhances the connection between watershed condition and coastal ecosystem health. Inland activities such as livestock, agriculture and urban development produce changes in the landscape, hydrological connectivity and in the water quality that can decrease wetland coverage specially mangroves and seagrasses. We conducted studies on the description of structure, biomass and carbon content of the soil, above and below ground of four different types of wetland in a perturbed region. The wetland ecological types were freshwater (Typha domingensis), dwarf mangroves (Avicenia germinans), grassland (Cyperacea) and Seagrasses. Due to the area is mainly covered by mangroves, they represent the most important carbon storage nevertheless the condition of the structure determine the carbon content in soil. Through GIS tools we explore the relationships between land use and costal condition in order to determine priority areas for conservation within the watershed that could be efficient to preserve the carbon storage of this area.

  1. Performance characterisation of a constructed wetland.

    Science.gov (United States)

    Mangangka, Isri R; Egodawatta, Prasanna; Parker, Nathaniel; Gardner, Ted; Goonetilleke, Ashantha

    2013-01-01

    Performance of a constructed wetland is commonly reported as being variable due to the site specific nature of influential factors. This paper discusses the outcomes from an in-depth study which characterised the treatment performance of a wetland based on the variation in the runoff regime. The study included a comprehensive field monitoring of a well-established constructed wetland in Gold Coast, Australia. Samples collected at the inlet and outlet were tested for Total Suspended Solids (TSS), Total Nitrogen (TN) and Total Phosphorus (TP). Pollutant concentrations in the outflow were found to be consistent irrespective of the variation in inflow water quality. The analysis revealed two different treatment characteristics for events with different rainfall depths. TSS and TN load reduction was found to be strongly influenced by the hydraulic retention time where performance was relatively superior for rainfall events below the design event. For small events, treatment performance was higher at the beginning of the event and gradually decreased during the course of the event. For large events, the treatment performance was comparatively poor at the beginning and improved during the course of the event. The analysis also confirmed the variable treatment trends for different pollutant types.

  2. Removal Kinetics of Organic Matter and Nitrogen Using Microbial Electrochemical Based - Constructed Wetlands (iMETland)

    DEFF Research Database (Denmark)

    Ramírez Vargas, Carlos Andrés; Arias, Carlos Alberto; Carvalho, Pedro

    In recent years the combination of Constructed Wetlands and Microbial Fuel Cell (MFC), has led to an innovative set- up for wastewater treatment and energy harvesting, relaying on electrodes and external circuits (CW – MFC). Based on this approach, a new concept is being developed to create....... The iMETland technology is still in development and therefore uncertainties still exist regarding the dynamics in the removal of pollutants, as well as in its performance along time. To elucidate these uncertainties, a benchmark study is being conducted to characterize the processes and interactions n...

  3. Thresholds of sea-level rise rate and sea-level rise acceleration rate in a vulnerable coastal wetland.

    Science.gov (United States)

    Wu, Wei; Biber, Patrick; Bethel, Matthew

    2017-12-01

    Feedbacks among inundation, sediment trapping, and vegetation productivity help maintain coastal wetlands facing sea-level rise (SLR). However, when the SLR rate exceeds a threshold, coastal wetlands can collapse. Understanding the threshold helps address key challenges in ecology-nonlinear response of ecosystems to environmental change, promotes communication between ecologists and resource managers, and facilitates decision-making in climate change policies. We studied the threshold of SLR rate and developed a new threshold of SLR acceleration rate on sustainability of coastal wetlands as SLR is likely to accelerate due to enhanced anthropogenic forces. Deriving these two thresholds depends on the temporal scale, the interaction of SLR with other environmental factors, and landscape metrics, which have not been fully accounted for before this study. We chose a representative marine-dominated estuary in the northern Gulf of Mexico, Grand Bay in Mississippi, to test the concept of SLR thresholds. We developed a mechanistic model to simulate wetland change and then derived the SLR thresholds for Grand Bay. The model results show that the threshold of SLR rate in Grand Bay is 11.9 mm/year for 2050, and it drops to 8.4 mm/year for 2100 using total wetland area as a landscape metric. The corresponding SLR acceleration rate thresholds are 3.02 × 10-4 m/year2 and 9.62 × 10-5 m/year2 for 2050 and 2100, respectively. The newly developed SLR acceleration rate threshold can help quantify the temporal lag before the rapid decline in wetland area becomes evident after the SLR rate threshold is exceeded, and cumulative SLR a wetland can adapt to under the SLR acceleration scenarios. Based on the thresholds, SLR that will adversely impact the coastal wetlands in Grand Bay by 2100 will fall within the likely range of SLR under a high warming scenario (RCP8.5), highlighting the need to avoid RCP8.5 to preserve these marshes.

  4. Wetlands in Changed Landscapes: The Influence of Habitat Transformation on the Physico-Chemistry of Temporary Depression Wetlands

    OpenAIRE

    Bird, Matthew S.; Jenny A Day

    2014-01-01

    Temporary wetlands dominate the wet season landscape of temperate, semi-arid and arid regions, yet, other than their direct loss to development and agriculture, little information exists on how remaining wetlands have been altered by anthropogenic conversion of surrounding landscapes. This study investigates relationships between the extent and type of habitat transformation around temporary wetlands and their water column physico-chemical characteristics. A set of 90 isolated depression wetl...

  5. Sensitivity analysis of a wetland methane emission model based on temperate and arctic wetland sites

    Directory of Open Access Journals (Sweden)

    J. van Huissteden

    2009-12-01

    Full Text Available Modelling of wetland CH4 fluxes using wetland soil emission models is used to determine the size of this natural source of CH4 emission on local to global scale. Most process models of CH4 formation and soil-atmosphere CH4 transport processes operate on a plot scale. For large scale emission modelling (regional to global scale upscaling of this type of model requires thorough analysis of the sensitivity of these models to parameter uncertainty. We applied the GLUE (Generalized Likelihood Uncertainty Analysis methodology to a well-known CH4 emission model, the Walter-Heimann model, as implemented in the PEATLAND-VU model. The model is tested using data from two temperate wetland sites and one arctic site. The tests include experiments with different objective functions, which quantify the fit of the model results to the data.

    The results indicate that the model 1 in most cases is capable of estimating CH4 fluxes better than an estimate based on the data avarage, but does not clearly outcompete a regression model based on local data; 2 is capable of reproducing larger scale (seasonal temporal variability in the data, but not the small-scale (daily temporal variability; 3 is not strongly sensitive to soil parameters, 4 is sensitive to parameters determining CH4 transport and oxidation in vegetation, and the temperature sensitivity of the microbial population. The GLUE method also allowed testing of several smaller modifications of the original model.

    We conclude that upscaling of this plot-based wetland CH4 emission model is feasible, but considerable improvements of wetland CH4 modelling will result from improvement of wetland vegetation data.

  6. Reestablishment of wetland vegetation on gas pipeline rights-of-way in six different wetland ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Zimmerman, R.E. Shem, L.; Wilkey, P.L. [Argonne National Lab., IL (United States); Van Dyke, G.D. [Trinity Christian Coll. Palos Heights, IL (United States); Hackney, C. [North Carolina Univ., Wilmington, NC (United States); Gowdy, M. [Institute of Technology, Chicago, IL (United States)

    1992-05-01

    Vegetational surveys were carried out to compare reestablished vegetation on pipeline rights-of-way (ROWS) with that in adjacent natural ecosystems undisturbed by pipeline installation. Six sites of various ages were surveyed in ecosystems ranging from coastal marsh to forested wetland. At all sites except one, both the number and the percentage of wetland species on the ROW approximated or exceeded those in the adjacent natural area. In four ecosystems, the vegetation on the ROW was limited to a herbaceous layer by ROW maintenance; thus, the ROWs often involved a complex of species quite different from that found in the adjacent ecosystems.

  7. Pre-Construction Biogeochemical Analysis of Mercury in Wetlands Bordering the Hamilton Army Airfield (HAAF) Wetlands Restoration Site. Part 2

    National Research Council Canada - National Science Library

    Best, Elly P; Fredrickson, Herbert L; Hintelmann, Holger; Clarisse, Olivier; Dimock, Brian; Lutz, Charles H; Lotufo, Gui R; Millward, Rod N; Bednar, Anthony J; Furey, John S

    2007-01-01

    ...) is working with the San Francisco Basin Regional Water Board, California State Coastal Conservancy, and San Francisco Bay Conservation and Development Commission to reconstruct wetlands at the former...

  8. Process-Based Modeling of Constructed Wetlands

    Science.gov (United States)

    Baechler, S.; Brovelli, A.; Rossi, L.; Barry, D. A.

    2007-12-01

    Constructed wetlands (CWs) are widespread facilities for wastewater treatment. In subsurface flow wetlands, contaminated wastewater flows through a porous matrix, where oxidation and detoxification phenomena occur. Despite the large number of working CWs, system design and optimization are still mainly based upon empirical equations or simplified first-order kinetics. This results from an incomplete understanding of the system functioning, and may in turn hinder the performance and effectiveness of the treatment process. As a result, CWs are often considered not suitable to meet high water quality-standards, or to treat water contaminated with recalcitrant anthropogenic contaminants. To date, only a limited number of detailed numerical models have been developed and successfully applied to simulate constructed wetland behavior. Among these, one of the most complete and powerful is CW2D, which is based on Hydrus2D. The aim of this work is to develop a comprehensive simulator tailored to model the functioning of horizontal flow constructed wetlands and in turn provide a reliable design and optimization tool. The model is based upon PHWAT, a general reactive transport code for saturated flow. PHWAT couples MODFLOW, MT3DMS and PHREEQC-2 using an operator-splitting approach. The use of PHREEQC to simulate reactions allows great flexibility in simulating biogeochemical processes. The biogeochemical reaction network is similar to that of CW2D, and is based on the Activated Sludge Model (ASM). Kinetic oxidation of carbon sources and nutrient transformations (nitrogen and phosphorous primarily) are modeled via Monod-type kinetic equations. Oxygen dissolution is accounted for via a first-order mass-transfer equation. While the ASM model only includes a limited number of kinetic equations, the new simulator permits incorporation of an unlimited number of both kinetic and equilibrium reactions. Changes in pH, redox potential and surface reactions can be easily incorporated

  9. Restoration of Bhoj Wetlands At Bhopal, India

    Science.gov (United States)

    Shukla, S. S.; Kulshrestha, M.; Wetland Project, Bhoj

    Bhoj Wetlands comprise the two lakes at Bhopal, India. These wetlands are listed amongst the 21 lakes recognized by Ministry of Environment and Forest, India and are under consideration for Ramsar lake status. The twin lakes have a total water- spread area of 32.29 sq. kms and catchment area of 370.6 sq. kms and both lakes support a rich and diverse range of flora and fauna. Currently with the help of 7055-m Yen soft loan from Japan Bank for International Cooperation (JBIC), a comprehen- sive project called the Bhoj Wetland Project has been launched for Eco-conservation management of twin lakes and this is one of the most reputed projects of its kind being undertaken in India. This paper presents details of the various works being undertaken for restoration of these wetlands at Bhopal. The Bhoj Wetlands are located at Bhopal, a city founded in 11th century AD by King Bhoj and which became known for the worst industrial Gas tragedy in 1984 when thousands lost their lives. The city is still recovering and the Bhoj Wetland Project is playing a very crucial role in improving the overall environmental status of the City. These wetlands are at present facing acute en- vironmental degradation due to pollution from a number of sources such as inflow of untreated sewage and solid waste, silt erosion and inflow from catchment, commercial activities like washing of clothes and cleaning of vehicles etc., inflow of agricultural residues and pesticides, and encroachment by builders all of which are fast eroding the rich eco-culture, flora fauna in and around the wetlands. The Bhoj Wetland Project is being implemented since the year 1995 and is scheduled to end in March 2002. The project works are being undertaken under the overall aegis of Ministry of Housing Environment, Govt. of Madhya Pradesh (M.P.) State, India. All the detailed project reports (DPRs) and preliminary ground work was undertaken by the in-house staff of Bhoj Wetland project, resulting in huge amounts of

  10. Astrophysical Concepts

    CERN Document Server

    Harwit, Martin

    2006-01-01

    This classic text, aimed at senior undergraduates and beginning graduate students in physics and astronomy, presents a wide range of astrophysical concepts in sufficient depth to give the reader a quantitative understanding of the subject. Emphasizing physical concepts, the book outlines cosmic events but does not portray them in detail: it provides a series of astrophysical sketches. For this fourth edition, nearly every part of the text has been reconsidered and rewritten, new sections have been added to cover recent developments, and others have been extensively revised and brought up to date. The book begins with an outline of the scope of modern astrophysics and enumerates some of the outstanding problems faced in the field today. The basic physics needed to tackle these questions are developed in the next few chapters using specific astronomical processes as examples. The second half of the book enlarges on these topics and shows how we can obtain quantitative insight into the structure and evolution of...

  11. Effects of Environmental Conditions on an Urban Wetland's Methane Fluxes

    Science.gov (United States)

    Naor Azrieli, L.; Morin, T. H.; Bohrer, G.; Schafer, K. V.; Brooker, M.; Mitsch, W. J.

    2013-12-01

    Methane emissions from wetlands are the largest natural source of uncertainty in the global methane (CH4) budget. Wetlands are highly productive ecosystems with a large carbon sequestration potential. While wetlands are a net sink for carbon dioxide, they also release methane, a potent greenhouse gas. To effectively develop wetland management techniques, it is important to properly calculate the carbon budget of wetlands by understand the driving factors of methane fluxes. We constructed an eddy flux covariance system in the Olentangy River Wetland Research Park, a series of created and restored wetland in Columbus Ohio. Through the use of high frequency open path infrared gas analyzer (IRGA) sensors, we have continuously monitored the methane fluxes associated with the wetland since May 2011. To account for the heterogeneous landscape surrounding the tower, a footprint analysis was used to isolate data originating from within the wetland. Continuous measurements of the meteorological and environmental conditions at the wetlands coinciding with the flux measurements allow the interactions between methane fluxes and the climate and ecological forcing to be studied. The wintertime daily cycle of methane peaks around midday indicating a typical diurnal pattern in cold months. In the summer, the peak shifts to earlier in the day and also includes a daily peak occurring at approximately 10 AM. We believe this peak is associated with the onset of photosynthesis in Typha latifolia flushing methane from the plant's air filled tissue. Correlations with methane fluxes include latent heat flux, soil temperature, and incoming radiation. The connection to radiation may be further evidence of plant activity as a driver of methane fluxes. Higher methane fluxes corresponding with higher soil temperature indicates that warmer days stimulate the methanogenic consortium. Further analysis will focus on separating the methane fluxes into emissions from different terrain types within

  12. Results of a modeling workshop concerning preservation and protection of wetlands in North Dakota

    Science.gov (United States)

    Andrews, Austin K.; Auble, Gregor T.; Ellison, Richard A.; Hamilton, David B.; Roelle, James E.

    1981-01-01

    In a recently signed letter, the Governor of North Dakota and the Assistant Secretary of the Interior for Fish and Wildlife and Parks charged a joint state-federal study group with examination of two separate questions: 1) mitigation for the Garrison Diversion Project; and 2) planning for long-range protection and preservation of fish and wildlife habitat in North Dakota. The cochair for this study group (the Secretary of the Interior's Field Representative, Denver, Colorado, and the Natural Resources Coordinator for North Dakota) further articulated the charge concerning the second of these two questions to include three steps: 1) development of a general plan for preservation and protection of migratory waterfowl and their associated wetland habitat; 2) a comprehensive analysis of alternative strategies, including opportunities and constraints, for achieving the goals articulated in Step 1; and 3) design of a coordinated state-federal public information program to assist in plan implementation. In order to obtain input from a variety of interests, the joint study group initiated step 2 activities with a five-day workshop in Bismarck, N. D.; December 8-12, 1980. The objectives of the workshop were: 1) to identify alternative strategies for preserving and enhancing waterfowl production habitat in North Dakota; 2) to identify opportunities and constraints associated with those alternatives; and 3) to promote communication and understanding of the implications of those alternatives for all affected parties. To achieve these objectives, the workshop utilized a group of concepts and techniques collectively known as Adaptive Environmental Assessment (AEA). Developed by Dr. C. S. Holling and his co-workers at the University of British Columbia, the AEA process involves planners, managers, scientists, and other interested parties in a structures atmosphere whose focus is the construction and examination of a computerized simulation model of the resource system under

  13. Human wetland dependency and socio-economic evaluation of wetland functions through participatory approach in rural India

    Directory of Open Access Journals (Sweden)

    Malabika Biswas

    2010-12-01

    Full Text Available Wetlands are an important source of natural resources upon which rural economies depend. They have increasingly been valuable for their goods and services, and the intrinsic ecological value they provide to local populations, as well as people living outside the periphery of the wetlands. Stakeholders' participation is essential to the protection and preservation of wetlands because it plays a very important role economically as well as ecologically in the wetland system. The objective of this study was to determine whether gender, educational status, mouzas (which are constituents of a block according to the land reform of the West Bengal Government in India, and wetland functions have any influence on the annual income of the local community. Considering a floodplain wetland in rural India, the focus was extended to recognize the pattern of wetland functions according to the nature of people's involvement through cluster analysis of the male and female populations. Using the statistical software R-2.8.1, an ANOVA (analysis of variance table was constructed. Since the p value (significance level was lower than 0.05 for each case, it can be concluded that gender, educational status, mouzas, and wetland functions have a significant influence on annual income. However, S-PLUS-2000 was applied to obtain a complete scenario of the pattern of wetland functions, in terms of involvement of males and females, through cluster analysis. The main conclusion is that gender, educational status, mouzas, and wetland functions have significant impacts on annual income, while the pattern of occupation of the local community based on wetland functions is completely different for the male and female populations.

  14. Contribution of wetland agriculture to farmers' livelihood in Rwanda

    NARCIS (Netherlands)

    Nabahungu, N.L.; Visser, S.M.

    2011-01-01

    This study analyzes factors that contribute to the livelihood of smallholder farmers living in the vicinity of the Cyabayaga and Rugeramigozi wetlands. Three tools were used: 1) focus group discussion 2) formal surveys and 3) Monitoring for Quality Improvement (MONQI). Farming systems in wetlands

  15. Contribution of Wetlands to Household Income and Food Security in ...

    African Journals Online (AJOL)

    Specifically the study assessed the contribution of wetland system to household income and food security and problems associated with the utilization of the wetland. Both primary and secondary data were used. Primary data were collected by use of structured questionnaire administered to different households whose ...

  16. Assessing wetland health using a newly developed land cover ...

    African Journals Online (AJOL)

    However, the wetland health assessment tools used in South Africa are highly technical, rendering them largely inaccessible to non-specialists. Recently, Kotze (2015) developed a tool which seeks to address this gap by involving the wider community in monitoring the health of wetlands in South Africa. The aim of the ...

  17. Depressional wetland vegetation types: a question of plant commmunity development

    Science.gov (United States)

    Katherine L. Kirkman; Charles P. Goebel; Larry West; Mark B. Drew; Brian Palik

    2000-01-01

    When wetland restoration includes re-establishing native plant taxa as an objective, an understanding of the variables driving the development of plant communities is necessary. With this in mind, we examined soil and physiographic characteristics of depressional wetlands of three vegetation types (cypressgum swamps, cypress savannas, and grass-sedge marshes) located...

  18. Assessment of Wetland Valuation Processes for Compensation in ...

    African Journals Online (AJOL)

    The issue of compensation has been debated in various fora; however compensation on wetland resources has not been given the primary place. Wetland valuation like any other type of valuation requires going through stages, which may be more complex than real estate valuation for compensation. This study therefore ...

  19. Aquatic and wetland vascular plants of the northern Great Plains

    Science.gov (United States)

    Gary E. Larson

    1993-01-01

    A taxonomic treatment of aquatic and wetland vascular plants has been developed as a tool for identifying over 500 plant species inhabiting wetlands of the northern Great Plains region. The treatment provides dichotomous keys and botanical descriptions to facilitate identification of all included taxa. Illustrations are also provided for selected species. Geographical...

  20. Molecular Characterization of Wetland Soil Bacterial Community in Constructed Mesocosms

    Science.gov (United States)

    2006-06-01

    mainly determined by bulk soil community for Carex arenaria . Microbial Dechlorination Dechlorination within a wetland is best understood by examining...de Boer, W. (2005). Rhizosphere bacterial community composition in natural stands of carex arenaria (sand sedge) is determined by bulk soil...wetland mesocosms and to identify any bacterial dominance. Carex comosa, Scirpus atrovirens, and Eleocharis erythropoda were planted in multiple

  1. The Impacts of wetland restoration on Fish Productivity in Nigeria

    Science.gov (United States)

    Ayorinde, O. A.; Okunade, K. M.; Agboola, D. M.; Adesokan, Z. A.

    2016-02-01

    Wetland is one of the resources of high value which has been exposed to indiscriminate use. It is an important ecosystem to fish and loss or degradation of wetland will have a direct consequence on sustainable fisheries. This paper reviewed the term "wetland", its functions and values, importance to fish production in Nigeria and threats to its sustainability. The term "wetland" has been defined by various researchers especially based on their profession and their needs but up till today there is no single definition accepted by all users. In Nigeria, the most commonly adopted is that of RAMSAR convention. Wetland has both marketed and non-marketed functions and values. They provide essential link in the life cycle of 75 percent of the fish and shell fish commercially harvested in the world and are vital to fish health. Despite the importance, there have been exceptional losses of wetlands. Lagos state alone has witnessed more than 96 percent loss. Major threats to wetlands are: agriculture, development, pollution and climate change. Therefore proper management of the wetland ecosystem is important in other to ensure continuous fish production.

  2. Evaluation of selected wetland plants for removal of chromium from ...

    African Journals Online (AJOL)

    Wastewater from leather processing industries is very complex and leads to water pollution if discharged untreated, especially due to its high organic loading and chromium content. In this study, the phytoremediation efficiency of selected wetland plant species in subsurface flow (SSF) constructed wetlands receiving ...

  3. Wetland assessment, monitoring and management in India using geospatial techniques.

    Science.gov (United States)

    Garg, J K

    2015-01-15

    Satellite remote sensing and GIS have emerged as the most powerful tools for inventorying, monitoring and management of natural resources and environment. In the special context of wetland ecosystems, remotely sensed data from orbital platforms have been extensively used in India for the inventory, monitoring and preparation of action plans for conservation and management. First scientific inventory of wetlands in India was carried out in 1998 by Space Applications Centre (ISRO), Ahmedabad using indigenous IRS (Indian Remote Sensing Satellite) data of 1992-93 timeframe, which stimulated extensive use of geospatial techniques for wetland conservation and management. Subsequently, with advances in GIS, studies were carried out for development of Wetland Information System for a state (West Bengal) and for Loktak lake wetland (a Ramsar site) as a prelude to National Wetland Information System. Research has also been carried out for preparation of action plans especially for Ramsar sites in the country. In a novel research, use of the geospatial technology has also been demonstrated for biodiversity conservation using landscape ecological metrics. A country-wide estimate of emission of methane, a Green House Gas, from wetlands has also been made using MODIS data. Present article critically reviews the work carried out in India for wetland conservation and management using geospatial techniques. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Restoring wetlands after the Rodeo-Chediski Wildfire

    Science.gov (United States)

    Jonathan W. Long; B. Mae Burnette; Alvin L. Medina

    2004-01-01

    The largest wildfire in Arizona history damaged many important springs and wetlands on the western half of the White Mountain Apache Reservation in the summer of 2002. With support through the Burned Area Emergency Rehabilitation plan for the fire, we conducted assessments of dozens of these wetland sites. Two large wet meadows, Swamp Spring and Turkey Spring, were...

  5. Agricultural Encroachment: Implications for Carbon Sequestration in Tropical African Wetlands

    Science.gov (United States)

    Jones, M. B.; Saunders, M.; Kansiime, F.

    2013-12-01

    Tropical wetlands have been shown to exhibit high rates of net primary productivity and may therefore play an important role in global climate change mitigation through carbon assimilation and sequestration. Many permanently flooded areas of tropical East Africa are dominated by the highly productive C4 emergent macrophyte sedge, Cyperus papyrus L. (papyrus). However, increasing population densities around wetland margins in East Africa are reducing the extent of papyrus coverage due to the planting of subsistence crops such as Cocoyam (Colocasia esculenta). We have assessed the impact of this land use change on the carbon cycle in theis wetland environment. Eddy covariance techniques were used, on a campaign basis, to measure fluxes of carbon dioxide over both papyrus and cocoyam dominated wetlands located on the Ugandan shore of Lake Victoria. The integration of flux data over the annual cycle shows that papyrus wetlands have the potential to act as a sink for significant amounts of carbon, in the region of 10 t C ha-1 yr-1. The cocoyam vegetation was found to assimilate ~7 t C ha-1 yr-1 but when carbon exports from crop biomass removal were taken into account these wetlands represent a significant net loss of carbon of similar magnitude. The development of sustainable wetland management strategies are therefore required in order to promote the dual wetland function of crop production and the mitigation of greenhouse gas emissions especially under future climate change scenarios.

  6. Determining wetland spatial extent and seasonal variations of the ...

    African Journals Online (AJOL)

    This study, done in the Witbank Dam Catchment in Mpumalanga Province of South Africa, explores a remote-sensing technique to delineate wetland extent and assesses the seasonal variations of the inundated area. The objective was to monitor the spatio-temporal changes of wetlands over time through remote sensing ...

  7. Horizontal subsurface flow constructed wetlands for mitigation of ...

    African Journals Online (AJOL)

    The feasibility of using constructed wetlands (CWs) for the mitigation of pesticide runoff has been studied in the last decade. However, a lack of related data was verified when subsurface flow constructed wetlands (SSF CWs) are considered for this purpose. In the present work, SSF CWs were submitted to continuous ...

  8. Temperature and hydrology affect methane emissions from Prairie Pothole Wetlands

    Science.gov (United States)

    Bansal, Sheel; Tangen, Brian; Finocchiaro, Raymond

    2016-01-01

    The Prairie Pothole Region (PPR) in central North America consists of millions of depressional wetlands that each have considerable potential to emit methane (CH4). Changes in temperature and hydrology in the PPR from climate change may affect methane fluxes from these wetlands. To assess the potential effects of changes in climate on methane emissions, we examined the relationships between flux rates and temperature or water depth using six years of bi-weekly flux measurements during the snow-free period from six temporarily ponded and six permanently ponded wetlands in North Dakota, USA. Methane flux rates were among the highest reported for freshwater wetlands, and had considerable spatial and temporal variation. Methane flux rates increased with increasing temperature and water depth, and were especially high when conditions were warmer and wetter than average (163 ± 28 mg CH4 m−2 h−1) compared to warmer and drier (37 ± 7 mg CH4 m−2 h−1). Methane emission rates from permanent wetlands were less sensitive to changes in temperature and water depth compared to temporary wetlands, likely due to higher sulfate concentrations in permanent wetlands. While the predicted increase in temperature with climate change will likely increase methane emission rates from PPR wetlands, drier conditions could moderate these increases.

  9. Eutrophication alters Si cycling and litter decomposition in wetlands

    NARCIS (Netherlands)

    Emsens, Willem-Jan; Schoelynck, Jonas; Grootjans, Ab P.; Struyf, Eric; van Diggelen, Rudy

    2016-01-01

    Anthropogenic eutrophication of wetlands may have a significant impact on the global biogeochemical silicon (Si) cycle, as Si filtering by wetland vegetation codetermines fluxes of Si towards the oceans. We experimentally investigated how macronutrient (NPK) enrichment alters total Si storage and Si

  10. Planktonic Biodiversity of Bhoj Wetland, Bhopal, India | Neelam ...

    African Journals Online (AJOL)

    Biodiversity found on Earth today consists of many millions of distinct biological species, which is the product of nearly 3.5 billion years of evolution. This article deals with planktonic distribution of Bhoj Wetland, Bhopal, India . Bhoj Wetland comprises of two lakes i.e. Upper and Lower lakes of Bhopal. The Upper lake is ...

  11. Healthy Wetlands: Valuing Both the Wet and the Dry

    Science.gov (United States)

    Jenkins, Kim; Panizzon, Debra

    2009-01-01

    February 2nd of each year is World Wetlands Day. It commemorates the signing of the Ramsar Convention in Iran in 1971 and the crucial role wetlands play in terms of ecological health. Not only do they provide essential habitats for many aquatic species of organisms but they are used by many terrestrial animals as temporary havens for food, or…

  12. The Mid-Atlantic Regional Wetland Conservation Effects Assessment Project

    Science.gov (United States)

    Megan Lang; Greg McCarty; Mark Walbridge; Patrick Hunt; Tom Ducey; Clinton Church; Jarrod Miller; Laurel Kluber; Ali Sadeghi; Martin Rabenhorst; Amir Sharifi; In-Young Yeo; Andrew Baldwin; Margaret Palmer; Tom Fisher; Dan Fenstermaher; Sanchul Lee; Owen McDonough; Metthea Yepsen; Liza McFarland; Anne Gustafson; Rebecca Fox; Chris Palardy; William Effland; Mari-Vaughn Johnson; Judy Denver; Scott Ator; Joseph Mitchell; Dennis Whigham

    2016-01-01

    Wetlands impart many important ecosystem services, including maintenance of water quality, regulation of the climate and hydrological flows, and enhancement of biodiversity through the provision of food and habitat. The conversion of natural lands to agriculture has led to broad scale historic wetland loss, but current US Department of Agriculture conservation programs...

  13. Environmental attitudes and preference for wetland conservation in Malaysia

    DEFF Research Database (Denmark)

    Hassan, Suziana Binti

    2017-01-01

    the influence of environmental attitude on preference and the willingness to pay (WTP) for wetland conservation. The study reported here employs a discrete choice experiment to investigate household's WTP for a set of wetland attributes. A scale-adjusted latent class (SALC) model is applied to identify a latent...

  14. Modeling Dissolved Organic Carbon (DOC) Dynamics in Flooded Wetlands

    Science.gov (United States)

    Wetlands play an important role in the global carbon cycle and are recognized for their considerable potential to sequester carbon. Wetlands contain the largest component (18-30%) of the terrestrial carbon pool and are responsible for about a quarter of the global methane emissi...

  15. Horizontal subsurface flow constructed wetlands for mitigation of ...

    African Journals Online (AJOL)

    2008-12-22

    Dec 22, 2008 ... wetlands constructed wetland (CW) systems have been suc- cessfully used for the treatment of several types of point and nonpoint sources of pollution (IWA, 2000). Although used for wastewater treatment and nutrient removal, the use of CWs for the mitigation of contaminant pesticides is still considered.

  16. Local institutions for sustaining wetland resources and community ...

    African Journals Online (AJOL)

    Prioritizing community livelihoods without understanding the impact of local institutions on wetland resources may only aggravate impoverishment. However, prioritizing sustainable wetland resource use may lead to short-term impoverishment with positive long-term effect on both community livelihood and sustainable ...

  17. Hydraulic loading, stability and water quality of Nakivubo wetland ...

    African Journals Online (AJOL)

    Hydraulic loading, stability and water quality of Nakivubo wetland, Uganda. ... However, lead was occasionally detected at Kibira channel (station S5) at a concentration of 0.4mg/l, which is higher than the permitted Ugandan discharge limit of 0.1mg/l (NEMA 1999). The wetland showed a very high removal efficiency for ...

  18. Aquatic herbivores facilitate the emission of methane from wetlands

    NARCIS (Netherlands)

    Dingemans, B.J.J.; Bakker, E.S.; Bodelier, P.L.E.

    2011-01-01

    Wetlands are significant sources of atmospheric methane. Methane produced by microbes enters roots and escapes to the atmosphere through the shoots of emergent wetland plants. Herbivorous birds graze on helophytes, but their effect on methane emission remains unknown. We hypothesized that grazing on

  19. Lake Alaotra wetlands: how long can Madagascar's most important ...

    African Journals Online (AJOL)

    The Alaotra wetlands represent the biggest lake and wetland complex in Madagascar and are home of several endemic species. The region constitutes the largest rice production area and inland fishery of Madagascar. Rice and fish are the main local sources of income. While the population has increased fivefold during ...

  20. Microbial diversity in restored wetlands of San Francisco Bay

    Energy Technology Data Exchange (ETDEWEB)

    Theroux, Susanna [Lawrence Berkeley National Lab. (LBNL), Walnut Creek, CA (United States). Dept. of Energy Joint Genome Inst.; Hartman, Wyatt [Lawrence Berkeley National Lab. (LBNL), Walnut Creek, CA (United States). Dept. of Energy Joint Genome Inst.; He, Shaomei [Lawrence Berkeley National Lab. (LBNL), Walnut Creek, CA (United States). Dept. of Energy Joint Genome Inst.; Univ. of Wisconsin, Madison, WI (United States); Tringe, Susannah [Lawrence Berkeley National Lab. (LBNL), Walnut Creek, CA (United States). Dept. of Energy Joint Genome Inst.

    2013-12-09

    Wetland ecosystems may serve as either a source or a sink for atmospheric carbon and greenhouse gases. This delicate carbon balance is influenced by the activity of belowground microbial communities that return carbon dioxide and methane to the atmosphere. Wetland restoration efforts in the San Francisco Bay-Delta region may help to reverse land subsidence and possibly increase carbon storage in soils. However, the effects of wetland restoration on microbial communities, which mediate soil metabolic activity and carbon cycling, are poorly studied. In an effort to better understand the underlying factors which shape the balance of carbon flux in wetland soils, we targeted the microbial communities in a suite of restored and historic wetlands in the San Francisco Bay-Delta region. Using DNA and RNA sequencing, coupled with greenhouse gas monitoring, we profiled the diversity and metabolic potential of the wetland soil microbial communities along biogeochemical and wetland age gradients. Our results show relationships among geochemical gradients, availability of electron acceptors, and microbial community composition. Our study provides the first genomic glimpse into microbial populations in natural and restored wetlands of the San Francisco Bay-Delta region and provides a valuable benchmark for future studies.

  1. Microbial diversity and carbon cycling in San Francisco Bay wetlands

    Energy Technology Data Exchange (ETDEWEB)

    Theroux, Susanna [Lawrence Berkeley National Lab. (LBNL), Walnut Creek, CA (United States). Dept. of Energy Joint Genome Inst.; Hartman, Wyatt [Lawrence Berkeley National Lab. (LBNL), Walnut Creek, CA (United States). Dept. of Energy Joint Genome Inst.; He, Shaomei [Lawrence Berkeley National Lab. (LBNL), Walnut Creek, CA (United States). Dept. of Energy Joint Genome Inst.; Univ. of Wisconsin, Madison, WI (United States); Tringe, Susannah [Lawrence Berkeley National Lab. (LBNL), Walnut Creek, CA (United States). Dept. of Energy Joint Genome Inst.

    2014-03-21

    Wetland restoration efforts in San Francisco Bay aim to rebuild habitat for endangered species and provide an effective carbon storage solution, reversing land subsidence caused by a century of industrial and agricultural development. However, the benefits of carbon sequestration may be negated by increased methane production in newly constructed wetlands, making these wetlands net greenhouse gas (GHG) sources to the atmosphere. We investigated the effects of wetland restoration on below-ground microbial communities responsible for GHG cycling in a suite of historic and restored wetlands in SF Bay. Using DNA and RNA sequencing, coupled with real-time GHG monitoring, we profiled the diversity and metabolic potential of wetland soil microbial communities. The wetland soils harbor diverse communities of bacteria and archaea whose membership varies with sampling location, proximity to plant roots and sampling depth. Our results also highlight the dramatic differences in GHG production between historic and restored wetlands and allow us to link microbial community composition and GHG cycling with key environmental variables including salinity, soil carbon and plant species.

  2. Enzyme and root activities in surface-flow constructed wetlands.

    Science.gov (United States)

    Kong, Ling; Wang, Yu-Bin; Zhao, Li-Na; Chen, Zhang-He

    2009-07-01

    Sixteen small-scale wetlands planted with four plant species were constructed for domestic wastewater purification. The objective of this study was to determine the correlations between contaminant removal and soil enzyme activity, root activity, and growth in the constructed wetlands. The results indicated that correlations between contaminant removal efficiency and enzyme activity varied depending on the contaminants. The removal efficiency of NH4+ was significantly correlated with both urease and protease activity in all wetlands, and the removal of total phosphorus and soluble reactive phosphorus was significantly correlated with phosphatase activity in most wetlands, while the removal of total nitrogen, NO3(-) , and chemical oxygen demand (COD) was significantly correlated with enzyme activity only in a few instances. Correlations between soil enzyme activity and root activity varied among species. Activities of all enzymes were significantly correlated with root activity in Vetiveria zizanioides and Phragmites australis wetlands, but not in Hymenocallis littoralis wetlands. Significant correlations between enzyme activity and root biomass and between enzyme activity and root growth were found mainly in Cyperus flabelliformis wetlands. Root activity was significantly correlated with removal efficiencies of all contaminants except NO3(-) and COD in V. zizanioides wetlands. Enzyme activities and root activity showed single-peak seasonal patterns. Activities of phosphatase, urease, and cellulase were significantly higher in the top layer of the substrate than in the deeper layers, and there were generally no significant differences between the deeper layers (deeper than 15 cm).

  3. Distribution of clonal growth traits among wetland habitats

    NARCIS (Netherlands)

    Sosnova, Monika; van Diggelen, Rudy; Macek, Petr; Klimesova, Jitka

    Clonality resulting from the growth of specialized organs is common among plants in wetland habitats. We hypothesize that different wetland habitats select for different attributes of clonal traits. This hypothesis is based on studies of individual species but has not been previously tested at the

  4. National Wetland Mitigation Banking Study. Commercial Wetland Mitigation Credit Markets: Theory and Practice.

    Science.gov (United States)

    1995-11-01

    amphibian courses. The plan also required wetland buffers, and reptile species distributions. But, grouping the size of which varied depending on the...unique Management paid many landowners for their land Willamette Prairie Grassland on the parcel; if the if it was formerly zoned as industrial but

  5. Stormwater wetlands can function as ecological traps for urban frogs.

    Science.gov (United States)

    Sievers, Michael; Parris, Kirsten M; Swearer, Stephen E; Hale, Robin

    2018-03-01

    Around cities, natural wetlands are rapidly being destroyed and replaced with wetlands constructed to treat stormwater. Although the intended purpose of these wetlands is to manage urban stormwater, they are inhabited by wildlife that might be exposed to contaminants. These effects will be exacerbated if animals are unable to differentiate between stormwater treatment wetlands of varying quality and some function as 'ecological traps' (i.e. habitats that animals prefer despite fitness being lower than in other habitats). To examine if urban stormwater wetlands can be ecological traps for frogs, we tested if survival, metamorphosis-related measures and predator avoidance behaviours of frogs differed within mesocosms that simulated stormwater wetlands with different contaminant levels, and paired this with a natural oviposition experiment to assess breeding-site preferences. We provide the first empirical evidence that these wetlands can function as ecological traps for frogs. Tadpoles had lower survival and were less responsive to predator olfactory cues when raised in more polluted stormwater wetlands, but also reached metamorphosis earlier and at a larger size. A greater size at metamorphosis was likely a result of increased per capita food availability due to higher mortality combined with eutrophication, although other compensatory effects such as selective-mortality removing smaller individuals from low-quality mesocosms may also explain these results. Breeding adults laid comparable numbers of eggs across wetlands with high and low contaminant levels, indicating no avoidance of the former. Since stormwater treatment wetlands are often the only available aquatic habitat in urban landscapes we need to better understand how they perform as habitats to guide management decisions that mitigate their potential ecological costs. This may include improving wetland quality so that fitness is no longer compromised, preventing colonisation by animals, altering the cues

  6. Evaluating the significance of wetland restoration scenarios on phosphorus removal.

    Science.gov (United States)

    Daneshvar, Fariborz; Nejadhashemi, A Pouyan; Adhikari, Umesh; Elahi, Behin; Abouali, Mohammad; Herman, Matthew R; Martinez-Martinez, Edwin; Calappi, Timothy J; Rohn, Bridget G

    2017-05-01

    Freshwater resources are vital for human and natural systems. However, anthropogenic activities, such as agricultural practices, have led to the degradation of the quality of these limited resources through pollutant loading. Agricultural Best Management Practices (BMPs), such as wetlands, are recommended as a valuable solution for pollutant removal. However, evaluation of their long-term impacts is difficult and requires modeling since performing in-situ monitoring is expensive and not feasible at the watershed scale. In this study, the impact of natural wetland implementation on total phosphorus reduction was evaluated both at the subwatershed and watershed levels. The study area is the Saginaw River Watershed, which is largest watershed in Michigan. The phosphorus reduction performances of four different wetland sizes (2, 4, 6, and 8 ha) were evaluated within this study area by implementing one wetland at a time in areas identified to have the highest potential for wetland restoration. The subwatershed level phosphorus loads were obtained from a calibrated Soil and Water Assessment Tool (SWAT) model. These loads were then incorporated into a wetland model (System for Urban Stormwater Treatment and Analysis IntegratioN-SUSTAIN) to evaluate phosphorus reduction at the subwatershed level and then the SWAT model was again used to route phosphorus transport to the watershed outlet. Statistical analyses were performed to evaluate the spatial impact of wetland size and placement on phosphorus reduction. Overall, the performance of 2 ha wetlands in total phosphorus reduction was significantly lower than the larger sizes at both the subwatershed and watershed levels. Regarding wetland implementation sites, wetlands located in headwaters and downstream had significantly higher phosphorus reduction than the ones located in the middle of the watershed. More specifically, wetlands implemented at distances ranging from 200 to 250 km and 50-100 km from the outlet had the

  7. Co-regulation of redox processes in freshwater wetlands as a function of organic matter availability?

    Energy Technology Data Exchange (ETDEWEB)

    Alewell, C. [Environmental Geosciences, University of Basel, Bernoullistr. 30, CH-4056 Basel (Switzerland)], E-mail: Christine.alewell@unibas.ch; Paul, S. [Institute of Soil Science and Forest Nutrition, Georg-August University Goettingen, Buesgenweg 2, D-37077 Goettingen (Germany); Lischeid, G. [Ecological Modelling, BAYCERR, University of Bayreuth, Dr.-Hans-Frisch-Str. 1-3, D-95440 Bayreuth (Germany); Storck, F.R. [Environmental Geosciences, University of Basel, Bernoullistr. 30, CH-4056 Basel (Switzerland)

    2008-10-15

    Wetlands have important filter functions in landscapes but are considered to be the biggest unknowns regarding their element dynamics under global climate change. Information on sink and source function of sulphur, nitrogen, organic matter and acidity in wetlands is crucial for freshwater regeneration. Recent results indicate that redox processes are not completely controlled by the sequential reduction chain (that is electron acceptor availability) but that electron donor availability may be an important regulator. Our hypothesis was that only sites which are limited in their electron donor availability (low concentrations of dissolved organic carbon (DOC)) follow the concept of the sequential reduction chain. We compared the results of two freshwater wetland systems: 1) three forested fens within a boreal spruce catchment in a low mountain range in southern Germany (high DOC regime) and 2) three floodplain soils within a groundwater enrichment area in the Rhein valley in northwest Switzerland (low DOC regime). Micro scale investigations (a few cm{sup 3}) with dialyse chambers as well as soil solution and groundwater concentrations at the forested fens (high DOC regime) indicated simultaneous consumption of nitrate and sulphate with release of iron, manganese and methane (CH{sub 4}) as well as an enrichment in stable sulphur isotopes indicating a co-existence of processes attributed to different redox gradients. Soil and aquifer gas measurements down to 4.6 m at the groundwater enrichment site (low DOC regime and carbon limitation) showed extreme high rates of metabolism with carbon dioxide (CO{sub 2}){sub ,} dinitrous oxide (N{sub 2}O) and CH{sub 4} concentrations reaching fifty, thirty and three times atmospheric concentrations, respectively. Simultaneously, groundwater oxygen (O{sub 2}) saturation was between 50 and 95%. We concluded that independent of DOC regime the sequential reduction chain was not a suitable concept in our systems. Instead of electron

  8. Providing of Spatial Wetland Information for Supporting National Development

    Directory of Open Access Journals (Sweden)

    Aris Poniman

    2016-05-01

    Full Text Available The wetland has a strategic role in national development. The potential uses of the wetland are varied such as for agriculture, fisheries, industries, and forestry. The intensive use of the wetland for agricultural development in Sumatera, Kalimantan, Sulawesi, and Papua through transmigration projects has been run since in 1973. Unfortunately, not all the projects were well developed, causing the social, economic, and physical environmental problems. These problems resulted in the negative impact for the life of the transmigration people. For that reason, the community empowerment for the unlucky transmigration people by handling the physical and non physical aspects is very important. This paper will describe the importance of providing spatial data and information biophysical wetland as an initial step in empowering people who live in the wetland resource.

  9. Analysis of Spatiotemporal Dynamic and Bifurcation in a Wetland Ecosystem

    Directory of Open Access Journals (Sweden)

    Yi Wang

    2015-01-01

    Full Text Available A wetland ecosystem is studied theoretically and numerically to reveal the rules of dynamics which can be quite accurate to better describe the observed spatial regularity of tussock vegetation. Mathematical theoretical works mainly investigate the stability of constant steady states, the existence of nonconstant steady states, and bifurcation, which can deduce a standard parameter control relation and in return can provide a theoretical basis for the numerical simulation. Numerical analysis indicates that the theoretical works are correct and the wetland ecosystem can show rich dynamical behaviors not only regular spatial patterns. Our results further deepen and expand the study of dynamics in the wetland ecosystem. In addition, it is successful to display tussock formation in the wetland ecosystem may have important consequences for aquatic community structure, especially for species interactions and biodiversity. All these results are expected to be useful in the study of the dynamic complexity of wetland ecosystems.

  10. Aquatic herbivores facilitate the emission of methane from wetlands.

    Science.gov (United States)

    Dingemans, Bas J J; Bakker, Elisabeth S; Bodelier, Paul L E

    2011-05-01

    Wetlands are significant sources of atmospheric methane. Methane produced by microbes enters roots and escapes to the atmosphere through the shoots of emergent wetland plants. Herbivorous birds graze on helophytes, but their effect on methane emission remains unknown. We hypothesized that grazing on shoots of wetland plants can modulate methane emission from wetlands. Diffusive methane emission was monitored inside and outside bird exclosures, using static flux chambers placed over whole vegetation and over single shoots. Both methods showed significantly higher methane release from grazed vegetation. Surface-based diffusive methane emission from grazed plots was up to five times higher compared to exclosures. The absence of an effect on methane-cycling microbial processes indicated that this modulating effect acts on the gas transport by the plants. Modulation of methane emission by animal-plant-microbe interactions deserves further attention considering the increasing bird populations and changes in wetland vegetation as a consequence of changing land use and climate change.

  11. Contribution of Donana wetlands to carbon sequestration.

    Directory of Open Access Journals (Sweden)

    Edward P Morris

    Full Text Available Inland and transitional aquatic systems play an important role in global carbon (C cycling. Yet, the C dynamics of wetlands and floodplains are poorly defined and field data is scarce. Air-water CO2 fluxes in the wetlands of Doñana Natural Area (SW Spain were examined by measuring alkalinity, pH and other physiochemical parameters in a range of water bodies during 2010-2011. Areal fluxes were calculated and, using remote sensing, an estimate of the contribution of aquatic habitats to gaseous CO2 transport was derived. Semi-permanent ponds adjacent to the large Guadalquivir estuary acted as mild sinks, whilst temporal wetlands were strong sources of CO2 (-0.8 and 36.3 mmol(CO2 m(-2 d(-1. Fluxes in semi-permanent streams and ponds changed seasonally; acting as sources in spring-winter and mild sinks in autumn (16.7 and -1.2 mmol(CO2 m(-2 d(-1. Overall, Doñana's water bodies were a net annual source of CO2 (5.2 mol(C m(-2 y(-1. Up-scaling clarified the overwhelming contribution of seasonal flooding and allochthonous organic matter inputs in determining regional air-water gaseous CO2 transport (13.1 Gg(C y(-1. Nevertheless, this estimate is about 6 times < local marsh net primary production, suggesting the system acts as an annual net CO2 sink. Initial indications suggest longer hydroperiods may favour autochthonous C capture by phytoplankton. Direct anthropogenic impacts have reduced the hydroperiod in Doñana and this maybe exacerbated by climate change (less rainfall and more evaporation, suggesting potential for the modification of C sequestration.

  12. Fish utilisation of wetland nurseries with complex hydrological connectivity.

    Directory of Open Access Journals (Sweden)

    Ben Davis

    Full Text Available The physical and faunal characteristics of coastal wetlands are driven by dynamics of hydrological connectivity to adjacent habitats. Wetlands on estuary floodplains are particularly dynamic, driven by a complex interplay of tidal marine connections and seasonal freshwater flooding, often with unknown consequences for fish using these habitats. To understand the patterns and subsequent processes driving fish assemblage structure in such wetlands, we examined the nature and diversity of temporal utilisation patterns at a species or genus level over three annual cycles in a tropical Australian estuarine wetland system. Four general patterns of utilisation were apparent based on CPUE and size-structure dynamics: (i classic nursery utlisation (use by recently settled recruits for their first year (ii interrupted peristence (iii delayed recruitment (iv facultative wetland residence. Despite the small self-recruiting 'facultative wetland resident' group, wetland occupancy seems largely driven by connectivity to the subtidal estuary channel. Variable connection regimes (i.e. frequency and timing of connections within and between different wetland units (e.g. individual pools, lagoons, swamps will therefore interact with the diversity of species recruitment schedules to generate variable wetland assemblages in time and space. In addition, the assemblage structure is heavily modified by freshwater flow, through simultaneously curtailing persistence of the 'interrupted persistence' group, establishing connectivity for freshwater spawned members of both the 'facultative wetland resident' and 'delayed recruitment group', and apparently mediating use of intermediate nursery habitats for marine-spawned members of the 'delayed recruitment' group. The diversity of utilisation pattern and the complexity of associated drivers means assemblage compositions, and therefore ecosystem functioning, is likely to vary among years depending on variations in hydrological

  13. Wetland habitats for wildlife of the Chesapeake Bay

    Science.gov (United States)

    Perry, M.C.; Majumdar, S.K.; Miller, E.W.; Brenner, Fred J.

    1998-01-01

    The wetlands of Chesapeake Bay have provided the vital habitats that have sustained the impressive wildlife populations that have brought international fame to the Bay. As these wetland habitats decrease in quantity and quality we will continue to see the decline in the wildlife populations that started when European settlers first came to this continent. These declines have accelerated significantly in this century. As the human population continues to increase in the Bay watershed, one can expect that wetland habitats will continue to decline, resulting in declines in species diversity and population numbers. Although federal, state, and local governments are striving for 'no net loss' of wetlands, the results to date are not encouraging. It is unrealistic to believe that human populations and associated development can continue to increase and not adversely affect the wetland resources of the Bay. Restrictions on human population growth in the Chesapeake area is clearly the best way to protect wetland habitats and the wildlife that are dependent on these habitats. In addition, there should be more aggressive approaches to protect wetland habitats from continued perturbations from humans. More sanctuary areas should be created and there should be greater use of enhancement and management techniques that will benefit the full complement of species that potentially exist in these wetlands. The present trend in wetland loss can be expected to continue as human populations increase with resultant increases in roads, shopping malls, and housing developments. Creation of habitat for mitigation of these losses will not result in 'no net loss'. More innovative approaches should be employed to reverse the long-term trend in wetland loss by humans.

  14. Pre-Construction Biogeochemical Analysis of Mercury in Wetlands Bordering the Hamilton Army Airfield (HAAF) Wetlands Restoration Site. Part 2

    Science.gov (United States)

    2007-09-01

    ER D C/ EL T R- 07 -2 1 Pre-Construction Biogeochemical Analysis of Mercury in Wetlands Bordering the Hamilton Army Airfield (HAAF...distribution is unlimited. ERDC/EL TR-07-21 September 2007 Pre-Construction Biogeochemical Analysis of Mercury in Wetlands Bordering the Hamilton...Methylmercury determination ...................................................................................................25 Mercury analysis QA/QC

  15. Agricultural conservation practices and wetland ecosystem services in the wetland-rich Piedmont–Coastal Plain region

    Science.gov (United States)

    Diane De Steven; Richard Lowrance

    2011-01-01

    In the eastern U.S. Coastal Plain and Piedmont region, diverse inland wetlands (riverine, depressional, wet flats) have been impacted by or converted to agriculture. Farm Bill conservation practices that restore or enhance wetlands can return their ecological functions and services to the agricultural landscape. We review the extent of regional knowledge regarding the...

  16. Value Assessment of Artificial Wetland Derived from Mining Subsided Lake: A Case Study of Jiuli Lake Wetland in Xuzhou

    Directory of Open Access Journals (Sweden)

    Laijian Wang

    2017-10-01

    Full Text Available Mining subsided lakes are major obstacles for ecological restoration and resource reuse in mining regions. Transforming mining subsided lakes into artificial wetlands is an ecological restoration approach that has been attempted in China in recent years, but a value assessment of the approach still needs systematic research. This paper considers Jiuli Lake wetland, an artificial wetland derived from restoration of a mining subsided lake in plain area, as a case study. A value assessment model for the artificial wetland was established based on cost–benefit analysis by means of field monitoring, social surveys, GIS geostatistics, raster calculation methods, etc. Empirical analysis and calculations were performed on the case study region. The following conclusions were drawn: (1 after ecological restoration, ecosystem services of Jiuli Lake wetland which has become a national level wetland park yield positive values; (2 the improved environment of the Jiuli Lake wetland has a spillover effect on the price of surrounding land, resulting in land price appreciation; (3 using GIS geostatistics and raster calculation methods, the impact range, strength, and value of the spillover effect can be explicitly measured; (4 through the establishment of a value assessment model of the artificial wetland, incomes of the ecological restoration was found to be sufficient to cover the implementation costs, which provides a research foundation for economic feasibility of ecological restoration of mining subsided lakes.

  17. Wetland vegetation establishment in L-Lake

    Energy Technology Data Exchange (ETDEWEB)

    Kroeger, S.R.

    1990-07-01

    Wetland vegetation was transplanted from PAR Pond to L-Lake between January and August, 1987. Approximately 100,000 individual plants representing over 40 species were transplanted along the southern shoreline. Three zones of vegetation were created: (1) submersed/floating-leaved, (2) emergent, (3) upper emergent/shrub. During the summers of 1987, 1988, 1989, the Savannah River Ecology Laboratory sampled the vegetation in 54 permanent transects located in planted (N=32) and unplanted areas (N=22). The 1989 vegetation data from L-Lake were compared to 1985 data from PAR Pond.

  18. Simulation of wetlands forest vegetation dynamics

    Science.gov (United States)

    Phipps, R.L.

    1979-01-01

    A computer program, SWAMP, was designed to simulate the effects of flood frequency and depth to water table on southern wetlands forest vegetation dynamics. By incorporating these hydrologic characteristics into the model, forest vegetation and vegetation dynamics can be simulated. The model, based on data from the White River National Wildlife Refuge near De Witt, Arkansas, "grows" individual trees on a 20 x 20-m plot taking into account effects on the tree growth of flooding, depth to water table, shade tolerance, overtopping and crowding, and probability of death and reproduction. A potential application of the model is illustrated with simulations of tree fruit production following flood-control implementation and lumbering. ?? 1979.

  19. Remote Sensing of Wetland Hydrology: Implications for Water Quality Management in Agricultural Landscapes

    Science.gov (United States)

    Due to the substantial effect of agriculture on the ability of wetlands to function, the U.S. Department of Agriculture (USDA) serves a key role in wetland conservation and restoration. In order for the USDA to allocate funds to best manage wetlands, a better understanding of wetland functioning is ...

  20. Economic Governance to Expand Commercial Wetlands: Within- and Cross-Scale Challenges

    NARCIS (Netherlands)

    Blaeij, de A.T.; Polman, N.B.P.; Reinhard, A.J.

    2011-01-01

    Commercial wetlands are defined as wetlands directed by an entrepreneur with the intention of making a profit. The combination of ecosystem services that commercial wetlands can provide seems to be an attractive societal perspective. Nevertheless, these wetlands are not developed on a large scale in

  1. Wetlands: Science, Politics, and Geographical Relationships. Pathways in Geography Series, Title No. 9.

    Science.gov (United States)

    Benhart, John E.; Margin, Alex

    This teacher's guide focuses on the value and functions of wetlands by integrating science and the politics of wetlands into a geographic framework. Wetlands are highly dynamic, diverse, and prolific ecosystems. The volume advocates a need for mutual understanding and harmony of effort in order to deal with the complex issues of the wetlands. The…

  2. Baldcypress, an important wetland tree species: ecological value, management and mensuration

    Science.gov (United States)

    Bernard R. Parresol

    2002-01-01

    China has the largest area of wetlands in Asia and the fourth largest amount worldwide. Wetlands include marshes, swamps, salt marshes, parts of streams, shorelines, and flood plains. It is estimated that wetlands in China cover over 25 million ha, 80% being of the fresh water variety, or 2.6% of the land base (Lu 1990). However, it is recognized that existing wetland...

  3. Adaptation services of floodplains and wetlands under transformational climate change.

    Science.gov (United States)

    Colloff, Matthew; Lavorel, Sandra; Wise, Russell M; Dunlop, Michael; Overton, Ian C; Williams, Kristen J

    2016-06-01

    Adaptation services are the ecosystem processes and services that benefit people by increasing their ability to adapt to change. Benefits may accrue from existing but newly used services where ecosystems persist or from novel services supplied following ecosystem transformation. Ecosystem properties that enable persistence or transformation are important adaptation services because they support future options. The adaptation services approach can be applied to decisions on trade-offs between currently valued services and benefits from maintaining future options. For example, ecosystem functions and services of floodplains depend on river flows. In those regions of the world where climate change projections are for hotter, drier conditions, floods will be less frequent and floodplains will either persist, though with modified structure and function, or transform to terrestrial (flood-independent) ecosystems. Many currently valued ecosystem services will reduce in supply or become unavailable, but new options are provided by adaptation services. We present a case study from the Murray-Darling Basin, Australia, for operationalizing the adaptation services concept for floodplains and wetlands. We found large changes in flow and flood regimes are likely under a scenario of +1.6°C by 2030, even with additional water restored to rivers under the proposed Murray-Darling Basin Plan. We predict major changes to floodplain ecosystems, including contraction of riparian forests and woodlands and expansion of terrestrial, drought-tolerant vegetation communities. Examples of adaptation services under this scenario include substitution of irrigated agriculture with dryland cropping and floodplain grazing; mitigation of damage from rarer, extreme floods; and increased tourism, recreational, and cultural values derived from fewer, smaller wetlands that can be maintained with environmental flows. Management for adaptation services will require decisions on where intervention can

  4. Evaluating the potential of 'on-line' constructed wetlands for mitigating pesticide transfers from agricultural land to surface waters

    Science.gov (United States)

    Whelan, Michael; Ramos, Andre; Guymer, Ian; Villa, Raffaella; Jefferson, Bruce

    2016-04-01

    Pesticides make important contributions to modern agriculture but losses from land to water can present problems for environmental management, particularly in catchments where surface waters are abstracted for drinking water. Where artificial field drains represent a dominant pathway for pesticide transfers, buffer zones provide little mitigation potential. Instead, "on-line" constructed wetlands have been proposed as a potential means of reducing pesticide fluxes in drainage ditches and headwater streams. Here, we evaluate the potential of small free-surface wetlands to reduce pesticide concentrations in surface waters using a combination of field monitoring and numerical modelling. Two small constructed wetland systems in a first order catchment in Cambridgeshire, UK, were monitored over the 2014-2015 winter season. Discharge was measured at several flow control structures and samples were collected every eight hours and analysed for metaldehyde, a commonly-used molluscicide. Metaldehyde is moderately mobile and, like many other compounds, it has been regularly detected at high concentrations in surface water samples in a number of drinking water supply catchments in the UK over the past few years. However, it is unusually difficult to remove via conventional drinking water treatment which makes it particularly problematical for water companies. Metaldehyde losses from the upstream catchment were significant with peak concentrations occurring in the first storm events in early autumn, soon after application. Concentrations and loads appeared to be unaffected by transit through the wetland over a range of flow conditions - probably due to short solute residence times (quantified via several tracing experiments employing rhodamine WT - a fluorescent dye). A dynamic model, based on fugacity concepts, was constructed to describe chemical fate in the wetland system. The model was used to evaluate mitigation potential and management options under field conditions and

  5. Greenhouse gas emissions from constructed wetlands treating dairy wastewater

    Science.gov (United States)

    Glass, Vimy M.

    In Nova Scotia, constructed wetland systems are widely considered as effective treatment systems for agricultural wastewater. Although research has examined the water quality treatment attributes, there has been limited focus on the air quality effects of these systems. Six operational pilot-scale constructed wetlands were built with flow-through chambers for quantifying greenhouse gas (GHG) emissions in Truro, NS. Utilized within this facility were three gas analyzers to monitor GHG emissions (CO2, N 2O, CH4) and the gaseous fluxes could then be determined using the mass balance micrometeorological technique. Prior to data collection, the site underwent testing to ensure valid conclusions and replicated responses from the wetland systems. Those wetlands receiving wastewater at a typical HLR (10.6 mm d-1) and with ample vegetation displayed the best concentration reductions. During the growing season (GS), average CO 2 consumption was large (approximately -44 g CO2m -2 d-1) for wetlands with dense vegetation (approximately 100% cover) at the typical loading rate. For those wetlands at higher loading rates, CO2 emissions were observed to be as high as +9.2 g CO 2m-2 d-1. Wetlands with typical loading rates and healthy aquatic vegetation produced average CH4 fluxes of approximately 43 g CO2 eq. m-2d-1, while higher loaded systems with little vegetation approached 90 g CO 2 eq. m-2d-1. During the non-growing season (NGS), all vegetated wetlands exhibited higher CH4 emissions than the non-vegetated systems (˜15 to 20% higher). Vegetation maturity played a strong role in the GHG balance. The average CO2consumption for wetlands with established vegetation was ˜ -36 g CO2 m -2 d-1 during the GS. Wetland 4, which had been newly transplanted in 2004, had the highest single day CO2 consumption of -152 g CO2m-2 d-1 . Methane emissions from wetlands with two-year-old vegetation followed the same pattern but were approximately half of the emissions recorded from 2003. The

  6. Use of Constructed Wetlands for Polishing Recharge Wastewater

    Science.gov (United States)

    Cardwell, W.

    2009-12-01

    The use of constructed wetlands for waste water treatment is becoming increasingly popular as more focus is being shifted to natural means of waste treatment. These wetlands employ processes that occur naturally and effectively remove pollutants and can greatly minimize costs when compared to full scale treatment plants. Currently, wetland design is based on basic “rules-of-thumb,” meaning engineers have a general understanding but not necessarily a thorough knowledge of the intricate physical, biological, and chemical processes involved in these systems. Furthermore, there is very little consideration given to use the wetland as a recharge pond to allow the treated water to percolate and recharge the local groundwater aquifers. The City of Foley, located in Alabama, and the Utilities Board of the City of Foley partnered with Wolf Bay Watershed Watch to evaluate alternative wastewater effluent disposal schemes. Rather than discharging the treated water into a local stream, a pilot program has been developed to allow water from the treatment process to flow into a constructed wetlands area where, after natural treatment, the treated water will then be allowed to percolate into a local unconfined aquifer. The goal of this study is to evaluate how constructed wetlands can be used for “polishing” effluent as well as how this treated water might be reused. Research has shown that constructed wetlands, with proper design and construction elements, are effective in the treatment of BOD, TSS, nitrogen, phosphorous, pathogens, metals, sulfates, organics, and other substances commonly found in wastewater. Mesocosms will be used to model the wetland, at a much smaller scale, in order to test and collect data about the wetland treatment capabilities. Specific objectives include: 1. Determine optimum flow rates for surface flow wetlands where water treatment is optimized. 2. Evaluate the capabilities of constructed wetlands to remove/reduce common over the counter

  7. Wetlands in changed landscapes: the influence of habitat transformation on the physico-chemistry of temporary depression wetlands.

    Science.gov (United States)

    Bird, Matthew S; Day, Jenny A

    2014-01-01

    Temporary wetlands dominate the wet season landscape of temperate, semi-arid and arid regions, yet, other than their direct loss to development and agriculture, little information exists on how remaining wetlands have been altered by anthropogenic conversion of surrounding landscapes. This study investigates relationships between the extent and type of habitat transformation around temporary wetlands and their water column physico-chemical characteristics. A set of 90 isolated depression wetlands (seasonally inundated) occurring on coastal plains of the south-western Cape mediterranean-climate region of South Africa was sampled during the winter/spring wet season of 2007. Wetlands were sampled across habitat transformation gradients according to the areal cover of agriculture, urban development and alien invasive vegetation within 100 and 500 m radii of each wetland edge. We hypothesized that the principal drivers of physico-chemical conditions in these wetlands (e.g. soil properties, basin morphology) are altered by habitat transformation. Multivariate multiple regression analyses (distance-based Redundancy Analysis) indicated significant associations between wetland physico-chemistry and habitat transformation (overall transformation within 100 and 500 m, alien vegetation cover within 100 and 500 m, urban cover within 100 m); although for significant regressions the amount of variation explained was very low (range: ∼2 to ∼5.5%), relative to that explained by purely spatio-temporal factors (range: ∼35.5 to ∼43%). The nature of the relationships between each type of transformation in the landscape and individual physico-chemical variables in wetlands were further explored with univariate multiple regressions. Results suggest that conservation of relatively narrow (∼100 m) buffer strips around temporary wetlands is likely to be effective in the maintenance of natural conditions in terms of physico-chemical water quality.

  8. Wetlands in changed landscapes: the influence of habitat transformation on the physico-chemistry of temporary depression wetlands.

    Directory of Open Access Journals (Sweden)

    Matthew S Bird

    Full Text Available Temporary wetlands dominate the wet season landscape of temperate, semi-arid and arid regions, yet, other than their direct loss to development and agriculture, little information exists on how remaining wetlands have been altered by anthropogenic conversion of surrounding landscapes. This study investigates relationships between the extent and type of habitat transformation around temporary wetlands and their water column physico-chemical characteristics. A set of 90 isolated depression wetlands (seasonally inundated occurring on coastal plains of the south-western Cape mediterranean-climate region of South Africa was sampled during the winter/spring wet season of 2007. Wetlands were sampled across habitat transformation gradients according to the areal cover of agriculture, urban development and alien invasive vegetation within 100 and 500 m radii of each wetland edge. We hypothesized that the principal drivers of physico-chemical conditions in these wetlands (e.g. soil properties, basin morphology are altered by habitat transformation. Multivariate multiple regression analyses (distance-based Redundancy Analysis indicated significant associations between wetland physico-chemistry and habitat transformation (overall transformation within 100 and 500 m, alien vegetation cover within 100 and 500 m, urban cover within 100 m; although for significant regressions the amount of variation explained was very low (range: ∼2 to ∼5.5%, relative to that explained by purely spatio-temporal factors (range: ∼35.5 to ∼43%. The nature of the relationships between each type of transformation in the landscape and individual physico-chemical variables in wetlands were further explored with univariate multiple regressions. Results suggest that conservation of relatively narrow (∼100 m buffer strips around temporary wetlands is likely to be effective in the maintenance of natural conditions in terms of physico-chemical water quality.

  9. Concept Mapping

    Science.gov (United States)

    Brennan, Laura K.; Brownson, Ross C.; Kelly, Cheryl; Ivey, Melissa K.; Leviton, Laura C.

    2016-01-01

    Background From 2003 to 2008, 25 cross-sector, multidisciplinary community partnerships funded through the Active Living by Design (ALbD) national program designed, planned, and implemented policy and environmental changes, with complementary programs and promotions. This paper describes the use of concept-mapping methods to gain insights into promising active living intervention strategies based on the collective experience of community representatives implementing ALbD initiatives. Methods Using Concept Systems software, community representatives (n=43) anonymously generated actions and changes in their communities to support active living (183 original statements, 79 condensed statements). Next, respondents (n=26, from 23 partnerships) sorted the 79 statements into self-created categories, or active living intervention approaches. Respondents then rated statements based on their perceptions of the most important strategies for creating community changes (n=25, from 22 partnerships) and increasing community rates of physical activity (n=23, from 20 partnerships). Cluster analysis and multidimensional scaling were used to describe data patterns. Results ALbD community partnerships identified three active living intervention approaches with the greatest perceived importance to create community change and increase population levels of physical activity: changes to the built and natural environment, partnership and collaboration efforts, and land-use and transportation policies. The relative importance of intervention approaches varied according to subgroups of partnerships working with different populations. Conclusions Decision makers, practitioners, and community residents can incorporate what has been learned from the 25 community partnerships to prioritize active living policy, physical project, promotional, and programmatic strategies for work in different populations and settings. PMID:23079266

  10. The Future Of European Floodplain Wetlands Under A Changing Climate

    Science.gov (United States)

    Schneider, Christof; Flörke, Martina; Geerling, Gertjan; Duel, Harm; Grygoruk, Mateusz; Okruszko, Tomasz

    2010-05-01

    Floodplain wetlands are defined by their recurring inundation caused by flooding of adjacent rivers and often, the health of riverine ecosystems is dependent on the natural pattern of these inundation events (Junk et al. 1989). In the future, climate change may severely alter flood patterns over large regional scales. Consequently, besides other anthropogenic factors, climate change depicts a potential threat to river ecosystems. The aim of this study is to evaluate the impact of climate change on floodplain inundation for important floodplain wetlands in Europe and to place these results in an ecological context. This work is performed within the SCENES project considering three different climate change projections for the 2050s. The global scale hydrological model WaterGAP is applied to simulate current and future river discharges which are then used to i) estimate bankfull flow conditions, ii) analyse all overbank flows by different inundation parameters, and iii) evaluate the hydrological consequences and their relation to ecology. Bankfull flow marks an important breakpoint as above this level generally flooding occurs which hydraulically connects rivers to adjacent floodplains and riparian wetlands leading to radical change in the biological processes. Bankfull flow is determined by flood frequency analysis whereas we make use of the partial duration series and an increasing threshold censoring procedure. Any flow greater than bankfull flow is considered a critical flow to investigate. Volume, duration and timing of inundation are regarded as crucial for sustaining floodplain habitats and their ecological functions. Finally, we combine the modelling approach with a scenario analysis which has become a common tool for assessing future trends of environmental problems, particularly those that are complex and poorly described. Precipitation and temperature interact differently at different locations leading to unfavourable changes in the river flow regimes with

  11. Genetic modification of wetland grasses for phytoremediation

    Energy Technology Data Exchange (ETDEWEB)

    Czako, M.; Liang Dali; Marton, L. [Dept. of Biological Sciences, Univ. of South Carolina, Columbia, SC (United States); Feng Xianzhong; He Yuke [National Lab. of Plant Molecular Genetics, Shanghai Inst. of Plant Physiology, Chinese Academy of Sciences, Shanghai, SH (China)

    2005-04-01

    Wetland grasses and grass-like monocots are very important natural remediators of pollutants. Their genetic improvement is an important task because introduction of key transgenes can dramatically improve their remediation potential. Tissue culture is prerequisite for genetic manipulation, and methods are reported here for in vitro culture and micropropagation of a number of wetland plants of various ecological requirements such as salt marsh, brackish water, riverbanks, and various zones of lakes and ponds, and bogs. The monocots represent numerous genera in various families such as Poaceae, Cyperaceae, Juncaceae, and Typhaceae. The reported species are in various stages of micropropagation and Arundo donax is scaled for mass propagation for selecting elite lines for pytoremediation. Transfer of key genes for mercury phytoremediation into the salt marsh cordgrass (Spartina alterniflora) is also reported here. All but one transgenic lines contained both the organomercurial lyase (merB) and mercuric reductase (merA) sequences showing that co-introduction into Spartina of two genes from separate Agrobacterium strains is possible. (orig.)

  12. Bioassessment of Choghakhor Wetland using Benthic Macroinvertebrates

    Directory of Open Access Journals (Sweden)

    P. Fathi

    2016-05-01

    Full Text Available In present study, besides investigating benthic communities and their demographics in Choghakhor wetland, the water quality has been evaluated and classified. Then, 10 stations were selected and sampling of benthos was done every 45 days since April 2010 to March 2011, with 3 replications at each station. Samples were obtained by Ekman grab Sampler (surface 400 cm2. The collected samples were separated and fixed by formalin (4%. The Macroinvertebrates samples were identified and counted in laboratory. Generally 25 families of benthic macroinvertebrates belonging to 5 classes and 12 orders were identified. The results were calculated as community measures, including total richness, Shannon - Wiener diversity index and Hilsenhoff Biological index at family level. The results obtained from temporal and spatial changes of data (Statgeraphics software and water qualitative classification using Shannon diversity index conformed to biological Hilsenhoff index. And finally, water quality of wetland was assessed to be polluted in average to high level. According to this study findings, it seems that, these indicators could be used as useful tools for evaluating water supplies quality.

  13. Hydrocarbon biodegradation in intertidal wetland sediments.

    Science.gov (United States)

    McGenity, Terry J

    2014-06-01

    Intertidal wetlands, primarily salt marsh, mangrove and mudflats, which provide many essential ecosystem services, are under threat on numerous fronts; a situation that is made worse by crude-oil pollution. Microbes are the main vehicle for remediation of such sediments, and new discoveries, such as novel biodegradation pathways, means of accessing oil, multi-species interactions, and community-level responses to oil addition, are helping us to understand, predict and monitor the fate of oil. Despite this, there are many challenges, not least because of the heterogeneity of these ecosystems and the complexity of crude oil. For example, there is growing awareness about the toxicity of the oxygenated products that result from crude-oil weathering, which are difficult to degrade. This review highlights how developments in areas as diverse as systems biology, microbiology, ecology, biogeochemistry and analytical chemistry are enhancing our understanding of hydrocarbon biodegradation and thus bioremediation of oil-polluted intertidal wetlands. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Development of phytotoxicity tests using wetland species

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, M.K.; Fairchild, J.F. [National Biological Survey, Columbia, MO (United States)

    1994-12-31

    Laboratory phytotoxicity tests used to assess contaminant effects may not effectively protect wetland communities. The authors are developing routine culture and testing methods for selected fresh water plants, that can be used in risk assessments and monitoring of existing wetland systems. Utility of these tests includes evaluating the effects of point or non-point source contamination that may cause water or sediment quality degradation. Selected species include algae (blue-green, green), phytoflagellates (Chlamydomonas, Euglena), and floating or submerged vascular plants (milfoil, coontail, wild celery, elodea, duckweed). Algae toxicity tests range from 2-d, 4-d, and 7 day tests, and macrophyte tests from 10-d to 14 days. Metribuzin and boron are the selected contaminants for developing the test methods. Metribuzin, a triazinone herbicide, is a photosystem 11 inhibitor, and is commonly used for control of grass and broad-leaf plants. As a plant micronutrient, boron is required in very small amounts, but excessive levels can result in phytotoxicity or accumulation. The investigations focus on the influence of important factors including the influence of light quality and quantity, and nutrient media. Reference toxicant exposures with potassium chloride are used to establish baseline data for sensitivity and vitality of the plants. These culture and test methods will be incorporated into recommendations for standard phytotoxicity test designs.

  15. Environmental footprint of constructed wetlands treating wastewater.

    Science.gov (United States)

    Gkika, Dimitra; Gikas, Georgios D; Tsihrintzis, Vassilios A

    2015-01-01

    The aim of the study is to determine environmentally friendlier construction materials for constructed wetland facilities treating wastewater. This is done by computing the environmental footprint of the facility based on the methodology of life cycle assessment (LCA). This methodology reveals the dominant aggravating processes during the construction of a constructed wetland (CW) and can help to create alternative environmentally friendlier solutions. This methodology was applied for the determination of the overall environmental profile of a hybrid CW facility. The LCA was applied first to the facility as originally designed, where reinforced concrete was used in some components. Then, alternative construction materials to reinforced concrete were used, such as earth covered with high density polyethylene (HDPE) or clay, and LCA was applied again. Earth structures were found to have reduced environmental impact compared to concrete ones, and clay was found environmentally friendlier compared to HDPE. Furthermore, estimation of the construction costs of the three scenarios indicate that the last scenario is also the least expensive.

  16. Floral diversity of Baanganga Wetland, Uttarakhand, India.

    Directory of Open Access Journals (Sweden)

    Babu, M. M.

    2008-01-01

    Full Text Available Baanganga wetland, a 45 km long channel originates near Bishenpur and flows in Idrishpur-Chakheri forestblock of Haridwar district in Uttarakhand, India represents riverine ecosystem. The study area harbors many islands,varying in shape and size, which remains underwater during the rainy season and provide a good habitat to various planttaxa, birds (resident as well as migratory and animals mainly Swamp deer (Cervus duvauceli duvauceli, a criticallyendangered species and Hog deer (Axis procinus. To asses the status and distribution of flora, trips were conducted inthe intensive study area. The plants were classified based on their habit and their presence was visually observed. Atotal of 178 plant species were recorded, of which 40 species (hydrophytes were found in aquatic habitat, 122 specieson moist shores and 117 species in upland habitat. Phragmites karka, Polygonum barbatum, Ipomoea carnea, and Typhaelephantina were the most common species in all the habitats. The majority of plants (40 are from Indian orientalregion. The moist shore and upland habitats had maximum similarity (64 % followed by aquatic and moist shore (26% habitats. The status of flora and management of Baanganga wetland ecosystem has been discussed in the paper.

  17. Replacing natural wetlands with stormwater management facilities: Biophysical and perceived social values.

    Science.gov (United States)

    Rooney, R C; Foote, L; Krogman, N; Pattison, J K; Wilson, M J; Bayley, S E

    2015-04-15

    Urban expansion replaces wetlands of natural origin with artificial stormwater management facilities. The literature suggests that efforts to mimic natural wetlands in the design of stormwater facilities can expand the provision of ecosystem services. Policy developments seek to capitalize on these improvements, encouraging developers to build stormwater wetlands in place of stormwater ponds; however, few have compared the biophysical values and social perceptions of these created wetlands to those of the natural wetlands they are replacing. We compared four types of wetlands: natural references sites, natural wetlands impacted by agriculture, created stormwater wetlands, and created stormwater ponds. We anticipated that they would exhibit a gradient in biodiversity, ecological integrity, chemical and hydrologic stress. We further anticipated that perceived values would mirror measured biophysical values. We found higher biophysical values associated with wetlands of natural origin (both reference and agriculturally impacted). The biophysical values of stormwater wetlands and stormwater ponds were lower and indistinguishable from one another. The perceived wetland values assessed by the public differed from the observed biophysical values. This has important policy implications, as the public are not likely to perceive the loss of values associated with the replacement of natural wetlands with created stormwater management facilities. We conclude that 1) agriculturally impacted wetlands provide biophysical values equivalent to those of natural wetlands, meaning that land use alone is not a great predictor of wetland value; 2) stormwater wetlands are not a substantive improvement over stormwater ponds, relative to wetlands of natural origin; 3) stormwater wetlands are poor mimics of natural wetlands, likely due to fundamental distinctions in terms of basin morphology, temporal variation in hydrology, ground water connectivity, and landscape position; 4) these

  18. A Review of the Recent Scientific Literature on Irrigation Induced and Enhanced Wetlands

    Science.gov (United States)

    2014-08-01

    by which the Legacy wetlands were compared with six other wetlands, namely, the Salt Lake City wastewater treatment plant wetland (WWTP), Airport and...wetlands by waterfowl including potential exposure to pesticides , rapid changes in landuse, and large scale hydrologic alteration. In addition to habitat... Treatment .189-256. Chow, A., K. Tanji, and S. Gao 2004. Modeling Drainwater Selenium Removal in Wetlands. Journal of Irrigation and Drainage

  19. Montane wetland water chemistry, Uinta Mountains, Utah

    Science.gov (United States)

    Severson, K. S.; Matyjasik, M.; Ford, R. L.; Hernandez, M. W.; Welsh, S. B.; Summers, S.; Bartholomew, L. M.

    2009-12-01

    This study attempts to determine the relationship between surface and groundwater chemistry and wetland characteristics within the Reader Lakes watershed, Uinta Mountains. The dominant rock type in the study area is quartz sandstone of the Hades Pass formation, Unita Mountain Group (Middle Proterozoic). Minor amounts of interbedded arkose and illite-bearing shale are also present. Water chemistry data have been collected from more than one hundred locations during the 2008 and 2009 summer seasons. The Reader Creek watershed is approximately 9.8 km long and about 3.5 km wide in the central portion of the basin. Direct precipitation is the primary source of groundwater recharge and the area is typically covered by snow from November until May. Four distinct wetland complexes, designated as the upper, middle, lower and the sloping fen, constitute the major wetland environments in the study area. The chemistry of the melt water from the high-elevation snowfield is affected by weathering of incorporated atmospheric dust and surface rocks. Total dissolved solids in both years were between 7 and 9 mg/L. Major anions include HCO3 (averaging 4.0 mg/L), SO4 (1.3 mg/L), NO3 (0.9 mg/L), Cl (0.8 mg/L), F (0.07 mg/L), PO4 (0.03 mg/L), and Br(0.015 mg/L). Major cations include Na (1.1 mg/L), Ca (1.0 mg/L), K (0.28 mg/L), and Mg (0.15 mg/L). Groundwater concentrations in the lower meadow, as measured in piezomters, are distinctly different, with the following maximum concentrations of anions: HCO3 (36.7 mg/L), SO4 (5.0 mg/L), Cl (3.4 mg/L), NO3 (0.9 mg/L), PO4 (0.28 mg/L), F (0.23 mg/L), Br (0.12 mg/L), and cations: Ca (22 mg/L), Na (4.6 mg/L), Mg (3.4 mg/L), and K (1.8 mg/L)- with a maximum value of 83 mg/L for total dissolved solids. Waters in Reader Creek, the main trunk channel, are typically sodium-potassium and sodium -potassium bicarbonate, with some calcium-bicarbonate, mostly in the middle part of the watershed. Groundwater from springs is sodium-potassium in the upper

  20. Wetlands - different types, their properties and functions

    Energy Technology Data Exchange (ETDEWEB)

    Kellner, Erik [Uppsala Univ. (Sweden). Dept. of Earth Sciences/Hydrology

    2003-08-01

    In this report, different Swedish wetland types are presented with emphasis on their occurrence, vegetation cover, soil physical and chemical properties and functions. Three different main groups of wetlands are identified: bogs, fens and marshes. The former two are peat forming environments while the term 'marshes' covers all non-peat forming wetlands. Poor fens are the most common type in Sweden but (tree-covered) marshes would probably be dominating large areas in Southern Sweden if not affected by human activity such as drainage for farming. Fens and bogs are often coexisting next to each other and bogs are often seen to be the next step after fens in the natural succession. However, the development of wetlands and processes of succession between different wetland types are resulting from complicated interactions between climate, vegetation, geology and topography. For description of the development at individual sites, the hydrological settings which determine the water flow paths seem to be most crucial, emphasizing the importance of geology and topography. For modelling the growth of peat, simple models have so far dominated, but these are often restricted in general use. Therefore, more physical-based models have been developed, but the natural heterogeneity and climate shifts bring uncertainty of how they should be parameterised. The use of coupled groundwater-substance transport models have shown to help understand how water flows and soil chemistry are developing in response to different peat forms. The peat is characterised by a high porosity (80-95%) which is decreasing with decomposition and depth. The most important change is then that the actively conducting pores are getting clogged and closed. The storage coefficient of the peat is then decreasing with decomposition as well as the hydraulic conductivity. The variation of hydraulic conductivity (k) can be large and current understanding of the connections between hydraulic conductivity

  1. Aerobic methanotroph diversity in Sanjiang wetland, Northeast China.

    Science.gov (United States)

    Yun, Juanli; Zhang, Hongxun; Deng, Yongcui; Wang, Yanfen

    2015-04-01

    Aerobic methanotrophs present in wetlands can serve as a methane filter and thereby significantly reduce methane emissions. Sanjiang wetland is a major methane source and the second largest wetland in China, yet little is known about the characteristics of aerobic methanotrophs in this region. In the present study, we investigated the diversity and abundance of methanotrophs in marsh soils from Sanjiang wetland with three different types of vegetation by 16S ribosomal RNA (rRNA) and pmoA gene analysis. Quantitative polymerase chain reaction analysis revealed the highest number of pmoA gene copies in marsh soils vegetated with Carex lasiocarpa (10(9) g(-1) dry soil), followed by Carex meyeriana, and the least with Deyeuxia angustifolia (10(8) g(-1) dry soil). Consistent results were obtained using Sanger sequencing and pyrosequencing techniques, both indicating the codominance of Methylobacter and Methylocystis species in Sanjiang wetland. Other less abundant methanotrophy, including cultivated Methylomonas and Methylosinus genus, and uncultured clusters such as LP20 and JR-1, were also detected in the wetland. Methanotroph diversity was almost the same in three different vegetation covered soils, suggesting that vegetation types had very little influence on the methanotroph diversity. Our study gives an in-depth insight into the community composition of aerobic methanotrophs in the Sanjiang wetland.

  2. Constructed wetlands for wastewater treatment in cold climate - A review.

    Science.gov (United States)

    Wang, Mo; Zhang, Dong Qing; Dong, Jian Wen; Tan, Soon Keat

    2017-07-01

    Constructed wetlands (CWs) have been successfully used for treating various wastewaters for decades and have been identified as a sustainable wastewater management option worldwide. However, the application of CW for wastewater treatment in frigid climate presents special challenges. Wetland treatment of wastewater relies largely on biological processes, and reliable treatment is often a function of climate conditions. To date, the rate of adoption of wetland technology for wastewater treatment in cold regions has been slow and there are relatively few published reports on CW applications in cold climate. This paper therefore highlights the practice and applications of treatment wetlands in cold climate. A comprehensive review of the effectiveness of contaminant removal in different wetland systems including: (1) free water surface (FWS) CWs; (2) subsurface flow (SSF) CWs; and (3) hybrid wetland systems, is presented. The emphasis of this review is also placed on the influence of cold weather conditions on the removal efficacies of different contaminants. The strategies of wetland design and operation for performance intensification, such as the presence of plant, operational mode, effluent recirculation, artificial aeration and in-series design, which are crucial to achieve the sustainable treatment performance in cold climate, are also discussed. This study is conducive to further research for the understanding of CW design and treatment performance in cold climate. Copyright © 2017. Published by Elsevier B.V.

  3. Nitrogen compounds in drain sewage after constructed wetlands.

    Science.gov (United States)

    Paweska, K; Malczewska, B

    2009-01-01

    Constructed wetlands, commonly known as ground filters, are well suited mostly for wastewater treatment in areas with no central sewage system. The basic difficulty with exploitation of constructed wetlands is connected with irregular hydraulic overload of its surface. However, irregular wastewater inflow can be reduced by cyclical irrigation which increases efficiency. The unquestionable advantage of the constructed wetlands is inexpensive construction and exploitation as well as low energy consumption. The constructed wetlands also fit very well in surrounding area. The investigation concerned the analysis of two constructed wetlands which are composed of mechanical separation (septic tank) and a filter bed with subsurface flow. The research has been undertaken in a period from July to December 2008, with regard to concentration distribution of nitrogen compounds in municipal sewage after constructed wetlands. The preliminary investigation on constructed wetland which has been exploited for 10 years showed variable removal efficiency of nitrogen compounds. The continuation of the research can indicate the efficiency of wastewater treatment in summer and winter season.

  4. Wetland and aquatic macrophytes as indicators of anthropogenic hydrologic disturbance

    Science.gov (United States)

    Wilcox, Douglas A.

    1995-01-01

    Hydrologic disturbance can affect wetland and aquatic macrophyte communities by creating temporal changes in soil moisture or water depth. Such disturbances are natural and help maintain wetland diversity; however, anthropogenic changes in wetland hydrology may have negative effects on wetlands. Since plant communities respond to habitat alterations, observations of plant-community changes may be used to recognize effects of hydrologic disturbances that are otherwise not well understood. A number of plants, including Typha angustifolia (narrow-leaf cattail) and Lythrum salicaria (purple loosestrife), are recognized as disturbance species; they are often found in roadside ditches, in wetlands that have been partially drained, or in low areas that have been flooded. Other species commonly occur on mudflats exposed by lowering of water levels. In addition, wetland shrubs and trees invade or die as a result of draining or flooding. In more subtle terms, the relative composition of plant communities can change without the addition or loss of species, and zonation patterns may develop or change as a result of altered hydrology. Remote sensing (photointerpretation) and field vegetation studies, coupled with monitoring of water levels, are recommended for gaining an understanding of hydrologic disturbances in wetlands.

  5. Mapping and Monitoring the Akagera Wetland in Rwanda

    Directory of Open Access Journals (Sweden)

    Felix Ndayisaba

    2017-01-01

    Full Text Available Wetland maps are a prerequisite for wetland development planning, protection, and restoration. The present study aimed at mapping and monitoring Rwanda’s Akagera Complex Wetland by means of remote sensing and geographic information systems (GIS. Landsat data, spanning from 1987 to 2015, were acquired from different sensor instruments, considering a 5-year interval during the dry season and the shuttle radar topographic mission (SRTM digital elevation model (30-m resolution was used to delineate the wetland. The mapping and delineation results showed that the wetland narrowly extends along the Rwanda-Tanzania border from north to south, following the course of Akagera River and the total area can be estimated at 100,229.76 ha. After waterbodies that occupy 30% of the wetland’s surface area, hippo grass and Cyperus papyrus are also predominant, representing 29.8% and 29%, respectively. Floodplain and swamp forest have also been inventoried in smaller proportions. While the wetland extent has apparently remained stable, the inhabiting waterbodies have been subject to enormous instability due to invasive species. Lakes, such as Mihindi, Ihema, Hago and Kivumba have been shrinking in extent, while Lake Rwanyakizinga has experienced a certain degree of expansion. This study represents a consistent decision support tool for Akagera wetland management in Rwanda.

  6. Estimating restorable wetland water storage at landscape scales

    Science.gov (United States)

    Jones, Charles Nathan; Evenson, Grey R.; McLaughlin, Daniel L.; Vanderhoof, Melanie; Lang, Megan W.; McCarty, Greg W.; Golden, Heather E.; Lane, Charles R.; Alexander, Laurie C.

    2018-01-01

    Globally, hydrologic modifications such as ditching and subsurface drainage have significantly reduced wetland water storage capacity (i.e., volume of surface water a wetland can retain) and consequent wetland functions. While wetland area has been well documented across many landscapes and used to guide restoration efforts, few studies have directly quantified the associated wetland storage capacity. Here, we present a novel raster-based approach to quantify both contemporary and potential (i.e., restorable) storage capacities of individual depressional basins across landscapes. We demonstrate the utility of this method by applying it to the Delmarva Peninsula, a region punctuated by both depressional wetlands and drainage ditches. Across the entire peninsula, we estimated that restoration (i.e., plugging ditches) could increase storage capacity by 80%. Focusing on an individual watershed, we found that over 59% of restorable storage capacity occurs within 20 m of the drainage network, and that 93% occurs within 1 m elevation of the drainage network. Our demonstration highlights widespread ditching in this landscape, spatial patterns of both contemporary and potential storage capacities, and clear opportunities for hydrologic restoration. In Delmarva and more broadly, our novel approach can inform targeted landscape-scale conservation and restoration efforts to optimize hydrologically mediated wetland functions.

  7. Hurricane-induced failure of low salinity wetlands

    Science.gov (United States)

    Howes, Nick C.; FitzGerald, Duncan M.; Hughes, Zoe J.; Georgiou, Ioannis Y.; Kulp, Mark A.; Miner, Michael D.; Smith, Jane M.; Barras, John A.

    2010-01-01

    During the 2005 hurricane season, the storm surge and wave field associated with Hurricanes Katrina and Rita eroded 527 km2 of wetlands within the Louisiana coastal plain. Low salinity wetlands were preferentially eroded, while higher salinity wetlands remained robust and largely unchanged. Here we highlight geotechnical differences between the soil profiles of high and low salinity regimes, which are controlled by vegetation and result in differential erosion. In low salinity wetlands, a weak zone (shear strength 500–1450 Pa) was observed ∼30 cm below the marsh surface, coinciding with the base of rooting. High salinity wetlands had no such zone (shear strengths > 4500 Pa) and contained deeper rooting. Storm waves during Hurricane Katrina produced shear stresses between 425–3600 Pa, sufficient to cause widespread erosion of the low salinity wetlands. Vegetation in low salinity marshes is subject to shallower rooting and is susceptible to erosion during large magnitude storms; these conditions may be exacerbated by low inorganic sediment content and high nutrient inputs. The dramatic difference in resiliency of fresh versus more saline marshes suggests that the introduction of freshwater to marshes as part of restoration efforts may therefore weaken existing wetlands rendering them vulnerable to hurricanes. PMID:20660777

  8. Annual monitoring report for the Gunnison, Colorado, wetlands mitigation plan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-01

    The US Department of Energy (DOE) administers the Uranium Mill Tailings Remedial Action (UMTRA) Project to clean up uranium mill tailings and other surface contamination at 24 abandoned uranium mill sites in 10 states. One of these abandoned mill sites is near the town of Gunnison, Colorado; surface remediation and the environmental impacts of remedial action are described in the Gunnison environmental assessment (EA) (DOE, 1992). Remedial action resulted in the elimination of 4.3 acres (ac) 1.7 hectares (ha) of wetlands and mitigation of this loss of wetlands is being accomplished through the enhance of 18.4 ac (7.5 ha) of riparian plant communities in six spring feed areas on Bureau of Land Management (BLM) land. The description of the impacted and mitigation wetlands is provided in the Mitigation and Monitoring Plan for Impacted Wetlands at the Gunnison UMTRA Project Site, Gunnison, Colorado (DOE, 1994), which is attached to the US Army corps of Engineers (USACE) Section 404 Permit. As part of the wetlands mitigation plan, the six mitigation wetlands were fenced in the fall of 1993 to exclude livestock grazing. Baseline of grazed conditions of the wetlands vegetation was determined during the summer of 1993 (DOE, 1994). A 5-year monitoring program of these six sites has been implemented to document the response of vegetation and wildlife to the exclusion of livestock. This annual monitoring report provides the results of the first year of the 5-year monitoring period.

  9. A novel algorithm for delineating wetland depressions and ...

    Science.gov (United States)

    In traditional watershed delineation and topographic modeling, surface depressions are generally treated as spurious features and simply removed from a digital elevation model (DEM) to enforce flow continuity of water across the topographic surface to the watershed outlets. In reality, however, many depressions in the DEM are actual wetland landscape features that are seldom fully filled with water. For instance, wetland depressions in the Prairie Pothole Region (PPR) are seasonally to permanently flooded wetlands characterized by nested hierarchical structures with dynamic filling- spilling-merging surface-water hydrological processes. The objectives of this study were to delineate hierarchical wetland catchments and model their hydrologic connectivity using high-resolution LiDAR data and aerial imagery. We proposed a novel algorithm delineate the hierarchical wetland catchments and characterize their geometric and topological properties. Potential hydrologic connectivity between wetlands and streams were simulated using the least-cost path algorithm. The resulting flow network delineated putative temporary or seasonal flow paths connecting wetland depressions to each other or to the river network at scales finer than available through the National Hydrography Dataset. The results demonstrated that our proposed framework is promising for improving overland flow modeling and hydrologic connectivity analysis. Presentation at AWRA Spring Specialty Conference in Sn

  10. Total Economic Value of Wetlands Products and Services in Uganda

    Directory of Open Access Journals (Sweden)

    Willy Kakuru

    2013-01-01

    Full Text Available Wetlands provide food and non-food products that contribute to income and food security in Uganda. This study determined the economic value of wetland resources and their contribution to food security in the three agroecological zones of Uganda. The values of wetland resources were estimated using primary and secondary data. Market price, Productivity, and Contingent valuation methods were used to estimate the value of wetland resources. The per capita value of fish was approximately US$ 0.49 person−1. Fish spawning was valued at approximately US$ 363,815 year−1, livestock pastures at US$ 4.24 million, domestic water use at US$ 34 million year−1, and the gross annual value added by wetlands to milk production at US$ 1.22 million. Flood control was valued at approximately US$ 1,702,934,880 hectare−1 year−1 and water regulation and recharge at US$ 7,056,360 hectare−1 year−1. Through provision of grass for mulching, wetlands were estimated to contribute to US$ 8.65 million annually. The annual contribution of non-use values was estimated in the range of US$ 7.1 million for water recharge and regulation and to US$ 1.7 billion for flood control. Thus, resource investment for wetlands conservation is economically justified to create incentives for continued benefits.

  11. Total economic value of wetlands products and services in Uganda.

    Science.gov (United States)

    Kakuru, Willy; Turyahabwe, Nelson; Mugisha, Johnny

    2013-01-01

    Wetlands provide food and non-food products that contribute to income and food security in Uganda. This study determined the economic value of wetland resources and their contribution to food security in the three agroecological zones of Uganda. The values of wetland resources were estimated using primary and secondary data. Market price, Productivity, and Contingent valuation methods were used to estimate the value of wetland resources. The per capita value of fish was approximately US$ 0.49 person⁻¹. Fish spawning was valued at approximately US$ 363,815 year⁻¹, livestock pastures at US$ 4.24 million, domestic water use at US$ 34 million year⁻¹, and the gross annual value added by wetlands to milk production at US$ 1.22 million. Flood control was valued at approximately US$ 1,702,934,880 hectare⁻¹ year⁻¹ and water regulation and recharge at US$ 7,056,360 hectare⁻¹ year⁻¹. Through provision of grass for mulching, wetlands were estimated to contribute to US$ 8.65 million annually. The annual contribution of non-use values was estimated in the range of US$ 7.1 million for water recharge and regulation and to US$ 1.7 billion for flood control. Thus, resource investment for wetlands conservation is economically justified to create incentives for continued benefits.

  12. ``Living off the land'': resource efficiency of wetland wastewater treatment

    Science.gov (United States)

    Nelson, M.; Odum, H. T.; Brown, M. T.; Alling, A.

    Bioregenerative life support technologies for space application are advantageous if they can be constructed using locally available materials, and rely on renewable energy resources, lessening the need for launch and resupply of materials. These same characteristics are desirable in the global Earth environment because such technologies are more affordable by developing countries, and are more sustainable long-term since they utilize less non-renewable, imported resources. Subsurface flow wetlands (wastewater gardens™) were developed and evaluated for wastewater recycling along the coast of Yucatan. Emergy evaluations, a measure of the environmental and human economic resource utilization, showed that compared to conventional sewage treatment, wetland wastewater treatment systems use far less imported and purchased materials. Wetland systems are also less energy-dependent, lessening dependence on electrical infrastructure, and require simpler maintenance since the system largely relies on the ecological action of microbes and plants for their efficacy. Detailed emergy evaluations showed that wetland systems use only about 15% the purchased emergy of conventional sewage systems, and that renewable resources contribute 60% of total emergy used (excluding the sewage itself) compared to less than 1% use of renewable resources in the high-tech systems. Applied on a larger scale for development in third world countries, wetland systems would require 1/5 the electrical energy of conventional sewage treatment (package plants), and save 2/3 of total capital and operating expenses over a 20-year timeframe. In addition, there are numerous secondary benefits from wetland systems including fiber/fodder/food from the wetland plants, creation of ecosystems of high biodiversity with animal habitat value, and aesthestic/landscape enhancement of the community. Wetland wastewater treatment is an exemplar of ecological engineering in that it creates an interface ecosystem to handle

  13. Mechanisms of nutrient attenuation in a subsurface flow riparian wetland.

    Science.gov (United States)

    Casey, R E; Taylor, M D; Klaine, S J

    2001-01-01

    Riparian wetlands are transition zones between terrestrial and aquatic environments that have the potential to serve as nutrient filters for surface and ground water due to their topographic location. We investigated a riparian wetland that had been receiving intermittent inputs of NO3- and PO4(3-) during storm runoff events to determine the mechanisms of nutrient attenuation in the wetland soils. Few studies have shown whether infrequent pulses of NO3- are sufficient to maintain substantial denitrifying communities. Denitrification rates were highest at the upstream side of the wetland where nutrient-rich runoff first enters the wetland (17-58 microg N2O-N kg soil(-1) h(-1)) and decreased further into the wetland. Carbon limitation for denitrification was minor in the wetland soils. Samples not amended with dextrose had 75% of the denitrification rate of samples with excess dextrose C. Phosphate sorption isotherms suggested that the wetland soils had a high capacity for P retention. The calculated soil PO4(3-) concentration that would yield an equilibrium aqueous P04(3-) concentration of 0.05 mg P L(-1) was found to be 100 times greater than the soil PO4(3-) concentration at the time of sampling. This indicated that the wetland could retain a large additional mass of PO4(3-) without increasing the dissolved P04(3-) concentrations above USEPA recommended levels for lentic waters. These results demonstrated that denitrification can be substantial in systems receiving pulsed NO3- inputs and that sorption could account for extensive PO4(3-) attenuation observed at this site.

  14. Transport and transformation of nitrate in a riparian wetland

    DEFF Research Database (Denmark)

    Petersen, Rasmus Jes; Prinds, Christian; Iversen, Bo Vangsø

    the load of nitrogen from agricultural fields to fresh water bodies. One initiative is moving from a uniform regulation of nitrogen application to a spatially differentiated regulation where less fertilizer should be applied to vulnerable areas. This leads to the identification of vulnerable and robust...... areas, in which riparian wetlands plays an important role. The present case study investigates the transport and transformation of nitrate entering a riparian wetland via drain water from surrounding agricultural areas. The drain pipes are cut off at the hillslope and drain water irrigates the wetland...

  15. Estimation of Anthropogenic Conversion of Holocene Wetland Cover.

    Science.gov (United States)

    Fluet-chouinard, E.; McIntyre, P. B.; Lehner, B.; Kaplan, J. O.

    2015-12-01

    Wetland conversion (or reclamation) has been practiced since the dawn of civilization to this day, transforming biogeochemical cycles and threatening biodiversity, but record of wetland conversion are sparse and unreliable. A figure that "half of the world's wetlands have been lost since the year 1900" is commonly cited despite its origin as an inadequate extrapolation from the US-Midwest in the 1950s. Recently, earth observation technologies have facilitated measurement of wetland cover but are limited temporally. Alternatively, meta-analyses of historical reclamation records suggest conversion rates exceeding 50% since 1900 but may be biased by the records coming mostly from highly-converted sites in recent times. Large reclamation projects during the early historical period are well known but not reliably quantified, shedding uncertainty on the natural wetland baseline relative to which conversion rates should be measured. Rates of loss based on relatively recent baselines (industrial/pre-settlement) cannot account for conversion prior to the baseline date, and may reinforce the perception of humans have substantially altered natural processes only recently. I estimate global wetland conversion with a geospatial approach based on maps of potential wetland cover and historical land cover (and irrigation) reconstructions, then compare estimates with historical records, thus bringing together the two main lines of evidence. Conversion is estimated as potential wetland areas undergoing change to 'non-natural' land cover, and estimates are contextualized relative to a Holocene natural wetland cover baseline. Potential wetland maps from vegetation and hydrological models that exclude drainage and water abstraction processes are used as they are the closest existing to natural wetland cover, despite being based on current-day climatology. To distinguish more types of reclamation practices than existing land cover classes, the GIS estimates are 'calibrated' regionally

  16. Biogas potential in Grasses from Wetlands; Biogaspotential hos vaatmarksgraes

    Energy Technology Data Exchange (ETDEWEB)

    Martins, Marvin

    2009-12-15

    The purpose of this study has been to survey wetlands that are suitable for mowing and to analyze the biogas potential in the harvested grasses. A preformed investigation showed that there are suitable wetlands, which can be harvestable, namely those mowed formerly in traditional haymaking. The practice of traditional haymaking is dying out in Sweden today but there are several good reasons why it should to be reconsidered. Nature- and cultural values are obvious, also the unutilized energy in the grass. The suitable types of wetland that were specifically studied were the productive wetlands; meadow marshes and wet meadows. These wetlands are represented in the Swedish meadow- and pasture inventory database; (TUVA) and the Swedish national wetland inventory (VMI). Going through the databases showed that they largely complement each other. A geographical mapping was also carried out of wetlands in relation to areas of interest for the future establishment of biogas plants, so called 'hotspots'. The geographical survey shows that there is ample amount of grass from wetlands within a 30-kilometer radius that can supplement the plants main substrate, manure. The map layer Swedish Ground Cover Data (SMD) together with GIS software was used to analyze the extent of overgrowth for the older VMI objects in Uppsala County, with the result that half of the VMI objects are no longer of interest. They have become either woodland and bogs, or reed beds. There is very little information on wetland-grasses and methane production. Instead, a theory was evaluated regarding the possibility of transforming nutritional values for grass and sedges into biogas potentials. It was shown that this method does not capture the total biogas potential, but offers a minimum value that can be considered rather reliable. The energy transformation showed that late harvested grasses from wetlands has a biogas potential about 0,21 Nm3 methane/ (kg, DM) which is about 60 % of the biogas

  17. A comparison of the vegetation and soils of natural, restored, and created coastal lowland wetlands in Hawai‘i

    Science.gov (United States)

    Meris Bantilan-Smith; Gregory L. Bruland; Richard A. MacKenzie; Adonia R. Henry; Christina R. Ryder

    2009-01-01

    The loss of coastal wetlands throughout the Hawaiian Islands has increased the numbers of created (CW) and restored (RW) wetlands. An assessment of these wetlands has yet to occur, and it has not been determined whether CWs and RWs provide the same functions as natural wetlands (NWs). To address these concerns, vegetation and soil characteristics of 35 wetlands were...

  18. Differences in Fish, Amphibian, and Reptile Communities Within Wetlands Created by an Agricultural Water Recycling System in Northwestern Ohio

    Science.gov (United States)

    Establishment of a water recycling system known as the wetland-reservoir subirrigation system (WRSIS) results in the creation of wetlands adjacent to agricultural fields. Each WRSIS consists of one wetland designed to process agricultural chemicals (WRSIS wetlands) and one wetland to store subirriga...

  19. Mathematical concepts

    CERN Document Server

    Jost, Jürgen

    2015-01-01

    The main intention of this book is to describe and develop the conceptual, structural and abstract thinking of mathematics. Specific mathematical structures are used to illustrate the conceptual approach; providing a deeper insight into mutual relationships and abstract common features. These ideas are carefully motivated, explained and illustrated by examples so that many of the more technical proofs can be omitted. The book can therefore be used: ·         simply as an overview of the panorama of mathematical structures and the relations between them, to be supplemented by more detailed texts whenever you want to acquire a working knowledge of some structure ·         by itself as a first introduction to abstract mathematics ·         together with existing textbooks, to put their results into a more general perspective ·         to gain a new and hopefully deeper perspective after having studied such textbooks Mathematical Concepts has a broader scope and is less detaile...

  20. Effect of earthworm Eisenia fetida and wetland plants on nitrification and denitrification potentials in vertical flow constructed wetland.

    Science.gov (United States)

    Xu, Defu; Li, Yingxue; Howard, Alan; Guan, Yidong

    2013-06-01

    The response of nitrification potentials, denitrification potentials, and N removal efficiency to the introduction of earthworms and wetland plants in a vertical flow constructed wetland system was investigated. Addition of earthworms increased nitrification and denitrification potentials of substrate in non-vegetated constructed wetland by 236% and 8%, respectively; it increased nitrification and denitrification potentials in rhizosphere in vegetated constructed wetland (Phragmites austrail, Typha augustifolia and Canna indica), 105% and 5%, 187% and 12%, and 268% and 15% respectively. Denitrification potentials in rhizosphere of three wetland plants were not significantly different, but nitrification potentials in rhizosphere followed the order of C. indica>T. augustifolia>P. australis when addition of earthworms into constructed wetland. Addition of earthworms to the vegetated constructed significantly increased the total number of bacteria and fungi of substrates (Pnitrification potentials (r=913, Pnitrification potentials than denitrification potentials. The removal efficiency of N was improved via stimulated nitrification potentials by earthworms and higher N uptake by wetland plants. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Optimizing water depth for wetland-dependent wildlife could increase wetland restoration success, water efficiency, and water security

    Science.gov (United States)

    Nadeau, Christopher P.; Conway, Courtney J.

    2015-01-01

    Securing water for wetland restoration efforts will be increasingly difficult as human populations demand more water and climate change alters the hydrologic cycle. Minimizing water use at a restoration site could help justify water use to competing users, thereby increasing future water security. Moreover, optimizing water depth for focal species will increase habitat quality and the probability that the restoration is successful. We developed and validated spatial habitat models to optimize water depth within wetland restoration projects along the lower Colorado River intended to benefit California black rails (Laterallus jamaicensis coturniculus). We observed a 358% increase in the number of black rails detected in the year after manipulating water depth to maximize the amount of predicted black rail habitat in two wetlands. The number of black rail detections in our restoration sites was similar to those at our reference site. Implementing the optimal water depth in each wetland decreased water use while simultaneously increasing habitat suitability for the focal species. Our results also provide experimental confirmation of past descriptive accounts of black rail habitat preferences and provide explicit water depth recommendations for future wetland restoration efforts for this species of conservation concern; maintain surface water depths between saturated soil and 100 mm. Efforts to optimize water depth in restored wetlands around the world would likely increase the success of wetland restorations for the focal species while simultaneously minimizing and justifying water use.

  2. Microalgae community of the Huaytire wetland, an Andean high-altitude wetland in Peru

    Directory of Open Access Journals (Sweden)

    Gian Salazar-Torres

    Full Text Available AIM: The diversity and distribution of microalgae communities in a high-altitude (3,000 to 4,500 m a.s.l Andean wetland, regionally known as bofedal, were examined to assess seasonal and spatial patterns. METHODS: Samples were taken monthly from June to December, 2008 at 13 stations in the Huaytire wetland (16° 54’ S and 70° 20’ W, covering three areas (impacted by urban land use, impacted by camelid pasture, and non-impacted and three climatologically induced periods (ice-covered, ice-melt and ice-free. RESULTS: A total of 52 genera of algae were recorded. Diatoms were the predominant group in abundance and richness. We found a significantly higher abundance during the ice-melting period, when light exposure and runoff were intermediate, in comparison to the ice-covered (low light and flushing and ice-free (high light and low runoff periods. Microalgae abundance was significantly lower in the non-impacted area compared to the sites close to the urban area and to the camelid pastures. Alpha diversity ranged from 8 to 29 genera per sample. High genera exchange was observed throughout the wetland, showing a similar floristic composition (beta diversity = 4%. CONCLUSIONS: We found that diatoms were dominant and adapted to the extreme conditions of the Andean wetland, showing higher abundance during the ice-melt period and in the livestock area. Also, taxa richness was higher in the ice-melt period and in the most-impacted areas.

  3. Vegetative Ecological Characteristics of Restored Reed ( Phragmites australis) Wetlands in the Yellow River Delta, China

    Science.gov (United States)

    Wang, Xuehong; Yu, Junbao; Zhou, Di; Dong, Hongfang; Li, Yunzhao; Lin, Qianxin; Guan, Bo; Wang, Yongli

    2012-02-01

    In this study, we compared ecological characteristics of wetland vegetation in a series of restoration projects that were carried out in the wetlands of Yellow River Delta. The investigated characteristics include plant composition structure, species diversity and community similarity in three kinds of Phragmites australis wetlands, i.e. restored P. australis wetlands (R1, R2, R3 and R4: restored in 2002, 2005, 2007 and 2009, respectively), natural P. australis wetland (N) and degraded P. australis wetland (D) to assess the process of wetlands restoration. The coverage of the R1 was 99%, which was similar to natural wetland. Among all studied wetlands, the highest and lowest stem density was observed in R1 and R2, respectively, Plant height and stem diameter show the same trend as N > R2 > R1 > R3 > D > R4. Species diversity of restored P. australis wetlands became closed to natural wetland. Both species richness and Shannon-Wiener index had similar tendency: increased first and then decreased with restored time. The highest species richness and species diversity were observed in R2, while the lowest values of those parameters were found in natural P. australis wetland. Similarity indexes between restored wetlands and natural wetland increased with the restoration time, but they were still less than 50%. The results indicate that the vegetation of P. australis wetlands has experienced a great improvement after several years' restoration, and it is feasible to restored degraded P. australis wetlands by pouring fresh water into those wetlands in the Yellow River Delta. However, it is notable that costal degraded P. australis wetland in this region may take years to decades to reach the status of natural wetland.

  4. Use of wetlands for treating wastes: wisdom in diversity. [Kissimmee Valley, Florida wetland management model

    Energy Technology Data Exchange (ETDEWEB)

    Blumer, K

    1978-01-01

    Preliminary analysis of data from two Kissimmee Valley, Florida wetland models operating continuously over the past four years suggest that increased diversity may be one of the major factors in the startling ability of certain wetland systems to retain high amounts of nutrients. According to preliminary analysis of total phosphorus, increasing the number of biotopes, or ecocomponents, in a flow sequence will increase the ability of systems to take up and retain a greater amount of nutrients than would a continuous, single ecosystem of the same size. Increasing the number of compartments is, to begin with, an increase in structural diversity, and any biotic diversity is extended by the presence of different ecosystems adjacent to each other in linear sequence, thus providing habitat diversity. The increased number of barriers between ecocomponents increases the possibility for diversity by providing physical traps for nutrients and greater spatial heterogeneity. It is important to note that barriers may be distinct physical impediments to the movement of water, sediments or organisms between ecocomponents, such as a dam, or may be more subtle biological impediments, such as a gently sloping benthic gradient, which create slight habitat differences (water depth, light, temperature, etc.) favoring one plant or animal over another. The increase of habitat and species diversity as a means of improving nutrient uptake may provide a number of practical applications to recreating wetlands in the Kissimmee Valley. Implications of the findings for improving socio-economic conditions in the region are discussed.

  5. Simulating the biogeochemical cycles in cypress wetland-pine upland ecosystems at a landscape scale with the wetland-DNDC model

    Science.gov (United States)

    G. Sun; C. Li; C. Tretting; J. Lu; S.G. McNulty

    2005-01-01

    A modeling framework (Wetland-DNDC) that described forested wetland ecosystem processes has been developed and validated with data from North America and Europe. The model simulates forest photosynthesis, respiration, carbon allocation, and liter production, soil organic matter (SOM) turnover, trace gas emissions, and N leaching. Inputs required by Wetland-DNDC...

  6. Microbial Enzyme Activities of Wetland Soils as Indicators of Nutrient Condition: A Test in Wetlands of Gulf of Mexico Coastal Watershed

    Science.gov (United States)

    Microbial enzyme activities measured from wetland soils are being tested as indicators of wetland nutrient function and human disturbance. This is part of an assessment of condition of wetlands being conducted by the U.S. EPA Gulf Ecology Division in coastal watersheds along the...

  7. Wetlands Environmental Management For Agriculture In Hungary

    Directory of Open Access Journals (Sweden)

    Katai Janos

    2014-06-01

    Full Text Available Hungary is located at the central Basin of Danube River, which is surrounded by the Alps and the Carpathians mountain range. The 84% of the Hungary area lies below 200 mBm. The rate of the flooded area is significant in the country. The average runoff of surface water exceeds hundred billion cubic meters. Streams and rivers from the surrounding area flow together with the Danube River into the Black sea. The 96% of the mentioned water quantity come from abroad; three-quarters of this water quantity enter the country in the Danube’s, Tisza’s and Drava’s riverbed. In my presentation, I would like to give an account about the status of wetlands in Hungary, its roles of agriculture and social life, difficulties encountered and future possibilities referring to literary sources.

  8. Rainfall spatiotemporal variability relation to wetlands hydroperiods

    Science.gov (United States)

    Serrano-Hidalgo, Carmen; Guardiola-Albert, Carolina; Fernandez-Naranjo, Nuria

    2017-04-01

    Doñana natural space (Southwestern Spain) is one of the largest protected wetlands in Europe. The wide marshes present in this natural space have such ecological value that this wetland has been declared a Ramsar reserve in 1982. Apart from the extensive marsh, there are also small lagoons and seasonally flooded areas which are likewise essential to maintain a wide variety of valuable habitats. Hydroperiod, the length of time each point remains flooded along an annual cycle, is a critical ecological parameter that shapes aquatic plants and animals distribution and determines available habitat for many of the living organisms in the marshes. Recently, there have been published two different works estimating the hydroperiod of Doñana lagoons with Landsat Time Series images (Cifuentes et al., 2015; Díaz-Delgado et al., 2016). In both works the flooding cycle hydroperiod in Doñana marshes reveals a flooding regime mainly driven by rainfall, evapotranspiration, topography and local hydrological management actions. The correlation found between rainfall and hydroperiod is studied differently in both works. While in one the rainfall is taken from one raingauge (Cifuentes et al., 2015), the one performed by Díaz-Delgado (2016) uses annual rainfall maps interpolated with the inverse of the distance method. The rainfall spatiotemporal variability in this area can be highly significant; however the amount of this importance has not been quantified at the moment. In the present work the geostatistical tool known as spatiotemporal variogram is used to study the rainfall spatiotemporal variability. The spacetime package implemented in R (Pebesma, 2012) facilities its computation from a high rainfall data base of more than 100 raingauges from 1950 to 2016. With the aid of these variograms the rainfall spatiotemporal variability is quantified. The principal aim of the present work is the study of the relation between the rainfall spatiotemporal variability and the

  9. Vegetation survey of PEN Branch wetlands

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    A survey was conducted of vegetation along Pen Branch Creek at Savannah River Site (SRS) in support of K-Reactor restart. Plants were identified to species by overstory, understory, shrub, and groundcover strata. Abundance was also characterized and richness and diversity calculated. Based on woody species basal area, the Pen Branch delta was the most impacted, followed by the sections between the reactor and the delta. Species richness for shrub and groundcover strata were also lowest in the delta. No endangered plant species were found. Three upland pine areas were also sampled. In support of K Reactor restart, this report summarizes a study of the wetland vegetation along Pen Branch. Reactor effluent enters Indian Grove Branch and then flows into Pen Branch and the Pen Branch Delta.

  10. Multiscale habitat selection of wetland birds in the northern Gulf Coast

    Science.gov (United States)

    Pickens, Bradley A.; King, Sammy L.

    2014-01-01

    The spatial scale of habitat selection has become a prominent concept in ecology, but has received less attention in coastal ecology. In coastal marshes, broad-scale marsh types are defined by vegetation composition over thousands of hectares, water-level management is applied over hundreds of hectares, and fine-scale habitat is depicted by tens of meters. Individually, these scales are known to affect wetland fauna, but studies have not examined all three spatial scales simultaneously. We investigated wetland bird habitat selection at the three scales and compared single- and multiscale models. From 2009 to 2011, we surveyed marsh birds (i.e., Rallidae, bitterns, grebes), shorebirds, and wading birds in fresh and intermediate (oligohaline) coastal marsh in Louisiana and Texas, USA. Within each year, six repeated surveys of wintering, resident, and migratory breeding birds were conducted at > 100 points (n = 304). The results revealed fine-scale factors, primarily water depth, were consistently better predictors than marsh type or management. However, 10 of 11 species had improved models with the three scales combined. Birds with a linear association with water depth were, correspondingly, most abundant with deeper fresh marsh and permanently impounded water. Conversely, intermediate marsh had a greater abundance of shallow water species, such as king rail Rallus elegans, least bittern Ixobrychus exilis, and sora Porzana carolina. These birds had quadratic relationships with water depth or no relationship. Overall, coastal birds were influenced by multiple scales corresponding with hydrological characteristics. The effects suggest the timing of drawdowns and interannual variability in spring water levels can greatly affect wetland bird abundance.

  11. Multi-state succession in wetlands: a novel use of state and transition models

    Science.gov (United States)

    Zweig, Christa L.; Kitchens, Wiley M.

    2009-01-01

    The complexity of ecosystems and mechanisms of succession are often simplified by linear and mathematical models used to understand and predict system behavior. Such models often do not incorporate multivariate, nonlinear feedbacks in pattern and process that include multiple scales of organization inherent within real-world systems. Wetlands are ecosystems with unique, nonlinear patterns of succession due to the regular, but often inconstant, presence of water on the landscape. We develop a general, nonspatial state and transition (S and T) succession conceptual model for wetlands and apply the general framework by creating annotated succession/management models and hypotheses for use in impact analysis on a portion of an imperiled wetland. The S and T models for our study area, Water Conservation Area 3A South (WCA3), Florida, USA, included hydrologic and peat depth values from multivariate analyses and classification and regression trees. We used the freeware Vegetation Dynamics Development Tool as an exploratory application to evaluate our S and T models with different management actions (equal chance [a control condition], deeper conditions, dry conditions, and increased hydrologic range) for three communities: slough, sawgrass (Cladium jamaicense), and wet prairie. Deeper conditions and increased hydrologic range behaved similarly, with the transition of community states to deeper states, particularly for sawgrass and slough. Hydrology is the primary mechanism for multi-state transitions within our study period, and we show both an immediate and lagged effect on vegetation, depending on community state. We consider these S and T succession models as a fraction of the framework for the Everglades. They are hypotheses for use in adaptive management, represent the community response to hydrology, and illustrate which aspects of hydrologic variability are important to community structure. We intend for these models to act as a foundation for further restoration

  12. Morris Wetland Management District : Annual narrative report : Calendar year 1982

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Morris Wetland Management District outlines Refuge accomplishments during the 1982 calendar year. The report begins with a summary...

  13. Windom Wetland Management District : Annual Narrative Report : Calendar Year 1992

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Windom Wetland Management District summarizes District activities during the 1992 calendar year. The report begins with a summary of...

  14. Kulm Wetland Management District : Annual Narrative Report : 1982

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Kulm Wetland Mangement District outlines Refuge accomplishments during the 1982 calendar year. The report begins with a summary of...

  15. Arrowwood Wetland Management District Annual narrative report: Calendar year 1988

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Arrowwood Wetland Management District outlines Refuge accomplishments during the 1988 calendar year. The report begins by giving a...

  16. Waubay Wetland Management District Annual narrative report: Calendar year 1980

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Waubay Wetland Management District outlines Refuge accomplishments during the 1980 calendar year. The report begins by giving a...

  17. Narrative report for calendar year 1968: Waubay Wetland Management District

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Waubay Wetland Management District outlines Refuge accomplishments during the 1968 calendar year. The report begins by summarizing...

  18. Perspectives on wastewater treatment wetlands and waterbird conservation

    National Research Council Canada - National Science Library

    Christopher G. Murray; Andrew J. Hamilton

    2010-01-01

    .... Wastewater treatment wetlands are currently of critical importance for certain waterbird species in some parts of the world, and we illustrate this with an example from south-eastern Australia...

  19. Pharmaceutical Compounds in Wastewater: Wetland Treatment as a Potential Solution

    Directory of Open Access Journals (Sweden)

    John R. White

    2006-01-01

    Full Text Available Pharmaceutical compounds are being released into the aquatic environment through wastewater discharge around the globe. While there is limited removal of these compounds within wastewater treatment plants, wetland treatment might prove to be an effective means to reduce the discharge of the compounds into the environment. Wetlands can promote removal of these pharmaceutical compounds through a number of mechanisms including photolysis, plant uptake, microbial degradation, and sorption to the soil. We review relevant laboratory research on these various mechanisms and provide data on the few studies that have examined wetland removal. There is a need to document the degree to which various pharmaceutical compounds are removed in full-scale treatment wetlands, as there is a paucity of data on overall pharmaceutical removal rates.

  20. Environmental Assessment : Two Ponds Wetland Preserve, Arvada, Colorado

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Environmental Assessment for the acquisition of approximately 80 acres known as Two Ponds Wetland Preserve. The Fish and Wildlife Service has responded to selected...

  1. Kulm Wetland Management District annual habitat work plan 2005

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual habitat management plan outlines working habitat objectives for wetland habitats based on refuge purposes, professional judgment and experience for Kulm...

  2. Assessment of heavy metal accumulation in Anzali wetland, Iran ...

    African Journals Online (AJOL)

    Cd), copper (Cu), zinc (Zn), lead (Pb) and chromium (Cr) were higher in the leaves than in the stems of a submerged aquatic plant Ceratophyllum demersum in Anzali wetland. Cadmium, Pb and Cr concentrations were highest in the leaves.

  3. Chincoteague National Wildlife Refuge Wetland Vegetation Study 1982

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Ten wetland vegetation transects were conducted on the Chincoteague Refuge in 1982. Two-thousand three hundred forth-five points were sampled with a five-point...

  4. Chincoteague National Wildlife Refuge Wetland Vegetation Study 1974

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Six wetland vegetation transect lines were run in 1974 compared to 7 in 1973. These six lines totalled 7,S90 linear feet. The fivepoint sampling method was used in...

  5. Waubay Wetland Management District Annual narrative report: Calendar year 1985

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Waubay Wetland Management District outlines Refuge accomplishments during the 1985 calendar year. The report begins by giving a...

  6. Audubon Wetland Management District Annual narrative report: Calendar year 1986

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Audubon Wetland Management District outlines Refuge accomplishments during the 1986 calendar year. The report begins with a summary...

  7. Madison Wetland Management District: Annual narrative report, calendar year 1981

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Madison Wetland Management District outlines District accomplishments during the 1981 calendar year. The report begins by describing...

  8. Windom Wetland Management District : Annual Narrative Report : Fiscal Year 1998

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Windom Wetland Management District summarizes activities during the 1998 fiscal year. The report begins with an introduction to the...

  9. Herbicide concentrations in wetlands in west central Minnesota, 1992

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Thirty emergent, seasonally to semi-permanently flooded wetlands in an intensively farmed area of west central Minnesota were sampled before and during the 1992 crop...

  10. Morris Wetland Management District : Annual narrative report : Calendar year 1983

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Morris Wetland Management District outlines Refuge accomplishments during the 1983 calendar year. The report begins with a summary...

  11. Waubay Wetland Management District: Annual narrative report: Calendar year 1982

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Waubay Wetland Management District outlines Refuge accomplishments during the 1982 calendar year. The report begins by giving a...

  12. Purpose and Vision Statements for Wetland Management Districts

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This memorandum from the Region 6 Assistant Regional Director, National Wildlife Refuge System, is transmitting purpose and vision statements for Wetland Management...

  13. Rainwater Basin Wetland Management District: Comprehensive Conservation Plan

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This Comprehensive Conservation Plan (CCP) was written to guide management on Rainwater Basin Wetland Management District for the next 15 years. This plan outlines...

  14. Lostwood Wetland Management District Annual narrative report: Calendar year 1985

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Lostwood Wetland Management District outlines accomplishments during the 1985 calendar year. The report begins with a summary of the...

  15. Lostwood Wetland Management District Annual narrative report: Calendar year 1987

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Lostwood Wetland Management District outlines accomplishments during the 1987 calendar year. The report begins with a summary of the...

  16. Lostwood Wetland Management District Annual narrative report: Calendar year 1983

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Lostwood Wetland Management District outlines accomplishments during the 1983 calendar year. The report begins with a summary of the...

  17. Morris Wetland Management District: Annual narrative report: Fiscal year 2000

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Morris Wetland Management District outlines Refuge accomplishments during the 2000 fiscal year. The report begins with an...

  18. Morris Wetland Management District: Annual narrative report: Calendar year 1996

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Morris Wetland Management District outlines Refuge accomplishments during the 1996 calendar year. The report begins with a summary...

  19. Morris Wetland Management District: Annual narrative report: Calendar year 1995

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Morris Wetland Management District outlines Refuge accomplishments during the 1995 calendar year. The report begins with a summary...

  20. LBA Regional Wetlands Data Set, 1-Degree (Matthews and Fung)

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set is a subset of a global database compiled by Matthews and Fung (1987) on the distribution and environmental characteristics of natural wetlands. The...

  1. St. Croix Wetland Management District: Comprehensive Conservation Plan

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This Comprehensive Conservation Plan (CCP) was written to guide management on St. Croix Wetland Management District for the next 15 years. This plan outlines the...

  2. THE EXPRESSION OF MULTIPLE FUNCTIONS IN URBAN FORESTED WETLANDS

    Science.gov (United States)

    Forested wetlands in metropolitan areas function to support biodiversity, protect water quality, store floodwaters, and maintain streamflow, but they also function to provide natural areas for passive recreation, education, and esthetic appreciation for the surrounding human popu...

  3. Constructed wetlands as wood stork habitat: Good, bad, or ugly?

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Objectives of our project are to determine the productivity of the wood stork colony nesting at the Jacksonville Zoo, to determine actual use of constructed wetlands...

  4. Chincoteague National Wildlife Refuge Wetland Vegetation Study 1975

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Summary: Only one wetland vegetation transect line was run this year due to lack of manpower and funds. This transect was run in 'C' pool. Pertinent information can...

  5. Wisconsin Wetland Management District: Annual narrative report: Calendar year 1988

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Wisconsin Wetland Management District outlines Refuge accomplishments during the 1988 calendar year. The report begins with a...

  6. Waubay Wetland Management District: Annual narrative report: Calendar year 1984

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Waubay Wetland Management District outlines district accomplishments during the 1984 calendar year. The report begins with a summary...

  7. Wetland Vegetation Survey Report Presquile National Wildlife Refuge 1977

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This report outlines the findings of the first wetland vegetation transect survey that was done at Presquile National Wildlife Refuge since 1973 when the refuge was...

  8. Waterbirds and their wetland resources at Storkersen Point, Alaska

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Objectives were to determine breeding populations of birds by weekly ground censuses on established transects 2) monitor waterbird use of wetlands and maintain an...

  9. Litchfield Wetland Management District: Annual narrative report: Calendar year 1982

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Litchfield Wetland Management District outlines District accomplishments during the 1982 calendar year. The report begins with a...

  10. Ridgefield - Wetland Invasive Plant Search and Control 2012

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This project would expand survey, control, and monitoring efforts to detect new wetland invasive plant threats and continue reduction of the accumulation of recently...

  11. Wetland modeling and information needs at Stillwater National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This report is from a workshop to discuss aspects of wetland management in the Lahontan Valley. The workshop, described in this report, had three primary objectives:...

  12. Audubon Wetland Management District: Annual narrative report: 1980

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Audubon Wetland Management District outlines Refuge accomplishments during the 1980 calendar year. The report begins with a summary...

  13. Audubon Wetland Management District: Annual narrative report: Calendar year 1982

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Audubon Wetland Management District outlines Refuge accomplishments during the 1982 calendar year. The report begins with a summary...

  14. Kulm Wetland Management District : Annual Narrative Report : 2003

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This narrative report for Kulm Wetland Management District outlines Refuge accomplishments during the 2003 calendar year. The report begins with an introduction to...

  15. Lostwood Wetland Management District Annual narrative report: Calendar year 1986

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Lostwood Wetland Management District outlines accomplishments during the 1986 calendar year. The report begins with a summary of the...

  16. Audubon Wetland Management District Annual narrative report: Calendar year 1984

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Audubon Wetland Management District outlines Refuge accomplishments during the 1984 calendar year. The report begins with a summary...

  17. Morris Wetland Management District: Annual narrative report: Fiscal year 2007

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Morris Wetland Management District outlines Refuge accomplishments during the 2007 fiscal year. The report begins with an...

  18. [Narrative report for calendar year 1978 : Waubay Wetland Management District

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This narrative report for Waubay Wetland Management District outlines district accomplishments during the 1978 calendar year. The report begins with an introduction...

  19. Kulm Wetland Management District : Annual Narrative Report : 1976

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This narrative report for Kulm Wetland Management District outlines Refuge accomplishments during the 1976 calendar year. The report begins with an introduction to...

  20. Kulm Wetland Management District : Annual Narrative Report : 1980

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This narrative report for Kulm Wetland Management District outlines Refuge accomplishments during the 1980 calendar year. The report begins with an introduction to...

  1. Biological control of weeds release sites : Kulm Wetland Management District

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Table of release sites of insects for biological control of invasive plants at Kulm Wetland Management District (WMD). Insects were released on Kulm WMD to...

  2. Mara River and Associated Wetland as a Refuge of Threatened ...

    African Journals Online (AJOL)

    February, 2005 to investigate the importance of the wetland as a refuge site for indigenous cichlids ... Parallel to fish sampling, environmental parameters which included dissolved oxygen, conductivity, pH, concentration of silicon and phytoplankton ...

  3. VT National Wetlands Inventory appended data - boundary lines

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) VCGI downloaded NWI quads from the US FWS web site and reprojected to VCS NAD83. NWI digital data files are records of wetlands location and...

  4. VT National Wetlands Inventory appended data - area polygons

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) VCGI downloaded NWI quads from the US FWS web site and reprojected to VCS NAD83. NWI digital data files are records of wetlands location and...

  5. Litchfield Wetland Management District: Annual narrative report: Calendar year 1990

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Litchfield Wetland Management District outlines accomplishments during the 1990 calendar year. The report begins with a summary of...

  6. Litchfield Wetland Management District: Annual narrative report: Calendar year 1991

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Litchfield Wetland Management District outlines accomplishments during the 1991 calendar year. The report begins with a summary of...

  7. The Ecology of Atlantic White Cedar Wetlands: A Community Profile.

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of the profile is to describe the extent, components, functioning, history, and treatment of these wetlands. It is intended to provide a useful reference...

  8. Litchfield Wetland Management District: Annual narrative report: Calendar year 1989

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Litchfield Wetland Management District outlines accomplishments during the 1989 calendar year. The report begins with a summary of...

  9. Audubon Wetland Management District Annual narrative report: Calendar year 1987

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Audubon Wetland Management District outlines Refuge accomplishments during the 1987 calendar year. The report begins with a summary...

  10. Columbia River ESI: NWI (National Wetlands Inventory - Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains vector polygons representing the wetlands of Columbia River classified according to the Environmental Sensitivity Index (ESI) classification...

  11. Proceedings : Region 6 Wetland Management District CCP Coordination Meeting

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The following notes summarize the results of a meeting held between Wetland Management District (WMD) managers/staff and Regional Office staff. The purpose of the...

  12. Geographically isolated wetlands and watershed hydrology: A modified

    Data.gov (United States)

    U.S. Environmental Protection Agency — Data for "An improved representation of geographically isolated wetlands in a watershed-scale hydrologic model". This dataset is associated with the following...

  13. Wetland State-and-Transition Model Project: Annual Report - 2015

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Semi-permanently flooded wetland habitats throughout the Intermountain West and western Prairie Pothole regions provide important resources for migrating and...

  14. Morris Wetland Management District : Annual narrative report : Calendar year 1967

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This narrative report for Morris Wetland Management District outlines Refuge accomplishments during the 1966 calendar year. The report begins with an introduction to...

  15. Morris Wetland Management District : Annual narrative report : Calendar year 1968

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This narrative report for Morris Wetland Management District outlines Refuge accomplishments during the 1968 calendar year. The report begins with an introduction to...

  16. Morris Wetland Management District : Annual narrative report : Calendar year 1971

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This narrative report for Morris Wetland Management District outlines Refuge accomplishments during the 1971 calendar year. The report begins with an introduction to...

  17. Morris Wetland Management District : Annual narrative report : Calendar year 1966

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This narrative report for Morris Wetland Management District outlines Refuge accomplishments during the 1966 calendar year. The report begins with an introduction to...

  18. Waubay Wetland Management District Annual narrative report: Calendar year 1986

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Waubay Wetland Management District outlines Refuge accomplishments during the 1986 calendar year. The report begins by giving a...

  19. Potential Wetland Restoration Indicators data for the EnviroAtlas

    Data.gov (United States)

    U.S. Environmental Protection Agency — Data is based on overlap of topographic, soil drainage, and national wetland inventory areas. This dataset is associated with the following publication: Horvath, E.,...

  20. 76 FR 77162 - Floodplain Management and Protection of Wetlands

    Science.gov (United States)

    2011-12-12

    ..., mud flats, and natural ponds. Executive Order 11988 (E.O. 11988) entitled ``Floodplain Management... or wetland. Examples of indirect support include water and waste water systems, power supplies, roads...